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Abstract of a thesis submitted in partial fulfilment of                                            

the requirements for the Degree of Ph.D 

 

Antioxidative effects of mango wastes on  

shelf life of pork products 

by 

Hung Minh Le 

 

Peel and kernel often discarded during mango processing, are potential sources of 

antioxidants and could be utilised as additives to preserve meat products. The cultivar, 

physicochemical characteristics and stage of maturity are important factors that influence the 

antioxidant activity of mango flesh, peel and kernel.  The cultivar Tommy Atkins, imported 

into New Zealand and the four cultivars; “Cat Hoa Loc”, “Cat Chu”, Ghep” and “Nam Dok 

Mai” grown in Vietnam were compared to determine which of the cultivars have antioxidant 

potential.  

 

Tommy Atkins and Nam Dok Mai were less mature than the other three Vietnamese cultivars 

based on maturity score, firmness, total soluble solids (TSS), titratable acidity (TA) and 

Vitamin C. The antioxidant capacity of the mango flesh from all the cultivars ranged from 

252.6 to 754.4 GAE 100g
-1

 DW (total phenolic content), 43.6 to 70.0 µmol TE g
-1

 DW 

(ABTS radical scavenging activity) and 30 to 51.6 µmol TE g
-1

 DW (DPPH radical 

scavenging activity). Mango peel antioxidant capacity was higher than flesh and ranged from 

822.3 to 8084.9 GAE 100g
-1

 DW (total phenolic content), 406.3 to 1188.3 µmol TE g
-1

 DW 

(ABTS radical scavenging activity) and 210.6 to 735.4 µmol TE g
-1

 DW (DPPH radical 

scavenging activity). The antioxidant capacity values of  mango kernel was the highest and 

ranged from 6286.0 to 13888.8 GAE 100g
-1

 DW (total phenolic content), 1066.3 to 2227.6 

µmol TE g
-1

 DW (ABTS radical scavenging activity) and 667.4 to 2205.7 µmol TE g
-1

 DW 

(DPPH radical scavenging activity). 

 

Flesh from Tommy Atkins and Cat Chu contained the highest antioxidant capacity than flesh 

from any other cultivar. Kernel from Tommy Atkins had the highest antioxidant capacity than 

any other cultivar whereas peel from Nam Dok Mai contained the highest antioxidant capacity 

than peel from any other cultivar. In all the cultivars investigated, kernel showed the highest 
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content of total phenolic content and antioxidant capacities followed by peel then flesh, 

except for Nam Dok Mai whose kernel and peel contained similar antioxidant capacities.  

 

The tannin content was significantly higher in kernel (21.3 - 54.7 g kg
-1

 DW), than peel     

(7.9 - 22.9 g kg
-1

 DW) than flesh (0.9 - 1.1 g kg
-1

 DW) in all the cultivars. There were no 

oxalates detected in flesh in any of the cultivars. Small amounts of oxalates were detected in 

peel from all the cultivars and in kernel from Nam Dok Mai and Tommy Atkins. Peel and 

kernel from Cat Chu contained low levels of tannins and oxalates and are possible sources of 

antioxidants to prevent oxidative damage in food products. 

 

Drying is usually used to produce dried products that can be mechanically incorporated into 

foods.  Freeze, sun, vacuum and microwave drying reduced the hydrophilic antioxidants and 

antioxidant capacity of mango flesh whilst forced-air drying increased the total phenolic 

content (TPC) and ferric reducing antioxidant power (FRAP). In the case of peel, all the 

drying treatments reduced hydrophilic and lipophilic oxygen radical absorbance capacity    

(H-ORAC and L-ORAC) whilst microwave and freeze drying increased TPC and FRAP. For 

kernel, vacuum, followed by freeze drying increased the H-ORAC values and antioxidant 

capacity as measured by ABTS, DPPH and FRAP whilst the other drying treatments reduced 

the antioxidant activities.  

 

The relationship between the physicochemical parameters (maturity) of Tommy Atkins 

mango fruits with the antioxidant capacity of their flesh, peel and kernel fractions as measured 

by their total phenolic content, ABTS, DPPH, FRAP, H-ORAC and L-ORAC activities was 

investigated. The physicochemical properties firmness, total soluble solids, titratable acidity, 

TSS:TA, vitamin C and moisture content were significantly correlated (p < 0.05) with the 

stage of maturity of the Tommy Atkins mango fruits. Thus, any one of the measured 

physicochemical parameters could be used as an indicator of fruit maturity in Tommy Atkins. 

All the antioxidant assays TPC, ABTS, DPPH, FRAP and H-ORAC were significantly 

correlated (p < 0.05) to each other indicating that phenolics in flesh, peel and kernel are good 

sources of antioxidants. In mango peel, only weak-to-moderate correlations were found 

between the lipophilic antioxidants and hydrophilic antioxidants or antioxidant capacity as 

measured by TPC, ABTS, DPPH and FRAP. Mango kernel from the less ripe mangoes with 

low maturity score, TSS, TSS:TA ratio and high TA, firmness and vitamin C content were 

relatively high in antioxidant capacity relative to those from ripe mangoes. Peel colour was an 
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unreliable index of the maturity of Tommy Atkins fruit or the antioxidant capacity of their 

peel, flesh and kernel.   

 

The incorporation of freeze dried mango peel (1% w/w) or kernel (1% w/w) into pork 

sausages or patties on inhibiting lipid oxidation was investigated over a 10 day chilled storage 

period. There were small changes in TBARS (2-thiobarbituric acid reactive substances) and 

myoglobin over the first 4 days whilst off-odours and volatiles increased at day 4 in the 

control pork sausages and patties without any antioxidants. The volatiles, 1-pentanol (44.0%) 

and 3-hydroxyl-2-butanone (45.8%) in the sausages and hexanal (36.6%), pentanal (10.8%) 

and 1-pentanol (14.6%) in the patties were all identified as products of lipid oxidation and 

were generated by day 4. More volatiles, particularly hexanal, were released in the patties 

than in the sausages. 

 

The addition of mango kernel (1% w/w) or peel (1% w/w) or synthetic antioxidant BHT 

(0.01% w/w) to the sausages and patties immediately changed TBARS (only observed in 

sausages), myoglobin and volatiles at day zero but there was no effect on colour or odour. The 

redness of sausages was reduced and the discoloration (hue) increased dramatically at day 2 

and remained unchanged across the remainder of the storage period whilst the colour of the 

patties decreased gradually from day 0 to day 10. The addition of mango kernel, peel and 

BHT stabilised the colour of the sausages and patties especially the redness across the 10 day 

storage period. The antioxidative effects of the additives were more pronounced after day 4 

when the addition of mango kernel or peel or BHT to the sausages and patties inhibited lipid 

oxidation as shown by the maintenance of stable TBARS, colour (a* and hue) and myoglobin 

and the reduction in off-odour and volatiles, compared to the controls. The addition of peel or 

BHT maintained the pleasant odour of pork sausages and patties for up to 4 days of storage 

and kernel for 6 days.  

 

At 10 days, the mean TBARS values of the low (9.1% fat), medium (22.2%) and high 

(47.4%) fat control sausages were between 12.1 to 15.0 µmol MDA kg
-1 

DW and sausages 

with added kernel between 3.1 to 3.8 µmol MDA kg
-1

 DW. For patties, at 10 days, the 

TBARS values of control low, medium and high fat patties ranged from 12.3 to 29.2 µmol 

MDA kg
-1 

DW and those with kernel from 6.9 to 7.9 µmol MDA kg
-1 

DW. Mango kernel was 

more effective than peel or BHT in inhibiting lipid oxidation over the 10 day storage period. 

There was also an effect of the fat content (9.1 to 47.4% fat) of the product on the 

effectiveness of the added antioxidants to inhibit lipid oxidation. The TBARS in patties and 



   vi 

 

 

the discoloration and loss in redness of the patties and sausages were higher in the high 

(47.4% fat) compared to low (9.1%) fat products. Furthermore, at 6 days for sausages and 4 

days for patties the inhibitory effects on lipid oxidation was more effective with kernel than 

peel or BHT in the high and medium fat products.  

 

Pork sausages with added kernel under O2-permeable film at 4ºC were assessed to be 

microbiologically safe to consume over a 10 day storage period. Pork patties had a high TVC 

and were contaminated with E.coli and were assessed unsuitable for human consumption. The 

dried kernel and peel products themselves were judged microbiologically safe to use as food 

supplements. In addition, mango kernel exhibited antimicrobial effects against E.coli, 

staphylococci, coliforms, yeasts and moulds and TVC in the pork sausages.  

 

Freeze dried mango kernel or peel contained antioxidants and if added to pork products 

extended their shelf life by inhibiting lipid oxidation (TBARS) and preventing changes in 

colour and odour. Kernel showed the highest antioxidant capacity, compared to peel or 

synthetic BHT. Dried mango kernel extended the shelf life of pork products for an additional 

4 (patties) or 6 (sausages) days compared to patties or sausages without mango additives. In 

summary, dried mango kernel is an excellent natural source of antioxidants and prevents 

undesirable oxidative damage in pork products. 

 

Key words:  mango fraction, pork, antioxidant, ORAC, lipid oxidation, myoglobin, volatiles, 

TBARS, colour, odour, drying, physicochemical parameters, microbiological   

characteristics, SPME, GC-MS.  
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CHAPTER 1 

GENERAL INTRODUCTION 

 

In the past few decades, antioxidants have attracted wide interest from scientists and 

consumers with regards to their effect on human health because antioxidants may contribute 

to maintaining the normal physiological functions of the human body (Ou et al., 2002). 

Antioxidants have also been included as additives in food products to preserve their quality 

through reducing deterioration initiated by lipid oxidation and microbiological spoilage (Li et 

al., 2006). The use of synthetic antioxidants such as butylated hydroxyanisole (BHA), 

butylated hydroxytoluene (BHT) and tertiary butylhydroquinone (TBHQ) in preserving foods 

is now banned or under strict regulation in many countries because of their associated toxic 

(Buxiang and Fukuhara, 1997; Jo et al., 2006) and carcinogenic (Hirose et al., 1998; Jo et al., 

2006) side effects. Consequently, there is interest in using naturally occurring antioxidants as 

food additives. The latter approach aligns with the concerns of consumers about the adverse 

effects of synthetic food additives on their health. A number of natural antioxidants have been 

added at the food preparation and processing stage and have increased the shelf life and 

oxidative stability of stored food products (Chen et al., 2008a).  

Recently, it has been suggested that mango kernel and peel from mango fruit processing are 

good sources of natural antioxidants (Puravankara et al., 2000; Arogba, 2002; Berardini et al., 

2005; Soong and Barlow, 2006; Abdalla et al., 2007b). Indeed, mango kernel and peel, can 

account for 10 to 25% (Abdalla et al., 2007a; Ajila, et al., 2007) of the fruit being discarded 

as waste with consequential impacts on pollution and environmental risks to communities. 

Vietnam is one of the ten leading mango producing countries that account for over 85% of the 

world production and planted  87,500 hectares of mangoes in 2010 (General Statistics Office 

of Vietnam, 2012). The major cultivars are „Cat Hoa Loc‟, „Cat Chu‟, „Ghep‟ (FAO, 2004, 

section 2.4) and „Nam Dok Mai‟; the latter originates from Thailand. Mango wastes such as 

kernel and peel are available in Vietnam and this research will examine their potential as a 

natural source of antioxidants for the food industry. 

Mango kernel contains hydrophilic (e.g. phenolics) and lipophilic (e.g., tocopherols and 

carotenoids) antioxidants. Mango peel has a high antioxidant capacity and contains 

antioxidants such as polyphenols, anthocyanin, carotenoid and vitamin C which can be 

dissolved in either hydrophilic or lipophilic systems (Berardini et al., 2005; Ajila et al., 2007). 

The presence of hydrophilic and lipophilic antioxidants together with phospholipids in mango 
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peel and kernel makes them a good potential source of antioxidants to scavenge free radicals 

in lipid and aqueous phases of food. In this research, the physicochemical properties, 

antioxidant capacity and anti-nutrients of mango flesh, peel and kernel from the Vietnamese 

cultivars and the Tommy Atkins cultivar were determined to characterise the various cultivars 

and to assess their suitability for specific markets.  

Some physicochemical parameters reflect the maturity of mangoes and could possibly be used 

as indices of the antioxidant capacity of specific mango fractions (Palafox et al., 2009). Thus, 

the relationships between individual physicochemical properties and their relationship with 

the antioxidant capacity of the specific cultivar, Tommy Atkins, were determined. It is 

suggested that no one antioxidant assay can reflect the total antioxidant capacity of a fruit. 

Therefore, six different antioxidant assays TPC, ABTS, DPPH, FRAP, H-ORAC (hydrophilic 

antioxidants) and L-ORAC (lipophilic antioxidants) were used to measure the antioxidant 

capacity of flesh, peel and kernel. The correlations between these antioxidant assays were also 

assessed to ascertain whether one or more methods would be useful to select mango flesh, 

peel and kernel for their antioxidant activities.  

In order to utilise mangoes as a source of antioxidants for the food industry, the mangoes must 

undergo a drying treatment to produce a suitable dried product that can be incorporated into a 

food product.  

Meat products such as pork sausages and patties are highly perishable and deteriorate rapidly 

causing potentially dangerous health risks through microbial growth and chemical changes. 

Lipid oxidation, in particular, is the cause of deterioration causing undesirable changes in 

flavour (volatiles and odour) and colour (redness and myoglobin) of meat and meat products 

(Rharjo and Sofos, 1993).  
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Objectives of research 

The objectives of the study were to: 

 Compare the physicochemical characteristics, antioxidant capacity and anti-nutrient of 

mango fractions from Tommy Atkins cultivar imported into New Zealand and the 

cultivars grown in Vietnam. This is discussed in chapter 4.  

 Determine which drying method yields the highest antioxidant capacity in dried 

mango flesh, peel and kernel. Reported in chapter 5. 

 Determine if the physicochemical parameters of mango fruit can be used as indicators 

of the antioxidant capacity of mango fractions. Reported in chapter 6. 

 Evaluate the effects of adding dried mango peel and kernel, as a source of 

antioxidants, on the shelf life of pork sausages and patties as outlined in chapter 7.  
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CHAPTER 2 

Figure 1. Summary on studying the antioxidant effects of mango wastes on the shelf life of pork products 

Storage chilled in 10 days 

 

 TBARS 

 Colour 

 Myoglobin 

 Volatiles 

 Odour 

Measure lipid oxidation changes Measure microbiological changes 

Chapter 6 
Correlations between 
physicochemical 

properties & antioxidant 

capacity 
 

Chapter 4 
Compare cultivar 

characteristics 

 

 Separate into 

Flesh, Peel & Kernel 

Measure physicochemical 

characteristics 

Tommy Atkins  Cat Chu 

             Cat Hoa Loc 

             Ghep 

             Nam Dok Mai 

(New Zealand)  (Viet nam) 

Tommy 

Atkins only 

dry by: 

Freeze, 

Forced-air,  

Sun, 

Vacuum, 

Microwave 

Chapter 5 
Effect of drying on 

antioxidants capacity 

 

          Freeze dry 

 

       Determine 

antioxidant capacity 

 

Cat Chu mango                   

freeze dried peel and 

kernel as additives 

 

Prepare high, medium, low fat 

pork sausages and patties 

Determine anti-nutrients 

Chapter 7 
Effects of peel or kernel on 
inhibiting lipid oxidation 
in pork sausages and patties 

 

Source mango fruit 



   5 

 

 

CHAPTER 2 

LITERATURE REVIEW 

 

Antioxidants, which scavenge free radicals and chelate metal ions, play important roles in 

food and human health. The levels of antioxidant need to be measured and antioxidant assays 

need to be evaluated for some particular products. However, there are a number of factors 

such as drying treatments, cultivars and physicochemical characteristics that can affect the 

antioxidant capacity of a product. Mango is one of the most important fruits in Vietnam in 

which mango wastes can be a potentially source of antioxidants. Pork and pork products, such 

as sausages and patties, are easily oxidised and deteriorated. Natural antioxidants extracted 

from plants are effective in controlling oxidative changes and deterioration of the meat 

products. 

 

2.1. Antioxidants and their roles in food and human health 

2.1.1. What are antioxidants? 

Antioxidants are defined as a group of substances that at low concentrations prevent or inhibit 

the adverse effects that reactive species may have on normal physiological functions 

(Halliwell and Whitemann, 2004; Moon and Shibamoto, 2009; Karadag et al., 2009). 

Antioxidants protect the key cellular components by neutralising potential damages from free 

radicals generated as natural by-products of cell metabolism (Badarinath et al., 2010). Free 

radicals are also formed from the effect of environmental factors such as smoking, pesticides, 

pollution and radiation on cell metabolism (Bagchi and Puri, 1998).  

To study antioxidants, it is important to understand what free radicals are and how they act. A 

free radical is an atom or group of atoms that have one or more unpaired electrons (Halliwell 

and Whiteman, 2004). Radicals can have positive, negative or neutral charges. They are often 

intermediates in a wide variety of biochemical reactions but if generated in excess they can 

destroy a broad range of macromolecules (Teal and Saggers, 1997). A remarkable feature of 

radicals is that they have extremely high chemical reactivity which explains why they can 

cause extensive cellular damage. Free radicals can adversely affect lipids, proteins and DNA 

and have been implicated in a number of undesirable human diseases. 

There are many types of radicals. Some are oxygen derived (ROS, reactive oxygen species) 

and others nitrogen derived (RNS, reactive nitrogen species) (Valko et al., 2007). In 
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biological systems radicals derived from oxygen are known collectively as the reactive 

oxygen species (ROS) and include superoxide (O2
*-

), hydrogen peroxide (H2O2), hydroxyl 

radical (HO
*
) and singlet oxygen (O2*) (Gilbert et al., 1981; Devasagayam, 2004) as 

illustrated in Figure 2.1.  

 

 

 

 

  

Figure 2.1. Reactive oxygen species (ROS) (Held, 2010). 

http://www.biotek.com/assets/tech_resources/ROS_White_Paper.pdf 

 

Antioxidants can exercise their protective properties at different stages of the oxidation 

process and by different mechanisms. Antioxidants are classified into two groups, namely, 

primary and secondary antioxidants, depending on their mechanism of action. Primary 

antioxidants are chain breaking or free radical scavengers. Primary antioxidants quench free 

radicals by two mechanisms: (i) by donating hydrogen or transferring an electron to the free 

radicals or (ii) by forming complexes with the free radical (Prior et al., 2005). The two 

mechanisms are outlined below: 

- Hydrogen donation or electron transfer to free radical (R) 

 R• + AH → RH + A• 

 RO• + AH → ROH + A• 

 ROO• + AH → ROOH + A• 

 

- Acceptor complexing with free radical (R) 

 R• + A• → RA 

 RO• + A• →  ROA 

 ROO• + A• →  ROOA 

 

Secondary antioxidants influence the deactivation of metals; inhibit the breakdown of lipid 

hydroperoxides or the regeneration of primary antioxidants (Gordon, 1990; Koleva et al., 

2002). The regeneration of primary antioxidants is outlined below: 

 

- Regeneration of primary antioxidant  

A• + BH → AH + B• 

 

 

Removed because of copyright 
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In the illustrations, AH: antioxidant; ROO•, lipid peroxyl radical; ROOH, hydroperoxide; A•, 

antioxidant free radical; RH, unsaturated lipid; R•, lipid radical; AH: stable compound (non-

radical product); BH: secondary hydrogen donor; B•: secondary antioxidant free radical 

(Dapkevicius, 2002). 

2.1.2. Roles of antioxidants in food and human health 

In the past few decades, there has been growing evidence that oxidative stress and specific 

human diseases can be prevented by including in the diet plant foods that contain large 

amounts of antioxidants such as vitamins C, E or natural antioxidants such as flavonoids, 

tannins, coumarins, curcuminoids, xanthons, phenolics and terpenoids (Larson, 1988; Bae and 

Moon, 1997; Buxiang and Fukuhara, 1997; Yen et al., 1997). 

 

Dietary antioxidants can act as free radical scavengers, radical chain reaction inhibitors, metal 

chelators, oxidative enzyme inhibitors and antioxidant enzyme cofactors (Karadag et al., 

2009). Therefore, there is increasing interest in the use of extending the range of antioxidants 

that can be used as food ingredients to prevent food oxidation.  

 

Antioxidants such as BHT, BHA and plant extracts have been widely used as additives, 

preservatives or supplements in food industries. The study of natural antioxidants, functional 

foods, nutraceuticals and health foods has increased in the past few decades (Andlauer and 

Furst, 2002; Zulueta, et al., 2007). Ou et al. (2002) suggested that increasing the intake of 

dietary antioxidants may help to maintain the antioxidant status and normal physiological 

functions of the human body. Although antioxidants are recognised as important 

phytonutrients, presently, there is no recommended daily “total antioxidant” intake 

recommended due to the diversity and complexity of antioxidants (Kaliora et al., 2006). Thus, 

in vitro and in vivo studies on the antioxidant properties of foods such as fruit and vegetables 

and their antioxidative effects are still required. 

 

Health diseases such as heart disease, macular degeneration, diabetes and cancer are all 

influenced by cellular oxidative damage. There has been increasing interest in the mechanism 

of action of antioxidants and whether they specifically intercept or remove free radicals from 

cells in the human body. Ames et al. (1993) reported that antioxidants prevent injury to blood 

vessel membranes, optimise blood flow to the heart and brain, prevent cancer-causing DNA 

damage, and lower the risks from cardiovascular and Alzheimer's diseases. Jo et al. (2006) 

http://www.healthcastle.com/hearthealthy.shtml
http://www.healthcastle.com/cancerdiet.shtml
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also indicated that antioxidants can prevent or slow the oxidative damage linked to various 

diseases such as carcinogenesis, atherogenesis and aging. 

It is suggested that all these diseases might be retarded or prevented by protective compounds 

which have the ability to inhibit reactive oxygen species (ROS) formation, scavenge free 

radicals, or chelate metals (Panteleon et al., 2008). In the body, natural endogenous 

antioxidant systems have been developed to deal with the production of free radicals and have 

been divided into enzymatic and non-enzymatic groups. Examples of the enzymatic 

antioxidants are superoxide dismutase, gluthathione peroxidise and catalase (Rojas and 

Brewer, 2008) and non-enzymatic antioxidants are beta-carotene, vitamin C, vitamin E and 

selenium. There are also phytochemical antioxidants, such as polyphenols, lycopene, lutein, 

lignen and vitamin like antioxidants that can also protect the body from oxidation damage 

(Moon and Shibamoto, 2009).  

However, the roles of antioxidants, particularly those involved with reactive oxygen species 

(ROS) and oxygen radicals in human diseases (cancer and neurodegenerative) remains 

unclear (Halliwell, 2012). Therefore, studies on antioxidants and their effects on scavenging 

free radicals and other ROS are necessary. 

2.2. Methods for determination of antioxidant capacity in food 

Due to the chemical diversity and complexity of antioxidants in foods, it is necessary to 

separate individual antioxidants (e.g. flavonoids, resveratrol, lycopene, carotenes, tocopherols 

and ascorbic acid), however, these techniques require expensive equipments. Furthermore, the 

level of a single antioxidant in food does not always reflect its total antioxidant capacity 

(Pellegrini et al., 2003). Antioxidants can be either hydrophilic or lipophilic and they can act 

individually or cooperatively and often, synergistically. For example, Kiokias et al. (2008) 

noted that a mixed antioxidant system can contribute to the inhibition of oxidation by additive 

or synergistic effects. Several antioxidants such as tocopherols, ascorbic acid, carotenoids and 

phenolics can exhibit synergistic interactions; consequently, a combination of these 

compounds has a higher antioxidant activity than the sum of the activities of the individual 

components (Zuleata et al., 2007). It is suggested that Vitamin C and E can interact directly 

by vitamin C sparing vitamin E, and that there is an immediate quenching action of vitamin C 

against aqueous reactive species which prevents the oxidation of vitamin E. In addition, 

vitamin C may maintain a `redox recycling' effect on oxidised vitamin E within the 

lipoproteins and membranes lipids (Hamilton et al., 2000). The term total antioxidant capacity 

http://www.vitamins-supplements.org/beta-carotene.php
http://www.vitamins-supplements.org/vitamin-C.php
http://www.vitamins-supplements.org/vitamin-E.php
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in the present study includes the synergistic protective associations between both the 

hydrophilic and lipophilic antioxidants (Talegawkar et al., 2009). 

 

To date, many different terms have been used to express the capacity of antioxidants. These 

include the efficiency, effectiveness, action, power, potential, potency and activity of the 

antioxidants (Roginsky and Lissi, 2005; Karadag et al., 2009). However, all these terms have 

no specific chemical meaning (Huang et al., 2005). The term „„antioxidant capacity”, used 

throughout this thesis refers to the antioxidant levels obtained from five different antioxidant 

assays including TPC (FC assay). 

In recent years, a wide range of spectrophotometric assays has been developed to measure the 

antioxidant capacity of food. The most popular assays are 2,2-azino-bis-3-

ethylbenzthiazoline-6-sulphonic acid (ABTS), 1,1-diphenyl-2-picrylhydrazyl (DPPH) , ferric 

reducing ability of plasma (FRAP)  and oxygen radical absorbance capacity (ORAC) (Brand-

Williams et al., 1995; Re et al., 1999; Van den Berg et al., 1999; Van den Berg et al., 2001; 

Kim et al., 2002; Ou et al., 2002; Thaipong et al., 2006). ORAC is a fluorescence based assay 

(Ou et al., 2001; Prior et al., 2003) has recently been adopted as a standardised method. Both 

lipophilic and hydrophilic fractions need to be isolated and assayed independently. The 

lipophilic assays are less effective with water soluble than fat soluble compounds but do 

provide results which are similar to those existing in biological systems. The hydrophilic 

assay is superior to other methods in evaluating the antioxidant activity of compounds such as 

anthocyanins since this method combimnes both inhibition time and degree of inhibition into 

a single quantity (Hillmann et al., 2011). 

Michalak (2006) suggested that all plants produce a diversity of secondary metabolites such 

as phenolics. However, due to the wide distribution of phenolics and their high antioxidant 

activity, it is recognised that the total phenolic content is an important index of antioxidant 

capacity of food. The total phenolic content is usually measured by the Folin Ciocalteu (FC) 

spectrophotometric based assay.  

In general, most of the assays are based on the same principle in which a coloured synthetic 

radical or redox-active compound is generated. The generation of these radicals is inhibited 

by antioxidants in the biological sample which scavenges or reduces the radicals or the redox-

active compound. Changes in the level of the synthetic coloured radical are monitored by a 

spectrophotometer or fluorometer. Appropriate standards are used to quantify the antioxidant 

capacity e.g. Trolox Equivalent Antioxidant Capacity (TEAC) or vitamin C Equivalent 
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Antioxidant Capacity (VCEAC). Antioxidants may act in various ways such as scavenging 

the radicals, decomposing the peroxides or chelating metal ions. Consequently the antioxidant 

capacity values obtained from different assays can be completely different. Furthermore, 

assays measuring antioxidant capacity are based on two major chemical mechanisms known 

as hydrogen atom transfer (HAT) and single electron transfer (SET) which have different 

kinetics and potential for side reactions (Paixao et al., 2007). 

HAT methods measure the ability of an antioxidant to quench free radicals by the donation of 

hydrogen to form stable compounds (Prior et al., 2005). In HAT assays, the antioxidant 

capacity is based on competition kinetics in which the antioxidant and substrate compete for 

thermally generated peroxyl radicals through the decomposition of azo compounds such as in 

ORAC (Paixao et al., 2007). HAT reactions are solvent and pH independent and usually 

completed in seconds to minutes. 

SET methods measure the ability of a potential antioxidant to transfer one electron to reduce  

compounds such as radicals, metals and carbonyls by a reduction of a coloured oxidant as in 

the ABTS, DPPH and FRAP assays (Huang et al., 2005; Paixao et al., 2007; Cam et al., 

2009). SET assays measure the capacity of an antioxidant to reduce an oxidant which changes 

colour when reduced. The degree of colour change is correlated with the antioxidant activity.  

SET reactions are pH dependent, relatively slow and can require a long time to reach 

completion.  Antioxidant capacity is based on the relative percent decrease in product rather 

than kinetics (Ozgen, 2006; Karadag et al., 2009). Compared to HAT, SET is solvent 

dependent, has the potential to generate new antioxidants through polymerization of phenolic 

compounds and may underestimate the true antioxidant potential by reactions not reaching 

their completion.  

SET and HAT reactions may occur together in samples and the mechanism finally dominating 

in a system will be determined by the antioxidants characteristics (Prior et al., 2005). The 

characteristics of the five antioxidant assays ABTS, DPPH, FRAP, ORAC and FC (TPC) are 

considered below:  

2.2.1. Folin Ciocalteu Reagent Assay for Total Phenolic Contents 

Principle 

The Folin- Ciocalteu assay is used to measure total phenolics by an oxidation/reduction 

(redox) reaction (Prior et al., 2005). The principle is based on the transfer of single electrons 
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(SET) in alkaline medium from phenolic compounds to molybdenum to form a blue complex 

that can be monitored spectrophotometrically at 750–765 nm (Magalhaes et al., 2008). 

Advantages: 

- Convenient, simple, precise and reproducible (Huang et al., 2005; Prior et al., 2005).  

- Excellent linear correlations with other assays (e.g., DPPH, FRAP, TEAC, ORAC 

etc.) (Gheldof and Engeseth, 2002; De Beer et al., 2003; Madhujith et al., 2006; 

Shahidi et al., 2006; Karadag et al., 2009). 

- Characterising and standardising botanical samples. 

Disadvantages: 

- Suffers from interference from sugar, aromatic amines, sulphur acids, Fe
2+

, etc. 

- Several nonphenolic organic and some inorganic substances can give false values  

- Carried out in aqueous phase and is not applicable for lipophilic antioxidants 

- Lack of standardisation of FCR methods which leads to large differences in phenolic 

levels (Karadag et al., 2009). 

- Standards with more than one reacting OH group give high absorbance backgrounds.  

- There is always a debate as to whether it is a total phenolic content assay or total 

antioxidant capacity assay.  

 

2.2.2. ABTS radical cation decolourization assay 

Principle 

The generation of a highly stable chromophoric cation radical of ABTS
•+

 (blue/green) by 

peroxyl radicals or other oxidants in the presence of H2O2 can be reduced by antioxidants.  

The antioxidant can delay or diminish its absorbance (Miller et al., 1996; Paixao, 2007, 

Floegel et al., 2011). ABTS relies on electron transfers. 

Advantages: 

- An easy and rapid method that produces very reliable results (Paixao, 2007) which has 

been used in many research laboratories for studying antioxidant capacity. 

- ABTS
•+

 can be solubilised in both aqueous and organic media and is not affected by 

ion strength. It can be used to measure antioxidant activity of hydrophilic and 

lipophilic antioxidants (Arnao, 2000; Karadag et al., 2009). 

- Reacts quickly with antioxidants within 30 minutes used over a wide pH range and be 

automated for microplate use. 
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Disadvantages: 

- TEAC values characterise the ability of a sample to react with ABTS
•+

 rather than to 

inhibit the oxidative process 

- The reaction between ABTS and samples may take a long time to reach an end point. 

An assay with a fixed short time (4-6 minutes) is too short and may give incorrect 

antioxidant capacity values because the reaction is incomplete (Huang et al., 2005; 

Karadag et al., 2009). TEAC obtained at a fixed end point or measured based on the 

kinetics behaviour of the samples produce difference results. 

- Require special preparation in which the ABTS radical cation (ABTS
•+

) must be 

generated by enzymes or chemical reaction (Arnao, 2000; Wojdylo et al., 2007). 

- The ABTS radical used in TEAC is an artificial radical and not found in a biological 

system. Consequently, the assay does not reproduce the in vivo situation. 

2.2.3. DPPH radical scavenging activity assay 

Principle 

In the presence of a hydrogen/electron donor (free radical scavenging antioxidant) the 

absorption intensity is decreased and the radical solution (the purple chromogen DPPH 

radicals) is discoloured to a pale yellow hydrazine according to the number of electrons 

captured (Locatelli et al., 2009). DPPH works in both electron transfer (SET) and hydrogen 

transfer (HAT) systems. 

Advantages: 

- A rapid, simple and inexpensive method for estimating the antiradical activity of foods 

(Paixao et al., 2007).  

- It produces stable organic nitrogen radicals characterised by a deep purple colour in 

the range 515-520 (Locatelli et al., 2009). 

Works in both hydrogen transfer and electron transfer systems and allows the determination 

of a substance or a complex mixture that donate either hydrogen atoms or electrons in a 

homogeneous system (Chaillou and Nazareno, 2006; Paixao et al., 2007). 

- Became a reference assay to evaluate the in vitro antioxidant capacity (Gil et al., 2000; 

Locatelli et al., 2009). 

Disadvantages 

- Some antioxidants such as carotenoids have spectra that overlap DPPH at 515nm and 

interfere with the results (Prior et al., 2006; Karadag et al., 2009). 
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- Not a competitive reaction since DPPH is both a radical probe and oxidant. 

- DPPH is discoloured from radical reactions (HAT) or reductions (SET) and 

consequently unrelated reactions giving inaccurate results. 

- The DPPH radical can only be dissolved in organic solvents (methanol, ethanol, 

acetone), which is a limitation when interpreting the role of hydrophilic antioxidants 

(Arnao, 2000; Karadag et al., 2009). 

- Several factors may affect the assay such as solvent, pH, sample concentration and 

reaction time. 

- The absorbance of DPPH radical at 515-520 nm after the reaction with an oxidant is 

reduced by light, oxygen and solvent types (Ozcelik et al., 2003; Apak et al., 2007; 

Karadag et al., 2009). 

- Antioxidants that react quickly with peroxyl radicals in vivo may react slowly or even 

be inert to DPPH due to steric effects preventing accessibility. 

- DPPH reacts reversibly with eugenol producing false antioxidant levels (Huang et al., 

2005; Karadag et al., 2009). 

- Some researchers have indicated a non-linear relationship exists between the 

antioxidant concentration and the DPPH radical scavenging activity (Prior et al., 2005; 

Villano et al., 2005; Eklund et al., 2006; Monica et al., 2009). 

DPPH is a stable nitrogen radical but it does not reproduce the in vivo situation 

2.2.4.  Ferric Reducing antioxidant Power (FRAP) assay 

Principle 

The FRAP assay is based on the ability to reduce yellow ferric tripyridyltriazine complex 

(Fe(III)-TPTZ) to blue ferrous complex (Fe (II)-TPTZ) by  electron-donating antioxidants in 

acidic medium  (Benzie et al., 1999; Wojdylo et al., 2007). The FRAP mechanism is totally 

electron transfer (SET). 

Advantages  

- Simple, rapid, inexpensive and robust assay requiring no specialised equipment and 

can be performed manually or automatically. 

- It is totally electron transfer rather than a mixed SET and HAT. In combination with 

other methods it is a very useful assay to distinguish dominant mechanisms of 

different antioxidants.  
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-  It relies on a redox reaction that can proceed rapidly. All reactions are completed 

within 4 and 6 minutes. 

Disadvantages: 

- Requires a longer reaction time to detect some polyphenols that react slowly. The 

order of reactivity of many different antioxidants can vary considerably. 

- Fe
2+

 is a well-known “pro-oxidant” that can react with H2O2 to produce a hydroxyl 

radical (OH
-
). The most harmful free radical found in vivo (Karadag et al., 2009). 

- Some antioxidants e.g. ascorbic acid and uric acid can reduce both Fe
3+

 and reactive 

species in the FRAP assay so their ability to reduce Fe
3+

 may reflect their ability in 

reducing reactive species.  

- Determines the total reducing power of samples but not all the reductants that reduce 

Fe
3+

are antioxidants (Prior and Cao, 1999; Nilsson et al., 2005; Karadag, 2009). 

- Some antioxidants e.g. GSH (glutathione, an important antioxidant in vivo) can 

effectively reduce prooxidants but not reduce Fe
3+

 (Prior and Cao, 1999; Karadag, 

2009). 

2.2.5. Oxygen Radical Absorbance Capacity (ORAC)  assay 

Principle 

The ORAC method is based on the inhibition of the peroxyl-radical-induced oxidation 

initiated by the thermal decomposition of azo-compounds such as 2, 2‟-azobis (2-amidino-

propane) dihydrochloride (AAPH) (Prior et al., 2003). The ORAC method uses the 

fluorescence of B- or R-phycoerythrin (a fluorescent protein) or d FL (a synthetic nonprotein 

probe) as a fluoresent probe. The loss of fluorescence of the probe is an indication of the 

damage from the peroxyl radical. ORAC measures antioxidant inhibition of peroxyl radical 

induced oxidations and reflects the classical radical chain breaking antioxidant activity by    

H-atom transfer (HAT) (Ou et al., 2001; Karadag, 2009). 

Advantages: 

- Utilises a biological relevant radical source and it is the only method that combines 

both inhibition time and degree of inhibition into a single quantity (Prior et al., 2003; 

Thaipong et al., 2006). 

- Has recently been adapted to use fluorescein as the fluorescent probe for high-

throughput assays. 
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- Has largely applied as a method of choice to quantify antioxidant capacity usually in 

combination with a total phenol content assay. 

-  Has been applied to measure the antioxidant capacity of botanical (Prior and Cao, 

2000) and biological samples (Cao and Prior, 1998).  

- Can be applied to measure the antioxidant capacity of both lipophilic and hydrophilic 

components separately using the same peroxyl free radical source and can be used for 

antioxidants that exhibit distinct lag phases and those that have no lag phases. It is 

useful for samples that contain multiple ingredients and have complex reaction 

kinetics. 

- Has the ability to use different free radical generators or oxidants, and can measure 

many different compounds such as antioxidants against peroxyl and hydroxyl radicals. 

Disadvantages: 

- Can only measure the antioxidant capacity against peroxyl and hydroxyl radicals and 

not against all reactive oxygen species (e.g. superoxides and singlet oxygen, Apak et 

al., 2004; Karadag et al., 2009). 

- The substrate (probe) concentration is often smaller than the antioxidant concentration. 

However, in food systems, the antioxidant concentration is much smaller than the 

substrate (e.g. lipid). Therefore, the antioxidant capacity measured in a real food 

system may be incorrect. 

- The use of B-PE as a FL probe has limitations such as large inter batch differences, 

photo bleaching of B-PE after exposure to the excitation light, and interaction with 

polyphenols by nonspecific protein binding. All these factors cause inconsistency in 

the assay results and false low reading values. This limitation can be solved by FL but 

FL is pH sensitive and must be carefully monitored (MacDonald-Wicks et al., 2006; 

Karadag et al., 2009). 

- FL is not sufficiently lipid soluble, and its fluorescence intensity in a non polar organic 

solvent is low. 

In summary, although each antioxidant assay has its own advantages and disadvantages, it is 

clear that no one antioxidant assay will reflect the total antioxidant capacity of a particular 

sample. Badarinath et al. (2010) suggested that if the antioxidant capacity of a single plant 

product is determined by different assays, then each assay will give different results. 

Therefore, it is impossible to use only one assay to evaluate the antioxidant capacity of a plant 
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product. To evaluate antioxidant capacity of a sample it is, therefore, essential to use several 

assays.  However, the selection of assays should be carefully considered in terms of their 

reliability and consistency. To achieve this, the antioxidant assays should be applicable to 

both lipophilic and hydrophilic antioxidants (Karadag et al., 2009). Recently, several  reports 

have suggested that despite the similarity and strong correlations between assays (Paixao, 

2007; Arcan and Yemenicioğlu, 2009), the results  from the  different assays and  the 

correlations between these assays have showed inconsistencies (Connor et al., 2002; Ou et al., 

2002; Awika et al., 2003; Thaipong et al., 2006). In addition, the same antioxidant assay can 

give widely different results for the same food product when analysed by different 

laboratories. Therefore, further development and characterisation of the assays and the 

correlations between the assays for a particular food are needed.  

2.3. Effects of drying on antioxidant activity 

Fruits are perishable and will deteriorate in their fresh state so the processing and preservation 

of fruits are important. Among the processing and preservation methods, drying is the most 

effective process to preserve fruits  to maintain their desirable qualities, reduce storage 

volume and to extend their shelf-life due to the  inhibition of microbial growth. In the drying 

process free water is removed from the fruit, water availability for enzymatic reactions and 

microbial growth is reduced and the bulk volume and weight is reduced. However, the drying 

process is complicated by physical, chemical and biochemical changes that might occur 

during the drying treatment (Baker, 1997). Furthermore, the enzymatic and non-enzymatic 

changes that occur on drying fresh plant tissues can cause significant changes to 

phytochemicals (Sthishkumar et al., 2009) and produce negative attributes in the final 

product.  

In most cases, drying involves the application of thermal energy which causes water to 

evaporate into the vapour phase.  In dehydration, the degree of thermal damage is directly 

proportional to the temperature and duration of exposure to a specific temperature (Kwok, 

2004). A high temperature and long process time is associated with hot air drying and 

adversely affects texture, colour, flavour and nutritional value of the  final product. Choi 

(2006) stated that natural nutrients and phytochemicals could be significantly lost due to heat 

during thermal processing. Therefore, heat processed dried foods are considered to have a 

lower health promoting capacity than the corresponding fresh foods. Klaudius (2008) 

suggested that lowering the drying temperature retains higher phenolic levels. However, the 

degree of thermal damage to antioxidants depends on the heat stability of each antioxidant 
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such as phenolics, carotenoids and tocopherols. Madrau et al. (2009) reported that the high 

drying temperatures in air dehydration might cause phenolic depletion whilst carotenoids are 

only degraded on exposure to large amounts of oxygen.  

Many reports have indicated that the effects of drying methods on antioxidant capacity vary 

according to the specific food. Ishiwata et al. (2004) reported that dried fruits had lower 

antioxidant values than fresh.  From a study on apricot, Madrau et al. (2009) demonstrated 

that phenol degradation with hot air drying differed according to the variety and that 

antioxidant capacity increased significantly in Cafona apricots with increasing drying 

temperature whilst the Pelese apricot showed no change.  

In plums, a high processing temperature reduced significantly the polyphenol and ascorbic 

acid content, whilst in dried prunes the antioxidants increased significantly (Piga, 2003). 

Sthishkumar et al. (2009) also showed the total antioxidant capacity of certain foods 

increased. Recent studies have shown that thermally processed fruits and vegetables have 

higher biological activities due to the various chemical changes that occur during the heat 

treatment (Dewanto et al., 2002; Kim et al., 2000, Choi et al., 2006). For example, in plants, 

phenolics are usually covalently bound with insoluble polymers but when subjected to heat 

treatment the bound phenolics are liberated (Jeong, 2004). Heat also increases the reducing 

sugar and promotes the formation of Maillard reaction products which also have antioxidant 

activity in dried fruits (Madrau, 2009). 

It should be noted that the effects of heating or drying temperature on the quality of the total 

phenolics and antioxidants of fruit is still not fully understood. Currently, many drying 

methods are being used and each method has its advantages and disadvantages. Sun, forced-

air, vacuum, microwave and freeze drying are commonly used techniques to preserve fruits.  

Traditionally, open air sun drying is used to dry agricultural materials because it is free, 

renewable, abundant and environmentally friendly (Baker, 1997). However, sun drying 

requires long drying times and results in a loss of quality due to materials being directly 

exposed to weather conditions and being contaminated by microbial, insects, bird and rodent 

products. 

To overcome the disadvantages of open sun drying, greenhouses can be utilized to minimise 

energy cost and microbial spoilage (Ergunes, 2005). Another conventional drying method is 

hot air. Forced air ensures a continuous supply of air to replace saturated air (Baker, 1997). 
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However, drying by heated air can damage products by degrading enzymes and reducing the 

taste, colour and nutritional characteristics. Other drying methods such as vacuum, microwave 

and freeze drying reduce any thermal effects by applying low temperatures or using short 

treatment times. 

Vacuum drying has advantages over conventional drying because it expands air and water 

vapour in the food which creates a frothy or puffed structure and a large area-to-volume ratio 

for enhanced heat and mass transfer (Jaya and Das 2003; Lee and Kim, 2009).This leads to 

specific vacuum drying characteristics such as high drying rate, low drying temperatures and 

low oxygen deficient processing.  As a result, the quality, nutritive value and antioxidant 

activity of vacuum dried products increase (Wu et al., 2007). Therefore, vacuum drying is 

preferred for oxidisable and temperature sensitive products (Nastaj, 1989; Bialobrzewski and 

Misiak, 1997; Markowski and Bialobrzewski, 1998; Arevalo-Pinedo et al., 2006). 

Microwave drying has also become popular because it minimizes the drying time and any 

reductions in quality by providing a rapid and effective distribution of heat throughout the 

product (Alibas, 2009).  Microwave drying is based on the adsorption of microwave radiation 

by water molecules and converting the microwave energy into heat. At a certain frequency, 

microwaves cause the molecules of the materials to vibrate and create intermolecular heat that 

causes water within the material to evaporate. As a result, a large vapour pressure difference 

between the centre and the surfaces of the material is generated which allows rapid transport 

of moisture out of the product so preventing structural collapse. 

Another drying method is freeze-drying (Barbosa-Canovas and Vega-Mercado, 1996). 

Freeze-drying or lyophilisation is a drying process in which the water is crystallized at low 

temperatures and subsequently sublimed from the solid state into the vapour phase under 

vacuum (George et al., 2004).  Freeze-drying produces the highest quality dried foods 

because it retains features that are close to the fresh product. The major problems with freeze-

drying are the long drying time, high energy consumption and high capital costs (Wang et al., 

2010). 

There is little data on comparing the effects of sun, forced-air, vacuum and microwave drying 

on the antioxidant activity of fruits. In addition, the effect of the drying treatments on the 

quality of fruits is also unclear due to conflicting data from previous researches. Therefore, 

studies on the effects of the various drying treatments on the antioxidant capacity of mango 

fruit and its fractions are required. 
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2.4. Relationships between cultivars, physicochemical characteristics and 

antioxidant properties of fruits 

There is a wide range of antioxidants in fruits, such as vitamin A, vitamin C, vitamin E, 

carotenoids, polyphenolics, anthocyanins and flavonoids (Miladi and Damak, 2008). The 

antioxidant capacity of fruits is influenced by several factors, such as: cultivar, agronomic 

conditions, post-harvest manipulation and stage of ripeness (Scalzo et al., 2005; Kevers et al., 

2007; Koca and Karadeniz, 2009). 

 

Figure 2.2.  Factors affecting antioxidant capacity of fruits 

 

 

 

 

 

 

 

 

 

 

Siriwoharn et al. (2004) concluded that cultivar, maturity, UV light exposure, and harvesting 

method are significant factors that influence the antioxidants of berries. Other studies with 

blackberries have also indicated that the levels of antioxidants are influenced by maturity and 

cultivar (Wang and Lin, 2000; Siriwoharn et al., 2004). Wang and Stretch (2001) also 

suggested that ORAC, anthocyanin, and total phenolics were significantly different in 10 

different cranberry cultivars.  Other reports have indicated that changes in antioxidants in 

fruits are often associated with their ripening (Burda et al., 1990; Amiot et al., 1995; Lima et 

al., 2005; Kobayashi et al., 2008). Prior et al. (1998) found there were different levels of 

antioxidants in various cultivars of blueberries and there was a positive correlation between 

maturity with the antioxidants, anthocyanin and total phenolic levels. 

Serrano et al. (2009) investigated several cultivars of sweet cherries at different maturity 

stages and suggested that irrespective of the differences between the cultivars, antioxidant 

levels varied during the ripening process and postharvest storage. It should be noted that there 

are correlations between the stage of maturity and antioxidant activity in fruits. However, it is 
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unclear as to whether the correlations are positive or negative. Siriwoharn et al. (2004) 

reported that an increase in colour intensity and decrease in acidity are correlated with 

increases in phenolics, anthocyanins, and total antioxidant activity. Also, in blackberries 

antioxidant activity increases as the fruit ripens and reaches a maximum at the overripe stage 

(Siriwoharn et al., 2004). Stoner et al. (2010) indicated that the increased maturity of 

blueberries at harvest enhanced the anthocyanin and antoxidant capacity (Prior et al., 1998; 

Kalt et al., 2003). Meanwhile, Kobayashi et al. (2008) indicated that the antioxidant capacity 

of two pawpaw cultivars tended to decrease on ripening.  

Interestingly, Ribera (2010) found that the phenolics and total antioxidant activity was high in 

unripe and ripe fruits and low in intermediate ripe fruits.  A study on blackberries also found 

that the total anthocyanin levels increased during ripening whilst phenolics and antioxidant 

capacity showed no change (Siriwoharn et al., 2004). 

It should be noted that in some fruits, antioxidant capacity increases over the storage time 

whilst in others it decreases. This could be attributed to the higher concentrations of phenolic 

acids (mainly chlorogenic acid) and flavonols (mainly rutin) at the immature fruit stage whilst 

the total antioxidant activity could increase in mature fruits due to the elevated amounts of 

anthocyanin.  

The changes in total phenolics and antioxidant activity are inconsistent and could be attributed 

to fruit type. Wang and Lin (2000) investigated the antioxidant activity and maturity of berries 

and suggested that blackberries and strawberries show the highest antioxidant activity as 

measured by ORAC, during the green stage whilst red raspberries exhibit the highest 

antioxidant activity at the ripe stage. Total anthocyanin content increased with maturity for all 

the three fruit species. Thus further studies on the relationships between antioxidant activity 

and maturity of a specific fruit such as the mango are required. 

