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Coping with a warming world: genetic studies on thermal 

adaptation and links to membrane saturation in Antarctic fish 

By 

Vanita Charles Malekar 

Stearoyl-CoA desaturase (SCD) plays a key role in thermal adaptation across organisms, 

allowing alteration of membranes in response to temperature change. Thermal adaptive 

signatures at the gene sequence level and in the primary structure of the SCD protein require 

investigation, especially in Antarctic fish. Owing to the stenothermal nature of Antarctic fish, 

it remains unclear whether they have retained capacity to modulate their membranes in 

response to warming temperatures. The hypothesis that membrane saturation, a major 

thermal adaptive mechanism, will occur at reduced capacities in Antarctic notothenioid fish 

in response to elevated temperatures was tested  

SCD sequences were isolated from 21 fish species (Antarctic and non-Antarctic 

notothenioids, and non-notothenioid Antarctic fish species). Phylogenetic analyses 

supported the ancestral SCD1 duplication into SCD1a and SCD1b. Lineage-specific 

duplication and loss of gene duplicates were identified for specific orders of fish. Cold 

adapted notothenioids (Antarctic and non-Antarctic with Antarctic ancestry) SCD isoform 

sequences were evolutionarily distinct from non-Antarctic sequences. SCD1a and 1b from 

Antarctic fish displayed more diversity with amino acid composition varying across the 

isoforms. SCD1a isoforms had more sites under positive selection and a higher rate of 

molecular evolution in Antarctic fish than SCD1b, suggesting neofunctionalisation of SCD1a.  

Ubiquitous tissue expression of SCD1b was seen in both the Antarctic species Trematomus 

bernacchii and Pagothenia borchgrevinki, while ubiquitous expression of SCD1a isoform was 

seen in T. bernacchii but not in P.borchgrevinki. Transcriptional response of the SCD isoforms, 

along with the biochemical response of membrane saturation, in T. bernacchii and P. 

borchgrevinki livers were determined in fish acclimated at 0 °C (control temperature), 4 °C 

and 6 °C. Overall, temperature had a significant effect on the expression of SCD1a and SCD1b 



 iii 

in T. bernacchii, while expression of SCD1a was low to be detected by qPCR in P. 

borchgrevinki.  

Membrane lipid composition of Antarctic fish species varied significantly when compared to 

the New Zealand Perciforme species Notolabrus celidotus. Thermal acclimation at 4 °C did 

not result in any detectable change in membrane saturation state or membrane cholesterol 

in either Antarctic species. However, 6 °C thermal acclimation induced a homeoviscous 

adaptive (HVA) response in the benthic species T. bernacchii, as shown by the significant 

increase in membrane saturated fatty acids, and a significant decline in unsaturated fatty 

acids. HVA response was not observed in P. borchgrevinki.  

This is the first study to determine thermal adaptive signatures in the SCD gene of Antarctic 

fish and provides evidence for asymmetric molecular evolution of SCD. This provides a 

framework for future functional work. This is also the first study to show a homeoviscous 

response to higher temperature in an Antarctic fish although only for one of the two species 

examined.  
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Bovichtus variegatus: This is the most basal Notothenioidei species as determined by systematic 

(Balushkin, 1984) and karyological research (Prirodina, 1986) as mentioned in (Eastman, 1993). It is 

an ideal subject for comparison studies of cold-adapted tissue and organs from Antarctic 

notothenioids due to its lack of features that are found in their Antarctic relatives-eg. AFGPs and 

aglomerular kidneys. As adults they are bottom dwellers and they are found in southern New Zealand 

and subantarctic waters.  

1.3.1.2.2 Nototheniidae   

This family comprises 49 species within 13 genera and are the most diverse family with respect to 

size, body form, habitat and distribution. They are distributed throughout the Antarctic as well as in 

coastal waters of New Zealand and South America. Fifteen species have a non-Antarctic distribution. 

There is an evolutionary departure from the ancestral benthic habitat in 50% of the Antarctic species 

of this family. 

Pagothenia borchgrevinki is the principal Antarctic model fish species for this study. P.borchgrevinki 

are cryopelagic as they are associated with the under surface of the ice and this niche specialisation 

has led to them becoming morphologically and physiologically diverse from other notothenioids 

(Eastman & DeVries, 1985). They also exhibit a degree of ecological plasticity. Robust antifreeze 

protection is essential for their cryopelagic habitat due to their constant contact with ice in the upper 

33 cm of the ice-water column. To achieve this, they have higher concentrations of AFGPs in their 

body fluids relative to other notothenioids and these lower the freezing point (DeVries et al., 1971). 

P.borchgrevinki are not neutrally buoyant but are lighter than the benthic trematomiids and in the 

austral summer they live in the upper 6m of the water column under the ice. They have a more 

streamlined body that is laterally compressed compared with benthic trematomiids. They are also 

characterised by higher levels of oxygen consumption, haemoglobin concentration and hematocrit 

than some of their close relatives. Primarily they are zooplanktivorous (Foster et al., 1987) but they 

also consume the notothenioid Pleuragramma antarcticum.  

Trematomus bernacchii is a benthic Antarctic species found in both shallow areas and in water up to 

550m deep. They feed on plankton to a greater extent than other benthic Trematomiids. As a benthic 

species they have a less buoyant body and a heavier skeleton and are also less streamlined than the 

cryopelagic P. borchgrevinki. Pelvic and anal fins are used for support and substrate contact and they 

have a diet described as predominantly polychaetes, small fishes, fish eggs and amphipods (Eastman, 

1993). 
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4. What is the transcriptional response of SCD in a thermally challenged environment? 

5. What is the biochemical response of membrane saturation in a thermally challenged Antarctic 

fish? 

The overall aim for this research is to study the SCD gene evolution in the Antarctic and non-Antarctic 

fish from the notothenioid suborder and to investigate membrane remodelling, and expression of the 

desaturase (SCD) enzyme in thermally challenged Antarctic fish.  

To accomplish the above aims of the current study the objectives are as follows. 

1)  Isolation and identification of partial SCD isoform mRNA sequences from a range of Antarctic 

and non-Antarctic notothenioid fish species. 

2)  Evolutionary analysis of the SCD gene in Antarctic fish by comparative approaches of 

phylogenetic analysis, amino acid composition analysis, identifying signatures of selection and 

mapping of adaptive signatures on the SCD structure.    

3) Determination of tissue expression through end point PCR from stenothermal notothenioid 

Antarctic fish.  

4) Ascertain the transcriptional response to temperature in the Antarctic stenotherm through 

qRT-PCR (target gene: SCD and antioxidant markers) of RNA isolated from liver tissues 

harvested from fish from a range of temperatures and time-points in a pilot thermal 

acclimation experiment.  

5) Ascertain the biochemical response to temperature in the Antarctic stenotherm through 

analysis of membrane lipids to determine the phospholipid profile and desaturation indices.  
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Protein structure adaptation in Antarctic fish in relation to temperature has been documented for a 

few cytoplasmic proteins, and the protein lactate dehydrogenase has been particularly well studied 

(Coppes & Somero, 2007). In addition, membrane proteins the Sec61 translocation channel protein 

(Romisch et al., 2003) and PEPT1 peptide transporter protein from Chionodraco hamatus (Rizzello et 

al., 2013) have been investigated for signatures relating to cold adaptation. Thermal adaptive 

signatures of orthologous protein sequences have also been elucidated using cDNA libraries from two 

confamiliar fish species from different thermal habitats (Windisch et al., 2012). These studies 

indicated common principles that regulate thermal adaptation. At lower temperatures, due to low 

energy states, protein flexibility is enhanced, especially in the active sites. Flexibility achieved by 

specific amino acid replacement in the regions involved in the mobility of the enzyme during the 

catalytic cycle is the predominant structural cold adaptation (Feller, 2013). 

 

In this chapter major Antarctic and non-Antarctic fish representatives of five of the eight families in 

the notothenioid suborder were analysed using partial SCD sequences. The rationale for the use of 

partial sequences was to obtain SCD sequences from a large data set including Antarctic fish species. 

SCD sequences were PCR amplified and sequenced partial SCD sequences from a range of Antarctic 

fish species samples as well as published sequences of notothenioid, and non notothenioid species 

of different thermal habitats from databases (GenBank : https://www.ncbi.nlm.nih.gov/genbank/ 

and ENSEMBL : (http://asia.ensembl.org/index.html ), were used in a comparative study of nucleotide 

sequences and inferred primary protein sequences. The purpose of this study was to reconstruct the 

phylogenetic history of SCD in Antarctic fish and to determine the signatures of thermal adaptation 

in the two SCD isoforms. The term ‘signature’ is used as a proxy for specific changes in the nucleotide 

and amino acid sequences of the SCD isoforms of Antarctic fish when compared to non-Antarctic fish, 

primarily processes such as temperature reduction have left evidence of such changes.  Amino acid 

composition and codon usage of both the SCD isoforms were examined from Antarctic fish in 

comparison to non-Antarctic fish. The sites of positive selection were determined. Locations of amino 

acid substitutions specific to Antarctic fish, and amino acids under positive selection were mapped 

onto the primary amino acid sequence of SCD. With the integration of structural data and sequence 

data, I have attempted to establish its relationship to temperature. 

https://www.ncbi.nlm.nih.gov/genbank/
http://asia.ensembl.org/index.html
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isolated from ten species (Table 11). The Antarctic and non-Antarctic notothenioid species are 

mentioned in Table 2. Non-Antarctic notothenioid are species which have an Antarctic ancestry and 

have dispersed to non-Antarctic waters. While some notothenioid species which do not have an 

Antarctic ancestry are mentioned in Table 2. The amplified products were sequenced and then 

confirmed using BLASTn (http://www.ncbi.nlm.nih.gov) to confirm their identity as sequences from 

the gene. SCD1a sequences obtained from Antarctic species had 98% sequence similarity to SCD1a 

from the emerald rock cod Trematomus bernacchii (FJ177513.1), the black rockcod Notothenia 

coriiceps (XM_010780865), and 91% sequence similarity to SCD1a from the gilthead seabream Sparus 

aurata (JQ277703). The SCD1b sequences had 99% sequence similarity with SCD1b of N. coriiceps 

(XM_010769852.1) and 88% sequence similarity with the European seabass Dicentrarchus labrax 

(XM_010769852.1). This dataset was expanded using SCD sequences obtained from NCBI and 

ENSEMBL and provided in the Appendix (B.1) 

Table 11 Number of sequences isolated from the notothenioid and non-notothenioid fish from Antarctic and 
non-Antarctic thermal habitats using isoform-specific primers. 

 SCD1b SCD1a 

Antarctic notothenioid 13 7 
Non-Antarctic notothenioid 7 3 
Antarctic non-notothenioid 1 0 

Total 21 10 
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highly conserved across the vertebrates. Fish-specific amino acid replacements were observed, and 

most variation was at the N-terminal end of the protein sequence.  

Specific amino acid substitutions were observed in the SCD1a and 1b sequences of Antarctic fish 

when compared to non-Antarctic fish (shown in Table 12 and 13). In SCD1a (Table 12), there are 11 

amino acid substitutions specific for Antarctic fish and out of which five substitutions were for 

Antarctic as well as the cold adapted non-Antarctic fish (Notothenia angustata and 

Champsocephalus esox). Codon 245 were specific to cold adapted notothenioid fish (Antarctic and 

non-Antarctic fish) as well one non-Antarctic warm adapted species Danio rerio. Seven substitutions 

were localised in the loop regions, two in the transmembrane regions, one in the helix and one in 

the amphipathic helix (Figure 9). Majority of hydrophobic residues and polar residues were replaced 

with polar residues in Antarctic fish species (Table 12), this was observed in amino acid positions 36 

(serine), 65 (threonine), 170, 245 (histidine). Some replacements involved replacement of 

hydrophobic amino acids by other hydrophobic amino acids seen in amino acid position 44 

(phenylalanine), 169 (valine), 284 (tryptophan). Replacements of hydrophobic and polar amino 

acids by hydrophobic amino acids was observed in amino acid position 17 (phenylalanine and 

proline) and 282 (isoleucine). Replacements of polar uncharged by polar charged amino acids was 

observed in position 246 (histidine) and replacement of hydrophobic amino acids by polar amino 

acids was found only at position 293 (threonine). 

 

Table 12 Amino acid replacements in the SCD1a isoform of cold adapted notothenioid fish compared with 
non-Antarctic fish. 

Cold adapted 
Notothenioid 
fish 

 
 

F,P 

 
 

S 

 
 

F 

 
 

T 

 
 

V 

 
 

H 

 
 

H 

 
 

H 

 
 

I 

 
 

W 

 
 

T 

Position** 17* 36* 44* 65 169 170 245 246 282* 284* 293* 

Amino acid in 
non-Antarctic 
fish 

A,I,T T,I,M
,K,R,  
V 

L,I,V V,F,P
,R, 

L,M,
F 

S,T,
N,S,
R,G 

S,A,
N,G,
K 

S,T,N C,W,S L,M L,F,A 

 ** Refers to the amino acid numbering of Danio rerio in alignment [Appendix:  (B.5)]   
      * Replacements observed only in Antarctic fish species. Hydrophobic amino acids are in red. 
 
The SCD1b isoform had six amino acid substitutions that were specific for the cold-adapted 

notothenioid fish comprising of Antarctic and non-Antarctic fish species which has a thermal range 

from 5 °C to 11°C (Notothenia angustata, Dissostichus eleginoides, Champsocephalus esox, 

Pagothenia tessellata) and in Eliginops maclovinus (Table 13). The substitutions were localized in 

the transmembrane and loop regions (three in each, Figure 9). At positions 27 (Table 13) there is 
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SCD1a isoforms from Antarctic fish also formed a cluster characterized by high glutamine and lysine. 

This cluster comprised Antarctic species, cold adapted non-Antarctic notothenioid species (C.esox) 

and cold adapted non notothenioid species, such as Gadus morhua of SCD1a isoform as well as 

Gasterosteus aculeatus and Takifugu rubripes of SCD1b isoform (Figure 7, cluster B). SCD1a from C. 

hamatus had high proportions of glutamine acid and lysine compared to other Antarctic fish and 

hence was separated from the main cluster of SCD1a Antarctic species. The SCD1a and SCD1b 

sequences from non-Antarctic fish were characterized by high proportions of isoleucine, 

phenylalanine and tryptophan.  

The non-Antarctic warm-adapted fish species Oreochromis niloticus had high proportions of 

glutamine and lysine (PCA axis 2) and also isoleucine, phenylalanine and tryptophan (PCA axis 1) when 

compared to other fish species. In general, SCD1b from Antarctic species had high proportions of 

valine, tyrosine and lysine, while the SCD1a from Antarctic species had high proportions of glutamine 

and lysine. 
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Figure 7 Principal Component Analysis of partial SCD1a and SCD1b sequences from Antarctic and non-
Antarctic fish. Each point on the graph represents a single fish. PC1 = 26.4 %, PC2 = 13.4%. Amino acids 
significantly correlated with PC1 and PC2 are indicated on the axes. Warm-adapted fish species Orechromis 
niloticus are enclosed (1), non-Antarctic notothenioid fish species are enclosed (2), Antarctic fish species and 
non-Antarctic fish species with Antarctic ancestry are enclosed (A) and Antarctic and cold-adapted fish 
species are enclosed (B). Species in each enclosure are as follows: 
1; Orechromis niloticus _SCD1b(1), Orechromis niloticus _SCD1b(2) 
2; Bovichtus variegatus_ SCD1b, Eliginops maclovinus_SCD1b and Cottoperca gobio_SCD1b 
A; All notothenioid Antarctic fish species with SCD1b sequences as given in Table 2 
B; All Notothenioid Antarctic fish species with SCD1a sequences as given in table 2 (except Chionodraco 
hamatus)  along with non-Antarctic fish species C.esox_SCD1a , Gadus morhua_SCD1a, Gasterosteus 
aculeatus_SCD1b and Takifugu rubripes_SCD1b.  
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heterogeneity and the chi-square total between the amino acids and the AT3 vs GC3 distribution 

across the Antarctic/non-Antarctic habitat was significant for SCD1b, but not for SCD1a (Table 15). 

 

Figure 8 Proportions of GC3 codons in partial sequences of SCD1b from Antarctic and non-Antarctic fish. All 
the amino acids presented are significant at P<0.05 (Table 16).  
 

Table 15 Cochran’s test of heterogeneity for all amino acids in SCD isoforms. 
SCD1a isoforms 

  Chi.sq Amino acids  P -value 

Total chi square 21.19 18 0.270 

Heterogeneity 20.6 17 0.245 
chi square total 0.584 1 0.445 

SCD1b isoforms 

Total chi square 79.63 18 0.000 

Heterogeneity 71.9849 17 0.000 
chi square total 7.641 1 0.005 
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codons 769 and 770, a histidine pair is present in all nine of the Antarctic species but is absent from 

non-Antarctic species (except for C. esox) (Figure 9 and 10).  

Four codons in SCD1b, are under positive selection 223, 373, 428, and 464 (Table 18). Codons 373 

and 464 were identified by all three methods (FEL, IFEL and REL), while codons 223 and 428 were 

identified by only one. Codons 223, 428 and 464 are in loop regions while codon 373 is part of the 

third transmembrane region of the protein. Of these four codons, 373 and 464 were detected in 

Antarctic and cold adapted non-Antarctic notothenioid species. Codon 373 was determined to have 

been under positive selection in the non-notothenioid Antarctic species Pachycara brachycephalum; 

a few non-Antarctic species, P. tessellata and N. angustata, Antarctic species, N. rossii, N. coriiceps 

and G.gibbberifrons, while other Antarctic species were not under positive selection at this site. 

Codon 464, which is part of the loop region appears to have undergone positive selection in the 

Antarctic species N. coriiceps but it is unclear whether this codon is under selection in other species 

as partial sequences of the Antarctic species are lacking.  
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Table 17 Amino acid sites under positive selection identified in SCD 1a sequences of Antarctic and non-
Antarctic fish using four different methods in Datamonkey. FEL: Fixed effect likelihood, REL: Random effect 
likelihood, IFEL: Internal branch fixed effect likelihood, nd: not detected. 

Amino 
acid  

Amino 
acid 
change 
(From-To) 

Protein 
domain 

FEL 
P-value 

REL Empirical 
Bayes factor 

IFEL 
P-value 

 
 

203 

Ala-Thr 

Ala-Pro 

Ala-Ile 

Pro-Phe 

Ala-Thr 

Ala-Ala 

 
 
Loop  0.0890057 95.2405 

 
 

0.0478734 

 
 
 
 
 
477 

Arg-Arg 

Arg-Thr 

Arg-Ser 

Arg-Lys 

Arg-Met 

Met-Ile 

Ile-Thr 

Met-Ile 

Arg-lys 

Arg-Met 

Ile-Val 

Ile-Thr 

 
 
 
 
Loop 

       nd 111.755 

 
 
 
 
 

nd                                                                              

 
 
688 

Arg-Lys 

Arg-Arg 

Arg-Gly 

Arg-Lys 

Arg-Ser 

Arg-Ala 

 
 
Loop 0.00429614  274.893 

0.0339293 

714 Leu-Val  0.0460927  nd 0.0422443 
 
 
 

769 

Lys-His 

Lys-Asn 

Lys-Gln 

Lys-Asn 

Asn-Ser 

Asn-Thr 

Ser-Ala 

Ser-Gly 

Asn-His 

                                 
 
 
Loop 0.0323879  103.746 0.0389304 

  
770 

 

Asn-His 

Asn-Ser 

Asn-Thr 

Asn-Ser 

Asn-Thr 

Asn-Ser 

                                       
Loop 

0.0667923  nd 0.0252515 

 

875 

Leu-Phe 

Leu-Pro 

Pro-Thr 

Pro-Ala 

Leu-leu 

Leu-Leu 

Leu-Phe 

Leu-Leu 

Leu-Phe 

Leu-Thr 

                     
Amphipathic 
helix 

0.0238863 105.481 0.0110167 

 Amino acid change shown with bold and by an arrow in Figure 9 are the amino acid changes that have 

occurred in the Antarctic species.  
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Figure 11 Alignment of partial SCD1a sequences from Antarctic and non-Antarctic fish species. Residues in SCD1a 
isoform which are critical determinants of the substrate length of fatty acyl chain are boxed (phenylalanine and 
alanine). Blue horizontal boxes represent the transmembrane regions. 

Figure 12 Alignment of partial SCD1b sequences from Antarctic and non-Antarctic fish species Residues in SCD1b 
isoform which are critical determinants of the substrate length of fatty acyl chain are boxed (tyrosine and alanine). 
Blue horizontal boxes represent the transmembrane regions (TM1 and TM2). 

