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I 

Elk (Cervus elaphus spp) are widely used as a terminal sire in the New Zealand deer industry because 

elk red deer crosses are heavier at 12 months of age than pure-bred red deer (Cervus elaphus) and 

therefore better fit market demands. However, it is unclear whether nutritional requirements differ 

between genotypes. A series of experiments compared young (4 - 12 months) red deer and red deer­

elk cross (hybrids) in various aspects of their nutrition. 

Single genotype groups (10-15) of red deer and hybrid weaner stags were offered one of four pasture 

allowances (2 to 12 kg DM/head/day) on a rotationally grazed mixed ryegrass - white clover pasture 

system for 9 weeks in winter (June-July), spring (October-December) and summer (February -

March). Stags were weighed and given a new allocation of pasture weekly. Pre-grazing pasture mass 

ranged from 800 kg DMlha for low pasture allowances to 4500kg DMlha for higher allowances. 

Winter liveweight gain was low (40-80 g/day), relatively unaffected by pasture allowance and similar 

for both genotypes. In spring however, hybrids gained liveweight on average 100 g/day more than red 

deer across all pasture allowances and the response to additional pasture allowance was large 

(110 g/day at 2kg DMlhead/day to 300 g/day at 9.5 kg DMlhead/day). At the highest pasture 

allowance, hybrids grew faster (350 g/day) than red deer (250 g/day), although red deer were able to 

achieve this liveweight gain when offered less pasture (4 vs 12 kg DMlhead/day, respectively). 

Summer liveweight gain was lower for both genotypes and responded less to increases in pasture 

allowance than during spring. 

A second experiment compared the liveweight gain of both genotypes at ad lib feeding in an indoor 

environment where intake could be accurately measured. 

A group of red deer (n =15) and a group of hybrid (n =15) weaner stags were housed indoors during 

winter (3 June - 27 August) and spring (16 October - 16 December) and fed a pelleted grain based 

ration ad lib. Mean daily intake for each group (kg DM/head/day) was calculated as the difference 

between feed offered and feed refused. 

Hybrids had a significantly higher (P< 0.05) absolute DM intake compared with red deer in both 

seasons, although when expressed on a metabolic body weight basis, there was no difference between 

genotypes irrespective of season. Liveweight gain during winter did not differ significantly between 

genotypes regardless of whether it was expressed on an absolute or metabolic weight basis. Spring 



liveweight gain, expressed both on an absolute and metabolic liveweight basis, was significantly 

higher for hybrids compared with red deer (P<0.05). 

II 

Red deer and hybrids increased their feed intake from winter to spring by 20% and 24% respectively 

on a metabolic body weight basis. Although the difference between genotypes in their seasonal 

increase in intake was relatively small there was a large difference in their pattern of liveweight gain. 

Red deer exhibited a 34% and hybrids a 76% seasonal increase in liveweight gain expressed on a 

metabolic liveweight basis from winter to spring. 

These results indicate the greater rate of liveweight gain displayed by hybrids compared with red deer 

was not associated with a greater ad lib. intake (expressed on a metabolic body weight basis) and the 

seasonal increase in liveweight gain is greater for hybrids than for red deer. 

A further experiment estimated the energy requirement for maintenance of both genotypes. 

Five deer of each genotype were housed in separate pens (3.5m2
) during winter (3 June - 27 August) 

and spring (16 October - 16 December) and randomly assigned to one of 5 feeding levels (0.5, 0.6, 

0.7,0.8, or 0.9 times estimated adlib. intake of l.5 and l.7 kg DMlhead/day during the winter and 

3.0 and 3.3 kg DMlhead/day during the spring for red deer and hybrids, respectively. Maintenance 

requirement was determined by regression analysis of liveweight gain on ME intake. 

Although there was no seasonal effect on the liveweight gain response to intake there was a 

significant genotype effect. To maintain liveweight during either season, hybrids required a higher 

ME intake (0.52 MJ MEIW o.75/day compared with red deer 0.41 MJ MEIW o.75/day). The rate of 

increase in liveweight gain to increasing intake declined as intake increased and more so for red deer 

than hybrids. 

The final experiment in the series involved individually housed deer and aimed to more precisely 

determine differences in maintenance requirement and examine the difference in composition of gain 

between genotypes. In addition, in vivo apparent DM digestibility was measured in both genotypes. 

Red deer (n=7) and hybrid weaner stags (n=7) were housed in individual pens for a period of 8 weeks 

in both winter (July - August) and spring (November - December) and offered one of 7 feeding levels 

which ranged from maintenance to ad lib. During each 8 week experimental period, liveweight gain, 

apparent digestibility and feed intake were measured. Immediately prior to, and at the conclusion of 

each 8 week period body composition was estimated using computer-assisted topography (CT scan). 

In winter, there was no significant difference in the liveweight gain response to intake although red 

deer tended to have a higher (44 vs 55 MJ/kg) requirement for gain than hybrids. In spring, red deer 

had a lower requirement for maintenance (0.35 vs 0.47 MJ MEIW o.75/day) but a greater requirement 

for liveweight gain (64 vs 35 MJ/kg) than hybrids. In spring, mean ad lib. intake was about 30% 



III 

higher than in winter and was greater for hybrids than for red deer. Energy retention in whole body 

(kJ/W o.75/day) did not differ between genotypes in either winter or spring but both the energy 

requirement for zero energy balance (0.59 vs 0.48 MJ ME/w o.75/day) and the efficiency of utilisation 

(0.37 vs 0.24) was greater in spring than in winter. The disparity between liveweight gain and whole 

body weight gain may have been due to differences in gut fill. 

There was no significant difference between genotypes in relative growth coefficients for lean, bone 

or adipose tissue in whole body. However hybrids tended to have a higher winter and lower spring 

growth coefficient for fat compared with red deer. Growth coefficients for adipose, lean and bone, 

respectively were 0.983, 1.063 and 1.026 for winter and 1.02,0.708 and 1.727 for spring. At the same 

whole body weight, deer in October had less adipose tissue than in August. It is unclear whether this 

represents a strategy for rapid spring growth or is an artefact of experimental protocol. 

Apparent dry matter digestibility (DMD) did not differ between genotypes but was higher by between 

7 and 15 percentage units in win.ter compared with spring. Unexpectedly, digestibility was positively 

correlated with intake. Digestibility increased by 2.6 percentage units for every 109 D~·75/day 

increase in either season in one group and 4.1 and 2.1 percentage units for deer in winter and spring 

respectively in another group. Errors in faecal collection were discounted as causes of the unexpected 

result 
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Chapter 1 

Introduction 

Deer production has increased in significance to the New Zealand animal industry over recent years 

and currently export returns from the deer industry exceed $213 M of which $157 M comes from 

venison (Statistics New Zealand, 1999). 

1 

Integrated livestock production systems often involve the use of terminal sires to produce animals 

specifically for slaughter. Elk (Cervus elaphus spp) are becoming more widely used as terminal sires 

within the New Zealand deer industry because elk x red crosses (hybrids) have a higher weaning 

weight and faster pre- and post-weaning growth rate compared to red deer (Moore & Littlejohn, 

1989). This advantage in growth rate enables producers to more easily attain the industry target 

slaughter weight (95 kg liveweight) within 12 months of age which coincides with the elevation in 

the venison schedule as a result of increasing Northern Hemisphere demand at this time. 

It has been suggested that the liveweight gain advantage normally exhibited by red x elk hybrids over 

red deer is dependent on the level of feeding and in some situations where feed is limited the 

advantage to the hybrid may be much reduced or may not exist. While farm based observations 

suggest the liveweight gain difference between the genotypes is greater when large amounts of feed 

are offered and much smaller when feed is restricted, no formal comparisons of the two genotypes 

over a range of feeding levels has been reported. 

The volume of New Zealand research on the nutrition of deer is modest and generally confined to red 

deer. This is a reflection of the fact that deer have only been farmed in New Zealand over the last 25 

years. Research from Europe and North America has tended to study the nutrition of wild deer for 

wildlife management purposes rather than within a production system. As a consequence there are 

few formal investigations into the nutritional requirements of young red deer in a pastoral production 

system and even less work relating to farmed elk. 

With elk type animals becoming more widely used as terminal sires and consequently "hybrids" 

becoming an increasing proportion of yearling deer slaughtered, information on the relative feed 

requirements is becoming increasingly important if efficient production of venison is to be achieved. 

Given the seasonal and geographic variation in pasture supply experienced in New Ze'aland it is 



important as part of any evaluation of the potential use of elk in the deer industry that the extent to 

which genotypes differ in their nutritional requirements be investigated. 

The aim of this study was initially to identify, in a series of formal scientific experiments, whether 

on-farm observations that red deer and hybrids differed in their production response to level of 

nutrition within a pastoral system. The basis for such differences were further investigated in 

controlled indoor feeding conditions and in body composition studies. 

2 
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Chapter 2 

Review of the Literature 

2.0 Introduction 

Elk are larger than red deer (Moore and Littlejohn, 1989) and therefore the former will grow more 

rapidly. This difference in mature body size is reflected in red x elk hybrid (hybrid deer) weaner stags 

increasing live weight at a greater rate in the 12 month period post-weaning and being heavier at 12 

months of age compared with red deer (Drew and Hogg, 1990; Walker et al., 2000). Differences in 

liveweight gain at similar times of the year have typically ranged from 50 to 150 g/day. This variation 

is likely to reflect the proportion of elk genes present in the hybrid, nutritional environment and 

management. 

Terminology 

There is currently no consensus- on the taxonomic classification of red deer and elk. Some classify red 

deer (Cervus elaphus) and elk (Cervus canadensis) as different species (Whitehead, 1972) while 

others (Tate et aI., 1992; Fennessy and Pearse, 1990) believe them to be of the same species (Cervus 

elaphus) but red deer (Cervus elaphus scoticus) a different sub-species to elk (Cervus elaphus 

nelsoni, Cervus elaphus roosevetii, Cervus elaphus manitobensis). 

A true hybrid is the result of a first cross between two different species. While it is acknowledged that 

the animals referred to as hybrids in this thesis do not fit the description of a hybrid because there is 

some debate whether the parents are truly different species and in addition they may not necessarily 

be the result of a first cross, the term hybrid has been used to describe elk/red x red offspring in line 

with similar research (Kusmartono et aI., 1995) and with current industry terminology. 

In this thesis, red and hybrid deer are described as different genotypes. A genotype describes a group 

of animals with a common genetic composition at a specific gene locus or set of loci. While this term 

is normally reserved for selections within a breed (for example, Ball et aI., 1995; Smith et al., 1997 ) 

it can equally apply to groups (cross-breeds) from more diverse genetic background (Nicoll et 

aI., 1998) and can therefore be appropriate here. 



Comparison between breeds and strains 

Good scientific comparisons between breeds and/or strains of animals are difficult for a number of 

reasons. 

1) the sample of the breed, strain, or genotype must fairly represent the within breed or strain ' 

diversity and 

2) if crossbreds are involved in the comparison, the potential contribution of non-additive genetic 

effects such as heterosis must be acknowledged. 

Good experimental design can ensure that groups are formed from a range of sources to cover the 

range of within breed variation although this will be more difficult in a newly domesticated species 

such as deer where genetic and phenotypic variation for productive traits is large (McManus, 1993). 

4 

The contribution of heterosis to the productivity of crossbred animals can be established by full 

reciprocal crossing experiments (for example, Baker et ai., 1986) but these demand large resources 

and these data currently do not. exist for red elk hybrids. Failing these data for deer, extrapolation can 

only be made crudely from comparisons of the published performance of pure-bred and cross bred 

animals albeit in different environments. Mature liveweight is about 280 kg and 400 kg for red deer 

and elk males, respectively (Pearse, 1988). Yearling elk (12 months) are typically 155 kg (Wairimu et 

ai., 1982) while red deer at the same age weigh approximately 90-100 kg. 

Much of New Zealand's early venison production is based'on, not a first cross hybrid, but an animal 

that contains approximately 25% elk genes. Data from previous experiments with hybrids containing 

a similar proportion of elk genes (Kusmartono et ai., 1995) suggest best estimates of 12 month 

liveweight for red stags is 93 kg and for hybrids is 115 kg (Figure 2.1). 
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Figure 2.1. Previous published values of 12 - 15 month liveweight (kg) for red deer (0), elk (e) and 
their hybrids (D). 

The previous published value for 12 month weight of 25:75 red-elk hybrid deer (123 kg) suggests 

they are heavier (13.5 kg) than would be expected based on previously published values of 12 month 

weigh of the pure bred parents (96 and 150 kg for red deer and elk, respectively). This corresponds to 

a 12% heterosis figure for liveweight in hybrid deer. However, estimates of heterosis based on these 

data are crude, given parental means represent many different environments. 

Superior liveweight gain of hybrid deer has been demonstrated in both a research environment 

(Pearse, 1988) and on farm (Walker et al., 2000; Beatson et al., 2000) but the mechanisms by which 

hybrids are able to achieve a higher liveweight gain are not clear. Identifying the mechanisms 

involved would help producers more consistently achieve high live weight gain. For example, greater 

liveweight gain is usually associated with a greater feed intake (Semiadi, et aI., 1993a) but a lower 

stocking rate (higher pasture allowance), However, other possible mechanisms may also be 

responsible for greater liveweight gain (Figure 2.2). 
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Greater liveweight gain at a common relative intake would be expected if animal exhibited; 

I 

I 

(l) a higher digestibility of gross energy consumed 

(2) a higher metabolisability of digestible energy 

(3) a lower maintenance requirement and therefore more energy for production 

(4) a higher efficiency of utilisation of ME for fat and/or protein deposition 

(5) a higher protein: energy ratio (protein: fat) in liveweight gain 

I Gross energy I 
Faecal energy I I Digestible energy I 

Urine energy J I Methane energy J l Metabolisable energy I 
r ................................................................................... ..I 
! J : 

· .. ·:··· .... ··1 Heat increment 
1 I Net energy I 

1 

1 
Energy used for Energy deposited 

I maintenance as liveweight gain 

·······························1 
1 

1 

Total heat Energy Energy deposited 

oroduction deoosited as fat as protein 

Figure 2.2 Partitioning of gross energy in the animal. Shaded boxes represent mechanisms which at 
a common intake could be expected to support a greater liveweight gain. 

The aim of this section is to review the factors affecting grazing intake and partitioning of gross 

energy and establish whether there is evidence for difference between genotypes. 
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2.1 Intake 

Introduction 

Pasture intake is the single most important factor affecting production levels of grazing ruminants 

(Poppi et al., 1987; Rattray and Clark, 1984). The amount of feed consumed by grazing ruminants 

has been estimated by UlyaU (1984) to account for 50 t070% of the variation between pastures in 

their capacity to sustain animal productivity. There are three main factors controlling feed intake. 

Firstly, intake is proportional to nutrient demands. For example, lactating females have a higher ad 

lib. intake than non-lactating cohorts (Poppi et at., 1987). Differences in energy demands between red 

deer and hybrids may lead to a difference in intake and are discussed in a later section (Section 2.2). 

Secondly, pasture intake is dependant on the rate of clearance of digesta from gastrointestinal tract. 

Digesta clearance from the rumen is a major factor determining ad lib feed intake (Black et al., 

1982). 

Finally, pasture intake is dependant on pasture availability and in particular pasture allowance. Of the 

variables which influence nutrient concentration, digestibility and metabolisability of the diet may 

vary by a factor of2 and 1.2 respectively, whereas herbage intake may vary by a factor of 5 

depending on sward conditions (Hodgson and Grant, 1981; Minson, 1982). Therefore, the major 

factor influencing pasture intake is likely to be pasture allocation rather than nutritional factors or 

animal demand. 

Nutrient Demand 

Grazing intake is proportional to the nutrient demand of the animal and therefore intake is generally 

higher for large and high producing breeds. For example, L'Huillier et al. (1988) reported Friesian 

cows (418 kg) grazed to a lower post-grazing pasture height (3.4 cm vs 3.7 cm) than Jersey cows 

(342 kg) when offered similar pasture allowances (per cow per day) of the same pre-grazing height 

and therefore had a greater apparent DM intake. Furthermore, high breeding value (BV) Friesian 

dairy cows (126 breeding indices) are known to have a higher ME intake (2.07 MJ MEIW 0.75/day) 

in stall feeding situations fed pasture compared with their low BV (102 breeding indices) 

counterparts (1.99 MJ MEIW 0.75 /day) (Davey et al., 1983). Similar work with Jersey cows in a 

pastoral environment (Bryant, 1983), showed high BV cows consumed a greater proportion of 

herbage offered (65.3%) than low BV cows (61.0%). 

It is probable, hybrid deer, with their greater potential for liveweight gain, have a greater nutrient 

demand compared with red deer. However, the difference in liveweight (10-15 kg) between 

genotypes as young weaner stags is not large and unless there is big differences in the composition of 

gain differences in nutrient demand are likely to be small. 



Rumen disappearance rate 

Pasture intake can be dependant on the rate of disappearance of digesta from the rumen (Black et a/., 

1982). Disappearance rate is a function of the degradation rate of material consumed and passage or 

outflow rate of digesta. 

The outflow of particles from the rumen primarily depends of the rate of breakdown of particles to 

sizes which have a high probability of passage from the rumen (Ulyatt et al., 1986). For deer this has 

been defined as passage through a Imm sieve (Domingue et al., 1991a). Because soluble 

carbohydrates degrade about 150 times faster and storage carbohydrates about 5 times faster than 

structural carbohydrates (Maeng and Baldwin, 1976) the relative proportion of these constituents in 

plant material (a measure of quality) can affect the rate of removal from the rumen. 

Generally, a slow passage rate through the gastrointestinal tract reduces intake while rapid passage 

rate increases intake. For example, a faster rumen clearance rate of chicory relative to ryegrass fed 

deer was associated with a higher ad lib. feed intake (Kusmartono et al., 1997) and red deer fed red 

clover had a faster clearance rate and greater intake than on a ryegrass based pasture (Freudenberger 

et ai., 1994). 
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Both animal and feed factors affect rate of passage. illcreased passage rate are generally associated 

with a higher DM intake (Warner, 1981) finely ground feeds which rapidly degrade to fine particles 

in the rumen (Blaxter et ai., 1956), feeds with low specific gravity (Campling and Freer, 1962) and 

feeds with a high fibre content (Warner, 1981). Animal factors include age, pregnancy, temperature 

and frequency of feeding with pre-ruminant (Warner, 1981), pregnant animals (Graham and 

Williams, 1962) in cool environments (Westra and Christopherson, 1976) have faster passage rates. 

ill addition, a review of the literature suggests animals fed more frequently may have a faster passage 

rate compared to those which were given a single meal (Warner, 1981). 

Pasture availability 

Pasture availability to grazing livestock has been defined in a variety of terms such as pre- or post­

grazing pasture mass, pasture allowance or pasture height. A pasture allowance is the amount of 

. herbage existing above ground, offered to stock over a set period and is expressed in terms of kg 

DM/head/day or kg DMllOO kg/day. Pre- and post-grazing mass refer to the mass of herbage above 

ground per unit area before and after grazing respectively and are expressed as kg DMlha. Where 

animals are stocked on areas continuously as opposed to a rotational system of stocking, pasture 

height is a more common definition of pasture availability. 



Limited pasture allocation, irrespective of how it is defined, has a direct effect on pasture intake. 

Accurate measurement of grazing intake is difficult so many studies have used live weight gain or 

other aspect of production (such as milk production) as a substitute for animal intake in defining 

relationships between animal intake and pasture availability. 

The relationship between the amount of pasture allocated to the grazer, regardless of how it is 

defined, and pasture intake or it associated liveweight gain is curvilinear under most conditions 

(Figure 2.3). This relationship represents an increasing rate of decline in intake (or liveweight gain) 

with decreasing pasture allowance. Where pasture allowance is small (at the ascending part of the 

relationship) harvesting constraints are most important in limiting intake (and liveweight gain). 
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Figure 2.3. A typical relationship between daily liveweight gain (g/day) of lambs and pasture 
allowance (kg DM/h/day) (from Rattray and Clark, 1984). 

Where pasture allowance is high and sward characteristics do not restrict the ability of animals to 

harvest pasture, nutritional factors such as animal nutrient demand, digestibility, rumen degradation 

rate and concentration of metabolic products, become important in controlling intake. Most farming 

systems generally operate over a range of pasture allowances corresponding to the steeper slope of 

the curve and therefore it is pasture variables which have the most pronounced influence on feed 

intake and animal production in these cases. 

Grazing intake is a product of bite size, bite rate and grazing time. Daily herbage intake is closely 

correlated with bite weight since a low bite weight cannot be totally compensated for by increasing 

bite rate or grazing time (Hodgson, 1990). The major sward parameters which affect bite weight are 

pasture height and bulk density (Black and Kenney, 1984; Hughes et al., 1991). Pasture height has 

little effect on bite area (area grazed by one bite) but taller pasture increased bite weight through a 

greater bite depth (the average length of removed leaves). For example, doubling sward height 

(within the range of 3 to 21 cm) increased bite weight of young red deer hinds, by 64% on average 

(Mitchell et al., 1991). Breeding ewes in late pregnancy grazing a common allowance but at two 
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contrasting masses differed in both their intake and liveweight gain (Rattray et al., 1982a). More 

extensive work (Rattray et al., 1983) has produced a set of curves indicated the effect of increasing 

pasture mass on intake over a range of allowances (Figure 2.4). 
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Figure 2.4. The effect of pasture mass on intake and liveweight gain of ewes offered pasture at 
varying pasture allowances (from Rattray and Clark, 1984). 

mcreasing pasture density also increases bite weight despite a reduction in both components of bite 

volume (bite area and bite depth). For example, doubling bulk density (within the range 0.19 - 0.75 

mg DMlcm) increased bite weight by 21 % (Mitchell et al., 1991). 
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Increasing pasture height and density, increased bite weight and the effects of pasture height and 

density on bite weight are independent and additive (Hodgson, 1981). Pasture height has 3 times the 

effect on bite weight as pasture density. Therefore, it is pasture height rather than bulk density 

component of pasture mass that has the major effect on allowance - intake relationships. 

There is a strong relationship between sward structure and animal performance. For example, 

L'Huillier et al. (1984) reported Coopworth ewes consumed 36% more prairie grass pasture than 

ryegrass pasture when both species were offered the same allowance at a similar pasture height. 

During summer, the difference was 87%. Differences in the spatial distribution of green leaf within 

the swards were likely to have been responsible for the difference in intake. 
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For Prairie grass, 36% of green leaf was greater than 3 cm above ground level compared with 5% for 

ryegrass. Differences in allowance-liveweight gain relationships between different pasture species 

(Figure 2.5) are likely to partly reflect differences in the spatial distribution of green leaf. 
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Figure 2.5. The effect of pasture species on the relationship between pasture allowance and daily 
liveweight gain of lambs at pasture (from Jagusch et al., 1979b). 

In addition to this effect, intake may decline at high pasture masses as animals attempt to 

preferentially select green over dead material (Hawkins et ai., 1993) and leaf rather than stem (Poppi 

et al., 1987). 

Body size 

The allometric model of Illius and Gordon (1987) identified body size as a factor affecting the ability 

to obtain adequate energy intake from short pastures. Small animals (30 kg) were able to achieve 

intake equivalent to twice maintenance at a pasture height of 2.3 cm compared with a large animal 

(120 kg) which only achieved a maintenance intake. Increasing pasture height from 2 to 7 - 8 cm 

increased the difference between relative intake of large and small animals. The implication of this is 

that longer pasture may need to be provided to large elk-type deer to achieve a similar intake 

compared with smaller red deer. 

Thompson and Parks (1983) showed large sheep breeds had a higher intake than smaller breeds based 

on results from long-term feeding and growth experiments. Large rams ate more than small rams at 

any age. However, after scaling for mature weight (Taylor, 1980), there was little difference in feed 

intake between large and small rams. The implication to this study is that hybrid deer may eat more 

because of their larger mature size. 
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Species of grazer 

The general relationship between pasture allowance and intake is similar for lambs (Thompson and 

Jagusch, 1977; Jagusch et al., 1979b), cattle (Marsh, 1977; Jamieson and Hodgson, 1979), lactating 

dairy cows (Bryant, 1980), pregnant ewes (Rattray et al., 1982a), ewes with lambs (Rattray et al., 

1982b) and young red deer (Adam and Asher, 1986). While the general form of the response curve is 

similar for different animal species and different physiological states there is much variation in the 

actual intake response curve to increasing pasture allowance. For example, maximum intake was 

only achieved where allowances were 3.5 times the maximum intake in calves (Jamieson and 

Hodgson, 1979),4 times maximum intake for dairy and beef cattle (Holmes, 1987) and 4 - 5 times 

maximum intake for sheep (Gibb and Treacher, 1976; Hodgson, 1984). 

In addition to pasture allowance and pasture mass, preference for one or more pasture species within 

a mixed sward and/or selection of plant components within a pasture species varies between and 

within animal species. For example, sheep select diets with a higher proportion of green material and 

a higher nutritive value than cattle (Jamieson and Hodgson, 1979) and goats are known to harvest 

more grass and less clover compared with sheep grazing similar mixed swards (Clark et al., 1982). 

Although there is not a good understanding of how these differences occur it is likely harvesting 

technique, shape of mouth, and feed demand may all be contributing factors. 

Differences between deer species have been reported. Grazing patterns of red and sambar deer were 

similar for total grazing time, rumination but timing of grazing (night vs day) and prehending biting 

rate which may indicate differences in bite weight and grazing selectivity (Semiadi, et al., 1993) 

differed between the species. 

SpecijU; pasture allowance intake relationships for deer 

There are few experimental data which specifically describe the relationship between pasture 

allowance and intake or liveweight gain for deer and presumably farmers have used sheep guidelines 

when allocating pasture to deer. 

Hamilton et al. (1998) showed liveweight gain of stags continuously stocked over the summer did not 

increase beyond a pasture height of 6 cm. (Figure 2.6). 
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Figure 2.6 Liveweight gain response of yearling red deer stags to pasture height during summer 
(from Hamilton et al., 1995). 
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Of the few experiments conducted in a rotational stocked system, the work of Adam and Asher 

(1986) with red stags (Figure 2.7) is unique in that it describes liveweight gain over a range of 

allowances (2 -7 kg DMlh/day), More recent work (Ataja et aI., 1990; Ataja et al., 1992; Semiadi et 

al., 1993a; Kusmartono, 1995) have tended to concentrate on the plateau region of the relationship by 

either offering generous pasture allowances or a high post-grazing pasture mass. Consequently, there 

is little information on the effect of less generous pasture allocation more commonly found on 

commercial farms. 

Deer are known to have a pronounced seasonal cycle of feed intake (Kay and Goodall, 1976) 

characterised by high intake in spring and summer and lower intake in autumn and winter. A different 

response of intake to pasture allowance at similar times of the year is a possible consequence of 

different seasonal cycles of feed intake between sheep and deer. 
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Figure 2.7. The liveweight gain response (g/day) of red weaner stags to changes in pasture 
allowance (kg DM/head/day) in autumn (from Adam and Asher, 1986). 
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For deer, the relative liveweight gain advantage hybrid deer have over red deer was reduced when 

pasture allowance declined between two years (Simpson, unpublished data). This farm-based data is 

evidence of a different response to pasture allowance between these genotypes although care should 

be taken in the interpretation of this observation as there may be many other confounding factors. 

However, the suggestion is that animals with increased physiological drive or potential may differ in 

their response to increasing pasture allowance as previously hypothesised for cattle by Ferrell and 

Jenkins (1985). 

Summary 

Deer respond to variation in pasture allowance and pasture height in a similar fashion to sheep and 

cattle although the exact shape of the response relationship for rotational grazing, with the exception 

of autumn, is currently unquantified. There is some evidence that species (cow vs sheep) breed 

(Friesian vs Jersey) and genetic merit (high vs low BV cows) influence the intake response to pasture 

allocation and show different levels of intake or production at a common pasture availability. It is 

possible therefore, that hybrid and red deer could differ in their intake response to pasture allocation. 

The following section considers evidence for variation (between genotypes) in digestibility, 

metabolisability and efficiency of utilisation. 

" -:::." .... 



2.2 Energy metabolism 

Introduction 

Red and hybrid deer could differ in their level of production from the same gross energy intake if; 

(1) the proportion of ME in GE was greater in one genotype due to digestibility or metabolisability 

differences and/or 
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(2) ME requirements for maintenance were higher for one genotype compared with the other and/or 

(3) the energy available for fat and protein deposition was used with a greater efficiency for one 

genotype compared with the other and/or 

(4) the energy value ofthe gain (ratio of fat protein) was different between genotypes. 

Digestibility 

Differences in digestibility between different breed or genotype of animal may be due to 

1) selecting a more digestible diet from the same pasture on offer or 

2) digesting more or less of the same diet resulting from a faster or slower degradation and or 

passage rate. 

In general, sheep tend to select a diet containing a higher proportion of green leaf and less stem and 

dead material than is in the pasture (Rattray and Clark, 1984). A similar, but less pronounced, 

pattern exists with cattle (Forbes and Hodgson, 1985). Factors which determine the components of 

forage selected include (i) ease of eating which increased intake rate (Kenny and Black, 1984) , (ii) 

sensory factors relating to taste, odour and tactile stimulation of feed (Colebrook et ai., 1985, 1990), 

(iii) water content of the forage (Black et ai., 1987) and (iv) the quantity and spatial distribution of 

components within a sward (Hodgson, 1985; Forbes, 1988). Taylor et ai. (1987) suggested that 

incisor arcade breadth influences the amount of forage ingested per bite, the minimum distance 

between components for effective discrimination and maximum eating rate. 

While this could explain largely why cattle are less able to discriminate between forage components 

than sheep (Forbes and Hodgson, 1985) there is no evidence to suggest two genotypes of deer differ 

in their ability to select components from pasture. 

Apparent digestibility of DM and energy is affected by ruminant species. Although digestibility of 

roughage diets is to a large extent dependant on the chemical components of feed, different ruminant 

species do show small differences in their ability to digest a common feed. For example, goats have 

been shown to digest fibre more effectively than sheep, particularly when fed low quality roughage 

(Howe et ai., 1988; Domingue et ai., 1991a). Further, on a diet oflucerne hay in winter, apparent DM 

digestibility was lower for deer (63%) than for goats (72%), with sheep (67%) being intermediary. 



Sheep and cattle appear to digest silages, forages and concentrate diets with similar efficiency 

(Wainman, 1977). 
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Webster et al (1974) reported a non-significant trend for Angus (66%) steers to digest a pelleted 

barley based diet to a greater extent than Friesians steers (63%). lason et al. (1995) found the 

apparent digestibility of dry matter, organic matter, nitrogen, NDF and ADF were lower for Shetland 

ewes during winter on a hay diet compared with either Scottish Blackface or Dorset Hom. 

Genotype effects on digestibility may be seasonally dependant. An increase in the level of feed intake 

generally reduces digestibility therefore species like deer which have a big seasonal change in intake 

may show a seasonal change in digestibility compared with sheep. There is some evidence for this 

(Domingue et al., 1991a). Further, if deer genotypes differ in the seasonal amplitude of intake, it is 

possible seasonal variation in digestibility may also occur. 

Metabolisability 

The metabolisability of digestible energy refleCts the loss of methane and urinary energy from the 
. -

animal. Methane is a product of microbial degradation of feed in the rumen and represents an energy 

loss to the animal and typically 5 - 9% of gross dietary energy (Blaxter and Clapperton, 1965). 