Many recent reports have found however that different part of fruits can yield different levels 

of phenolics and antioxidants.  Investigations on the antioxidant activity of fruits and leaves of 

blackberry, raspberry and strawberry showed that the antioxidant capacity varied according to 

the cultivar, stage of maturity and plant component (Wang and Lin, 2000).    

Lee and Talcott (2004) also stated that antioxidant capacity was influenced by cultivar, 

maturity and location in the fruit. Their study showed that polyphenolics including ellagic 

acid, anthocyanins and total antioxidant capacity in eight muscadine grape (Vitis rotundifolia) 
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cultivars were influenced by the ripening stage and their location within the fruit (skin, pulp, 

and juice).  

Another report suggested that in apples the polyphenol profile is characteristic of the cultivar, 

maturity stage and component part of the fruit (Duda et al., 2011). The findings are in 

agreement with the study by Vieira et al. (2009) who suggested that in apples, the 

concentration of polyphenolics such as flavanols and anthocyanins, and the antioxidant 

activity differ with cultivar, maturity stage, environmental conditions and fruit component. 

According to many authors, the content of total phenolics and antioxidants in apples is high in 

the peel compared to flesh and whole fruit. These facts suggest that apple peel possess more 

bioactivity than flesh. Caro and Piga (2007) showed seeds and peels of Italian fresh fig 

cultivars contained higher antioxidant capacity and phenolic content than the edible portions. 

In dragon fruits, it was also found that the highest TPC and radical scavenging activity were 

in peel compared to the pulp (Ruzlan, 2010). Guo et al. (2003) also reported that peel and 

seeds of fruits, such as pomegranate, grape, hawthorn, longan and lychee possessed high 

antioxidant activities, as measured by FRAP, and are rich sources of natural antioxidants. 

Although some data has indicated the importance of cultivars and maturity in determining 

TAC in fruits, the effects of genotype on TAC in fruit components such as peel and kernel 

have not been investigated. It is therefore important to evaluate the effects of genotypes 

(cultivars) and physicochemical properties (maturity) on the total phenolic and antioxidant 

capacity of peel and kernel in fruits (Girish, 2011). 

Several reports found that the phenolics and antioxidants of fruits depend on the environment, 

harvest season and production area (Wang and Lin, 2000; Siriwoham et al., 2004; Cornor et 

al., 2005). For example, the antioxidant levels of blackberries grown in New Zealand ranged 

from 56.6 to 66.3 µmol Fe/g fruit and those grown in the United States from 65.5 to 71.8 

µmol Fe/g fruit (Connor et al., 2005). Furthermore, blueberry which is well known for its 

antioxidant capacity, can vary its antioxidant activity depending on cultivar, storage time 

(Connor et al., 2002), and place of production (Taruscio et al., 2004).  

Because of the influence of different factors such as cultivars, maturity, parts of fruits and 

production area it is often difficult to identify which of the factors is the most important 

influencing antioxidant activity. Further studies are therefore required to determine the effects 

of cultivars grown in different areas and at different stages of ripening on the phenolics and 

antioxidant capacity of fruits and their fractions.  
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2.5. Antioxidant potential of mango fruit 

2.5.1. Production of mangoes in the world and in Vietnam 

Mango (Mangifera indica L) is often known as the king of fruits and is one of the most 

important tropical fruits in the world (Shahnawz et al., 2012). It is currently ranked 5
th

 in the 

total world production of fruit crops (Sauco, 1997).  Mango is a popular and economically 

important tropical fruit due to its excellent eating quality (bright colour, sweet taste and 

luscious flavour) and high nutritive content (vitamins, minerals, fibre, and phytochemicals) 

(Kim et al., 2009; Parafox-Carlos et al., 2012). According to the Tropical fruits (2009), 

mango dominated global global output of tropical fruits with a share of nearly 40 percent, 

followed by pineapple, papaya and avocado. Asia was the largest producer of mangoes, 

accounting for 74 percent of world production by volume, with Latin America and the 

Caribbean at 16 percent and Africa 10 percent (Tropical fruits, 2009).  The leading mango 

producing countries are India, China, Thailand, Mexico, Pakistan, Brazil, Philippines, 

Indonesia, Nigeria and Vietnam (Naidu, 2009) with the ten countries accounting for over 85% 

percent of world production. Meanwhile, Mexico is the leading mango-exporting country 

(41% of the world market). The United States and European Union together account for 75 

percent of world mango imports (Tropical fruits, 2009).  

Vietnam is in a tropical region and has a wide range of fruits that can be viable sources of 

antioxidants.  The fruit industry in Vietnam has the potential to expand and plays an important 

role in agricultural production. The area under fruit tree cultivation of Vietnam has increased 

rapidly and the production reached 5.721 million metric tons in 2009 (Codex Alimentarius 

Commission, 2011).  

According to FAO, the production of mangoes, mangosteens and guavas in Vietnam ranked 

11
th

 and reached 554,000 MT in 2009. The planted area of mangoes was 76,700 hectares in 

2010 (General Statistics Office of Vietnam, 2012). Mangoes have traditionally been cultivated 

in the central and southern parts of Vietnam and their main production areas are Tien Giang, 

Dong Thap, Can Tho, Vinh Long and Khanh Hoa. Currently, the major cultivars are „Cat Hoa 

Loc‟, „Cat Chu‟, „Hon‟, „Xiem Num‟, and „Ghep‟ (FAO, 2004, section 2.4). The Vietnamese 

government aims to increase fruit production to 10 million tonnes per year and export fruit 

and vegetables to a value of 1 billion US by 2015 (Fruit in Vietnam, 2008). Although fresh 

fruit exports will increase, processed fruits such as juices, condensed juices, jams, starches as 

well as sugar-infused, dried fruits and pickled fruits are attracting more attention from 

Vietnamese producers, especially hygienic and safe processed products. As a key fruit in 
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Vietnam, mango production areas are expected to continuously increase in the future, 

therefore, the production, processing and utilisation of mango and its products have a 

promising future. 

2.5.2. Utilisation of fruit wastes including mango peel and kernel as a source of 

antioxidants  

Environmental issues such as the costs of discharging waste have forced food processors and 

food manufacturers to examine alternative ways to treat and utilise their wastes and by-

products from fruit processing plants. Environment friendly food processes that minimize 

waste disposal whilst producing marketable value-added products are required (Stachowski, 

1999). Such an approach will resolve the environmental issues whilst increasing the economic 

efficiency of the processing plant (Zwetsloot, 1995). Processing of fruits produces two types 

of waste: a solid waste of peel or skin, seeds, stones, etc. and the liquid waste of juice and 

wash-waters.  For some fruits, the discarded portion is very high, e.g. mango 35-60% 

(Berardini et al., 2004), banana 33%, pineapple 35% (Bardiya et al., 1996) and orange        

30-50%  so there is a serious waste disposal problem which needs to be managed (Practical 

action, 2002).  There are six major products that can be produced from solid fruit wastes; they 

are pectin, reformed fruit pieces, enzymes, wine/vinegar, candied peel and oils. 

Commercially, pectin is extracted from citrus peel, apple pomace and some other tropical 

fruits containing high levels of pectin, e.g. passion fruit. The three most important enzymes 

that can be extracted from fruit wastes are papain (from papaya), bromelain (from pineapple) 

and ficin (from figs).  

Fruit pulp can be recovered and converted into synthetic fruit pieces. It is technically feasible 

to produce wine or vinegar from solid and liquid fruit wastes. Peel from citrus fruits can be 

used in baked goods or as a snack food. The stones of some fruits (e.g. mango, apricot and 

peach) contain considerable quantities of oil or fat and are used in culinary or perfumery 

applications. Some seeds (e.g. grape, papaya and passion fruit) yield oil, which are marketed 

as health promoting products (Practical action, 2002).  

Recent studies have shown that fruit wastes can also be good sources of natural antioxidants 

for preserving food. Apple pomace is a good source of polyphenols and exhibits strong 

antioxidant and anti-proliferative characteristics (Wolfe et al., 2003). Citrus peel is a rich 

source of flavanoids. Banana and tomato peels are good sources of carotenoids. Grape 

pomace, which is a wine industry by-product, is an excellent source of anthocyanins, 
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catechins, flavanoids, phenolic acids and dietary fibre (Laurrauri et al., 1996; Mazza and 

Miniati, 1995, cited in Ajila et al., 2007). Grape seed extract is a natural plant substance that 

is rich in polyphenols and a concentrated source of oligometric proanthocyanidins exhibiting 

more powerful antioxidant characteristics than vitamin C, E, and beta-carotene. Grape seed 

extract has the potential as a processed meat additive to reduce lipid oxidation and the 

formation of off-odours. Mango seed kernels and peel discarded from processing could be 

recycled into potentially valuable sources of antioxidants that could be used as food 

ingredients (Ajila, et al., 2007a). Discarded waste mango seeds and peel are currently a source 

of pollution (Ajila et al., 2007a). Previous studies have shown that peel and kernel contribute 

to 7-24% and 9-40% of mango fruit, respectively (Wu et al., 1993; Berardini et al., 2004). 

Other reports have noted that the waste products of industrial processing of mango such as 

seed kernels and peels could be potential sources of natural antioxidants and be used as 

ingredients by the food industry (Laurrauri et al., 1996; Berardini et al., 2004). 

2.6. Deterioration in pork and pork products 

2.6.1. Pork and pork products 

In recent years, health concerns have been raised about the consumption of meat (Hui, 2006) 

in which pork contains much higher proportions of the major polyunsaturated fatty acid 

(PUFA) such as linoleic acid than cattle and sheep (Wood et al., 2008). The consumers‟ 

decision to purchase pork is based on factors such as colour, fat level, marbling as well as 

food safety, price, nutritive value and meal convenience. Other important factors are the 

tenderness, juiciness, flavour and aroma of pork (Taylor-Pickard and Spring, 2007).  

The main components of carcasses are muscle, fat, bone and skin. Muscle is converted to 

meat post-mortem. The average percentage of muscle in relation to live weight varies 

according to the species, degree of fatness and dressing methods. Typical muscle yields are 

39% for chicken, 35% for beef, 32% for veal, 25% for lamb and 36% for pork (Hui, 2006). 

Lean pork contains 74.5% moisture, 21.4% protein, 2.7% fat, 0.9% ash and 0.5% of 

carbohydrate (Hui, 2006). These proportions are variable, particularly the lipid content. 

Pork is used as a raw material for processing to a number of products such as fermented and 

dry-cured meats like bacon, cooked ham, dry-cured ham, uncooked, cooked and fermented 

sausages (Flores and Toldra, 1993; Toldra, 2002; Hui, 2006). Patties and sausages are two 

common ground pork products which are usually made by mixing minced pork and 

ingredients to promote taste and shelf life. Sausages are defined as comminuted seasoned 

meats, stuffed into casings and either smoked, cured, fermented or heated depending on the 
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type of sausage. Meat for making patties or sausages is from the edible part of a slaughtered 

animal. High quality patties or sausages cannot be made from inferior raw materials. 

Formulations are critical for a quality finished product (Savic, 1985). The production of a 

wide variety of sausages is related to variations in meat formulation, processing temperature, 

type of casing and particle size. By manipulating the variables, changes occur in the texture, 

flavour, moisture, and shelf life properties of the sausages (Savic, 1985). 

2.6.2. Deterioration of pork and processed pork products during storage and processing 

Technological developments in food processing, preservation and handling have provided a 

variety of meat products. However, meat products are highly perishable and deteriorate 

rapidly causing potential dangerous health risks through microbial growth and chemical 

changes. The microbial and enzymatic deterioration can be controlled to a great extent by 

storing foods at low temperature but such storage cannot prevent lipid oxidation (Dave and 

Ghaly, 2011). Lipid oxidation is the major cause of deterioration in the quality of meat and 

meat products. Therefore, more studies are required in this area particularly in lipid oxidation 

to improve product quality. In raw meat and meat products, the primary factors that influence 

lipid oxidation are fatty acid composition, endogenous prooxidation and antioxidative 

constituents and other non-meat additives (Gheisari et al., 2010). Lipids of meat are 

particularly susceptible to oxidative deterioration (Raghavan and Hultin, 2004). Indeed, one 

of the major effects of oxidative change is the damage initiated by lipid peroxidation. A 

common target for peroxidation is the unsaturated fatty acids in membrane phospholipids. The 

peroxidation reaction involving a fatty acid is illustrated in Figure 2.3. 

                         

      

 

 

 

 

 

 

 

Figure 2.3: Lipid peroxidation reaction (Held, 2010).      

http://www.biotek.com/assets/tech_resources/ROS_White_Paper.pdf 
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The peroxidation reaction of polyunsaturated fatty acids (PUFA) in meat can be initiated by 

free radicals which are always present in metabolic active animal cells. In addition, meat post-

slaughter is often exposed to oxygen that promotes the lipid oxidation. Oxygen cannot interact 

directly with the PUFA but it can be converted to reactive species (ROS) such as hydroxyl 

radical (•OH), superoxide anion (O2•
-
), hydrogen peroxide (H2O2•), hydroperoxyl radical 

(HO2•), lipid peroxyl radical (LOO•), alkokyl radical (LO•), iron-oxygen complexes (ferryl- 

and perferryl radical)) and singlet oxygen (
1
O2). All of these radicals are highly reactive and 

can initiate lipid oxidation (Min and Ahn, 2005). Pork products, due to their relatively high 

content of unsaturated fatty acids, oxidise more rapidly than beef or lamb. Pork products 

manufactured from minced meat, such as pork patties and sausages are particularly prone to 

lipid oxidative changes due to the disintegration of the tissue and cellular structures during the 

grinding process. The manufacturing process also exposes any unsaturated fat or proteins to 

molecular oxygen (Chen et al., 2008b) and any oxidation can ultimately result in the pork 

products turning brown and producing off-odours.In short, lipid oxidation produces 

undesirable changes in flavour, colour, texture, tenderness and nutritive value of meat 

products during the processing and storage stages (Lee et al., 2006).  

 

The colour of meat is important because consumers use discoloration as a visual indicator of 

the freshness and wholesomeness of the meat when making a decision to purchase (Macini 

and Hunt, 2005). Fernandez-Lopez et al. (2003) indicated that colour stability is affected by 

factors such as packaging, oxygen, bacteria, pH, temperature and humidity. In fresh meat 

products, colour is affected by three factors: the concentration of muscle haem pigments, the 

chemical state of pigments on exposed muscle surfaces, and the physical light-scattering 

properties of the meat structure (MacDougall, 1983; Fernandez-Lopez et al., 2003). The 

pigment myoglobin (Figure 2.4) is a complex protein that binds with oxygen, and is required 

for metabolic activity. It plays an essential role in storing oxygen within muscles. Myoglobin 

is primarily responsible for the different levels of redness in meat such as poultry, pork, and 

beef (Brewer, 2004). Meat with high colour stability is characterised by low oxygen 

consumption and reduced lipid oxidation. In practice, controlling and monitoring lipid 

oxidation during processing and storage is difficult. For example, as meat is exposed to 

oxygen, oxygen is absorbed and combines with myoglobin, turning meat bright red due to the 

formation of oxymyoglobin. Both the myoglobin and oxymyoglobin are prone to losing an 

electron (oxidise) which turns the pigment to metmyoglobin which is a brown colour. 

Myoglobin, oxymyoglobin and metmyoglobin can all be inter-converted (Figure 2.5). The 

state of myoglobin and, therefore, meat colour clearly depends on the oxidation state of the 
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iron atom in the haem group (ferrous (Fe
2+

) or ferric (Fe
3+

)). When ferrous haem lacks a sixth 

ligand it has a purple red colour and is called deoxymyoglobin. If oxygen is the sixth ligand, 

then the molecule appears cherry red (fresh meat colour) and is called oxymyoglobin 

(Faustman and Cassens, 1990; Yin and Cheng, 1997). Ferric haem with water as the sixth 

ligand is metmyoglobin with a brown colour which is the dominant form in brown meat 

(Faustman and Cassens, 1990). 

 

 

 

                  

 

 

 

 

 

 

      

Figure 2.4. Chemical structure of part of Myoglobin  

(Pearson and Young, 1989). 

 

 

 

 

 

 

                  

 

 

 

 

 

 

Figure 2.5. Conversion of Myoglobin, Oxymyoglobin and Metmyoglobin  

(Aberle et al., 2001). 
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Along with colour, odour is another meat quality characteristic important to consumers. The 

development of oxidative off-flavours (rancidity) is a particularly serious problem during the 

storage of meat products (Gray and Pearson, 1987; Ladikos and Lougovois, 1990; Gray et al., 

1996; Langourieux and Escher, 1998). The amount of perceived odour is influenced by odour 

intensity and the composition of volatiles in the odour (Bailey et al., 1994; Specht and Baltes, 

1994; Ahn et al., 1999). In meat, lipids are probably the most important precursor of volatiles 

from the breakdown of fatty acids (Mottram, 1987). The autoxidation of lipids can occur in 

raw meat at room temperature or under refrigeration, the net result is a rancid flavour (Farmer, 

1994). 

There is a concern about aerobically stored meat producing oxidation products such as 

aldehydes which produce rancid off-odours. Warmed over flavour (WOF) often refers to the 

characteristic off-flavour that develops in cooked or raw meat (Sato and Hegarty, 1971; 

Pearson et al., 1977; Pearson and Dutson, 1994). 

Thus, the production of volatile compounds in meat and meat products has been increasingly 

studied due to the role of odour and flavour in the overall acceptability of meat to consumers.  

However, the development of aroma and odour in meat is a complex process in which 

different volatiles interact to produce intermediary compounds that also contribute to the 

odour. Unfortunately, the correlation between the analytical profile of volatile compounds and 

odour perception by consumers is not always strong. It is therefore essential that any aroma 

assessment of volatile compounds by analytical techniques is accompanied with human 

sensory evaluation (Garcia-Gonzalez et al., 2008). 

 

2.7. Natural antioxidants in preservation of meat products 

For many years, synthetic antioxidants such as tert-butyl-4-hydroxyanisol (BHA) and        

tert-butyl-4-hydroxytoluene (BHT) have been considered practical and effective inhibitors of 

lipid oxidation but recently there has been a trend to replace them with natural antioxidants 

due to the possible toxicity of synthetic antioxidants to consumers (McBride et al., 2007). 

These synthetic antioxidants have been restricted by legislation because they are suspected of 

having some possible carcinogenic effects (Imaida et al., 1983; Madhavi et al., 1996; Hirose 

et al., 1998). Consequently, research has concentrated on the efficacy of including natural 

antioxidants in foods such as vitamin E, vitamin C, ß-carotene (Morrissey et al., 1998) and a 

wide range of plant extracts (Namiki, 1990; Madsen and Bertelsen, 1995; McBride et al., 

2007).  
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It is should be noted that the ability of antioxidants to intercept or remove free radicals can 

contribute to preventing the deterioration of meat. Ideally, antioxidants should not affect the 

organoleptic properties of meat and should be effective at low concentrations. However, in the 

past, a major obstacle to the use of plant extracts as ingredients has been the undesirable 

flavours and odours associated with the extracts. Rosemary has been shown to have high 

antioxidant capacity activity but some of the compounds in rosemary such as verbenone, 

borneol and camphor can impart an undesirable rosemary odour to food even at low 

concentrations (Brewer, 2011). Red cabbage and radish extracts containing anthocyanins can 

only be successfully applied as additives after removing or reducing the concentration of 

aroma and flavour compounds that give strong vegetative note to these extracts (Giusti and 

Wrolstad, 2003). Grape pomace containing anthocyanin provides good sources of 

antioxidants can impart undesirable odour or colour to the food (Bhowmik et al., 2009). 

However, technological developments have resolved this problem by producing antioxidant 

extracts without any sensory characteristics but with antioxidant properties (McBride et al., 

2007). Such technologies include solvent extraction, hydro-distillation, spray-drying, freeze-

drying and supercritical fluid extraction (Dorman et al., 2003; Hadolin et al., 2004; McBride 

et al., 2007).  

In addition, several reports have stated that the antioxidant activities of natural antioxidants 

are lower than that of synthetic antioxidants (Miladi and Damak, 2008) and the manufacturing 

costs of natural extracts are too high (Addis and Hassel, 1992; Lee et al., 2003). There is, 

therefore, considerable interest in finding new, safe and inexpensive antioxidants from natural 

sources (Namiki, 1990; Gazzani, 1998). 

A number of researchers have attempted to improve the quality of meat by using natural 

antioxidants such as vitamin C, vitamin E and extracts from rosemary, oregano, sage, onion 

and cranberry, etc. Studies have shown that the natural plant antioxidants can scavenge free 

radicals, inhibit lipid oxidation and extend the shelf life of meat products. (Mitsumoto et al., 

1991; Sahoo and Anjaneyulu, 1997; Karastogiannidou, 1999; Lee et al., 2006; Hernandez-

Hernandez et al., 2009; Mariutti et al., 2011).  
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Table 2.1. Summary of some previous reports on effects of natural antioxidants on extending 

shelf life of meat products. 

Antioxidant Concentration 

(w/w) 

Meat Effects on shelf life References 

Vitamin C 1% Beef Maintained colours 

and lipid 

Mitsumoto et al., 

1991 

Vitamin E 

acetate 

10ppm Ground 

buffalo meat 

Lengthened desired 

visual colour, 

odour and lowered 

MetMb and 

TBARS 

Sahoo and 

Anjaneyulu, 1997 

Rosemary and 

oregano extracts  

0.01% Raw pork 

batters 

Reduced TBARS 

and maintained 

colour 

Hernandez-

Hernandez et al., 

2009 

Sage 0.1% Minced 

chicken 

breast 

Reduced lipid 

oxidation 

Mariutti et al., 2011 

Dried onion 

flesh 

1.6% Cooked 

chicken 

Reduced TBARS Karastogiannidou, 

1999 

Cranberry juice 

powder 

0.32% Cooked 

ground pork 

and turkey 

Inhibited lipid 

oxidation, TBARS 

and rancidity 

Lee et al., 2006 

Mango kernel 

and peel 

1% Pork 

sausages and 

patties 

Proposed that 

mango peel and 

kernel will reduce 

lipid oxidation 

Present study 

However, several of the reports have indicated that the effectiveness of the various 

antioxidants in a food system depends on factors such as the physical state of the substrate 

and the solubility, phase partitioning and concentration of the antioxidants (Lin and Liang, 

2002; McBride et al., 2007). It is now recognised that suitable carrier systems may be 

required to direct and aid the incorporation of antioxidants to a specific location in prepared 

meat products. Furthermore, the synergistic interactions between hydrophilic and lipophilic 

antioxidants can also have an effect on the efficiency of incorporating antioxidants into meat 

products. 

Therefore, although natural antioxidants are effective in controlling oxidative changes in 

meat, the precise evaluation and prediction of antioxidant activity in a complex system such 

as meat is extremely difficult and always requires support from practical experiments such as 

shelf-life stability trials (McBride et al., 2007). Although there have been many studies on the 

effectiveness of natural antioxidants from plants in preserving meat and meat products, to date 

the results have been variable.   
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2.8. Summary 

 Antioxidants have the ability to inhibit ROS formation, scavenge free radicals or 

chelate metals. Natural antioxidants have attracted wide interest from scientists and 

consumers in regards to whether dietary antioxidants have beneficial effects on human 

health.  

 

 There is however chemical diversity and complexity in antioxidants which can act 

individually, cooperatively or synergistically in foods so it is important to determine 

the antioxidant capacity. It is clear that no one assay will reflect the total antioxidant 

capacity of a particular antioxidant source and that several assays are required for their 

evaluation. They are TPC (or F-C), ABTS, DPPH, FRAP and ORAC. 

 

 The use of synthetic antioxidants has raised many serious problems about their 

continued use particularly in regards to safety and toxicity problems connected with 

human body organs and tissues. Mango is one of the most important tropical fruits in 

the world and Vietnam. Mango seed kernels and peel have been suggested as good 

sources of natural antioxidants. 

  

 To be utilised as food ingredients, mango peel and kernel may require drying.   

However, the drying of food is complicated by physical, chemical and biochemical 

changes that may produce either positive or negative attributes in the final product. 

Therefore, studies on the effects of the various drying treatments on the antioxidant 

capacity of mango fruit and its fractions are required. 

 

 The antioxidant capacity of fruits is influenced by different factors such as cultivars, 

maturity and production area. However, the effects of genotype and maturity on 

antioxidants in fruit components such as peel and kernel have not been investigated. It 

is therefore important to evaluate the effects of genotypes (cultivars) and 

physicochemical properties (maturity) on the total phenolic and antioxidant capacity 

of peel and kernel in fruits. 

 

 Lipid oxidation produces undesirable changes in flavour, colour, texture, tenderness 

and nutritive value of meat products during the processing and storage stages. Pork 

products, due to their relatively high content of unsaturated fatty acids, oxidise more 

rapidly than beef or lamb.  
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 A number of researchers have attempted to improve the quality of meat by using 

natural antioxidants to scavenge free radicals, inhibit lipid oxidation and extend the 

shelf life of meat products.  However, the results have been variable.  There is still a 

need to study the characteristics of natural antioxidant from plants such as mango peel 

and kernel and their effects on the shelf-life of meat products such as pork sausages 

and patties.  
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CHAPTER 3 

 MATERIALS AND METHODS 

 

3.1. Source of mangoes  

Tommy Atkins mangoes (n = 72, average weight 400 g) imported into New Zealand, from 

Mexico, were obtained from a local New Zealand supermarket. “Ghep”, “Cat Hoa Loc”, “Cat 

Chu” and “Nam Dok Mai” mangoes (n = 3 per cultivar) were collected from retail markets in 

Vietnam and were at the ripe “ready to eat” stage. The physicochemical characteristics of the 

mangoes collected in Vietnam were evaluated at the laboratory of the Southern-Sub Institute 

of Agricultural Engineering and Postharvest Technology, Vietnam and those of Tommy 

Atkins at the Lincoln University laboratory, New Zealand. Mango peel and kernel destined 

for incorporation into pork products were collected from a mango processing factory (Cofidec 

Ltd.,) in Vietnam. The Vietnamese mango peel and kernel were freeze dried and finely 

ground into powder and vacuum sealed prior to transport to Lincoln University, New Zealand 

for further analysis. 

3.2. Preparation of mango fractions for analysis 

Mango flesh, peel and kernel were separated from each mango (Appendix A.1.1). The peel 

(skin) with the thickeness of about 1.0 mm was removed with a scalpel followed by the flesh 

and seed. A careful peeling was applied to avoid any flesh left in the peel. The flesh was 

sliced into pieces (10cm length x 3cm width x 0.2cm thickness). The kernel inside the seed 

was removed manually using a hammer or knife. The methods of manually separating mango 

flesh, peel and kernel fractions were used similarly to those applied in the Vietnamese mango 

factories. The whole mango, peel, flesh and kernel were weighed separately. Fresh Tommy 

Atkins mango flesh (n = 12) was homogenised in a Grindomix GM200 homogenizer (Retsch 

GmbH, Haan, Dusseldorf, Germany) at 10,000 rpm and kept at 4°C prior to solvent 

extraction. Peel was cut into small pieces (1 cm length x 1 cm width) with a scalpel, 

immediately frozen in liquid nitrogen and then ground in a grinder for 20 seconds. The frozen 

finely ground peel was kept at -40°C before solvent extraction. Mango kernel was finely 

ground under the same conditions as the peel. In the case of the Tommy Atkins mangoes      

(n = 60) destined for drying treatments, all the separated flesh, peel and kernel fractions were 

dried by one of five drying treatments prior to analysis. Once, the drying process was 

complete, the dry weights were recorded to calculate the percentage of water loss. The dried 

products were then ground into a powder using a laboratory blender (Sunbeam, model: 
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EM0415). The powder was vacuum-packed and stored at -40ºC until analysed.  The seeds 

were not used in this study.  

 

3.3. Determination of the physiochemical characteristics of mango 

3.3.1. Maturity score 

Maturity score is usually measured by the taste, flavour, firmness, peel colour, and shape of 

the mango fruits (Mitcham and McDonald, 1992; Baez-Sanudo et al., 1999; Kader, 2008) as 

described in Table 3.1. In this thesis, the maturity score was assessed by the same person and 

each individual fruit was allocated a maturity score (from 1 to 5) based on their odour, 

firmness, peel colour and fruit shape. The scores from seventy mangoes were averaged to give 

the overall maturity score. 

 

Table 3.1. Parameters to score the maturity of mangoes (Kader, 2008). 

Maturity 

score Odour Firmness Peel 

colour 

Fruit shape 

1 Weak Very firm Green Not full cheek 

2 
Relatively 

strong 
Firm 

Green to 

yellow 
Less full cheek 

3 Desirable 
Relatively    

soft 
Yellow 

Relatively full 

cheek 

4 Strong Soft 
Yellow 

to orange 
Full cheek 

5 Too strong Very soft Orange Very full cheek 

 

3.3.2. Colour 

Colour parameters were determined using a Hunter Lab Colorimeter (HunterLAB Miniscan 

XE Plus, model 4500L, USA) with 25-mm aperture, CIE D65 illuminant, and 10
o
 standard 

observer. The colorimeter was calibrated using white and black tiles prior to the measurement 

of L*, a*, and b* values of the samples, where L* represents the brightness, a* the redness 

and b* the yellowness coordinates.  The hue angles (H°) and chroma (C*) were calculated 

(Voss, 1992; McGuire, 1992) with hue angle (H°) = arctan (b*/a*) and Chroma (C*) = (a*
2
 + 

b*
2
)
0.5

. Peel colour was measured by placing the colorimeter measuring head at the middle of 

the large surface on 2 opposite sides of the fruit. 
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3.3.3. Firmness 

A portion of mango peel (about 1–2mm thick) was removed from the same area of each 

mango fruit. The firmness of the exposed flesh was measured from the peeled area using a 

Fruit Pressure Tester (FT 327, Italy) or penetrometer equipped with a 6 or 8 or 11mm-

diameter plunger tip depending on the degree of firmness. The firmness value was the 

calculated by dividing the measured force by the surface area of the penetrometer tip. The 

penetrometer was bench-mounted on a fixed rigid drill stand to ensure the pressure is applied 

at a steady controlled rate and at a constant angle to the fruit.  The penetrometer was located 

at the end of a pivoting arm and a measurement was done by pulling down the arm until the 

probe enters the fruit to a depth of 8 mm. Firmnesswas reported as the pressure to push the 

plunger of a specific size into the flesh of the fruit to a specific depth. The firmness or the 

resistance of mangoes was measured in load units (depends on the distance the crosshead 

travels) expressed as kg cm
-2

. 

3.3.4. Total acidity 

Titratable acidity (TA) was determined by the AOAC method 942.15 (AOAC, 2000) using a 

670 Titroprocessor with sample changer and a Pt Titrode (Metrohm, Switzerland) (Kerkhofs, 

et al., 2005).  Fresh mango flesh (5 g) was weighed into a beaker followed by 50 mL distilled 

water (20°C). The sample was stirred for approximately 30 seconds and then titrated with 

0.1N NaOH to pH 8.1. The calculation of titratable acidity was based on the following 

equation as follows:  

 
 

 

Where: N = normality of NaOH (mEq/ml) 

V = volume of NaOH 

Eq.wt. = equivalent weight of predominant acid (mg/mEq) which was citric acid (molecular 

weight = 192; equivalent weight = 64) 

W = mass of sample (g) 

1000 = factor relating mg to grams  

Titratable acidity is expressed as % citric acid (g 100 g
-1

).  

 

3.3.5. Total soluble solids 

Total soluble solids (TSS) were determined using a hand-held refractometer (model WZ103). 

The peeled mango flesh was homogenised in the blender and a few unfiltered drops applied to 
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the prism of the refractometer. Direct readings were taken from the scale on the meter as 

described by AOAC (2000) and the results expressed as 
0
Brix.  

3.3.6. TSS/TA ratio 

TSS and TA were used to calculate the TSS:TA ratio which is the best parameter to predict 

sweetness, sourness and stage of maturity. 

3.3.7. Vitamin C 

Vitamin C (ascorbic acid) content of samples was determined according to the AOAC method 

967.21 (2000) using an automated titrimetric technique, based on a 670 Titroprocessor with 

sample changer and Pt Titrode (Metrohm, Switzerland) (Toor et al., 2006). Two grams of 

fresh mango flesh were homogenised in a blender and then mixed with 40 mL of aqueous 

buffer solution (3.85 kg L
-1

 sodium acetate and 0.808 g oxalic acid; pH 4.2) in a 50 mL 

beaker. The homogenate was titrated against a dye solution containing 2, 6-dichlorophenol 

indophenols (295 mg L
-1

) mixed with 100mg sodium bicarbonate. The titration end point was 

determined potentiometrically by reading the titre volume at the “point of inflection” of the 

titration curve automatically generated by the 670 Titroprocessor. The standard (L-ascorbic 

acid) curve was generated by the titration with the dye solution. The ascorbic acid content in 

the samples was determined from the standard curve and the results were expressed as as mg 

vitamin C 100 g
-1

 FW.  

3.3.8. Moisture content 

The moisture content of mango flesh was determined gravimetrically by oven drying mango 

samples at 105
o
C for 24 hours (AOAC, 1995).  

 

3.4. Drying procedures for mango fractions 

Mango flesh, peel and kernel fractions sourced individually in Vietnam were dried by freeze-

drying using a Cole-Parmer freeze dryer and the individual dried weights recorded. The dried 

samples were ground into a powder using a laboratory blender and vacuum sealed in 

Polyethylene (PE) bags. These freeze-dried mango powders were subsequently transported to 

Lincoln University, New Zealand for analyses (MAF permit No: #489). Tommy Atkins 

mango fruit sourced in New Zealand were randomly separated into six groups (n = 12 per 

group).  Group one (fresh) was the control group. The other five groups were the, forced-air, 

freeze, vacuum and microwave drying treatments. These drying methods with specific 

conditions were selected based on the two important factors which are time and temperature 

of drying. They were long time and low temperature (sun, freeze, forced-air and vacuum) or 
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short time and low temperarture (microwave drying). The moisture content of the dried 

samples ranged from 6 to 13%. Before drying each individual mango was separated into flesh, 

peel and kernel components as described in 3.2. The whole mango fruit as well as the flesh, 

peel and kernel fractions were weighed before and after drying (Appendix A.1.2). The drying 

treatments were as follows: 

3.4.1. Sun drying  

Mango fractions were placed on trays in a greenhouse for 72 hours at a temperature of 25-

28˚C and humidity 52-64%. At night, the temperature was 16˚C and a UV lamp was applied. 

3.4.2. Forced-air drying 

Mango materials were spread uniformly on trays and placed in a forced-air dryer (Unitherm 

drier, Birmingham & Blackburn Construction Co. Ltd, England) set at 65˚C for 65 hours. The 

blower fan was set for forced air drying. 

3.4.3. Freeze drying 

Mango materials were placed in PE bags and freeze-dried in a freeze-drier (Cuddon, Model 

E.D. 5.3., New Zealand) at -50˚C for 72 hours for flesh and 48 hours for peel and kernel. 

3.4.4. Vacuum drying  

Mango materials were placed in the Thermostat vacuum oven (Croydon, Townson & Mercer 

Ltd, England) with the vacuum set at 300mmHg and the temperature at 60˚C. The drying 

process time for flesh, peel and kernel were 18, 8 and 12 hours, respectively. 

3.4.5. Microwave drying 

Mango materials were placed in the middle of the turntable of a kitchen microwave (Samsung 

Model M1733CE, Timesaver 800W) with the power setting at 180W. The processing time to 

produce dried mango flesh, peel and kernel was 40, 28 and 20 minutes, respectively.  

3.5. Extraction of mango fractions for antioxidant assays  

The mango fractions were extracted as described by Zhao et al. (2006) with some 

modifications. Approximately 2 g of fresh mango flesh, peel or kernel powder and 0.5 g of 

dried samples were weighed into 50 mL volumetric flasks followed by 20 mL of 80% (v/v) 

acetone  (with distilled water) and the flasks were rotated on a rotary shaker in a dark cold 

room (4
o
C) for 2 hours. The volume of the mixture was then adjusted to 50 mL (with acetone) 

and the contents transferred to 50 mL acetone resistant centrifuge tubes and centrifuged 
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(Kendro manufactured by Sorvall Evolution) at 3,500 rpm for 10 minutes. The resulting 

supernatant was transferred to glass test tubes with caps and kept at -40°C prior to analysis. 

These extracts were used for the determination of TPC, ABTS, DPPH and FRAP.   

For hydrophilic ORAC (H-ORAC) and lipophilic ORAC (L-ORAC) assays, the mango 

fractions were extracted as described by Prior et al. (2003). Fresh (1 g) and dried (0.5 g) 

mango samples were extracted in 50 mL centrifuge tubes with 10 mL of hexane, vortexed for 

10 minutes, centrifuged and the hexane layer collected. This extraction procedure was 

repeated twice and the combined hexane fractions evaporated under a nitrogen flow in a 30°C 

water bath. The residue was reconstituted with 10 mL of 80% acetone. After centrifugation, 

the supernatant was used to measure lipophilic antioxidant capacity, with the buffer used for 

any further dilutions. The residue (after hexane extraction) was extracted with 10 mL of 

acetone/water/acetic acid (AWA) (70:29.5:0.5 v/v/v). After adding solvent, the tube was 

vortexed for 30 seconds, followed by sonication at 37°C for 5 minutes. The tube was inverted 

once in the middle of the sonication step to suspend the samples. Then, the tube remained at 

room temperature for 10 minutes with occasional shaking. The tube was centrifuged at 2889 g 

for 15 minutes. The supernatant was removed and transferred to a volumetric flask and diluted 

to 25 mL with AWA. Any further dilutions were with AWA. 

3.6. Antioxidant assays  

3.6.1. Total phenolic content using Folin-Ciocalteu assay 

TPC of fresh flesh, peel and kernel were estimated using the Folin-Ciocalteu method as 

described by Singleton (1999) with some minor modifications. Acetone extracts of peel and 

kernel were diluted ten and twenty times, respectively, with 80% acetone prior to the phenolic 

assays. Flesh extracts required no dilutions. An aliquot (0.5 mL) of extracts was mixed with 

2.5 mL of the Folin–Ciocalteu reagent (0.2N) and after 8 minutes at room temperature, 2 mL 

of 7.5% (v/v) sodium carbonate was added. The mixture was vortexed, incubated at 50
o
C in a 

water bath for 5 minutes and then cooled in an ice bath. The absorbance was measured at 

765nm with a Unicam UV/Visible spectrophotometer. Results were expressed as mg of gallic 

acid (GAE) 100g
-1

 dry weight sample. Gallic acid standard (75 µg mL
-1

) was prepared and a 

standard curve established by aliquoting 0-0.5 mL of the gallic acid standard and diluting to 

0.5 mL with 80% acetone. The same procedure was used to determine the TPC of dried peel, 

flesh and kernel extracts. However, due to the higher amount of phenolic content and 

antioxidants in the dried products, the dried  flesh, peel and kernel extracts were diluted two, 

twenty and forty times, respectively. 
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3.6.2.  ABTS radical cation decolourization assay (Trolox Equivalent Antioxidant 

Capacity)  

The free radical scavenging activity of the mango products was determined by the ABTS 

radical cation decolourization assay according to Re et al. (1999) and Ozgen et al. (2006). 

ABTS
•+

 was prepared by reacting  colourless ABTS stock solution (7 mM in water) with   

2.45 mM potassium persulfate and allowing the reaction to stand for 12-16 hours in the dark 

at room temperature until  a stable oxidative state is reached. This ABTS reagent was then 

stable for several weeks when stored in the dark (Ozgen et al., 2006). On the day of analysis 

the ABTS
•+ 

solution was diluted with PBS to an absorbance of 0.70 (± 0.02) at 734 nm and 1 

mL transferred to a cuvette. After the addition of 100µl standard Trolox (see 3.16) or mango 

extract, the mixture was well mixed, allowed to stand for 6 minutes and the absorbance read 

at 734 nm. All samples were assayed in triplicate and the concentrations of antioxidants 

calculated by reference to a 0-200 µmol Trolox standard curve. The results are expressed as 

Trolox equivalents (TE), which is defined as µmol Trolox activity equivalent per g DW. 

3.6.3. DPPH radical scavenging activity assay 

The DPPH radical scavenging activity of mango samples was determined according to the 

method of Blois (1958) with modifications described by Brand-Williams et al. (1995), Fan 

et al. (2009) and Wojdylo et al. (2009). The acetone extracts of mango were diluted 

then 100µl of the diluted extracts or Trolox standards were added to 900µl of 0.1M 

DPPH solution. The mixture was vortexed and incubated at room temperature for    

20 minutes. The decrease in absorbance at 515nm was measured using the UV-Vis 

Spectrophotometer (Shimadzu UV-Vis). All the determinations were performed in triplicate. 

A Trolox calibration curve was established and the results expressed as µmol Trolox 

equivalents per g DW. 

3.6.4. Ferric Reducing/Antioxidant Power (FRAP) assay 

FRAP was assessed according to Benzie and Strain (1999) with slight modifications. A fresh 

working solution of FRAP reagent was prepared each time by mixing acetate buffer (300 µM, 

pH 3.6), a solution of 10mM TPTZ in 40mM HCL, and 20mM FeCl3. 6H2O at 10:1:1 (v/v/v). 

100 µL of standards of iron (II) sulphate (FeSO4.6H2O) or appropriately diluted extracts were 

added to 900 µL of the FRAP reagent and the absorbance at 593 nm recorded immediately 

after the addition of the sample and after a 2 hours incubation at 37°C. A standard curve from 

0 to 300 µM was prepared using FeSO4.6H2O solution. The results were expressed as µmol 

Fe
2+

 100g
-1

 DW. Each sample was analysed in triplicate.  
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3.6.5. Oxygen Radical Absorbance Capacity (ORAC)  assay  

ORAC (H-ORAC or L-ORAC) was determined according to Prior et al. (2003) with some 

modifications. Using a 96-well blank plate, 150 µL buffer (75mM, pH 7.0) was added to the 

outer wells to act as a thermal buffer. 25 µL of sample or standard and 150 µL Fluorescein 

were added to the wells using a multi-channel pipette. The plate was covered with parafilm to 

stop evaporation and incubated in a plate reader (Fluostar Omega, BMG LabTech, Alphatech 

Systems Ltd, New Zealand) at 37°C for at least 30 minutes. Following pre-incubation, 25 µl 

of AAPH solution was added using the microplate reader‟s injector. The AAPH                   

(2-2‟-azobis (2-amidino propane) dihydrochloride or 2,2-azobis (2-methyl-propionamidine) 

dihydrocholride) was made by adding 0.6456 g AAPH  to 10 mL phosphate buffer (pH 7.0) at 

37°C. AAPH was prepared immediately before use. The Fluorescent microplate reader was 

set at 37°C with an excitation wavelength of 480 nm and an emission wavelength of 520 nm. 

The syringes were primed with freshly prepared AAPH before starting the run. The 

fluorescence was monitored kinetically with data taken every minute for 90 minute. ORAC 

values were calculated using the area under the curve (AUC). The net AUC was obtained by 

subtracting the AUC of the blank from that of the sample and then compared to a Trolox 

standard curve, which plots net AUC versus Trolox concentration (Appendix A.1.3.). The 

results of ORAC assay are expressed as µmol Trolox equivalents (TE) per g DW. Hydrophilic 

and lipophilic results were obtained by H-ORAc and L-ORAC assays, respectively.  

3.7. Anti-nutritive factors 

3.7.1. Determination of Tannin  

Tannins were determined using MCP (Methyl Cellulose Precipitable) according to the 

standard method described by Sarneckis et al. (2006). The assay is based on the formation of 

an insoluble polymer tannin complex. The absorbance of tannin extracts were measured at 

280nm, before (total phenolics) and after precipitation (phenolic compounds remained after 

precipitation). A standard (epicatechin) curve was prepared and the MCP tannin in solution 

was determined and calculated as epicatechin equivalent. 

3.7.2. Determination of oxalate 

Oxalate was determined according to the method described by Savage et al. (2009). Total 

oxalate was extracted with 0.2 M HCl and soluble oxalate was extracted with water. Both 

extracts were analysed by HPLC.  

Specifically, total oxalate was extracted from 1 gram of freeze dried mango powder (flesh, 

peel or kernel) with 40 mL of 0.2 M HCl in a water bath at 80°C for 15 minutes then cooled. 
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The extract was centrifuged at 2889 g for 15 minutes then the supernatant was filtered through 

a 0.45 μm cellulose nitrate filter. The supernatant (20 μL) was injected onto a HPLC with a 

300 mm x 7.8 mm Rezex ion exclusion column attached to a cation Hþ guard column and 

eluted with a flow rate of 0.6 mL min
-1

. The HPLC system consisted of an autosampler, a 

UV/vis detector Spectra-Physics SP8450 set at 210 nm and a ternary Spectra-Physics, SP 

8800 HPLC pump supplied with 25 mM H2SO4 as the mobile phase. Data was captured via a 

PeakSimple chromatography data system (SRI model 203, SRI Instruments, CA) and 

processed using PeakSimple version 3.54 (SRI Instruments, Torrance, CA).  

Soluble oxalate was extracted using the same procedure but with Nanopure II water instead of 

0.2 M HCl. Insoluble oxalate was calculated by subtracting the soluble oxalate from the total 

oxalate (Holloway et al., 1989). Standard curves containing 0.1 – 20 mg/100 mL of oxalic 

acid (Sigma-Aldrich Co., St Louis, MO) were prepared in 0.2 M HCL and Nanopure II water 

to quantify total and the soluble oxalates in the samples respectively. The extraction and 

analysis were conducted in triplicate 

3.8. Preparation of pork patties and sausages 

Fresh (24 hours post- slaughter) pork shoulders from female pigs were purchased from a New 

Zealand local supermarket, and minced to three different fat specifications (fat, protein and 

moisture content were determined by Lincoln University Analytical Laboratory). Mince A 

had a low fat, B a medium fat and C a high fat content. Minces A, B and C were individually 

divided into 2 separate batches to prepare pork patties and sausages respectively. Each batch 

was then divided into four equal portions for four different treatments. Treatment 1 contained 

mince with no antioxidant (control); treatment 2 contained mince with 1% w/w freeze dried 

mango peel (from Vietnamese mangoes, cv. Cat Chu), treatment 3 contained mince with 1% 

w/w freeze dried mango kernel (from Vietnamese mangoes) and treatment 4 contained mince 

with 0.01% w/w BHT (Butylated Hydroxy Toluene). One percent of rice bran oil was pre-

dispersed with mince before mixing peel, kernel and BHT into the mince by manually 

blending for 3 minutes. Similarly, 1% rice bran oil was included in the control mince. In the 

case of pork patties, the final mince mixture (900 g) from each treatment was formed into   

12-mm thick patties (40 g each) and individually placed into plastic Petri dishes and covered 

with a lid. For the pork sausages, the mince mixture for each treatment (900 g) was 

supplemented with salt (4 g) and pepper (2.4 g) and the mixture was then extruded into 10 cm 

natural sheep intestinal casings and air dried at 10
0
C for 6 hours.  
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The pork patties (still in the petri dishes) and sausages (n =18 per treatment) were placed in 

polystyrene trays which were covered with high oxygen permeable polyvinyl chloride film 

(O2 permeability > 2000 mL m
-2

 atm
-1

 24 h.
-1

 at 25°C, AEP FilmPac (Ltd), Auckland, New 

Zealand) and then stored at 4
0
C in a fluorescent illuminated display cabinet to reflect retail 

conditions for 0, 2, 4, 6, 8 and 10 days.  

3.9. Proximate analysis 

Moisture content was determined as as described in 3.3.8 (AOAC, 1995). Crude fat, crude 

protein and dry matter of fresh pork mince was determined as outlined by AOAC (1995). Dry 

matter was determined as as described in 3.3.8 (AOAC, 1995). Crude fat content was 

determined by using Soxhlet extraction (Tecator Soxtec HT6) (AOAC 976.21). Crude protein 

was measured by determining nitrogen using the Kjeldahl method (Block Digestion) (AOAC 

981.10). Nitrogen was converted to crude protein content by multiplying with the factor 6.25. 

The results are reported on a percentage wet and dry basis. 

