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Abstract: In recent years, Ghanaian agriculture has witnessed a surge in the use of agrochemicals,
with the likely consequence that nonoptimal levels of application could cause environmental damage
and economic losses. We identify the factors that affect the adoption of agrochemicals and the intensity
of use in Ghanaian rice farming. We estimate the average treatment effects of chemical fertilizer and
herbicide adoption using a Dose–Response Model (DRM). Our results show that a wide range of
socioeconomic factors, including education, asset ownership, extension service, off-farm income,
and land ownership affect adoption and use intensity of agrochemicals. On average, chemical fertilizer
usage is associated with a 10% increase in the average treatment effect; low levels of chemical fertilizer
have a negative impact on rice yield, and the result turns positive with more intensive use. Similarly,
herbicide treatment generates a 7% increase in the average treatment effect, but higher herbicide levels
will have negative causal effects on rice yield, and the result worsens with more herbicide treatment.
Both agricultural technologies were designed to be used together, hence the appropriate mix of levels
and intensity is crucial to achieve greater benefits. The DRM accounts for heterogeneity in the sample
and is a useful tool to develop guidance on optimal levels of agrochemicals.
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1. Introduction

Cereals such as maize and rice are becoming a more essential part of Ghana’s staple
diet. In Ghana, 1,300,000 MT of rice was eaten in 2018–2019, compared to 470,000 MT
produced, resulting in a 63.9 percent output deficit [1]. The country has great potential
to close the gap that exists between domestic demand and supply through domestic
production [2]. Various interventions and investments, such as the “Planting for Food and
Jobs”, have been made by successive governments, yet domestic production is still not at
pace with the growing demand [3]. Ghana has the right agronomic conditions necessary
for whole-year rice production [4]. Nonetheless, issues such as the availability and expense
of improved rice seeds and fertilizer continue to plague domestic rice cultivation, resulting
in low fertilizer use and poor agronomic practices. In addition, given the finite nature of
arable land, most agricultural policies designed to improve domestic food production now
advocate substitution of yield improvement for expansion in land under cultivation.

In recent years, growth in the use of agrochemicals in crop production has surged as
Ghana seeks to increase rice production. Agrochemicals improve crop productivity via
protecting crops from insects, weeds, and other pathogens that impact crop yield and, at
the same time, replenish soils deficient in plant nutrients [5]. The conclusions on the nexus
between agrochemical use and crop productivity among existing studies indicate that agro-
chemical use has conditional effects on crop yield [6]. Since agrochemicals increase crop
productivity, applying agrochemicals is stimulated by economics, though they also come
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with significant environmental costs that are always internalized [7]. For this reason, know-
ing the determinants and optimal levels of agrochemical usage is important. Additionally,
focusing on the distribution of the impact and the average treatment effects could provide
a more precise depiction of how adoption of agrochemicals affects productivity [8,9].

This study seeks to fill the following gap in the existing literature. Through the main
objective, we identify the determinants of adoption and intensity of agrochemical use in
Ghanaian rice farming. We also assess the influence of pesticide adoption on rice yields,
the extent to which yields vary with adoption level, and the amount of agrochemicals that
should be used to avoid overuse and environmental damage. This is important because the
overuse of agrochemicals may result in low nutrient use efficiency and higher production
costs for farmers [10]. Unnecessarily huge losses of nutrients are also likely to lead to severe
environmental consequences such as acidification of agricultural lands and contamination
of soils, surface and groundwater, and agricultural produce [10,11].

This study contributes to the environmental sustainability discourse on the use of agro-
chemicals in crop production. Our study attempts to demystify most farmers’ perception
that high levels of application of agrochemicals lead to enormous benefits in terms of crop
yield. These agrochemicals have emerged as the primary source of non-point pollution in
Ghana [12]. Second, this study presents a useful empirical application of a more robust
Dose–Response Model (DRM) by Cerulli [13] to understand how different levels or intensi-
ties of agrochemicals impact crop yield. According to Cerulli [13], the DRM is useful when
treatment is continuous, individuals react heterogeneously to observable confounders, and
treatment is endogenous. Farmers are known to exhibit heterogeneous behavior in making
agricultural technology adoption decisions. Understanding the many adoption effects can
thus help us move beyond the simple average effects that have hitherto dominated the
field. Moreover, this study provides insights into development of the optimal mix and
levels of usage of agrochemicals in rice production to help minimize costs associated with
their overuse. This is important especially for smallholder farmers in developing countries,
given that most of them are cash-constrained and therefore only able to purchase and apply
a fixed amount of farming inputs [14–16] such as agrochemicals, thus impacting crop yield
and subsequently their welfare.

The organization of the subsequent parts of the paper is as follows: Section 2 presents
the econometric strategy and estimation procedure, data adopted, and the descriptive
statistics of the study variables. The empirical findings and discussion are outlined in
Section 3, and Section 4 concludes and suggests policy implications based on the results.