Methane yield correlates negatively with DM intake (Blaxter & Clapperton, 1965; Gibbs et al., 

1989). Lower methane yields at high intakes are presumably a reflection of faster rumen clearance 

and thus proportionately lower rumen digestion of feed. However, Uylatt et al.(1997) showed 

methane emission was only weakly correlated with DM intake suggesting DM intake was a relatively 

minor determinant of variation in methane emission. For both sheep and cattle, inter-animal variation 

was the main source of variance in methane emission (87%) but currently there is little evidence for 

systematic differences between breeds and species. 

Urinary losses represent about 12% of digestible energy and differences between species (deer and 

sheep) are relatively minor (Simpson et al., 1978b) but energy loss through urine does increase with 

high protein diets. 

It is unlikely therefore that red and hybrid deer differ in productivity based on metabolisable energy 

differences. 
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Maintenance Energy Requirements 

There are two ways of estimating the maintenance energy requirements (MEru) of an animal. 

1) regression of ME intake (above or below MErn ) on energy retention in the body or more often 

liveweight change. The value of ME intake at zero energy or zero liveweight change is 

considered MErn 

2) the component energy costs of maintenance are measured and accumulated factorially to provide 

an estimate of MErn when the efficiency of utilisation of MErn for maintenance is known. For 

example, 

MErn = (Fasting heat production + cost of eating (and ruminating) + cost of walking) 

krn 

Only the first approach has been used to estimate the MErn for species of deer (Table 2.1). 

Table 2.1 Energy (Mf MEf!1oI·75/day) requiredfor maintenance of live weight (MEwo) or energy 
(MEEo)for housed and free ranging deer genotypes in winter, spring and summer. 

Species * Age Season" Environment MEEO MEwo Authors 
(months) MJ MFlW'75/day MJ MFlW'·75/day 

wapiti 5 winter free ranging 0.56 Cool & Hudson, (1996) 
wapiti 6-14 winter housed 0.47 Jiang & Hudson, (1994) 
wapiti 24 winter housed 0.57 Jiang & Hudson, (1992) 
wapiti 6-14 spring free ranging 0.90 Jiang & Hudson, (1994) 
wapiti 6-14 summer housed 0.73 Jiang & Hudson, (1994) 
wapiti 24 summer free ranging 0.94 Jiang & Hudson, (1992) 

red deer adult winter housed 0.53 Brockway & Maloiy, (1968) 
red deer 6-20 winter housed 0.57 Fennessy et al. (1981) 
red deer 6-20 winter free ranging 0.85 Fennessy et al. (1981) 
red deer 6 winter housed 0.45 Simpson et al. (1978b) 
red deer 5-17 year housed 0.52 Suttie et al. (1987) 
red deer 6 summer housed 0.50 Simpson et al. (1978b) 
red deer 10-14 summer housed 0.57 Semiadi et al. (1998) 

sambar 10-14 summer housed 0.47 Semiadi et al. (1998) 

white tailed adult winter ~enned outside 0.67 Ullre~ et al. (1970) 
* Wapiti is the North American term for elk 

Estimates of the energy required for maintenance have generally been derived using two methods. 

The most widely used method is to determine the amount of energy required to maintain zero weight 

change (to estimate ME for liveweight maintenance). The requirement MJ/WO.75 /day defined as the 

intercept value of the best fit linear relationship fitted to MEl (MJ/W 0.75/day) and liveweight gain 

(glday) data. Alternatively other authors (Simpson et at., 1978b) have estimated maintenance 

requirements based on respiratory gaseous exchange using closed circuit respiratory calorimeters to 

calculate ME for zero energy retention. 

,-,'. <-'. --.--.-.-.-:.-'--
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The requirements for maintenance for red deer reported in Table 2.1 are similar to the ARC (1980) 

estimates for cattle but between 30 and 50% higher than those of sheep. Only suggestions can be 

made as to any systematic variation of estimates made under different circumstances but the crude 

mean for red deer is 0.57 MJIWo.75 /day and for elk is 0.69 MJIWo.75 /day, for housed deer is 0.57 

MJIWo.75 /day and for free ranging deer is 0.78 MJIWo.75 /day and for winter is 0.54 MJIWo.75 /day 

and for spring/summer 0.69 MJ/kgO.75 /day. 
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In the only comparison between deer species under similar conditions, (Semiadi et ai., 1994) young 

sambar deer (Cervus unicoior) were reported to have a lower requirement for maintenance (0.47 MJ 

MEIW 0.75/day) compared with red deer (0.57 MJ MEIW 0.75/day). As a consequence, at any 

particular rate of intake sambar retained more energy than red deer. The lower MEm was reported to 

be a logical explanation of a greater feed conversion efficiency of sambar stags and hinds (11.4 kg 

DM intake/kg LWG) compared with red deer stags (14.3 kg DM intake/kg LWG). A lower energy 

requirement for both maintenance and liveweight gain in sambar deer (tropical-type) was suggested 

as an adaptive strategy to reduceunpecessary heat production in a hot climate. For red deer, which 

have evolved in a temperate climate, higher levels of heat production may be beneficial in cooler 

conditions. 

There are no comparisons of maintenance requirement between red deer and red x elk hybrids and it 

is difficult to compare data for red deer and wapiti (elk) since they involve separate experiments run 

under different conditions. Comparison of MEm for red deer and hybrids under similar conditions 

would provide novel information and may help to explain differences in liveweight gain. 

Difference between red deer and elk run under the same conditions which could be due to a 

difference anyone or more of the following 

1) Fasting heat production (FHP) 

2) Costs and/or level of activity 

3) Efficiency of utilisation of ME for maintenance (km> 

4) Lower critical temperature 
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Fasting heat production 

The concept of a basal metabolic rate (most often measured as a rate of heat production under 

standardised conditions) has been used to compare metabolic rate between and within species. Basal 

metabolic rate can be defined as the heat produced by an animal when in a resting, post-absorptive 

state in a thermo-neutral environment. However, the term fasting heat production (FHP) is better used 

to describe the situation more commonly found in ruminant animals where they are fasted and in a 

thermo-neutral environment but heat production is elevated by some voluntary muscle activity (as 

complete relaxation in livestock is rarely achieved) and by digestion (as a completely post-absorptive 

state is not easily achieved in ruminant animals). Fasting heat production is the major component of 

MEm, and arguably differences which occur in MEm are likely to originate, at least in part, from FHP. 

The following section reviews factors affecting FHP. 

Factors affecting FHP 

Body size 

The initial studies of Kleiber (1932) and Brody and Procter (1932) and later work of Zeuthen, (1947); 

Zeuthen (1953), Hemmingsen, (1950) and Hemmingsen (1960) showed that for many animals FHP 

was proportional to body weight raised to the power of 0.75 (Figure 2.8). This is an interspecies 

relationship and the exponential function for different groups of animals of different taxonomic 

grouping can vary from 0.60 to more than 0.90 (Calder, 1987). 

Mature weight (kg) 

Figure 2.8 The relationship betweenfasting heat production and mature body weightfor species 
within different taxonomic groups indicating fasting heat production increases with WO. 75 (from 
Blaxter, 1989). 
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Species 

Although taxonomic grouping does explain some of the variation in FHP there is evidence that breeds 

within a species may differ in FHP. Sheep have a lower and cattle a higher FHP compared with the 

inter-species mean and even the mean for ungulates (Blaxter, 1989). There is also some evidence that 

genotypes within a species may differ with higher values associated with more productive breeds at 

any given weight (Figure 2.9). 
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Figure 2.9 The relationship between body weight andfasting heat production for Ayrshire (0) and 
Aberdeen Angus (.) cattle and their relationship with the inter-species mean (from Blaxter, 1989). 

Nutritional status 

Although fasting heat production by definition is measured in a post-absorptive state (requiring short 

term starvation to achieve this), previous nutritional history has a significant effect on fasting heat 

production. For example, sheep that lost significant amounts of fat and protein after being offered 

half the feed required for maintenance, showed a reduction in fasting metabolic rate from 265 to 231 

kJ/WO.75 Iday (Marston, 1948). 

Under-nutrition is known to have a negative effect on weight of internal organs including liver 

(Koong and Ferrell, 1990) and intestines (Burrin et al., 1990). Webster (1981) has suggested that gut 

and liver combine to contribute about 40% of total heat production in sheep and consequently 

reducing the weight of these organs is likely to reduce FHP. It would follow that animals offered high 

levels of nutrition may have elevated levels of fasting heat production due to the incre!;lsed size of 

internal organs with high energy demands. 
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Deer showed marked seasonal variation in feed intake and therefore, FHP could be expected to be 

lower during winter when feed intake is reduced compared with spring/summer when intake 

increases. There is some evidence that FHP is lower in winter than in spring. For example, where 

intake increased from winter to summer for wapiti (Jiang and Hudson, 1993), summer FHP tended to 

be higher in spring compared with winter although the differences were not significant. Further, FHP 

was lower in winter than during summer (Silver et at., 1969) in white tailed deer. However, it is 

unclear whether this is a seasonal effect per se (Silver et at., 1969) or a reflection of the seasonal 

cycle of intake (Nilssen et at., 1984; Pekins and Kanter, 1992). 

Activity 

The energy cost of activity could differ between genotypes if 1) the costs of activity (grazing, 

walking, standing) were different or 2) the amount of activity differed. 

Costs of walking and grazing do not differ markedly between species when expressed per unit of 

body weight (Blaxter, 1998). Therefore, it is unlikely that activity cost contribute to any differences 

between genotypes. 

The amount of activity largely depends on feed availability since activity associated with the harvest 

of feed is a large proportion of total activity. It is unlikely, if animals are compared under similar 

grazing environments that differences in grazing activity are significant. 

Homeothermy 

There is some evidence that deer differ from other species in the environmental temperature below 

which they expend energy on thermogenesis (reach their lower critical temperature) (Simpson et at., 

1978a), thus increasing maintenance requirement. There is also evidence that deer species originating 

from tropical and temperate environments may differ in heat production at maintenance (Semiadi et 

at., 1994). It has been suggested lower ME requirements for both maintenance and growth in 

tropical-type animals may be an adaptive strategy to counter high environmental temperatures. On 

the other hand, higher levels of heat production may be needed to counter the lower ambient 

temperatures experienced by red deer in the temperate zone. However, it is unclear whether two 

temperate species and furthermore a hybrid and pure bred of two temperate species differ 

significantly in maintenance heat production. 
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Summary 
From previous studies, there appears to be variation in maintenance requirement between red deer 

and wapiti but species effects are confounded by age, season, environment and method of estimation. 

Where deer species have been compared directly, temperate and tropical species differ in their 

requirement for maintenance, possibly as a strategy to counter high environmental temperatures. 

However, it is unclear if temperate deer species differ in their maintenance requirement. 

The factors which combine to make up ME requirement for maintenance are FHP, the efficiency of 

ME used for maintenance (knJ, energy required for activity and energy associated with 

thermogenesis. It is likely differences in MEm are reflected in FHP since FHP is a major component 

of MEm. However it is unclear whether genotypes differ in amplitude or timing of any seasonal cycle 

of FHP which may exist or differ in FHP per se. 

ME intake is distributed between MEm and MEp (energy requirement for production). Regardless of 

any differences between genotypes in MEm, a difference in the efficiency with which each genotype 

utilises ME for liveweight gain could explain differences in liveweight gain. The following section 

outlines the factors affecting the utilisation of ME for liveweight gain. 

EfflCiency of utilising ME for live weight gain 

The energy cost of liveweight gain can be determined from the regression of energy retention in the 

body or more often liveweight change on ME intake (above MEnJ. The value of the regression co­

efficient is considered to be the energy cost of liveweight gain. Previous estimates of the cost of 

liveweight gain for both red deer and wapiti and for hinds and stags, using this method are given in 

Table 2.2. 

Table 2.2. Previously published estimates of the energy costs of liveweight gain in deer. 

Genotype Sex Energy cost (MJ MElkg) Author 

Wapiti Stags 33.4 Wairimu et at. (1992) 

Wapiti Stags 38.5 Jiang and Hudson (1992) 

Red Stags 37.0 Fennessy (1981) 

Red Stags 38.4 Semiadi et at. (1994) 

Red Hinds 55.0 Suttie et at. (1987) 

Red Hinds 46.9 Semiadi et at. (1994) 
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Previously published estimates for the energy costs of liveweight gain are similar for young red deer 

and wapiti stags, but estimates are much higher for hinds. Presumably, the energy value of the gain is 

higher for hinds as a result of a greater proportion of fat in gain compared with stags of the same age. 

The requirement for energy gain can be described as; 

MEg = EVg xLWG 

kg 

(where ME requirement for energy gain is in MJ MElkg, EVgis the energy value of the gain in MJ 

MElkg and kg is the efficiency of utilisation of energy for energy deposition) 

Genotypes could potentially differ in the efficiency of utilisation of energy for liveweight gain if; 

(1) liveweight gain contained a different proportion of fat and protein for each genotype (ie. 

genotypes had a different composition of gain) and/or 

(2) inherent differences existed in the efficiency with which fat and protein were deposited 

There is variation in the efficiency with which ME is deposited with energy retained as fat being 

much more efficient (approx. 0.7) than energy retained as protein (approx. 0.3) (McDonald et al., 

1995). The following section reviews previously published values for the cost and efficiency of fat 

and protein deposition and factors affecting them and also examines the factors affecting the 

composition of gain in young growing animals 

The contrasting concentration of energy contained in fat and protein potentially enables variation in 

efficiency of liveweight gain through a different composition of gain. Fat contains almost twice (39.5 

MJ MElkg) the amount of energy per kg DM than protein (23.4 MJ MElkg) (Rattray and Joyce, 

1976). In addition, protein is deposited in the body with additional cellular water such that hydrated 

protein is about 25% protein and 75% water (Sykes and Nicol, 1983). The energy content of hydrated 

protein therefore is approximately 6.0 MJ MElkg. Consequently there is much less energy contained 

in 1 kg of protein tissue than in the same amount of fat tissue. From a liveweight gain point of view, 

individuals accumulating liveweight which is predominantly protein (young growing animals) will 

have a greater liveweight gain per unit of energy partitioned to growth than those with a higher 

proportion of fat in the liveweight gained (more mature animals). The effect that the near six fold 

difference in energy content of gain has on the relationship between composition of gain and rate of 

liveweight gain is tempered somewhat by the efficiencies of fat and protein deposition (high for fat, 

low for protein) but nonetheless protein gain requires somewhat less energy than fat gain. 



For example, 

39.5 MJ ME/kg = 56.4 MJ ME/kg 

0.7 

vs 6.0 MJ ME/kg = 30 MJ ME/kg 

0.3 

Efficiency of utilisation of ME for fat and protein deposition 
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The energy cost of fat deposition (between 40 - 60MJ ME/kg) is the energy cost associated with 1 kg 

of adipose tissue since adipose contains insignificant amounts of water. The synthesis of protein 

probably requires only 3 - 13 MJ ME/kg (Webster et al., 1980) but net protein accretion is the result 

of protein synthesis and degradation and therefore considerably more protein is synthesised than is 

actually deposited thereby increasing the real cost of depositing protein to as high as 78MJ ME/kg 

(Orskov, 1976, Webster, 1980). The partial efficiency by which fat (kf) and protein (kp) are deposited 

is estimated from the regression coefficients of a mUltiple regression relating MEl to protein and fat 

. (IW0 75 ) retentIOn g . . 

The energy cost of depositing fa,(and protein differs. The energy costs of deposition are associated 

with the biochemical reactions involved in the net accretion of tissue. Estimates of the ME cost and 

efficiency by which fat and protein are deposited are given in Table 2.3. 

Textbook values for the efficiency of energy deposition as fat and protein are given as 0.7 and 0.3, 

respectively (Sykes and Nicol, 1983) but there is considerable variation across individual experiments 

measuring efficiency (Table 2.3). It is unclear whether the variation in results above reflects variation 

in diet, age, breeds or is just random. 

Table 2.3 Estimates of the ME cost and efficiency offat and protein deposition in different species of 
animals offered different diets. 

Animal Author Fat Protein 

MJME/kg kr MJME/kg kp 

I Milk-fed calves Donnelly (1975) 37 1.00 65 0.36 

Milk-fed lambs Kielanowsky (1965) 63 0.61 30 0.78 

Weaned lambs (4-5 weeks old) Orskov and McDonald (1970) 48 0.80 68 0.34 

Lambs 6 months (cone. feed) Rattray et al. (1974) 43 0.89 191 0.12 

Lambs 6 months (cone. feed) Rattray and Joyce (1976) 49 0.80 120 0.15 

Mixed age ewes Olthoff et al. (1989) 12 1.00 40 0.59 

Ruminants Blaxter (1989) 0.79 0.45 

In young ruminants the development of rumen function coincides with a reduction in efficiency of 

utilisation of ME. Very low efficiency of utilisation of ME for fat and protein deposition in young 

ruminant lambs compared with pre-ruminant lambs have been reported (Fennessy et al., 1972). 

'-- .-'~'--~- - .. ".- ~" . 
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When comparing species across a number of experiments there appears to be considerable variation, 

but nutrition, environment and experimental design are likely to be confounding factors. Where 

experiments have aimed to compare efficiencies of fat and protein deposition between breeds 

(Wurgler and Bickel, 1986; Olthoff et ai., 1989) large variation between individuals has resulted in a 

pooled analysis across breeds and therefore it is unclear whether breed exerts a significant effect. 

The variation which occurs between individuals may be a result of the high inter-correlation between 

fat and protein deposition. In such situations where two independent variables are highly correlated a 

mUltiple regression model is not a good approach. 

The efficiency of utilisation of ME for fat and protein deposition is affected by diet, species and stage 

of development and there appears to be considerable variation in estimates between individuals It is 

likely that differences between red and hybrid deer, if any, are small and would be difficult to 

measure. 

Composition of gain 

As an animal increases in liveweight (growth) its body changes in the proportional distribution of 

parts (limbs, trunk, head) and tissues (adipose, lean and bone). Such changes represent development 

and reflect stage of maturity. These relative changes in body composition were first expressed 

mathematically by Huxley (1924) and it is now standard practise to express the relationship as a body 

part to the whole body by way of allometric equation which conventionally expresses curvilinear 

relationships in the linear form; 

Log Y = log a + b log x 

(where y is the body part, x is the weight of the whole body, b is known as the relative growth 

coefficient of x to y and a as the constant). 

Relative growth coefficients less than 1.0 for tissues such as bone define early maturing components 

and those greater than 1.0 for tissues such as fat indicate late maturing components. These allometic 

equations explain the changes in body composition with maturity and thus changes in the 

composition of gain as animals mature. 

These relationships appear to be robust and are difficult to disrupt. However, there is some evidence 

that potential differences in the relative growth of tissues may arise from; 

1) differences in the rate of liveweight gain 

2) dietary imbalances 

3) photoperiod 
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Rate of liveweight gain 

There is some evidence that rate of liveweight gain may affect the composition of liveweight gain 

although there is by no means a consensus of opinion and further any effect could be confined to 

certain species. For example, Black (1974) presented evidence of body composition changes in lambs 

relating to various rates of liveweight gain resulting from different nutritional treatment but 

Greenhalgh (1986) concluded that nutrition had a minor effect on body composition in sheep. 

Pleasants et al. (1998) concluded that rate of liveweight gain as a result of nutritional manipulation 

lead to differences in carcass composition for cattle. However, ARC (1980) and Theriez et af. (1982), 

proposed that body composition was not affected by rate of growth. 

Overall there is more evidence of a live weight gain effect on the composition of live weight gain for 

cattle than for sheep but currently no evidence either way for deer. 

Dietary imbalances 

There is considerable evidence in the literature that increasing protein intake or absorption can affect 

the composition of liveweight gain. For example, Andrews and Orskov (1970) and Orskov et af. 

(1976) grew lambs on diets which varied in dietary protein concentration (10 - 20%). At the same 

liveweight, lambs on low protein diets deposited more fat and less protein in liveweight gain than 

lambs on higher protein diets. 

Not only is the total amount of dietary protein important in the composition of gain but the quality of 

protein is also important. Proteins containing an imbalance in amino acids reduce the efficiency by 

which dietary protein is utilised for protein deposition. ill ruminants, methionine followed by lysine, 

arginine and histidine are considered the most limiting amino acids. An illustration of the effect of 

supplementing with limiting amino acids was provided by Barry (1981). Abomasal infusions of 

casein and methionine to lambs, increasing in liveweight from 16 to 24 kg deposited more protein 

and less fat in the carcass compared with non-infused controls. 

Photoperiod 

Forbes et al. (1979) and Forbes et al. (1981) suggested that long day length (8 h dark - 16 h light) 

stimulated the growth of non-fat tissues at the expense of fat in young lambs and Philips et al. (1997) 

found steers under a natural lighting regime (average 9.7 h/day) produced carcasses with a higher fat 

content than steers kept in conditions where day length had been artificially extended to 16h/day. 

However, neither Francis et al. (1997), Eisemann et al. (1984) or Schanbacher and Crouse (1980) 

measured any consistent effect of day length on body composition. While there is some evidence that 

photoperiod may change the composition of liveweight gain in young growing animals, results from 

current research are variable and inconsistent between experiments. It is possible, given the large 
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effect of photoperiod on intake and liveweight gain in deer relative to sheep and cattle, that any effect 

of photoperiod on body composition may be larger and therefore more easily measured in deer. 

Summary 

Currently, there is little evidence in the literature to suggest red deer and elk differ markedly in the 

cost of liveweight gain although this needs testing in a common environment. Further, it is unlikely 

differences occur in the efficiency of energy for energy deposition as fat or protein. However, it 

would be expected that elk given that they are. later maturing would have lower protein : energy ratio 

in gain at the same age. 
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2.4 General summary of the literature and outline of thesis 

Elk have a greater mature liveweight than red deer and this difference in maturity might be expected 

to explain differences between red deer and red deer x elk genotypes. For example, relative to red 

deer, red deer x elk hybrids would be expected to show; 

• greater daily liveweight gain and greater absolute daily intake 

• relatively lower intake when offered short pastures 

• a lower proportion of fat in liveweight gain 

• a leaner body composition at any given body weight 

However, the literature does not suggest that genotypes would show differences in; 

• FHP, or seasonal changes in FHP,activity or lower critical temperature 

• efficiency of utilisation of ME for maintenance, or for protein of fat deposition 

• digestibility of a common feed source 

However, there is little data to quantify those features of the two genotypes which might be expected 

on theoretical grounds to differ, or to confirm that those which the literature suggests would not 

differ, do in fact not differ. This thesis sets out to address some of these issues 

The proposed course of study is set out in Figure 2.10. A grazing experiment will be the starting point 

for this research (Stage I) to test the hypothesis that red deer and hybrids differ in their live weight 

gain response to pasture allowance. If apparent intake proved to explain differences in liveweight 

gain between genotypes this study was planned to shift focus to defining a range of intake pasture 

allowance relationships for each genotype. 

Assuming differences in intake was unable to explain differences in live weight gain between 

genotypes a comparison of energy metabolism was to be undertaken (Stage II ) testing the hypothesis 

that red and hybrid deer differ in their ability to digest or metabolise a common feed and/or in their 

requirement for zero energy balance and/or in the efficiency of utilisation of energy for liveweight 

gain and/or in the composition of gain. 
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Figure 2.10 The proposed experimental model to investigate the relative contribution of various 
factors to the liveweight gain difference between red and hybrid deer. The proposed course of study 
would begin with afield experiment (Stage I) and progress to a comparison of the components of 
energy metabolism (Stage Il). Components in italics represent those for which there is evidence that 
genotypes could differ. 
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Chapter 3 

Effect of pasture availability on the seasonalliveweight gain of young red 
deer (Cervus elaphus) and red x elk hybrid stags. 

3.0 Introduction 

In most environments, red x elk hybrid (hybrid deer) weaner stags increase liveweight at a greater 

rate in the 12 month period post-weaning and are heavier at 12 months of age compared with red deer 

stags (Drew and Hogg, 1990; Walker et ai., 2000). However, farm-based observations suggest the 

relative advantage in live weight gain to hybrids over red deer is reduced in environments where 

pasture intake is restricted (Simpson, unpublished data). This indicates a genotype x nutritional 

environment interaction that would have implications for (a) the choice of genotype for environments 

that differ in their ability to supply pasture and (b) the appropriate feeding levels for different 

genotypes. 

The influence of pasture allowance on grazing intake (and animal production) has been examined in 

many species. Pasture allowance-liveweight gain relationships for ewes in mid-pregnancy (Jagusch et 

ai., 1981; Hawker, 1987) late pregnancy (Rattray et al., 1982a) lactation (Rattray et al., 1982b) for 

lambs (Jagusch et al., 1979a), hoggets (Hawker et al., 1985), beef cattle (Marsh, 1977; Reid, 1986), 

dairy cattle (Holmes et al., 1979; Bryant, 1980) and goats (McCall and Lambert, 1987) have all been 

established. However, there are few experimental data on pasture allowance-intake relationships for 

deer. The work of Adam and Asher (1986) has shown an increase in liveweight gain between 2 and 7 

kg DMlhead/day during the autumn but in recent work (Ataja et al., 1992; Semiadi et al., 1993a) 

single, generous pasture allowances (7 - 8 kg DMlhead/day) have been offered providing little 

information on pasture allowance - liveweight gain relationships when pasture supply is restricted. 

The primary aim of the experiment described here was to compare the liveweight gain of red and 

hybrid stags over a range of pasture allowances in winter, spring and summer. 



3.1 Materials and Methods 

Experimental design 
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The experiment took place at the Lincoln University Deer Research Unit, Canterbury, New Zealand. 

The aim of the experiment was to compare the winter, spring and summer liveweight gain of red and 

hybrid deer over a range of pasture allowance and pasture mass typically found on farms. Groups of 

red and hybrid weaner stags were rotationally stocked on ryegrass (Latium perenne)/white clover 

(Trifolium repens) pasture during winter (21 June - 15 August), spring (12 October - 14 December) 

and summer (25 January - 28 March) of 1994 - 95 (experimental periods). In each experimental 

period, groups of deer (10 - 12) were offered one of four pasture allowance-pasture mass 

combinations. Liveweight gain was determined by weighing animals weekly. 

Animals 

Forty eight red weaner stags with a pre-trialliveweight of 57.4 ± 2.0 kg (mean ± S.D.); and forty 

eight hybrid weaner stags of pre-trialliveweight 68.0 ± 2.2 kg (mean ± S.D.); all approximately 7 

months old, were used in the experiment. These were selected from deer that were sourced in equal 

sized groups (14 animals /group) from 8 different commercial properties from around the Canterbury 

region. Deer arrived one month prior to the beginning of the experiment and were exposed to 

temporary electric fencing and yarding facilities to allow familiarisation with experimental routines. 

Deer ran as a single herd during this period on typical autumn ryegrass/white clover pasture. 

To establish formally the degree of hybridisation, all animals were blood typed (Tate et. at., 1988). 

Animals were segregated on genotype-specific blood protein genetic markers using a commercial 

blood typing service. For red deer, genetic markers showed no evidence of hybridisation while 

hybrids were found to be on average a 35:65, elk:red hybrid. 

Deer received a moxidectin anthelmintic (18 ml, Vetdectin, Cyanamid NZ Ltd) on arrival and were 

re-dosed if faecal egg counts rose above 500 eggs/g. In addition, deer received a yersiniosis vaccine 

(5 ml s.c. Yersinia vax, Agvax Developments Ltd) and a further supplementary dose 6 weeks after 

the initial injection. All deer were supplemented with copper using a 5 g copper oxide needle 

containing bolus (Copacaps, Rhone Merieux). 

Treatment groups 

Prior to each of the three experimental periods (winter, spring, summer), deer within each genotype 

were divided into 4 groups. Within each genotype, groups contained similar numbers of deer from 

each source, were similar in mean liveweight and within-group variation in mean liveweight. Not all 

stags were involved in the experiment and surplus stags were run together with commercial animals 



of the same age on typicaJ ryegrass/white clover pasture. Allocation of deer to groups during the 

spring and summer experimental periods was also balanced for previous nutritional treatment. The 

number of deer per group for winter, spring and summer periods was 10, 12 and 10, respectively. 

For each experimentaJ period, two groups (one of each genotype) were assigned to each pasture 

allowance-pasture mass combination. Red and hybrid groups grazed the same pasture (same 

paddock) in adjacent breaks. Deer were confined to weekly prescribed grazing areas using a 

combination of temporary 5 wire and netting electric fencing (Plate 3. I). Individual animal 

liveweight (to the nearest O.l kg) immediately off pasture was recorded weekly using a deer crush 

mounted on load bars (Tru-test, model 700 economy plus, Tru-test Distributors Ltd, Auckland). 

Plate 3.1. A group of red deer (left) and hybrids (right) confined by temporary electric fencing to a 
grazing area providing 4 kg DMIW 0. 75 Iday on a 3000 kg DMlha pasture in a rotationally stocked 
system during spring. 
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Pasture allocation 

Pasture was allocated on the mean metabolic liveweight (W 0.75) of each group. Allocations were at 

one of four pasture allowances designed to cover a wide range (Table 3.1). Low allowances were 

designed to produce positive but minimalliveweight gain and high allowances were set so that 

pasture mass would not limit liveweight gain. 

Table 3.1. Pasture allowance (kg DM/Wo.75/day and kg DMlhead/day) offered to weaner stags 
during winter, spring and summer. 

Season Genotype Pasture Allowance 

Winter Both kg DMIW O.l5/day 0.10 0.13 0.19 0.25 

Red kg DM/head/day 2.0 2.7 3.8 5.1 

Hybrid kg DM/head/day 2.3 3.0 4.3 6.0 

Spring Both kg DM/W O.75/day 0.10 0.13 0.25 0.4 

Red kg DM/head/day 2.3 3.8 5.7 9.1 

Hybrid kg DM/head/day 2.8 4.3 6.4 10.3 

Summer Both kg DMIW O.75/day 0.16 0.23 0.29 0.45 

Red kg DM/head/day 4.4 6.6 8.5 13.3 

Hybrid kg DM/head/day 4.5 7.7 9.7 15.3 
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Higher feeding levels were achieved by increasing pasture allowance (kg DMIW·75/day) and pre­

grazing pasture height (cm). This approach was necessary since it was impractical to confine deer to a 

small area on a high pasture mass (to achieve a low allowance) and there was insufficient grazing 

area to offer a large pasture allowance on a small pasture mass. Therefore, in this thesis, references to 

pasture allowance are associated with a specific pre-grazing pasture mass and references to increasing 

pasture allowance implies mass also increased. 

No account was taken of concurrent pasture growth when calculating weekly grazing area. 
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The weekly grazing area for each treatment was calculated from Equation 1. 

Grazing area (ha) = Allowance (kg DMM·75/day) * 7 days * group mean metabolic lwt (W 0.75) * No. of deer (1) 

Pre-grazing pasture mass (kg DM/ha) 

Pasture measurement 

Pasture height was measured in each treatment to the nearest centimetre using a lengthened copy of 

the HFRO sward stick (Hill Farming Research Organisation, 1986). Pasture height was defined as the 

greatest height above ground level that a leaf was in contact with the sward stick when placed 

perpendicular to the ground at a random site in the sward. 

The mean pre- and post-grazing pasture height was estimated by measuring pasture height at 60 

random sites per treatment. 

Pre-and post-grazing pasture mass was estimated for each treatment from the mean pre- and post­

grazing pasture height (as described above) and an allowance-specific relationship between pasture 

height and pasture mass which was updated weekly for each pasture. 

The relationship between height and mass was determined by selecting four quadrats (0.2 m2
) (which 

covered the range oflow to high pasture height relative to that pasture allowance), estimating average 

pasture height in each quadrat (40 measurements/quadrat) and harvesting the area for DM 

determination. Pasture in quadrats was cut to ground level using an electric shearing plant (Oster, 

USA Ltd). Harvested pasture was washed in warm water and dried at 70°C for 48 h before weighing. 

