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Abstract 

A Spatial Ecological Assessment of Fragmentation and Disturbance Effects of 

Infrastructure Construction and Land Conversion in Gunung Halimun Salak 

National Park Indonesia 

 

by 

Hanifa Rakhmawati 

 

Habitat loss and fragmentation have been identified as one of the sources of biodiversity loss. Those 

issues are predominantly triggered by human activities such as the development of settlements, 

conversion of forest habitat into agricultural areas, and the development of infrastructure such as 

transportation and pipelines. Gunung Halimun Salak National Park (GHSNP) as one of the protected 

areas in Indonesia is deforested each year by approximately 1,473 ha or 1.3% of the total area while 

the capability of GHSNP to rehabilitate the degraded forest is only 500-800 ha annually because of a 

limited budget and at the shortage of human resources. 

The focus of this study was primarily on an ecological assessment of landscape scale habitat impacts 

on mammals and birds caused by infrastructure construction and land conversion. This was 

accomplished, by firstly identifying the current land cover and land cover change over a 15-year 

periods within the study area, GHSNP, Indonesia, as a case study; secondly, by assessing a class-level 

landscape metrics and their changes to detect forest fragmentation over a 15-year period within 

GHSNP; and finally,  by analysing changes in the habitat network caused by fragmentation, land 

conversion, and disturbance. The potential effects on wildlife were also discussed, including how to 

derive and interpret such fragmentation effects and disturbance by applying Geographical 

Information System (GIS)-based quantitative modelling. 

Results of this study show that land cover in GHSNP has changed drastically with Forest and 

Agriculture experiencing the biggest decrease and increase by 35.63% and 463.74% respectively. It 

was also found that landscape metrics for forest cover in GHSNP show changes with a decrease in 

class area (CA), patch size (MPS), patch size coefficient of variation (PSCoV), mean shape index (MSI), 

mean core area (MCA) and mean proximity index (MPI) and an increase in number of patch (NP) and 
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edge density (ED). These suggests that the forest cover in GHSNP has been fragmented for the past 

fifteen years.  

Regarding the effects of fragmentation and disturbance on mammals and birds, the responses of the 

forest-grassland mammals (high area and medium area demands), forest mammals (area below 1500 

metres above sea level and area above 1500 metres above sea level and bird profiles (forest area) 

were similar to each other, with class area (CA) and number of patches (NP) being reduced as a 

response to both effects, except for small mammals requiring forest area below 1500 metres above 

sea level, which underwent a relatively huge increase in the number of patch for the disturbed area. 

Nevertheless, among all Ecological profiles established, mammals having a high area demand are 

considered to be most impacted from fragmentation and disturbance effects. 

 

Keywords: Geographical Information System, frgamentation, disturbance, road, biodiversity, impact, 

land cover, landscape metrics, national park, forest, birds, mammals 
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Chapter  1  

Introduction 

1.1 Background 

Indonesia is the highest ranked among the mega-biodiversity countries and thus, biologically, is one 

of the wealthiest nations in the world (Mittermeier, 2004; Myers, Mittermeier, Mittermeier, Da 

Fonseca, & Kent, 2000). Myers et al. (2000) states that 80% of its area is a world biodiversity hot 

spot (Figure 1.1). In terms of biodiversity richness, Indonesia has some 12% of the world’s 

mammals (515 species, 39% endemic), 16% of the world’s reptiles and amphibians (511 reptile 

species, 29% endemic, and 270 amphibian species, 40% endemic) and 17% of the world’s birds 

(1531 species, 26% endemic) (Mittermeier, 2004).  However, landscapes, land uses and land cover 

in Indonesia are undergoing a massive transformation in response to a variety of economic, 

demographic and policy factors, especially after the economic and political crises of 1997. Those 

enormous changes in its landscape have led to environmental degradation, and have resulted in a 

decrease of green open spaces; an increase in water, soil, and air pollution; and a loss of 

biodiversity, predominantly in the most populated island of Indonesia, namely Java (Arifin & 

Nakagoshi, 2011).  

  

 

Figure 1.1 The world’s 25 biodiversity hotspots (Myers, et al., 2000) 
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In Indonesia, national parks as protected areas are the basis of biological conservation. However, 

most of the protected areas are experiencing external pressures from both encroachment and 

degradation. One of the main threats in these protected sites is habitat loss and degradation due to 

land conversion for pastureland and agricultural purposes (Alers, Bovarnick, Boyle, Mackinnon, & 

Sobrevila, 2007).  Due to such issues, Indonesia has been recognized by all international 

conservation priority-setting exercises as a top priority for actions to conserve biodiversity 

(Kitchener, Brown, Merrill, Dilts, & Tighe, 2004).  

Habitat loss and fragmentation have been identified as one of the sources of biodiversity loss 

(Chaves & Arango, 1998; Terborgh, 1989). According to  Heywood and Stuart (1992), the rule of 

thumb for a habitat-species relation is a 90% loss of habitat leads to a 50% loss of species.  

Habitat loss is mostly caused when large areas of natural landscapes are impacted by human 

activities (Bogaert, Farina, & Ceulemans, 2005), such as the development of settlements, 

conversion of forest habitat into agricultural areas or the development of infrastructure such as 

transportation and pipelines (Forman, 1995; Llausàs & Nogué, 2012; Slonecker et al., 2012). Such 

activities, however, in the long run will impact biodiversity richness and abundance at genetic, 

species and ecosystem levels and thus, each level should be considered in an environmental 

assessment (Slootweg & Kolhoff, 2003). As an example, on Borneo, species richness and diversity of 

butterflies have declined significantly with the increase in fragmented habitat and thus, endemic 

species were not recorded within small remnants (less than 4000 ha). However, this remaining area 

still plays a significant role, due to its contribution to regional biodiversity (Benedick et al., 2006).  

In environmental assessment, particularly regarding habitat loss and fragmentation effects, the 

limited use of quantitative methods is still a major hurdle. Moreover, recent studies show that 

current practice depends mainly on expert knowledge, and that not even fundamental landscape 

characteristics such as habitat amount and the number of habitat patches are used to inform 

decision making. Indicators such as habitat amount and connectivity, as well as anticipated habitat 

loss and fragmentation, are important considerations when addressing the impacts on ecological 

processes and biodiversity and thus, quantitative methods could complement current methods for 

such assessment (Karlson & Mörtberg, 2015).   

Since biodiversity issues related to habitat fragmentation have raised deep concerns, methods for 

modelling and quantifying the effects of fragmentation are necessary in impact valuation. In this 

case, Geographical Information System (GIS) are efficient tools for impact assessment (Şahin & 

Kurum, 2002) and the combination of GIS and quantitative environmental modelling has offered 
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new perspectives in integrated science (Clarke, Parks, & Crane, 2000; Gontier, 2007; U. Mörtberg, 

Zetterberg, & Balfors, 2012; Zetterberg, Mörtberg, & Balfors, 2010). However, some issues still 

require deep attention in reserve design and include the viability of protected populations and 

spatial considerations such as habitat fragmentation, connectivity and the spatial distribution of 

each species (Cabeza, 2003). For ecological impact assessment efforts that apply quantitative 

approaches, species with similar habitat requirements are classified by their traits and thus, 

ecological profiles can be developed to represent each group’s response to environmental change 

(Angelstam, Edman, Dönz-Breuss, & DeVries, 2004; U. Mörtberg et al., 2012; Vos, Verboom, 

Opdam, & Ter Braak, 2001). This approach could bridge the gap between ambitions and current 

practice, and allow for quantified predictions and a more systematic ecological impact assessment. 

In summary, exploring the use of GIS-based quantitative methods for modelling the ecological 

effects of human impact activities is seen as beneficial for generating baseline environmental 

information and can provide coarse predictions for evaluating conservation options.  

National park management in Indonesia faces major challenges in preventing further loss of 

biodiversity. If remote sensing and GIS are to be effective, then an appropriate method for 

ecological impact assessment is vitally important. 

The focus of this research was primarily on a quantitative ecological assessment of landscape scale 

habitat impacts on mammals and birds caused by infrastructure construction and land conversion. 

This was accomplished by firstly identifying the current land cover and land cover change over a 15-

year periods within the study area, Gunung Halimun Salak National Park (GHSNP) Indonesia, as a 

case study; secondly, by assessing a class-level landscape metrics and their changes to detect forest 

fragmentation over a 15-year period within Halimun Salak National Park; and lastly, examining 

changes in habitat network due to fragmentation, and disturbance; along with its potential effects 

on wildlife, including how to derive and interpret such fragmentation effects and disturbance by 

applying GIS-based quantitative modelling.  

1.2 Study Aims and Objectives 

The aims of this study were: 

1. To establish the current land cover and analyse the land cover and forest cover changes 

within GHSNP; 

2. To assess spatial patterns of forest fragmentation in GHSNP by utilizing landscape indices 

(metrics) to analyse fragmentation; 
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3. To assess the overall impact of land conversion and transportation infrastructure on 

mammals and birds in the study area by modelling the effects of infrastructure construction 

identified in the literature, and; 

4. To explore potential effects of fragmentation and disturbance on selected groups of 

mammals and birds, by analysing changes in the habitat amount and connectivity of habitat 

networks for designated ecological profiles. 

The specific objectives to be addressed in this study were: 

1. The magnitude and the rate of land cover changes that have occurred between 2001 and 

2016, based on remotely sensed data; 

2. The magnitude and the rate of forest cover changes that have occurred between 2001 and 

2016; 

3. Comparative analysis of class-level landscape metrics within Gunung Halimun Salak National 

Park between 2001 and 2016; 

4. Comparison of road effect zones within forest areas by firstly calculating Mean Species 

Abundance (MSA) of birds and mammals, and; 

5. Comparison of the landscape metrics, namely number of patch (NP) and class area (CA) 

which describe the structural properties of habitat networks of each ecological profile 

established. 

The conceptual approach of the study was to explore the utility of GIS-based quantitative 

modelling methods by integrating biodiversity components for ecological modelling, which support 

impact assessment of fragmentation and disturbance due to land conversion. To accomplish this 

objective, the study comprised several tasks: 

1. Conduct ground truthing to test the accuracy of image interpretation at research study and to 

clarify interpretation assumptions of land cover; 

2. Derive and build thematic maps based on databases obtained from the Ministry of Forestry 

and Environment as well as GHSNP Office; 

3. Collect, analyse and organize biodiversity data either from field investigation and reviews of 

current literature review; 
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4. Collect, classify, and assess the accuracy of LANDSAT satellite images obtained from of 2001 

and 2016 to generate the land cover and land cover change using ERDAS and ArcGIS; 

5. Calculate class-level landscape metrics of GHSNP forest cover in 2001 and 2016 using Patch 

Analysis; 

6. Construct and run the modelling of spatial distribution of road effects in ArcGIS; 

7. Create ecological profiles of mammals and birds through a review of the literature and 

information obtained from GHSNP; 

8. Construct habitat network layers for those ecological profiles by using focal statistics in ArcGIS; 

9. Generate such fragmented and disturbed habitat network layers using ArcGIS, and; 

10. Calculate the landscape metrics, namely total habitat area (CA) and number of individual 

patches (NP) using Patch Analysis. 

In general, the study generated an ecological impact assessment at a landscape level that illustrates 

how forest habitat and wildlife are impacted by land cover changes in the study area.  Therefore, it 

is expected that the research will help or lead to the development of GIS-based quantitative 

modelling that will be beneficial in assessing the ecological impact, particularly such impacts 

occurring in GHSNP.  Finally, the output can be a reference in formulating appropriate conservation 

measures at GHSNP and other similar national parks. 

1.3 Thesis Structure 

This thesis is structured as follows: 

Chapter 1 presents the general outline of the thesis. 

Chapter 2 describes the study area and the geography, demography and current issues occurring at 

the study area. 

Chapter 3 reviews relevant literature covering introduction to landscape, land cover, fragmentation 

and disturbance, impact assessment and the use of Geographic Information System (GIS) and 

Remote Sensing for ecological assessment. 
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Chapter 4 explains the general research design and the methodology adopted to achieve the study 

objectives. 

Chapter 5 presents the study results, including land cover patterns and changes, forest cover 

fragmentation analysis and how such fragmentation and disturbance impact the mammals and 

birds.  

Chapter 6 presents the discussion of each outputs of the study and further discusses the 

implication and management of GHSNP area and its mammals and birds. 

Chapter 7 draws the conclusions and provides the recommendations for further studies. 
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Chapter  2  

The Study Area 

2.1 Overview 

The study area is GHSNP, located in the West Java Province of Indonesia. This national park was 

established in 1992 with total area of 113,357 ha. Since its establishment, this protected area has 

often been used for the purposes of research, education, breeding enhancement, recreation, and 

tourism. 

2.2 Indonesia 

Indonesia is renowned as the largest archipelagic state in the world, stretching 5,110 km along the 

equator from east to west and 1,888 km from north to south. It is comprised of five major islands 

(See Figure 2.1) (Java and Bali, Sumatra, Kalimantan, Sulawesi, and Irian Jaya) and about 30 

smaller groups, with over 17,000 islands in total (Sugiyarto, Blake, & Sinclair, 2003). Culturally, it is 

home to 300 ethnic groups and over 500 different traditional languages and dialects (Sabandar, 

2004). In terms of biodiversity, Indonesia is biologically the world’s most diverse country since 

being located between the two major biogeographical regions of Australasia and Indo-Malaysia 

(Baines & Hendro, 2002).  

 

Figure 2.1    The five main Islands of Indonesia (B. I. Geospasial, 2016; Institute, 2011) 
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2.3 Java Island 

Java Island, Indonesia’s political and industrial centre, is one of the most densely populated areas in 

the world. The very fertile soils sustain about 114 million inhabitants, at an average population 

density of 862 people per km2 (Whitten, 2000). Java has basically been deforested and the majority 

of the remaining forest fragments cover the many volcanoes on the island. Due to this, less than 

10% of the original forest remains.  Currently, deforestation has slowed down, yet fragmentation 

and forest degradation still persist (Smiet, 1992). 

High population numbers on Java have driven forest clearing especially in lowland areas. The 

remaining natural forests that were destroyed were mostly situated in remote mountain areas with 

less human activity (Thiollay & Meyburg, 1988; Smiet, 1992; Galudra, 2003).  Whitten (2000) 

estimated that more than 1.5 million ha had already been lost to farmland and teak plantations by 

1000 A.D. Prior to World War II, the forests in Java had been reduced to 23% of their original extent 

(Seidensticker, 1997). By 1973 this figure dropped to 11 %, and by 1990, to an estimated 7% —

currently only 0.96 million ha of forest remnants (FAO 1990). Most of the natural forests remaining 

today are located in national parks or other forms of protected areas, including those for 

watershed conservation. Those national parks existing in Java include Gunung Halimun Salak 

National Park (van Balen, 1988).  

 

2.4 Gunung Halimun Salak National Park 

2.4.1 Location 

Administratively, GHSNP (Figure 2.2) is located in two provinces namely West Java and Banten, 

covering one district in Banten province and two districts in West Java province, namely Sukabumi 

and Bogor. It is geographically situated between 106°13'and 106° 46' E and 06°32 'and 06° 55' S 

(Rinaldi, 2003). 
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Figure 2.2 Gunung Halimun Salak National Park (T. N. G. H. Salak, 2016) 

2.4.2 History of the National Park 

The forests in this national park were historically controlled under the successive authorities of the 

Dutch colonial government, the Japanese colonial government, and the Indonesian government 

(Harada, 2003). Galudra (2005) identified that in Gunung Halimun-Salak, deforestation began in the 

1700s during the colonial era to establish coffee plantations. However, these plantations failed due 

to plant diseases and initiated the degradation of natural forest. Before the establishment of the 

park, GHSNP had been recognized as protected forest known as a Strict Nature Reserve (Cagar 

Alam) from 1977. The objectives of the park are to protect and conserve the flora and fauna within 

its boundaries. 

Historically, by the Ministry of Agriculture No. 40/Kpts/Um/1/1979, it was stated that about 40,000 

ha of the Halimun area was declared as a nature reserve for conservation – this was then 

transformed into the Halimun National Park in 1992 and the remaining forest areas (73,357 ha) 

were declared as production and protected forests. However, in an effort to reduce forest loss, the 

Indonesian government ratified a new conservation area by merging Halimun National Park and 

Salak Reservation area in 2003, including the production forests. Thus, under the Ministry of 

Forestry decree No 175/Kpts-II/2003 on June 10, 2003 those merged areas officially became 

GHSNP, with a total size of 113,357 hectares (Team, 2008), making it the national park that has the 

largest tropical rainforest ecosystem on the island of Java. This large national park area does not 

merely encompass the forest but also villages, tea plantations, agriculture and grassland, reflecting 
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the land use history (Rinaldi et al., 2008). Thus, those areas are categorized as enclaves since they 

are not part of GHSNP, yet they are situated surrounding. GHSNP 

2.4.3 Biotic Condition 

2.4.3.1 Flora 

GHSNP is believed to have the highest biodiversity for both plants and animals in Java (Team, 2008). 

Forest ecosystems in GHSNP can be classified into three zones based on its altitude, namely the 

Collin zone, the submontane and the montane zone (JICA, 2007). Collin zone is the area which lies 

at an altitude of 500-1000 metres above sea level. It is dominated by the plant types of Schima 

wallichii (Puspa), Quercus sundaicus (Pasang), Altingia excels (Rasamala), and Castanopsis 

acuminatissima (Saninten); the submontane zone is defined as the area that is situated at an 

altitude of 1000–1500 metres above sea level and is predominantly occupied by the species of 

ElaeocaIdrus ganitrus (Ganitri), Saurauia pendula (Kileho), and Weinmania blumei (Kimerak). The 

montane zone is an area in the range between 1500–2211 metres above sea level. This zone is 

dominated by Dacrycarpus imbricatus (Jamuju), Podocarpus blumei (Kibima), Podocarpus neriifolius 

(Kiputri), and Vernonia arborea (Hamirung). It is also recorded that there are 258 species of orchids, 

12 species of bamboo, 13 species of rattan, ornamental and medicinal plants such as Nepenthes sp 

(Kantung Semar) and DipterocaIdrus hasseltii (Palahlar), which are unique and rare plants found 

only in GHSNP (JICA, 2007).       

 

2.4.3.2 Fauna 

GHSNP has a wide range of habitat of as well as endangered species. Primate mammals found in 

this park include Hylobates moloch (the Javan gibbon), Presbytis comate (Surili), Trachypithecus 

auratus (langur), and Macaca fascicularis (the long-tailed macaque). Some species of deer such as, 

Indian muntjac; Tragulus javanicus (Java mouse-deer); Sus scrofa (wild boar); carnivorous animals, 

such as Panthera pardus melas (the Javan leopard) and Prionailurus bengalensis (the wildcat) also 

exists in this park (JICA, 2007).    

