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Glucocorticoids (GCs) have been used as therapeutic agents for children with acute lymphoblastic leukaemia (ALL) for over 50
years. However, much remains to be understood about the molecular mechanism of GCs actions in ALL subtypes. In this study,
we delineate differential responses of ALL subtypes, B- and T-ALL, to GCs treatment at systems level by identifying the differences
among biological processes, molecular pathways, and interaction networks that emerge from the action of GCs through the use of a
selected number of available bioinformaticsmethods and tools.We provide biological insight into GC-regulated genes, their related
functions, and their networks specific to the ALL subtypes. We show that differentially expressed GC-regulated genes participate
in distinct underlying biological processes affected by GCs in B-ALL and T-ALL with little to no overlap. These findings provide
the opportunity towards identifying new therapeutic targets.

1. Introduction

Childhood leukaemia, specifically, acute lymphoblastic
leukaemia (ALL) can be divided into two subgroups: T-
lineage and B-lineage. Glucocorticoids (GCs) are a type
of steroid hormones. Synthetic glucocorticoids such as
dexamethasone (Dex) and prednisolone (PRD) are the most
important drugs that have been used extensively in the treat-
ment of children with acute lymphoblastic leukaemia (ALL)
because of their ability to induce apoptosis (cell death) in the
lymphoid. There are more than 2000 studies on GC-induced
apoptosis in lymphoid cells [1], of which some studies focus
on identifying GC-regulated genes by using gene expression
profiles from different types of glucocorticoid drugs in
different clinical settings (in vivo, in vitro, and human
samples) [2–4]; however, there are only a few overlapping
genes identified from these studies. Therefore, there is a need
to verify GC-regulated genes to better define the underlying
network of genes involved in the actions of GCs.

In this study, we illustrated how a combination of existing
bioinformatics tools can address the heterogeneity of ALL
in three different levels: gene, gene set, and network and
pathway. First, at the gene level, we identified GCs-regulated
candidate genes for each subtype.The second level was to use
a group of genes (gene sets) that may have similar functions.
We aim to ascertain whether each gene set from each subtype
is significantly enriched in a list of selected phenotypes. The
third level was to construct gene networks of the proposed
GCs regulated genes from three selected web-based tools:
Ingenuity Pathway Analysis (IPA), Search Tool for The
Retrieval of Interacting Genes (STRING), and GeneMultiple
Association Network Integration Algorithm (GeneMANIA).

2. Materials and Methods

2.1. Dataset. Raw microarray data in the format of CEL files
were obtained online from the Gene Expression Omnibus
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(GEO) (http://www.ncbi.nlm.nih.gov/geo/). Raw data, com-
prising gene expression measurements for 13 patients (three
T-ALL patients and ten B-ALL patients), contained gene
expression measurements collected at three time points: 0
hour, 6/8 hours, and 24 hours. The experiments and analysis
conducted on the data are described in Schmidt et al. [5].
Summary of dataset analysis methodology used in this study
is shown in Figure 1.

2.2. Normalization. The normalization used in this study is
Robust Multiarray Average (RMA) [6]. RMA uses a global
correction, quantile normalization, and median polish sum-
marization. There are many existing software and tools for
RMA calculation available from both commercial and free
sources. This study used R (http://www.r-project.org/) and
BioConductor (http://www.bioconductor.org/).Thedifferen-
tially expressed genes were selected from the normalised data
according to specified threshold activation (log-ratio of ±1 or
higher or ±0.7 or higher).

2.3. Gene Set Enrichment Analysis and Enrichment Map.
Gene set enrichment analyses (GSEA) [7, 8] are commonly
used to determine the biological characterization, statistical
significance, and concordant differences between an experi-
mental gene set and a selected gene list from annotated gene
sets knowledge base stored onMolecular SignaturesDatabase
(MSigDB). GSEA can be downloaded from http://www
.broadinstitute.org/gsea/downloads.jsp. The Jaccard coeffi-
cient is used to compare the similarity between two sample
gene sets A and B and defined as the intersection between
group A and B divided by their union. The results from
GSEA are then visualized through the enrichment map [9],
a Cytoscape plugin for network visualization. The ranked
experimental gene list along with the enriched gene sets from
GSEA is used to build the network of gene sets (nodes) where
edges represent their similarity. Size of a node varies by gene
set size and the thickness of the edge represents the degree of
correlation between two gene sets.

