THE ECONOMIC IMPACTS OF CLIMATE CHANGE ON CANTERBURY DAIRY FARMS Anna Concepción Oñate Narciso Dr Nazmun Ratna Prof Geoffrey Kerr Lincoln University 11 February 2015 59th AARES Conference, Rotorua, New Zealand **INTRODUCTION** How does farm production react to climate change and variability? - How does farm production react to climate change and variability? - · How would these changes affect farm profits? - How does farm production react to climate change and variability? - · How would these changes affect farm profits? - What are the externalities that need policy considerations? - How does farm production react to climate change and variability? - · How would these changes affect farm profits? - What are the externalities that need policy considerations? #### DAIRYING IN CANTERBURY #### 2004 - 2005 Representation of farms and herd size (Burns, 2013) #### DAIRYING IN CANTERBURY ## <u>20</u>12 – 2013 Representation of farms and herd size (Burns, 2013) # EXPORT VALUES FOR SELECTED SECTORS (1993–2013) Source: Statistics New Zealand (2013) METHOD #### **METHOD: SIMULATION** #### DAIRYMOD · Developed by Johnson, et al. #### **METHOD: SIMULATION** #### DAIRYMOD - · Developed by Johnson, et al. - Multi-paddock, biophysical simulation model for dairy systems 7 #### **METHOD: SIMULATION** #### DAIRYMOD - · Developed by Johnson, et al. - Multi-paddock, biophysical simulation model for dairy systems - Used in previous studies in New Zealand and Australia #### DAIRYMOD #### **DATA SOURCES** Farm data (Canterbury region) · DAIRYNZ Climate data (projections for climate scenarios) · NIWA #### **CLIMATE SCENARIOS** # Adapted from the IPCC 5th Assessment Report - · RCP 2.6 (E1): aggressive mitigation scenario - · RCP 4.5 (B1): eco-friendly/globalised world - · RCP 6.0 (B2/A1B): high-tech/regionally sustainable - RCP 8.5 (A2/A1FI): divided world/high population growth/poorly-developed institutions and governance #### **CLIMATE SCENARIOS** # Adapted from the IPCC 5th Assessment Report - · RCP 2.6 (E1): aggressive mitigation scenario - · RCP 4.5 (B1): eco-friendly/globalised world - · RCP 6.0 (B2/A1B): high-tech/regionally sustainable - RCP 8.5 (A2/A1FI): divided world/high population growth/poorly-developed institutions and governance #### **SCENARIO ANALYSIS** Applied DairyNZ and NIWA data to DairyMod model to analyse climate change effects in: · Lactation (milk production) #### **SCENARIO ANALYSIS** Applied DairyNZ and NIWA data to DairyMod model to analyse climate change effects in: - · Lactation (milk production) - · GHG emissions #### **EMISSIONS** · Increase in CO_2 e from N_2O (but very small) #### **EMISSIONS** - · Increase in CO_2 e from N_2O (but very small) - · No change in CO_2 e from CH_4 #### **EMISSIONS** - · Increase in CO_2 e from N_2O (but very small) - · No change in CO_2 e from CH_4 - · Irrespective of the increase in stocking rate ### CO2E FROM N2O #### CO2E FROM CH4 #### **NET CO2E EMISSION** Decrease in lactation across climate scenarios #### Decrease in lactation across climate scenarios · Expected decrease in profits #### Decrease in lactation across climate scenarios - · Expected decrease in profits - The next stage of the research will be to see whether management would have a mitigating effect on lactation decrease #### Decrease in lactation across climate scenarios - Expected decrease in profits - The next stage of the research will be to see whether management would have a mitigating effect on lactation decrease #### LACTATION RESULTS · As the stock density changes, the intake balance changes #### LACTATION RESULTS - · As the stock density changes, the intake balance changes - · Paddocks are being over-grazed #### LACTATION RESULTS - · As the stock density changes, the intake balance changes - · Paddocks are being over-grazed - No radical environmental impact in terms of GHG emissions # Thank you!!! And any question/s?