Copyright Statement

The digital copy of this thesis is protected by the Copyright Act 1994 (New Zealand).

This thesis may be consulted by you, provided you comply with the provisions of the Act and the following conditions of use:

- you will use the copy only for the purposes of research or private study
- you will recognise the author's right to be identified as the author of the thesis and due acknowledgement will be made to the author where appropriate
- you will obtain the author's permission before publishing any material from the thesis.
Effect of different irrigation systems on nitrous oxide emissions from urine applied to pasture soil

A thesis submitted in partial fulfilment of the requirements for the Degree of Master of Agricultural Science at Lincoln University by May Tana Hedges

Lincoln University 2017
Abstract of a thesis submitted in partial fulfilment of the requirements for the Degree of Master of Agricultural Science.

Effect of different irrigation systems on nitrous oxide emissions from urine applied to pasture soil

by

May Tana Hedges

Nitrous oxide (N\textsubscript{2}O) is one of the important greenhouse gases (GHGs) that contributes to climate change and depletion of the ozone layer. Nitrous oxide is produced by nitrification and denitrification processes in soils. In New Zealand, the agriculture sector produces the largest proportion of the total GHG emissions and the largest source of N\textsubscript{2}O emissions is from agricultural soils. New Zealand’s commitment to the Paris Agreement 2015 is to reduce all GHG emissions to 30 percent below 2005 levels, by 2030. Increased GHG emissions have an effect on climate change which is a threat to many countries in the world and especially the South Pacific Islands. These islands have already been affected by climate change where coastal agricultural land is submerged due to sea-level rises. As agriculture in New Zealand is the main emitter of GHGs, and because of the impact it has on the South Pacific Islands, more research is required to reduce emissions. Therefore, the objectives of this research are to: 1) quantify the effect of irrigation systems (spray vs roto-rainer vs flood) on N\textsubscript{2}O emissions from urine applied to pasture soil and, 2) determine the relationship between N\textsubscript{2}O emissions and soil nitrifier and denitrifier population abundance as affected by different irrigation systems.

A field trial was carried out at Lincoln University Research Dairy Farm over a period of 135 days (late summer to early winter) to assess the effect of the different irrigation systems on nitrous oxide emissions from urine applied to pasture soil. The soil used was Templeton sandy loam/Paparua (Udic Haplusterts). The treatments included three irrigation systems: spray, roto-rainer and flood, each with control (water) and/or urine (700 kg N/ha) treatments. Soil
samples were also collected from companion soil blocks and analysed for soil mineral N, nitrifier and denitrifier population abundance.

The results from this research showed that there was no significant difference between the irrigation systems on total N$_2$O-N emissions but the different irrigation systems affected the temporal pattern of the N$_2$O-N emissions. The irrigation systems did not significantly affect the AOB, AOA or denitrifier abundance, which helps to explain the similar total N$_2$O-N emissions between the irrigation treatments. The emission factor (EF$_3$) values for these irrigation treatments (2% for spray, 3% for roto-rainer, and 2% for flood) were higher than the New Zealand’s specific EF$_3$ value (1%). This is probably a result of the warm soil temperatures combined with moist soil conditions under irrigation, as supported by the observed positive relationship between soil temperature and N$_2$O-N emissions. Relationships between N$_2$O-N emissions and soil water content or water-filled pore space (WFPS) were weak because most of the N$_2$O-N emissions occurred at moisture contents below field capacity. Importantly, considerable amounts of N$_2$O-N can be emitted from urine patches in irrigated pasture despite the soil water content being below field capacity.

Keywords: Nitrous oxide, Spray irrigation, Roto-rainer irrigation, Flood irrigation, Nitrification, Denitrification, Ammonia oxidisers, AOB, AOA, Nitrifiers, Denitrifiers, nirS, nirK, nosZ
Acknowledgements

First and foremost, I would like to thank God for the many blessings undeservingly bestowed upon me and for this success.

To my supervisors Professor Keith Cameron and Professor Hong Di, thank you very much for giving me the opportunity to work with you. To Professor Keith Cameron, your help right from the beginning of my studies and your words of encouragement, understanding, professional advice and guidance is very much appreciated. To Professor Hong Di, your encouragement and professional advice and comments towards the completion of my study is very much appreciated. To Dr Andriy Podolyan, thank you for your advice and help with my statistical analysis. I would also like to thank the New Zealand Agricultural Greenhouse Gas Research Centre for funding my research and providing me with a stipend. My appreciation is also extended to Dr Barbara Brown for proof reading my work and all your other assistance. To Caitriona Cameron thank you for helping with the editing.

To the technical staff: Trevor Hendry, Roger Atkinson and his team, Sheilagh Basset, Jeneth Hendry, Manjula Premaratne and his team, Barry Anderson, Jie Lei and Nigel Beale, thank you very much for your technical support. I would also like to thank Amal Torky, Marianne Duncan and Robyn Wilson for your administrative assistance throughout my studies.

A big thank you to Anna Carlton for working with me on this project. Your willingness to share data and information with me is very much appreciated. I wish you all the best in your studies and your future career! I would also like to thank Michael Yi for his help and great conversations.

To the Lincoln Baptist church pastoral team thank you for your prayers and support. I would also like to extend my appreciation to Isobel Hollick for your help, prayers, advice and encouragement. You have been a wonderful friend to my family.

To my family, you have been such a great inspiration for me personally. A big thank you to my wonderful husband (Andrew Hedges) and my two lovely boys (James & Daniel), for your patience, support, prayers and encouragement during my studies. To my late father (Morris Pitakere), whose advice I still remember which motivated me to work hard; my mother and sister thank you very much for your words of encouragement and prayers when I’m down and far away from you. To my in-laws, a big thank you for your help and support.
Finally, thank you to anyone whom I have forgotten to mention, who has helped me during my studies.
Table of Contents

Abstract .. iii

Acknowledgements .. v

Table of Contents .. vii

List of Tables ... x

List of Figures ... xi

Chapter 1 – Introduction .. 1

1.1 N₂O is an important GHG ... 1

1.2 Agriculture’s contribution to New Zealand’s GHG emissions inventory 1

1.3 GHG emissions (e.g. N₂O) contribute to climate change which affects the South Pacific Islands and other low lying islands in the world ... 2

1.4 Effect of irrigation and the role of nitrifiers and denitrifiers on N₂O emissions 3

1.5 Objectives .. 4

1.6 Hypothesis ... 4

Chapter 2 - Literature Review .. 5

2.1 The Nitrogen Cycle and Production of Nitrous oxide .. 5

2.1.1 Biological production of Nitrous Oxide (N₂O) ... 6

2.1.1.1 Nitrification ... 6

2.1.1.2 Denitrification .. 7

2.1.2 Factors affecting N₂O emissions and microbial communities in agricultural soils 8

2.1.2.1 Temperature ... 9

2.1.2.2 Soil drying-rewetting .. 10

2.1.2.3 Soil texture ... 10

2.1.2.4 Soil pH .. 10

2.1.2.5 Soil mineral nitrogen .. 10

2.2 Effect of soil moisture and irrigation on nitrous oxide emissions ... 11

2.2.1 Soil moisture and aeration ... 11
Chapter 3 - Materials and Methods ... 16
 3.1 Experimental design and field trial layout ... 16
 3.2 Urine collection and application to the lysimeters and soil blocks 20
 3.3 Nitrous oxide measurement ... 22
 3.4 Soil Sampling ... 23
 3.5 Extractable ammonium and nitrate .. 25
 3.6 AOA/AOB assays ... 25
 3.6.1 DNA extraction ... 25
 3.6.2 PCR analysis ... 26
 3.7 Soil moisture ... 28
 3.8 Climate data ... 30
 3.9 Data and statistical analysis .. 30

Chapter 4 - The effect of different irrigation systems on N₂O emissions, soil nitrifiers and
denitrifiers .. 32
 4.1 Results .. 32
 4.1.1 Climate .. 32
 4.1.2 N₂O emissions ... 38
 4.1.2.1 Daily N₂O emissions .. 38
 4.1.2.2 Total N₂O emissions ... 40
 4.1.2.3 Relationship between N₂O emissions and Soil water content (SWC) 42
 4.1.2.4 Relationship between N₂O emissions and Soil water-filled pore space (WFPS) ... 48
 4.1.2.5 Relationship between N₂O emissions and Soil temperature 55
 4.1.3 Ammonia oxidising community abundance .. 61
 4.1.3.1 Ammonia oxidising bacteria (AOB) ... 61
 4.1.3.2 Ammonia oxidising archaea (AOA) .. 62
 4.1.4 Denitrifiers ... 63
 4.1.4.1 nirS gene abundance .. 63
 4.1.4.2 nirK gene abundance ... 64
4.1.4.3 nosZ I gene abundance ..65
4.1.4.4 nosZ II gene abundance ..66
4.1.5 Soil mineral nitrogen ...67
4.1.5.1 Soil NH₄⁺ concentrations ..67
4.1.5.2 Soil NO₃⁻ concentrations ..68

Chapter 5 - Discussion and conclusions ..70
5.1 Discussion .. 70
 5.1.1 N₂O emissions and irrigation systems .. 70
 5.1.2 Soil water content (SWC) ... 71
 5.1.3 Soil water-filled pore space (WFPS) .. 72
 5.1.4 Soil temperature ... 72
 5.1.5 Ammonia oxidising communities .. 73
 5.1.6 Soil denitrifiers .. 73
 5.1.7 Soil mineral nitrogen ... 74
5.2 Conclusions ... 75
5.3 Future research .. 76

Appendix A - Soil Properties ...77

References ...78
List of Tables

Table 2.1 The Effect of Soil Moisture on Nitrous Oxide Emissions from Pasture Soils (Adapted from Bolan et al., 2004) .. 12
Table 3.1 Treatments for the lysimeters and soil blocks... 17
Table 3.2 Primer pairs and PCR conditions used in real-time qPCR analysis (Di et al., 2014) .. 27
Table 3.3 Total porosity (TP) ... 30
Table 4.1 Total N₂O emissions and proportion of applied N emitted as N₂O (EF₃) from the three irrigation systems (spray, roto-rainer and flood) under urine treatment.. 42
List of Figures

Figure 1.1 A map of the South Pacific Islands (Adapted from Nunn, 2013) ..2
Figure 2.1 The soil/plant nitrogen cycle (Adapted from Cameron, 1992) ...5
Figure 2.2 Schematic representation of N\(_2\)O production from nitrification and denitrification (Adapted from Wrage et al., 2001) ...6
Figure 2.3 Nitrification and denitrification processes with associated enzymes and functional genes measured in this study (Adapted from Wrage et al., 2001)8
Figure 2.4 Systematic diagram of the factors affecting N\(_2\)O emissions in agricultural soils (Adapted from de Klein et al., 2001) ...9
Figure 2.5 Basic effects of irrigation on nitrous oxide (N\(_2\)O) emissions (increase, decrease) (Adapted from Trost et al., 2013) ...14
Figure 3.1 Lincoln University’s lysimeter facility ..18
Figure 3.2 Layout of lysimeters for gas measurement and soil blocks in the field19
Figure 3.3 Part of the soil blocks with a divider (metal barrier) in the middle of the ring and with the overhead sprinklers ..20
Figure 3.4 Pouring urine into the ring on the lysimeter ..21
Figure 3.5 Pouring urine carefully into one half of the ring (soil block) (note the metal barrier between the two halves of the soil block) ..21
Figure 3.6 Collecting gas samples from the closed gas chambers ..23
Figure 3.7 Soil corer ...24
Figure 3.8 White markers in the soil block indicating the last sampling locations24
Figure 3.9 TDR probe inserted into the soil column between 0-20 cm depth29
Figure 4.1 Daily average air temperature ...32
Figure 4.2 Daily average soil temperature ...33
Figure 4.3 Daily rainfall, irrigation and cumulative water inputs (Spray irrigation)34
Figure 4.4 Daily rainfall, irrigation and cumulative water inputs (Roto-rainer irrigation)34
Figure 4.5 Daily rainfall, irrigation and cumulative water inputs (Flood irrigation)35
Figure 4.6 Daily average soil moisture (Spray irrigation) ...36
Figure 4.7 Daily average soil moisture (Roto-rainer irrigation) ...36
Figure 4.8 Daily average soil moisture (Flood irrigation) ...37
Figure 4.9 Daily N\(_2\)O emission (Spray irrigation) ...38
Figure 4.10 Daily N\(_2\)O emission (Roto-rainer irrigation) ...39
Figure 4.11 Daily N\(_2\)O emission (Flood irrigation) ..40
Figure 4.12 Total N$_2$O emissions from spray, roto-rainer and flood irrigation systems with and without urine. Treatments with the same letter above the bars are not significantly different. The error bars indicate standard errors of the mean (SEM) ……………………41

