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Abstract of a thesis submitted in partial fulfilment of the 

requirements for the Degree of Master Applied Science. 

Abstract 

Comparative Proteomics Analysis of Listeria monocytogenes Isolates from 

New Zealand  

 

by 

GE HUANG 
 

Listeria monocytogenes is one of the top ranking foodborne pathogens implicated in a number 

of foodborne outbreaks that have caused human illness and death. About 90% of the cases of 

Listeriosis in New Zealand are associated with the consumption of food contaminated with L. 

monocytogenes. Recently, many researchers have used proteomic approaches to analyse 

foodborne pathogens, especially L. monocytogenes. Proteomics is a protein-based technology 

that is the large-scale study of the expressed protein components of an organism’s genome. 

However, in New Zealand, there have been few studies carried out using proteomic 

techniques to analyse the protein profile of foodborne pathogens, such as L. monocytogenes, 

Salmonella and Campylobacter. Comparative proteomic analysis was conducted in this 

research using 1D SDS-PAGE, 2DE analyses, MALDI-TOF/TOF mass spectrometry and Ion 

Trap mass spectrometry to identify key differences in protein expression of three strains of L. 

moncytogenes (V7, SB92/844 and SB92/870) that have different ecological origins.  

The protein banding patterns generated by 1D SDS PAGE of the three strains of L. 

monocytogenes showed no significant differences. Visual observations from 2DE gels 

revealed that certain spots appeared to be expressed differentially/differently?. Key 

differences in protein expression of the three strains of L. monocytogenes were found using 

PDQest TM 2D analysis software. One hundred and eighty nine spots were detected using 

SB92/844 as the reference gel. There were 99 spots in the reference gel that matched the spots 

in L. monocytogenes strain V7 and 102 spots were detected that were similar in L. 

monocytogenes strain SB92/870. Seventy out of 189 spots detected (37% of detected spots) 

were present in all three strains studied. By estimating the relative differences in protein 

expression, 10 protein spots had decreased expression in SB92/844 relative to V7 and five 
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protein spots were significantly over-expressed. Besides this, 14 protein spots showed no 

significant protein expression differences in SB92/844 relative to V7. As for the relative 

protein expression pattern in L. monocytogenes strain SB92/870 relative to V7, five protein 

spots were significantly over-expressed and six protein spots were down-regulated. 

Additionally, 11 protein spots showed no differential expression in SB92/870 relative to V7. 

A comparison of the protein expression of SB92/844 vs SB92/870 showed that 22 protein 

spots had no significant differences. Only three protein spots were over-expressed and the 

expression of eight protein spots decreased in SB92/844 relative to SB92/870.  

The identity of selected protein spots was achieved using MALDI-TOF mass spectrometry 

and Ion Trap mass spectrometry. It was found that certain proteins (i.e. a major cold shock 

protein and superoxide dismutase) were expressed differently between the two local strains 

from New Zealand. The key findings of this study indicated that differentially?? expressed 

proteins may be related to virulence and pathogenicity. This work also represented the first 

proteomic study on L. monocytogenes isolates from New Zealand. 

Keywords: Listeria monocytogenes, foodborne pathogenes, proteomics 
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     Chapter 1 
Introduction and Review of Literature 

1.1 Introduction 

1.1.1 Background 

The genus Listeria belongs to  family Listeriaceae (previously known as Corynebacteriaceae) 

with microbiological features as non-spore formers, catalase-positive, and oxidase-negative 

(Collins et al., 1991). This genus contains six species: L. monocytogenes, L. ivanovii, L. 

seeligeri, L. welshimeri, L. innocua and the recently found species, L. grayi (Collins et al., 

1991; Graves et al., 2009). L. monocytogenes is the main cause of listeriosis in both humans 

and animals. It is one of the most serious food-borne illnesses worldwide.  This bacterium can 

express a beta haemolysin that causes the destruction of red blood cells. One of the unique 

features of this bacterium is its tumbling motility when viewed with light microscopy. This 

bacterium is actively motile by means of peritrichous flagella at room temperature (20−25°C) 

but the synthesis of the flagella does not occur at body temperature (37°C). When present, the 

flagella cause the bacterial cells to move within eukaryotic cells by explosive polymerisation 

of their actin filaments (Hain et al., 2006; de Velde et al., 2009). The actin polymerisation 

plays a key role in the infectious cycle of the bacterium. 

Twenty to thirty percent of clinical infections of listeriosis result in death (Mead et al., 1999; 

Orsi et al. 2011). This fatality rate from listeriosis is even greater than for Salmonella and 

Clostridium botulinum. L. monocytogenes is distributed widely in the environment. Raw, 

cooked and processed foods can be a mode for the transmission of the infection. 

L.moncytogenes is widely present in nature and usually infects humans through contaminated 

vegetables or unpasteurised dairy products. L. monocytogenes has the ability to survive very 

well between -20°C and 50°C and also in other adverse growth conditions, e.g. high salt 

concentrations, a wide range of pH and temperatures, and low water availability, by forming 

biofilms. It is known that refrigeration is able to reduce or prevent the growth of most food-

poisoning bacteria; however, this is not true for L. monocytogenes, which may continue to 

grow slowly at low temperatures (Bryan 2004). Moreover, L. monocytogenes has shown an 

ability to resist a number of sanitisers, such as ethanol, sodium hypochlorite and sodium 

hypochlorite, while methanol and quaternary ammonium compounds are ineffective in killing 

L. monocytogenes.  
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1.1.2 Importance of this study 

In New Zealand, around 90% of listeriosis cases are due to the consumption of food 

contaminated with L. monocytogenes (MAF 2011). L. monocytogenes is able to be found in 

soil and water. Hence, this bacterium can be found in a variety of raw, cooked and processed 

foods, such as fruit and vegetables. Animals could be carriers without showing symptoms and 

they may contaminate foods of animal origin, such as uncooked meats and unpasteurised milk. 

Moreover, ready-to-eat food, such as soft cheese, processed meat and poultry, and smoked 

seafood, can also be contaminated with L. monocytogenes (Gilbert et al. 2009; MAF 2011; 

Crerar et al. 2011).  The majority of listeriosis victims are very young, elderly, people with 

lowered immunity (usually due to chronic diseases) and pregnant women. Due to the growth 

of an ageing population, there is possibility that the incidences of listeriosis in New Zealand 

will surge in the future. In 2011, more than 30% of reported food-borne  patients in New 

Zealand had listeriosis (Barnao 2011). 

Therefore, it is very important to understand the spread of listeriosis and the physiological 

mechanisms of its transmission. Moreover, it is crucial to develop better control systems to 

prevent the spread of listeriosis.  

1.1.3 Aims and Objectives 

The aim of this research is to understand the proteomics of three strains of L. monocytogenes: 

serotype 1/2a strains SB92/844 and SB92/870 (New Zealand isolates) and V7 (an isolate from 

the USA). There is very limited research about the proteomic analysis of L. monocytogenes 

that has been undertaken in New Zealand. This research could be the first proteomic study 

that aims to understand the differences in L. monocytogenes isolates from New Zealand and 

with different ecological origins.  

There were two objectives of this research: 

(1) To study the proteomic profiles of three strains of L. monocytogenes using 1D SDS-

PAGE, 2DE analyses, MALD-TOF mass spectrometry and Ion Trap mass spectrometry.  

(2) Comparative proteomic analysis to identify key differences in protein expression of the 

three strains from different ecological origins. 
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1.2 Literature review 

1.2.1 The Genus Listeria 

The genus Listeria consists of a group of gram-positive bacteria that is classified in the family 

Listeriaceae (previously known as Corynebacteriaceae) with microbiological features as non-

spore formers,  and facultative anaerobe. Listeria spp. have no capsules and are motile at 10-

25°C (Collins, et al., 1991). This genus can be found in a variety of sources, such as soil, 

water, plants, faeces, decaying vegetables, meat, seafood and, dairy products. This genus 

currently contains six species: L. monocytogenes, L. innocua, L. seeligeri, L. welshimeri, L. 

ivanovii, and the recently found species, L. grayi (Collins et al., 1991; Graves et al., 2009). L. 

moncytogenes and  L. innocua are the only pathogens in the genus Listeria. L. monocytogenes 

is  a food-borne  pathogen, which is able to cause severe illness in both humans and animals. 

L.innocua is an animal pathogen. 

The genus of Listeria  comprises bacteria with a low G+C content of between 36.4% and 

41.5%, which are closely related to Bacillus, Clostridium, Enterococcus, Streptococcus, and 

Staphylococcus (Hain et al., 2007; Sallen et al., 1996). All Listeria chromosomes are circular 

with lengths ranging from 2.7 to 3.0 Mb. Although both strain- and serotype-specific genes 

have been identified previously, all Listeria genomes are highly similar in gene organisation 

and content (Sallen et al., 1996). The genome sequence encodes approximately 2800 putative 

protein coding genes with about 65% of the genes having been identified. 

1.2.2 L. monocytogenes and its virulence gene cluster 

L. monocytogenes is a gram-positive food borne pathogen of humans and animals. It is a 

facultative anaerobic rod, which is catalase positive and oxidase negative. L. monocytogenes 

also expresses a β-haemolysin that is able to form clear zones when grown on blood agar. One 

of the unique features of this bacterium is the formation of pertrichous flagella, which give the 

bacterium the capability of tumbling motility when viewed under light microscopy. The 

forming of peritrichous flagella usually occurs at room temperature (20−25°C) but at body 

temperature (37°C) the formation of flagella usually reduced. Flagella help the bacterial cells 

move within eukaryotic cells by explosive polymerisation of actin filaments (Hain et al. 2006; 

de Velde et al. 2009).   

The virulence gene cluster of L. monocytogenes is encoded on a cluster of six genes (prfA, hly, 

plcA, plcB, mpl, and actA) 9 Kb in length (Cossart et al., 1989; Vázquez-Boland et al., 2001). 

The virulence gene cluster encodes the proteins that play an important role in the major 
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virulence functions of L. monocytogenes (Kreft & Vázquez-Boland, 2001). The product of hly 

is Hly (usually called listeriolysin O in L. monocytogenes), which is a sulfhydryl-activated 

pore-forming listeriolysin. This protein is required for the disruption of the phagocytic 

vacuole necessary for the bacteria to escape from the phagosomes of the host cells into the 

host cytosol. Therefore, Hly is an essential virulence factor and its presence will lead to 

avirulence. actA encodes for the surface protein, ActA, that has a function in actin-based 

motility and cell-to-cell spread (Kocks et al., 1992; Kreft & Vázquez-Boland, 2001). plcB 

encodes an inactive propeptide, phosphatidylcholine phospholipase C, which is extracellularly 

processed by the Mpl protease. Its function is to mediate the dissolution of the double-

membrane, secondary phagosomes formed after cell-to-cell spread. Mpl is the product of the 

gene mpl. These two proteins are responsible for the lysis of host cell membranes. The gene 

plcA encodes a phosphatidylinositol-specific phospholipase C, which synergises with Hly and 

PlcB in the destabilisation of primary phagosomes.Gene prfA encodes the PrfA protein, which 

is a positive master-regulator of most of the gene cluster, including itself. PrfA is also the only 

virulence regulator identified, to date, in Listeria and is the main switch of a regulon 

comprising virulence-associated loci scattered throughout the listerial chromosome, including 

members of the internalin multigene family. The expression of the virulence regulon via PrfA  

can be modulated by a number of activation signals, such as high temperature, stress 

conditions, contact with a host cell, the eukaryotic cytoplasmic environment and the 

sequestration of extracellular growth medium components by activated charcoal. 

1.2.3 Virulence factors of L. monocytogenes 

Pathogenic Listeria species have a distinguishing feature; the destruction of the endothelial 

and epithetical barriers of the infected host, such as in the intestine and in the blood-brain and 

foeto-placental barriers. The infectious life cycle of L. monocytogenes starts with expression 

of two major proteins, internalins InlA and InlB, which can interact with E-cadherin and the 

hepatocyte growth factor receptor (Met), respectively (Dortet, Veiga-Chacon, & Cossart, 

2009). These two proteins can induce bacteria into eukaryotic cells and incorporate them into 

a membrane-bound vacuole (Gaillard et al, 1991; lecuit et al., 1997). The pore-forming toxin, 

listeriolysin O (LLO) and two secreted, PLcA and PLcB, are released by these internalised 

bacteria and can lyse the membrane of the vacuole. The bacteria then move to the cytoplasm 

to multiply and polymerise. When present, the flagella cause the bacterial cells to move 

within eukaryotic cells by explosive polymerisation of actin filaments (Hain, et al., 2006; 



 
 
 
 

5 

Velde et al., 2009). The actin polymerisation plays key role in infectious cycle of the 

bacterium. 

 

Internalin A (InlA) and Internalin (InlB) are a group of proteins that belong to the Internalin 

family and are characterised by the presence of leucine-rich repeats (LRRs) (Cabanes et al., 

2002; Gaillard et al., 1991).  InlA was first identified as a Listeria surface protein that is 

required for the penetration of L. monocytogenes into non-phagocytic cells, such as epithelial 

cells (Gaillard, et al., 1991). E-cadherin is receptor of InlA, which belongs to the cadherin 

superfamily of cell adhesion molecules (Mengaud et al., 1996). The interaction between InlA 

and E-cadherin stimulates the pathogenesis of L. monocytogenes. InlB is another membrane 

protein of the internalin family and is located in the same operon as InlA (Braun et al.,  1998; 

Doyle, 2001).  It is involved in the entry of L. monocytogenes into a broad range of cell lines 

such as hepatocytes and non-epithelial cells. It has been proven that InlB is crucial for the 

invasion of hepatocytes in the liver (Braun et al., 1998; Dramsi et al., 1995). 

After invading host cells, phagocytic cells of L. monocytogenes are engulfed and enclosed 

within a vacuole and then tend to be killed by professional phagocytic cells.  The survival of L. 

monocytogenes depends on escaping from the vacuole. Listeriolysin O (LLO) is a bacterial 

pore-forming toxin that is essential for lysing the vacuolar membrane to allow the bacteria to 

escape into the cytoplasm of the host cell (Beauregard, Lee, Collier, & Swanson, 1997).  In 

addition to its pore-forming function, many cellular responses are involved in LLO 

stimulation, such as secretion of interleukin-1 in macrophages, activation of mitogen-

activated protein kinase in HeLa cells, induction of apoptosis, expression of cell adhesion 

molecules on infected endothelial cells, secretion of various cytokines in spleen cells and cell-

signalling in human embryonic kidney cells (Coconnier et al., 1998; Coconnier et al., 2000; 

Dramsi et al., 1995; Guzman et al., 1996; Kohda et al., 2002; Krull et al., 1997; Kuhn & 

Goebel, 1999; Nishibori et al., 1996; Schluter et al., 1998). 