3.10. TBARS 

Lipid oxidation was determined by measuring 2-thiobarbituric acid reactive substances 

(TBARS) in pork and pork products according to Maraschiello et al. (1999). Lipid oxidation 

was determined by measuring 2-thiobarbituric acid reactive substances (TBARS) in pork and 

pork products. Sample (2.0 g) from pork sausages or patties was placed in 50-mL test tubes 

and homogenised with 20 mL of deonised distilled water by Ultra-Turrax using a T25 head at 

13,500 rpm for 20 seconds. Five millilitres of 25% TCA was added to precipitate the protein 

then the mixture was centrifuged at 13,000 g for 15 minutes. A 3.5 mL aliquot of supernatant 

was transferred to screw cap test tubes (13 x 1002 mm) and 1.5 mL of 0.6% aqueous TBA 

(see 3.16) was added. The mixture was vortexed and then incubated in a water bath at 90
o
C 

for 1 hour to develop colour. At the end of the incubation, samples were cooled in cold water 

and the absorbance read at 532nm. TMP (1,1,3,3–Tetramethoxypropane) was used to prepare 

a malondiadehyde (MDA) standard. A volume of 17µl of TMP was diluted in 0.1N HCL into 

a 10 mL volumetric flask and incubated at 40
o
C for 60 minutes to hydrolyse TMP into MDA 

(final concentration ca, 10mM). The stock solution (#1) was stored at 4
o
C and freshly 

prepared on a weekly basis. A calibration curve of MDA standards were prepared on the day 

of use by further dilution of stock solution #1 with 0.1N HCL to make a series of standards 

ranging from 0-50µM. Standards (0.2 mL) were added to 2.3 mL water plus 1 mL 25% TCA 

and 1.5 mL 0.6% TBA. The results were calculated based on the standard curve and 

expressed as TBARS (mg MDA kg
-1

 sample). 
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3.11. Colour  

The meat samples were taken out of the fridge and placed on the table for 5 minutes at room 

temperature (22
o
C) before colour measurement. Colour measurements were made on the 

surface of raw pork patties with a Hunter colorimeter (Hunter Associated Labs., Inc. Reston, 

VA) as described in 3.3.2.  

 

3.12. Myoglobin 

Myoglobin (deoxymyoglobin [Mb]), oxymyoglobin (MbO2) and metmyoglobin (MMb) in 

stored raw pork patties and sausages were determined using the procedure of Krzywicki 

(1982). Triplicate pork samples weighing 2.0 g were mixed into 18 mL of 40 mM phosphate 

buffer (pH 6.8) and homogenised at high speed by an Ultra-Turrax using T25 head at 13,500 

rpm for 20 seconds. The homogenates were poured into 50 mL screw-top centrifuge tubes and 

kept on ice for 2 hours to extract the pigments. The tubes were centrifuged at 4
o
C for            

60 minutes at 30,000 g. The supernatants were filtered through Whatman no. 1 filter paper 

and kept on ice. The absorbance of each supernatant was read at 572, 565, 545 and 525 nm in 

a UV-visible spectrophotometer (model UV-160, Shimadzu Co. Ltd., Columbia, MD), and 

three determinations were conducted for each sample solution. Exposure to light was kept 

minimal throughout the procedure by placing sample solutions in the dark to minimize any 

possible oxidation of the pigment. Total myoglobin and percent Mb, MbO2 and MMb in the 

pigment extracts were calculated based on the following equations (Krzywicki, 1982): 

 

Total myoglobin (mmol/L) = (-0.166R1 + 0.086R2 + 0.088R3 + 0.099) x A525 

Mb (%) = (0.369R1 + 1.140R2 – 0.941R3 + 0.015) x 100% 

MbO2 (%) = (0.882R1 – 1.267R2 + 0.809R3 – 0.361) x 100% 

MMb (%) = (-2.514R1 + 0.777R2 + 0.800R3 + 1.098) x 100% 

 

where R1, R2 and R3 are absorbance ratios of A572/A525, A565/A525 and A545/A525, 

respectively. For the total myoglobin content, the values were converted to mg/kg meat based 

on the dilution and the molecular weight (16,950 Da) of myoglobin (Feng et al., 1991; 

Dobberstein and Schroeder 1993; Chen et al., 2008b). 

3.13. Volatiles 

The volatile compounds in minced pork products were determined using a HS-SPME-GC-MS 

technique as described by Ramirez et al. (2004) with some modifications as follows. One 

gram of pork product was placed into a 20 mL amber headspace glass vial (SUPELCO, USA), 
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followed by 3g of crystalline sodium chloride plus 10 mL of distilled water, and then quickly 

capped with a polytetrafluoroethylene/silicone liner tin plate seal (SUPELCO, USA). The 

samples were equilibrated for 2 hours at room temperature (20ºC). The volatile compounds 

were extracted by solid phase microextraction (SPME) using a 2 cm long DVB/CAR/PDMS 

combination SPME fibre (p/n 57348-U, Supelco Bellefonte, PA, USA, through Sigma-

Aldrich, Australia) that was exposed to the headspace for 45 minutes at 30ºC during which 

time the headspace volatiles were adsorbed onto the fibre. Desorption of these volatiles 

occurred when the fibre was inserted in the injection port (270ºC for 5 minutes in the splitless 

mode) of a Shimadzu gas chromatograph-mass spectrometer (GCMS-QP2010). The GC-MS 

was equipped with a CTC-Combi PAL autosampler (Shimadzu AOC-5000) which automated 

the extraction and desorption of the volatiles.  

 

Two capillary columns in series, namely a Rtx-Wax 30.0m x 0.25mm ID x 0.5µm film 

thickness (Polyethylene Glycol - Restek, Bellefonte, PA, USA) and a Rxi-1MS 15m x 

0.25mm ID x 0.50μm (100% dimethyl polysiloxane - Restek, Bellefonte, PA, USA) were 

used to separate the volatile compounds. Helium was the carrier gas for the GCMS and was 

set to a constant linear velocity of 32.3cm/seconds. The column oven was held at 40°C for 3 

minutes during desorption of the SPME fibre, then heated to 250°C at 5°C min
-1

 and held at 

this temperature for 7 minutes. The mass spectrometer (MS) was operated in electron impact 

ionization mode with 70eV and mass range of 33 to 350 m z
-1

. The temperature of the 

capillary interface was 250°C, with the ion source temperature set at 200°C.  

 

The purpose of the analysis of volatiles in the present study was to determine whether 

particular volatile compounds were produced by lipid oxidation during storage of the pork 

products. To manage the evaluation of the extensive number of volatiles produced, only the 

main volatile compounds are reported in this section. The volatile compounds were identified 

by matching the retention indices for wax columns and EI mass spectra against NIST 05 

(NIST EPA/NIH Mass Spectral Library database) as well as the regression line between 

retention time and Kovats indices (Appendix A.1.4.). Relative quantification of the main 

peaks by peak area (Total Ion Count-TIC x 10
5
) was used to compare the identified volatiles 

in the different chromatographic samples. The results in the text are expressed as means with 

standard errors. The percentages of individual volatile compounds relative to the total area of 

the major peaks were also calculated. 
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3.14. Odour 

Odour acceptability (n = 3) was assessed by the same person at room temperature (22
o
C) 

using a 5-point hedonic scale where 1 = very unpleasant, 2 = moderately unpleasant,              

3 = moderately pleasant, 4 = pleasant and 5 = very pleasant (Das et al., 2011). 

 

3.15. Microbiology 

Microbiological characteristics (TPC, E.coli, staphylococci, coliforms yeasts, moulds and 

Salmonellae) of pork sausages and patties stored chilled for 0, 4 and 10 days were determined 

by Hills Laboratories, New Zealand. The freeze dried mango peel and kernel samples were 

also analysed for TPC, E.coli, Bacillus cereus, yeasts and moulds.  

 

3.16.  Chemicals and reagents 

Folin–Ciocalteu reagent, gallic acid, sodium acetate anhydrous (CH3COONa), sodium 

carbonate (Na2CO3), ferric chloride hexahydrate (FeCl3.6H2O), 1,1-Diphenyl-2-

picrylhydrazyl radical (DPPH), 6-hydroxy- 2,5,7,8-tetramethylchroman-2-carboxylic acid 

(Trolox), 2,2′-azinobis(3-ethylbenzthiazoline-6-sulfonic acid (ABTS), oxalic acid, potassium 

persulfate (K2SO4), 2,4,6-tri(2-pyridyl)-s-triazine (TPTZ), the 2,2‟-azobis (2-amidino-

propane) dihydrochloride (AAPH), Randomly Methylated â-Cyclodextrin (RMCD), 

fluorescein were purchased from Sigma-Aldrich (Steinheim, Germany). Trichloroacetic acid 

(TCA), Thiobarbituric acid (TBA), 1,1,3,3-Tetramethoxypropane (TMP), disodium phosphate 

and monosodium phosphate, acetone, methanol, hexane, sulphuric acid, chloride acid, acetic 

acid, ascorbic acid, citric acid were obtained from BioLab, New Zealand. 

 

3.17. Statistical analysis 

3.17.1. One way-ANOVA 

Differences between samples across cultivars or fractions or drying treatments were 

determined using a one-way analysis of variance (ANOVA) at p < 0.05. Mean values and 

standard errors of the mean (SEM) are reported in the text. Significant differences between 

means were determined using the Fisher‟s LSD multiple comparison tests. The analysis was 

performed in MINITAB 16. 

 

3.17.2. Two-way ANOVA 

A two-way ANOVA was used to analyse the effects of factors (antioxidant treatments, fat 

contents, storage time) and the interaction between them. Main effects and interactions were 
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considered significant at p < 0.05 and significant differences between means were determined 

using the Fisher‟s LSD multiple comparison tests. The analysis was performed in MINITAB 

16. 

 

3.17.3. Three-way ANOVA 

The effects of three different factors (antioxidant treatments, fat contents, storage time) on the 

values of samples were evaluated by using the General Linear Model. Interaction plots which 

differentiated the results of samples exhibited interactions with other factors. Main effects and 

interactions were considered significant at p < 0.05 and significant differences between means 

were determined using the Fisher‟s LSD multiple comparison tests. Mean values and standard 

errors of the mean (SEM) are reported. The analysis was performed in MINITAB 16. 

 

3.17.4. Interaction effects 

Interaction effects were tested to evaluate the impact of one factor on the level of another 

factor. In the cases where the interactions were significant, the simple effects test was used to 

break the interaction effects into component parts and then test the separate parts for 

significance. The simple effects tests were implemented in MINITAB 16 by the ANOVA 

procedure using the General Linear Model (GLM) (Aiken and West, 1991; Pedhazur and 

Schmelkin, 1991) and with any of the simple effects tests with p < 0.05 being considered 

significant. 

3.17.5. Principal component analysis (PCA) 

PCA was used as a means of simplifying data by reducing the number of variables. Linear 

combinations of the original variables, called principal components, were derived which 

explained the maximum amount of variation in the data set and which were orthogonal to 

each other. PCA was used to (1) establish whether there are any correlations between 

physicochemical characteristics, between antioxidant assays and between physicochemical 

chracteristics and antioxidant assays and (2) to gain an overview of similarities and 

differences between fresh and dried mango products or pork products with different 

antioxidant treatments. PCA was carried out using MINITAB 16. 

 

3.17.6. Canonical variates analysis (CVA)  

CVA was used as a multivariate statistical technique to separate objects or samples into 

groups or classes by maximizing the ratio of between-group to within-group variations, 
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thereby giving functions that can be used to maximise the discrimination between the groups. 

CVA was performed using GENSTAT 13. 

 

3.17.7. Pearson’s correlation analysis  

The Pearson correlation coefficients were calculated to evaluate the relationships between 

different factors at p < 0.001 or p < 0.01 or p < 0.05 using MINITAB 16. 

 

3.17.8. Repeatability of assays 

Samples were analysed for their antioxidant capacity using six different assays. Each 

measurement was performed in triplicate. The repeatability of each assay was assessed using 

triplicate measurements made on the same and was expressed as a Coefficient of Variation 

(CV).  The CV for each sample was calculated as the standard deviation of the data, divided 

by the mean of the triplicate values and multiplied by 100 to give a percentage score. This 

expressed the standard deviation as a proportion of the mean. The higher the CV, the more 

variability was shown in the results from a given sample. 
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CHAPTER 4 

PHYSICOCHEMICAL CHARACTERISTICS, ANTIOXIDANT 

CAPACITY AND ANTI-NUTRIENTS                                                     

OF MANGO CULTIVARS 

 

4.1. Introduction 

Mango (Mangifera indica L.) is an important tropical fruit and has widespread consumer 

appeal due to its excellent eating qualities (bright colour, sweet taste and luscious flavour) and 

nutritional attributes.  Mango seed including kernel constitutes 10 to 25% (Hemavathy et al., 

1988; Abdalla et al., 2007a) and mango peel 15–20% (Ajila et al., 2007a) of the whole fruit 

depending on the variety. Recent reports have shown that flesh, peel and kernel of mangoes 

are potential sources of natural antioxidants, such as carotenoids, tocopherol, vitamin C and 

phenolic compounds for use as food ingredients (Puravankara et al., 2000; Arogba, 2002; 

Berardini et al., 2004; Soong and Barlow, 2006; Abdalla et al., 2007; Ribeiro et al., 2007; 

Maisuthisakul and Gordon, 2009).  

Kim et al. (2007) examined the relationships between the antioxidant activity of mangoes and 

their physicochemical characteristics particularly with Tommy Atkins which is the most 

important cultivar in the global trade. There is, however, no information on the antioxidant 

activity and physicochemical characteristics of Tommy Atkins mangoes imported into New 

Zealand or on mango cultivars grown in Vietnam. Mangoes are considered the most important 

fruit in Vietnam with the four main cultivars being “Cat Hoa Loc”, “Cat Chu,”  “Ghep” and 

“Nam Dock Mai” which originate from Thailand.  

 Mango peel and kernel are usually considered as waste products of the industry but may be a 

commercial source of antioxidants. Several studies have already reported that there are no 

adverse toxicants in mango kernels and that they are safe as food ingredient for humans and 

animals (Arogba, 1997; Kabuki et al., 2000; Fayeye and Joseph, 2004). However, Ravindran 

and Sivakanesanb (1996) identified that raw mango kernels do contain some potential anti-

nutrients such as tannins (56.5 g kg
-1

 DW) and oxalates (42 mg kg
-1

 DW) which may cause 

adverse health effects in human. These anti-nutritive factors could, however, be reduced by 

soaking and boiling the mango products in water.  There is limited literature available on the 

anti-nutrients in peel. 

http://en.wikipedia.org/wiki/Trade
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The present study investigated the physicochemical characteristics, antioxidant capacity and 

anti-nutritional factors in the five mango cultivars, Tommy Atkins, Nam Dok Mai, Cat Hoa 

Loc, Cat Chu and Ghep.   

4.2. Materials and methods 

4.2.1. Chemicals and reagents  

Chemicals and reagents used for this chapter are in chapter 3.16. 

4.2.2. Preparation of mango fractions  

Flesh, peel and kernel from the Tommy Atkins mangoes (n=12) and “Ghep”, “Cat Hoa Loc”, 

“Cat Chu” and “Nam Dok Mai” mangoes (n=3 per cultivar) collected from Vietnam were 

prepared as described in 3.1 and 3.2. 

4.2.3. Mango physicochemical characteristics 

All mango cultivars were assessed for their physicochemical characteristics colour, firmness, 

total soluble solid (TSS), titratable acidity (TA), vitamin C, moisture content and weights of 

fruit, flesh, peel and kernel as described in 3.3.  

4.2.4. Extraction of mango fractions  

The extraction processes of mango fractions for analyses were described in 3.5.   

4.2.5. Determination of total phenolic content and antioxidant capacity    

TPC, ABTS and DPPH assays were performed as described in 3.6.1, 3.6.2 and 3.6.3. 

4.2.6. Anti-nutritive factors 

4.2.6.1. Determination of tannin 

Tannins were determined using MCP (Methyl Cellulose Precipitable) according to the 

standard method described by Sarneckis et al. (2006) as outlined in 3.7.1. 

4.2.6.2. Determination of oxalate 

Oxalate was determined according to the method described by Savage et al. (2009) as 

outlined in 3.7.2. 

4.2.7. Statistical analysis 

One-way ANOVA was used to compare the characteristics of each fraction (flesh, peel and 

kernel) between five cultivars and to compare characteristics of three mango fractions from 
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each cultivar with a significance of p < 0.05. Significant differences between means were 

determined using the Fisher‟s LSD multiple comparison tests. 

4.3. Results  

4.3.1. Physicochemical characteristics of mango cultivars  

Fruit weight, firmness, total soluble solid, titratable acidity, ascorbic acid and colour used to 

evaluate the physicochemical characteristics of the five mango cultivars are given in Table 

4.1. 4.1. The weight, percentage and moisture content of flesh, peel and kernel from the five 

mango cultivars were also determined (Table 4.1).  

 

 

 

 



 

 

5
1
 

              Table 4.1. Physicochemical characteristics of mangoes (mean ±  SE ) sourced from New Zealand and Vietnam.    

 

 

 

 

Means in the same row with the different superscripts (a-e) are significantly different (p <0.05).
 1 Hue (°) = Hue value measured + 180

o 

Seed is not included in the calculation in this table. Weight and percentage of seed can be obtained by substraction. 

Parameters 

  Mango cultivars 

Ghep (n=3)  Cat Hoa Loc 

(n=3) 

Cat Chu (n=3) Nam Dok Mai (n=3) Tommy Atkins 

(n=12) 

Total weight (g)   354.8 ± 21.9   365.3 ± 11.9    335.6 ± 18.9     222.5 ± 5.5
a
    333.4 ± 8.5 

Flesh (g)   274.3 ± 19.0   277.0 ± 10.1    257.4 ± 16.3     175.5 ± 4.0
a
    276.8 ± 7.8 

Peel (g)     25.5 ± 1.0
ab

     25.4 ± 1.5
ab

      26.3 ± 0.9
a
       17.1 ± 0.8

c
      20.5 ± 1.4

bc
 

Kernel (g)     38.1 ± 1.0
a
     33.0 ± 1.1

b
      29.2 ± 0.5

b
       14.9 ± 1.7

c
      16.2 ± 1.0

c
 

Flesh (%)     77.3 ± 0.7
bc

     75.8 ± 0.8
c
      76.6 ± 0.6

bc
       78.9 ± 0.4

b
      83.1 ± 0.6

a
 

Peel (%)       7.2 ± 0.2
ab

       7.0 ± 0.2
ab

        7.9 ± 0.2
a
         7.7 ± 0.2

ab
        6.2 ± 0.4

b
 

Kernel (%)     10.8 ± 0.9
a
       9.1 ± 0.5

ab
        8.7 ± 0.3

b
         6.7 ± 0.6c        4.9 ± 0.3

d
 

Flesh:peel      10.7 ± 0.3
ab

     10.9 ± 0.3
ab

        9.8 ± 0.4
b
       10.3 ± 0.4

b
      14.2 ± 1.0

a
 

Flesh:kernel        7.3 ± 0.7       8.4 ± 0.5        8.8 ± 0.4       12.1 ± 1.1      17.7 ± 1.2
a
 

Peel:kernel        0.7 ± 0.04
b
       0.8 ± 0.05

b
        0.9 ± 0.01

ab
         1.2 ± 0.08

ab
        1.3 ± 0.1

a
 

Moisture of flesh (%)     81.5 ± 0.4
b
     78.4 ± 0.8

c
      80.4 ± 0.8

bc
       74.8 ± 1.2

d
      84.1 ± 0.7

a
 

Moisture of peel (%)     74.8 ± 0.6     72.8 ± 0.5      74.2 ± 1.1       67.5 ± 0.5
a
      75.9 ± 0.9 

Moisture of kernel (%)     43.7 ± 0.9     42.3 ± 0.6      47.0 ± 0.5       41.3 ± 0.8      59.4 ± 3.2
a
 

TSS (°Brix)      14.0 ± 0.6
b
     17.2 ± 0.3

a
      16.5 ± 0.2

a
       12.0 ± 0.1

c
        6.5 ± 0.8

d
 

Firmness (kg cm
-2

)       6.9 ± 0.4
b
       4.4 ± 0.2

c
        3.6 ± 0.2

d
       14.3 ± 1.0

a
      30.6 ± 7.4

a
 

TA as citric acid (%), FW       0.1 ± 0.0
d
       0.2 ± 0.02

c
        0.1 ±  0.0

cd
         0.4 ± 0.08

b
        0.9 ± 0.1

a
 

TSS:TA   132.9 ± 11.5
a
   113.3 ± 7.5

a
    118.1 ± 5.3

a
       28.9 ± 4.7

b
        7.7 ± 1.1

c
 

Vitamin C (mg 100 g
-1

), FW     33.2 ± 0.8
b
     46.0 ± 3.2

a
      31.8 ± 1.2

bc
       28.5 ± 1.5

c
      31.4 ± 0.6

bc
 

L*     43.4 ± 0.5
cd

     78.5 ± 0.2
a
      58.7 ± 2.6

c
       49.6 ± 0.8

b
      41.0 ± 1.9

d
 

a*      -1.4 ± 0.9
b
      -5.6 ± 0.1

c
       -7.3 ± 0.3

d
      -10.9 ± 0.2

e
      20.2 ± 3.9

a
 

b*       6.6 ± 1.3
d
     52.2 ± 0.2

a
      20.7 ± 1.2

c
       19.6 ± 0.5

bc
      24.8 ± 2.4

b
 

1
Hue (°)   101.0 ± 7.4

cd
     96.1 ± 0.1

d
    117.8 ± 1.9

bc
     110.6 ± 1.1

b
    233.1 ± 6.8

a
 

Chroma (C*)       6.8 ± 1.4
d
     52.5 ± 0.2

a
      23.4 ± 0.9

c
       20.9 ± 0.5

c
      34.5 ± 2.4

b
 



52 

 

 

 4.3.1.1.     Weight of fruit and fruit fractions 

The average weight of fresh fruit from the five studied cultivars ranged from 222.5 to 365.3g. 

The Nam Dok Mai cultivar had the lowest weight (222.46 g) and the remaining four cultivars 

were of similar weight.  

The flesh: peel ratio in the mangoes ranged from 9.8 to 14.2, flesh: kernel ratio from 7.3 to 

17.7; and the peel: kernel ratio from 0.7 to 1.3. The flesh: peel ratio was lowest for Cat Chu 

(9.8%) and Nam Dok Mai (10.3%) and highest for Tommy Atkins (14.2%). The flesh: kernel 

ratio was highest for Tommy Atkins (17.7%) and those in the remaining four cultivars were 

similar. The percentage of flesh from the mangoes ranged from 75.8 to 83.1%. The lowest 

yields were from Cat Hoa Loc and the highest from Tommy Atkins. The percentage of peel 

ranged from 6.2 to 7.9% with Tommy Atkins yielding the lowest and Cat Chu the highest peel 

yields. The percentage yield of kernel ranged from 4.9 to 10.8% with Tommy Atkins 

producing the lowest and Ghep the highest kernel yields.  

4.3.1.2. Moisture content   

The highest moisture content of flesh was in Tommy Atkins (84.1%) and the lowest (74.8%) 

in Nam Dok Mai. There were no significant differences in the moisture content of peel 

between the cultivars, except that Nam Dok Mai peel had the lowest moisture content of the 

five cultivars.  There were no significant differences in the moisture content of kernel between 

the studied cultivars, except for Tommy Atkins which had the lowest moisture content.  

4.3.1.3. Firmness 

 Firmness of the mango cultivars ranged from 3.56 to 30.06 kg cm
-2

. Tommy Atkins and Nam 

Dok Mai were significantly firmer than the other cultivar followed by Ghep, Cat Hoa Loc and 

Cat Chu. There was no significant difference in firmness between Tommy Atkins and Nam 

Dok Mai.  

4.3.1.4.  Total soluble solid (TSS) 

The TSS (
o
Brix) of four of the five cultivars was significantly different (p < 0.05). Cat Hoa 

Loc and Cat Chu contained the highest TSS% followed by Ghep, Nam Dok Mai and Tommy 

Atkins. There were no significant differences in the TSS contents of Cat Hoa Loc and Cat 

Chu.  

 

 

 



53 

 

 

4.3.1.5. Titratable acidity (TA)   

The titratable acidity values ranged from 0.1 to 0.9 mg 100 g
-1

 FW in the five cultivars with 

significant differences (p < 0.05) occurring between four of the cultivars. The highest and the 

lowest acidity were recorded in Tommy Atkins and Ghep, respectively (Table 4.1). The 

second highest TA was in Nam Dok Mai, followed by Cat Hoa Loc and Cat Chu. There were 

no significant differences in the titratable acidity between Cat Hoa Loc and Cat Chu. 

4.3.1.6. TSS:TA 

The sugar-acid ratio has been reported to be the best parameter to use as a predictor of the 

stage of maturity in mangoes (Mahayothee, 2004). Nam Dok Mai and Tommy Atkins 

mangoes had significantly lower TSS: TA ratios than the other Vietnamese cultivars Cat Chu, 

Cat Hoa Loc and Ghep. 

4.3.1.7. Vitamin C 

The mean ascorbic acid levels were 46.04, 33.79, 31.84, 31.36 and 28.53 mg 100g
-1

 FW in the 

Cat Hoa Loc, Ghep, Cat Chu, Tommy Atkins and Nam Dok Mai cultivars, respectively.    

4.3.1.8. Colour 

Large significant differences (p < 0.05) were observed in the lightness (L* value), redness (a* 

value), yellowness (b* value), hue angle (h
o
) and chroma (C*) of the mangoes (Table 4.1). 

Particularly, the hue angles of the mango cultivars in Vietnam were negative so the values of 

hue from all the cultivars were adjusted by adding to 180
o
. The L, a*, b*, hue angles and 

chroma of the mangoes from the five cultivars ranged  from 52.5 to 78.0, -10.9 to 20.2,  6.6 to 

24.8, 96.1 to 233.1° and 6.8 to 41.0, respectively. The peel of Tommy Atkins showed a 

significantly higher a* and hue angle and was darker than any other cultivar.  

The peel of Cat Hoa Loc had the highest b* value (indicating a more yellow colour) and was 

significantly lighter (indicated by the higher L value) than any of the other cultivars. Cat Hoa 

Loc mangoes were significantly more vivid in colour (indicated by the higher chroma value) 

than any of other cultivar. The peel of Nam Dok Mai cultivar was less red-coloured (indicated 

by the low a*) (Table 4.1). 
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4.3.2. Total phenolic content and antioxidant capacity of mango fractions from five 

cultivars  

The total phenol content and antioxidant capacities of flesh, peel and kernel of mangoes from 

the five cultivars; Ghep, Cat Hoa Loc, Cat Chu Nam Dok Mai and Tommy Atkins, were 

investigated. 

4.3.2.1. Total phenolic content in peel, flesh and kernel 

Phenolics, commonly found in fruits, have been reported to exhibit antioxidant activity and to 

scavenge free radicals. Phenolics that possess antioxidant activity are phenolic acids and 

flavonoids. Many individual phenolic compounds that possess antioxidant activity in fruits 

have not yet been identified or measured individually by HPLC consequently total phenolic 

content (TPC) determined by the Folin Ciocalteu‟s phenol reagent is usually used as an 

indicator of antioxidant capacity. The total phenolic content of flesh, peel and kernel from the 

five mango cultivars analysed by one-way ANOVA are shown in Table 4.2.  

Table 4.2. Total phenolic content (mean ± SE) of flesh, peel and kernel of mangoes sourced 

from New Zealand and Vietnam. 

Cultivars 
Total phenolic content (mg GAE 100g

-1
 DW) 

Flesh Peel Kernel 

Ghep (n = 3)     252.6 ± 54.6
a-x

       822.3 ± 94.5
c-y

     6286.0 ± 28.7
c-z

 

Nam Dok Mai (n = 3)     378.5 ± 83.4
a-x

     8089.4 ± 1024.6
a-y

     6987.7 ± 333.3
bc-y

 

Cat Hoa Loc (n = 3)     396.9 ± 68
a-x

     2885.9 ± 267
b-y

     7973.3 ± 441.0
bc-z

 

Cat Chu (n = 3)     699.4 ± 119.0
b-x

     4120.0 ± 677.2
b-y

   10664.1 ± 1199.3
ab-z

 

Tommy Atkins (n = 12) 754.4 ± 48.0
b-x

 6935.6 ± 394.7
a-y

 13888.8 ± 1313.8
a-z

 

Different superscripts (a-c) within the same column mean significantly different and (x-z) within the same row 

are significantly different (p < 0.05). 

 

The flesh of Tommy Atkins and Cat Chu had significantly higher (p < 0.05) total phenolic 

content than Cat Hoa Loc, Nam Dok Mai and Ghep which had similar concentrations. The 

peel of Nam Dok Mai and Tommy Atkins had significantly higher concentrations of 

phenolics than Cat Chu, Cat Hoa Loc and Ghep. The total phenolic content of Tommy Atkins 

kernels was significantly higher (p < 0.05) than Cat Hoa Loc, Nam Dok Mai and Ghep.  

There was no significant difference between TPC of Tommy Atkins and Cat Chu kernels. 
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In all the five cultivars, the total phenolic content was significantly higher in kernels than peel 

or flesh except for Nam Dok Mai, which had similar levels of total phenolic in peel and 

kernel. 

4.3.2.2. The antioxidant capacity of peel, flesh and kernels  

The ABTS and DPPH assays are often used to evaluate the free radical-scavenging properties 

or antioxidant capacity of fruits (Wojdylo et al., 2007).  

 

a. ABTS assay 

The results of the ABTS assay from the five mango cultivars are shown in Table 4.3. There 

were significant differences (analysed by one-way ANOVA) in the antioxidant capacities 

between the cultivars. 

Table 4.3. ABTS scavenging activity (mean ± SE) of flesh, peel and kernel of mangoes 

sourced from New Zealand and Vietnam. 

Cultivars 
ABTS scavenging activity (µmol TE g

-1
 DW) 

Flesh Peel Kernel 

Ghep (n = 3) 43.6 ± 0.8
b-x

 406.3 ± 74.2
d-y

 1066.3 ± 93.2
b-z

 

Nam Dok Mai (n = 3) 49.7 ± 2.4
b-x

 1188.3 ± 112.7
a-y

 1226.8 ± 32.0
b-y

 

Cat Hoa Loc (n = 3) 53.3 ± 4.7
b-x

 641.7 ± 92.6
bc-y

 1330.3 ± 11.8
b-z

 

Cat Chu (n = 3) 70.0 ± 3.7
a-x

 540.3 ± 46.7
cd-y

 1527.6 ± 46.7
b-z

 

Tommy Atkins (n = 12) 54.1 ± 5.7
b-x

 787.2 ± 40.2
b-y

   2227.6 ± 197.8
a-z

 

Different superscripts (a-d) within the same column mean significantly different and (x-z) within the same row 

are significantly different (p < 0.05). 

The antioxidant capacity of flesh, peel and kernel, as measured by ABTS, ranged from 43.5 to 

70.0; from 406.3 to 1188.3 and from 1066.3 to 2227.8 µmol Trolox equivalents per g dry 

weight (TE g
-1

 DW), respectively. The flesh from Cat Chu exhibited significantly (p < 0.05) 

higher antioxidant activity than any other cultivar. There were no significant differences in 

ABTS between flesh samples from the other four cultivars. There were larger variations in the 

antioxidant activities of peel, compared to flesh, between the five mango cultivars. Peel 

extracts from Nam Dok Mai showed the highest antioxidant activity (1188.3 µmol TE g
-1

 

DW), followed by Tommy Atkins, Cat Hoa Loc, Cat Chu and Ghep. 

Kernel from Tommy Atkins showed the highest antioxidant activity (2227.6 µmol TE g
-1

 

DW). Of the other four cultivars, Cat Chu had the highest TEAC values, as measured by 
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ABTS, but there were no significant differences between the four cultivars. In all the 

cultivars, the TEAC values measured by ABTS were significantly higher in kernel than peel 

or flesh, except for Nam Dok Mai, which had similar TEAC levels in peel and kernel. 

b. DPPH assay 

Table 4.4. DPPH scavenging activity (mean ± SE) of flesh, peel and kernel of mangoes 

sourced from New Zealand and Vietnam. 

 

Cultivars 
DPPH scavenging activity (µmol TE g

-1
 DW) 

Flesh Peel Kernel 

Ghep (n = 3) 30.0 ± 0.4
a-x

 210.6 ± 3.1
c-y

 667.4 ± 38.8
a-z

 

Nam Dok Mai (n = 3)   45.2 ± 11.3
a-x

   724.5 ± 76.7
a-y

        836.1 ± 9.1
a-y

 

Cat Hoa Loc (n = 3) 39.8 ± 6.8
a-x

     445.9 ± 100.9
b-y

 932.6 ± 32.0
a-z

 

Cat Chu (n = 3) 51.6 ± 2.8
a-x

   379.8 ± 37.6
b-y

 950.7 ± 57.1
a-z

 

Tommy Atkins (n = 12) 45.4 ± 4.7
a-x

   735.4 ± 43.3
a-y

 2205.7 ± 205.7
b-z

 

Different superscripts (a-c) within the same column mean significantly different and (x-z) within the same row 

are significantly different (p < 0.05). 

The relatively stable organic radical, DPPH, has been widely used for determining the 

antioxidant activity of single compounds and plant extracts (Katalinic et al., 2006; Wojdylo et 

al., 2007). The antioxidant activity of flesh, peel and kernel as measured by DPPH, ranged 

from 30.0 to 51.6; 210.6 to 735.4 and 667.4 to 2205.7 µmol TE g
-1

 DW, respectively. The 

antioxidant activity in mangoes measured by DPPH showed a similar ranking of cultivars to 

the ABTS method. The DPPH values were slightly lower than ABTS on a TE basis. Although 

the flesh of Cat Chu showed the highest DPPH values, there were no significant differences 

between the five cultivars. 

The peel extracts from the five mango cultivars showed significant differences in their DPPH 

activity (Table 4.4). Tommy Atkins and Nam Dok Mai scavenged more DPPH radicals than 

any of the other three cultivars. 

The DPPH radical-scavenging capacity of kernel ranged from 667.4 to 2205.7 µmol TE 100 

g
-1 

DW. Tommy Atkins exhibited the highest DPPH scavenging activity which was 2.3, 2.4, 

2.6 and 3.3 times higher than kernel from Cat Chu, Hoa Loc, Nam Dok Mai and Ghep 

respectively. There were no significant differences in the DPPH scavenging activity between 

the four mango cultivars cultivated in Vietnam.  
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For all the cultivars, DPPH scavenging activity was significantly higher in kernel than peel 

and flesh, except for Nam Dok Mai, which had similar antioxidant capacity in the peel and 

kernel.  

4.3.3. Anti-nutrients of mango fractions from five cultivars 

The results in sections 4.3.1 and 4.3.2 indicated that mango peel and kernel were promising 

sources of antioxidant for inclusion in the diets of domesticated animals and humans. 

However, like many natural plants, mango peel and kernels may also contain low levels of 

toxicants. Tannins and oxalates have been previously implicated as dietary anti-nutritive 

factors in plants (Cheeke, 1998). The presence of these anti-nutritional factors in mango peel 

and kernels was therefore assessed. The total condensed tannins were extracted using a 

methanol-water mixture and then precipitated as an insoluble polymer tannin complex. The 

tannin content is calculated as the difference in   absorbance at 280 nm of tannin extracts 

before and after precipitation.  

4.3.3.1. Tannins 

Table 4.5. Tannin content as epicatechin (mean ± SE) of mango fractions from five different 

cultivars 

 

Cultivars 
Tannin content (g EE kg

-1
 DW) 

Flesh Peel Kernel 

Ghep (n = 3) 1.0 ± 0.1
a-x

 19.8 ± 0.7
b-y

 21.3 ± 0.4
d-z

 

Nam Dok Mai (n =3) 1.1 ± 0.0
a-x

 22.9 ± 0.1
a-y

 51.7 ± 0.3
a-z

 

Cat Hoa Loc (n = 3) 1.1 ± 0.0
a-x

 7.9 ± 0.2
e-y

 34.0 ± 0.3
c-z

 

Cat Chu (n =3) 1.1 ± 0.1
a-x

 9.6 ± 0.1
d-y

 43.5 ± 0.1
b-z

 

Tommy Atkins (n =12) 0.9 ± 0.1
a-x

 12.7 ± 1.1
c-y

 48.3 ± 2.5
ab-z

 

Different superscripts (a-e) within the same column mean significantly different and (x-z) within the same row 

are significantly different (p < 0.05). 

The tannin content of flesh from the five cultivars as shown in Table 4.5 was similar and 

ranged from 0.9 to 1.1g epicatechin equivalent kg
-1

 DW. The tannin content of peel from the 

five cultivars varied more widely from 7.9 to 22.9g epicatechin equivalent kg
-1

 DW (Table 

4.5). Nam Dok Mai peel contained the highest tannin content followed by Ghep, Tommy 

Atkins, Cat Chu and Cat Hoa Loc.  
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The tannin content of kernel of the five cultivars varied markedly from 21.3 to 51.7 g kg
-1

 

DW as epicatechin equivalent (EE) (Table 4.5). Nam Dok Mai kernels contained the highest 

tannin content followed by Tommy Atkins, Cat Chu, Cat Hoa Loc and Ghep. There were no 

significant differences in the tannin content of Tommy Atkins and Nam Dok Mai kernels. The 

tannin content was the highest in kernel then peel then flesh in all the mango cultivars. 

4.3.3.2. Oxalates 

No oxalates were detected in mango flesh of any of the five cultivars or in the kernel of Ghep, 

Cat Hoa Loc and Cat Chu (Table 4.6). The oxalate content of kernels in Nam Dok Mai     

(36.3 mg 100 g
-1

) was 10 times higher than in Tommy Atkins (3.6 mg 100 g
-1

). Oxalates were 

found in peel from all the cultivars. Nam Dok Mai, Cat Hoa Loc and Ghep peel contained 

approximately 4 times more oxalate than the peel of Tommy Atkins and Cat Chu.   

Table 4.6. Total oxalate content (mean ± SE) as oxalic acid of mango fractions from five 

different mango cultivars.  

Cultivars 

Total oxalate content (mg oxalic acid equivalent 100 g
-1

DW) 

Flesh Peel Kernel 

Ghep (n =3)  nd 108.9 ± 5.2
a
 nd 

Nam Dok Mai (n = 3) nd 126.2 ± 3.0
a-x

 36.3 ± 2.2
a-y

 

Cat Hoa Loc (n = 3) nd 123.0 ± 5.3
a
 nd 

Cat Chu (n = 3) nd 27.2 ± 2.2
b
 nd 

Tommy Atkins (n 12) nd 33.2 ± 2.0
b-x

 3.6 ± 0.0
b-y

 

Different superscripts (a-c) within the same column mean significantly different and (x-z) within the same row 

are significantly different (p < 0.05); nd: not detected. 

 

4.4. Discussion 

4.4.1. Physicochemical characteristics of mango cultivars 

Differences in any of the physicochemical characteristics can be due to genetic variations 

between varieties, the growing and environmental conditions or method of storage 

(Randhawa, 2002; Muhammad, 2010).   

4.4.1.1. Fruit weight, fraction weight, percentage and ratio 

The weight of Tommy Atkins was slightly lower than those reported by Sosa-Morales et al. 

(2009) (374.4 g) and Rocha-Ribeiro et al. (2007) (477.2 g). Cat Hoa Loc, had the highest fruit 

weight (365.3g) of the Vietnamese cultivars. Nam Dok Mai had the lowest weight (222.46 g) 
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which was lower than the Nam Dok Mai mango weights reported by Sriwimon and 

Boonsupthip (2011). 

Cultivars that provide a high fruit weight or a high flesh percentage in combination with a low 

percentage yield of peel or kernel, as found with Tommy Atkins, are ideal mangoes for the 

processing industry due to their ability to provide high yields of useable flesh. The high 

percentage of peel in Cat Chu and kernel in Ghep suggests that these cultivars may yield 

components that are viable sources of antioxidants that can be incorporated into dietary 

supplements (Zatylny et al., 2004). 

4.4.1.2.  Moisture content   

The moisture content of flesh from all the mangoes was similar to the values of 84% as 

reported by Laohaprasit et al. (2011). There were no significant differences between the 

moisture content of the kernels from the four Vietnamese cultivars.  

Ueda (2001) reported that the moisture content of mangoes decreased gradually as they ripen. 

Tandon and Kalra (1983) also stated the moisture content decreased during maturation and 

was linked to the cultivar and cultivation conditions (Tandon and Kalra, 1983; Ueda, 2001). 

Al-Hooti et al. (1997) stated that the moisture content of flesh from different cultivars 

decreased as the fruit reached maturity and ascribed the changes to the accumulation of total 

soluble solids such as fructose, glucose and sucrose. The reported changes should impact on 

the taste, physicochemical characteristics and antioxidant capacity of the fruits. 

The moisture content of peel from all the five cultivars studied were similar, except for Nam 

Dok Mai which was significantly lower (p < 0.05). The moisture content of Nam Dok Mai 

peel (67.5% ) was similar to that of  “Raspuri” (66 - 72.5%) whilst the other four cultivars  

(72.8 - 75.9%)  were similar to  “Badami” (70.3-75.3%)  reported by Ajila et al. (2007a). The 

moisture contents of kernels from all the five cultivars were similar except for Tommy Atkins 

which was significantly higher (p < 0.05). The moisture content of Tommy Atkins kernel 

(59.4%) was similar to that of kernels (50.7%) reported by Abdalla et al. (2007). 

There is no data on the relationship between the moisture content of peel or kernel to the 

maturity of mango fruits. Sinclair (1972) suggested that the moisture content of grape-fruit 

peel was not correlated with peel firmness, and that firmness and moisture content were two 

unrelated factors which contributed to the low texture resistance of peel. Such data infers that 

peel texture is, in some instances, influenced by factors that are independent of moisture 
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content (Sinclair, 1972). It is generally accepted that the moisture content of mango flesh, peel 

and kernel are dependent on the genetic makeup and agronomic and climactic backgrounds of 

the cultivars (Sobeih and El-Helaly, 2002; Ahmad, 2010; Abdelazim, 2011). 

4.4.1.3. Firmness 

The firmness readings in the present study (30.6 kg cm
-2

) were higher than the 1.74 kg cm
-2 

reported by Sabato et al. (2009) for Tommy Atkins stored for 6 days or the values                       

(7.6 kg cm
-2

) reported by Rocha Ribeiro et al. (2007). Thus, the Tommy Atkins mangoes used 

in this study were at the green or unripe stage of maturity.  

The firmness readings of Nam Dok Mai cultivated in Vietnam were higher than those 

reported by Chonhenchob et al. (2010) but similar to “Dashehari” reported by Jha et al. 

(2006) and “Dodo” by Msgoya and Kimaro (2011). In general, any difference in firmness is 

usually a reflection of the stage of maturity of the mango and the rate of maturity 

development is usually dependent on the cultivar. In the initial stages of fruit development, 

firmness remains almost unchanged but on reaching maturity, firmness decreases due to 

possible changes in the structure of the pectin polymers in the cell wall (Kalra et al., 1995).  

All the mango cultivars used in the present study were collected from retail markets and at the 

ready-to-eat stage; however, their actual stages of maturity were all different. 

4.4.1.4.   Total soluble solids (TSS) 

All the cultivars, except for Tommy Atkins (6.5 
o
Brix or %) had TSS levels above the 

recommended minimum for consumption (12.0 
o
Brix). The TSS level in Tommy Atkins was 

similar to the 6.5
 o

Brix reported for Tommy Atkins grown in Jamaica (Medlicott et al., 1986) 

or Cogshall in Florida (Lebrun et al., 2008). Although the TSS of Tommy Atkins was low, it 

does satisfy the 6.8 
o
Brix requirement by Mexico for mangoes to be exported (Baez-Sanudo 

and Bringas-Taddei, 1996). TSS of Nam Dok Mai was lower than that reported by 

Laohaprasit et al. (2011) indicating that the „Nam Dok Mai‟ mangoes are quite green. 

Nevertheless, the TSS levels (Table 4.1) are similar to the range (6.85 to 14.67
 o

Brix) reported 

by Lebrun et al. (2008) for “Cogshall” mangoes which varied from green to the ripe stages of 

maturity. The TSS levels are higher than those reported by Sosa-Morales et al. (2009) and 

Sabato et al. (2009) who found 10.2
 o
Brix at day 1 and 11.9 

o
Brix at day 6 of storage. 

The TSS levels of the four Vietnamese cultivars are comparable to the levels reported for 

“Dodo” in Tanzania (Theodosy and Elde, 2011) and “Nam Dok Mai” in Thailand (Po, 2006; 

Laohaprasit et al., 2011) which ranged from 14 to 23
 o

Brix.  The results imply that 
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Vietnamese growers are selling mangoes at the stage that yield desirable TSS levels         

(12.0 
o
Brix) required by consumers. 

In general, the TSS content of stored mangoes increased to 19.73 
o
Brix on ripening and then 

declined to 15 
o
Brix on further storage (Jha et al., 2006). The observed decrease in TSS may 

be due to excessive ripening or rotting of the mango during storage. Thus, like firmness, TSS 

levels can be used to monitor the stage of mango maturity.  

4.4.1.5.   Titratable acidity (TA) 

The titratable acidity of Nam Dok Mai is similar to that reported for Cogshall sourced from 

Florida (Lebrun et al., 2008). The total acidity of 0.1-0.4% FW (Table 4.1) of the four 

cultivars from Vietnam was similar to the 0.11-0.48% range reported by Laohaprasit et al. 

(2011). However, the TA of 0.17% reported by Laohaprasit et al. (2011) for Nam Dok Mai is 

lower than 0.4% found in the current study. The TA of Tommy Atkins is similar to the values 

of 1.1% reported by Sosa-Morales (2009) but higher than the values of 0.21 and 0.68%, 

reported by Sabato et al. (2009) and Jose et al. (2004) respectively for the same cultivar. It is 

now recognised that a reduction in TA occurs over the storage period due to the utilisation of 

organic acids by fruit respiration (Anthon et al., 2011). The level of TA is therefore another 

indicator of the stage of ripening. Thus, the high levels of TA found in Tommy Atkins and 

Nam Dok Mai indicate that both cultivars were quite green when they were analysed in this 

study. The latter conclusion is supported by the firmness and TSS results. 

4.4.1.6. TSS:TA   

In this study the TSS: TA ratio of the Vietnamese mangoes Ghep, Cat Chu and Cat Hoa Loc 

were significantly higher than Nam Dok Mai and Tommy Atkins. This could reflect that in 

Vietnam, mangoes only reach the retail markets at the ripe stage because they are harvested 

late when the fruit have attained maturity.  In contrast Tommy Atkins cultivars are usually 

harvested earlier at an undefined “mature green” stage for the export markets. Nevertheless, 

both Tommy Atkins and Nam Dok Mai mangoes in the present study were purchased in retail 

markets and were supposed to be sufficiently mature for consumption but the mangoes were 

still relatively green. Some of the observed differences in TSS: TA ratios could also be 

attributed to differences in the mango cultivars. 
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4.4.1.7. Vitamin C 

The vitamin C content decreases as the fruit ripened and the storage time increases (Kalra and 

Tandon, 1995). The mean vitamin C content, which ranged from 28.5 to 46.0 mg 100g
-1

 FW 

was higher than that reported for Tommy Atkins by  Manthey and Perkins-Veazie (2009) 

(19.3mg 100g
-1

  FW), (Rocha Ribeiro et al., 2007) and Gonzalez-Aguilar, (2007) ( 6.9-16.0 

mg 100 g
-1

 FW). The range of vitamin C concentrations in the five cultivars was similar to 

that previously reported by Carvalho (2004). The values obtained for Tommy Atkins (31.4 mg 

100g 
-1

 FW) were similar to the values reported for other cultivars such as Keith, Kent and 

Haden.  

The differences in vitamin C between the five cultivars and those previously reported can be 

attributed to factors such as differences in the individual cultivar, climatic conditions, cultural 

practices, stage of maturity and post-harvest factors (Lee and Kader, 2000). For example, 

Ribeiro et al. (1995) reported a range of 25.3 to 182.55 mg ascorbic acid 100g
-1 

FW mango 

which varied according to the cultivar and assay method. Predictions of the actual 

concentration of vitamin C in cultivars should therefore take into account that their 

physicochemical characteristics are linked to the maturity of the mangoes (Rocha-Ribeiro et 

al., 2007). 

4.4.1.8.   Colour 

The colour of fruits directly affects their appearance and consumer acceptability. All the 

cultivars had different colours as measured by the Hunter colorimeter. High a*, Hue and b* 

values and low L* values of Tommy Atkins mangoes indicated that these mangoes  were 

darker, redder and more yellow (only less yellow than Cat Hoa Loc) than any of the cultivars 

grown in Vietnam. Indeed they exhibited more strong and distinctive colour characteristics 

than any other cultivar. Cat Hoa Loc mangoes were lighter and had more vivid colour than 

any other cultivar. Nam Dok Mai mangoes were green and tended to turn gradually to yellow. 

Of the cultivars tested, Nam Dok Mai cultivar was the greenest. 

When ripe, the colour of mango fruit can dramatically change from green to yellow to red. 

Cat Hoa Loc and Cat Chu mangoes were yellow when ripe, Tommy Atkins red, and Nam Dok 

Mai and Ghep green or yellow-green. The significant differences in peel colour of other fruits 

(e.g. apple) have been reported by other researchers (Drogoudi et al., 2008; Iglesias et al., 

2008). 
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4.4.2. Total phenolic content and antioxidant capacty of mango fractions from five 

cultivars  

In the literature, there have only been reports on TPC and the antioxidant capacity of mango 

fractions from Tommy Atkins and Nam Dok Mai cultivars. The total phenolic content of 

Tommy Atkins mango flesh in the present work was higher than reported by previous 

researchers (Gonzalez Aguilar et al., 2007; Rocha-Ribeiro et al., 2007; Manthey and Perkins-

Veazie, 2009). The total phenolic content of Tommy Atkins peel and kernel were lower than 

reported by Ashoush and Gadallah (2011) but were similar to the values reported by other 

researchers (Rocha-Ribeiro et al., 2007; Rocha-Ribeiro et al., 2008; Manthey and Perkins-

Veazie, 2009).  