In addition, this area also supports many species of unique insects and butterflies, beetles, and 

birds. Up to 244 species of birds have been recorded in this region, 32 of which are endemic to the 

island of Java, such as Spizaetus bartelsi (the Javan hawk-eagle), Cochoa azurea, Otus angelinae, 

HaIdractes reinwardtii, and Bucheros rhinoceros (the rhinoceros hornbill) that is officially declared 

as an endangered species (JICA, 2007). 
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2.4.4 Demographic and Socio-Economic Conditions 

There are 314 sub-villages (or settlements) located within the national park area, and around 

100,000 people rely on the natural resources in the park for their daily livelihoods (Kubo & 

Supriyanto, 2010). Some parts of GHSNP area and its surrounding are also home to several 

indigenous groups of people who occupy Kampung Urug, Citorek Bayah, Ciptamulya, Cicarucub, 

Cisungsang, Sirnaresmi, Ciptagelar and Cisitu (JICA, 2007).  

Widada (2004) stated that the value of economic benefits of GHSNP, based on the analysis of the 

total economic value (NET), reached NZ$ 47.28 million per year, consisting of a carbon sink value of 

NZ$ 46.21 million (97.73%). If the value of carbon sinks is not taken into account, then the value of 

GHSNP is NZ$ 1.02 million, with the economic value of water (domestic and agricultural) showing 

the highest proportion of 66.58% (Ilyas, 2014). 

Social conflicts related to land ownership, intensive land use, and ongoing timber exploitation by 

the rural community are major problems for the management of this national park (Rosleine, 

Suzuki, Sundawiati, Septiana, & Ekawati, 2014). Concerning deforestation, approximately 1,473 ha 

or 1.3% of the total GHSNP area is deforested each year (Halimun-Salak, 2007). Worse still, these 

degraded areas are mainly located in the corridor between the Mount Halimun and Salak areas 

(Rosleine et al., 2014) where this is thought to enable movement of animals between connected 

patches of habitat (Tewksbury et al., 2002). The capability of GHSNP to rehabilitate the degraded 

forest is only 500 to 800 ha annually because of a limited budget and lack of human resources. One 

of the causes of such deforestation is the use of forest products by villagers. This finding is in a 

study conducted by Hani and Rachman (2016) in Cimapag Kampong (a village close to GHSNP). 

Based on their study, it was found that more than 85% of the villagers collect firewood from the 

national park area to fulfil their needs and 33% of them cut timber wood to build their houses and 

for other purposes.  

2.4.5 Physical Characteristics 

2.4.5.1 Topography 

The topography of this region is normally hilly and mountainous with the highest peak being Mount 

Salak 1 at 2,211 metres above sea level (all elevations are metres above sea level unless otherwise 

stated), situated in the southeast of the national park. Some of the highest mountains located in 

the western part of the park are Mount Halimun Utara (1929 m), Mount Sanggabuana (1,920 m), 
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and Mount Botol (1850 m); while the mountain situated in the north-east of GHSNP is Mount 

Kendeng Utara (1,377 m) (Halimun-Salak, 2007). 

The slope of the land ranges from 1% to 32% with the dominant elevation ranges from 500 to 2,211 

m. Information regarding the slope of GHSNP is presented in Table 2.1 and its spatial distribution is 

shown in Figure 2.3 

Table 2.1  Class of slope within the area of Gunung Halimun Salak National Park 

Number Class of Slope (%) Area (ha) Percentage (%) 

1 1-2 27,04 25.71 
2 > 2-4 37,39 35.55 
3 > 4-6 26,06 24.78 
4 > 6-8 12,23 11.63 
5 8-32 2,431 2.311 

 total 105,17 100 

 

 

Figure 2.3 Slope maps of Gunung Halimun Salak National Park (P. P. d. P. I. Geospasial, 2014) 

 

Based on the map of the slope above, it appears that the dominant slope in GHSNP is in the range 

of > 2-4% or 35.5% of the total area of GHSNP. The second dominant slope is in the range of > 4-6% 

or 24.8% of the total area.   
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Table 2.2 shows that in general, 49.91% of the total area of GHSNP consists of elevations ranging 

from 500 to 1000 m; 40.50% of the area has an elevation from 1000 to 2000 m, and 8.84% of the 

area has an elevations from 250 to 500 m.  The spatial distribution of elevation in GHSNP is 

presented in Figure 2.4. 

Table 2.2  Class of elevation within the area of Gunung Halimun Salak National Park 

Number Class of Elevation (m) Area (ha) Percentage (%) 

1 0 - 250 706 0.62 
2 > 250 - 500 9994 8.84 
3 > 500 -1000 56369 49.91 
4 > 1000 -2000 45743 40.50 
5 > 2000 120 0.10 

 total 112812 100 

 

 

Figure 2.4 Elevation maps of Gunung Halimun Salak National Park (P. P. d. P. I. Geospasial, 2014) 

 

2.4.5.2 Types of Soil 

The type of soil in the GHSNP area consists of a combination of Andosol Brown and Regosol Brown; 

a mix of Latosol Brown Yellowish; a combination of Reddish Brown Latosol with Latosol Brown; a 

combination of Latosol Red, Reddish Brown latosol and Laterite groundwater; a mix of latosol 

Redness and Latosol; and associations of Brown latosol and Regosol Gray (JICA, 2007).  
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2.4.5.3 Climate 

The climate in the GHSNP area and its surroundings is classified as a Type B climate with a Q value 

of 24.7%. The average rainfall is 4000–6000 mm/year and a rainy season occurs during the months 

of October to April. The dry season takes place from May to September with rainfall of about 200 

mm/month (JICA, 2007). The number of days of rain each year is approximately 203. The average 

daily temperature is between 20°C to 30°C, with average air humidity around 80%. Wind conditions 

are affected by monsoon winds that change the wind direction based on the season. Throughout 

the dry season, the wind is typically blowing from the north-east at low speed with an average air 

humidity of 80% (Halimun-Salak, 2007).  

 



 15 

Chapter  3   

Literature Review 

3.1 Introduction to Landscape Ecology 

Landscape ecology is the study of landscape patterns, the influences of human and natural 

environmental relations on a landscape mosaic, and changes in the landscape pattern and 

environmental processes over time (McGarigal & Marks, 1995).  Landscape ecology considers 

vegetation as a mosaic of patches with unique landforms, species compositions and disturbance 

gradients (Ravan, Roy, & Sharma, 1998). Thus, various definitions of the term landscape have 

evolved from landscape ecology research. As an example, Diaz and Apostol (1992) defined 

Landscapes as "...aggregates of homogeneous patches of vegetation or land use types and 

landforms that come into being through climatic influences, geomorphic processes, natural 

disturbances, human activities, and plant succession." 

Similarly, Forman (1995) defined landscape as the mosaic repetition of local ecosystems or land 

uses that is identical in terms of forms over the extensive area. Some of the examples of landscape 

include, suburban, forested, cultivated, and dry landscapes. Moreover, landscapes, according to 

Ndubisi (2002), are the combination of natural and cultural features that include, hills, fields, and 

forests, throughout the land.  

Forman (1995) stated that the mosaic pattern of landscapes consists of three spatial elements: 

patches, corridors, and matrices. Patches are areas that differ from the surrounding context 

(Forman, 1995) and are heterogeneous when compared to the entire area (T. G. Barnes, 2000). The 

form of patches varies from large to small, elongated to round, and convoluted to smooth. A 

corridor is a kind of a patch though they connect patches to other areas. They can be wide to 

narrow, meandering to straight, and have high to low connectivity (Dramstad, Olson, & Forman, 

1996; Forman, 1995). Corridors have been shown to be beneficial for wildlife to facilitate 

movement and survival habitat in many situations, such as forest, urban, or agricultural landscapes 

(MacDonald, 2003), in spite of the fact that the need for corridors of individual species is varied. A 

number of studies have suggested that corridors are beneficial to the conservation of wildlife and 

vegetation. These include studies of arboreal marsupials in Queensland (S. G. Laurance & Laurance, 

1999), small mammals and frogs in Amazonia (De Lima & Gascon, 1999), butterflies in North 

America (Haddad & Baum, 1999), and carabid beetles in Scotland (Petit & Usher, 1998).  
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A matrix is the "background ecological system" of a landscape. It is the most extensive and 

connected landscape type, and plays the foremost role in landscape functioning (Forman, 1995). 

Thus, it is the dominant component in the landscape (T. G. Barnes, 2000). Forest, grassland, rice 

fields, or another land cover often forms a background matrix, while the individual trees, shrubs, 

rice plants, and small buildings are aggregated to create the pattern of patches, corridors, and 

matrix on land (Forman, 2014). Figure 3.1 shows landscape composition as the union of patches, 

corridors, and matrices that exist in a landscape (Betts, 2000; Forman, 1995).  

 

Figure 3.1  Landscapes consist of patches, corridors, and matrices (T. G. Barnes, 2000) 

 

According to Brown, Hickey, Harrington, and Gill (2001) landscape elements can be classified as 

either tangible or intangible. Tangible landscape elements include transportation corridors and 

junctions, utilities, and land cover. Intangible landscape elements include political boundaries, eco-

regional boundaries, ownership boundaries, and land use. For this study, the tangible elements of 

landscapes taken into consideration were areas, roads, and land cover while intangible elements in 

this study include the eco-regional boundary and the regional boundary. 

Tangible elements change the physical character of the landscape and often have a direct impact 

on ecosystems (Brown et al., 2001). For instance, a road network established in undisturbed forest 

decreases the quality of habitat for large mammals. Similarly, the installation of utility networks, 

such as pipelines, requires the clearing of vegetation which can result in fragmentation (Brown et 

al., 2001).  Forests as a landscape, for example, could also be fragmented. The fragmentation of the 

forest could be described as the breaking up of a forest unit, where the number of patches and the 
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amount of expose edge increase while the core area decreases (Meddens, Hudak, Evans, Gould, & 

González, 2008). Core area in this case is defined as a forest area that is free from edge effects 

(Moreno-Sanchez et al., 2012). 

3.2 Land Cover 

Land use is the term that is used to describe human uses of land, or actions modifying or changing 

land cover and the term land cover originally referred to the kind and state of vegetation, such as 

forest or grass cover, but it has broadened in subsequent usage to include other things such as 

human structures, soil types, biodiversity, surface and ground water (Meyer, 1995).  

Land cover can be altered by forces other than anthropogenic ones. Natural phenomena such as 

flooding, weather, fire, climate change, and ecosystem dynamics may initiate modification upon 

land cover. Globally, land cover today is transformed mainly by direct human use, by agriculture 

and livestock increases, forest harvesting and management, and urban and suburban construction 

and development (Meyer, 1995).  The driving forces behind this human activity could be economic, 

technological, demographic, scenic and or other factors. A good illustration regarding the causes 

and consequences of the changes in land use and land cover  (see Figure 3.2) is best explained by 

Reid et al. (2000).  

 

Figure 3.2  Hypotheses (in bold) and final (in bold and italics) concerning the causes and ecological 
consequences of land use/land cover change (Reid et al., 2000) 
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Based on their study, it was found that rapid land use or land cover change was due to the 

combined effects of drought and migration, alteration in settlement and land tenure policy, and 

changes in the severity of livestock disease. The scale of the sources and consequences of land use 

or land cover change were wide ranging from local to regional to international; and the correlation 

between causes and consequences across scales. At the landscape scale, each cause affected the 

location and pattern of land use or land cover differently. 

In summary, land use and land cover dynamics are a result of complicated interactions between 

several biophysical and socio-economic conditions that may ensue at a wide range of temporal and 

spatial scales (Reid et al., 2000). Land use and land cover changes are so prevalent that, when 

accumulated globally, they significantly affect vital aspect of Earth system’s functioning. They 

directly influence biodiversity around the globe (Sala et al., 2000), and contribute to local regional 

climate change (Dale, 1997). 

 

3.3 Habitat Fragmentation and Disturbance 

Landscapes change over time. The causes of those changes can include fires, flooding, windstorms, 

earthquakes, volcanic eruptions, tsunami, firestorms, climate change and anthropogenic activities, 

such as forest clearing (Dale et al., 2001). This forest exploitation action is just one clear example of 

how a landscape changes from one form to another.  

Generally, there are five major spatial processes (see Figure 3.3) resulting from transformation of 

land from one form to another (Forman, 1995). These processes include: 

• perforation: a process in which hoIes are created in a habitat or land type by disturbance 

features 

• dissection: the subdivision of an area by equal-width line, such as roads or utility corridors 

• shrinkage: the decrease in size of landscape patches, and 

• fragmentation: the breaking up of a land cover type into pieces that are commonly and 

unevenly distributed across space. 

• attrition: the disappearance of landscape patches. 
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Figure 3.3  Spatial process as a result of land transformation which includes perforation, dissection, 
fragmentation, shrinkage, and attrition (Forman, 1995). 

 

Concerning fragmentation, Forman (1995) argues that habitat fragmentation is one stage within 

this broader sequence of landscape processes that transform the natural land cover type of a 

region as a result of human or natural disturbance events. The five processes mentioned above 

overlap in both sequential order and importance, with perforation and dissection peaking in 

importance in the early phases of Landscape change. Fragmentation and shrinkage are typical of 

the middle phases and attrition predominates at the end of the landscape transition cycle. 

Generally, a fragmentation process is characterized by a decrease in the number of habitats 

(habitat loss) and an alteration in the spatial features and configuration of the remaining patches 

(Forman, 1995; Saunders, Hobbs, & Margules, 1991). Besides a reduction in habitat amount, 

fragmentation has an implication for habitat patterns as well and lead to: (a) an increase in the 

number of habitat patches, (b) a decrease in sizes of habitat patches, and (c) an increase in 

isolation of patches. These effects are the basis of most quantitative measures of habitat 

fragmentation. However, fragmentation measures vary widely; some include only one effect (e.g., 

reduced habitat amount or reduced patch sizes), whereas others include two or three effects but 

not all four (Fahrig, 2003).  

Over time, human activities are the primary reason for fragmentation (Bogaert et al., 2005). It 

occurs when large areas of natural landscapes are intersected by human activities, such as the 

development of settlements, conversion of forested land into agricultural land use, and 
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development of infrastructure, such as transportation, pipelines and so on (Forman, 1995; Llausàs 

& Nogué, 2012; Slonecker et al., 2012). Roads and railways, for example, change hydrological 

patterns due to their physical structure, with subsequent effects on erosion and sedimentation 

levels and may act as blockades to animal movement or as dispersal conduits (Forman, 1995; 

Gelbard & Belnap, 2003). Utilization of transport infrastructure further indicates disturbance such 

as traffic noise and artificial light, increased animal mortality, introduction of exotic species and 

chemical contamination. These impacts extend outwards from the road corridor producing effect 

zones within which environmental conditions are altered (Forman & Alexander, 1998; Trombulak & 

Frissell, 2000).  

Substantial amounts of experimental research support the existence of these effect zones (Benítez-

López, Alkemade, & Verweij, 2010; Biglin & Dupigny-Giroux, 2006; Eigenbrod et al., 2009; Forman 

& Deblinger, 2000) and studies have assessed that 15% to 20% of the USA (Forman & Alexander, 

1998) and 16% of the Netherlands (Reijnen & Foppen, 1995) are within effect zones. The “road 

effect zone”, first coined by Forman and Alexander (1998), is the distance perpendicular to any 

point at a road, within which environmental changes can be significantly distinguished from a 

control location (see Figure 3.4). 

 

Figure 3.4 Illustration of road effect zones based on empirical studies (Karlson, 2015) 
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The effects of fragmentation are likely due to two main causes. First, fragmentation per se 

indicates a larger number of smaller patches. At some point, each patch of habitat will be too small 

to support a local population or perhaps even an individual territory. Species that are unable to 

cross the non-habitat portion of the landscape (the "matrix") will be restricted to many small 

patches, ultimately reducing the overall population size and probability of persistence. The second 

main cause of fragmentation impact is edge effects. According to Fahrig (2003) more fragmented 

landscapes contain more edge for a particular of habitat. This can escalate the probability of 

individuals leaving the habitat and entering the matrix. Moreover, the time spent in the matrix will 

be longer in a more fragmented landscape, which may increase overall mortality rate and subdue 

overall reproductive rate of the population (Fahrig, 2002). In addition, negative edge effects might 

appear due to species interactions. For instance, some comprehensive studies have pointed out the 

increased predation on forest birds at forest edges (Chalfoun, Ratnaswamy, & Thompson, 2002) 

Overall, it is widely thought that fragmentation could have extremely damaging impacts on 

biodiversity. Some studies have shown that the abundance, diversity and breeding activities of bird 

species in the forest and grassland habitat are significantly diminished in the areas up to 300–1000 

m from roads (Forman, Reineking, & Hersperger, 2002; Reijnen, Foppen, & Meeuwsen, 1996; 

Rheindt, 2003; Seiler & Helldin, 2006).These authors argue that this may be caused by disturbance 

regimes like traffic noise and light pollution. Other authors noted road mortality as the most likely 

overall cause for depressed densities of mammal and bird populations in the same distances 

(Eigenbrod et al., 2009; Fahrig & Rytwinski, 2009; Summers, Cunnington, & Fahrig, 2011).  

Wilcox and Murphy (1985), for example, have claimed that forest fragmentation is the most serious 

threat to biological diversity and the foremost cause of the present extinction crisis. A major 

consequence of forest fragmentation is loss of connectivity between residual forest patches. 

Although the value of travel corridors for wildlife populations has been debated (Beier & Noss, 

1998) and the value of corridors differs among species (Haas, 1995; Hannon & Schmiegelow, 2002), 

connectivity of habitat patches is considered to be highly important to maintain.  A study 

conducted by Sieving, Willson, and De Santo (2000) clearly illustrated how a distribution of bird 

populations and metapopulation structure are affected by habitat connectivity. Opdam (1991) 

stated that in metapopulation theory, the survival of a spatial network of subpopulations of a 

species relies on a dynamic equilibrium between local, coincidental disappearances (extinction), 

and re-appearances (colonisation). Once populations are divided into smaller subpopulations, the 

chances of extinction of these subpopulations increases (Forman & Alexander, 1998). This is due to 

the higher susceptibility of smaller populations to ‘normal’ variations (Jaarsma & Willems, 2002). 
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3.4 Fragmentation Quantification 

A quantification and comparison of landscape indices have been acknowledged as the most 

effective way to assess forest fragmentation at the landscape and patch levels of analysis (Ripple, 

Bradshaw, & Spies, 1991; Singh, 1989; Southworth, Nagendra, & Tucker, 2002; M. A. Wulder et al., 

2008).  Due to the complex nature of the fragmentation process, it has been suggested that a single 

landscape metric is insufficient to capture all aspects of fragmentation (Davidson, 1998; Ripple et 

al., 1991).  