After invasion of the host cells, L. monocytogenes bacteria are enclosed in the vacuole and 

then the vacuole is lysed by LLO (Jacquet et al., 2002; Kreft & Vázquez-Boland, 2001). The 

bacteria need to move to other cells by polymerising the host cell actin through the activity of 

ActA (Kocks et al., 1992). ActA is a bacterial surface protein that can induce polymerisation 

of globular actin molecules to form a polarised actin filament. L. monocytogenes is able to 

move with the filaments to the target cell membrane and then cause portions of the membrane 

to form structures called listeriopods (Kocks et al., 1992). These listeriopods are engulfed by 
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adjacent cells, which can help L. monocytogenes disseminate and avoid antibodies or other 

immune active compounds.  Therefore, ActA plays an important role for L. monocytogenes in 

the attachment and entry of target cells. 

In order to lyse the intracellular vacuoles, L. monocytogenes can secrete two distinct 

phospholipases C, a phosphatidylinositol-specific phospholipase C (PI-PLC) and a broad-

range of phosphatidycholine-specific phospholipase C (PC-PLC). These two phospholipases 

are crucial for L. monocytogenes to invade and spread into target cells. PI-PLC can assist 

bacteria to escape from the primary vacuole (Smith et al., 1995). While PC-PLC is active 

once the bacterial cells spread have into host cells, it can also damage vacuole membranes in 

epithelial cells and it also is involved in the cell-to cell spread of L. monocytogenes in the 

brain (Schluter  et al., 1998; Smith et al., 1995). 

L. monocytogenes also contains a Clp group of proteins that can act as either chaperones or 

proteases. These Clp proteins play an important role in pathogenesis. ClpC ATPase is a 

general stress protein that can cause the disruption of the vacuolar membrane and help the 

bacteria to survive intracellularly (Rouquette et al., 1998). ClpC ATPase can also modulate 

the expression of the ActA protein and the internalins at the transcriptional level (Nair et al., 

2000; Rouquette et al., 1998). As for ClpE ATPase, it plays a role in the pathogenesis of L. 

monocytogenes (Nair et al., 2000). ClpP serine protease is required once the bacteria grow 

under stress conditions and has the ability to affect the activity of LLO (Gaillot et al 2000). 

Other proteins can also act as virulence factors for L. monocytogenes. The recently identified 

surface protein, p104, plays a role in the adhesion of this bacteria to intestinal cells 

(Pandiripally et al., 1999). The metalloprotease secreted by L. monocytogenes  is required to 

activate the phospholipase (Marquis et al., 1997). Another surface protein, called p60, can 

catalyse a reaction during the final stage of cell division in L. monocytogenes (Kuhn & 

Goebel, 1999). Hence, all of the virulence factors described above have their own way of 

assisting the infection process of L. monocytogenes and lead to the spread of the bacterial 

cells. 

 

1.2.4 Lineages of L. monocytogenes 

L. monocytogenes isolates can be classified into three evolutionary groups (Lineages I, II, III), 

which consist of at least 12 serotypes (i.e. 1/2a, 1/2b, 1/2c, 3a, 3b, 3c, 4a, 4b, 4c, 4d, 4e, and 
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7) based on previous subtyping studies (the serological reactions between Listeria Somatic 

(O)/flagellar (H) antigens and their corresponding antisera). Lineages I and II were first 

identified in 1989 using multilocus enzyme electrophoresis (Piffaretti et al., 1989). Lineage III 

was further identified based on analyses of partial DNA sequences for flaA, iap and hly, 

ribotyping, and PCR-RFLP analyses of L. monocytogenes virulence genes; and also 

comparative genomics and DNA sequencing studies (Gendel & Ulaszek, 2000; Rasmussen et 

al., 1995; Wiedmann et al., 1997). L. monocytogenes Lineage I consists of serotypes 1/2b, 3b, 

3c and 4b, while Lineage II contains serotypes 1/2a, 1/2c and 3a (Nadon et al., 2001). 

Serotypes 4a, 4b and 4c belong to Lineage III.  A number of studies have already indicated 

that Lineages I and II are widespread and comprise most L. monocytogenes food isolates 

(Nadon et al., 2001; Gray et al., 2004; Nightingale et al., 2005; Sauders et al., 2006). These 

two lineages are commonly associated with human clinical cases, including serotype 1/2a 

(Lineage II) and serotypes 1/2b and 4b (Lineage I). It is also known that most human 

listeriosis cases are usually associated with Lineage I while, as Lineage II strains are 

commonly isolated from natural and farm environments, they also have higher prevalence 

among animal listeriosis cases and sporadic human clinical cases (Gray et al., 2004; 

Nightingale et al., 2005; Sauders et al., 2006). Lineage III strains are rare and mainly 

associated with animals (Liu, et al., 2006). Recent studies suggest that isolates originally 

classified as Lineage III represent a polyphyletic group that includes at least three different 

lineages: Lineages IIIA, IIIB and IIIC. All strains from Lineage III contain serotypes 4a, 4c 

and atypical serotype 4b isolates (Roberts et al., 2006) 

1.2.5 L. monocytogenes as a foodborne pathogen 

Listeriosis is a serious bacterial infection, mainly caused by consumption of food that is 

contaminated with L. monocytogenes (Todar; WHO, 2004). Listeriosis is one of the most 

serious food-borne illnesses worldwide. It has been recognised as a foodborne pathogen since 

an listeriosis outbreak in the Maritime Provinces of Canada, in 1983 (Swaminathan & Gerner-

Smidt, 2007). Twenty to thirty percent of clinical infections of listeriosis result in death 

(Mead et al., 1999; Orsi et al., 2011). L. monocytogenes can be found in many types of raw 

and processed foods. For example, it can be associated with milk and dairy products, meat 

products, vegetables, seafood and fish products. Soft cheese, hot dogs and seafood have also 

been reported as been involved in outbreaks of human listeriosis (Rocout & Bille, 1997; 

Rocourt & Cossart, 1997). L. monocytogenes can be killed by pasteurisation and cooking. 

However, some ready-to-eat foods, such as deli meats, salads and hot dogs may be 
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contaminated during the packaging processes, since the most dangerous feature of L. 

monocytogenes is that it can grow at low temperatures (Table 1.1). L. monocytogenes has the 

ability to grow at a wide range of temperatures (from 2 - 45 °C). The survival and growth of 

this bacterium are the main factors that contribute to the difficulty in controlling this pathogen 

(Rocourt and Cossart, 1997). It is known that refrigeration reduces, or prevents, the growth of 

most food-poisoning bacteria; however, this is not true in the case of L. monocytogenes, 

which may continue to grow slowly at low temperatures (Bryan, 2004). Some chemical 

agents are ineffective in reducing the numbers of L. monocytogenes. The ability of L. 

monocytogenes to withstand, adapt, survive and grow under stressful conditions, is another 

contributing factor towards the seriousness of listeriosis. L. monocytogenes can grow in a low 

pH environment by utilising a number of stress adaption mechanisms (Cotter & Hill, 2003). 

In addition, creating low water activity using salts is one of the methods in food preservation. 

Therefore, the ability of L. monocytogenes to adapt and survive in high concentrations of salts 

will make it very difficult to control the pathogen in various foods. Moreover, L. 

monocytogenes has shown a resistance phenotype to a number of sanitisers including ethanol, 

sodium hypochlorite, sodium hypochlorite along with methanol and quaternary ammonium 

compounds. In 2002, Romanova and his co-workers investigated the sensitivity of 19 strains 

of L. monocytogenes to the sanitisers widely used in the meat industry (Romanova et al., 

2002). Some strains used in the study were isolated from listeriosis cases and the meat 

processing facilities where the authors found that five of these strains show a resistant 

phenotype to the sanitisers tested. 
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Table 1.1.  Key characteristics of L. monocytogenes as a foodborne pathogen 

• Widely present in nature 
• Can grow at low temperatures 
• Survives very well in unfavourable environments (freezing, high salt concentration, wide 

range of pH and temperature) 
• Ability to resist sanitation 
• Forms biofilms 
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1.2.6 Seriousness of Listeriosis 

L. moncytogenes is the main cause of listeriosis in both humans and animals, while L. ivanovii 

often causes this disease in animals, especially sheep. L.grayi has also been reported in certain 

cases. Listeriosis is caused by the ingestion of contaminated food and displays a wide variety 

of symptoms that are similar in animals and humans. Listeria is ubiquitous in the environment 

and is primarily transmitted via the oral route after ingestion of contaminated food products, 

which may lead to digestive manifestations such as nausea, aqueous or bloody diarrhoea, 

abdominal pain and fever. The digestive manifestations are not only able to occur in healthy 

individuals but also in immunocompromised individuals. The disease may start as long as two 

months after the consumption of contaminated food. The bacteria are also able to penetrate 

the intestinal barrier and then spread from the mesenteric lymph nodes to the spleen and, even, 

the liver. If the bacteria cannot be controlled by the immune system at the liver and spleen 

level, they may reach the brain or the placenta and cause systemic infections, such as 

meningitis, brain abscesses or abortions. Pregnant women may experience a fever and other 

non-specific symptoms, such as fatigue and aches, followed by foetal loss or bacteraemia and 

meningitis in their newborns. L. monocytogenes has an ability to cross the materno-foetal 

barrier, which can lead to villitis and placental abscesses, chorionamnionitis and, ultimately, 

systemic infection of the foetus in pregnant women. In general, the disease usually affects 

people with a weakened immune system, older adults, newborns and pregnant women. The 

symptoms of listeriosis usually include fever, muscle aches and diarrhoea. Listeriosis 

primarily causes infections of the central nervous system (meningitis, meningoencephalitis, 

brain abscesses and cerebritis) in older adults and people with immune-compromising 

conditions.  

The infective dose of L. monocytogenes may depend on the bacterial strain and the 

susceptibility of the victim. L. monocytogenes may invade the gastrointestinal epithelium. 

Once the bacterium enters the host's monocytes, macrophages, or polymorphonuclear 

leukocytes, it becomes blood-borne (septicaemic) and can grow. Its presence intracellularly in 

phagocytic cells also permits access to the brain and, probably, transplacental migration to the 

foetus in pregnant women. The pathogenesis of L. monocytogenes centres on its ability to 

survive and multiply in phagocytic host cells. It seems that Listeria originally evolved to 

invade membranes of the intestines, as an intracellular infection, and developed a chemical 

mechanism to do so. This involves the bacterial protein "internalin" which attaches to a 

protein, "cadherin", on the intestinal cell membrane. These adhesion molecules are also found 

http://en.wikipedia.org/wiki/Monocyte
http://en.wikipedia.org/wiki/Macrophage
http://en.wikipedia.org/wiki/Polymorphonuclear_leukocyte
http://en.wikipedia.org/wiki/Polymorphonuclear_leukocyte
http://en.wikipedia.org/wiki/Phagocytosis
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in two other unusually tough barriers in humans — the blood brain barrier and the foeto–

placental barrier, and this may explain the apparent affinity that L. monocytogenes has for 

causing meningitis and affecting babies in-utero.  

1.2.7 Outbreaks of Listeriosis in New Zealand 

In New Zealand, 90% of cases of listeriosis are associated with L. moncytogenes. The 

incidence rates are usually higher than Australia. The majority of listeriosis victims are the 

very young, the elderly, people with lowered immunity (usually due to chronic diseases) and 

pregnant women. Incidences of listeriosis in New Zealand could surge in the future due to the 

ageing population (Barnao, 2011). The most recent outbreak of listeriosis was in 2012 and it 

induced two deaths caused by infection with L.monocytogenes. One of the victims was in his 

80s, the other in his 60s. They were both older and had weaker immunity than younger 

people. The second contributor toward the increasing risk of listeriosis in New Zealand is the 

growing trend to use chilled ready-to-eat food (RTE) with extended shelf life (Gilbert et al., 

2009). In the past, most of the outbreaks of listeriosis in New Zealand were associated with 

seafood, raw fish, shellfish, mussels and ready-to-eat cooked meats. Recently, contaminated 

foods are becoming much more diverse and include such things as non-dairy based flavoured 

dips, hummus and tahini, pate, pre-packaged salads, cooked and smoked chicken, chicken 

sandwiches, yoghurt, savoury dairy-based chilled dips, ice-cream and cheese, smoked fish, 

sliced deli meat and other small goods (Crerar et al., 2011; Gilbert, et al., 2009; MAF, 2011).  

More than 30% of the reported food-borne listeriosis patients in New Zealand in 2010 did not 

survive (Barnao 2011). This is alarming situation which demands strict monitoring of high 

risk foods and improvements in detection tools.  

1.2.8 Research on L. monocytogenes 

Research on L. monocytogenes has focused on its pathogenicity, epidemiology, functional 

genome studies and evolutionary aspects.  Epidemiological studies focussed on the outbreaks 

of human listeriosis cases. Research on the population, genetics and evolutionary aspects 

helps in understanding how L. monocytogenes is transmitted from animals, or the 

environment, and through foods to humans. Research on pathogenicity initially focussed on 

the basic mechanisms of cellular pathogenesis of L. monocytogenes. A pioneering study in 

1960s had demonstrated that L. monocytogenes is able to survive and multiply in 

macrophages (Macherky, 1997). Recent studies used the mouse as a model to understanding 

the cellular immune response (Shen, Tato, & Fan, 1998). Further studies on the cell-mediated 
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immunity of listeriosis were carried out with the murine model and gave rise to the basic 

theories about the inability of antibodies to protect against infections produced by intracellular 

pathogens, the importance of activated macrophages in the elimination of intracellular 

parasites and the T-cell as the macrophage-activating element required for cell-mediated 

immunity. (Mackaness, 1962, 1969). Recent technological developments have given the 

opportunity to better understand the infection pathway based on studies of whole genome 

sequences and virulence factors. 

1.2.9 Proteomics of foodborne pathogens  

Protein-based technologies (proteomics) are rapidly being developed for identifying and 

studying microorganisms. Proteomics is the large-scale study of the expressed protein 

components of the genome of an organism. Proteins are vital for living organisms as they are 

the main components of the physiological metabolic pathways of cells. Proteomics 

technologies are sensitive and can rapidly and easily detect pathogens by using different high-

performance separation techniques, such as one-dimensional (1D), two-dimensional (2D) gel 

electrophoresis and multidimensional chromatography, combined with high-resolution mass 

spectrometry. Nowadays, proteomic techniques can be conveniently classified into six 

functional areas: expression proteomics, protein-protein interactions, functional proteomics, 

structural proteomics, proteome mining and post-translational modifications (Carbonaro, 

2004). 