A linear relationship was fitted to pasture height and mass data and the reSUlting equation used to 

predict pasture mass from mean sward height in each weekly break. 

Every alternate week the mean pasture height of each treatment was measured daily in order to 

describe the reduction in height during the week. 

Botanical composition 

A 10 x 20 cm area of pasture immediately adjacent to each pre-grazing quadrat cut was harvested to 

ground level using the method employed for the quadrat cut. This sample was frozen for later pasture 

botanical composition determination. Samples were thawed at room temperature, pooled so that one 

sample existed for each pasture allowance in each season, and a representative sample taken. 

Approximately 50 g of each bulked sample was dissected into grass leaf, grass pseudo-stem, clover, 

dead material, reproductive growth and weeds. Each dissected pasture component was placed in a 

paper bag and dried for 36 h at 75°C before weighing. Samples were allowed to cool and then 

weighed to the nearest milligram. 
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Pasture management 

During summer, grazed pasture was mechanically topped to remove any remaining reproductive 

growth to maintain quality. Following topping, pastures were irrigated with approximately 75 mm of 

water. 

Statistical analysis 

Pre- and post-grazing pasture height and pasture mass for areas grazed by red and hybrid deer within 

each allowance were compared using a pairedt-test. Liveweight gain was determined by linear 

regression of weekly liveweight over time for each individual animal and this value analysed using 

Generalised Linear Models as a 2 x 4 factorial design with two genotypes, and four nutritional levels 

within season. 

Logistic functions were fitted to mean group live weight gain and allowance data using Sigmaplot 

(Jandel Corporation) curve plotting software. 

-, 
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3.2 Results 

Liveweight gain 

Mean liveweight gain' during winter was low (58 glday) and not significantly different between 

genotypes (I'> 0.05) (Table 3.2.) or pasture allowances. 

Liveweight gain in spring (218 glday) was on average about four times that achieved in winter (58 

glday) and hybrids gained 73 glday (40%) on average more during spring than red deer (1'>0.05). 

There was no significant difference (1'>0.05) in mean liveweight gain between genotypes in summer. 

Table 3.2 Mean initialliveweight and liveweight gain (LWG) of stags at each allowance during 
winter, spring and summer. 

Season Pasture allowance (kg DMlheadlday) 

Winter Allowance (kg DMIW O.J5/day) 0.10 0.13 0.19 0.25 

Red initial live weight (kg) 55.5 ± 1.1 54.3 ± 1.5 56.5 ± 0.8 56.1 ± 1.3 

Hybrid initial live weight (kg) 63.5 ± 1.2 64.0± 1.4 66.6 ± 1.4 69.2± 1.0 

Red LWG (glday) 35 ±9 68±22 49 ± 11 78± 13 

Hybrid LWG (glday) 61 ±20 86 ± 15 39 ± 11 56± 18 

Spring Allowance (kg DMIW o.75/day) 0.10 0.13 0.25 0.40 

Red initial live weight (kg) 62.2± 1.0 67.8 ± 1.1 69.7 ± 1.6 69.2 ± 1.6 

Hybrid initialliveweight (kg) 75.8 ± 1.3 79.8 ± 1.7 79.5 ± 1.8 80.3 ± 1.4 

Red LWG (g/day) 53 ± 15 211 ± 14 231 ± 14 232±25 

Hybrid LWG (glday) 191 ± 28 207 ± 17 300 ± 19 319 ± 22 

Summer Allowance (kg DMIW o.75/day) 0.16 0.23 0.29 0.45 

Red initial live weight (kg) 79.6± 2.9 87.1 ± 2.2 85.5 ± 3.2 86.3 ± 2.0 

Hybrid initial live weight (kg) 94.8 ± 1.2 100.3 ± 3.0 101.9 ± 3.0 110.2 ± 2.0 

Red LWG (glday) 122 ± 15 236 ± 18 170 ± 24 230 ± 15 

Hybrid LWG (g/day) 101 ± 32 245 ±23 184 ± 20 296 ± 17 ._ .... cl=-_: .• _ •. _ 
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Pasture height and mass 

Mean weekly pre- and post-grazing pasture height and mass for red and hybrid weaners at each 

pasture allowance are presented in Tables 3.3 and 3.4, respectively. 

Table 3.3 Mean (± SEM) pre- and post-grazing pasture height (cm) for red and hybrid weaner stags 
on four pasture allowances during winter, spring and summer. 

Pasture Allowance «kg DMIW u'''/day) 
0.10 0.13 0.16 0.25 

Pre-grazing 
Red 4.5 ± 0.1 10.5 ± 0.8 13.3 ± 1.4 17.3 ± 1.9 

Winter 
Hybrid 4.7 ±0.2 1O.0±0.6 14.6 ± 1.9 17.0 ±1.9 

Post-grazing 
Red 1.7 ± 0.1 3.0 ± 0.4 3.7 ± 0.6* 7.7 ±0.8 

Hybrid 1.8 ± 0.2 3.0 ± 0.4 4.7 ±0.7* 7.9 ±0.7 
Pasture Allowance «kg DMIW u'''/day) 

0.10 0.13 0.25 0.40 

Pre-grazing 
Red 5.3 ± 0.3 13.6 ± 0.4* 18.3 ± 1.1 * 21.7 ± 0.8 

Hybrid 5.2±0.2 14.5 ± 0.5* 19.3 ± 0.9* 21.6 ± 1.1 
Spring 

Red 3.7± 0.4* 8.2 ±0.6 13.3 ± 0.4* 18.1 ± 1.3 
Post-grazing 

Hybdd 2.2 ±0.2* 8.9 ± 0.5 14.3 ± 0.6* 17.9±1.4 
Pasture Allowance «kg DMIW u'''/day) 

0.16 0.23 0.29 0.45 

Pre-grazing 
Red 5.1 ±0.2 14.4±O.5 19.2±O.4 21.4±O.8 

Hybrid 5.0±0.2 15.0±O.4 19.0±O.3 21.4±O.9 
Summer 

Red 2.8 ±0.2 7.8±0.7 12.7±O.6 16.3±O.8 
Post-grazing 

Hybrid 2.6±0.2 8.0±0.1 12.9±O.6 16.8±O.7 
* IndIcates mean weekly pasture heIght IS slgmficantly (p<0.05) dIfferent between genotype treatments 

Table 3.4 Mean (±SEM) weekly pre- and post-grazing pasture mass (kg DM/ha) for red and hybrid 
weaner stags on four pasture allowances during winter, spring and summer. 

Pasture Allowance «kg DMIW u'''/day) 
0.10 0.13 0.16 0.25 

Pre-grazing 
Red 1190±40 2630 ± 210 2590± 260 3460 ±430 

Hybrid 1270 ± 80 2560± 220 2870±400 3440 ±450 
Winter 

Red 634 ± 110 1293 ± 200 1750 ± 330 2420 ± 310 
Post-grazing 

Hybrid 690 ± 170 1140 ± 160 1810 ± 300 2880 ± 300 
Pasture Allowance «kg DMIW u'''/day) 

0.10 0.13 0.25 0.40 

Pre-grazing 
Red 1750 ± 130 3460 ± 170 4280 ± 310 4640± 200 

Hybrid 1690 ± 110 3640 ± 170 4310 ± 280 4620± 210 
Spring 

Red 1480 ± 120* 2370 ± 250 3700 ± 230 4870 ± 190 
Post-grazing 

Hybrid 1170 ± 40* 2480± 210 3910 ± 140 4840 ± 210 
Pasture Allowance «kg DMIW u'''/day) 

0.16 0.23 0.29 0.45 

Pre-grazing 
Red 1970 ± 120 3640 ± 170 5050± 240 5010 ± 260 

Hybrid 1960 ± 80 3760 ± 250 5010 ± 240 5010 ± 280 
Summer 

Red 1520 ± 140 2570 ± 180 4920 ± 140 5150 ± 220 
Post-grazing 

Hybrid 1510 ± 150 2640 ± 180 5000 ± 170 5250 ± 150 

* Indicates mean pasture mass is significantly (p<0.05) different between genotype treatments 

There was no significant difference (P>O.05) between genotypes in pre- or post grazing'pasture 

height in winter or summer. In spring, there were significant differences (approximately 1 cm) 
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between hybrid and red pre- and/or post-grazing pasture height at an allowance of 0.25 and 0.13 kg 

DMM·75/day (Table 3.4) but these did not equate to significantly different pasture masses. These 

data indicates that the aim of providing genotypes with equal opportunity in terms of pre-grazing 

pasture height and mass was largely achieved and any significant differences in pre-grazing height 

were small. 

Pasture botanical composition 

Composition of pasture offered varied with both season (spring and summer) and pasture mass (Table 

3.5). Botanical samples were not collected in winter due to the wet ground conditions that prevailed. 

Table 3.5. Mean pasture mass (kg DMIha) and botanical composition of pasture (% DM) at each 
allowance (kg DMIW°.75/day) during spring and summer. 

Spring Summer 

Allowance 

(kg DMIW O.75/day) 
0.10 0.13 0.25 0.40 0.16 0.23 0.29 0.45 

Pasture mass ·1720 3550 4300 4630 1960 3700 5030 5010 

Leaf 53.3 42.4 54.7 43.9 56.8 46.8 50.1 43.5 

Pseudo-stem 19.2 12.7 12.4 15.2 8.5 1.9 .9 2.1 

Clover 3.7 7.0 1.9 5.6 20.1 14.1 5.6 3.2 

Dead material 19.0 13.2 17.4 13.0 11.8 19.1 25.1 20.3 

Reproductive growth 2.9 20.5 9.0 17.1 2.5 8.7 14.5 14.5 

Weeds 1.9 4.2 4.6 5.2 0.3 9.4 3.8 16.4 

As pasture mass and allowance increased, the proportion of dead material, reproductive growth and 

weeds in the sward increased regardless of season, but grass leaf plus clover was always greater than 

45% of total DM. The proportion of clover declined with increasing pasture mass during summer but 

not spring. The irrigation and topping regime was responsible for the relatively low proportion of 

reproductive components in the pasture during spring and summer. These data show genotypes were 

offered high quality spring-summer pasture. 
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Relationship between pasture allowance and live weight gain 

A three-term logistic function was fitted to spring and summer pasture and liveweight gain data 

(Figure 3.1). The function was; 

LWG = a +h (1- e<-cPA)) 

Where liveweight gain (LWG) was expressed as glday and pasture allowance (PA) as 

kg DM/kg o.75/day. The term "a" represented the LWG when pasture allowance was zero, "b" the 

maximum liveweight gain and "c" the fractional slope of the curve from "a" to "b". The function, 

which assumes an asymptotic relationship, does not force the regression through the origin 

recognising that feed is required for maintenance before growth occurs. The coefficients for the 

equations are given in Table 3.6. 
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Alternative curvilinear functions such as the Mitcherlich used by Reid (1986) and Gibb and Treacher 

(1976) and the inverse linear as reviewed by Pringle and Wright (1981) for unpublished data cited in 

Hodgson (1984) explained similar amounts of variation in liveweight gain data. 

An attempt was made to fit a linear relationship to winter liveweight gain due the lack of a curvilinear 

response. (P>0.05) (Fig 3.1a.). However, for both red and hybrid deer neither the intercept nor slope 

coefficients were significantly different from zero. 

During spring, both genotypes responded to increases in pasture allowance, although in both spring 

and summer there was a decreasing marginal response to extra feed. 

For red deer and hybrids during spring, liveweight gain plataeued at 307 glday and 341 glday, 

respectively. The corresponding values for summer were 225 and 255 glday, respectively. 

Table 3.6. Fitted coefficients (see text above) for the logistic relationship between liveweight gain 
and pasture allowance. 

Season a b c R2 
Winter Red 10.1 23.1 0.51 

Hybrid -5.3 81.0 0.19 

Spring Red -38.5 306.5 6.4 0.57 
Hybrid -40.6 340.9 8.0 0.98 

Summer Red -48.6 225.1 5.7 0.46 
Hybrid 79.1 255.3 3.9 0.48 
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Figure 3.1. Liveweight gain of red (.) and hybrid (0) deer over a range of pasture availabilities 
during a)winter b)spring and c)summer. Error bars depict within-group SEM. Lines represent 
equation in Table 3.6. 
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Partition of live weight gain to pasture characteristics 

Stepwise multiple regression was used in an attempt to partition the variance in liveweight gain to 

various components of pasture availability, pasture quality and animal factors. Pasture allowance 

variables such as pre-grazing height and mass, post-grazing height and mass, availability (product of 

pre-grazing mass and allowance), pasture quality variables which included green pasture mass, 

percentage of dead material and percentage of clover and fixed effects such as genotype and previous 

nutritional treatment(s) were added to a model to test if their inclusion significantly improved 

prediction of liveweight gain as indicated by a significant t-test (P< 0.05) for each variable. 

Correlated variables 

The correlation (Pearson's correlation coefficient) between the dependant variable liveweight gain 

and selected independent variables is presented in Table 3.7, and the correlation matrix between all 

variables for each season is given in Appendix I.. 

During winter, liveweight gain (absolute (glday) and relative (gIW o.75/day»was only significantly 

correlated with initial weaner liveweight (-0:198). During spring, liveweight gain (absolute and 

relative) was most highly correlated with pre-grazing height (0.610), pre-grazing mass (0.602) and 

green pasture mass (0.602). Summer liveweight gain was most highly correlated with the per head 

allowance (0.543), pre-grazing height (0.575), and the percentage of grass leaf in the sward (-0.713). 

All allowance-type variables such as per-head and relative allowance and pasture-type variables such 

as pre- and post-grazing mass and height were highly inter-correlated (0.8 - 1.0). This was a direct 

result of confounding pasture mass (and height) and allowance in trial design 

All botanical parameters were highly correlated (0.85 - 1.0) with pre-grazing height and allowance 

and therefore would be unlikely to explain additional variation if added to a model which contained 

allowance type variables. 

The relationship between liveweight gain and pasture and animal variables was only slightly stronger 

when liveweight was expressed as glday rather than on a metabolic body weight basis (glkgo.75/day). 

Only predictions of absolute liveweight gain have been presented. A curvilinear function relating 

liveweight gain to pasture allowance accounted for only a marginally higher proportion of the 

variation than a linear function. The lIallowance (inverse linear) and log (base 10) transformations 

gave similar results although the lIallowance transformation was marginally better and therefore was 

used in the regression model. Pasture allowance was expressed as kg DM/head/day although, 

alternatively, allowance could have been expressed on a metabolic body weight basis with little effect 

on the final outcome. 
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Table 3.7. Correlations (Pearson's correlation coefficient) between mean liveweight gain (g/day) and 
selected allowance, animal-related and pasture variates. 

Variable Winter Spring Summer 

Allowance variables Allowance (kg DMlkgu
.I) /day) 0.034 0.543 0.473 

Pre-grazing height (cm) 0.065 0.610 0.575 

Post-grazing height (cm) 0.068 0.570 0.539 

Availability 0.046 0.500 0.550 

Pre grazing mass (kg DMlha) 0.123 0.602 0.505 

Animal variables Initialliveweight -0.198 0.509 0.164 

Source of stock 0.153 0.054 0.085 

Parentage -0.057 0.228 0.067 

Pasture variables Green pasture mass - 0.602 0.385 

Leaf content - -0.172 -0.713 

Legume content - -0.008 -0.474 

Dead matter content - -0.353 0.374 

Pseudo-stem content - -0.455 -0.545 

Reproductive content - 0.345 0.486 

Pasture availability 

The term pasture availability is used here specifically to define a concept which combines the effect 

of pasture allowance per se and the independent effect of pre-grazing pasture mass on animal 

response (Hodgson, 1981). Pasture allowance is defined as the mass of pasture offered to an animal 

over a given time but ignores the pre-grazing mass at which this is offered. Alternatively, liveweight 

gain is higher on higher pasture masses at a given pasture allowance (Rattray and Clark, 1984). A 

combination of the two approaches which described how available (pasture height and mass allocated 

to each animal) the pasture was to animals was investigated as a predictor of liveweight gain. 

Availability defined in this way explained less variation in liveweight gain than either pre-grazing 

height or allowance alone (Table 3.7). 

: ...... _, .. '--
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Prediction of live weight gain 

During winter, neither pasture or animal variates accounted for significant proportions of variation in 

liveweight gain. This suggests the relatively small amount of variation in liveweight gain which 

existed at this time was of a random nature. Although a greater proportion of variation in liveweight 

gain could be explained in the spring and summer periods (53% and 33% respectively) compared 

with the winter a large proportion of the variation was unexplained and therefore the ability to 

explain liveweight gain was poor. The major problem faced by this type of analysis was the high 

inter-correlation between pasture variates and allowance, both of which would have been expected to 

explain a large proportion of the variation in liveweight gain as reported by Thompson (1992). Table 

3.8 gives the coefficients and standard deviations of those factors and variates which significantly 

improved prediction of liveweight gain from pasture allowance or pre-grazing pasture mass alone. 

Table 3.8. Coefficients and standard errors for the regression of liveweight gain on }Iallowance or 
}Ipre-grazing height together with significant variates andfactors. 

Winter Constant Liveweight 
150 ±5l -1.5±0.8 . 
236±60 -3.9± 1.2 
234 ±59 -4.6± 1.3 

Sl!ring Constant l/l!er-head 
320 ±16 -400± 54 
211 ±26 -40±49 
242 ±31 -426 ±51 
101± 97 -389± 55 

Summer Constant Leaf content 
783±66 -11.8 ±1.3 
868 ±89 -14.1± 2.0 

750 +142 -lOA +4.0 

where; 
llper - head = reciprocal of allowance per head 
Leaf content = percentage of leaf in sward 
Leaf content = percentage of leaf in sward 
Clover content = percentage of clover in the sward 

Genotvl!e 

49±16 
47± 16 

GenotYl!e 

n±15 
48±20 
25±25 

Clover content 

2.1 ±1.5 
6.2+4.2 

Pre-Mass 

0.10±0.01 

Parentage Liveweight 

0.95 ±.52 
0.84± .53 2.3 ±1.5 

l/l!er-head 

-783+736 

Liveweight = initialliveweight (kg) for each 
season 

Parentage = genotype determined by blood 
typing, expressed as the proportion of elk genes 

R2 
2.6 
7.3 
13.1 

R2 
36.3 
49.1 
5004 
51.1 

R2 
48.6 
50.2 
51.0 

, . - . 
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Compensatory growth 

This experiment was not specifically designed for the purpose of investigating compensatory growth 

in deer. However the opportunity was taken to compare the liveweight gain of deer from different 

previous treatments during the 7-week post-experimental periods. The relationship between mean 

liveweight gain of treatment groups during and after experimental periods is given in Figure 3.2. 
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Figure 3.2. Mean liveweight gain (g /day) of groups of red (0) and hybrid (~) deer during and after 
winter (solid) (n=12/group) and spring (open) (n=10/group) experimental periods for each pasture 
allowance treatment. 

Mean group liveweight gain during winter treatments ranged between 35 and 86 g/day. The 

regression coefficient for the relationship between treatment and post-treatment liveweight gain was 

not significantly different from zero and on average weaners gained liveweight at 109 g/day post­

treatment. 

During the spring experimental period mean group Ii veweight gain ranged from 53 to 319 g/day. For 

every additional 100 g/day liveweight gain during experimental treatment, post-treatment liveweight 

gain increased by 74 g/day. 

The relationship between treatment and post-treatment liveweight did not differ between red and 

hybrid deer or for spring and spring/winter combined. 

Liveweight model and prediction of time of sale 

Initialliveweight (1 June) and liveweight gain measured during winter and spring were used to 

simulate liveweight of deer at 12 months of age for both genotypes based on the allowances offered 

in both winter and spring (Table 3.9) . The expected liveweight at 12 months was calculated for each 

allowance as; 
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12 month wt (kg) = 1 June wt (kg) + (winter LWG (glday) x 75-day winter) + (spring LWG (glday) x 121-day spring) 

where winter/spring L WG was the average liveweight gain recorded during the winter/spring for deer 

on each allowance and the winter period was the 75 days from 1 June - 15 August and the spring 

period the 121 days from 16 August - 15 December. The simulated mean 12 month weight and the 

measured standard deviation of liveweight in treatment groups at 12 months was used to estimate the 

percentage of animals in each group which would have attained 92 kg liveweight by 15 December 

assuming deer liveweight was normally distributed. 

On this basis, less than 30% of red deer reached target liveweight at any allowance, compared with 

68 - 99% of hybrids reaching this slaughter target by 15 December depending on allowance offered. 

Even at high allowances, 60% of the difference between genotypes in liveweight at 12 months 

existed in 1 June weight. This proportion was greater at lower allowances. 

Table 3.9. Winter liveweight (measured), 12month liveweight (simulated) and the percentage of 
animals attaining 92 kg liveweightfor red deer (Red) and hybrids (Hyb) over a range of pasture 
allowances. The percentage of the difference in 12 month weight between the genotypes which 
existed in 1 June weight is also given (spring:winter genotype difference). 

Allowance kg DMIW o.75/day 
0.19 winter 0.25 winter 

0.10 0.13 
0.25 spring 0040 spring 

Genotype Red Hyb Red Hyb Red Hyb Red Hyb 

Mean 1 June wt (kg) 57.7 68.5 57.7 68.0 57.4 67.6 57.0 67.8 

Mean 12 month wt (kg) 82.3 94.8 83.3 96.4 85.0 99.5 87.2 104.8 

Standard deviation (kg) 3.9 8.0 5.5 5.3 7.3 8.7 7.8 7.6 

Percent reaching 92 kg 1 64 6 80 17 81 27 95 

Spring:winter genotype difference 87 80 70 61 

••.•.• ~'_!..""" . L":. 
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Liveweight gain per hectare 

The number of deer reaching a 92 kg target is a measure of per head performance within a production 

system but it gives no information on the per hectare performance. The rate of live weight gain and 

stocking rate of deer at each allowance was used to calculate liveweight gain per hectare during 

spring and summer (Table 3.10). Liveweight gain per hectare (kg/halweek) was calculated as; 

LWG kg/halweek = LWG (g/day)11000 x 7days x stocking rate (deer/ha) 

where L WG was the mean liveweight gain of each treatment group for spring and summer 

respectively and stocking rate was the number of deer in each treatment group divided by the total 

area (ha) used in each grazing rotation. 

Table 3.10. The stocking rate (deerlha), liveweight gain (g/day) and liveweight gain per hectare 
(glhalday)for red and hybrid deer in spring and summer for each pasture allowance. 

Spring 
Allowance 

0.10 0.13 0.25 0.40 kg DMIW o.75/day 
Genotype Red Hybrid Red Hybrid Red Hybrid Red Hybrid 
LWG (glday) 53 187 211 207 231 305 232 319 
Stocking rate(deer/ha) 26.8 22.9 23.7 21.6 15.3 14.0 7.8 7.1 

LWG/ha (kg/ha/week) 10 30 35 31 25 30 13 16 

Summer 
Allowance 

0.16 0.23 0.29 0.45 kg DMIW o.75/day 
Genotype Red Hybrid Red Hybrid Red Hybrid Red Hybrid 
LWG (glday) 122 93 233 245 170 184 230 297 
Stocking rate(deer/ha) 18.2 16.1 15.8 14.9 11.5 10.4 6.0 5.2 

L WG/ha (kg/ha/week) 16 10 26 26 14 13 10 11 

During spring, the greatest live weight gain per hectare for both genotypes occurred at an allowance 

of 0.13 kg DMIW o.75/day. At this allowance red deer produced an extra 4 kg of liveweight per hectare 

compared with hybrids. 

However, while hybrids produced less liveweight per hectare at an allowance of 0.13 kg DMIW 

o.75/day compared with red deer, the penalty to per hectare production of offering high allowances 

occurred at a lower allowance for red deer compared with hybrids. For example, increasing the 

allowance from 0.13 to 0.25 kg DMIW o.75/day reduced liveweight gain per hectare by 10 kg/halweek 

for red deer but had little effect on hybrids. 

During summer, the greatest liveweight gain per hectare for both genotypes occurred at an allowance 

of 0.23 kg DMIW o.75/day. Increases in allowance above this reduced per hectare liveweight gain 

. '.'.---~ ... ,:. 
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equally for both genotypes. Maximum liveweight per hectare occurred at about 80% of maximum 

liveweight gain per head. Maximising hybrid liveweight gain in spring halved per hectare production. 

Offering generous pasture allowances to red deer achieved the same outcome in terms of liveweight 

gain per hectare as offering low pasture allowances. 

·-''''''-'-..!'''-,-r 
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3.3 Discussion 

This study generated novelliveweight gain-pasture allowance relationships for young deer grazing 

ryegrass-white clover pastures and provided a direct comparison of red and red-elk hybrid genotypes. 

In general, the liveweight gain responses to changes in pasture allowance were similar (Figure 3.1) 

but there was some suggestion (in spring) that (a) hybrids needed a greater allowance to maximise 

liveweight gain and (b) liveweight gain in hybrids may be more sensitive to low pasture allowance 

than in red deer. 

Winter live weight gain 

Weaner stags in this study followed the general pattern of seasonalliveweight gain described in 

previous work (Kay, 1985; Semiadi, et al., 1992; Ataja et al., 1992; Kusmartono et aI., 1995) with 

low winter and high spring liveweight gain. The winter liveweight gain reported here (35 -85 glday) 

was lower than that reported previously (140 - 165 glday, Ataja et aI., 1992; 171 glday, Kusmartono 

et al., 1995) but similar to those reported by Semiadi et al. (1992) (106 glday) and Soetrisno et al. 

(1994) (94 glday) when compared at similar pasture allowances. 

Differences in winter liveweight gain between this and other studies may have been either a function 

of which months were defined as winter, or a consequence of the wet conditions which prevailed 

during winter (see below). High winter liveweight gain has been reported by various authors who 

have included data collected in September in winter measurements. Deer housed over the early spring 

period showed an increase in DM intake and liveweight gain of 10% per week from mid-August 

(P.Fennessy pers com). When August data were removed from winter liveweight gain reported by 

Ataja et al. (1992), average liveweight gain of weaners decreased from 140 and 150 glday to 50 and 

60 glday for deer grazing perennial and annual ryegrass, respectively. A further possible explanation 

of the relatively low winter liveweight gain in the present work is the high rainfall experienced during 

the winter period. During the 9 week winter experimental period 141 mm of rain fell and the 

prevailing wet underfoot conditions and readily muddied pasture may have lead to a reduction in 

intake and consequently a reduction in liveweight gain. 

During winter, the response in live weight gain to additional pasture was low. At best, increasing 

allowance increased liveweight gain for red deer from 35 to 78 glday. Although no attempt was made 

to measure pasture utilisation, wastage through trampling, especially for high pasture allowances 

treatments, was likely to have been considerable. This suggests that in this environment there was no 

benefit to liveweight gain and probably considerable disadvantages in terms of utilisation in offering 

weaners large quantities of pasture during winter. The practice of shifting weaners on a weekly basis 

to offer them a low mass of "freshened" pasture in winter would now appear to have some scientific 

basis. 

-;, •• ;,-.. -,<--
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Deer grazed to a lower post-grazing pasture height at similar allowances during winter compared 

with spring and summer (Table 3.3.) which arguably may have been the cause of the lower 

liveweight gain during winter compared with spring and summer. However, it is questionable, 

considering the small response in liveweight gain to increasing winter post-grazing height, whether 

grazing to a winter post-grazing pasture mass equivalent to spring/summer values, would have 

significantly increased winter growth rate. For example, deer offered a winter pasture allowance of 

around 0.19 kg DwW·75/day reduced a 13 cm high pasture to 4 cm and incurred a liveweight gain of 

50 g/day. In spring, the same allowance was grazed to 8 cm and therefore would have been expected 

to reduce intake (Rattray and Clark, 1984). However, on the highest winter pasture allowance (0.25 

kg DMtW·75/day) where pasture was reduced from 17 cm to 8 cm, liveweight gain was similar to that 

obtained on the lower pasture allowance, therefore the lower winter residual appears to have had little 

effect on live weight gain. 

Spring 

Spring daily liveweight gain of both genotypes was high relative to winter (2.5 - 4 times) and similar 

to that reported previously (Ataja et al., 1990; Semiadi et al., 1992; Kusmartono et aI., 1995) when 

compared at similar post-grazing pasture mass or pasture allowance. There was a large increase in 

liveweight gain in response to increasing pasture allowance from 1.8 - 3.7 kg DMih/day but the 

increase above 3.7 kg DM/head/day for red deer was low (>20 g/day between allowance 3.7 and 9.1 

kg DMihead/day) suggesting red deer were nearing their maximum intake at this allowance. When 

red deer were continuously stocked during spring, increasing sward height from 4 to 10 cm had no 

effect on liveweight gain (Hamilton et al., 1995). In the present study, increasing pre-grazing pasture 

height from 5.2 to 13 cm increased spring liveweight gain of red deer from 50 to 200 g/day. 

Hybrids continued to show a response to extra pasture allowance during spring (Figure 3.1b) even 

when allowance was high (6.4 kg DMihead/day) implying, unlike red deer, maximum intake had not 

been achieved. Extrapolation of the allowance curve (Figure 3.1b) suggests that an allowance of 10.3 

kg DMihead/day may have supported near maximum intakes. For example, at an allowance of 10.3 

kg DMihead/day hybrids gained liveweight at 323 g/day. The predicted liveweight gain from the 

fitted relationship for an allowance of 12.8 kg DM/head/day was 330 g/day. 

These data indicates hybrids need to be offered almost twice the amount of pasture (5.7 vs 10.3 kg 

DM/head/day) as red deer during the spring to maximise liveweight gain. 

At the lowest spring pasture allowance (0.16 kg DMlWo.75 Iday), hybrid live weight gain was 4 times 

that of red deer but it seems that hybrids were prepared to graze lower into the sward to maintain 

intake when feed supply was limited during spring (Table 3.3). That is, a pasture allowance intake 

relationship at the lowest spring pasture allowance may have been different for hybrids compared 
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with red deer. It is possible that such an effect could also have been responsible for a genotype 

difference in liveweight gain at higher allowances, although no difference in the residual grazing 

height of pastures between genotypes was detected at the higher allowances However, the methods of 

height measurement employed in this study were not sufficiently sensitive to pick up the relative 

small differences needed. For example, at the highest allowance pasture height was reduced on 

average by 4 cm during grazing by either genotype. Since the standard error of the mean for the 

height measurement at the highest allowance was 1.3 cm it is likely any subtle differences in post­

grazing pasture mass would not have been detected. A difference in post-grazing pasture mass of 1.3 

cm is equivalent to a 0.55 kg DMlday or a 20% increase in intake per animal. So, although hybrids 

have been shown to gain liveweight faster than red deer during spring even although they grazed to 

an apparently similar residual, it is still possible that a difference in DM intake was responsible for 

the difference in liveweight gain. 

There is evidence that animals which possess a high potential for production have a higher intake 

than less productive animals and under feed restrictions are prepared to work harder to obtain it. 

Studies on dairy cows has shown that pen-fed Friesians produce up to 50% more total milk than their 

Jersey counterparts, but require 20% more feed (Blake et ai., 1986; Gibson, 1986). Friesians, a high 

producing large genotype, graze to a lower post-grazing pasture mass (L'Huillier et ai., 1988) 

compared with Jersey cows. Within the Jersey breed, Bryant (1983) found cows of high genetic merit 

grazed to a lower residual when restricted than cows of lower genetic merit. Similarly, genetically 

superior Friesians ate more DMllOO kg liveweight than their genetically inferior contemporaries, and 

the effect was greatest when allowances were high. This concept may explain the lower post-grazing 

pasture mass recorded for hybrid deer at low allowances during spring in this study. 