2.4. Networks and Pathway Analysis

2.4.1. Ingenuity Pathway Analysis Software (IPA). IPA (Inge-
nuity Systems, Redwood City, CA, USA, http://www.inge-
nuity.com/) is a web-based application that applies a systems
biology approach to solve various biological problems. The
knowledge base of IPAhas been curated from journal articles,
textbooks, and other data sources. This software has many
applications; only functional analysis of genes and their
networks were used in this study. The 𝑝 value defines the
significance of gene function in a network as well as gene to
gene relation, and a 𝑝 value less than 0.05 signifies a statisti-
cally significant and nonrandom association.The right-tailed
Fisher Exact Test is used to calculate 𝑝 value.

2.4.2. Analysis of Network Invoked by GC-Regulated Genes.
The biological knowledge of gene and protein interactions
is growing rapidly and there are many tools and curated
databases available on a large scale. Insightful knowledge
gained from studying gene sets rather than individual genes
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Figure 1: Summary of dataset analysis methodology used in this
study.

using network-based approaches can reveal network patterns
and relevant molecular pathways from the experiment gene
sets. In this study, we utilized two different freely accessible
and user-friendly web tools as follows.

Gene Multiple Association Network Integration Algo-
rithm (GeneMANIA) [10, 11] (http://www.genemania.org/) is
a web-based tool for prediction of gene function or imple-
mented as a Cytoscape plugin tool. Based on single gene or
gene set query from 7 organisms, it shows results for inter-
active functional associative network according to their
coexpression data from Gene Expression Omnibus (GEO),
physical and genetic interaction data derived from BioGRID,
predicted protein interaction data based on orthology from
I2D, colocalization, shared protein domain, andGO function.

Search Tool for the Retrieval of Interacting Genes
(STRING) version 9.1 [12, 13] (http://string-db.org/) is an
online protein-protein interaction database curated from
literature and predicted associations from systemic genome
comparisons.User can query using single ormultiple name(s)
and protein sequence(s). The protein interactions can be
displayed according to their confidence, evidence, actions, or
interactions.

3. Results and Discussion

3.1. Identification of GC-Regulated Genes through a Refined
Analysis of Data. Our initial analysis of this time series gene
expression data for differentially expressed gene identifica-
tion followed the same method used by the original authors
[5]. All 39 files were processed and normalised by Robust
Multiarray Average (RMA) in R as in the original study. The
selected normalization method may have an effect on down-
stream analysis, for example, reverse engineering analyses
[14]; however, investigating this effect is beyond the scope of
this study. We found that combining B-ALL and T-ALL data
(as done by the original authors) compromises the accuracy
of selection of differentially expressed. For example, the orig-
inal authors found 22 differentially expressed genes from the
combined dataset. However, a closer inspection revealed to us
that only 8/22 candidate genes belonged to both B-ALL and
T-ALL and 14/22 genes were found only in B-ALL or T-ALL.

Therefore, we separated the data from the two types of
patients and a new set of differentially expressed genes was
selected for T-ALL and B-ALL for each time point. Our new
criteria used were log ratio of ±1 or higher for at least five
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out of ten (50%) B-ALL patients and two out of three T-
ALL patients. We also analysed data for early response (6
hours) and late response (24 hours), but we added an analysis
of response between 6 and 24 hours because this can give
more information about gene activity at different periods.The
results are shown in Table 1.