 

An early technique widely used in the study of proteins is gel electrophoresis, which began 

with sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) (Rabilloud, 

Chevallet, Luche, & Lelong, 2010). This technique can separate proteins in one dimension 

based on their molecular weight and electrophoretic mobility (Rabilloud et al., 2010). Two-

dimensional gel electrophoresis (2DE) is another form of gel electrophoresis, where protein 

molecules are electrophoresed on the basis of pH in one direction and then by molecular 

weight in a second direction (Rabilloud, et al., 2010). 2D electrophoresis was mostly used in 

early studies in proteomics and it is still widely used due to its robustness, resolution and its 

ability to separate entire and intact proteins (Tannu & Hemby, 2006; Van den Bergh & 

Arckens, 2004). 2DE Fluorescence Difference Gel Electrophoresis (2D-DIGE) was developed 

to separate up to three different samples within the same 2DE gel (Tannu & Hemby, 2006; 

Van den Bergh & Arckens, 2004). This technique labels protein molecules first with 
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fluorescent dyes before running the 2DE. This can accurately reveal differences in protein 

abundance between samples (Tannu & Hemby, 2006; Van den Bergh & Arckens, 2004). 

 

Recent methods for studying proteins can involve a number of combinations, such as  gel 

electrophoresis or multidimensional nano-liquid chromatography (2DnLC-MS/MS) with the 

ultimate detection and identification of the proteins by high-resolution mass spectrometry 

(Calvo et al., 2005; Nägele et al., 2003). One of the most frequently used proteomic 

techniques is that of matrix-assisted laser desorption ionisation-time of flight mass 

spectrometry (MALDI-TOF MS). This technique is used increasingly to identify or classify 

microorganisms by the analysis of  high copy proteins (Cabrita et al., 2010; Cacace et al., 

2010; Calhoun et al., 2010; Dumas et al., 2008; Fagerquist et al., 2009; Fagerquist et al., 

2007; Hefford et al., 2005; Mandrell et al., 2005 ; Stults, 1995). The sizes of these proteins 

range in mass from four to 20 kDa. The major advantages of MALDI-TOF MS are speed and 

simplicity. It usually requires only the time necessary to culture a sufficient number of 

bacterial cells. Currently, this technique is usually combined with 2DE for the quick and 

effective to identification of bacterial cells. 

 

Multi-dimensional protein identification technology (MudPIT) is also widely used. This is a 

shotgun proteomics technique capable of identifying thousands of proteins in proteolytically-

digested complex mixtures (Donaldson et al., 2011). Compared to traditional 2DE, MudPIT 

separates peptides according to two independent physicochemical properties but uses 2D 

liquid chromatography (LC/LC) alongside the ion source of a mass spectrometer. This 

separation relies on columns of strong cation exchange (SCX) and reversed phase (RP) 

material, back to back, inside fused silica capillaries. 

1.2.10  Proteomics of L. monocytogenes 

Recently, several studies attempted to use different gel-based and non-gel-based proteomic 

techniques to detect food-borne pathogens, especially L. monocytogenes. 2DE, combined with 

mass spectrophotometry, are the most commonly used techniques to study protein changes in 

L. monocytogenes in response to stresses such as the presence of antimicrobial chemicals, low 

pH, high salinity or cold shock (Cabrita et al., 2010; Cacace et al., 2010; Duché et al., 2002; 

Folio et al., 2004; Gardan et al., 2003; Ramnath et al., 2003; Trost et al., 2005; Wemekamp-

Kamphuis et al., 2004). Most of the recent studies primarily focused on the identification of L. 

monocytogenes, the analysis of cell wall and secretory proteins, the development of a partial 
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proteome reference map and bacterial virulence or bacterial protein expression under strict 

growth conditions (Figure 1.1). 

 

2DE was used to analyse the response of L. monocytogenes under acidic conditions or 

following the application of osmotic shock conditions (Duché et al., 2002; Phan-Thanh & 

Mahouin, 1999). These two early studies found that stress conditions may either induce a 

number of proteins or overexpress certain proteins. Following those studies, proteins Ctc and 

GbuA were identified from the 59 proteins that were identified under the different salinities of 

the growth media (Gardan et al., 2003; Wemekamp-Kamphuis et al., 2004). Both these 

proteins are σB-dependent and act as osmotic stress tolerances for the bacterium (Cetin et al., 

2004; Kazmierczak et al., 2003). The role of σB were further investigated by comparing the 

proteome expression profile between L. monocytognes EGD-e and its isogenic deletion 

mutant, ∆sigB, under acidic conditions (Wemekamp-Kamphuis et al., 2004). It was found that 

nine proteins were assigned as putative σB-regulated proteins involved in acidic adaptation. 

These proteins are 6-phosphofructokinase (Pfk), UDPglucose- 4-epimerase (GalE), ClpP 

protease and an unknown protein, Lmo1580. 

 

Biofilms play an important role in bacterial survival and they cause serious problems in food 

industries, especially with L. monocytogenes. Thus, a number of comparative proteomic 

studies of the global protein expression from biofilm and planktonic-grown cells of L. 

monocytogenes have been carried out (Hefford et al., 2005; Helloin et al., 2003; Trémoulet et 

al., 2002). Hefford and colleagues’ work identified 19 proteins that were up-regulated in 

Listeria biofilms (Hefford et al., 2005). These proteins are involved in the overall stress 

response, envelope and protein synthesis, biosynthesis, energy generation, and regulatory 

functions. 

 

A number of studies have been carried out to compare protein expression between normal and 

stress conditions for L. monocytogenes (Ramnath et al., 2003; Folio et al., 2004). In early 

2003, Ramnath and colleagues used a reproducible total protein extraction and 2-DE method 

to develop a partial annotated proteome reference map of the food-borne pathogen, L. 

monocytogenes (Ramnath et al., 2003). Although this study was not fully able to detect all the 

major proteins from food strains, it has provided a valuable starting point for the analysis of 

the bacteria food. 
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Figure 1.1. Different applications of proteomics analysis to characterise L. monocytogenes 

(Huang & Hussain, 2012) 
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Biofilms play an important role in bacterial survival, causing a serious problem in food 

industries, especially for L. monocytogenes. Hefford and colleagues’ work identified 19 

proteins that were up-regulated in Listeria biofilms (Hefford et al., 2005). These proteins are 

involved in the overall stress response, envelope and protein synthesis, biosynthesis, energy 

generation, and regulatory functions. 

 

A number of studies have been carried out to compare protein expression in L. 

monocytogenes under normal and stress conditions. A 2DE reference map for L. 

monocytogenes EGDe serotype 1/2a strain was generated by compariing the proteomes 

between L. monocytogenes EGD-e cells in the exponential or stationary phase of growth at 

37°C. (Folio et al., 2004). This reference map covered 28.8% of the potential gene products 

from the soluble subproteome. This study also identified 38 regulated proteins, which were 

involved in translation, cellular metabolism and stress adaptation.  

 

The development of quantitative proteomics, high-throughput gel- and non-gel-based protein 

fractionation techniques, such as liquid chromatography (LC) are now widely coupled with 

protein identification by high-throughput tandem mass spectrometry (MS/MS)-based on 

automated software algorithms. This has been used to analyse protein expression in L. 

monocytogenes. Development of intracellular and extracellular proteome maps of L. 

monocytogenes has been attempted using the multiplexing fluorescent two-dimensional 

fluorescence difference gel electrophoresis (2DE-DIGE) and MALDI-TOF MS (Dumas et al., 

2008; Velde et al., 2009).  

 

The 2DE-DIGE technique uses different fluorescent dyes, such as Cy2, Cy3 or Cy5, to label 

the protein, allowing protein mixtures of different origins to be analysed within the same gel 

run (Velde, et al., 2009). In 2007, Folsom and Frank found 19 proteins that were differentially 

expressed between planktonic and biofilm cells of a hypochlorous acid-tolerant variant of  L. 

monocytogenes ScottA (4b) strain using 2DE-DIGE (Folsom & Frank, 2007). Six of these 19 

proteins were later identified by peptide-mass mapping, of which three were the ribosomal 

proteins (L7, L10 and L12), along with the peroxide resistance protein (Dpr/Flp/Fri), the 

sugar-binding protein (Lmo0181) and a putative protein Lmo1888 of a yet unknown function. 

 

More recent investigations used advanced proteome analysis techniques (2DnLC- coupled to 

an ion-trap mass spectrometer and MuDPIT) to study L. monocytogenes protein expression 
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(Calvo et al., 2005; Donaldson et al.,  2009; Pucciarelli et al., 2005). A cell-free supernatant of 

L. moncytogenes EDGe was analysed using LC-MS/MS and 105 proteins were identified 

using LC-MS/MS compared to 54 detected by traditional 2DE techniques (Trost et al., 2005). 

A total of 301 membrane-associated proteins from L. monocytogenes EDGe were successfully 

identified by using SDS-PAGE combined with LC-MS/MS (Wehmhöner et al., 2005). 

2DnLC-MS/MS was applied to identify cell-wall proteins from L. monocytogenes and L. 

innocua. (Calvo et al., 2005).  They identified 30 proteins, 19 of which were from L. 

monocytogenes and 11 proteins from L. innocua, most of them belonging to the class of 

LPXTG motif-harbouring proteins. Recently, a combination of LC-LC-MS/MS, essentially, a 

MudPIT approach, was used to study differences of protein expression between L. 

monocytogenes strains EDGe and F2365 (Donaldson et al., 2009). They were able to identify 

1754 proteins from strain EDGe and 1427 proteins from strain F2365, accounting for a total 

L. monocytogenes proteome coverage of 50-60%. They found that a total of 1077 proteins 

were common to both strains and 423 proteins were expressed significantly differently. In 

another example, Hefford et al. (2005) identified higher levels of protein expression in 

biofilms of L. monocytogenes using 2DE analysis combined with MALDI-TOF-MS and 

MS/MS. Most of these studies focused primarily on the identification of L. monocytogenes 

cell wall and secretory proteins, the development of a partial proteome reference map and 

bacterial virulence or bacterial protein expression under certain growth conditions (Table 1.2). 

Current research on proteomics of L. monocytogenes provides a promising future for the 

development of detection technologies based on specific protein markers.   

In comparison with traditional methods and nucleic acid-based techniques, proteomic 

techniques offer a high quality, sensitive and specific analysis for the classification and 

identification of bacteria (Sauer & Kliem, 2010).  Therefore, there is potential for using 

proteomic techniques as tools for bacterial detection and identification.  
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Table 1.2. Important publications on L. monocytogenes using proteomics analysis 

Year Authors Title Technique(s) used 
 

2003 

 

Ramnath et al. 

 

Development of a Listeria monocytogenes EDGe 

partial proteome reference map and comparision 

with the protein profiles of food isolates 

 

2DE 

2005 Hefford et al. Proteomic and microscopic analysis of biofilms 

formed by Listeria monocytogenes 568 

2DE  

Matrix assisted laser 

desorption/ionization time of flight 

(MALDI-TOF) and mass 

spectrometry/mass spectrometry 

(MS/MS) analysis 

2005 Calvo et al. Analysis of the Listeria cell wall proteome by two-

dimensional nano-liquid chromatography coupled 

to mass spectrometry 

Two-dimensional nano-liquid 

chromatography coupled to ion-trap 

mass spectrometry (2DnLC-MS/MS) 

analysis 

2005 Trost et al. Comparative proteome analysis of secretory 

proteins from pathogenic and non-pathogenic 

Listeria species 

2DE 

MALDI-TOF/MS analysis 

High performance liquid 

chromatography(HPLC)/electrospray 

ionization-mass spectrometry (EI-MS) 

2005 Pucciarelli et al. Identification of substrates of the Listeria 

monocytogenes sortases A and B by a non-gel 

proteomic analysis 

2DnlC-MS/MS analysis 

2008 Dumas et al. Comparative analysis of extracellular and 

intracellular proteomes of  Listeria monocytogenes 

strains reveals a correlation between protein 

expression and serovar 

2DE 

MALDI-TOF/MS analysis 

2009 Donaldson et al. Comparative proteomic analysis of Listeria 

monocytogenes strains F2365 and EGD 

Multidimensional protein identification 

technology(MuDPIT) 

2009 de Velde et al. Isolation and 2-D-DiGE proteomic analysis of 

intracellular and extracellular forms of Listeria 

monocytogenes 

2-D-DIGE 

MALDI-TOF analysis 

2010 Carbrita et al. A secretome-based methodology may provide a 

better characterization of the virulence of  Listeria 

monocytogenes: preliminary results 

SDS-PAGE 

MALDI-TOF-MS analysis 

2010 Cacace et al. Proteomics for the elucidation of cold adaptation 

mechanisms in Listeria monocytogenes 

2DE 

MALDI-TOF analysis 
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     Chapter 2 
Methods and Materials 

2.1 Sources of bacterial strains, chemicals, reagents and 
microbiological media 

2.1.1 Bacterial Strains 

The bacterial strains used in this research are listed in Table 2.1. The bacterial strains were 

purchased from the Institute of Environmental Science and Research Ltd (ESR), New 

Zealand. 

2.1.2 Chemicals and Reagents 

All chemicals were obtained from BDH Chemicals Company (Corporate Avenue, Rowville, 

Australia), Sigma-Aldrich Chemical Company (Auckland, New Zealand), Merck Pty Ltd 

(Victoria, Australia), Bio-Rad Laboratories (Albany, Auckland, New Zealand), Invitrogen 

(Penrose, Auckland, New Zealand), and Thermo Fisher Scientific (Albany, North Shore City, 

New Zealand). Ultra-pure water was prepared using either MODULABTM Water Purification 

System or deionised water using the Milli-Q reagent water system (Millipore) throughput. 

2.1.3 Microbiological media 

Unless otherwise stated, all media were supplied by Oxoid (Hampshire, England) and 

sterilised by autoclaving at 121°C for 15 minutes. The pH of each broth was checked and, if 

necessary, adjusted immediately before autoclaving. 

2.2 General methods 

All media and stock solution were prepared using ultra-pure distilled water after weighing on 

an OHAUS E12140 analytical balance (for small quantities of chemicals) and an A& D 

Company FX2000 laboratory weighing balance (for large quantities of chemicals). The pH 

was measured using a Desktop-pH-meter SevenEasy pH meter. Solutions were stored at room 

temperature unless otherwise specified. Optical densities were measured using a UV-1610 

spectrophotometer (Shimadzu). Bacterial cultures and protein extracts were centrifuged in a 

Labofuge 400R refrigerated centrifuge (large volumes of up to 250 ml) or an Eppendorf  

 



 
 
 
 

20 

Table 2.1. List of L. monocytogenes strains used in this study  

Strain  NZRM No. Source 

Listeria monocytogenes (Murray et 
al.) Pirie 
Strain V7. Serotype 1a1. 