Summer 

Mean summer daily live weight gain was similar for both genotypes, due mainly to a reduction in 

liveweight gain of hybrids compared with spring, rather than any increase in red deer live weight gain 

from spring to summer. Previous studies of this kind have slaughtered stags at, or before, December 

and therefore comparable literature for summer is scarce. The live weight gain response to changing 

allowance was similar for both genotypes and allowances above 6 kg DMlhead/day produced little 

extra liveweight gain. The similarity in botanical composition of the spring and summer swards 

(Table 3.5) indicated removal of reproductive growth and the use of irrigation enabled pasture quality 

to be maintained at a time when, under ilOrmal pasture management, quality would have declined. 

This suggests that the reduction in liveweight gain observed during the summer was an animal effect 

rather than an effect caused by a changing quality of diet, although it is likely that further reduction in 

liveweight gain would occur in situations where high pasture quality was unable to be maintained. 
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Prediction of live weight gain 

Multiple regression equations which used pasture and animal variates as factors to predict liveweight 

gain were unable to explain as high a proportion of variation in deer live weight gain as that recorded 

in other studies with other species (Thompson, 1992). A major difference between this and many 

other pasture allowance type experiments was the confounding of pasture allowance with pre-grazing 

pasture mass and height. Consequently, this work was not effective at isolating effects of components 

of pasture availability on intake and liveweight gain although this was never the intent, which was to 

compare genotypes over a range of pasture availabilities. However it invites the question as to 

whether hybrids responded more to extra pasture height or extra allowance. 

The regression coefficient for allowance in the multiple regression of the current study was higher 

than those previously published. This was not surprising considering pasture allowance was highly 

and positively correlated with pasture mass. Figure 3.3 presents the fitted curves for these data and a 

series of hypothetical pre-grazing pasture mass curves (Rattray and Clark, 1984). It suggests that 

increasing both pasture allowance and pasture mass produced a response curve which transects a 

number of pasture mass specific allowance-liveweight gain relationships and therefore the increase in 

liveweight gain was in some cases much greater than has previously been reported. 
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Figure 3.3 The mean allowance-liveweight gain relationship for red (a) and hybrid (b) deer during 
the spring over a range of pasture masses (solid line) and hypothesised range of pasture allowance­
liveweight gain relationships at common pasture masses. 

Experimental approach 

The lack of replication in the trial design and the confounding of pre-grazing pasture mass and daily 

allowance reflect design limitations but were the practical realities of this research. 

A replicated design would have enabled a more rigorous analysis of pasture allowance effects on 

liveweight gain by allowing for analysis by ANOV A of group means rather than individual animal 

values, However, replication would have involved many more resources than were available. While 
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ANOV A techniques have been used in the analysis of these data to identify deer genotype effects, the 

author acknowledges the tentative nature of results from this work. 

Further, the experimental treatments were complicated by confounding daily pasture allowance and 

pre-grazing pasture mass, both known to independently influence intake and liveweight gain 

(Hodgson, 1982). However, in an experiment where the primary aim was to compare deer genotype 

over a range of feeding levels, it is more important to ensure groups within feeding treatment had 

similar nutritional opportunities rather than to define exactly the feed treatments. This experiment 

measured pasture allowances without including concurrent pasture growth. Thus differences in the 

pasture available for grazing between allowance treatments may have been greater than that 

represented purely by allowance and errors in pre-grazing height and mass would have lead to errors 

in the calculation of allowances. 

Confounding made it impossible to clearly identify whether weaner stags responded more to 

increases in pasture height and mass or pasture allowance but Figure 3.3 suggests allowance was 

important. However, these data have practic~H application because the greater pasture mass at which 

high allowances were offered probably reflects on-farm situations more realistically than a range of 

allowances at a common pasture mass. 

Effect of live weight gain on 12 month weight 

ill previous studies investigating venison production in New Zealand, the proportion of deer attaining 

92 kg by 12 months of age has been used to evaluate nutritional, management and genotype 

treatments. Over recent years this target has been increased to 95 kg but to allow a comparison with 

previous years a target of 92 kg will be used. Based on simulated data, a pasture system run at the 

highest allowance would only achieve 92 kg liveweight in 27% of red deer. This is similar to farm 

survey data (Wilson and Audige, 1996) which indicates an industry average of about 10-15% of red 

deer reach 92 kg within 12 months. These proportions are low compared with 75% reported by 

Semiadi et al. (1993a), 90% by Soetrisno et al. (1994) and 100% by Kusmartono et al. (1995) who all 

offered allowances less than the highest allowance in the present study. The difference between 

studies appears to be more due to greater initialliveweight than liveweight gain. If pre-winter 

liveweight of 62 kg as reported by Semiadi et al. (1993a), is used as the initial weight in the 

simulation (instead of 58 kg), 56% of red deer would have reached 92 kg by December which is more 

comparable with previous studies. The proportion of hybrids reaching 92 kg from the highest pasture 

allowance (99%) was similar to that reported by Kusmartono et al. (1995) who fed at a similar level 

and recorded a similar pre-winter liveweight to the present study. illcreasing hybrid pre-winter 

liveweight by 4 kg would have enabled all hybrids to reach 92 kg in 12 months on a lower (6 vs 10 

kg DMlh/day) pasture allowance than offered here. 
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Therefore the higher 12 month liveweight of hybrids compared with red deer is a combination of 

their more rapid liveweight gain in spring (9-10 months old) and greater pre-weaning (autumn) 

liveweight. In this study, spring liveweight gain only accounted for, on average, 26% of the 

difference in 12 month liveweight with the majority of the liveweight difference (74%) existing at the 

beginning of winter (Table 3.4). To illustrate the extent to which weaning weight (1 March) and 

liveweight gain interact, the percentage of deer reaching 92 kg liveweight by mid December for given 

combinations of weaning weight and average liveweight gain was calculated (Figure 3.4). Similar 

tables for liveweight in November and October are given in Appendix ll. 
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Figure 3.4. Effect of weaning weight (J March) and live weight gain on the percentage of deer 
reaching 92 kg liveweight by mid December. Stippled and shaded areas represent likely scenarios for 
red and hybrid deer, respectively. 

With a mean weaning weight of 50 kg (industry average for red deer) only average growth rates of 

above 200 glday allow significant numbers of deer to reach 92 kg by the target date. Such average 

growth rates are seldom achievable by red deer (Wilson and Audige, 1996). In contrast, most hybrids 

with an average weaning liveweight of 60 kg will achieve 92 kg liveweight mid-December, even with 

a low liveweight gain (125 g/day). In thi s experiment red deer grew on average between 125 and 150 

glday for the lowest and highest pasture allowance, respectively. For hybrids, the corresponding 

figures were 135 and 200 glday. Weaning weights were 50 and 58 kg for red deer and hybrids, 

respecti vel y . 
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Liveweight gain per hectare 

Where high pasture allowances were offered during spring (10 kg DMlhead/day), deer gained 

liveweight rapidly (230 - 320 g/day for red deer and hybrids, respectively) but did so at the cost of 

per hectare liveweight gain. In this experiment the greatest liveweight gain per-hectare was achieved 

on a pasture allowance of about 4 kg DM/head/day. At this allowance red deer achieved both a high 

liveweight gain per head and per hectare but the greatest production per hectare from hybrids 

occurred well below the maximum per head production. This suggests that previous studies which 

have used liveweight gain per head as their only criteria for measuring the success of grazing systems 

(Ataja et al., 1992; Semiadi et al., 1993a; Soetrisno et al., 1994; Kusmartono et aI., 1995) may not 

have identified the most productive system for hybrids on a per hectare basis. 

Compensatory growth 

In the period after experimental treatment, deer did not exhibit compensatory growth as a result of the 

feed restriction imposed previously. In other studies involving the release to spring pasture of feed­

restricted deer housed during winter, the lack of compensatory liveweight gain was attributed to the 

low pasture mass offered (1000 kg DMlha) during the opportunity for compensation (Loudon and 

Milne, 1985). Red deer, restricted during winter did show an extra 37 g/day extra growth compared 

with ad lib. fed animals when released onto pasture of mass no less than 1500 kg DM/ha in the 

second year of a trial, although during the first year under similar conditions no compensation was 

evident (Webster et al., 1997). A similar study showed housed red deer grew at 241 and 138 g/day 

during winter for a high and low plane of nutrition respectively and grew at 137 and 176 g/day 

respectively when released to pasture during spring (Brelurut et al., 1995). Although there is no 

information on compensatory growth in hybrids, Wairimu et al. (1992) found that after long 

restrictions during winter, wapiti stags grew faster (350 g/day) than their ad lib. fed counterparts (160 

g/day) when both were supplemented with hay on spring pasture. 

While there was no measurement in the present study of the pasture mass offered to deer in the period 

between experiments, during winter, it would have been less than that offered by Loudon and Milne 

(1985). After spring treatments, deer were offered almost certainly more than 1500 kg DM/ha, on 

pasture which had neither been topped or regularly irrigated and consequently would have been 

substantially poorer in quality compared with experimental pastures. It is possible therefore that, as 

hypothesised by Loudon and Milne (1985), deer in the present study were not given the pasture mass 

(winter) or pasture quality (summer) to allow them to exhibit any compensatory growth. However, 

given the pasture supply offered in summer was able to sustain liveweight gains in excess of 250 

g/day in some individuals, it is unlikely that quality or quantity was a major factor limiting the ability 

for deer to compensate. 
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Severity and duration of feed restriction is known to affect the degree of compensation (Wilson and 

Osbourn, 1960). Although liveweight gain during winter was low it was similar across all allowances 

and consequently there was no significant difference in liveweight between treatment groups. 

Therefore, compensation would not be expected. 

However, the same could not be said for deer during the period post-spring where previous restriction 

in feed intake had a large effect on liveweight gain. The difference in liveweight between deer on the 

highest and lowest allowances at the conclusion of the spring experiment was 16.7 and 12.8 kg for 

red deer and hybrids respectively. It would appear that the severity of restriction should have been 

sufficient to initiate compensatory growth since previous experiments where restriction has been 

responsible for 19.6 kg (Brelurut et al., 1995) and 12.4 kg (Webster et al., 1997) differences, 

compensatory growth has been recorded. 

Some previous authors (for example, Carston et al., 1991; Wairimu and Hudson, 1993) attributed 

some of the increased liveweight gain after restriction to an increase in gut fill although Yambayamba 

et al. (1996) found no difference in gut fill between restricted and non-restricted animals. If increases 

in gut fill were associated with compensatory gain in the current experiment, where there appeared to 

be little difference in liveweight gain post-restriction between restricted deer and those on high 

pasture allowances, subtracting a gut fill effect from restricted animals further increases the apparent 

body weight gain of well fed deer compared with their restricted cohorts. 

This work suggests that liveweight gain sacrificed due to feed restrictions during spring is 

irretrievable as it appears that deer are unable to compensate later in the season. However, more work 

specifically focusing on this is needed. 
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3.4 Conclusions 

This study shows that hybrids have a greater liveweight gain at any pasture allowance compared with 

red deer in spring but that differences during winter and summer are not significant. This finding is 

consistent with farm based observations that when feed is restricted, the hybrid is unable to exhibit its 

superior potential for live weight gain over red deer. At the lowest spring pasture allowance hybrids 

grazed to a lower residual compared with red deer, and consequently had a greater apparent intake, 

but it is unclear, due to the inability to measure accurately high pasture masses with the techniques 

employed, whether genotype differences in intake were responsible for the liveweight gain 

differences observed at higher pasture allowances. What is clear is the greater potential of hybrids to 

achieve high liveweight gain compared with red deer in spring, but with the need to offer hybrids 

almost three times the pasture allowance required by red deer to reach their potential. 

.- --.... , 
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Chapter 4a 

Effect of season on feed intake and liveweight gain of group - fed young 
red deer (Cervus elaphus) and red x elk hybrid stags 

4.0 Introduction 
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In the experiment described in Chapter 3 marked differences existed between genotypes in the 

seasonal pattern of liveweight gain at high pasture allowances (presumably close to ad lib. intake). In 

red deer, it has been shown previously that seasonal patterns in liveweight gain reflect seasonality of 

feed intake (Loudon, 1994; Webster, 2000). It is possible that differences between genotypes in 

amplitude of liveweight gain between winter and spring observed in Experiment 1 reflect a different 

seasonal pattern of intake between genotypes. 

Alternatively, there is good evidence that the energy requirement for maintenance of deer differ 

between winter and summer and some evidence the winter-summer amplitude may be higher for elk 

than for red deer (Simpson et al., 1978a; Jiang and Hudson, 1994). 

Although red deer and hybrids could differ in liveweight gain as a result of a number of other 

reasons, as demonstrated in the literature review (Chapter 2), the two experiments reported in 

Chapter 4a and 4b primarily focus on intake and maintenance requirement. 

The experiment in Chapter 4a aimed to compare the relationship between ad lib. feed intake and 

liveweight gain of red and hybrid deer either to confirm that seasonal changes in the amplitude of 

liveweight gain reflect seasonal changes in ad lib. intake or, alternatively, to suggest a difference in 

maintenance requirement, or that some other effect such as composition or efficiency of gain may be 

involved in the seasonal genotype differences in liveweight gain. 

In the previous experiment (Chapter 3) the largest difference in spring liveweight gain between red 

and hybrid weaners occurred at the highest pasture allowance, so in this experiment genotypes were 

compared only at ad lib. intake. 



4.2 Materials and Methods 

Experimental design 

Total group ad lib. feed intake of a pelleted diet and individualliveweight gain were measured for 

housed red and hybrid weaner stags (approximately 6 - 12 months of age) in winter and spring. 

Animals 
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Fifteen red weaner stags weighing 53.9 kg ± 1.3 kg (mean liveweight ± SEM) and fifteen red elk 

hybrid weaner stags weighing 62.3 kg ± 1.5 kg (mean liveweight ± SEM) were housed in two 

genotype-specific groups. Daily feed intake (per group) and liveweight gain (individual animal) were 

recorded for deer during 56 days in winter (3 July - 27 August) and 63 days in spring (16 October -

16 December). Deer were housed for 2 weeks under experimental conditions prior to data collection. 

Stags were housed at a density of 1 animal per 3.9 m2 (Plate 4.1) . 

Red deer were sourced from 2 commercial herds from the Canterbury area and the hybrids from a 

third. All deer received anthelmintic (l mg 110 kg liveweight, Vetdectin, Cyanamid NZ Ltd) and 

copper (5 g copper oxide needle containing bolus, Copacaps, Rhone Merieux) prior to housing in 

both seasons. 

Deer were weighed weekly, before feeding, in a deer crush mounted on load bars (Tru-test, model 

700 economy plus, Tru-test Distributors Ltd, Auckland) . Mean liveweight gain for individual deer 

was taken as the regression coefficient of the linear relationship between liveweight (kg) and time 

(days) and expressed as grams per day. 

Plate 4.1. Single genotype groups of red and hybrid deer housed and offered a pelleted diet ad lib. 
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Feeding 

Deer were offered feed daily at 0900 h. The ingredients and proximate analysis of the pelleted ration 

offered are given in Table 4.1. The feed offered daily to each group was increased if the feed refused 

from the previous day (residuals) for that group was less than 10% of the feed on offer. Residual feed 

was collected daily, weighed and discarded. 

Table 4.1. Raw ingredients and proximate analysis (DM basis) of winter and spring batches of a 
barley-based concentrate feed1

• 

Raw ingredients 
barley grain 
branIPollard 
mollasses 
CaC03 

NaCUselenium premix 

Proximate anlaysis 
dry matter (g/kg fresh) 
organic matter (g/kg DM) 
crude protein (g/kg DM) 
fat (glkg DM) 
acid digestible fibre (glkg DM) 
dry matter digestibility (%) 
organic matter digestibility (%) 
MID (MJ ME!k:g DM)2 

glkgDM 
468 
460 

8 
30 
34 

Winter 
912 
938 
142 
31 
96 

88.8 
90.2 
12.0 

Spring 
881 
930 
147 
33 
100 
87.6 
90.7 
11.9 

1. All-purpose ration (APR plus) Target Stock Feed, Archers Milling Company, Rangiora, NZ. 
2. Calculated from the equation for compound feedstuffs (AACR, 1990) . 

Determination of feed intake 

Daily feed intake was calculated for each group as; 

Daily group intake (kg DM) = fresh feed offered (kg) x DM% - feed refused (kg) x DM% 

Dry matter percentage (DM%) of offered and refused feed was determined daily over a 3 week 

period and the mean values used to calculate DM intake. To determine DM%, a sample of 

approximately 1 kg was weighed to the nearest 0.1 g, oven dried at 70° C for 36 hand re-weighed. 

Deer had unlimited access to water at all times. To prevent lengthy storage of the pelleted ration, a 

new batch of the same recipe was made prior to the beginning of each experimental period. 

Daily individual intake (kg DM/head/day) was calculated by dividing daily group intake by 15 

(deer/group). ME intake (MJME /day) was calculated as MID (MJME/kg DM) x DMI (kg DMlday). 

. ," - - . 
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Statistical analysis 

Mean daily intake of red and hybrid weaner was analysed by comparing the group intake (on 56 days 

- winter or 63 days - spring) during the experiment using a students t test. 

Liveweight gain was determined by linear regression of weekly liveweight over time for each 

individual animal. Red and hybrid groups were analysed by comparing liveweight gain of individual 

deer (n = 15) using a t test. 
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4.3 Results 

Intake and liveweight gain 

Ad lib. intake and liveweight gain during winter and spring of both genotypes are given in Table 4.2 

with a table showing absolute values in Appendix 3. During winter, hybrids consumed more feed 

(115 g DMihead/day) than red deer when expressed in absolute terms, but not on a metabolic 

liveweight basis (P> 0.05). Liveweight gain during winter did not differ significantly between 

genotypes regardless of whether it was expressed in absolute or relative terms. Although not 

significant, relative liveweight gain (glkg 0.75/day) was 14% greater for red than for hybrid deer. 

During spring, hybrids consumed 260 g DMihead/day more on average than their red deer 

counterparts, but on a metabolic liveweight basis intake was similar. However, during spring hybrid 

liveweight gain was 1.63 glkg O.75 /day (approximately 60 glday or 15% ) greater than red deer (P < 

0.05). 

Table 4.2 Mean intake and liveweight gain (standard error of mean in parenthesis) of housed red 
deer and hybrid weaner stags during winter and spring. 

Winter Genotype Spring Genotype Season 
Intake gDM/h/day Red 1627 (24) * 2430 (55) ** ** Hybrid 1742 (28) 2690 (51 ) 

g DMlkg 0.75 /day Red 0.95 (0.01) 
NS 

1.09 (0.20) 
NS ** Hybrid 0.92 (0.01) 1.11 (0.20) 

LWG glday Red 168 (13.4) 
NS 

285 (16.4) ** ** 
Hybrid 162 (14.8) 345 (19.1) 

glkg 0.75 /day Red 7.99 (0.51) 
NS 

10.70 (0.59) * ** 
Hybrid 7.02 (0.57) 12.33 (0.56) 

Where; NS, P > 0.05; *, P <0.05; **, P < 0.01 ; 

There was a significant (P < 0.05) increase between winter and spring in both feed intake and 

liveweight gain for both genotypes. In absolute terms, red deer increased their intake 49% from 

winter to spring while hybrid intake increased 54%. The corresponding increases on a metabolic 

liveweight basis were 15 and 21 %. This resulted in a seasonal increase in liveweight gain. Between 

winter and spring, red deer increased liveweight gain by 34% and hybrids by 76% on a metabolic 

liveweight basis. 
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4.4 Discussion 

This study extends the findings of the previous experiment (Chapter 3) by examining intake and 

liveweight gain in two deer genotypes at ad lib. intake. 
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futake and liveweight gain data from this and previously published studies are presented in Table 4.3. 

Generally, ad lib. intake and liveweight gain in winter and spring of red deer weaner stags were 

similar to those reported previously and contained similar between-season variation. 

Table 4.3. Previously published values for ad lib. intake and liveweight gain of housed weaner red 
deer stags during winter and spring. 

Author 

This study 

Suttie et al. (1987) 

Milne et al. (1987) 
Suttie and Hamilton (1983) 
Webster et al. (1997) 

Brelurut et al. (1995) 

This study 

Suttie et al. (1983) 

Milne et al. (1987) 

Elk and hybrids 

Intake 
(MJ MFlkg 0.75 /day) 

Winter 
0.95 

0.70 

0.80 
0.90 
0.90 

0.81 
Spring 

1.09 

0.70 

1.18 

Liveweight gain 
(g/day) 

168 

80 

82 
141 
174 

241 

285 

220 

198 

There are no equivalent liveweight gain data for housed, ad lib. fed hybrid deer. However, similar 

deer outdoors achieved a live weight gain of 170 glday on winter pasture and 310 glday in spring on 

generous allowances of chicory (Kusmartono, et al., 1995). Penned 6 month old wapiti grew at a rate 

of about 150 glday in winter (Jiang and Hudson, 1994), which is similar to the penned red deer of 

Suttie and Hamilton, (1983). Spring liveweight gain for Canadian elk was 400-500 glday (Jiang and 

Hudson, 1994). A comparison of wapiti x red PI hybrids with red deer calves showed the average 

growth rate from weaning to 14 months was 37% higher for the hybrid (273 glday) than for red deer 

(171 g/day) (Pearse, 1988). 

These data suggests that the liveweight gains of 162 glday during winter and 345 glday during spring 

for hybrid deer in this experiment are similar to those reported in previous studies even though such 

studies have involved wapiti or elk and were collected in a grazing environment. 

:-,,-. 
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Seasonal effect 

This work confirms results on pasture (Chapter 3) that there may be little difference between 

genotypes in liveweight gain during the winter but hybrids have a higher liveweight gain during 

spring compared with red deer. Essentially, hybrids appear to have a greater amplitude in the seasonal 

cycle of liveweight gain (Figure 4.1). The spring liveweight gain (400-500 glday) of Canadian elk 

recorded by Jiang and Hudson (1994) suggests the seasonal amplitude in pure elk animals may be 

higher than hybrids. 

J 
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Figure 4.1 The seasonal pattern liveweight gain of red deer and hybrids (data from experiment 1, 
Chapter 3)(linesfitted by hand). 

Liveweight gain prediction 

To estimate the contribution of change in intake to change in liveweight gain between seasons, 

liveweight gain was predicted (Table 4.4) from the ad lib. intake recorded in this experiment (Table 

4.2) assuming a common MEm and cost of liveweight gain for genotypes and seasons. Using the 

average live weight (kg) during the two experimental periods for each genotype and an estimate of the 

energy requirement for maintaining liveweight (ME~ (0.57 MJ MEIW o.75/day) (Fennessy et al., 

1981), the total energy requirement for maintenance of live weight was calculated. The ME available 

for growth was obtained by subtracting MEm from ME intake (where ME intake was the DM intake 

multiplied by the ME content of the feed, MJ ME/kg DM). An estimate of liveweight gain was 

, 
, . 



derived by dividing the energy available for growth (MJ) by an estimate of the costs of liveweight 

gain (37 MJ MElkg gain) (Fennessy et al. 1981). 

Table 4.4. Predicted and observed liveweight gain (LWG) of red and hybrid deer in winter and 
spring based on average group liveweight and intake from individually penned animals and 
published values of MEm and energy cost of gain (Fennessy et al., 1981). 

Genotype Genotype 
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Winter Difference Spring Difference 
(%) (%) 

Red Hybrid Red Hybrid 
Average liveweight (kg) 56.9 65.0 78.1 84.6 
Intake (MJ MEIW 0.75 /day ) 0.95 0.92 1.10 1.11 
Maintenance (MJ MEIW U.D /day) 0.57 0.57 0.57 0.57 
Cost of gain (MJ MFlkg) 37 37 37 37 

Predicted LWG (g/WU.75 /day) 10.3 9.5 +8 14.3 14.6 -2 
Predicted LWG (g/day) 213 217 +2 376 407 +8 

Observed LWG (g/Wu,,, /day) 7.99 7.02 +14 10.7 12.3 -13 
Observed LWG (g/day) 168 162 -3 285 351 +23 
Observed - Predicted difference (%) 29 35 34 19 
Difference (%) 32 ' 27 
(predicted LWG - observed LWG) 

Where; 
genotype difference is the difference between red and hybrid deer expressed as a percentage of the hybrid value 
with positive values representing higher red liveweight gain and negative values representing higher hybrid 
liveweight gain and 
predicted LWG - observed LWG differences was the difference between predicted LWG (g/W0.75 /day) and 
observed LWG (g/W 0,75 /day) expressed as a percentage of observed LWG (g/W 0.75 /day). 

Seasonal effects 

Observed liveweight gain in both winter and spring was greater than was predicted using a common 

MEm and energy cost of liveweight gain for both genotypes. Predicted liveweight gain from this 

model was 32% higher in winter and 27% higher in spring than the observed liveweight gains. 

Therefore, there is some basis for rejecting common MEm and/or cost of liveweight gain values for 

both winter and spring. 

Higher predicted liveweight gain values relative to observed values could have been a result of; 

1) underestimation of ME intake 

2) underestimation of MEm 

3) underestimation of the energy costs of gain 

Estimates of ME intake are based on MEIDE value estimated from proximal analysis of feed which 

do not always provide reliable estimates for compound feeds (Isherwood pers. com.). However, the 

MEIDE values used for calculating ME intake are what would be expected based on the feed table 

values of the diet constituents and their relative proportions (see Chapter 5 for a full discussion on 

estimating ME intake). Therefore, there is little evidence that ME intake was overestimated. 

:..",,~. -.---....:---..:.-~.., ....... --
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The maintenance requirement and energy cost of gain figures reported by Fennessy et ai. (1981) were 

derived from similar animals, housed indoors on a similar feed source. The values used were similar 

to other studies (Brockway and Maloiy, 1968; Suttie et ai., 1987; Semiadi et ai., 1994) and there is no 

good evidence to suggest they were overestimated. 

Genotype effects 

Observed differences between genotypes in liveweight gain were greater (13 - 14%) than was 

predicted using different liveweights but common MEm and energy cost of liveweight gain values for 

both genotypes (2 -7%). 

In this model, predicted winter liveweight gain was 7% higher for red deer compared with hybrids 

however, they actually gained liveweight 14% faster than hybrids. In spring, the opposite occurred 

where predicted liveweight gain was similar between genotypes but hybrids actually gained 

live weight 13% faster than red deer. This mismatch between predicted and observed values suggests 

that red and hybrid deer do not share a common MEm and/or liveweight gain cost. 

Further, the discrepancy between calculated and observed spring liveweight gain was greater for red 

deer (106 glday) than hybrids (56 glday) suggesting that the estimates of MEm and/or costs of 

liveweight gain were too low, and that red deer appear to grow more slowly during spring than would 

be predicted. 

Of the 66 glday difference between genotypes in spring liveweight gain observed in this study, 

27 glday (40%) can be explained by the difference in average liveweight between genotypes over the 

experimental period. The remainder is possibly a result of a genotype difference in the energy 

required for maintenance and/or the energy cost of liveweight gain 
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Conclusions 

During winter, both red deer and hybrids had similar DMI intake when expressed on a metabolic 

body weight basis but liveweight gain tended to be higher for red than for hybrid deer but lower than 

was predicted using previously published values of MEm and cost of liveweight gain. Although 

differences were non-significant, there was some suggestion that red and hybrid deer differ in either 

their energy requirements for zero liveweight gain or the energy costs of liveweight gain in winter. 

During spring, while ad lib. intake expressed on a metabolic body weight basis was not different 

between genotypes, red deer grew more slowly than hybrids. The difference in liveweight between 

genotypes was able to explain about 40% of the difference in absolute liveweight gain but the 

remainder must be accounted for by differences in maintenance requirement and/or the energy cost of 

gain. 
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Chapter 4b 

Effect of season on feed intake and liveweight gain of individually penned 
young red deer (Cervus elaphus) and red x elk hybrid stags 

4.6 Introduction 

When offered ad. lib. feed during spring hybrids exhibit a greater liveweight gain on an absolute 

basis compared with red deer. While 40% of the advantage could be explained by genotype 

differences in liveweight (Chapter 4a), the remaining variation in liveweight gain appears not to be 

attributable to differences in intake since in this study relative intake was similar for both genotypes. 

An increased maintenance requirement of animals affects liveweight gain by reducing the proportion 

of total metabolisable energy intake (MEl) available for growth, assuming it is not accompanied by a 

increase in feed intake. A lower mean MEm over a 12 month period have been reported for the 

tropical sambar compared with red deer in New Zealand (Semiadi et. al., 1994). However in this 

study, average liveweight gain for the whole year did not differ between genotypes which is probably 

reflects the lower feed intake of sambar deer: A similar study with bovine animals also showed a 

lower maintenance heat production in tropical bovine (Bos indicus) compared to temperate bovine 

(Bos taurus) (Vercoe 1970). The lower maintenance requirement may be an adaptive strategy to 

reduced heat production to counter high environmental temperatures in a tropical climate (Semiadi et. 

al., 1994). Currently it is unclear whether maintenance requirements differ between two temperate 

deer genotypes. 

There is a considerable amount of literature which shows the requirement for maintenance increases 

from winter to spring/summer for red deer (Simpson et. al., 1978b), wapiti (Jiang and Hudson, 1994) 

and white tailed deer (Thompson et al., 1973). Whether this reflects an intrinsic seasonal cycle of 

fasting heat production or an increase in metabolic rate associated with an seasonal increase in feed 

intake, or activity is less well established. 

For adult white tailed deer, fasting metabolic rate increased from winter (406 kJlkgo.75 /day) to 

summer (600 kJlkgo.75/day) (Silver et. al., 1969). However, more recent investigation with white 

tailed deer (Pekins and Kanter, 1992) and wapiti (Jiang and Hudson, 1993) suggests fasting heat 

production does not change with season. 

The aim of this experiment was to identify if red and red/elk genotypes differed in maintenance 

requirement and therefore was a cause of differences in liveweight gain performance of young red 

deer and hybrids in spring. 



4.7 Material and Methods 

Experimental design 
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Red and hybrid weaners stags (n=lO) were housed during winter (3 June - 27 August) and spring (16 

October - 16 December). Deer were randomly assigned to one of five feeding treatments which 

ranged from approximately maintenance to near ad lib. intake. Daily DM intake and weekly 

liveweight gain was recorded for each deer. 

Animals 

Five red and five hybrid weaner stags were housed in separate pens (3.5 m2
) during 85 days in winter 

and 61 days in spring. The animals used in this experiment were cohorts of those used in the 

experiment described in Chapter 4a and received similar copper and anthelmintic treatment. At the 

beginning of the winter experiment deer weighed 50.6 ± 1.1 kg and 58.1 ± 0.4 kg (mean ± SD) for 

red deer and hybrids, respectively. Deer were housed for 10 days prior to start of data collection in 

each season. Deer were fed daily at 0900 h and were weighed (to the nearest 0.1 kg) weekly prior to 

feeding using the equipment described in Chapter 4a. 

Feeding 

One individual from each genotype was randomly assigned to one of 5 feeding treatment (Table 4.5). 

The feeding treatments were 0.5, 0.6, 0.7, 0.8, or 0.9 times estimated ad. lib. intake where ad. lib. 

intake was estimated as 1.5 and 1.7 kg DMlhead/day during winter and 3.0 and 3.3 kg DMlhead/day 

during spring for red deer and hybrids, respectively. This estimate was based on data collected in the 

pre-experimental period. Daily feed allowance was adjusted for changes in liveweight on a weekly 

basis. Deer had access to water at all times through drinking nozzles and were fed the same diet to 

those deer in Chapter 4a (Table 4.1). 