Orechromis_niloticus                  LRWSKIIAFSLLHLGALYGLILIPSASPSTLAWTAFCYVFSGLGVTAGAHRLWSHRSYKA 95 

Orechromis_niloticus_SCD202           LRWSKIIAFSLLHLGALYGLILIPSASPSTLAWTAFCYVFSGLGVTAGAHRLWSHRSYKA 104 

Xenopus_laevis_SCD                    IVWRNVILMCLLHIGAFYGLFFIPAAKPITLAWATVCFMLSALGVTAGAHRLWSHRSYKA 110 

Salmo_salar_SCD                       LVWRNIILMFLLHIGALYGLMIVPSASALTLAWTALCFLLSALGITAGAHRLWSHKSYKA 102 

Tetraodon_nigroviridis_SCDb201        LVWRNIILMSLLHVGALYGLLLLPSASASTLAWTAACYLFSALGVTAGAHRLWSHRSYKA 105 

Takifugu_rubripes_SCD1b               LVWRNIILMTLLHAGALYGLVLLPSASGLTLVWSAVCYLVSALGVTAGAHRLWSHRSYKA 104 

Takifugu_rubripes                     LVWRNIILMTLLHAGALYGLVLLPSASGLTLVWSAVCYLVSALGVTAGAHRLWSHRSYKA 104 

Gadus_morhua_SCD_201                  LVWRNIILMLLLHSGALYGLMLIPSASVLTLAWTVVCFIISALGVTAGAHRLWSHRTYKA 101 

Oryzias_latipes_SCDb_201              FVWRNIILMCLLHLGALYGLVLVPSASPLTLAWSGVCYFLSALGVTAGAHRLWSHKTYKA 118 

Xiphophoru_maculatus                  LVWRNIILMGLLHIGALYGLVLIPSASWLTLGWTAVCYMISALGVTAGAHRLWSHRSYKA 110 

Sparus_aurata_SCD1b                   LVWRNIIMMTLLHVTSLYGLVLLPSASAPTLAWTVVCYLFSALGVTAGAHRLWSHRSYKA 106 

Dicentrarchus_labrax_SCD1b            LVWRNIILMSLLHIGALYGLVLIPNASTSTLAFTAVCYMFSALGVTAGAHRLWSHRSYKA 105 

Gasterosteus_aculeatus_SCDb_201       LVWRNIVLMSVLHAAALYGLVLLPSASVPTLAWTAVCYIISALGVTAGAHRLWSHRSYKA 101 

Pachycara_brachycephalum              LVWRNIILMSLLHVTALYGLVLLPSASVATLAWTAVCYFISALGVTAGAHRLWSHRSYKA 62 

Cottoperca_gobio                      --WRNIMLMTLLHLGALYGLTLVPSASVLTLAWIAVCYLISALGVTAGAHRLWSHRSYKA 58 

Bovichtus_variegatus_SCD1b            LVWRNIILMTLLHLGALYGLILMPSASVLTLAWTAVCYLISALGVTAGAHRLWSHRSYKA 77 

Eliginops_maclovinus_SCD1b            LVWRNIILMTLLHLGALYGLILLPSASVSTVAWTAVCYLISALGVTAGAHRLWSHRSYKA 73 

Pagothenia_tessellata_SCD1b           LVWRNIILMTLLHLGALYGLVLLPSASVSTVAWTAVCYLISALGVTAGAHRLWSHRSYKA 78 

Notothenia_rossii_SCD1b               LVWRNIILMTVLHLGALYGLVLLPSASVSTVAWTAVCYLISALGVTAGAHRLWSHRSYKA 77 

Notothenia_angustata_SCD1b            --WRNIILMTLLHLGALYGLVLLPSASVSTVAWTAVCYLISALGVTAGAHRLWSHRSYKA 58 

Notothenia_coriiceps_SCD1b            LVWRNIILMTLLHLGALYGLVLLPSASVSTVAWTAVCYLISALGVTAGAHRLWSHRSYKA 104 

Dissostichus_eleginoides_SCD1b        LVWRNIILMTLLHLGALYGLVLLPSASVSTVAWTAVCYLISALGVTAGAHRLWSHRSYKA 82 

Gobionothen_gibberifrons_SCD1b        LVWRNIILMTVLHLGALYGLVLLPSASVSTVAWTAVCYLISALGVTAGAHRLWSHRSYKA 72 

Gymnodraco_acuticeps_SCD1b            LVWRNIILMTFLHLGALYGLVLLPSASVSTVAWTAVCYLISALGVTAGAHRLWSHRSYKA 77 

Trematomus_nicolai_SCD1b              LVWRNIIMMTLLHLGALYGLVLLPSASVSTVAWTAVCYLISALGVTAGAHRLWSHRSYKA 77 

Gobionothen_marionensis_SCD1b         LVWRNIILMTLLHLGALYGLVLLPSASVSTVAWTAVCYLISALGVTAGAHRLWSHRSYKA 66 

Lepidonotothen_squamifrons_SCD1b      LVWRNIILMTLLHLGALYGLVLLPSASVSTVAWTAVCYLISALGVTAGAHRLWSHRSYKA 77 

Pagothenia_borchgrevinki_SCD1b        LVWRNIILMTLLHLGALYGLVLLPSASVSTVAWTAVCYLISALGVTAGAHRLWSHRSYKA 77 

Trematomus_hansoni_SCD1b              LVWRNIILMTLLHLGALYGLVLLPSASVSTVAWTAVCYLISALGVTAGAHRLWSHRSYKA 74 

Chionodraco_hamatus_SCD1b             LVWRNIILMTLLHLGALYGLVLLPSASVSTVAWTAVCYLISALGVTAGAHRLWSHRSYKA 75 

Chaenocephalus_aceratus_SCD1b         LVWRNIILMTLLHLGALYGLVLLPSASVSTVAWTAVCYLISALGVTAGAHRLWSHRSYKA 77 

Champsocephalus_gunnari_SCD1b         LVWRNIILMTLLHLGALYGLVLLPSASVSTVAWTAVCYLISALGVTAGAHRLWSHRSYKA 77 

Champsocephalus_esox_SCD1b            LVWRNIILMTLLHLGALYGLVLLPSASVSTVAWTAVCYLISALGVTAGAHRLWSHRSYKA 77 

Pagothenia_georgius_SCD1b             LVWRNIILMTLLHLGALYGLVLLPSASVSTVAWTAVCYLISALGVTAGAHRLWSHRSYKA 75 

                                        * ::: : .**  ::*** ::* *.  *: :   *:..*.**:**********::*** 

 

 

Danio_rerio_SCD201                  SLLHIAAVYGLFLIPSAHPLTLLWAFAC----------FVYGGLGITAGVHRLWSHRSYK 96 

Danio_rerio_SCDb001                 TLLHLGALYGMTILPFVSSLTLIWTGVC----------FMVSALGITAGAHRLWSHRSYR 86 

Astyanax_mexicanus_SCDb201          ALLHLGAVYGLFIITSASKLTLLWSAVC----------FMVSALGVTAGAHRLWSHRSYK 103 

Cyprinus_carpio_CDS2                AFLHTGALYGLVLFPSASVLTWIWFLAC----------FVFSALGVTAGAHRLWSRRSYK 94 

Cyprinus_carpio_JF836162.1          AFLHTGALYGLVLFPSASVLTWIWFLAC----------FVFSALGVTAGAHRLWSHRSYK 94 

Ctenopharyngodon_idella_SCD         TLLHTGALYGLLLIPSASFLTLIWTFAC----------FVYSALGITAGAHRLWSHRSYK 94 

Astyanax_mexicanus_SCD201           ALLHIGALYGILLVPSASPLTLLWTWAC----------FLFSALGITAGVHRLWSHRSYK 90 

Tetraodon_nigroviridis_SCD201       SLLHLSAVYAIFLIPSASALTLLWSVLC----------FFISALGITAGAHRLWSHRTYK 106 

Takifugu_rubripes_SCD1              TLLHLSAVYAIFLIPSASALTLLWAMLC----------FFISALGITAGAHRLWSHRTYK 103 

Takifugu_rubripes_SCD               TLLHLSAVYAIFLIPSASALTLLWSMLC----------FFISALGITAGAHRLWSHRTYK 103 

Salmo_salar_ACD                     TLLHIGAVYGISLVPSAHVLTWAWSVFC----------FLTSALGVTAGAHRLWSHRSYK 103 

Xiphophoru_maculatus_SCD201         TLLHLGAVYGLFLIPSASPSTLLWTMTC----------FLISALGITAGAHRLWSHRTYK 104 

Gasterosteus_aculeatus_SCD_201      TVLHLGAAYGVCLIPSASPLTLLWSVFC----------FLISALGVTAGAHRLWSHRSYK 100 

Gasterosteus_aculeatus_SCD_202      TVLHLGAAYGVCLIPSASPLTLLWSVFC----------FLISALGVTAGAHRLWSHRSYK 94 

Oryzias_latipes_SCD_201             TLLHIGATYGILLIPSVSPLTLLWSVLC----------FFISALGITAGAHRLWSHRSYK 103 

Oreochromis_mossambicus             TLLHIGAFYGVFVVPSASRLTLLWSVLC----------FLISALGVTAGAHRLWSHRSYK 106 

Orechromis_niloticus_SCDb201        TLLHIGAFYGVFVVPSASRLTLLWSVLC----------FLISALGVTAGAHRLWSHRSYK 105 

Dicentrarchus_labrax_SCD1a          TLLHLAALYAVSIVPSASILTLLWSALC----------FLISALGITAGAHRLWSHRSYK 103 

Bovichtus_variegatus_SCD1a          -SIAYRCRVQRVPRPFPSMLTLLWSALC----------FLISALGVTAGAHRLWSHRSYK 54 

Sparus_aurata_SCD1a                 TVLHIGALYAVSLIPSASPLTLLWSVLC----------FLISALGVTAGAHRLWSHRSYK 105 

Chionodraco_hamatus_SCD1a           TLLHIGALYGMCLVPSASTLTLLWSLLCFVFLPTALLCFVISALGVTAGAHRLWSHRSYK 115 

Notothenia_angustata_SCD1a          ------------------------------------------------------------ 0 

Trematomus_bernacchii_SCD1a         TLLHIGAAYGICLVPSASTLTLLWSVLC----------FVLSALGVTAGAHRLWSHRSYK 105 

Pagothenia_borchgrevinki_SCD1a      TLLHIGAAYGICLVPSASTLTLLWSVLC----------FVLSALGVTAGAHRLWSHRSYK 55 

Notothenia_coriiceps_SCD1a          TLLHIGAVYGMCLVPSASTLTLLWSLLC----------FVISALGVTAGAHRLWSHRSYK 105 

Notothenia_rossii_SCD1a             TLLHIGAVYGMCLVPSASTLTLLWSLLC----------FVISALGVTAGAHRLWSHRSYK 53 

Chaenocephalus_aceratus_SCD1a       ------AVYGMCLVPSASTLTLLWSLLC----------FVISALGVTAGAHRLWSHRSYK 44 

Champsocephalus_esox_SCD1a          ------PCMASCLVPSASTLTLLWSLLC----------FVISALGVTAGAHRLWSHRSYK 44 

Champsocephalus_gunnari_SCD1a       ------------LVPSASTLTLLWSLLC----------FVISALGVTAGAHRLWSHRSYK 38 
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Variation in paralog retention between the orders of fish 

In the present study, phylogenetic analysis (Fig. 4) indicates SCD gene duplicates occurring in all 

orders of fish used in this study except for Cypriniformes, Characiformes and Gonorynchiformes. Fish 

species, namely Danio rerio, Cyprinus carprio belonging to order Cypriniformes, Chanos chanos 

(Gonorynchiformes) and Astyanax mexicanus (Characiformes), do not have SCD1b paralogs but only 

have the SCD1a paralog suggesting the loss of SCD1b and retention of only SCD1a isoform in these 

orders. Also the loss of SCD1b might be due to a disabled pseudogene and not a deletion, which 

demands further investigation. One of the variations after gene duplication, involve retention of some 

paralogs and also loss of paralogs. Studies on the retention of paralogs in two superorders of teleosts, 

Ostariophysi and Acanthopterygii, show that 1.3 % of the teleost-specific gene duplicates (TSGD) gene 

paralogs are present in genomes of the superorder Acanthopterygii, whereas a single copy of the 

paralogs was retained in the genomes of the Ostariophysi species Danio rerio (Cypriniformes) and 

Astyanax mexicanus (Characiformes) (Garcia de la serrana et al., 2014). In general, the study showed, 

there was systematic retention of 1-2% of the paralogs across both superorders and these could be 

functionally significant for the evolution and diversification of particular lineages (Garcia de la serrana 

et al., 2014). Similarly, one of the duplicate genes of the evolutionarily conserved cortisol stress 

response genes in zebrafish is lost (Alsop & Vijayan, 2009). Such patterns of retention and loss of 

duplicate paralogs conforms to the finding for SCD reported here in the present study. 

The relevance of the loss of SCD1b and the retention of SCD1a in some orders is further complicated 

by the observation that D.rerio and A. mexicanus have duplicates of SCD1a that are localized on 

different chromosomes. The reason for the loss of duplicates is unclear but it could have occurred 

after the sub-functionalization of the genes, when the need for the modified function of one duplicate 

was lost (Garcia de la serrana et al., 2014). This highlights the need for a better understanding of the 

differing functions of gene duplicates in general, and SCD1a and 1b in particular. 

 

Diversity of SCD gene duplicates  

The present phylogenetic analysis (Fig. 4) supports existence of lineage-specific duplicates (LSD) of 

SCD1a in Gasterosteus aculeatus and Cyprinus carprio, and SCD1b in Oreochromis niloticus. SCD1b 

appears to be lost from Cyprinus carprio, but in G aculeatus and O.niloticus both duplicates (SCD1a 

and 1b) are retained and a third copy of SCD1b arising from LSD. The apparent absence of SCD1b in 

C. carprio cannot be confirmed as presently the genome has not been sequenced and additional 
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sequences do not exist in the databases. However, supporting studies indicate losses of gene 

duplicates in other cypriniform fish, conforming with our observations (Garcia de la serrana et al., 

2014). Other than whole genome duplicates, in which duplicates are localized on separate 

chromosomes, the lineage-specific duplicates identified in the present study occur on the same 

chromosome (Fig. 5) and could perhaps be the result of alternate splicing or gene duplication. The 

specific functions of these SCD duplicates in these species are unknown but in C. carprio one duplicate 

of the SCD1a gene is regulated by temperature while the other isoform is regulated by diet (Polley et 

al., 2003). Studies are needed to examine whether such regulatory patterns as seen in Cyprinus 

carprio exist across the isoforms of the genome duplicates in other species in order to elucidate their 

functions.  

Presence of SCD1 gene duplicates SCD1a and SCD1b in Antarctic fish 

This study is the first to show the presence of both the duplicates SCD1a and SCD1b across the 

Antarctic notothenioid fish. Previous studies of SCD (Porta et al., 2012) from Antarctic fish (T. 

bernacchii and C. hamatus) found the SCD1a isoform, as both these previously identified sequences 

occupy the SCD1a clade in the phylogenetic tree (Fig. 4) In addition, the genome sequence of the 

Antarctic notothenioid Notothenia coriiceps possesses both SCD1a and SCD1b duplicates (Shin et al., 

2014). In general, gene duplication has played a major role in Antarctic fish influencing their successful 

establishment in cold conditions. Transcriptome analysis of three Antarctic species revealed the 

presence of Antarctic-specific duplications in 118 protein gene families and many of the duplicated 

proteins were upregulated in cold conditions (Chen et al., 2008). SCD1b sequences were successfully 

obtained from nineteen Antarctic species targeted in the study, SCD1a sequences could only be 

obtained from six species, mostly in the families Channichthyidae and Nototheniidae. The reasons for 

this are unclear, but may be due to low expression or loss of this isoform in some species, and requires 

further investigation in a larger panel of Antarctic fish species.  Investigation involving genome 

sequencing of the fish species and also probing using cDNA libraries could perhaps confirm the 

presence of SCD1a.  
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Cold adapted notothenioid fish species are evolutionary distinct with respect to SCD 

Phylogenetic analysis reveals that the cold adapted Antarctic and non-Antarctic notothenioid with an 

Antarctic ancestry (Table 2) form a separate clade for each isoform (Fig. 4), as the clade does not 

contain any non- notothenioid fish species. This indicates that the isoforms from these two groups 

are evolutionarily distinct with respect to SCD and also that they have inherited and retained both 

copies from the ancestral duplication. Non-Antarctic notothenioids which do not have Antarctic 

ancestry B. variegatus and C.gobio (family Bovichtidae) are together form the sister taxa of the 

Notothenidae (Near et al., 2004). This relationship is strongly supported, also more so for SCD1b than 

SCD1a. This suggests that the gene trees reflect the phylogenetic relationships of these species. 

Although, the secondarily temperate species Notothenia angustata has an Antarctic ancestry and 

dispersed to temperate waters around 11 Mya (Cheng et al., 2003), and its position in the phylogeny 

does not match its current biogeography, as it is part of the Antarctic clade for both SCD1a and SCD1b 

suggesting that the SCD gene tree may reflect phylogeny more than biogeography or habitat, as the 

genus Nothothenia is monophyletic for both isoforms.  Similarly, phylogenetic position does not 

match biogeography occurs in other species of Antarctic ancestry but now dispersed to the non-

Antarctic water such as C. esox for (SCD1a and SCD1b clade), and D. elegenoides and P. tesselata 

(SCD1b clade only) 

 

Increased basic amino acids in Antarctic SCD1a isoforms and reduction in the hydrophobic amino 

acids in SCD1b 

Whether amino acid usage and thermal habitat are correlated was examined in a previous 

comparative study of the confamiliar teleost fish species Pachychara brachycephalum (Antarctic) and 

Zoarces viviparous (temperate). The authors used transcriptome sequence information to establish 

general patterns of amino acid usage. Their comparison of the amino acid compositions of the 

orthologous sequence pairs demonstrated a reduction in the frequency of acidic residues (e.g. 

glutamic acid) and increase in the frequency of basic residues (e.g. lysine, arginine and histidine), 

causing reduction in the charges required for stabilization of salt bridges in the proteins (Windisch et 

al., 2012). The aligns with the trend as SCD1a from Antarctic fish in this study and cold-adapted fish 

was positively correlated with glutamine and negatively correlated with glutamic acid (Fig. 7). Perhaps 

the high frequency of basic amino acids, like lysine and the low frequency of acidic amino acids, like 

glutamic acid, could result in the reduction of salt bridges in SCD1a and confer flexibility. However, 
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contrary to this, the clustering of the warm-adapted tilapia for SCD1b in the PCA analysis of our 

present study are correlated with the presence of high glutamine and lysine. 

In the present study a strong correlation of SCD1b from Antarctic species and cold adapted non-

Antarctic fish species, with basic residues like lysine and histidine and a corresponding inverse 

correlation with hydrophobic residues, which could result in enhancing flexibility (Fig. 7). Cold-

adapted proteins are characterised by the reduction in the core hydrophobicity, as the amino acids 

deeper in the structure tend to be smaller and less hydrophobic, when compared to mesophilic 

proteins or warm adapted proteins. Reduced hydrophobicity results in reduction of Van der Waals 

interactions. This contributes to destabilization of the protein core and also better solvent 

accessibility (Siddiqui & Cavicchioli, 2006). Overall, this suggests that the composition of the SCD1b 

isoforms of Antarctic fish could favour reduction in the hydrophobicity, although the localization of 

these changes in the protein needs investigation through structural modelling.  

 

Amino acid replacements favouring increase in the protein lipid interaction 

A positive correlation within SCD1b for valine in the Antarctic fish species and cold adapted non-

Antarctic fish species was found (Fig. 7). This is in alignment with a previous study where in the 

transcriptome of non-notothenioid Antarctic fish were compared to confamiliar temperate fish 

(Windisch et al., 2012). That study showed that Antarctic fish have increased replacements of valine 

over alanine when compared to confamiliar temperate fish (Windisch et al., 2012). Such replacements 

have been suggested to increase protein-lipid interactions due to valine having larger, nonpolar 

residues than alanine. The present study showed valine is selectively replaced over leucine, within 

the transmembrane 2 and 3 regions in SCD1b of the Antarctic fish species (Fig. 9 and Table 13). 

Transmembrane regions are typically rich in hydrophobic residues, but in Antarctic fish species SCD1b 

there is an amino acid exchange of phenylalanine with valine in transmembrane 3, located besides 

another existing valine residue, forming valine pairs in the SCD1b of Antarctic fish. The membranes 

of Antarctic fish have a high proportion of unsaturated fatty acids (Logue et al., 2000) and valine pairs 

could be an adaptation to allow interaction with unsaturated membrane lipids of the endoplasmic 

reticulum (Windisch et al., 2012). 
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AT3 codon usage varies across amino acids in the SCD1b isoform of Antarctic fish when compared 

to non-Antarctic AT3 codon usage 

A strong correlation exists between codon usage and the expression of proteins and this is due to 

mutation and selection shape codon usage. An analysis of RNA–seq data from two species of 

arthropods has shown that highly expressed genes have a greater proportion of AT3 codons than less 

highly expressed genes (Whittle & Extavour, 2015). This has been attributed to these having greater 

accuracy and efficiency of translation (Whittle & Extavour, 2015). A similar trend of correlation of AT3 

codons with high expression has been found in yeast (Lin et al., 2006). There is little information on 

the correlation of codon usage with temperature in fish. One study has shown increased AT3 codon 

usage in the Antarctic fish P. brachycephalum in comparison to a confamiliar temperate species 

(Windisch et al., 2012) was attributed to a reduction of proof reading costs, which may be 

advantageous in energy-constrained cold conditions. Higher preference for AT3 would favour less 

stabilized transition enzymatic states during translation, preventing kinetic repression of translation. 

Lowering the GC content in the cold environment also helps to prevent the formation of stabilized 

mRNA secondary structure ; such secondary structures  can inhibit translation (Windisch et al., 2012). 

This study show a similar trend to Windish’s study, with some amino acids in SCD1b (but not in SCD1a) 

showing a bias for AT3 codons (Figure 8). While for SCD1a, the overall trend across all amino acids is 

not statistically significant. While asparagine, glycine, proline and tyrosine all show statistically 

significant AT3 bias in SCD1b, phenylalanine, Isoleucine, and glutamine all show significant GC3 bias 

in this same isoform, and therefore there is no clear pattern of codon usage bias. AT3 usage is high 

for tyrosine, which is more common in SCD1b, while AT3 usage is low for less used amino acids like 

phenylalanine, isoleucine and glutamine. The reason for high AT3 usage for less used amino acids like 

proline, asparagine and glycine is unclear. Perhaps more proteins other than SCD should be compared 

among a larger range of notothenioid fish to examine whether this fits with the findings of higher AT3 

use seen in non-notothenioid Antarctic fish (Windisch et al., 2012).  

 

Signatures of thermal adaptation in SCD isoforms of Antarctic fish 
 
Amino acid replacements in the loop regions of Antarctic SCD confer flexibility  

The present study identified that the majority of the amino replacements in Antarctic fish have 

occurred in the loop regions (seven out of eleven replacements for SCD1a and three out of six for 

SCD1b). In general, at low temperatures proteins have  evolved structural features which introduce 
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flexibility (Siddiqui & Cavicchioli, 2006). Proteins of cold-adapted organisms are often modified in 

regions that are involved in intramolecular flexibility, especially those involved in catalytic activity. 

These changes change in loop or hinge regions to enhance flexibility. Loops generally connect the 

secondary structures of the enzymes and they surround the active sites or catalytic sites of the 

enzymes and add to flexibility (Siddiqui & Cavicchioli, 2006). Other studies investigating adaptive 

changes in relation to protein structure have identified localization of amino acid replacements in the 

loop regions, as shown in Sec 61 protein, a transmembrane protein localised in the endoplasmic 

reticulum that forms a channel in the ER (Romisch et al., 2003). All the secretory proteins enter the 

secretory pathway through the channel formed by Sec 61 and certain amino acids in the luminal loop 

are important for translocation of proteins. Amino acids replacements in Sec 61 specific to cold fish 

were localized in the luminal loop of between transmembrane regions 7 and 8. Furthermore changes 

in loop regions appear to facilitate the conformational change required for the translocation of 

proteins at low temperatures (Romisch et al., 2003). 