3371 FDA, Bothell, Washington. Milk. (Medium 1, 
37C) 

Listeria monocytogenes (Murray et 
al.) Pirie 
NZ isolate SB92/870. (FH L6652a, 
CLIP 36389) 

3349 Referred from Auckland Public Health 
Laboratory. Serotype 1/2a, phage type 1967, 
881. Smoked mussels. (Medium 1, 37C)) 

Listeria monocytogenes NZ isolate 
SB92/844. (FH L6653b, CLIP 
39392, 36387 

3350  Serotype 1/2a, phage type 1967, 
881. Blood, perinatal case, associated with 
consumption of smoked mussels. 
(Medium 1, 37C) 
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centrifuge (for small volumes of up to 1.5 ml). Stock solutions and media additives were 

sterilised by autoclaving at 121°C for 15 minutes, unless otherwise specified. 

2.3 Stock solutions, buffers, reagents and media 

2.3.1 Stock solutions 

All solutions and media were prepared in accordance with Chambers (1993) and Sambrook 

(1989) using distilled (dH2O) sterilised by autoclaving at 121°C for 15 min and then kept at 

room temperature unless otherwise specified.  

Rehydration solution 

7 M Urea, 2M Thiourea, 4% CHAPS, 0.25% Pharmalyte 4-6.5, 0.25% Pharmalyte 5-8, 0.4% 

dithiothreitol and 0.1% bromophenol blue were added to ultra-pure water. 

Gel buffer stock solution 

1.875 M Tris was adjusted to pH 8.8 with hydrochloric acid. 

15% resolving gel solution 

16 ml of gel buffer stock solution (1.875 M Tris), 30 ml of acrylamide stock solution, 0.8 ml 

of 10% SDS and 33.2 ml of ultrapure water were mixed together. 

4% T?? stacking acrylamide solution (10.25 ml volume) 

2 ml of gel buffer stock solution (1.875 M Tris), 1 ml of acrylamide, 0.1 ml of 10% SDS and 

7.15 ml of ultrapure water were mixed together. 

10% Ammonium persulphate solution (APS) 

0.1 g of ammonium persulphate was dissolved in 1 ml of ultrapure water. 

Equilibration stock solution 

0.05 M Tris, 6 M Urea, 20% glycerol and 2% SDS were dissolved in ultrapure water. The 

solution was titrated to approximately pH 8.8 with HCl and stored at 4°C. 

Fixative solution (150 ml for one gel) 

75 ml of ethanol, 15 ml of concentrated acetic acid and 60 ml of ultra-pure water were mixed 

together. 
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Stain solution for 2DE gel (150 ml for one gel) 

30 ml of methanol, 15 g of ammonium sulphate, 15 ml of 85% phosphoric acid, 0.18 g of 

Coomassie Brilliant Blue-G250 and 105 ml of ultrapure water were mixed together. 

Spot destaining solution 

0.158 g of NH4HCO3 were dissolved in 10 ml of a solution containing 50% AcN (acetonitrile) 

Reduction and Alkylation solution 

(a) 10 0?? mM NH4HCO3 (0.079 g of NH4HCO3 dissolved in 10 ml of ultrapure water) 

(b) 50 mM Tris(2-carboxyethyl)phosphine (TCEP) (0.1433 g of TCEP dissolved in 10 ml 

of 100 mM NH4HCO3) 

(c) 150 mM IAM (0.2775 g of IAM dissolved in 10 ml of 100 mM NH4HCO3 

Working trypsin solution 

Diluted 2-fold trypsin solution by adding 50 mM NH4HCO3 to create a working trypsin 

solution.?? 

50%AcN/0.5TFA solution 

5 ml of AcN and 0.5 ml of TFA were dissolved in 4.5 ml of ultrapure water. 

2.3.2 Buffers 

Buffers were prepared according to the methods described in Biochemistry LabFax 

(Chambers, 1993).  

Tris buffer pH 8.0 

A tris(hydroxymethyl)aminomethane buffer solution was prepared from the appropriate 

concentrations of Tris base. The pH was adjusted to 8.0 using HCl. 

4X SDS buffer 

40 mM of Tris, 40% of glycerol, 40 mM EDTA, 2.5% SDS and ~ 0.2 mg/ml bromophenol 

blue were dissolved in distilled water. 

Listeria protein solubilisation buffer 
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7 M Urea, 20 mM Tris-Cl (pH8.0), 5 mM EDTA, 5 mM MgCl2, 4% CHAPS and 1 mM 

phenymethanesulfonyl fluoride were dissolved in dH2O. 

Listeria lysis buffer 

2% Triton X-100, 2.6 mg/ml sodium azide, 0.1 M Tris (pH 8.0) and  8 mM 

phenylmethanesulfonyl fluoride were dissolved in dH2O. 

2.3.3 Media 

Brain Heart Infusion (BHI) Broth 

Dehydrated brain heart infusion broth (37.0 g) was dissolved in one litre of dH2O and, if 

needed, the pH was adjusted with HCl before sterilisation by autoclaving. 

BHI Agar 

For BHI agar plates, 1.5% bacteriological agar was added to the BHI broth. Before 

autoclaving, the BHI components were dissolved completely by leaving the bottles in a hot 

water bath at 51°C until all the components dissolved.  

2.4 Microbial growth and conditions 

Bacteria were streaked on to Brain Heart Infusion agar and incubated for 24 h at 37°C. 

Colonies were then picked and inoculated into Brain Heart Infusion broth and grown for 24 h 

at 37°C (Moorhead, et al., 2003). A single bacterial colony was picked and inoculated into 5 

ml of Brain Heart Infusion Broth and grown for 24 h at 37°C. This bacterial overnight culture 

was then transferred into 250 ml of BHI broth with an initial OD600 ~0.1, and grown at 37℃ 

with shacking at 130 rpm. The OD600 was measured every hour until bacterial growth 

reached the stationary phase (~13 h). 

2.5 Protein analysis 

SDS PAGE was used to determine the quality of the extracted protein and the banding 

patterns for these strains. Comparative proteomic analysis and identification of proteins was 

performed using 2DE analysis, MALDI-TOF-MS and Ion Trap MS. 

2.5.1 Protein sample collection 

One hundred µl of bacterial cells were placed in 5 ml of BHI broth and incubated at 37°C at 

130 rpm for 24 h. Bacterial cultures were then transferred into 30 ml of BHI medium with 
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initial OD600 ~0 and grown at 37℃ at 130 rpm to the exponential phase (optical density OD600 

~1.0). The bacterial cultures were pelleted by centrifugation at 5,600 x g for 10 min at 4°C 

and the supernatant discarded. The cell pellets were kept on ice. 

 

Cell pellets were re-suspended in 4 ml of lysis solution. Bacteria were then incubated on ice 

for 1.5 hours. Samples were treated with 2 µl (10000U/ml) DNase I and 2 µl of 20 mg/ml 

RNase A for 30 min at 37°C, then 0.5 ml of the Listeria solubilisation buffer was added and 

the cell debris pelleted by centrifugation (18,000 x g for 5 min at 4°C). Supernatants 

containing the total protein were stored at -80°C until needed. 

2.5.2 Protein sample quantification 

The quantitation of the solubilised protein was undertaken using the bicinchoninic acid assay 

(BCA) kit and following the manufacturer’s instructions.  

 

The BCA reagent was mixed with Reagent B at a ratio of 50:1 (Reagent A: Reagent B=50:1) 

to make the working reagent.  Twenty µg of the test protein sample was added to blank wells, 

and then 200 µl of working reagent was added and mixed using the pipette tip. The test plate 

was then covered with tinfoil and incubated at 37°C for 30 min. The plate was cooled to room 

temperature and the absorbance read at 562 nm. 

2.5.3 One dimensional SDS PAGE 

Dry protein samples were precipitated by adding 3x volumes of ice-cold acetone and 

incubated at -20°C overnight. The solutions were centrifuged at 4°C for 10 min. The acetone 

supernatants were discarded and the protein sample was freeze-dried and kept at -20°C until 

use. 

Protein samples (20 µl of protein solubilisation buffer containing about 30 µg of dry protein) 

were mixed with 40 μl of 4x SDS sample buffer and then boiled for 10 min. Twenty-five μl 

were then loaded onto the gel, along with 5 μl of Precision Plus Protein Standards (Bio-Rad). 

All empty lanes were loaded with 10 μl of 4x SDS. After the protein samples were loaded, the 

gel was run at 200 V, 8 mA per gel and 15 W for approximately 1 hr. Gels were stained using 

colloidal Coomassie Brilliant Blue G250 (20% methanol, 10% ammonium sulphate, 10% 

phosphoric acid, 0.12% Coomassie Brilliant Blue G250) then de-stained with dH2O.  
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2.5.4 2DE analysis 

Two-dimensional polyacrylamide gel electrophoresis of protein samples isolated from L. 

monocytogenes isolates were performed according to the protocol described by Cacace, et al. 

(2010). Approximately ~850 µg of the freeze-dried protein samples were applied by in-gel 

rehydration in 18-cm IPG strips (pH 4-7 range strips).  

The IPG strips were rehydrated with a solution containing 7 M urea, 2 M thiourea, 4% 

CHAPS, 0.25% Pharmalyte 4-6.5, 0.25% Pharmalyte 5-8 and 0.4% DTT. Thirty-five µl of the 

solution above was used to dissolve ~850 µg of protein powder. This rehydration solution 

containing protein was pipetted into the rehydration tray. The IPG strips were placed over the 

top of the solution in the sealable rehydration tank and then flushed with nitrogen for 10 

minutes. The IPG strips were then rehydrated for 24 h at room temperature. 

After rehydration, the strips were rinsed with ultrapure water (18MΩ). The electrode wicks 

were dampened with 0.4% DTT solution, blotted dry and placed in the IPGphor 

electrofocussing system (GE Healthcare) over the electrodes and the rehydrated strips were 

then placed on top/above??. The strips were covered with degassed paraffin oil. The strips 

were then focussed overnight for ~80,000 V. After focusing, the strips were stored in a -85°C 

freezer until run in the second dimension. 

A 15% T acrylamide (37.5:1 acrylamide:bis-acrylamide) resolving gel solution was prepared 

and degassed for 30 minutes. The Protean II gel casting cassettes were cleaned and assembled 

and the bottom of the cassette sealed with a solution of 0.5% agarose. Eighty ml of the 

acrylamide solution, 40 µl of tetramethylenediamine (TEMED) and 400 µl of 10% 

ammonium persulfate (APS) were added after pouring the gels into the casting cassette to 

begin polymerisation. After polymerisation, 10 ml of 4% stacking gel was poured into the 

cassette and polymerised with 5 µl of TEMED and 50 µl of APS. At each stage, the gel was 

overlain with 1 ml of water-saturated isobutanol, covered with polyethylene cling film and 

left to set (~90 mins).  

The IPG strips in the second dimension were equilibrated, for 15 minutes in a strip 

rehydration tray on a platform rocket, in 2 ml of equilibration solution (6 M urea, 50 mM Tris, 

20% glycerol and 2% sodium dodecylsulfate (SDS)) containing 1% dithiothreitol (DTT). The 

DTT equilibration solution was discarded and the strips equilibrated with the same solution 

containing 4% iodoacetamide (IAM) instead of DTT.  The strips were removed from the 

equilibrating solution and cut to fit the gel, then allowed to settle onto the gel so as to ensure 
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that the strip was touching the surface of the gel. The water on the top of the gel was poured 

off and the top sealed with 10% agarose solution (containing 0.1% bromophenol blue dye). 

The gels were run at 200 V, 32 mA and 50 W per gel for 15 minutes, then at 275 V, 80 mA, 

50 W, for approximately three hours.  

The 2DE gels were fixed with 150 ml of fixative solution (50% ethanol and 10% acetic acid) 

with gentle rocking for 30 minutes. The gels were then stained with colloidal Coomassie 

Brilliant Blue G250 stain solution overnight.  All the gels were washed with several changes 

of ultra-pure water, with the use of 1-2 Kimwipes per change to remove excess stain. 

All samples were run in triplicate for a total of nine gel maps and three biological replicates 

for each bacteria strain were analysed. 

Spots analyses were carried out on the gel images followed by the excision of spots, digestion 

in trypsin and then analysed by mass spectrometry. Proteins were identified using the 

bioinformatics resources of AgReseach Ltd (New Zealand).  

2.5.5 Spot analysis 

Spot detection, quantization, and analysis were performed using the PDQest TM 2-D Analysis 

software, Version 6.2 (Bio-Rad). After this, the spots were excised, digested with trypsin and 

analysed by mass spectrometry.  

Images of the gels were captured with a Nikon D100 digital camera and the background 

subtracted with AnalySIS 5 (Olympus Imaging Systems). The images of the gels were aligned 

and the spots quantitated and matched by PDQuest v 6.2 2D gel analysis software (Bio-Rad 

Laboratories, Hercules, CA). The gels were initially processed using the automatic spot 

detection and matching routine, and then further aligned by manually defining key spots as 

landmarks. The spot intensities for all gels were then normalised using the Total Quantity in 

Gel Image routine. The results were reported as histograms of relative spot volume for each 

protein spot of interest. 

2.5.6 Protein identification 

Proteins were identified by MALDI-TOF-MS and Ion Trap MS in AgReseach Ltd (New 

Zealand). 
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2.5.6.1 Preparation of samples for Mass Spectrometry 
Spots were excised from gels and destained by washing twice with a solution of 200 mM 

ammonium bicarbonate and 50% acetonitrile (AcN) for 1 hour at 37°C. The spots were 

reduced with a solution of 50 mM TCEP and 100 mM ammonium bicarbonate at 56°C for 45 

minutes. Following this, they were shaken with 150 mM IAM in 100 mM ammonium 

bicarbonate for 30 minutes; they were then shaken with AcN for 10 minutes and dried on a 

Centrivap vacuum centrifugal concentrator (Labconco, Kansas City, MI, USA). After 

digestion with 2 µg TPCK-trypsin in 50 mM ammonium bicarbonate:AcN (8.625:1.375) for 

18 hours at 37°C, peptides were extracted from the gel by vortexing for three hours in the 

presence of Empore™ disks that had been pre-wetted with AcN and methanol, following 

which the peptides were extracted with 75% AcN in 0.1 mM TFA. The extracts were dried on 

a Centrivap vacuum centrifugal concentrator and reconstituted in 0.1% TFA. 

 

2.5.6.2 MALDI-TOF 
Samples were prepared for MALDI-TOF by applying 1 ml of a α-cyanocinammic acid 

(CHCA)-saturated solution of 97:3 (acetone: 0.1%) TFA to an AnchorChip plate and then 

immediately removed. The sample was applied as 1 µL dissolved in 0.1% TFA, allowed to 

incubate for three minutes before removal, followed by the addition and immediate removal 

of 2 µL of 0.1% TFA. Finally, 1 µL of a solution of 0.1 mg/mL CHCA in 6:3:1 ethanol: 

acetone: 0/1% TFA was added and allowed to dry. 