 

On the other hand, Nam Dok Mai mango kernels in the present study showed similar TEAC 

values when measured by ABTS and lower TPC values than reported by Khammuang and 

Sarnthima (2011). The different results obtained with Tommy Atkins could be due to 

differences in the growing and storage conditions or the maturity of the fruit. Variations in the 

experimental procedures such as the extraction technique, extraction solvent or assay 

protocols could also be contributing factors. 

There has been no published data on the antioxidant capacity of Vietnamese mango cultivars. 

However, compared to those reported previously for different mango cultivars (Soong and 

Barlow, 2004; Matsusaka and Jun Kawabata, 2010), the three Vietnamese mango cultivars 

had similar ranges of TPC, ABTS and DPPH levels in flesh, peel and kernel.  

The results from flesh, peel and kernel in Tables 4.2, 4.3 & 4.4 show that the rank order of the 

cultivars is the same whether the antioxidant capacity is measured by TPC or ABTS or  

DPPH. In regards to flesh, Tommy Atkins and Cat Chu cultivars showed significantly           

(p < 0.05) higher TPC than any of the other cultivars. The Cat Chu cultivar also exhibited the 

highest antioxidant capacity as measured by ABTS. Although Cat Chu and Tommy Atkins 

showed the highest DPPH values than any other cultivars, the differences were not significant.  

The peel of Nam Dok Mai and Tommy Atkins showed the highest TPC, ABTS and DPPH 

scavenging activity followed by Hoa Loc, Cat Chu and Ghep cultivars. The kernel of Tommy 

Atkins showed the highest TPC, ABTS and DPPH values, followed by Cat Chu, Hoa Loc, 

Nam Dok Mai and Ghep but only Tommy Atkins kernel exhibited a significantly higher       

(p < 0.05) activity than  any of the  other cultivar. Phenolic compounds in peel and kernel 

contributed to antioxidant activity as measured by the ABTS and DPPH assays. 
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For all the selected cultivars, total phenolic content, ABTS and DPPH scavenging activities 

were significantly higher in the kernel than peel and flesh, except for Nam Dok Mai, which 

had similar levels of phenolics and antioxidants in the peel and kernel. This finding is in 

agreement with previous studies (Khammuang and Sarnthima, 2001; Rocha-Ribeiro et al., 

2007).   

4.4.3. Anti-nutrients in mango fractions from five cultivars  

 

4.4.3.1.  Tannins 

Tannins are phenolic compounds that precipitate proteins which exhibit their toxicity effects 

mainly in the gastrointestinal tract (Bressani et al., 1983).  Mango flesh from the five cultivars 

contained low and similar tannin contents (0.9 to 1.1 g kg
-1

 DW) to each other. The tannin 

content of flesh from all the cultivars were considerably lower than those reported (31 g kg
-1

 

DW, respectively) by Joseph and Aworh (1991). Tannins, due to their phenolic 

characteristics, if used or consumed in a small amount, can be a good antioxidant source. 

Therefore, mango flesh from all the studied mango cultivars is safe for consumption.  

Nam Dok Mai peel contained the highest tannin content followed by Ghep, Tommy Atkins, 

Cat Chu and Cat Hoa Loc. The tannin content of peel from all the cultivars (7.9 - 22.9 g kg
-1 

DW) is lower than reported (37.3 g kg
-1

 DW) by Joseph and Aworh (1991). The tannin 

content of peel from Nam Dok Mai, Ghep and Tomy Atkins were within the values reported 

by Dorta et al. (2011) who found that the peel tannin content of 14 to 130 g kg
-1

 DW 

depended on the solvent extraction procedure.    

The tannin content of kernel of Nam Dok Mai (51.67 g kg
-1

 DW) was similar to the levels 

reported (56.5 g kg
-1

 DW) by Ravindran and Sivakanesan (1996) and higher than 44.5 g kg
-1

 

DW reported for Indian mangoes by Patil et al. (1982) or 44.8 g kg
-1

 DW reported for the 

Ikanekpo variety (Arogba, 1997). Tommy Atkins, Nam Dok Mai and Cat Chu mango kernels 

have similar tannin levels whilst Cat Hoa Loc and Ghep cultivars have lower tannin levels 

than previously reported. For all the five cultivars, the tannin levels were significantly higher 

in kernel than peel or flesh (Table 4.5).  

4.4.3.2.  Oxalates 

The absence of oxalates in the mango flesh of all the cultivars and in kernel of Vietnamese 

mango cultivars shows that these particular fractions will have no negative effects on the 

bioavailability of minerals to animals if used as a dietary ingredient. It is recognised that a 

large amount of dietary oxalates can be undesirable since the oxalates will complex with 
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calcium and reduce the availability calcium and, as a consequence, increases the risk of renal 

calcium absorption (Noonan and Savage, 1999). Dietary oxalate also promotes a calcium, 

magnesium and iron complex which is the basis of oxalate kidney stones (Jaeger and 

Robertson, 2004). 

Only Nam Dok Mai and Tommy Atkins kernels contained oxalates. Furthermore, the oxalate 

levels in Nam Dok Mai were 10 times higher than in Tommy Atkins and were also higher 

than 4.2 mg 100g
-1

 DW reported by Ravindran and Sivakanesan (1996) and 1.49 mg 100g
-1

 

DW reported by Fowomola (2010). The levels in Tommy Atkins kernel are consistent with 

previous reports.  

In the present study, the Nam Dok Mai peel had the highest oxalate levels followed by Cat 

Hoa Loc, Ghep, Tommy Atkins and Cat Chu. The oxalate content of peel ranged from 27.17 

to 126.23 mg kg
-1 

DW. The oxalate content of peel was significantly (p < 0.05) higher than in 

Nam Dok Mai and Tommy Atkins kernels (Table 4.6). There is little published data on the 

oxalate content of mango peel and flesh. 

Overall, mango flesh from all the cultivars contained low levels of tannins and no oxalates 

and are, therefore, within acceptable levels to consume. In order for mango peel and kernel to 

be utilized as food ingredients, they require further processing to reduce tannins and oxalates 

to acceptable levels. For several years, some mangoes have been processed to remove the 

majority of the tannins and oxalates. However, Ravindran and Sivakanesan (1996) reported 

that processing with boiling water only removes 67% of the tannin which means that tannins 

cannot be completely removed from kernels.  Tannins, however, can cause bitter or astringent 

taste problems and inhibit protein digestion. A recommendation of Patil et al. (1982) was that 

the substitution of 14.1% of dietary maize in poultry diets with the equivalent level of mango 

kernel was safe and had no effect on the performance of the animals. There is no report on the 

the limited concentration of oxalate in human or animal dietary  but the previous studies have 

suggested that intakes of oxalate exceeding 180mg day
-1

 result in a marked increase in the 

amount excreted (Noonan and Savage, 1999). The study concluded that the kernel 

supplements should be limited to a maximum level of 14.1% in diets. Morrison and Savage 

(2003) suggested that the amount of oxalates in diets could be reduced by soaking, blanching 

or cooking. Mango kernels are often dried and only used in small quantities in formulated 

animal foods and should therefore be of little risk as a dietary ingredient. 
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4.5. Conclusions 

 The physicochemical characteristics of mangoes are important factors since they 

influence the selection of cultivars for specific markets.  The size and weight of a 

fruit is a varietal property, which fluctuates depending on climatic and agricultural 

conditions as well as the number and position of the fruit on a tree. Most of the 

mango cultivars in this study were of equal weight except for Nam Dok Mai which 

was smaller. Peel colour directly affects the appearance and the acceptability of the 

fruit to consumers. Tommy Atkins was red, Hoa Loc and Cat Chu yellow, and 

Nam Dok Mai and Ghep green. Firmness is widely used as a test for fruit ripeness. 

Flesh firmness decreases as fruit ripen which is associated with a decrease in 

pectin and an increase in soluble solids. The results illustrate that maturity, based 

on firmness, was relatively uniform for the cultivars grown in Vietnam and 

variable for Tommy Atkins imported in to New Zealand. The acid, sugar and 

moisture content of mangoes are important components contributing to the taste 

and flavour characteristics of the fruits. The vitamin C content of mangoes is an 

essential contributor to their nutritional value. All the mango cultivars grown in 

Vietnam showed high levels of soluble solids and TSS: TA ratios and the low 

levels of firmness, TA and moisture content indicating that the mangoes were 

softer than Tommy Atkins and more suitable for the short term fresh market. 

Tommy Atkins had the highest mean acidity value than any other cultivar and is 

ideally suited for processing which requires acidity in fruits. Moreover, Tommy 

Atkins mangoes had the highest flesh percentage and lowest peel and kernel 

(waste) percentage than the other cultivars grown in Vietnam, suggesting that they 

are ideal fruits for processing.  There were only slight differences in vitamin C 

between the cultivars which could be attributed to variations in climatic 

conditions, cultivation and stage of maturity or post-harvest treatment.    

 

 Overall, the physicochemical characteristics of Tommy Atkins were different from 

those of Nam Dok Mai and the Vietnamese cultivars. Although, the measured 

physicochemical characteristics can be used as indicators of the stage of maturity 

of the mangoes, some of the differences could be attributed to genetics, growing, 

environmental and storage differences. The main value of the physicochemical 

parameters is to provide reference criteria for characterising the individual mango 

cultivars rather than determining their exact stage of maturity. 
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 The results show that flesh, peel and kernel from Tommy Atkins mangoes 

imported from Mexico into New Zealand and flesh from Cat Chu mangoes 

contained the highest antioxidant capacity among the cultivars investigated to date. 

Of the cultivars grown in Vietnam, Cat Chu flesh and kernel and Nam Dok Mai 

peel are good sources of phenolics and antioxidants. On the other hand, from all 

the cultivars examined, kernels contain the highest concentration of total phenolics 

and antioxidants, followed by peel and flesh. It is apparent that, irrespective of the 

country of origin, there is an opportunity to use mangoes as a source of phenols, 

which are powerful and effective antioxidants. This study also shows that mango 

kernel and peel, which are often discarded as waste products, could be considered 

as dietary ingredients to protect food from oxidative damage.  

 

 In all the selected cultivars, the tannin contents were significantly higher in the 

kernel than peel than flesh.  The oxalate contents were highest in peel. Oxalates 

were only found in the kernel of Nam Dok Mai and Tommy Atkins mangoes and 

were not present in the flesh of any other cultivar. Mango flesh from all the 

cultivars studied contained low levels of tannins and no oxalates. Peel and kernel 

of Nam Dok Mai mango cultivars had the highest content of tannins and oxalates 

among the cultivars studied. The oxalates in kernel of Tommy Atkins were also 

higher than those in the Vietnamese cultivars. Although tannins and oxalates can 

be reduced by various processing treatments, mango peel and kernel when used as 

a food ingredient should be consumed in moderation (less than 14.1% of the total 

diet) to ensure there are no adverse effects on protein or mineral availability.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



68 

 

 

CHAPTER 5 

DRYING EFFECTS ON TOTAL PHENOLIC CONTENT AND 

ANTIOXIDANT CAPACITY OF MANGO FRACTIONS 

 

5.1. Introduction 

Like other fruits, mangoes are perishable and deteriorate in their fresh state. Consequently the 

processing and preservation of mangoes is important to the industry with drying being the 

most effective process to preserve fruits or their products. The objective of drying is to 

maintain fruit quality, reduce storage volume and to extend the shelf-life of the product. In the 

drying process, free water is removed from a product and, simultaneously, the availability of 

water for undesirable enzymatic reactions and microbial growth is reduced. As food additives 

and preservatives, dried mango products canpresent several advantages including greater 

chemical, physicochemical and microbiological stabilities, easier standardization, higher 

concentration of active compounds (Silva et al., 2012). However, the drying of food is 

difficult because of the various physical, chemical and biochemical transformations that may 

occur during the drying process and, as a consequence, the undesirable end products that can 

be produced (Baker, 1997). In particular, the enzymatic and non-enzymatic changes that occur 

on drying fresh plant tissues can affect phytochemicals (Sathishkumar et al., 2009) and create 

negative attributes to the final products.  

In most cases, drying involves the application of thermal energy which causes water to 

evaporate into the vapour phase. The degree of thermal damage is directly proportional to the 

temperature and time that products are exposed to a specific temperature (Kwok et al., 2004). 

A high temperature and long-time exposure to hot air drying, for example, adversely affects 

the texture, colour, flavour and nutritional values of food products. Consequently, heat 

processed dried foods are considered to have lower health promoting characteristics than fresh 

products (Choi et al., 2006). However, the degree of thermal damage to antioxidants depends 

on the response of individual antioxidants to the drying conditions. 

Many reports have also indicated that the effect of the drying method on antioxidant capacity 

depends on the source of the antioxidants. Furthermore, studies have shown that the total 

antioxidant content of certain foods may actually increase due to specific reactions being 

elicited by the heat treatment (Kim et al., 2000; Dewanto et al., 2002; Sathishkumar et al., 

2009). For example, many plant antioxidative phenolic compounds occur in a covalent bound 
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form and the heat treatment, in some cases, releases the antioxidants from their bound status 

(Jeong, 2004).  Heat also promotes the formation of reducing sugars and Maillard reaction 

products. Both are known to have antioxidant activity (Madrau et al., 2009). 

The effects of heating or drying temperature on the total phenolic and antioxidant content of 

fruits are still unclear. Therefore, determining the impact of applying specific drying methods 

to particular fruits or fruit fractions is an important area of research particularly in regards to 

the effect on antioxidant properties. Currently, many drying methods are used to produce 

plant products and each method has its advantages and disadvantages. The major dehydration 

techniques to preserve fruits include sun, forced, vacuum, microwave and freeze drying. 

Although freeze drying is often used due to its low heat requirements, information on the 

changes in total phenolics and antioxidant capacity in fruits such as mango is limited.  The 

effects of heat or drying treatment on the quality of bioactive compounds in plant material are 

also unclear.  

Mango flesh, peel and kernel can be dried and ground (Baker, 1997) to produce powders 

suitable as food ingredients. Information is required, however, on the effects of the various 

drying methods on the total phenolic compounds and antioxidative characteristics of flesh, 

peel and kernel products. 

The present study has investigated the effects of sun, forced-air, freeze, vacuum and 

microwave drying on the total phenolic content and antioxidant capacity of mango flesh, peel 

and kernel from the Tommy Atkins cultivar as measured by Folin-Ciocalteu, ABTS, DPPH, 

FRAP and ORAC assays. The corresponding fresh samples were used as controls for 

comparison. 

5.2. Materials and methods 

5.2.1. Chemicals and reagents  

Chemicals and reagents were used as outlined in 3.16. 

5.2.2. Methods  

Flesh, peel and kernel from the Tommy Atkins mangoes (n = 72) were prepared as described 

in 3.1 and 3.2). Mango fractions were dried by sun, forced-air, freeze, vacuum and microwave 

dried as described in 3.4. Flesh, peel and kernel from fresh (n = 12) and dried mangoes (12 

samples per treatment) were extracted for antioxidant assays as described in 3.5. Six 
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antioxidant assays were applied to mango flesh, peel and kernel as described in 3.6. They 

were TPC, ABTS, DPPH, FRAP, H-ORAC and L-ORAC. 

5.2.3. Statistical analysis 

Each analysis was performed in triplicate. The differences between antioxidant capacity 

measured by each assay (TPC, ABTS, DPPH, FRAP, H-ORAC and L-ORAC) of fresh mango 

samples and those dried by the five different drying methods were determined using a one-

way analysis of variance (ANOVA) at p < 0.05. Significant differences between means were 

determined using the Fisher‟s LSD multiple comparison tests. Two types of multivariate 

analysis (Principal Components Analysis and Canonical Variate Analysis) were carried out to 

investigate patterns among the fresh and dried mango samples and patterns among the assays.  

Graphical displays (biplots) were produced following Principal Components Analysis to show 

the association between the samples and the association beween the variables (assays) on the 

same plot. Minitab 16 was used to analyse the data using one-way ANOVA and Principal 

Component Analysis (PCA). Genstat 13 was used to analyse the data using Canonical 

Variates Analysis (CVA). These statistical analyses techniques are described in 3.17. 

  

5.3. Results  

5.3.1 Effects of drying treatments on the total phenolic content (TPC) of mango flesh, 

peel and kernel 

a. Flesh 

The total phenolic content of fresh, sun, forced-air, freeze, vacuum and microwave dried 

mango flesh were 531.5, 504.1, 825.5, 754.4, 527.2 and 701.1 mg GAE 100g
-1

 DW, 

respectively (Figure 5.1a). The results show that forced-air, freeze and microwave drying of 

mango flesh significantly increased (p < 0.05) the total phenolic content by 55.3, 41.9 and 

31.9%, respectively compared to fresh flesh. Sun and vacuum drying had no significant effect 

on the TPC compared to fresh flesh. Of the drying treatments, forced-air drying produced a 

significantly higher TPC than any other drying treatment except for freeze drying. 

b. Peel 

The phenolic content of fresh mango peel was 4858.0 mg GAE 100g
-1

 DW compared to 

5825.2, 6041.0, 6935.6, 5533.6 and 6385.9 mg GAE 100g
-1

 obtained with sun, air, freeze, 

vacuum and microwave dried mango peel, respectively (Figure 5.1b). The TPC of freeze, 

forced-air and microwave dried peel were increased significantly by 43, 31 and 24%, 

respectively compared to fresh peel. Of the drying treatments, freeze drying produced a 
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significantly higher TPC than sun or vacuum drying. There were no significant differences in 

the TPC of dried peel produced by freeze, forced-air or microwave drying. 

c. Kernel 

The total phenolic content of fresh, sun, air, freeze, vacuum and microwave dried mango 

kernel was 10749, 12696, 9129, 13888, 13655 and 8113 mg GAE 100g
-1

 DW respectively 

(Figure 5.1c). There were no significant (p ≥ 0.05) differences between the TPC of fresh 

kernel and dried kernel produced by any of the five drying processes. Of the drying 

treatments, sun, freeze and vacuum drying produced significantly higher TPC in the dried 

kernel products than forced-air or microwave drying.  
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Figure 5.1. Effects of drying on TPC of 

mango flesh, peel and kernel.   

Figure 5.2. Effects of drying on ABTS  

values of mango flesh, peel and kernel.   
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Figure 5.3. Effects of drying on DPPH values 

of mango flesh, peel and kernel. 

Figure 5.4. Effects of drying on FRAP values 

of mango flesh, peel and kernel. 
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Figure 5.5. Effects of drying on H-ORAC 

values of mango flesh, peel and kernel. 

Figure 5.6. Effects of drying on L-ORAC 

values of mango flesh, peel and kernel. 

Values are the mean (n=12). Different letters (a-d) show significant differences at p < 0.05 using 

the Fisher‟s LSD multiple comparison tests. 
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5.3.2. Effect of various drying treatments on the antioxidant capacity of mango fractions 

as measured by ABTS, DPPH, FRAP, H-ORAC and L-ORAC methods. 

Antioxidants prevent or repair free radical damage by donating electrons to free radicals and 

converting free radicals to harmless molecules (Frankel and Meyer, 2000; Koleva et al., 

2002).  Plants contain many different types of natural antioxidants such as vitamins A, C and 

E, carotenoids, flavonoids and simple phenolic compounds. Determination of the antioxidant 

capacity TAC of a food component is an accepted indicator of the capacity of the food to 

scavenge free radicals (Mackerras, 1995; Duell, 1996; Cano et al., 1998). The ABTS, DPPH, 

FRAP and ORAC are four techniques commonly reported in the literature that are used to 

determine the antioxidant capacity of food components. 

5.3.2.1. ABTS radical cation decolourization assay  

a. Flesh 

ABTS scavenging activities of fresh mango flesh was 84.6 µmol TE g
-1

 DW and those of sun, 

forced-air, freeze, vacuum and microwave dried mango flesh samples were 46.7, 73.8, 54.1, 

47.1 and 58.2 µM TE g
-1

 DW, respectively (Figure 5.2a). The drying treatments except for the 

forced-air drying resulted in a reduction in the ABTS radical scavenging activity in the dried 

mango flesh products (p < 0.05). Forced-air drying was the most effective of the five drying 

treatments evaluated. 

b. Peel 

ABTS scavenging activities of fresh, sun, forced-air, freeze, vacuum and microwave dried 

mango kernel samples were 754.6, 684.8, 765.8, 787.2, 711.0 and 812.4 µmol TE g
-1

 DW, 

respectively (Figure 5.2b). There was no significant difference in the ABTS scavenging 

activities between fresh peel and dried peel produced by any of the five drying treatments. 

The only significant observation was that the ABTS scavenging activity was higher in 

microwave dried peel than sun dried peel.  

c. Kernel 

ABTS scavenging activities of fresh, sun, forced-air, freeze, vacuum and microwave dried 

mango kernel samples were 1683.6, 2067.3, 1577.6, 2227.6, 2268.5 and 1510.0 µmol TE g
-1

 

DW, respectively (Figure 5.2c). There were no significant differences between fresh kernel 

and the dried kernel products produced by sun, forced-air or microwave drying. In contrast, 

the vacuum and freeze dried kernel products had significantly higher ABTS scavenging 

activity (34.7% and 32.3%, respectively) than fresh kernel (p < 0.05).  
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5.3.2.2. DPPH radical scavenging activity assay 

a. Flesh 

The antioxidant capacity of fresh mango flesh was 77.6 µmol TE g
-1

 DW and that of sun, 

forced-air, freeze, vacuum and microwave dried mango flesh products were 36.5, 52.0, 45.4, 

37.4 and 38.6 µmol TE g
-1

 DW, respectively (Figure 5.3a). Drying produced a significant     

(p < 0.05) and dramatic decrease in DPPH radical scavenging activity compared to fresh 

mango flesh. The forced-air dried samples had significantly higher (p < 0.05) DPPH 

scavenging activity than microwave, vacuum and sun dried products. However, forced-air 

drying decreased the DPPH levels by 53.0% relative to non-drying (Figure 5.3a). The sun 

dried flesh samples had the lowest DPPH levels (36.5 µmol TE g
-1

). 

b. Peel 

The total antioxidant capacities of fresh, sun, forced-air, freeze, vacuum and microwave dried 

peel samples were 675.7, 664.9, 743.7, 735.4, 679.8 and 817.8 µmol TE g
-1

, respectively. 

There were no significant differences between fresh and dried mango peel samples except 

those dried by microwave (Figure 5.3b). The DPPH scavenging ability of microwave dried 

peel samples was 21.0, 23 and 20.3% significantly (p < 0.05) higher than fresh, sun or 

vacuum dried peel products, respectively.  

c. Kernel 

The DPPH scavenging activities of fresh, sun, forced-air, freeze, vacuum and microwave 

dried kernel samples were 1540.0, 1997.6, 1585.8, 2205.7, 2150.7 and 1376.1µmol TE g
-1

, 

respectively. The DPPH scavenging ability was significantly higher in the freeze (43.3%) and 

vacuum dried (39.7%) kernel compared to fresh kernel. The freeze or vacuum dried kernels 

had significantly higher antioxidant capacity than those dried by microwave or forced-air 

drying. There were no significant differences between the DPPH scavenging ability of fresh 

and the sun, air or microwave dried kernel samples (Figure 5.3c). 

5.3.2.3. Ferric Reducing Antioxidant Power (FRAP) assay 

In the FRAP assay, mango samples are assessed by their ability to reduce TPTZ-Fe
3+

 to 

TPTZ-Fe
2+

 as a measure of their antioxidant activity. Thus, the  FRAP assay is a method for 

measuring the total reducing power of electron donating substances which are not directly 

related to free radical reactions.  
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a. Flesh 

The FRAP levels of fresh, sun, forced-air, freeze, vacuum and microwave dried flesh samples 

were 67.1, 67.4, 95.8 , 82.1, 68.3 and 80.4 µmol Fe
2+

g
-1

 respectively (Figure 5.4a.). Unlike the 

ABTS and DPPH results, there was no significant difference in FRAP activity between the 

fresh and dried flesh products except for the forced-air-dried flesh which showed a significant 

increase compared to fresh flesh. The increase of 22.4% indicated that the reducing power in 

mango flesh was increased by the forced-air drying process.  

b. Peel 

The FRAP values of fresh, sun, forced-air, freeze, vacuum and microwave dried peel samples 

were 639.2, 601.5, 697, 834.2, 634.1 and 799.0 µmol Fe
2+

g
-1 

DW, respectively. The FRAP 

values of freeze and microwave dried mango peel samples were 30.5 and 25.2%, respectively 

and significantly higher than the fresh product. However, there were no significant differences 

in FRAP between fresh and sun dried or vacuum dried or forced-air dried peel products 

(Figure 5.4b).  

c. Kernel 

The FRAP values of fresh, sun, forced-air, freeze, vacuum and microwave dried kernel 

samples were 1430.4, 1801.8, 1094.2, 1710.9, 2150.4 and 1206.0 µmol Fe
2+

g
-1

, DW 

respectively. There were no significant differences in the FRAP levels between the fresh and 

any dried kernel products except those dried by vacuum drying (Figure 5.4c). The FRAP level 

of the vacuum dried product was significantly higher (50.4%) than fresh kernels. The vacuum 

dried kernels contained significantly (p < 0.05) 78.3 and 96.5% more FRAP than microwave 

or forced-air dried products, respectively.  

5.3.2.4. Hydrophilic Oxygen Radical Absorbance Capacity (H-ORAC) assay 

a. Flesh 

The H-ORAC of fresh mango flesh was 81.3 µmol TEg
-1

 DW and for sun, forced-air, freeze, 

vacuum and microwave dried kernel products were 38.7, 61.1, 32.2, 38.0 and 62.1 µmol TE  

g
-1 

DW, respectively (Figure 5.5a). All the drying treatments significantly (p < 0.05) reduced  

H-ORAC levels compared to fresh mangoes. The fresh flesh contained nearly 151.8% more     

H-ORAC than freeze dried and 110 to 114% more than vacuum or sun dried flesh products. 

Although microwave and forced-air drying were more effective than any other drying 

treatment, the H-ORAC values in the microwave and forced-air dried flesh products were still 

31.0 and 33.2%, respectively lower than in fresh flesh. 
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b. Peel 

The H-ORAC of fresh mango peel was 545.6 µmol TE
 
g

-1
 DW. The hydrophilic antioxidant 

capacities of sun, forced-air, freeze, vacuum and microwave dried peel samples were 450.3, 

398.5, 401.5, 407.5 and 513.3 µM TE g
-1 

DW, respectively. Fresh peel had significantly 

higher H-ORAC levels than forced-air, freeze or vacuum dried peel products (Figure 5.5b). 

There was no significant difference between fresh peel and sun or microwave dried peel 

products.  

c. Kernel 

The H-ORAC of fresh, sun, forced-air, freeze, vacuum or microwave dried kernel samples 

were 989.5, 869.8, 619.2, 907.3, 1076.1 and 712.8 µmol TE g
-1

 DW, respectively. There was 

no significant difference between fresh kernel and dried kernel products produced by the five 

drying treatments (Figure 5.5c).  

 

5.3.2.4. Lipophilic Oxygen Radical Absorbance Capacity (L-ORAC) assay  

a. Flesh 

The L-ORAC of fresh mango flesh was 6.9 µmol TE
-1

g sample and for sun, air, freeze, 

vacuum or microwave dried flesh products were 2.5, 2.0, 1.3, 1.2 and 1.7 µmol TE g
-1

 DW, 

respectively (Figure 5.6a). All of the drying treatments produced a significant reduction in the 

lipophilic antioxidant capacity of the dried products compared to fresh mango flesh.  

b. Peel 

L-ORAC values of fresh, sun, forced-air, freeze, vacuum or microwave dried peel samples 

were 6.0, 5.8, 4.2, 5.1, 5.9 and 5.7 µmol TE g
-1

 DW, respectively. The forced-air dried peel 

samples had significantly lower L-ORAC values. None of the drying treatments affected the 

L-ORAC value (Figure 5.6b). The results suggest that lipophilic antioxidants are retained 

during the drying treatments except that the high temperatures (65
o
C) and long exposure time 

(72 hours) during the forced-air drying treatment can reduce L-ORAC. 

c. Kernel 

The lipophilic antioxidant capacity of fresh, sun, forced-air, freeze, vacuum and microwave 

dried kernel samples were 12.1, 9.0, 11.4, 13.4, 8.2 and 6.4 µmol TE g
-1 

DW, respectively. 

The microwave, vacuum and sun drying treatments significantly reduced the L-ORAC levels 

in the dried products compared to fresh kernels (p < 0.05). There were no significant 

differences between fresh kernel and the dried kernel products produced by freeze or forced-

air drying (Figure 5.6c).  
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5.3.3. Analysis of the effects of drying on total phenolic content and antioxidant capacity 

using PCA 

In order to gain a better insight into the effects of the various drying treatments on TPC and 

antioxidant capacity of mango flesh, peel and kernel, PCA was used as a tool to determine the 

multivariate dependence among the variables (Brenna, 2009). In PCA, linear combinations of 

the original variables are derived which explain the maximum amount of variation in the data 

set with a minimum loss of information. The linear combinations of the original variables are 

called principal components. In this study, the variables are the assays.  

Since the variables (antioxidant values from different assays) had substantially different 

numerical ranges, the correlation matrix was used for the principal component analysis.  

Using the correlation matrix means that each variable is standardised by subtracting its mean 

and dividing by its standard deviation. 

With the six variables (assays) it is possible to generate a maximum of six principal 

components (Appendix A.2.1). Each principal component accounts for a portion of the 

variation in the original variables.  In this study, the first two principal components were 

found to account for much of the variation.  The values listed for each principal component 

are used to calculate the principal component value (or score) for each sample (Appendix 

A.2.1). A biplot can be produced by PCA. The biplot is a graphical display showing both the 

relationships between the samples and their characteristics with respect to the assays. The first 

two principal components are represented by the horizontal and vertical axes of the biplot and 

the principal component scores for each sample define the location of the sample on the 

biplot.   

Information about the variables appears in the biplot as lines (vectors) labelled with the 

variable name. The angle between two vectors represents the correlation between the 

variables represented by the vectors (the smaller the angle, the greater the correlation). 

The original data comprised 12 samples from each of 6 treatment groups, with 6 different 

assays being measured for each sample. These data were analysed by one-way ANOVA and 

presented in bar graphs (Figure 5.1 – Figure 5.6).  For PCA, only the mean of the 12 samples 

for each treatment group was used (Hossain et al., 2011). 

Loading plots and score plots are presented in Appendix A.2.1. The scale for the score plot 

reflects the range of scores for the samples (fresh and dried samples). The scale for the 

loading plot reflects the range of values for the coefficients of PC1 and PC2. When these 2 
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plots are combined to form the biplot, the horizontal and vertical axes use the same scale as 

for the score plot and the vectors from the loading plot may be lengthened (scaled) to improve 

the visualisation. PC scores and loading coefficients for flesh, peel and kernel are in Appendix 

A.2.1. 

5.3.3.1. Mango flesh 

The results reflect the mean TPC and antioxidant capacity of all fresh flesh samples and 

samples of flesh dried by sun, forced-air, freeze, vacuum and microwave drying. The two 

principal components (PC1 and PC2) explain 95.5% (Appendix A.2.1.1a.) of the total data 

variance and were chosen on the basis of their Eigenvalues (> 1). PC1 explained 59.1% of the 

total variance and in PC1, fresh flesh samples were able to be separated from dried samples. 

Dried samples were separated along PC2 (36.4% of the total variance explained).  

Figure 5.7. Biplot of first two principal components obtained from PCA showing the relation 

between antioxidant assays and the relation between the fresh and dried flesh samples. 

 

 

 

 

 

 

  

  

 

 

 

 

 

 

Figure 5.7 shows the projection of the samples and antioxidant values in the plane as defined 

by the two principal components. The antioxidant capacity measured by ABTS, DPPH,        

H-ORAC and L-ORAC are clustered together on the right hand side of plot (positive values) 

and these assay variables show higher loading coefficients in PC1 than TPC and FRAP 

(Appendix A.2.1.1b). The distance between the locations of any two treatments on the plot is 

directly proportional to the degree of differences or similarities between the treatments. Figure 
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5.7 displayed that all the variables relating to ABTS, DPPH, H-ORAC and L-ORAC 

separated fresh flesh samples from all the dried flesh products along PC1. The location of 

fresh flesh was well separated from the dried flesh products and had higher score on PC1 

(Appendix A.2.1.1c).  

With the exception of forced-air dried flesh, all the flesh samples dried by the other four 

drying treatments were in the negative PC1 plane and were characterised by low antioxidant 

capacity values as measured by ABTS, DPPH, H-ORAC and L-ORAC. The drying methods 

are discriminated from each other along PC2 due to the differences in TPC and FRAP values 

(TPC and FRAP had higher loading coefficients than other assay variables in PC2 as 

indicated in Appendix A.2.1.1b). In PC2, forced-air dried flesh showed the highest score in 

PC1 whilst fresh, vacuum dried and sun dried flesh samples were located in the lower part and 

showed the lowest values for TPC and FRAP (Appendix A.2.1.1c). Vacuum and sun dried 

flesh samples were grouped in the opposite quadrant from all the other drying treatments and 

showed the lowest values. 

5.3.3.2. Mango peel  

The results reflect the mean TPC and antioxidant capacity of all fresh peel samples and 

samples of peel dried by sun, forced-air, freeze, vacuum and microwave drying. Two 

principal components explained 87.6% (Appendix A.2.1.2a) of the total data variance and 

were chosen on the basis of their Eigenvalues (>1).  

PC1 explained 59.6% of the total variance which had positive loading coefficients of TPC, 

FRAP, DPPH and ABTS. In contrast, L-ORAC and H-ORAC were negative in PC1 

(Appendix A.2.1.2b). PC1 showed that freeze and microwave dried peel samples had higher 

positive scores (Appendix A.2.1.2c) compared to fresh and other dried peel products which 

reflect the higher antioxidant activity values obtained with the TPC, FRAP, DPPH and ABTS 

assays (Figure 5.8).  
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Figure 5.8.  Biplot of first two principal components obtained from PCA showing the relation 

between antioxidant assays and the relation between the fresh and dried peel samples. 

 

 

 

 

 

 

 

 

 

 

  

 

 

PC2 explained 28% of the total variance and had negative loading coefficients of H-ORAC 

and L-ORAC (Appendix A.2.1.2b). Particularly, H-ORAC had lowest loading coefficient in 

PC2, therefore, fresh and microwave dried peel products which were in the lower quadrant 

showed higher H-ORAC than the other dried peel samples which were located in the upper 

part of the coordinates. No difference in L-ORAC between fresh and dried peel products, 

except for forced-air dried peel which had the highest loading coefficient in PC2. 

5.3.3.3. Mango kernel 

The results reflect the mean TPC and antioxidant capacity of all fresh kernel samples and 

dried kernel products obtained from sun, forced-air, freeze, vacuum and microwave drying. 

From Figure 5.9, the first principal component (PC1) accounted for 73.5% of the variability 

and the second principal component (PC2) accounted for 17.8%. Together PC1 and PC2 

accounted for 91.3% of the total variance (Appendix A.2.1.3a).  
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Figure 5.9. Biplot of first two principal components obtained from PCA showing the relation 

between antioxidant assays and the relation between the fresh and dried kernel samples. 

 

 

 

 

 

 

 

 

 

 

 

 

 

The TPC and antioxidant capacity as measured by ABTS, DPPH, FRAP and H-ORAC had 

higher loading coefficients (Appendix A.2.1.3b) than L-ORAC in PC1, which explains 73.5% 

of the total variance.In PC1, vacuum and freeze dried kernel had the largest positive scores 

(Appendix A.2.1.3c) which reflects the higher antioxidant capacities, except for L-ORAC, 

compared to fresh and other dried kernel products.  

PC2, which explains a 17.8% of the total variance, had a very high loading coefficient of      

L-ORAC. There were no differences in L-ORAC between fresh and dried peel, except for the 

fact that freeze dried kernel had the highest score (Appendix A.2.1.3c)  whilst microwave and 

vacuum dried kernel had the lowest scores (Appendix A.2.1.3c)  in PC2. Therefore, freeze 

dried kernel showed higher L-ORAC than microwave and vacuum dried kernel.  

5.3.4. Effects of drying on total phenolic content and antioxidant capacity using CVA 

In general, the principle of Canonical Variates Analysis (CVA), also referred to as 

Discriminant Function Analysis (DFA), is similar to that of principal component analysis 

(PCA). The major difference between PCA and CVA is the following. PCA aims to find 

linear combinations of the original variables (the six antioxidant assays) which explain the 

maximum amount of variation in the data set with minimum loss of information. CVA is 

appropriate when the samples are in groups. The aim is to find linear combinations (called 

canonical variates) of the original variables that maximise the ratio of between groups to 
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within group variation thereby giving functions that can be used to discriminate between the 

groups (Alsberg et al., 1997).  

 

The first canonical variate from CVA is the linear combination of the original variables that 

accounts for most of the variation and best discriminates between the six treatments (the fresh 

or non-drying and the five drying treatments). The second canonical variate is the linear 

combination of the original variables which is second best in discriminating between the six 

drying treatments (Finlayson et al., 1985).   

Canonical variate analysis (CVA) was performed to evaluate the differences or similarities of 

fresh (n = 12) and dried mango samples produced by the five different drying treatments 

(n=12 for each treatment) using the values from the 6 antioxidant assays. Each mango 

fraction, namely flesh, peel and kernel was analysed separately. The original data (6 treatment 

groups x x 12 samples) as shown in Figure 5.1 to 5.6 was used for CVA. The CVA plot is a 

graphical display showing the separation of sample groups. In CVA plot, the circles are the 

confidence regions about the mean for the group and when 2 circles overlap, they are not 

statistically different at the 95% confidence level. To statistically evaluate the discrimination 

between circles, the different letters a-d indicated the statistically significant differences 

between circles (treatments) and is presented in Appendices A.2.2.1b, A.2.2.2b and A.2.2.3b). 

5.3.4.1. Mango flesh  

The canonical variate (CV) plot (Fig 5.10) show that the first canonical variate dimension 

explains 88.59% of data and the second dimension explains 7.91% of the variables together 

they account for 96.50% of the total variance. CV2 accounts for only 7.91% of the variation 

so separation of the groups was mainly presented in CV1. The differences in antioxidant 

capacity (measured by assays) between flesh from different groups therefore, are reported 

based on CV1. 

CV1 was primarily driven by L-ORAC which had the highest loading in CV1 followed by   

H-ORAC, DPPH and ABTS (Appendix A.2.2.1a).  

Figure 5.10 shows the samples plotted using the canonical variate scores. The CV1 (on the 

horizontal axis) separates the fresh and dried products. The wide distance between the circles 

indicate there are clear differences between the antioxidant capacities of fresh and the dried 

products.  The fresh flesh had significantly (p < 0.05) higher L-ORAC values than dried flesh 

(Appendix 2.2.1b). Of the dried flesh products, the plot showed that there was a visible 
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distance difference between the circle of freeze dried and the other dried flesh. Freeze dried 

flesh samples showed significantly (p < 0.05) lower L-ORAC, than the other dried flesh 

products (Appendix 2.2.1b).  

Figure 5.10. Canonical variates analysis of fresh and dried flesh produced by five different 

drying treatments 

 

 

Note: Explanation of circles in the text in 5.3.4. 

 

5.3.4.2. Mango peel  

The canonical variate (CV) plot (Fig 5.11) show he canonical variate analysis in peel of 6 

antioxidant assays for the first two eigenvalues. The first canonical variate dimension explains 

68.18% of data and the second dimension explained 16.16% of the variables. Both CV1 and 

CV2 account for 84.35 % of the total variance ratio. TPC, DPPH and FRAP had positive 

loadings whilst H-ORAC and L-ORAc had negative loadings in CV1 (Appendix A.2.2.2b).   
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Figure 5.11. Canonical variates analysis of fresh and dried peel produced by five different 

drying treatments. 

 

                                    

 

Dried peel, had significantly (p < 0.05) increased TPC, DPPH and FRAP values but decreased 

H-ORAC and L-ORAC values compared to fresh peel.  

Of the dried peel products, freeze and forced-air dried peel had significantly higher TPC, 

DPPH and FRAP values than any other dried peel sample. The microwave and forced-air 

products showed significantly higher (p < 0.05) ABTS and DPPH than sun and vacuum dried 

peel (Appendix A.2.2.2b).  
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significant differences (p < 0.05) in antioxidant capacity in fresh and dried group. Of the dried 

peel products, freeze and forced-air dried peel had significantly higher TPC, DPPH and FRAP 

values than any other dried peel sample (Appendix A.2.2.2b). 
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explained 47.07% of the data and the second dimension 31.45%. Both CV1 and CV2 

accounted for 78.49 % of the total variance ratio. CV1 was primarily driven by L-ORAC with 

the highest negative loading coefficient) whilst FRAP, TPC, ABTS, DPPH and H-ORAC 

were more important in CV2 (Appendix 2.2.3a).  

In CV1, which is dominated by L-ORAC (negative), the vacuum and microwave dried kernel 

showed higher CVA scores than the fresh products. This finding indicated that the fresh 

kernel had higher L-ORAC values than vacuum and microwave dried kernel products. Of the 

five dried kernel products, the freeze dried product had significantly higher (p < 0.05)           

L-ORAC than any other dried kernel product. 

Figure 5.12. Canonical variates analysis of fresh and dried kernel products produced by five 

different drying treatments. 

     

                                

In regards to CV2, the circles of the fresh kernels and dried kernels overlapped except for the 

forced-air and microwave dried kernels which are positive in CV2. The loading coefficients 

of TPC and FRAP, were negative in CV2 and consequently forced-air and microwave dried 

kernels had the significantly lower TPC and FRAP values (p < 0.05) than the other dried 

kernel products (Appendix A.2.2.3b). There were no significant differences (p < 0.05) 

Vacuum-dried 

Microwave dried 

Sun-dried 

Forced-air dried 

Freeze-dried 

Fresh 

-
4 

-
4 

-
2 

-
3 

0 

-
2 

2 

-
1 

0 

1 

2 

3 

-
1 

3 1 -
3 

C
V

 2
 (

3
1
.4

5
%

) 

CV 1 (47.07%) 



87 

 

 

between fresh and vacuum, sun and freeze dried kernel samples. However, of the drying 

treatments, vacuum drying was the most effective and significant (p < 0.05) in retaining 

FRAP and TPC values compared to the freeze, microwave and forced-air drying treatments. 

 

5.4. Discussion 

Previous reports have shown that the temperature used in a drying treatment affects the 

stability of the chemical components of food and often results in a reduction of antioxidants 

such as polyphenols, ascorbic acid, tocopherols and carotenes in the dried products. The 

reduction is due to chemical or enzymatic changes that cause volatilisation or thermal 

decomposition of specific molecules (Larrauri, 1997; Jang et al., 2007). There could be 

several possible interactions between components in the food during the heat treatment. Such 

interactions are dependent on (i) the presence or the absence of hydroxyl groups in the B ring 

of flavonoids (Sichel et al., 1991); (ii) whether compounds are liberated or released (Jeong et 

al., 2004); (iii) caramelisation; (iv) formation of Maillard reaction products (MRPs) and (v) 

the interaction between components from the breakdown of cellular constituents (Nicoli et al., 

1997; Liu et al., 2008). The kinetics of these interactions depends on the chemical and 

structural composition of the starting material which will vary between the flesh, peel and 

kernel. Thus, the content of antioxidants such as ascorbic acid, carotenoids, tocopherols, 

phenolic compounds in dried mango flesh, peel and kernel will vary according to the drying 

treatment. 

5.4.1. Effects of drying on total phenolic content and antioxidant capacity of mango flesh 

The antioxidant activities of phenolic compounds vary depending on the chemical structure, 

concentration and oxidized state of the phenolics (Nicoli et al., 1999). There was a significant 

(p < 0.05) increase in TPC in freeze, forced-air and microwave dried flesh products. Freeze 

drying has been previously reported as a suitable treatment to retain nutrients such as 

phenolics in a dried product (Venskutonis, 1997). During the freeze drying process, the 

development of ice crystals within the tissue matrix accelerates the rupturing of the cell 

structure which results in a better solvent access and consequently a higher extraction of 

phenolic compounds from flesh samples (Shih et al., 2009). A higher TPC was found in 

forced-air and microwave dried flesh samples than in the corresponding fresh product which 

could be due to the formation of new phenolic compounds by the non- enzymatic conversion 

of phenolic precursor molecules to phenolic compounds (Soong and Barlow, 2004) or to the 

breakdown of cellular constituents during the thermal treatment which releases bound 
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phenolics to free phenolics (Dewanto et al., 2002; Randhir et al., 2008; Boateng et al., 2008; 

Vega-Galvez et al., 2009). 

In contrast, the decrease in ABTS and DPPH scavenging activity, H-ORAC and L-ORAC that 

occurred in most dried mango flesh products could indicate that the phenolic compounds that 

are released during the drying treatments are not effective in their ABTS and DPPH 

scavenging ability or in inhibiting the peroxylradical induced oxidation as measured by 

ORAC. The exception is that the ABTS scavenging activity of the forced-air dried flesh 

product was not significantly different from fresh flesh.  

A reduction in the levels of ascorbic acid and carotenoids are known to occur in mango flesh 

during the drying treatments with or without heat. These changes could offer an explanation 

for the lower antioxidant capacity of the dried flesh products (Ndawula, 2004; Rocha Ribeiro, 

2007). Another possible explanation for the reduction in L-ORAC values is that the lipophilic 

antioxidants such as phospholipids, carotenoid and tocopherols are degraded at the elevated 

drying temperatures (Azizah et al., 1999).  

 

Unlike the data from ABTS, DPPH, H-ORAC and L-ORAC, there were no significant 

differences in FRAP between the fresh and dried mango flesh products, except for forced-air 

dried flesh. The difference in the assays results might be due to the fact that the ABTS, DPPH 

and ORAC assays involve free radicals reacting with phenolic and browning pigment 

compounds, whilst the FRAP assay measures the total reducing power of any electron 

donating substance. The latter is not directly related to free radical scavenging. Furthermore, 

in the FRAP assay, not all reductants that are able to reduce Fe
3+

 are antioxidants and some 

antioxidants that can effectively scavenge free radicals may not efficiently reduce Fe
3+

. That 

is, the FRAP assay is an indirect test of total antioxidant power and not specific for radical 

scavenging as the ABTS, DPPH and ORAC assays (Ou et al., 2002; Wangcharoen and 

Morasuk, 2007). Interestingly, the FRAP values for the forced-air dried flesh, were 

significantly higher than fresh flesh which is similar to the TPC results.  

In summary all the drying treatments (except for the forced-air drying effects on ABTS 

values), decreased the antioxidant capacity as measured by ABTS, DPPH, ORAC whilst 

forced-air, freeze and microwave drying increased TPC and FRAP values. Among the drying 

treatments, forced-air drying was the most effective treatment for flesh based on the TPC, 

DPPH, ABTS, FRAP and H-ORAC levels of all the dried flesh products. The exceptions to 
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this observation are the DPPH and H-ORAC levels in the freeze and microwave dried flesh 

products, respectively.  

PCA showed that the high loadings of ABTS, DPPH, H-ORAC and L-ORAC in PC1 and the 

higher score of fresh flesh in PC1 indicated that fresh flesh had higher antioxidant values 

measured by ABTS, DPPH, H-ORAC and L-ORAC than those of the dried flesh. Besides, the 

high loadings of TPC and FRAP and higher score of forced air dried flesh relative to fresh and 

other dried flesh sample in PC2 suggested that forced air dried samples had high TPC and 

FRAP values 

The results from PCA and CVA are in agreements with those obtained by ANOVA (5.3.1 and 

5.3.2) and confirmed that dried flesh showed lower ABTS, DPPH, H-ORAC and L-ORAC 

values than fresh flesh samples. Forced-air dried flesh however had higher TPC and FRAP 

values than fresh flesh or other dried flesh samples. 

5.4.2. Effects of drying on total phenolic content and antioxidant capacity of mango peel 

Similar to flesh, forced-air, freeze and microwave drying increased the TPC of peel compared 

to fresh peel. The explanation for the increase in TPC could be due to the release and 

formation of new phenolic products. There were significant (p < 0.05) changes in antioxidant 

capacity as measured by the different methods between fresh and dried peel. There was a 

significantly (p < 0.05) higher FRAP in microwave and freeze dried peel compared to fresh. 

In addition, there were significantly lower H-ORAC values in forced-air, freeze and vacuum 

dried peel and significantly (p < 0.05) lower L-ORAC in forced-air compared to fresh peel.   

Nevertheless, there were no significant changes in ABTS and DPPH values between fresh and 

dried peel examined. This finding is in agreement with the results reported by Berardini et al. 

(2005) who showed that existing antioxidants were lost and new antioxidants produced during 

thermal treatment processes and that the changes could contribute to the stability of 

antioxidants in dried peel products. Mango peels are rich sources of flavonol O- and xanthone 

C-glycosides (Berardini et al., 2005; Schieber et al., 2003). Research has shown that there is a 

significant loss of peel flavonol glycosides on drying which is dependent on the extent of the 

heat treatment. In contrast, some xanthone glycosides are formed during the drying process 

(Berardini et al., 2005).  