Just as the location of the amino acid replacements are important for thermal adaptation, so too are 

the types of amino acids that are replaced. The majority of the changes occur at the surface of the 

proteins where they are exposed to the environment. Such amino acid replacements are associated 

with the change from the non-polar to polar residues, which interact with the environment (Fields et 

al., 2015; Siddiqui & Cavicchioli, 2006). For example, lactate dehydrogenase has amino acid 

substitutions E233M and Q317V (substitutions at codon 233 and 317 are written from cold- to warm-

adapted) in Antarctic fish compared to warm adapted fish. Methionine (M) and valine (V) in the warm 

adapted species were replaced by the polar amino acids glutamic acid (E) and glutamine (Q) in cold-

adapted fish (Fields et al., 2015). However, the reverse is true in the mussel species Mytilus trossulus, 

which had a V114N amino replacement with the polar amino acid arginine (N) in the warm-adapted 

species replaced by non-polar valine (V) in the cold-adapted species. Thus we do not see a common 

pattern and other factors could also contribute to the type of amino acid replacement. In this study 

few replacements changed from hydrophobic states in non-Antarctic species to polar amino acids in 

the cold adapted Nototheniod species and these replacements were seen in SCD1a than in SCD1b 

(Table 12 and 13). A trend observed in cold-adapted proteins involves increase in polar residues which 

is attributed to better solvent interaction with the protein by increasing the polarity (Feller & Gerday, 

1997; Windisch et al., 2012). However, in the present study changes were observed in both ways and 

no clear pattern emerges.  However, a pattern in the location of the amino acid replacements, 

especially replacements found in the loop does reflect patterns of thermal adaptation. 
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Fate of SCD1 gene duplication in Antarctic fish:  
 
SCD1a of Antarctic fish is under positive selection and SCD1b is under purifying selection 
 
The present study identified seven codons in the SCD1a isoform found across the fish species 

examined in the present study, among these  four sites under positive selection and were detected 

only in Antarctic fish (Table 17, Fig.9), and these sites were replaced in all Antarctic fish, suggesting a 

role in thermal adaptation. However, the timing of the positive selection is still needed to be 

determined, and also functional studies are needed to ascertain whether temperature or any other 

factors associated with narrow temperatures contribute to positive selection.  At Codon 203 for the 

SCD1a, proline is changed to phenylalanine in the icefish, C. hamatus (family Channichthyidae) and 

alanine to proline in other Antarctic fish. Although these changes are localised in the loop regions and 

are the result of positive selection, proline is a less preferred amino acid in the loop regions of cold 

adapted proteins when compared to mesophilic ones as introduction of a proline introduces a kink in 

a protein away from the α helical structures towards the β pleated sheets  and  reduces 

conformational flexibility (Siddiqui & Cavicchioli, 2006).  It is unclear why proline is present at codon 

203 across the Antarctic species (excluding C. hamatus), as this contradicts the flexibility hypotheses. 

In the icefish, with phenylalanine instead of proline, this favours flexibility. Also, it must be noted that 

this family has further diversified and evolved with additional, more extreme, physiological changes, 

as they completely lack haemoglobin and myoglobin (Sidell & O'Brien, 2006).  

The other sites under positive selection for the SCD1a specific to Antarctic fish were codon 769 and 

770, comprising the histidine pair, and present in all eight of the Antarctic species examined in the 

present study (Fig. 9). Histidine may increase the strength of interactions with water molecules and 

add to hydrophilicity. Histidine, is a basic amino acid with an imidazole ring and lower temperatures 

enhance its protonation, thereby strengthening its interaction with the water molecule. Water at low 

temperatures has a high dielectric constant and more energy is required for release of hydrogen. This 

is overcome by charged residues like histidine, which help in the solvation of the water molecule and 

contribute to flexibility (Siddiqui & Cavicchioli, 2006). Added to that, histidine is less substituted in 

proteins and there are three existing motifs that comprise histidine residues in SCD of both the 

isoform, shown by red circles in Fig. 9. These residues are conserved across all the taxonomic groups 

and are the catalytic residues of the enzyme. They form ligands with Zn+2 at the centre of activation 

of O2 required for the oxidation-reduction reaction (Bai et al., 2015). This additional histidine pair 

detected in the SCD1a isoform from the present study could perhaps perform additional functional 
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roles and this could be investigated by examining structure-function relationships to attribute 

whether it offers catalytic or structural advantage to SCD1a. The other site (codon 875 in SCD1a) 

under positive selection is localised in the amphipathic helix region and could aid in the reduction of 

steric hindrance as proline has been replaced by threonine.  

Among the four sites detected for positive selection within the SCD1b isoform for all the fish species 

taken for the analysis, only one site was under positive selection in Antarctic species. The codon 

change site in the Antarctic species was detected across few Antarctic species, suggesting that these 

changes could be associated with specific taxa and less to do with thermal adaptation. Following gene 

duplication, some genes evolve at a rapid rate by various mechanisms and often one of the copies 

undergoes positive selection (Steinke et al., 2006).This implies that Antarctic fish SCD1a could perhaps 

be evolving at a rapid rate due to more sites under positive selection than the SCD1b isoform.  

 

Signals of asymmetric rates of SCD evolution  

The fates of genome duplications can be divided into (1) sub-functionalization, where the ancestral 

functions are shared across the duplicates, and (2) neo-functionalization, where one of the duplicates 

retains the ancestral functions and the other evolves at a rapid rate to take up a new function 

(asymmetric evolution). This can be represented by the DDC (duplication, degeneration, and 

complementation) model describing the fate of gene duplications in vertebrates (Force et al., 1999). 

In general, in Antarctic fish, few sites are under positive selection in SCD1b compared with SCD1a. 

This could perhaps result from asymmetric rates of molecular evolution. A similar fate  for duplicated 

genes was found in a study examining 2466 genes in four fish species (Steinke et al., 2006). This 

previous study identified 49 new paralogous pairs in which one was under positive selection and had 

significantly higher rate of molecular evolution than the other, which retained the ancestral functions 

and did not have adaptive changes. The results here indicate that SCD1a in Antarctic fish is under 

positive selection and could perhaps have a higher rate of molecular evolution than SCD1b, shown by 

the GA analysis (Fig. 13). This analysis showed that dN/dS ratio was higher for SCD1a in the Antarctic 

species (P. borchgreviniki and C. hamatus) than for the SCD1b isoform in the same species. Another 

outcome of faster evolution is an increased probability of the evolution of new functions (Steinke et 

al., 2006). A previous study of the sodium channel gene, comprising two paralogs, Scn4aa and Scn4ab, 

(Thompson et al., 2014) showed that there was down-regulation of Scn4aa paralogs in muscle tissue 

in ancestral lineages of the electric fish and high expression of Scn4ab. Muscle tissues have lost 

expression of Scn4aa and obtained a new function in the muscle-derived electric tissues of the fish 
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(Thompson et al., 2014). The expression levels of SCD1a are low, and there is also supporting evidence 

from other studies for the low expression levels of SCD1a in muscle, brain, liver and white muscle of 

Sparus aurata (Benedito-Palos et al., 2014; Benedito-Palos et al., 2012). Low level expression of SCD1a 

suggests that the SCD1a paralog is rapidly evolving, indicated by the higher number of sites under 

positive selection and lower expression of this gene, which could indicate that this paralog is 

undergoing neo-functionalization and acquiring a new function. A study similar to that conducted on 

the sodium channel gene needs to be conducted in different species of the Antarctic fish to determine 

the fate of the SCD1a duplicate.  

Another feature displaying diversity among the SCD isoforms was the structural evolution in the 

SCD1a isoform which did not occur in the SCD1b isoform. The conserved tyrosine residue located in 

transmembrane 2 of SCD1b isoform is highly conserved across animal SCD1’s (Fig. 12). This residue is 

the critical determinant of the length of the fatty acyl chain which the enzyme desaturates. Presently, 

the alignments of SCD1a show that the tyrosine is replaced by phenylalanine in the all the fish species 

taken for the analysis, suggestive that the fatty acyl chain length on which the enzyme acts could 

change (Fig. 11). A change from the conserved tyrosine to methionine in Drosophila melanogaster 

resulted in the specificity of SCD to fatty acyl chain substrates containing 14 carbons only, whereas 

the conserved tyrosine residue present in fish SCD1b isoform and the animal SCD1, can only act on 

(C18:0) fatty acyl chains (Bai et al., 2015).  

 
Conclusion 
This study has established a SCD gene duplication has occurred in teleost fish, and that both 

duplicates are retained in Antarctic fish. Patterns of duplication (ancestral genome-wide duplication 

and lineage-specific duplication) have been identified across the SCD phylogeny, along with probable 

losses of duplicates in certain orders of fish. This is the first study to identify SCD gene duplicates in a 

group of Antarctic fish and that the notothenioid Antarctic fish are evolutionary distinct with respect 

to SCD. Thermal adaptive signatures were found in the Antarctic fish SCD isoforms. Although, 

molecular dynamic simulations and functional analysis is still needed to establish the precise nature 

of the structure-function relationships in Antarctic fish SCD, comparative analysis of patterns of 

structural changes which confer molecular flexibility in cold temperatures across cold-adapted 

proteins, reveal that SCD isoforms also exhibit such patterns. SCD has specific amino acid 

replacements in Antarctic fish and localization of these replacements in the protein, as determined 

by comparison with the structure of mouse SCD, suggests they also have signals of thermal adaptation 
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conferring flexibility to function in the constant cold. Sites that are under positive selection in both of 

the SCD isoforms, with more sites under positive selection in SCD1a than SCD1b specific to Antarctic 

fish species and hence a higher rate of evolution in SCD1a, suggesting the evolution of additional 

functions associated with cold tolerance in SCD1a. SCD1a could indeed be evolving new functions, or 

losing ancestral functions, while SCD1b has likely retained ancestral functions following gene 

duplication. Sites under positive selection could be potential targets for future mutational studies to 

establish their functions with respect to cold tolerance. The expression levels of SCD1a are low 

compared to SCD1b suggesting a signal of asymmetric evolution in the SCD gene, where one paralog 

evolves at faster rate and has lower expression than the other, which retains the ancestral functions 

and has higher expression levels. A study of a larger panel of fish species would further confirm such 

a pattern of evolution. 
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temperature- induced modulation of membrane lipids (Cossins et al., 2006; Hsieh et al., 2003; Wang 

et al., 2014).  

Furthermore, SCD is the main target gene in cold tolerance studies where gene expression and cold 

tolerance across species are studied (Hsieh & Kuo, 2005). These studies aim to improve SCD 

expression by diet modification and examine SCD expression in genetically improved fish species, 

mainly to understand SCD gene role in cold tolerance (Hsieh et al., 2007; Ma et al., 2015; Zerai et al., 

2010). The differential expression of the two isoforms, SCD1a and 1b, in this context requires 

investigation. Currently research is in progress to breed fish with specific cold-tolerance traits. A 

knowledge of the expression of these isoforms in a thermally challenged Antarctic fish would provide 

new insights for such research. 

Higher polyunsaturated fatty acids (PUFAs) within Antarctic fish, concomitant with the high dissolved 

oxygen content in the frigid waters of the Southern Ocean, makes them more prone than temperate 

species to oxidative damage and lipid peroxidation resulting from an increased production of reactive 

oxygen species (ROS) (Crockett, 2008). There is a suite of antioxidant defence mechanisms in place to 

offset oxidative damage and superoxide dismutase (SOD) is one of the enzymatic antioxidants that 

scavenge oxygen (Lesser, 2006). Although, upregulation of SOD in the transcriptome of thermally 

challenged T. bernacchii (Huth & Place, 2013) was observed, little information is available on changes 

in gene expression of SOD at different time points during a thermal challenge.  

The research hypothesis in the present study is that the stable cold environment of the Antarctic 

could have resulted in species with limited adaptive capacity to modulate SCD gene expression in 

response to temperature change. This research examined SCD and SOD expression in thermally 

challenged Antarctic fish species to provide information about the acclimatory capacity of Antarctic 

fish. The tissue expression pattern of SCD isoforms was analysed by end point PCR in Antarctic fish 

species (Pagothenia borchgrevinki and Trematomus bernacchii). In addition, the transcriptional 

response of SCD isoforms (SCD1a and SCD1b) and Cu/Zn SOD 1 in two Antarctic fish species (T. 

bernacchii and P. borchgrevinki) subjected to a thermal challenge of 4 °C  over a time period of 14 and 

28 days, respectively, at various time points was determined. An additional experiment examining 

challenge at 6 °C over seven days was determined for both species. 
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3.2.5.1.1 Identification of published coding sequences 

The target genes in the study included SCD1a, SCD1b, and SOD. The reference gene was β-actin. 

Published SCD sequences from fish, human, mouse and chicken with similarity to fish SCD were 

identified by GenBank BLASTx searches (https://blast.ncbi.nlm.nih.gov/Blast.cgi) using carp 

temperature-specific SCD isoform sequences or known SCD sequences from other fish species. 

Further sequences were also obtained from the ENSEMBL database 

(http://asia.ensembl.org/index.html) from fish species whose genomes had been sequenced.  

3.2.5.1.2 Identification of SCD 1a and 1b Isoforms  

A phylogenetic analysis was performed using sequences from NCBI and ENSEMBL databases using the 

neighbour joining method [MEGA version 5 (Saitou & Nei , 1987) ]. Aligned sequences were assigned 

to either SCD 1a or SCD 1b based on the phylogeny and these sequences were used for primer design. 

3.2.5.1.3 Sequence alignment and primer design for SCD  

The SCD1a and 1b sequences identified by phylogenetic analysis were used to generate amino acid 

and nucleotide alignments using ClustalOmega (http://www.ebi.ac.uk/Tools/msa/clustalo/). 

Conserved regions, especially between fish species, within these alignments were used to design 

primers for the respective SCD isoforms. SCD1a and SCD1b amino acid sequences were aligned and 

stretches of sequences unique to the particular isoform were identified. The nucleotides encoding 

these amino acids were used as sites for primer design. Primer sequences were checked by IDT 

(https://sg.idtdna.com/calc/analyzer) for the ideal parameters required for primer design and the 

primers were synthesised from Integrated DNA Technologies (IDT), Singapore. Primers had previously 

already been designed for -actin and β-tubulin by Anthony Van Rooyen and Dr Victoria Metcalf. 

Primers were designed for SOD by using the partial coding sequence of Trematomus bernacchii Cu/Zn 

superoxide dismutase (SOD1) mRNA, Sequence ID: AY736280.1. Primers details are given in Table 20.  

 

Table 20 Details of the primers used for the generation of the specific gene products and the construction of 
gene-specific plasmids. 

Gene Forward primer(5’-3’) Reverse primer(5’-3’) Product size (bp) 

SCD1a CGGAGGCGTTGGAGAAGAAG AGTCACAGATCCTACAAGGCCT  309 

SCD1b TCGACGGTGGAGGATGTTTTTG  GGAACGTGTGATGGTAGTTGTG  768 

SOD TAGCGGGACTGTCTTCTTCG TCCACCAGCATTGCCTGTC  384 

β-actin CCACTGGTATYGTCATGGACTCC CCTTCTGCATCCTGTCRGCGATG 504 

β-tubulin ATCATGAACACYTTCAGCGT TCCTGGTACTGCTGGTACTC 794 

file:///C:/Users/Ridgwh/Downloads/(https:/blast.ncbi.nlm.nih.gov/Blast.cgi
http://asia.ensembl.org/index.html
file://///c-fs2/userdata05/M/malekarv/THESES/THESIS/Chapter%203%20RC%20160810.docx
https://sg.idtdna.com/calc/analyzer


https://www.thermofisher.com/us/en/home/life-science/cloning/topo/topo-ta-cloning.html
file://///c-fs2/userdata05/M/malekarv/THESES/THESIS/(https:/blast.ncbi.nlm.nih.gov/Blast.cgi


https://sg.idtdna.com/calc/analyzer
http://biotools.umassmed.edu/cgi-bin/primer3plus/primer3plus.cgi).
http://biotools.umassmed.edu/cgi-bin/primer3plus/primer3plus.cgi).






file://///c-fs2/userdata05/M/malekarv/THESES/THESIS/(https:/blast.ncbi.nlm.nih.gov/Blast.cgi
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Table 22 Details of the efficiency (%) of the PCR, equation for each assay and the R2 coefficient of the assay. 
Species TB: Trematomus bernacchii and PB: Pagothenia borchgrevinki are presented in the parentheses. 

Assay Name Efficiency (%) Equation R2 
 SCD1b (TB) 92.33 y=-3.52x+6.25 0.998969 

 SCD1b (PB) 89.97 y=-3.59x+8.51 0.996092 

 SCD1a (TB) 88.90 y=-3.62x+6.04 0.995212 

 SOD (PB) 98.46 y=-3.36x+6.91 0.998214 

 SOD (TB) 98.14 y=-3.37x+6.84 0.998503 

 β-actin (TB) 102.65 y=-3.26x+6.04 0.999258 

 β-actin (PB) 102.36 y=-3.27x+5.44 0.999628 

 

3.3.1.1.2 Quality check of amplicons 

The molecular weights of T. bernacchii SCD1a and 1b amplified by qPCR are presented in Figure 15. 

SCD1a and 1b PCR products were 178 bp and 195 bp respectively (Figure 15). Blastn search results 

are presented in Tables 23 and 24. SCD1a was identical to the database T. bernacchii sequence with 

100% identity, while SCD1b was highly similar to the Antarctic species Notothenia coriiceps (97%). 

Table 23 Results of the BLASTn search with SCD1a (T. bernacchii) as the query sequence of (147bp) 

Description Max score Total score Query cover E value Identity Accession  

Trematomus bernacchii 267 267 97% 6.00E-68 100% FJ177513.1 
Notothenia coriiceps 
 

261 261 97% 3.00E-66 99% XM_010780865.1 

 

Table 24 Results of the BLASTn search with SCD1b (T. bernacchii) as the query sequence of (160 bp) 

Description Max score Total score Query cover E value Identity Accession  

Notothenia coriiceps  244 244 90% 3.00E-61 97% XM_010769852.1 

Dicentrarchus labrax 159 159 81% 1.00E-35 89% FN868643.1 
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Figure 16 Effect of thermal acclimation on SCD1b gene expression relative to β actin in the liver of 
Trematomus bernacchii at the control temperature (0 °C, T0) and acclimated temperature (4 °C, T4). Control 
(n=3) and acclimated (n=3) fish were sampled at 1, 2, 3, 7 and 14 days after thermal acclimation. Error bars 
indicate the standard error of mean. Different Roman numerals indicate a significant temperature effect as 
determined by Holm-Sidak post hoc test after ANOVA (P<0.05). 
 
 

Table 25 Analysis of Variance for the effect of thermal acclimation on SCD1b gene expression relative to β 

actin in the liver of Trematomus bernacchii, Adj SS: Adjusted sum of squares, Adj MS: Adjusted mean 
squares             

Source   DF            Adj SS        Adj MS        F-Value       P-Value 
 

Temperature ( °C) 1 5.125        5.1255          7.21             0.014 

Time (day)                                                      4 5.071 1.2677 1.78 0.172 

Temperature ( °C)*Time (day)              4 2.070 0.5175 0.73 0.583 

Error                                                              20 14.209 0.7105   

Total    29 26.476    

 

The effect of thermal acclimation on the relative SCD1b gene copy number in the liver of P. 

borchgrevinki is presented in Figure 17. The effect of temperature, time and the interaction between 

temperature and days of acclimation was significant, although the interaction was significant 

(P=0.019; Table 26) but the post hoc test after ANOVA was non-significant. A trend of numerical 

increase in SCD1b gene copy number with temperature acclimation at 4 °C at day 1 and day 2 followed 

by a decline in SCD1b expression from day 3 onwards was observed. At the end of 28days of thermal 
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acclimation, SCD1b expression for both the treatment and control had dropped to minimal expression 

levels compared to day 2 (Figure 17). 

 

 

Figure 17 Effect of thermal acclimation on SCD1b gene expression relative to β actin in the liver of 
Pagothenia borchgrevinki at the control temperature (0 °C, T0) and acclimated temperature (4 °C, T4). 
Control (n=3) and acclimated (n=3) fish were sampled after 1, 2, 3, 7 and 28 days of thermal acclimation. 
Error bars indicate the standard error of mean.  
 

Table 26 Analysis of Variance of effect of thermal acclimation on SCD1b gene expression relative to β actin 

in the liver of Pagothenia borchgrevinki, Adj SS: Adjusted sum of squares, Adj MS: Adjusted mean 
squares             
 

Source   DF            Adj SS        Adj MS        F-Value       P-Value 
 

Temperature ( °C) 1 0.3939   0.3939      0.63     0.438 

Time (day)                                                      4 3.4210   0.8552      1.36     0.283 

Temperature ( °C )*Time (day)              4 9.5028   2.3757      3.78     0.019 

Error                                                              20 12.5696   0.6285   

Total    29 25.8874    
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change in expression of SOD (P>0.05; Table 28). A trend (P=0.058) of numerical decline in gene 

expression over the days of acclimation is observed, with higher levels of SOD expression at day 2 and 

lower levels at day 14. 

 

Figure 20 Effect of thermal acclimation on SOD gene expression relative to β actin in the liver of Trematomus 
bernacchii at the control temperature (0 °C, T0) and acclimated temperature (4 °C, T4). Control (n=3) and 
acclimated (n=3) fish were sampled after 1, 2, 3, 7 and 14 days of thermal acclimation. Error bars indicate 
the standard error of mean.  
 

Table 28 Analysis of Variance of effect of thermal acclimation on SOD gene expression relative to β actin in 

the liver of Trematomus bernacchii. Adj SS: Adjusted sum of squares, Adj MS: Adjusted mean squares             
 

Source   DF            Adj SS        Adj MS        F-Value       P-Value 
 

Temperature ( °C) 1 0.1856   0.1856      0.25     0.624 
Time (day)                                                      4 8.1588   2.0397      2.73     0.058 

Temperature ( °C)*Time (day)              4 5.5052   1.3763      1.84     0.161 

Error                                                              20 14.9692   0.7485   

Total    29 28.8188    
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The effect of thermal acclimation on SOD expression in the liver of P. borchgrevinki is presented in 

Figure 21, temperature, time and, interaction of time and temperature were statistically non-

significant (P>0.05; Table 29). A trend of numerical increase in gene expression in acclimation 

treatment was observed, with higher gene expression on day 3 and lower gene expression on day 28, 

while the control treatment changed little over the first four time points, with a numerical increase 

on day 28. 