 

MS and MS/MS spectra were collected on a MALDI-TOF/TOF mass spectrometer (Ultraflex 

III, Bruker Daltonics). Spectra were calibrated externally using a Peptide Calibration Standard 

(Bruker) containing angiotensin II (m/z 1046.5418) and I (m/z 1296.6848), Substance P (m/z 

1347.7354), bombesin (m/z 1619.8223), ACTH-clip (m/z 2093.0862), ACTH-clip (m/z 

2465.1983) and somatostatin (m/z 3147.471) diluted six-fold with a matrix solution. 

 

After the MS and MS/MS data acquisition, peak lists were extracted from the data using 

FlexAnalysis software (Bruker). These peak lists were searched against the NCBInr database 

using an in-house MASCOT server (Matrix Science, London, UK). The following search 

parameters were used: semitrypsin was chosen as the proteolytic enzyme; peptide and 

fragment ion tolerances were set at 0.2 Da; taxonomy was restricted to Firumicutes (gram-

positive bacteria) and two missed cleavages were allowed. 
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2.5.6.3 Ion-trap Mass Spectrometry 
LC-MS/MS was performed on a nanoAdvance UPLC coupled to an amaZon speed ETD mass 

spectrometer equipped with a CaptiveSpray source (Bruker Daltonik, Bremen, Germany). 

Two μl of protein sample was loaded on a C18AQ nano trap (Bruker, 75 μm x 2 cm, C18AQ, 

3 μm particles, 200 Å pore size). The trap column was then switched in line with the 

analytical column (Bruker Magic C18AQ, 100 μm x 15 cm C18AQ, 3 μm particles, 200 Å 

pore size). The column oven temperature was 50°C. The elution was with a gradient from 0% 

to 40% B?? in 90 min at a flow rate of 800 nl/min. Solvent A was LCMS-grade water with 

0.1% FA and 1% AcN; solvent B was LCMS-grade AcN with 0.1% FA and 1% water.  

Automated information-dependent acquisition (IDA) was performed using Hystar PP 3.2.44.0 

software, with a MS survey scan over the range m/z 50–2200 followed by three MS/MS 

spectra from 50–2200 m/z acquired during each cycle of 30 ms duration. 

 

2.5.6.4 Data Analysis 
After each LC-MS/MS run, peak lists were queried against Firumicutes (gram-positive 

bacteria) in the Uniprot database using the Mascot search engine (v2.2.03, Matrix Science) 

maintained on an in-house server. The Mascot search parameters included semitrypsin as the 

proteolytic enzyme with two repeat missed cleavages; standard modifications being 

carbamidomethylation (C), deamidation (NQ) and oxidation (M); the error tolerance was set 

to 0.15 Da for MS and 0.3 Da for MS/MS. Search results were compiled and analysed using 

ProteinScape 3.1.0 (Bruker) using the ProteinExtractor function and the automatic assessment 

of true and false positive identifications of protein and peptide matches. Acceptance 

thresholds for peptide and protein scores were set at 25 and 80, respectively. Results assessed 

as being true matches were used for further analysis. Error-tolerant searches were run on all 

spots in the Type I keratin region, all parameters being kept the same except the enzyme was 

set to trypsin and no modifications were searched for. 

 



 
 
 
 

29 

     Chapter 3 
Experimental Results 

3.1 Growth Curve generation 

In this research, three strains of L. monocytogenes, V 7, SB92/870 and SB92/844, were 

studied. Strain SB92/870 was isolated from a local New Zealand seafood product (mussels) 

and the other strain, SB92/844, was a clinical strain. V7 was isolated from milk products in 

the USA and has been extensively studied. The growth of the bacteria was first monitored 

using three biological replicates for each bacterial strain. All three strains showed identical 

growth patterns when growth conditions were kept similar. Under similar growth conditions, 

the exponential increase in OD600 for all three isolates occurred between 2-7 h of incubation at 

37°C. Strains SB92/870 and V7 tended to grow a little slower than strain SB92/844 during the 

exponential phase. Interestingly isolates SB92/870 and V7 achieved similar OD600 values, 

1.77(with SD 0.190 and 0.053 respectively), at around six hours of growth, which was 

slightly higher than for SB92/844 (1.53 with SD 0.046). Strain V7 first reached its highest OD 

(average OD600nm=2.03 with SD 0.185) in 7 h, whereas the average OD of other two was 

about 1.9. After 7 h of growth, strain V7 reached the stationary phase, where the OD600 values 

fluctuated between 1.83~2.7. For isolates SB92/844 and SB92/870, they still had very slow 

growth after 8 h, and the highest OD600 values (2.09 with SD 0.078 and 2.04 with SD 0.042 

respectively) were observed after 9 h (Figure 3.1). After nine hours growth, strains SB92/870 

and SB92/844 tended to reach the stationary phase, and they both had average OD values 

ranging from 1.91 (SD 0.040)to 2.04( SD 0.042). In general, all three strains of bacteria had 

similar growth trends during the lag phase and exponential phases.    

3.2 1D SDS PAGE analysis 

For proteomics analysis purposes, bacterial cells were harvested at an OD600 of around 1.0 

(mid exponential phase). The protein samples from three isolates of L. monocytogenes were 

first tested using SDS-PAGE (Figure 3.2). About 30 µg of protein sample from each strain 

was loaded on to a SDS gel. The gel was stained with Coomassie Blue G250 and imaged prior 

to examining the quality of the extracted protein and the banding patterns. There were no 

significant differences in the SDS PAGE gels, since the results showed that Lanes 2, 3, and 4 
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had similar banding patterns, they all migrated the same distance and had less abundant bands 

in the larger sizes (greater than  

 

 

 

Figure 3.1. Growth of three isolates of L. monocytogenes (V7, SB92/870, SB92/844) in Brain 
Heart Infusion medium at 37°C until bacterial growth reached the stationary phase. The 
average OD600 values from three biological replicates of each bacterial isolate with the 
standard deviation is shown and the data are given in Appendix I. 
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Figure. 3.2. SDS-PAGE gel showing the banding pattern of each strain.  The protein samples 
were precipitated using a 3x volume of acetone to make 30 µg of dry protein samples. The dry 
protein samples were dissolved in 15 µlof protein solubilisation solution and 5 µl of 4x SDS 
buffer was added to make 20 µl of protein sample solution. For each lane, 20 µl of solution 
that contained ~ 30 µg of protein samples was loaded. Lanes 1 and 5 - Protein marker; Lane 2 
– L. monocytogenes  SB92/844; Lane 3 – L. monocytogenes SB92/870;  Lane 4 – L. 
monocytogenes V7 
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50 kDA) and smaller sizes (between 50 kDA~15 kDA). For each strain, 20 bands could be 

observed by SDS PAGE. The sizes for all the protein bands migrated between 150 kDA and 

10 kDA. The bands that formed well resulted in narrow bands with sharp edges (with sizes 

greater than 75 kDA), were soluble proteins. From the gels, it was shown that for the three 

strains of bacteria, protein bands with sizes between 100 kDA and 50 kDA had similar density 

and thickness and they all tended to migrate close together. For protein bands between sizes 

10~15 kDA, all three strains have shown intrinsic protein patterns that form broader bands 

with less distinct edges. These protein bands might contain some proteins with lots of 

hydrophobic regions or non-protein substituents, such as multi-pass transmembrane proteins. 

Therefore, 2DE analysis was conducted to further study these protein samples from three 

isolates of L. monocytogenes. 

3.3 2DE analysis  

Two-dimensional electrophoresis (2DE) analysis of protein samples isolated from L. 

monocytogenes isolates was performed according to the protocol described by Cacace, et al. 

(2010). Detailed methods are given in Section 2.5.4. Protein samples were extracted in 

triplicate from each strain and grown in BHI broth to OD600 ~ 1.0. Protein samples from each 

culture were run on individual 2 DE gels. A total of nine gel maps from three strains were 

developed and analysed (images of the gels are shown in Appendices II, III and IV).  

2DE was carried out on an equivalent number of proteins from the three different strains of L. 

monocytogenes. The gels were stained with Coomassie Blue G250 and imaged prior to 

performing spot analysis using PDQuest v7.0.0 software. The resulting 2DE maps showed the 

majority of protein spots for the three strains of bacteria were localised in a region between 

pH 4 and pH 6. Furthermore, most spots migrated to an isoelectric point (pI) of  between pH 4 

and 5.  

Comparison of the gels from three strains of L. monocytogenes showed differences between 

these strains. Visual observation revealed that certain spots appeared to express differentially. 

Spot 1 was absent in L. monocytogenes V7 (Figure 3.3). Spot 2 underwent a positional shift in 

L. monocytogenes SB92/870. Spot 3 was absent in L. monocytogenes V7. Spot 4 underwent 

both a positional shift and intensity change between LM SB92/844 and L. monocytogenes 

SB92/870, and was absent in L. monocytogenes V7. Spot 5 underwent a positional shift in L. 

monocytogenes SB92/844. One gel was picked from L. monocytogenes SB92/844 as a 

reference gel for using the image analysis software  
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Figure 3.3. Typical images of whole cell protein 2DE gels of three L. monocytogenes strains 
grown in BHI broth at 37°C for 6 h. Some spots are marked which are assumed 
differentially??? expressed using visual observation. 
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PDQest v 6.2 to match the maximum number of spots and to visualise all the identified 
protein spots.  

3.4 Comparison of differently expressed proteins of three 
different strains of L. monocytogenes 

Spot detection, quantitation and analysis of the proteins in the three L. monocytogenes strains 

grown under similar conditions were performed using the PDQestTM 2D analysis software 

(version 70.0). A total of 189 spots were detected with the software using SB92/844 as the 

reference map (Figure 3.4). Figure 3.4 represents the image of the reference gel that was 

created by the software, showing all possible spots that were marked on the reference image. 

From a comparison of L. monocytogenes strain V7 with strain SB92/844, there were 99 spots 

that matched SB92/844, which means 52.4% of detected spots in the reference gel were 

present in strain V7 (Table 3.1 and Appendix V).  There were 102 detected spots (54.0% of 

detected spots) that able to be found in L. monocytogenes train SB92/870 (Table 3.1). Finally, 

70 out of 189 detected spots (37% of detected spots) were present in all three strains studied. 

However, while some of the spots were neither in strain SB92/870 nor strain V7, it may be 

due to a real absence of protein spots, or it could be due to poor matching by the image 

analysis software. Therefore, in this study, we only took into account those spots that were 

able to be detected by the software. 

For the purposes of this research, the relative difference in protein expression had to differ by 

more than 1.5-fold for it to be regarded as up-regulated or down-regulated. Spot differences of 

less than a 1.5-fold increase or decrease were regarded as not differentially/differently?? 

expressed. On this basis, the expression of five protein spots were found to increase in 

SB92/844 relative to V7, with two spots (Spot 6203 and Spot 6205) having a ratio of +2.3 

indicating it was highly up-regulated (Table 3.2 a). Expression of 10 proteins spots were also 

shown to decrease in SB92/844 (Table 3.2 a), the ratio of the most down-regulated protein 

spot being -3.5 (Spot 9203). Furthermore, 14 spots showed no significant difference in protein 

expression in SB92/844 relative to V7. For the relative protein expression pattern in L. 

monocytogenes for SB92/870 relative to V7, five protein spots were significantly over 

expressed, and three of them had a ratio for the most up-regulated protein spot of +1.7 (Table 

3.2b). Expression of six protein spots were significantly under expressed in SB92/870 relative 

to V7 with the most down-regulated having a ratio of -3.1. A further 11 protein spots showed 

no differential expression. By comparing the proteins expression between SB92/844 to 
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SB92/870, there were 22 protein spots that showed no significant differences (Table 3.2 c). 

Only three protein spots were over expressed,  

 

 

Figure 3.4. Image of the reference gel created by PDQestTM 2D Analysis software to conduct 
comparative proteomic analysis 
 
 

 

 

 

 

 

 

 



 
 
 
 

36 

Table 3.1. Comparison of detected 2DE total protein spots of three strains of L. 

monocytogenes V7, SB92/844, and SB92/870  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

Total No. of 
spots detected 
in reference 
gel SB92/844 
 

No. of spots 
matched L. 
monocytogenes 
strain V7 (%) 

No. of spots matched 
L. monocytogenes 
strain SB92/870 (%) 

No. of spots matched 
three strains of L. 
monocytogenes (V7, 
SB92/844, SB92/870) 
(%) 

189  99 of 189 (52.4%) 102 of 189 (54.0%) 70 of 189 (37.0%) 
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Table 3.2a. Relative protein expression in L. monocytogenes SB92/844 to V7 
Spot ID Average Values in 

Reference Strain V7 
Average Values in 
SB92/844 

Relative protein 
expression SB92/844 
vs V7 

Up-regulated spots 
0002 13359 23654 +1.8 
1003 18975 37452 +2.0 
6105 6713 3643 +1.8 
6203 1775 4077 +2.3 
6205 3272 7445 +2.3 

Down-regulated spots 
2001 8686 4599 -1.9 
5101 7874 4724 -1.7 
6102 15098 9703 -1.6 
4203 4002 1307 -3.1 
5101 7874 4724 -1.7 
6102 15097 9702 -1.6 
6105 6713 3643 -1.8 
6502 27345 9246 -3.0 
7201 4411 2345 -1.9 
9203 4543 1296 -3.5 

Spots without differential expression 
0004 8697 10740 +1.2 
0201 2184 1629 -1.3 
1001 12485 11696 +1.1 
1103 13271 13472 +1.0 
2702 12899 12719 -1.0 
3004 36430 42635 +1.2 
3102 3104.9 2981 -1.0 
6001 10338 9185 -1.1 
6603 26225 26753 +1.0 
3004 36429 37035 +1.0 
7103 4056 3455 -1.2 
7301 29527 40910 +1.4 
7501 3315 3426 +1.0 
9201 2047 1558 +1.3 
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Table 3.2b. Relative protein expressions in L. monocytogenes SB92/870 to V7 
Spot ID Average Values in 

Reference Strain V7 
Average Values in 
SB92/870 

Relative protein 
expression SB92/844 
vs V7 

Up-regulated spots 
0002 13359 22338 +1.7 
0004 8697 14774 +1.7 
3004 36430 54226 +1.5 
6205 3272 5671 +1.7 
9203 4543 6947 +1.5 

Down-regulated spots 
6102 15098 7626 -2.0 
2001 8686 4837 -1.8 
6102 15098 7626 -2.0 
6303 17509 11211 -1.6 
6502 27345 8924 -3.1 
6603 26225 10147 -2.6 

Spots without differential expression 
0201 2184 2197 +1.0 
1001 12485 17385 +1.4 
1003 18975 23053 +1.2 
1103 13271 17391 +1.3 
1104 5780 4593 -1.3 
2702 12899 16714 +1.3 
3102 3105 3007 -1.0 
5101 7874 9164 +1.2 
6001 10338 11174 +1.1 
7103 4056 3620 -1.1 
7301 29527 42203 +1.4 
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Table 3.2c. Relative protein expressions in L. monocytogenes SB92/844 to SB92/870 
Spot ID Average values in 

SB92/870 
Average values in 
SB92/844 

Relative protein 
expression SB92/844 
vs SB92/870 

Up-regulated spots 
1003 23053 37452 +1.6 
6603 10147 26753 +2.6 
7104 1511 5519 +3.7 

Down-regulated spots 
1001 17385 11696 -1.5 
1101 7428 5091 -1.5 
2402 9609 5680 -1.7 
2602 3381 2102 -1.6 
3005 13312 7768 -1.7 
3401 8453 3612 -2.3 
5101 9164 4724 -1.9 
5402 10595 7016 -1.5 

Spots without differential expression 
0002 22338 23654 +1.1 
0004 14774 10740 -1.4 
0201 2197 1629 -1.3 
1103 17391 13472 -1.3 
2001 4837 4599 -1.1 
2201 1514 1689 +1.1 
2702 16714 12719 -1.3 
3003 3131 2323 -1.3 
3004 54226 42635 -1.3 
3102 3007 2981 -1.0 
3301 2680 1940 -1.4 
4302 14803 14603 -1.0 
5802 4233 4017 -1.1 
5803 3911 4422 +1.1 
6001 11174 9184 +1.2 
6102 7626 9702 +1.3 
6205 5671 7445 +1.3 
6303 11211 13625 +1.2 
6502 8924 9246 +1.0 
7103 3620 3455 -1.0 
7301 42203 40910 +1.0 
9802 1376 1373 +1.0 
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the ratio of the most up-regulated protein was +3.7 (Spot 7104); the expressions of eight 

protein spots decreased in SB92/844 in relation to SB92/870 and the ratio of the most down-

regulated was -2.3 (Spot7104).  