Of the drying treatments in this research, microwave drying, followed by freeze drying were 

the most effective processes as indicated by the high TPC, FRAP and H-ORAC values in the 

dried peel products.  
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The results from PCA reinforced that in general, the drying treatments influenced the 

antioxidant capacity of mango peel and microwave and freeze drying were more effective in 

increasing levels of phenolic compounds, reducing power activity and free radical scavenging 

activity whilst fresh peel products exhibited higher H-ORAC values. There were no 

differences in L-ORAC between fresh and dried peel, except for forced-air dried products 

which had lower values than fresh peel.  

The results from CVA are in agreements with those analysed by ANOVA (5.3.1 and 5.3.2) 

and by PCA (5.3.3) confirming that the drying treatments influenced the antioxidant capacity 

of mango peel.  Freeze and forced-air drying treatments significantly (p < 0.05) increased 

TPC, DPPH (not found by ANOVA) and FRAP, but significantly (p < 0.05) decreased         

H-ORAC and L-ORAC values compared to fresh peel. Of the drying treatments, microwave, 

forced-air and freeze air drying in general are ideal drying treatments for mango peel. 

 

5.4.3. Effects of drying on total phenolic content and antioxidant capacity of mango 

kernel 

Whilst forced-air, freeze and microwave drying increased TPC of mango flesh and peel, no 

significant differences in TPC were observed between any dried mango kernel samples and 

fresh kernel suggesting that the chemical and structural composition of the starting material is 

a contributing factor to the final phenolic content of the dried product. The main phenolic 

compounds of mango seed kernel are phenolic acids (Soong and Barlow, 2004; 

Maisuthisakul, 2008) which exist as free phenolic acid (42-56%), esterified phenolic acid  

(10-19%) and insoluble bound phenolic acid (15-20%) (Schieber et al., 2000). Free phenolic 

acid usually increases in dried products as the heating time and temperature increases. A 

decline indicates that some phenolic acids are probably destroyed by the heat treatment. Thus, 

the observation that there is no significant differences between the TPC of fresh and dried 

kernel products could be explained by some phenolic compounds being generated during the 

thermal treatment whilst others are reduced and destroyed by the elevated temperature during 

the drying process.  

 

There were some significant changes in antioxidant capacity between fresh and dried kernel. 

The ABTS, DPPH and FRAP values of vacuum dried kernel and ABTS and DPPH of freeze 

dried kernel increased in comparison to fresh kernel. In contrast, L-ORAC in vacuum and 

microwave dried kernel products decreased. These changes suggested that the drying 

treatments influenced the antioxidant capacity of kernel in different ways.  
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Some drying treatments can increase or decrease the phenolic and antioxidant compounds of 

kernel, consequently, no significant changes in TPC or antioxidant capacity of kernel will 

occur. The observed stability of TPC and antioxidant capacity in kernel could therefore be due 

to a loss of existing antioxidants and the formation of new antioxidant products as a result of 

the drying treatments. It has already been demonstrated that high temperatures and long 

exposure times can result in a reduction of phenolic compounds and free radical scavenging 

activities. Furthermore, natural lipophilic antioxidants such as phospholipids, tocopherols and 

carotenoids, which occur in mango kernel, could be degraded and release some phenolic 

compounds.  There were however no significant differences between the various dried mango 

kernel products and fresh kernel in TPC and free radical scavenging activities.  

Of the five drying treatments, vacuum drying at a low temperature (60
o
C) for a short time   

(12 hours) or freeze drying (-50
o
C) for 48 hours would be expected to minimise the loss of 

antioxidants and consequently contribute to the retention of antioxidant compounds. The 

antioxidant compounds retained by vacuum drying are probably the hydrophilic antioxidants 

such as ascorbic acids and phenolic acids but not lipophilic antioxidants as indicated by the 

low L-ORAC levels (Figure 5.6c). The low L-ORAC levels were also obtained with 

microwave dried kernel suggesting that the high drying treatment temperature might destroy 

the lipophilic antioxidants in mango kernels. The TPC and antioxidant capacity of mango 

kernels (ABTS/DPPH radical scavenging activities, FRAP reducing power, hydrophilic and 

lipophilic peroxylradical induced oxidation/ORAC inhibiting activities) are both sensitive to 

thermal treatments. Consequently, vacuum drying and freeze drying are the most effective 

treatments for delivering higher ABTS, DPPH, FRAP and H-ORAC values in dried kernel 

compared to fresh kernel. However, freeze drying is ideal, because the process retains 

lipophilic antioxidants in mango kernels. 

The results from PCA are in agreements with those from one-way ANOVA. The freeze dried 

and vacuum dried kernel products showed the highest antioxidant capacities as measured by 

all the assays except for L-ORAC, compared to fresh and any other dried kernel product. 

There were no differences in L-ORAC between fresh and dried kernel, except for microwave 

and vacuum dried kernel. Freeze dried kernel had higher L-ORAC than any other dried 

kernel. There were no differences in L-ORAC between fresh and dried kernel products. 

Freeze dried kernel showed higher L-ORAC than microwave and vacuum dried kernel 

products. 
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Similar to one-way ANOVA and PCA, the CVA results showed there were no significant 

differences in L-ORAC between fresh and dried kernel, except for microwave and vacuum 

dried kernel. Additionally, freeze dried kernel had higher L-ORAC values than any other 

dried kernel product. Of the drying treatments, CVA also confirmed that vacuum drying was 

more effective than forced-air, microwave and freeze drying in retaining antioxidant capacity, 

except for lipophilic antioxidants. 

5.5. Conclusions 

 

 The effects of five different drying treatments on TPC and antioxidant capacity of 

fresh mango flesh, peel and kernel were determined. Sun, forced-air, freeze, vacuum 

and microwave drying influenced the TPC and antioxidant capacity of mango flesh, 

peel and kernel. Overall, the results obtained from the three statistical analyses, one-

way ANOVA, PCA and CVA on the effects of drying treatments on TPC and 

antioxidant capacity of fresh mango flesh, peel and kernel, were similar and 

consistent.  

 

 Drying treatments generally decreased the antioxidant capacity of flesh as measured 

by ABTS, DPPH, H-ORAC and L-ORAC which was possibly due to chemical or 

enzymatic changes from the volatilisation or thermal decomposition of specific 

antioxidant molecules. Forced-air drying is the preferred method for drying flesh as it 

increased the TPC and FRAP. Phenolic compounds which act as antioxidants could be 

formed and released during heat treatment at 65
o
C for 72 hours from processes such as 

caramelisation, Maillard reaction and the interaction between components from the 

breakdown of cellular constituents. 

 The drying treatments influenced the antioxidant capacity of peel. Microwave and 

freeze drying were more effective in retaining TPC and FRAP than fresh and any 

other dried peel product (except for forced-air dried peel).  Fresh peel products 

exhibited higher H-ORAC and L-ORAC than dried peel. Of the drying treatments, 

microwave and freeze drying were more effective than any other drying treatment. 

 There were no significant (p ≥ 0.05) differences in TPC between fresh and dried 

kernel suggesting that the drying treatment did not influence kernel TPC.  A possible 

explanation is that some phenolic compounds are generated during the thermal 

treatment whilst others are destroyed by the elevated temperature during the drying 



93 

 

 

process. However, vacuum drying and freeze drying were the most effective 

treatments for delivering higher ABTS, DPPH, FRAP and H-ORAC values in dried 

kernel compared to fresh kernel. Freeze drying is also more effective process in 

retaining lipiphilic antioxidants than any other drying treatment, except for forced-air 

drying. The effectiveness of vacuum and freeze drying was expected since antioxidant 

capacity (ABTS/DPPH radical scavenging activities, FRAP reducing power, ORAC 

hydrophilic and lipophilic peroxylradical induced oxidation) of mango kernels are 

sensitive to thermal treatments.  
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CHAPTER 6 

RELATIONSHIPS BETWEEN PHYSICOCHEMICAL 

CHARACTERISTICS AND ANTIOXIDANT CAPACITY 

 

6.1. Introduction     

Mango flesh, peel and kernel have been shown to contain high levels of antioxidants (Ribeiro 

et al., 2008). The antioxidant levels vary depending on a number of factors such as cultivar, 

growing location, climate, cultural practice, maturity and post-harvest practices such as 

processing, transportation and storage (Melgarejo et al., 2000; Ozkan, 2002; Zarei et al., 

2010). The physicochemical characteristics and antioxidant capacities of mangoes from five 

different cultivars were compared in chapter 4. The differences in physicochemical 

characteristics and antioxidant capacities could be attributed to either genetic differences 

between the cultivars or to the different maturity stages of the mangoes at the time of study. In 

this chapter, data from the Tommy Atkins cultivar (chapter 5) was used to investigate the 

relationship between physicochemical characteristics and antioxidant capacities of mangoes.  

In general, the physicochemical parameters of fruit can be used as indicators of their stage of 

maturity. As a climacteric fruit, mangoes are generally harvested when they are still unripe 

(green), and their ripening is then completed during their time to market (Lechaudel and Joas, 

2007). As mangoes  ripen: (i) the flesh firmness decreases (softens) due to changes in the cell 

walls, (ii) skin/peel colour changes from green to yellow or red mostly because of destruction 

of the green pigment, (iii) sugars increase due to conversion of starch to sugars and             

(iv) acidity decreases due to breakdown of acids in the flesh. Also vitamin C, moisture content 

and fresh weight of the fruit fractions might either decrease or increase during on-tree 

maturation, ripening and senescence (Beaulieu and Lancaster, 2007). The physiological 

changes that occur during storage also lead to variations in physicochemical characteristics, 

quality and antioxidant properties of mangoes. Consequently, any observed differences in 

maturity or physicochemical characteristics of the fruit should reflect variations in the 

physiology and biochemistry such as changes in the amounts of TPC or antioxidant quantities 

in mangoes. Several studies have already demonstrated that there is a significant correlation 

between the physicochemical properties, antioxidant activity and phenolic content of fruits. 

Drogoudi et al. (2008) reported that apple peel with darker, redder and bluer colour and apple 

flesh with lighter colour and lower soluble solid content exhibited higher antioxidants and 

nutritional values. Walkowiak-Tomczak et al. (2008) also suggested that plums with darker 

colour displayed higher anthocyanins. Wang and Lin (2000) found that blackberries and 
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strawberries had the highest antioxidant capacity measured by ORAC assay during the green 

stages whilst red raspberries had the highest capacity at the ripe stage. Also, total anthocyanin 

content increased with maturity for all blackberry, raspberry and strawberry. By determining 

the relationships between physicochemical properties (mostly based on maturity indices) and 

antioxidant capacities, specific physicochemical parameters may be able to be used as 

indicators  of the antioxidant capacity of the  flesh, peel and kernel components of mangoes 

(Manthey and Perkins-Veazie, 2009). Although the antioxidants of mangoes have been the 

subject of several studies, there is little information on the relationship between the 

physicochemical characteristics of the mango fruit and the antioxidant capacities of mango 

flesh, peel and kernel. There is, therefore, a need to assess whether there is a relationship 

between mango maturity as measured by physicochemical parameters such as colour, dry 

matter, firmness/texture, pH, total soluble solids (
°
Brix), acids and vitamin C with the 

antioxidant properties of mango flesh, peel and kernel. 

It has been suggested that phenolic compounds are major contributors to the antioxidant 

activities of foods of plant origin (Zielinski and Kozlowska, 2000; Zhao et al., 2008). 

Therefore, there should be a relationship between the TPC and the antioxidant capacity of 

fruits such as mangoes.  Furthermore the measurements of antioxidant capacity are based on 

different principles such as scavenging radicals or decomposing peroxides or chelating metal 

ions. Consequently, the assays often produce different results for the same samples within or 

between laboratories (Connor et al., 2002; Ou et al., 2002; Thaipong et al., 2006). The 

correlations between the various antioxidant assays are also inconsistent. However, a few 

reports have indicated there is a correlation between antioxidant capacity and the total 

phenolic content of mango flesh, peel and kernel (Ajila, 2007b; Ribeiro, 2008; Maisuthisakul 

and Gordon, 2009; Manthey, 2009). Up to date, there is also little published information on 

whether the physicochemical properties of mango fruit can be used as an indicator of the 

potential of mango flesh or peel or kernel as viable food sources of antioxidants. The aims of 

this chapter are to  

• Evaluate the relationships between different physicochemical characteristics of 

Tommy Atkins mangoes 

• Investigate the relationships between data from the six different methods of 

assaying the antioxidant capacities of mango flesh, peel and kernel.  

• Determine the relationships between the physicochemical parameters of mangoes 

with the total phenolic content (TPC) and antioxidant capacity of flesh, peel and 

kernel from the fruit.  
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6.2. Materials and methods 

6.2.1. Determination of physicochemical characteristics of Tommy Atkins mangoes 

Seventy two fresh Tommy Atkins mangoes were assessed for their physicochemical 

characteristics based on their maturity score, colour, firmness, total soluble solid (TSS), 

titratable acidity (TA), vitamin C, moisture content and fruit, flesh, peel and kernel fresh 

weights. The determinations of the physicochemical characteristics of mangoes are described 

in 3.3. 

6.2.2. Determination of antioxidant capacity of mango fractions 

Six antioxidant assays were applied to mango flesh, peel and kernel (from 72 Tommy Atkins 

mangoes) as described in 3.6. They were TPC, ABTS, DPPH, FRAP, H-ORAC and L-ORAC. 

6.2.3. Statistics 

a. Pearson’s correlation analysis and principal component analysis 

All assays were conducted in triplicate. The Pearson‟s correlation analysis and principal 

component analysis (PCA) were performed as outlined in 3.17.6 and 3.17.4 to determine the 

correlations:  

(i) among physicochemical parameters: the matrix consisted of 72 fresh mangoes and 16 

physicochemical variables (maturity score, firmness, TSS, TA, TSS:TA ratio, vitamin C, 

moisture content, L*, a*, b*, chroma, hue, total weight, % flesh, % peel and % kernel).  

(ii) among antioxidant capacity assays: the matrix consisted of 72 fresh fruits (216 flesh, peel 

and kernel samples) and six antioxidant assays (TPC, ABTS, DPPH, FRAP, H-ORAC,         

L-ORAC).  

(iii) between fruit physicochemical parameters of mango fruits and antioxidant capacities of 

flesh, peel and kernel. The matrix consisted of 16 physicochemical property variables 

(maturity score, firmness, TSS, TA, TSS:TA ratio, vitamin C, moisture content, L*, a*, b*, 

chroma, hue, total weight, % flesh, % peel and % kernel) in the mango fractions that showed 

no significant interaction effects from the treatments and the variables from the 6 antioxidant 

assays (TPC, ABTS, DPPH, FRAP, H-ORAC and L-ORAC). A total of 22 variables were 

used to examine the correlation. 

The data was inputted into Minitab 16 to determine the correlation coefficients, their 

significance and principal component analysis (PCA) by standardising the variables. 



97 

 

 

Correlations were presented as Pearson‟s correlation coefficients R which were considered 

significant when p < 0.05 based on a two tailed test.   

PCA is a useful statistical method for visualising and interpreting large datasets by forming 

fewer composite variables (principal components). PCA was used to obtain a simplified 

overview of the relationships between data sets and to double check the results from 

Pearson‟s correlation analysis. The Varimax rotation method was also used in principal 

component analysis (PCA) to maximise the sum of the variances of the squared loadings to 

obtain all the coefficients (squared correlation with factors) which can be either extremely 

large or small with few intermediate values (Kaiser, 1958). 

b. Interaction effects 

Data on antioxidant capacities were evaluated first before determining the correlations since 

Chapter 5 indicated there were significant effects of drying treatments on antioxidant capacity 

values of mango samples so it is difficult to make a general statement about the correlations 

of antioxidant assays used for measuring all of 72 mangoes from different treatments. 

Therefore, the simple effect tests (as described in 3.17.4) were implemented in MINITAB for 

each mango treatment (fresh or dried) on the correlations between two individual assays (see 

Appendix A.3.1). Only data from the treatments which showed non-significant (p ≥ 0.05) 

interaction effects were used for determining correlations. The interaction effects and data 

treatment were performed by the same procedure for each mango fraction (flesh, peel and 

kernel).   

c. Repeatability of assays 

Seventy two dried mango flesh, peel and kernel fractions (72 mangoes x 3 fractions) were 

assayed for antioxidant levels as measured by six different methods. Each assay was 

performed in triplicate. The repeatability of each assay was evaluated as described in 3.17.8. 

It is noted that there were significant effects of drying treatments on antioxidant capacity of 

mango flesh, peel and kernel, the number of mangoes used for evaluating the assay 

repeatability varied after the interaction effects were tested as indicated in 6.2.3b. 

 

6.3. Results  

The relationships between physicochemical characteristics and antioxidant capacities were 

investigated by determining whether there were any correlations between the three sets of 

data. Specifically whether there were any correlations between (i) the physicochemical 

parameters; (ii) the antioxidant assays and (iii) the physicochemical parameters of the fruit 
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and antioxidant capacity of flesh, peel and kernel. The results are presented from the 

Pearson‟s correlation analysis and principal component analysis (PCA).  

 

6.3.1. Pearson’s correlations between physicochemical characterisitcs of mangoes 

The differences in the physicochemical characteristics between the five different mango 

cultivars were investigated in Chapter 4. In the present chapter, the physicochemical 

parameters, of 72 mangoes from the cultivar Tommy Atkins were investigated and the 

correlations between their physicochemical properties were evaluated. Although the mangoes 

were from the same batch (mean physicochemical properties in Table 6.1), the 

physicochemical characteristics or maturity of each mango were actually different which 

enabled the relationships of the physicochemical properties and maturity to be evaluated. 

Particularly, the hue angle (41.8 ± 2.1) obtained from 72 mangoes in Table 6.1 were slightly 

different from the hue angle (from 12 freeze-dried mangoes) which was 53.1 ± 6.8          

(233.1
 o
 -180

o  
= 53.1

o
) obtained in Table 4.1.  

 

Table 6.1. The physicochemical properties of Tommy Atkins mangoes (n = 72). 

 

Parameters Value ± SE 

Maturity score     2.5 ± 0.1 

TSS (˚Brix)     6.0 ± 0.3 

TA (%)     0.9 ± 0.0 

TSS:TA     7.3 ± 0.6 

Firmness (kg cm
-2

)   40.5 ± 3.6 

Vitamin C (mg 100 g
-1

)   32.1 ± 0.4 

Moisture of flesh (%)   85.7 ± 0.4 

Total weight (g) 328.4 ± 3.8 

Percentage of flesh (g)   82.2 ± 0.4 

Percentage of peel (g)      6.3 ± 0.2 

Percentage of kernel (g)      5.3 ± 0.1 

Chroma    34.5 ± 0.9 

Hue (
o
)    41.8 ± 2.1 

L*    40.2 ± 0.8 

a*    18.7 ± 1.3 

b*    25.3 ± 0.9 
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Table 6.2. Correlation coefficients of physicochemical parameters of Tommy Atkins mangoes (n = 72). 

 

Parameters TSS TA TSS:TA Firmness Vitamin 

C 

Moisture 

of flesh 

Total 

weight 

Flesh 

% 

Peel  Kernel Chroma Hue L a b 

% % 

Maturity  0.34** -0.54***  0.50*** -0.72*** -0.55***  0.58***  0.02  0.12 -0.18  0.26*   0.08  0.27*  0.19 -0.13  0.2 

TSS  - -0.29*  0.86*** -0.21 -0.28*  0.24*  0.27* -0.03 -0.03  0.03   0.2  0.12  0.17 -0.03  0.22 

TA 

 

 - -0.64***  0.41***  0.85*** -0.48***  0.07  0.28* -0.05 -0.41***   0.11 -0.04  0.03  0.16  0.07 

TSS:TA 

  

 - -0.30** -0.59***  0.34**  0.12 -0.12 -0.05  0.23   0.12  0.09  0.11 -0.08  0.13 

Firmness 

   

 -  0.32** -0.69***  0.05 -0.21 0.27* -0.26* -0.18 -0.25* -0.25*  0.06 -0.23 

Vitamin C 

    

 - -0.50***  0.18  0.24* -0.01 -0.35**   0.12 -0.15 -0.08  0.21 -0.02 

Moisture 

of flesh 

     

 - -0.03  0.14 -0.14  0.04   0.18  0.15  0.18  0.04  0.15 

Total weight 

     

 -  0.05 -0.03 -0.18   0.04 -0.2 -0.23*  0.2 -0.2 

% flesh 

       

 - -0.81*** -0.33**   0.41***  0.24*  0.36**  0.07  0.40** 

% peel 

     

                                                  

  

 - -0.13 -0.34** -0.12 -0.21 -0.1 -0.25* 

% kernel 

         

 -   0.2 -0.07  0.23  0.06  0.22 

Chroma 

          

 -  0.01  0.56***  0.50***  0.62*** 

Hue 

           

 -  0.65***  0.69***  0.66*** 

L* of peel 

            

 -  0.34**  0.97*** 

a* of peel 

             

 -  0.32** 

b* of peel                              - 

*Correlation is significant at *p < 0.05, **p < 0.01, ***p < 0.001.  
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6.3.1.1. Pearson’s correlations between physicochemical properties and maturity score 

Table 6.2 shows there was a significant (p < 0.001) negative and strong correlation between 

firmness and maturity score; significant (p < 0.001) positive and moderate correlations 

between maturity score and moisture content, TSS:TA ratio and TSS and significant              

(p < 0.001) negative and moderate correlations between maturity score and vitamin C and TA. 

 

There were also significant (p < 0.05) and relatively weak correlations between maturity score 

with hue angles; L*; b* and percentage of kernel in the mango fruit.  There were no 

correlations (p ≥ 0.05) between maturity score and chroma; a*; total fruit weight; percentages 

of mango flesh and peel. 

 

6.3.1.2. Pearson’s correlations  between the physicochemical characteristics 

There were significant correlations between individual physicochemical parameters. Table 6.2 

shows significant (p < 0.001) positive and strong correlations between TSS and TSS:TA; TA 

and vitamin C; significant (p < 0.001) negative and relatively strong correlations  between 

firmness and moisture content; TSS:TA and TA. There were also significant (p < 0.05) 

positive and moderate correlations between firmness and TA; moisture content and TSS:TA; 

firmness and vitamin C: significant (p < 0.05) negative and moderate correlations  between 

vitamin C and TSS:TA ; vitamin C and moisture content; TA and moisture content; firmness 

and TSS:TA.  

 

In general, there were no significant correlations between any of the colour parameters or any 

other measured characteristic. The exception is that there was a significant (p < 0.05) but 

weak correlation between colour and firmness in which firmness was negatively correlated 

with L*; b* and hue. There were also significant (p < 0.001) and strong correlations between 

L* with b* or hue angle and weak-to-moderate correlations between L* and chroma.  

6.3.2. Pearson’s correlations between the antioxidant assays 

Before determining the correlations between the six different antioxidant assays (data from 72 

mangoes from fresh and 5 drying treatments) it was important to determine if there were any 

interaction effects between the treatments by assessing whether one variable (antioxidant 

values from an assay) is dependent or independent of another variable (fresh or dried 

treatments). Thus, the interaction effects between the drying treatments and the antioxidant 

levels measured by the six different assays were statistically tested using GLM (Appendix 

A.3.1). The data from fresh mango samples was identified to have an interactive effect 
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between the treatment conditions of mango samples with the antioxidant assay results. The 

data on the antioxidant levels in the fresh mangoes (n = 12) responsible for the interaction 

effects were therefore excluded from the statistical comparison. Only the data from the 

remaining 60 mangoes were used to examine the interrelationship between the antioxidant 

capacities measured by the six assays. The mean antioxidant capacity of mango flesh, peel 

and kernel from the six assays are in Table 6.3. The Pearson‟s correlation coefficients are in 

the Table 6.4, 6.5 and 6.6 for flesh, peel and kernel respectively. 

 

Table 6.3. Total phenolic content and antioxidant capacity of mango flesh, peel and kernel 

(Mean ± SE, n = 72). 

Antioxidant assays Flesh Peel Kernel 

TPC (mg GAE 100 g
-1 

DW) 662.5 ± 24.1
a
  6144.3 ± 180.0

b
 11496.6 ± 648.9

c
 

ABTS (µmol TE g
-1 

DW) 56.0 ± 2.2
a
  752.2 ± 17.5

b
 1930.2 ± 97.5

c
 

DPPH (µmol TE g
-1 

DW) 42.0 ± 2.3
a
  728.3 ± 18.1

b
    1863.2 ± 106.2

c
 

FRAP (µmol Fe
2+

 g
-1 

DW) 39.4 ± 1.5
a
 356.6 ±13.8

b
    796.3 ± 52.1

c
 

H-ORAC (µmol TE g
-1 

DW) 46.4 ± 2.4
a
  434.2 ± 13.7

b
    837.1 ± 59.8

c
 

L-ORAC (µmol TE g
-1 

DW)  1.7 ± 0.2
a
    5.3 ± 0.2

b
      9.7 ± 0.6

c
 

Means in the same row with the different superscripts (a-c) are significantly different (p < 0.05). 

 

The TPC (measured by Folin–Ciocalteu) of flesh samples was significantly (p < 0.001) 

correlated with antioxidant levels measured by ABTS, DPPH, FRAP and H-ORAC. There 

was no significant correlation (p ≥ 0.05) between TPC and L-ORAC. There was a relatively 

strong correlation between TPC and ABTS (p < 0.001) or FRAP (p < 0.001) and a significant 

moderate correlations with DPPH (p < 0.001) and H-ORAC (p < 0.001) with TPC. 

 

The four assays ABTS, DPPH, FRAP and H-ORAC were positively correlated with each 

other (p < 0.001). There was a significant (p < 0.05) but weak correlation between DPPH and 

H-ORAC in flesh. The highest correlation coefficients were between ABTS and FRAP         

(p < 0.001) and the lowest correlation was between DPPH and H-ORAC (p < 0.05). There 

was no significant correlation between L-ORAC and any other assay in flesh. 
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Table 6.4. Pearson‟s correlation coefficients between results from the six antioxidant assays 

for flesh (n = 60). 

  TPC ABTS DPPH FRAP H-ORAC L-ORAC 

TPC - 0.74** 0.56** 0.74** 0.56** -0.14 

ABTS 

 

- 0.64** 0.88** 0.69** 0.01 

DPPH 

  

- 0.57** 0.29* -0.26 

FRAP 

   

- 0.62** -0.01 

H-ORAC 

    

- 0.02 

L-ORAC 

     

- 

Correlation is significant at *p < 0.05; **p < 0.001. 

In peel, TPC was significantly (p < 0.001 or p < 0.05) correlated with antioxidant capacities 

as measured by ABTS, DPPH, FRAP, H-ORAC and L-ORAC. There were significant          

(p < 0.001) and relatively strong correlations between TPC with DPPH, FRAP, ABTS and   

H-ORAC and significant (p < 0.05) and moderate correlations between TPC with L-ORAC.  

All the antioxidant assays: ABTS, DPPH, FRAP, H-ORAC and L-ORAC were significantly 

and positively correlated in peel. In particular, the ABTS, DPPH and FRAP assays were 

highly significant (p < 0.001) and strongly correlated with each other. There was a highly 

significant (p < 0.001) and moderate correlation between H-ORAC with the other assays. 

 

Table 6.5. Pearson‟s correlation coefficients between results from the six antioxidant assays 

for peel (n = 60). 

  TPC ABTS DPPH FRAP H-ORAC L-ORAC 

TPC - 0.72** 0.78** 0.76** 0.64** 0.34* 

ABTS 

 

- 0.84** 0.79** 0.57** 0.30* 

DPPH 

  

- 0.78** 0.70** 0.34* 

FRAP 

   

- 0.57** 0.32* 

H-ORAC 

    

- 0.53** 

L-ORAC 

     

- 

Correlation is significant at *p < 0.05; **p < 0.001.  

 

The TPC of kernel was significantly (p < 0.001) and very strongly correlated with their 

antioxidant levels as measured by ABTS, DPPH, FRAP and H-ORAC. There was no 

significant (p ≥ 0.05) correlation between TPC and L-ORAC. Four of the antioxidant assays 

were significantly (p < 0.001) and strongly positively correlated with each other except for   

L-ORAC which showed no significant (p ≥ 0.05) correlations with any of the other 

antioxidant assays, except for DPPH. 
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Table 6.6. Pearson‟s correlation coefficients between results from the six antioxidant assays 

for kernel (n = 60). 

  TPC ABTS DPPH FRAP H-ORAC L-ORAC 

TPC - 0.98** 0.96** 0.91** 0.90** 0.26 

ABTS 

 

- 0.96** 0.94** 0.94** 0.23 

DPPH 

  

- 0.87** 0.89** 0.28* 

FRAP 

   

- 0.91** 0.12 

H-ORAC 

    

- 0.19 

L-ORAC 

     

- 

Correlation is significant at *p < 0.05; **p < 0.001.  

 

6.3.3. Repeatability of antioxidant assays 

The six assays TPC, ABTS, DPPH, FRAP, H-ORAC and L-ORAC were selected to 

determine the antioxidant capacity of mangoes. The coefficients of variation of all the six 

antioxidant assays for flesh, peel and kernel are in Figure 6.1. All the methods had a 

satisfactory coefficient of variation of less than 10%. 

 

Figure 6.1. Coefficients of variation (± SE) in six antioxidant assays for dried mango flesh, 

peel and kernel (n = 60). 
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6.3.4. Pearson’s correlations between physicochemical characteristics and antioxidant 

capacities 

The correlation coefficients between the physicochemical characteristics and antioxidant 

capacity in flesh determined by the six assays are shown in Table 6.7. 

 

In flesh, there was a significant (p < 0.05) negative and weak correlations between TSS and 

TSS:TA with FRAP and a significant (p < 0.05) positive and weak correlations between 

vitamin C with FRAP and L-ORAC. There were significant (p < 0.05) positive and weak 

correlations between the percentage of flesh with ABTS and FRAP and a significant             

(p < 0.05) negative and weak correlations between the percentage of peel with all the 

measurement of antioxidant capacity (except for TPC). 

 

The correlation coefficients between the physicochemical properties and antioxidant 

capacities in peel are in Table 6.8. There were significant (p < 0.05) and negative weak 

correlations between TA and Vitamin C with the lipophilic antioxidants, highly significant   

(p < 0.001) negative and moderate correlations between the percentage of peel with TPC and 

antioxidant capacity of peel measured by ABTS, DPPH, FRAP and H-ORAC. Interestingly, 

there were significant (p < 0.01 or p < 0.05) positive and weak correlations between the 

percentage of flesh with the TPC and antioxidant capacity of measured by ABTS, DPPH and 

FRAP. 

 

The correlation coefficients between the physicochemical properties and antioxidant capacity 

in kernel are shown in Table 6.9. There were more significant (p < 0.001 or p < 0.01) 

correlations between the physicochemical properties of the fruit and antioxidant levels in 

kernel than were observed with flesh or peel.  For example, there were significant (p < 0.001) 

negative and moderate correlations between the maturity score, total soluble solids and 

TSS:TA with TPC and antioxidant levels of kernel measured by ABTS, DPPH, FRAP and   

H-ORAC (Table 6.9). Furthermore, there were significant (p < 0.01 and p < 0.05) positive and 

moderate correlations between the firmness and total titratable acidity of fruit with TPC and 

antioxidant levels of kernel measured by ABTS, DPPH, FRAP and H-ORAC (Table 6.9). 

There was a significant (p < 0.01 and p < 0.05) positive and weak correlation between vitamin 

C and TPC and antioxidant capacities measured by ABTS and DPPH with vitamin C (Table 

6.9).  Significant (p < 0.01 and p < 0.05) negative weak correlations were found between the 

percentage of kernel with the TPC and antioxidant capacities of kernel measured by ABTS, 

DPPH, FRAP, H-ORAC and L-ORAC. In particular, there were significant (p < 0.05) positive 
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weak correlations between the percentage of peel with the TPC and the antioxidant capacity 

measured by all the assays, except for L-ORAC. 

 

Table 6.7. Correlation coefficients between physicochemical properties and antioxidant 

capacities in flesh (n = 60). 

Correlation is significant at *p < 0.05; **p < 0.001.  

 

Table 6.8. Correlation coefficients between physicochemical characteristics and antioxidant 

capacity in peel (n = 60). 

Parameters 
Antioxidant assays 

TPC ABTS DPPH FRAP H-ORAC L-ORAC 

Maturity  0.10 0.05 0.15 0.02 0.10 0.11 

TSS 0.08 0.16 0.07 0.03 -0.02 -0.03 

TA -0.17 -0.20 -0.22 -0.17 -0.18 -0.31* 

TSS:TA 0.12 0.20 0.14 0.06 0.07 0.21 

Firmness 0.15 0.07 0.06 0.15 0.06 0.11 

Vitamin C -0.22 -0.21 -0.20 -0.21 -0.24 -0.39** 

Moisture -0.04 0.02 0.06 -0.02 0.07 0.00 

Total weight -0.07 -0.12 -0.10 -0.16 -0.14 -0.17 

% Flesh 0.28* 0.32* 0.30* 0.31* 0.22 -0.04 

% Peel -0.49*** -0.48*** -0.52*** -0.41** -0.44*** -0.16 

% Kernel 0.22 0.08 0.24 0.10 0.27 0.26 

Chroma 0.01 0.20 0.06 0.07 -0.05 -0.04 

Hue 0.15 0.07 0.06 0.12 0.10 0.10 

L* of peel 0.08 0.14 -0.05 0.07 0.03 0.11 

a* of peel -0.15 -0.04 -0.03 -0.07 -0.10 -0.13 

b* of peel 0.12 0.18 0.03 0.11 0.05 0.06 

     Correlation is significant at *p < 0.05; **p < 0.01; ***p < 0.001.  

 

Parameters 
Antioxidant assays 

TPC ABTS DPPH FRAP H-ORAC L-ORAC 

Maturity  -0.01 0.03 0.02 -0.19 0.06 -0.16 

TSS -0.13 -0.08 -0.05 -0.30* -0.08 0.10 

TA 0.04 0.01 -0.06 0.15 0.03 0.20 

TSS:TA -0.14 -0.07 -0.08 -0.31* -0.08 0.09 

Firmness 0.03 -0.02 0.02 0.08 -0.07 0.21 

Vitamin C 0.16 0.18 0.01 0.29* 0.10 0.30* 

Moisture -0.22 -0.09 -0.14 -0.14 -0.05 -0.16 

Total weight 0.14 0.10 -0.10 0.05 0.08 0.06 

% Flesh 0.18 0.34** 0.18 0.34** 0.20* 0.24 

% Peel -0.16 -0.42** -0.26* -0.30* -0.27 -0.28 

% Kernel 0.03 0.12 0.19 -0.07 0.09 -0.07 

Chroma 0.03 0.08 0.07 0.05 0.01 0.09 

Hue -0.12 -0.28* -0.04 -0.27* -0.21 -0.16 

L* of peel -0.19 -0.28* -0.02 -0.29* -0.25 -0.17 

a* of peel 0.08 0.21 0.04 0.20 0.08 0.06 

b* of peel -0.12 -0.20 0.02 -0.23 -0.18 -0.05 
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Table 6.9. Correlation coefficients between physicochemical characteristics and antioxidant 

capacity in kernel (n =60). 

Parameters 

Antioxidant assays 

TPC ABTS DPPH FRAP H-ORAC L-ORAC 

Maturity  -0.58*** -0.55*** -0.55*** -0.51*** -0.47*** -0.11 

TSS -0.50*** -0.53*** -0.50*** -0.48*** -0.55*** 0.08 

TA 0.41** 0.37** 0.42** 0.25 0.28* 0.11 

TSS:TA -0.49*** -0.51*** -0.50*** -0.44*** -0.49*** 0.02 

Firmness 0.44*** 0.43** 0.42** 0.38** 0.35** -0.13 

Vitamin C 0.33* 0.28* 0.34** 0.17 0.22 0.16 

Moisture -0.32* -0.30* -0.32 -0.20 -0.21 0.03 

Total weight -0.13 -0.17 -0.10 -0.25 -0.19 0.12 

%Peel 0.32* 0.33* 0.26* 0.42* 0.30* -0.05 

%Flesh -0.14 -0.16 -0.10 -0.26 -0.17 0.19 

%Kernel -0.36** -0.35** -0.36** -0.33* -0.29* -0.34** 

Chroma 0.06 0.03 -0.01 0.02 0.01 0.09 

Hue -0.05 -0.01 -0.04 -0.02 0.01 0.15 

L* of peel 0.07 0.08 0.03 0.12 0.07 0.18 

a* of peel 0.05 0.00 -0.01 -0.01 -0.03 -0.08 

b* of peel 0.01 0.03 -0.01 0.04 0.03 0.14 

        Correlation is significant at *p < 0.05; **p < 0.01; ***p < 0.001. 

 

6.3.5. Correlations using principal component analysis (PCA) 

PCA was used to gain an overview of the interrelationship among physicochemical 

parameters and antioxidant capacity as measured by the different assays. As described in 

chapter 5, principal components analysis is a statistical technique to simplify data by reducing 

the number of variables. In PCA, linear combinations of the original variables are derived 

which can explain the maximum amount of variations in the data set and which are orthogonal 

to each other. Principal component analysis (PCA) divides the data into distinct sets that best 

describes the relationship of the measured parameters. In this chapter, PCA was used on the 

physicochemical properties data set and the antioxidant level data set using Minitab 16.  

6.3.5.1. Correlations between physicochemical properties using PCA 

The matrix (72 mangoes x 16 variables) was used to perform PCA with the weighting method 

of standardisation. Six principal components were extracted that accounted for 85.8% of the 

total variation. These components were selected because their eigenvalue exceeded 1.0 and 

explained more than 80% of total variance. PC1 described the statistical relationship that 

accounts for the greatest amount of sample variation, followed by PC2, PC3, PC4, PC5 and 
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PC6. Each component described, in decreasing order, less variation in the sample set. The 

data from the first 3 of these PC accounted for 62.4% of the variance in the 16 variables 

(PC1= 27.7%, PC2 = 21%, PC3 = 13.7). The variable loadings for components PC1, PC2 and 

PC3 were extracted (Appendix A.3.2.1). 

Figure 6.2 shows the projection of the 72 mangoes and 16 variables in the plane defined by 

the two principal components. The plot of PC1 vs. PC2 provides a visualisation of the 

relationships between the variables. The loadings in the PCA plot express the level of 

correlations between principal components with the original variables and the level of 

correlations among the variables. 

Figure 6.2. Loading plot of the relationships between physicochemical property parameters in 

mangoes (n = 72). 
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Figure 6.2 shows that the maturity score, TSS, TSS:TS ratio, moisture content, hue angle, L* 

and b* were positively correlated in PC1. The maturity score, TSS, TSS:TS ratio and moisture  

had similar vector directions indicating there is a strong relationships  between these 

parameters. The similar vector directions of Hue, L* and b* suggests there is strong 

correlation between these colour parameters. But, the vector directions of these colour 

parameters are different from the maturity score vector. Therefore, there is either no 

relationship or very weak one between colour and maturity. Firmness, TA and Vitamin C 

were negatively correlated with PC1 in which firmness was highly correlated with maturity 

score whilst TA and vitamin C appeared to be highly correlated with each other. These 
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observations indicate that firmness, TA, and Vitamin C are good indicators of the maturity 

stage of mangoes.  

 

The second component (PC2) explained an additional 21.0% of the variation and describes 

the relationships between the percentages of mango fractions.  The percentage of flesh is 

highly negatively correlated with the percentage of peel and negatively moderately correlated 

with the percentage kernel. The directions of the vectors suggest that PC1 explains the 

variability in the maturity parameters whilst PC2 describes the variability in the percentage of 

the mango fractions. 

The third component PC3 (loading plot of PC3 is not shown but explains an additional 13.6% 

of the variation) was mostly dominated by the colour variables of the mango fractions in 

which there was a positive strong correlation between L* with b* and hue angle. This finding 

indicates that lighter mango peel is more yellow and darker ones are more orange-red.  

The short length of the vectors for total weight and a* value of mangoes indicate that these 

variables were correlated with other principal components rather than PC1, PC2 and PC3. 

However, as mentioned earlier, the other PCs account for a small amount of the variations, 

and are not presented. The total weight and a* value are therefore not taken into account in 

this evaluation. 

6.3.5.2. Correlations between antioxidant activity assays using PCA 

As indicated previously, due to the interaction effects, data from the 12 fresh mango fractions 

were excluded from this analysis. Data from 60 mango fractions were used to evaluate the 

correlations regardless of drying treatments being applied. The 60 mango fractions (flesh, peel 

and kernel) that underwent the five drying treatments were used for PCA. The matrix (60 

mangoes x 6 assay variables) was used to perform PCA by standardising the variables (TPC, 

ABTS, DPPH, FRAP, H-ORAC and L-ORAC assays). 

a. Correlations between antioxidant activity assays for mango flesh 

Three principal components were extracted that accounted for 88.2% of the total variation. 

These three components (PC1= 59.3%, PC2 = 18.6%, PC3 = 10.2%) were selected because 

their eigenvalues exceeded 1.0 or explained more than 80% of the total variance (Appendix 

A.3.2.2). The variable loadings for components PC1, PC2 and PC3 were extracted and the 

high weighting scores indicate that there is a tight association with that principal component. 
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Figure 6.3 shows the projection of the 60 mango flesh and 6 variables in the plane defined by 

the two principal components.  

Figure 6.3. Loading plot of the relationships between antioxidant assays for mango flesh      

(n = 60). 
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In the loading plot (Figure 6.3), all the antioxidant assays, except for L-ORAC, were strongly 

positively correlated with PC1 and had similar vector directions, indicating that a strong 

relationship exists between the variables. Moreover, TPC, ABTS, DPPH and FRAP were 

found to have a similar loading on PC1 indicating that these assays were closely related. The 

high loading of TPC on PC1 suggests that phenolics in mango flesh are good antioxidants.  

The two vectors for ABTS and FRAP visually overlap suggesting there is a very strong 

positive correlation between the ABTS and FRAP assays in flesh. In contrast, the vector 

direction of L-ORAC was orthogonal to PC1 and had a low loading. Furthermore, L-ORAC 

was strongly positively correlated with PC2 with the highest weighting on PC2 (Appendix 

A.3.2.2) confirming that there is no correlation between L-ORAC and any other antioxidant 

assay in mango flesh. 

b. Correlations between antioxidant activity assays for mango peel 

Two principal components were extracted that accounted for 83.2% of the total variation. PC1 

described 68.0% and PC2 an additional 15.2% of the variation in the sample set. These two 

components were selected because their eigenvalues exceeded 1.0 and explained more than 
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80% of total variance. The variable loadings for components PC1 and PC2 were applied and 

the high weighting scores indicate a tight association with that principal component. 

Figure 6.4 shows the projection of the 60 mango peel and 6 variables in the plane defined by 

the two principal components.  

In the loading plot (Figure 6.4), all the antioxidant assays, except for L-ORAC, were 

positively correlated with PC1 in which TPC, ABTS, DPPH and FRAP assays were strongly 

correlated. Moreover, TPC, ABTS, DPPH and FRAP were found to have a similarly loaded 

on PC1 confirming that these assays were closely related. The high loading of TPC on PC1 

suggests that phenolic compounds in mango peel are good antioxidants. Though H-ORAC 

and L-ORAC were correlated with PC1, they had lower loadings on PC1 compared to the 

other assays. H-ORAC was moderately correlated whilst L-ORAC was weakly correlated 

with the other assays. Along PC2, L-ORAC showed a high loading whilst the other assays 

exhibited a low loading indicating that there is no correlation between the lipophilic 

antioxidants with the hydrophilic antioxidants and total antioxidant capacities of mango peel. 

 

Figure 6.4. Loading plot of the relationships between antioxidant assays for mango peel       

(n = 60). 
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c. Correlations between antioxidant activity assays for mango kernel 

Two principal components were extracted that accounted for 95.3% of the total variation. PC1 

described 79.4% whilst PC2 described an additional 16% of the variation in the sample set. 
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These two components were selected because their eigenvalues exceeded 1.0 and explained 

more than 80% of total variance. The variable loadings for components PC1 and PC2 were 

applied and the high weighting scores indicate a tight association with that principal 

component.  

Figure 6.5 shows the projection of the 60 mango kernel and 6 variables in the plane defined 

by the two principal components. The loading plot in Figure 6.5 is similar to that obtained 

with peel. All the antioxidant assays for kernel, except for L-ORAC, were positively 

correlated with PC1. However, unlike peel, all of the assays which included TCP, ABTS, 

DPPH, FRAP and H-ORAC were strongly correlated. Moreover, TPC, ABTS, DPPH, FRAP 

and H-ORAC were found to be similarly loaded on PC1 indicating that the assays were 

closely related and the high loading of TPC on PC1 suggests that phenolic compounds in 

mango kernel are also good antioxidants. The direction of the L-ORAC vector was orthogonal 

to PC1 and had the low loading on PC1.  Along PC2, L-ORAC showed a high loading whilst 

the other assays exhibited low loadings indicating that there are no correlations between the 

lipophilic with hydrophilic or total antioxidant capacities in mango kernel. 

Figure 6.5. Loading plot of the relationships between antioxidant assays for mango kernel    

(n = 60). 

             

0.50.40.30.20.10.0

1.00

0.75

0.50

0.25

0.00

PC1 (79.4%)

P
C

2
 (

1
6

.0
%

)

L-ORAC

H-ORAC

FRAP

DPPH

ABTS

TPC

 

 

 

 



112 

 

 

6.3.5.3. Correlations between the individual physicochemical parameters and 

antioxidant activities using PCA 

PCA was performed on the physicochemical properties and the antioxidant assay data sets to 

obtain a simplified overview of the relationships between the variables of physicochemical 

properties and the antioxidant assay variables in a reduced dimensional plot.  

 

As indicated previously, only 60 mango fractions (flesh, peel and kernel fractions) regardless 

of drying treatments applied from the seventy two mangoes were used for PCA. The matrix 

(60 mangoes x 22 variables) was used to perform PCA by standardising the variables 

(antioxidant assays). The matrix consisted of 16 physicochemical property variables (maturity 

score, firmness, TSS, TA, TSS:TA ratio, Vitamin C, moisture content, L*, a*, b*, Chroma, 

Hue, total weight, % flesh, % peel and % kernel) and 6 antioxidant assay variables (TPC, 

ABTS, DPPH, FRAP, H-ORAC and L-ORAC). The correlations between the various 

physicochemical parameters and antioxidant assays were investigated in section 6.3.2 and 

6.3.3 so in this section, the relationships between the physicochemical parameters and the 

antioxidant assay variables in mango flesh, peel and kernel were evaluated. But, due to the 

large number of variables in one  plane, and the amount of generated data  for one figure, the 

visual interpretation of the PCs was improved by using the Varimax rotation in which the 

extraction of two components only was examined and one variable was  related , at the most, 

to one other variable (Appendix A.3.2.3).  

a. Correlations between physicochemical parameters and antioxidant activity in flesh 

Six principal components were extracted that accounted for 78% of the total variation and 

were selected because their eigenvalues exceeded 1.0. The PC1-PC2 plane contained the 

largest variation of all the possible planes and was used to plot the variables of 

physicochemical parameters and antioxidant capacity levels in flesh. Varimax was used in 

principal component analysis (PCA) to maximise the sum of the variances of the squared 

loadings. 
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Figure 6.6. Loading plot of physicochemical parameters and antioxidant assays for mango 

flesh (n = 60). 
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Figure 6.6 shows there was no correlation between any antioxidant assays in PC1 with the 

physicochemical variables. The orthogonality between the antioxidant assays, except for      

L-ORAC, with the measured maturity parameters maturity score, firmness, TSS, TA, TSS:TA 

ratio, Vitamin C, moisture content, total weight and % kernel implied there was no correlation 

between the two groups. It should be noted that PC1 represents the maturity parameters whilst 

PC2 describes the antioxidant assays. Although some colour space values were correlated 

with PC2, the short length of the vectors indicated there was no correlation between colour 

and antioxidant capacity. The percentage of peel was positively correlated with PC2 and had a 

medium loading on PC2 suggesting a weak-to-moderate negative correlation between the 

percentage of peel and the antioxidant capacity of mango flesh. A weak positive correlation 

between the percentage of flesh and the antioxidant assay was also observed. 

b. Correlation between physicochemical characteristics and antioxidants in mango peel 

Six principal components were extracted that accounted for 80.2% of the total variation. 

These components were selected because their eigenvalues exceeded 1.0 and explained more 

than 80% of the total variance. Similar to flesh, the PC1-PC2 planes contained the largest 

variation of all the possible planes and were used to plot the variables in peel. Varimax was 

used to maximise the sum of the variances of the squared loadings. 
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Figure 6.7 shows the projection of the 60 mango peel and 22 variables in the plane defined by 

the two principal components (factors) that were rotated by Varimax. The antioxidant assay 

groups were strongly positively correlated according to their PC1 characteristics. However, 

the L-ORAC had a low loading on PC1 indicating there was a negligible or weak correlation 

with the other assays. Moreover, the orthogonality between the antioxidant assays, except for 

L-ORAC, and the physicochemical variables suggest that there was no correlations between 

the antioxidant assays and the physicochemical parameters. An exception to this conclusion is 

that the antioxidant assay group was correlated with the percentage of peel. However, the 

correlation is weak-to-moderate due to a low loading of the percentage of peel on PC1. It 

should also be noted that PC1 defined the antioxidant assays variables whilst PC2 described 

the physicochemical parameters of mango peel. 