2. Materials and Methods
2.1. Econometric Framework and Estimation Strategy

A Dose-Response Model (DRM) is adopted to study the impact of agrochemical
use levels on rice yield. This is an econometric procedure for evaluating the effect of a
continuous treatment on an outcome variable. Several authors [17,18] implemented various
approaches to relax different parametric conventions, and these led to improvements in
Dose–response Model estimations. Nonetheless, these alternatives are ill-equipped to
incorporate (i) a zero-treatment probability mass and (ii) the possibility of endogeneity
among treatments in estimating the dose–response functions.

Unlike prior versions by Hirano and Imbens [19], the DRM proposed by Cerulli [13]
does not require full normality assumptions and is applicable to situations where many
individuals have 0 treatment levels. Unlike the semiparametric method employed by
Adorno et al. [20] and Guardabascio and Ventura [17], the DRM assumes a parametric form
of the probable results with additive separability. Another advantage of this method is
that the generalized propensity score estimates are not a prerequisite. The recommended
instrumental variable procedure under the DRM employs the Heckman bivariate selection
model that necessitates additional assumptions. Finally, it takes cognizance of the existence
of observable heterogeneity.



Agriculture 2022, 12, 1527 3 of 15

2.2. Theoretical Model

Let us assume there are two exclusive sets of farmers: adopters of agrochemicals
(treated) and non-adopters (untreated), and let the adoption of agrochemicals Pi = [0, 1],
indicating whether a farmer adopted agrochemicals (Pi = 1) or otherwise (Pi = 0). Let us
further assume that farmers have varying levels of agrochemical use intensity (t), and for
non-adopters of agrochemicals t = 0. Adopters of agrochemicals assume scores of more
than zero (t > 0), and within the rice production calendar under review, farmers have
applied at least one agrochemical. Then, t is consequently assumed to take scores stringently
in a continuous series of [0 : 100]. Moreover, assume that the rice yield (outcome) of an
agrochemical adopter (treated) is well-defined as y1i and the rice yield of a non-adopter
(untreated) is y0i. In addition, suppose a vector of M exogenous and observable features
(confounders) x = {x1i . . . xMi} describe the entire number of farmers. Let N denote the
total number of farmers, with N1 being the sum of adopters, and N0 being the total number
of non-adopters, so that N = N1 + N0. Following Cerulli [13], the rice yield outcomes can
be modeled as

p = 1 : y1 = µ1 + g1(x) + h(t) + e1 (1)

p = 0 : y0 = µ0 + g0(x) + e0 (2)

where y1 and y0 are the rice yield outcomes of agrochemical adopters and non-adopters,
respectively, µ1 and µ0 are scalars, g1(x) and g0(x) represent farmers’ response to the vector
confounding variable (x) in terms of adopting as against not adopting, h(t) evaluates the
reaction of rice yield to the quantities or degree of agrochemical adoption assuming the
score of 0 if p = 0 and 6= 0 if p = 1, and e0 and e1 have zero means.

With the assumption that g1(x) and g0(x) take linear parametric patterns as g1(x) = xδ1
and g0(x) = xδ0, the treatment effect (TE = y1 − y0) is defined as the causal parameter
conditioned on x and t, and is specified as

ATET(x, t > 0) = E(y1 − y0|x, t > 0) (3)

ATENT(x, t = 0) = E(y1 − y0|x, t = 0) (4)

and

ATE(x, t) = E(y1 − y0|x, t)) =
{
(µ1 − µ0) + x(δ1 − δ0) + h(t) if t > 0

(µ1 − µ0) + x(δ1 − δ0) if t = 0)

}
=

{
µ + xδ + h(t) if t > 0

µ + xδ if t = 0
(5)

where µ = (µ1 − µ0) and δ = (δ1 − δ0), ATET and ATENT denote the average treatment
effect on the treated (adopters of agrochemicals) and average treatment effect on non-
treated (non-adopters of agrochemicals), respectively. ATE is the average treatment effect;
rewriting Equation (5) conditional on x, t, w leads to

ATE(x, t, p) =
{

ATE(x, t > 0) if p = 1
ATE(x, t = 0) if p = 0

= p[µ + xδ + h(t)] + (1− p)[µ + xδ] (6)

By the law of iterated expectations, the unconditional ATE can be obtained as

ATE = E(x,t,p)[ATE(x, t, p)] = P(p− 1)(ATET) + P(p = 0)(ATENT) (7)

Thus,

ATET = µ +
−

xt>0δ +
−
h (8)

and
ATENT = µ +

−
xt=oδ (9)

where
−
h is the average response function taken over t > 0. P(p = 1) is the probability of

adopting agrochemicals, and P(p = 0) is the probability of not adopting agrochemicals.
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Therefore, the dose–response function is an algebraic derivative of ATE(x, t, p) over x and
p so that:

ATE(t) =

{
ATET + (h(t)−

−
h) if t > 0

ATENT if t = 0
(10)

The ATE(t) is the primary causal parameter under consideration and is specified as
the ATE conditional on the quantity or level of agrochemical use.