Figure 4.13 The relationship between daily N$_2$O emissions and soil water content (SWC) under spray irrigation with urine treatment ………………………………………………………………43

Figure 4.14 The relationship between logarithmic transformed daily N$_2$O emissions and soil water content (SWC) under spray irrigation with urine treatment ……………………43

Figure 4.15 The relationship between daily N$_2$O emissions and soil water content (SWC) under roto-rainer irrigation with urine treatment ………………………………………………………………44

Figure 4.16 The relationship between logarithmic transformed daily N$_2$O emissions and soil water content (SWC) under roto-rainer irrigation with urine treatment ……………………45

Figure 4.17 The relationship between daily N$_2$O emissions and soil water content (SWC) under flood irrigation with urine treatment ……………………………………………………………………46

Figure 4.18 The relationship between logarithmic transformed daily N$_2$O emissions and soil water content (SWC) under flood irrigation with urine treatment ……………………46

Figure 4.19 The relationship between combined daily N$_2$O emissions and soil water content (SWC) …………………………………………………………………………………………………47

Figure 4.20 The relationship between combined logarithmic transformed daily N$_2$O emissions and soil water content (SWC) ……………………………………………………………………………………48

Figure 4.21 The relationship between daily N$_2$O emissions and soil water-filled pore space (WFPS) under spray irrigation with urine treatment ……………………………………49

Figure 4.22 The relationship between logarithmic transformed daily N$_2$O emissions and soil water-filled pore space (WFPS) under spray irrigation with urine treatment …….50

Figure 4.23 The relationship between daily N$_2$O emissions and soil water-filled pore space (WFPS) under roto-rainer irrigation with urine treatment ……………….51

Figure 4.24 The relationship between logarithmic transformed daily N$_2$O emissions and soil water-filled pore space (WFPS) under roto-rainer irrigation with urine …52

Figure 4.25 The relationship between daily N$_2$O emissions and soil water-filled pore space (WFPS) under flood irrigation with urine treatment ……………………………………..53

Figure 4.26 The relationship between logarithmic transformed daily N$_2$O emissions and soil water-filled pore space (WFPS) under flood irrigation with urine ………………..53

Figure 4.27 The relationship between combined daily N$_2$O emissions and water-filled pore space (WFPS) ………………………………………………………………………………………………..54

Figure 4.28 The relationship between combined logarithmic transformed daily N$_2$O emissions and water-filled pore space (WFPS) ……………………………………………………………………………55
Figure 4.29 The relationship between daily \(\text{N}_2\text{O} \) emissions and soil temperature under spray irrigation with urine treatment ...56
Figure 4.30 The relationship between logarithmic transformed daily \(\text{N}_2\text{O} \) emissions and soil temperature under spray irrigation with urine treatment ...56
Figure 4.31 The relationship between daily \(\text{N}_2\text{O} \) emissions and soil temperature under roto-rainer irrigation with urine treatment ..57
Figure 4.32 The relationship between logarithmic transformed daily \(\text{N}_2\text{O} \) emissions and soil temperature under roto-rainer irrigation with urine treatment ...58
Figure 4.33 The relationship between daily \(\text{N}_2\text{O} \) emissions and soil temperature under flood irrigation with urine treatment ..59
Figure 4.34 The relationship between logarithmic transformed daily \(\text{N}_2\text{O} \) emissions and soil temperature under flood irrigation with urine treatment ...59
Figure 4.35 The relationship between combined daily \(\text{N}_2\text{O} \) emissions and soil temperature ...60
Figure 4.36 The relationship between combined logarithmic transformed daily \(\text{N}_2\text{O} \) emissions and soil temperature ..61
Figure 4.37 Average AOB amoA gene abundance (copy numbers/g soil) from the three irrigation systems with and without urine. The error bars indicate the standard error of mean (SEM) ..62
Figure 4.38 Average AOA amoA gene abundance (copy numbers/g soil) from the three irrigation systems with and without urine. The error bars indicate the standard error of mean (SEM) ..63
Figure 4.39 \text{nirS} gene abundance from the three irrigation systems with and without urine. The error bars indicate the standard error of mean (SEM) ..64
Figure 4.40 \text{nirK} gene abundance from the three irrigation systems with and without urine. The error bars indicate the standard error of mean (SEM) ..65
Figure 4.41 \text{nosZ} \text{I} gene abundance from the three irrigation systems with and without urine. The error bars indicate the standard error of mean (SEM) ..66
Figure 4.42 \text{nosZ} \text{II} gene abundance from the three irrigation systems with and without urine. The error bars indicate the standard error of mean (SEM) ..67
Figure 4.43 Soil ammonium concentration following dairy cow urine application (700 kg N/ha) to the three irrigation systems. The error bars indicate the standard error of mean (SEM) ..68
Figure 4.44 Soil nitrate concentration following dairy cow urine application (700 kg N/ha) to the three irrigation systems. The error bars indicate the standard error of mean (SEM) ..69
Chapter 1
Introduction

1.1 N₂O is an important GHG

Nitrous oxide (N₂O) is one of the important greenhouse gases (GHGs) that contributes to climate change and depletion of the ozone layer. GHGs are very important in regulating the earth’s temperature (i.e. the increase in global average surface temperature) and N₂O plays a big role in this with its high global warming potential (GWP) (Ministry for the Environment, 2009; IPCC, 2014b). The nitrous oxide concentration in the atmosphere has increased from 270 parts per billion (ppb) in the pre-industrial period to around 324 ppb in 2011, which is about 20% higher than the pre-industrial level (IPCC, 2014a). It has a large radiative-forcing potential, with the long term warming potential about 300 times greater than that for carbon dioxide (Cameron et al., 2013). The increase in the concentration of N₂O is very concerning. Globally, agricultural soils emit the highest percentage of N₂O (Cameron et al., 2013).

1.2 Agriculture’s contribution to New Zealand’s GHG emissions inventory

Agriculture is the major contributor to the New Zealand economy with 64% of the total value of merchandise exports coming from agricultural products (Ministry for Primary Industries, 2014). As the population of the world increases (from 5.4 billion in the 1990s to 8.5 billion by 2025), an increase in food production (estimation of 60-70% increase) will become necessary to meet the world’s demand for food (Bolan et al., 2004). Therefore, the agriculture sector has to expand production to cater for this. There is a great demand for New Zealand agricultural produce in the dairy sector and a favourable milk price has led to an increase in the dairy cattle population and the amount of nitrogen fertiliser applied to agricultural soils. As a result, N₂O emissions from deposition of urine and dung by the grazing livestock and use of nitrogen fertilizers increased from 2009 to 2012 (Ministry for the Environment, 2015).

The Agricultural sector contributed the largest proportion to New Zealand GHG emissions in 2013 when it contributed 48% of the total GHG emissions. Furthermore, the largest source of N₂O emissions is from agricultural soils, making a contribution of 94.3% to New Zealand’s total N₂O emissions (Ministry for the Environment, 2015).
1.3 GHG emissions (e.g. N\textsubscript{2}O) contribute to climate change which affects the South Pacific Islands and other low lying islands in the world

GHG emissions contribute to climate change which is one of the controversial topics in the world today. Therefore, this can have an impact on farming including (i) increased unpredictability and frequency of extreme weather events such as floods, drought or storms; and (ii) sea-level rises (global mean sea level rise has been observed since the 1950s) submerging coastal agricultural land (IPCC, 2014b). These threats will affect many countries in the world and especially the South Pacific Islands where there is great concern about the impacts. The South Pacific Islands (Fig 1.1) are already affected by climate change. “Although islanders have done little to contribute to the cause - less than 0.03% of current global greenhouse gas emissions – they are among the first to be affected” (SPREP, 2014).

![A map of the South Pacific Islands](image)

Figure 1.1: A map of the South Pacific Islands (Adapted from Nunn, 2013).

The Paris Agreement 2015 sets out a goal of limiting the increase in global temperature to well below 2 degrees Celsius because this would reduce risks and impacts of climate change (UNFCCC, 2015). At the Paris Climate Change Conference, New Zealand’s commitment was to reduce its
GHG emissions to 30 percent below 2005 levels by 2030 (M2 Communications, 2015). Research is required to reduce GHG emissions.

1.4 Effect of irrigation and the role of nitrifiers and denitrifiers on N\textsubscript{2}O emissions

Irrigation is an important means for supplying water for agricultural production as rainfall becomes increasingly less reliable due to climate change (Trost et al., 2013). Improvements in the agricultural activities (e.g. irrigated agriculture) are needed to meet the global food demands of the world’s growing population. Soil moisture is a key driver in determining soil N\textsubscript{2}O emissions (Long et al., 2016). Although it has been shown that soil moisture increases after irrigation, in combination with increased mineral N (from deposition of urine or dung on the soil) and can result in significantly higher emissions of N\textsubscript{2}O (Di et al., 2007; Scheer et al., 2008b; Liu et al., 2011), information is limited on the effect of different types of irrigation on N\textsubscript{2}O emissions.

The increase of soil moisture from irrigation may intensify nitrification and denitrification processes and, thus, increase N\textsubscript{2}O emissions (Trost et al., 2013). Ammonia oxidisers, including ammonia oxidising bacteria (AOB) and archaea (AOA) are responsible for carrying out the first step of the nitrification process, the oxidation of ammonia to hydroxylamine (Wrage et al., 2001; Cameron et al., 2013). It has been reported that AOB play a dominant role in high-N status soils, such as in the urine patch areas in grazed pastures (Di et al., 2009, 2010). However, AOA are also present in large numbers in some grazed pasture soils and may also play a role in ammonia oxidation in some soils (Di et al., 2014). Denitrifiers are groups of bacteria which are involved in the stepwise reduction of NO\textsubscript{3}- to NO\textsubscript{2}-, NO, N\textsubscript{2}O and N\textsubscript{2}, producing N\textsubscript{2}O as an intermediate product (Wrage et al., 2001; de Klein et al., 2008; Cameron et al., 2013; Saggar et al., 2013). The reduction of NO\textsubscript{3}- is catalysed by enzymes encoded by two functional genes ($nirS$ and $nirK$) and the reduction of N\textsubscript{2}O was catalysed by enzymes encoded by the $nosZ$ gene (Wrage et al., 2001; Jones et al., 2014). Though it has been shown that soil moisture content significantly affects the growth of nitrifiers and denitrifiers in producing higher N\textsubscript{2}O emissions from animal urine treated soils (Di et al., 2014), it is not well understood how different irrigation systems may affect the growth of these key microbial populations, and N\textsubscript{2}O emissions.
1.5 Objectives

The objectives of this research programme were to:

1. Quantify the effect of irrigation systems (spray vs roto-rainer vs flood) on N₂O emissions from urine applied to pasture soil; and

2. Determine the relationship between N₂O emissions and soil nitrifier and denitrifier population abundance as affected by different irrigation systems.

1.6 Hypothesis

It was hypothesised that:

1. The method of irrigation will affect the N₂O emissions;

2. The N₂O emissions will be positively correlated with soil nitrifier and denitrifier abundance.
Chapter 2

Literature Review

2.1 The Nitrogen Cycle and Production of Nitrous oxide

Figure 2.1: The soil/plant nitrogen cycle (Adapted from Cameron, 1992).

In the nitrogen cycle, nitrogen is cycled from one form to another in the soil/plant/animal system. The amount of nitrogen in the soil is very small compared to the 98% of N held in rocks and minerals. Even though it is small, it provides the bulk of N for plant uptake and eventual animal growth.

Within the soil/plant/animal system, there are gains, namely atmospheric returns, legume fixation, N-fertilizers and animal manure. Atmospheric returns put N into the soil through wet and dry deposition. Legumes, which fix nitrogen with the help of *Rhizobium* bacteria, increase the level of N in the soil. When N-fertilizer and animal manure (especially animal urine) are applied to the soil, the level of N increases. Within the soil, transformations of N take place which
can make it available for plants or cause it to be lost into the atmosphere or lost by leaching into water.

2.1.1 Biological production of Nitrous Oxide (N\textsubscript{2}O)

2.1.1.1 Nitrification

The Nitrification process produces N\textsubscript{2}O in soils from microbial activity (de Klein et al., 2008; Paustian et al., 2016). It occurs in aerobic conditions (Delwiche, 1981; Cameron et al., 2013). Nitrification is the biological oxidation of ammonium (NH\textsubscript{4}+) to nitrite (NO\textsubscript{2}−) and nitrate (NO\textsubscript{3}−) (Fig 2.2) (Bolan et al., 2004; de Klein et al., 2008; Cameron et al., 2013). N\textsubscript{2}O is produced as an intermediate product of nitrification (de Klein et al., 2008; Paustian et al., 2016).