 

Figure 6.7. Loading plot of physicochemical parameters and antioxidant assays for mango 

peel (n = 60). 
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c. Correlation between physicochemical properties and antioxidants in mango kernel 

Six principal components were extracted that accounted for 83.1% of the total variation. 

These components were selected because their eigenvalues exceeded 1.0 and explained more 

than 80% of the total variance (Appendix A.3.2.3). Similar to flesh and peel, Varimax was 

used in principal component analysis (PCA) to maximise the sum of the variances of the 

squared loadings (Appendix A.3.2.3). 
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Figure 6.8 shows the projection of the 60 mango kernels and 22 variables in the plane defined 

by the two principal components (factors) that were rotated by Varimax. The figure shows 

that all the antioxidant assay variables, except for L-ORAC and several physicochemical 

variables were correlated with PC1. However, the antioxidant assay variables were strongly 

correlated with PC1 with the high loadings on PC1 ranging from 0.941 to 0.999 whilst the 

other physicochemical parameter variables had low loadings (< 0.5 or > -0.5). Therefore, 

there is only a weak-to-moderate correlations between these antioxidant assays with maturity 

score, TSS:TA ratio, TSS, moisture content, firmness, TA and vitamin C. The maturity score, 

TSS and TSS:TA ratio also had  high loadings on PC1 suggesting there is a higher correlation 

with the antioxidant capacity than with the other physicochemical parameters. There is a weak 

negative correlation between the antioxidant assays and the percentages of kernel. Meanwhile, 

PC2 was mostly dominated by the colour space values suggesting there is no correlation 

between the colour of mangoes and antioxidant capacity of mango kernel.  

Figure 6.8. Loading plot of physicochemical parameters and antioxidant assays for mango 

kernel (n = 60). 
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6.4. Discussion 

Overall, the results from the Pearson‟s correlation analysis (6.3.1) and principal component 

analysis (6.3.2) are in agreement. There were some slight differences. Namely the Pearson‟s 

correlation analysis results revealed that mango flesh with either low TSS or TSS:TA ratio or 
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high vitamin C exhibited relatively high FRAP values. Mango peel with low TA or vitamin C 

also exhibited relatively high lipophilic antioxidants.  

6.4.1. Correlations between physicochemical characteristics of mangoes 

The results illustrated that there was a relationship between specific physicochemical 

properties such as firmness, TSS, TA, TSS:TA ratio, moisture content and vitamin C with the 

maturity of mangoes. These findings are in agreement with previous studies (Kalra and 

Tandon, 1983; Slaughter., 2009; Jha et al., 2010; Padda et al., 2011). Specific details are 

discussed below. 

6.4.1.1. Correlations between physicochemical properties and maturity score 

Firmness has been considered a reliable indicator of mango maturity and has been used as a 

key indicator of when to harvest mangoes (Padda et al., 2011). Firmness decreases as fruits 

mature and more rapidly as they ripen. This statement was confirmed in this study by the 

significant (p < 0.001) negative and strong correlations between firmness and maturity score.  

As indicated in chapter 4, firmness reflects the stage of maturity of mangoes. The differences 

in firmness are probably due to changes in the structure of pectin polymers in the cell wall 

during the ripening process (Kalra et al., 1995). 

Total soluble solid and titratable acidity in fruits are also reliable indicators of maturity. A 

significant moderate and positive correlation between TSS and maturity score was found in 

this study. The changes in soluble solids are probably due to the conversion of starch to 

sucrose, fructose and glucose which also increases the sweetness of fruits (Lechaudel and 

Joas, 2006). Jha et al. (2006) suggested that TSS increases slightly as the fruit matures and 

increases more after the fruit reaches the mature green stage. 

A moderate and negative correlation between TA and maturity score was also found. This 

finding is similar to that reported by Lechaudel and Joas (2006), indicating that the acidity of 

the fruit decreases due to the breakdown of acids in the fruit during maturation. Lechaudel 

and Joas (2006) suggested that the decrease in mango acidity with increasing maturity was 

associated with a decrease in citric acid. Thus, the moderate and negative correlation between 

TA and maturity score probably depends on the citric acid concentrations in mangoes. 

 

Another suggested index for maturity is the TSS:TA. A moderate and positive correlation 

between the TSS:TA ratio and maturity score was observed.  Ripe mangoes exhibited a high 

TSS:TA ratio compared to green ones. This is in agreement with the research of Wanitchang 
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et al. (2011) who reported a higher TSS and a lower TA content in ripe mangoes.  Thus, 

TSS:TA increases as the  mangoes  ripen. The TSS:TA is reported to be the best parameter to 

predict the maturity of mangoes and also to be an excellent indicator of the taste and 

palatability of  fruits (Mahayothee et al., 2004).  

There have been few reports in the literature on the relationship between moisture content and 

maturity score of mangoes. However, Padda et al. (2011) suggested that  the  moisture content 

of  mangoes could be a reliable indicator of their maturity and quality during the ripening 

phase due to the relationship of moisture content with other maturity parameters such as TSS, 

TA and firmness (Saranwong et al., 2004).  This study confirmed this hypothesis by the 

observed significant (p  < 0.001) positive and moderate correlation between moisture content 

and maturity score (R = 0.577).   

There was also a significant negative and moderate correlation between vitamin C and 

maturity score. These results are in full agreement with the reports that vitamin C decreases 

during fruit maturation (Kalra and Tandon, 1983; Toor and Savage, 2005; Abourayya et al., 

2011).   

Normally, colour is an important contributor to the visual appearance of fruit and is often used 

in many grading standards for fruit quality. Tommy Atkins, which has a red skin colour 

(reddish blush) due to the anthocyanin, peonidin-3-galactoside (Proctor and Creasy, 1969), 

develops more colourful peels than other mango cultivars which are green or yellow skinned.  

Mitcham and McDonald (1992) stated that Tommy Atkins develops a more red (a*) and 

yellow (b*) peel pigmentation than any other cultivar (as described in chapter 4), and that 

these pigments contribute to Tommy Atkins being visually more appealing to consumers. 

However, the peel colour of Tommy Atkins remains unchanged during the ripening and post 

harvest stages. The results in this research confirm that there was no significant correlation 

between a* (p ≥ 0.05) and b* (p = 0.043) with maturity score. There were also weak 

correlations between maturity score and hue angle or L* and a non-significant (p ≥ 0.05) 

correlation between maturity score and chroma. These findings are in agreement with 

Malevski et al. (1977) who found that peel colour, as measured with a colorimeter, was an 

unreliable index of maturity in mangoes (Slaughter, 2009). Padda et al. (2011) stated that 

changes in peel colour are not always correlated with maturity, ripeness or internal eating 

quality. The latter facts are supported by this research. 
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There were no significant correlations between the maturity of mangoes with the total fruit 

weight and the percentages of mango fractions except for kernel. It should be noted however 

that the percentage of kernel in the whole fruit was higher in ripe than green mangoes. 

6.4.1.2. Correlations between physicochemical properties  

There were significant correlations between the measured physicochemical properties 

confirming that some of the measured parameters are reliable indicators of maturity.  

In this study, significant (p < 0.01) positive and strong correlations were observed between 

the TSS: TA ratio and TSS or TA which was due to the simultaneous increase in TSS being 

associated with a decrease in TA. 

In addition, there was a significant (p < 0.01) negative correlation between firmness and 

moisture content. This is probably due to the mangoes with a low moisture content having 

more cell wall material and higher osmotic potential and consequently exhibits higher flesh 

firmness (Palmer, 2010). An observation in this research was that as TA decreased firmness 

decreased which agrees with previous reported work on fruits (Kader et al., 1982; Wills et al., 

1983; Meredith et al., 1989). This significant correlation was supported by a significant        

(p < 0.05) negative correlation between firmness and the TSS:TA ratio, reflecting the fact that 

as TSS increases firmness decreases. The results are similar to those on peach reported by 

Delwiche and Baumgardner (1983).  

The moderate relationship between moisture content and TSS:TA is probably due to the high 

proportion of sugars, starch and organic acids contributing to the dry matter of the fruit. 

There are few literature reports on the relationship between titratable acidity and vitamin C in 

mangoes. There are several acids that can contribute to total acidity such as citric, malic, 

tartaric, oxalic, a-ketoglutaric and ascorbic acids. However, ascorbic acid is usually present in 

a very low concentration and does not normally affect the total titratable acidity. Interestingly, 

in this study, the titratable acidity levels were significantly (p < 0.001) correlated to ascorbic 

acid levels. The vitamin C levels not only showed a very high and significant (p < 0.001) 

correlation with the titratable acidity (R = 0.85) but also a significant (p < 0.05) and moderate 

correlation with TSS:TA and moisture content. The results suggest that ascorbic acid has an 

important role in determining the maturity of mangoes.  

Prior to this study, there have been no detailed publications on the relationships between the 

physicochemical characteristics in mangoes. These studies on the correlations between the 
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physicochemical properties of mangoes need to be verified across a range of mango cultivars 

other than Tommy Atkins. 

Although peel colour is an unreliable index of maturity in mangoes, there were correlations 

between some peel colour measurements such as L* with b* and hue angle. These findings 

indicate that mangoes with a light appearance have either more yellow or more orange-red 

colour. 

6.4.2. Correlations between the antioxidant capacity assays 

Most phenolic compounds are hydrophilic antioxidants and secondary metabolites in fruits 

(Macheix et al., 1990; Thaipong et al., 2006).The observed high correlations between TPC 

and antioxidant assays indicate that the phenolic compounds in mango flesh, peel and kernel 

are major contributors to the ABTS radical cation scavenging activity, DPPH radical 

scavenging activity, FRAP reducing power and the inhibiting oxygen radicals in the 

hydrophilic ORAC. A positive correlation between the total phenol content and antioxidant 

capacity in mangoes has been previously reported (Soong and Barlow, 2004; Khammuang 

and Sarnthima, 2008; Khammuang and Sarnthima, 2011). Cam et al. (2009) also reported a 

high correlation between ABTS and DPPH with TPC in pomegranates. A high correlation 

between TPC and antioxidant capacity, as measured by ABTS and DPPH, has also been 

found in wine (Paixao et al., 2007). Previous researchers have found that the correlations 

between antioxidant capacity as measured by ABTS, DPPH, FRAP and ORAC assays were 

high with the correlation coefficients ranging from 0.68 to 0.97 (Thaipong et al., 2006). 

Connor et al. (2002) found a high correlation between ORAC and FRAP in blueberries and 

Awika et al. (2003) high correlations between ORAC, ABTS and DPPH in sorghum. 

The results from the present study suggest that phenolic compounds in mango flesh, like other 

fruits, are the major contributors of ABTS radical cation scavenging activity, DPPH radical 

scavenging activity, FRAP reducing activity power and hydrophilic ORAC. 

The antioxidant activity of polyphenolic compounds depends on the B-ring hydroxyl 

configuration which is the most significant determinant of the scavenging activity of ROS 

(Everette and Islam, 2012). The high correlations between Folin–Ciocalteu with the other 

antioxidant assays indicate that the total phenolic content can be used as indicator for 

hydrophilic antioxidant capacities of mango flesh, peel and kernel.  

ORAC measure antioxidant capacity with H-ORAC and L-ORAC measuring hydrophilic and 

lipophilic antioxidants, respectively (Huang et al., 2002; Pellegrini et al., 2003; Prior et al., 
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2003, Huang et al., 2005; Islam  et al., 2009; Walker and Everette, 2009). The major 

constituents responsible for hydrophilic antioxidant capacity are phenolics and anthocyanins 

and for lipophylic capacity, carotenoids and tocopherols (Teow et al., 2007). Although these 

assays measured the antioxidant capacity of the same samples, their mechanism of fighting 

free radicals and oxidants (scavenging radicals or decomposing perosides or chelating metals) 

are different. Consequently, the results were slightly different (Table 6.3) depending on the 

sample and the assay conditions. Furthermore, the measured antioxidant activity is often the 

sum of several antioxidant scavenging free radicals. Thus the reported differences in 

antioxidant levels in samples and the interactions between antioxidants is often a reflection of 

assay differences (Everette and Islam, 2012) and consequently they may not actually be 

correlated to each other. 

In this study, the results from assaying flesh, peel and kernel with ABTS, DPPH, FRAP and 

H-ORAC showed that the assays were positively correlated with each other (p <0.001), 

except for a significant (p < 0.05) weak correlation between DPPH and H-ORAC with the 

flesh samples. This suggests that the antioxidant compounds in flesh, peel and kernel that 

scavenged ABTS, scavenged DPPH, reduced FRAP and inhibited the peroxyl-radical-

induced. The strong correlations between the hydrophilic antioxidant levels as measured by 

ABTS, DPPH, FRAP and H-ORAC indicates that all these assays have similar capacity to 

predict the antioxidant capacities of mango flesh, peel and kernel.  

These findings are similar to those of Everette and Islam (2012) who found a significant 

correlation between ABTS, DPPH and hydrophilic ORAC but contrast to the studies by Ou et 

al. (2002) and Huang et al. (2002), who found there was no agreement between the 

antioxidant assays.  

In general, in this research, TPC, ABTS, DPPH, FRAP and H-ORAC assays in flesh, peel and 

kernel were significantly (p < 0.001) positively correlated to each other. The correlations 

between the antioxidant assays were higher in the kernel than peel than flesh. It should be 

noted that the strong correlations between the five assays TPC, ABTS, DPPH, FRAP and     

H-ORAC assays were strong in kernel and between the four assays TPC, ABTS, DPPH and 

FRAP were strong in flesh and peel. These differences could be due to the differences in 

extraction procedures as TPC, ABTS, DPPH, FRAP use a very simple 80% acetone extraction 

procedure and ORAC use a procedure based on acetone/water/acetic acid (70:29.5:0.5).  
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In this study, the antioxidant capacity was determined for both hydrophilic and lipophilic 

compounds. Normally, only hydrophilic antioxidants are analysed due to their high 

contribution to  the total antioxidant capacity of mangoes (Kabuki et al., 2000; Wu et al., 

2004; Ajila et al., 2007; Gonzalez-Aguilar et al., 2007; Kim et al., 2007; Rocha Ribeiro et al., 

2007; Barreto et al., 2008; Masibo and He, 2008; Manthey and Perkins-Veazie, 2009; 

Pitchaon, 2009; Robles-Sanchez et al., 2009; Matsusaka and Kawabata,  2010; Khammuang 

and Sarnthima, 2011; Ma et al., 2011). Robles-Sanchez et al. (2009) measured antioxidant 

capacity of “Ataulfo” mangoes for the first time using both H-ORAC and L-ORAC and the 

total antioxidant activity was measured by adding H-ORAC and L-ORAC. The study 

suggested that L-ORAC contributed only 1% to the total antioxidant capacity which is 

comparable to those results obtained by Wu et al. (2004) who reported 988 μmol TE per 100 

g FW and 14 μmol TE per 100 g FW for H-ORAC and L-ORAC, respectively. 

 

This is the first study in which both hydrophilic and lipophilic antioxidant activites of 

different mango fractions were measured and the correlations between the hydrophilic and 

lipophilic antioxidants in mango flesh, peel and kernel were determined. The lipophilic 

antioxidant capacity in all the mango flesh, peel and kernel fractions were much lower than 

the hydrophilic capacity. However, it should be noted that the lipophilic antioxidants 

generally have a greater bioactivity than hydrophilic antioxidants because of their ability to 

pass more effectively through lipoprotein cell membranes (Huang et al., 2002; Davis and 

Auten, 2010). There are several lipophilic antioxidants (such as carotenoid, tocopherol and 

phospholipids) found in flesh, peel and kernel. Another explanation for the significant           

(p < 0.05) correlation between the lipophilic and hydrophilic antioxidant capacity in peel is 

the differences in the composition and concentration of the lipophilic antioxidants in peel 

compared to flesh and kernel (Ajila et al., 2007b). To understand these differences more 

detailed analyses of the specific lipophilic antioxidant compounds in mango fractions is 

required in the future. 

6.4.3. Repeatability of antioxidant assays 

It is clear that no single antioxidant assay can truly reflect the total antioxidant activity of a 

particular food (Prior et al., 2005) due to the chemical diversity of antioxidants in foods. 

Therefore, it will be misleading to make a comparison using one assay only for assessing the 

antioxidant activity of mangoes. Nevertheless, the most appropriate assay method would be 

that with good correlation with the other assays (as described in 6.3.2) and which is 

repeatable. The assay with the minimum coefficients of variation in the flesh, peel and kernel 
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fractions was the TPC assay and that with the maximum coefficients of variation was the      

L-ORAC assay. The coefficients of variation for TPC assays in flesh, peel and kernel were 

2.4, 1.6 and 2.4%, respectively.  There were low coefficients of variation for the FRAP assay 

of flesh (3.2%) and peel (2.1%) and the ABTS assay of kernel (3.8%).   

In general, all the assays showed good repeatability with the coefficients of variation ranging 

from 1.6 to 9.4%.  The TPC assay for flesh, peel and kernel, the FRAP assay for flesh and 

peel and ABTS for kernel all yielded high repeatability and could be used to determine the 

antioxidant capacity in mango fractions with confidence. The strong correlations between the 

TPC, ABTS and FRAP assays applied to the flesh, peel and kernel fractions (investigated in 

6.3.2.) confirmed the efficiency and effectiveness of these antioxidant assay methods for 

determining the antioxidant capacity of the mango fractions. Furthermore, these three assay 

methods are suitable for aqueous antioxidants and are reliable, fast, and relatively simple to 

use.  

Although all the antioxidant assays showed good results in terms of their significant to 

moderate to strong correlations  the  three  antioxidant assays  TPC, ABTS and FRAP are the 

most suitable methods  to determine the  antioxidant capacity of mango flesh, peel and kernel. 

6.4.4. Correlations between physicochemical properties and antioxidant activities 

In section 6.3.1, significant correlations between physicochemical properties such as firmness, 

TSS, TS, TSS:TA, vitamin C, moisture content were found. These parameters are considered 

good indicators of mango maturity. There were only a few significant (p < 0.05) weak 

correlations in flesh and peel and some significant (p < 0.05) weak-to-moderate correlations 

in kernel that were linked to maturity as expressed through physicochemical parameters and 

antioxidant capacities. Nevertheless, the results do clearly demonstrate that some of the 

phenolic compounds and antioxidant compounds are affected by maturation and ripening. 

The results also revealed that mango flesh with either a low TSS or TSS:TA ratio or high 

vitamin C exhibited relatively high FRAP values.  In peel, the mangoes that showed low TA 

or vitamin C contained relatively high lipophilic antioxidants. However, these specific 

relationships were not observed by principal component analysis. The kernels from less ripe 

mangoes showed low maturity scores, TSS, TSS:TA ratio and high TA, firmness and 

exhibited relatively high TPC and antioxidant capacity as measured by all the assays, except 

for L-ORAC. The mangoes kernels with high vitamin C also showed relatively high TPC and 

antioxidant capacities as measured by ABTS and DPPH.  
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However, the correlations between maturity and antioxidant capacities were different between 

the flesh, peel and kernel fractions with some parameters showing correlations in one fraction 

and not in another. There have been very few reports on the correlations between maturity and 

the antioxidant activities in mango fractions indicating that the total phenolic concentrations 

of mango fruits or other fruits decrease during ripening. For example, Celik et al. (2008) 

stated that the green stage of cranberry fruits had the highest antioxidant capacity. 

Furthermore, the DPPH values of Mangifera pajang  Kosterm fruit pulp and fruit juice 

powder extracts were strongly correlated with ascorbic acid levels (R = 0.97,  p < 0.01)  as 

reported by Ibrahim et al.(2010). In this research the total antioxidant capacity as measured by 

TPC, ABTS and DPPH in kernels were high compared with the contribution of Vitamin C to 

antioxidant capacity.  

Normally, colour is one of the most important indicators of maturity (Drake et al., 1982) and 

is mainly influenced by the concentration and distribution of various compounds such as 

anthocyanins, carotenoids, flavonoidss, betalains, and chlorophylls in peel (Gao and Mazza, 

1995). It is often noted that during fruit ripening the increase of antioxidants is often 

accompanied by sweetness improvements, fruit softening and a decrease in tartness and 

astringency particularly in fruit seeds.  Antioxidant pigments are therefore a visual indicator 

of the quality of fruit fractions (Kalt et al., 2004). In contrast, these same pigments can act as 

scavengers of radical species (Wang et al., 1997) and contribute to antioxidant activity 

(Rapisarda et al., 1999; Kasım et al., 2011).  

From the results in 6.3.2, the research showed that colour is not a good indicator of maturity 

as indicated by the significant correlations between maturity score with a* (p ≥ 0.05) and b* 

(p = 0.043), respectively. The Tommy Atkins mangoes which had red skin colours (reddish 

blush) due to the anthocyanin, peonidin-3-galactoside (Proctor and Creasy, 1969) maintained 

their colour during the storage period of the experiments. In this study there was no 

significant correlation between colour and the antioxidant capacities of flesh, peel or kernel. 

More studies are required across a variety of mangoes to determine the correlations between 

the maturity of mangoes and antioxidant activities of flesh, peel and kernel. 

Interestingly a significant (p < 0.05) correlation was identified between the percentages of 

mango flesh, peel and kernel with antioxidant capacity. Mangoes with a high percentage of 

flesh or low percentage of peel exhibited high antioxidant capacity in flesh and peel. Those 

mangoes with a low percentage of kernel or high percentage of peel exhibited high 

antioxidant capacity in kernel. These results suggest that mangoes with a high percentage of 
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flesh and low percentages of peel and kernel yield the highest levels of antioxidant capacity. 

However, these correlations were quite low and further works need to be done to support 

these findings.  

6.5. Conclusions 

 The results from the Pearson‟s correlation analysis (6.3.1) are in agreement with those 

obtained by principal component analysis (6.3.2) in all the mango fractions from 

Tommy Atkins cultivar. 

 

 In regards to the relationship between the various physicochemical properties, the 

similarity between the results from Pearson‟s correlation analysis and PCA strongly 

support that the physicochemical characteristics such as firmness, total soluble solid 

(TSS), titratable acidity (TA), TSS:TA ratio, vitamin C and moisture content  are 

strongly correlated with the maturity stage of the Tommy Atkins mangoes. 

Surprisingly, despite the important role of the visual appearance of mangoes attracting 

consumers, colour is not a good indicator of maturity for Tommy Atkins. The 

significant and strong correlations between the various physicochemical properties 

suggest that one particular physicochemical parameter can reflect the characteristic of 

one other parameter. Thus, with the measurement of any parameter, it is possible to 

accurately determine the maturity of the fruit of Tommy Atkins. The data also 

demonstrate the relationship between the physicochemical properties of mangoes with 

the ripening stages.  

 

 The correlations between the antioxidant capacity assays and between TPC and the 

antioxidant capacity assays in flesh, peel and kernel using PCA were similar to the 

conclusions from the Pearson‟s correlation analysis in section 6.3.2 and 6.4.2. The 

strong correlations between TPC with antioxidant levels as measured by ABTS, 

DPPH, FRAP and H-ORAC indicates that phenolic compounds in mango flesh, peel 

and kernel are good sources of antioxidants. Moreover, the strong correlations 

between the antioxidant assays including TPC suggest that one assay can be selected 

to monitor the antioxidant capacity of mango flesh or peel or kernel. In particular, the 

strongest correlation was between ABTS and FRAP in flesh, between ABTS, DPPH 

and FRAP in peel and between all the antioxidant assays, except for L-ORAC, in 

kernel. In addition, weak-to-moderate correlations were found between the lipophilic 

antioxidants (L-ORAC) and hydrophilic antioxidants in mango peel. To understand 
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these differences in more detail, further investigations and analyses of specific 

lipophilic antioxidant compounds in mango fractions should be carried out across a 

wide variety of mangoes.  

 

 The correlations between the maturity properties and antioxidant capacities varied in 

flesh, peel and kernel. From Pearson‟s correlation analysis the results revealed that 

mango flesh with either low TSS or TSS:TA ratio or high vitamin C exhibited 

relatively high FRAP values. Mango peel had low TA or vitamin C and exhibited 

relatively high lipophilic antioxidants. However, these specific relationships were not 

observed by the principal component analysis. In contrast, in mango kernel, the 

correlations between the physicochemical properties and antioxidant capacities were 

similar using both Pearson‟s correlation analysis and principal component analysis. 

Kernels from the less ripe mangoes which had low maturity scores, TSS, TSS:TA ratio 

and high TA and firmness were  relatively high in TPC and antioxidant capacity as 

measured by all the assays, except L-ORAC. The kernel of mangoes with high vitamin 

C also showed relatively high TPC and antioxidant capacities as measured by ABTS 

and DPPH.  

 

 When considering the correlations between maturity as assessed by physicochemical 

parameters and antioxidant capacities there were only a few significant (p < 0.05) 

weak correlations in flesh and peel and one significant (p < 0.05) weak-to-moderate 

correlations in kernel. The results demonstrate that some of the phenolic compounds 

and antioxidant compounds in kernel are affected by the maturity stages.  

 

 Furthermore, both Pearson‟s correlation and PCA suggest that the mangoes with a 

high percentage of flesh and a low percentage of peel and kernel tend to have the 

highest antioxidant capacity in the flesh and peel but not the kernel. The correlations 

are weak-to-moderate but it would be useful tool to estimate the antioxidant capacity 

of kernel by using the outside physicochemical characteristics of the mango fruit.  
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CHAPTER 7 

ANTIOXIDATIVE EFFECTS OF MANGO KERNEL AND 

PEEL ON SHELF-LIFE OF PORK PRODUCTS 

 

7.1. Introduction 

Supermarkets and consumers require good quality meat throughout the shelf life of the 

product. Any technique to extend the shelf life of fresh meat or meat products is very 

important to the food industry. Techniques to extend shelf life often involve limiting the lipid 

oxidation or microbiological contamination of the product. Lipid oxidation is a major 

contributor to the deterioration in meat quality during refrigerated storage and is often 

associated with colour and odour changes that directly affect the consumer acceptance of meat 

products. 

 

Meat colour is a strong visual indicator that influences the selection of food by consumers at 

the point of purchase and is influenced by pre-slaughter factors such as the species, age of 

animals, sex, diet and exercise and post-slaughter by the oxidative state of the pigment 

myoglobin. Oxymyoglobin (MbO2) is myoglobin bound to oxygen and is bright pink (red) in 

normal fresh pork. Deoxymyoglobin (Mb) is myoglobin without oxygen and has a purplish 

colour in vacuum packaged pork. Metmyoglobin (MMb) is formed from the oxidation of the 

iron in myoglobin. It has a brownish colour which consumers find undesirable. Ferric haem 

pigments in meat can promote the oxidation of tissue lipids (Greene, 1969) which produces 

free radicals that subsequently decompose haem and cause discoloration (Haurowitz et al., 

1941; Greene, 1969).  

 

The development of oxidative off-flavour (rancidity) is also a serious problem during the 

storage of meat products (Gray et al., 1996). Lipid oxidation is responsible for the breakdown 

of fatty acids to produce volatile odour compounds that contribute to rancidity and 

undesirable flavours (Mottram, 1987). The autoxidation of lipids can also occur in raw meat 

at room temperature or under refrigeration and produce off-flavours (Farmer, 1994). Warmed 

over flavour (WOF) often refers to the characteristic off-flavour that develops in cooked or 

raw meat (Sato and Hegarty, 1971; Pearson et al., 1977; Pearson and Dutson, 1994; 

O‟Sullivan et al., 2003). Numerous volatile compounds contribute to the smell and taste of 

food and can now be analysed by a sophisticated instrument system such as                        

HS-SPME-GC-MS. However, the correlation between the analytical profile of volatile 
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compounds and odour perception by consumers is not strong due to the interactions that can 

occur between the odour components. Thus the aroma assessment of pork products by human 

sensory analysis is advisable.  

 

Pork products, due to their relatively high content of unsaturated fatty acids, oxidise more 

rapidly than beef or lamb. Pork products manufactured from minced meat, such as pork 

patties and sausages are particularly prone to lipid oxidative changes that ultimately result in 

the products turning brown, becoming rancid and producing off-odours. 

 

Recently, the undesirable changes in lipid oxidation have been reduced by adding synthetic or 

natural antioxidants that have the ability to neutralise free radicals in processed foods. 

Currently, there is a market trend to utilise natural antioxidants as food additives because of 

observed safety and toxicity problems associated with synthetic antioxidants such as BHA, 

BHT and TBHQ (Buxiang and Fukuhara, 1997; Jo et al., 2006). Mango seed kernel and peel 

have been suggested as potential sources of natural antioxidants since they contain 

polyphenols, anthocyanin, carotenoid, vitamin C and vitamin E (Soong, et al., 2004; Berardini 

et al., 2005; Ajila et al., 2007). There is, however, no data on the effects of mango peel and 

kernel on lipid oxidation associated with colour and odour changes in pork products stored 

refrigerated. 

 

The objective of the present study was to assess the antioxidant effects of mango peel and 

kernel on the colour, odour and lipid oxidative stability of pork sausages and patties during 

refrigerated storage. BHT supplemented sausages and patties were used as commercial 

synthetic supplemented controls and pork sausages and patties without any antioxidants were 

also used as controls.  The pork products were tested for microbiological safety as microbial 

spoilage is a primary factor associated with meat quality. 

 

7.2. Materials and methods 

7.2.1. Chemicals and reagents  

Chemicals and reagents were used as listed in 3.16. 

 

7.2.2. Preparation of mango peel and kernel additives 

Mango peel and kernel from Catchu cultivar were used as antioxidant additives in thi study 

since they showed a high antioxidant capacity among the Vietnamese mangoes. Peel and 
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kernel were freeze-dried and ground into fine powder and then stored in the freezer at -40
o
C 

before use. 

 

7.2.3. Preparation of pork sausages and patties 

Pork patties and sausages were prepared and manufactured as described in 3.8. Antioxidant 

additives (mango kernel, peel and BHT) were added (at day 0) into the pork mince for making 

sausages and patties. 

 

7.2.4. Proximate analysis  

Fat, protein and moisture content of pork mince were determined by the methods described in 

3.9. 

 

7.2.5. TBARS 

Lipid oxidation was determined by measuring 2-thiobarbituric acid reactive substances 

(TBARS) in pork and pork products by Maraschiello et al. (1999) as described in 3.10. 

TBARS values of pork products with 3 different fat contents (high, medium and low) were 

determined. 

 

7.2.6. Colour  

Colour measurements were made on the surface of raw pork patties with a Hunter colorimeter 

(Hunter Associated Labs., Inc. Reston, VA). The method of colour measurement was 

described in 3.12. Colour of pork products with 3 different fat contents (high, medium and 

low) was measured.   

 

7.2.7. Myoglobin 

Myoglobin (deoxymyoglobin [Mb]), oxymyoglobin (MbO2) and metmyoglobin (MMb) in 

stored raw pork patties and sausages were determined using the procedure of Krzywicki 

(1982). Only pork products with high fat content were used for determining myoglobin. 

 

7.2.8. Volatiles 

The volatile compounds in minced pork products were determined using a HS-SPME-GC-MS 

technique as reported by Ramirez et al. (2004) with some modifications as described in 3.1.3. 

Only pork products with high fat content were used for measuring volatiles. The pork 

sausages with and without antioxidant additives (mango kernel and BHT) were measured at 

day 0 and day 4. 
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7.2.9. Odour 

Odour acceptability was assessed by the researcher using a 5-point hedonic scale as described 

in 3.12 (Das et al., 2011). Pork products with high fat content were used for evaluating odour. 

 

7.2.10. Microbiology 

Microbiological characteristics of mango peel, kernel and pork products (sausages and 

patties) with high fat content were determined by Hills Laboratories, New Zealand as outlined 

in 3.15.  

 

7.2.11. Statistical analysis 

One-way, two-way, three-way ANOVA, interaction effects and PCA were performed as 

described in 3.17. 

 

7.3. Results 

7.3.1. Proximate composition 

Table 7.1 shows the proximate composition of fresh pork mince at three fat levels: low, 

medium and high.  The fat content of the low, medium and high fat pork mince were 9.1, 22.2 

and 47.5% DW, respectively. The crude protein contents were was 89.0, 76.4 and 51.9 %, 

DW respectively. The moisture contents of the low fat, medium and high fat pork mince were 

75.2, 73.9 and 65.1%, respectively. 

 

Table 7.1. Composition analysis of pork minces. 

Composition  
% Moisture 

(FW) 

% Crude Protein                           

(DW) 

% Crude Protein  

(FW) 

% Fat 

(DW) 

% Fat 

(FW) 

Low fat mince  75.2 89.0 22.1 9.1 2.3 

Medium fat mince  73.9 76.4 19.9 22.2 5.8 

High fat mince  65.1 51.9 18.1 47.4 16.5 

DW: dry weight; FW: fresh weight 

 

7.3.2. TBARS  

7.3.2.1. Pork sausages 

In order to determine the effects of the three factors, antioxidant treatment, storage time and 

fat content, on lipid oxidation, measured by TBARS, the interactions between the three 

factors were analysed by a three-way ANOVA. Analysis of variance of TBARS values for 

pork sausages stored over 10 days showed significant (p < 0.05) effects for the three-factor 
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interactions as well as significant (p < 0.001) effects for the two-factor interactions and the 

three main factors (Table 7.2). In this case, only the three-factor interactions were examined 

and interpreted while ignoring the two-factor interactions and main effects. Two methods 

were used to interpret the three-factor interactions between antioxidant treatment, storage time 

and fat content. Firstly, the three-way analysis was divided into a two-way analysis of 

antioxidant treatment and storage time and was tested at each level for the third factor fat 

content (high, medium and low). Secondly, the results of three-way analysis were confirmed 

by an interaction plot between three factors; antioxidant treatment, storage time and fat 

content. From this plot, all the statements regarding the effects on TBARS were given in 

regards to the interactions between antioxidant treatment, storage time and fat content. 

 

Table 7.2. Three-way ANOVA statistical analysis using General Linear Model for TBARS 

values of pork sausages influenced by treatment, storage time and fat content. 

    

Source of variance Degree of freedom p-value 

Storage                        5 < 0.001 

Treatments                  3 < 0.001 

Fat content             2 < 0.001 

Storage x Treatments            15 < 0.001 

Storage x Fat content         10 < 0.001 

Treatments x Fat content       6 < 0.001 

Storage x Treatments x Fat content  30 < 0.05 

Treatments: control, kernel added, peel added and BHT added.  

Storage: day 0, 2, 4, 6, 8 and 10. Fat content: low, medium and high. 

 

7.3.2.1.1. Three-factor interaction effects evaluated by two-factor analyses  

a. Pork sausages with low fat content  

The addition of mango kernel or peel or BHT to the low fat sausages was an effective 

antioxidant treatment as illustrated by the significantly lower TBARS values in the treated 

sausages compared to the controls over the 10 day storage period (Figure 7.1). At day zero 

TBARS values of the low fat sausages with added kernel or peel or BHT were lower than the 

control sausages. TBARS increased significantly at day 6 and continued to slightly increase to 

day 10 compared to day zero (7.6 µmol MDA kg
-1

 DW in low fat) in the control sausages 

without any antioxidants whilst increases in the sausages treated with peel or BHT were only 

observed at days 8 and 10.  
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Figure 7.1. TBARS values of low fat (9.1%) pork sausages (n = 3) over 10 day storage. 

 

Different letters (w-z) within the same storage day are significantly different (p < 0.05). 

Different letters (a-c) within the same treatment are significantly different (p < 0.05). 

Units:µmol MDA/kg DW. 

 

The sausages treated with peel slightly increased at day 8 then stabilised at day 10 whilst 

those treated with BHT tended to gradually increase up to day 10. In contrast, those sausages 

treated with kernel showed no significant changes over the 10 day storage period, except for 

day 8, relative to day zero. At day 10, TBARS were the highest in the control sausages     

(13.0 µmol MDA kg
-1

 DW in low fat), followed by those treated with BHT (6.3 µmol MDA 

kg
-1

 DW in low fat), peel (6.7 µmol MDA kg
-1

 DW in low fat) and kernel (3.1 µmol MDA  

kg
-1

 DW in low fat). 
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Figure 7.2. TBARS values of medium (22.2%) fat pork sausages (n = 3) over 10 day storage. 

 

Different letters (w-z) within the same storage day are significantly different (p < 0.05). 

Different letters (a-d) within the same treatment are significantly different (p < 0.05). 

Units:µmol MDA/kg DW. 

 

Figure 7.3. TBARS values of high fat (47.4%) pork sausages (n= 3) over 10 day storage. 

 

Different letters (w-z) within the same storage day are significantly different (p < 0.05). 

Different letters (a-d) within the same treatment are significantly different (p < 0.05). 

Units:µmol MDA/kg DW. 

 

b. Pork sausages with medium and high fat contents 

The results were similar to those obtained with the low fat pork sausages. Namely, the 

TBARS were significantly lower in the medium or high fat sausages supplemented with 
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mango kernel or peel or BHT than the control sausages over the 10 day storage period (Figure 

7.2 and 7.3). At day zero the TBARS values of both the medium and high fat sausages treated 

with kernel or peel or BHT were lower than the control sausages (8.2 and 8.5 µmol MDA kg
-1

 

DW in medium and high fat, respectively). However, in the medium and high fat sausages at 

day 6, TBARS increased significantly compared to day zero in the control sausages and in the 

sausages treated with mango peel or BHT.  

 

Similar to the low fat sausage results, the medium or high fat sausages supplemented with 

kernel showed no significant changes in TBARS over the 10 day storage period, except for 

day 8, relative to day zero. However, unlike the low fat sausages, those treated with peel 

stabilised their TBARS from day 6 to 10 whilst in those sausages treated with BHT, TBARS 

gradually increased from day 6 to 10. At day 10, TBARS values were highest in the control 

sausages (12.1 and 15.0 µmol MDA kg
-1

 DW in medium and high fat, respectively), followed 

by those treated with BHT (7.4 and 8.2 µmol MDA kg
-1

 DW in medium and high fat, 

respectively) then peel (5.5 and 6.1 µmol MDA kg
-1

 DW in medium and high fat, 

respectively) then kernel (3.8 and 3.5 µmol MDA kg
-1

 DW in medium and high fat, 

respectively). 

7.3.2.1.2. Three-factor interaction effects evaluated by the interaction plot  

The results are illustrated by the interaction plots in Figure 7.4a, 7.4b and 7.4c. Figure 7.4a 

shows that the addition of the antioxidants to pork sausages, in each instance maintained 

TBARS, regardless of fat content over the 10 day storage period. The supplementation with 

kernel showed the highest antioxidative effect, followed by peel or BHT compared to the 

control sausages (Figure 7.4b), regardless of fat content (Figure 7.4a). However, the fat 

content of the sausages slightly influenced the TBARS values at day 6, onwards when the 

effects of kernel on maintaining TBARS values  were more pronounced  than peel or BHT 

(Figure 7.4b)  in the medium and high fat sausages (Figure 7.4c).  
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Figure 7.4. Interaction effects of treatment, fat content and storage time on TBARS values of 

pork sausages. 
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   7.3.2.2. Patties 

The three-way ANOVA of TBARS data for pork patties with different fat content, with and 

without antioxidants and stored for up to 10 days showed there were significant (p < 0.05) 

effects for the three-factor interactions as well as significant (p < 0.001) effects for the two-

factor interactions and the three main factors (Table 7.3). The three-factor interactions on the 

TBARS of pork patties was evaluated and interpreted whilst ignoring the two-factor 

interactions and main effects. The effects of antioxidant treatment and storage time on the 

TBARS of pork patties were determined using a two-way ANOVA at each level for the third 

factor fat content (low, medium and high). Then the results were confirmed by the interaction 

plots between the three factors. 

 

Table 7.3. Three-way ANOVA statistical analysis using General Linear Model for TBARS 

values of pork patties influenced by treatment, fat content and storage time.  

 

Source of variance Degree of freedom p-value 

Storage                        5 < 0.001 

Treatments                  4 < 0.001 

Fat content             2 < 0.001 

Storage x Treatments            20 < 0.001 

Storage x Fat content         10 < 0.001 

Treatments x Fat content       8 < 0.001 

Storage x Treatments x Fat content  40 < 0.01 

Treatments: control, kernel added, peel added and BHT added.  

Storage: day 0, 2, 4, 6, 8 and 10. Fat content: low, medium and high. 
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Figure 7.5. TBARS values of low fat (9.1%) pork patties (n = 3) over 10 day storage. 

 

 

Different letters (w-y) within the same storage day are significantly different (p < 0.05). 

Different letters (a-c) within the same treatment are significantly different (p < 0.05). 

Units: µmol MDA/kg DW. 

 

 

Figure 7.6. TBARS values of medium fat (22.2%) pork patties (n = 3) over 10 day storage. 

. 

                  

Different letters (w-y) within the same storage day are significantly different (p < 0.05). 

Different letters (a-c) within the same treatment are significantly different (p < 0.05). 

Units: µmol MDA/kg DW. 
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Figure 7.7. TBARS values of high fat (47.4%) pork patties (n = 3) over 10 day storage. 

. 

                  

Different letters (w-y) within the same storage day are significantly different (p < 0.05). 

Different letters (a-c) within the same treatment are significantly different (p < 0.05). 

Units: µmol MDA/kg DW. 

 

7.3.2.2.1. Three-factor interaction effects evaluated by two-factor analyses  

a. Pork patties with low (Figure 7.5) and medium (Figure 7.6) fat content  

At day zero the TBARS values of the control patties and treated patties were similar to each 

other, regardless of fat content. Over the 10 days of storage, the low and medium fat patties 

showed similar TBARS results which were influenced by the antioxidant treatments and 

storage times. The TBARS values of both the low and medium fat patties at day 6 increased 

significantly when compared to day zero in the control patties (3.6 and 6.0 µmol MDA kg
-1

 

DW in low and medium fat, respectively) and those containing either peel or BHT. In 

contrast, those patties with low and medium fat content treated with kernel showed no 

significant changes over the 10 day storage period relative to day zero. At day 8, the control 

patties significantly (p <0.05) increased their TBARS whilst those treated with antioxidants 

stabilised their TBARS values for the remainder of storage period. At day 10, TBARS values 

were the highest in the control patties (14.5 and 12.3 µmol MDA kg
-1

 DW in low and medium 

fat, respectively), followed by those treated with peel (10.1 and 10.7 µmol MDA kg
-1

 DW in 

low and medium fat, respectively) then BHT (7.3 and 7.8 µmol MDA kg
-1

 DW in low and 

medium fat, respectively) or kernel (6.9 and 7.6 µmol MDA kg
-1

 DW in low and medium fat, 

respectively). 
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b. Pork patties with high (Figure 7.7) fat content  

Unlike the low and medium fat patties, TBARS increased significantly in the control high fat 

patties at day 4 of the storage compared to day zero (8.2 µmol MDA kg
-1

 DW in high fat). 

Increases in TBARS also occurred in the patties with added BHT at day 6. In contrast, those 

patties with added kernel or peel showed no significant changes over the 10 day storage 

period relative to day zero.  The patties with added peel had significantly higher TBARS than 

those with added kernel across the storage period, except for days 0, 2 and 6. From day 6, the 

TBARS values dramatically increased in the control patties and remained stabilised in those 

patties with added antioxidants for the remainder of the storage period. At day 10, TBARS 

values were highest in the control patties (29.2 µmol MDA kg
-1

 DW in high fat), followed by 

those treated with peel (16.6 µmol MDA kg
-1

 DW in high fat) or BHT (17.9 µmol MDA kg
-1

 

DW in high fat) and then kernel (7.9 µmol MDA kg
-1

 DW in high fat). 

 

7.3.2.2.2. Three-factor interaction effects evaluated by the interaction plot  

The interaction results are illustrated and confirmed by the interaction plots in Figure 7.8a, 

7.8b and 7.8c which show the effects of the three antioxidant treatments on reducing the 

TBARS of pork patties after 4 days of storage, particularly those patties with a high fat 

content (Figure 7.8a and 7.8b). At some stages of storage e.g. at day 4 (Figure 7.8c), the more 

superior effects of kernel on reducing TBARS values compared to peel or BHT were more 

pronounced as illustrated in the high fat patties (Figure 7.8a). 
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Figure 7.8a, 7.8b and 7.8c. Interaction effects of treatments, fat content and storage time on 

TBARS values of pork patties. 
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From day 6 to day 10 of storage, kernel provided the highest antioxidative effects, followed 

by BHT then peel compared to controls (Figure 7.8b) but the differences between the 

antioxidant treatments were dependent on the patty fat content  (Figure 7.8a).  
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7.3.3. Colour  

A three-way ANOVA was used to determine possible interactions between the three factors 

antioxidant treatment, storage time and fat content as well as the effects of these factors. The 

interaction plots were used to examine and interpret the results. The main effects of 

antioxidant treatment, storage time and fat content and their interactions for the colour 

characteristics (a* values and hue angle value) of pork sausages and patties are shown in 

Table 7.4, 7.5, 7.6 and 7.7.  

 

7.3.3.1. Sausages 

7.3.3.1.1. a* values 

Analysis of variance of the a* values (redness) (Table 7.4.) for pork sausages with different 

fat contents and antioxidant treatments during storage for 10 days showed there were no 

statistical significant (p ≥ 0.05) interactions between the three-factors or any two-factor 

interactions, except for a significant (p < 0.01) interaction between treatment and storage 

time. Thus, for the a* values of pork sausages, only the interaction between treatment and 

storage time and the main effect (fat content) were analysed. The interaction was analysed 

using two-way ANOVA and the results showed that the differences in a* value (redness) 

between the control sausages and those receiving antioxidant treatments were dependent on 

storage time (Figure 7.9). The fat content at three different levels (low, medium and high) 

were analysed using one-way ANOVA.   

 

Table 7.4. Three-way ANOVA statistical analysis using General Linear Model for a* values 

of pork sausages influenced by treatment, fat content and storage time. 

 

Source of variance Degree of freedom p-value 

Storage                        5 < 0.0001 

Treatments                  3 < 0.0001 

Fat content             2 < 0.0001 

Storage x Treatments            15 < 0.01 

Storage x Fat content         10 > 0.05 

Treatments x Fat content       6 > 0.05 

Storage x Treatments x Fat content  30 > 0.05 

Treatments: control, kernel added, peel added and BHT added.  

Storage: day 0, 2, 4, 6, 8 and 10. Fat content: low, medium and high. 
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a. Treatment and storage time interaction (Figure 7.9a) 

All the sausages decreased their a* values from day 0 to day 6. There was a rapid decline in 

the a* values of the control sausages, particularly at day 2. Indeed, the control sausages 

tended to continually decrease a* values to day 10 whilst the sausages with additives, 

particularly those with kernel, tended to stabilise a* up to day 10, except for day 8.  

b. Significant main effect (Fat content) (Figure 7.9b) 

The medium fat sausages had higher a* values than the low or high fat sausages regardless of 

treatment and storage time. 

 

Figure 7.9a. Interaction effects of antioxidant treatment and storage time on a* values of pork 

sausages.  
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Figure 7.9b. Effects of fat content on a* values (mean ± SE) of pork sausages. 

 

 

                                   Different letter a,b show significant differences at p < 0.05. 
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7.3.3.1.2. Hue angles 

The analysis of variance of Hue values for sausages with different fat contents treated with 

antioxidants or stored for 10 days showed there was no statistical significant (p ≥ 0.05) 

interaction between the three-factors (Table 7.5.).  

 

Table 7.5. Three-way ANOVA statistical analysis using a General Linear Model for hue 

values of pork sausages influenced by treatment, fat content and storage time. 

 

Source of variance Degree of freedom p-value 

Storage                        5 < 0.0001 

Treatments                  3 < 0.0001 

Fat content             2 < 0.0001 

Storage x Treatments            15 < 0.05 

Storage x Fat content         10 < 0.05 

Treatments x Fat content       6 < 0.05 

Storage x Treatments x Fat content  30 > 0.05 

Treatments: control, kernel added, peel added and BHT added.  

Storage: day 0, 2, 4, 6, 8 and 10. Fat content: low, medium and high. 

 

However, all the two-factor interactions were significant (p < 0.05) indicating that the effect 

of one factor is dependent on another factor.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



143 

 

 

Figure 7.10a, 7.10b and 7.10c. Interaction effects on hue angles of pork sausages. 
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Figure 7.10a
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a. Treatment by fat content interaction for hue 

There was a significant (p = 0.043) interaction between treatment and fat content. In general, 

as fat content increased, the hue angle values increased in all the sausages, except that the hue 
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angles of the medium and those of the low fat control sausages or kernel supplemented 

sausages were similar (Figure 7.10a).  

 

b. Treatment by storage time for hue 

No significant differences in hue angles were found between the control sausages and those 

with additives at day 0 (Figure 7.10b). The hue angles increased dramatically in the control 

sausages at day 2 and remained similar over the remainder of the storage time. The hue angles 

increased gradually from day 0 to day 6 for the sausages with antioxidants and after day 6 

decreased slowly to day 10. However, the hue angles decreased more rapidly in the sausages 

with kernel or peel than those with BHT. Despite hue remaining constant from day 2 to 10 in 

the control sausages, these sausages showed larger hue angles relative to the sausages with 

additives over the 10 day storage period. 