2.3. Empirical Model

To develop the empirical model, we first complete the preceding framework by replac-
ing Equations (3) and (4) with the Potential Outcome Model (POM): y = y0 + p(y1 − y0).
Assuming that h(t) is a three-polynomial function, that is, h(t) = bt + ct2 + dt3, the estima-
tion equation can be derived as

E(y|x, p, t) = µ0 + xδ0 + pATE + p[x− −x]δ + b[t− E(t)]p + c[t2 − E(t2)]p + d[t3 − E(t3)]p + ε (11)

In Equation (11), ε = e0 + p(e1 − e0), the variable y is the rice yield outcomes of
farmers,ATE specifies the mean causal effect of adopting an agrochemical on rice yield,

while the term p[x− −x]δ takes into consideration the heterogeneous mean divergence of
exogenous confounders from their average. Equation (11) estimates the mean rice yield
response to agrochemical adoption (ATE) while monitoring for exogenous variables (x) as
x and the intensity of agrochemicals (t) deviate from their average. By Conditional Mean
Independence (CMI), Ordinary Least Squares (OLS) estimation of the equation would
provide consistent estimates of the parameters of interest [13]. Thus, the dose–response
function can be estimated as

ˆATE(ti) = p[ ˆATET + b̂(ti −
1
N

N

∑
i=1

ti) + ĉ(t2
i −

1
N

N

∑
i=1

t2
i ) + d̂(t3

i −
1
N

N

∑
i=1

t3
i )] + (1− p) ˆATENT (12)

and ˆATE(ti) is a consistent DRM with ˆATE(ti) = ATE(ti)ti>0. ˆATET and ˆATENT repre-
sent the estimated average treatment effect on the treated (agrochemical adopters) and
estimated average treatment effect on non-treated (non-adopters of agrochemicals), respec-
tively. Nevertheless, previous studies on the adoption of agrochemicals indicate that the
decision to adopt or not, p, and the intensity of agrochemical use t, are probably endoge-
nous [21]. The CMI assumption, consequently, degenerates, and to estimate Equation (11)
with OLS will lead to biased estimates. That is, E(ε|x, p, t) 6= E(e0 + p(e1 − e0)|x, p, t) [13].
Based on Cerulli [13], Equation (11) can be re-specified as

y = µ0 + xδ0 + pATE + p[x− −x]δ + bpT1 + cpT2 + dpT3 + εy (13)

p =

{
1 if p∗ = η1x1 + εp > 0

0 if p∗ ≤ 0

}
(14)

and

t =
{

η2x2 + εt if p∗ > 0
0 if p∗ ≤ 0

}
(15)

where T1 = [t− E(t)], T2 = [t2 − E(t2)] and T3 = [t3 − E(t3)] are taken to be endogenous
in aggregation with p. The parameter εy is the random error term assumed to follow the
Gaussian distribution with zero mean and constant variance, y denotes the natural loga-
rithm of rice yield, δ is the average heterogeneous rice yield among agrochemical adopters
due to deviation and serves as an additional exclusive restriction, and p* denotes the un-
observable latent factors of adopters and non-adopters of agrochemicals. The quantity of
agrochemicals is detected when a farmer adopts (p = 1); otherwise, it is undetected [22].
Equations (14) and (15) are identified as Type II Tobit models [22].
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Equation (14) demonstrates the choice of model with x1 as a vector of covariates
that impacts the determination of whether the farmer adopts agrochemicals or not, while
Equation (15) expresses the vector of covariates, x2, that decides the quantity or level of
agrochemical usage. The covariates including x1 and x2 are recommended in contemporary
empirical works [23].

From Equation (13), we are not just concerned with the direct effect of agrochemical
adoption on rice yield, our focus is also on how these effects are moderated by the level
of agrochemicals taken in cognizance with other factors, b, c and d. These heterogeneous
impacts of agrochemicals on rice yields are witnessed due to the divergence of agrochemical
usage quantities from their average. Existing theoretical and empirical literature from
agrochemical–rice yield relations indicates that agrochemical usage (ATE) is supposed to
positively influence rice yield [24]. Thus, it is hypothesized that the rice yield impact of
agrochemical usage is affirmative; nonetheless, this outcome is constrained by the quantity
or level of agrochemical usage.

2.4. Estimation and Identification

To resolve the parameter identification problem, we extend the assumption by Cerulli
(2015) to specify the vector of covariates in Equations (14) and (15) as:

x1 = (x, q1) (16)

x2 = (x, q2) (17)

where q1 and q2 are vectors of factors that seem to elucidate the likelihood of a farmer
to adopt agrochemicals and the level of agrochemical usage, thus fulfilling the exclusion
restriction condition [25].