![Figure 2.2: Schematic representation of N\textsubscript{2}O production from nitrification and denitrification (Adapted from Wrage et al., 2001).](image)

Nitrification is carried out by a range of microorganisms in the nitrogen cycle. It is carried out by specialised bacteria which oxidise ammonium and is described by the following chemical reactions (Cameron et al., 2013):

\[
2\text{NH}_4^+ + 3\text{O}_2 \rightarrow 2\text{NO}_2^- + 2\text{H}_2\text{O} + 4\text{H}^+ + \text{energy} \quad \text{(Eqn. 1)}
\]

\[
2\text{NO}_2^- + \text{O}_2 \rightarrow 2\text{NO}_3^- + \text{energy} \quad \text{(Eqn. 2)}
\]

Equation 1 shows the first reaction where NH\textsubscript{4}+ is oxidised to NO\textsubscript{2}− by ammonia oxidising bacteria (AOB), such as *Nitrosospira* and *Nitrosomonas*. Associated with the bacteria is the ammonia monooxygenase (AMO) enzyme which carries out the oxidation reaction (Ferguson et al., 2007;
Ammonia oxidising archaea (AOA) are also present in large numbers in soils but their growth is favoured in low N status soils, whereas AOB abundance and activity increases in high N soils (Di et al., 2009b, 2010a, b, 2014; Long et al., 2016). Equation 2 shows the second reaction conducted by Nitrobacter, where NO$_3^-$ is oxidised to NO$_2^-$. This conversion takes place very rapidly and therefore nitrite rarely accumulates in soil (Cameron et al., 2013). Figure 2.2 also shows the nitrifier denitrification pathway whereby NH$_4^+$ is oxidised to NO$_2^-$ and then followed by NO$_2^-$ being reduced to N$_2$O and N$_2$.

2.1.1.2 Denitrification

Denitrification is a stepwise process which is carried out by denitrifying bacteria and each step is catalysed by reductase enzymes namely nitrate reductase, nitrite reductase, nitric oxide reductase and nitrous oxide reductase (Wrage et al., 2001; de Klein et al., 2008; Cameron et al., 2013; Saggar et al., 2013) (Equation 3) (Fig 2.3). Biological denitrification and complete reduction of NO$_3^-$ to N$_2$ has the following key requirements: 1) the presence of microbes harbouring the genetic ability to perform the steps in denitrification, and 2) suitable environmental conditions for expression of the genetic potential (Samad et al., 2016). For example, some bacteria are complete denitrifiers because they contain all the genetic information needed to produce the four enzymes, whereas others are partial denitrifiers because they lack a subset of the enzymes; therefore they are only able to complete part of the reduction (Bakken et al., 2012; Cameron et al., 2013; Regaert et al., 2015).

\[
\begin{align*}
\text{Nitrate & Nitrite & NO}^- & & N_2O^- & N_2 \\
\text{reductase} & \rightarrow & \rightarrow & \rightarrow & \rightarrow & \rightarrow \\
\text{Nitrate} & \text{Nitrite} & \text{Nitric oxide} & \text{Nitrous oxide} & \text{Dinitrogen} \\
\end{align*}
\]

(Eqn. 3)

The genes that are involved in the reduction of NO$_2^-$ to N$_2$O are nirS and nirK - the first gas producing phase of denitrification, and the final step of denitrification involves the nosZ genes which code for the enzyme which reduces N$_2$O to N$_2$ (Treweek et al., 2016a). These genes play an important role during denitrification and have implications for N$_2$O emissions (Jones et al., 2014) (Fig 2.3).
2.1.2 Factors affecting N₂O emissions and microbial communities in agricultural soils

Nitrification and denitrification are affected by a number of proximal soil factors which in turn are affected by various more distal factors (de Klein et al., 2001) (Fig 2.4). The interaction between these factors can increase or decrease nitrification and denitrification rates. For example, denitrification rates or N₂O emissions are higher following rainfall or irrigation events (de Klein et al., 1999).
2.1.2.1 Temperature

Temperature is a major factor that affects N₂O emissions. Denitrification rates and N₂O emissions increase with increasing temperatures (Ryden, 1986; Dobbie & Smith, 2001; Saggar et al., 2004). Two examples of the studies carried out found that: denitrification rates increased 10 – fold in a grassland soil when the temperature increased from 10°C to 20°C (de Klein & van Logtestijn, 1996) and in a forest soil, denitrification increased 10 to 20 – fold when the soil temperatures increased from 6°C to 21°C (Nommik & Larsson, 1989). Studies carried out by Dobbie & Smith (2001) and de Klein & van Logtestijn (1996) showed that the effect of temperature on denitrification rates was greater in non-irrigated dry soil compared to irrigated soil. Another study showed that in sandy and loess soils, N₂O production increased with the soil temperature until 15°C - 20°C and above this temperature range lower emissions were detected (Horváth et al., 2010).
2.1.2.2 Soil drying-rewetting

For various agricultural systems, it was reported that soil denitrification rates and N$_2$O emissions increased following wetting of dry soil by rainfall or irrigation (Kessavalou et al., 1998; Nobre et al., 2001; Kim et al., 2009) including grazed pastures (Luo et al., 1998; Garcia-Montiel et al., 2003; Saggar et al., 2004a; Kim et al., 2010). The re-wetting of dry soil induces a rapid pulse of N (and C) mineralisation in pasture soils known as the ‘Birch effect’ (Unger et al., 2010), which increases the amount of N available for nitrification and denitrification to N$_2$O (de Klein et al., 2014). The wetting of dry soil enhances the growth and turnover of microorganisms.

2.1.2.3 Soil texture

Soil texture influences N$_2$O emissions (Jamali et al., 2016). Compared with sandy soils, N$_2$O emissions are higher in clay soils due to higher denitrification activity because of their slower drainage rate causing anaerobic soil conditions (Luo et al., 2010a; Cameron et al., 2013; Jamali et al., 2016). In contrast, free draining podzols produced higher N$_2$O emissions than poor draining gley soils (Rafique et al., 2011). This was a result of enhanced nitrification taking place in the podzols with higher porosity.

2.1.2.4 Soil pH

Soil pH affects both the nitrification rate and the denitrification rate and as a result this influences the emission of N$_2$O and N$_2$ gas (Parkin et al., 1985; Gödde & Conrad, 2000; Šimek and Cooper, 2002). This also affects the abundance of microbial communities (Mørkved et al., 2007). For example, AOB and AOA prefer to grow in different soil pH environments: the growth of AOB is favoured in neutral to alkaline pH soils and AOA may out-compete AOB in more acidic soils (Robinson et al., 2014). Furthermore, this study found that N$_2$O emissions increased when soil pH decreased.

2.1.2.5 Soil mineral nitrogen

Nitrogen (N) is available in the soil as NH$_4^+$ and NO$_3^-$ and this has a big influence on the denitrification process (Cameron et al., 2013; Saggar et al., 2013). During outdoor grazing, animal excreta (urine or dung) is deposited on the soil and this contributes to large amounts of N in the soil. For example, dairy cows can deposit the equivalent of 1000 kg N per ha in their urine (Haynes & Williams, 1993; Fraser et al., 1994). The increase in the amount of mineral N in the soil induces very large increases in denitrification (de Klein et al., 2001; Di & Cameron, 2003; Di et al., 2007).
which results in the production of N₂O. The proportion of N emitted as N₂O-N from urine-N applied is called the ‘emission factor’ (IPCC, 2007). The IPCC’s default emission factor (EF) for N₂O emissions from urine deposited on grazed pasture soil is 2% (de Klein, 2004) and the New Zealand specific default emission factor is 1% (de Klein et al., 2003).

2.2 Effect of soil moisture and irrigation on nitrous oxide emissions

2.2.1 Soil moisture and aeration

Soil moisture can influence N₂O emissions since it can directly regulate oxygen availability in soil pores, which determines the activity of nitrification and denitrification organisms within the soil profile (Zheng et al., 2000). It has been reported that nitrification and denitrification rates were closely related to the water-filled pore space (WFPS) of a soil (Sangar et al., 2011). Generally, nitrification rates are highest when soil moisture content is below field capacity and nearly stops in saturated soils due to lack of oxygen (O₂), whereas denitrification rates generally increase when soil moisture content increases (Davidson, 1992; Maag and Vinther, 1996). It has been reported that N₂O emitted from a silt loam soil at 70% WFPS was produced during denitrification, while at 35-60% WFPS the main process producing N₂O was nitrification (Bateman and Baggs, 2005). In relation to this, Table 2.1 shows that, above a specific soil water content threshold, denitrification rates increased sharply with increasing soil water content and, below this, denitrification rates were not related to soil water content (Bolan et al., 2004).
Table 2.1: The Effect of Soil Moisture on Nitrous Oxide Emissions from Pasture Soils (Adapted from Bolan et al., 2004).

<table>
<thead>
<tr>
<th>Soil type</th>
<th>Country</th>
<th>WFPS/ SWCb</th>
<th>Observations (N$_2$O emissions)</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Loess</td>
<td>Germany</td>
<td>75-97%</td>
<td>Threshold level 88-90%; above which exponential increase in denitrification rates was observed</td>
<td>Prade and Trolldenier (1988)</td>
</tr>
<tr>
<td>Silt loam</td>
<td>Lincoln, US</td>
<td>60-90%</td>
<td>Denitrification increased with increase in WFPS; the increase was gradual in sandy soil</td>
<td>Weir et al. (1993)</td>
</tr>
<tr>
<td>Silty Clay loam</td>
<td>Netherlands</td>
<td>60-99%</td>
<td>Threshold levels were 82, 83, 71% for sandy, loamy and peat soil, respectively</td>
<td>De Klein and van Logtestijn (1996)</td>
</tr>
<tr>
<td>Sand</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lea</td>
<td>Sweden</td>
<td>0.10-0.30 g water per g dry soilb</td>
<td>Denitrification increased exponentially above 0.16-0.2 g water per g soil</td>
<td>Klemadtsson et al. (1991)</td>
</tr>
<tr>
<td>Clay Loam</td>
<td>UK</td>
<td>63% 71% 84%</td>
<td>0.46 kg N$_2$O ha$^{-1}$ d$^{-1}$ 0.92 kg N$_2$O ha$^{-1}$ d$^{-1}$ 3.38 kg N$_2$O ha$^{-1}$ d$^{-1}$</td>
<td>Abbasi and Adams (2000)</td>
</tr>
<tr>
<td>Alluvial soil</td>
<td>New Zealand</td>
<td>63-93%</td>
<td>Threshold level 83%; denitrification rate increased when WFPS was above the threshold level</td>
<td>Ruz-Jerez et al. (1994)</td>
</tr>
<tr>
<td>Silty clay</td>
<td>USA, India</td>
<td>60% 90%</td>
<td>Denitrification losses: 0.02-0.18 mg N per kg soil 14-18.6 mg N per kg soil</td>
<td>Aulakh et al. (1991)</td>
</tr>
<tr>
<td>Silty loam</td>
<td></td>
<td></td>
<td>50-fold increase in denitrification within 70-90% WFPS</td>
<td>Scholefield et al. (1997)</td>
</tr>
<tr>
<td>Sandy loam</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stagno-Dystric Gleysol</td>
<td>UK</td>
<td>70-90%</td>
<td>Denitrification increased with increasing WFPS. At highest WFPS, 10-fold higher denitrification in clay loam compared with sandy loam soil</td>
<td>Sexstone et al. (1988)</td>
</tr>
<tr>
<td>Clay Loam</td>
<td>USA</td>
<td>50-70%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sandy Loam</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

WFPS = Water-Filled Pore Space
SWC = Soil Water Content

Table 2.1 shows that different soil types have different threshold values expressed as water-filled porosity (WFP). The critical WFP for many soils is equivalent to field capacity or above (de Klein
and van Logtestijn, 1996). In general, there was a decrease in water thresholds when soil texture became finer.