 

Figure 21. Effect of thermal acclimation on SOD gene expression relative to β actin in the liver of Pagothenia 
borchgrevinki at the control temperature (0  °C, T0) and acclimated temperature (4  °C, T4). Control (n=3) and 
acclimated (n=3) fish were sampled after 1, 2, 3, 7 and 28 days of thermal acclimation. Error bars indicate 
the standard error of mean.  
 
Table 29. Analysis of Variance of effect of thermal acclimation on SOD gene expression relative to β actin in 

the liver of Pagothenia borchgrevinki. Adj SS: Adjusted sum of squares, Adj MS: Adjusted mean 
squares             
 

Source   DF            Adj SS        Adj MS        F-Value       P-Value 
 

Temperature ( °C) 1 2.535 2.5349 3.34     0.083 
Time (day)                                                      4 1.347   0.3368      0.44     0.776 
Temperature ( °C)*Time (day)              4 6.867   1.7167      2.26 0.099 
Error                                                              20 15.180   0.7590   
Total    29 25.929    
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SCD1a and 1b are ubiquitously expressed in the ten tissues studied (eye, brain, heart, spleen, liver, 

ovary, skin, gill, stomach and hind gut), as determined by end-point PCR (Castro et al., 2011). Another 

study on the fish species Sparus aurata used quantitative real time PCR to examine expression of 

lipid-relevant genes, including SCD1a and 1b, found ubiquitous expression of SCD1b in white muscle, 

liver, adipose tissue and brain (Benedito-Palos et al., 2014). Other than these studies, tissue 

expression of the SCD isoforms has not been investigated in any other teleost fish species. In contrast 

to the data available for other teleost species, ubiquitous expression was not observed in zebrafish 

(Evans et al., 2008). The phylogenetic study (Figure 4) reported in Chapter 2 suggest that there could 

have been a loss of SCD1b and duplication of SCD1a in zebrafish which may then explain this 

discrepancy, as SCD in this species cannot be meaningfully compared with that of other fish due to 

this difference in the history of duplications and losses.  

Following the 3R duplication event, it has been proposed that sub-functionalization of the duplicate 

paralogs occurred, with SCD1b retaining the ancestral functions of the SCD1 orthologue, which then 

correlates with its ubiquitous expression. This hypothesis is supported by the SCD1b expression I 

observed in T. bernacchii and P. borchgrevinki, suggesting that after gene duplication of SCD1 into 

SCD1a and 1b, the SCD1b isoform, with its ubiquitous expression, has retained the ancestral functions 

of SCD1 and SCD1 which is expressed in birds and mammals and is ubiquitously expressed in all of the 

species examined, with higher expression in the brain and liver (Castro et al., 2011; Lengi & Corl, 

2008). Thus, there appears to be retention of ancestral SCD1 functions within Antarctic notothenioid 

fish SCD1b. 

Asymmetric expression of the SCD isoforms: SCD1a has ubiquitous expression in the benthic species 

T. bernacchii, while the pattern differs in the cryopelagic P. borchgrevinki species 

A pattern of expression referred to as asymmetric expression was previously studied in four teleost 

species, where 49 paralogous pairs of genes in fish were found to show this pattern of expression as 

observed in SCD isoforms (Steinke et al., 2006), as was also observed in the present study in the SCD 

isoforms. According to that previous study (Steinke et al., 2006) following gene duplication, there is 

sub-functionalization of the paralogs, one of which rapidly evolves resulting in reduced expression 

and eventually leading to a new function (neo-functionalization) while the other paralog retains the 

ancestral function and has a high expression. In chapter 2, SCD1a had a higher rate of molecular 

evolution than SCD1b, as shown by the GA branch analysis in three Antarctic species (Figure 13, 
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Chapter 2). In another study (Thompson et al., 2014), gene duplicates of the sodium channel gene 

paralogs Scn4aa/Scn4ab showed a pattern of asymmetric expression, with down-regulation of neo-

functionalization of Scn4aa following gene duplication and a parallel loss of Scn4aa expression in 

muscle tissue of electric fish (Thompson et al., 2014). Thus, low, or absent, expression of SCD1a in 

some tissues may perhaps correlate with a new function for this isoform. Although, T. bernacchii and 

P. borchgrevinki are phylogenetically closely related, they occupy different ecological niches as one is 

benthic and the other is pelagic, and this may perhaps be the reason for the low requirement of the 

SCD1a isoform in P. borchgrevinki. This correlation could be explored by analysis of SCD1a expression 

in other Antarctic fish species with differing ecological niches to determine if such losses, or reduction 

of SCD1a gene expression are the result of neofunctionalization following gene duplication. 

Temperature has a significant effect on the expression of SCD1a and SCD1b in the benthic species 

T. bernacchii, but this effect was not observed at different time points over the acclimation period  

Currently only one study has shown the expression of two SCD isoforms (Cds1 and Cds2) in a fish 

(Cyprinus carprio) and these are different from the SCD1a and SCD1b isoform genes as they are 

lineage-specific duplicates of SCD1a (Polley et al., 2003). The regulation of the two isoforms was found 

to be independent, with one isoform regulated by diet and the other by temperature (Polley et al., 

2003). These isoforms are localized on the same chromosome and may result from alternate 

transcript processing, unlike SCD1a and SCD1b, which are localized on different chromosomes and 

are genome duplicates as shown by the syntenic analysis (Castro et al., 2011). One of the key 

questions of this research was to determine any temperature-specific SCD isoform as found in 

Cyprinus carprio, but temperature-specific independent regulatory expression in SCD1a and SCD1b 

was not observed in the research presented here. Contrary to this, in the benthic species T. 

bernacchii, temperature had a significant effect on the overall increase in expression of SCD1a and 1b 

over the acclimation period (Figure 16 and 19), although the effect was not significant at the individual 

time points of the acclimation period, due in part to high variability among the biological replicates. 

In this study the Antarctic fish samples were obtained from a natural population and perhaps this 

could be the reason for this variation. A larger sample size would have likely improved the statistical 

significance of the data. The effects of temperature and time were non-significant at all individual 

time points for SCD1a as well as SCD1b in the benthic species.  
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 In the present study SCD1a expression in the pelagic species P. borchgrevinki was not within the 

detectable range due to low level of expression in both the control and the acclimated treatment, 

while expression was detectable and non-significant in T. bernacchii (Figure 18). Lower expression 

levels of SCD1a compared to SCD1b have also been observed in the skeletal muscle of Sparus aurata 

in fish fed to 100% satiation level, and in general, the expression levels are severely affected at lower 

satiation levels (70%) (Benedito-Palos et al., 2012). Another study by the same research group 

extended this work to include more tissues and studied lipid-relevant genes in a nutritionally 

challenged condition. They showed that control samples (samples not subjected to nutritional 

challenge) had low levels of SCD1a expression in the brain, liver, white muscle and no expression in 

the adipose tissue (Benedito-Palos et al., 2014).  

In the present study duration of acclimation had a significant effect on gene expression for SCD1a in 

T. bernacchii, with significantly higher expression at day 1 for both the control and the treatment than 

for the later days of acclimation. This suggested that perhaps the pattern of SCD1a gene expression 

follows a trend irrespective of temperature. Lack of parallel studies of this isoform in response to 

temperature prevents confirmation of this pattern of expression at this time and a larger number of 

Antarctic and non-Antarctic fish species should be examined to confirm this pattern of expression for 

SCD1a. 

 Numerical trend of acute and transient expression of SCD1b  

Studies investigating SCD expression have mostly been done in warm-adapted fish and no study has 

been conducted in Antarctic fish species. This is the first study to investigate the response of both 

SCD isoforms in response to thermal acclimation. A non-significant trend of an acute and transient 

increase in SCD1b expression in response to thermal stress at day 1 in both the species T. bernacchii 

and P. borchgrevinki followed by a decline in SCD1b response over the acclimation period, was 

observed in the present study. This trend is in alignment with transcriptomic profiles in gill tissues of 

T. bernacchii subjected to multiple stresses, viz. high temperature and pCO2 which  showed an 

upregulation of genes related to lipid metabolism, and specifically genes involved in membrane 

biosynthesis and maintenance, during the  seven days of acclimation followed by a decline over the 

remainder of the acclimation period, with minimal detectable response at the end of 56 days of 

thermal acclimation (Huth & Place, 2016b). A similar trend was observed in RNA-seq analysis of gill 

tissues of P. borchgrevinki subjected to thermal and acid stress over 56 days of acclimation showed 
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an increase in expression of genes related to lipid metabolism for the first 7 days of thermal 

acclimation and less response over a thermal acclimation period that ended after 56 days (Huth & 

Place, 2016a). In the present study, an acute transient expression of SCD1b may be induced to meet 

the lipogenic demands of phospholipid biosynthesis and membrane maintenance in both the 

Antarctic species following a high degree of oxidative cellular stress. An initial spike, followed by 

reduction in SCD1b expression in both species of the present study, is also in alignment with the above 

studies suggestive of a decline in stress response over the acclimation period and a compensatory 

mechanism to cope with thermal stress in these species (Huth & Place, 2016b). 

Temperature did not have any effect on SCD1b expression at 6 °C after seven days of thermal 

acclimation for either species 

The pattern during warm acclimation at temperatures above 4 °C for cold-adapted Antarctic fish is 

unknown and the research reported here is the first attempt to investigate this. No effect of thermal 

acclimation was detected at 6 °C but only a single seven day time point was able to be taken due to 

limitations on Antarctic aquaria space and duration of the field season. SCD transcription could have 

been activated prior to day seven. High mRNA turnover could also have meant that a transient spike 

in expression was missed and change in SCD expression could not be detected (Gonzalez et al., 2013). 

Studies have shown that desaturase activation takes place within 24 hours of cold exposure (Cossins 

et al., 2002). Initially there is activation of pre-existing inactive desaturase, followed by the activation 

of desaturase transcription (Cossins et al., 2002). 

Antioxidant gene Cu/Zn SOD lacks response to thermal acclimation 

Cold temperatures predispose Antarctic fish to high levels of oxidative stress due to higher 

mitochondrial densities, and oxidation of fatty acids as energy sources make them prone to ROS 

attack. Antarctic fish have high levels of antioxidant defence systems in place to offset the high 

amount of ROS (Lesser, 2006). In this study expression of Cu/Zn SOD was unaffected by thermal 

acclimation in both the benthic species T. bernachii and the pelagic species P. borchgrevinki. Similar 

findings of unchanged SOD transcript levels in oxidative tissues (heart muscle) have been observed in 

red-blooded notothenioids viz, Gobionotothen gibberifrons and in Notothenia coriiceps when 

exposed to their respective maximum thermal limit, although there was decrease in SOD activity and 

transcript levels in the white-blooded icefish, accompanied by increased oxidative damage in the 
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heart muscle (Mueller et al., 2012). In another study, warm acclimation at 8 °C for 6 days in 

Notothenia coriiceps and Notothenia rossii resulted in no change in SOD enzyme activity, but the 

transcript levels of SOD were not measured (Machado et al., 2014). It is possible that Antarctic fish 

have pre-existing and sufficient amounts of SOD antioxidant enzyme in place to offset the additional 

oxidative damage induced by thermal stress. This was suggested by another thermal acclimation 

study over 56 days, which showed reduced SOD activity in response to temperature acclimation, 

although there was high oxidative damage during short-term acclimation but a decrease in 

antioxidant activity over the longer-term acclimation period. Further acclimation reduced cellular 

damage and this had returned to basal levels by the end of the acclimation period (Enzor & Place, 

2014). A similar observation was made in another study, which showed a transient tissue-specific 

increase in SOD activity during the cold acclimation in three spine stickleback (Gasterosteus 

aculeatus) with SOD activity declining during warm acclimation. This study provides further evidence 

of a decline in SOD activity in warm acclimation (Grim et al., 2010).The effects of the chemical 

pollutants polybrominated diphenyl ethers (PBDEs) on SOD activity and expression in T. bernacchii 

show a similar lack of response of SOD expression, although oxidative stress was evident in the liver 

(Ghosh et al., 2013). In this case the lack of SOD response was attributed to the pre-existing sufficient 

amount of SOD enzyme that would meet the requirement and that additional synthesis was not 

required (Ghosh et al., 2013). The findings presented here could also be attributed to sufficient 

amounts of pre-existing SOD, although SOD activity itself was not measured along with expression 

analysis. Other antioxidant markers should also be considered in future work. 

In summary, the research presented in this chapter has elucidated the tissue expression profile of the 

two SCD isoforms in two Antarctic notothenioid fish species. With limited previous studies on tissue 

expression of SCD isoforms in teleost fish, and no studies in Antarctic fish, this information has 

contributed new knowledge concerning the ubiquitous tissue expression profile of both SCD1a and 

SCD1b, as observed in the benthic species, and the ubiquitous expression of SCD1b but not SCD1a in 

the cryopelagic species, demonstrating a pattern of asymmetric tissue expression. Parallel studies on 

other genes in teleost species strongly supported these observations of an asymmetric expression 

pattern. SCD gene is one of the major markers for cold tolerance and major concerns about 

membrane remodelling in response to global warming, specifically in the Antarctic fish, still remain 

unanswered. This study is the first to provide the expression profile of the SCD isoforms in a thermally 

challenged Antarctic fish. It should help to establish correlation with the biochemical analysis of 



100 
  

membrane fatty acid profiles examined in the next chapter. An initial spike in SCD1b response during 

the initial acclimation followed by diminished response over longer-term thermal acclimation is 

consistent with trends seen in published reports of transcriptomic data from thermally challenged 

Antarctic fish. Temperature had a significant effect on the overall expression of SCD1a, similar to that 

seen for SCD1b. Although SCD was the gene used to investigate membrane remodelling capacity in 

the thermally challenged Antarctic fish in this study, other genes that are involved in the membrane 

synthesis pathway should also be used for future transcriptional studies of the cellular responses to 

thermal challenge. Other tissues should also be sampled, along with liver, for the assessment of 

membrane remodelling in thermally stressed Antarctic fish. The apparent lack of antioxidant 

response confirms previous studies and there is a need for the transcript levels of other antioxidant 

markers to also be investigated to determine their response when subjected to thermal stress. 















https://www.caymanchem.com/pdfs/10007640
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Table 33. List of major fatty acids and retention time detected in the phospholipid profile of the Antarctic 
and the non-Antarctic fish. Fatty acids less than 1% are not shown. 

Systematic name  Trivial Name 
Notation from COOH 
end of fatty acid 

Retention 
time(min) 

Hexadecanoic acid  Palmitic acid  C16:0 36.510 

c-9-Hexadecenoic  acid  Palmitoleic acid  C16:1c9 38.826 

Octadecanoic  acid  Stearic acid  C18:0 46.898 

c-9-Octadecenoic acid  Oleic acid  C18:1c9 48.691 

c-11-Octadecenoic acid  Vaccenic acid  C18:1c11 49.021 

Eicosenoic acid  Eicosenoic acid  C20:1c11 55.997 

c-11,14-Eicosadienoic acid  Eicosadienoic acid C20:2c11,14 58.641 

c-5,8,11,14-Eicosatetraenoic acid  Arachidonic acid  C20:4c5,8,11,14 61.899 

c-5,8,11,14,17-Eicosapentaenoic acid Timnodonic acid  C20:5c5,8,11,14,17 65.663 

c-4,7,10,13,16,19-Docosahexaenoic acid  Cervonic acid C22:6c4,7,10,13,16,19 79.466 
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Figure 23. Representative chromatogram of the phospholipid fatty acid profile from Trematomus  bernacchii  liver.
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Table 35. Fatty acid composition of phospholipids fatty acids in liver of Antarctic and non-Antarctic 
fish expressed as % of total membrane fatty acids. 

  N. celidotus C. hamatus P. borchgreviniki T. bernacchhii 

C16:0  20.05 ± 0.45 20.43 ± 0.60 13.16 ± 0.79 13.08  ± 0.45 

C18:0 12.64 ± 1.01   3.05 ± 0.49   4.16 ± 0.46   5.01  ± 0.26 

SFA 32.69 ± 1.26 23.47 ± 2.56 17.32 ± 1.10        18.09  ± 0.59 

C16:1c9        0.48 ±  0.42        3.30 ±  0.63  4.01 ± 0.29    4.97  ± 0.30  

C18:1c9 11.07 ± 1.47 10.51 ± 1.73  9.64 ± 0.79     7.42  ± 0.25 

18:1c11    3.22 ± 0.43   7.69 ± 0.51  9.84 ± 0.53    9.11  ± 0.43 

C20:1c11 nd         5.04 ± 0.85  2.78 ± 0.10    3.62  ± 0.33 

Unknown 0.00         0.87 ± 0.43  2.93 ± 1.30    4.24  ± 0.71 

MUFA 14.77 ± 1.21 27.40 ± 1.72          30.55 ± 0.65 31.99  ± 0.63 

C18:2c9,12   0.62 ± 0.54  1.17 ± 0.36  0.00 0.00 

C20:4c5,8,11,14   9.08 ± 0.44  4.97 ± 0.31  3.13 ± 0.18    4.79  ± 0.29 

C20:5c5,8,11,14,17 14.00 ± 0.66 19.83 ± 0.70 22.52 ± 1.36 19.63  ± 0.94 

C22:5c5   1.41 ± 0.41  nd  nd  nd 

C22:6c4,7,10,13,16,19 28.06 ± 1.33 20.84 ± 1.25 23.54 ± 0.97 25.50  ± 0.29 

PUFA 52.55 ± 1.83 46.05 ± 1.14 51.40 ± 0.36 49.92  ± 0.63 

Values are mean ± SEM (n=4), except for Pagothenia borchgrevinki (n=3), nd=not detected 
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Figure 25. Phospholipid fatty acid profile of Antarctic species Chionodraco hamatus (CH), Pagothenia borchgrevinki (PB), Trematomus bernacchii (TB) and 
non-Antarctic species Notolabrus celidotus (NC) in liver. Significance among the species is indicated by different letters (P<0.05). 
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Table 37. Fatty acid composition of phospholipids fatty acids in the liver of Pagothenia borchgrevinki 
acclimated for 28 days at 0 °C and 4 °C, expressed in % of total membrane fatty acids. 

   Day 1  Day 28 

 T0  T4 T0 T4 

C16:0  14.65 ± 0.46 14.18 ± 0.61 13.79 ± 1.00  13.79 ± 1.00  

18:0 5.03 ± 0.44 5.39 ± 0.67  5.33 ± 0.86  4.20 ± 0.37 

SFA 19.68 ± 0.89 19.56 ± 0.92  19.86 ± 1.10  18.38 ± 0.58  

 C16:1c9 2.90 ± 0.98 3.60 ± 0.21 3.66 ± 0.38  3.66 ± 0.38  

 Unknown nd  nd  0.43 ± 0.43 1.81 ± 0.67  

C18:1c9 11.00 ± 0.66 11.42 ± 0.50  10.05 ± 0.68  11.27 ± 0.32  

C18:1c11 10.05 ± 0.44 10.52 ± 0.38  9.50 ± 0.50  9.69 ± 0.39 

C20:1c11 2.61 ± 0.25   2.47 ± 0.08  2.11 ± 0.20  2.05 ± 0.23 

Unknown 0.88 ± 0.54  1.54 ± 0.53  0.72 ± 0.72  1.17 ± 0.70  

MUFA 27.46 ± 1.20   29.54 ± 0.70  26.47 ± 0.83  30.15 ± 1.40 

C20:4c5,8,11,14 3.20 ± 0.47  3.04 ± 0.16  2.56 ± 0.10  3.49 ± 0.36  

C20:5c5,8,11,14,17 21.85 ± 1.20 20.40 ± 1.40  18.40 ± 1.30  17.64 ± 2.00  

C22:6c4,7,10,13,16,19 27.81 ± 1.10 27.46 ± 1.40  29.51 ± 2.90  30.35 ± 3.20  

PUFA 52.86 ± 0.51  50.90 ± 0.38  50.47 ± 2.30  51.47 ± 1.50 

C16:1c9/C16:0 0.20 ± 0.07 0.25 ± 0.02 0.27 ± 0.02  0.30 ± 0.04  

C18:1c11/C18:0 2.24 ± 0.26 2.26 ± 0.36 2.11 ± 0.52 2.76 ± 0.31 

 Values are mean ± SEM (n=4), nd: not detected 
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Table 38. Fatty acid composition of phospholipids fatty acids in the liver of Trematomus bernacchii 
acclimated 0 °C and 6 °C  after 7 days of thermal acclimation, expressed in % of total membrane 
phospholipid fatty acids. 

  T0 T6 P- value 

C16:0  13.70 ± 0.44    16.49  ±  0.9 0.11 

C18:0 5.28 ± 0.49  8.24 ±  0.58  0.018 

SFA 18.99 ± 0.61  24.727 ± 0.34  0.001 

C16:1c9 5.341 ± 0.24  4.543 ± 0.24   0.072 

C18:1c9 6.677 ± 0.36  5.888 ± 0.45  0.245 

C18:1c11 9.42 ± 0.57  8.807 ± 0.3  0.396 

C20:1c11 3.833 ± 0.18  3.185 ± 0.084   0.032 

Unknown 4.63 ± 1.2  2.571±  0.19  0.18 

MUFA 29.9 ± 1.0  23.08 ± 1.4  0.017 

C20:4c5,8,11,14 4.243 ± 0.38  4.944 ± 0.1  0.17 

C20:5c5,8,11,14,17 21.79 ± 0.45  18.99 ± 0.75 0.049 

C22:6c4,7,10,13,16,19 25.08  ± 0.76                     28.25 ± 0.7  0.037 

PUFA 51.11 ± 0.5 52.19 ± 1.1 0.456 

Values are mean ± SEM (n=4), TO: 0 °C and T6: 6 °C acclimation temperature respectively.  Significant P- 
values are highlighted in green.   
 
 
 

 
 
Figure 30. Phospholipid fatty acid profile of Trematomus bernacchii (TB) liver after 7 days (D7) of thermal 
acclimation at 6 °C. Values are mean ± SEM (N=4) for control temperature (T0: 0 °C) and warm acclimation 
(T6: 6 °C) (N=3). Significant effects of thermal acclimation are indicated by asterisks (P<0.05). 
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Table 39. Fatty acid composition of phospholipids fatty acids in liver of Pagothenia borchgrevinki 
acclimated at 0 °C and 6 °C after 7 days of thermal acclimation, expressed in % of total membrane fatty 
acids. 