We consider farm size and market distance as credible exclusion restrictions on agro-
chemical use quantity or level and adoption, respectively. Both farm size and market
distance are factors that influence agrochemical usage but are not expected to correlate
with rice yield, except through agrochemical usage. This is due to that fact that they are
not direct production inputs in rice production [26]. The estimation is performed using
ctreatreg, an econometric package in Stata 16, which uses full information maximum likeli-
hood estimation of the systems of models (13)–(15) while employing the Heckman selection
model as well as the two-stage instrumental variable estimation procedure [13].

2.5. Data and Descriptive Statistics

This study employed data from a farm household survey, which was undertaken in
Northern Ghana from October to December 2018. The sampled farm households were
from the Northern, Upper East, and Upper West Regions of Ghana. The sample comprises
900 farm households with 300 from each region. A multistage sampling technique was
employed in choosing farm households. The initial step involved selecting districts from
the regions based on their rice production levels in the selected regions of Northern Ghana.
The second stage is a simple random selection of farm households from the district’s
different communities based on the size of the community and rice production levels.

The choice of the variables for our empirical model is based on a review of theoretical
and empirical literature relating to adoption and impact studies [23,24,27–32]. From existing
studies, several elements influence agrochemical use and, consequently, the outcome
variable, rice yield. These covariates comprise age, farm size, extension access, marital
status, land ownership, market distance, years of rice farming, access to credit, and farmer
organization membership. The definition and descriptive statistics of the variables of the
pooled sample are given in Table 1. From Table 1, the mean quantity of chemical fertilizer
and herbicide used by the farmers is 5.18 kg ha−1 and 4.69 liters ha−1, respectively.
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Table 1. Definition and summary statistics of the pooled sample.

Variables Description
Pooled Sample

Mean Standard Deviation

Outcome

Rice yield Rice yield in kg ha−1 1413.77 1158.61

Treatment

Chemical fertilizer Quantity of chemical fertilizer used in kg ha−1 5.18 3.82
Herbicide Quantity of herbicides used in liters ha−1 4.69 2.63

Socioeconomic characteristics

Gender 1 if household head is a male, 0 otherwise 0.92 0.26
Age Household head’s age in years 53.19 11.78

Marital status 1 if married, 0 otherwise 0.89 0.31
Years of schooling Household head years of formal education 3.02 4.50

Household size Summation of the members of a household 9.67 4.26
Off-farm income Total off-farm income in Ghana Cedis (GHS) 425.49 1902.57

Years of rice farming Years of rice farming 9.70 5.43

Resource Constraints/Institutional factors

Farm size Total rice farm size in hectares 0.65 0.59
Total livestock Total livestock units 45.00 44.44

Asset value Total value of assets in Ghana Cedis (GHS) 18,177.98 270,288.2
Credit access 1 if the household head had access to credit, 0 otherwise 0.07 0.25

FBO membership 1 if household head is a member of FBO, 0 otherwise 0.37 0.48
Market distance Distance from farm to market in km 11.98 12.90
Farm distance Distance from home to the farm in km 6.22 8.15

Extension access 1 if the household head had access to extension service, 0 otherwise 0.39 0.48
Land ownership 1 if household head is the landowner, 0 otherwise 0.54 0.50

The variation based on agrochemical usage is presented in Table 2. Again, it is worth
noting from Table 2 that there is variation in rice yield amongst adopters and non-adopters
of chemical fertilizers and herbicides during production. It is also evident that there are
significant variations in the covariates of adopters and non-adopters of chemical fertilizer
and herbicide. There is significant variation in the age, FBO membership, market distance,
extension access, farm size, years of rice farming, and credit access between the adopters
and non-adopters of chemical fertilizer and herbicides. On the other hand, there was only a
difference between the adopters and non-adopters of chemical fertilizer in off-farm income.

Table 2. Summary statistics.

Variable

Chemical Fertilizer Herbicide

Adopters
(n = 527)

Non-Adopters
(n = 373)

Mean
Difference

Adopters
(n = 696)

Non-Adopters
(n = 204)

Mean
Difference

Rice yield 1955.30
(1143.95)

648.64
(625.53) 1306.66 *** 1590.65

(1158.40)
810.29

(936.71) 780.36 ***

Gender 0.93
(0.25)

0.91
(0.29) 0.03 0.93

(0.26)
0.90

(0.31) 0.03

Age 51.38
(11.06)

55.75
(12.30) −4.37 *** 52.24

(11.33)
56.46

(12.71) −4.22 ***

Marital Status 0.90
(0.30)

0.88
(0.33) 0.02 0.90

(0.30)
0.86

(0.35) 0.04 **

Years of schooling 2.99
(4.34)

3.05
(4.71) −0.06 3.04

(4.50)
2.94

(4.50) 0.10
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Table 2. Cont.