Actual DM intake was defined as the difference between feed offered (kg DM) and feed refused (kg 

DM). Dry matter content of feed and feed refusals were as described in Chapter 4a. 

Energy intake was estimated by mUltiplying DM intake by the ME concentration (12.0 MJ ME/kg 

DM) of the feed. ME values of the feed were estimated using the equation for compound feed stuffs 

(AACR, 1990) as in Chapter 4a. 
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Table 4.5 Feeding treatments (g DMIVt·75Iday) for deer in winter and spring. 

Winter Spring 

Treatment Red Hybrid Red Hybrid 

(x ad lib. intake) 

0.5 37 41 41 42 

0.6 45 49 54 55 

0.7 53 58 68 69 

0.8 60 66 81 83 

0.9 68 74 94 96 

Statistical Analysis 

Mean daily live weight gain was defined as the regression coefficient of the linear relationship 

between liveweight (kg) measured weekly and time (days) and expressed as grams/day. Relationships 

betweeri intake and liveweight gain were fitted using linear regression. Regression coefficients and 

intercept values were tested for differences between relationships for each genotypes using the 

method of Snedecor and Cochran (1999). 

4.8 Results 

Intake and liveweight gain 

The mean daily ME intake (calculated from DM intake) and corresponding liveweight gain of 

individually penned deer for winter and spring is given in Figure 4.2 Within each genotype, linear 

relationships between liveweight gain (gIVtl.75/day) and intake (MJ ME/W 0.75/day ) were fitted to 

winter and spring data. These relationships were not significantly different in either regression 

coefficient or intercept value (P > 0.05) indicating the response of liveweight gain to intake was 

independent of season. However, when data from both seasons were combined there was a significant 

difference (P < 0.05) between genotypes in intake when liveweight gain was zero indicating MEm 

was greater for hybrids than red deer. The relationships were; 

Red deer 

Hybrid deer 

LWG (gIVtl.75/day) = 14.9 (1.8) ME Intake - 5.8 (1.5) 

LWG (gIVtl.75/day) = 19.3 (1.5) ME Intake -11.2 (1.8) 

R2 = 89% 

R2 =94% 
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To maintain liveweight during either season, hybrids required a higher intake (0.59 MJ MEIW 0.75 

/day) compared with red deer (0.39 MJ MEIW 0.75 /day). Consequently, when intake of both 

genotypes was restricted to a similar relative level (less than 1.0 MJ MEIW 0.75/day) red deer grew 

faster than hybrids. The cost ofliveweight gain (mean of both seasons) was 67.5 and 52.4 MJ ME/kg 

for red deer and hybrids respectively but was not significantly different. 

16,------------------------------------, 

14 

12 
'6' if 10 
01:11 

~ 8 
c 
.~ 6 

l: 
.21 4 
III 
~ 

.~ 2 

....I 

o+---------~------------------------~ 

-2 
[J 

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.1 1.2 1.3 1.4 
Intake (MJ MElkgO.75/d) 

Figure 4.2 The intake and liveweight gain of individually penned red (solid symbols) and hybrid 
(open symbols) deer during winter (. ) and spring (.). Values from ad lib. group fed deer for 
winter( A) and spring (. )(Chapter 4a) are also shown but not included in the regression Fitted 
lines are for genotype. 

For both genotypes a quadratic polynomial function was also fitted since red deer appeared to reduce 

their liveweight gain response to increasing intake to a greater extent than hybrids at intake greater 

than approximately 0.6 MJ MEIW 0.75 /day. The equations were; 

Red Deer LWG (gtwD.75/day) = -13.3 (4.7) +33.4 (11.4) x -10.4(6.3) x2 R2 = 94% 

Hybrid Deer LWG (gtwD.75/day) = -13.9 (5.8) +25.3 (13.5) x -3.3 (7.2) x2 R2= 93% 

where x = MJ MEIW 0.75/day 

and figures in parenthesis are standard errors 

Based on these relationships, maintenance requirement was 0.47 MJ MEIW 0.75/day and 0.60 MJ 

MEIW 0.75 /day for red and hybrid deer, respectively. The liveweight gain of group fed deer in the 

previous experiment was generally similar to that of individually penned deer offered the same 

intake. 

----
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4.9 Discussion 
- Maintenance Requirement 

The ME requirement for maintenance estimated from previous studies are presented in Table 4.6. 

Table 4.6. Previously reported values of energy requirement for maintenance (kJ MElWo. 75 /day) for 
penned red deer and wapiti during winter and spring. 

Author season MEw genotype 

This study winter/spring 470 red deer 

Simpson et at. (1978b) winter 450 red deer 
summer 500 red deer 

Fennessy et at. (1981) winter 570 red deer 
Suttie et at. (1987) winter/spring 520 red deer 
Serniadi et al. (1994) 12 months 630 red deer 

This study winter/spring 600 hybrids 

Jiang and Hudson, (1992) winter· 572 wapiti 
Jiang and Hudson, (1994) winter 473 wapiti 

summer 728 wapiti 
Cool and Hudson, (1996) winter 560 wapiti 

Maintenance requirements for hybrid deer are similar to those reported for wapiti in winter. The 

estimate of maintenance for red deer derived in this study is low however, compared with some 

previous estimates. 

The magnitude of the difference (0.13 MJ MEIW 0.75/day) is similar to that reported between young 

sambar (Cervus unicolor) and red deer (0.10 MJ MEIW 0.75/day) with sambar having the lower 

maintenance requirement (Semiadi et al., 1994, 1998). If these differences in MEm are incorporated 

into the liveweight gain calculation used in Chapter 4a, it would predict a 

2.8 gtw0.75 /day or 65 glday difference (based on the mean liveweight of each genotype) in 

liveweight gain in favour of red deer during spring at ad lib. intake. This calculation suggests that at 

ad lib. intake, provided the composition and efficiency of liveweight gain are the same for each 

genotype, red deer should gain liveweight at a faster rate than hybrids, which is contrary to what was 

recorded in this experiment and Chapter 4a. Although Semiadi et al., (1994) reported MEm differed 

between red and sambar deer, liveweight gain was not significantly different due to sambar having a 

lower voluntary feed intake compared with red deer. Although intake was similar between genotypes 

in Chapter 4a it is possible that hybrids were able to gain liveweight faster than red deer at a similar 

intake despite a greater MEm due to other effects. These include (1) greater ME intake through higher 

digestibility, (2) differences in the partial efficiency for fat (kf) and protein (kp) deposition, or (3) 

differences in the composition of gain and therefore a difference in the energy value of gain. These 

factors have been investigated in Chapter 5. Based on this data there was no seasonal difference in 

the intake-liveweight gain relationship for each genotype. This is in contrast to many studies which 
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have reported a seasonal increase in MEm from winter to spring. There is some evidence in Figure 4.2 

that if more data were available for hybrids especially, liveweight gain in spring may have been 

significantly lower than in winter at the same intake. 

The major component of maintenance requirement is fasting heat production (FHP). There is some 

evidence for a seasonal cycle in FHP (Silver et al., 1969; Thompson et. al., 1973) although others 

have found no difference between winter and summer FHP (Pekins and Kanter, 1992). Differences in 

MEm between genotypes could result from either (1) a different amplitude in the seasonal cycle of 

FHP between red deer and hybrids or (2) a different FHP per se or (3) the same FHP but a different 

composition of body weight change. 

Seasonal cycles in FHP 

Seasonal metabolic rate cycles have been reported for moose, elk, roe deer, white tailed deer and red 

deer although the amplitude of seasonal change reports is variable (10-50%). However it is unclear 

from these reports whether this seasonal cycle results entirely from an intrinsic cycle in FHP or 

seasonal cycles in intake and liveweight gain which both affect metabolic rate. While there is some 

evidence that FHP is lower in winter than summer (Silver et al., 1969), the more recently published 

literature discredits these earlier findings, citing non-thermoneutral environments and activity within 

the calometric chamber (Pekins and Kanter, 1992) and feed intake (Nilssen et al., 1984) as likely 

causes of the increased metabolic rate during spring. Although FHP should be measured when there 

is little or no digestive processes occurring, high previous levels of nutrition have a positive effect on 

FHP. Therefore, it is likely seasonal variation in intake confounds seasonal variation in FHP. Where 

intake increased from winter to summer for wapiti (Jiang and Hudson, 1993), summer FHP tended to 

be higher in spring compared with winter, although the differences were not significant. However, in 

the current experiment feeding treatments were a constant proportion of ad lib. and therefore might 

have been expected to minimise any confounding effects of seasonal variation in intake on FHP. In 

this situation any seasonal effect on FHP per se should have resulted in a different seasonal MEm on 

the same intake. However, there was no difference in MEm between seasons (Figure 4.2) and 

therefore this observation would agree with those of Pekins and Kanter (1992) and Nilssen et al. 

(1984) that there is no important intrinsic seasonal cycle in FHP other than that caused by intake. 

Although the results from this study are consistent with there being no seasonal cycle in FHP, MEm 

could still be lower for red deer compared to hybrids as a result of a difference in FHP between 

genotypes independent of both season and intake. A previous author has shown different species 

(sheep vs cattle) and different genotypes (Ayrshire vs Aberdeen Angus) (Blaxter, 1989) have 

different levels of fasting heat production. Although FHP was not measured in the current 

experiment, it is likely, since the majority of MEm is FHP (Blaxter, 1989), that at least some of the 

genotype difference in MEm is likely to be attributed to differences in FHP. 
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It is possible that genotypes with a similar FHP could still have a different MEm depending on the 

composition of negative gain to supply energy for FHP. For example, to supply FHP of 270 kJNf!·75 

'day would require less liveweight loss if the loss was all fat (10 g) compared to a solely lean loss (64 

g) assuming km to be 0.7 and the energy value of adipose and lean as 39.5 and 6 MJlkg DM, 

respectively. There is little difference in km irrespective of whether catabolism is predominantly fat or 

protein. Different genotypes could potentially have a different MEm for live weight maintenance but 

because they lose one tissue and gain another at different rates may have a similar MEm for energy 

balance. Although results from this study indicate genotypes differ in MEm for liveweight 

maintenance it is unclear whether they differ in MEm for zero energy balance. 

Activity 

Seasonal increases in maintenance requirement in free ranging deer have been linked to increases in 

activity associated with walking and foraging for food (Pauls et al., 1981). In previous studies (Jiang 

and Hudson, 1992) where seasonal variation in.maintenance requirements has been recorded, deer 

have not been housed and it is possible these deer were more activity during spring compared with 

individually penned deer which had limited opportunity for activity. Penned deer in this experiment 

each had an equal opportunity to move as pens sizes were the same and therefore energy requirement 

for activity are likely to have been similar between genotypes. Although there was no formal record 

of deer activity while individually penned, routine observations and unpublished resting heart rate 

data suggest there was no obvious seasonal difference in activity and no difference between 

genotypes The greater liveweight gain of individually housed deer (Chapter 4b) compare with group 

fed animals (Chapter 4a) at the same DM intake is an observation consistent with a negative effect on 

liveweight gain of increased movement through increasing pen size. At a similar intake deer housed 

in individual pens accumulated liveweight at a faster rate than those in Chapter 4a which were housed 

in groups. A possible explanation for this is that deer housed in groups had greater areas in which to 

move (3.5 v 58.5 m2
) and were allocated a greater area per head than those individually penned (3.5 

vs 3.9 m2
) and therefore had a greater opportunity for movement and interaction with other deer 

which routine observations suggest they took advantage of. Since increases in movement have been 

shown to increase energy expenditure (Pauls et ai., 1981) it is possible this was responsible for a 

lower rate of liveweight gain in deer housed in groups.(Blaxter, 1989) calculated that sheep expend 

about 3 J for every kg of body weight moved 1 m. On this basis a 100 kJ difference (about the 

difference in MEm required for the difference in liveweight observed) would result from deer in large 

pens walking 120 m more than those in individual pens 

In contrast, recent research (Hanlon et. ai., 1997) reported deer housed in individual pens which gave 

restricted visual and tactile contact with other deer had a lower mean liveweight gain (138 glday) 
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than deer housed in groups (202 glday) despite little difference in feed intake between treatments. 

Although deprivation of social contact changed behaviour (more time lying and less time eating and 

grooming) there appeared to be no difference in stress levels as indicated by cortisol levels. For our 

individually penned deer, intake depression did not seem to occur since deer offered feed ad lib. had 

higher liveweight gain than those group fed ad lib. The design of the individual pens used in this 

experiment allowed for both visual and tactile contact between animals in adjacent pens may have 

reduced the effect of individually penning animals seen by Hanlon et al. (1997). 

4.10 Conclusion 

Although there appeared to be a difference between genotypes in the energy required to maintain 

liveweight, some estimates of MEm were low (especially for red deer) and based on a limited sample 

size which make any conclusions tentative. Further, it is unclear whether MEm for energy balance 

differs between genotypes and therefore MEm for liveweight maintenance differences could be 

explained by a different composition of body weight change. 

Hybrids appear to have higher maintenance requirements than red deer but this was unable to explain 

any of the differences in ad lib. liveweight gain since, all else being equal, red deer should have 

accumulated liveweight gain at a faster rate compared with hybrids. 

There is some evidence that genotypes differ in their composition of gain with the live weight gain 

response to increasing intake differing for red deer and hybrids. As ME intake increased the marginal 

rate of liveweight gain decreased for both species but more so for red deer than hybrids. This 

suggests that a least some of the difference in live weight gain between genotypes may have been a 

result of a rate of gain effect between genotypes on the composition of gain. 
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Chapter 5a 

Comparative body composition of red deer (Cervus elaphus) and red x elk 
hybrids (Cervus elaphus spp). 

5.0 Introduction 

The experiment reported in Chapter 4a showed that red and hybrid deer offered feed ad lib. during 

winter had similar liveweight gain and intake when expressed on a W 0.75 basis. During spring 

however, hybrids gained liveweight faster compared to red deer but maintained a similar relative 

intake. Although red deer appeared to have a lower ME requirement for liveweight maintenance 

(Chapter 4b) it was low compared to other estimates (Fennessy, 1981; Suttie et ai., 1987) and 

therefore required validation. It was also unclear whether the lower ME requirement for liveweight 

maintenance in red deer translated into a lower ME requirement at zero energy balance or 

alternatively that the composition and therefore the energy value of liveweight change was different 

between genotypes .. 

The experimental approach was to use CT imaging to determine the change in fat, protein and 

therefore energy content of individual deer as liveweight changed over a range of energy intakes. 

This chapter (Chapter 5a) presents the body composition data and Chapter 5b presents the implication 

of changes in body composition on the energy metabolism of both genotypes. 



5.1 Materials and methods 

Experimental design 
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Red deer and hybrid weaner stags were housed in individual pens for a period of 7 weeks in both 

winter (July - August) and spring (October - December). Within genotype, deer were stratified 

according to liveweight and paired so that, within each pair, deer were of a similar pre-experimental 

liveweight. Pairs within each genotype were then randomly allocated to one of 7 feeding levels which 

ranged from approximately maintenance to ad lib. Maintenance was assumed to be 0.52 MJ MEIW 

0.75/day as reported for hybrid deer in Chapter 4b. During each 7 week experimental period 

liveweight gain and DM intake were measured. Immediately prior to, and at the conclusion of each 7 

week period, body composition was estimated using a computer-assisted topography scan (CT scan). 

Animals 

Fourteen red deer weaner stags of mean liveweight 59.0 ± 1.0 kg (± SEM) and 14 hybrid weaner 

stags of mean liveweight 69.0 ± 1.3 kg (± SEM) and approximately 8 months old were used in the 

experiment. Deer were obtained from two cOminerciill farms and brought to the Lincoln University 

Deer Research Unit in late June. Deer were set - stocked on short pasture for a period of two weeks 

prior to the start of the winter experiment and fed increasing amounts of concentrate feed (APR Plus, 

Target Stock Feed, Archers Milling Company, Rangiora, NZ.). At the start of the winter experiment 

deer were weighed, drenched with Vetdectin pour-on (Cydectin New Zealand Ltd) at a rate of 1 

ml/1O kg and given a 5 g copper oxide bolus (Copacaps, Rhone Merieux). Animals were housed in 

randomly allocated individual pens (3.5 m2
) with unlimited access to water. Liveweight, to the 

nearest 0.5 kg, was recorded on a weekly basis. 

Feeding 

Deer consumed either 35, 40, 45, 50, 55, 65 g DM/kg LW 0.75/day or ad lib. feed of a grain based 

concentrate ration. The raw ingredients and proximal analysis of feed are given in Table 5.1. A ration 

based on individualliveweight and feeding level was offered daily to each animal between 0900 h 

and 1000 h. Daily rations were altered weekly to account for any increase in individualliveweight 

during the experiment. The previous days refusals were collected, weighed and discarded prior to 

feeding. 

Animals assigned to the ad lib. feeding treatment were fed such that refusals were no less than 20% 

of the total offered. Increases in feed offered to ad lib. fed deer occurred when refusals for the 

preceding two days were less than 20% of that offered. 



Table 5.1. Raw ingredients and proximate analysis (DM basis) o/the grain-based pelleted diet} 
offered to red and hybrid deer during winter and spring. 

Ingredients 
barley grain 
bran/pollard 
molasses 
CaC03 

NaCVselenium premix 

Analysis 
dry matter 
organic matter 
crude protein 
fat 
acid digestible fibre 
dry matter digestibility 
organic matter digestibility 

MID (MJ ME/kg DM)2 

glkgDM 
468 
460 

8 
30 
34 

glkg 
872 
923 
142 
36 
111 
831 
895 

11.7 

1. All-purpose ration (APR plus) Target Stock Feed, Archers Milling Company, Rangiora, NZ. 
2. Calculated from the equation for compound feed stuffs (AACR, 1990). 

MEl estimation 

Daily ME intake was calculated by multiplying DMIIday (kg) by MEIDE (MJME/kg DM). MEIDE 

was estimated from proximal analysis of feed using the relationship for compound feed stuffs 

(AACR, 1990) and was 11.7. MJME/kg DM 

Computer tomography 
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Computer-assisted tomography (CT) and the Cavalieri principle (Gundersen et al., 1988) were used 

to estimate the volume of adipose, lean and bone tissue in the live animal. Tissue volumes were 

subsequently converted to individual tissue mass. The Cavalieri principle states that an unbiased 

estimate of volume of a 3 dimensional, irregularly shaped object can be achieved by measuring the 

cross-sectional area of the object at equal spacing along the length of the object assuming the position 

of first slice is chosen at random. Shape and orientation of the object have no effect on the accuracy 

of volume estimation but errors in the estimation of volume decrease as the number of cross sections 

increases. Previous authors (Roberts et al., 1993) have reported coefficients of variation of less than 

5% for estimates of individual muscle volume based on 10 -15 cross sections. 

Animal handling 

Feed was withheld from deer for 12 h prior to scanning. Deer were sedated with 1.0 mg/kg liveweight 

of xylazine hydrochloride 5% i.m. (Thiazine 50, Virbac Laboratories Ltd) and 4 ml pentothal (Virbac 

Laboratories Ltd) i.v. and were placed in ventral recumbency in a wooden scanning box (Plate 5.1). 

They were secured into the box with straps and were fitted with a hood over the head. On the 

completion of scanning each animal received yohimbine (1 ml/head) (Reversal, Virbac Laboratories 
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Ltd) and were allowed to recover for 2 - 3 h in a maJl holding pen before being returned to 

individual pens. The procedure from sedation to release lasted approximately 50 minutes per animal 

and for each canning period all deer (n = 28) were scanned in random order over 4 days. All 

procedures met Lincoln University Animal Ethics Committee requirements. 

Image capture 

A Technicare Delta can 2020 - G CT scanner (Technicare Corporation) was used. Image were 

captured using scanning voltage settings of 120 kY, 100 rnA current,S mm slice thickness, 4 second 

scan time, 512 x 512 image matrix, a scanning circle of 50 cm and a normal filter for image 

reconstruction. Images were archived to 1/2 inch, 1600 bpi, 2400 inch tapes and subsequently 

transferred to a PC system. 

The first cross sectional image on each deer was taken from a random site in the upper neck region 

(2nd or 3rd cervical vertebrae). Subsequent images (approximately 18) were taken at 54 mm (winter 

measurements) or 60 mm (spring measurements) intervals along each animal to form a scan sequence 

(Plate 5.2) . 

Plate 5.1. Deer, laterally recumbent, secured by straps and supported by foam rubber in the wooden 
box prior to scanning. 
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Image preparation 

CT images were converted from their native format to a standard PC bitmap format using Bitman 

software (N.P Jopsonpers comm.) which collapsed 512 Houndsfield units into a 256 grey scale. The 

resulting bitmaps, referred to here as "raw" CT images, were imported into imaging software 

(Photomagic, Micrografx Inc) and non - animal material such as the scanning box and straps and 

muddied pelage were electronically removed by making the associated pixels 100% black (0 grey 

scale). These images were termed "refined" images (Figure 5.1) Areas within the "refined" images 

corresponding to specific organs were subsequently removed to achieve empty body and carcass 

images (see Figure 5.1 and Plate 5.3). 

The repeatability of operator removal of non - animal and non - carcass material for both carcass and 

whole body analysis was determined on 3 separate occasions during image analysis and was never 

less 0.99. 

Raw CTscan 

Includes 

• 
• 
• 
• 
• 

Less; 

• Muddy pelage 
• Scanning box 
• Restraining 

straps 

Animal 
Muddy pelage 
Restraining strap 
Scanning box 
CT patient table 

• CT Datient table 

Less 
• GIT 
• Bladder 

.---_____ • ~ whole body image 

~~R~e~fi~n~ed~i~nm~~ge~~~~~I---_________ .~ 
- Less 

Carcass inmge 

• Heart 
• Lungs 

• OIT 
• Liver 
• All other viscera excl. kidneys 

Figure 5.1 A diagram illustrating the non - animal material removed to create refined images and 
the internal organs removedfrom refined images to create whole body and carcass images. 
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Selection of images for analysis 

Not all images captured in the scan sequence were used for analysis. On each deer the first image 

from the scan sequence to be included was that immediately anterior of the one which first showed 

thickening of the neck into the shoulder muscles (see Plate 5.2). Subsequent images 54 mm (winter) 

or 60 mm (spring) apart were included from this point until the final image. The final image included 

was that image in the scan sequence immediately anterior to the tail image. The tail image was 

defined as the image which contains only the tail and probably hind hocks. If any rump occurred with 

the tail in an image then the image immediately posterior to this was considered the tail image. 

Dissection into individual tissues 

Whole body and carcass images were "electronically dissected" into adipose, lean and bone area 

(Autocat, N.P Jopson pers com). The range of grey scales on which Autocat based its dissection were 

35-120, 121-220 and 221-255 for adipose, lean and bone tissue, respectively. These ranges were 

established by creating a grey scale frequency distribution of all pixels in 3 images (shoulder, 12th 

lumbar vertebra and rump) from 2 deer and identifying the grey scale value which most successfully 

separated the individual tissue distributions. Details on the validation of grey scale ranges are 

presented in Appendix III. 

Conversions of tissue area to weight 

Volume of adipose, lean and bone tissue in individual deer was calculated by multiplying the total 

area of each tissue (cm2
) from all images included in the analysis by the distance between images 

(cm). Tissue volume (cm3)was converted to tissue mass using the standard densities for adipose, lean 

and bone tissue of 0.925, 1.031, and 1.549 kg/I respectively (Jopson, pers. com). 
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Whole body analysis 

Whole body images were used to calculate the change in individual tissue weight over the 

experimental period. However, because it was necessary to remove GIT from whole body images 

during image processing, an estimate of fat and protein mass in empty GIT was added to whole body 

mass for this analysis. Estimation of fat and protein in empty gut was achieved in two stages. (1) the 

fresh mass of empty GIT (g) for all deer was estimated using GIT fresh mass recorded for 14 deer 

slaughtered at the conclusion of the trial and its relationship with whole body weight estimated from 

CT images (Figure 5.2). (2) estimates of GIT fresh mass were multiplied by an estimate of the 

proportion of fat and protein in empty GIT. Viscera, which included gastrointestinal tract, contained 

5.4 g fat and 14.7g of protein per WOg of fresh weight in newly born lambs (Jagusch et al., 1970) 

These data were assumed to approximate deer gastrointestinal tract composition. 
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Figure 5.2 The empirical relationship between empty fresh GIT mass (recorded at the conclusion of 
the spring experiment) and CT-estimated GITfree body weightfor both red and hybrid deer (n = 14). 

••• ' • < .;'.- -:~ • -.' 

\ ~ - "-'.- . 
, 



84 

CT estimated live weight 

Liveweight of deer was estimated using CT scans to provide a check on image capture and analysis. 

CT - estimated liveweight was calculated from a scan sequence in the same way whole body weight 

was derived except that "refined" images (see section image preparation section) were used instead of 

whole body images. 

Statistical Analysis 

The relationships between log whole body weight and log adipose, lean and bone tissue weight were 

fitted using linear regression. Differences in regression coefficients and intercept values between 

allometric growth equations for each genotype were tested using the method of Snedecor and 

Cochran (1980). 

5.2 Results 

Tissue weight change 

Whole body images were used to calculate the change in individual tissue during winter and spring 

and are shown in Table 5.5 and 5.6, respectively. 

At low levels of feeding (37.5 - 41.7 g DMIW 0.75 /day) deer lost adipose tissue in both winter and 

spring and lean in spring. As feeding level increased beyond 41.7 g DMIW 0.75 /day, generally there 

was a net gain of adipose and lean tissue gain increased. 

During winter, totalliveweight change ranged from -0.5 kg to + 12.3 kg and the combined weight of 

total body tissues (estimated from CT images) from -0.16 to +8.6 kg. During spring, liveweight 

change ranged from -0.75 to 19.5 kg and combined tissues from -7.46 to 18.9 kg but changes in 

liveweight and whole body weight were not always well correlated. For example, red deer offered 

41.7 g DM/kg LW 0.75 /day gained 4.5 kg in liveweight while apparently losing 5.5 kg in tissue 

weight. This discrepancy may have been due to a large gain in digesta mass since this was not 

included in CT -estimated whole body weight but would have been a component of liveweight. 

However, surprisingly, the difference between CT - estimated whole body weight and liveweight was 

inversely related to intake which would not be expected if this was an increased gut fill effect (Table 

5.4). 

To further investigate this discrepancy, data collected from 10 deer slaughtered at the conclusion of 

the experiment for which empty gut tissue weight was available was used in an attempt to account for 

the large apparent change in gut fill. 
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Table 5.2 The initial, final and change in liveweight and individual tissue weight and respective energy retention rates for red and hybrid deer 
(n = 2) in winter. 

Red deer 
ME intake (M] MEJW 0.75/day) 0.44 0.49 0.53 0.57 0.64 0.73 

Initial 
Initial Lwt (kg) 55.3 58.3 59.3 60.3 57.3 625 
SEM (kg) 2.8 2.3 1.8 1.8 3.0 3.5 

Adipose (kg) 1.96 1.90 2.06 1.85 2.13 1.81 
SEM (kg) 0.13 0.13 0.07 0.17 0.32 0.39 
Lean (kg) 32.24 33.66 35.70 35.18 34.65 35.66 
SEM (kg) 2.55 0.30 0.62 2.17 1.38 2.99 
Bone (kg) 7.36 7.50 7.17 7.01 7.08 7.28 
SEM (kg) 0.67 0.46 0.16 0.39 0.12 0.49 
GIT fat (g) 0.15 0.15 0.15 0.15 0.15 0.15 
GIT protein (g) 390 400 410 410 410 410 

Final 
Final Lwt (kg) 59.3 61.3 64.5 63.8 64.8 69.3 
SEM (kg) 5.3 0.3 0.0 1.3 3.8 4.8 

Adipose (kg) 1.57 1.52 1.71 1.89 2.09 2.50 
SEM (kg) 0.29 0.17 0.05 0.10 0.11 0.49 
Lean (kg) 34.49 34.19 36.08 36.97 36.34 39.49 
SEM (kg) 4.04 0.25 0.56 0.60 2.80 3.03 
Bone (kg) 7.39 7.54 6.92 7.28 7.42 7.72 
SEM(kg) 1.16 0.33 0.15 0.21 0.59 0.46 
GIT fat (kg) 0.15 0.15 0.15 0.15 0.16 0.16 
GIT protein (g) 0.4 0.4 0.41 0.42 0.42 0.44 

Change 
Adipose (g/day) -8 -8 -7 1 -1 14 
Lean (glday) 46 11 8 37 34 78 
Bone (glday) 1 1 -5 6 7 9 

Fat (glday) -4.6 -5.1 -5.5 1.9 1.1 12.4 
Protein (glday) 11.2 2.5 0.4 10.4 10.1 22.1 

E retention (kJ/day) 83 -140 -207 321 281 1009 
E retention (kJ1W 0.75/day) 3 -8 -12 19 15 56 

, " 
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0.71 0.05 0.41 0.03 
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-7 8 8 13 
37 66 27 51 
-4 8 3 10 

-4.6 7.5 6.7 11.4 
7.9 18.6 7.9 15.5 

5 731 452 816 
0 38 24 44 

Ad lib 

68.3 
3.0 

1.97 
0.45 

40.24 
3.17 
8.50 
0.28 
0.16 
430 

72.8 
0.5 

3.00 
0.48 

47.31 
4.77 
9.30 
0.77 
0.17 
0.45 

21 
144 
16 

19.3 
40.4 

00 
Ul 

1711 
84 



Table 5.3 The initial, final and change in liveweight and individual tissue weight and respective energy retention rates for red and hybrid deer 
(n = 2) in spring. 