The set of metrics to quantify habitat fragmentation consists of a rationale for each spatial metric, 

along with a brief description (Table 3.1). Based on the literature reviewed, each of these metrics 

appear to capture the essential changes that are assumed to have occurred in the past few decades 

because of habitat fragmentation. The use of a well-documented set of metrics also allows the 

results of this research to be compared with similar investigations on the quantification of forest 

fragmentation in other regions. 

 

Table 3.1  Landscape metrics that are generally used to quantify habitat fragmentation 

No Spatial Metrics Description/Responses to Fragmentation 

1 Mean patch size (ha) Average size of patches is expected to decrease with 
increasing fragmentation (McGarigal & Marks, 1995) 

2 Patch density Number of class patches relative to total landscape area. As 
the number of patches increases on the landscape, the 
density of suitable patches is expected to be positively 
correlated and also increase with habitat fragmentation 
(McGarigal & Marks, 1995) 

3 Number of patches Total number of patches within each individual class 
To measure patch abundance and determine if suitable 
patches are becoming more or less numerous over time 
(McGarigal & Marks, 1995) 

4 Class area (ha) Total area of all patches per class. The total amount of 
suitable habitat is expected to decrease as a result of 
fragmentation due to timber harvest and wildfires (McGarigal 
& Marks, 1995) 

5 Patch size coefficient  
of variation 

The average relative variability. It is about the mean for each 
class.  
It is generally preferable to Patch Size Standard Deviation for 
comparing patch size variability between landscapes.  
Patch size coefficient of variation is expected to decrease as 
patches become less variable or more similar in patch size 
over time (McGarigal & Marks, 1995) 
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6 Mean shape index Average shape index of all class patches. Patch shape equals 
the perimeter divided by the square root of the patch area, 
adjusted to a square standard. 
Patches are expected to become less geometrically complex in 
a managed Landscape (McGarigal & Marks, 1995) 

7 Edge density Amount of edge relative to the landscape area is expected to 
increase in the initial stages of habitat fragmentation 
(McGarigal & Marks, 1995) 

8 Mean proximity index Average proximity index for all patches in a class. 
Proximity index is calculated as the sum of the ratio of patch 
size to nearest neighbour edge-to-edge distance for all 
patches within a specified search radius. It measures the 
isolation of patches in a landscape and is expected to 
decrease over time as there are fewer patches of the same 
class in close proximity to each patch type (Gustafson & 
Parker, 1992) 

9 Mean core area Average size of disjunct core patches or interior patch areas 
remaining after specifying an edge effect buffer area. 
One of the main effects of forest fragmentation is the 
conversion of interior habitat to edge habitat (Tinker et al. 
1998). it is expected that the amount of interior habitat will 
decrease as a result of fragmentation (McGarigal & Marks, 
1995) 

 

Several studies analysing the fragmentation of forested habitat have been conducted by applying 

these metrics. For example, Luque, Lathrop, and Bognar (1994) documented the extent of 

landscape fragmentation in the New Jersey Pine Barrens region by showing significant changes in 

selected spatial metrics between a forested landscape in 1972 and the 1988 landscape. As a result 

of human disturbances, such as suburban and exurban development and logging activities over the 

16 year period, a range of landscape metrics including fractal dimension, diversity, and contagion 

decreased while dominance, disturbance and edge indices increased at the landscape level. At the 

patch level of analysis, the mean size of forested patches decreased significantly. These results 

emphasised a trend to a more dissected or fragmented landscape over time because of human 

disturbances.  

Another study related to fragmentation was conducted by Hargis, Bissonette, and Turner (1999) 

who calculated a suite of landscape metrics to determine the effects of forest fragmentation on 

American marten (Martes americana) population counts in the Uinta Mountains of northern Utah. 

The results indicated that martens were prone to changes in landscape pattern resulting from 

natural openings and timber harvesting, and that a reduction in forest interior area may endanger 

the survival of future populations.   
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3.5 Impact Assessment Quantification 

The assessment of the magnitude of impacts is often undertaken by the application of simulation 

models (Fedra, 1993). The result is often presented in the form of a map showing the value of a 

given environmental descriptor (e.g., concentration of an air pollutant) at any location within the 

study area. The extension of environmental impacts can therefore be estimated from the spatial 

distribution of environmental quality values predicted for each alternative (Antunes, Santos, & 

Jordao, 2001).   

In general, selecting which models to use depends on the aim and scope of the study and the 

context in which the results will be used. Further issues that need to be considered are, for 

instance, what biodiversity components are to be modelled, availability and quality of data and 

expert knowledge, time frame, available resources, and competence of those carrying out the 

analyses. In addition, the limitations and constraints of the different types of ecological models 

must be taken into consideration (Gontier, 2006). Geneletti (2004), for instance, proposed a 

modelling method based on ecosystem rarity to introduce criteria for protection and preservation 

of nature, and he applied it to compare the impact of different alternatives for a road project. 

Another modelling-based land cover assessment is provided by Treweek and Veitch (1996) who 

looked at the spatial distribution of land-cover categories and their proximity to existing or planned 

developments. Such modelling approaches can be supported by Geographical Information Systems 

(GIS).  

In addition, to understand the impact of fragmentation effects, a good understanding of the biology 

and habitat use of species is also required (Wiegand, Revilla, & Moloney, 2005). Hence, the biggest 

issue is how to integrate the habitat network requirements of an array of species— which greatly 

differ in their response because of different spatial requirements and different movement 

capacities —with landscape pattern and change (Lord & Norton, 1990; Opdam, 1991; Opdam, van 

Apeldoorn, Schotman, & Kalkhoven, 1993; Rosenberg, Noon, & Meslow, 1997b).    

In order to predict and assess the consequences of fragmentation caused by urbanisation and 

infrastructure, biodiversity needs to be quantified, and this requires biodiversity indicators that are 

sensitive to fragmentation processes (Lambeck, 1997; Noss, 1990). Useful indicators can be the 

habitat networks of focal species that are related to a certain habitat type, have large area 

requirements, or have low dispersal ability (Hansson, 2001; Vos et al., 2001). Vos et al. (2001) 

proposed ecological profiles and ecologically-scaled landscape indices (ESLI), which are both useful 

tools for integrated fragmentation assessment and spatial conditions assessment of the landscape 
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for sustainable conservation of biodiversity. As the concept of ecological profiles aims to model the 

behaviour of a larger system through the behaviour of prioritised biodiversity components, it is 

imperative to ensure that the formulation of species requirements and attributes is realistic and 

relevant for the specific context (Karlson, 2015). The resulting matrix of ecological profiles, 

classified according to individual area requirements and dispersal distance, encompasses relevant 

elements of this specific-scale dependent fragmentation sensitivity. 

 

3.6 The use of Geographic Information System (GIS) and Remote Sensing 

Recently there has been a revolution in the availability of information and in the development and 

application of tools for managing information and undertaking ecological assessment using 

Geographic Information Systems (GIS). These have enabled users, including ecologists, to organize 

information gathered across broad geographic regions in a spatial database and to perform 

analyses at a scale that was previously problematic to achieve (Miller & Wu, 2000). This tool has 

proved to be effective in accommodating large varieties of spatial attribute data. Additionally, it is 

beneficial to handle many layers of map information relating to one area. Generally, each layer 

describes a different aspect of its geography. One layer might hold data on geology, another on 

soils. Subsequent layers might include data on land cover, in a particular area, species distributions, 

or the socio-economic characteristics of the human population in the area. Thus, the power of GIS 

lies in the fact that data from any combination of these layers might be used to solve a particular 

problem. Furthermore, as problems change, the data can be processed in various ways to address 

different issues in a highly flexible way. Moreover, not only the ability to handle spatial information 

in the form of maps is important, GIS can also hold nonspatial attribute information, which can be 

associated with the various map features in a database management system of some kind (Miller & 

Wu, 2000). 

As an example, the information embedded in a GIS could be used to target surveys and monitoring 

schemes. Data on species and habitat distribution from different dates allow monitoring of the 

location and the extent of change (Powell, Accad, & Shapcott, 2005; Salem, 2003). Another example 

of how GIS is used in the study conducted by Green and Baker (2003) about urbanisation impacts 

on avian habitat. In their research, they used a GIS to measure habitat structure and species 

composition at each sample point, and a variety of landscape –habitat metrics were measured from 

aerial photographs and their location recorded (Miller & Wu, 2000). 
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Increasingly, ecologists are also using new technologies to collect field data. Remote sensing from 

aircraft and satellites has allowed them to collect data at various scales that can include many 

interacting ecosystems and even whole biomes. Remote sensing is the measurement of reflected, 

emitted, or back-scattered electromagnetic radiation from the earth’s surface, using instruments 

placed at a distance, most often on a satellite, and occasionally aircraft are also used (Southwood & 

Henderson, 2000). Hence, the multispectral data provided by such on-board sensors led to an 

improved understanding of crops, forests, soils, urban growth, land changes and many other earth 

features and processes (Peres & Terborgh, 1995).  

The integration of GIS and remotely sensed image analysis have indicated that a combination of 

data sources and techniques may provide more information about environmental change. A review 

by Wilkinson (1996) identifies three ways in which remote sensing and GIS technologies are 

complementary: (a) remote sensing techniques can be used to acquire GIS data sets; (b) GIS data 

can be incorporated as additional information to improve remote sensing products; and (c) remote 

sensing data and GIS data can be used in conjunction for environmental modelling and impact 

analysis. A diagram as shown in Figure 3.5 shows how GIS plays an important role in land cover and 

impact assessment. 

 

Figure 3.5 Diagram of land cover change analysis based on remote sensing and GIS (Xiuwan, 2002) 
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In conjunction with spatial metrics applied in fragmentation assessment, many GIS and image analysis 

software packages (e.g. IDRISI or GRASS) include landscape metric algorithms or other landscape 

metric software. Packages such as FRAGSTATS (McGarigal & Marks, 1995) and Patch Analyst (Elkie, 

Rempel, & Carr, 1999) have been developed to operate in conjunction with a GIS. FRAGSTATS is a 

computer software program designed to compute a wide variety of landscape metrics for categorical 

map patterns. It is a stand-alone program written in Microsoft Visual C++ for use in the Windows 

operating system. Alternatively, Patch Analyst works as an extension within ArcGIS and contains a 

more recent update of software code relative to FRAGSTATS. Either of these two programs can 

compute various indices of hierarchy. 

The integration of GIS, remote sensing, and landscape metric software provides the opportunity for 

advanced analysis of landscape changes and disturbances. As an example, Tinker et al. (1998) used 

FRAGSTATS to calculate spatial pattern metrics to compare the effects of clear cutting and road building 

on the landscape pattern of the Bighorn National Forest, Wyoming. A principal components analysis was 

conducted to group the FRAGSTATS metrics into three uncorrelated components. Based on the results, 

the authors suggested the effects of timber harvesting and road construction may be easily monitored by 

the analysis of a few key metrics: patch core area, patch size and number of patches, edge density, and 

patch shape. Each of these metrics reported the highest loadings or scores across the three different 

principal components. Measures of inter-patch distance, such as mean nearest neighbour distance 

(MNN) and the mean proximity index (MPI), were also included in the Tinker et al. (1998) study. Results 

showed that either the MNN or MPI or inter-patch distance measures could contain unique information 

about landscape structure based on low correlations with the other metrics. 

3.7 Summary 

Forest ecosystems have long been known to have global conservation importance due to their vital 

economic, social and environmental benefits. However, these ecosystems are being rapidly 

changed or degraded in many areas of the world. Such forest changes are linked to forest 

fragmentation, which is generally defined as the process of splitting up a continuous habitat type 

into smaller patches, resulting in various impacts on ecological processes.  

Fragmentation ensues when huge areas of natural landscapes are intersected by human activities, 

such as development of human settlements, conversion of forested land into agricultural area, and 

the development of infrastructure, for instance, roads and pipelines.   
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Roads accelerate fragmentation by dissecting previously large patches into smaller ones, and then 

produce edge habitat in patches along both sides of the road, potentially at the expense of interior 

habitat. Moreover, the use of transport infrastructure shows disturbance effects such as traffic 

noise and artificial light, increased animal mortality, exotic species invasion and air pollution. These 

impacts extend outwards from the road corridor generating effect zones, within which 

environmental conditions are changed.  

One of the most alarming aspects of forest loss and fragmentation is the unparalleled threat to 

biodiversity that can escalate the risk of species extinction. Thus, exploring the effects of forest loss 

and fragmentation on ecological processes and function at various level (local, regional, national 

and global) is of primary concern for sustainability when managing forests around the world. In 

addition, biodiversity also needs to be quantified in relation to habitat fragmentation and this 

assessment requires biodiversity indicators that are sensitive to fragmentation processes. Useful 

indicators can be habitat networks of focal species that are related to specific habitat type, and 

have large area requirements, or have low dispersal ability. 

Increasingly, ecologists are using new technologies to collect field data. Remote sensing from 

aircraft and satellites has allowed them to compile data at various scales, which can include many 

interrelating ecosystems and even whole biomes. With the integration of GIS and remotely sensed 

image analysis, it seems that a combination of data sources and techniques for spatial data analysis 

may provide more information about environmental change as well as landscape changes and 

disturbances. In regards to this, many GIS and image analysis software packages (e.g. IDRISI, 

GRASS), including  landscape metric algorithms or other landscape metric software packages such 

as FRAGSTATS (McGarigal & Marks, 1995) and Patch Analyst (PC Elkie, RS Rempel, & AP Carr, 1999), 

have been developed to operate in conjunction with a GIS.  

 

 

 

 

 
 
 
 
 



 29 

Chapter  4  

Methodology 

 

This chapter describes the data and methodology used in this study. Section 4.1 presents a brief 

background of the study area. Section 4.2 discusses the research design which was comprised of 

three phase: (1) analysing the changes in land cover from 2001 to 2016 (2) analysing forest 

fragmentation for a fifteen year periods (3) analysing fragmentation and disturbance effects on 

mammals and birds. Section 4.3 presents materials and data collection methods, and Section 4.4 

describes data processing and analysis used to answer research questions. 

 

4.1 Study Area 

GHSNP was chosen as a study area since this conservation area is the largest and the remaining 

tropical mountain forest in West Java-Banten, Indonesia (Galudra, 2005). Figure 4.1 shows the 

distribution of conservation areas in Indonesia, including GHSNP.  

 

Figure 4.1 Gunung Halimun Salak National Park as one of the conservation areas in Indonesia 
(Watch, 2010) 
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4.2 Research Design 

This research was conducted in three phases. Figure 4.2 shows the general flow of this study. The 

first phase was to analyse the changes in land cover between 2001 and 2016. This consisted of 

some initial steps namely, the interpretation of Landsat imagery, the classification of maps of land 

cover, ground truthing of the research site, land cover accuracy assessment and overlaying the 

maps of land cover in 2001 and 2016.  This was conducted Using ArcGIS ver. 10.3 and ERDAS, a GIS 

software. Then, in the second phase, forest cover maps for 2001 and 2016 obtained from the first 

phase was used to analyse forest fragmentation by quantifying landscape metrics of GHSNP forest 

cover in 2001 and 2016. The final phase was to analyse the fragmentation and disturbance effects 

on mammals and birds. This was conducted in several stages, namely (1) modelling the spatial 

distribution of road effects, (2) the construction of ecological profiles, (3) construction habitat 

network for each ecological profiles, (4) construction of fragmented and disturbed habitat 

network, and (5) quantification of the impact on habitat networks using Patch Analyst. 

 

Figure 4.2 General flow of data processing and analysis 
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4.3 Data Collection  

In general, data collected in this study consisted of primary data and secondary data. Primary data 

includes remotely sensed data and ground truthing data for accuracy of the interpreted land cover.  

Secondary data that encompassed spatial information was sourced from related institutions or 

websites.  For the spatial data collected, there are two types of data which represent the 

geographical information of the real world: vector data and raster data. The former provides a 

vector view, which allocates coordinates (x, y) in the form of points, lines or area (polygons) to form 

a map (O’Sullivan & Unwin, 2010). Polygons represent areas that have boundaries (countries, lakes 

and forest areas), lines represent linear objects (roads, rivers and pipelines), and points represent 

subjects with limited spatial extent (this depends on map scale, but can include cities, schools and 

individual trees). Polygons, lines and points are called vector data (Ormsby, Napoleon, Burke, 

Groessl, & Bowden, 2010). Raster data define objects on the ground using a grid of small units, 

called pixels (O’Sullivan & Unwin, 2010) (see Figure 4.3).  

 

 

Figure 4.3 Vector and raster data (Isabelle, 2011) 

 

To obtain such primary and secondary data required for the study, field research was conducted 

from June to August 2016. A special arrangement was made to visit GHSNP office and the Ministry 

of Environment and Forestry in Jakarta, the capital of Indonesia. Visits to Gunung Halimun Salak 
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National Park were arranged to collect sufficient field data for validation of the land cover of 

GHSNP and wildlife in the study site. Prior to this, Landsat image interpretation was conducted and 

Google earth was used to assist the interpretation of image. 

 

4.3.1 Primary Data 

Landsat 8 OLI data and Landsat Enhanced Thematic Mapper Plus (ETM+) imagery for 2001 and 

2016 (path/row: 122/065), were used in this study. Both of the images were obtained from the 

United States Geological Survey (USGS) website (http://glovis.usgs.gov/). This platform was chosen 

because it has two sensors: the Operational Land Imager (OLI) and the thermal infrared sensor 

(TIRS). OLI collects data at a 30-m spatial resolution with eight bands located in the visible, near-

infrared and in the shortwave infrared regions of the electromagnetic spectrum, plus an additional 

panchromatic band at 15-m spatial resolution (Jiménez-Muñoz, Sobrino, Skoković, Mattar, & 

Cristóbal, 2014). During field work, a set of 150 points was sampled using a handheld Global 

Positioning Systems (GPS) GARMIN Etrex 30 and a mobile phone (IPhone 5). The sampling points, 

however, were not equally distributed within each land cover due to the sampling strategy applied. 

At the sampling units, which were about 30 by 30 metres, visual estimates of the biophysical 

attributes and coordinate points were made and recorded in the field observation sheet. Digital 

photographs of the sites were also taken. These data were later entered into Microsoft Excel 2010 

spreadsheet at the end of the field survey (see Appendix A). 