When the moisture content of the soil is greater than field capacity there is a significant increase in the potential denitrification rate (de Klein & van Logtestijn, 1996; Muller & Sherlock, 2004). As soils become wetter, they become more anaerobic; therefore this usually increases N₂O emissions (Dobbie et al., 1999; Dobbie and Smith, 2001). A study carried out by Di et al., (2014) showed that soil moisture content was a major driver for N₂O emissions from soils treated with animal urine. Furthermore, this study showed that the growth of ammonia oxidiser and denitrifier communities were significantly affected by the soil moisture content and the functional genes increased with increased soil moisture content. As the soil moisture increased, the soil became increasingly anaerobic, leading to higher denitrification rates. Heavy rainfall and irrigation can also cause denitrification (Di & Cameron, 2003).

2.2.2 Irrigation

Irrigation in agriculture plays a vital role in meeting the global food demand of a growing population in the context of climate change (Scheer et al., 2012). Due to climate change, there is an increasing water scarcity which makes efficient irrigation an important means to supply water for crop production and other agricultural activities (Trost et al., 2013). It is estimated that irrigated agriculture will produce nearly two-thirds of future food needs (FAO, 1996). Around the world agricultural land which receives irrigation is estimated to be over 300 million ha (FAO, 2010). In New Zealand the majority of the irrigated land is in the South Island, with Canterbury, at 444,800 ha which represents approximately 60% of all irrigated area (Statistics New Zealand, 2012). Even though significant amounts of N₂O are emitted from agriculture, irrigation will always be used. Nitrous oxide emissions from agriculture are therefore projected to grow annually by 50 percent (FAO, 2002).

Irrigation has effects on N₂O emissions which influence the microbial processes in the soil (Figure 2.5) (Trost et al., 2013). The microbial processes of nitrification and denitrification produce N₂O (de Klein et al., 2008). As shown in Figure 2.5, when irrigation is applied it increases soil moisture and hence increases the microbial activity of nitrifiers that produce N₂O. On the other hand, oxygen supply is reduced after application of irrigation which increases the microbial activity of denitrifiers to produce N₂O. As a rule, N₂O emissions increase under irrigation when reactive nitrogen compounds are adequately available (Trost et al., 2013).
Figure 2.5: Basic effects of irrigation on nitrous oxide (N$_2$O) emissions (increase, decrease) (Adapted from Trost et al., 2013).

Appropriate management of irrigation can reduce N$_2$O emissions (Maris et al., 2015). Huijing et al. (2016) also suggested that controlled irrigation can mitigate the annual integrative global warming potential of N$_2$O. Soil moisture can be easily controlled in irrigated systems since it is one of the most important factors to mitigate N$_2$O emissions (Scheer et al., 2012).

There have been few studies carried out examining how irrigation affects N$_2$O emissions from urine patches (Di and Cameron, 2002). Sanchez-Martin et al. (2010) and Kallenbach et al. (2010) carried out studies looking at the effects of irrigation systems on nitrous oxide emissions (drip vs furrow irrigation). They found that N$_2$O emissions were lower under drip irrigation than under furrow irrigation. The reason is the partial wetting of soil under drip irrigation compared to furrow irrigation which causes the soil to be saturated (Kallenbach et al., 2010). There are,
however, other studies on irrigation applied to cropped systems where irrigation did not have any effect on N₂O emissions (Simojoki and Jaakkola, 2000; Horváth et al., 2010; Scheer et al., 2013; Maharjan et al., 2014; Owens et al., 2016; Wang et al., 2016). These contrasting studies show that there is a lack of knowledge about the effect of different irrigation systems on nitrous oxide emissions from urine applied to pasture soil.

Therefore the objectives of this thesis are to:

1. Quantify the effect of irrigation systems (spray vs roto-rainer vs flood) on N₂O emissions from urine applied to pasture soil.

2. Determine the relationship between N₂O emission and soil nitrifier and denitrifier population abundance as affected by different irrigation systems.
Chapter 3
Materials and Methods

3.1 Experimental design and field trial layout

A field experiment was carried out to determine the effect of different irrigation systems on nitrous oxide emissions from urine applied to pasture soil. The experiment consisted of 24 lysimeters which were treated with urine or water (control). Encased in 50 cm diameter by 70 cm deep lysimeters was Templeton sandy loam/Paparua soil (Udic Haplusterts, Soil Survey Staff 1998) which had a standard pasture (rye grass – Lolium perenne and white clover – Trifolium repens) growing on them (undisturbed soil monoliths with established pasture). These were collected following procedures already established (Cameron et al., 1992; Di & Cameron 2002b). This involved a metal cylinder casing placed on the soil surface, digging around the casing with minimal disturbance to the soil, then gradually pushing the casing down into the soil by small increments. When the casing reached the depth of 70 cm, heated and liquefied petroleum jelly was used to seal the gap between the soil core and the metal casing to stop any edge flow down the lysimeter casing (Cameron et al., 1992). A cutting plate was pushed beneath the lysimeter casing and then cut at the base of the soil monolith. The lysimeter casing was lifted out from the collection site and transported to the Lincoln University’s lysimeter facility (Fig 3.1) using a specially designed trailer with air-bag suspension to minimise disturbance to the soil monolith. The lysimeters were then installed in the field lysimeter facility with their surfaces at the same level as the surrounding soil surface, in order to maintain normal growing conditions for the plants (Di & Cameron 2002b).

There were six treatments and four replicates. The treatments were allocated to the lysimeters randomly. The lysimeters were arranged alongside a trench: 12 lysimeters on one side and the other 12 on the opposite side (see Figs 3.1 & 3.2).

In addition to the lysimeters, there were twelve soil blocks (50 cm in diameter and 7.5 cm deep) which were halved to make up 24 sampling blocks. These were collected following procedures already established as described above for the lysimeters (Cameron et al., 1992; Di & Cameron 2002b). Urine was applied to twelve half blocks and water was applied to the other twelve half blocks (control). This is shown in Figures 3.2 and 3.3.
Urea was also applied to the lysimeters and soil blocks (Table 3.1). The amount of urea applied to each lysimeter and soil block was 25 kg N/ha per application. This was applied in split applications over the duration of this experiment to make up the recommended amount of urea (150 kg N/ha) applied annually by farmers.

Overhead sprinklers were placed 300 mm above the lysimeters and soil blocks providing irrigation for the pasture. These sprinklers worked in the same way as the irrigation systems used on New Zealand dairy farms. The irrigation systems that were simulated were: 1) spray irrigation - a centre-pivot system which pumps water along arms that travel in a circle across the field (the spread of water is relatively even), 2) roto-rainer irrigation - uses a rotating boom to spread water on the field and, 3) flood irrigation – water is applied by flooding on the soil surface. The schedules for the different irrigation systems are shown in Table 3.1 below.

Table 3.1: Treatments for the lysimeters and soil blocks

<table>
<thead>
<tr>
<th>Treatment #</th>
<th>Irrigation system</th>
<th>Rate (mm)</th>
<th>Frequency</th>
<th>Urine N (kg N/ha)</th>
<th>Urine date</th>
<th>Urea (kg N/ha)</th>
<th>Reps</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Spray</td>
<td>15</td>
<td>Every 3 days</td>
<td>700</td>
<td>16 Feb</td>
<td>150</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>Spray</td>
<td>15</td>
<td>Every 3 days</td>
<td>0</td>
<td>16 Feb</td>
<td>150</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>Roto-rainer</td>
<td>45</td>
<td>Every 9 days</td>
<td>700</td>
<td>16 Feb</td>
<td>150</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>Roto-rainer</td>
<td>45</td>
<td>Every 9 days</td>
<td>0</td>
<td>16 Feb</td>
<td>150</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>Flood</td>
<td>90</td>
<td>Every 18 days</td>
<td>700</td>
<td>16 Feb</td>
<td>150</td>
<td>4</td>
</tr>
<tr>
<td>6</td>
<td>Flood</td>
<td>90</td>
<td>Every 18 days</td>
<td>0</td>
<td>16 Feb</td>
<td>150</td>
<td>4</td>
</tr>
</tbody>
</table>
Figure 3.1: Lincoln University’s lysimeter facility.
Figure 3.2: Layout of lysimeters for gas measurement and soil blocks in the field.
3.2 Urine collection and application to the lysimeters and soil blocks

114 litres of fresh urine was collected from cows on the Lincoln University Dairy Farm: that is 60 litres for the lysimeters, 48 litres for the 24 soil blocks and 6 litres spare. This was collected from the Lincoln University Dairy Farm in the afternoon when the cows came in for milking. Urine was collected by filling up a container when the cows urinated. The cows were followed around to see when they wanted to urinate and the container quickly placed close to its rear end. A team of 12 people did the urine collection. The urine was stored in a cool store overnight and applied the next day.

The urine was analysed to determine the N concentration and then standardised to 7 g N/L and applied at the rate of 700 kg N/ha to each of the lysimeters by pouring it into the rings (Fig 3.4).
In addition, the standardised urine (7 g N/L) was also applied at the rate of 700 kg N/ha on to each half of the soil blocks. This was poured carefully into one half of the ring as shown in Figure 3.5.

Figure 3.4: Pouring urine into the ring on the lysimeter.

Figure 3.5: Pouring urine carefully into one half of the ring (soil block) (note the metal barrier between the two halves of the soil block).
For the control, two litres of water was applied to the lysimeters and one litre of water was applied to each half of the soil blocks. This was to keep the liquid addition consistent in all the control treatments.

3.3 Nitrous oxide measurement

N₂O emissions from the soil were measured at Lincoln University’s lysimeter facility (Fig 3.1). This facility consisted of lysimeters in which treatments could be added and replicated in the open field as described in method section 3.1.

Gas sampling was conducted in the field using the standard closed chamber method similar to that described by Hutchinson and Mosier (1981) (Fig 3.6). The gas chamber was made of a steel cylinder which is insulated on the outside with 2.5 cm thick polystyrene foam to prevent heating of the atmosphere in the chamber during sampling. Before samples were collected, gas chambers were lined up beside the lysimeters, the ring troughs on the lysimeter were filled with water, the syringes prepared by fully pushing the plunger in, and the white pressure cap on top of the chamber removed. At time 1, the metal ring of the chamber was placed inside the water trough fitted around the perimeter of the lysimeter to create an airtight seal. When the chamber had settled, the white pressure cap was replaced. The “a” sample vial (12 mL) was fitted to the needle on the gas chamber and the syringe needle inserted into the vial. The syringe was drawn to capture 60 mL of chamber air making sure the air pressure was equalized before it was discarded to the atmosphere. This was carried out once to rinse the vial before the actual sample was collected. After the air was discarded, chamber air was drawn into the syringe again making sure the pressure had equilibrated before the plunger was pushed back to approximately 25 mL. The chamber tap was turned off and the vial was removed from the chamber needle with the syringe still in the vial. The syringe contents were compressed into the vial, the vial was then removed (now had 12 mL of compressed chamber air) and remaining air was discarded from the syringe and the vial placed in holder. At the next 1 minute interval gas sampling was done on the next chamber. Samples were collected in groups of 12 which allowed eight minutes before the next samples were collected. At the 21 minute and 41 minute sampling times, “b” and “c” vial samples were collected respectively. These were collected similarly to the “a” sample with the exception of the “rinse” step whereby 60 mL of chamber air was drawn into the syringe and then discarded into the chamber (this was repeated at least 2 times). After the rinse, 25 mL of chamber air was drawn and ready to be compressed into the vial. After collecting the “c” sample (end of sampling),
the white pressure caps were undone and the chambers were removed from the lysimeters and placed on the side. At the end of sampling all the chambers were collected and stored on site. Gas sampling was carried out in the middle of the day between 12:00 h and 14:00 h, a time when N₂O emissions were reported to be representative of the average for the day (de Klein et al., 2003).

Gas sampling was started on the 15th of February and was carried out twice a week for the first four months and then once a week until the N₂O-N flux reached background levels. N₂O concentrations were determined using gas chromatography (SRI 8610 gas chromatograph; SRI Instruments, California, USA) equipped with a ⁶³Ni electron capture detector (Dai et al., 2013).

![Collecting gas samples from the closed gas chambers.](image)

Figure 3.6: Collecting gas samples from the closed gas chambers.

3.4 Soil Sampling

Soil sampling was conducted in the morning of Day 1 (a day after urine application), Day 7, Day 14, Day 30, Day 60 and Day 90. Soil sample cores were collected from the twenty-four half soil blocks using a soil corer (Fig 3.7). Three soil sample cores were taken randomly at a depth of 0-10 cm for each treatment and placed in a plastic bag. These were taken back to the lab and refrigerated until use. Five plastic bags of soil cores were taken out of the refrigerator at one time and each bag was mixed thoroughly and stored in vials in the freezer for AOA/AOB and denitrifier assays. The other soil cores were used to measure extractable ammonium and nitrate and also soil moisture. See methods 3.5, 3.6 and 3.7 respectively for the above. After each sampling, the
holes were filled with topsoil and the sampling locations marked to help with future sampling (see Fig 3.8).