  T0 T6 P- value 

C16:0  14.67 ± 0.29 13.71 ± 0.6    0.220 
C18:0 4.54 ±  0.24 5.36  ± 0.68 0.339 
SFA 19.22 ±  0.51 19.08 ± 0.86  0.890 
C16:1c9 3.896 ±  0.34 4.267 ± 0.16 0.381 
C18:1c9 11.018 ± 0.23 11.85 ± 0.68 0.332 
C18:1c11 9.695 ± 0.14 10.01 ± 0.54  0.617 
C20:1c11 3.052 ± 0.3 1.976 ± 0.08  0.041 
Unknown 1.385 ± 0.47 1.644 ± 0.11 0.629 
MUFA 29.046 ± 0.27 29.74 ± 0.83 0.486 
C20:4c5,8,11,14 2.916 ± 0.12 3.09 ± 0.23 0.544 
C20:5c5,8,11,14,17 20.11 ± 1.5 17.47 ± 1.80 0.317 
C22:6c4,7,10,13,16,19 28.7 ± 2.0 30.62 ± 2.40  0.560 
PUFA 51.73 ± 0.55 51.19 ± 1.50 0.752 

Values are mean ± SEM (n=4), TO: 0 °C and T6: 6 °C acclimation temperature respectively. Significant P- 
values are highlighted in green.   
 
 

 
Figure 31. Phospholipid fatty acid profile of Pagothenia borchgreviniki (PB) in liver after 7 days (D7) of 
thermal acclimationat 6 °C. Values are mean ± SEM (N=4) for control temperature (T0: 0 °C) as well as warm 
acclimation (T6: 6 °C). Significant effects of thermal acclimation are indicated by asterisks (P<0.05). 
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that proportions of SFAs including palmitic acid (C16:0), were similar in the Antarctic species C. 

hamatus and non-Antarctic species N. celidotus. Both were significantly higher when compared to 

the other Antarctic species (Figure 25). Also shown in the PCA analysis the icefish group separately 

from the other two Antarctic species and had high proportions of palmitic acid (C16:0). Higher 

proportions of the SFA, palmitic acid in the liver membranes of the icefish could be one of the 

features acquired after diversification from the other Antarctic species. This is the first study to 

analyse the liver membranes of icefish. However, in another study changes were observed in the 

erythrocyte membrane lipids of the icefish C. hamatus. Contrary to our findings changes involved, 

destauration of longer chain fatty acids such as C:20–C:22 in icefish, while shorter chain fatty acids 

such as C:16 and C:18 became unsaturated in T. bernacchii and both species had consistent 

membrane fluidity (Palmerini et al., 2009). The recently diversified icefish species could have 

evolved with specific adaptations, such as more palmitic acid in liver membranes shown in the 

present study and unsaturation of longer chain fatty acids in ghost cell membranes (Palmerini et 

al., 2009). In the present study, concentration of saturated fatty acid stearic acid (C18:0), was 

consistently lower in all the Antarctic species and overall, palmitic acid (C16:0) formed the major 

fraction of the total saturated fatty acids in Antarctic fish species and  this  aligned with a study 

comparing the fatty acid compositions of phospholipid from muscle tissue in 15 marine species from 

the Southeast Brazilian coast and two from East Antarctic (Visentainer et al., 2007). Palmitic acid 

was the major SFA and represented 16 – 30 % of the total FA content for all organs in Notothenia 

codiceps and Notothenia rossii (Magalhaes et al., 2010).  In the present study higher proportions of 

palmitic acid and low stearic acid (C18:0) fractions could perhaps be due to increased desaturation 

of stearic to oleic acid. 

 A high concentration of cis-vaccenic acid was a feature of all the Antarctic fish species in the present 

study. High cis-vaccenic acid contents have also been observed in the Antarctic fish Pleuragramma 

antarcticum in two stages of its life cycle (larvae and juvenile stage) (Mayzaud et al., 2011). Similarly, 

high- latitude fish of the sub-Arctic have significantly higher cis-vaccenic acid contents in muscle 

tissue (Murzina et al., 2013). Studies examining the fatty acid profile of liver microsomes in Antarctic 

Dissostichus mawsoni also found higher contents of cis-vaccenic acid compared to non-Antarctic 

fish (Romisch et al., 2003). These studies indicate a linkage between temperature and the 

proportion of cis-vaccenic acid in the membrane of the cold-adapted fish. The conformation of 

unsaturated cis-vaccenic acid presents a possible structural advantage and has a potential role in 

maintaining membrane fluidity, which may be the reason for its selective incorporation in the 
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membranes of Antarctic fish. Studies have shown that cis vaccenic acid can act as a membrane 

fluidizing agent, which enhances transport of glucose in adipocytes (Pilch et al., 1980). In another 

study, cis–vaccenic acid increased fluidity in porcine pulmonary endothelial cells and thus increased 

serotonin transport (Block & Edwards, 1987). In this study, other monounsaturated fatty acids, such 

as eicosaonate were present in higher proportions in Antarctic fish but not detected in non-Antarctic 

fish. Eicosaonate may also aid in the expanded membrane composition to provide the required 

fluidity. 

In this study composition of PUFAs varied between Antarctic and non-Antarctic species, although 

total PUFAs were not significantly different. Antarctic fish had significantly less arachidonic acid 

(ARA) and more of eicosapentaenoic acid (EPA) than non-Antarctic species. However, the amounts 

of docosahexaenoic acid (DHA) were similar in both Antarctic and non-Antarctic species. These data 

align with other studies of Antarctic fish species that found more EPA in the membranes and less 

ARA. This has been observed in the muscle phospholipids of five species of Antarctic fish with 

different life histories (pelagic, benthopelagic and benthic) from the Weddell and Lazarev Seas 

(Hagen et al., 2000). More EPA and low ARA has been observed in both the juvenile and larval stages 

in the Antarctic silverfish, Pleuragramma antarcticum (Mayzaud et al., 2011). Similar findings were 

observed in the liver microsomal lipids of the Antarctic D. mawsoni, which had less DHA compared 

to trout and slightly less than the carp species, whereas the EPA content was higher than in the non-

Antarctic species (Romisch et al., 2003) suggestive of  a specific role for EPA in the Antarctic fish 

membranes. In general, cold-adapted species incorporate (n-3) PUFAs and have depleted (n-6) long 

chain PUFAs in their phospholipids. This was shown in the cold thermal acclimation studies of gill 

phospholipids of fresh water alewives (Alosa pseudoharengus) (Snyder et al., 2012). Cold transfer of 

the C. elegans worms, resulted in an increase in EPA, which was transient and substantial (Murray 

et al., 2007). The proportions of DHA in this study are not significantly different across the Antarctic 

and non-Antarctic species, suggesting that EPA could offer additional roles associated with cold 

tolerance whereas DHA, having an expanded conformation, has a structural advantage over EPA in 

contributing to the membrane fluidity. Other than membrane fluidity, EPA may help stabilization of 

the hyperfluid membranes, indicated in the study of Shewanella violacea,a psychrophilic piezophile 

that can grow at high pressures and low temperatures and has high amounts of EPA (Usui et al., 

2012). Mutants of this strain that lack the omega-3 PUFA synthase gene have disturbed membrane 

over a range of pressures compared to the wild type whose membranes are unperturbed. This 

suggests that maintaining membrane stability at high pressure is more important than fluidity (Usui 

et al., 2012). Hypercholesteraemic rats whose membrane fluidity is reduced, have been shown to 
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have increased platelet membrane fluidity when fed DHA, but not when fed EPA (Hashimoto et al., 

2006). A similar effect has been shown in aortic endothelial cells (Hashimoto et al., 1999). EPA, but 

not DHA, has been shown to be a potent anti-inflammatory agent, whereas ARA is highly pro-

inflammatory (Sears & Ricordi, 2011; Seki et al ., 2009). EPA is one of the major (n-3) PUFAs present 

in the membrane of the Antarctic fish and the specific roles of this fatty acid need further 

investigation in a larger range of fish species. 

Lack of homeoviscous response in Antarctic species at 4 °C of thermal acclimation 

 In the present study, thermal acclimation at 4 °C did not induce the major common cellular 

response of homeoviscous response in either the benthic Antarctic T. bernacchii or the pelagic 

Antarctic P. borrchgrevinki. Changes in the phospholipid fatty acid profile were observed in T. 

bernacchii but not the expected homeoviscous response.  The changes were associated with the 

duration of acclimation rather than the effect of temperature. Total SFAs, and their major 

components viz., palmitic acid and stearic acid were high on day 14, and the same trend was 

observed for MUFAs where oleic acid was high on day 14. It is unclear why the acclimation time, 

rather than the temperature, resulted in such a change. In the case of PUFAs, thermal acclimation 

resulted in a decrease in EPA and an increase in DHA. As explained above, EPA could be associated 

with specific functions in the extreme cold, perhaps in stabilizing membranes (Usui et al., 2012) or 

in protective roles associated with extreme cold by reducing inflammation (Sears & Ricordi, 2011; 

Seki et al., 2009). Membrane remodelling does not appear to be required and the saturation states 

are sufficient for the membranes to function at 4 °C. In the pelagic species, P. borchgrevinki, 

increased temperature resulted in a significant increase in the MUFAs at day 1 as well at day 28, but 

the saturation states of the PUFAs and SFAs were unchanged. These findings align with thermal 

acclimation experiments in Antarctic species at 4 °C, which resulted in unchanged membrane states 

showing no signs of a HVA response. This was shown in the benthic Trematomus bernacchii and T. 

newnesi in the membranes of gills, kidneys, liver and muscle (Gonzalez-Cabrera et al., 1995). The 

current findings have extended this observation to a cryopelagic species as well as confirming them 

in the same benthic species, as the saturation states upon acclimation were unchanged. Another 

study aligning with these findings is that mitochondrial membrane saturation states were also 

unchanged upon thermal acclimation in two Antarctic fish species (Strobel et al., 2013). 
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Thermal acclimation at 6 °C results in HVA response in T. bernacchii, but not in the pelagic 
species P. borchgrevinki 
 
A homeoviscous response was shown in T. bernacchii upon thermal acclimation at 6 °C. This 

response was dominated by a significant increase in overall SFAs the major increase being stearic 

acid rather than palmitic acid (C16:0). There was a decline in unsaturated fatty acids, especially total 

MUFAs and the PUFA component EPA and an increase in DHA, but there was no change in total 

PUFAs. Saturated fatty acids reduce membrane fluidity and result in highly ordered membranes that 

are rigidified. This response is induced upon warm acclimation as a protective mechanism to offset 

the deleterious effects on the membrane lipids, which become more fluid upon warm acclimation 

(Hazel, 1995). It has been seen in the highly ordered synaptic membranes of warm-adapted fish 

(Logue et al., 2000). 

There are very few reports of membrane composition after warm acclimation in Antarctic species, 

and no study to date has been done at 6 °C for these Antarctic species. Previous conclusions have 

been based on studies of non-Antarctic fish. Warm acclimation of Dicentrarchus labrax for 84 days 

at 29 °C compared to a control temperature of 14 °C resulted in responses that were tissue-specific, 

with changes observed in brain membrane lipids rather than in the liver. There was an increase in 

saturated fatty acids (C18:0) of the brain polar lipids and a decline in PUFAs viz., EPA, DHA and ARA 

(Skalli et al., 2006). Liver and muscle tissue have been shown to be more responsive than other 

tissues to warm acclimation in fresh water alewives (Alosa pseudoharengus) where warm 

acclimation resulted in a significant increase in SFAs and a decline in PUFAs (Snyder et al., 2012). 

These studies are in alignment with the predicted trend of HVA response upon warm acclimation 

and the results of this study. Together, the body of research indicates that this response varies with 

species and among tissues. Also in contrast to T. bernacchii, the cryopelagic species P. borchgrevinki 

do not have the HVA response upon thermal acclimation at 6 °C. In another study, warm acclimation 

of the Antarctic species Notothenia rossii to 7 °C and Lepidonotothen squamifrons to 9 °C did not 

result in a HVA response in mitochondrial membranes. However, the proton leak capacities were 

unaffected, indicating high plasticity to warm acclimation (Strobel et al., 2013). P. borchgrevinki has 

a high degree of thermal plasticity (Franklin et al., 2007) and a higher upper lethal temperature 

compared to T. bernacchii (Somero & DeVries, 1967), which could perhaps result in an HVA response 

beyond 6 °C. 
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Desaturation index correlates to the membrane saturation status 

In the present study the desaturation indices (C16:1c9/C16:0) and (C18:1c9/C18:0) were shown to 

correlate with the saturation states of the membrane. The Antarctic species had a high desaturation 

index (C16:1c9/C16:0) compared to the non-Antarctic species, whereas this trend is not specific for 

the DSI (C18:1c9/C18:0). High DSI (C16:1c9/C16:0) in the Antarctic fish species could be attributed 

to an increase in the MUFA palmitoleic acid C16:1c9 reflecting higher desaturation of palmitic acid 

by stearoyl-CoA desaturase. Furthermore, in this study there was significant decline in DSI 

(C18:1c9/C18:0) upon thermal acclimation at 6 °C in T. bernacchii. The HVA response with a 

significant increase in the SFA stearic acid (C18:0) could perhaps be due to a lowering of desaturase 

activity upon thermal acclimation. This decline in DSI was not observed at 4 °C in either of the species 

tested as they did not exhibit the HVA response. A positive correlation does exist between the SCD 

activity with the desaturation index,  as previously established in two fish species, milk fish and the 

grass carp when subjected to cold acclimation from 25 °C to 15 °C over 21 days (Hsieh & Kuo, 2005). 

In milk fish and grass carp, the change in SCD activity was parallel to the desaturation index (ratio of 

C16:1c9/C16:0 and C18:1c9/C18:0). Milk fish had a significant increase of SCD activity and decline 

one day earlier than the DSI where as in grass carp the SCD activity and the increase in DSI was 

gradual and maintained at a high level over the acclimation period (Hsieh & Kuo, 2005).  Thus, the 

present findings in this study of correlation with the desaturation index and membrane saturation 

upon thermal acclimation at 6 °C and in the Antarctic species could also correlate with the SCD 

activity. 

 

Thermal acclimation has no effect on membrane cholesterol in the Antarctic species 

 Temperature of acclimation had no effect on membrane cholesterol in the benthic species T 

bernacchii. Irrespective of temperature, there was a significant decline in the membrane cholesterol 

after 14 days of thermal acclimation. There was an effect of duration of acclimation rather than 

temperature. The membrane cholesterol content in the pelagic species P. borchgrevinki was 

unaffected either by temperature or duration of acclimation. Very few studies have examined the 

effect of thermal acclimation on membrane cholesterol. A study that examined the effect of a 

chemical fluidizer and temperature on goldfish membranes showed that increased temperature 

resulted in a significant decline of cholesterol in the gill membranes, but it had no effect on the brain 

and liver cholesterol concentration (Gonzalez et al., 2013). They attributed the decline to an 

interaction with osmoregulation. In the same study, the membrane fluidizer PCB 153 was found to 

cause an increase in the cholesterol in liver and brain tissue. The structure of cholesterol mimics 
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phospholipid structure and intercalates in the phospholipid membrane bilayer resulting in an 

increase in membrane order and a reduction in membrane fluidity (Crockett, 1998). Cholesterol is 

known to counter the effects of increased temperature on membrane lipids and an increase in 

cholesterol is often observed at high temperatures (Crockett, 1998). Cholesterol did not change in 

my study, suggesting that the fluidity is unchanged at 4 °C under thermal acclimation for both 

Antarctic species examined. 

    

Analysis of membrane cholesterol across the four species showed no overall differences between 

Antarctic and non-Antarctic species, although more membrane cholesterol was observed in the non-

Antarctic species (Notolabrus celidotus) followed by the Antarctic species C. hamatus and T. 

bernacchii, and significantly more than P. borchgrevinki. In another study, the Cholesterol in 

erythrocyte ghost membranes was high in C. hamatus, followed by the non-Antarctic species 

Anguilla anguilla, while there was less cholesterol in other Antarctic and non-Antarctic species. 

These findings suggest that cholesterol contents could vary with species rather than temperature 

(Palmerini et al., 2009). 

 

Thermal acclimation results in a decline in plasma osmolality in both Antarctic species 

An inverse relationship exists between serum osmolality and water temperature. Inorganic serum 

ions tend to accumulate at lower temperatures and result in high osmolality. Antarctic fish have 

high serum osmolality. In an analysis of 11 teleost species, the serum concentration of Antarctic 

species was higher than the temperate species (Dobbs & DeVries, 1975). It was also observed that 

fish inhabiting cold waters, other than Antarctic fish, had high serum inorganic ion concentrations, 

and these inorganic ions have been shown to have protective roles in freezing avoidance by 

decreasing the melting point (O'Grady & DeVries, 1982). In my study, thermal acclimation caused a 

significant decline in serum osmolality in P. borchgrevinki. Other studies have also shown reduced 

osmolality upon thermal acclimation (Gonzalez-Cabrera et al., 1995; Guynn et al., 2002; Hudson, 

Brauer et al., 2008; Lowe & Davison, 2005). A transient increase in osmolality in P. borchgrevinki, 

but not in T. bernacchii, at day 2 was observed here. This increase has been attributed to increased 

efflux of water and retention of ions, mainly due to the alteration of permeability to ions brought 

about by the release of stress hormones, cortisol and catecholamine (Lowe & Davison, 2005). It is 

unclear why this transient increase in osmolality is seen in P. borchgrevinki but not T. bernacchii. 

The osmolality fell in both species after day 3 of thermal acclimation and the reduction was 

significant at day 7. This decline in the osmolality is mainly attributed to increased Na+/K+- ATPase 
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activity as a result of an increase in the turnover of the enzyme, as previously found in a study of 

Na+-/K+- ATPase pumps in gill tissue of the Antarctic notothenioid T. bernacchii and the non-

Antarctic notothenioid Notothenia angustata (Guynn et al., 2002). This study, and the other studies 

mentioned above, further establishes the effective functioning of membranes and membrane 

fluidity at 4 °C and can be attributed to the functioning of the Na+-/K+- ATPase enzyme, which has 

resulted in hyper-osmoregulation and decrease of serum osmolality. 

 

In summary, this study has established distinct thermal adaptive signatures reflected in the varying 

membrane lipid composition across Antarctic species and non-Antarctic species. Along with the 

presence of unsaturated fatty acids, there is selective increase of cis-vaccenic acid and EPA in the 

membranes of Antarctic fish. An HVA response was not seen in either of the Antarctic species at 4 

°C of thermal acclimation. There was evidence that the membrane-associated functions were not 

affected as plasma osmolality was reduced upon thermal acclimation. An HVA response was 

exhibited only at 6 °C in the benthic species T. bernacchii suggesting that this species has acclimatory 

response to warming temperatures. HVA was not observed in the cryopelagic species P. 

borchgrevinki at 6 °C. Membrane cholesterol was unchanged upon thermal acclimation, suggestive 

of unchanged membrane fluidity upon thermal acclimation at 4 °C. Membrane cholesterol 

concentration were not different across Antarctic and non-Antarctic species, but membrane 

cholesterol varied across species. 
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5 Summary of the key findings and future lines of enquiry 

 

Brief overview 

The research presented in this thesis has investigated both (1) the adaptive responses to reduced 

temperatures acquired by Antarctic fish over their evolutionary history and (2) the short-term 

acclimatory response of homeoviscous adaptations when Antarctic fish are exposed to acute 

thermal stress. From a broader perspective, this research uncovers the process of homeoviscous 

adaptation (HVA) at three basic levels of the central dogma of molecular biology that exist in 

biological systems. First, at the DNA level, this study has unravelled the evolutionary history of the 

SCD gene in teleost fish, and in Antarctic fish in particular. Second, at the transcriptome level, the 

response of the SCD gene to warming acclimation has provided evidence of the response to thermal 

stress. Third, at the protein level, the effect of SCD on membrane saturation change in response to 

thermal stress has shown evidence of acclimatory HVA response in Antarctic fish  

Summary of key contributions of this thesis 

This study has extended the data set of SCD isoform sequences with the isolation of partial SCD 

paralog sequences from notothenioid fish species from Antarctic and non-Antarctic habitats. Castro 

also presented evidence of SCD gene duplication from a limited data set of teleost species (Castro 

et al., 2011). The extended data set of this study, along with other published sequences, has 

reconstructed a comprehensive SCD gene phylogeny in teleosts, with strong support for ancestral 

SCD gene duplication, more recent lineage-specific duplicates restricted to certain species and the 

loss of duplicates in specific orders of fish. Cold adapted Notothenioid SCD of Antarctic and non-

Antarctic fish species (with an Antarctic ancestry but subsequent dispersal to non-Antarctic waters) 

were evolutionarily distinct and form separate clades within the SCD1a and 1b phylogenies.  

The present study has demonstrated SCD evolution as a model for increased understanding of 

thermal adaptation to extreme environments. Evolutionary analysis of the SCD gene using 

phylogenetic, amino acid composition, and codon usage analyses in combination with tests of 

positive selection have shown how temperature can shape the SCD gene, allowing it to acquire 

adaptive responses, such as the homeoviscous response. Partial primary amino acid sequences 

show different amino acid compositions within the isoforms and between Antarctic and, non-

Antarctic fish, which could increase the physical flexibility of the SCD in polar conditions. This study 
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has further identified thermal adaptive signatures in the SCD isoforms, such as specific amino acid 

replacements and localization of replacements in the loop regions of the protein. These patterns 

are comparable to other cold-adapted proteins and present a possible evolutionary advantage in 

the structure of SCD for conferring flexibility at reduced temperatures.  

This study has identified more evolutionary change in the SCD1a isoform than the SCD 1b isoform. 