 

4.3.2 Secondary Data 

Secondary data encompassing spatial data from relevant institutions, including land cover maps, 

maps of administrative boundaries of GHSNP and others are summarized in Table 4.1. In addition, 

Topographic Maps of Indonesia (TMoI) was also used as secondary data. This dataset consist of 

vector data of natural and man-made features, including administrative boundaries; 

transportation and utilities; hydrographic maps with elements such as rivers, lakes and others. 

TMoI was obtained from the Geospatial Information Agency (BIG) by downloading the data via 

http://www.bakosurtanal.go.id. 

 

 

http://www.bakosurtanal.go.id/
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Table 4.1  Data collection from field visits 

Data/Information Name of 
Institution/Organization 

Acronym      Type of Data 

Maps of road 
network 

- The Directorate of 
Inventory and 
Monitoring of Forest 
Resources (Direktorat 
Inventarisasi dan 
Pemantauan Sumber 
Daya Hutan) 

DIPSDH  Spatial 

Land cover (time 
series 1990, 2000, 
2003, 2006, 2009 

and 2011) 

- The Directorate of 
Inventory and 
Monitoring of Forest 
Resources (Direktorat 
Inventarisasi dan 
Pemantauan Sumber 
Daya Hutan) 

DIPSDH  Spatial 

Maps of 
Administrative 

Boundaries, 
Geographic 

Condition of GHSNP 

- Gunung Halimun 
Salak National Park 
Office 

GHSNP Office Spatial 

Other data and 
information related 
to environmental 

condition and 
biodiversity in 

GHSNP 

- Gunung Halimun 
Salak National Park 
Office 

GHSNP Office Nonspatial 

    

 

 

4.4 Data processing and Analysis 

This section provides information on the data processing and analysis of the land cover 

classification, fragmentation and disturbance analysis. 

4.4.1 Analysis of Land Cover and Land Cover Change 

The land cover data from the field survey were analysed based on the biophysical attributes. The 

eight classes were used for classification as well as change analyses. Thus, steps being taken in the 

interpretation of Landsat imagery for the area of GHSNP are described in the following sections: 
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4.4.1.1 Determination of Research Area 

Since geometric and radiometric correction of the satellite data had already been conducted by 

the suppliers, clipping the Landsat image to determine the study area was necessary before the 

area could be analysed. The method used for this step was extract by mask using ArcGIS, 

conducted by cutting the Landsat image with the GHSNP administrative boundary layer. These 

were afterwards reprojected, using ArcGIS software, to UTM zone 48 south (map projection) and 

WGS 84 (datum and ellipsoid). 

4.4.1.2 Classification of the image 

The classes for land cover classification was based on the classification system of the Planning 

Agency of the Ministry of Forestry through Regulation of Ministry of Forestry No. 67/ Menhut-

II/2006b regarding Criteria and Standards of Forest Inventory (see Table 4.2). Classification was 

carried out by using visual interpretation (digitising on screen) at a scale of 1: 25,000, with an 

approach using the elements that include colour, texture (the frequency of changes in colour), 

pattern (the compilation of spatial objects), size , form (directly related to the general shape, 

configuration or shape or the framework of a single object), and the shadow and the site (the 

location of an object to another object) (Lillesand, Kiefer, & Chipman, 2014). In this classification, 

industrial plantation forest was merged with primary and secondary dry forest as industrial 

plantations no longer occur within the national park. Dryland and mixed dryland agriculture were 

also merged to reduce the number of classes. In this step, Google Earth and spatial land cover 

data from the previous year were used as a reference.   

Table 4.2  Land cover description and classification system according to Ministry of Forestry and 
Environment of Indonesia    

Number              Land Cover Code description 

 
 
 
 
 
 
 

1 

 
 
 
 
 
 
 
Forest 

Primary dry 
forest 

2001 Forests that grow on dry land habitats. It can 
be either forests occupied lowland, hills and 
mountains and high plains or such tropical 
forests that are still original and clearly 
visible indications of no human activities and 
the ecological processes are not significantly 
disturbed. 

Secondary dry 
forest 

2002 Forests that grow on dry land habitats. It can 
be either forests occupied lowland, hills and 
mountains and high plains or such tropical 
forests that have been altered by humans or 
have been cleared by natural or man-made 
causes, such as agriculture or ranching.   

Industrial 2006 The entire area of industrial plantation forest 
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plantation 
forest 

(IPF) that has either already been planted or 
the area is going to be planted. 

 
 

2 

 
 
Agriculture 

Dryland 
agriculture 

2009
1 

All agricultural activities such as, mixed farms 
and fields. 

Mixed dryland 
agriculture 

2009
2 

All agricultural activities in the dry land, 
together with bushes, shrubs and logged 
forest around the agriculture area 

3 Grassland  2007 Former dry forest area that has been cleared 
and that has grown back, dominated by a 
small to medium-sized vegetation and no 
longer showing the forest area look. 

4 Bare lands  2014 Non-built-up land with no, or insignificant, 
vegetation cover. The lands could be former 
fires area or lands overgrown with 
grass/reeds. 
 

5 Plantations  2010 Land that is used for agricultural activities 
without crop/plant replacement for about 
two years. Harvest usually occurs after a year 
or more. 

6 Paddy field  2009
3 

Agricultural areas flooded by water using the 
technology of irrigation, rain-fed, lowland or 
tidal characterized by patterns of 
embankment, with cultivated types of short-
lived food crops (rice). 

7 Water 
body 

 5001 Open water – all areas of open water, 
generally with less than 25% cover of 
vegetation or soil. 

8 Built-up  2012 Acreage or land used as a residential area or 
neighbourhood occupancy and for activities 
that support people's lives. 

 

A supervised classification approach was used in this image classification. The supervised 

classification approach involves, firstly, training the classification algorithm with a number of sites 

where the classification output is known. This involves polygons around areas of known land 

cover. Then, summary information about the spectral characteristics of the training sites of the 

various classes of output, derived from the training samples, was applied to all cells within an area 

to assign them to one of the pre-defined types of landscape.  The maximum likelihood 

classification (MLC) were selected for this supervised land cover classification of Landsat data.  

The MLC has been a popular parametric classifier used for remote sensing data classification 

(Foody, 2002; Jia et al., 2014). The MLC assumes that a hyper-ellipsoid decision volume can be 

used to approximate the shape of the data clusters. Moreover, for a given unknown pixel, the 

probability of membership in each class is calculated using the mean feature vectors of the 
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classes, the covariance matrix and the prior probability (Duda & Hart, 1973). The unknown pixel is 

considered to belong to the class with the maximum probability of membership. Based on the 

knowledge of land cover distribution characteristics, eight classes were identified as the final class 

types: forest, agriculture, grassland, bare lands, plantations, paddy field, water body and built-up. 

Representative sample collection is the most time-consuming and essential process in land cover 

classification efforts. Throughout the process of interpretation, RGB 543 composites were used for 

Landsat ETM+ and RGB 654 for Landsat-8 colour composition because it has the best information 

for the identification of land cover (M. Wulder, Skakun, Kurz, & White, 2004). Landsat images for 

2001 and 2016 were then interpreted to finally become land cover maps of 2001 and 2016. To 

analyse the land cover change between 2001 and 2016, an overlaying process between 2001 land 

cover maps and 2016 land cover maps was carried out using ArcGIS software. 

4.4.1.3 Landsat Assessment Accuracy 

To validate the land cover classification performance, the classification results using the MLC were 

assessed via visual observations. Quantitative classification accuracy was conducted and an error 

matrix was created. An error matrix is a square array of numbers organized in rows and columns 

that express the number of sample units (i.e., pixels, clusters of pixels, or polygons) assigned to a 

particular category relative to the actual category as indicated by the reference data (see 

Appendix A). The columns usually represent the reference data while the rows indicate the 

classification generated from the remotely sensed data. An error matrix is such a very effective 

way to represent accuracy, that the accuracies of each category are plainly described along with 

both the errors of inclusion (commission errors) and errors of exclusion (omission errors) which 

are present in the classification (Congalton, Plourde, & Bossler, 2002). 

The reference data were obtained from randomly selected sample points derived from 

interpretation, ground observation, and ground measurement. In this case, the test points were 

determined from the 150 points collected during the field research. Overall Accuracy and Kappa 

Accuracy were calculated by using the error matrix where the rows are a class of land cover 

results of image interpretation and columns are a class of land cover results of checks using high-

resolution imagery (Google Earth).  

Overall accuracy was computed by dividing the total number of correctly classified pixels (i.e., the 

sum of the major diagonal) by the total number of pixels in the error matrix. This accuracy 

measure indicates the probability of a reference sample being correctly classified.  On the other 

hand, Kappa analysis is a discrete multivariate technique used in accuracy assessments 
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(Congalton, Oderwald, & Mead, 1983; Janssen & Vanderwel, 1994). Kappa analysis yields a Khat 

statistic (an estimate of Kappa) that is a measure of agreement or accuracy (Congalton, 1991). The 

Khat statistic is computed as:  

 
 

where r is the number of rows in the matrix, xii is the number of observations in row i and column 

i, xi+ and x+1 are the marginal totals for row i and column i respectively and N is the total number 

of observations.  

The values of the Khat statistic can range from +1 to –1. However, since there should be a positive 

correlation between the remotely sensed classification and the reference data, positive Khat 

values are expected. Landis and Koch (1977) characterized the possible ranges for Khat into three 

groupings: a value greater than 0.80 (i.e., 80%) represents strong agreement; a value between 

0.40 and 0.80 (i.e., 40–80%) represents moderate agreement; and a value below 0.40 (i.e., 40%) 

represents poor agreement. Using this technique, it is possible to test if an individual land cover 

map generated from remotely sensed data is significantly better than if the map had been 

generated by randomly assigning labels to areas. The second test allows for the comparison of 

any two matrices to see if they are statistically significantly different (Congalton et al., 2002). 

Figure 4.4 presents an example error matrix. 
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Figure 4.4 an example of error matrix (Congalton, 1991) 

 

4.4.1.4 Post-Classification Analysis 

With the information derived from remotely sensed data and conventional data, land cover 

change and its impacts can be identified for further national park management. The most obvious 

method of change detection is a comparative analysis of spectral classifications for times t1 and t2 

produced independently (Landis & Koch, 1977). This is also suggested by Stow, Tinney, and Estes 

(1980) who suggest that a change map of two images will only be generally as accurate as the 

product of the accuracies of each individual classification. Hence, accuracy of relevant class 

changes depends on the spectral reparability of classes involved and in this study, both Landsat 8 

OLI and Landsat ETM+ data of both dates were independently classified using the maximum 

likelihood classifier and was then overlaid to detect the changes. 

4.4.1.5 Quantification and Assessment of Changes in Forest Configuration in GHSNP 

The term ‘fragmentation’ has been defined as simultaneous reduction of forest area, increase in 

forest edge, and subdivision of large forest areas into smaller non-contiguous fragments (W. F. 

Laurance, Delamônica, Laurance, Vasconcelos, & Lovejoy, 2000). The degree of fragmentation has 

been illustrated as a function of the varying size, shape, spatial distribution, and density of patches 

(Jorge & Garcia, 1997). Ecologist have been using metrics for assessing forest fragmentation and its 

impact on landscape structure (Lele & Joshi, 2009; Reed, Johnson‐Barnard, & Baker, 1996); The 

most common metrics applied to analyse forest fragmentation at the class or patch type level 
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include class area, number of patches, mean patch size, edge density, mean core area, mean 

proximity index, mean shape index, and patch size coefficient of variation (Hargis et al., 1999; 

Leitão & Ahern, 2002; Luque et al., 1994; Reed et al., 1996; Zheng, Wallin, & Hao, 1997). In the 

present study, details of the data and software used for computation of selected metrics at the 

class level to quantify fragmentation in the forest area of GHSNP are presented in Table 5.5 

Table 4.3 Landscape indices used for spatial pattern analysis of forest fragmentation 

No Metrics Code Description 

1 Class area 
(ha) 
  
 

CA The sum of the areas (m2) of all patches of the corresponding patch 
type. It is a measure of landscape composition representing how 
much a particular patch type occupies a landscape; a class with 
greater density of patches indicate that it is subdivided into many 
patches and thus could be considered more fragmented (Cushman, 
McGarigal, & Neel, 2008; McGarigal, Cushman, Neel, & Ene, 2002). 
 

2 Number of 
patches 

NP Measures the extent of fragmentation of the entire landscape. It 
represents the number of patches for the class(McGarigal & Marks, 
1995). 
 

3 Mean patch 
size (ha) 

MPS The average area of a patch of a particular class, and depends on 
data resolution; sensitive class to addition/deletion of small 
patches. Mean patch size can serve as a habitat fragmentation 
index; smaller mean patch size indicates more fragmented forest 
(McGarigal & Marks, 1995) 

4 Edge density ED A measure of landscape configuration. It standardises edge to a per 
unit area basis that is based on the ratio between total edges and 
total area, facilitating comparisons among landscapes of varying 
size. Larger edge density represents more spatial heterogeneity and 
thus the class is less compact; amount of edge relative to total area 
is expected to increase in initial stages of fragmentation (McGarigal 
& Marks, 1995) 
 

5 Mean shape 
index 

MSI The average shape index of patches of corresponding forest type, 
adjusted by a constant for a square standard (raster); patches are 
expected to become less geometrically complex in managed forest 
(McGarigal & Marks, 1995) 
 

6 Mean core 
area (ha) 

MCA The average core area of the patches of the corresponding forest 
type; one of the main effects of fragmentation is the conversion of 
interior habitat to edge habitat. It is estimated that the amount of 
core area will decrease as a result of fragmentation (McGarigal & 
Marks, 1995) 
 

7 Mean 
proximity 
index 

MPI Average proximity index for all patches in a class. Proximity index is 
calculated as the sum of the ratio of patch size to nearest neighbour 
edge-to-edge distance for all patches within a specified search 
radius (Hargis, Bissonette, & David, 1997).            
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8 Patch size 
coefficient 
of variation 

PSCoV Patch size coefficient of variation is generally preferable to patch 
size standard deviation for comparing patch size variability between 
landscapes;  it is expected to decrease as patches become less 
variable or more similar in patch size over time (McGarigal & Marks, 
1995)  
 

 

In this study, landscape metrics have been calculated at the class level for total forest cover of 

GHSNP. In this case, some metrics applied in this study consist of class area which is considered to 

be the most important statistical parameter; number of patch and edge density which have been 

widely used to analyse the extent of fragmentation of forest classes. Both patch and density 

metrics are important indices as they provide information regarding the pattern of fragmentation. 

The level of fragmentation was also examined by calculating mean proximity index and mean shape 

index which are widely used indices in landscape ecological studies.  

Quantification and comparison of the spatial configuration of forest patches in GHSNP between 

two time periods was conducted based on selected important landscape metrics and other related 

forest fragmentation studies (Hansen, Franklin, Woudsma, & Peterson, 2001). In this study, Patch 

Analyst 4.0 for ArcGIS 10.3 was used to generate the landscape metrics or indices at class level 

(McGarigal & Marks, 1995).  This spatial software provides a wide-ranging choice of landscape 

metrics at both landscape and class levels and computes spatial statistics on both raster files (e.g. 

raster grids) and polygon files (vector format such as shape files).  

Six groups of statistics are available in Patch Analyst:  

▪ Patch density and size metrics that analyse landscape fragmentation and configuration;  

▪ Area metrics quantify landscape or class area;  

▪ Edge metrics which attribute the amount, length, and distribution of edges between specific 

patch types;  

▪ Core area metrics which measure the extent of the patch deprived of its outer belt;  

▪ Shape metrics which measure the geometric complexity;  

▪ Diversity and interspersion metrics which measure patch isolation.  

Some indices are only applicable at the landscape level, while others are only applicable on shape 

themes or on grid themes. Both nonspatial composition and spatial configuration were commonly 

used to analyse spatial heterogeneity and measure the fragmentation of natural ecosystems 
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(Geneletti, 2004; Tischendorf, 2001; Trani & Giles Jr, 1999). A summary of certain landscape 

metrics used for forest landscape analysis in this study is shown in Table 4.3   

Table 4.4  Summary of relevant landscape metrics used for the study and their abbreviations 
(McGarigal and Marks, 1995). 

Selected Spatial metrics Abbreviation Unit 

Number of patches NUMP ha 

Mean Patch Size MPS ha 

Edge Density ED m/ha 

Mean Shape Index MSI 
 Class Area CA ha 

Patch Density PD 
 Patch Size Coefficient of Variation 

of Variation MPCoV 
 Mean Proximity Index MPI 
 Mean Core Area MCA 
 

4.4.2 Impact Analysis of Fragmentation and Disturbance 

There were several steps taken in the process of assessing the overall impacts of fragmentation 

and disturbance on mammals and birds.   

4.4.2.1 Modelling the spatial distribution of fragmentation effects 

The spatial distribution of transportation infrastructure (road) effects of different intensity were 

modelled in order to enable the analysis of their consequences.  The two selected models 

published by Benítez-López et al. (2010) on the ratio between the species abundance at varying 

distances to infrastructure — referred to disturbance or effect distance— on mammals and birds 

were used to quantify the impact of roads. These models were selected because the study was 

conducted using a meta-analysis —a method of synthesizing results from multiple studies.  

The models used for this analysis demonstrates a binomial prediction of effects on mammals and 

birds, expressed as Mean Species Abundance (MSA). MSA was used as the effect size measure. 

These are derived from generalized linear mixed effect models and a logit link function.  For this 

study, two spatial datasets on the predicted effects on mammals and birds (MSAmammals and 

MSAbirds) were created in ArcGIS (Esri, 2011) at a particular resolution by applying a logit 

transformation: 

MSA (estimated) =  
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where MSA (estimated) is the predicted MSA at the observed distance from the altered area 

ranging from 0 to 1 and u is the linear exponent describing the log-transformed probability of the 

presence of a species at a certain distance x from the area:  

 

Where “a” is the estimated value of u when x = 0 and “b” is the regression coefficient for the 

independent variable x. The values of regression coefficient “b” and “a “were taken from (Benítez-

López et al., 2010). The distance variable x took the value of each cell in a raster containing the 

Euclidian distance from the altered area. The MSAmammals and MSAbirds layers were calculated from 

an altered area layer with an Average Daily Traffic of 100 or more vehicles. These ADT thresholds 

were identified from the studies analysed in Benítez-López et al. (2010), and set according to the 

lowest traffic volumes with significant influence on MSA. The derived MSA datasets were then 

reclassified into four effect intensity zones with break values of 0.5, 0.7 and 0.9 (Table 4.4). 