Figure 3.7: Soil corer

Figure 3.8: White markers in the soil block indicating the last sampling locations.
3.5 Extractable ammonium and nitrate

Soil subsamples were taken from the soil cores that had been thoroughly mixed on Day 1, Day 7, Day 14, Day 30, Day 60 and Day 90. These soil subsamples were stored in a fridge until extraction. 4 g of soil subsample was weighed into a 50 mL falcon tube and 40 mL of 2M potassium chloride (KCl) was added and capped. The samples were loaded onto the end over end shaker and shaken for 1 hour. They were removed from the shaker and centrifuged for 10 minutes at 2,000 rpm. The samples were then filtered into 30 mL bottles using Whatman 41 filter papers. The collected filtrates were placed in the freezer until they were analysed using a flow injector analyser (FIA).

3.6 AOA/AOB assays

Soil subsamples were taken at Day 1, Day 7, Day 14, Day 30, Day 60 and Day 90. The samples were mixed thoroughly in their respective plastic bags after breaking them up with a rolling pin. The fine soil was scooped with a spoon, making sure there were no big lumps or plant roots, and put into vials. There were two vials (one for extraction and the other one is spare) for each sample. The soil subsamples were stored in the freezer at -80 °C before DNA extraction.

3.6.1 DNA extraction

A 0.25 g soil subsample was used for DNA Extraction using NucleoSpin® Soil Kit (Macherey-Nagel, Düren, Germany) according to manufacturer’s instructions. The 0.25 g soil subsample was transferred to a NucleoSpin bead tube and 700 µL buffer SL2 and 150 µL enhancer SX were added to adjust conditions for cell lysis. Samples were processed in the fastprep bead for 1 minute to homogenise the sample and then centrifuged at 11000 g for 2 minutes. 150 µL buffer SL3 was added and vortexed for 5 seconds before being incubated for 5 minutes at 4°C. The samples were then centrifuged for 1 minute at 11000 g. 700 µL of supernatant was loaded onto a NucleoSpin Inhibitor Removal Column (red ring) in a Collection Tube (make sure to keep the flowthrough) and centrifuged for 1 minute at 11000 g. 250 µL buffer SB was added and vortexed for 5 seconds. A NucleoSpin Soil Column (green ring) was placed in a collection tube and 550 µL sample was loaded onto the column. This was centrifuged for 1 minute at 11000 g and the flowthrough was discarded. This step was repeated with the remaining sample and the column was returned back into the collection tube. 500 µL buffer SB was added to the NucleoSpin Soil Column, centrifuged for 30 seconds at 11000 g and then the flowthrough was discarded. This was repeated with 550 µL of buffer SW1 in order to wash the silica membrane. Then 700 µL of buffer SW2 was added to
the NucleoSpin Soil Column, centrifuged for 30 seconds at 11000 g and the flowthrough was discarded. This step was repeated. After the flowthrough was discarded, the column and collection tube were then centrifuged for 2 minutes at 11000 g to dry the column. The column was transferred to a new collection tube and 100 μL of buffer SE was added to the column. The lid was not closed and it was incubated for 1 minute at RT. Then the lid was closed and it was centrifuged for 30 seconds at 11000 g. The eluted DNA can be used in the downstream applications and it was stored at -20°C until analysis.

3.6.2 PCR analysis

The CAS-1200 Robotic liquid handling system (Corbett Life Science, Australia) was used for setting up all the PCRs and real-time PCR was performed on a Rotor-Gene™ 6000 (Corbett Life Science). A series of 10 fold-dilutions of extracted DNA were used as described in Di et al. (2010a, 2014) to determine the amplification efficiency of each diluted sample. The amplification efficiencies observed are shown in Table 3.2 (Di et al., 2014).
<table>
<thead>
<tr>
<th>Target group</th>
<th>Primer name</th>
<th>Sequence (5’ - 3’)</th>
<th>Length of amplicon (bp)</th>
<th>Primer final concentration (nM)</th>
<th>Thermal profile</th>
<th>Amplification efficiency (R² > 0.99) (%)</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bacterial amoA</td>
<td>amoA1F</td>
<td>5’-GGGGTTTCTACTGGTTGTT-3’ 5’-CCCTCCKGSAAAGCCTTCTTC-3’</td>
<td>491</td>
<td>250</td>
<td>95 °C for 2 min - x 1 cycle; 95 °C for 20 s, 57 °C for 30 s, 85 °C for 15 s - x 40 cycles;</td>
<td>96-98</td>
<td>(Rotthauwe et al., 1997)</td>
</tr>
<tr>
<td></td>
<td>amoA2R</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Archaeal amoA</td>
<td>Arch-amoAF</td>
<td>5’-STAATGGTCTGCTTAGAGCG-3’ 5’-GCGGCCATCCATCCTGTATG-3’</td>
<td>635</td>
<td>250</td>
<td>95 °C for 2 min - x 1 cycle; 95 °C for 20 s, 55 °C for 30 s, 80 °C for 15 s - x 40 cycles;</td>
<td>92-94</td>
<td>(Francis et al., 2005)</td>
</tr>
<tr>
<td></td>
<td>Arch-amoAR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>nirS</td>
<td>cd3aF</td>
<td>5’-GTSAACGTSAGGARACSGG-3’ 5’-GASTTCGGRGTSGTCTTGA-3’</td>
<td>410</td>
<td>750</td>
<td>95 °C for 2 min - x 1 cycle; 95 °C for 45 s, 55 °C for 30 s, 85 °C for 20 s - x 40 cycles;</td>
<td>93-95</td>
<td>(Michotey et al., 2000)</td>
</tr>
<tr>
<td></td>
<td>R3cd</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(Throbäck et al., 2004)</td>
</tr>
<tr>
<td>nirK</td>
<td>FlaCu</td>
<td>5’-ATCATGGTCTGCCTGGC-3’ 5’-GCCTCGATCAGRTTGTGGTT-3’</td>
<td>474</td>
<td>780</td>
<td>95 °C for 2 min - x 1 cycle; 95 °C for 20 s, 63 °C for 30 s, 85 °C for 15 s - x 40 cycles;</td>
<td>98-100</td>
<td>(Hallin and Lindgren, 1999)</td>
</tr>
<tr>
<td></td>
<td>R3Cu</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>nosZ (I)</td>
<td>nosZ-F</td>
<td>5’-CGYTGGTTCMCGAGACCAGCC-3’ 5’-CGSACCTTSTCGCSTGCG-3’</td>
<td>424</td>
<td>750</td>
<td>95 °C for 2 min - x 1 cycle; 95 °C for 20 s, 58 °C for 30 s, 85 °C for 15 s - x 40 cycles;</td>
<td>94-99</td>
<td>(Kloos et al., 2001)</td>
</tr>
<tr>
<td></td>
<td>nosZ1622R</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(Throbäck et al., 2004)</td>
</tr>
<tr>
<td>nosZ (II)</td>
<td>nosZ-II-F</td>
<td>5’-CTIGGCCYTKACAYAC-3’ 5’-GCIGARCARAATCGBTRC-3’</td>
<td>698</td>
<td>1000</td>
<td>95 °C for 2 min - x 1 cycle; 95 °C for 30 s, 54 °C for 40 s, 85 °C for 15 s - x 40 cycles;</td>
<td>76-81</td>
<td>(Jones et al., 2013)</td>
</tr>
<tr>
<td></td>
<td>nosZ-II-R</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
The AOA and AOB *amoA* genes were quantified using the primers amoA1F/amoA2R and Arch-amoAF/Arch-amoAR as described by Di *et al.* (2010a, 2014). The PCR product specificity was confirmed after amplification using a melting curve analysis. This was carried out using the Rotor-Gene™ 6000 series software 1.7. Standard curves for real-time PCR assays (AOA and AOB *amoA* gene) were developed as described in Di *et al.* (2010a, 2014). This was used to determine the sample copy numbers (Table 3.2).

Additional soil samples for denitrifying microbial gene abundance were assessed at the same time as the samples taken for mineral N assays. The soil samples taken from all six treatments were analysed to determine the abundance of the NO$_3^-$ reductase genes *nirS* and *nirK*, and the N$_2$O reductase gene *nosZ*. Using PCR conditions described earlier, each gene fragment was PCR-amplified using Premix Ex Taq™ (TaKaRa, Norrie Biotech, Auckland, New Zealand). A series of 10:1 dilutions of amplicon standards over a range of concentrations from 10^1 to 10^7 copies per microliter were used in generating standard curves used for each gene quantification (Di *et al.*, 2014; Treweek, 2015).

3.7 Soil moisture

Volumetric soil moisture content was measured hourly for each lysimeter using time domain reflectometry (TDR) probe (Campbell Scientific water content Reflectometer, CS615) inserted into the soil column (encased in 50 cm x 70 cm lysimeter) between 0-20 cm depth (Fig 3.9). The daily average moisture content values were then calculated and recorded for the duration of the experiment. These data were later used to determine a relationship between soil moisture content and N$_2$O emissions as described in section 4.1.2.3.
Figure 3.9: TDR probe inserted into the soil column between 0-20 cm depth.

In addition, gravimetric soil moisture content was determined each time soil sampling was done from the accompanied soil blocks (Method 3.4). To measure the soil moisture content, 14 g (approximately) of fresh soil was weighed in a paper cup, oven dried at 105°C for 24 hours and reweighed. The following equation was used to calculate the soil moisture (%):

\[
\text{Soil moisture} \% = \frac{\text{wet soil (g)} - \text{dry soil (g)}}{\text{dry soil (g)}} \times 100 \quad \text{(Eqn. 4)}
\]

Water-filled pore space (WFPS) was calculated as the ratio of the volumetric soil water content (SWC) to the total pore space (Saggar et al., 2004). The formulae below was used to calculate the Total pore space:

\[
\text{Total pore space} \% = 100[1 - (\text{bulk density/particle density})] \quad \text{(Eqn. 5)}
\]

The soil bulk density was determined from undisturbed soil core samples taken from three lysimeters under the three irrigation systems (spray vs. roto-rainer vs. flood) with pasture growing on them. The particle density was assumed to be 2.65 Mg m\(^{-3}\). Total porosity (TP) was calculated for each soil under each irrigation system using equation 5 (Eqn. 5) and this is shown in Table 3.3.
Table 3.3: Total porosity (TP)

<table>
<thead>
<tr>
<th>Irrigation</th>
<th>Bulk density dry (g/m³)</th>
<th>Total pore space (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spray</td>
<td>1.37</td>
<td>48.15</td>
</tr>
<tr>
<td>Roto-rainer</td>
<td>1.36</td>
<td>48.59</td>
</tr>
<tr>
<td>Flood</td>
<td>1.39</td>
<td>47.60</td>
</tr>
</tbody>
</table>

From the table above, WFPS was calculated for each day under each irrigation system.

3.8 Climate data

Daily air temperature, daily soil temperature, daily rainfall and irrigation, and daily soil moisture for the trial period were collected from the Lincoln Met Station using the Vista Data Vision Database (http://v-vision.lincoln.ac.nz/tdv/dashboard.php).

3.9 Data and statistical analysis

Nitrous oxide emission rates were calculated from the increase in concentration of N₂O between the first and second, and second and third gas samples taken at each sampling event (Hutchinson & Mosier, 1981). Daily N₂O fluxes were then calculated on the assumption that the calculated hourly flux represented the average hourly flux for that day (de Klein et al., 2003). Total N₂O emissions were calculated by integrating the daily emission fluxes (Treweek et al., 2016b). The emission factor (EF₃) or the proportion of N emitted as N₂O-N from urine-N applied was calculated using Equation (6) (de Klein et al., 2003):

$$EF_3(\%) = \frac{N_2O-N \text{ total (urine)} - N_2O-N \text{ total (control)}}{N_2O-N \text{ applied}} \times 100 \quad \text{(Eqn. 6)}$$

where EF₃(%) is the emission factor, ‘N₂O-N total (urine)’ is the cumulative total N₂O-N emitted (kg N₂O-N/ha) from a urine treatment, ‘N₂O-N total (control)’ is the cumulative total N₂O emitted (kg N₂O-N/ha) from the comparative no-urine treatment, and ‘Urine-N applied’ is the amount of N added as urine (kg N/ha).