Variable

Chemical Fertilizer Herbicide

Adopters
(n = 527)

Non-Adopters
(n = 373)

Mean
Difference

Adopters
(n = 696)

Non-Adopters
(n = 204)

Mean
Difference

Household size 9.87
(4.23)

9.39
(4.32) 0.47 9.70

(4.28)
9.56

(4.25) 0.14

Off-farm income 599.02
(2456.74)

180.32
(332.73) 418.70 *** 472.11

(2071.08)
266.46

(1145.58) 205.65

Years of rice farming 9.35
(5.36)

10.21
(5.50) −0.86 ** 9.22

(5.26)
11.35
(5.69) −2.14 ***

Farm size 0.83
(0.65)

0.40
(0.38) 0.43 *** 0.74

(0.62)
0.36

(0.35) 0.38 ***

Total livestock 42.88
(44.50)

47.99
(44.25) −5.12 * 43.99

(43.60)
48.43

(47.15) −4.43

Total asset value 28,896.78
(352,781.90)

3033.71
(13,483.36) 25,863.07 20,954.86

(304,647.43)
8703.91

(75,280.23) 12,250.95

Credit access 0.09
(0.28)

0.03
(0.18) 0.05 ** 0.07

(0.26)
0.05

(0.22) 0.02

FBO membership 0.48
(0.50)

0.21
(0.41) 0.28 *** 0.42

(0.49)
0.19

(0.39) 0.23 ***

Market distance 16.38
(13.42)

5.76
(9.04) 10.62 *** 14.14

(13.01)
4.61

(9.36) 9.53 ***

Extension access 0.55
(0.50)

0.21
(0.36) 0.40 *** 0.43

(0.50)
0.23

(0.42) 0.21 ***

Land ownership 0.46
(0.50)

0.64
(0.48) −0.18 *** 0.53

(0.50)
0.56

(0.50) −0.03

Note: ***, ** and * denote statistical significance at 1%, 5%, and 10% level. The figures in parenthesis indicate the
standard deviations.

3. Results and Discussion
3.1. Levels of Agrochemical Use and Rice Yield

Table 3 shows results of the Heckman two-step selection model illustrating the factors
affecting adoption of agrochemicals and their intensity of use. The estimated models for
chemical fertilizer (Wald Chi (2) = 100.39; p < 0.000) and herbicides (Wald Chi (2) = 109.56;
p < 0.000) were statistically significant and independent, exhibiting strong explanatory
power. Our results indicate that years of schooling, years of rice farming, total livestock
units owned, and the total asset value of household heads positively affect the adoption of
chemical fertilizer. Farmer-based organization membership of household heads, household
size, and off-farm income positively and statistically influence herbicides’ adoption. On the
other hand, we find that household head’s age, farm size, and land ownership negatively
and significantly influence herbicide adoption in Ghana.

Household heads’ membership in farmer-based organizations positively influences the
likelihood of herbicide adoption and intensity of use. This finding is consistent with the work
of Ng’ombe et al. [31], Katung and Akankwasa [33], and Addai et al. [34]. Ng’ombe et al. [31],
Katung and Akankwasa [33], and Addai et al. [34] observed that farmers who are members
of farmer-based organizations are likely to obtain information and learn from each other,
especially information about agricultural technologies, which increases the possibility of
adoption and in optimal quantities. However, even though farmer-based organization
membership positively influences the adoption of chemical fertilizer, its effect is not statisti-
cally significant. On the intensity of use, household heads’ membership of farmer-based
organizations positively and significantly affects agrochemical use intensity. Farmer organi-
zations serve as an avenue for accessing and dissemination of information on agricultural
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technology [34]. This is plausible as it would increase farmers’ awareness and inspire them
to improve farmers’ application rate of chemical fertilizers. This result is supported by
the findings of Ali et al. [35]. It is worth noting that farmers in developing countries face
market imperfection, including transaction and scarce information. With these conditions,
social networks such as farmer-based organizations could facilitate information exchange,
enabling farmers to access farm inputs and overcome credit constraints [21].

Table 3. Heckman sample selection model results for agrochemical usage.