Sites under positive selection were detected in the SCD1a isoform specific for Antarctic fish, but 

much less so in the SCD1b isoform. Furthermore, the unique histidine pair found across Antarctic 

SCD1a isoforms, and changes in specific residues in the SCD1a that determine the length of fatty 

acyl chain to be desaturated, have provided evidence of the diversity of the SCD isoforms in teleost 

fish, and Antarctic fish in particular. The tissue expression study suggested that SCD1a and SCD1b 

fit a pattern of asymmetric evolution for the species P. borchgrevinkii. This pattern results in reduced 

expression of SCD1a, shown by absence of expression in all tissues by endpoint PCR and reduced 

expression in liver by qPCR. SCD1b, however, was ubiquitously expressed at high levels in most 

tissues in both the species examined, suggesting that the ancestral function had been retained by 

SCD1b isoform. This is the first study to demonstrate asymmetric species-specific tissue expression 

in SCD. The study has contributed new information on tissue expression patterns of SCD isoforms. 

In general, after gene duplication, one of the duplicates often retains the ancestral functions with 

increase in expression while the other duplicate can rapidly evolve a new function or a loss of 

function often accompanied by a decrease in expression. This is asymmetric evolution.  

This is the first study in teleost fish, and Antarctic fish in particular, to investigate the transcriptional 

response of both SCD isoforms in fish subjected to thermal stress. This study has determined the 

pattern of expression of SCD isoforms over time with a thermal exposure of 4 °C. SCD1a and SCD1b 

showed an overall increase in expression in response to thermal treatment in the benthic species, 

whereas SCD1a levels were low to be detected in the cryopelagic species. Pattern of expression over 

the acclimation period was non-significant. Perhaps a larger sample size could have compensated 

for the high variation associated with obtaining samples from a wild population. SCD1b did not show 

any response after seven days of acclimation at 6 °C in either of the species. However, a significant 

change in the membrane saturation state was observed in the benthic species, suggesting a 

homeoviscous response that does not correlate with SCD expression.  

This study provides substantial evidence of altered membrane compositions, dominated by an 

increase in unsaturated fatty acids, in Antarctic species when compared to non-Antarctic fish (New 

Zealand species), presumably due to an evolutionary adaptive response. Antarctic icefish species 
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have high proportions of saturated fatty acids in comparison to other closely related Antarctic 

species signalling evolutionary diversification of these species. Membrane remodelling was not 

observed in either species examined at 4 °C thermal acclimation, but membrane remodelling did 

occur in the benthic species at 6 °C thermal acclimation, although this response is not seen in the 

cryopelagic species, P. borchgrevinki. In the context of anthropogenic global warming, the 

stenothermal nature of Antarctic fish is a cause for major concerns with respect to thermal 

adaptability. However, this investigation has established a short-term acclimatory homeoviscous 

response is possible in an Antarctic benthic fish species, suggesting that thermal plasticity could play 

a role in adapting Antarctic benthic species to warming temperatures. 

In summary, the key findings of this study are listed below: 

1. Temperature leaves signatures of thermal adaptation and asymmetric evolution on the SCD 

genes of Antarctic fish that help them to function in a constant, cold environment. 

2. Evolutionary analysis of the SCD gene in Antarctic teleosts has provided a framework for 

future functional analyses and has contributed to the understanding of thermal adaptation 

in extreme environments. 

3. The effects of temperature on the membrane remodelling capacity in two Antarctic fish 

species, the benthic T. bernacchii and the cryopelagic P. borchgrevinki, have been 

characterised. Homeoviscous response was observed in T. bernacchii at 6 °C but not at 4 °C, 

while P. borchgrevinki lacked this response at 6 °C. 

4. Membrane remodelling is dominated by changes in phospholipid desaturation, but not by 

changes in SCD gene expression, suggesting that other genes may also be involved in the 

homeoviscous response. 

Temperature leaves thermal adaptive signatures in biological macromolecules, such as the DNA 

and the primary protein structure of the enzyme SCD. 

SCD isoforms of cold adapted Notothenioid display signatures of thermal adaptation and these 

features were unique to the Notothenioid species. Whether these features are displayed in the SCD 

isoforms of Arctic fish, where they also experience narrow and cold temperature ranges, would be 

worth investigating to examine how common thermal adaptive signatures are across all cold 

adapted fish species. However, the general patterns of thermal adaptation seen in other studies, 
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such as specific amino acid changes (Windisch et al., 2012) and localization of changes in loops of 

protein structure (Romisch et al., 2003), align with our findings. Also in the present study clustering 

of SCD1a isoform with the cold adapted notothenioid species as well as the non-notothenioid cold 

adapted species in the PCA analysis implies general thermal adaptive signatures in the SCD1a 

isoform. However, the amino acid replacements at specific sites in the cold adapted notothenioids 

were different from that observed in Pachycara brachycephalum (non-Notothenioid Antarctic fish) 

for the SCD1b isoform shown in our study. While the PCA analysis of this study showed clustering 

of SCD1b isoform of only cold adapted notothenioid and was separate from the non-Notothenioid 

cold adapted species implying specific thermal adaptive signatures. Similarly AFGP, although 

apparently similar for the Arctic and Antarctic fish display differences indicating independent 

evolution of AFGP in Arctic and Antarctic (Chen et al., 1997a). Thus the present study upheld the 

hypothesis of thermal adaptive signatures specific for the SCD of cold adapted notothenioids.  

Membrane saturation, a major thermal adaptive mechanism, will occur at reduced capacities in 

Antarctic notothenioid fish in response to elevated temperatures and make them vulnerable to 

the effects of AGW. 

Thermal acclimation at 4 °C did not result in membrane remodelling, which was supported by the 

biochemical analysis. Membrane functions were not affected as shown by the decline of serum 

osmolality for P. borchgrevinki. Membrane remodelling may not be required for membranes to 

function at 4 °C. Previous studies have been over a broad thermal range and the difference between 

the normal and acclimation temperature was 6 °C (Skalli et al., 2006) to 19 °C (Snyder et al., 2012). 

A lack of studies on membrane saturation states of fish at 4 °C makes it difficult to predict the 

saturation states required for 4 °C. At 6 °C thermal acclimation, we observe a HVA response in the 

benthic species T. bernacchii, while this was not observed in the pelagic species P. borchgrevinkii. 

The present study has provided preliminary evidence to disprove the hypothesis for one species.  

Future avenues of work 

This study has determined the key changes that have occurred in the primary amino acid sequence 

of the SCD isoforms, as well as the sites under positive selection, and these have been mapped onto 

the structure of the mouse SCD. However, to establish the functional consequence of these amino 

acid changes these sites could be potential targets for mutational studies to test whether these sites 

are associated with cold tolerance or any other functions associated with extreme cold 

environments. Such findings could contribute to the development of cold tolerance in commercial 



143 
 

warm-adapted fish species that currently face huge mortalities during colder than typical winters. 

One of the unique finding is the presence of a histidine pair in the SCD 1a isoform. Histidine motifs 

form the active sites of the enzyme and are highly conserved in the desaturases present. A 

functional study to decipher whether histidine offer a catalytic advantage or a structural advantage 

to function in the extreme cold environment would be useful. 

Asymmetric rates of molecular evolution need to be investigated in a larger panel of Antarctic 

species. Along with quantitative real-time tissue expression analysis, this could decipher the 

functional consequences of this type of evolution in SCD1. 

Cold-adapted fish have high proportions of unsaturated fatty acids in their membranes. There is also 

a selective incorporation of cis-vaccenic acid and EPA in the membranes of cold-tolerant species 

that needs further investigation to determine the roles of these lipids in cold tolerance. Studies 

could be undertaken to investigate whether incorporation of these components in the diets of fish 

could improve their cold tolerance. 

The biochemical analysis of membrane saturation did not correlate with SCD1b expression at 6 °C 

which showed a significant change in saturation states in T. bernacchhii after 7 days of thermal 

acclimation. These findings suggest that perhaps the sampling time at day 7 could have missed the 

initial period of SCD expression (Cossins et al., 2002) and also that other gene targets involved in the 

pathway for membrane syntheses need assessment these involve gene targets, e.g. LPCAT 1, 2 and 

3 and PEMT (Benedito-Palos et al., 2012) should be examined for a better correlation between gene 

expression and biochemical response.  

 Gene expression to study the process of membrane remodelling in the thermally stressed Antarctic 

fish need to be done in liver and muscle tissue by  RNA seq analysis and further validation of the 

transcript data need to be supported by digital quantification of mRNA  such as NanoString nCounter 

system.  Transcriptomic data would generate information of all the key genes involved in the 

membrane biogenesis, repair as well as the SCD isoforms. 

Cost of Physiological plasticity in Antarctic fish needs assessment 

Preliminary evidence of membrane remodelling upon thermal acclimation in this study has shown 

Antarctic fish are likely to be able to cope with a temperature rise. Antarctic fish display cellular 

physiological plasticity upon thermal acclimation which primarily involve a shift from aerobic lipid 

metabolism in Antarctic fish to anaerobic carbohydrate metabolism upon thermal acclimation 

(Windisch et al., 2011; Huth & Place, 2016) . Antarctic fish can alter their cardiac functions to support 
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the physical activity at higher temperature acclimation (Franklin et al., 2007) and also have an 

antioxidant capacity in place to mitigate long term thermal stress (Enzor & Place, 2014). Antarctic 

fish show a reduction of serum osmolality upon thermal acclimation, a good indicator for membrane 

functions at higher temperature (Gonzalez-Cabrera et al., 1995 ; Lowe & Davison, 2005). Finally, 

transcriptomic profiles show diminished cellular stress responses in Antarctic fish after of long term 

thermal acclimation (Huth & Place, 2016a ; Huth & Place, 2016b ). In addition to this my research 

adds new information of membrane protection in response to temperature rise in Antarctic fish 

demonstrate plasticity at a cellular level to cope with the warming temperature but the effect of 

thermal stress on the whole organism performance, such as growth and reproduction, needs 

assessment. Whether challenges associated with maintenance of cellular homeostasis upon 

warming could result in energetic trade-offs is currently unknown (Enzor & Place, 2014). Future 

studies need to be directed to answer these questions to predict the vulnerability of Antarctic fish 

to prolonged warming. 
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Appendix A 

Thermal acclimation Experimental Methods 

A.1 Method details: 

The fieldwork components, comprising the thermal acclimation experiment and harvesting of fish 

tissues in Antarctica, were conducted by Dr Victoria Mecalf in 2007. This was covered by Animal 

Ethics (University of Canterbury). My PhD study used fish samples obtained during this Antarctic 

fieldwork as well as fish samples obtained during other seasons and in other locations, including by 

other scientists (details in subsequent chapters). Details of the thermal acclimation experiment and 

harvesting of fish tissues are presented below. 

A.1.1 Collection of fish samples for the  thermal acclimation experiment 

Fish were primarily caught within McMurdo Sound, Antarctica, or the wider Ross Sea area. Fish 

collection was carried out during the austral summer of 2007 (October-November). Fish were 

caught using small fishing rods baited with either small fish pieces or soft bait on barbless hooks. 

Typically at the fishing sites, 10 cm diameter holes were drilled through the sea ice (which ranged 

from 2-8 metres thick) using a motorised jiffy drill and fish were accessed through these holes. 

Alternatively, a hole-melter was used to create a 1 metre wide hole in the sea ice through which fish 

were accessed, sometimes with a heated wannagin over top.  Holes were kept clear of sea ice by 

regular use of small dip-nets. Individuals of the benthic species, T. bernacchii, were caught in inshore 

waters at a water depth of 15-40 m. Individuals of the pelagic and schooling species, P. 

borchgrevinki, were collected from deeper water locations (up to 300m deep) near the ice runway 

in McMurdo Sound with sea ice cover less than 4m thick (typically 2 m) and away from seal activity.  

Following capture, and quick and careful hook removal, fish were immediately placed in an insulated 

container of seawater and transported to laboratory facilities at Scott Base, where they were held 

in flow–through aquaria with sea water temperature maintained at -1.0 ± 0.3 °C. Fish were held 

post-catching for a minimum period of three days to allow them to recover from handling stress. 

During the recovery period, fish were not fed and were maintained in a 24 hour light regime to 

replicate the austral summer conditions of Antarctica. Following the recovery period, and when 
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sufficient fish had been caught for the experiment, fish were pre-acclimated to a temperature of -1 

°C for a period of 15 days and were fed ad libitum twice weekly. 

A.1.2 Thermal acclimation experimental design and sampling  

Following the pre-acclimation period of 15 days, five randomly chosen individuals of each fish 

species were euthanised before the thermal acclimation experiment started and their tissues were 

harvested as an initial control prior to temperature treatment. The remaining fish of each species 

were placed in either static or flow-through tanks (limitations of the aquaria facilities meant some 

treatments were in static tanks) and kept in groups of no more than 10 fish per tank. For all 

acclimation temperature treatments, the water temperature was then gradually increased from -1 

°C to 4°C, or 6 °C. The experimental temperature regime consisted of stepwise increases in 

temperature to the target temperature over a 24h period (except in the case of the 6 °C treatment, 

in which case slower acclimation over three days was employed). The tanks were mantained at the 

treatment temperature ± 0.3 °C using two heat exchangers connected to a feeder tank that 

contained thermostatically-controlled water heater. Where possible, flow-through tanks were used, 

but by necessity some of the heat treatments required the use of static tanks with oxygen bubblers. 

For static tanks, daily replacement of 25% of the tank capacity was done to avoid both (1) the 

accumulation of waste products and (2) decreases in oxygen concentration. A cohort of fish held at 

as close to environmental temperature as possible was used as a control treatment; in which case 

fish remained at -1 °C for the duration of the experiment. Further, they were fed ad libitum twice 

weekly during the acclimation period. 

A.1.3  Collection and transport of tissue and plasma samples 

Fish (n=5 of each treatment, including controls) were euthanised, blood samples collected and 

tissues harvested at 1, 2, 3, 7, 14 and 21 days post-acclimation. All routine procedures were followed 

as per the Animal Ethics approval and sampling procedures were performed at the Scott Base Wet 

Laboratory, with air temperature below 5°C. Routine anaesthetic exposure via transfer to seawater 

containing MS-222 (ethyl m-amino benzoate methane-sulfonate) was performed. Fish were 

anaesthetised for five min in a 0.1 g/L solution of MS222 dissolved in sea water. Details of the 

individual fish were then recorded. Blood was collected from the caudal vein with a needled syringe 

and the fish was euthanised by severing the spinal cord. Fish were dissected using standard 

dissection procedures under sterile conditions and tissue samples were transferred into labelled 

vials and immediately frozen in liquid nitrogen. Tissues (liver, brain, heart, kidney, white muscle, red 
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muscle, subcutaneous fat and adipose tissue) were rapidly removed, snap frozen in liquid nitrogen 

and stored at -80 °C for later biochemical and genetic analyses. 

 

Appendix B    

Details of sequences and alignments used for the bioinformatics 

analysis of Chapter 2 
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B.1 Details of species along with their nomenclature included in the phylogenetic and other bioinformatics analysis 

S.No Species Common name

Accession number (Protein 

sequence) Gene name 

Accession number(DNA 

sequence) Family Order class

1 Danio rerio Zebrafish ENSDART00000044009 SCDb001 ENSDART00000044009 Cyprinidae Cypriniformes Actinopterygii
2 Danio rerio Zebrafish ENSDART00000050006 SCD201 ENSDART00000050006 Cyprinidae Cypriniformes Actinopterygii
3 Gadus morhua Cod ENSGMOT00000013805 SCD-201 ENSGMOT00000013805 Gadidae Gadiformes Actinopterygii
4 Gadus morhua Cod ENSGMOT00000000411 SCDb-201 ENSGMOT00000000411 Gadidae Gadiformes Actinopterygii
5 Astyanax  mexicanus Cavefish ENSAMXT00000004466 SCD201 ENSAMXT00000004466 Characidae Characiformes Actinopterygii
6 Astyanax  mexicanus Cavefish ENSAMXT00000012724 SCDb-201 ENSAMXT00000012724 Characidae Characiformes Actinopterygii
7 Latimeria chalumnae Coelacanth ENSLACT00000021043 SCD201 ENSLACT00000021043 Coelacanthidae Coelacanthiformes Sarcopterygii
8 Cyprinus carpio Common carp Q9PU86 CDS2 6018387:229-1203 Cyprinidae Cypriniformes Actinopterygii
9 Oryzias latipes Medaka ENSORLG00000006839 SCDb-201 ENSORLT00000008593 Adrianichthyidae Beloniformes Actinopterygii
10 Oryzias latipes Medaka ENSORLT00000011566  SCD-201 ENSORLT00000011566 Adrianichthyidae Beloniformes Actinopterygii
11 Sparus aurata Gilt-head bream AFP97551.1 SCD1a JQ277703.1 Sparidae Perciformes Actinopterygii
12 Sparus aurata Gilt-head bream AFP97552.1 SCD1b JQ277704.1 Sparidae Perciformes Actinopterygii
13 Oreochromis niloticus Tilapia ENSONIT00000023312 SCD -201 ENSONIT00000023312 Cichlidae Perciformes Actinopterygii
14 Oreochromis niloticus Tilapia ENSONIT00000023313 SCD -202 ENSONIT00000023313 Cichlidae Perciformes Actinopterygii
15 Oreochromis niloticus Tilapia ENSONIT00000020272 SCDb-201 ENSONIT00000020272 Cichlidae Perciformes Actinopterygii
16 Trematomus_bernacchii Emerald rockcod ACI16378.1 SCD FJ177513.1 Nototheniidae Perciformes Actinopterygii
17 Gasterosteus aculeatus aculeatus Stickleback ENSGACT00000003160 SCD-202 ENSGACT00000003160 Gasterosteidae Gasterosteiformes Actinopterygii
18 Gasterosteus aculeatus aculeatus Stickleback ENSGACT00000003154 SCD-201 ENSGACT00000003154 Gasterosteidae Gasterosteiformes Actinopterygii
19 Gasterosteus aculeatus aculeatus Stickleback ENSGACT00000011284 SCDb_201 ENSGACT00000011284 Gasterosteidae Gasterosteiformes Actinopterygii
20 Salmo salar Atlantic salmon ACN11041.1 Acyl -CoA desaturase BT059328.1 Salmonidae Salmoniformes Actinopterygii
21 Salmo salar Atlantic salmon NP_001133452.1 Acyl -CoA desaturase NM_001139980 Salmonidae Salmoniformes Actinopterygii
22 Takifugu rubripes Fugu ENSTRUT00000031408 SCD-201 ENSTRUT00000031408 Tetraodontidae Tetraodontiformes Actinopterygii
23 Takifugu rubripes Fugu AAU89872.1 SCD2 AY741384.1 Tetraodontidae Tetraodontiformes Actinopterygii
24 Homo sapiens Human ENST00000370355 SCD001 ENST00000370355 Hominidae Primates Mammalia
25 Polypterus_senegalus_ Gray bichir AEG25345.1 SCD 1 JF729410.1 Polypteridae Polypteriformes Actinopterygii
26 Mus_musculus Mouse CAJ18540.1 SCD 1 CT010332.1 Muridae Rodentia Mammalia
27 Rattus_norvegicus Rat NP_631931.2 Acyl -CoA desaturase 1 148747463 Muridae Rodentia Mammalia
28 Ctenopharyngodon idella Grass carp CAB53008.1 SCD AJ243835.1 Cyprinidae Cypriniformes Actinopterygii
29 Scyliorhinus_canicula lesser spotted dogfish AEG25343.1 SCD1 JF729408.1 Scyliorhinidae Carcharhiniformes Chondrichthyes
30 Cyprinus caprio Common carp AER39747.1 SCD1a JF836162.1 Cyprinidae Cypriniformes Actinopterygii
31 Xenopus_laevis   African clawed frog NP_001087809.1 SCD NM_001094340.1 Pipidae Anura Amphibia
32 Sebasticus marmoratus Marble trout AFK08797.1 SCD JQ663624.1 Salmonidae Salmoniformes Actinopterygii
33 Chanos chanos Milk Fish AAL99291.1 SCD1b AY082003.1 Chanidae Gonorynchiformes Actinopterygii
34 Dicentrarchus labrax European sea bass CBM40644.1 SCD1b FN868643.1 Moronidae Perciformes Actinopterygii
35 Dicentrarchus labrax European sea bass CBN81527.1 SCD1a 374428415 Moronidae Perciformes Actinopterygii
36 Oreochromis mossambicus Mozambique tilapia Q8AWI1 SCD AY150696.1 Cichlidae Perciformes Actinopterygii
37 Chionodraco hamatus Crocodile icefish Q9PU84 SCD AJ249579.1 Channichthyidae Perciformes Actinopterygii
38 Takifugu rubripes Puffer fish Q5XQ38 SCD1 NM_001078577.1 Tetraodontidae Tetraodontiformes Actinopterygii
39 Xiphophoru maculatus Platyfish ENSXMAT00000003100 SCDb201 ENSXMAT00000003100 Poeciliidae Cyprinodontiformes Actinopterygii
40 Xiphophoru maculatus Platyfish ENSXMAT00000014994 SCD201 ENSXMAT00000014994 Poeciliidae Cyprinodontiformes Actinopterygii
41 Gallus gallus Chicken Q9YGM2 SCD 45382442 Phasianidae Galliformes Aves
42 Mus musculus Mouse P13011 SCD2 200943 Muridae Rodentia Mammalia
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B.2   Summary of SCD gene organization in teleost species obtained from ENSEMBL 

 

S.No Species(SCD1b) E I E I E I E I E I E I E I E I E I E Name Transcript ID Length 
(bp)

Length 
(aa)  Chromosome location Exons Coding 

exons Gene 

size(kb)

1  Sparus aurata SCD1b 238 131 206 233 200 SCD1b

2 Gadus moruhua SCDb 201 53 2 4 10 166 919 131 679 206 1163 233 1763 200 SCDb-201 ENSGMOT00000013805 993 330 1579: 564,952-570,480 7 7 5.53

3 Gasterosteus aculeatus SCDb 201 295 928 239 795 131 481 206 851 233 1105 200 scdb-201 ENSGACT00000011284 1304 330 GroupVI: 9,801,170-9,806,633 6 5 5.46

4 Orechromis niloticus  SCDb 201 556 1540 131 192 206 691 233 1170 197 SCDb-201 ENSONIT00000023313 999 333 GL831242.1: 1,635,536-1,640,314 6 6 4.78

5 Orechromis niloticus  SCDb 202 35 187 197 1540 131 192 206 691 233 1170 197 SCDb-202 ENSONIT00000023312 1323 324 GL831242.1: 1,635,536-1,640,451 5 5 4.92

6 Oryzias latipes SCDb201 347 3219 131 283 206 479 233 2261 200 SCDb-201 ENSORLT00000008593 1117 347 15: 20,935,680-20,943,038 5 5 7.36