Red deer Hybrid deer 
ME intake (MJ MEIW O.75/day) 0.44 0.49 0.54 0.59 0.64 0.79 Ad lib 0.42 0.49 0.54 0.59 0.64 0.79 Ad lib 

Initial 
Initial Lwt (kg) 74.0 72.8 71.8 69.8 69.5 65.5 72.0 79.3 75.8 82.8 74.0 90.3 77.3 79.3 
SEM (kg) 0.5 2.3 0.8 2.3 3.5 6.0 0.0 1.8 4.8 4.3 3.0 6.3 2.8 3.3 

Adipose (kg) 1.84 1.73 1.57 1.46 1.79 1.43 1.66 1.95 1.92 1.89 1.71 2.20 1.89 1.72 
SEM (kg) 0.07 0.23 0.05 0.00 0.25 0.06 0.13 0.05 0.04 0.05 0.09 0.01 0.14 0.21 
Lean (kg) 42.81 44.03 40.26 38.78 38.46 36.90 42.05 44.47 43.23 48.39 43.64 51.47 43.62 43.45 
SEM (kg) 0.58 4.49 0.72 1.63 0.18 3.78 0.70 0.70 3.51 3.99 0.38 4.27 2.58 1.30 
Bone (kg) 8.71 8.41 8.38 8.56 8.13 7.52 8.36 '10.48 9.44 10.17 9.68 10.99 9.36 9.52 
SEM (kg) 0.65 0.60 0.49 0.28 0.33 1.07 0.21 .0.59 0.43 0.71 0.84 0.28 0.33 0.66 
GIT fat (g) 0.17 0.17 0.16 0.16 0.16 0.15 0.17 0.18 0.17 0.18 0.17 0.19 0.17 0.17 
GIT protein (g) 0.46 0.46 0.44 0.43 0.43 0.42 0.45 0.48 0.46 0.49 0.47 0.52 0.47 0.46 

Final 
Final Lwt (kg) 78.5 77.3 75.8 78.8 79.0 76.8 90.0 78.5 76.5 83.0 82.5 103.8 92.0 98.8 
SEM (kg) 0.0 3.8 2.3 4.8 3.0 5.8 1.0 4.5 4.0 5.5 4.0 5.3 3.0 0.8 

Adipose (kg) 1.68 1.36 1.60 1.46 1.72 1.92 5.05 1.75 1.67 1.73 1.56 2.52 2.02 4.72 

SEM (kg) 0.20 0.03 0.01 0.11 0.04 0.30 0.21 0.19 0.08 0.04 0.12 0.41 0.08 0.14 
Lean (kg) 38.01 39.05 36.95 35.95 41.04 41.83 53.15 37.38 38.62 42.06 45.15 54.99 50.33 57.63 
SEM (kg) 0.58 2.08 0.42 5.36 0.53 3.88 0.73 4.06 1.51 1.64 2.35 3.29 1.63 2.43 
Bone (kg) 9.18 8.30 8.72 8.55 8.25 8.40 9.86 10.32 10.01 10.73 10.14 11.40 10.36 11.27 
SEM (kg) 0.76 0.42 0.57 0.61 0.28 0.52 0.03 0.05 0.23 0.62 0.13 0.14 0.01 0.52 
GIT fat (kg) 0.16 0.16 0.16 0.15 0.16 0.17 0.20 0.16 0.16 0.17 0.18 0.20 0.19 0.21 
GIT protein (g) 0.43 0.43 0.42 0.42 0.44 0.45 0.54 0.44 0.44 0.46 0.48 0.54 0.51 0.56 

Change 
Adipose (g/day) -3 -8 1 0 -1 10 69 -4 -5 -3 -3 6 3 61 
Lean (g/day) . -98 -102 -68 -58 53 100 227 -145 -94 -129 31 72 137 289 
Bone (g/day) 10 -2 7 0 2 18 31 -3 12 11 9 8 20 36 

Fat (g/day) -2.5 -7.3 0.2 -1.0 0.3 11.2 55.9 -5.8 -3.4 -2.9 -0.2 6.8 6.9 52.2 
Protein (g/day) -22.2 -26.1 -15.1 -14.4 13.5 29.5 66.3 -36.9 -20.8 -29.5 9.7 20.0 38.8 82.7 

00 

E retention (kJ/day) -622 -902 -349 -379 331 1136 3761 -1099 -626 -811 221 740 1187 4004 
0\ 

E retention (kJ1W O.75/day) -33 -45 -19 -23 18 62 174 -57 -31 -38 11 32 56 177 

. :~:;-: 
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Table 5.4 The initial, final and change in liveweight (kg), CT estimated liveweight (kg), whole body, 
carcass weight (kg), gut tissue and digesta weight (kg) for red and hybrid deer during spring. 

Genotype Red Hybrid 

Feeding level (glkg 41.7 45.8 54.2 66.7 Ad. lib. 41.7 45.8 54.2 66.7 Ad. lib. 
LWO·75/d) 
Initial weight 
Liveweight (kg) 75.5 69.0 66.0 67.5 75.0 71.0 76.0 85.5 80.5 82.5 
CT liveweight (kg) 66.4 58.1 58.8 58.0 62.1 59.4 64.3 71.9 69.7 67.0 
CT whole body wt (kg) 59.4 51.4 47.9 50.7 50.1 50.6 50.3 60.1 57.7 56.8 
CT carcass wt (kg) 52.6 46.2 43.4 44.3 45.2 45.4 50.3 54.1 51.7 51.3 
Gut + digesta wt 7.0 6.7 10.9 7.3 11.1 8.8 8.6 ll.8 12.1 10.2 

Final weight 
Liveweight (kg) 78.0 72.5 74.0 82.5 89.5 70.0 79.5 96.5 95.0 101.5 
CT liveweight (kg) 68.8 62.5 63.8 72.7 73.8 61.1 69.1 85.0 80.6 84.0 
CT whole body wt (kg) 50.3 48.2 51.2 56.8 69.0 51.5 52.3 65.1 64.4 76.7 
CT carcass wt (kg) 45.1 43.8 45.9 50.5 61.4 46.0 46.8 57.5 57.5 68.4 
Gut + digesta wt (kg) 18.5 14.3 12.6 15.9 4.8 9.6 16.8 19.9 16.2 7.3 
Gut tissue wt (kg) 2.95 2.90 2.18 3.56 3.86 2.75 3.27 3.99 3.97 4.21 
Digesta (kg) 15.55 11.40 10.42 12.34 0.94 6.85 13.53 15.91 12.23 3.09 

Weight change 
Liveweight (kg) 2.5 3.5 8.0 15.0 14.5 -1.0 3.5 ll.O 14.5 19.0 
CT Liveweight (kg) 2.4 4.4 5.0 14.7 11.7 1.7 4.8 13.1 10.9 17.0 
CT Whole body weight (kg) -9.1 -3.2 3.2 6.1 18.0 0.9 -3.4 5.0 6.8 19.8 
CT carcass weight (kg) -7.5 -2.4 2.5 6.2 16.2 0.6 -3.5 3.4 5.8 17.1 
A arent t + di esta (k ) 11.5 7.6 1.7 8.6 -6.3 0.8 8.2 8.1 4.1 -2.9 

liveweight = liveweight before scanning 
CT liveweight = liveweight detennined from refined CT images including GIT and digesta 
CT whole body wt = weight determined from whole body CT images (excluding GIT and digesta) 
CT carcass weight = weight detennined from carcass CT images (all viscera excluding kidneys removed) 
Gut + digesta weight = difference between CT liveweight and CT whole body 
Gut tissue = fresh weight of GIT recorded after slaughter 
Digesta = difference between gut + digesta weight and gut tissue 
Apparent gut + digesta = difference between CT liveweight change and whole body wt (Cn change. 

CT liveweight was calculated using refined images (which contained digesta). CT estimates of 

liveweight were consistently lower (14.5%) than liveweight recorded immediately prior to scanning. 

(Figure 5.3) but were highly correlated (0.92). 

An estimate of full GIT weight was calculated by subtracting CT whole body weight from CT 

liveweight. Gut tissue weight collected at slaughter was used to calculate the mass of digesta in final 

CT liveweight. Gut tissue weight was subtracted from gut tissue + digesta weight to estimate digesta 

weight. Estimates of full GIT ranged from 7.0 to 12.3 kg for initialliveweight and 4.8 to 19.9 kg for 

final weight and generally increased with intake. Apparent weight of digesta (gut + digesta weight -

gut tissue weight) appeared to decrease with increasing intake although the relationship was not 

strong. 

Generally smallliveweight gain at low intake was associated with large tissue loss and therefore 

presumably significant increases in gut fill and gut tissue weight. mcreasing intake, increased 

liveweight gain, increased whole body weight and reduced the apparent increase in gut and digesta 

weight. Carcass weight and CT carcass weight were well correlated. 
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Figure 5.3. The relationship between liveweight recorded immediately prior to CT scanning and 
liveweight estimated from CT images of whole body including GIT and its contents for deer 
(including those slaughtered) over a range of liveweight. 

Relative growth of tissues 

Huxley's (1924) allometric growth equation log Y = Log a + b log X was used to describe the 

relationship between individual tissue components of whole body and whole body weight. 
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Relative growth curves for winter and summer are presented in Figures 5.4 and 5.5, respectively and 

the coefficients of the relationships in Table 5.5. 

There was no significant difference (P > 0.05) between red and hybrid deer in growth coefficients for 

lean, bone or adipose tissue in whole body. However, there was a trend for hybrids to have a higher 

winter and a lower spring growth coefficient for fat compared with red deer. The average across­

genotype growth coefficients were 0.991,0.750 and 2.22 for lean, bone and adipose tissues 

respectively in winter. Spring values were 1.05,0.486 and 2.00 for lean, bone and adipose tissues 

respectively (Table 5.6). 
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Table 5.5. Linear regression equations describing the relationship between log whole body and log 
tissue weight (Figures 5.4 and 5.5) for red and hybrid deer in winter and spring. 

Season Tissue Genotype Coefficient (b) Constant R:L Slope Elevation 

Red 1.009 -0.117 0.97 
Lean NS NS 

Hybrid 0.972 -0.055 0.99 

Red 0.771 -0.407 0.61 
Winter Bone NS ** Hybrid 0.728 -0.293 0.66 

Red 1.697 -2.511 0.39 
Adipose NS ** Hybrid 2.737 -4.422 0.67 

Red 1.010 -0.115 0.98 
Lean NS ** Hybrid 1.094 -0.269 0.98 

Red 0.545 -0.001 0.48 
Spring Bone NS * * Hybrid 0.427 0.259 0.45 

Red 2.358 -3.777 0.71 
Adipose NS * Hybrid 1.638 -2.589 0.52 
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Although the relative growth rate of tissues was not different between genotypes, red and hybrid deer 

did differ in their body composition at a common whole body weight as indicated by the significant 

elevation statistic. For both winter and spring, red deer had more adipose and less bone at the same 

whole body weight compared with hybrids. At the same body weight, lean tissue content was not 

significantly different between genotypes in the winter but red deer had slightly more lean tissue than 

hybrids in spring. 
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Figure 5.4. Relative growth of lean (.&), bone (e) and adipose (_) tissue relative to whole body 
weight in red (solid symbols) and hybrid (open symbols) deer during winter. 
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Figure 5.5. Relative growth of lean (A), bone (e) and adipose (_) tissue relative to whole body 
weight in red (solid symbols) and hybrid (open symbols) deer during spring. 

Although there were small non-significant differences between genotypes in relative growth of 

tissues, there was a significant effect of season on relative growth (Figure 5.6, Table 5.6). 
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Figure 5.6. Relative growth of lean (A), bone(e) and adipose (_) tissue relative to whole body 
weight in winter (solid symbols) and spring (open symbols) for red and hybrid deer combined. 
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In winter, bone grew relatively faster (1.06 vs 0.71) and adipose relatively slower (1.03 vs 1.73) than 

in spring. There was no seasonal difference in lean weight gain (P > 0.05). 

Table 5.6. Linear regression equations describing the relationship between log whole body weight 
and log tissue weight (Figure 5.6) for red and hybrid deer combined in winter and spring. 

Tissue Season Coefficient (b) Constant R:l Slope Elevation 

Winter 0.983 -0.075 0.99 
Lean NS NS 

Spring 1.020 -0.136 0.98 

Winter 1.063 -0.873 0.80 
Bone * * NS 

Spring 0.708 -0.258 0.58 

Winter 1.026 -1.448 0.21 
Adipose ** * * 

Spring 1.727 -2.723 0.59 

It is apparent from Figure 5.6 that at the same whole body weight, deer in spring had less adipose 

than in winter. Figure 5.7 presents relative adipose growth based on measurements made at the end of 

the winter and beginning of spring experimental periods 
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Figure 5.7. Relative growth of adipose tissue based on data collected at the end of the winter (e) and 
beginning of the spring (0) experimental periods. 



Dressing out % 

The dressing out percentage (DO %) was calculated for 10 deer (5 red deer and 5 hybrids) when 

slaughtered at the conclusion of the spring trial in mid December (12 months of age). The slaughter 

group was selected in order that in each nutritional level chosen both genotypes were represented. 

DO % was defined as; 

DO% = hot carcass weight (kg) x 100 
pre-slaughter liveweight (kg) 

There was no significant effect of genotype. Red deer dressed out at on average 57.5 ± 1.3% and 

hybrids at 56.9 ± 1.1 % (mean ± SEM). 
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The DO % of all deer was estimated by predicting hot carcass weight from CT carcass weight (Figure 

5.8) derived from the 10 slaughtered deer. The relationship between CT carcass weight and hot 

carcass weight for these deer was not significantly different between genotypes and therefore a 

common equation was used. Estimated DO % using hot carcass weight predicted from CT carcass 

weight was not significantly different between red deer (53.1 ± 1.4 %) and hybrids (55.7 ± 1.0 %) 
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Figure 5.8. The relationship between hot carcass weight and CT derived carcass weight for red deer 
(.) and hybrids (0) slaughtered at approximately 12 months of age. 
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5.3 Discussion 
CT analysis methods 

Conclusions drawn about body composition and energy metabolism (Chapter 5b) from this work rely 

entirely on the ability to accurately estimate the weight of adipose, lean and bone tissues. There was 

evidence this was achieved with the use of CT techniques. 

CT live weight and changes in CT live weight were well correlated with pre-scan actualliveweight 

and changes in pre-scan actualliveweight although CT liveweight was consistently lower 

(approximately 15%) than pre-scan liveweight (Figure 5.3). The difference between-liveweight and 

CT liveweight was probably due to the exclusion of the head and part of the upper neck from CT 

liveweight. Previous estimates (Early et aI., 1990) based on cattle data indicate the head was 

approximately 10% of carcass weight. Based on a dressing out percentage of 58 %, this translates to 

the head being about 6 % of liveweight for weaner deer. Inclusion of the upper part of the neck, 

hocks and muddied pelage is likely to reconcile the remaining differences between live weight and CT 

liveweight. 

Carcass weight estimated using carcass images (CT carcass weight) was 2.8 kg heavier than hot 

carcass weight measured after slaughter (Figure 5.8) but was well correlated. The fact that liveweight 

and CT liveweight (Figure 5.3), liveweight change and CT liveweight change (Table 5.4) and carcass 

weight and CT carcass weight (Figure 5.8) were strongly correlated is good evidence that the 

scanning procedure in conjunction with tissue volume to tissue weight conversion factors provided 

reliable estimates of individual tissue weights. 

However, changes in CT whole body weight were not well correlated with changes in liveweight or 

CT liveweight. For example, in some cases liveweight increased by 2.5 kg but CT whole body weight 

apparently decreased by 9 kg. There was no evidence that CT whole body weight should be 

determined any less accurately than either CT liveweight or CT carcass weights which were strongly 

correlated to their respective actual measurements. Therefore, because the only difference between 

CT liveweight and CT whole body weight was gut + digesta weight, changes in gut fill and gut 

weight must, by definition explain the discrepancy. This implies there were large changes in gut 

weight and gut fill which were negatively correlated with intake. Further evidence that this was a real 

effect was that changes in CT carcass weight mirrored the apparent changes in CT whole body 

weight and at the same time were well correlated with hot carcass weight. There was also a positive 

relationship between CT liveweight and CT whole body weight at the beginning of spring. While 

these apparent changes in gut and digesta weight were not anticipated, there is strong evidence from 

liveweight and carcass weight that CT measurements accurately measured tissue weights and 



therefore gut changes were a real effect. ill light of this, whole body weight and the weight of 

individual tissues were used for analysis with a degree of confidence. 

There would be a greater degree of confidence in whole body weight measurements if a plausible 

explanation for the apparent changes in gut fill existed. There are two possible explanations for the 

apparent increase in gut fill when intake is restricted. Either deer on restricted diets may have (1) 

eaten considerable amounts of bedding (sawdust) or (2) retained large amounts of water compared 

with deer on high intakes. 
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It is unlikely that wood shavings were a significant proportion of the diet for 2 reasons. Firstly, each 

pen was lined with only about 2-3 kg of shavings which, initially, deer showed little interest in and 

there was no visually detectable disappearance over the three days before bedding was removed and 

replaced. Secondly, shavings were spread over the pen floor and became quickly soiled rendering 

them unpalatable to deer. 

illcreases in water consumption might well explain differences in gut fill, although water intake was 

not measured. Previous authors (D. Freudenhurger pers. com) have noted increased water intake of 

animals with reduced DM intake and have hypothesised that it might be a way of deer achieving 

some sort of satiety. A difference in gut fill, which was negatively correlated with intake would have 

occurred if, after the beginning of the experiment restricted animals began consuming greater 

quantities of water than they had previously which subsequently was retained in the gut. 

Techniques for removing digesta 

ill comparative slaughter experiments, digesta is removed from the gastrointestinal tract before whole 

body composition is estimated and the same would be desirable when using CT images to estimate 

body composition. However, when determining body composition based on CT scans, removal of 

digesta from images presents problems. Removal of all digesta from the rumen and folds of the GIT 

is a sisyphean task and dramatically increases image processing time. ill addition, identification of the 

digesta-GIT tissue boundary is difficult especially posterior of the stomach and attempting the 

removal of digesta would increases the likelihood of errors associated with removing GIT tissue or 

leaving digesta. 

There are four other options to deal with digesta in whole body images. (1) Leave all digesta in 

images (2) remove total GIT including digesta (3) remove only significant areas of digesta or (4) 

remove all digesta and GIT as in (1) but add back to whole body weight an estimate of GIT weight 

(as done in this experiment). 
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Compared with removing all digesta, leaving digesta in whole body images has the advantage of 

avoiding the problem of distinguishing the digesta-GIT tissue boundary and accurately removing 

digesta from images in addition to speeding up image processing time. However, inclusion of digesta 

in whole body images would lead to an overestimation of whole body weight and a poor estimation 

of composition. Removing both GIT and digesta, while eliminating the need to distinguish the 

digesta-GIT tissue interface, would under estimate whole body weight. The relative proportion of 

GIT tissue and digesta within the GIT would dictate which of options 1 and 2 would cause the 

smallest error in whole body weight. 

The weight of the empty GIT of the 14 deer slaughtered at the conclusion of the trial was compared 

to the total weight of intestines (GIT plus digesta) as estimated from the CT images for those deer 

before slaughter. On average GIT tissue was 44 ± 3.8% of the total full intestine weight. Sibbald and 

Milne, (1993) calculated a figure of 30% in deeton a similar concentrate diet with additional hay. 

Therefore, the majority of full GIT weight (GIT + digesta) appears to be digesta. By including digesta 

in whole body weight, the amount by which tissue weight has the potential to be over estimated is 

greater than the amount by which tissue weight would have been underestimated as a result of 

removing total gastrointestinal tract. On this point alone, it would appear removal of all GIT to ensure 

total digesta removal would be advantageous compared to complete inclusion. Furthermore, the 

relative density of digesta was such that a significant proportion would have been recorded as 

adipose. 

This is illustrated in Plate 5.4 where an abdominal image containing a digesta-filled rumen has had 

the pixels associated with adipose (35 - 121 grey scale) highlighted in yellow. 



Plate 5.4. A CT image in the abdominal region of a deer with the pixels in the grey scale range 
associated with adipose highlighted in yellow. 
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In terms of total body energy, including digesta could significantly overestimate whole body energy 

and presumably more so for animals with a greater gut fill. Analysis of image containing digesta 

indicates that for every 1 kg of digesta remaining in intestines, total body energy would have been 

overestimated by 7 %. An error of 7 % would be significant in relation to the] 3 % difference in total 

body energy recorded between red deer and hybrid at the concJusion of the spring experiment. 

Previous author (N. Jopson, J .Thompson pers com.) have adopted a policy of removing only area of 

digesta in the rumen and significant areas of digesta in the intestines (bigger than half the ize of the 

kidney). Removing ignificant area of dige ta reduce the effect of having dige ta in whole body as 

described above but does not completely remove it. This approach does not avoid the problem of 

identifying the digesta-GIT tis ue boundary, requires the operator to make a ubjective asses ment of 

digesta area ize on which to ba e a decision on whether to remove or leave digesta introducing a 

further source of error, and places some restriction on image processing speed. 

An alternative option , was to remove both GIT and digesta from image as in option (2) but to add 

back to whole body weight an estimate of empty GIT tissue weight. Complete removal of GIT and 

digesta would not only increase the speed and ease of digesta removal from images but would 



eliminate subjective assessment of digesta area and the need to identify the digesta-GIT tissue 

boundary. 

Data from this study suggest the weight of gastrointestinal tract can be reliably (SE = 0.2 kg) 

predicted from CT estimated GIT-free body weight (Figure 5.2). (Jagusch et ai., 1970) provided 

values for the composition of GIT which allow an estimate of empty GIT energy. The empty GIT 

energy was added to the gastrointestinal tract free estimates of body energy to provide a more 

complete estimate of total body energy. 

Composition of gain - effect of genotype 
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There was a clear trend for red deer to deposit a greater amount of adipose in spring and less in 

winter compared with their hybrid counterpart. (Table 5.5) but the genotype difference did not reach 

significance. The small number of deer at each feeding level and the experimental design which 

allocated a disproportionate number of deer to low intake to enable a better MEm estimation may 

have prevented this difference being statistically significant. However the trend for red deer to 

deposit a greater amount of adipose in spring and less in winter compared with their hybrid 

counterpart is consistent with the trends in live weight gain in Chapter 4a and with the energy costs of 

gain (See Chapter 5b). 

Composition of gain - effect of season 

This is the first experiment to show significant winter-spring differences in the relative growth of fat 

and bone tissue in young deer. In winter, bone grew relatively faster and adipose relatively slower 

than in spring. Results from previous studies have suggested that, in young lambs (Forbes et ai., 

1979; Forbes et ai., 1981) and steers (Philips et ai., 1997), long day length stimulated the growth of 

non-fat tissues at the expense of fat. 

Of particular note was the relatively large loss of total adipose from stags in early spring (Figure 5.7) 

At the same body weight stags in October had relatively less adipose tissue as they had in mid­

August. Unfortunately, during this period, deer were released onto pasture and consequently moved 

from a concentrate to a pasture-dominant diet and for many DM intake would have increased. It is 

unclear whether the loss of adipose tissue relative to whole body weight which occurred over this 

period was a result of these management related changes or reflect an intrinsic seasonal change in the 

composition of body weight gain. 

Early spring represents a period of rapid growth for young stags and catabolism of fat reserves may 

represent a mechanism which allows stags to achieve a higher rate of liveweight gain than on early 

spring pasture alone. As a consequence, deer which have been under nutritional stress and emerge 

from the winter low in body condition may not achieve as rapid liveweight gain as cohorts that are 

able to supplement early spring feed with energy from fat reserves. The effect of winter body 

condition on early spring growth needs further investigation. 
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In both seasons, the elevation term for relative growth equations were significantly different between 

genotypes. This indicated that while relative growth coefficients may be similar, at the same body 

weight, genotypes differed in whole body composition. For example, in both seasons red deer had 

proportionately less bone and more adipose tissue than hybrid deer at the same whole body weight. 

This difference was evident at the beginning of winter and suggests relative growth coefficients for 

adipose and bone tissue for red and hybrid deer must have been different during a previous stage of 

development. The lower relative adipose content of hybrid deer at 6 months of age compared with red 

deer may in part be responsible for the higher rate of liveweight gain exhibited by hybrids in their 

first 6 months of life. 

Dressing out percentage 

The estimates of DO % of yearling stags are similar to those of Drew and Hogg, (1990) who reported 

DO % of 1 year stags of 54.6 and 56.8 % for red deer and hybrids, respectively and similar to 

Soetrisno et al. (1994) of 52 - 56 %. These are higher than other domestic livestock (sheep cattle 40-

50%). There was no evidence of differences between genotypes. 

5.4 Conclusion 

Results in Chapter 5a rely entirely on the ability to accurately predict body composition. While there 

was good agreement between liveweight and carcass weight and those measurements estimated by 

CT scanning changes in whole body weight relative to liveweight suggested large changes in gut fill 

that were not expected. Conclusions from Chapter 5a must be tempered in knowledge of this. 

There was a trend for red deer to deposit more adipose in spring and less in summer than hybrids. 

This observation was consistent with the trends in liveweight gain seen in Chapter 5b. However, the 

greatest difference was between seasons. During winter, deer liveweight gain contained 

proportionately less adipose and more bone tissue than in spring. Stags appeared to lose relatively 

large amounts of adipose in early spring. This may help to explain in part the rapid spring liveweight 

gain achieved by deer. 

-E' 
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Chapter 5b 

Comparative energy metabolism of red deer (Cervus elaphus) and red x elk 
hybrids (Cervus elaphus spp). 

5.0 Introduction 
The experiment reported in Chapter 2a showed that red and hybrid deer offered feed ad lib. during 

winter had similar relative liveweight gain (glkg o.75/day) and intake (g DMlkg o.75/day) During spring 

however, hybrids gained liveweight faster compared to red deer but had a similar relative intake. 

Although red deer appeared to have a lower ME requirement for liveweight maintenance (Chapter 

2b) the value was low compared to other estimates (Fennessy et at., 1981; Suttie et at., 1987) and 

therefore required validation. It was also unclear whether the lower ME requirement for live weight 

maintenance in red deer reflected a lower ME requirement at zero energy balance or alternatively that 

the composition and energy value of liveweight change was different between genotypes. 

In addition to measuring the partial efficiency of metabolisable energy for energy gain, this study was 

designed to provide estimates ofMEm for zero energy balance and further estimates of MEm for 

liveweight maintenance. To enable a more robust estimate of MEm, feeding treatments were chosen 

so that a disproportionate number of deer were offered a ration closer to maintenance rather than ad 

lib. 

5.1 Materials and methods 

Data obtained in this experiment was from the same animals and concurrent to the measurements 

reported in Chapter Sa. The details of animals, feed and housing are presented in Chapter Sa. 

Inter - conversions of tissues 

Where the mass of fat and protein rather than adipose, lean and bone tissue was required, each tissue 

weight was multiplied by an estimate of the relative proportion of fat and protein in each tissue 

(Table S.7). The relative proportions of fat and protein were determined by chemical analysis of 

duplicate samples of adipose and lean tissue collected from freshly slaughtered deer carcasses and 

from previous estimates (Mello et al., 1978) for bone. 
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Table 5.7. The proportion offat, protein, water and ash (glkgfresh) in samples of lean and adipose 
from freshly slaughtered deer carcasses and in bone based on the work of Mello et al. (1978). 

Component Adipose Lean Bone 
Water 263 719 320 
Protein 44 247 231 
Fat 692 17 139 
Ash <1 16 310 

where water = weight lost by evaporation after oven drying at 90°C for 48 h 
protein = standard Kjeldahl nitrogen x 6.25 
fat = standard Soxhlet extraction 
ash = residue after combustion at 550°C in muffle furnace for 8 h 

The mass of body fat was calculated by mUltiplying adipose tissue mass by 0.692, lean by 0.017 and 

bone by 0.139 with the sum of the products being an estimate of total ether-extractable fat. For an 

estimate of crude protein mass, adipose tissue mass, lean tissue mass and bone mass were multiplied 

by 0.044, 0.248 and 0.232, respectively and summed. When reporting on body composition, the terms 

adipose, lean and bone were assigned to describe the animal tissue while the terms fat and protein 

were used, specifically, to describe the chemical nature of these tissues where fat was ether­

extractable fat (standard Soxhlet extraction, Soxtec system HT1043 Extraction Unit, Tecator Sweden) 

and protein was defined as nitrogen content (standard Kjeldahl extraction, kjeltec Auto 1035 

analyzer, Tectato Sweden) x 6.25. 

The heat of combustion of fat and protein were assumed to be 39.3 and 23.6 MJ/kg DM for fat and 

protein respectively (ARC, 1980). 

Statistical Analysis 

Mean daily liveweight gain for individual animals was defined as the regression coefficient of the 

linear relationship between liveweight (kg) measured weekly and time (days) and expressed as 

grams/day. The relationships between intake and liveweight gain were fitted using linear or multiple 

regression. Differences in regression coefficients and intercept values between relationships for each 

genotype were tested using the method of Snedecor and Cochran (1980). Differences in ad lib. intake 

between genotypes and seasons were analysed using ANOV A. 

l':~:'·~·'.-:-<-~ -~~.;.:.;~: . 
• ',.,_," •. '_ •• l ••••.•. J 



5.2 Results 

Feed intake 
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The DM intake and ME intake for pairs of red and hybrid deer are given in Table 5.8 for winter (a) 

and spring (b), respectively. During winter, ad lib. intake was not significantly different between 

genotypes (P > 0.05) when expressed on a metabolic liveweight basis and either genotype consumed 

on average 0.68 ± 0.03 MJ MEIW 0.75/day. Refusals averaged 28% and 23% of feed offered for ad 

lib. fed red and hybrid deer, respectively and indicated access to feed was not limited. During spring, 

mean ad lib. intake was about 30% higher than in winter and was greater for hybrid than for red deer. 

Mean spring ad lib. intake was 0.97 ± 0.02 MJ MEIW 0.75/day (mean ± SEM) and 1.05 ± 0.01 MJ 

MEIW 0.75/day (mean ± SEM) for red and hybrid deer, respectively. During spring, deer on restricted 

diets ate 100 % of the prescribed ration although during winter there were generally small amounts of 

refusals at all but the lowest allowance. 



Table 5.8. Dry matter and metabolisable energy intake of red and hybrid weaner stags offered varying amounts of a commercially pelleted did during the 
winter (a) and spring (b) (2 stags per genotype xfeeding level, n=28). 

(a) 
Feed offered (glW 0.75 /day) 37.5 41.7 45.8 

Genotype Red Hybrid Red Hybrid Red Hybrid 
Liveweight (kg) 60.7 72 60.4 70.8 62.9 70.8 

DMl (g DMlday) 799 876 889 995 992 1099 
DMl (g DMIW 0.75 /day) 36.7 35.4 41 40.8 44.4 45 

MEl (MJ/day)2 9.3 10.2 10.4 11.6 11.6 12.9 

MEl (MJIW 0.75 /day)2 0.43 0.41 0.48 0.48 0.52 0.53 

(b) 
Feed offered (gIW 0.75 /day) 37.5 41.7 45.8 

Genotype Red Hybrid Red Hybrid Red Hybrid 

Liveweight (kg) 75.6 77.8 73.8 75.5 73 82.9 

DMl (g DMlday) 955 949 1062 1080 1158 1273 
DMl (g DMIW 0.75 /day) 37.3 36.2 42.2 42.2 46.4 46.4 

MEl (MJ/day)2 11.2 11.1 12.4 12.6 13.5 14.9 

MEl (MJIW 0.75 /day)2 0.44 0.42 0.49 0.49 0.54 0.54 

Liveweight is the average liveweight recorded through the experimental period 
DMI is daily dry matter intake 
MEl is daily metabolisable energy intake 
1. All-purpose ration (APR plus) Target Stock Feed, Arches Milling Company, Rangiora, NZ. 
2. Calculated using ME value of 11. 7 MJ ME/kg DM 
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Liveweight gain - effect of genotype 

During winter, ME intake had a significant effect on liveweight gain (Figure 5.9). Liveweight gain of 

weaners during July and August increased from about 0 gfW0.75/day to 10 gfW0.75/day (220 g/day) 

over the range of intakes offered. 
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Figure 5.9. The linear relationship between ME intake (MJ MWWo. 75/day) and liveweight gain (g/W 
0.75 /day) of red ( .) and hybrid deer (0) in winter. 

The linear relationship between ME intake (MJ MEIW o.75/day) and liveweight gain (gfW0.75/day) for 

both genotypes in winter was; 

Red deer 

Hybrid deer 

LWG = -8.5 (1.9) + 22.8 (3.2) ME Intake 

LWG = -7.3 (3.2) + 18.4 (5.5) ME Intake 

R2= 81% 

R2 =48% 

n= 14 

n= 14 

There was no significant difference (P > 0.05) in slope (b) or intercept (c) values for the relationships. 

However, the linear relationships predicted that at ad lib. intake (0.73 MJ MEIW o.75/day) red deer 

gained relative liveweight faster (8.1 gfW0.75/day) than hybrids (6.1 gfW0.75/day). Estimates ofMEm 

were 0.37 and 0.39 MJ MEIW o.75/day for maintenance of liveweight and the estimates of the cost of 

liveweight gain were 44 and 55 MJ MElkg liveweight gain for red and hybrid deer respectively, 

during winter. The trend of winter liveweight gain to be greater for red deer compared with hybrids at 

ad lib. intake was similar to the findings reported in Chapter 4. 