Table 1 shows the number of differentially expressed
genes 6 hours after treatment, between 6 hours and 24 hours,
and 24 hours after treatment (before and after deleting cell
cycle genes) with our new criteria. Before deleting the cell
cycle genes, the final set had 237 probe sets (203 unique probe
sets after removing repeats) for T-ALL for the combined time
points and 257 probe sets (207 unique probe sets) for B-ALL
and these were combined into one set.The final set contained
386 unique probe sets (24 unique probe sets were common
to T-ALL and B-ALL, of which three probes were not found
by the original authors. These were converted from probe
set ID to gene symbol by using DAVID (the Database for
Annotation, Visualization and Integrated Discovery). Then
the cell cycle genes were deleted from this dataset (cell cycle
gene list was retrieved from KEGG, Cell cycle database, and
the original article).

After deleting cell cycle genes, T-ALL contained 222 probe
sets (172 unique probe sets) and B-ALL contained 190 probe
sets (155 unique probe sets) for the combined time points.The
final set had 308 unique probe sets (304 genes) responsive to
GCs (19 unique probe sets were common to T-ALL and B-
ALL).

We then compared our new gene list with the genes
reported in previous studies. None of the previous studies
using the same drugs and the same times at which data were
collected show similar results. Our main focus here is to
use relevant experimental data from clinical samples, such as
the study by Tissing et al. [15], where the investigators used
the same drug on retrieved tissues from childhood leukemia
patients, not cell cultures, but used a different normalization
process, variance stabilization procedure (VSN), than of our
study. They compared the primary childhood ALL cells
treated with in vivo prednisone and leukemic cells of child-
hood ALL exposed to in vitro prednisolone, for finding early
apoptosis responsive genes at 8 hours after treatment. Our 29
differentially expressed probe sets from T-ALL and 47 probe
sets from B-ALL (Table 1, first two columns containing cell
cycle genes) were compared with the 39 upregulated and 12
downregulated genes from Tissing et al. [15]. We found four
common induced genes: BTG1 (T-ALL), FKBP5, ZBTB16,
and SNF1LK (B-ALL). However, no common repressed genes
were found between our results and Tissing et al. [15] for
either B-ALL or T-ALL.

We selected another study, Thompson and Johnson [16],
based on different chemotherapeutic drugs, different time
points, and different tissues, but same gene selection criteria
as ours. Thompson and Johnson [16] identified 39 upregu-
lated genes and 21 downregulated genes in CEM (a cell line
derived from human lymphoid cells). In addition, they pro-
posed a time frame for apoptosis gene regulation after CEM-
C7 were exposed to dexamethasone [16]. Comparing gene
sets reported byThompson and Johnson [16] with our differ-
entially expressed genes from T-ALL and B-ALL patients, we

found few overlapping genes, but more than what we found
from comparisonwith Tissing et al. [15]. T-ALL had five over-
lapping genes (BCL2L1, SOCS1, BTG1, CD69, and NR3C1)
and B-ALL had four overlapping genes (SOCS1, DFNA5,
WFS1, and SLA). Of these two sets, BTG1 is the only common
gene between our T-ALL, Tissing et al. [15] and Thompson
and Johnson [16].There were no common genes between our
B-ALL, Tissing et al. [15] andThompson and Johnson [16].

3.2. Extraction of Intrinsic Biological Patterns with Gene
Enrichment Analysis Applied to Gene Expression Data. Iden-
tification of differentially expressed genes between the two
classes has limited value in gaining biological insights unless
it is integrated with other analyses. The gene set enrichment
analysis (GSEA) method paves the way to interpret gene
expression data by using prior knowledge databases to define
functionally characterized gene sets and to reveal whether
the identified gene sets have common biological functions or
gene ontologies.