7 Takifugu rubripes SCD2 232 483 131 31 260 481 233 833 200 SCD 2

8 Tetraodon nigroviridis SCDb 201 372 602 131 233 206 357 145 1 88 219 218 SCDb-201 ENSTNIT00000003617 1160 334 17: 6,034,049-6,036,620 6 6 2.57

9 Xiphophoru maculatusSCD201 250 2219 131 1514 206 513 233 1579 200 SCD-201 ENSXMAT00000003100 1020 339 JH556725.1: 1,662,350-1,669,194 5 5 6.84

S.No Species(SCD1a) E I E I E I E I E I E I E I E I E I E

1 Astyanax mexicanus SCDb 201 660 213 276 1923 131 330 206 1561 233 624 3831 SCDb-201 ENSAMXT00000012724.1 5337 KB882125.1: 1,940,942-1,950,929 6 5 9.99

2 Astyanax mexicanus SCDb 201 247 1400 205 553 131 262 206 1071 233 144 218 133 1135 SCDb-201 ENSAMXT00000004466.1 2375 350 KB882310.1: 790,503-796,440 7 5 5.4

3 Chionadraco hamatus 237 1171 160 130 205 405 236 416 195 SCD1a 5 3.15

4 Danio rerio SCD 001 217 4748 224 2786 131 665 206 2269 233 1953 526 SCD-201 ENSDART00000050006 2830 326 to be updated 5 5 10.5

5 Danio rerio SCDb 201 245 189 206 2955 131 2510 206 2574 233 7840 1025 SCDb-201 ENSDART00000044009 2046 316 13: 29,879,167-29,897,280 6 5 18.1

6 Gadus moruhua SCD 201 7 1 154 126 131 148 206 323 233 315 194 2009 3 3 4 1 8 SCD-201 ENSGMOT00000000411 984 328 1971: 909,033-912,944 10 10 3.91

7 Gasterosteus aculeatus SCD 201 70 254 249 894 131 118 206 372 233 568 737 SCD-201 ENSGACT00000003160 1124 349 GroupV: 842,137-847,047 8 7 4.91

8 Gasterosteus aculeatus SCD 202 33 254 249 894 131 118 206 372 233 568 196 497 19 1084 57 SCD-202 ENSGACT00000003154 1626 330 GroupV: 842,100-845,931 6 5 3.83

9 Orechromis niloticus SCD201 259 904 131 153 206 382 233 2863 200 SCD-201 ENSONIT00000020272 1029 335 GL831148.1: 2,480,949-2,486,279 5 5 5.33

10 Oryzias latipes  SCD201 92 221 260 406 131 338 206 357 233 1842 536 SCD-201 ENSORLT00000011566 1458 333 19: 10,021,042-10,025,663 6 5 4.62

11 Sparus aurata 1a 238 131 206 237 280

12 Takifugu rubripes SCD2 232 483 131 31 260 481 233 833 200 SCD-2 ENSTRUT00000031408 1056 351 Scaffold_59: 918,747-921,630 5 5 2.88

13 Tetraodon nigroviridis SCD 201 241 604 131 90 206 331 233 793 200 SCD-201 ENSTNIT00000022839 1011 336  2_random: 1,160,737-1,163,565 5 5 2.83

14 Trematomus bernacchii 237 131 206 236 192

15 Xiphophoru maculalatus 305 234 258 1433 131 83 206 674 233 2246 2780 SCD-201 ENSXMAT00000014994 3913 334 JH556661.1: 741,858-750,440 6 5 8.58

I: Intron, E: Exon 
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B.3 List of species used for amino acid composition analysis 

Non-Antarctic sequences (SCD1a) 
1 Astyanax mexicanus_SCDb-201 ENSAMXT00000012724 
2 Astyanax mexicanus_SCD-201_ENSAMXT00000004466 
3 Chanos chanos_ SCD_AAL99291 
4 Ctenopharyngodon idella SCD1_CAB53008.1|  
5 Danio rerio SCDb001_ENSDART00000044009 
6 Danio rerio SCDb201_ENSDART00000050006 
7 Dicentrarchus labrax SCD1a_CBN81527.1| 
8 Gadus Morhua SCDb-201_ ENSGMOT00000000411 
9 Gasterosteus aculeatus_ SCDb-202 ENSGACT00000003160 

10 Gasterosteus aculeatus_SCDb-201 ENSGACT00000003154 
11 Orechromus niloticus SCDb-201_ ENSONIT00000020272 
12 Oreochromis mossambicus SCD__Q8AWI1  
13 Oryzias latipes_ SCDb-201_ ENSORLT00000011566 
14 Sparus aurata SCD1a _AFP97551.1| 
15 Takifugu rubripes _SCDb-201_ ENSTRUT00000031408 
16 Takifugu rubripes SCD1_AAU89872.1 
17 Xiphophorus maculatus SCD201_ ENSXMAT00000014994 

 

Non-Antarctic sequences (SCD1b) 
1 Bovichtus variegatus SCD1b  
2 Gadus Morhua SCD_ENSGMOT00000013805 
3 Cottoperca gobio_SCD1b 
4 Dicentrarchus labrax SCD1b_CBM40644.1 
5 Eliginops maclovinus SCD1b 
6 Gasterosteus aculeatus SCD-201_ENSGACT00000011284 
7 Orechromus niloticus  SCD201_ENSONIT00000023312 
8 Orechromus niloticus_ SCD202_ ENSONIT00000023313 
9 Oryzias latipes SCD-201 ENSORLG00000006839 

10 Sparus aurata SCD1b_ FP97552.1| 
11 Takifugu rubripes_SCD2_NM001078577.1 
12 Xiphophorus maculatus_SCDb201_ ENSXMAT00000003100. 

 

Antarctic sequences (SCD1a)  
1 Trematomus bernacchii SCD1a_ ACI16378. 
2 Chionodraco hamatus SCD1a_Q9PU84  
3 Notothenia angustata SCD1a*  
4 Champsocephalus esox SCD1a*  
5 Chaenocephalus aceratus_ SCD1a  
6 Champsocephalus gunnari_ SCD1a 
7 Pagothenia borchgrevinki SCD1a_ 
8 Notothenia_rossii_SCD1a 
9 Notothenia_coriiceps_736218284_151-1158_SCD1a 

* Non-Antarctic sequences but having an Antarctic ancestry 
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Antarctic sequences (SCD1b) 
1 Chaenocephalus.aceratus SCD1b  
2 Champsocephalus.esox SCD1b *  
3 Champsocephalus.gunnari SCD1b VIRT13522 
4 Chionodraco_hamatus_SCD1b 
5 Dissostichus_eleginoides_SCD1b * 
6 Gobionothen_gibberifrons_SCD1b 
7 Gobionothen_marionensis_SCD1b 
8 Gobionotothen acuticeps SCD1b  
9 Gymnadraco_acuticeps_SCD1b 

10 Lepidonotothen squamifrons SCD1b  
11 Notothenia angustata SCD1b * 
12 Notothenia_coriiceps_736179142_219-1220_SCD1b 
13 Notothenia_rossii_SCD1b 
14 Pagothenia borchgrevinki SCD1b 
15 Pseudochoenicthys_georgius_SCD1b 
16 Trematomous nicolai SCD1b  
17 Trematomus_hansoni_SCD1b 

* Non-Antarctic sequences but having an Antarctic ancestry 

B.4 List of alignments used for the bioinformatics analysis and provided in the 
drop box link given below 

Alignments in the drop box link are under embargo and will be replaced with accession number after 
deposit to GenBank 

  Bioinformatic analysis File Name 

1 SCD phylogenetic analysis SCD_phylogeny.fas 

2 Test of positive selection SCD1a SCD1a_selection.fas 

3 Test of positive selection SCD1b SCD1b_selection.fas 

4 GA branch analysis GA_branch.fas 
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B.5 Alignments of SCD1a isoform sequences from Antarctic and non-Antarctic 
fish species. Alignments specific for Antarctic fish and cold adapted 
notothenioid non-Antarctic fish have been boxed. 

 

 

 
 
 

Danio_rerio_SCD201                  ---MPDSD-----------VKAPVLQPQLEAMEDEFDPLYKEKPGPKPPMKIVWRNVILM 46 

Danio_rerio_SCDb001                 ------------------------MADVTTTTEDVFDDSYVEKPGPSPPVQIVWRNVILM 36 

Astyanax_mexicanus_SCDb201          ---MTDTKRQ--SVQNRQRSTGADMAEAMLLTDDAFAESYSEKEGPA--TKIVWRNVILM 53 

Cyprinus_carpio_CDS2                ---MPDRD-------------IKSPIWHPETVEDVFDHTYKEKEGPKPPTVIVWRNVLLM 44 

Cyprinus_carpio_JF836162.1          ---MPDRD-------------IKSPIWHPETVEDVFDHTYKEKEGPKPPTVIVWRNVLLM 44 

Ctenopharyngodon_idella_SCD         ---MPDMD-------------IKAQARRAETVEDVFDHTYKEKEGPKPPIVVVWRNVILM 44 

Astyanax_mexicanus_SCD201           --------------------MTETTSLGHTMVDDEFDDSYKEKAGPKPPMRIVWRNVVLM 40 

Tetraodon_nigroviridis_SCD201       AGIMTETEALEKK--QHRSKNGDVLPE--AAREDEFDPTYREKDGPKPARIIVWRNVILM 56 

Takifugu_rubripes_SCD1              ---MTETEALEKK--QHRSKNGDVHPE--AIREDEFDHTYREKEGPKPAKIIVWKNVILM 53 

Takifugu_rubripes_SCD               ---MTETEALEKK--QHRSKNGDVHPE--AIREDEFDHTYREKEGPKPAKIIVWKNVILM 53 

Salmo_salar_ACD                     ---MTDTEIE----GPGRHRNGDVLAESATKRDDVFDETYKEKEGPKPSMRIVWKNIILM 53 

Xiphophoru_maculatus_SCD201         ---MTGSEPF-EKQQQHKSVNGDVCSE--AAGEDAFDHTYEEKEGPKPSKIFVWRNIILM 54 

Gasterosteus_aculeatus_SCD_201      ---MTEASDM----KQRVSSNG-NVPE--APIEDVFDHSYKEKEGPKPPRTIVWRNVVSM 50 

Gasterosteus_aculeatus_SCD_202      ---------M----KQRVSSNG-NVPE--APIEDVFDHSYKEKEGPKPPRTIVWRNVVSM 44 

Oryzias_latipes_SCD_201             ---MTEADALEL--KQHNSSNGDVCSE--QTREDVFDNAYKEKEGPKPRRMIVWRNVILM 53 

Oreochromis_mossambicus             --MRAAAEDEENKQQQRKSSNGDVLPE--SATEDTFDHTYKEKEGPKPPRIIVWKNVILM 56 

Orechromis_niloticus_SCDb201        ---MTEAEALENKQQQRKSSNGDVLPE--SAREDAFDHTYKEKEGPKPPRIIVWKNVILM 55 

Dicentrarchus_labrax_SCD1a          ---MTEAEALEKKQ--HKPSNGNALPE--ATREDVFDHTYKEKEGPKPATIIVWKNVLLM 53 

Bovichtus_variegatus_SCD1a          ---------------------------------------------------CLYED---- 5 

Sparus_aurata_SCD1a                 ---MTEAEALEKKQRKSNNQNGDVLPE--ATREDVFDHTYKEKAGPKPGTIIVWKNVILM 55 

Chionodraco_hamatus_SCD1a           ---MTEAEALEKKQQQHKASNGNVLPE--AFREDVFDHTYKEKEGPKPPSVIVWKNVFMM 55 

Notothenia_angustata_SCD1a          ------------------------------------------------------------ 0 

Trematomus_bernacchii_SCD1a         ---MTEAEALEKKQQQHKASNGNVLPE--APREDMFDHTYKEKEGPKPPSVIVWRNVFLM 55 

Pagothenia_borchgrevinki_SCD1a      -------------------------------------------------------NVFLL 5 

Notothenia_coriiceps_SCD1a          ---MTEAEALEKKQQQHKASNGNVLPE--APREDMFDHTYKEKEGPKPPSVIVWKNVFMM 55 

Notothenia_rossii_SCD1a             ---------------------------------------------------------FMM 3 

Chaenocephalus_aceratus_SCD1a       ------------------------------------------------------------ 0 

Champsocephalus_esox_SCD1a          ------------------------------------------------------------ 0 

Champsocephalus_gunnari_SCD1a       ------------------------------------------------------------ 0 

 

 

 

 

 

 

Danio_rerio_SCD201                  SLLHIAAVYGLFLIPSAHPLTLLWAFAC----------FVYGGLGITAGVHRLWSHRSYK 96 

Danio_rerio_SCDb001                 TLLHLGALYGMTILPFVSSLTLIWTGVC----------FMVSALGITAGAHRLWSHRSYR 86 

Astyanax_mexicanus_SCDb201          ALLHLGAVYGLFIITSASKLTLLWSAVC----------FMVSALGVTAGAHRLWSHRSYK 103 

Cyprinus_carpio_CDS2                AFLHTGALYGLVLFPSASVLTWIWFLAC----------FVFSALGVTAGAHRLWSRRSYK 94 

Cyprinus_carpio_JF836162.1          AFLHTGALYGLVLFPSASVLTWIWFLAC----------FVFSALGVTAGAHRLWSHRSYK 94 

Ctenopharyngodon_idella_SCD         TLLHTGALYGLLLIPSASFLTLIWTFAC----------FVYSALGITAGAHRLWSHRSYK 94 

Astyanax_mexicanus_SCD201           ALLHIGALYGILLVPSASPLTLLWTWAC----------FLFSALGITAGVHRLWSHRSYK 90 

Tetraodon_nigroviridis_SCD201       SLLHLSAVYAIFLIPSASALTLLWSVLC----------FFISALGITAGAHRLWSHRTYK 106 

Takifugu_rubripes_SCD1              TLLHLSAVYAIFLIPSASALTLLWAMLC----------FFISALGITAGAHRLWSHRTYK 103 

Takifugu_rubripes_SCD               TLLHLSAVYAIFLIPSASALTLLWSMLC----------FFISALGITAGAHRLWSHRTYK 103 

Salmo_salar_ACD                     TLLHIGAVYGISLVPSAHVLTWAWSVFC----------FLTSALGVTAGAHRLWSHRSYK 103 

Xiphophoru_maculatus_SCD201         TLLHLGAVYGLFLIPSASPSTLLWTMTC----------FLISALGITAGAHRLWSHRTYK 104 

Gasterosteus_aculeatus_SCD_201      TVLHLGAAYGVCLIPSASPLTLLWSVFC----------FLISALGVTAGAHRLWSHRSYK 100 

Gasterosteus_aculeatus_SCD_202      TVLHLGAAYGVCLIPSASPLTLLWSVFC----------FLISALGVTAGAHRLWSHRSYK 94 

Oryzias_latipes_SCD_201             TLLHIGATYGILLIPSVSPLTLLWSVLC----------FFISALGITAGAHRLWSHRSYK 103 

Oreochromis_mossambicus             TLLHIGAFYGVFVVPSASRLTLLWSVLC----------FLISALGVTAGAHRLWSHRSYK 106 

Orechromis_niloticus_SCDb201        TLLHIGAFYGVFVVPSASRLTLLWSVLC----------FLISALGVTAGAHRLWSHRSYK 105 

Dicentrarchus_labrax_SCD1a          TLLHLAALYAVSIVPSASILTLLWSALC----------FLISALGITAGAHRLWSHRSYK 103 

Bovichtus_variegatus_SCD1a          -SIAYRCRVQRVPRPFPSMLTLLWSALC----------FLISALGVTAGAHRLWSHRSYK 54 

Sparus_aurata_SCD1a                 TVLHIGALYAVSLIPSASPLTLLWSVLC----------FLISALGVTAGAHRLWSHRSYK 105 

Chionodraco_hamatus_SCD1a           TLLHIGALYGMCLVPSASTLTLLWSLLCFVFLPTALLCFVISALGVTAGAHRLWSHRSYK 115 

Notothenia_angustata_SCD1a          ------------------------------------------------------------ 0 

Trematomus_bernacchii_SCD1a         TLLHIGAAYGICLVPSASTLTLLWSVLC----------FVLSALGVTAGAHRLWSHRSYK 105 

Pagothenia_borchgrevinki_SCD1a      TLLHIGAAYGICLVPSASTLTLLWSVLC----------FVLSALGVTAGAHRLWSHRSYK 55 

Notothenia_coriiceps_SCD1a          TLLHIGAVYGMCLVPSASTLTLLWSLLC----------FVISALGVTAGAHRLWSHRSYK 105 

Notothenia_rossii_SCD1a             TLLHIGAVYGMCLVPSASTLTLLWSLLC----------FVISALGVTAGAHRLWSHRSYK 53 

Chaenocephalus_aceratus_SCD1a       ------AVYGMCLVPSASTLTLLWSLLC----------FVISALGVTAGAHRLWSHRSYK 44 

Champsocephalus_esox_SCD1a          ------PCMASCLVPSASTLTLLWSLLC----------FVISALGVTAGAHRLWSHRSYK 44 

Champsocephalus_gunnari_SCD1a       ------------LVPSASTLTLLWSLLC----------FVISALGVTAGAHRLWSHRSYK 38 
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Danio_rerio_SCD201                  NSNRGFFFSHVGWLLVRKHPEVIERGRKLELTDLKADKVVMFQRRF-YKLSVVLMCFVVP 197 

Danio_rerio_SCDb001                 NARRGFFFAHIGWLLVRKHPEVIDKGRKLTFEDLKADSVVMFQRRH-YKLSVVVMCFLIP 187 

Astyanax_mexicanus_SCDb201          NATRGFFFAHIGWLLVRKHPDVIEKGAKLDLSDLKADGVVMFQRRH-YKLSILVMCFLFP 204 

Cyprinus_carpio_CDS2                NAVRGFFFSHIGWLLVRKHPDVIEKGRKLELSDLKADKVVMFQRRF-YKSSVLLMCFFVP 195 

Cyprinus_carpio_JF836162.1          NAVRGFFFSHIGWLLVRKHPDVIEKGRKLELSDLKADKXVMFQRRF-YKSSVLLMCFFVP 195 

Ctenopharyngodon_idella_SCD         NAVRGFFFAHIGWLLVRKHPDVIEKGRKLEISDLKADKVVMFQRRH-YKPSVLLMCFFVP 195 

Astyanax_mexicanus_SCD201           NATRGFFFSHIGWLLVRKHPDVIEKGSKLELSDLKADKVVMFQRRF-YKSSVLLMCFAVP 191 

Tetraodon_nigroviridis_SCD201       NAVRGFFFAHIGWLLVRKHPDVIEKGRKLNLGDLLADGVVQFQRKY-YKLSVLLMCFFIP 207 

Takifugu_rubripes_SCD1              NAVRGFFFAHIGWLLVRKHPDVIEKGRKLNVSDLLADEVVQFQRRY-YKQSVLLACFLIP 204 

Takifugu_rubripes_SCD               NAVRGFFFAHIGWLLVRKHPDVIEKGRKLNVSDLLADEVVQFQRKY-YKQSVLLACFLIP 222 

Salmo_salar_ACD                     NAVRGFFFAHIGWLLVRKHPDVIEKGKKLELSDLKADKVVMFQRKY-YKMSVVLMCFSIP 204 

Xiphophoru_maculatus_SCD201         NAKRGFFFSHIGWLLVRKHPDVIEKGGKLELSDLLGDKVVMFQRRH-YKLSVLLMCFFIP 205 

Gasterosteus_aculeatus_SCD_201      NAVRGFFFAHIGWLMVRKHPDVIEKGKKLELNDLTSDKVVMFQRKH-YKLSVLLMCFFVP 201 

Gasterosteus_aculeatus_SCD_202      NAVRGFFFAHIGWLMVRKHPDVIEKGKKLELNDLTSDKVVMFQRKH-YKLSVLLMCFFVP 195 

Oryzias_latipes_SCD_201             NAKRGFFFAHIGWLLVRKHPDVIEKGRKLELRDLLSDKVVMFQRRY-YKLSVLLVCFFIP 204 

Oreochromis_mossambicus             NAVRGFFFAHIGWLLVRKHPDVIEKGRKLELTDLLADKVVMFQRKY-YKLSVLVMCFFIP 207 

Orechromis_niloticus_SCDb201        NAVRGFFFAHIGWLLVRKHPDVIEKGRKLELTDLLADKVVMFQRKH-YKLSVLVMCFFIP 206 

Dicentrarchus_labrax_SCD1a          NAVRGFFFAHIGWLLVRKHPDVIEKGRKLELNDLLADKVVMFQRKY-YKPSVLLMCFFVP 204 

Bovichtus_variegatus_SCD1a          NAVRGFFFSHIGWLLVRKHPDVIEKGRKLELNDLLSDKVVMFQRKY-YKPSVLLMCFFVP 155 

Sparus_aurata_SCD1a                 NAVRGFFFAHIGWLLVRKHPDVIEKGRKLELTDLLSDKVVMFQRKY-YKPSVLLMCFFVP 206 

Chionodraco_hamatus_SCD1a           NAVRGFFFAHIGWLMVRKHPDVIEKGRKLEVHDLLADKVVMFQRKY-YKASVLLMCFFVP 216 

Notothenia_angustata_SCD1a          NAVRGFFFSHIGWLMVRKHPDVIEKGRKLEVHDLLADKVVMFQRKYYYKASVLLMCFFVP 69 

Trematomus_bernacchii_SCD1a         NAVRGFFFSHIGWLMVRKHPDVLEKGRKLEVHDLLADKVVMFQKKY-YKASVLLMCFFVP 206 

Pagothenia_borchgrevinki_SCD1a      NAVRGFFFSHIGWLMVRKHPDVLEKGRKLEVHDLLADKVVMFQKKY-YKASVLLMCFFVP 156 

Notothenia_coriiceps_SCD1a          NAVRGFFFSHIGWLMVRKHPDVIEKGRKLEVHDLLADKVVMFQRKY-YKASVLLMCFFVP 206 

Notothenia_rossii_SCD1a             NAVRGFFFSHIGWLMVRKHPDVIEKGRKLEVHDLLADKVVMFQRKY-YKASVLLMCFFVP 154 

Chaenocephalus_aceratus_SCD1a       NAVRGFFFAHIGWLMVRKHPDVIEKGRKLEVHDLLADKVVMFQRKY-YKASVLLMCFFVP 145 