Chemical Fertilizer Herbicides

Coeff. (SE) Coeff. (SE)

Agrochemical (Adoption)
Farmer-based organization 1.239 (0.775) 2.693 *** (0.932)

Extension access 3.333 *** (0.803) 0.706 (0.946)
Credit access 0.563 (1.405) −0.320 (1.730)

Years of rice farming 0.172 ** (0.070) 0.088 (0.084)
Household head’s gender −1.071 (1.645) 0.584 (1.837)

Household head’s age 0.001 (0.036) −0.087 ** (0.042)
Household head’s marital status −3.056 ** (1.440) 2.419 (1.646)

Household size −0.149 (0.097) 0.387 *** (0.112)
Years of schooling 0.132 (0.087) −0.117 (0.098)

Total livestock units 0.015 * (0.009) 0.001 (0.010)
Off-farm income 2.00 × 10−4 (2.00 × 10−4) 0.001 ** (2.4 × 10−4)
Land ownership −4.094 *** (0.717) −1.392 * (0.838)

Asset value 2.16 × 10−6 * (1.25 × 10−6) −1.41E-06 (1.58 × 10−6)
Farm size −1.537 *** (0.493) −5.668 *** (0.666)
Constant 10.008 *** (2.489) 16.216 *** (2.957)

Treatment (Intensity of use)
Farmer-based organization 0.387 *** (0.095) 0.331 *** (0.105)

Extension access 0.561 *** (0.097) 0.068 (0.103)
Credit access 0.155 (0.181) 0.132 (0.199)

Years of rice farming 0.001 (0.008) −0.012 (0.008)
Household head’s gender 0.501 *** (0.185) 0.451 ** (0.177)

Household head’s age −0.007 (0.004) −0.005 (0.004)
Household head’s marital status −0.530 *** (0.160) −0.009 (0.161)

Household size −0.018 (0.0.11) 0.014 (0.013)
Years of schooling −0.002 (0.010) 0.010 (0.010)

Total livestock units −0.002 (0.001) −0.001 (0.001)
Off-farm income 1.00 × 10−4 (7.00 × 10−5) 2.6 × 10−5 (3.4 × 10−5)
Land ownership −0.326 *** (0.086) −0.088 (0.090)

Asset value 2.43 × 10−7 (4.93 × 10−7) −1.75 × 10−7 (1.97 × 10−7)
Market distance 0.031 *** (0.004) 0.035 *** (0.006)

Constant 0.199 (0.300) 0.100 (0.318)

Model diagnostics
Athrho 2.487 *** (0.201) 2.050 *** (0.182)

Lnsigma 2.223 *** (0.034) 2.453 *** (0.031)
Wald Chi (2) 100.39 *** 109.56 ***

Note: ***, ** and * denote statistical significance at 1%, 5%, and 10% level.

Extension access by farm households positively and significantly influences chemical
fertilizer adoption and intensity of use. Plausibly, access to extension services aids in
disseminating information on various agricultural technologies, resulting in their usage.
The farmer receives information on proper usage and benefits of these technologies through
extension officers. This finding conforms with the results of Ali et al. [35]. They asserted
that extension contact with farmers contributes to the flow of technical information useful
in farmers’ production decisions. Moreover, Danlami et al. [36] indicated that extension
access increases farmer’s awareness concerning the relevance of fertilizers and how to use
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fertilizers profitably. On the contrary, herbicide adoption and its intensity of use, even
though positive, are not statistically significant.

Results indicate that the number of years of rice farming has a positive and significant
influence on household heads’ decision to use chemical fertilizer. This is plausible because
farmers with a wealth of farm experience tend to have adequate information and better
knowledge about production. Hence, they are in a better position to assess the benefits of
any agricultural technology at stake. This finding is consistent with Beshir et al. [37], who
indicated that farming experience improves technology adoption among farmers. Similarly,
years of rice farming did positively influence the adoption of herbicides, though it was not
statistically significant.

Male-headed households are likely to intensify their use of chemical fertilizer and
herbicides compared to their compatriot female heads. This could be because males are
more resource-endowed than their female counterparts in implementing most resource-
demanding agricultural technologies [38–40]. Gender differences in terms of productivity,
input use, and access to productive resources have been and continue to be a stumbling
block to agricultural productivity [41].

Age of household head negatively and significantly influences the adoption of herbi-
cides. This is consistent with the findings of Rahji et al. [42], who posited that older farmers
are more conservative, which affects adoption compared to young farmers who are more
innovative and always want to explore more.

The marital status of household heads negatively affects chemical fertilizer adoption
and intensity of usage. This could be explained by the financial obligations that go with
marriage, and the household head may not have enough resources to invest in fertilizer
use. This is bolstered by the findings of Mensah et al. [43], who indicated that married
farmers are less financially stable to undertake agricultural investments such as chemical
fertilizer adoption for crop production compared to unmarried farmers. This is largely due
to the financial responsibilities that come with marriage.

Household size also positively and significantly influences herbicide adoption. This is
bound to be due to that the number of dependents within the family is less and therefore
there is a need to increase food production to feed larger household size families. This
finding leads credence to the results of Idrisa et al. [44], who witnessed similar findings in
their study.

Household heads’ total livestock unit has a positive and significant influence on their
decision to use chemical fertilizers. This indicator can be proxied as the household’s wealth and
financial liquidity status. It removes the financial constraint aspect of agricultural technology
adoption. This finding is in line with the findings of Danso-Abbeam and Baiyegunhi [45].