ALL gene expression data corresponding to all 54,675
probe sets on the chip were collapsed into 20,606 gene
symbols. A gene set S, a subset derived from the gene symbols,
was used to calculate the enrichment score, which placed the
set S, according to statistical significance, at the top or bottom
of the selected list L of gene sets from MSigDB (Molecular
Signature Database, version 4.0 updated May 31, 2013). The
list L that was used in this study consisted of two types:
(1) functional set (C

2
) 4722 gene sets collected from KEGG

online pathway database and (2) GO gene set (C
5
) 1454 gene

sets according to the GO terms. The differentially expressed
genes found in this study belonged to 176 gene sets and out
of these 130 gene sets were upregulated in B-ALL and 46
gene sets were upregulated in T-ALL. For B- and T-ALL,
12 and 8 gene sets were significantly enriched at nominal 𝑝
value <5%, respectively. Table 2 shows the different KEGG
pathways where B- and T-ALL gene sets were enriched. The
limitation of GSEA is the gene set redundancy and difficulty
in interpreting the results from large gene lists. We used the
enrichment map, a Cytoscape plugin, to build the network
fromGSEAGo term enrichment results as shown in Figure 2.
Node size defines the number of genes in each gene set and
edge thickness represents the proportion of overlap between
gene sets, calculated using the Jaccard coefficient. Blue repre-
sents T-ALL gene sets and red represents B-ALL gene sets.
From Table 2 and Figure 2, we differentiate the functional
characteristics of metabolic pathways (KEGG) and biological
processes (GO) in which B- and T-ALL are involved. These
distinctions are as follows: B-ALL is likely to be involved in
asthma, B-cell receptor signalling pathway, and phosphory-
lation, while T-ALL is involved in T-cell receptor signalling
pathway, primary immunodeficiency process, and leucocyte.

3.3. Networks and Pathways Analysis

3.3.1. Inferring GR Gene Networks fromGC-Induced Apoptosis
Genes. Dataset containing expression values of GCs-
regulated genes were uploaded and analyzed using
Ingenuity Pathways Analysis software (Ingenuity Systems,
http://www.ingenuity.com/). Ingenuity Pathway Analysis
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Table 1: Differentially expressed probe sets 6 hours after treatment, between 6 hours and 24 hours, and 24 hours after treatment at ±1 log2
ratio fold change (before and after deleting cell cycle genes).

0–6 hours 6–24 hours 0–24 hours
Before After Before After Before After

Induced Repressed Induced Repressed Induced Repressed Induced Repressed Induced Repressed Induced Repressed
T-ALL 19 10 19 9 59 51 56 49 58 40 56 33
B-ALL 24 23 24 9 16 13 16 9 73 108 71 61

Table 2: Top 5 of KEGG enrichment term of B- and T-ALL.

Enriched in B-ALL FDR Enriched in T-ALL FDR
KEGG ASTHMA 0.001 KEGG T CELL RECEPTOR SIGNALING PATHWAY 0.0003
KEGG B CELL RECEPTOR SIGNALING PATHWAY 0.002 KEGG PRIMARY IMMUNODEFICIENCY 0.07
KEGG ANTIGEN PROCESSING AND
PRESENTATIONKEGG LEISHMANIA INFECTION 0.003 KEGG HEMATOPOIETIC CELL LINEAGE 0.209

KEGG LEISHMANIA INFECTION 0.009 KEGG BIOSYNTHESIS OF UNSATURATED FATTY ACIDS 0.162
KEGG TYPE I DIABETES MELLITUS 0.058 KEGG ALPHA LINOLENIC ACID METABOLISM 0.210
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Figure 2: Gene set enrichment analysis delineates gene ontology (GO) that differentiates between B- and T-ALL with respect to biological
processes. Gene set enrichment analysis (GSEA) comparing B-ALL (red) and T-ALL (blue) in ALL dataset, illustrating differentiation of gene
ontology (biological processes) between two subgroups (5%FDR,𝑝 = 0.05). Cytoscape and enrichmentmapwere used for visualization of the
GSEA results; only gene sets fromMSigDBC5 (gene ontology) were used. Nodes represent enrichedGO gene sets, whose size reflects the total
number of genes in that gene set. Edge thickness (green line) represents the number of overlapping genes between gene sets calculated using
Jaccard coefficient. Single nodes and 2-node interactions for both B- and T-ALL, a 5 node-interaction for B-ALL, and interaction between a
large number of nodes for T-ALL are shown.
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software (IPA) maps the genes to pathways generating
networks using an algorithm based on gene connectivity
with cutoff of 35 molecules per network.