 

Comparison of the differentially expressed proteins in three strains of L. monocytogenes, 

revealed there were five spots that both showed up-regulation in SB92/844 relative to V7 and 

in SB92/870 relative to V7 (Table 3.3); whereas, there were only three over expressed spots in 

SB92/844 relative to SB92/870. For the down-regulated spots, nine spots were found to be 

down-regulated in SB92/844 relative to V7. There were eight spots showing down-regulation 

in SB92/844 relative to SB92/870 and only six spots showed decreased expression in 

SB92/870 relative to V7. 

 

Comparative spot analysis was followed by the identification of the spots, marked on the 

reference gel (Figure 3.4), using MALD-TOF/TOF MS and Ion Trap MS. For identification 

of the protein, selected protein spots were excised, digested in trypsin, and analysed through 

mass spectrometry. 
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Table 3.3. Comparison of differential protein expressions in different strains of L. 
monocytogenes 
 
 SB92/844 vs V7 SB92/870 vs V7 SB92/844 vs SB92/870 

Up-regulated spots 5 5 3 

Down-regulated spots 10 6 8 
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3.5 Identification of specific protein spots by MALDI-TOF MS 
and Ion Trap MS 

Seventy-four spots were excised from triplicate gels of the reference strain SB92/844 and 

further analysed by MALD-TOF MS and Ion Trap MS. Only 19 were identified (Figure 3.5 

and Table 3.4); the positions of the identified proteins are shown in reference gel SB92/844 

(Figure 3.5). For those spots identified, four were cold shock proteins that play a role in 

detoxification and adaptation to atypical conditions (Spots 0001, 0002, 0004 and 1001) (Table 

3.4). Three spots were found to contain co-chaperonin GroES (Spot 2001), phosphocarrier 

protein HPr (Spot 3005) and a CD4+ T-cell-stimulating antigen that functioned as 

transport/binding proteins (Spot 2402), lipoproteins and membrane bioenergetics, respectively. 

The five protein spots identified were found to be members of the carbohydrate metabolism 

group, including phosphoglycerate mutase, oligopeptide-binding protein and glyceraldehyde-

3-phosphate dehydrogenase (Table 3.4 and Figure 3.5). Other spots were found to be of 

proteins involved in protein synthesis, protein folding, oxidative responses and steroid 

biosynthetic processes. In comparison, for the expression of proteins identified in L. 

moncytogenes strains SB92/844 and SB92/870 (Table 3.5), six of these identified proteins 

were not present in L. monocytogenes Strain V7, two were not present in L. monocytogenes 

SB92/870 (Spot 0001 and Spot 7201) and one of the identified proteins was missing from 

both V7 and SB92/870 (Spot 0001). 

 

According to Figure 3.2, the marked spot group 1 contains two proteins that are both 

oligopeptides, ABC transporter and oligopeptide-binding protein, which are absent in L. 

monocytogenes V7 (Figure 3.5 and Table 3.5). Spot 2 is a ribosome recycling factor, which 

undergoes a positional shift in LM SB92/870. Spot 3 is absent in L. monocytogenes V7. Spot 

4 is a protein that is involved in detoxification and adaptation to atypical conditions, which  

has undergone both a positional shift and intensity change between L. monocytogenes 

SB92/844 and LM SB92/870, and is absent in L. monocytogenes V7. Spot 5 is major cold-

shock protein that has the functions to detoxify and adapt to atypical conditions. This protein 

has undergone a positional shift in L. monocytogenes SB92/844.  
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Table 3.4. Functional classification of the identified proteins from Listeria monocytogenes 

strain SB 92/844 by using MALD-TOF/TOF MS and Ion Trap MS 

  

 

 

 

Spot 
No.  

Ultraflex III 
(MALD-TOF 
MS) 

amazon (Ion Trap 
MS) 

Function 

0001  Major cold shock 
protein, partial 

Major cold shock protein  Detoxification and adaptation to atypical conditions 

0002 Major cold shock 
protein  

Major cold shock 
protein, partial  

Detoxification and adaptation to atypical conditions 

0004 Major cold shock 
protein, partial  

Major cold shock 
protein, partial  

Detoxification and adaptation to atypical conditions 

1001  Major cold shock 
protein, partial  

Detoxification and adaptation to atypical conditions 

1003 50S ribosomal 
protein L7/L12  

 Protein synthesis 

1103 Regulatory 
protein SpoVG  

  

2001 co-chaperonin 
GroES  

 Protein folding 

2402 CD4+ T-cell-
stimulating 
antigen  

 Transport/binding proteins, lipoproteins and 
membrane bioenergetics 

3005  Phosphocarrier protein 
HPr  

Transport/binding proteins, lipoproteins and 
membrane bioenergetics 

3004   Phosphocarrier protein 
HPr  

Transport/binding proteins, lipoproteins and 
membrane bioenergetics 

5802  Oligopeptide 
ABC transporter, 
oligopeptide-
binding protein  

Glyceraldehyde-3-
phosphate 
dehydrogenase 

Metabolism of carbohydrates (Glycolysis/ 
gluconeogenesis) 

5803  Glyceraldehyde-3-
phosphate 
dehydrogenase 

Metabolism of carbohydrates (Glycolysis/ 
gluconeogenesis) 

6102  Superoxide dismutase  
 

Oxidative stress 
6205  Ribosome 

recycling factor  
Ribosome recycling 
factor  

Ribosomial protein 

6502 
 

 Glyceraldehyde-3-
phosphate 
dehydrogenase  

Metabolism of carbohydrates (Glycolysis/ 
gluconeogenesis) 

6603 Glyceraldehyde-
3-phosphate 
dehydrogenase  

Glyceraldehyde-3-
phosphate 
dehydrogenase  

Metabolism of 
carbohydrates(Glycolysis/gluconeogenesis) 

7102   PTS system, glucose-
specific, IIA component  

Membrane transporter 

7201 Phosphoglycerate 
mutase  

 Metabolism of carbohydrates (Glycolysis/ 
gluconeogenesis) 

9203 NAD-dependent 
epimerase  

 steroid biosynthetic process 

 

http://www.ebi.ac.uk/QuickGO/GTerm?id=GO:0006694
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Figure 3.5. Spots identified through MALDI-MS/MS analysis are shown on the reference 
2DE gel for L. monocytogenes SB92/844.  
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     Chapter 4                                                                 Discussi
on 

4.1 Comparison of growth L. monocytogenes strains in BHI 
broth   

L. monocytogenes is an important foodborne pathogen. This research characterised the 

proteins expressed in three L. monocytogenes strains, SB92/844, SB92/870 and V7, during the 

exponential phase growth in BHI broth at 37°C. Strains SB92/844 and SB92/870 are New 

Zealand strains; one of the strains was isolated from a patient’s blood sample and the other 

strain was isolated from a local seafood product. Strain V7 was imported from the USA.  All 

three strains are representative of serotype 1/2a sporadic disease isolates from Lineage II and 

they all showed similar matching growth patterns when growth conditions were kept similar. 

The two local isolates showed very similar growth patterns under the same growth conditions. 

This indicated that those two local strains, SB92/844 and SB92/870, have almost identical 

growth profiles in comparison to the overseas strain under the same growth conditions. 

4.2 1D SDS PAGE and 2DE profiles of three strains of L. 
monocytogenes 

The initial investigation of the protein banding patterns of three strains of L. monocytogenes 

using 1D SDS PAGE showed no noticeable differences. All the protein bands from Lanes 2, 3 

and 4 that migrated the same distance had less abundant bands of large and small sizes. 

Narrow bands with sharp edges were observed from three strains, which could be 

polypeptides from cytoplasmic proteins or membrane-associated proteins. The proteins bands 

with sizes around 100 kDA and 50 kDA, may be two polypeptides that shared the same amino 

acid sequence for the most part, or were closely related in structure, or, otherwise, were 

isoforms of the same protein. In nature, such polypeptides typically formed multiple-subunit 

proteins or were part of a "family" of isoenzymes that performed similar functions, but were 

each specialised for a specific tissue and/or purpose. For protein bands between 10~15 kDA 

for three strains have shown intrinsic protein patterns that were broader with less distinct 

edges. These protein bands may contain some hydrophobic and hydrophilic proteins, which 

may have polypeptides with different net charge depending on the amino acids sequence. For 

the proteins with many hydrophobic regions or non-protein substituents, they might be multi-
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pass transmembrane proteins. Polypeptides that formed intrinsic proteins had sequences of 

hydrophobic side chains that may, or may not, denature completely. Moreover, these large 

bands may indicate either overloading of protein in a well or the presence of a predominant 

polypeptide in the three protein samples. In general, the band patterns were the same for each 

isolate, as they all migrated the same distance and the proteins bands were all distributed with 

sizes between 150 kDA to 10 kDA.  

 

Further 2DE analyses followed by identification of individual spots by MALD-TOF/TOF 

mass spectrometry and Ion Trap mass spectrometry were carried to evaluate the protein 

expression in the strains of L. monocytogenes. Strain SB92/844 was used as a reference for 

comparative analysis of the protein patterns for the three strains of bacteria. 

 

The 2DE technique is an important tool for proteomic study and is used to separate hundreds 

of proteins in a single gel (Trémoulet et al., 2002). In this study, the differential protein 

patterns of the three strains of L. monocytogenes were studied, initially, by using 2DE. From 

an examination of the 2DE gels for three strains of L. monocytogenes, cultivated under the 

same growth conditions, the majority of the protein spots were localised in a region between 

pH 4 and pH 6.  As indicated by the protein patterns on the 2DE gels, most of the spots 

migrated to an isoelectric point (pI) of between pH 4 and pH 5. In this study, the same 

serotype and different strains of L. monocytogenes were compared using 2DE analysis first. 

From a comparison of the L. monocytogenes strain V7 to strain SB92/844, 52.4% of detected 

spots in the reference gel were present in strain V7.  Meanwhile, 54.0% of detected spots were 

able to be found in L. monocytogenes Strain SB92/870. As early study, in 1995, demonstrated 

that 46.7% of the spots that were common among L. monocytogenes strains across serotypes 

and serotypes 1/2a and 1/2b??, were in two different major clusters (Gormon & Phan-Thanh, 

1995). The results observed in this study were only from three strains of L. monocytogenes, 

and they were the same serotype. Therefore, a higher percentage of matched protein spots 

were observed then comparing the two strains of L. monocytogenes.It was also found that 

only 37% of spots detected were present in those three strains of bacteria. As Jungblut 

indicated, the greater variability observed at the proteomic level may be due to a single amino 

acid change in a protein (Jungblut, 2001). And these changes can result in a shift in pI, and 

then further resulting in a detectable modification in the 2D patter (Jungblut, 2001). 
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A comparison of the relative protein expression value between SB92/844 to V7 and SB92/870 

to V7 showed that same numbers of up-regulated spots were observed, while slight 

differences were observed in down-regulated spots. This may indicate that the two local stains 

may have similar protein patterns, as shown in 2DE gel analysis, when compared with the 

overseas strain. 

4.3 Comparative analysis of up- and down-regulated proteins that 
were identified in SB92/844 

L. monocytogenes strains SB92/844 and SB92/879 are two local strains isolated in New 

Zealand. In this study, 19 proteins were identified, six of them were highly expressed in 

SB92/844 relative to V7 (Table 4.1). These were two major cold shock proteins (Spot 0002 

and Spot 9203), 50S ribosomal protein L7/L12 (Spot 1103), co-chaperonin GroES (Spot 

2001), phosphocarrier protein HPr (Spot 3004) and ribosome recycling factor (Spot 6205). 

Expression of the three proteins identified decreased in all 19 proteins identified, those being 

superoxide dismutase (Spot 6102), glyceraldehyde-3-phosphate dehydrogenase (Spot 6502), 

and phosphoglycerate mutase (Spot 7201) in SB92/844 (Table 4.1). There were four proteins 

that were not differentially?? expressed in SB92/844 relative to V7, i.e. two major cold shock 

proteins (Spot 0004 and Spot 1001), regulatory protein, SpoVG, and glyceraldehyde-3-

phosphate dehydrogenase (Spot 6603). By comparing the identified proteins spots with L. 

monocytogenes strain SB92/870 relative to V7 (see Table 3.4), three out 19 proteins identified 

had lower expressions. They were two glyceraldehyde-3-phosphate dehydrogenases (Spot 

6502 and Spot 6603) and one major cold shock protein (Spot 9203). Three major cold shock 

proteins showed up-regulation in SB92/870 (Spots 0002, 0004 and1001). Spot 0001 (major 

cold shock protein) looks/appears?? to be present in all three strains and was observed from 

the 2DE images, but it was not detected by PDQestTM 2D Analysis software. Among the 

identified proteins, five of which were not present in V7 strain, but both were present in 

SB92/844 and SB92/870. These missing proteins are CD4+ T cell-stimulating antigen (Spot 

2402), phosphocarrier protein HPr (Spot 3004, 3005), glyceraldenhyde-3-phosphate 

dehydrogenase (Spot 5803) z1q12cc and glucose-specific IIA component (Spot 7102). 