We find that off-farm income has a positive and significant influence on herbicide
adoption. Farmers who engage in off-farm income activities have the financial capacity to
buy herbicides, as the financial constraint to this technology adoption may be overcome
through this option and returns. This is consistent with the findings of Danso-Abbeam
and Baiyegunhi [45]. Notwithstanding this revelation, Ahmed [46] indicated that part-time
farmers will have a lower likelihood of adopting agricultural technologies due to the labor
intensity of the usage of most agricultural technologies, and that there will be a trade-off as
one engages in off-farm work.

Land ownership also has a negative and significant influence on chemical fertilizer and
herbicide adoption. In addition, the intensity of use of chemical fertilizer is negative and
statistically significant. Tenant household heads of rice farmlands are less willing to invest
in chemical fertilizers. There is a tendency for the land to be allocated to a different user
during the next cropping season, leading to the farmer not reaping the full benefits of his/her
investment, as not all the nutrients will be exhausted in the soil in a single production season.
Mensah et al. [43] reiterated this finding, as farmers, especially settlers, are less willing to
invest in mineral fertilizer, as the returns may not be realized in one crop production calendar
application. This may be due to tenure insecurity and the Marshallian inefficiency hypothesis
or lower efficiency of input use on rented-in plots than owned plots [47].
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The asset value of the household head positively and significantly influences the
adoption of chemical fertilizer. The asset value of household heads serves as a proxy for
their endowment and wealth [48], which can be employed to procure productive resources
and boost agricultural technologies. This result is in line with the findings of Ali et al. [35],
who asserted that the possession of assets constitutes an important resource for technology
adoption among cocoa farmers in the Western Region of Ghana. Farm size negatively
and significantly influences the adoption of chemical fertilizer and herbicides. This is
consistent with the finding of Kassie et al. [47], who indicated that land scarcity (size
of plots) might affect the extent of agricultural intensification through the adoption of
agricultural technologies. Moreover, Danso-Abbeam and Baiyegunhi [45] showed that the
inverse relationship between farm size and technology adoption could partly be attributed
to farmers’ inability to catch up with the cost of technologies and operational costs such as
labor as farm size increases.

Market distance positively and significantly influences chemical fertilizer and her-
bicide intensification during rice production. This suggests that closer proximity to the
market will encourage easy access to market information and transportation of these agro-
chemicals to promote their usage. This finding is supported by Kumar et al. [49], who
indicated that market distance is a disincentive to farmers in adopting agricultural tech-
nologies. They indicated that the market gives rise to spatial biases that hinder access to
new technologies and their potential.

3.2. Rice Yield Response to Chemical Fertilizer Use

Based on the estimates of a two-stage least squares regression, the average expected
conditional rice yield given the levels of chemical fertilizer use and the covariates are
derived. The kernel density estimates and the dose–response function distributions are
plotted at a 5% significance level for all chemical fertilizer levels derived from the two-stage
least square estimation presented in Figure 1.
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Figure 1. Distribution of ATE(x), ATET(x), and ATENT(x) and dose–response function for chemical
fertilizer on rice yield.
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The kernel density estimate is a non-parametric estimation that enables a visualization
of the distributions of the ATE(x),ATET(x), and ATENT(x). Panel A of Figure 1 indicates
less spread of the levels of chemical fertilizer usage across all rice yields. The spread is
pronounced at levels of chemical fertilizer use with ATE(x) and ATET(x) concentrating
at higher yields of rice than ATENT(x); this implies a high mean rice yield for adopters
compared to the non-adopters of chemical fertilizer.

Panel B of Figure 1 indicates the effect of various chemical fertilizer usage levels on rice
yield plotted at a 5% level of significance. At lower and higher levels of chemical fertilizer
use, the panel exhibits tighter confidence bands than in the middle, where the discrepancy
between the point estimates and their precision is more obvious. This could imply that
most farmers use chemical fertilizers in a low- or high-intensity manner. This demonstrates
diverse rice yield responses of farm households appraised over different chemical fertilizer
levels used. The association between the two variables exhibits a cubic hyperbola shape
with rice yields falling from a positive point, reaching a minimum, and subsequently
increasing to a maximum point as levels of chemical fertilizer usage increase. That is to
say, the function depicts the non-linearity of the treatment effects. This form of nexus
suggests that, on average, chemical fertilizer use levels are related to a 10% improvement
in rice yield. This increment in rice yield initially achieved at low treatment levels declines
and becomes irrelevant as intensity of chemical fertilizer use reaches 20% through 70%.
Thereafter, at higher intensity of chemical fertilizer use we observe an uptick in rice yields.
This, in other words, suggests that low levels of chemical fertilizer usage have a negative
effect on yield, and the effect turns positive with higher intensity of chemical fertilizer
usage. These findings agree with the results of McArthur and McCord [50], who explored
the economic development effect of fertilizer growth and usage in boosting crop yields.
There is the possibility that excesses of the chemical fertilizer anticipated to achieve higher
yield could result in environmental damage.