We used the gene list after deleting cell cycle genes to
infer gene networks through IPA software. For T-ALL, there
are 28 probe sets at 0–6 hours, 105 probe sets at 6–24 hours
and 89 probe sets at 0–24 hours. For B-ALL there are 33
probe sets at 0–6 hours, 25 probe sets at 6–24 hours, and
132 probe sets at 0–24 hours. Results from IPA typically
are a number of networks ranking from one to seven for
each time point with a maximum of 35 molecules in each
network consisting of those genes from our list plus those
added by IPA. Processing of these networks were fairly time
consuming, but wemanually identified common genes active
throughout the whole period (at least between two time
points) which can be referred to as genes predominant in T-
and B-ALL separately or common to both.

Overall, for T-ALL patients, 48 unique genes (23 genes
were given as input and 25 were added by IPA) were found for
the three different time points from IPA. For B-ALL patients,
47 unique genes (21 genes were given as input and 26 were
added by IPA) were found.

In the next step, we only selected genes that were found at
least in two of the three time intervals from our list to create
gene networks. T- and B-ALL patients were quite different
in the “molecular and cellular functions” and “canonical
pathways and functions.” For example, molecular and cellular
functions of T-ALL were involved more in cell death, while
those of B-ALL were more involved in cell cycle. This finding
may imply that (i) apoptosis process in T-ALL may occur
before B-ALL during the same period of treatment; (ii) there
are many cells progressing through cell cycle (cycling cells)
in B-ALL, while many noncycling cells are in T-ALL. Many
pathways/steps are involved in cycling cells than in non-
cycling cells in the apoptosis process after glucocorticoid
treatment [17]. Genes found in both T-and B-ALL were
involved in cancers functions.

3.3.2. Analysis of Network Invoked by GC-Regulated Genes.
Network analysis can help understand the molecular and
cellular interactions [18]. It can be visualized to represent
entities (nodes) and their relationships (arcs). The advent of
high throughput technology has led to a large increase in
publicly available information. Each data type can capture
different aspect of functional roles of interested genes. In this
section, we investigated functional interaction among genes
and proteins in the cell using available data and knowledge
bases. We selected two different web-based network tools:
GeneMANIA and STRING using the differentially expressed
genes from early response of B- and T-ALL as a query
gene sets.These toolsets integrates computationalmethods to
predict the gene functions based on a collection of interaction
networks.

GeneMANIA is a large collection of interaction networks
from several data sources which identify genes and networks
that are functionally associated (protein and genetic inter-
actions, pathways, coexpression, colocalization, and protein
domain similarity) with the query gene sets. Another advan-
tage is that the user can run this as a pluginwith theCytoscape

tool allowing the user to apply other tools to analyze the
networks. STRING relies on the phylogeny to infer the func-
tional interaction (protein networks) with direct interaction
to score nodes, while GeneMANIA uses functional genomic
data with label propagation to score nodes and generate
gene networks. STRING uses precomputed networks, while
those of GeneMANIA are not precomputed, and user can
upload their ownnetworks. STRINGcovers a large number of
organisms, while GeneMANIA only covers 7 organisms but
allows the user to upload or add more networks through the
plugin. In addition, users can run enrichment analysis (GO,
KEGG, PFAM, INTERPRO, and protein-protein interaction)
on STRING.

The results of genes and network that are functionally
associated with the gene set from early response of T-ALL
are shown in Figure 3. We compared the two networks
from STRING and GeneMANIA based on the interactions
they revealed; here we used NR3C1 as the centre gene in
the comparison. All interactions found in STRING were
found in GeneMANIA as described in more detail in
Table 3. Comparison between the results from both tools can
be used to confirm the functional associations of the inter-
ested gene sets. There is evidence of overlap and uniqueness
in the interactions revealed by the two web-based tools.