The mean values and standard error of the means for daily and total N₂O emissions, AOB and AOA community abundance, NH₄⁺ concentration, NO₃⁻ concentration and abundance of gene copy numbers for the denitrifiers were calculated based on the four replicates for each treatment using Microsoft Excel 2013 (Microsoft Corporation, USA). Least significant differences and p values were calculated using two way analysis of variance in Genstat© (Version 16.1, VSN International Ltd, UK). Total N₂O values were log-transformed to ensure homogeneity of residual errors in order to determine the differences between the irrigation
systems. The daily N\textsubscript{2}O emissions were log\textsubscript{10}-transformed to determine its relationship with SWC, WFPS and temperature using Microsoft Excel 2013 (Microsoft Corporation, USA). The regression analysis for these factors (SWC, WFPS & temperature) were calculated using Microsoft Excel 2013.
Chapter 4
The effect of different irrigation systems on N$_2$O emissions, soil nitrifiers and denitrifiers.

4.1 Results

4.1.1 Climate

During the experimental period (15th February to 28th June 2016), the daily average air temperature varied from a high of 25.5$^\circ$C on the 26th of February 2016 (summer) to a low of 4.6$^\circ$C on the 2nd of June 2016 (winter) (Fig 4.1). The daily average soil temperature varied from a high of 22$^\circ$C in February (summer) to a low of 5.8$^\circ$C on the 7th of June (winter) (Fig 4.2).

Figure 4.1: Daily average air temperature.
Figure 4.2: Daily average soil temperature

Natural rainfall, simulated rainfall and irrigation were applied to the soil. The effects of the three irrigation systems were tested: spray, roto-rainer and flood as described in Table 3.1 in the Materials and Methods chapter. For the spray irrigation, the total water input was 488.6 mm. This included 234 mm rainfall (natural and simulated) and 254.6 mm spray irrigation (Fig 4.3). For the roto-rainer irrigation, the total water input was 558.7 mm. This included 234 mm rainfall (natural and simulated) and 324.7 mm roto-rainer irrigation (Fig 4.4). For the flood irrigation, the total water input was 519.3 mm. This included 234 mm rainfall (natural and simulated) and 285.3 mm flood irrigation (Fig 4.5).
Figure 4.3: Daily rainfall, irrigation and cumulative water inputs (Spray irrigation).

Figure 4.4: Daily rainfall, irrigation and cumulative water inputs (Roto-rainer irrigation).
Figure 4.5: Daily rainfall, irrigation and cumulative water inputs (Flood irrigation).

Soil moisture content responded to the rainfall and irrigation inputs with peaks in soil moisture detected after the rainfall occurred or irrigation water was applied (Fig 4.6, Fig 4.7, and Fig 4.8). For the spray irrigation, there were rapid small decreases and increases in moisture content with a maximum of 41.7 % moisture content on the 31st of May and a minimum of 19.3 % moisture content on the 22nd of February (Fig 4.6). Under the roto-rainer irrigation, there were more gradual peaks and troughs in the moisture content with a maximum of 41.9 % moisture content on the 1st of June and a minimum of 21.5 % moisture content on the 9th of March (Fig 4.7). For the flood irrigation, there were larger peaks and troughs in the moisture content with a maximum of 42.2 % moisture content on the 4th of March and a minimum of 21.6 % moisture content on the 7th of April (Fig 4.8).
Figure 4.6: Daily average soil moisture (Spray irrigation).

Figure 4.7: Daily average soil moisture (Roto-rainer irrigation).
Figure 4.8: Daily average soil moisture (Flood irrigation).
4.1.2 \textbf{N}_2\text{O} \textbf{e}m\textbf{i}s\textbf{s}\textbf{ions}

\subsubsection*{4.1.2.1 Daily \textbf{N}_2\text{O} \textbf{e}m\textbf{i}s\textbf{s}\textbf{i}ons}

For the urine treatment under the spray irrigation, there was a small peak in the \textbf{N}_2\text{O}-\text{N} flux (328 g \textbf{N}_2\text{O}-\text{N}/ha) on the 19th of February (Fig 4.9). This was probably the result of the impact of a rainfall event which occurred on the 17th of February (Fig 4.3). After the small peak, another larger peak of 663 g \textbf{N}_2\text{O}-\text{N}/ha was recorded on the 25th of February, after 26 mm of spray irrigation had been applied on the 23rd of February (Fig 4.9). After this highest peak, there was a gradual decline in the \textbf{N}_2\text{O}-\text{N} flux. However, it did not reach background levels until the end of May due to the constant input of spray irrigation and rainfall (Fig 4.3, Fig 4.9).

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{figure.png}
\caption{Daily \textbf{N}_2\text{O} \textbf{e}m\textbf{i}s\textbf{s}\textbf{ions} (Spray irrigation).}
\end{figure}

For the urine treatment under the roto-rainer irrigation, there was a small peak in the \textbf{N}_2\text{O}-\text{N} flux (404 g \textbf{N}_2\text{O}-\text{N}/ha) on the 19th of February (Fig 4.10). This was probably the result of the impact of irrigation applied on the 15th and rainfall on the 17th of February (Fig 4.4). After the small peak, the \textbf{N}_2\text{O}-\text{N} flux reached the highest peak of 2162 g \textbf{N}_2\text{O}-\text{N}/ha on the 29th of February (Fig 4.10). On the same day, 45.3 mm of irrigation was applied. There was also 10.7 mm of irrigation applied on the 23rd of February. On the 20th of March, 45.3 mm of irrigation was applied and the \textbf{N}_2\text{O}-\text{N} flux reached a peak of 1291 g \textbf{N}_2\text{O}-\text{N}/ha on the 21st of March (a day after
irrigation) (Fig 4.4, Fig 4.10). After the peak on the 21st of March, the N$_2$O-N flux gradually declined close to background levels. Although the roto-rainer irrigation continued to be applied there were no more major peaks after the 11th of April.

Figure 4.10: Daily N$_2$O emissions (Roto-rainer irrigation).

For the urine treatment under the flood irrigation, there was a small peak in the N$_2$O-N flux (352 g N$_2$O-N/ha) on the 19th of February (Fig 4.11). This can be attributed to the rainfall on the 17th and 18th of February which caused the soil moisture content to increase to 32% (Fig 4.5, Fig 4.8). On the 3rd of March, 90 mm of irrigation was applied and the N$_2$O-N flux reached a peak of 1014 g N/ha on the 7th of March (4 days after irrigation). After that peak, there was a decline in the N$_2$O-N flux until the 21st of March, when 90 mm of irrigation was applied and the N$_2$O-N flux reached another peak of 1140 g N$_2$O-N/ha on the 24th of March (3 days after irrigation). After that peak, the N$_2$O-N flux declined. On the 8th of April, 90 mm of irrigation was applied and the N$_2$O-N flux reached a small peak of 353g N$_2$O-N/ha on the 11th of April (3 days after irrigation). After the small peak, the N$_2$O-N flux gradually declined to background levels even though flood irrigation continued and there were no more N$_2$O peaks after 11th of April (Fig 4.5, Fig 4.11).
4.1.2.2 Total \(\text{N}_2\text{O} \) emissions

Statistical analysis showed that, under the control treatments (i.e. no urine applied) for each irrigation system, there was no significant difference in \(\text{N}_2\text{O} \) emissions. For the urine treatments, spray irrigation had a total \(\text{N}_2\text{O} \) emission of 16 kg \(\text{N}_2\text{O} \)-N/ha, roto-rainer irrigation had a total \(\text{N}_2\text{O} \) emission of 22 kg \(\text{N}_2\text{O} \)-N/ha and flood irrigation had a total \(\text{N}_2\text{O} \) emission of 14 kg \(\text{N}_2\text{O} \)-N/ha (Fig 4.12, Table 4.1). There was no significant difference between irrigation systems when urine was applied. However, the application of urine significantly \((p < 0.05)\) increased the \(\text{N}_2\text{O} \) emissions compared to the non-urine (control) treatments.
Figure 4.12: Total N_2O emissions from spray, roto-rainer and flood irrigation systems with and without urine. Treatments with the same letter above the bars are not significantly different. The error bars indicate standard errors of the mean (SEM).

The emission factor (EF_3) values are shown in Table 4.1 below. The EF_3 were calculated using the formula derived from de Klein et al., 2003 (Equation 6 in section 3.9). The EF_3 for this Templeton sandy loam soil were 1.97%, 3.03% and 1.99% under spray, roto-rainer and flood irrigation respectively (Table 4.1).
Table 4.1: Total N₂O emissions and proportion of applied N emitted as N₂O (EF₃) from the three irrigation systems (spray, roto-rainer and flood) under urine treatment.

<table>
<thead>
<tr>
<th>Type of irrigation</th>
<th>Total emissions (kg N₂O-N/ha)</th>
<th>EF₃</th>
<th>EF₃(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Total Urine</td>
<td>Total Control</td>
<td></td>
</tr>
<tr>
<td>Spray</td>
<td>15.79c (± 4.98)</td>
<td>1.97b (± 0.59)</td>
<td>0.01974</td>
</tr>
<tr>
<td>Roto-rainer</td>
<td>22.41c (± 9.83)</td>
<td>1.21ab (± 0.67)</td>
<td>0.03029</td>
</tr>
<tr>
<td>Flood</td>
<td>14.30c (± 2.52)</td>
<td>0.38a (± 0.07)</td>
<td>0.01989</td>
</tr>
</tbody>
</table>

Same superscript letters indicate the treatments are not significantly different.

4.1.2.3 Relationship between N₂O emissions and Soil water content (SWC)

Under the spray irrigation with urine treatment, the soil water content did not appear to be directly related to the N₂O emissions. In fact, there was a weak negative correlation between soil water content and N₂O emissions. The field capacity of the Templeton sandy loam soil in this experiment was 0.33 (V/V) (Appendix A) and the soil moisture content rarely exceeded field capacity (Fig 4.6). There was limited N₂O emissions measured above field capacity (Fig 4.13). N₂O emissions seemed to take place below the field capacity water content. There was a standout point on the graph (Fig 4.13) where N₂O emission was 663.5 g N₂O-N/ha when the SWC was 0.22. This might be a result of spray irrigation applied two days before. Before the N₂O values were log₁₀-transformed, the dataset for SWC, WFPS and soil temperature versus N₂O emissions were truncated to include only the data when most N₂O emissions took place (between 17th February and 18th April 2016). This was a result of the presence of NO₃⁻ in the soil but, as NO₃⁻ became limited in the soil after the 18th of April 2016 (Fig 4.44), N₂O emissions decreased. The N₂O emission values were log₁₀-transformed to ensure homogeneity of residual errors in order to determine differences between treatments or to observe a clear relationship between SWC, WFPS, temperature and N₂O emissions (Choudhary, et al., 2002; Treweek et al., 2016a). Figure 4.14 also showed a weak negative correlation between soil water content and N₂O emissions.
Figure 4.13: The relationship between daily \(\text{N}_2\text{O} \) emissions and soil water content (SWC) under spray irrigation with urine treatment.

\[y = -1022.4x + 483.32 \]
\[R^2 = 0.1389 \]
\[p > 0.05 \]

Figure 4.14: The relationship between logarithmic transformed daily \(\text{N}_2\text{O} \) emissions and soil water content (SWC) under spray irrigation with urine treatment.

\[y = -2.0836x + 2.8142 \]
\[R^2 = 0.1787 \]
\[p > 0.05 \]
Under the roto-rainer irrigation with urine treatment, the soil water content appeared to have a weak positive relationship with the N\textsubscript{2}O emissions (Fig 4.15). There were two standout points on the graph (Fig 4.15) where the N\textsubscript{2}O emission was 1291 g N\textsubscript{2}O-N/ha when the SWC was 0.31 and 2162 g N\textsubscript{2}O-N/ha when the SWC was 0.38. These might be a result of roto-rainer irrigation applied on the same day and a day before gas measurement, respectively. When the data were log\textsubscript{10}-transformed there was a stronger positive correlation between soil water content and N\textsubscript{2}O emissions (Fig 4.16). Most of the N\textsubscript{2}O emissions occurred below the SWC at field capacity.

Figure 4.15: The relationship between daily N\textsubscript{2}O emissions and soil water content (SWC) under roto-rainer irrigation with urine treatment.
Figure 4.16: The relationship between logarithmic transformed daily \(\text{N}_2\text{O} \) emissions and soil water content (SWC) under roto-rainer irrigation with urine treatment.