Moreover, despite the missing proteins in V7 and SB92/870, the rest of the identified proteins 

were highly expressed in SB92/870 relative to V7 when compared with SB92/844 relative to 

V7. 
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Table 4.1. Expression of identified proteins in L. monocytogenes strains SB92/844 and 
SB92/870 
Spot No.( Shown on 
the reference gel) 

Identified protein  SB92/844 a) SB92/870 b) 

0001 Major cold shock protein Protein only present in SB92/844 
0002 Major cold shock protein, 

partial 
↑(+1.8) ↑(+1.7) 

0004 Major cold shock protein, 
partial 

(+1.2) ↑(+1.7) 

1001 Major cold shock protein, 
partial 

(+1.1) ↑(+1.4) 

1003 50S ribosomal protein 
L7/L12 

↑(+2.0) ↑(+1.2) 

1103 Regulatory protein SpoVG (+1.0) ↑(+1.3) 
2001 
 

Co-chaperonin GroES ↑(+1.9) ↑(+1.8) 

2402 CD4+ T-cell-stimulating 
antigen 

Protein not present in V7, but present in 
SB92/870 and SB92/844 

3004  Phosphocarrier protein HPr ↑(+1.2) ↑(+1.5) 
3005 Phosphocarrier protein HPr Protein not present in V7, but present in 

SB92/870 and SB92/844 
5802  Glyceraldehyde-3-

phosphate dehydrogenase 
Protein not present in V7, but present in 

SB92/870 and SB92/844 
5803 Glyceraldehyde-3-

phosphate dehydrogenase 
Protein not present in V7, but present in 

SB92/870 and SB92/844 
6102 Superoxide dismutase 

 

↓(-1.6) ↑(+2.0) 
6205  Ribosome recycling factor ↑(+2.3) ↑(+1.7) 
6502 Glyceraldehyde-3-

phosphate dehydrogenase 
↓(-3.0) ↓(-3.1) 

6603 Glyceraldehyde-3-
phosphate dehydrogenase 

(+1.0) ↓(-2.6) 

7102  PTS system, glucose-
specific, IIA component, 
putative 

Protein not present in V7, but present in 
SB92/870 and SB92/844 

7201 Phosphoglycerate mutase ↓(-1.9) Protein not present 
in SB92/870 

9203 Major cold shock protein ↑(+3.5) ↓(-1.5) 
a) Relative protein expression values from  Table 3.2 (a)  Relative protein expression in L. 

moncytogenes SB92/844 to V7 
b) Relative protein expression values from Table 3.2 (b)  Relative protein expression in L. 

moncytogenes SB92/870 to V7 
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Some of the proteins identified were responsible for core metabolic functions under the same 

growth conditions. In this study, five spots (Spots 5802, 5803, 6502, 6603 and 201) have been 

identified (glyceraldehyde-3-phosphate dehydrogenase and phosphoglycerate mutase) and 

function in metabolic pathways correlated to carbohydrate metabolism. Phosphoglycerate 

mutase has a function involved in catalysing the isomerisation of phosphoglycerate substrates, 

a process essential for the metabolism of glucose and/or 2, 3-phosphoglycerate (Jedrzejas, 

2000; Rigden et al., 2003). Cacace et al. (2010) observed a significantly higher level of 

enzymes in glycolysis under cold condition; however, this current study identified that these 

proteins were either down-regulated or missing from L. monocytogenes V7. These findings 

may suggest that local strains may differ from the overseas strain in the expression of proteins 

that were involved in glycolysis. Furthermore, the presence of similar proteins functioning as 

transport/binding proteins, lipoproteins and membrane bioenergetics indicated that the two 

local strains of L. monocytogenes utilised similar nutrients. Superoxide dismutase is the 

enzyme that functioned as protection from superoxide reactive oxygen species for organisms 

during their active metabolism (Archambaud et al., 2006). This enzyme is the major mediator 

of phagocytes’ microbicidal activity. In this study, superoxide dismutase showed increased 

expression in strain SB92/870 and decreased expression in SB92/844, during the latter lag 

phase, which may suggest that this protein may play an important role in virulence and 

pathogenicity for those two local strains. Interestingly, several of the proteins identified were 

not detected in the international isolate V7, but which of these proteins may contribute to the 

key differences between the two local strains and international strain. 

Additionally, although those proteins identified were expressed in both local strains, many of 

them had significantly higher expression in SB92/844 than in SB92/870, e.g. major cold 

shock proteins. Major cold shock proteins have been previously studied; they have functions 

as regulators of both cold and nutrient starvation (Schmid et al., 2009). These proteins 

identified may play an important role for in bacterial survival under stress conditions. One 

thing that must be stressed was that the absence of some proteins in SB92/870 and V7 may be 

due to detection and spot matching limitations in the particular software application used, and 

this  would need to be confirmed by further investigation. 
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4.4 Implications of stress proteins to virulence and pathogenicity 
of L. monocytogenes 

According to previous findings, strains from clinical cases were more virulent than strains 

from foods (Nørrung & Andersen, 2000). Even though the two local isolates may perform 

similar basic cellular processes there were differences in other characteristics. Differences in 

expression stress responses between these two local strains may help to determine the type of 

environment that was best suited for the bacteria or how the strain SB92/844 was able to 

interact with the host’s immune response.  

Expression of stress response proteins was very important for L. monocytogenes’s survival 

under stress conditions such as cold, heat, osmotic pressure, acids, alkalines and high 

hydrostatic pressure. These stress proteins also contributed to the virulence and pathogenicity 

of L. monocytogenes. For example, by comparing the cold stress wild type and mutants 

lacking csp genes in the L. monocytogenes EDGe strain, it was shown that csp genes played 

an important role in cell invasion when grown at 37°C (Loepfe et al., 2010). The virulence 

genes and cell invasion of L. monocytogenes were controlled by expression of prfA. The 

decreasing expression of this gene during long-term cold storage at 4°C has shown that the 

expression of prfA was temperature-dependent and associated with pathogenicity (Duodu et 

al., 2010; Johansson et al., 2002; McGann et al., 2007). The above examples suggested that 

temperature-dependent virulence gene expression repression, as well as membrane damage 

and cell surface modifications in these organisms exposed at low temperatures, might lead to 

the phenotypic virulence defects observed in cold-adapted L. monocytogenes. Comparison of 

proteomes between  L. monocytogenes cells grown in human THP-1 monocytes and those 

grown in TSB broth using 2D-DIGE, indicated that, in general, stress protein, Ctc, and 

oxidative stress protein, Sod, were playing an important role in the survival and adaptation for 

intracellular uptake (Van de Velde et al., 2009). Proteome analysis of the general response for 

the fri mutant and the wild type strain of L. monocytogenes was compared and exposed 

repression in Hly (Listeriolysin O) and the presence of stress response proteins, CcpA 

(Catabolite control protein A) and OsmC, which suggested that Fri protein functions in 

promoting virulence (Dussurget et al., 2005)?? Another general stress response modulating 

protein, Hfq, was a RNA binding regulatory protein. Previous work has shown that Hfq was 

able to protect L. monocytogenes from osmotic and ethanol stress as well as facilitate 

enhanced pathogenicity in bacteria-infected mice (Christiansen et al., 2004). Stack and his 

colleagues have found that the HrtA serine protease can protect L. monocytogenes from 



 
 
 
 

51 

various stresses conditions, such as acidic conditions. The function of this protein also acted 

as virulence capabilities?? (Stack et al., 2005). Recently, studies found that another general 

stress response protein, σB, was able to facilitate L. monocytogenes’ adaptation to multiple,?? 

which suggested that this protein played an important role in promoting virulence and cell 

invasiveness in this bacterium (Garner et al., 2006; Reid et al., 2010). 

 

Several major cold shock proteins were differentially?? expressed between the two local 

strains during the log phase, which may suggest that those major cold shock proteins may link 

to the temperature-depended virulence gene in L. monocytogenes and it also showed the key 

differences between the local strains and the international isolate. Another cold shock protein 

(Spot 9203) was highly expressed in the local clinical strain, SB92/844, and down-regulated 

in the food strain, SB92/870. This may indicate that this cold shock protein may contribute to 

the virulence and pathogenicity of L. monocytogenes strain SB92/844. It also suggested why 

strain SB92/844 tends to be more virulent than strain SB92/870. The cold shock proteins 

(Csp) functioned as nucleic acid chaperones, which can bind RNA and DNA. They played an 

important role in regulation of various microbial physiological processes, such as replication, 

transcription and translation in bacterial cells (Ermolenko & Makhatadze, 2002; Phadtare et 

al., 1999).  
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     Chapter 5 
Conclusion and Future Directions 

Beyonddifferential protein expression in local and international L. monocytogenes strains, this 

study highlighted the possibility that stress response proteins of L. monocytogenes may have 

an impact on their clinical behaviour and pathogenesis. This study has provived an initial 

view of the protein expression of L. monocytogenes species in New Zealand strains. The two 

local isolates showed very similar growth patterns under the same growth conditions. This 

study found that the two local strains, SB92/844 and SB92/870, showed identical growth 

profiles in comparison to the overseas strain under the same growth conditions. The protein 

banding patterns of the three strains of L. monocytogenes showed no noticeable differences 

when using 1D SDS PAGE. Visual observations of the 2DE gels revealed that certain spots 

appeared to be expressed differently. Differences in protein expression of the three strains of 

L. monocytogenes were observed and certain proteins were identified that were expressed 

differently between two local strains, which may suggest that those proteins could be related 

to virulence and pathogenicity. 

This study was unable to discriminate the strains investigated according to their origins:  

humans or food. Despite the great care taken in the choice of the three strains of bacteria, this 

study was unable to identify the specific virulence factors associated with the two local 

isolates. It was also unable to determine if the food strain of L. monocytogenes was able to 

causes disease in humans, since the development of listeriosis depended on the immune 

system and infection dose. Furthermore, the cultural conditions under which L. 

monocytogenes was grown in the laboratory, under optimal conditions at 37°, in a high 

nutrient environment, were very different from the natural environment bacteria grow in 

natural environment. 

 

Further studies could be carried out to verify whether the differential expression of cold shock 

proteins may be associated with the virulence and pathogenicity of L. monocytogenes under 

various growth conditions, such as different media, temperatures, pH and stress responses. 

These further studies may result in variations in the patterns of protein expression. This study 

was based on one of the most commonly studied L. monocytogenes strains (V7), therefore, a 

similar approach could be carried out to other local L. monocytogenes strains to obtain a clear 
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view of whether certain stress proteins may contribute to  the virulence factors and 

pathogenesis. 
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Appendix I 

Hours V7 Standard 
Deviation 
(SD) 

SB92/870 Standard 
Deviation 
(SD) 

SB92/844 Standard 
Deviation 
(SD) 

0 0.09 0.008 0.10 0.004 0.10 0.010 

1 0.12 0.003 0.11 0.006 0.14 0.015 

2 0.24 0.023 0.23 0.011 0.30 0.034 

3 0.47 0.023 0.46 0.025 0.62 0.047 

4 0.97 0.059 0.92 0.045 1.19 0.086 

5 1.77 0.190 1.77 0.053 1.53 0.046 

6 2.03 0.185 1.88 0.046 1.84 0.031 

7 1.93 0.456 1.94 0.026 1.85 0.057 

8 1.98 0.032 2.00 0.060 1.91 0.040 

9 2.07 0.067 2.09 0.078 2.04 0.042 

10 2.00 0.049 1.98 0.061 1.95 0.076 

11 1.99 0.056 1.93 0.061 1.98 0.040 

12 1.86 0.069 1.88 0.057 1.91 0.056 

13 1.83 0.126 1.86 0.015 1.82 0.078 

 

Average of OD600 nm with standard deviations for three strains of L. monocytogenes (V7, 
SB92/870, and SB92/844) for 13-hour growth 
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Appendix II 

 

 

 

Original images of whole cell protein 2DE gels of L. monocytogenes isolate SB92/844 grown 
in BHI broth at 37°C for 6 h 
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Appendix III 

 

 

 

Original images of whole cell protein 2DE gels of L. monocytogenes isolate SB92/870 grown 
in BHI broth at 37°C for 6 h 
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Appendix IV 

 

 

 

Original images of whole cell protein 2DE gels of L. monocytogenes isolate V7 grown in BHI 
broth at 37°C for 6 h 
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Appendix V 
Spots analysis quantitation results for all spots identified by MALDI-TOF MS and Ion trap 
MS 

Spot 
No. 