 

Table 4.5  Classification of Mean Species Abundance (Karlson, 2013) 

MSA Intervals 

Mammals 0.35 - 0.5 0.5- 0.7 0.7- 0.9 0.9- 1.0 

Birds 0.3 - 0.5 0.5- 0.7 0.7- 0.9 0.9- 1.0 

 

 

The MSA values obtained, ranged from 0 to 1.0. This means that MSA in an unaltered control 

location is close to 1, while a low MSA value indicates a high disturbance effect (Figure 4.5). None 

of the models predicted zero MSA at the actual altered road but instead 0.35 for mammals and 

0.3 for birds (Table 4.4). This is interpreted as a realistic value for these predictions, as transport 

infrastructure can create attractive habitat for some species and have insignificant or no effects 

on others (Fahrig & Rytwinski, 2009; Forman, 2003).   
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Figure 4.5 Predictions of the Mean Species Abundance of mammals (A) and birds (B) as an effect of 
distance to infrastructure, based on statistical analyses of empirical data  (Benítez-López et al., 
2010) 

 

A generic effect of roads on birds and mammals was then estimated as the areal intersection 

between forest habitat and the four effect intensity zones. A good example of different road effect 

on a habitat type was illustrated by Karlson (2015) who examined different road effect intensity 

intervals relative to the distribution of pine forest older than 70 years in a Swedish pine forest 

(Figure 4.6). 

 

Figure 4.6 Illustration of the different road effect intensity intervals relative to the distribution of 
pine forest older than 70 years in a Swedish landscape (Karlson, 2015) 
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4.4.2.2 Assessing the overall impact of fragmentation and disturbance effect   

This was conducted by quantifying the forest cover in GHSNP, localized within zones of different 

effect intensity. Hence, it was assumed that all forest and grassland cover types —a scale from 0 to 

1— are a suitable habitat for mammals and birds in GHSNP. For this purpose, the MSA layers were 

overlaid on the spatial datasets of forest cover, and then the forest area per effect intensity zones 

were calculated.  

4.4.2.3 Exploring fragmentation and ecological effects 

Analysing the effects of fragmentation and disturbance on habitat networks for a selected 

ecological profiles consisted of several stages. These are described in sections 4.4.2.3.1 to 4.4.2.3.4. 

4.4.2.3.1 Construction of ecological profiles 

To construct metrics that encompass ecological processes and can serve as ecological indicators on 

a landscape scale, the concept of ecological profiles was applied (Angelstam et al., 2004; Mörtberg, 

1998; Vos et al., 2001). The concept is similar to that of umbrella species, and follows the same 

recommendations on selection of model species: high degree of habitat specialization, high 

sensitivity to disturbance and area demands representative of the scale of context (Angelstam et 

al., 2004; Edman, Angelstam, Mikusiński, Roberge, & Sikora, 2011; Fleishman, Murphy, & Brussard, 

2000). In other words, the species with similar habitat requirements and dispersal capacity were 

categorized into groups with similar ecological profiles, on the assumption that these groups would 

respond in a similar way to specific environmental changes, such as habitat loss and fragmentation 

(see Figure 4.7) (Vos et al., 2001).  

 

Figure 4.7 Conceptual model of the ecological profile system. A single species might be chosen to 
represent others, if they share, to a minimum degree, a selection of traits and resource 
requirements (Karlson, 2015) 
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In this study, the analysis encompassed similar habitat, between mammals and birds, and 

uncertainties concerning habitat requirements and movement capacity. Among all the animal taxa, 

mammal and bird populations were chosen for the analysis. The first reason is that both have been 

widely reported to be declining at rates related to their distance from infrastructure. Some studies 

show that bird populations seem to be affected within a few hundred metres from infrastructure, 

whereas a reduction in mammal populations has been found at distances of a few hundred metres 

up to several kilometres from infrastructure (McLellan & Shackleton, 1989; Nellemann, Vistnes, 

Jordhøy, Strand, & Newton, 2003; Ortega & Capen, 1999). The second reason is that road traffic is 

likely to play a big a role in the decline of both bird and mammal populations near roads (Gagnon, 

Theimer, Dodd, Manzo, & Schweinsburg, 2007; Reijnen & Foppen, 1995; Reijnen et al., 1996; 

Rheindt, 2003; Van der Zande, Ter Keurs, & Van der Weijden, 1980). 

To achieve this, a literature review was carried out to collect information about habitat 

requirements (habitat type and home-range size) for mammals and birds and these were then 

classified into ecological profiles. The literature review mainly included studies in which home-

ranges are estimated. The home-range sizes used in this study were retrieved from local 

conservation organizations such as GHSNP office or literature. In this way, a set of model species 

were selected to help define the ecological profiles. Such profiles were based on the habitat 

requirements of these species, habitat type, home-range size and related average movement 

distance. The requirements of the model species were considered to represent realistic ecological 

profiles that could be used for creating representative habitat networks (Karlson & Mörtberg, 

2015). The ecological profiles represented different forest mammals and birds in GHSNP, with area 

demands from approximately 15 ha to 3500 ha.  

4.4.2.3.2 Habitat networks for ecological profiles 

Habitat networks were generated using focal statistics assuming a “patch” to be all available pixels 

within the daily activity range. For each ecological profile, a set of habitat networks were created in 

order to take uncertainties into account. Furthermore, the windows, reflecting the habitat area 

demands of each ecological profile, were assumed to be circular in shape and the movement 

distance to be the radius of that circle, then pixels with suitability < 0.5 were excluded from the 

datasets. Focal statistics were calculated for each pixel based on all the pixel values within a chosen 

window. For each ecological profile, two different radii were used to include uncertainties in home-

range size, resulting in two habitat networks with slightly different spatial properties. To include 

eventual edge and contrast effects between habitat types, the average habitat suitability of the 

pixels in the window was also calculated, and pixels with a suitability of > 0.5 were reclassified into 
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habitat patches (Karlson & Mörtberg, 2015). In sum, 10 habitat networks were created. The GIS-

analyses were performed at a resolution of 30 x 30 m. 

Table 4.6  Habitat Network of Each Ecological Profile 
 

No Ecological profile  Species 
Habitat 

Network 1 (m) 
Habitat 

Network 2 (m) 

1 Forest-Grassland mammals  leopard 
3605.6 5916.1 

  High area demands dhole 

2 Forest grassland  leopard cat 

1581.1 2323.8 

 
mammals -medium  wild boar 

  area demands small Indian civet 

3 Forest mammals slow loris 

141.4 500.0 

 
less than 1500 asl  lesser mouse-deer 

  area demands   

4 Forest mammals Javan langur 

387.3 685.6 

 
more than 1500 asl  silvery gibbon 

  area demands   

5 forest birds javan hawk-eagle 1593.7 2000 

 

 

4.4.2.3.3 Construction of fragmented and disturbed habitat networks 

Each of the original habitat suitability layers were overlaid by (1) the national road network layer to 

represent fragmentation effects, from here referred to as the fragmentation layer, and (2) the 

effect intensity zone layer to represent disturbance effects, from here on referred to as the 

disturbance layer. The zones with highest disturbance (MSA < 0.5) were selected for this analysis to 

enable a clear demonstration of the potential effects. Consequently, when the original habitat 

suitability layers were overlaid by the fragmentation layer, the habitat suitability value of the 

affected pixels was reduced to zero to represent the fragmentation effect. By contrast, the value of 

pixels affected by the disturbance layer was reduced by a factor 0.5 times the original habitat 

suitability; this was done in order to represent a reduction by at least half where MSA < 0.5 due to 

road effects (Karlson, 2015). New habitat networks were then created.  To summarize, for each 

original habitat suitability layer, one “fragmented” and one “disturbed” habitat suitability layer was 

created. For each of these, two “fragmented” habitat networks and two “disturbed” habitat 

networks were created. In total, for each of the ecological profiles, three habitat suitability layers 

and six habitat networks were created. The raster analysis was performed at resolution of 30 m × 

30 m; thus, roads were considered to be 30 m wide. 
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4.4.2.3.4 Quantification and comparison of the impacts on habitat networks 

Disturbance and fragmentation effects were generally assessed by quantifying the relative change 

in the amount of habitat network and connectivity of the fragmented and the disturbed habitat 

networks. Hence, it was conducted by calculating three landscape ecological metrics. After that, a 

comparison was performed by evaluating the differences in these metrics between 

“fragmentation” of an ecological profile and “disturbance” of the same ecological profile. The 

comparison was essentially based on the hypothesis that disturbance effects to some extent might 

alter the physical properties of an ecological profile network by altering its quality. The software 

program, Patch Analyst (Rempel, Elkie, & Carr, 1999) was used to calculate two ecologically 

important quantities: habitat amount, expressed by the landscape metrics of class area (CA), and 

connectivity which is expressed by the metric number of patches (NP) (Table 4.5). The metric 

scores are normalized against those calculated for the unaltered habitat networks.  

Applying a set of different home-range sizes for each ecological profile resulted in a set of habitat 

networks, which consequently resulted in a range of responses. Thus, such a response range was 

calculated as the difference in metrics between home-range sizes used for each ecological profile. 

Table 4.7  Description of landscape metrics used in fragmentation analysis 
 

Landscape Metrics 

Name  Total Class Area (CA) Number of Patches (%) 

Description  Total area of all habitat patches in 
hectare 

Number of individual 
patches 
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Chapter  5  

Results 

This chapter presents the results of the land cover of GHSNP analysis, forest fragmentation 

analysis, and in particular, road fragmentation and disturbance effects on mammals and birds. 

Specifically, section 5.1 describes the classes used for the classification, accuracy assessment of 

land cover classification, land cover change and forest cover change analysis between 2001 and 

2016; section 5.2 presents a quantification and assessment of changes in forest configuration of 

GHSNP between 2001 and 2016; section 5.3 presents the fragmentation and disturbance results 

due to the road network in GHSNP. The potential road effects on mammals and birds in GHSNP are 

also presented in more depth. 

5.1 Land Cover of Gunung Halimun Salak National Park 
5.1.1 Land Cover Classification 
 
In this study, the land cover in GHSNP was classified into eight categories in which primary dry 

forest, secondary dry forest, and industrial plantation forest were merged as forest cover; dryland 

agriculture and mixed dryland agriculture were merged into the agriculture class; and the other 

land cover classes in this study were grassland, bare land, plantations, paddy field, water body, and 

residential area. Land cover classification maps of GHSNP plus enclaves for 2001 and 2016 are 

presented in Figure 5.1 and 5.2. 

 
Figure 5.1 Land cover classification map of GHSNP in 2001 
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Figure 5.2 Land cover classification map of GHSNP in 2016 

 

Once the initial classifications were done, land cover data derived from the classification process 

were used then to gain information about forest fragmentation and disturbance effects.  

Southworth et al. (2002) also derived landscape metrics from the classifications to analyse any 

changes in diversity and fragmentation of the landscape. Mapping the percentage of impervious 

surface area, an alternative way of monitoring urban growth, has also been conducted using urban 

masks generated from the land cover classification maps (Bauer, Yuan, & Sawaya, 2003). In 

addition, similar classifications have been used as inputs to an environmental impact analysis 

project by the U.S. Environmental Protection Agency and in a land use transformation model to 

project future land use change in the Detroit and the Twin Cities  Metropolitan  Areas (Pijanowski, 

Shellito, Bauer, & Sawaya, 2001).   

 

5.1.2 Assessment of Land Cover Classification Accuracy 

An acceptable overall accuracy for land cover maps is set > 85% (J. Anderson, Hardy, Roach, & 

Witmer, 1976) and >90% (Lins & Kleckner, 1996). An error matrix (Congalton, 1991; Story & 

Congalton, 1986) was used to calculate overall classification accuracy (P), a confidence interval for 

P, producer's accuracy, and user's accuracy. P is a simple, intuitive measure of the proportion of 

total sampling units that were correctly classified; it indicates the overall probability that a unit on 

the ground was correctly classified. User's accuracy is a measure of commission errors, indicating 
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the probability that a unit within an individual category is correctly classified. Producer's accuracy is 

a measure of omission errors, indicating the probability that a reference data sample is correctly 

classified. All of those accuracies are useful for the map reader because it measures the degree to 

which a land cover type on the earth can be distinguished and mapped using remote sensing data. 

Meanwhile, Kappa calculation tends to over-estimate the level of chance agreement. So, Kappa will 

consistently underestimate the overall classification (Foody, Campbell, Trodd, & Wood, 1992). 

In this study, error matrices were used to assess classification accuracy and are summarized in 

Table 5.1.  The overall classification accuracy was found to be 91.3% and 92.7% for overall kappa 

statistics. For a map derived from satellite imagery, the measures of overall classification accuracy 

(91.3%) indicate that the map classes were properly distinguished using the classification method 

applied (Landis & Koch, 1977). 

The user accuracy compares the number of pixels of a classified image that are correct based on 

the reference data. User’s and producer’s accuracies of individual classes for the 2016 Landsat 

image were relatively high, ranging from 66% to 100%. In general, forest, grassland and built-up 

area had the highest overall accuracy of 100%. In contrast, agriculture had the lowest overall 

accuracy at 66.6%. 

The high accuracy of the classification and the relevance of the accuracy assessments results are 

attributable to the following factors: spatially accurate reference data; a well-planned sampling 

strategy; a simple and spectrally distinct classification based on detailed phytosociological 

information, and prior knowledge; and experience in generating land cover maps for the region 

(Muller et al., 1998). 
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Table 5.1  Overall accuracy, producer's accuracy, user's accuracy, and Kappa coefficient for the classification of Landsat image 2016 

No 
Class of Land 

Cover 

Reference 

 

Producer's 

accuracy 

(%) 

User's 

accuracy 

(%) 

Overall 

accuracy 

Overall 

Kappa 

Statistics 
Forest Grassland  Plantation Built-up 

Open 

Space 

Water 

Body 
Agriculture 

Rice 

Field 
Total 

1 Forest 40 0 0 0 0 0 0 0 40 100.0 100.0 

91.3% 92.7% 

2 Grassland 0 18 0 0 0 0 0 0 18 90.0 100.0 

3 Plantation 0 0 10 0 0 0 2 0 12 83.3 83.3 

4 Built-up 0 0 0 10 0 0 0 0 10 100.0 100.0 

5 Open Space 0 0 0 0 10 1 0 0 11 100.0 90.9 

6 Water Body 0 0 0 0 0 11 0 0 11 84.6 100 

7 Agriculture 0 2 2 0 0 1 20 5 30 90.9 66.6 

8 Rice Field 0 0 0 0 0 0 0 18 18 78.2 100 

 

Total 40 20 12 10 10 13 22 23 150 
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5.1.3 Land Cover Change Analysis: an Overview between 2001 and 2016 

The land cover and land cover changes in GHSNP for the period of 2001 and 2016 are shown in 

Figure 5.3, while each class area and its percentage changes for the fifteen years are summarized in 

Table 5.2. In 2001, forest land cover classes dominated the GHSNP landscape (72.8%); however, 15 

years later, the forest cover had declined by 35.4% by 2016. In addition, paddy fields, bare lands, 

and grassland decreased by 46.4%, 22.9% and 19.4% respectively.    

 

Figure 5.3 The percentage of land cover changes in GHSNP between 2001 and 2016 

 

Table 5.2  Areas and percentages of each land cover class in 2001 and 2016 

Class  
2001 2016 Changes 

ha % ha % ha % 

Forest 76,580.1 72.8 49,500.4 47.1 -27,079.7 -35.4 

Grassland 1,743.9 1.7 1,405.2 1.3 -338.6 -19.4 

Plantations 11,993.0 11.4 16,862.8 16.0 4,869.8 40.6 

Built-up 511.3 0.5 1,051.1 1.0 539.9 105.6 

Bare lands 1,349.4 1.3 1,040.0 1.0 -309.4 -22.9 

water bodies 168.5 0.2 168.4 0.2 0.0 0.0 

Agriculture 5,541.3 5.3 31,238.2 29.7 25,697.0 463.7 

Paddy Field 7,286.5 6.9 3,907.5 3.7 -3,379.0 -46.4 

Total 105,174.0 100.0 105,174.0 100.0 

   

In 2001 agriculture (5.3%) and built-up areas (0.5%) covered a small percentage within the GHSNP 

territory, but by 2016 it was found that agriculture and built-up areas experienced a marked 
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increase of 463.7% and 105.6% respectively. In addition, plantations also experienced an increase 

by 40.6% over the study period (Table 5.2). 

5.1.4  Forest Cover Change Analysis between 2001 and 2016 

Post-classification change detection was carried out for the forest cover results of 2001 and 2016 

and enclave areas —which are not part of GHNSP areas— were not included in this analysis. Based 

on this analysis (Figure 5.4) it shows that deforestation had been occurred over a fifteen-year 

period, particularly around the edge of GHSNP area.  The finding is emphasised by Kubo and 

Supriyanto (2010)  who stated that the forest cover of the GHSNP area steadily decreased, with the 

annual deforestation rate being around 1.2–2.3%. Furthermore, it appears that the interior forest 

of GHNSP was not much affected by deforestation since the topography of this area is mostly hilly 

and mountainous (Halimun-Salak, 2007). 

 

 

Figure 5.4 Map of forest conversion occurred in GHSNP for 2001 and 2016 

There are various types of forest ecosystems in GHSNP which are identified according to the 

altitude of their locations: the Collin zone, which lies between 500 and 1,000 m; the submontane 

zone, which lies between 1,000 and 1,500 m; and the montane zone, which lies between 1,500 and 

2,400 m (van Steenis, Hamzah, & Toha, 1972). 
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Between 2001 and 2016, substantial forest conversion occurred in GHSNP. Detailed forest 

conversion between 2001 and 2016 is presented in Table 5.3. Correspondingly, Table 5.4 presents 

the forest conversion based on the altitude for the period of 2001 and 2016. 

 

Table 5.3  Areas and changes of forest and non-forest classes of GHSNP in 2001 and 2016 

 

 

 

 

 

Table 5.4 Areas and changes of forest classes based on altitude in GHSNP between 2001 and 
2016 

area 
2001 2016 Changes 

Ha % Ha % Ha % 

Collin 24,889.9 37.8 13,706.1 29.2 11,183.8 44.9 

Submontane 35,083.1 53.3 27,565.7 58.8 7,517.4 21.4 

Montane 5,910.4 9.0 5,606.0 12.0 304.5 5.2 

Total 65,883.4 100.0 46,877.8 100.0     

 

For the period 2001 to 2016, changes in forest land-cover occurred for 35.3% of GHSNP area (Table 

5.3). Specifically, Collin forest that was about 24,889.9 ha in 2001, underwent a significant decrease 

of 44.9% by 2016 (Figure 5.5). For the same period of time, montane forest slightly decreased by 

5.2 % (Table 5.4). Such results indicate that deforestation and forest encroachment mainly 

occurred in the Collin zone that lies between 500 to 1000 m. 