 

c. Fat content by storage time for hue 

The higher fat sausages showed higher hue angles, except at day 6 and 8 when the hue angles 

of low and medium fat sausages were similar. Although the hue angles of the sausages with 

different fat content changed over the storage period, the effects of fat content on hue angles 

over 10 days of storage were inconsistent (Figure 7.10c).  

 

7.3.3.2. Patties 

7.3.3.2.1.      a* values 

The analysis of variance of a* values for pork patties with different fat content, antioxidant 

treatment and storage time showed there were significant (p < 0.01) effects associated with 

the three main factors as well as significant (p < 0.001) interactions between them          

(Table 7.6).  

 

By using the three-way ANOVA analysis, a three-factor interaction was found statistically 

significant (p < 0.05). Thus the two-factor interactions and main effects were ignored. The 

interaction plot was used to interpret the results as determined with the sausages in 7.3.2.1. 

From the plot, all the statements regarding the effects on TBARS were given in regards to the 

interactions between antioxidant treatment, storage time and fat content. 
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Table 7.6. Three-way ANOVA statistical analysis using a General Linear Model for a* values 

of pork patties influenced by treatment, fat content and storage time. 

 

Source of variance Degree of freedom p-value 

Storage                        5 < 0.0001 

Treatments                  3 < 0.0001 

Fat content             2 < 0.0001 

Storage x Treatments            15 < 0.0001 

Storage x Fat content         10 < 0.0001 

Treatments x Fat content       6 < 0.0001 

Storage x Treatments x Fat content  30 < 0.0001 

Treatments: control, kernel added, peel added and BHT added.  

Storage: day 0, 2, 4, 6, 8 and 10. Fat content: low, medium and high. 
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Figure 7.11a, 7.11b and 7.11c. Interaction effects on a* values of pork patties. 
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No significant difference in a* values were found between the control and treated patties at 

day 0 (Figure 7.11b). However, lower a* values were found in the high fat patties with added 

antioxidants (Figure 7.11a). a* values of all the patties tended to decrease from day 0 to day 8, 
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regardless of their fat content (Figure 7.11c), followed by a stable phase to day 10, except for 

the control patties which increased at day 10 (Figure 7.11b & 7.11c), particularly those with 

medium fat content (Figure 7.11c). The patties treated with kernel or BHT decreased their a* 

values less rapidly than the controls or those with peel in the first 4 days but the effects of the 

antioxidant treatments were minor in the late stages of storage. 

 

7.3.3.2.2. Hue values 

The three-way ANOVA analysis of hue angles of pork patties with different fat contents or 

treatments or storage up to 10 days showed there were significant (p < 0.01) effects 

associated with the three main factors and significant (p < 0.001) interactions between them 

(Table 7.7). A three-factor interaction was found statistically significant (p < 0.05) thus the 

two-factor interactions and main effects were ignored (Table 7.7). The interaction plot was 

used to interpret the results. From this plot, all the statements regarding the effects on TBARS 

were given in regards to the interactions between antioxidant treatment, storage time and fat 

content. 

 

Table 7.7. Three-way ANOVA statistical analysis using General Linear Model for hue angles 

of pork patties influenced by treatment, fat content and storage time. 

 

Source of variance Degree of freedom p-value 

Storage                        5 < 0.0001 

Treatments                  3 < 0.0001 

Fat content             2 < 0.0001 

Storage x Treatments            15 < 0.0001 

Storage x Fat content         10 < 0.0001 

Treatments x Fat content       6 < 0.0001 

Storage x Treatments x Fat content  30 < 0.0001 

Treatments: control, kernel added, peel added and BHT added.  

Storage: day 0, 2, 4, 6, 8 and 10. Fat content: low, medium and high. 

 

No significant difference in hue angle was found between the control and treated patties at 

day 0 (Figure 7.12b). However, as fat content increased, hue angle increased in all the patties, 

except that the hue angles of medium and low fat control patties were similar. The hue angles 

of all the patties gradually increased from day 0 to day 8 at all fat content levels and remained 

constant at the end of the storage period, except for the decrease in hue angles of the control 

patties, particularly the medium fat patties at day 10 (Figure 7.12c). The hue angles in the 

control patties and those supplemented with peel, followed by the BHT treated increased 
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more rapidly than those in the patties with kernel during the first 4 days, particularly in the 

pork patties with a high fat content (Figure 7.12a & 7.12c). The effects of treatment and fat 

content on the hue angles of pork patties were minor in the last 2 days of storage.  

 

Figure 7.12a, 7.12b and 7.12c. Interaction effects on hue angles of pork patties. 
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7.3.4. Myoglobin 

7.3.4.1. Sausages 

The total myoglobin concentration (Mb, MbO2 and MMb) of pork sausages (only high fat 

pork was investigated) at day 0 was 1.7g/kg meat. The colour of the pork sausages varied 

depending on the type of myoglobin (Mb, MbO2 and MMb). 

 

Changes in the type of myglobin (Mb, MbO2 and MMb) in pork sausages over a 10 day 

storage period showed significant differences (p <0.05) between the treatments (Figure 7.13a, 

7.13b and 7.13c). The addition of mango kernel or peel or BHT to the sausages immediately 

influenced the proportions of Mb, MbO2 and MMb at day 0. At day 0, the proportion of Mb 

was significantly lower in the sausages with added BHT than those with added peel. 

However, at day 2, the proportions of Mb were similar in all the treatments. In the control 

sausages after 2 days storage, the Mb increased progressively from 32.7 (day 2) to 52.9% (day 

10) whilst there were no changes in the sausages with supplements across the 10 days of 

storage (Figure 7.13a). 

 

The proportion of MbO2 was significantly higher in the sausages with added BHT than those 

with added peel at day 0 and day 2. After 2 days MbO2 decreased gradually from 31.6 (day 2) 

to 14.3% in the control sausages and remained stable in the sausages with kernel or peel or 

BHT. In contrast, there was a significant and progressive decrease in the sausages with added 

BHT from day 2 to 10. In addition, after day 2, the sausages with added BHT had a lower 

proportion of MbO2 than those with added kernel or peel (Figure 7.13b). 
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Figure 7.13a. Deoxymyoglobin (%) of pork sausages (n = 3) with different antioxidant 

treatments over 10 day storage.  

 

Different letters (w-x) within the same storage day are significantly different (p < 0.05). 

Different letters (a-c) within the same treatment are significantly different (p < 0.05). 

Units: %. 

 

Figure 7.13b. Oxymyoglobin (%) of pork sausages (n = 3) with different antioxidant 

treatments over 10 day storage. 

 

Different letters (w-z) within the same storage day are significantly different (p < 0.05). 

Different letters (a-d) within the same treatment are significantly different (p < 0.05). 

Units: %. 
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Figure 7.13c. Metmyoglobin (%) of pork sausages (n = 3) with different antioxidant 

treatments over 10 day storage. 

  

Different letters (w-z) within the same storage day are significantly different (p < 0.05). 

Different letters (a-c) within the same treatment are significantly different (p < 0.05). 

Units: %. 

In the first 2 days of storage, there were significant differences in MMb in the sausages. The 

control sausages had the highest MMb, followed by those with added kernel or peel then 

added BHT. After 4 days of storage, the proportion of MMb in the control sausages gradually 

increased from 23.7 (day 4) to 40.9% at day 8 followed by a slight decrease at day 10 

(37.1%). The sausages with added BHT increased up to 6 days of storage, and then stabilised 

thereafter. In contrast, the MMb remained relatively unchanged over the 10 day storage period 

in the sausages with either added kernel or peel. The proportions of MMb were lower in the 

sausages supplemented with mango kernel or peel than in the control sausages (Figure 7.13c).  

 

7.3.4.2. Patties 

The total myoglobin contentration (Mb, MbO2 and MMb) of pork patties (only high fat pork 

was investigated) at day zero was 1.4 g/kg meat which was significantly lower than that of the 

pork sausages. The colour of meat depended on the form (Mb, MbO2 and MMb) of 

myoglobin in the meat. The changes in myglobin (Mb, MbO2 and MMb) in pork patties 

showed significant differences (p < 0.05) over the storage time and with the treatment  

(Figure 7.14a, 7.14b and 7.14c). The addition of mango kernel or peel or BHT to the patties 

influenced the proportions of Mb, MbO2 and MMb at day 0. The proportion of Mb was 

significantly lower in the patties with BHT than those with added kernel or peel at day 0. 

However, at day 2 and 4, the proportions of Mb were similar across all the patties tested.  

However, after 4 days storage, the Mb increased gradually in the patties with added BHT and 



152 

 

 

the control patties whilst in the patties with added kernel or peel, there was a slow decrease up 

to day 8. The proportion of Mb in the control patties at day 0 and day 8 were 29.4% and 

45.4%, respectively. The proportion of Mb in all the patties remained constant from day 8 to 

day 10 (Figure 7.14a).  

 

Figure 7.14a. Deoxymyoglobin (%) of pork patties (n = 3) with different antioxidant 

treatments over 10 day storage. 

 

Different letters (w-y) within the same storage day are significantly different (p < 0.05). 

Different letters (a-c) within the same treatment are significantly different (p < 0.05). 

Units: %. 

 

Figure 7.14b. Oxymyoglobin (%) of pork patties (n = 3) with different antioxidant treatments 

over 10 day storage. 

 

Different letters (w-x) within the same storage day are significantly different (p < 0.05). 

Different letters (a-c) within the same treatment are significantly different (p < 0.05). 

Units: %. 
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Figure 7.14c. Metmyoglobin (%) of pork patties (n = 3) with different antioxidant treatments 

over 10 day storage. 

 

Different letters (w-y) within the same storage day are significantly different (p < 0.05). 

Different letters (a-c) within the same treatment are significantly different (p < 0.05). 

Units: %. 

 

The proportion of MbO2 was significantly higher in the patties with added BHT than those 

with added peel at day 0. However, at day 2 and 4, the proportions of MbO2 were similar in 

all the patties tested, except for those with added kernel which started to decrease at day 2 but 

remained constant over the 4 to 10 day storage period. The patties with added peel exhibited 

stable MbO2 over the 10 day storage period. The control and patties with added BHT, 

however, decreased gradually from day 0 to day 8 and increased slightly at day 10. The 

proportion of MbO2 in the control patties at day 0 and day 8 were 43% and 14.6%, 

respectively (Figure 7.14b). 

 

There were no significant changes in the proportions of MMb in all the patties between day 2 

and 4. Differences in MMb proportion were clearly observed after 4 days when the MMb in 

control patties increased progressively and rapidly from 13.3% (day 4) to 45.3% (day 10). In 

contrast, the MMb of those with added peel or BHT slowly increased to day 8 and then 

remained unchanged to day 10. The patties with added kernel stabilised the MMb proportion 

from day 4 to day 10, except for a slight increase at day 8. The proportion of MMb in the 

control sausages was the highest, followed by the sausages with added BHT or peel and then 

kernel from day 6 to day 10 (Figure 7.14c). 
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7.3.5. Volatiles 

A number of volatile compounds in the pork samples were identified by SPME-GCMS (see 

the Appendix A.4.1 for the Chromatogram). However, only the important volatiles that have 

been linked to the lipid oxidation of meat products are listed in Tables 7.8 and 7.9.  

 

7.3.5.1. Pork sausages 

Table 7.8. Major volatile compounds in the control pork (47.4% fat) sausages and those 

supplemented with mango kernel or BHT (n = 2) after refrigerated storage (4ºC) for 4 days. 

 

 

  

 Treatments Control Kernel BHT 

 

Area  

(TIC x 10
5
) 

Area 

% 

Area  

(TIC x 10
5
) 

Area 

% 

Area  

(TIC x 10
5
) 

Area 

% 

Retention        

time 

(min) 

Volatiles 

            

3.6 Pentane 53.1 ± 37.4 0.4 14.1 ± 9.7 0.1 6.9 ± 3.5 0.1 

3.8 Hexane 134.2 ± 3.4 1.2 67.1 ± 58.4 0.5 224.1 ± 36.9 1.7 

4.7 Heptane 13.8 ± 7.4 0.1 7.8 ± 1.3 0.1 14.3 ± 2.1 0.1 

4.8 2-Propanone 302.4 ± 10.2
a
 2.6 234.1 ± 6.5

b
 2.1 250.5 ± 3.1

b
 1.9 

6.2 Octane   240.2 ± 73.4
a
 2.1 78.1 ± 22.9

ab
 0.7 37.3 ± 6.3

b
 0.3 

11.3 1-Butanol 65.8 ± 12.6 0.6 35.1 ± 8.0 0.3 116.5 ± 73.8 0.9 

13.2 1-Pentanol 5126.8 ± 25.6 44.0 4710.1 ± 838.1 41.5 6291.3 ± 504.8 47.1 

15.0 

3-hydroxy-2-

butanone 5352.5 ± 536.2 45.8 5898 ± 995.1 52.0 6120.7 ± 691.9 45.7 

15.7 1-Hexanol 209.6 ± 100.3  1.8 79.1 ± 24.2 0.7 200.6 ± 56.0 1.5 

19.2 2-ethyl-1-hexanol 123.6 ±  10.5
ab

 1.1 144.5 ± 24.2
a
 1.3 52.9 ± 6.8

b
 0.4 

24.4 Hexanoic acid 47.8 ±  5.5 0.4 60.3 ± 17.5 0.5 51.4 ± 19.6 0.4 

  Total volatiles 11669.9 ± 572.3   11328.3 ± 1873.6   13366.7 ± 1107.6   

Values are the mean ± SE. 

a,b:  Means with different superscripts within a row are significantly different (p < 0.05). 

nd: not detected. 

 

In Table 7.8, eleven volatile compounds were identified and quantified in the pork sausages 

with certainty.  The major volatiles were alcohols such as 1-pentanol, 1-hexanol and              

2-ethyl-1-hexanol and ketones such as 3-hydroxy 2- butanone and 2-propanone.  Of all the 

compounds in the control sausages, 3-hydroxy-2-butanone and 1-pentanol together accounted 

for 90% of the volatiles 

 

The levels of individual volatiles and total volatiles in the control sausages and those with 

added kernel or BHT were not significantly (p ≥ 0.05) different except for 2-propanone, 
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octane and 2-ethyl-1-hexanol. The 2-propanone was lower in both the kernel and BHT 

supplemented sausages and octane and 2-ethyl-1-hexanol were lower in the BHT treated 

sausages than in the control sausages.   

 

7.3.5.2. Pork patties  

Table 7.9. Major volatile compounds in the control pork (47.4% fat) patties and those 

supplemented with mango kernel or BHT (n = 2) stored refrigerated (4ºC) for 4 days.  

 

 

 Treatments Control Kernel BHT 

  

 

Area 

(TIC x 10
5
) 

Area 

% 

Area 

(TIC x 10
5
) 

Area 

% 

Area              

(TIC x 10
5
) 

Area 

% 

Retention        

time (min) 
Volatiles 

            

3.319 Pentane   802.5 ± 16.4
a
 8.9   272.8 ± 130.7

b
 3.3 299.6 ± 98.7

b
 4.6 

3.807 Hexane   353.0 ± 23.2
b
 3.9 733.5 ± 32.0

a
 8.5  827.4 ± 150.1

a
 14.6 

4.611 Propanal   63.0 ± 10.3 0.7 nd 0.0 nd 0.0 

4.779 Heptane   32.9 ± 10.8 0.4 33.2 ± 3.1 0.4 47.2 ± 15.4 0.9 

4.919 2-Propanone    805.5 ± 308.5
b
 8.8  2701.1 ± 490.0

a
 31.5  465.0 ± 458.7

b
 5.2 

6.398 Octane  48.8 ± 3.8 0.5     85.0 ± 55.73 0.9     25.2 ± 2.3 0.4 

8.226 Pentanal  975.9 ± 42.5 10.8 nd 0.0 nd 0.0 

10.963 Hexanal  3300.6 ± 169.3 36.6 nd 0.0 nd 0.0 

11.884 1-Butanol   33.0 ± 2.7
a
 0.4    11.7 ±  6.2

b
 0.1 17.7 ± 6.2

ab
 0.3 

13.25 Heptanal  344.7 ± 47.1 3.8 nd 0.0 nd 0.0 

14.268 1-Pentanol 1313.4 ± 78.6 14.6  1922.1 ± 249.4 22.3 3695.2 ± 1265.0 55.6 

15.102 

3-hydroxy-2-

butanone   269.2 ± 43.2
b
 3.0   2829.1 ± 1158.2

a
 30.4   693.5 ± 509.2

ab
 13.9 

16.511 1-Hexanol   127.8 ± 14.0
a
 1.4  46.0 ± 7.9

b
 0.5 31.4 ± 7.1

b
 0.6 

20.61 2-Ethyl-1-Hexanol   143.2 ± 10.6
a
 1.6   56.8 ± 13.9

b
 0.7   93.8 ± 17.9

b
 1.5 

25.249 Hexanoic acid    411.1 ±  57.1
a
 4.5 109.5 ± 18.7

b
 1.3 140.2 ± 19.6

b
 2.3 

  Total volatiles  9024.4 ± 368.4 

 

8800.7 ± 648.2 

 

 6336.2 ± 1296 

 Values are the mean ± SE. 

a,b Means with different superscripts within a row are significantly different (p < 0.05). 

nd: not detected. 

 

Fifteen major volatile compounds were identified with certainty in the pork patties which 

included hydrocarbons, aldehydes, alcohols, ketones, and carboxylic acids. The three 

compounds in control patties with the highest percentage were hexanal, pentanal and             

1-pentanol, which together accounted for 62% (Table 7.9).  

 

There were significant (p < 0.05) differences in the levels of the volatiles depending on the 

treatment. The aldehydes; hexanal, pentanal, propanal, and heptanal and the alcohols             
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1-hexanol, 1-hexanol-2-ethyl and 1-butanol together with pentane and hexanoic acid were all 

significantly lower in the patties supplemented with kernel or BHT. In contrast, hexane and 

ketones such as 2-propanone and 3-hydroxy-2-butanone were significantly higher in the 

patties supplemented with kernel.  

 

7.3.5.3. Effects of mango kernel on reducing volatiles during 4 days of storage 

Figure 7.15. Biplot of first two principal components obtained from PCA showing the 

relation between selected volatile compounds and PC1 and PC2 and comparison of pork 

sausages (n = 2) with and without kernel between day 0 and day 4. 

             

3210-1-2-3-4

2

1

0

-1

-2

PC1 (69.8%)

P
C

2
 (

1
9

.6
%

)

Total volatiles

Hexanoic acid

2-ethyl-1-hexanol

1-hexanol

3-hydroxy-2-butanone

1-pentanol

1-butanol

Octane

2-Propanone

Heptane

Hexane

Pentane

Control at day 0

Control at day 4

Sausages with added kernel at day 0

Sausages with added kernel at day 4

 

 

The results of volatile obtained at day 0 and day 4 were used to investigate the antioxidative 

effects on reducing volatiles. Figure 7.15 shows the first 2 principal components which 

accounted for 89.4% of the total variation across the samples (PC1 and PC2 accounted for 

69.8% and 19.6% of the variance, respectively). When the volatile distributions were taken 

into account, the major compounds that positively contributed to the PC1 dimension were     

3-hydroxy-2-butanone, 1-pentanol, heptane, 1-hexanol, 1-butanol, pentane and octane whilst 

on the negative side of the PC1 axis was 2-propanone and hexane. The important compounds 

along the PC2 axis were hexanoic acid and 2-ethyl-1-hexanol. 

 

The control sausages at day 0 were located on the negative side of PC1 (PCA score < -3) 

indicating a negative correlation with the volatile compounds. The total volatiles were located 

on the positive side of PC1 with a positive correlation with 2-propanone and hexane. The 
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sausages with added kernel at day 0 were located in the left upper quadrant of the plane and 

were not positively associated with any volatile indicating the low level of volatile 

compounds identified in these sausages in the present study.    

 

In contrast, the control sausages at day 4 were on the positive side of PC1, in the same 

direction as pentane, octane, 1-butanol, 1-hexanol, heptanes; had a high score (PCA score > 3) 

on PC1 and was highly associated with 1-pentanol, 3-hydroxy-2-butanone and total volatiles 

indicating there were higher levels of these volatiles in the control than any other sausages. 

The sausages with added kernel at day 4 were located in the right upper quadrant of the plane, 

which showed higher levels of hexanoic acid and 2-ethyl-1-hexanol in these sausages than all 

the other sausages. 

 

7.3.6. Odour 

7.3.6.1. Sausages 

The odour acceptability was assessed by the same person using a 5 point hedonic as outlined 

in 3.14. The sausages, irrespective of their composition, showed a decrease in their odour 

scores over the 10 days of chilled storage. The sausages without additives decreased odour 

from 5 to 0 after 10 day storage. Nevertheless, the odour score of sausages with added kernel 

had acceptable score (≥ 3) for up to 6 days of storage whilst those with added peel or BHT 

only had an acceptable score (≥ 3) for up to 4 days of storage. The control sausages had an 

undesirable score (< 3) and unpleasant odour after 4 days of storage. Over the 10 day storage 

period the sausages supplemented with kernel had a higher odour scores (= 2) than the control 

sausages (= 0) or sausages supplemented with BHT (= 0) or peel (= 1). The odour score of 

sausages with added peel was higher than the score of sausages with added peel or BHTwas 

observed between the sausages with added peel and those with added BHT at day 10. 

 

7.3.6.2. Patties 

The odour score of all the patties decreased over the 10 day storage period. The odour score 

of patties with added kernel had acceptable odour scores (score ≥ 3) for up to 6 days of 

storage compared to those with added peel or BHT which had only  acceptable score (≥ 3) for 

up to 4 days of storage. In contrast, the control patties had unacceptable odour scores (< 3) 

and an unpleasant smell after 4 days of storage.  
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Over 10 days, the kernel supplemented patties had higher odour scores (= 2) than the control 

patties (= 2) or patties supplemented with BHT (= 2) or peel (= 1). The patties with added 

peel had a slightly higher odour score than those with added BHT after 4 days of storage.  

 

7.3.7. The relationships between the attributes of pork products with lipid oxidation  

The attributes TBARS, colour, odour, myoglobin and volatiles of the pork products (only 

pork products from 47.4% fat mince were investigated) were correlated with lipid oxidation 

and to each other. The results of all the attributes were obtained at day 10, except for those of 

volatiles which were obtained at day 4. The volatile compounds 1-pentanol and hexanal were 

found to be the most common volatiles contributing to lipid oxidation in pork sausages and 

patties, respectively in this study. Therefore, these tow compounds and the total volatiles were 

used for the investigation.  PCA was used to reduce the original variables (all attributes) to a 

fewer variables (principal components) that incorporate the maximum amount of variation. 

The PCA biplot is a point-vector plot where the attributes (variables) are represented by 

vectors (lines) and the samples are points. The relationships between attributes are determined 

based on the correlations between these variables (attributes) with the principal components 

(PC1, PC2, PC3, etc.) and the relative length of their vectors.  PCA was applied giving a 

better visualisation for discriminating between the samples with different treatments which 

are represented as points. The samples (points) that have the highest absolute loading score 

values on a PC indicate the attributes which are strongly correlated with the sample on a PC. 

 

7.3.7.1. Sausages 

Figure 7.16 shows the first 2 principal components accounting for 100% of the total variation 

across the samples (PC1 and PC2 accounted for 74.1% and 25.9% of the variance, 

respectively).  
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Figure 7.16. Biplot of first two principal components obtained from PCA showing the 

relation between attributes and PC1 or PC2 and comparison between pork sausages (47.4% 

fat content) with and without antixodant additives.    
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When PC1 was taken into account, the values that positively contributed to PC1 were Mb, 

MMb, TBARS and Hue whilst on the negative side were odour, MbO2 and a* values. The 

important attributes along the PC2 axis were the total volatiles and 1-pentanol.  

 

The control and kernel supplemented sausages were located on PC1 and BHT supplemented 

sausages on PC2. The control sausages on the right upper quadrant (PCA score > 2) were 

positively correlated with Mb, MMb, TBARS and Hue. In contrast, the sausages with added 

kernel was located on the negative side of PC1 (PCA score < -2) with positive correlations 

with MbO2, odour score and a*. Sausages with added BHT were located in the lower part of 

the plane and in the same direction as total volatiles and 1-pentanol. 

 

7.3.7.2. Patties 

Figure 7.17 shows the first 2 principal components accounted for 100% of the total variation 

across the samples. (PC1 and PC2 accounted for 79.4% and 20.6% of the variance, 

respectively).  
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Figure 7.17. Biplot of first two principal components obtained from PCA showing the 

relation between attributes and PC1 or PC2 and comparison between pork patties (47.4% fat 

content) with and without antixodant additives. 
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The PC1 was dominated by most of the attributes except for total volatiles which were 

correlated with PC2. Hexanal was correlated with Mb, MMb, TBARS and hue and was 

located on the right side of PC1. Odour, MbO2 and a* values were located on the left side of 

PC1 and were highly correlated to each other.  

 

The control patties were in the right upper quadrant (PC1score > 2) and positively correlated 

with Mb, MMb, TBARS whilst the patties with added kernel were located on the negative 

side of PC1 (PC1 score < -2). BHT supplemented patties were located on the lower part of 

PC2 and were negatively correlated with the total volatiles. 
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7.3.8. Microbiology analysis 

The microbiological characteristics of mango peel and kernel were analysed for TVC, E.coli, 

Bacillus cereus, yeasts and moulds (Table 7.10).  

 

Table 7.10. Microbiological characteristics of mango peel and kernel. 

Mango 

fractions 

TVC  

cfu g
-1

 

E.coli    

cfu g
-1

 

Bacillus           

cfu g
-1

 

Yeasts                                      

cfu g
-1

 

Moulds                         

cfu g
-1

 

Yeasts & Moulds          

cfu g
-1

 

Peel 190,000 < 5 < 10 50 50 100 

Kernel 600 < 5 < 10 < 50 < 50 < 50 

 

Fresh pork mince (used to make sausages and patties) at day zero and pork sausages and 

patties  with 1% of mango kernel at day zero and after cold storage at 4°C  for  4 and 10 days 

were analysed for  TVC, E.coli, staphylococcus aureus, clostridiums, yeasts, moulds and 

salmonellae (Table 7.11).  

 

Table 7.11. Microbiological characteristics of pork products containing kernel. 

Pork samples 
TVC 

cfu g
-1

 

E.coli    

cfu g
-1

 

Staphylococci    

cfu g
-1

 

Clostridiums       

cfu g
-1

 

Yeasts & Moulds          

cfu g
-1

 

Salmonellae                

per 25g 

Mince 1,700,000 > 1500 < 10 < 10 3600 nd 

Sausages + kernel  

day 0 
370 < 5 < 10 < 10 3500 nd 

Sausages + kernel  

day 4 
2,200,000 < 5 < 10 < 10 nd nd 

Sausages + kernel  

day 10 
< 100,000 < 5 < 10 < 10 nd nd 

Patties + kernel     

day 0 
2,200,000 > 1500 < 10 < 10 3700 nd 

Patties + kernel    

day 4 
9,900,000 > 1500 < 10 < 10 nd nd 

Patties + kernel    

day 10 
73,000,000 < 5 < 10 < 10 nd nd 

nd: Non- detected 

cfu g
-1

: colony-forming units per gram 

 

The TVC in fresh mince, pork sausages and patties with added kernel at day 0 ranged from 

3.7 x 10
5
 to 2.2 x 10

6
 cfu g

-1
. The TVC of pork patties increased dramatically to 

concentrations of 9.9 x 10
6
 and 73 x 10

6
 cfu g

-1 
after 4 and 10 days of storage, respectively. 
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The concentration of TVC in pork sausages were 2.2 x 10
6
 and less than 10

5 
cfu g

-1 
at day 4 

and 10, respectively. 

 

E.coli was detected in fresh pork mince and pork patties at day 0 and 4 at concentrations 

higher than 1500 cfu g
-1

. However, E.coli in sausages at day 0, 4 and 10 and patties at day 10 

were less than 5 cfu g
-1

. 

 

Pathogenic bacteria such as staphylococci and coliforms were recovered from pork mince, 

pork sausages and patties but were less than 10 cfu g
-1

. The concentrations of yeasts and 

moulds in pork mince, pork sausages and patties at day zero ranged from 3500 to 3700 cfu g
-1

. 

However, yeasts and moulds were not detected in the pork sausages and patties at day 4 and 

10. Salmonellae were not detected in any of the pork samples tested. 

 

7.4. Discussion 

7.4.1. Proximate composition of pork mince 

The fat content of mince is an important factor affecting the extent of lipid oxidation which is 

a major factor influencing the shelf life of meat products (Asghar et al., 1988; Ladikos and 

Lougovois, 1990; Park et al., 2008; Ismail et al., 2009). The fat, protein and moisture content 

of pork mince with different fat levels were similar to the results reported by Tan et al. 

(2012). There was a negative correlation between the fat and crude protein and moisture 

content of the minced pork. Pork mince with a high fat content had a low protein and low 

moisture content. The results are in agreement with those reported by other authors, who 

found similar correlations between the intramuscular fat content and concentrations of the 

other chemical components in meat (Park et al., 2001; Wichacz et al., 1998; Daszkiewicz et 

al., 2005).  

 

7.4.2. TBARS 

There were lower TBARS values and rates of TBARS production in sausages supplemented 

with mango kernel, peel and BHT compared to the control sausages suggesting that the 

supplements were inhibiting the lipid oxidation in pork sausages over the 10 day storage 

period regardless of their fat content. However, the TBARS values of the sausages treated 

with peel or BHT (except for low fat sausages) started to increase at day 6 whilst those 

supplemented with kernel remained unchanged indicating that kernel was more effective than 

peel or BHT in reducing lipid oxidation regardless of the sausage fat content. In particular, the 
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higher inhibitory effects of kernel relative to peel or BHT were more pronounced in the high 

and medium fat sausages at day 6. 

 

In pork sausages, peel conferred antioxidative effects to the same extent as kernel in 

maintaining the TBARS values of the pork patties from day 8 to day 10. The increase in 

TBARS in sausages treated with BHT after day 6 and for the remainder of the storage period 

indicated that the concentration of BHT (0.01%) is insufficient to prevent lipid oxidation after 

this time.  Sausages treated with kernel had the lowest TBARS values at day 10 of all the 

sausages demonstrating that kernel is a good active source of antioxidants that can extend the 

shelf life of pork sausages. Peel also has antioxidative effects on sausages but showed less 

effective than kernel. 

 

Similar to the sausage results, patties supplemented with kernel showed higher antioxidative 

effects on reducing TBARS than peel or BHT after day 4. However, the patties treated with 

BHT had stable TBARS from day 6 to day 10 and had similar TBARS values as those with 

kernel after 6 days, except for the high fat patties which suggests that high fat patties might 

produce more lipid oxidation products and that BHT was less effective than kernel to 

scavenge the free radicals from lipid oxidation. Thus, kernel was the most effective source of 

antioxidant evaluated. Furthermore, the high inhibitory effects of kernel were independent of 

product fat levels and compared to BHT, the effects were more pronounced in the high fat 

patties.  

 

Finally, the fact that there was no significant (p ≥ 0.05) difference in the TBARS of pork 

patties or sausages with kernel at day 0 and day 10 indicates that the dried kernel product was 

extremely effective in restricting lipid oxidation in pork products. Indeed, mango kernel may 

contain some antioxidant compounds such as tocopherol and carotenoids that quench lipid 

oxidation. Soong et al. (2004) also reported that mango seed kernel has potent antioxidant 

activity with not only phenolic compounds but also lipophilic antioxidants such as 

phytosterols and tocopherols). They suggested that mango seed kernel could be used as a 

functional food ingredients and therapeutic functional food products. 

 

It should be noted that lipid oxidation is often initiated by the unsaturated fatty acids of 

membrane phospholipids which leads to the production of hydroperoxides. The latter are 

susceptible to further oxidation to secondary reaction products such as MDA. Although 

unsaturated fatty acids are the main factor contributing to lipid oxidation, the fat content is 
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considered an important factor particularly in meat products exposed to air during storage 

(Ahn, et al., 1998). The fat content in the present study influenced the TBARS values of the 

untreated and treated sausages and patties throughout the storage period. The present study 

showed that the TBARS values of patties were higher in the high fat content products. 

Furthermore, at some stages of storage e.g. day 6 for sausages (Figure 7.4c) and day 4 for 

patties (Figure 7.8c) the benificial effects of kernel on reducing TBARS were more 

pronounced in the high fat content products. These findings are in agreement with the study of 

Ahn et al. (1998) who reported that high fat is a factor accelerating the oxidation of lipid in 

raw meat during storage. 

 

Overall, the addition of 1% mango kernel or 1% peel or 0.01% BHT to sausages and patties 

were effective as antioxidants over a 10 day storage period, regardless of product fat content. 

Both mango kernel and peel, as mentioned in chapter 2, contain large amounts of antioxidants 

such as vitamins C, E, flavonoids, tannins, coumarins, curcuminoids, xanthons, phenolics and 

terpenoids (Soong, et al., 2004; Berardini et al., 2005; Ajila et al., 2007). The list of 

molecules possesses strong scavenging abilities that capture free radicals and chelate metals. 

Mango kernel was found to possess a high antioxidant capacity and to contain high 

concentrations of both hydrophilic and lipophilic antioxidants than peel (chapter 4) and 

consequently, was more superior at inhibiting lipid oxidation. Furthermore, although BHT has 

often been used to prevent the negative effects of lipid peroxidation by scavenging chain 

carrying peroxyl radicals or diminishing the formation of initiating lipid radicals, mango 

kernel was more effective than BHT in the present study. This is probably due to the various 

kinds of antioxidants in mango kernel being dissolved in both the water and lipid phases 

thereby enhancing the antioxidative effects on muscle systems. Abdalla et al. (2007) also 

suggested that mango seed kernel extracts could be used as a source of natural antioxidants. 

 

7.4.3. Colours 

The a* value, or degree of redness, is the most easily measurable non-destructive indicator of 

fresh meat discoloration. In general, a* values will decrease with display time. Mathematical 

formulae using the a* and b* values can predict hue (true colour) angle calculated as 

tan−1(b*/a*) which, if plotted as a function of storage can be correlated with the visual 

appearance of products (Clydesdale, 1978). There were no differences in a* and hue angles 

between the control and treated sausages at day zero suggesting that the addition of mango 

kernel or peel or BHT did not physically impart the redness (a* value) or true colour (hue 

angle) of the pork sausages regardless of fat content. The colour of the sausages started to 
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change dramatically at day 2, particularly, the redness of the control sausages which faded 

very rapidly.  

 

Changes in hue angles during the storage of pork sausages, which are shown in Figure 7.10b 

confirm that storage and treatments influence colour and that the changes have an opposite 

trend to those for redness or a* values, particularly at day 2. In addition, although all sausages 

tended to be less red in the subsequent storage days, those with additives kernel, peel and 

BHT had a redder colour and maintained the redness in a stable form from day 6 to the end of 

the storage period; thus demonstrating a positive effect on pork products. In general, as fat 

content increased, the redness of all of sausages decreased regardless of the treatments, except 

for the similar hue angles of medium and low fat control sausages or kernel added sausages 

(Figure 7.10a), over the storage time, except for day 6 (Figure 7.10c). 

 

As with the pork sausages, there were no differences in the a* values and hue angles between 

the control patties and those with additives at day zero suggesting that the addition of mango 

kernel or peel or BHT had no physical affect on the redness and true colour of the pork patties 

irrespective of the fat content. The fat content influenced the colour of patties at day zero. 

Namely the redness decreased more rapidly in the high fat patties. The decreases in a* values 

and increase in hue angles indicate that the pork patties tended to be less red regardless of fat 

content, as storage time increased. The addition of kernel or BHT stabilised the colour and 

maintained the redness of the pork patties.  

 

It should be noted that the pork products tended to be less red (red and true red colour) in the 

subsequent storage days. The redness of the pork sausages decreased dramatically at day 2 

and decreased slightly thereafter whilst the redness of the pork patties decreased gradually 

from day 0 to day 8 and remained constant at day 10. This finding was similar to those from 

the study of Zhu and Brewer (1998) who found that a* values decreased in fresh pork on 

storage. This could possibly be attributed to the myoglobin and oxymyoglobin in pork 

products being lost by oxidation which turns the pigment to a brown colour attributed to 

metmyoglobin. In addition, as fat content increased, the redness of pork sausages and patties, 

in general, decreased over the storage period. This finding is in agreement with Georgantelis 

et al. (2007) who stated that more lean patties had more myoglobin which supports the 

moderately higher a* values. The additions of antioxidants inhibited the decrease in redness 

and discoloration of pork sausages and patties. Kernel had the highest effect on maintaining 

the redness and colour of pork sausages and patties, followed by peel or BHT. Peel was more 
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effective in maintaining the redness and colour in sausages but BHT was more effective in 

patties. 

 

7.4.4. Myoglobin 

As mentioned earlier in 7.4.3., loss in redness and discoloration could possibly be attributed to 

the myoglobin (Mb) and oxymyoglobin (MbO2) in pork products being lost by oxidation 

which turns the pigment to a brown colour attributed to metmyoglobin. Thus different forms 

of myoglobin were determined. The total myoglobin contentration (Mb, MbO2 and MMb) of 

pork sausages and pork patties at day zero were 1.7 and 1.4g kg
-1

 meat, respectively. The 

differences could be due to the longer processing of sausages that exposed the mince longer to 

the air thereby increasing MbO2 concentration in the pork sausages at day 0. However, the 

total myoglobin contentrations (Mb, MbO2 and MMb) of pork sausages and pork patties at 

day zero were similar to the findings of Agullo et al (1990) for pork ribs (1.8 g kg
-1

) and those 

of Ginger, et al. (1954) for pork (1.44g kg
-1

).  Nevertheless, the results of the present study 

are slightly lower than the pork values (2 - 7.5 g kg
-1

) reported by Fox and Condon (1982). 

These differences could be attributed to the type of muscle analysed (e.g. leg, back, ribs and 

shoulder) and the processing of the meat (e.g. fresh table cut or mince). In the present study, 

the pork sausages and patties were produced from minced shoulder meat only.  The mincing 

process reduces the myoglobin and destroys the cellular integrity which liberates a variety of 

prooxidants which can accelerate the discoloration process (Faustman and Cassens, 1990).  

 

It should be noted that myoglobin can exist in three forms: purple reduced myoglobin (Mb), 

red oxymyoglobin (MbO2) and brown metmyoglobin (MMb). The actual colour of pork 

products depends on the proportion of three forms of myoglobin. The changes of these three 

forms showed a similar trend over the 10 days storage period in this research. Namely, the 

addition of the antioxidants (mango kernel, peel and BHT) into the pork sausages and patties 

changed the three forms of myoglobin immediately which resulted in significant differences 

between the control samples and those with added peel or BHT at day zero. This could be due 

to either the immediate effect of BHT increasing MbO2 and reducing Mb and MMb or 

possibly the interference of mango peel pigment on the colour of myoglobin.  There were no 

significant differences in the proportion of myoglobin between the control pork samples and 

those with added kernel suggesting that the colour of mango kernel did not physically impact 

on the myoglobin colour of the pork products and that the antioxidant aspect of kernel had no 

immediate action on the pork products. 
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However, after day zero, there were inconsistent changes in Mb, MbO2 and MMb of pork 

sausages and patties at day 2 and 4, respectively due to the complex changes in the formation 

and loss of the three myoglobin forms. The three forms of Mb, MbO2 and MMb are 

constantly being interconverted, particularly in the presence of oxygen, during storage which 

results in changes in meat colour (Giddings, 1974; van Laack et al, 1990; Zhu and Brewer, 

1998). Furthermore, the products were packed under retail meat display conditions which may 

cause low oxygen tension, a condition suitable for the oxidation and reduction of pigments 

which occurs simultaneously and continuously for a significant time post mortem.  There was 

noticeable blooming (or the formation of MbO2) of the pork sausages and patties in the first 2 

and 4 days storage and oxidation of Mb and MbO2 to MMb, respectively. Meanwhile, the 

MMb reducing activity in the pork sausages and patties reduced MMb to Mb which can be 

subsequently oxygenated to bright red MbO2. The formation and loss of myoglobin from 

these processes resulted in the inconsistent changes in Mb and MbO2 to MMb during the first 

4 days of storage. 

 

For the remainder of the storage period after 4 days, the proportion of MbO2 showed an 

opposite trend to Mb and MMb in the control sausages and control patties. The proportions of 

Mb and MMb tended to increase and MbO2 decrease in the case of control and BHT added 

pork products. The observed results can be attributed to the oxidation of MbO2 to MMb after 

the first 4 days of storage. A factor responsible for meat discolouration and MbO2 oxidation is 

lipid oxidation (Brown and Mebine, 1969; Gray et al., 1996) which produces free radicals and 

aldehydes that react with MbO2 and consequently accelerates the accumulation of MMb. 

 

Mancini and Hunt (2005) suggested that pork sausages and patties have a natural reducing 

capacity due to endogeneous reductants such as NADH, muscle oxygen scavenging enzymes 

and reducing enzyme systems (Mancini et al. , 2005) which all contribute to a decrease in 

MMb formation. However, over an extended storage period, due to the consumption of these 

reductants and the inactivation of reducing systems induced by the formulation of metabolic 

by-products, the reducing capacity is decreased which results in a rapid accumulation of MMb 

on the surface of the products. This is responsible for the loss in pink colour. 

 

During the extended storage period, oxygen consumption which is controlled by the activity 

of oxygen-utilising enzymes and the activity of mitochondria (Faustman and Cassens, 1990; 

Zhu and Brewer, 1998) is decreased which leads to the low-oxygen partial pressure that is the 

likely cause of the oxidation of MbO2 to MMb (Mancini and Hunt, 2005). 
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In addition, the observed changes in Mb, MbO2 and MMb after 8 to 10 days of  storage could 

be attributed to the oxidation of the ferrous-species of myoglobin to the brown ferric-species 

MMb due to the prolonged exposure to air and the low oxygen pressure (Lindahl et al., 2006). 

Despite being packed in the oxygen-permeable plastic bags, the pork products particularly the 

pork patties placed in the petri dishes covered tightly with lids were stored in conditions with 

low oxygen tension. The low oxygen tension, which is created by the increase in oxygen 

consumption rate during storage (Bendall and Taylor, 1972), can result in rapid formation of 

MMb at meat surfaces from MbO2 through the ferric redox state at low-oxygen partial 

pressures.  Subsequently, there is a conversion of MbO2 to Mb during the storage conditions 

with low oxygen tension. This explains why the Mb proportion had the similar trend as MMb 

and increased after 8 to 10 days of storage. 

 

Lipid oxidation is responsible for pigment and myoglobin oxidation. Consequently, the 

presence of mango kernel or peel or BHT which act as reductants and exhibit antioxidative 

effects, inhibited the discolouration of the pork products. The colour stabilising effects of 

kernel, peel and BHT may also be the result of their ability to chelate transition metals that are 

involved in free radical generation and free radical scavenging which retards the oxidation of 

MbO2 to MMb, and as a consequence, reduces or at least maintains the increase in Mb. These 

effects of the additives were inconsistent in the first 2 days in the sausages and 4 days in the 

patties but were more pronounced at later storage times when the control pork samples started 

to discolour.  

 

Metmyoglobin, the oxidised meat pigment, is responsible for the undesirable brown colour of 

fresh meat. Greene et al. (1971) reported that 40 % MMb caused meat rejection by 

consumers. Although the limit of 40% MMb was established for beef as reported by      

Greene et al. (1971), this limit was also applied for pork in the study of Calhoun et al. (1999). 

No information regarding the percentage of MMb of pork to be rejected by consumers, 

therefore, it is assumed that less than 40% of MMb was acceptable for pork in the present 

study. The findings showed that all the sausages and patties treated with antioxidants (kernel, 

peel and BHT) over the 10 day storage period were acceptable whilst the control sausages at 

day 8 and the control patties at day 10 were unacceptable.  

 

The pork sausages and patties with added kernel showed the highest effects of retarding the 

formation of MMb and Mb as well as maintaining the proportion of MbO2, followed by those 

with added peel then BHT. Although BHT, a synthetic antioxidant, reduced the oxidation of 
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MbO2 to MMb and formation of Mb in both pork sausages and patties during storage, its 

effect was lower than kernel or peel. Furthermore, due to the potential toxicity, the application 

of BHT is limited by law to certain meat products (e.g. sausages or ground pork) at 0.01% 

(Lee et al., 2005). To apply BHT to pork sausages or patties, a combination of BHT with 

another antioxidant such as Vitamin E or kernel or peel is recommended. Both kernel and peel 

are good sources of antioxidants but kernel has a higher antioxidant capacity than peel and 

therefore a more substantial effect on stabilising the colour than peel. 

 

7.4. 5. Volatiles 

7.4.5.1. Pork sausages 

The majority of the volatile compounds listed in Table 7.8 have been previously found in pork 

sausages (Estevez et al., 2003; Olse, et al., 2005) with 1-pentanol (44% of the total area of 

volatiles) and 3-hydroxy-2-butanone (45.8% of the total area of volatiles) being the major 

volatiles. However, aldehydes, such as hexanal and pentanal, are the two major volatiles 

unique to the autoxidation of lipids in meat (Selke et al., 1980), and were not identified in the 

sausages in this study. This could be due to their reduction to other volatiles such as 1-hexanol 

(Jaar et al., 1999) and/or hexanoic acid (Jo and Ahn, 2000) and 1-pentanol (Yamashita et al., 

1977).  Although, no aldehydes were identified, various alcohols were observed in significant 

amounts.  Mottram (1985) found that the headspace volatile compounds of pork (pork was 

cooked until the centre temperature in the meat reached 70°C) were dominated by aldehydes 

and alcohols originating from the thermal oxidation of lipids and concluded that alcohols 

could be used as indicators of lipid oxidation in pork products. However, due to their higher 

odour threshold, which is defined as the minimum concentration at which the compound can 

be detected by the sense of smell, compared to aldehydes, the influence of alcohols on aroma 

development is lower than aldehydes. Mottram et al. (1984) also found that the headspace 

volatiles of the untreated or the salt pork (no heating applied) contained essentially the same 

components as those of cooked pork from which aldehydes and alcohols dominated the 

headspace volatiles of the samples although there were quantitative differences. 

 

The ketones such as 3-hydroxy-2 butanone and 2-propanone which are also lipid oxidation 

products were found to have a major contribution (e.g. 45.8% by 3-hydroxy-2-butanone) to 

the total volatiles of pork sausages in the present study. In addition, some hydrocarbons such 

as pentane, hexane, heptane and octane that have been identified as major constituents of the 

headspace volatiles (Yasuhara and Shibamoto, 1990) were present in pork sausages in 

significant amounts. A significant level of hexanoic acid in pork sausages is due to the 
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reduction of hexanal. The presence of the volatiles produced from lipid oxidation in pork 

sausages with and without treatment with antioxidants, after 4 days, indicates that lipid 

oxidation has occurred over the storage period.  

 

The effect of BHT or mango kernel in sausages on reducing 2-propanone, octane and            

1-pentanol (effective in kernel only) indicates that mango kernel and BHT have influenced the 

production of volatile compounds that are linked to undesirable off-flavours in pork sausages. 

However, there were non-significant (p ≥ 0.05) differences in the levels of the majority of the 

volatile compounds between the control sausages and those supplemented with kernel or 

BHT. These findings suggest that kernel and BHT have an antioxidative effect in terms of 

reducing volatiles but the effect is minor at day 4 of storage.   

 

7.4.5.2. Pork patties 

The predominant volatile compounds in the control pork patties were hexanal, 1-pentanol and 

pentanal (Figure 7.9). Unlike pork sausages, some aldehydes, such as hexanal, pentanal, 

propanal and heptanal, were positively identified in the control pork patties. Aldehydes play 

an important role in contributing to the aroma of pork products due to their low perception 

threshold and their distinctive odours (Pugliese et al., 2010). These volatiles appear at high 

levels under aerobic conditions (Jo and Ahn, 2000). The hexanal levels were very high 

(contribution of 36.6 % in the total volatiles) among the volatiles identified in the pork patties 

which is understandable as hexanal is a major product of the autoxidation of n-6 fatty acids.  

Supplementation of patties with mango kernel or BHT reduced these aldehydes to 

undetectable levels suggesting that the additives have inhibited lipid oxidation. 

 

Furthermore, similar to the sausage results, several alcohols were identified indicating that the 

aldehydes have been reduced to alcohols, particularly to 1-pentanol which was observed in 

significant amounts and contributed to 14.6% of the total area of the volatiles in the control 

pork sausages. 

 

In addition, the ketones (also lipid oxidation products) such as 2-propanone and particularly 

3-hydroxy-2 butanone were found in patties. They also made a substantial (11.8%) 

contribution to the total volatile content of control pork patties in the present study. A 

significant level of hexanoic acid was observed in the pork patties and is probably due to the 

oxidation of hexanal.  Jo and Ahn (2000) stated that the hexanal level is an indicator of lipid 

oxidation and that the levels decrease dramatically during storage due to its oxidation to 
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hexanoic acid. Indeed, the oxidation and transformations between volatiles compounds often 

makes it difficult to explain some of the profile changes in the volatiles and the impact of the 

changes on product quality. Nevertheless, despite these changes, the absence of the aldehydes 

as well as the low levels of alcohols in the pork patties with the additives strongly suggests 

that the additives have inhibited lipid oxidation. 