V7-1 V7-2 V7-3 Averag
e 

844-1 844-2 844-3 Averag
e 

870-1 870-2 870-3 Averag
e 

1    0 11370.
2 

      0 

2 15882.
9 

12819 11376.
2 

13359.4 14230.
8 

27115.
9 

20191.
6 

23653.7
5 

20772.
8 

23018.
6 

23223.
5 

22338.3 

4 9497.5 3737.5 7895.5 8696.5 11653.
6 

10464.
6 

10100.
4 

10739.5
3 

15547.
4 

14000 9992.6 14773.7 

101    0 3170.9       0 

102    0 8971.5  7829.9     0 

201 2393.8  1974.4 2184.1 1186.1 2072.4  1629.25 2330.9 1778.8 2482.4 2197.36
7 

501    0 1397.8    1484.1    

502 5637  5122.8 5379.9 3721.3 1840.5  2780.9    0 

503    0 3432.2       0 

504    0 1008.2       0 

505    0 1991       0 

506 6603.3 9298 9345.1 9321.55 9808.9  5606.6 7707.75 2661.5  8166.2  

507    0 2666.1   0    0 

1001 11619  13350.
6 

12484.8 26745.
8 

12305.
3 

11086.
9 

11696.1 16134.
9 

16606.
6 

19414.
7 

17385.4 

1003 20267.
9 

17682.
6 

37776.
7 

18975.2
5 

19402.
6 

32218 42685.
8 

37451.9 14536.
7 

20159.
5 

25946.
4 

23052.9
5 

1101 14095.
2 

 8182.7  6116.5 5155.9 3999.4 5090.6 6841 7551.6 7890.5 7427.7 

1103 11223.
8 

17803.
1 

10785.
7 

13270.8
7 

13620.
4 

14674.
8 

12120 13471.7
3 

17843.
9 

14745.
8 

19583.
9 

17391.2 

1104 5502.2  6056.8 5779.5 3522.8    4713.1 3995.7 5069.8 4592.86
7 

1301    0 1079.4     8114.8 768  

1501   11693.
7 

 12069.
5 

3102.7      0 

1502    0 5184.1    2143.1    

1503 3185.9  1695.9  2205.3 1688 5996.5     0 

1701 3720.4    7412.5  2197.2   12223.
3 

  

1802    0 6213.7 9808.3 5901.2 6057.45 8781.9  16291.
2 

 

1804 7782.5 22871.
9 

8373.9 8078.2 11976.
7 

13421 13373.
3 

 16462.
9 

7172.2 12331.
7 

14397.3 

2001 6904  10468.
7 

8686.35 4264.8 5004.9 4527.4 4599.03
3 

3976.8 4464.9 6068.2 4836.63
3 

2101 3325.3 1569.1 3963 3644.15 2743 757.6   3158.9    

2103    0 1704.5     2994.9   

2201 1609.5   0 1669.4 1709.2 6308.6 1689.3 14817.
9 

1256.2 1772.4 1514.3 

2301    0 897.9       0 

2401    0 1135.9       0 

2402    0 8204.2 5880.7 5478.6 5679.65 8511.8 5718 10705.
3 

9608.55 

2501    0 3192.8       0 

2502  37882.
1 

  1905.2       0 

2503 32801.
9 

 8545.3  50842.
5 

26099.
1 

12206  37951.
8 

32033 12830.
5 

34992.4 
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2504    0 1397.9       0 

2505    0 2427.7       0 

2601 1996.8    727.1       0 

2602 3436.6    2339.2 1864.7  2101.95 2967.1 1213.7 3795.1 3381.1 

2701    0 3724.4     1589.5   

2702 12898.
9 

  12898.9 10391.
6 

3308.8 15046.
5 

12719.0
5 

14622 7961.3 18805 16713.5 

3001    0 1002.5 2079.4    2110.1   

3003  1716 9944.7  2246.8 2398.3  2322.55 13060.
9 

3316.7 2944.6 3130.65 

3004 31131.
3 

41728.
3 

17041.
4 

36429.8 38486 35585.
1 

53832.
4 

42634.5 63784.
4 

44957.
5 

53936.
8 

54226.2
3 

3005    0 8228.9 7307.7 14704.
2 

7768.3 14765.
3 

12109.
1 

13062.
4 

13312.2
7 

3101 4369.8    1008.9       0 

3102 2553.4 3112.6 3648.6 3104.86
7 

3067.2 2894.4 1705.1 2980.8 3412.6 2282.1 3325 3006.56
7 

3201    0 2103.2     1965.2 3916.3  

3301    0 2045.5 1650.1 2124.5 1940.03
3 

2593.1 1530.2 3917.8 2680.36
7 

3302    0 2358.3 1772 1333.6   10855.
3 

622.2  

3303    0 1188.1       0 

3401    0 10837.
5 

3641.1 3583.5 3612.3 8555.4 7188.5 9613.9 8452.6 

3402  2731.7   1156       0 

3403    0 2306.6  1662.9     0 

3404    0 1884.6 1786  1835.3    0 

3501  2731.7   1156       0 

3601 2348.7    2458.6 2974.2  2716.4 2693.2    

3602  1238.9   584.1       0 

3603    0 1552.3       0 

3604    0 1596.6    4248  2074.5  

4101    0 2253.2       0 

4201    0 3566 3141.6 2305.5 3353.8 2829.2 4488.2   

4202 26468.
2 

 1223.9  5597 6215.2   23146.
7 

   

4203 3518.5 4485.2 2387.2 4001.85 1589.4 1023.6  1306.5    0 

4204 6794.6 2852   9591.4 8541.5    11004.
6 

  

4205 6720.5 3674.3   4505.6 1499.7   10881.
7 

12176.
8 

9512.8 10857.1 

4206    0 1686.2     6914.9   

4301    0 2291.3       0 

4302    0 14543.
6 

15061.
2 

14204.
7 

14603.1
7 

15592.
6 

9269.4 14014.
9 

14803.7
5 

4401    0 970.1       0 

4402  7614.3   2313.3 3210.6 4015.2 3612.9 2543.2  2381.3  

4501    0 5235.9       0 

4502 37971.
8 

41031.
4 

18216.
7 

39501.6 10346.
2 

91362 8136.6     0 

4503  96868.
1 

  1027.1       0 

4601    0 2007.9 2167.6  2087.75    0 

4602   1747.7  423.9       0 

4701    0 2652.7 797.5 22005     0 
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4702    0 1492 646.7 2264.3     0 

4703 5461.6 1334.4   1656.2  1643.6    2715.7  

4704    0 1422.4  1940.6     0 

4802 4440    4379.3     6686.6   

4803    0 909.4 1453.6      0 

4901   11320.
6 

 7505.9    10339.
7 

 17814.
7 

 

5101 8274.5 16831.
1 

7473.8 7874.15 4556.3 4632.5 4984.3 4724.36
7 

8550.5 5828.7 9777 9163.75 

5102    0 1168.5       0 

5201 2015.1    1398.8 1258.6      0 

5202    0 1387.9 2318.4      0 

5203    0 6690.6       0 

5401 2712.6    1998.2 2460.4 1474.8     0 

5402    0 7845.4 6187.3 12578.
9 

7016.35 12403.
5 

9007.8 10373.
3 

10594.8
7 

5403    0 3982    5739.6    

5404    0 1138.2       0 

5501 12353.
9 

   6879.9 9439.4      0 

5502   1992.3  2029.3    5274.7    

5503   53358.
3 

 33921.
7 

 9636     0 

5504    0 6621.6       0 

5505    0 3169.8       0 

5506    0 513.3  541.3     0 

5507    0 2448.8 4024.4      0 

5601    0 10464.
4 

      0 

5701  7252   2164.5 1294.6 2785.8 2475.15    0 

5702    0 2911.2 2331.4 1941.7 2621.3 2567.9  2369.4  

5703 3115.4    3694.8 2729.8 3331.6 3252.06
7 

  4678.7  

5704   5146  1092.6  1485.3  2335.1    

5706    0 886.3 1462.2 934.4 910.35    0 

5801    0 2689.6       0 

5802    0 3626.7 4842 3582 4016.9 4369 3122.5 5206.2 4232.56
7 

5803    0 4520.1 5340.3 3406.3 4422.23
3 

3774.3 2938.4 5023.2 3911.96
7 

6001 9870.2 10806.
1 

12677.
9 

10338.1
5 

8608.2 9921.6 9023.6 9184.46
7 

10646 10006.
4 

12869.
5 

11173.9
7 

6002    0 1089.2       0 

6101 911.5  5283  1395.8 1097.4 1171.2   7853.5 543.6  

6102 15941.
5 

17347.
2 

12005.
5 

15098.0
7 

10333.
9 

9071 6928.2 9702.45 7824.3 4723.9 7428.4 7626.35 

6103 1036.1 910.4   414.8 2010.4 7977.2   1437.1   

6104    0 5472.8       0 

6105 6635.9 535.5 6790.5 6713.2 3484 3801.5 421.8 3642.75    0 

6201    0 1183.7       0 

6202 1849.5 2815.4   639    7655.3    

6203  1829.5 1719.4 1774.45 6166.6 3795.2 4359.3 4077.25  5100.1   

6204    0 1480.5       0 
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6205 3433.6 4950.1 3111.2 3272.4  7944.8 7444.8 7444.8 5921.6 12200 5421 5671.3 

6301 8008.3  4192.7  1364.3       0 

6302    0 430.1       0 

6303 17572.
4 

17446.
2 

14037.
5 

17509.3 7862.8 14602.
3 

12647.
7 

13625 10568.
4 

11854.
1 

8793.3 11211.2
5 

6401    0 8326.7 4214.4   13064.
4 

 13936.
6 

13500.5 

6402   17806.
4 

 19969.
7 

16753.
5 

20937.
6 

20453.6
5 

25289.
4 

7588.6   

6403    0 1940.7       0 

6404    0 7072.3 13092.
4 

     0 

6502 27441.
1 

30173 27248.
3 

27344.7 12203 9907.3 5628.6 9246.3 3331.2 8179 9668.8 8923.9 

6601  3705.4 1637  1382.3  1143.8   1964 6614  

6602 6441.1    693.5       0 

6603 26845.
5 

26525.
2 

25304.
2 

26224.9
7 

28484.
8 

22862.
4 

28910.
7 

26752.6
3 

9040 19705.
4 

11253.
4 

10146.7 

6701   23366  3789.7 3962    4212   

7102    0 2418.1 2666 2320.6 2468.23
3 

12646.
9 

3801.8 8306.1 10476.5 

7103 3736.4 9111.7 4376.2 4056.3 3965 6670.8 2945.7 3455.35 12319.
8 

4472.6 2767 3619.8 

7104     4770.4 6180.5 5606 5518.96
7 

1390.4 1631.1 8936.1 1510.75 

7105  59.1   5512.1  446.9   477.8 526.7 502.25 

7201 4104 4716.9 2059.2 4410.45 2186.2 2504.6  2345.4 1374   0 

7202 1830.6  2578.3  865.9  8518.8   9272.9   

7301 35869.
5 

23184.
7 

57336.
2 

29527.1 34032.
3 

40315 41504 40909.5 54480.
9 

41559.
7 

42847.
2 

42203.4
5 

7401    0 1047.1  7583.5   7877.9   

7402 16640    11026.
6 

     17875  

7403    0 1300.1       0 

7503    0 4508.2  1813.8     0 

7504 2985.6 3643.8 1756.1 3314.7 3660.4 1332.6 3192.2 3426.3  2729 8804.5  

7601 5045.1    7096.5 2075.7 5477.9    4690.8  

7602  16254.
7 

  2352.4 3046.1 1975.7 2164.05 2404.3    

7701   8077.4  945.4  800.9     0 

7702  4021.9   8210.2 7642.1 8474.8 8109.03
3 

3545.8 6926.2   

7703 1535.9    1386.1     1582.9   

8001 830.3  4025.4  253.5 318.1  285.8  1326.5   

8101 5796.9 1388.7 440.4  5229 256.2 6452.6 5840.8  5497.7 423.1  

9001 7515.5  4544.9  11522.
2 

18935.
9 

13879.
4 

  21293   

9002    0 7544.8  7918.4 7731.6 2181.6 12418.
9 

  

9003    0 6227.7     8344.8 119.1  

9101 1532  2180.7  1126.3 1697.3 733.2 1411.8  760.2 3466.8  

9102    0 10878.
8 

10409.
9 

22074.
9 

10644.3
5 

 25151.
9 

  

9103 2271.4    2566.6 7774 9691.9   8355.5   

9104 4956.2 947.7 7360.8  7557.9 5054.3 2125   8478.5 464.6  

9105 396.3  771.6  5569.2     9093.1 2798.5  

9201 2118.2 1975.6  2046.9 1695.2 1421.2 837.4 1558.2  6572.1   
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9202   1090  1202.7 1083.5 1820.7   249.3 5675.2  

9203 2259.1  6827.1 4543.1 1296.2  94 1296.2  7157.4 6736.9 6947.15 

9204  4171   551       0 

9301    0 6779.2 5391.1   16155.
6 

   

9302 8854.8 6797.4 8989 8921.9 9290.4  20333.
5 

  16945.
8 

7626  

9303    0 876.5       0 

9304    0 2853.6 2151.7 2821.5 2608.93
3 

869.6 2546.8 460.1  

9305    0 1997.5  4708.3     0 

9306  1730.8   6989.9 1235.3 1399.2 1317.25  7627.8   

9307    0 3925       0 

9308 4705.4 838.2   200 3125.5      0 

9401    0 3232.2       0 

9402 8512.4    6074       0 

9403    0 1547.4 1465.6 2102.6 1506.5  1384.2   

9404 8150.6  2200.1  8924.8 6495.7 7364.5 7595  5227.1   

9405    0 5163.2 3193.4      0 

9406 547.3    507.2 4613.2 887.4     0 

9501 957.9    500.2 2553.9      0 

9601    0 637.8       0 

9602    0 991.5       0 

9603   1539.7  1991.7       0 

9604  4913.6   400.3 442.2  421.25    0 

9605    0 2546.6       0 

9606    0 2590.4 815.9      0 

9701    0 2106.6 362.3      0 

9702    0 844       0 

9801    0 974.8 965.1  969.95    0 

9802    0 1573.8 1406.4 1139.9 1373.36
7 

 1056.6 1695.9 1376.25 
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Appendix VI 
Spots identification chats for all identified spots by MALDI-TOF MS and Ion trap MS 
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Note: 

• SSP- represented by spot number 
• The orientation of each for three strains of L. monocytogenes were SB92/844 (1), 

SB92/844 (2), SB92/844 (3), SB92/870 (1), SB92/870 (2), SB92/870 (3), V7(1), 
V7(2), V7(3). 

 


	Abstract
	List of Publications
	Acknowledgements
	Table of Contents
	List of Tables
	List of Figures
	Symbols and Abbreviations
	     Chapter 1 Introduction and Review of Literature
	1.1 Introduction
	1.1.1 Background
	1.1.2 Importance of this study
	1.1.3 Aims and Objectives

	1.2 Literature review
	1.2.1 The Genus Listeria
	1.2.2 L. monocytogenes and its virulence gene cluster
	1.2.3 Virulence factors of L. monocytogenes
	1.2.4 Lineages of L. monocytogenes
	1.2.5 L. monocytogenes as a foodborne pathogen
	1.2.6 Seriousness of Listeriosis
	1.2.7 Outbreaks of Listeriosis in New Zealand
	1.2.8 Research on L. monocytogenes
	1.2.9 Proteomics of foodborne pathogens 
	1.2.10  Proteomics of L. monocytogenes


	     Chapter 2 Methods and Materials
	2.1 Sources of bacterial strains, chemicals, reagents and microbiological media
	2.1.1 Bacterial Strains
	2.1.2 Chemicals and Reagents
	2.1.3 Microbiological media

	2.2 General methods

	     Chapter 3 Experimental Results
	3.1 Growth Curve generation
	3.2 1D SDS PAGE analysis
	3.3 2DE analysis 
	3.4 Comparison of differently expressed proteins of three different strains of L. monocytogenes
	3.5 Identification of specific protein spots by MALDI-TOF MS and Ion Trap MS

	     Chapter 4                                                                  Discussion
	4.1 Comparison of growth L. monocytogenes strains in BHI broth  
	4.2 1D SDS PAGE and 2DE profiles of three strains of L. monocytogenes
	4.3 Comparative analysis of up- and down-regulated proteins that were identified in SB92/844
	4.4 Implications of stress proteins to virulence and pathogenicity of L. monocytogenes

	     Chapter 5 Conclusion and Future Directions
	References