The relationship between ME intake (MJ MEIW o.75/day) and liveweight gain (gfW0.75/day) for the 

combined data from both genotypes was; 

.. -- .--_ .. -.. -
I 

!:--~-,:...;--------... ~ :.;.i: 



LWG = -7.8 (1.9) + 20.5 (3.3) ME Intake n=28 

This relationship gives values of 0.38 MJ MEIW 0.75/day for maintenance of liveweight and 49 MJ 

ME/kg liveweight gain during winter. 
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Spring liveweight gain was best described by a non -linear relationship with intake (Figure 5.10) 

ranging from -0.5 g DM/WO.75 /day. (-130 g/day) to 18 g DM/WO.75 /day. (470 g/day). A second order 

polynomial curve was fitted to the data. The relationship between ME intake (MJ MEIW 0.75/day) and 

liveweight gain (g/W0.75 /day) for each genotype was; 

Red LWG = -16.2 (lOA) + 55.7 (29.9) ME intake - 27.1 (20.1) ME intake 2 R2 = 66% n=14 

Hybrid LWG = -34.7 (7.6) + 94.3 (21.5) ME intake - 43.5 (14.3) ME intake 2 R2 = 90% n=14 

Estimates of liveweight maintenance requirements were 0.35 and 0.47 MJ MEIW 0.75/day for red and 

hybrid deer, respectively. When a linear relationship was fitted to spring data regression coefficients 

and intercept values. were both significantly different (P < 0.05) and the energy cost of gain was 64 

and 35 MJ ME/kg liveweight gain for red and hybrid deer, respectively. The trend for red deer to 

have a lower maintenance requirement but a higher cost of gain compared with hybrid stags was 

similar to the findings in Chapter 4. 
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Figure 5.10. Relationship between ME intake (MJ MElWo. 75/day) and liveweight gain (glWo. 75 /day) of 
red (.) and hybrid deer (0) in spring. 
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Liveweight gain - effect of season 

There was no significant seasonal difference in MEmfor zero liveweight gain or the efficiency with 

which ME was used for liveweight gain (Figure 5.11). 

The common relationship for both red and hybrid deer in winter and spring between ME intake (MJ 

MEIW 0.75 /day) and liveweight gain (glW0.75 /day) was; 

LWG = 22.9 (2.2) ME intake - 8.5 (1.4) n=56 

Energy requirement for zero live weight gain in both winter and spring was 0.37 MJMEIW 0.75 /day 

and for liveweight gain 44 MJ ME/kg. The efficiency of utilisation of ME for liveweight gain was 

0.23. 
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Figure 5.11 Relationship between ME intake and liveweight gain in red and hybrid deer during 
winter (e) and spring (0). 

Whole body weight gain - effect of genotype 

There appeared to be large changes in gut fill during this experiment (see chapter 5a) which 

would have been included in changes in liveweight. The response in whole body weight (as 

determined by CT measurements) to ME intake was investigated as an alternative to 

liveweight. The linear relationship between ME intake (MJ MEIW 0.75/day) and whole body gain 

(glW0.75/day) for both genotypes in winter was; 

Red 
Hybrid 

WBG = 20.1 MEl - 8.7 
WBG = 19.5 MEl - 8.0 

n=14 
n= 14 

R2 =49% 
R2 =45% 
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Figure 5.12. Relationshipbetween ME intake and whole body weight gain of red (0) and hybrid (.) 
deer during winter. 

There was no significant difference between genotypes in the relationship of whole body weight 

change to ME intake. Both genotypes required 0.42 MJ MEIW o.75/day for maintenance and 50.9 MJ 

ME/kg of whole body gain. 
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The linear relationship between ME intake (MJ MEIW 0.75/day) and whole body gain (glW0.75 /day) 

for both genotypes in spring was; 

Red WBG = 36.6 MEl - 22.6 
Hybrid WBG = 40.1 MEl - 24.1 
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Figure 5.13. Relationship between ME intake and whole body weight gain (glkg WO. 75 /day) of red 
(0) and hybrid (e) deer during spring. 

There was no significant difference between genotypes in the response to whole body weight change 

to ME intake. Both genotypes required 0.61 MJ MEIW 0.75/day for maintenance and 26.7 MJ ME/kg 

of whole body gain. 

Whole body weight gain -effect of season 

There were significant seasonal differences in the energy requirement for zero whole body gain and 

the cost of whole body gain (Figure 5.14). 

The seasonal relationship between ME intake (MJ MEIW 0.75 /day) and whole body gain (glW0.75 

/day) was; 

Winter 
Spring 

WBG = 19.8 MEl - 8.4 
WBG = 38.4 MEl - 23.4 

n=28 
n= 28 

R2 =47 % 
R2= 83 % 

Deer required 0.42 MJMEIW 0.75 /day for zero whole body gain in winter and 0.61 MJMEIW 0.75 /day 

in spring. Whole body weight gain cost 50.9 MJ ME/kg in winter and 26.7 MJ ME/kg in spring. 
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Figure 5.14. Relationship between ME intake and whole body weight gain (glkg W°.75 /day) of 
deer in winter (. ) and spring (0). 

Energy retention - effect of genotype 

The relationship between ME intake and net energy retained in whole body during winter and spring 

is given in Figures 5.15 and 5.16, respectively. The relationships given include individuals with 

negative net energy retention values. It is conventional to remove individuals with negative net 

energy retention values from this type of analysis since the efficiency of utilisation of energy for 

maintenance (knJ is greater than the efficiency of utilisation for energy gain (kg). However, in this 

case, there are two reasons why negative net energy retention values were included. 

The separate relationships for positive and negative values for red deer and hybrids in winter are 

given in Figure 5.15a. The ME requirement for zero energy balance derived from positive values was 

0.24 MJ MEIW 0.75 /day but from negative values was 0.62 MJ MEIW 0.75 /day. Theoretically, 

estimates of MEm should be the same regardless of whether they are calculated from individuals in 

positive or negative energy balance. On this basis, a common relationship was fitted to both positive 

and negative energy retention values which forced a common MEm value. 

In addition, it is difficult to justify the removal of individuals with only slightly negative net energy 

retention values when errors involved in CT analysis are considered. For example, a 5 % 

underestimation of whole body weight at the conclusion of the study would have caused an animal at 

zero energy balance to record a net energy loss of 20 kJ/kg BW 0.75/day. Therefore, the majority of 

negative winter and spring net energy retention values are, in the context of the errors involved, close 

I.',' -- --. ,-, - --- '-'~ 
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to zero energy balance. Therefore, both positive and negative energy retention values were included 

in relationships. 
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Figure 5.15a Energy retention (kj/Wo.75/day) in whole body weight gain of red deer (solid symbols) 
and hybrids (open symbols) in winter across a range of ME intakes. Separate relationships are fitted 
for positive (0) and negative (.6.) energy retention values. 

When a common relationship was fitted to both positive and negative energy retention values there 

was no significant genotype difference between net retained energy (kJ IW 0.75/day), and intake (MJ 

MEIW 0.75/day) (P> 0.05). Deer consuming 0.48 MJ MEIW 0.75/day had zero energy retention during 

winter and retained 23.7 kJ net energy for every additionallOOkJ of ME intake (Figure 5.13). 

Relationships within the individual genotypes were; 

Red Energy retention (kJ) = 245.2 (55.8) ME intake- 120.1(32.8) n=14 R2=57% 

Hybrid Energy retention (kJ) = 230.0 (61.9) ME intake - 105.7 (36.6) n=14 R2= 54% 

Based on these equations ME intake for zero energy balance would have been 0.49 and 0.46 MJ 

MEIW 0.75 /day for red and hybrid deer, respectively and energy retention would have been 24.5 and 

23.0 kJ net energy for every additional 100 kJ in ME intake for red and hybrid deer, respectively. 
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Figure 5.15b. Relationship between net energy (kjlWo. 75/day) retained in whole body of red deer (e) 
and hybrids (0) offered a range of feeding levels during winter. The fitted relationship includes both 
positive and negative energy balance values. 

During spring, there was no difference between genotypes (P > 0.05) in the relationship between net 

energy retention and ME intake (Figure 5.16). Either genotype had an intake of 0.59 MJ MEIW 0.75 

/day at zero energy retention and retained 36.9 kJ for every additional 100 kJ in MEl 
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Figure 5.16 Relationship between net energy (kjlWo. 75/day) retained in whole body during spring of 
red deer (e) and hybrids (0) over a range of ME intake. Thefitted relationship includes both positive 
and negative energy balance values. 
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Relationships for the individual genotype were; 

Red Energy retention (kJ) = 369.3 (38.3) ME intake - 220 (25.9) n=14 R2= 89% 

Hybrid Energy retention (kJ) = 369.5 (37.4) ME intake - 217 (25.2) n=14 R2= 89% 

Based on these equations ME intake for zero energy balance would have been 0.60 and 0.59 MJ 

MEIW 0.75 /day for red and hybrid deer, respectively and energy retention would have been 37.0 kJ 

net energy for every additional 100 kJ in ME intake. 

Energy retention - effect of season 
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There was an apparent seasonal difference in MEm and kg (Figure 5.17). The relationships for winter 

and spring were; 

Winter Energy retention (kJ) = 237.7 (40.4) ME intake - 112.9 (23.8) 

Spring Energy retention (kJ) = 369.3 (25.8) ME intake - 218.3 (17.4) 

n = 28 R2= 57% 

n = 28 R2= 89% 

Energy requirement for zero energy balance was higher (P < 0.05) in spring (0.59 MJ MEIW 0.75/day) 

compared with winter (0.48 MJ MEIW 0.75 /day). The efficiency of utilisation of ME for energy gain 

was different between winter and spring (P < 0.05). The estimate of kg was 0.24 during winter and 

0.37 in spring 
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Figure 5.17 Relationship between ME intake and net energy retained in whole body during winter 
(e) and spring (.)for all deer. The fitted relationship includes both positive and negative energy 
balance values. . 
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Utilisation of energy for fat and protein deposition 

The energy cost of fat and protein deposition in deer was calculated from the composition of gain and 

ME intake. Multiple regression analysis was used to partition ME intake (less a common MEm of 

0.48 and 0.59 MJMEIW 0.75 /day during winter and spring, respectively) between fat and protein 

retention separately for deer in positive energy balance in winter and spring. Preliminary analysis 

indicated there was no significant difference between genotypes and therefore genotypes were 

combined for analysis. Intake was partitioned as; 

(ME intake - MEm) = bi F + b2 P 

where ME intake was the daily intake expressed on a metabolic whole body weight basis (kJlW 

0.75/day), MEm was maintenance requirement from the energy retention relationship as described 

above, F was the daily amOlmt of energy deposited as fat (kJIWO.75 /day), P was the amount of energy 

deposited as protein daily (kJIWO.75 /day) and bl and b2 were the regression coefficients. The weight 

used in calculating metabolic body weight (W 0.75) was the combined weight of adipose, lean and 

bone tissue estimated from whole body CT images which included estimated GIT weight. The 

coefficient bl and b2 were interpreted as the energy cost of depositing IkJ of fat and protein, 

respectively and the reciprocal an estimate of krand kp. 

The multiple regression coefficients for winter and spring are shown in Table 5.9. 

Table 5.9. The regression coefficients for the multiple regression offat and protein deposition on ME 
intake for deer during winter and spring in positive energy balance. 

Season n Fat Protein Rl 

Winter 19 9.7 ± 1.9'" -1.9±1.5 87% 

Spring 16 1.57 ±o.n· 4.07 ±0.75··· 96% 

where *, P <0.05 and ***, P< 0.001. 

During winter, partial efficiency was only significantly different from zero for fat deposition. Protein 

deposition did not explain a significant proportion of the variation in ME intake. Removing those 

animals that had a positive energy balance despite losing fat from the analysis did not improve the 

equation significantly. Both coefficients were significantly different to zero during spring, with 95 -

96% of the variation in ME intake explained in energy deposited in fat and protein. The inability to 

apportion any variation in ME intake to protein deposition (coefficient non-significant) during winter 

resulted in a poor winter-spring combined regression. Where both coefficients were significant 

(spring) the estimates of energy cost of fat and protein deposition (± SEM) were 1.57 ± 0.71 and 4.07 

± 0.75 MJ MEIIMJ for fat and protein, respectively. Therefore the partial efficiencies of utilisation of 

ME for energy deposition as fat and protein were 0.64 and 0.26, respectively. 
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Energy value of gain 

There was a positive relationship between the net energy retained (MJ) and whole body weight 

gained (kg) during winter (Figure 5.18) and spring (Figure 5.19). There was no significant difference 

between genotypes. 
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Figure 5.18. Relationship between whole body weight gained (kg) and energy retained (MJ) during 
winter (49 days) for red deer (. ) and hybrid deer (0). 

For winter the individual relationships were; 

Red deer 
Hybrid 

Energy retention = 10.7 (0.5) WBG - 8.00.7) 
Energy retention = 10.5 (0.5) WBG -6.02 (2.7) 

n = 14 R2 = 98% 
n = 14 R2 = 96% 

There was no significant genotype difference and whole body weight gain in winter contained 10.6 

MJ/kg for either red or hybrid deer. 

For spring, the individual relationships were; 

Red deer 
Hybrid 

Energy retention = 9.9 (0.5) WBG + 7.5 (3.5) 
Energy retention = 8.8 (0.5) WBG + 5.9 (4.2) 

n = 14 R2 = 97% 
n = 14 R2 = 96% 
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Figure 5.19. Relationship between whole body weight gained (kg) and energy retained (MJ) during 
spring (49 days)for red deer (e) and hybrid deer (0). 

There was no significant genotype difference and whole body weight gain in spring contained 9.4 

MJlkg for either red or hybrid deer .. 

Data from each genotype was combined to establish the seasonal effect (Figure 5.20) 
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Figure 5.20. Relationship between whole body weight gained (kg) and energy retained (MJ) during 
winter (e) and spring (0). 

The individual relationships were; 

Winter 
Spring 

Energy retention = 10.6 (0.4) WBG - 7.1 (1.5) 
Energy retention = 9.2 (0.3) WBG + 6.7 (2.8) 

n= 14 
n = 14 

R2= 97% 
R2 =97% 

There was significant seasonal difference and whole body weight gain was 9.2 MJlkg and 10.6 MJlkg 

for the winter and spring, respectively. 

, . 
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5.3 Discussion 
Ad lib. feed intake 

Ad lib. feed intake in this experiment was lower in winter but higher in spring compared with those 

reported in Chapter 4 (Table 5.10). Consequently, the increase in voluntary feed intake (MJ MElkg 

/day) from winter to spring for red deer (44%) and for hybrids (55% ) was higher than that recorded 

in Chapter 4 (22 and 23 % for red and hybrid deer, respectively) and higher than the 30% recorded by 

Domingue et al. (1991a) and Freudenberger et al. (1994) for red deer. It is unclear as to the reason for 

the variation in ad lib. intake between the two experiments although similar variation between years 

has been reported previously for deer (Webster et al., 1997). 

These data confirm previous reports of a seasonal cycle of ad lib. intake which increases from winter 

to spring for deer, but also indicate the amplitude of liveweight change is relatively larger for hybrid 

than for red deer. 

Liveweight gain at ad lib. feeding 

This experiment provided further eVIdence that red deer may have a faster relative rate of liveweight 

gain than hybrid deer in winter when feed was offered ad lib. (Table 5.10). The mean relative 

liveweight gain of hybrid deer fed ad lib. in this experiment was lower than expected based on hybrid 

deer at lower feeding levels. This was despite hybrids being in good health and having a similar 

intake to red deer. It is difficult therefore, to interpret this observation in isolation but it does support 

the trend reported in Chapter 4. 

Although red deer may gain liveweight relatively faster than hybrids in winter, because of the 

differences in live weight (approximately 10 kg), absolute liveweight gain was similar between 

genotypes. 

Table 5.10 Comparison of voluntary feed intake and liveweight gain of red and hybrid deer in this 
experiment and in the experiment detailed in Chapter 4. 

Chapter 4 Chapter 5 

Intake Liveweight gain Intake Liveweight gain 

(g DMIW 0.75 /day) (gIW 0.75/day ) (g DMIW 0.75 day) (glW0.75/day) 

Winter 

Red 79.1 7.99 61.6 8.61 

Hybrid 76.7 7.02 62.5 5.64 

Spring 

Red 95.7 10.70 88.5 12.43 

Hybrid 94.5 12.33 96.3 15.23 

As in previous experiments, hybrids fed ad lib. grew faster during spring on both an absolute and 

metabolic liveweight weight basis compared with red deer. The difference was larger in this 

, -_ "_-_"'::-.C-_'.-_-,""l 
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experiment (2.8 glW0.75/day) compared with that in Chapter 4 (1.6 glW0.75/day). This might have 

-been expected considering ad lib. intake in this experiment was greater for hybrids (96.3 g DM IWO.75 

/day) than for red deer (88.5 g DM lWo.75 /day) when in Chapter 4 it had been similar. 

This experiment provided further evidence that hybrids exhibit a greater amplitude in seasonal cycle 

of relative and absolute liveweight gain. 

Restricted feeding 

When intake was restricted during winter, liveweight gain decreased by 2.28 and 1.84 glW0.75/day 

for every 0.1 MJ MEIW o.75/day reduction in intake for red and hybrid deer, respectively (Figure 5.3). 

Effectively, the energy cost of live weight gain tended to be lower for red deer (44 MJlkg of 

liveweight) compared with hybrid deer (55 MJlkg of liveweight) in winter but the difference was not 

significant. The estimated ME requirement for maintenance of liveweight during winter was similar 

for both genotypes (0.38 - 0040 MJ MEIW o.75/day) suggesting if red deer gained liveweight faster 

than hybrids this was a result of a difference cost of liveweight gain rather than maintenance 

requirement. The possibility that-red deer are able to grow more quickly over winter compared with 

hybrids must be tempered against the fact that winter is a period where the potential for liveweight 

gain is low and in the field liveweight gain below 100 glday is common. It should also be recognised 

that winter in this experiment refers to the period of June -July. Hybrids may appear to gain 

liveweight faster than red deer in "winter" if late autumn and early spring months are also included, 

where hybrids would be expected to have a greater liveweight gain than red deer. 

The estimates of the energy required for maintenance and live weight gain, the efficiency of utilisation 

of energy for maintenance and live weight gain and the energy value of the gain from this experiment 

have been summarised in Table 5.11. 

• - _ ~ ,'. ~ r ..... _ 
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Table 5.11. A summary of the energy requirement for maintenance (energy balance and liveweight 
-balance), costs of liveweight gain and energy value of whole body gain. 

Red deer Common· Hybrid deer 
ME for zero LWG (MJ MEIW u·"/day) 0.37 0.38 0.39 
CostofLWG 44 49 55 

~ ME for zero WBWG (MJ MEIW 0.75/day) 0.41 0.42 0.43 
~ - CostofWBWG 51.7 50.9 50.2 

== ME for zero energy gain «MJ MEIW 0.75/day) 0.49 0.48 0.46 
~ kg 0.25 0.24 0.23 

Energy value of WBWG 10.7 10.6 10.5 
Energy value of L WG 6.6 6.2 

ME for zero LWG (MJ MEIW u·"/day) 0.35 0.47 
CostofLWG 64 35 

en ME for zero WBWG (MJ MEIW 0.75/day) 0.62 0.61 0.60 

= CostofWBWG 27.9 26.7 25.5 .... 
~ ME for zero energy gain «MJ MEIW 0.75/day) 0.59 0.59 0.59 ~ 

00. kg 0.37 0.37 0.37 
Energy value ofWBWG 9.9 8.8 
Energy value of L WG ILl 8.4 

* Where there IS no common value, genotype dIfferences are slgmficant 

ME requirement for maintenance . 

The estimated ME requirement for maintenance of liveweight (0.37 - 0.39 MJ MEIW 0.75/day) and 

whole body weight (0.41 - 0.43 MJ MEIW 0.75/day) during winter for both genotypes (Table 5.11) 

was lower than previous estimates for penned red deer in winter (0.57 MJ MEIW 0.75 /day, Fennessy 

et al., 1981; 0.63 MJ MEIW 0.75 /day Semiadi et al., 1994) and penned wapiti (0.56 MJ MEIW 0.75 /day 

Jiang and Hudson, 1994; 0.57 MJ MEIW 0.75/day Jiang and Hudson, 1992) but more similar to the 

values recorded for red deer by Simpson et al., 1978b (0.4 - 0.5 MJ MEIW 0.75 /day) and Cool and 

Hudson, 1996 (0.47 - 0.51 MJ MEIW 0.75 /day). 

It is unclear why requirement for maintenance is lower than that previously reported for penned red 

deer. One possible explanation is the under-estimation of ME intake. Although OM intake was 

measured accurately, estimates for ME intake may be less accurate. Estimates of ME intake are based 

on the MID value estimated from proximal analysis of feed which do not always provide reliable 

estimates for compound feeds (Isherwood pers com). However, the MID values used for all 

experiments are what would be expected based on the feed table values of the diet constituents and 

their relative proportions. Further, MID values would have had to have been grossly underestimated 

in order to fully explain the differences in ME intake between this and other studies. For example, 

deer in winter required 32.4 g OMIW 0.75/day for liveweight maintenance. Based on the estimated 

MEIDE of 11.7 MJ ME/kg OM, this equated to a maintenance requirement of 0.38 MJ MEIW 0.75 

/day. If the actualliveweight maintenance had been 

0.5 MJ MEIW 0.75/day, based on the same OM intake MlO would have to have bee~ 

15.4 MJ ME/kg OM which is much higher than would be expected for a grain-based ration. 

"-'--.', ." 
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Spring ME requirement for maintenance of liveweight was 0.35 and 0.47 MJ MEIW 0.75/day for red 

and hybrid deer, respectively. This experiment confirms the findings of Chapter 4 that during spring, 

red deer require less energy than hybrids for maintenance of liveweight. The difference in 

maintenance requirements between genotypes seen here (0.12 MJ MEIW 0.75/day) is similar to that 

reported in Chapter 4 (0.2 MJ MEIW 0.75/day). 

Semiadi et al. (1994) showed differences in maintenance requirement between deer species. Young 

sambar deer (Cervus unicolor) had a lower requirement for maintenance (0.47 MJ MEIW 0.75/day) 

compared with red deer (0.57 MJ MEIW 0.75/day). As a consequence, at any particular rate of intake 

sambar retained more energy than red deer. 

Webster (1981) has suggested that GIT and liver combine to contribute about 40 % of total heat 

production in sheep and this therefore makes fasting metabolic rate sensitive to changes in weight of 

these organs. Although the weight of GIT increased as whole body weight increased (25 % between 

lowest and highest intake) there was no genotype difference (see Figure 5.2). There is no evidence 

from these results that gut tissue mass contributed to any difference in MEm between genotypes. 

When the amount of net energy retained in whole body or whole body weight gain was considered as 

a response to intake rather than liveweight gain there was no significant genotypes effect. 

Consequently, either genotype required 0.48 MJ MEIW 0.75/day in winter and 0.59 MJ MEIW 0.75/day 

in spring in order to achieve zero energy balance or 0.42 MJ MEIW 0.75/day in winter and 0.61 MJ 

MEIW 0.75/day in spring in order to achieve zero whole body weight change. These are similar to 

other estimates (Simpson et al. 1978b). There was no clear genotype trend in ME for either zero 

energy gain or zero whole body weight gain. 
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ME requirement for gain 

Estimates of the energy costs of liveweight gain were similar to those previously published (Table 

2.2) ranging from 35- 64 MJ ME/kg. The energy cost of liveweight gain during winter was not 

significantly different between genotypes but there was a trend for red deer to have a lower cost than 

hybrids. This is consistent with the observation that red deer tended to grow faster than hybrids 

during winter at ad lib. intake. Because maintenance requirements were similar between genotypes, it 

would be expected on restricted intake, that liveweight gain differences would be even smaller. The 

energy cost of whole body gain during winter (50.9 MJ MElkg) was not significantly different 

between genotypes and was similar to the energy cost of liveweight gain (49.0 MJ ME/kg). 

A similar maintenance requirement, but lower cost of liveweight gain suggests red deer may grow 

faster than hybrids if fed ad lib. over winter. However, in a commercial situation high winter feeding 

levels are likely to be financially unacceptable and therefore on restricted diets it would be expected 

that genotypes would gain liveweight at a similar rate over winter. It would also be dangerous to 

extrapolate these data to comparisons of hybrid deer which contain a higher proportion of elk genes. 

While the hypothesis that elk type deer have a higher energy cost of gain during winter compared 

with red deer may be a valid one, there is some evidence that the seasonal cycle in intake is not so 

pronounced in these elk type deer compared with red deer (Beatson et ai., 2(00) and winter 

liveweight gain may be more rapid as a consequence. 

During spring, when a linear relationship was fitted to ME intake-liveweight gain relationships, 

liveweight gain changed by 2.0 and 4.3 g/W 0.75 Iday for every O.IMJ MEIW 0.
75 /day decrease in 

intake for red deer and hybrids, respectively. The value for red deer is of a similar magnitude to that 

calculated from the data of Webster et al., (1997) of 1.8 and 2.2 g/W 0.
75 /day for every 0.1 MJ MFlW 

0.75 / day in two different years. Wapiti calves (4 months) reduced average liveweight gain by 3.5 g/W 

0.
75/day for every 0.1 MJ MEIW 0.

75 /day restriction in intake (Cool and Hudson, 1996). This result 

suggests the efficiency of utilising metabolisable energy for spring liveweight gain is lower for red 

deer compared with hybrids. Therefore, in spring and on a high intake hybrids would be expected to 

gain liveweight faster than red deer due to their lower cost of gain. When feeding is restricted, 

however, the greater energy requirement for maintenance of hybrids reduces the difference in 

liveweight gain compared with red deer. 

The implication to producers is that the greatest advantage in liveweight gain (per head) to hybrids 

relative to red deer occurs in spring and when hybrids approach ad lib. intake. Underfed hybrids will 

gain less liveweight than equally underfed red deer. 

The energy cost of whole body weight gain in spring (26.7 MJ MElkg) was not significantly different 

between genotypes and was lower than the cost of liveweight gain (35 - 64 MJ ME/kg). This was 
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not consistent with the genotype differences in spring liveweight gain. Genotypes did not differ in 

their energy requirement for energy gain but this is not surprising since whole body weight gain and 

energy gain are derived from the same measurements of body composition. Changes in gut fill over 

spring as outlined in Chapter 5a are a possible source of this effect. Gut and its contents appeared to 

increase during the spring period (Table 5.4) and more so for the lower feeding treatments than for 

the ad lib. treatment. This would have the effect of increasing the cost of liveweight gain relative to 

whole body weight gain which is consistent with the results of this experiment. Further, as intake 

increased, the size of the increases in gut contents was greater for red deer than for hybrids which are 

consistent with the liveweight gain results from this experiment. 

Composition of gain 

The energy cost of gain depends upon the composition of gain or (the energy value of gain) and the 

efficiency by which energy is deposited as fat (kf) and protein (kp). Gain with a high proportion of fat 

is associated with a high cost while gain high in protein is associated with a lower cost. 

There was no significant difference between red and hybrid deer in the composition of whole body 

gain (Figure 5.10), but in winter there was a trend for red deer to deposit less fat than hybrids and in 

spring for hybrid deer to deposit less fat than red deer. However, there was no significant difference 

and no clear trend in net energy retention. Essentially kg was not different between genotypes. 

The efficiency by which energy is deposited as fat and protein also affects the energy cost of gain. 

When energy intake (after subtracting a common MErJ was partitioned between fat and protein 

deposition for spring both the fat and protein deposition coefficient were significant and gave mean 

partial efficiency of 0.64 and 0.26 for fat and protein, respectively. There estimates were similar to 

some previously published for lambs, calves and pigs (Table 2.3). 

These was no significant difference between genotypes in the efficiency by which metabolisable 

energy was used for fat or protein deposition but this observation was based on a small sample size. 

Previous estimates of the partial efficiency of fat and protein deposition (Table 2.3) have shown 

significant variation, especially for protein deposition. However, this variation is associated with 

comparisons of pre- and post - ruminant animals and animals fed milk and roughage diets. It is 

unlikely that deer at a similar stage of development on the same diet differ in the partial efficiency of 

fat and protein deposition. In this experiment there is no evidence to suggest genotype differences in 

kp or kf and therefore differences in the composition of gain should be reflected by different kg values. 



5.4 Summary 

Based on the work in this chapter red yearling stags relative to hybrid stags have a similar energy 

requirement for maintenance and gain of liveweight, whole body weight and energy in winter. 

Therefore observed differences between genotypes in liveweight gain in winter are likely to reflect 

differences in intake. 
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In spring, the ME requirement for maintenance of liveweight was higher for hybrids than red deer but 

the requirement of maintenance of whole body weight or energy was similar. Similarly, the cost of 

liveweight gain was greater for red deer than for hybrids but there was no genotype difference in the 

costs of whole body weight gain and energy retention. The difference in results between liveweight 

and whole body weight or energy retention is possibly explained by changes in gut fill during the 

experiment. Therefore, observed differences in liveweight gain between genotypes in spring are 

likely to reflect either differences in intake or differences in gut fill. The effects of feeding level and 

genotype on gut fill needs to be further investigated. 

Although season did not have an effect on either the energy required to maintain liveweight or the 

cost of liveweight gain, both whole body weight gain and energy retention was more costly but 

required less energy for balance in winter than in spring. 
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Chapter 6 

The effect of season and intake on the apparent in vivo digestibility of a 
pelleted feed offered to deer 

6.0 Introduction 

Previous studies have shown seasonal variation in digestibility of DM intake for sheep (Milne et al., 

1978), goats (Domingue et al., 1991a), and deer (Domingue et al., 1991a; Freudenberger et al., 

1994). Between-genotype difference in the seasonality of digestibility of feed is a possible 

mechanism by which red and hybrid deer may differ in their liveweight response to intake in winter 

and spring. The aim of this experiment was to determine the genotype and seasonal effect on apparent 

DM digestibility. This chapter reports two independent studies of feed digestibility for red and hybrid 

deer in winter and spring. 

6.1 Materials and Methods 

Apparent in vivo OM and DM digestibility was measured during winter and spring for two separate 

groups of deer in consecutive years. Group 1 was a subset (n= 20) of deer involved in the experiment 

described in Chapter 5. Within genotype, deer were paired on liveweight and offered one of a range 

of intakes between 0.4 times ad lib. to ad lib. feeding. Group 2 comprised individually penned deer (n 

= 10) as described in Chapter 4 which were offered one of a range of feeding levels between 0.5 to 

0.9 times ad lib. Deer in both groups were fed a pelleted diet. A more detailed description of feeding 

and housing is provided in the respective chapters. 

Group 1 

In Group 1, four deer per week (all animals on one feeding level) were housed in individual pens 

which had been cleared of sawdust and fitted with a false floor of wire mesh. Total daily faecal 

output was collected by gathering any faecal material aggregated on the wire mesh and combining it 

with all faecal material on the pen floor. Where deer moulted, care was taken to exclude pelage in 

faecal collections. During the faecal collection process, deer were placed separately in concrete­

floored holding pens and any faeces produced was collected and added to the collection for that day. 

Faecal collections were made daily prior to feeding for 7 days. Total daily faeces for each animal was 

dried at 70°C for 48 h and weighed. After weighing, a 50 g sub-sample from each day's collection 

was bulked for each animal and stored in an air-tight container for organic matter analysis. 

Dry matter intake was determined by subtracting any feed refused from the daily fresh feed offered 

and correcting for average dry matter (87%). There was no difference in dry matter between fresh and 

refused feed. 