Under the flood irrigation with urine treatment, the soil water content appeared to have a weak positive relationship with the \(\text{N}_2\text{O} \) emissions (Fig 4.17). The soil water content influenced \(\text{N}_2\text{O} \) emissions. On the graph (Fig 4.17) there were also two standout points which showed \(\text{N}_2\text{O} \) emissions being 1014 g \(\text{N}_2\text{O}-\text{N}/\text{ha} \) when the SWC was 0.34 and 1140 g \(\text{N}_2\text{O}-\text{N}/\text{ha} \) when the SWC was 0.38. These might be a result of flood irrigation applied 4 days and 3 days before gas measurement, respectively. When the \(\text{N}_2\text{O} \) data were \(\log_{10} \)-transformed the soil water content was positively correlated to \(\text{N}_2\text{O} \) emissions (Fig 4.18). Most of the \(\text{N}_2\text{O} \) emissions occurred below the field capacity water content.
Figure 4.17: The relationship between daily N_2O emissions and soil water content (SWC) under flood irrigation with urine treatment.

Figure 4.18: The relationship between logarithmic transformed daily N_2O emissions and soil water content (SWC) under flood irrigation with urine treatment.
Figures 4.19 and 4.20 showed the relationship between combined daily N\textsubscript{2}O emissions and SWC before log\textsubscript{10}-transformation and after log\textsubscript{10}-transformation of the data. Figure 4.19 showed a weak positive relationship between SWC and N\textsubscript{2}O emissions and most of the N\textsubscript{2}O emissions took place below the SWC at field capacity. After the data was log\textsubscript{10}-transformed, it did not improve the relationship; in fact, the relationship between SWC and N\textsubscript{2}O emissions was weaker (Fig 4.20).

![Figure 4.19: The relationship between combined daily N\textsubscript{2}O emissions and soil water content (SWC).](image-url)

\[y = 2670.8x - 502.99 \]
\[R^2 = 0.1265 \]
\[p < 0.05 \]
Figure 4.20: The relationship between combined logarithmic transformed daily N₂O emissions and soil water content (SWC).

4.1.2.4 Relationship between N₂O emissions and Soil water-filled pore space (WFPS)

Soil water-filled pore space (WFPS) was used in this study because it normalises for differences in bulk density and particle density between soils (Saggar et al., 2004a), and nitrification and denitrification rates have been reported to be closely related to the water-filled pore space (WFPS) of a soil (Sangar et al., 2011). The results showed that, under the spray irrigation with urine treatment, WFPS did not have a strong relationship with the N₂O emissions. There was a weak negative correlation between daily N₂O emissions and the WFPS. The WFPS at field capacity was 0.69 for the Templeton sandy loam soil. There were few data and limited N₂O emissions when the WFPS was above the field capacity WFPS (Fig 4.21). There was a standout point on the graph (Fig 4.21) where N₂O emission was 663.5 g N₂O-N/ha when the WFPS was 0.45. This might be a result of spray irrigation applied two days before. Figure 4.22 (Log₁₀-transformed) also showed weak negative correlation between N₂O emissions and the WFPS.
Figure 4.21: The relationship between daily N$_2$O emissions and soil water-filled pore space (WFPS) under spray irrigation with urine treatment.
Figure 4.2: The relationship between logarithmic transformed daily N$_2$O emissions and soil water-filled pore space (WFPS) under spray irrigation with urine treatment.

The results showed that under the roto-rainer irrigation with urine treatment, WFPS appeared to have a weak positive correlation with the N$_2$O emissions. There was limited N$_2$O emission data when the WFPS was above field capacity (Fig 4.23). There were two standout points on the graph (Fig 4.23) where N$_2$O emission was 1291 g N$_2$O-N/ha when the WFPS was 0.63 and 2162 g N$_2$O-N/ha when the WFPS was 0.79. These might be a result of roto-rainer irrigation applied on the same day and a day before respectively. Figure 4.24 showed a clearer positive correlation between WFPS and N$_2$O emissions. Most of the N$_2$O emissions occurred below the field capacity WFPS.
Figure 4.23: The relationship between daily N_2O emissions and soil water-filled pore space (WFPS) under roto-rainer irrigation with urine treatment.
Figure 4.24: The relationship between logarithmic transformed daily N$_2$O emissions and soil water-filled pore space (WFPS) under roto-rainer irrigation with urine treatment.

Under the flood irrigation with urine treatment, WFPS appeared to have a weak positive relationship with the N$_2$O emissions (Fig 4.25). On the graph (Fig 4.25) there were two standout points which showed N$_2$O emission was 1014 g N$_2$O-N/ha when the WFPS was 0.72 and 1140 g N$_2$O-N/ha when the WFPS was 0.80. These might be a result of flood irrigation applied 4 days and 3 days before respectively. Figure 4.26 showed that there was a positive correlation between WFPS and N$_2$O emissions. Most of the N$_2$O emissions occurred below the field capacity WFPS.
Figure 4.25: The relationship between daily N$_2$O emissions and soil water-filled pore space (WFPS) under flood irrigation with urine treatment.

Figure 4.26: The relationship between logarithmic transformed daily N$_2$O emissions and soil water-filled pore space (WFPS) under flood irrigation with urine treatment.
Figures 4.27 and 4.28 showed the relationship between combined daily N$_2$O emissions and WFPS before log$_{10}$-transformation and after log$_{10}$-transformation of the data. Figure 4.27 showed a weak positive relationship between WFPS and N$_2$O emissions and most of the N$_2$O emissions took place below the WFPS at field capacity. After the data was log$_{10}$-transformed, it did not improve the relationship. The relationship between WFPS and N$_2$O emissions was even weaker (Fig 4.28).

Figure 4.27: The relationship between combined daily N$_2$O emissions and water-filled pore space (WFPS).
4.1.2.5 Relationship between N_2O emissions and Soil temperature

Under the spray irrigation with urine treatment, N_2O emissions increased with soil temperature. The standout point on the graph (Fig 4.29) showed that 663.50 g N_2O-N/ha of N_2O was emitted at 21°C. This might be a result of the high temperature and spray irrigation applied two days before. When the N_2O data were \log_{10}-transformed, the relationship between soil temperature and N_2O emissions was not improved (Fig 4.30).
Figure 4.29: The relationship between daily N_2O emissions and soil temperature under spray irrigation with urine treatment.

$$y = 22.264x - 171.39$$
$$R^2 = 0.2207$$
$$p > 0.05$$

Figure 4.30: The relationship between logarithmic transformed daily N_2O emissions and soil temperature under spray irrigation with urine treatment.

$$y = 0.0374x + 1.6195$$
$$R^2 = 0.1928$$
$$p > 0.05$$
Under the roto-rainer irrigation with urine treatment, soil temperature also influenced N\textsubscript{2}O emissions and there was a weak positive relationship (as shown in Fig 4.31). There were two standout points on the graph (Fig 4.31) where N\textsubscript{2}O emission was 1291 g N\textsubscript{2}O-N/ha when the temperature was 19°C and 2162 g N\textsubscript{2}O-N/ha when the temperature was 20°C. These might be a result of the high temperatures and roto-rainer irrigation applied on the same day and a day before respectively. When the N\textsubscript{2}O data were log\textsubscript{10}-transformed, there was a stronger positive relationship between soil temperature and N\textsubscript{2}O emissions (Fig 4.32).

![Graph showing the relationship between daily N\textsubscript{2}O emissions and soil temperature under roto-rainer irrigation with urine treatment.](image)

Figure 4.31: The relationship between daily N\textsubscript{2}O emissions and soil temperature under roto-rainer irrigation with urine treatment.
Under flood irrigation with urine treatment the results showed that soil temperature also influenced the N$_2$O emissions. That is, N$_2$O emissions increased with temperature (Fig 4.33). There were also two standout points which showed N$_2$O emission was 1140 g N$_2$O-N/ha when the temperature was 18°C and 1014 g N$_2$O-N/ha when the temperature was 20°C. These might be a result of the high temperatures and flood irrigation applied 4 days and 3 days before respectively. When the N$_2$O data were log$_{10}$-transformed, there was a stronger positive relationship between soil temperature and N$_2$O emissions (Fig 4.34).
Figure 4.33: The relationship between daily N\textsubscript{2}O emissions and soil temperature under flood irrigation with urine treatment.

Figure 4.34: The relationship between logarithmic transformed daily N\textsubscript{2}O emissions and soil temperature under flood irrigation with urine treatment.
Figures 4.35 and 4.36 showed the relationships between combined daily N₂O emissions and soil temperature before log₁₀-transformation and after log₁₀-transformation of the data. Figure 4.35 showed a weak positive relationship between soil temperature and N₂O emissions. After the data was log₁₀-transformed, there was a stronger (but still weak) positive relationship between soil temperature and N₂O emissions (Fig 4.36).

Figure 4.35: The relationship between combined daily N₂O emissions and soil temperature.
4.1.3 Ammonia oxidising community abundance

4.1.3.1 Ammonia oxidising bacteria (AOB)

For the control treatments the irrigation system had little effect on AOB abundance. For the urine treatment under the three irrigation systems, there was an increase in AOB abundance compared to the controls. However, within the irrigation plus urine treatments, there was no significant difference between the irrigation systems except on the 17th of March where there was a significant difference between the roto-rainer urine and spray urine treatments ($p < 0.05$).
Figure 4.37: Average AOB amoA gene abundance from the three irrigation systems with and without urine. The error bars indicate the standard error of mean (SEM).

4.1.3.2 Ammonia oxidising archaea (AOA)

There were no significant differences in AOA abundance between the urine treatments and the controls. There was one initial peak AOA abundance in the spray control treatment but all the other values were not significantly different.
4.1.4 Denitrifiers

4.1.4.1 nirS gene abundance

There was no treatment effect on the nirS abundance and the irrigation systems did not have an effect on the nirS abundance. There was decrease in the nirS abundance and then there was a small peak on the 16th of April for all treatments (Fig 4.39). After the small peak, there was a decrease in nirS abundance in all treatments under all three irrigation systems.
Figure 4.39: nirS gene abundance from the three irrigation systems with and without urine. The error bars indicate the standard error of mean (SEM).

4.1.4.2 nirK gene abundance

There was no treatment effect on the nirK abundance and the irrigation systems did not have an effect on the nirK abundance. There was an increase in the nirK abundance for all the treatments and then a decrease towards the end of the experiment (Fig 4.40).
Figure 4.40: \textit{nirK} gene abundance from the three irrigation systems with and without urine. The error bars indicate the standard error of mean (SEM).

4.1.4.3 \textit{nosZ I} gene abundance

There was no treatment effect on the \textit{nosZ I} abundance and the irrigation systems did not have an effect on the \textit{nosZ I} abundance. There was a peak in the \textit{nosZ I} abundance in all of the treatments on the 17th of March. After the peak, the \textit{nosZ I} abundance decreased in all of the treatments (Fig 4.41).
Figure 4.41: *nosZ* I gene abundance from the three irrigation systems with and without urine. The error bars indicate the standard error of mean (SEM).

4.1.4.4 *nosZ* II gene abundance

There was no treatment effect on the *nosZ* II abundance and the irrigation systems did not have an effect on the *nosZ* II abundance. There was a small peak in the *nosZ* II abundance in all of the treatments on the 23\(^{rd}\) of February and then it decreased. On the 17\(^{th}\) of March *nosZ* II gene abundance peaked again and then decreased. There was a slight increase in the *nosZ* II abundance in all of the treatments towards the end of the experiment (Fig 4.42).
4.1.5 Soil mineral nitrogen

4.1.5.1 Soil NH$_4^+$ concentrations

For the control treatments, there was no difference in NH$_4^+$ concentrations under the three irrigation systems. Following the urine treatment, the NH$_4^+$ concentrations were higher than the controls and then declined over the period from application until reaching values similar to the controls on 16 March 2016. There were no significant differences between irrigation treatments on any individual days (Fig 4.43).
Figure 4.43: Soil ammonium concentration following dairy cow urine application (700 kg N/ha) to the three irrigation systems. The error bars indicate the standard error of mean (SEM).