3.3. Rice Yield Response to the Level of Herbicide Use

Using estimates of the two-stage least squares regression, the average expected con-
ditional rice yield given the levels of herbicides use and the covariates are estimated and
plotted in Figure 2. The kernel density in Panel A of Figure 2 indicates more spread of the
causal factors of all levels of herbicide usage. This spread is less pronounced in ATE(x) and
ATET(x) showing kg ha−1 of rice yield compared to ATENT(x). This demonstrates that
an increase in rice yields is due to herbicide adoption as compared to non-adoption. How-
ever, this increase in rice yield from the adoption of herbicide is short-lived or diminishes
shortly after an increase in its intensification.

Panel B of Figure 2 illustrates the different rice yield responses of farm households
evaluated across all herbicide levels. The function depicts a non-linearity of the treatment
effect. Unlike the rice yield response to chemical fertilizers, we only see tighter confidence
bands at lower levels of herbicide application intensity, and more significant disparities
between point estimates and their precision everywhere else. This could indicate that
most farmers use herbicides at low intensity. This form of the association indicates that,
on average, herbicide use is linked with a 7% kg ha−1 increase in rice yield. However,
this increase in rice yield diminishes substantially as intensity of herbicide use reaches
40% through to 100%. This, in other words, implies that high intensity of herbicide
use will have a negative average treatment effect, and the result turns worse with more
herbicide treatment. This underscores the need for farmers to apply herbicides in their right
proportions to improve rice yield. This is supported by Petit et al. [51], who contended that
herbicide use reduction could maintain crop yields and biodiversity effects of weeds.
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Figure 2. Distribution of ATE(x), ATET(x), and ATENT(x) and dose–response function for herbicides
on rice yield.

4. Conclusions

In this study, we assessed rice yield response to the levels of agrochemical use in Ghana.
We applied a Dose–Response Model (DRM) approach under continuous and heterogeneous
responses to treatment. We collected farm household-level data from 900 households. The
results show that years of schooling, years of rice farming, total livestock units owned, and
total asset value of household heads positively influence the adoption of chemical fertilizers.
Extension access by farm households also positively influences chemical fertilizer adoption
and intensity of use. In addition, membership of farmer-based organizations by household
head, size of household, and off-farm income positively affect the adoption of herbicide.
On the contrary, age of household head, farm size, and land ownership negatively influence
herbicide adoption.

The DRM of rice yield with chemical fertilizer treatment indicates that, on aver-
age, chemical fertilizer is associated with a 10% increase in the average treatment effect.
Nonetheless, this increase dissipates as chemical fertilizer use intensity reaches 20% to 70%,
followed by a subsequent increase when intensity of use exceeds 70%. The implication is
that low levels of chemical fertilizer have a negative impact on rice yield, and the result
turns positive with more chemical fertilizer treatment. On the other hand, the DRM of rice
yield with herbicide treatment shows that, on average, herbicide use is correlated with a
7% increase in the average treatment effect. Nonetheless, there is a rapid and unambiguous
decline in average treatment when herbicide use intensity exceeds 40%. This suggests that
high herbicide levels or volumes will have negative causal effects on rice yield, and the
result worsens with more herbicide treatment. It can be concluded that rice yield responds
to an increase in the intensity of the use of chemical fertilizers but not herbicides.

This study’s findings imply that even though the Green Revolution agricultural tech-
nologies were meant to be adopted as a package to benefit from them, their right mix in
terms of levels or intensity is also critical. These findings can help us develop better agricul-
tural technology interventions that foster better synergies in terms of dosage or treatment
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and avoid trade-offs between agricultural technologies and outcome variables such as yield.
While herbicides and chemical fertilizers are recommended for smallholder rice farming
to help improve yields, we recommend that these inputs be applied based on scientific
recommendations. With such inputs, the notion that more is better may not always hold.
The Dose–Response Model, accounting for heterogeneity in the farmer population, is a
useful tool to develop guidance on optimal levels of agrochemicals in rice farming

While this paper contributes to the discourse of agricultural production and the envi-
ronment with regard to the use of agrochemicals in developing countries, one limitation
is worth mentioning. Due to data limitations, the data used here are neither plot-level nor
cross-sectional time series where one would be expected to estimate the plot-level production
functions and account for year random effects as in Kaitibie et al. [52], Tembo et al. [53],
Ng’ombe and Lambert [54], Boyer et al. [55], Wu et al. [56], and others. Future studies
should use such richer datasets and combine the DRM and estimation of production func-
tions to compare optimal agrochemical levels, as well as the impacts such input levels have
on rice or any other crop yield response to improve results reported here.
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