Class 
2001 2016 Changes 

ha % ha % ha % 

forest  76,580.6 72.8 49,500.4 47.0 27,079.6 35.3 

non-forest 28,594.4 27.1 55,673.5 52.9 -27,079.1 -35.3 

Total 105,175.0 100.0 105,174.0 100.0     
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Figure 5.6 The percentage change of forest landscape indices between 2001 and 2016 

This result also shows that the total area or amount of forest area habitat decreased massively by 

30% for over fifteen years. Thus, this indicates that the forest area of GHSNP is more fragmented. 

In contrast, the total number of forest patches has shown an increase of 5,519 patches (55%) 

during the 15-year period. The number of patches at landscape level has increased significantly 

during the period because of changes in the land cover distribution. It increased from 10,034 

patches in 2001 to 15,553 patches in 2016 (Table 5.6). This indicates that forest in GHSNP has 

become more fragmented.  

Table 5.5 Comparative analysis of forest landscape indices in GHSNP between 2001 and 2016 

Landscape metrices 2001 2016 Change  Percentage  

Mean Core Area 8.6 7.7 -0.9 -10.1 

Mean Proximity Index 211662.9 190564.6 -21098.3 -10.0 

Mean Shape Index 1.3 1.2 -0.1 -3.9 

Edge Density 66.4 88.6 22.2 25.1 

Mean Patch Size 4.7 4.3 0.4 8.2 

Number of Patch 10034.0 15553.0 5519.0 55.0 

Patch Size Coeficient of Variation 10856.7 7592.9 -3263.8 -30.1 

Class Area 68010.6 47500.5 -20510.2 -30.2 

 

Mean patch size (MPS) decreased by 8.2% during the 15 years. Again, this shows that the forest of 

GHSNP became more fragmented over the 15-year period. MPS, which declined over time, 
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indicates a progressive reduction in the size of forests and along with the increase in number of 

patches, it thus confirms a higher rate of fragmentation. 

Patch size coefficient of variation (PSCoV) is expected to decrease as patches become less variable 

or more similar in patch size over time (McGarigal & Marks, 1995). PSCoV in this study shows a 

significant decrease of approximately 30% from 10,857 ha in 2001 to 7,593 ha in 2000 (Table 5.6). 

This means landscapes with greater PSCoV are more heterogeneous while landscapes with lower 

PSCoV are more uniform (McGarigal & Marks, 1995).    

Edge density at class level is directly related to the degree of spatial heterogeneity among classes 

(McGarigal & Marks, 1995), showing that the study area became more heterogeneous by 2016, 

since the edge density increased from 66.4 to 88.6 (by 25%) over the 15 years. 

A slight decrease in mean size index (MSI) value was recorded in the forest of GHSNP (1.2 in 2016 

to 1.2 in 2001). The decrease value in MSI indicates that the forest patches became simpler (Table 

5.6). The mean shape index indicates that forest habitat patches are becoming less geometrically 

complex, although the amount of change in this index is not large. The mean shape index may also 

serve to quantify the location or position of disturbance features within natural vegetation patches. 

For example, the placement of a clear cut in the trend portion of a habitat patch may increase the 

perimeter in relation to the patch area. Consequently, the geometric complexity and shape index of 

the patch would actually increase (McGarigal & Marks, 1995).    

Mean core area is the average core area of the patches of the corresponding forest type. This 

particular edge zone width has been chosen by several researchers investigating fragmentation 

issues within the forests (Mladenoff, White, Crow, & Pastor, 1994; Ripple et al., 1991) to represent 

the areas which are not influenced by the edge effect. Edge effects are a consequence of biotic and 

abiotic factors such as increased wind speed, solar insulation, and an altered soil moisture regime 

that combine to alter the environmental conditions along patch boundaries compared to the 

interior or core conditions. Based on the analysis, mean core area in GHSNP has decreased by 

10.10%, indicating that fragmentation has occurred over the study period.   

Mean proximity index (MPI) used for fragmentation analysis also demonstrated a decrease of 

9.97%. This decrease in MPI also emphasises that, over time, forest patches become smaller and 

more isolated (Gustafson & Parker, 1992) as a consequence of fragmentation in those forest 

landscapes.  The mean proximity index (MPI) decreased substantially during the last 15 years in 

GHSNP, suggesting that the isolation and degree of fragmentation for forest patches has increased 

as a result of deforestation. The proximity index was first introduced by Gustafson and Parker 
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In detail, the submontane zone experienced the highest values of edge density (ED). This value 

indicates that fragmentation had occurred in this area, while the montane zone, which experienced 

a decrease in edge density, is the least fragmented compared with the other two zones. 

The results for mean patch size (MSI) revealed that change values for all the forest classes in 

GHSNP were negative, indicating that the average patch shape in all forest zones in the GHSNP area 

was irregular. Comparison of mean patch size (MPS) in three different zones demonstrates striking 

differences (Table 5.7). Collin zone forest shows a massive decline at 70.5%, which indicates that 

this zone is much more fragmented.   

Notably, the decreased values of MCA in the Collin zone were slightly higher than in submontane 

zones, by 68.6% and 63.5% respectively (Figure 5.7). This decrease could be a sign of more edge 

effect in the Collin and submontane zones, as highlighted above. In addition, it also gave the cue 

about the process of fragmentation in Collin and submontane zones due to the changes in forest 

configuration.  

Mean proximity index (MPI) is expected to decrease over time as habitat patches become smaller 

and more isolated (Gustafson & Parker, 1992). In regards to this, the Collin zone forest experienced 

a massive decrease in MPI at 47.1% as did the montane zone which also underwent a decrease at 

46.7%. Similarly, the class area (CA) in the three zones shows a wide range of decrease from 5.2% 

to 44.9%. In contrast, the number of patches at the class level increased significantly in the 

submontane and Collin zone by 175% and 166% respectively over the past fifteen years. The 

increase in number of patches (NP) shows that the forest area has been subdivided into more 

patches and it could also be an indication that the forest in these two zones has become more 

fragmented.  
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Table 5.6 Comparative analysis of forest fragmentation in Collin zone, submontane, and montane area of GHSNP between 2001 and 2016 
 

Landscape metrices 
Collin Zone forest 

Change (%) 
Submontane Zone 

Change (%) 
Montane Zone  

Change (%) 
2001 2016 2001 2016 2001 2016 

Mean Core Area 97.5 30.6 -66.9 307.9 112.4 -195.4 6.1 4.4 -1.7 

Mean Proximity Index 92,503.3 48,901.2 -43,602.1 6,434.4 6,430.0 -4.4 5,719.0 3,049.6 -2,669.3 

Mean Shape Index 1.3 1.3 0.0 1.6 1.6 0.0 1.3 1.3 0.0 

Edge Density 16.1 22.7 6.6 1.6 2.5 0.8 52.8 34.3 -18.5 

Mean Patch Size 67.7 20.0 -47.7 295.5 101.9 -193.6 4.3 3.2 -1.1 

Number of Patch 518.0 1,378.0 860.0 20.0 55.0 35.0 5,778.0 4,253.0 -1,525.0 
Patch Size Coefficient of Variation 1,812.1 3,166.8 1,354.8 282.3 499.7 217.4 2,689.4 2,169.7 -519.7 

Class Area 35,083.1 27,565.7 -21.4 5,910.4 5,606.0 -304.5 24,889.9 13,706.1 -11,183.8 
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5.2 Effect of Road Infrastructure in Gunung Halimun Salak National Park 

This subsection specifically aimed to explore fragmentation by roads and its disturbance effects on 

forest cover. Moreover, the analysis of habitat networks of each ecological profile constructed is 

discussed to understand the impact of road fragmentation and its disturbance effects on mammals 

and birds. The output of these are mean species abundance (MSA) of birds and mammals in three 

areas: Collin, submontane and montane zone; as well as class area (CA) and number of patches 

(NP) of each ecological profile.  

Roads and other transport infrastructure interact with ecological processes by fragmenting and 

converting natural habitats, creating barriers and disturbance regimes, and disturbing trophic 

structures through road mortality and the invasion of allien species (Fahrig & Rytwinski, 2009). 

Road network in GHSNP is presented in Figure 5.8 

 

Figure 5.8 Road network in Gunung Halimun Salak National Park 

 

The effects of transport infrastructure, for example the effect of the road network, on the 

landscape can be observed within a certain distance from a road, creating effect zones where 

environmental characteristics can be significantly distinguished from a control location (Forman & 

Deblinger, 2000). Several studies support the existence of such zones (Benítez-López et al., 2010; 

Biglin & Dupigny-Giroux, 2006; Bissonette & Rosa, 2009; Eigenbrod et al., 2009; Helldin & Seiler, 

2003; Huijser & Bergers, 2000; Reijnen & Foppen, 1995). 
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fragmentation and disturbance. Below are the ecological profiles used for this study, which were 

constructed based on the data obtained from the literature review, as well as from Gunung 

Halimun Salak National Park office (see Table 5.8 and Table 5.9). 

Table 5.7 Assumptions on home-range sizes, average movement distances, and habitat suitability 
of different habitat types for the five ecological profiles 

Ecological profiles Home-range size (ha) Movement distance (m) 

Forest-grassland mammals  

high area demands 1300–3500 3600–5900 

Forest-grassland mammals  250–540 1580–2525 

medium area demands 

  Forest mammals 2–25 141–500 

below 1500 m area demands 

  Forest mammals 15–47 387–685 

above 1500 m area demands 

  Forest birds 254–400 1600–2000 
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Table 5.8 Model species that were selected in order to help define the ecological profiles for this study 

No Ecological profile  Scientific name  English name  References Conservation status  

1 Forest-grassland mammals  Panthera pardus leopard Malau (2013) Vulnerable on the IUCN red list 

 
High area demands Cuon alpinus dhole Grassman, Tewes, Silvy, and Kreetiyutanont (2005) endangered on the IUCN red list  

    
Mustari, Setiawan, and Rinaldi (2016) 

 2 Forest-grassland mammals  Prionailurus bengalensis leopard cat Gunawan, Chumsangsri, Lastini, and Gunawan (2007) - 

 
medium area demands Sus scrofa wild boar Graves (1984) - 

  
Viverricula indica small Indian civet Shepherd (2008) - 

3 Forest mammals Nycticebus coucang slow loris Nekaris, Blackham, and Nijman (2008) Vulnerable on the IUCN red list 

 
below 1500 m area demands Tragulus javanicus lesser mouse-deer Farida, Setyorini, and Sumaatmadja (2003) 

 

    
van Schaik and Griffiths (1996) 

 4 Forest mammals  Trachypithecus auratus Javan langur Karen Margaretha Kool (1989) Vulnerable on the IUCN red list 

 
above 1500 m area demands Hylobates moloch  silvery gibbon Jatna Supriatna (2006) endangered on the IUCN red list  

 
  

  
Rinaldi (2003) 

 5 forest birds Nisaetus bartelsi  javan hawk-eagle Gjershaug (2006) endangered on the IUCN red list  

        (Prawiradilaga, 2006)   

 

 

 

 

 

 

 







 68 

For the ecological profiles representing forest habitat, the results also showed that forest species 

living at altitude below 1500 m were adversely impacted by road effects (see Figure 5.12). 

Compared to the roadless habitat networks, fragmentation reduced the CA by 12.51% – 13.47% in 

the mammal profile for area below 1500 m, by 8.87% – 20.18% for forest bird profile and by 0.73% 

– 6.97% for mammals profile living in the area above 1500 m. The number of patches (NP) of  

fragmented area decreased by 79.63% – 94.64% for the mammal profile of forest demands at 

altitudes below 1500 m, decreased  by 87.30% – 90.70% for the bird forest profile, and decreased 

by 0% – 83.33% for the eco-profile of above 1500 m area demands (Figure 5.13). In response to 

disturbance, CA decreased for eco-profile of area demands below 1500 m by 20.27% – 65.76%; by 

22.44% – 24.75% and 9.58% – 18.11% for eco-profile of birds and eco-profile of above 1500 m area 

demands respectively. Similarly, number of patches for the disturbance area of birds experienced a 

decrease by 44.44% – 55.56% and for mammals requiring forest habitat of above 1500 m 

underwent a decrease by 33.33% – 83.33%.  In contrast, NP increased by 5.63% – 31.48% for 

mammals requiring forest area below 1500 m. 

In sum, for the forest eco-profile, disturbance reduced habitat amount (CA) in all eco-profiles and 

increased the number of patches (NP) in one eco-profiles, specifically mammals with area demands 

below 1500 m (Figure 5.12). For birds and mammals that occupy the area above 1500 m in the 

forest eco-profiles, NP declined as a response to disturbance. For the forest-grassland profiles, 

mammals with high area demands showed a proportionally greatest response to disturbance effect 

than fragmentation within each profile.  Overall, it can be concluded that the larger home-ranges 

were more affected than the smaller one across all forest profiles. The results also suggest that 

fragmentation effects to be a greater concern for forest-grassland mammal’s species with high area 

demands compared to forest mammals and bird species; and habitat loss to be a specific concern 

for forest-grassland species with high area demands and a general concern for forest mammals 

species requiring habitat below 1500 m.
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Chapter  6  

Discussion  

This chapter presents a discussion of land cover change and forest cover change analysis; the forest 

fragmentation analysis; and also road fragmentation and impacts on mammals and birds in GHSNP 

between 2001 and 2016. Implications for management and conservation are also discussed in this 

chapter. 

6.1 Land Cover Change and Forest Cover Change Analysis in Gunung 
Halimun Salak National Park 

Land use and land cover changes as impacts of human activities contribute to land degradation 

through deforestation, removal of natural vegetation, and urban sprawl; unsustainable agricultural 

land use management practices, such as use and abuse of fertilisers, pesticides, and heavy 

machinery; and overgrazing, improper crop rotation, poor irrigation practices (Lambin, Geist, & 

Lepers, 2003). 

Indonesia is one of the most important areas of tropical forests in the world. These forests are also 

of global importance because of their biodiversity and carbon sequestration capacities. Seventy-

five percent of Indonesia's total land area of 191 million ha is classified as forest land, and the 

tropical rain forest component makes up the vast majority of forest cover (Hope, 2014). Total 

forest area is approximately 133.6 million ha and non-forest area is 54.3 million ha. Based on its 

function, about 15% of forest area is categorized as conservation forest, 22% as protection forest, 

46% as production forest and 17% as convertible production forest. However, vast areas of 

rainforest are being lost every year due to high deforestation and thus, major land cover changes 

have occurred in Indonesia during the period of 2000 – 2010. As a result, the total area of forest 

decreased by more than two million hectares (1.7%) in that period, while the total area of shrubs, 

grassland and sparsely vegetated areas increased by 276,966.78 hectares or 3%. The total area of 

cropland increased by 1,810,485.16 ha or 2.7%. There was no change in wetlands and water bodies 

and artificial area during the period (Margono et al., 2012).   

Overall, over the fifteen-year period agriculture, built-up areas, and plantations experienced an 

increase while forest, grassland, bare lands, and paddy field underwent a decrease. Kubo and 

Supriyanto (2010) suggest that the decreasing extent of forest in GHSNP was driven by illegal 

practices such as logging, agricultural expansion and mining that are conducted by local people.  In 
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contrast, Ilyas (2014) stated that the driving factor of the land cover changes from forest to non-

forest was increased population. 

In relation to the forest cover in GHSNP, the results of the study showed that 27,080.17 ha forest 

has changed and become another land cover type. In other words, 35.36% of forest cover has been 

converted to be mainly agricultural land or plantations. These forest conversion issues are mainly 

due to land encroachment and deforestation and, as a result, a gradual increase of settlement and 

nonforested land such as bush, upland, paddy field and settlement is now more predominant in the 

GHSNP area.  

Deforestation is a term that was also used to describe a condition of degraded forests 

(Resosudarmo, 1996). It was from 2000 onwards that most international organizations defined and 

differentiated forest degradation and deforestation clearly (Contreras-Hermosilla, 2000; FAO, 

2007). Direct causes of forest degradation and deforestation in Indonesia have been identified 

(Broich et al., 2011; Contreras-Hermosilla, 2000; W. D. Sunderlin, 1996; Verchot et al., 2010) mostly 

related to commercial plantation activities, transmigration programmess, infrastructure 

development, mining activities, commercial logging and natural forest fires. 

Deforestation in GHSNP has been occurring since 1989. The highest rate of deforestation occurred 

primarily during the economic crisis due to the logging demand and not for plantation expansion 

(Acuña, Stimac, Sirad-Azwar, & Pasikki, 2008). In the case of settlement pressure, it is because long 

before the National Park was established, some inhabitants had been occupying villages within that 

area. Local people who live around GHSNP depended heavily on the forest to fulfil their basic 

needs. Collecting fuel wood and timber wood, hunting animals, using grass for feeding livestock, 

and forest encroachment for agricultural purposes are the highest pressures on the forest more 

recently. Consequently, these factors led to massive deforestation of the national park and conflict 

between local people’s interests and conservation (Ahadi, Takao, & Sagala, 2013). Overall, it can be 

concluded that logging demand is the more dominant factor that leads to the deforestation in 

GHSNP because it has been occurring long before forest encroachment for agricultural purpose 

began.  

Similar conditions are also found in the other conservation areas (Dewan & Yamaguchi, 2009). W. 

Sunderlin and Resosudarmo (1999) and W. D. Sunderlin et al. (2000) found that two-thirds of the 

people in forested areas were confronted with more conflicts during the economic crisis compared 

with their situation in the year before the crisis. The other finding is that small farmers are 
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increasingly interested in clearing forests for perennial tree crops rather than raising food crops in 

shifting cultivation systems. 

Overall, it appears that human transformations of land cover might likely to be a key driver of the 

loss of biodiversity and ecosystem services. Coupled with the effects of climate change, these 

pressures pose significant management and policy questions and thus, improved strategies to 

secure a more sustainable future is crucial (Anderson, 1990). It is vital, therefore, to know much 

more about how qualitative changes in land cover and land use impact upon biodiversity 

ecosystems services, as well as about quantitative changes in land cover and land use (Haines-

Young, 2009).   

6.2 Forest Fragmentation Analysis between 2001 and 2016 

The results of the habitat patch analysis indicate that the forest landscape composition and 

configuration have been altered over the fifteen-year period as a result of land cover changes. The 

observed directional changes in the spatial metrics calculated for each time period has a 

correlation with the literature review and are discussed in section 2.4.  These include a loss of total 

habitat area, increased number of patches, more edges, reduced core area, decreased mean patch 

size, and a wider, more discrete patch configuration over time. Patch size coefficient of variation 

and class area also showed major changes between 2001 and 2016 for forest classes as well as for 

each zone observed (Collin, submontane and montane zone). This pattern of change is consistent 

with fragmentation theory by Forman (1995), including phases of landscape evolution. 