4.1.5.2 Soil NO₃⁻ concentrations

In the control treatments, there was no difference in the NO₃⁻ concentrations under the three irrigation systems (Fig 4.44). For the urine treatments, the NO₃⁻ concentrations increased under each of the three irrigation systems until they reached a peak during March and then decreased. Spray irrigation (with urine) reached the highest peak of 201 mg NO₃⁻ - N/kg soil on the 1st of March and then decreased (Fig 4.44).
Figure 4.44: Soil nitrate concentration following dairy cow urine application (700 kg N/ha) to the three irrigation systems. The error bars indicate the standard error of mean (SEM).
Chapter 5
Discussion and conclusions

5.1 Discussion

5.1.1 N₂O emissions and irrigation systems

The daily N₂O emissions from urine treated soil under the three irrigation systems increased when there was rainfall or irrigation applied. The rainfall or irrigation increased the soil moisture content (Figs 4.6, 4.7 & 4.8) which would have caused an increase in N₂O flux (Figs 4.9, 4.10 & 4.11). These results are in agreement with those obtained by Di & Cameron (2002); Di & Cameron (2003); and Di et al., (2014), where N₂O emissions peaked after urine application and with increased soil moisture content. When there was no rainfall or irrigation applied (in between the peaks), N₂O emissions decreased. This was a result from the reduction of soil moisture content and thus increased aeration status of the soil. Soil water content is known to be an important controlling factor for denitrification (de Klein and van Logtestijn, 1994). Following irrigation or rainfall, soil water contents increased and this caused the soil to become anaerobic, which led to higher denitrification rates and increased N₂O emissions (Smith and Arah, 1990; Di et al., 2014). However, if the soil becomes completely anaerobic, complete denitrification can occur, which can lead to the conversion of N₂O to N₂ (Smith et al., 1998).

In the later stages of the experiment, there was a gradual decline in N₂O-N flux reaching background levels despite constant rainfall and irrigation. Under the spray irrigation system N₂O-N flux did not reach background levels until the end of May (Fig 4.9). However, under the roto-rainer and flood irrigation systems, N₂O-N flux gradually declined close to background levels. Under these two irrigation systems there were no N₂O peaks after 11th of April (Fig 4.10 & 4.11) even though irrigation for both systems continued. This was due to the low concentrations of NO₃⁻ remaining in the soil during this later phase (Fig 4.44). N₂O emissions as a rule increase under irrigation when there is adequate availability of soil mineral nitrogen (Trost et al., 2013) and in this experiment the NO₃⁻ concentration became too low after 11th of April for any N₂O emissions to occur.

Total N₂O emissions increased significantly after urine application compared to the non-urine (control) treatments (Fig 4.12). These results are in agreement with de Klein et al., (2003); Di &
Cameron (2006); Di et al., (2007); Di et al., (2010b); Di et al., (2014) and Treweek et al’s (2016), findings which showed total N\textsubscript{2}O emissions increased with increased mineral nitrogen content in urine-treated soils.

The N\textsubscript{2}O emission factors (N\textsubscript{2}O-N emitted as a percentage of urine-N applied) under the three irrigation systems with urine treatment (spray, roto-rainer and flood) were 2%, 3% and 2% respectively. The emission factor that New Zealand adopted is 1% of the excreta N deposited during grazing (Sherlock et al., 1997). Under the three irrigation systems, the emission factors were higher than New Zealand’s default emission factor of 1% (de Klein et al., 2003). Comparing these results with the IPCC’s default emission factor of 2% (de Klein, 2004), spray and flood irrigation systems have the same emission factor (2%) but roto-rainer irrigation system has a higher emission factor (3%). The emission factors reported in this study were within the range of values presented in the review by Cameron et al. (2013), including similar studies on sandy loam soil in Canterbury and Southland (Di and Cameron, 2006; Di et al., 2007; Di et al., 2010b).

Contrary to expectations, this study did not find a significant difference between the effect of the three irrigation systems on N\textsubscript{2}O emissions. The hypothesis that the method of irrigation will affect the N\textsubscript{2}O emissions should therefore be rejected.

5.1.2 Soil water content (SWC)

The results of this study showed that there was a weak negative relationship between SWC and N\textsubscript{2}O emissions under spray irrigation with urine treatment. For the roto-rainer and flood irrigation with urine treatment, there was a weak positive relationship between SWC and N\textsubscript{2}O emissions; however it is important to note that most of the N\textsubscript{2}O emissions took place at SWCs below field capacity (Fig 4.16 and 4.18). These N\textsubscript{2}O emissions taking place below the field capacity may be a result of the oxidative nitrification process dominating (Horváth et al., 2010). These results are not in agreement with those obtained by Davidson, (1991); Dobbie et al., (1999); Hedley et al., (2002); Saggar et al., (2004a); and Di et al., (2014), where N\textsubscript{2}O emissions increased with increased SWC above field capacity. The difference may be because this study examined the effect of different irrigation systems on N\textsubscript{2}O emissions which occurred mostly below field capacity, whereas the other studies examined soil moisture vs N\textsubscript{2}O relationships at higher soil moisture contents (i.e. above field capacity) which occur during winter months.
5.1.3 Soil water-filled pore space (WFPS)

In this study there was a weak negative relationship between WFPS and N₂O emissions under spray irrigation with urine treatment (Fig 4.21 & 4.22). For the roto-rainer and flood irrigation with urine treatment, there was a weak positive relationship between WFPS and N₂O emissions (Fig 4.23 & Fig 4.25) and most of the N₂O emissions took place below the WFPS at field capacity. Again these N₂O emissions taking place below the field capacity may be a result of the oxidative nitrification process dominating. The relationship between the daily N₂O emissions (logarithmic transformed) and WFPS for roto-rainer and flood irrigation was shown in Fig 4.24 and Fig 4.26. These results are not in agreement with previous studies (e.g., Ruz-Jerez et al., 1994; Luo et al., 1999b, 2000, 2008; Anger et al., 2003; de Klein et al., 2003), which showed that N₂O emissions were high when the soil WFPS was above field capacity.

Luo et al., (2008) showed that N₂O emissions were strongly influenced by soil WFPS; the emissions were high when soil WFPS was above field capacity during winter and spring and low when soil WFPS was below field capacity during summer and autumn. A likely explanation in the difference between this current study and the previous studies is that this study examined the effect of different irrigation systems on N₂O emissions which occurred mostly below field capacity, whereas the other studies examined WFPS vs N₂O relationships at higher soil water-filled pore space (i.e. above field capacity) and often during winter months.

5.1.4 Soil temperature

Soil temperature influenced N₂O emissions under the spray, roto-rainer and flood irrigation systems with urine treatment (Figs 4.29, 4.31 & 4.33). N₂O emissions increased when soil temperatures increased from 12°C to 21°C under spray irrigation, 12°C to 20°C under roto-rainer irrigation and 12°C to 18°C under flood irrigation. Increased N₂O emissions was a result from increased nitrification and denitrification which was triggered by the increased soil temperatures. These results are in agreement with those obtained by Ryden, (1986); de Klein & van Logtestijn, (1996); Dobbie et al., (1999); and Dobbie & Smith, (2001).
5.1.5 Ammonia oxidising communities

In the urine treatments, the AOB amoA gene abundance increased compared to the control treatments. This was due to the increase in ammonium substrate available in the urine treatments. These results are in agreement with those of previous studies (Di et al., 2009a, 2010a, 2014; Robinson et al., 2014; and Long et al., 2016).

In contrast, the AOA amoA gene abundance did not increase under the urine treatment under the three irrigation systems. This is also in agreement with the findings of others (e.g., Di et al., 2009a, 2010a, 2014; Long et al., 2016) who reported no response in AOA abundance when urine was applied to soil. Though there was a variation, AOA abundance was lower than AOB abundance in the urine treated soil under the three irrigation systems. These results are in agreement with findings of Di et al (2014) which showed AOB growth was stimulated by the application of animal urine (but not AOA growth).

5.1.6 Soil denitrifiers

This study showed that nirS abundance decreased and nirK abundance increased under the three irrigation systems with and without urine. In contrast to this study, Di et al. (2014) showed that application of urine decreased the abundance of nirS. It was interesting in this study to find that, for the control treatment under the three irrigation systems, nirK abundance also increased but their copy numbers were slightly lower than the urine treatment. Studies carried out by Di et al., (2014); Long et al., (2016) and Trewick et al., (2016a) found that nirK abundance increased as a result of the increase in nitrate substrate.

This study found that nosZ I and II gene abundance increased to reach a peak after one month and then decreased for all the treatments (control and urine) under the three irrigation systems. This showed that there was no difference between nosZ I and II gene abundance under the three irrigation systems with and without urine. In contrast to this study, Di et al., (2014) found that nosZ I and II abundance significantly increased after urine application. Again the differences between soil moisture contents of these studies (i.e. below field capacity in this study vs above field capacity in other studies) may be responsible for the differences in the observations.
5.1.7 Soil mineral nitrogen

The concentrations of NH$_4^+$ in the urine treatments under the three irrigation systems were high immediately after urine application and decreased over time, showing that nitrification was taking place (Fig 4.43). The AOB used this NH$_4^+$ as substrate for growth (as described above and shown in Fig 4.37). In contrast to NH$_4^+$ concentration, NO$_3^-$ concentration increased soon after urine treatment under the three irrigation systems confirming that nitrification was occurring (Figure 4.44).

These results are in line with the studies carried out by Ball et al., (2012); Di et al., (2014); Long et al., (2016); and Treweek et al., (2016a). The NO$_3^-$ concentration decreased after one month as the NH$_4^+$ substrate was used up by the AOB, and as the NO$_3^-$ and NH$_4^+$ ions were taken up by plants or may have been leached.
5.2 Conclusions

The results showed that:

- Methods of irrigation studied (spray vs roto-rainer vs flood) had no significant effect on total N₂O-N emissions. Thus the hypothesis that the method of irrigation will affect the N₂O emissions should be rejected.

- Methods of irrigation affected the N₂O-N emissions’ temporal patterns with N₂O emissions continuing throughout the full period from spray irrigation whilst N₂O emissions reached background levels on the 11th of April for roto-rainer and flood irrigation.

- Irrigation systems did not significantly affect the AOB, AOA or denitrifier abundance, which helps to explain the similar total N₂O-N emissions between the irrigation treatments.

- The EF₃ values for these irrigation treatments (2% for spray, 3% for roto-rainer, and 2% for flood) were higher than the New Zealand’s specific EF₃ value. This is probably a result of the warm soil temperatures combined with moist soil conditions under irrigation.

- There was no significant relationship between N₂O-N emissions and soil WFPS for the spray irrigation.

- The relationship between WFPS for the roto-rainer and flood irrigation treatments was stronger than the relationship for spray irrigation (but was still weak due to the WFPS values mostly being less than those at field capacity soil moisture content).

- Importantly, the results showed that considerable amounts of N₂O-N can be emitted from soils at moisture contents below field capacity.

- There was a positive relationship between soil temperature and N₂O-N emissions.
5.3 Future research

From the results gathered from this study, it is suggested that future research into the effect of irrigation systems (spray vs roto-rainer vs flood) on N_2O emissions from urine applied to pasture soil be carried out

- for different soil types, because only one soil type (Templeton sandy loam soil/Paparua soil) was studied.

- for different pasture types (e.g. standard perennial ryegrass/white clover vs “diverse pasture”).

- for spring/early summer (e.g. October) urine application and subsequent irrigation over summer and autumn.

- for different rates of urine application.
Table 1.1: Surface (0-20 cm) soil properties of Canterbury Templeton soil used for the study (Adapted from Soil Bureau Bulletin 26, 1998; Di et al., 2007; Carlton et al., 2016).

<table>
<thead>
<tr>
<th>Properties</th>
<th>Canterbury Templeton soil</th>
</tr>
</thead>
<tbody>
<tr>
<td>Particle size distribution (%)</td>
<td></td>
</tr>
<tr>
<td>Sand</td>
<td>40.6</td>
</tr>
<tr>
<td>Silt</td>
<td>42.8</td>
</tr>
<tr>
<td>Clay</td>
<td>16.6</td>
</tr>
<tr>
<td>Organic C (mg C g(^{-1}))</td>
<td>24.0</td>
</tr>
<tr>
<td>Total N (mg N g(^{-1}))</td>
<td>2.0</td>
</tr>
<tr>
<td>pH (H(_2)O)</td>
<td>5.8</td>
</tr>
<tr>
<td>CEC (cmol(_c) kg(^{-1}))</td>
<td>24.0</td>
</tr>
<tr>
<td>Base saturation (%)</td>
<td>47</td>
</tr>
<tr>
<td>Field capacity water content (%) (V/V)</td>
<td>33</td>
</tr>
</tbody>
</table>
References

Intergovernmental Panel on Climate Change (IPCC). (2007). *Climate change 2007: the physical science basis, contribution of working group I to the fourth assessment report of the intergovernmental Panel on climate change: frequently asked questions*. . Cambridge, United Kingdom.: Intergovernmental Panel on Climate Change (IPCC)

Intergovernmental Panel on Climate Change (IPCC). (2014a). *Climate change 2013: the physical science basis: Working Group I contribution to the Fifth assessment report of the IPCC*: Cambridge University Press.