 

7.4.5.3. Antioxidative effects of mango kernel on reducing volatiles over 4 days of storage 

In order to compare the volatile compounds of pork sausages with and without kernel added 

over the storage period, the data from volatile analyses of pork sausages at day zero and day 4 

were compared. The levels of most of volatiles in the sausages with or without kernel added at 

day 4 were higher than those at day 0, except for 2-propanone and hexane which indicates that 

the volatiles of pork sausages increase as the storage time increases. The higher levels of       

2-propanone and hexane in the control sausages at day zero are consistent with the results 

found in the pork sausages at day 4 and confirm that kernel is effective in reducing these two 

volatile compounds. 

 

In addition, the high levels of volatile compounds such as 1-hexanol, 1-butanol, 1-pentanol, 

heptanes, octane, pentane, 3-hydroxy-2-butanone and total volatiles in the control sausages at 

day 4 compared to kernel supplemented sausages at day 4 indicate that the inclusion of kernel 

is effective in reducing the production of volatiles from lipid oxidation after a 4 day storage 

period. However, the sausages with kernel at day 4 had higher levels of hexanolic acid and   

2-ethyl-1-hexanol. 

 

7.4.6. Odour 

 Lipid oxidation is a major cause of the deterioration in the quality of meat or meat products 

(Vasavada and Cornforth, 2006) and contributes to the rancid odour. Aroma is often 

characterised by the presence of volatiles, whose concentrations need to be over a specific 

threshold to generate an odour recognisable by consumers (Garcia-Gonzalez et al., 2008). In 

this research, the odour was assessed by the researcher who used a 5-point hedonic scale to 

score the pork products.  

 

The changes in the odour profiles of the patties with different treatments over the storage 

period were similar to the profiles observed with the sausages. This is expected since any lipid 

oxidation will contribute to the formation of volatiles such as aldehydes, alcohols and ketones, 

which have low sensory thresholds and consequently contribute to the odour and flavour 
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typically associated with rancidity (Frankel, 1998; Olsen et al., 2005).  Other products of lipid 

oxidation and degradation could also contribute to the unpleasant odour, particularly if pork is 

stored under aerobic conditions.  

 

The pork sausages and patties supplemented with kernel or peel or BHT had higher odour 

acceptance than the control samples over the 10 day storage period. It is probable that the 

antioxidants in mango kernel, peel and BHT acted as scavengers of the free radicals produced 

from lipid oxidation which resulted in the more acceptable odour than from the control 

samples. Furthermore, the antioxidative effects on maintaining the pleasant odour were 

highest in mango kernel followed by peel and then BHT. 

 

Odour is the most important parameter that affects the consumer perception of the quality of 

stored chilled meat. The reported subjective odour scores, however, were only evaluated by 

one person. To evaluate whether the changes in the quality of pork products are due to lipid 

oxidation, the results of odour scores should be evaluated alongside changes in TBARS, 

colour, myoglobin, volatiles and microbial changes in the same samples. 

 

7.4.7. Relationships between the attributes of pork products with lipid oxidation  

The findings in sections 7.3.2 to 7.3.6 suggest that lipid oxidation influences the attributes 

TBARS, colour, myoglobin and odour of pork sausages and patties over the 10 day storage 

period. Lipid oxidation also influences the levels of volatiles in pork sausage and patties at 

day 4. To determine whether there were any correlations between the measured attribute 

changes and lipid oxidation as measured by the various assays, all the measured attributes and 

assays of pork sausages and patties at day 10 of chilled storage were combined and evaluated 

by PCA. Unfortunately, the volatiles of the pork products were only determined at day 4 but 

the data was included in the analysis for a preliminary evaluation of the relationships between 

the volatiles and lipid oxidation.  

 

The loading plot (Figure 7.18) showed that TBARS, Hue, Mb and  MMb were highly 

correlated to each other and negatively correlated with  MbO2, odour score and a* values in 

the pork sausages. These findings suggest that TBARS, hue angles, Mb and MMb increased 

whilst MbO2, odour score and a* value decreased when lipid oxidation occurred after 10 days 

of storage. In pork sausages after 4 days of storage, total volatiles and 1-pentanol, were 

virtually orthogonal to PC1, indicating there was no association with any other attributes 

located in PC1.  
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Similarly, in pork patties (Figure 7.19) there was no correlation between the total volatiles 

after 4 days storage with any of the other attributes. This could be due to the fact that the lipid 

oxidation after 4 days storage was low and thus the volatiles produced from this process 

changed less dramatically than the other attributes affected by the lipid oxidation after 10 days 

storage. Hexanal released from pork patties was highly correlated to MMb, Mb, TBARS and 

hue. This is not surprising since hexanal is a major product of the autoxidation of n-6 fatty 

acids in pork patties and like other aldehydes, hexanal produces an unpleasant odour due to 

their low perception threshold and distinctive odour (Pugliese et al., 2010). The absence of 

hexanal in the pork sausages could be due to its reduction to 1-hexanol, 2-ethyl-1-hexanol and 

hexanoic acid as discussed in 7.3.5. Some reports have shown there is a positive relationship 

between sensory assessment, TBARS and hexanal in pork, beef and turkey (Shahidi et al., 

1987; Angelo et al., 1990; Craig, Bowers and Seib, 1991).  Dupuy et al. (1987) has also 

reported correlations between volatiles and lipid oxidation in cooked pork. 

 

Pork sausages and patties provide high quality protein, vitamins and minerals for consumers 

However, during storage, particularly under aerobic conditions, the autoxidation of lipids and 

the production of free radicals are a consequence of the metabolic changes in a meat 

biological system (Lee, Hendricks and Cornforth, 1998; Olsen et al., 2005). Lipid oxidation 

products and free radicals, in particular, contribute to the oxidation of oxymyoglobin to 

metmyoglobin which results in an undesirable dark brown meat colour (Renerre and Labas, 

1987; Lee, Hendricks and Cornforth, 1998). Lipid oxidation breakdown products also cause 

rancidity due to the production of a complex mixture of aldehydes, ketones, alcohols, 

hydrocarbons and carboxylic acids. The correlations between TBARS, myoglobin, colour, 

odour and volatiles are probably a consequence of lipid oxidation in the studied pork 

products. 

 

Pork products with added kernel showed elevated MbO2, odour score and a* (redness) and 

lower Mb, MMb, TBARS and Hue than products with added BHT or the control samples.  

Kernel inhibited the production of hexanal in pork patties. The total volatiles were highest in 

the kernel supplemented pork sausages and lowest in kernel supplemented pork patties 

demonstrating that the total volatiles are not a good indicator of lipid oxidation after 4 days of 

storage.  
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Mango kernel, peel and BHT are scavengers of free radicals and the results illustrate that they 

are effective in retarding lipid and pigment oxidation in the pork sausages and patties up to 10 

days of chilled storage.  Clearly, the antioxidants in the mango additives and BHT are 

donating hydrogen to the free radicals and preventing or at least reducing the rate of lipid 

oxidation.  These antioxidant additives may also control the production of any additional free 

radicals by reducing the activity of ion chelation (Ladikos and Lougovois, 1990). In the 

previous sections (7.3.2 to 7.3.6), mango fractions, particularly kernel, were identified to be 

more effective than peel or BHT on reducing TBARS, oxidation of MbO2 to MMb, hue 

angles and volatile compounds. In contrast, they increased the redness (a*) and odour scores 

of pork sausages and patties. PCA analysis confirmed that mango kernel had higher 

antioxidative properties than BHT in retarding lipid oxidation in pork sausages and patties 

during chilled storage. 

 

7.4.8.   Microbiology 

The levels of TVC, E.coli, Bacillus cereus, yeasts and moulds in mango peel and kernel were 

well below the recommended limits for dried fruits indicating that the freeze drying process 

used to produce the mango peel and kernel powder was satisfactory. Consequently the 

products are suitable for inclusion in   meat products and do not create any microbiological 

concerns to the food industry. 

 

Bacteria normally found on the surface of meat are distributed throughout the minced product 

during the mincing processes (Youssef et al., 1984; Siriken, 2004). This fact together with 

minced meat being a good medium for the rapid growth of microorganisms means pork 

sausages and patties are highly susceptible to bacterial contamination and growth will 

commence if the products are not treated correctly. 

 

The concentrations of TVC in fresh mince was 1.7 x 10
6
 cfu g

-1
 which is within the acceptable 

levels recommended by the Food Regulators (Food Management Manual, 1995) indicating 

that the fresh pork mince was safe from TVC. 

 

Similarly, the concentrations of TVC in pork sausages and patties with added kernel at day 

zero ranged from 3.7 x 10
5
 to 2.2 x 10

6
 cfu g

-1
, are also within the acceptable levels 

recommended by the Food Regulators (Food Management Manual, 1995). However, over the 

storage period, the levels of TVC in the pork patties increased dramatically and attained 

unacceptable concentrations (> 5 x 10
6 

cfu g
-1

) whilst the concentration in pork sausages 
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remained below the maximum allowable limit (Food Management Manual, 1995) at day 4 

and day 10. These findings indicate that the conditions for making sausages and patties 

controlled TVC but the aerobic bacteria were produced over the 10 day storage period. The 

results imply that mango kernel has a potential antimicrobial activity against TVC in pork 

sausages at day 4 and 10 but such activity was not present in the pork patties. 

 

The count of E.coli in pork mince was above 1500 cfu g
-1

 but in pork sausages with added 

kernel at day 0, 4 and 10 it was below 5 cfu g
-1

 indicating that the mango kernel has 

antimicrobial activity against E.coli. In addition, the counts of E.coli in pork patties were 

above 1500 cfu g
-1

 at day 0 and 4, and less than 5 cfu g
-1

 at day 10 suggesting that kernel may 

also inhibit E.coli activity in pork patties. The counts of E.coli in pork mince and patties at 

day 0 and 4 were above 1500 cfu g
-1

 which exceeds the acceptable limits according to Food 

Management Manual (1995) and the EU meat standards (Anon, 2001.) The results suggest 

that fresh pork mince and pork patties should be pre-tested for E.Coli and the preparation of 

pork patties should be monitored and controlled to minimise any E.coli contamination.  

 

Potential pathogenic bacteria such as staphylococci and coliforms were detected in the pork 

products but the concentrations were well below the safety limits according to Food 

Management Manual (1995) indicating that the conditions for preparing and storing the 

sausages and patties were sufficient to control the pathogenic bacteria. There was no evidence 

of any inhibitory effect of kernel on these bacteria. However, there were also no changes in 

the levels of staphylococci or coliforms at day 0, 4 and 10 which could be due to the 

inhibitory effects of kernel on these bacteria. Alternatively, the pork sausages and patties 

stored in oxygen-permeable plastic bags at 4
o
C was an unfavourable atmosphere for the 

growth of bacteria. 

 

Yeasts and moulds were recovered from pork mince, pork sausages and patties at day zero at 

concentrations below the permissible limits in meat and meat products (Food Management 

Manual, 1995). The yeasts and moulds were not detected in the pork sausages and patties at 

day 4 and 10 of storage suggesting that mango kernel had an inhibitory effect on yeasts and 

moulds in the products. Salmonellae were not detected in any pork samples implying that the 

procedures for preparing and storing the pork sausages and patties controlled salmonella 

satisfactory. 

 

 



176 

 

 

7.5. Conclusions 

 Lipid oxidation and microbiological contamination are major contributors to the 

deterioration in meat quality during refrigerated storage. Lipid oxidation was 

associated with TBARS, colour, odour, myoglobin and volatiles of pork sausages and 

patties at three different fat levels over a 10 day storage period. 

 

 Proximate analysis of pork mince at three different fat contents (low, medium and 

high) found that pork mince with a high fat content had a low protein and low 

moisture content. Lipid oxidation influences the attributes TBARS, colour, odour, 

myoglobin and volatiles of pork sausages and patties over a10 day storage period. 

 

 TBARS values of pork sausages and patties remained stable in the first 4 days then 

rapidly increased thereafter during storage. The additions of antioxidants mango 

kernel orpeel or BHT reduced lipid oxidation in the pork products. However, the 

antioxidative effects varied according to the pork product type, treatment, storage time 

and fat level. The addition of antioxidants immediately decreased the TBARS of 

sausages at day zero and maintained the lower TBARS values compared to control 

sausages over a 10 day storage period regardless of the fat content. The higher 

antioxidative effects of kernel compared to peel or BHT were pronounced after 4 days 

of storage when the sausages with added peel or BHT started to increase their TBARS 

whilst those with kernel remained constant across the 10 day storage period, regardless 

of the fat content. The addition of antioxidants did not affect TBARS of pork patties 

immediately until day 4 thereafter kernel showed the highest effect on inhibiting lipid 

oxidation, followed by BHT or peel. Peel and BHT showed relatively similar 

antioxidative effects on reducing TBARS of pork products. However, the peel showed 

higher antioxidative effects than BHT for sausages (except for low fat pork) whilst 

lower than BHT for patties (except for high fat pork) in the last 2 days of storage. In 

general, kernel was more effective than the other additives after 4 days, regardless of 

the fat content. TBARS values of patties were higher in the higher fat content 

products. Furthermore, at some stages of storage (day 6 for sausages, day 4 for patties) 

the higher inhibitory effects on lipid oxidation of kernel compared to BHT were more 

pronounced in the high and medium fat content products. It is suggested that fat 

content increased the antoxidative effects of supplements on TBARS values of the 

pork products.  
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 There were decreases in redness and increases in discoloration of pork sausages and 

pork patties during storage. The redness of sausages reduced dramatically at day 2 

then remained unchanged across the storage whilst that of patties decreased gradually 

from day zero to day 10. Mango kernel, peel and BHT are good supplements to 

stabilise the colour and redness of the pork sausages and patties.  Mango kernel 

showed the highest effect among the additives on maintaining the colour and redness 

of pork sausages and patties. Peel was more effective in maintaining the redness and 

colour in sausages but BHT was more effective in patties.  

 

 The fat content of pork products is important since it influences the redness and colour 

of pork sausages and patties across the storage period. As fat content increased, in 

general, the redness of pork sausages and patties decreased and the hue angles 

increased over the storage period. The pork sausages and patties with high fat levels 

were more susceptible to be oxidised and discoloured. High fat products are, therefore, 

useful to monitor changes in myoglobin, volatiles and odour characteristics. 

 

 There were inconsistent changes in Mb, MbO2 and MMb of pork sausages and patties 

in 2 and 4 days, respectively due to the complex changes in the formation and loss of 

the three myoglobin forms. The biochemical processes such as oxidation of MbO2 to 

MMb, decrease in MMb reducing activity, increase of oxygen consumption rate 

leading to low oxygen tension thereby resulted in Mb formation from MbO2 pork 

products. The pork sausages and patties with added kernel showed the highest effects 

of retarding the formation of MMb and Mb as well as maintaining the proportion of 

MbO2, followed by those with added peel then BHT. 

 

 Odour is the most important parameter that affects the consumer perception of the 

quality of stored chilled meat. Numerous volatile compounds contribute to the smell 

and taste of food were analysed by a HS-SPME-GC-MS. 1-pentanol and 3-hydroxyl-

2-butanone were the major volatiles in pork sausages whilst hexanal, pentanal and 1-

pentanol were the most abundant volatiles found in the pork patties. The aldehydes 

were not identified in the pork sausages but the reduced forms of aldehydes, 

particularly alcohols such as 1-pentanol, 1-hexanol and 2-ethyl-1-hexanol, and 

carboxylic acids (oxidised forms) such as hexanoic acid were found in both pork 

sausage and patties after 4 days of storage. Whilst the mango kernel and BHT had 

little antioxidant effects on reducing the volatiles of pork sausages, they decreased 
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significantly most of the volatiles in pork patties. Furthermore, differences in the 

levels of volatiles compounds and total volatiles between day 0 and day 4 show that 

volatiles in pork sausages increased during 4 days of storage. The addition of kernel 

was more effective than BHT in reducing the levels of volatiles in the pork sausages.  

 

 However, the interactions that can occur between the odour components and the 

concentrations of key volatiles need to be over a specific threshold to generate an 

odour recognisable by consumers. Aroma assessment of pork products was assessed 

by the researcher. Pork sausages and patties were rancid at day 4 of storage. The 

addition of antioxidant increased the odour score. Namely, peel or BHT maintained 

the pleasant odour of both pork sausages and patties up to day 4 and kernel up to day 

6. Although all the pork products had unacceptable odour after 6 days, kernel showed 

higher effects on retarding the off- odour than peel than BHT. 

 

 Determining the correlations between the attributes with lipid oxidation by PCA 

analysis demonstrated that TBARS, hue angles, Mb and MMb increased whilst MbO2, 

odour score and a* value decreased when lipid oxidation occurred after 10 days of 

storage. Hexanal observed at day 4 was also correlated with lipid oxidation in patties 

after 4 days of storage. The total volatiles of pork products and 1-pentanol found at 

day 4 in sausages were not correlated with lipid oxidation and other attributes at day 

10 of storage. PCA analysis also confirmed that mango kernel had higher antioxidative 

properties than BHT in retarding lipid oxidation in pork sausages and patties during 

chilled storage. 

 

 The microbiological profile of   pork sausages with added kernel were within the 

recommended safe limits indicating that the pork sausages with added kernel are safe 

to consume over a 10 day storage period. However, since the pork patties were 

contaminated with TVC at day 4 and 10 and with E.coli at day 0 and 4, the Food 

Management Manual (1995) and EU microbiological meat standards indicate that the 

pork patties stored for 4 days in the present study should not be consumed. The level 

of E.coli in fresh pork mince was also above the limit suggesting that fresh pork mince 

used in any study needs to be pre-tested to determine its acceptability for consumption 

and further processing. The concentrations of all the microorganisms in mango peel 

and kernel were below the recommended permissible limits. The levels in  pork 

products with added kernel were either the same or lower than the control  levels in 
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pork mince at day zero implying that kernel and possibly peel are safe to be used as a 

food additives. The addition of mango seed kernel powder to pork sausages and patties 

contributed to antimicrobial effects against E.coli, yeasts and moulds and TVC. It is 

suggested that mango kernel or peel showed antimicrobial activities against 

staphylococci or coliforms.   

 

 In overall, previous studies have reported effects of antioxidants from seed kernels on 

the oxidative stability of some kinds of food such as oil and butter-fat. This research 

investigated for the first time the effects of mango peel and kernel on extending the 

shelf-life of pork sausages and patties. The conclusion of these findings is that mango 

kernel and peel can be utilised as a natural antioxidant and antimicrobial product for 

inclusion in pork products due to the high content of phenolic compounds, hydrophilic 

and lipophilic antioxidants. 
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CHAPTER 8 

GENERAL CONCLUSIONS AND SUGGESTIONS FOR 

FUTURE RESEARCH 

 

8.1. Physicochemical characteristics, antioxidant capacity and   

anti-nutrients of mango cultivars 

This study found that the Vietnamese mango cultivars Cat Chu, Cat Hoa Loc, Ghep and Nam 

Dok Mai were soft and suitable for the short term fresh market whilst the Tommy Atkins 

cultivar imported into New Zealand was fleshier and firmer, and ideally suited for export 

markets or processing. 

 

Mango flesh, peel and kernel from all the cultivars were good sources of antioxidants with 

flesh, peel and kernel from Tommy Atkins, peel from Nam Dok Mai and flesh from Cat Chu 

containing the highest levels of antioxidants. Kernels from all the cultivars contained the 

highest concentration of total phenolics and antioxidants, followed by peel then flesh, except 

for Nam Dok Mai, in which peel contained similar antioxidant capacities to the kernels. These 

findings confirm that mango kernel and peel, which are often discarded as processing waste, 

can be considered as valuable sources of antioxidants to reduce oxidative damage in food 

products.  

 

Mangoes, like other fruits, contain tannins and oxalates which have anti-nutitive properties. 

However, mango flesh from all the cultivars contained low levels of tannins and no oxalates. 

Kernels followed by peel contained the highest tannin content. Oxalate levels were highest in 

peel and only found in kernels of Nam Dok Mai and Tommy Atkins.   
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8.2. Effects of drying on the antioxidant capacity of mango flesh, peel and 

kernel 

Sun, forced air, freeze, vacuum and microwave drying were investigated as methods to dry 

the components of Tommy Atkins mangoes. Four of the drying treatments reduced the 

antioxidant capacity, particularly the hydrophilic antioxidants of dried flesh which was 

attributed to the chemical or enzymatic changes that cause the volatilisation or thermal 

decomposition of specific molecules linked to the antioxidants. In contrast, forced air drying 

increased the phenolics and ferric reducing antioxidant activity of dried flesh due to 

caramelisation, the Maillard reaction or interactions between the cellular components that 

occur during the drying process.  

 

Fresh peel exhibited higher hydrophilic and lipophilic antioxidant capacities, as measured by 

ORAC, than dried peel. In contrast, microwave and freeze dried peel, contained higher 

phenolics and ferric reducing antioxidant power (FRAP) than fresh peel. Microwave drying 

provides a rapid and effective distribution of heat throughout the peel and this may account 

for the release of a number of phenolic and antioxidant compounds in the dried products. In 

freeze drying, the development of ice crystals within the tissue matrix may accelerate the 

rupture of cell structures and promote solvent access, and consequently, the higher extraction 

of phenolics from the peel.  

 

Fresh kernel contained higher lipophilic antioxidant capacity than vacuum dried kernel. In 

contrast, vacuum and freeze dried kernel had higher hydrophilic antioxidant values and 

antioxidant capacity than fresh kernel because of the lower temperature used. This finding is 

not surprising since the antioxidant capacity of mango kernels are sensitive to thermal 

treatments. Because of the variation in the effects of the drying treatments on the antioxidant 

capacity of dried flesh, peel and kernel, it was concluded that the effect of drying on 

antioxidants was dependent on the characteristics and type of antioxidants in the specific 

mango fractions.  
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8.3. Relationships between physicochemical characteristics and antioxidant 

capacity 

8.3.1. Relationship between the physicochemical characteristics 

It was found that the  physicochemical characteristics total soluble solid (TSS), TSS:TA, and 

moisture content of the Tommy Atkins fruit, were positively correlated with the firmness, 

titratable acidity (TA) and vitamin C and negatively correlated with the maturity stage of the 

mangoes. It was also observed that any one of these physicochemical parameters could act as 

an indicator of the characteristics of the other parameters. These results indicate that it would 

be possible to accurately assess the maturity of the Tommy Atkins by any one of the 

measured parameters and consequently one parameter could be used to accurately determine 

the time to harvest mangoes for a specific market. 

 

8.3.2. Relationship between the antioxidant assays 

All the antioxidant assays; TPC, ABTS, DPPH, FRAP and H-ORAC were strongly correlated 

with each other indicating that any one assay could be used to monitor the antioxidant 

capacity of mango flesh, peel or kernels. However, only a weak-to-moderate correlation was 

found between the lipophilic (L-ORAC) and hydrophilic (H-ORAC) antioxidants or 

antioxidant capacity measured by ABTS, DPPH and FRAP in mango peel. This could 

possibly be due to the differences in the composition and concentration of lipophilic 

antioxidants in the three fractions. To understand these differences in more detail, further 

investigations and analyses of specific lipophilic antioxidant compounds in mango fractions 

should be carried out across a wide variety of mangoes. All the antioxidant assays provided 

acceptable and repeatable results. Nevertheless, the preferred assay that produced higher 

repeatability for flesh, peel and kernel was TPC; for flesh and peel was FRAP and for kernels 

was ABTS 

 

8.3.3. Relationship between the physicochemical characteristics and antioxidant assays 

In ripe mangoes, kernel tends to have a low antioxidant capacity and peel a high lipophilic 

antioxidant capacity compared to unripe mangoes. Thus, mango flesh with a low TSS or 

TSS:TA ratio or high vitamin C exhibited relatively high ferric reducing antioxidant power. 

Peel from mangoes with a low TA or vitamin C exhibited relatively high lipophilic 

antioxidants. Kernel from less ripe mangoes with a low maturity score, TSS, TSS:TA ratio 

and high TA, firmness and vitamin C were relatively high in TPC and antioxidant capacity. 

Peel colour (Tommy Atkins) was an unreliable index of mango maturity and antioxidant 

capacity of the mango fractions. 
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8.4. Effects of mango peel and kernel on inhibiting lipid oxidation in pork 

products 

The pork products without any additives, covered with high oxygen permeable polyvinyl 

chloride film, showed small changes in TBARS and myoglobin over the first four days of 

storage. The colour of the pork sausages decreased in redness and discoloured dramatically by 

day 2. Off-odour and volatiles increased in the first four days and were unacceptable at day 4. 

The volatiles 1-pentanol and 3-hydroxyl-2-butanone were the major volatiles obtained from 

control pork sausages and hexanal, pentanal and 1-pentanol were the most abundant volatiles 

from the control pork patties at day 4 of storage. Some volatiles, such as aldehydes (e.g. 

hexanal), were only released in the patties.  

 

The addition of kernel or kernel or BHT to the sausages and patties immediately stabilised the 

colour and odour of the pork products and the antioxidants in mango kernel or peel (1% w/w) 

or BHT (0.01% w/w) did not significantly impart any colour or aroma changes on the pork 

sausages and patties. Thus, kernel and peel are potential sources of natural antioxidants for 

food products.  

 

The control sauasages rapidly oxidised after 4 days whilst sausages or patties with peel or 

BHT maintained their pleasant odour up to day 4 and with kernel up to day 6. Of the 

additives, mango kernel was more effective than peel or BHT in inhibiting lipid oxidation 

over the 10 days of storage. In general, peel and BHT showed relatively similar antioxidative 

effects on inhibiting lipid oxidation in the pork products. However, peel was more effective 

than BHT in reducing undesirable odours, maintaining oxymyoglobin (MbO2), and retarding 

the formation of MMb (metmyoglobin) and Mb (deoxymyoglobin) in the pork products. 

Furthermore, peel was more effective in reducing TBARS, discolouration and redness than 

BHT in sausages. In contrast, BHT showed higher antioxidative effects in reducing TBARS, 

discolouration and redness than peel in patties. Pork products with high fat levels were more 

prone to oxidation and discoloration. The TBARS values of patties and the discoloration and 

loss of redness in patties and sausages were higher in the high fat content products. It was also 

found that as the fat content increased from 9.1% to 47.4%, lipid oxidation in the pork 

products increased and the inhibitory effect of kernel was higher than BHT. A possible 

explanation was that the high fat patties produced more lipid oxidation products and that BHT 

was less effective than kernels in scavenging the free radicals generated from the increased 

lipid oxidation.   
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The microbiological profile of the pork sausages with added kernels were judged to be within 

official recommended safety limits indicating that pork sausages with added kernels were safe 

for consumption over the 10 day storage period. Pork patties were contaminated with TVC 

and E.Coli as judged by Food Management Manual (1995) and the EU microbiological meat 

standards and were, therefore, judged as unsuitable for human consumption. One of the 

causes leading to the high levels of E.coli in pork patties could be the high levels of E.coli in 

the pork mince supplied. This suggested that fresh pork mince used in any study should be 

pre-tested to determine its acceptability for consumption and further processing. The 

concentration of all the measured microorganisms in mango peel and kernel supplemented 

products were below the recommended permissible limits set by regulatory authorities. 

Kernels are safe to be used as food additives. Furthermore, the addition of dried mango kernel 

to pork sausages and patties contributed antimicrobial effects against E.coli, staphylococci, 

coliforms, yeasts, moulds and TVC suggesting that dried kernel itself possesses antimicrobial 

properties.  

 

8.5.  Recommendations for future research 

8.5.1. Optimisation of antioxidant incorporation into meat products 

It was found that freeze dried kernel and peel powder added at 1% w/w to pork sausages and 

patties provided sufficient antioxidants to extend the shelf life of the products from 2 to 6 

days according to the quality attributes measured. In future, the freeze dried powder could be 

solvent extracted to obtain a higher concentration of antioxidants and so reduce any 

unnecessary toxicants or anti-nutrients. Moreover, due to the lipid insolubility of the dried 

mango products, there was a reduction in the contact of the dried product with the lipid phase 

of the food products where the majority of oxidation occurs. The extraction processes should 

be modified to enhance not only the extraction efficiency of the antioxidants but also to 

generate an extract that can be dissolved in oil to carry the antioxidants to the lipid phase of 

meat products. There are many methods available for extraction such as by soxhlet, heat 

reflux, boiling, traditional and microwave distillation methods as well as supercritical fluid 

extraction (SFE) using carbon dioxide (CO2) (Kumar, Krishnaiah and Bono, 2008; Saha et al., 

2011). Therefore, two possible future investigations are those that aim: 

 

(i) To optimise the extraction procedures (solvent types and concentrations, time and 

temperature) to obtain antioxidants from mango peel and kernels. 

(ii) To identify suitable carriers that will effectively deliver the antioxidant extract to pork 

products.  
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8.5.2. Investigation of the effect of mango peel and kernels on retarding deterioration of 

pork products 

The present study found that lipid oxidation enhanced discoloration of pork products due to 

oxidation of myoglobin. It was suggested that free radicals produced during lipid oxidation, in 

addition to transition metals, promote the accumulation of oxidized proteins in muscle due to 

the strong interactions between proteins and lipids (Wolff et al., 1986; Viljanen, Kivikari and 

Heinonen, 2004; Descalzo and Sancho, 2008). Protein oxidation can cause protein 

denaturation and the consequential loss in protein function which is known to be detrimental 

to meat tenderization (Descalzo and Sancho, 2008).  Some studies have indicated that 

antioxidants were effective in inhibiting both lipid and protein oxidation, Je et al., 2001; 

Batifoulier et al., 2002; Vijanen et al., 2004; Descalzo and Sancho, 2008). Mango kernels and 

peel contained high hydrophilic and lipophilic antioxidant capacity and may have the 

potential to prevent protein oxidation. Therefore, another possible future investigation would 

be to determine the effects of mango kernel or peel on protein oxidation. 

 

8.5.3. Investigation of antimicrobial activities of mango peel and kernel 

In the present study, the main purpose of the microbiological analysis was to test the safety of 

the pork products prior to consumption. Mango kernel powder showed potential for 

antimicrobial activity on reducing TVC and inhibiting E.coli growth, staphylococci, coliforms 

yeasts and moulds in pork products over 10 days of storage. Further studies should investigate 

the mechanism whereby mango peel and kernels can express antimicrobial activity against 

microorganisms in meat products. Therefore, an investigation should determine the 

antimicrobial activities of mango kernel and peel extracts in pork products over long storage 

periods and the amounts required for the antimicrobial expression in foods other than meat. 

 

8.5.4. Study on the sensory characteristics of pork products with added kernel or peel 

Addition of mango kernel or peel powder or extracts can impart the colour and flavour of the 

pork sausages and patties. Therefore, after the microbiological profiles of pork sausages and 

patties are tested to ensure their hygiene safety for consumption, a sensory evaluation of these 

products needs to be conducted.  
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APPENDICES 

A.1 Appendices: Materials and methods-Chapter 3 

A.1.1. Mango fractions: flesh, peel and kernel  

 

a. Whole mango fruit (Tommy Atkins)                     b. Mango fruits (Cat Hoa Loc & Cat Chu) 

                 

 

c.Mango fractions                                                     d.Freeze dried peel & kernel from Cat Chu 
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A.1.2. Water loss (%) and weight (g) of mango fractions flesh, peel and kernel before 

and after drying 

 

a.  Flesh 

Drying methods Weight before drying (g) Weight after drying (g) Water loss (%) 

Sun dry 213.6 ± 9.0 41.8 ± 3.8 80.6 ± 1.1 

Forced air dry 228.5 ± 7.5 39.7 ± 2.0 82.6 ± 0.6 

Freeze dry 230.2 ± 6.4 40.5 ± 2.4 82.5 ± 0.8 

Vacuum dry 145.6 ± 14.3 22.4 ± 1.9 84.2 ± 0.8 

Microwave dry 102.2 ± 11.5 18.1 ± 2.5 82.4 ± 0.5 

 

 

 

 

   b.  Peel 

   

    Drying methods Weight before drying (g) Weight after drying (g) Water loss (%) 

Sun dry 16.8 ± 1.1 5.2 ± 0.3 68.7 ± 1.0 

Forced air dry 16.2 ± 0.4    4.6 ± 0.2 71.4 ± 1.1 

Freeze dry 20.7 ± 1.3 5.4 ± 0.4 73.9 ± 1.0 

Vacuum dry 22.5 ± 1.8 6.5 ± 0.4 70.6 ± 1.0 

Microwave dry 17.6 ± 1.4 5.8 ± 0.4 66.8 ± 0.9 

 

 

 

 

   c. Kernel 

   

    Drying methods Weight before drying (g) Weight after drying (g) Water loss (%) 

Sun dry 16.4 ± 1.1 8.2 ± 1.1  50.4 ± 4.8 

Forced air dry 18.6 ± 1.2 9.1 ± 1.0 51.2 ± 3.9 

Freeze dry 16.2 ± 1.0 7.3 ± 0.9  56.2 ± 3.5 

Vacuum dry 16.8 ± 0.9 7.9 ± 1.0 54.1 ± 4.1 

Microwave dry 17.7 ± 1.3 11.0 ± 1.3 39.1 ± 5.9 

 



 

 

2
1
0
 

A.1.3. An example of an ORAC output from the plate reader  

The curves were plotted by FLUOstar OPTIMA software for a series of standards, phosphate buffer (blank) and diluted fruit extractions, which 

were prepared as described in the chapter 3. Each line presents the output from a fruit extraction. 
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A.1.4 Specifications of the volatiles identified in the pork sausages and patties. 

 

 

 

                

 

                  

 

 

No Compound name CAS No MW Molecular Formulae Flavornet - C20 

1 Pentane 109-66-0 72.15 C5H12 500 

2 Hexane 110-54-3 86.18 C6H4 600 

3 Propanal 123-38-6 58.08 C3H6O 571 

4 Heptane 142-82-5 100.2 C7H16 700 

5 2-propanone 67-64-1 58.08 C3H6O 814 

6 Octane 111-65-9 114.23 C8H18 800 

7 Pentanal 110-62-3 86.13 C5H10O 935 

8 Hexanal 66-25-1 100.1 C6H12O 1084 

9 1-butanol 71-36-3 74.12 C4H10O 1145 

10 Heptanal 111-71-7 114.19 C7H14O 1174 

11 1-pentanol 71-41-0   88.15 C5H12O 1255 

12 3-hydroxy-2-butanone 513-86-0 88.11 C4H8O2 1287 

13 1-hexanol 111-27-3 102.18 C6H14O 1360 

14 2-ethyl -1-hexanol 104-76-7 130.23 C18H18O 1487 

15 Hexanoic acid 142-62-1 116.16 C6H12O2 1829 
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A.2. Appendices: Chapter 5  

A.2.1. Principal Component Analysis (PCA) of antioxidant assays values for mango 

fractions using Minitab 16. 

A.2.1.1. Flesh 

 
a. Eigenanalysis of the Correlation Matrix 

 

Eigenvalue             3.546     2.185    0.217    0.030     0.021     0.000 

Proportion              0.591     0.364    0.036    0.005     0.004     0.000 

Cumulative             0.591     0.955    0.991    0.996     1.000     1.000 

 

 

 

b. Loading coefficients 

 

Variable                PC1       PC2      PC3       PC4       PC5       PC6 

TPC                   -0.077    0.662    0.159   -0.706     0.044     -0.173 

ABTS                  0.491    0.252    0.035    0.358    -0.186     -0.729 

DPPH                  0.510    0.045    0.560   -0.032    -0.436      0.482 

FRAP                 -0.070    0.667   -0.029    0.555     0.321      0.372 

H-ORAC             0.486    0.106   -0.791   -0.204   -0.133      0.260 

L-ORAC             0.501   -0.201    0.183   -0.151     0.808     -0.004 

 

 

 

c. PCA score of fresh and dried flesh samples on each PC 

 

 

PC1 PC2 PC3 PC4 PC5 PC6 

Fresh 3.617 -0.850 0.131 -0.038 -0.021 0.000 

Freeze-dried -1.186 0.745 0.724 -0.183 -0.002 0.000 

Forced-air dried 0.389 2.325 -0.048 0.222 0.022 0.000 

Vacuum-dried -1.341 -1.251 -0.048 0.119 -0.229 0.000 

Sun-dried -1.054 -1.535 -0.026 0.092 0.230 0.000 

Microwave dried -0.424 0.565 -0.733 -0.213 0.000 0.000 
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d. Loading plot reflecting the range of values for the coefficients of PC1 and PC2 applied for flesh 
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e. Score plot reflecting the range of scores for the fresh and dried flesh 
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A.2.1.2. Peel 
 
a. Eigenanalysis of the Correlation Matrix 

 

Eigenvalue        3.571   1.682    0.492    0.166    0.089   0.000 

Proportion         0.595   0.280    0.082    0.028    0.015   0.000 

Cumulative        0.595   0.876    0.958    0.985    1.000   1.000 

 

 

 

b. Loading coefficients 

 

Variable             PC1        PC2        PC3        PC4       PC5        PC6 

TPC                  0.460      0.215     0.521      0.197   -0.539     -0.376 

ABTS               0.441     -0.378    -0.238    -0.430     0.254     -0.597 

DPPH               0.464     -0.255    -0.188     0.761     0.285      0.152 

FRAP               0.497     -0.153      0.316    -0.428    0.048      0.667 

H-ORAC         -0.157     -0.715    -0.175     0.035    -0.649      0.105 

L-ORAC         -0.327     -0.460      0.711     0.112     0.374     -0.154 

 

 

 

c. PCA score of fresh and dried peel samples on each PC 

 

 

PC1  PC2  PC3  PC4  PC5  PC6  

Fresh -1.920 -1.631 -0.406 -0.442 -0.058 0.000 

Freeze-dried 2.069 0.532 0.752 -0.507 -0.093 0.000 

Forced-air dried 1.080 1.248 -1.196 0.016 -0.020 0.000 

Vacuum-dried -1.380 0.737 0.352 0.086 0.518 0.000 

Sun-dried -1.769 0.775 0.410 0.359 -0.402 0.000 

Microwave dried 1.920 -1.662 0.088 0.489 0.055 0.000 
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d. Loading plot reflecting the range of values for the coefficients of PC1 and PC2 applied for peel 

           

0.50.40.30.20.10.0-0.1-0.2-0.3-0.4

0.2

0.1

0.0

-0.1

-0.2

-0.3

-0.4

-0.5

-0.6

-0.7

PC1 (59.5%)

P
C

2
 (

2
8

%
)

0

0

L-ORAC

H-ORAC

FRAP

DPPH

ABTS

TPC

 

 

e. Score plot reflecting the range of scores for the fresh and dried peel 
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A.2.1.3. Kernel 
 
a. Eigenanalysis of the Correlation Matrix 

 

Eigenvalue    4.410      1.067    0.511    0.007    0.005    0.000 

Proportion     0.735      0.178    0.085    0.001    0.001    0.000 

Cumulative    0.735      0.913    0.998    0.999    1.000    1.000 

 

 

 

 

b. Loading coefficients 

 

Variable              PC1       PC2       PC3        PC4        PC5       PC6 

TPC                   0.471     0.112    -0.095     0.097    -0.845    0.184 

ABTS                0.467    -0.028    -0.257    -0.510     0.081   -0.669 

DPPH                0.450     0.075    -0.441    -0.124     0.433    0.628 

FRAP                0.452    -0.294     0.071     0.764      0.238   -0.252 

H-ORAC           0.378    -0.092     0.840    -0.308     0.110    0.192 

L-ORAC           0.100      0.941     0.143     0.192     0.154    -0.152 

  

 

 

 

c. PCA score of fresh and dried kernel samples on each PC 

 

 

     PC1     PC2       PC3  PC4      PC5       PC6  

Fresh -0.498 0.745 1.326  0.020 -0.022 0.000 

Freeze-dried  1.837 1.171 -0.461 -0.111 -0.011 0.000 

Forced-air dried -2.176 0.807 -0.601  0.079  0.067 0.000 

Vacuum-dried   2.452 -1.066  0.205  0.020  0.089 0.000 

Sun-dried   0.979 -0.477 -0.425  0.088 -0.107 0.000 

Microwave dried  -2.593 -1.180 -0.044 -0.097 -0.016 0.000 
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e. Loading plot reflecting the range of values for the coefficients of PC1 and PC2 applied for kernel 

                                     

0.50.40.30.20.10.0

1.0

0.8

0.6

0.4

0.2

0.0

-0.2

-0.4

PC1 (73.5%)

P
C

2
 (

1
7

.8
%

)

0

0

L-ORAC

H-ORAC

FRAP

DPPH

ABTS

TPC

 

 

e. Score plot reflecting the range of scores for the fresh and dried kernel 
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A.2.2. Canonical Variate Analysis (CVA) for mango fractions by Genstat 13 

A.2.2.1. Flesh 

 

a. Loading coefficients for variables in  

CV1 & CV2 for flesh 

 

   

Assays CV1 CV2 

TPC -0.00379 0.00825 

ABTS 0.02883 0.03150 

DPPH 0.03138 -0.01388 

FRAP -0.04301 -0.02341 

H-ORAC 0.06342 0.00144 

L-ORAC 0.50867 0.06860 

            

 

A.2.2.2. Peel 

a. Loading coefficients for variables in  

CV1 & CV2 for peel 

 

 Assays CV1 CV2 

TPC 0.00086 -0.00065 

ABTS -0.00487 0.00317 

DPPH 0.00260 0.00655 

FRAP 0.00152 0.00128 

H-ORAC -0.00761 0.00127 

L-ORAC -0.19227 -0.43542 

 

 

A.2.2.3. Kernel 

a. Loading coefficients for variables in  

CV1 & CV2 for kernel 

 

 

 

 

 

 

 

 

 

 

 

 

Drying methods CV1 score CV2 score 

Fresh 6.735d 0.025b 

Freeze dried -2.9a 0.5196b 

Forced-air dried -0.824bc 1.3998c 

Sun dried -0.782bc -1.217a 

Vacuum dried -1.585b 1.3998c 

Microwave dried -0.645c 0.4112b 

Drying methods CV1 score CV2 score 

Fresh -2.0879a 0.1468bcd 

Freeze dried 1.4175d -0.1840abc 

Forced-air dried 0.7696cd 0.6122cd 

Sun dried -0.0692b -0.7657a 

Vacuum dried -0.0564b -0.4603ab 

Microwave dried 0.0264bc 0.6511d 

 Assays CV1 CV2 

TPC -0.00056 -0.00046 

ABTS 0.00063 0.00219 

DPPH 0.00083 0.00174 

FRAP 0.00169 -0.00238 

H-ORAC 0.00061 0.00044 

L-ORAC -0.18222 0.00324 

Drying methods CV1 score CV2 score 

Fresh -0.5553ab -0.2387ab 

Freeze dried -1.1893a -0.0404bc 

Forced-air dried -0.3077b 0.9755d 

Sun dried 0.1288bc -0.4534ab 

Vacuum dried 0.7069cd -0.9291a 

Microwave dried 1.2165d 0.6862cd 

b. Significant difference among fresh and dried 

flesh in CV1 and CV2 

 

b. Significant difference among fresh and dried 

peel in CV1 and CV2 

 

b. Significant difference among fresh and dried 

kernel in CV1 and CV2 
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A.3 Appendix: Chapter 6 

A.3.1. Interactions of fresh and drying treatments on the correlations between assays 

 

 

 

 

 

A.3.2. PCA for determining correlations  

A.3.2.1. PCA for determining correlations between physicochemical characteristics 

a. Eigen values, proportion of total variability and percent of cumulative  

variance for the first three principal components 

PC Eigenvalue % Proportion % Cumulative 

1 4.438 0.277 0.277 

2 3.365 0.210 0.488 

3 2.176 0.136 0.624 

Eigenvalues and variance accounted for (%) by PCA based on correlation 

matrix 

 

 

 

 

 

 

 

Correlations between 

each 2 assays  
Interactions of fresh and drying treatments on the correlations between assays  

For flesh 
Fresh 

Freeze 

dry 
Forced-air dry 

Sun 

dry 

Vacuum 

dry 
Microwave dry 

TPC x ABTS *** * N/S N/S N/S ** 

TPC x H-ORAC * N/S N/S N/S N/S N/S 

DPPH x L-ORAC * N/S N/S N/S N/S N/S 

FRAP x H-ORAC ** * N/S N/S N/S N/S 

H-ORAC x L-ORAC *** N/S N/S N/S N/S N/S 

For peel             

Correlations between 

each 2 assays for peel 
            

TPC x H-ORAC *** N/S N/S N/S N/S N/S 

ABTS x FRAP ** N/S * N/S N/S N/S 

DPPH x H-ORAC * N/S N/S N/S N/S N/S 

FRAP x H-ORAC ** N/S N/S N/S N/S N/S 

For kernel 

      Correlations between 

each 2 assays for 

kernel 

            

ABTS x DPPH *** N/S N/S N/S N/S N/S 

ABTS x FRAP *** * *** N/S N/S N/S 

Correlation is significant at *p < 0.05; **p < 0.01; ***p < 0.001; N/S: non-significant 
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b. Loadings coefficients of PC1, PC2 and PC3 for 16 physicochemical 

paramaters 

Variables PC1 PC2 PC3 

Maturity score 0.372917314 0.108241345 -0.07939252 

TSS 0.257357791 0.077975383 -0.16370501 

TA -0.306907937 -0.329165473 -0.02016576 

TSS:TA 0.328405997 0.200028461 -0.11965925 

Firmness -0.343521102 -0.020796239 0.128987474 

Vitamin C -0.318964684 -0.279467114 -0.08804258 

Moisture content 0.323101085 0.070060671 -0.16004470 

Total weight -0.052822306 0.042508185 -0.31776058 

%flesh 0.095064296 -0.388835562 -0.23813002 

%peel -0.137982692 0.237381651 0.278868268 

%kernel 0.105101382 0.280210540 0.038580476 

Chroma 0.136208273 -0.316990441 -0.35099837 

Hue 0.241014302 -0.235062141 0.406793627 

L* 0.256966748 -0.381551832 0.183031161 

a* -0.136701032 0.024177732 -0.56607549 

b* 0.255430080 -0.400784181 0.15037451 

    

  A.3.2.2 PCA for determining correlations between antioxidant assays                                        

(an example on flesh) 

 
a. Eigenvalues, proportion of total variability and percent of cumulative variance  

for the first three principal components 

PC Eigenvalue % Proportion % Cumulative 

1 3.559 0.593 0.593 

2 1.118 0.186 0.780 

3 0.612 0.102 0.882 

 b. Loadings coefficients of PC1, PC2 and PC3 for six antioxidant assay variables in flesh 

Variables PC1 PC2 PC3 

TPC 0.434666908 -0.143858065 0.105078562 

ABTS 0.435642063 -0.259160884 -0.294743953 

DPPH 0.457308881 -0.163774955 0.098719575 

FRAP 0.435445820 -0.226200690 -0.346996873 

H-ORAC 0.397568325 0.334641920 0.758158796 

L-ORAC 0.253920508 0.849803678 -0.443990262 
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A.3.2.3. PCA for determining correlations between physicochemical characteristics of 

mango fruits and antioxidant capacity of the fractions (an example of PCA for kernel). 

 

a. Eigenvalues, proportion of total variability and percent of cumulative variance for the first three 

principal components 

PC Eigenvalues % Proportion % Cumulative 

1 7.217 0.328 0.328 

2 3.574 0.162 0.491 

3 3.028 0.138 0.628 

4 1.950 0.089 0.717 

5 1.458 0.066 0.783 

6 1.054 0.048 0.831 

 

 

b. Rotated factor loadings of PC1 and PC2 for 16 physicochemical parameter variables and 6 antioxidant 

assay variables in kernel 

Variables Factor1 Factor2 

TPC 0.929 -0.255 

ABTS 0.953 -0.230 

DPPH 0.914 -0.256 

FRAP 0.924 -0.154 

H-ORAC 0.937 -0.153 

L-ORAC 0.310 0.154 

Maturity score -0.449 0.728 

TSS -0.510 0.427 

Firmness 0.281 -0.753 

TA 0.149 -0.868 

TSS:TA -0.399 0.692 

VitaminC 0.085 -0.807 

Moisture content -0.130 0.744 

a* -0.011 -0.100 

b* -0.005 -0.028 

L* 0.071 0.016 

Hue -0.030 0.090 

Chroma 0.011 -0.044 

Total weight -0.260 -0.031 

%flesh -0.183 -0.349 

%peel 0.276 0.107 

 %kernel  -0.260  0.314 

Variance 5.433 4.223 

%Var 0.247 0.192 
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A.4. Appendices: Chapter 7. 

A.4.1. Chromatogram obtained by SPME-GC-MS of volatiles produced from pork sausages and patties 

A.4.1.1. Control sausage at day 0 

 
A.4.1.2. Control sausage day 4 
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A.4.1.3. Sausages with added kernel at day 4 

 
A.4.1.4. Sausages with added BHT at day 4 
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A.4.1.5. Control patties at day 4 

 

 
A.4.1.6. Patties with added kernel at day 4 
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A.4.1.7. Patties with added BHT at day 4 
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A.4.2. Microbiological test results from Hills Lab 
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