In a comparison of forest zones, that lie at different altitudes and were once connected to each 

other, the large decrease in MPS of forest classes in the Collin and submontane zone in GHSNP 

indicated that both areas were relatively more fragmented than similar forests in the montane 

zone. Despite of the fact that the number of patches in the montane zone was the highest among 

any zones in 2001 —which indicated the highest rate of fragmentation (McGarigal & Marks, 1995) 

in this zone—, for over a fifteen year, montane forest recorded slight decreases in MCA values 

representing a smaller number of forest interior declines compared with other forest classes. This 

could be attributed to a smaller edge effect on the shape of the patches of forest classes in the 

montane zone. 

In addition, all three forest zones, namely Collin, montane and submontane forest in GHSNP 

acquired more irregular shapes and recorded MCA < 50% of MPS which suggested that the shape 

of the patches in these forests had been affected by edges created during clear cutting. This finding 

is also supported by Keenan and Kimmins (1993) that found patch area was reduced by 17% as a 
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result of clear cutting.  In relation to the mean core area, only two zones, namely the Collin and 

submontane zones, experienced a large decrease. This finding parallels that of Shinneman (1996) 

who stated that core, old-growth forest area in the Black Hills National Forest, USA had essentially 

been depleted by wood cutting. In other words, it was found to be more fragmented due to the 

decrease in the core area.   

Reed et al. (1996) have pointed out that the changes in the shape, edge, density and diversity-

related-measures reflect the impact of forest management in the landscape. The nature and 

amount of change detected by these different landscape statistics have significance for the ecology 

and management of forest landscapes. It could be assumed that the resulting landscape mosaics 

are strongly influenced by socioeconomic processes as well as by inherent environmental 

properties (Millington, Velez-Liendo, & Bradley, 2003). Reddy, Sreelekshmi, Jha, and Dadhwal 

(2013) also pointed out that the prime drivers of forest cover changes can be listed as shifting 

cultivation, along with increasing demand for agricultural land, mining, quarrying, forest fires, 

overgrazing, expansion of settlements, urbanisation, dam construction, illegal logging, and 

infrastructure development (Lele & Joshi, 2009; Reddy et al., 2013). Additionally, the magnitude of 

fragmentation was related to dominating forest classes, land use, and level of protection.  

This is parallel to what has been occurring in GHSNP, in that ex-forest areas include plantations and 

agriculture, indicating that these areas have been widely planted.  Forest conversion to plantation 

or other agricultural activity is supported by the fact that clear cutting occurred annually by about 

1,473 ha or 1.3% of the GHSNP’s total area (Ahadi et al., 2013).   As a result, about 22.000 ha (25%) 

of the natural forests in GHSNP were lost because of land use conversion and timber harvesting 

during 1998-2001 (Prasetyo, Setiawan, & Miura). These factors could be strong drivers for causing 

the fragmentation in GHSNP.  

In summary, it is clear that the consequences of fragmentation are evident through changes in both 

composition, configuration and forest fragmentation in GHSNP. Such changes, however, are 

characterized by a reduction in the total amount of forest habitat and a change in the spatial 

characteristics and configuration of remaining patches. 

6.3 Road Fragmentation and Disturbance in Gunung Halimun Salak 
National Park 

In general, the results of sub chapter 5.3.2 could be seen in light of the empirical research, which 

found differences in the environmental characteristics between areas adjacent to and remote from 
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the transport infrastructure (Benítez-López et al., 2010; Fahrig & Rytwinski, 2009; Forman & 

Deblinger, 2000). 

Is it important to note that the road effects derived from Benítez-López et al. (2010) represent all 

possible causes, so that further separating of the causes and their severity are needed 

(recommended by e.g., Zetterberg et al. (2010)). Moreover, the spatial predictions of road effects 

were very coarse, and some of the assumptions can be questioned. For instance, the MSA 

predictions close to 1.0 imply conditions are equal to a control location with no road effects. This 

may not be very convincing, since other forms of impacts (e.g., from forest encroachment) were 

not taken into account. On the other hand, the adaptive capacity of mammals and birds should not 

be underestimated. In fact, areas exposed to moderate and low disturbance, such as areas in the 

vicinity of roads with lower daily traffic (down to 1000 and 100 vehicles per day for mammals and 

birds respectively) could still constitute suitable habitat for many species. In this study, even 

though home-range sizes were based on detailed empirical studies and were provided with a 

response range, there are still very high uncertainties in the expert judgements that supported the 

habitat suitability assumptions.  

For all ecological profiles, the road effects imposed habitat loss that would increase extinction risks; 

and loss of connectivity, which would decrease the probability of colonisation. Both these 

processes are crucial since they determine the viability of populations in the landscape (Hanski & 

Gilpin, 1991; Holderegger & Di Giulio, 2010). Habitat loss would, in this study, particularly affect the 

forest-grassland mammal profile with high area demands. The probability of migration between 

patches is seen as negatively correlated to distance for many species (Hanski & Ovaskainen, 2003; 

Saura, Estreguil, Mouton, & Rodríguez-Freire, 2011).  

Roads are an obvious threat to large-carnivore populations since many of those species are 

vulnerable to the effects of road‐network expansion (Cardillo & McAlpine, 2004). Roads enable 

human access, thereby increasing disturbance, reducing available habitat, decreasing reproductive 

success, and increasing mortality rates (Maehr, 1997). The detrimental effect of roads can vary 

among large-carnivore species and among sex and age classes within species. For example, Florida 

panthers (P.c.coryi) tended to avoid crossing roads and contracted their home-ranges in the 

presence of roads, with females more road-averse than males (P. C. Cramer & Portier, 2001). Male 

panthers readily cross roads, however, resulting in relatively high mortality rates from vehicle 

collisions (Maehr, 1997). Gray wolves (Canis lupus) shift territorial boundaries to avoid heavily 

travelled roads (Thurber, Peterson, Drummer, & Thomasma, 1994), whereas female grizzly bears 
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(Ursus arctos) with cubs may be attracted to habitats adjacent to roads because males avoid those 

areas (Mattson, Knight, & Blanchard, 1987).  

The degree of subdivision and total area of the eco-profile networks depends to a large degree on 

the radii used, with small radii producing more fragmented networks with small patches, and large 

radii producing more spatially aggregated networks with larger patches. Thus, a spatially 

aggregated network with large patches is likely to be relatively more fragmented and disturbed 

than an already highly fragmented network with small patches overlaid by one and the same 

fragmentation or disturbance data (Karlson, 2015). This is in line with these results that the 

constructed ecological profile with high area demand forest-grassland having larger radii is seen to 

be more spatially fragmented and disturbed compared to small radii with small patches. In this 

study, this relates to forest mammals for areas below 1500 m. Something to note is that, the need 

for the large activity ranges (radii) is due to the necessity of resources or resource scarcity. Thus,  

the response of the high demands forest profile was realistic, and could be interpreted as how the 

capacity of such habitats, which was reduced by transport infrastructure effects, supports forest 

mammals with high resource demands (Karlson & Mörtberg, 2015). 

For the forest-grassland mammals, road effects had substantial impacts indeed, especially the 

disturbance effects, while the fragmentation effects did not massively impact the mammal profiles 

compared with the disturbance effect. For the mammal profiles with area demands below 1500 m 

and a 30–34 ha home-range, the effect of fragmentation was a small decrease in class area but an 

increase in number of patch, which was interpreted as loss of connectivity (Karlson, 2013). 

For all profiles in this study, the decrease in CA was stronger in response to the disturbance effects 

compared with that of the fragmentation effects. This can be interpreted in different ways. Possibly 

these results, building on the empirical models for road effects on MSA, indicated that disturbance 

effects actually are more important than fragmentation effects for many ecological profiles, or the 

results depend on the current landscape pattern in the study area in combination with the habitat 

requirements of the species. 

CA was reduced in all habitat networks of the ecological profiles in response to fragmentation and 

disturbance, whereas NP both increased and decreased. While a decrease in CA was interpreted as 

habitat loss, changes in NP have consequences for connectivity in the landscape. When NP 

decreases, it means that patches are either lost or that habitat is gained so that patches are 

merged. When NP increases, it means that patches are split into two or more smaller patches, or 

that new habitat patches are gained (Karlson & Mörtberg, 2015). Since habitat gain was not 
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applicable in the current study, both changes in NP may imply a loss of connectivity, either as a loss 

of patches that could act as stepping stones, or as the splitting of previously homogenous habitat. 

These possibilities should be interpreted together with changes in CA. 

It is clear that among all eco-profiles established, mammals having a high area demand are 

considered to be most impacted from fragmentation and disturbance effects. This is in line with 

other studies suggesting that species with high area demands, like large ungulates and carnivores, 

are especially sensitive to transport infrastructure effects like barriers to movement, disturbance 

and mortality (Davenport & Davenport, 2006; Fahrig, 2003; Jaeger et al., 2005; Rytwinski & Fahrig, 

2012). In this study, mammals having a high area demand in GHSNP are represented by the Javan 

leopard (Panthera  pardus). In Indonesia, this leopard can only be found on Java, particularly in 

conservation areas such as National Parks and Natural Reserves.  Currently, it is still under threat 

from various human activities. Habitat loss and fragmentation, population decline of prey, hunting 

and trading activities are some of the threats for the Javan leopard. Such factors have also caused 

the extinction of the Javan tiger and another large cat species that once lived in Java (Wessing, 

1995). 

Moreover, it appears that species with home-ranges around 300 ha (medium area demand) were 

slightly more affected than those with the largest home-range, 600 ha. Furthermore, the low area 

demands profile with 30 ha home-range responded differently when the disturbance effect was 

applied, so that while CA decreased slightly, NP increased strongly. This resulted from a subdivision 

of this habitat network by the disturbance layer, with minor habitat loss but the splitting of many 

patches with subsequent loss of connectivity. The specific response of certain habitat networks can 

only be explained by the existing landscape pattern and habitat networks in combination with the 

location of the roads, since there is seldom linearity in the response of different metrics to 

landscape structure or change (Cushman et al., 2008).  

In summary, this strengthens the motivation to further explore such potential effects when 

planning new road corridors, since sensitive habitat networks can be detected and the road effect 

on them could be avoided or mitigated, and this information could help prioritise mitigation and 

compensatory management activities and inform strategic planning, such as the development of 

national and regional transport strategies.  
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6.4 Implication for Management and Conservation 

The process of landscape change as a result of fragmentation, which are caused primarily by 

human management activities (clear cutting, development of rail and road network, and 

plantations), has extensive implications for native plants, vertebrates and invertebrates, and 

particularly for the survival of threatened species. Several studies have reported that clear cutting 

or timber harvesting results in unbalanced removal of late succession forests (Johansson, Hjältén, 

Olsson, Dynesius, & Roberge, 2016; Tinker et al., 1998; Xu et al., 2015). 

Those issues, however, have proven to be some of the most difficult and complex problems for 

Indonesia’s conservation agencies since the downfall of President Suharto in 1996, and to date 

there is still no resolution to cope with such problems (Jepson, Jarvie, MacKinnon, & Monk, 2001; 

W. D. Sunderlin, 1999). Thus, understanding the effects of human disturbance is critical for 

effective management and conservation of endangered species.  

The software Patch Analysis applied in the present study has been used in various regions of the 

world. The set of seven metrics quantified in this study are simple and proved to be useful for 

quantifying complex spatial processes and an effective means of monitoring in the GHSNP 

landscape. The approach of landscape level assessment and monitoring by select metrics has been 

recommended and adopted by many authors for different protected areas across the world 

(Asgarian, Amiri, & Sakieh, 2015; Jaafari, Sakieh, Shabani, Danehkar, & Nazarisamani, 2016; Leitão 

& Ahern, 2002; Riitters et al., 1995; Schindler, Poirazidis, & Wrbka, 2008). As the GHSNP area has 

experienced a massive conversion that lead to forest habitat reduction, changes in composition of 

forest patches and configuration must be monitored and the effects of land use and management 

interventions on landscape spatial pattern must be analysed. This knowledge, therefore, can be 

used to assess the progress in conservation efforts and to improve management decisions not only 

for national park landscapes, but also in other conservation area landscapes, particularly in 

Indonesia. 

Much research has suggested that fragmentation and deforestation, such as has occurred in 

GHSNP, affects the persistence and abundance of wildlife resources. The persistence of many 

populations is linked to the number, size, and degree of isolation of forest patches, and a reduction 

in patch size that results in population declines for a number of species (Ambuel & Temple, 1983; 

Flockhart, Pichancourt, Norris, & Martin, 2015; Lynch & Whigham, 1984).  

Van Dorp and Opdam (1987) reported a direct relationship between the number of bird species 

and forest area while Galli, Leck, and Forman (1976) stated that forest size is a primary determinant 
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of the richness and size of bird assemblages.  For bird species, those that are intolerant of 

fragmentation tend to be highly migratory, are forest interior specialists, build open nests, and nest 

on the ground (Whitcomb, 1981). The Javan hawk eagle, as a representative for the bird ecological 

profile, could be intolerant of fragmentation, since it is a highly migratory species and is probably 

more susceptible to forest destruction than all other Javan forest raptors (Thiollay & Meyburg, 

1988). Thus, the status of this species is currently endangered according to IUCN due to its 

decreasing population (Jatna Supriatna, 2006).  

Some large forest mammals such as tigers, elephants, and rhinoceroses tend to avoid forest 

boundaries. They prefer to occupy forest interiors, instead of forest edges, which allows them to 

avoid human activities that reduce cover and increase disturbance (including hunting at the forest 

edge and in the peripheral forest). Griffiths and Van Schaik (1993) found that large mammals in 

northern Sumatra, including elephants and tigers, moved away from areas of high human activity. 

B. V. Barnes, Zak, Denton, and Spurr (1997) and Theuerkauf, Ellenberg, Waitkuwait, and 

Mühlenberg (2001) found that elephant density in Gabon and elephant activity in the Ivory Coast 

decreased with proximity to roads and forestry operations. In relation to roads, it is important to 

note that it can have a major effect on large-carnivore mortality directly through overhunting, 

vehicle accidents, and poaching, and indirectly by providing greater hunting access that can result 

in reduced prey availability (Mattson et al., 1987; McLellan & Shackleton, 1988; Mech, Fritts, 

Radde, & Paul, 1988; Noss, 1993; Noss, Quigley, Hornocker, Merrill, & Paquet, 1996; Thiel, 1985). 

Finally, Woodroffe and Ginsberg (1998) and Revilla, Palomares, and Delibes (2001) also found a 

decrease in survival for carnivores and other mammals as a result of interactions with humans on 

park edges. For the past few years, the majority of the surrounding forests of the GHSNP have been 

converted for agricultural purposes. Thus, for the mammals of high area demand, these species 

could possibly be at greater risk when using these areas.  

Leopards (Panthera pardus) are classified as endangered species according to the Convention on 

International Trade in Endangered Species (CITES) (Jayaprakash, PATIL, Kumar, Majumdar, & 

Shivaji, 2001). Three subspecies have become extinct since the 1950s due to human disturbances 

that include habitat loss, population fragmentation, and poaching (Mills, Jackson, & Gray, 1994; 

Nowell & Jackson, 1996; Seidensticker, 1986; Weber & Rabinowitz, 1996). Tigers, along with 

elephants and rhinoceroses, have large range requirements and require high-quality habitat 

composed of core forest. Large core areas are important habitat features for some mammals, 

especially forest carnivores (Tinker et al., 1998) and those living in an area with a low percentage of 

core forest will be at higher risk of mortality. As mean core area in GHSNP has experienced a 
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relative decline over the 15 year study period (see Chapter 5.2.8) such animals will probably 

attempt to monopolize the core forest as much as possible while spending a higher percentage of 

time in an unfriendly matrix with increased risk of mortality (Kinnaird, Sanderson, O'Brien, 

Wibisono, & Woolmer, 2003). 

Incorporation of an understanding of the ecological consequences of particular fragment spatial 

characteristics increases the environmental benefit of area management and planning. Some 

landscape architects and planners are increasingly using the principles of landscape ecology to 

preserve, restore and enhance biological diversity. For example, the restoration of three major 

wooded areas in New York’s Central Park proposed by Andropogon Associates (L. A. Cramer, 

Kennedy, Krannich, & Quigley, 1993; Flather & Sauer, 1996) focused on maintaining large, intact 

forest patches within currently wooded areas of the park, reducing exotic plant invasion and 

sedimentation caused by disturbed forest edges and connecting these patches to enhance 

movement of birds and mammals. Such strong interconnetivity among patches is crucially 

important since weak interconnectivity among patches of similar forest classes, particularly in 

GHSNP could affect movement and dispersal of faunal species. In addition, clear cuts and roads 

block the movement of some species, resulting in population fragmentation and increased 

competition for resources in remaining forest resources (Lovejoy et al., 1986; Noss, 1993). To 

address these issues, Andropogon Associates devised a habitat corridor. In the context of ecological 

studies of habitat fragmentation, the term corridor generally refers to a linear landscape element 

composed of native vegetation that links patches of similar, native vegetation (Beier & Noss, 1998; 

Bennett, 1990; Brooks, 2003; Rosenberg, Noon, & Meslow, 1997a). 

Landscape corridors play an important role in ecological dynamics within and between habitats 

(Bennett, 1990; Forman & Godron, 1986; Saunders et al., 1991; Taylor, Fahrig, Henein, & Merriam, 

1993). The preservation of vegetated corridors among otherwise isolated habitat remnants is 

predicted to moderate the negative effects of habitat fragmentation by maintaining landscape 

connectivity (Diamond, 1975; Forman & Godron, 1981; Harris & Scheck, 1991; Lindenmayer & Nix, 

1993; Noss, 1987).  These suggest that the Mount Halimun-Salak corridor should be preserved by 

restoring the forest between Halimun-Salak to improve its function to the connect gene pools of 

the two populations, especially the populations of large mammals that require a large area in the 

Halimun and Salak areas.  

Ideally, for conservation of species requiring large areas, it is important to prevent road 

construction wherever possible since roads decrease the survival and reproductive success of large 

mammals and in fact, protected areas seem to cease functioning as source populations when road 
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access is introduced. Furthermore, closing unnecessary roads, and regulating access to roads 

through sensitive areas, particularly in areas supporting source populations, is also crucial to 

minimize the road effect on large mammals since they often use roads as travel corridors. Tigers 

displaced from their prey not only lose a valuable food resource, but they are at greater risk of 

being poached, or killed in traffic collisions because they may be on the road more often (Kerley et 

al., 2002).  