Champsocephalus_esox_SCD1a          NAVRGFFFSHIGWLMVRKHPDVIEKGRKLEVHDLLADKVVMFQRKY-YKASVLLMCFFVP 145 

Champsocephalus_gunnari_SCD1a       NAVRGFFFSHIGWLMVRKHPDVIEKGRKLEVHDLLSDKVVMFQRKY-YKASVLLMCFFVP 139 

                                    *: *****:*:***:*****:*:::* ** . ** .*  * **::. ** *::: ** .* 

Danio_rerio_SCD201                  TVVPCYMWGESLWIAYFIPTLLRYALGLNSTWLVNSAAHMWGNRPYDGNIGPRENRFVTF 257 

Danio_rerio_SCDb001                 TLVPWFFWEESLWTAYLVPCLLRYAVVLNATWLVNSAAHMWGMRPYDHNINPRENKFVAF 247 

Astyanax_mexicanus_SCDb201          TLVPWYLWGEDFWVAYFVPGLLRYTVVLNATWLVNSAAHMWGMRPYDSSINPRENRFVAF 264 

Cyprinus_carpio_CDS2                TFVPWYVWGESLWVAYFVPAVLRYALVLNATWLVNSAAHMWGNRPYDSSINPRENRFVAF 255 

Cyprinus_carpio_JF836162.1          TFVPWYVWGESLWVAYFVPAVLRYALVLNATWLVNSAAHMWGNRPYDSSINPRENRFVAF 255 

Ctenopharyngodon_idella_SCD         MFVPWFFWGETLWVAYFVPTVLRYTLVLNATWLVNSAAHMWGNRPYDSTINPRENRFVTF 255 

Astyanax_mexicanus_SCD201           TVVPWLFWGESLWVSYFVPALLRYAVVLNASWLVNSAAHMWGNRPYDANINPRENRFVTL 251 

Tetraodon_nigroviridis_SCD201       TFVPWYLWGESLWVAYLVPAVLRYTLVLNATWLVNSAAHMWGNRPYDNTINPRENKYVAF 267 

Takifugu_rubripes_SCD1              TFVPWYMWGESLWVAYFIPAVLRYTLVLNATWLVNSAAHMWGNRPYDNTINPRENKYVAF 264 

Takifugu_rubripes_SCD               TFVPWYMWGESLWVAYFIPAVLRYTLVLNATWLVNSAAHMWGNRPYDNTINPRENKYVAF 282 

Salmo_salar_ACD                     MFVPWCLWGESLWLGYFVPGLLRYTLVLNATWLVNSAAHMWGNRPYDTNINPRENKFVTL 264 

Xiphophoru_maculatus_SCD201         MFVPWYFWGESLWVAYFVPALLRYTLVLNATWLVNSAAHMWGNRPYDQNINPRENRFVTF 265 

Gasterosteus_aculeatus_SCD_201      MSVPWYLWGESLWVAYFIPSVLRYTLVLNATWLVNSAAHMWGNRPYDKSINPRENKFVTF 261 

Gasterosteus_aculeatus_SCD_202      MSVPWYLWGESLWVAYFIPSVLRYTLVLNATWLVNSAAHMWGNRPYDKSINPRENKFVTF 255 

Oryzias_latipes_SCD_201             MFVPWYLWGESLWAAYFVPVLLRYTMVLNATWLVNSAAHMWGNKPYDQNINPRENKFVTF 264 

Oreochromis_mossambicus             TIVPWYLWGESLWVAYFVPTLLRYTLVLNATWLVNSAAHMWGNRPYDKNINPRENKFVTF 267 

Orechromis_niloticus_SCDb201        TIVPWYLWGESLWVAYFVPTLLRYTLVLNATWLVNSAAHMWGNRPYDKNINPRENKFVTF 266 

Dicentrarchus_labrax_SCD1a          MFVPWYMWGESLWVAYFIPAVLRYTMVLNATWLVNSAAHMWGNRPYDKNINPRENKFVAF 264 

Bovichtus_variegatus_SCD1a          MFVPWYLWGESLWVAYFIPALLRYTLVLNATWLVNSAAHMWGNRPYDKNINPRENKFVGS 215 

Sparus_aurata_SCD1a                 MSVPWYLWGESLWVAYFVPALLRYTLVLNATWLVNSAAHMWGNRPYDKNINPRENKFVTF 266 

Chionodraco_hamatus_SCD1a           MFVPWYLWGESLWVAYFVPALLRYTLVLNATWLVNSAAHMWGNRPYDHHINPRENKFVAF 276 

Notothenia_angustata_SCD1a          MFVPWYLWGESLWVAYFVPALLRYTLVLNATWLVNSAAHMWGNRPYDQHINPRENKFVAF 129 

Trematomus_bernacchii_SCD1a         MIVPWYLWGESLWVAYFVPALLRYTLVLNATWLVNSAAHMWGNRPYDHHINPRENKFVAF 266 

Pagothenia_borchgrevinki_SCD1a      MIVPWYLWGESLWVAYFVPALLRYTLVLNATWLVNSAAHMWGNRPYDHHINPRENKFVAF 216 

Notothenia_coriiceps_SCD1a          MFVPWYLWGESLWVAYFVPALLRYTLVLNATWLVNSAAHMWGNRPYDHHINPRENKFVAF 266 

Notothenia_rossii_SCD1a             MFVPWYLWGESLWVAYFVPALLRYTLVLNATWLVNSAAHMWGNRPYDHHINPRENKFVAF 214 

Chaenocephalus_aceratus_SCD1a       MFVPWYLWGESLWVAYFVPALLRYTLVLNATWLVNSAAHMWGNRPYDHHINPRENKFVAF 205 

Champsocephalus_esox_SCD1a          MFVPWYLWGESLWVAYFVPALLRYTLVLNATWLVNSAAHMWGNRPYDHHINPRENKFVAF 205 

Champsocephalus_gunnari_SCD1a       MFVPWYLWGESLWVAYFVPALLRYTLVLNATWLVNSAAHMWGNRPYDHHINPRENKFVAF 199 

                                      **  .* * :* .*::* :***:: **::*********** :***  * ****::*   
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Danio_rerio_SCD201                  SAIG-------EGYHNYHHTFPYDYSTSEYGWKLNLTTIFVDTMCFLGLASNRKRVSKEL 310 

Danio_rerio_SCDb001                 SAIG-------EGFHNYHHTFPHDYATSEFGSRLNVTKAFIDLMCFLGLANDCRRVTHET 300 

Astyanax_mexicanus_SCDb201          SAVG-------EGFHNYHHTFPYDYAASEFGSRLNITKGFIDLMCFFGLAKDCKKVSPDT 317 

Cyprinus_carpio_CDS2                SAIG-------EGFHNYHHTFPFDYATSEFGCKLNLTTCFIDLMCFLGLAREPKRVSREA 308 

Cyprinus_carpio_JF836162.1          SAIG-------EGFHNYHHTFPFDYATSEFGCKLNLTTCFIDLMCFLGLAREPKRVSREA 308 

Ctenopharyngodon_idella_SCD         SAIG-------EGFHNYHHTFPFDYSTSEYGWKLNLTTCFIDLMCFLGLASDPKRVSREA 308 

Astyanax_mexicanus_SCD201           GAIG-------EGFHNYHHTFPYDYSTSEFGWKLNFTSCFIDTMCFLGLASDCKRAARSV 304 

Tetraodon_nigroviridis_SCD201       GAIG-------EGFHNYHHSFPYDYASSEFGCRLNLTTCFIDLMCYLGLATDRKKVSREA 320 

Takifugu_rubripes_SCD1              SLTG-------EGFHNYHHSFPYDYATSEFGCKLNLTTCFIDLMCYLGLATDRKMVSREV 317 

Takifugu_rubripes_SCD               GAIG-------EGFHNYHHSFPYDYATSEFGCKLNLTTCFIDLMCYLGLATDRKMVSREV 335 

Salmo_salar_ACD                     SAIG-------EGFHNYHHTFPYDYASSEFGCRLNLTTCFIDLMCFLGLAKDCKRVSPEI 317 

Xiphophoru_maculatus_SCD201         SAIG-------EGFHNYHHTFPYDYATSEYGCKLNLTTCFIDFMCFLGLAKDRKRVSREV 318 

Gasterosteus_aculeatus_SCD_201      SAIG-------EGFHNYHHTFPFDYATSEFGCKLNLTTCFIDAMCFLGLATDPKRVSHEL 314 

Gasterosteus_aculeatus_SCD_202      SAIG-------EGFHNYHHTFPFDYATSEFGCKLNLTTCFIDAMCFLGLATDPKRVSHEL 308 

Oryzias_latipes_SCD_201             SAIG-------EGYHNYHHTFPYDYATSEFGCQLNLTTCFIDLMCFLGLAKDCKRVSREL 317 

Oreochromis_mossambicus             SAIG-------EGFHNYHHTFPYDYATSEFGCKLNLTTCFIDFMCFLGLAKDRKKVSRDL 320 

Orechromis_niloticus_SCDb201        SAIG-------EGFHNYHHTFPYDYATSEFGCKLNLTTCFIDFMCFLGLAKDRKKVSRDL 319 

Dicentrarchus_labrax_SCD1a          SAIGMEKRIAREGFHNYHHSFPYDYATSEFGCKLNLTTCFIDFMCFLGLAKDCKRVSNEM 324 

Bovichtus_variegatus_SCD1a          A----------------------------------------------------------- 216 

Sparus_aurata_SCD1a                 SAIG-------EGFHNYHHSFPYDYATSEFGCKMNLTTCFIDLMCYLGLAKDRKRVSHEM 319 

Chionodraco_hamatus_SCD1a           SALG-------IGFHNYHHTFPFDYATSEFGIKWNITTGFIDTMWFLGLAKDRKRVSHEV 329 

Notothenia_angustata_SCD1a          S----------------------------------------------------------- 130 

Trematomus_bernacchii_SCD1a         SALG-------EGFHNYHHTFPFDYATSEFGIKWNITTCFIDTMCFLGLAKDRK-VSHEV 318 

Pagothenia_borchgrevinki_SCD1a      SA---------------------------------------------------------- 218 

Notothenia_coriiceps_SCD1a          SALG-------EGFHNYHHTFPFDYATSEFGIKWNITTGFIDTMCFLGLAKDRKRVSHEV 319 

Notothenia_rossii_SCD1a             SALG-------EGFHNYH------------------------------------------ 225 

Chaenocephalus_aceratus_SCD1a       S----------------------------------------------------------- 206 

Champsocephalus_esox_SCD1a          S----------------------------------------------------------- 206 

Champsocephalus_gunnari_SCD1a       S----------------------------------------------------------- 200 
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B.6 Alignments of SCD1b isoform sequences from Antarctic and non-Antarctic 
fish species. Alignments specific for Antarctic fish and cold adapted 
notothenioid non-Antarctic fish have been boxed 

 

 

Orechromis_niloticus                  -----------------------MTDKKQNGDART-DSSTVDDAIDFTYKEKPW-KPPTV 35 

Orechromis_niloticus_SCD202           --------------LTWTLPSHHHNNKKQNGDART-DSSTVDDAIDFTYKEKPW-KPPTV 44 

Xenopus_laevis_SCD                    ---------MTFRSSQ-TVSTIIEQSPSLKHDDIGADRNMTDDILDTTYTKKVDPKPPIK 50 

Salmo_salar_SCD                       ------------------MTETTNPNKQQNGDAVMPETSTRDDVFDDSYRAKEGPKPPMR 42 

Tetraodon_nigroviridis_SCDb201        --------------MTATENRHLRAAGHQNGGAMA-EASTVEDVFDDTYREKDGPKPAMR 45 

Takifugu_rubripes_SCD1b               --------------MTETENRNPHAA-RQPNGGMA-ESSTVEDVFDDTYREKDGPKPPRR 44 

Takifugu_rubripes                     --------------MTETENRNPHAA-RQPNGGMA-ESSTVEDVFDDTYREKDGPKPPRR 44 

Gadus_morhua_SCD_201                  --------------MTETDTRNHNPSKQQNGD-----GSTVEDVFDDTYREKEGPKPPRR 41 

Oryzias_latipes_SCDb_201              TTLFSPLHRCSYRNMTEAQTTDQHAGKQQNGDAMA-ESSTADDVFDSTYIQKKG-KPPMV 58 

Xiphophoru_maculatus                  ---------VLPRCRNMTETRIHRADKQQNGDAMA-ETSTVDDVFDDTYREKEGKKPPRI 50 

Sparus_aurata_SCD1b                   --------------MTETETRNHHAGKHQNGGAMAAETSTVEDVFDDTYAEKEGPKPPRT 46 

Dicentrarchus_labrax_SCD1b            --------------MTETETRNHHDGKQQNGGATA-EASTVEDVFDDAYKEKEGPKPPRM 45 

Gasterosteus_aculeatus_SCDb_201       --------------MTETVTRTHRDGKQQI---A--DSSTVEDVFDDTYKEKDGPKPPTA 41 

Pachycara_brachycephalum              ----------------------------------------------------------TT 2 

Cottoperca_gobio                      ------------------------------------------------------------ 0 

Bovichtus_variegatus_SCD1b            -------------------------------------------VFDDTYEEKEGPKPPRM 17 

Eliginops_maclovinus_SCD1b            -----------------------------------------------TYKMKEGPKPPRM 13 

Pagothenia_tessellata_SCD1b           ------------------------------------------DVFDDTYKMKEGPKPPRM 18 

Notothenia_rossii_SCD1b               -------------------------------------------VFDDTYKMKEGPKPPRM 17 

Notothenia_angustata_SCD1b            ------------------------------------------------------------ 0 

Notothenia_coriiceps_SCD1b            --------------MTETETRTLHDVKQQNGAAM--AETSVEDVFDDTYKMKEGPKPPRM 44 

Dissostichus_eleginoides_SCD1b        --------------------------------------STVGDVFDDTYKMKEGPKPPRM 22 

Gobionothen_gibberifrons_SCD1b        ------------------------------------------------YKMKEGPKPPRM 12 

Gymnodraco_acuticeps_SCD1b            -------------------------------------------VFDDTYKMKEGPKPPRM 17 

Trematomus_nicolai_SCD1b              -------------------------------------------VFDDTYKMKEGPKPPRM 17 

Gobionothen_marionensis_SCD1b         ------------------------------------------------------PKPPRM 6 

Lepidonotothen_squamifrons_SCD1b      -------------------------------------------VFDDTYKMKEGPKPPRM 17 

Pagothenia_borchgrevinki_SCD1b        -------------------------------------------VFDDTYKMKEGPKPPRM 17 

Trematomus_hansoni_SCD1b              ----------------------------------------------DTYKMKEGPKPPRM 14 

Chionodraco_hamatus_SCD1b             ---------------------------------------------DDTYKMKEGPKPPRM 15 

Chaenocephalus_aceratus_SCD1b         -------------------------------------------VFDDTYKMKEGPKPPRM 17 

Champsocephalus_gunnari_SCD1b         -------------------------------------------VFDDTYKMKEGPKPPRM 17 

Champsocephalus_esox_SCD1b            -------------------------------------------VFDDTYKMKEGPKPPRM 17 

Pagothenia_georgius_SCD1b             ---------------------------------------------DDTYKMKEGPKPPRM 15 

                                                                                                   

Orechromis_niloticus                  LRWSKIIAFSLLHLGALYGLILIPSASPSTLAWTAFCYVFSGLGVTAGAHRLWSHRSYKA 95 

Orechromis_niloticus_SCD202           LRWSKIIAFSLLHLGALYGLILIPSASPSTLAWTAFCYVFSGLGVTAGAHRLWSHRSYKA 104 

Xenopus_laevis_SCD                    IVWRNVILMCLLHIGAFYGLFFIPAAKPITLAWATVCFMLSALGVTAGAHRLWSHRSYKA 110 

Salmo_salar_SCD                       LVWRNIILMFLLHIGALYGLMIVPSASALTLAWTALCFLLSALGITAGAHRLWSHKSYKA 102 

Tetraodon_nigroviridis_SCDb201        LVWRNIILMSLLHVGALYGLLLLPSASASTLAWTAACYLFSALGVTAGAHRLWSHRSYKA 105 

Takifugu_rubripes_SCD1b               LVWRNIILMTLLHAGALYGLVLLPSASGLTLVWSAVCYLVSALGVTAGAHRLWSHRSYKA 104 

Takifugu_rubripes                     LVWRNIILMTLLHAGALYGLVLLPSASGLTLVWSAVCYLVSALGVTAGAHRLWSHRSYKA 104 

Gadus_morhua_SCD_201                  LVWRNIILMLLLHSGALYGLMLIPSASVLTLAWTVVCFIISALGVTAGAHRLWSHRTYKA 101 

Oryzias_latipes_SCDb_201              FVWRNIILMCLLHLGALYGLVLVPSASPLTLAWSGVCYFLSALGVTAGAHRLWSHKTYKA 118 

Xiphophoru_maculatus                  LVWRNIILMGLLHIGALYGLVLIPSASWLTLGWTAVCYMISALGVTAGAHRLWSHRSYKA 110 

Sparus_aurata_SCD1b                   LVWRNIIMMTLLHVTSLYGLVLLPSASAPTLAWTVVCYLFSALGVTAGAHRLWSHRSYKA 106 

Dicentrarchus_labrax_SCD1b            LVWRNIILMSLLHIGALYGLVLIPNASTSTLAFTAVCYMFSALGVTAGAHRLWSHRSYKA 105 

Gasterosteus_aculeatus_SCDb_201       LVWRNIVLMSVLHAAALYGLVLLPSASVPTLAWTAVCYIISALGVTAGAHRLWSHRSYKA 101 

Pachycara_brachycephalum              LVWRNIILMSLLHVTALYGLVLLPSASVATLAWTAVCYFISALGVTAGAHRLWSHRSYKA 62 

Cottoperca_gobio                      --WRNIMLMTLLHLGALYGLTLVPSASVLTLAWIAVCYLISALGVTAGAHRLWSHRSYKA 58 

Bovichtus_variegatus_SCD1b            LVWRNIILMTLLHLGALYGLILMPSASVLTLAWTAVCYLISALGVTAGAHRLWSHRSYKA 77 

Eliginops_maclovinus_SCD1b            LVWRNIILMTLLHLGALYGLILLPSASVSTVAWTAVCYLISALGVTAGAHRLWSHRSYKA 73 

Pagothenia_tessellata_SCD1b           LVWRNIILMTLLHLGALYGLVLLPSASVSTVAWTAVCYLISALGVTAGAHRLWSHRSYKA 78 

Notothenia_rossii_SCD1b               LVWRNIILMTVLHLGALYGLVLLPSASVSTVAWTAVCYLISALGVTAGAHRLWSHRSYKA 77 

Notothenia_angustata_SCD1b            --WRNIILMTLLHLGALYGLVLLPSASVSTVAWTAVCYLISALGVTAGAHRLWSHRSYKA 58 

Notothenia_coriiceps_SCD1b            LVWRNIILMTLLHLGALYGLVLLPSASVSTVAWTAVCYLISALGVTAGAHRLWSHRSYKA 104 

Dissostichus_eleginoides_SCD1b        LVWRNIILMTLLHLGALYGLVLLPSASVSTVAWTAVCYLISALGVTAGAHRLWSHRSYKA 82 

Gobionothen_gibberifrons_SCD1b        LVWRNIILMTVLHLGALYGLVLLPSASVSTVAWTAVCYLISALGVTAGAHRLWSHRSYKA 72 

Gymnodraco_acuticeps_SCD1b            LVWRNIILMTFLHLGALYGLVLLPSASVSTVAWTAVCYLISALGVTAGAHRLWSHRSYKA 77 

Trematomus_nicolai_SCD1b              LVWRNIIMMTLLHLGALYGLVLLPSASVSTVAWTAVCYLISALGVTAGAHRLWSHRSYKA 77 

Gobionothen_marionensis_SCD1b         LVWRNIILMTLLHLGALYGLVLLPSASVSTVAWTAVCYLISALGVTAGAHRLWSHRSYKA 66 

Lepidonotothen_squamifrons_SCD1b      LVWRNIILMTLLHLGALYGLVLLPSASVSTVAWTAVCYLISALGVTAGAHRLWSHRSYKA 77 

Pagothenia_borchgrevinki_SCD1b        LVWRNIILMTLLHLGALYGLVLLPSASVSTVAWTAVCYLISALGVTAGAHRLWSHRSYKA 77 

Trematomus_hansoni_SCD1b              LVWRNIILMTLLHLGALYGLVLLPSASVSTVAWTAVCYLISALGVTAGAHRLWSHRSYKA 74 

Chionodraco_hamatus_SCD1b             LVWRNIILMTLLHLGALYGLVLLPSASVSTVAWTAVCYLISALGVTAGAHRLWSHRSYKA 75 

Chaenocephalus_aceratus_SCD1b         LVWRNIILMTLLHLGALYGLVLLPSASVSTVAWTAVCYLISALGVTAGAHRLWSHRSYKA 77 

Champsocephalus_gunnari_SCD1b         LVWRNIILMTLLHLGALYGLVLLPSASVSTVAWTAVCYLISALGVTAGAHRLWSHRSYKA 77 

Champsocephalus_esox_SCD1b            LVWRNIILMTLLHLGALYGLVLLPSASVSTVAWTAVCYLISALGVTAGAHRLWSHRSYKA 77 

Pagothenia_georgius_SCD1b             LVWRNIILMTLLHLGALYGLVLLPSASVSTVAWTAVCYLISALGVTAGAHRLWSHRSYKA 75 

                                        * ::: : .**  ::*** ::* *.  *: :   *:..*.**:**********::*** 
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Appendix C :   Manufacturer details  for chemicals used for the 

biochemical analysis 

 Acetic acid- AJAX Finechem Pty Ltd  

 Chloroform- Fisher Scientific-C/4966/17,HPLC grade 

 Dichloromethane- Fisher Scientific-D151-4, HPLC grade 

 Hexane- Sigma-Aldrich-270504. HPLC grade 

 Methanol- Fisher Scientific-A452-4,-HPLC grade 

 Potassium Chloride- BDH-101984l 

 Potassium Hydroxide-Sigma Aldrich- P5958 

 Tetrahydrofuran- Riedel-de Haën-34946 

 Acetone-Fisher- FSBA949-4, HPLC grade. 

 2-Methoxyethanol- 284467, Sigma-Aldrich. 
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