4. Summary and Conclusions

Weused a dataset from Schmidt et al. [5], themost prominent
dataset at the time because it used gene expression data
collected from childhood leukemia patients at two time
points after treatment. We found that the selected dataset is
reproducible and robust.The original differentially expressed
genes were proposed by the authors for the combined dataset;
however, only some of these genes were found in each sub-
type. To resolve the discrepancy, we proposed a new criteria
for the two subtypes separately (log 2 ratio of ±1.0 for five out
of ten B-ALL patients and two out of three T-ALL patients)
and new gene sets were generated. Furthermore, we extended
the analysis to find differentially expressed genes between 6
and 24 hours. In addition, we compared this gene set with
differentially expressed gene sets from two previous studies
and found only a few common genes possibly indicating that
different chemotherapeutic agents and tissues may produce
different results for the target gene set.

We identified common genes bymanually extracting con-
nections from inferred gene networks for each time interval.
In addition, results from IPA showed different molecular and
cellular functions, canonical pathways and functions between
T- and B-ALL. T-ALL is more involved in cell death, while B-
ALL is more involved in cell cycle.

Converting gene list to gene sets, we identified the known
metabolic pathways that were enriched in each subtype using
GSEA with enrichment map. We subsequently compared
the top 5 gene ontology (GO) functions for B- and T-ALL.
Then two network based tools: GeneMANIA and STRING
were used to identify the gene network. STRING uses
protein names to search for known and predicted protein
interactions while GeneMANIA uses gene symbols to search
for gene function prediction(s). Comparing gene interaction
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(a) (b)

Figure 3: Gene network of T-ALL (early response) derived fromGeneMANIA (a) and STRING (b) (NR3C1 interaction is highlighted). (a) A
gene network from GeneMANIA shows the relationships for genes from the list (nodes) connected (with edges) according to the functional
association networks from the databases. (b)The figure illustrates the protein interaction upon querying STRING protein network (evidence
view) inHomo sapienswith 49 proteins. Additional information from other resources can be retrieved for each protein and interaction. Nodes
represent proteins and different line colours denote the type of evidence for the interaction.

Table 3: Interactions for T-ALL (early response) network using GeneMANIA and STRING.

Interaction GeneMANIA STRING

NR3C1 → FKBP5 Coexpression
Predicted

Coexpression
Comentioned in PubMed abstracts

NR3C1 → JUN Physical interaction
Comentioned in PubMed abstracts
Association in curated databases,
experiments data

NR3C1 → KDM5A Physical interaction Experiments data
NR3C1 → STS Colocalization —
NR3C1 → TRIM23 Coexpression —
NR3C1 → EPM2AIP1 Coexpression —
NR3C1 → CHST11 Coexpression —
NR3C1 → FBXL17 Coexpression —
FOS → NR3C1 Physical interaction —
FKBP4 → NR3C1 Predicted —
DYNC1l1 → NR3C1 Predicted —

JUN → JUND
Physical interaction
Coexpression
Shared protein domains

Coexpression
Comentioned in PubMed abstracts
Association in curated databases
Posttranslational modification

JUN → PPP1R15A Coexpression
Comentioned in PubMed abstracts

Coexpression
Comentioned in PubMed abstracts

for T-ALL from GeneMANIA and STRING, we found some
overlap.

In summary, we utilized the strengths of existing net-
work/pathway tools and databases to gain insight into pro-
cesses related to childhood leukemia subtypes; T-ALL and B-
ALL have distinct molecular interaction patterns visible from
various systems levels, including gene, gene set, molecular
pathway, and gene networks. Discriminating between the two
groups can help to improve the understanding of a drug’s

mechanism and further improve targeting in therapeutics
drug research. In addition, the future research should con-
sider combining RNA-Seq data [19–21] for identification of
novel prognostic markers and therapeutic targets.
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