Not only large mammals, but also small mammals with small area demands, such as the Javan 

gibbon, are also affected by road disturbances due to the increased number of patches that that 

results in the loss of connectivity; therefore, ex-situ management and intrusive management is vital 

for their conservation. Asquith (2001) stressed the dichotomy between strategies for Javan gibbon 

conservation suggested by geneticists, zoo biologists and captive-breeding specialist on the one 

hand and field biologists on the other. The first group focused largely on active management of 

small populations—including genetic supplementation, demographic management, and for small 

populations, rapid habitat expansion, translocation, and captive propagation (Jatna Supriatna & 

Manullang, 1999; J Supriatna et al., 1994)—whereas the second group has repeatedly argued that 

expansion of the protected area network, improved protection and further research and 

monitoring are the most urgent actions required (Asquith, 2001; Karen M Kool, 1992; Nijman & Van 

Balen, 1998; Sözer & Nijman, 1995).  

In summary, to conserve mammal populations in tropical landscapes, such as those in the GHSNP, 

management must concentrate on conserving the remaining forest habitat within the park and 

reducing the threats to mammals in peripheral forest areas. Managing human activities inside and 

outside the park will also be crucial to mitigating threats (Revilla et al., 2001). Enforcement of 

existing laws prohibiting wildlife hunting and timber theft within the park would reduce 

harassment of mammals and reduce other forms of habitat deterioration. Managers may also need 

to consider restoration of lost or heavily disturbed forest and of the forest edge (Kinnaird et al., 

2003).  Laurance et al. (2000) stressed that it is not sufficient to just conserve isolated, fragmented 

reserves and that the intervening matrix must also be preserved, reforested, and probably 

reconfigured.  In this way, the risks of mortality for wide-ranging mammals would decline and the 

amount of friendly habitat would more than double (Kinnaird et al., 2003).  
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Chapter  7  

Conclusion and Recommendations 

 

The conclusions of this thesis and the recommendations for future research based on the results 

will be drawn in this final chapter.   

7.1 Conclusions 

Based on the results obtained and their analyses, the following conclusions are drawn:  

a) Based on the land cover analysis result, over the fifteen-year study period, class areas of 

agriculture and built-up increased, while forest and grassland decreased. Forest and 

Agriculture experienced the biggest decrease and increase by 35.36% and 463.74% 

respectively. 

b) Among the three forest zones in GHSNP, the Collin zone experienced the most significant 

decrease of land cover, by 44.93%, which indicates that the majority of deforestation and 

forest encroachment occurred majorly in the submontane forest that lies in altitudes 

between 500–1000 m. 

c) Based on forest landscape metrics analysis, over the fifteen-year study period, there was a 

significant decrease of approximately 30% for forest class area, followed by other metrics 

that also underwent a decrease, namely mean patch size (MPS), patch size coefficient of 

variation (PSCoV), mean shape index (MSI), mean core area (MCA) and mean proximity 

index (MPI). Conversely, number of patch (NP) and edge density (ED) increased 

substantially by 35.49% and 25.07% respectively.   

d) Based on the landscape metrics analysis on the three forest zones within GHSNP, there was 

a significant decrease in mean patch size (MPS) in the Collin and submontane forest zones, 

of 70.47% and 65.51% respectively. On the contrary, the number of patches (NP) and edge 

density (ED) increased substantially in both these zones, with the highest increase 

occurring in the submontane zone: 175% for NP and 51.22% for ED.  Thus, the two zones 

were found to be much more fragmented compared to the montane zone which was found 

to be least fragmented forests in GHSNP.  



 
 

81 

e) Among the three forest zones, a larger proportion of Collin zone forest (37.14% for 

mammals and 4.91% for birds) and submontane zone forest (20.17% for mammals and 

2.91% for birds) were situated in zones with the highest road disturbance intensity with a 

predicted Mean Species Abundance (MSA) < 0.5,. Thus, it suggested that Collin zone forest 

is most affected by road disturbance effects. In addition, Collin and submontane zone were 

proportionally more exposed to road effects on mammals and birds, than montane forest. 

f) Regarding the effects of fragmentation and disturbance on mammals and birds, the 

responses of the forest-grassland mammals (high area and medium area demands), forest 

mammals (area below 1500 m and above 1500 m) and bird profiles (forest area) were 

similar to each other, with class area (CA) and number of patch (NP) being reduced as a 

response to both effects, except for small mammals requiring forest area that is below 

1500 m, which underwent an increase in the number of patches for the disturbed area. 

g) GIS-based ecological assessment has proved effective in generating baseline environmental 

information and coarse predictions on the possible consequences of infrastructure 

development. Thus, the result from this approach could be a reference in formulating 

appropriate conservation measures, as well as for developing mitigation and management 

strategies in GHSNP. 

7.2 Recommendations  

In view of the conclusions drawn, the following suggestions for future research are made: 

a) A follow-up study with finer resolution satellite imagery should be carried out in order to 

achieve mapping at a more detailed level, providing a long-term impression of land cover 

changes and enhancing the inventory of land resources in GHSNP for planning and 

monitoring. 

b) Exploration of other classification approaches that might yield better results, taking into 

consideration the complexity of land cover types within GHSNP should be carried out. 

c) In the present analysis, a selection of metrics was used that appeared to provide the best 

or optimal interpretation of the changing landscape structure. A complete and thorough 

test of the selected or potential landscape metrics (and others as they are developed or 

become available) should be conducted to reveal those metrics most sensitive to the type 

of change encountered in the landscapes under study. 



 
 

82 

d) More thorough habitat suitability data of each ecological profile should be gathered as well 

as field measurement of mean species abundance (MSA) of each ecological profile. Such 

data could then be compared with the MSAs of mammals and birds by Benítez-López et al. 

(2010) or other models of road effects. 

e) There is also a general (but strong) need of verification and calibration of relevant spatial 

ecological models and methods, specifically of dispersal and movement models, species 

distribution models and habitat suitability models.  

f) Modelling migration corridors for prioritised animal species could be a good research topic 

as the prediction of which group of animals is most likely to be impacted is now known.   
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Appendix A 

Coordinates Data 

A.1 Coordinates used for accuracy assessment of land cover 

Number 
Coordinate System 

Information 
x y 

1 654,576.1032 9,273,382.9224 Plantations 

2 666,163.1590 9,248,940.0000 Agriculture 

3 651,380.3867 9,257,820.0000 Paddy field 

4 647,321.5306 9,266,940.0000 Forest 

5 638,166.4975 9,258,380.0000 Forest 

6 668,445.7762 9,262,590.0000 Forest 

7 678,224.7890 9,260,430.0000 Agriculture 

8 655,287.4483 9,269,680.0000 Plantations 

9 642,542.6727 9,269,590.0000 Agriculture 

10 657,956.0134 9,272,610.0000 Paddy field 

11 648,874.1356 9,266,140.0000 Forest 

12 641,157.2297 9,250,960.0000 Shrubs and bushes 

13 674,025.20 9,265,109.76 Waterbody 

14 653,505.1315 9,255,800.0000 Forest 

15 683,836.6835 9,256,517.2119 Open space 

16 666,862.5881 9,244,730.0000 Forest 

17 680,836.4099 9,252,000.7449 Shrubs and bushes 

18 682,107.90 9,254,473.22 Residential Area 

19 655,586.5380 9,252,620.0000 Forest 

20 642,368.3911 9,261,030.0000 Paddy field 

21 653,323.8796 9,257,130.0000 Forest 

22 653,437.9143 9,262,560.0000 Shrubs and bushes 

23 674,048.55 9,265,470.36 Water body 

24 664,360.3082 9,249,430.0000 Paddy field 

25 671,104.1395 9,251,990.0000 Forest 

26 645,195.0282 9,252,810.0000 Forest 

27 671,129.2768 9,259,540.0000 Forest 

28 675,744.9108 9,260,230.0000 Shrubs and bushes 

29 677,619.4859 9,260,390.0000 Agriculture 

30 641,615.9514 9,253,730.0000 Shrubs and bushes 

31 658,159.6049 9,274,690.0000 Plantations 

32 648,444.0241 9,252,730.0000 Paddy field 

33 653,832.2331 9,272,721.6723 Plantations 

34 659,711.4790 9,249,240.0000 Forest 

35 671,265.2008 9,255,680.0000 Shrubs and bushes 

36 689,468.5024 9,257,153.3005 Open space 
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37 654,432.0223 9,265,640.0000 Agriculture 

38 659,013.5516 9,267,590.0000 Agriculture 

39 689,116.7382 9,257,144.0400 Open space 

40 663,997.64 9,249,880.17 Residential Area 

41 683,737.4976 9,254,782.3355 Open space 

42 689,241.0926 9,257,199.6026 Open space 

43 655,185.7715 9,272,850.0000 Plantations 

44 674,080.30 9,265,419.56 Water body 

45 651,475.6138 9,257,490.0000 Paddy field 

46 655,392.6059 9,259,980.0000 Forest 

47 693,089.82 9,261,215.85 Waterbody 

48 642,699.4781 9,248,440.0000 Paddy field 

49 654,588.4675 9,271,810.0394 Plantations 

50 685,119.5514 9,255,576.8809 Open space 

51 637,931.8584 9,257,510.0000 Agriculture 

52 652,529.4979 9,269,720.0000 Forest 

53 673,961.77 9,265,588.90 Water body 

54 661,706.2739 9,267,410.0000 Agriculture 

55 646,426.8544 9,253,450.0000 Forest 

56 658,820.1103 9,250,600.0000 Paddy field 

57 663,381.1644 9,265,150.0000 Agriculture 

58 657,317.5264 9,250,280.0000 Shrubs and bushes 

59 652,901.2658 9,268,260.0000 Agriculture 

60 654,336.3902 9,273,513.0977 Plantations 

61 681,979.84 9,254,571.65 Residential Area 

62 643,785.9993 9,256,280.0000 Forest 

63 645552.1526 9268057.363 Plantations 

64 653,140.2331 9,273,116.1557 Plantations 

65 670,120.4222 9,256,691.7175 Plantations 

66 643,174.9305 9,253,270.0000 Shrubs and bushes 

67 670,408.3098 9,255,750.0000 Shrubs and bushes 

68 639,051.5649 9,249,620.0000 Agriculture 

69 678,690.6136 9,252,520.4299 Shrubs and bushes 

70 642,198.6058 9,252,860.0000 Agriculture 

71 657,651.1533 9,262,170.0000 Forest 

72 646,843.8495 9,253,780.0000 Forest 

73 657,065.4537 9,274,190.0000 Paddy field 

74 662151.6623 9242223.812 Shrubs and bushes 

75 658,261.3554 9,254,450.0000 Forest 

76 670,020.4461 9,256,908.0055 Plantations 

77 649,210.7393 9,253,710.0000 Paddy field 

78 664,837.4290 9,245,740.0000 Forest 

79 651,203.4029 9,266,720.0000 Forest 

80 667,330.6395 9,242,430.0000 Paddy field 

81 654,923.0568 9,269,460.0000 Agriculture 

82 651,691.1888 9,256,340.0000 Forest 
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83 685,178.8182 9,255,413.8972 Open space 

84 653,668.4166 9,263,360.0000 Shrubs and bushes 

85 641,811.0242 9,252,750.0000 Agriculture 

86 655,471.93 9,272,544.87 Waterbody 

87 641,970.9020 9,271,980.0000 Agriculture 

88 646,151.9792 9,252,590.0000 Forest 

89 653,745.3304 9,272,380.0000 Plantations 

90 675,900.2307 9,261,650.0000 Agriculture 

91 674,067.54 9,265,401.86 Waterbody 

92 675547.5228 9262720.322 Shrubs and bushes 

93 667,771.8982 9,243,030.0000 Shrubs and bushes 

94 683,834.3023 9,255,813.0220 Open space 

95 660200.1541 9240585.419 Shrubs and bushes 

96 679,344.4109 9,252,218.6773 Shrubs and bushes 

97 654,359.1934 9,273,780.0000 Plantations 

98 657,981.3150 9,253,310.0000 Forest 

99 645,076.9382 9,255,050.0000 Forest 

100 682,167.69 9,254,574.29 Residential Area 

101 654,949.3860 9,265,430.0000 Forest 

102 643,624.1366 9,250,450.0000 Forest 

103 654,229.3502 9,268,450.0000 Agriculture 

104 656,432.3622 9,272,200.0000 Paddy field 

105 677845.2099 9255178.239 Shrubs and bushes 

106 689,260.5395 9,257,300.9383 Open space 

107 673,953.30 9,265,389.93 water body 

108 641,731.4335 9,258,000.0000 Forest 

109 647,027.6246 9,261,550.0000 Shrubs and bushes 

110 682,973.4787 9,255,320.6314 Open space 

111 681,871.44 9,254,482.20 Residential Area 

112 676,750.6663 9,258,190.0000 Agriculture 

113 654,900.6953 9,265,200.0000 Agriculture 

114 639,104.0170 9,258,320.0000 Shrubs and bushes 

115 681,971.39 9,254,537.63 Residential Area 

116 668,587.1435 9,251,150.0000 Forest 

117 641,586.6848 9,252,900.0000 Agriculture 

118 664,063.25 9,249,887.58 Residential Area 

119 648,500.4710 9,251,610.0000 Forest 

120 668,248.7822 9,243,160.0000 Shrubs and bushes 

121 684,109.5025 9,254,136.4863 Open space 

122 674,725.3013 9,257,750.0000 Forest 

123 642,062.8868 9,271,440.0000 Agriculture 

124 649,671.8537 9,250,490.0000 Paddy field 

125 636,744.8726 9,250,420.0000 Shrubs and bushes 

126 673,201.3157 9,240,970.0000 Forest 

127 643,046.3410 9,272,150.0000 Plantations 

128 661903.7101 9268528.429 Shrubs and bushes 
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129 663,651.0060 9,266,550.0000 Agriculture 

130 673,995.63 9,265,662.98 Water body 

131 642,911.7878 9,255,090.0000 Forest 

132 649,084.9276 9,269,880.0000 Paddy field 

133 644591.8161 9266212.425 Plantations 

134 682,158.72 9,254,540.80 Residential Area 

135 642,596.2604 9,255,050.0000 Forest 

136 676,910.3023 9,243,510.0000 Agriculture 

137 642,139.7044 9,257,380.0000 Paddy field 

138 674,042.20 9,265,243.88 Water body 

139 664,975.3556 9,251,990.0000 Paddy field 

140 675,213.5987 9,261,370.0000 Agriculture 

141 677308.6308 9256590.885 Residential Area 

142 639,985.8970 9,251,170.0000 Agriculture 

143 671,504.4850 9,248,230.0000 Forest 

144 673,919.37 9,265,342.59 Waterbody 

145 681,979.84 9,254,602.34 Residential Area 

146 650,198.0244 9,258,250.0000 Paddy field 

147 638,212.5932 9,252,030.0000 Agriculture 

148 657,928.7637 9,252,080.0000 Shrubs and bushes 

149 651,638.9922 9,270,730.0000 Paddy field 

150 675,400.7917 9,261,080.0000 Agriculture 
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Appendix B 

Data of Landscape Indices of Each Ecological Profiles 

B.1 Class area (CA) and number of patch (NP) of each ecological profile 

Number 
Habitat/Ecol
ogical Profile 

Habitat Network 

Landscape indices    

Class Area 
(ha) 

Class Area 
(%) 

Number 
of Patch  

Number 
of Patch 

(%) 

1 Forest-
Grassland/m
ammals High 

area 
demands 

Roadless Area 
    Habitat Network 1 7639.40 100 30 100 

Habitat Network 2 1054.71 100 21 100 

Fragmented Area  
    Habitat Network 1 5,638.25 73.80 13 43.33 

Habitat Network 2 292.95 27.78 2 9.52 

Disturbed Area  
    Habitat Network 1 3,933.97 51.50 2 6.67 

Habitat Network 2 110.86 10.51 2 9.52 
2 Forest- 

grassland/m
ammals -

medium area 
demands 

Roadless Area 
    Habitat Network 1 16281.58 100 61 100 

Habitat Network 2 12772.75 100 40 100 

Fragmented Area  
    Habitat Network 1 13720.49 84.27 41 67.21 

Habitat Network 2 10639.19 83.30 31 77.50 

Disturbed Area  
    Habitat Network 1 11583.40 71.14 6 9.84 

Habitat Network 2 8071.19 63.19 3 7.50 
3 Forest 

mammals/be
low 1500 m 

area 
demands 

Roadless Area 
    Habitat Network 1 16966.42 100 162 100 

Habitat Network 2 17564.46 100 224 100 

Fragmented Area  
    Habitat Network 1 14844.46 87.49 213 131.48 

Habitat Network 2 15199.29 86.53 171 105.62 

Disturbed Area  
    Habitat Network 1 13527.34 79.73 33 20.37 

Habitat Network 2 6014.17 34.24 12 5.36 
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Number 
Habitat/Ecological 

Profile 
Habitat Network 

Landscape indices    

Class Area 
(ha) 

Class Area 
(%) 

Number 
of Patch  

Number 
of Patch 

(%) 

4 Forest 
mammals/above 

1500 m area 
demands 

Roadless Area 
    Habitat Network 1 3351.44 100 6 100 

Habitat Network 2 2439.11 100 6 100 

Fragmented Area  
    Habitat Network 1 3327.01 99.27 6 100.00 

Habitat Network 2 2269.15 93.03 1 16.67 

Disturbed Area  
    Habitat Network 1 3030.26 90.42 4 66.67 

Habitat Network 2 1997.39 81.89 1 16.67 
5 Forest/bird Roadless Area 

    Habitat Network 1 16198.51 100 63 100 

Habitat Network 2 14246.77 100 43 100 

Fragmented Area  
    Habitat Network 1 14775.97 91.22 35 12.69 

Habitat Network 2 11371.13 79.82 46 9.30 

Disturbed Area  
    Habitat Network 1 12563.30 77.56 8 55.56 

Habitat Network 2 10721.18 75.25 6 44.44 
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Appendix C 

Keystone Species in Gunung Halimun Salak National Park 

C.1 Some of keystone species in GHSNP that represent each ecological 
profile 

 

 

 

 

 

 

 

 

 

 

 

 

(a): Panthera pardus, Javan leopard; (b) Prionailurus bengalensis, Leopard cat; (c) Nisaetus bartelsi, 

Javan hawk-eagle; (d) Trachypithecus auratus, Javan  langur (B. T. N. G. H. Salak, 2016) 
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Appendix D 

MAPS 

D.1 Mean Species Abundance (MSA) of mammals in Gunung Halimun Salak National Park 

 



 
 

104 

 

D.2 Mean Species Abundance (MSA) of Birds in Gunung Halimun Salak National Park 