Apparent dry matter (DM) digestibility was calculated as follows; 



apparent OM digestibility = total OM intake - total faecal OM 
total OM intake 
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A 2 g sample of the bulked sub-samples of dried faeces for each animal along with ground samples of 

feed (2 g) were placed in porcelain crucibles and oven dried for 24 h at 90°C. Samples were removed 

and allowed to cool in a desiccator before being weighed (nearest 0.1 mg). Samples were reduced to 

ash at 550°C for 8 h and were allowed to cool before being re-weighed. Organic matter (OM) 

digestibility was calculated as; 

apparent OM digestibility = total OM intake - total faecal OM 
total OM intake 

Group 2 

Each day for 10 days deer from Group 2 (5 of each genotype) with known DM intake received, 140 ± 

1.0 mg of n-alkane (dotricontane, C32) mixed with approximately 3 g of ground feed administered in 

a 5 g gelatine capsule. Faecal samples (> 109 fresh weight, collected from the rectum by grab 

sampling) were taken daily for 5 days following an initial 5 days of dosing. 

Samples were frozen at -20°C whilst awaiting analysis. 

Apparent DM digestibility was calculated from faecal output and DM intake as follows. 

apparent OM digestibility = OM intake (kg) - faecal output (kg OM) 
OM intake (kg) 

Faecal output was calculated from alkane dose (C32) and faecal alkane (C32) concentration having 

accounted for a 15% apparent loss of alkane within the GIT (Mayers et ai., 1986); 

Faecal output (kg OM) = 

Sample analysis 

e32 dose (mg/day) - (en dose (mg/day) x 0.15 (endogenous alkane loss) 

faecal e32 extraction (mglkg OM) 

Each individual faecal sample was freeze dried and ground « 1 mm). Samples were bulked so that 

for each deer the bulked sample contained equal proportions of faeces from the 5 collection days. 

Approximately 2 g from each bulked sample was weighed into a crucible and oven dried for 24 h to 

determine percentage dry matter. Both a I g sample of bulked faeces and 0.4 ml of an n-alkane 

standard were weighed accurately (± 0.1 mg) into a 70 ml Kymax tube. The alkane standard 
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contained 0.1026 g of C24 (n-tetracosane) and 0.1041 g of C34 (n-tetratriacontane) dissolved in 80.14 

g of CII (n-undecane) (Sigma Chemical Company Ltd). The sample and standard was left for 12 h at 

room temperature in 10 ml of a 1.5 M solution of KOH in methanol (analytical reagent grade, BDH 

New Zealand Ltd). Tops of the tubes were tightly sealed and the tubes placed in an oven at 90°C for 

3.5 h. The mixtures were shaken hourly and any methanol loss replaced. The tubes were subsequently 

removed and placed in a water bath at 60°C. 

To each tube 5 ml analytical grade n-heptane (Riedel-de Haem, Germany) and 5 ml nano-pure water 

were added, the tube shaken vigorously and returned to the water bath to allow a bi-phase to form. 

The top layer of the bi-phase was removed using a vacuum manifold and purified through a silica gel 

(3.5 g Kiesegel 70-325 mesh packed in a 25 ml syringe fitted with a sintered glass frit at the bottom). 

Another 5 ml of n-heptane was added to the mixture, shaken and replaced in the water bath. The bi­

phase was removed and purified as before. The column was then rinsed with 10 ml of n-heptane to 

elute any remaining alkanes. The elute was placed in an oven at 90°C for 36h to evaporate the n­

heptane. When all n-heptane had been evaporated a further 0.7 ml of n-heptane was added to each 

cooled tube, the tube walls washed and sample transferred to GLC autosampler vials using a Pasteur 

pipette. Samples were analysed on a Hewlett Packard HP 6890 GC system. 

The GC was set to inject a 1~1 sample into the front inlet at 300°C and in splitless mode. The column 

used was a BPI megabore capillary column 30 m in length with an internal diameter of 530 ~m and 

silica film thickness of l~m. Helium flow through the column was set at a constant 4.2 mlImin. The 

front flame ionisation detector was set at 300°C. 

Statistical analysis 

Relationships between intake and in vivo digestibility were fitted using linear regression. Differences 

in regression coefficients and intercept values between relationships for each season were examined 

using the method of Snedecor and Cochran (1980). 
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6.2 Results 

Conclusions reached from this experiment were no different regardless of whether apparent OM or 

DM digestibility was used and for this thesis only DM values have been presented. 

Apparent DMD was higher in winter than spring for both Group 1 (Figure 6.1) and Group 2 (Figure 

6.2) with the between-season difference being about 7 percentage units within Group 1 and 4.5 - 11 

percentage units within Group 2 on similar intake. The decrease in digestibility from winter to spring 

was independent of intake for Group 1. There was no significant difference between genotypes in this 

seasonal effect on digestibility. 

There was positive effect of intake on digestibility in both groups (P < 0.01). Digestibility increased 

by 0.027 digestibility units for every 10 g DM/W·75/day increase in intake for both genotypes in either 

season in Group 1 and 0.041 and 0.021 digestibility units for deer in winter and spring, respectively 

in Group 2. 
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Figure 6.1. Apparent in vivo DM digestibility of a pelle ted feed offered to red (0) and hybrid ( .. ) 
deer (Group 1) on a range of intake levels during winter (solid symbols) and spring (open symbols). 
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Figure 6.2. Apparent in vivo DM digestibility of a pelleted ration offered to red (0) and hybrid ( A) 
deer based onfaecal marker (n- alkane) concentration at 5 intake levels during winter (solid 
symbols) and spring (open symbols). 

When data from both groups were combined, the linear regression equations were; 

Winter DMD = 54.25 (3.6) + 0.269 (0.07) DMI R2 = 34% 

Spring DMD = 51.04 (2.6) + 0.195 (0.04) DMI R2 = 50% 

where DMD is dry matter digestibility, DMI is dry matter intake and figures in parentheses are 

standard errors of the mean. 
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6.3 Discussion 

Seasonal effect on digestibility 

As with previous reports (Barry et al., 1991; Domingue et al., 1991a; Freudenberger et al., 1994), this 

study found a marked increase in ad lib. intake of deer between winter and spring/summer. The 

increase in ad lib. intake between winter and spring recorded in this experiment (26%) (Table 6.1) 

was of a similar magnitude to previously reported estimates of 54% (Milne et al., 1978) and 33 % 

(Freudenberger et al., 1994) In previous experiments (Domingue et al., 1991a, 1991b; Freudenberger 

et al., 1994), it was found that, despite these marked seasonal changes in ad lib intake, there was no 

change in apparent digestibility. The result of the present study agrees with those findings (Figures 

6.1 and 6.2). 

Table 6.1 Ad lib. intake in winter and spring for stags and the corresponding mean apparent 
digestibility of dry matter. 

Ad lib. intake Average DMD at ad lib. intake 

(g DMIW o.75/day) (%) 

winter 62.1 72.0 
Group 1 

spring 87.9 71.2 

winter 71.1 73.0 
Group 2 

spring 110.4 73.5 

Digestibility partially depends upon mean retention time of particles in the rumen (MRT). The longer 

feed particles spend in the rumen the greater the potential for them to be degraded and the higher the 

digestibility. MRT is a function of the fractional outflow rate of particles from the rumen (FOR). 

Therefore, the faster the FOR, the lower the MRT and the lower the degradability and digestibility. 

However, if the size of the rumen dry matter pool increases then an increase in FOR can occur 

without a reduction in MRT and consequently digestibility. 

Previous authors have argued that deer fed ad. lib. are able to avoid the reduction in digestibility that 

would normally be associated with a seasonal increase in ad lib. intake by a seasonal change in 

passage rate of digesta through the gut as measured by FOR from the rumen. Domingue et al., 

(l991a) reported a lower FOR of both liquid and particulate matter from the rumen in winter than 

summer and Freudenberger et al., (1994) showed FOR of either liquid or particulate matter in winter 

tended to be higher than the summer values. Domingue et al., (l991a) hypothesised that a decrease in 

FOR (independent of ad lib. intake) was probably the mechanism through which deer were able to 

increase their ad lib. intake during summer without incurring a decrease in digestibility. Both 

Domingue et al., (l991a) and Freudenberger et al., (1994) reconciled the increased ad lib. intake and 
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decreased FOR with an increase in the digesta pool size of the rumen. A lower FOR in summer than 

winter was a logical explanation for the increase in total and liquid pool sizes within the rumen in 

summer compared with winter 

The current model for changes in seasonal digestibility, based on the work by Domingue et al., 

(1991a) and Freudenberger et al., (1994), is depicted in Figure 6.3. This shows the generally accepted 

negative relationship between feed intake and apparent digestibility. The hypothesised decline in 

FOR between winter and summer, which is independent of intake, shifts the relationship to the right. 

Therefore, as ad lib. intake increases from winter to summer, digestibility remains at point A instead 

of decreasing to point B (Figure 6.3) as would be expected if FOR remained unchanged 
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Figure 6.3 The current model of the seasonal and level of intake effects on the digestibility offeed in 
deer (based on the work of Domingue et al., 1991a and Freudenberger et aI., 1994) 

This model suggests that at a common intake, digestibility will be higher in spring relative to winter. 

In contrast, the present study showed that digestibility was lower in spring compared with winter, 

independent of intake. In interpreting a higher spring digestibility compared with that of winter in 

terms of FOR and MRT, it would seem that FOR would need to increase and MRT decrease between 

low winter and high spring intake to explain the lower spring digestibility. Although both Domingue 

et al. (1991a) and Freudenberger et al. (1994) reported FOR decreased from winter to summer, other 

authors have been unable to show any change in FOR (Milne et al., 1978; Sibbald and Milne, 1993). 

A lower FOR in spring compared with winter is the opposite to what is generally expected in other 

species of domestic livestock (Warner, 1981). In addition, it could be argued there is little 

evolutionary advantage in decreasing digestibility and consequently DDM intake and ME intake 

during winter where the environment may already place severe restrictions on DM intake. 
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Although Freudenberger et al. (1994) measured a smaller summer FOR, some of their own 

observations contradict this finding. They reported that rumen pool size increased independent of 

intake and therefore summer rumen pool size was greater than winter rumen pool size at similar 

intake. This is consistent with a slower summer FOR. A rumen pool size increase was used in the 

above model to reconcile an increased intake and reduced FOR. However in their data, DM pool size, 

when expressed as a ratio of intake, remained constant between seasons and across intake levels 

suggesting the seasonal increase in pool size at a similar feed intake might have been partially due to 

a greater volume of water in the rumen rather than a decrease in the FOR of particulate matter. In 

addition to this, Domingue et al., (1991a) reported a seasonal decrease in FOR from 3.47 %/h 

(winter) to 2.77% /h (summer), which translates into an increase in MRT of 8 h. However, if the 

decrease in FOR was real, it is surprising that apparent digestibility of both DM and OM was 

unchanged. Furthermore, if FOR had decreased during summer, independent of intake, a higher 

digestibility due to a longer retention time would be expected. In fact, when deer were restricted 

during summer to a feed intake equivalent to winter ad lib. intake, Freudenberger et al. (1994) found 

digestibility was lower rather than higher than that recorded in the winter which would suggest that 

FOR may have increased rather than decreased during the summer. 

A major difficulty in interpreting changes in FOR is that only subtle changes are needed to have a 

significant influence on MRT and therefore digestibility. For example, the SED of Freudenberger et 

al., (1994) measurements (1 %/h) may have explained the majority of the difference in apparent 

digestibility observed. 

A proposed model based on the current work is shown in Figure 6.4. This model shows a positive 

relationship between feed intake and apparent digestibility. Increases in intake from winter to spring 

have no effect on digestibility (digestibility remains at point B). This is consistent with other studies 

which have fed deer ad lib. in both winter and spring (Domingue et al., 1991a); Freudenberger et al., 

1994). However, the model proposes that this occurs as a result of a seasonal increase in FOR 

(moving from the winter to spring relationship) reducing a potentially higher digestibility (A) rather 

than a seasonal reduction in FOR and avoiding a decline in digestibility as proposed previously. 

When intake is restricted in spring, this model predicts that digestibility decreases and this is 

consistent with results of the present and other studies (Freudenberger et al., 1994). 
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A 

Winter Spring 

Winter Spring 
Seasonal 

------1.~ increase 

Intake 
Figure 6.4 The proposed model of the seasonal and level of intake effects on the digestibility of feed 
in deer based on the current work. 

Effect of level of intake on digestibility 

It is generally accepted for most domestic livestock that increases in DM intake are at the expense of 

digestibility. The rationale for this being that the rate of passage of digesta through the gut is known 

to increase as the level of feed intake increases (Grovum and Williams, 1977; Warner, 1981), 

reducing the time for microbial digestion and resulting in a lower digestibility. Consistent with this 

hypothesis is the observation that mean time for which feed particles are retained in the rumen 

(MRT) and are exposed to microbial degradation is well correlated with digestibility of a particular 

feed offered to deer (Kay and Goodall, 1976). Although there is some evidence in support of an 

inverse relationship between intake and digestibility (for example Raymond et al., 1959; Raymond et 

al., 1955 and Faichney, 1986) there are a number of studies which provide evidence to the contrary. 

For instance, digestibility decreased when feed intake was reduced in a study involving cattle 

(Campling et al., 1963) and there was no consistent effect of reducing intake of sheep on digestibility 

(Blaxter et al., 1956). ill addition, despite a large increase in the MRT associated with reductions in 

intake, both sheep and cattle exhibited only a slight increase in digestibility (Campling et al., 1961; 

Grovum and Williams, 1977). More recently lason et al., (1995) reported than in three breeds of 

sheep digestibility of timothy hay decreased by 4.2 percentage units as ad lib. intake decreased 

between spring and winter. Work with deer has predominantly involved ad lib. feeding and the effect 

of seasonal changes in ad lib. intake. The research reported here is unique in that it investigates 

digestibility in winter and spring over a range of DM intakes for deer. Freudenberger et al. (1994) 
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restricted deer in summer to an intake equivalent to winter ad lib. intake and reported digestibility of 

chaffed lucerne hay was lower for deer on restricted intake compared with those allowed feed ad lib. 

The data of Freudenberger et al. (1994) can be incorporated in the model proposed here, where 

digestibility decreases when intake is restricted (Figure 6.5). This supports a positive relationship 

between intake and digestibility but would contradict the finding that FOR was lower in spring 

compared with winter. 
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Figure 6.5 The digestibility data of Freudenberger et al. (1994) superimposed on the proposed model 
of digestibility and intake. 

It is possible that the positive relationship between intake and digestibility recorded in the present 

study was an artefact resulting from some systematic error. Errors in digestibility experiments can 

result from poor measurement of faecal output or feed intake. To underestimate digestibility at low 

intake, faecal production would need to be overestimated or feed intake underestimated. 

Inclusion of non-faecal material in the faecal DM was unlikely in this work. However, pelage 

(especially when deer moulted in the spring), dirt and bedding from other pens were present to some 

degree in all faecal collections so the sensitivity of the relationship to inclusion of such foreign 

material needed to be tested. This can be demonstrated in Figure 6.5 which shows that had there been 

no effect of intake on digestibility (regression coefficient = 0), faecal output would have to include in 

excess of 160 g DM/collection of non-faecal material. At the lowest feed intake, this would represent 

around 40% of the measured faecal output. Even more non-faecal material would have to have been 

included if the slope was negative as traditionally shown. While some contamination may have 

occurred in the present study, 10 g DMlcollection is a conservative estimate, and this would have had 

little impact on the final relationship (see Figure 6.6). 
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Figure 6.6. The effect on the relationship between apparent DM digestibility and intake (combined 
group spring data) of including various absolute amounts of non- faecal material infaecal 
collections or consumption of non-feed dry matter. Extra consumption assumed an apparent 
digestibility of 25 %. 

Recording a lower DM intake than was actually achieved would also have decreased digestibility. 

Deer did not have the opportunity to increase intake of the pelleted ration but they may have been 

able to increase DM intake through consumption of bedding material, wood fibres from pen walls or 

pelage. 

Consumption of bedding material is possible but unlikely. Deer in Group I were placed on wire mesh 

false floors during the faecal collection stage and therefore had no access to the wood shavings. Even 

consumption of bedding immediately prior to faecal collection is unlikely because shavings became 

quickly soiled and would have presumably been unpalatable to deer. Deer in Group 2, while having 

access to bedding over the collection period, would have also encountered rapid soiling of bedding. 

While there is evidence that deer from both groups consumed wood from pen walls and their own 

pelage, the quantities are likely to have been in the order of 30 g DM/day or less. Much larger 

quantities (100 - 200 g DM/day) are required to have negated the decrease in digestibility as intake 

declined (Figure 6.6). 

Having established the positive effect of intake on apparent DM digestibility is unlikely to have been 

an artefact from imperfect faecal collection technique or unaccounted intake, the work of Owens and 

Goetsch (1986) may provide an alternative explanation. These authors reported microbial efficiency 

was positively correlated with the dilution rate of culture medium. The positive correlation resulted 
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from the decrease in the relative cost of maintenance to microbes where dilution rate of the medium 

was high. Extrapolated to a rumen environment, this would suggest a higher passage rate of the liquid 

phase of rumen contents (a possible consequence of a greater DM intake) would facilitate a decrease 

in rumen residence time of microbes and lead to increased efficiency. However, although it has been 

hypothesised that fluid passage rates may increase with intake, others (las on et ai., 1995) have failed 

to measure significant differences in fluid passage rate between seasonally induced differences in 

intake. 

An alternative explanation for the positive relationships between intake and digestibility reported 

here may be an increase in non-rumen digestion such as caecal and large intestinal digestion. A shift 

to increased hind-gut digestion has been suggested where intake increased from winter to summer 

(Grovum and Williams, 1977). 

It is possible also that the effect may have been an artefact of the highly processed pelleted diet. 

although Freudenberger et. ai., (1994) achieved a similar result with lucerne hay and chaff. There is a 

need in the future to establish the existence of such an effect on other feeds, especially fresh forages. 

Although recent work has focused on the digestion of fresh herbages such as chicory and perennial 

ryegrass by deer (Hoskinet ai., 1995; Kusmartono et ai., 1997), these have been at a single level of 

intake. 

The findings from the present study require validation in further work but have important 

implications for energy budgets of weaner deer. Because of the size of the effect (an increase of 9 -15 

percentage units as intake increases from MEm to ad lib.) estimates of DDM intake based on DM 

intake are likely to lead to under feeding of restricted animals. Deer in a feed limited environment 

would not only be disadvantaged by a restricted DM intake but also by a reduced MID as a result of 

the lower digestibility. Alternatively, an increase in feed availability not only increases DMI but 

increases MEl proportionately more through the intake effect on digestibility. 

6.4 Conclusion 

Deer in this study exhibited an intake-independent decrease in apparent in vivo DM digestibility of a 

pelleted feed from winter to spring by between 5 and 11 percentage units, presumably by increasing 

rumen fill and FOR. There was a positive relationship between intake and digestibility independent of 

season which could not be explained by potential errors in total faecal collection or unaccounted 

intake. This positive relationship between intake and digestibility is contrary to generally accepted 

principles, although the higher winter digestibility compared with spring at a common intake is 

consistent with current models. 

It is not clear from these results whether the positive relationship between intake and digestibility is 

experimentally induced, or whether the same relationship holds for deer at pasture. Although this 
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effect has been shown in two different groups of animals in two different years, further work is 

needed to confirm this finding and begin to understand the mechanism behind the effect. 
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However, if the positive relationship between digestibility and intake is a real effect, the 

consequences of limiting access of deer to feed are two fold. Not only will this restrict DM intake, 

but will limit DDM intake to a greater extent. The confirmation of this effect for deer at pasture has 

major implications for feed and energy budgets. 
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Chapter 7 

General Discussion 
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The aim of the experiments reported in this thesis was to quantify any differences in liveweight gain 

of red and hybrid deer in a grazing environment and further to identify mechanisms which contribute 

to the greater rate of liveweight gain of hybrids compared with red deer. A comparison of genotypes 

was made in winter and spring which allowed for seasonal comparisons of the observations. 

Genotype 

Initially, a grazing study (stage I) was established to determine the live weight gain response of both 

genotypes to pasture allocation. This study identified that there was little effect of pasture allowance 

on liveweight gain during winter but large effects in spring. The response in liveweight gain to 

increa!!ing allowance was larger for hybrids compared with red deer in spring but not during winter 

and summer. This study was the first to report a pasture allowance - liveweight gain relationship for 

deer rotationally grazed in winter, spring and summer for two different genotypes. However, the 

utility of this information was limited by the specific pasture high - pasture allowance combinations 

used and the lack of replication. It was unclear from this study whether the genotype difference in 

liveweight gain was a result of different feed intake at a common pasture allowance or a result of 

possible differences in various components of energy metabolism. 

The implication for producers from this first study is that during spring (mid August - December), a 

pasture allowance between 4 and 10 kg DM/hIday is desirable, depending on genotype and 

productivity targets. There is little advantage in increasing pasture allowance over 4 kg DM/h/day for 

red deer as it is likely ad lib. intake is achieved at this pasture allowance. Higher allowances are 

required for hybrid deer for them to achieve ad lib. intake and exhibit their greater potential for 

growth. 

In a subsequent indoor experiment (Chapter 4a) deer were offered a pelleted concentrate diet ad lib. 

(as the largest difference between genotypes occurred at the highest pasture allowances in the 

previous experiment), to determine ad lib. intake and liveweight gain of each genotype. This study 

concluded that while the relative intake of red and hybrid deer was similar, both absolute and relative 

liveweight gain was greater for hybrids in spring compared with red deer. These results suggested a 

greater feed intake could not explain all the greater liveweight gain of hybrids compared with red deer 

so the study moved to more detailed energy balance experiments (stage ITa). 
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In the experiment reported in Chapter 4b, red and hybrid weaner stags were fed different quantities of 

a pelleted concentrate diet to estimate the ME requirement for maintenance. A higher (30%) ME 

requirement for zero liveweight gain was recorded for hybrid deer compared with red deer in both 

winter and spring. Literature values of MEm differ between red deer and elk, but this study suggests 

that 25% elk genes in a hybrid is enough to elevate MEro above that of red deer in an indoor 

environment. 

In a further study involving 28 individually penned deer, liveweight gain, body weight gain and gain 

of adipose, lean and bone tissue (through CT scanning) were recorded. This study was an energy 

balance study involving repeated measurements on the same deer, rather than a subset of a common 

group of animals as in traditional comparative slaughter - type experiments. It also involved deer on a 

wide range of feeding levels during both winter and spring where previously only ad lib. and a single 

restricted intake had been used (for example Suttie and Hamilton, 1983). 

There was a trend in this study, for red deer to deposit a greater amount of adipose in spring and less 

in winter than their hybrid counterparts although the difference did not reach significance. 

Body composition data from this experiment provided input for an energy balance study (Chapter 5b). 

This showed that red and hybrid deer did not differ in their response in either energy retention or 

whole body weight gain to changes in ME intake in either winter or spring. This was despite 

differences in liveweight gain between genotypes. 

If red deer deposited more adipose and less lean in weight gain (as suggested above) and therefore had 

a higher energy value of gain, then on this basis liveweight gain would be lower at the same ME 

intake (as observed) given similar kf and kp values. However, in neither winter (Figure 5.15) nor 

spring (Figure 5.16), was there a difference between genotypes in the energy value of gain and no 

difference in kg. This suggests there should have been no difference in the energy required per unit 

liveweight gain between genotypes, yet at high intake, hybrids gained liveweight faster than red deer. 

Since there is little evidence for differences in the composition of gain body gain between genotypes, 

apparent changes in gut weight and gut content weight are likely to reconcile the differences between 

genotypes in liveweight gain. This illustrates a weakness of using liveweight gain as a measure of 

animal performance. However, further work is required to confirm such large changes in gut fill are 

real and that genotypes differ in gut fill across a range of allowances. 
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Season 

The study of body composition changes showed significant seasonal differences in the relative growth 

of tissues with bone growing relatively faster and adipose relatively slower in winter compared with 

spring. There is evidence from previous work with sheep (Forbes et al. 1979; 1981) that long day 

length stimulates the growth of non-fat tissues at the expense of fat. This study also showed that on a 

restricted intake, simultaneous fat catabolism and lean tissue gain took place, especially in spring. 

Although this study set out to identify and quantify differences between genotypes, seasonal 

differences were often more prominent than the genotype effect. 

There were no seasonal differences in liveweight gain at a common intake in either of the indoor 

experiments reported (Chapter 4 and Chapter 5b). This may have been confounded by changes in the 

weight of gut and gut contents since the ME requirement for maintenance of whole body weight was 

greater in spring than winter and the energy cost of whole body weight gain was greater in winter than 

in sprmg. The implication of this is that while deer on restricted diets may increase whole body weight 

faster in winter than in spring, this may not be totally reflected in terms of liveweight gain. 

In summary, this thesis has be able to show differences between red deer and hybrids and between 

seasons not previously reported. These are presented in general terms in Table 7.1. 

Table 7.1 Differences between red and hybrid deer based on data in this thesis. 

Difference between 
Winter ad lib intake (relative) 

(absolute) 
Spring ad lib intake (relative) 

(absolute) 
Max. winter liveweight gain 
Max. spring liveweight gain 
Ad lib. intake 
Max live weight gain 

Genotype 
No difference 
Greater for hybrids 
Greater for hybrids 
Greater for hybrids 
Possibly greater for red deer 
Greater for hybrids 

MEm (live weight) Greater for hybrids in spring 
MEm (energy) No difference 
Energy cost of liveweight gain (MJ/kg) Reds maybe higher in spring 
Energy cost of whole body gain (MJ/kg) No difference 
Energy cost of energy gain No difference 
kp & kf No difference* 
Digestibility No difference 
* no evidence of difference but based on limited data. 

Season 

Greater in spring 
Greater in spring 

No difference 
Greater in spring 
No difference 
Greater in winter 
Greater for winter 
No difference* 
Higher in winter 

,"' -' 
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An attempt to apportion the genotype differences in liveweight gain in spring to measured differences 

in composition of gain and ad lib intake is made in Figure 7.1. Liveweight gain of red and hybrid deer 

was calculated using MEm (Chapter 4), liveweight (Chapter 5), ad lib. intake (Chapter 4) and the cost 

of livewight gain (Chapter 4) for each genotype. The calculation is that used in Chapter 4. Results of 

this are outlined in Figure 7.1. 
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Figure 7.1 The relative contribution of between - genotype differences in ME"" liveweight, voluntary 
feed intake and energy cost of gain to the expected liveweight gain of hybrids relative to red deer. 

The difference between genotypes in liveweight gain was explained in this model by hybrids having a 

higher requirement for maintenance but a greater liveweight, a greater intake and a lower cost of 

liveweight gain compared with red deer. The lower cost of liveweight gain, although not significantly 

different, explained a large amount of the difference between genotypes. The predicted liveweight 

gain of red deer (290 g/day) and hybrids (394 g/day) was comparable to those observed in Chapter 5b 

(see Table 5.10) of 340 g/day and 438 g/day for red and hybrid deer, respectively. The differences 

between genotypes in winter were small and consequently a similar model has not been presented for 

the winter period. 

The discrepancy between liveweight gain and whole body weight gain (possibly caused by apparent 

changes in gut fill) is a limitation to the interpretation of this work and leads to two different models 

of weight gain in young deer. The same model as used for liveweight gain above was applied for 

whole body weight gain (Figure 7.2). Because there was no difference between genotypes in 

maintenance requirement for zero whole body weight gain or in the energy cost of whole body weight 

gain, genotype differences were explained in this model by differences in liveweight and intake only. 
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Figure 7.2 The relative contribution of between - genotype differences in liveweight and voluntary 
feed intake to the expected whole body weight gain of hybrids relative to red deer. 
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The model was also used to illustrate seasonal differences in whole body weight gain when genotypes 

were combined (Figure 7.3). 
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Figure 7.3 The relative contribution of between - season differences in MEm, liveweight, voluntary 
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Relative to winter, deer gained whole body weight faster in spring due to a greater intake and a lower 

cost of whole body weight gain as a result of a leaner composition of whole body weight gain. 

Low winter live weight gain of weaners has been regarded as a limitation in early venison production. 

Winter liveweight gain on pasture is typically between 50 and 100 g/day and significantly increasing 

this would advance slaughter date. Results from this thesis suggest that while winter liveweight gain 

of 200 g/day may theoretically be possible (depending on liveweight and ME of the diet) they require 

much higher intake than would be required for the same liveweight gain in spring. For example a 60 

kg red deer gaining liveweight at 50 g/day would consume about 900 g DM/day. Increasing winter 

live weight gain to 150 g/day for the same animal would require an additional 425g DM/day. 

However, this extra DM intake consumed in the spring (by a 60 kg red deer) would increase 

liveweight gain from 50 g/day to about 210 g/day. 

It is recommended in light of findings from this research that during winter (June - mid August) 

weaners be restricted to small pasture allowances. In addition to the natural seasonal depression in 

intake, live weight gain for both genotypes is limited during winter by the tendency to increase the 

energy value of the gain and consequently reduce liveweight gain per unit intake. On the other hand, 

low liveweight gain may result in undesirable fat loss. To maintain a positive energy balance in 

winter, either genotype needed to increase liveweight at a rate of 40 g/day. The 50-100 g/day as 

previously proposed (Fennessy and Milligan, 1987) appears to be an appropriate compromise between 

zero energy balance and the low utilisation of pastures necessary to achieve high intakes. Given the 

rapid loss of fat in early spring recorded in this experiment, body condition of weaners at this time 

(which inevitably reflects winter nutrition) may have a significant effect on early spring growth. This 

hypothesis requires further investigation. 

Differences exist between red deer and hybrids in intake and liveweight gain and these have 

implications for producers. However, there are much larger seasonal and probably maturity-related 

differences in energy cost of gain, energy required for maintenance and relative growth of adipose, 

lean and bone tissue exhibited by both genotypes. These differences can be exploited in deer 

production systems. 



Table At.t. Correlation (Pearson's correlation coefficient) between all variables during winter. Figures in bold represent a significant 
correlation. Description of terms is presented on page 144. 

Allow 
lIAlI -0.970 lIAll 
Per-H 0.990 ·0.951 Per-H 
1/P-H -0.946 0.989 -0.943 1/P-H 
Geno 0.000 0.000 0.000 0.000 Geno 
Par 0.256 -0.255 0.256 -0.255 0.709 Par 
Sou 0.092 -0.117 0.079 -0.112 -0.044 -0.064 Sou 
LWG 0.034 -0.041 0.069 -0.079 0.030 -0.057 0.149 LWG 
LWG V.f) 0.032 -0.039 0.065 -0.076 -0.043 -0.107 0.153 0.993 LWGv.f) 

Lwt 0.225 -0.220 0.209 -0.201 0.759 0.629 0.050 -0.198 -0.288 Lwt 
PreH 0.958 -0.992 0.951 -0.996 0.018 0.268 0.108 0.065 0.062 0.215; PreH 
IlPreH -0.818 0.923 -0.815 0.959 -0.020 -0.240 -0.119 -0.105 -0.100 -0.178. -0.945 IlPreH 
PostH 0.971 -0.909 0.989 -0.903 0.061 0.301 0.061 0.068 0.061 0.242 0.919 . -0.761 PostH 
PreM 0.892 -0.942 0.911 -0.979 0.042 0.276 0.095 0.123 0.116 0.196 0.974 -0.966 0.886 PreM 
IlPreM -0.785 0.889 -0.796 0.941 -0.047 -0.251 -0.108 -0.134 -0.127 -0.178 -0.925 0.993 -0.750 -0.970 IlPreM 
PostM 0.991 -0.982 0.988 -0.973 0.004 0.265 0.086 0.051 0.048 0.219 0.982 -0.874 0.966 0.938 -0.850 PostM 
Avail. 0.998 -0.968 0.995 -0.950 0.D11 0.265 0.088 0.046 0.043 0.224 0.963 -0.827 0.981 0.909 -0.800 0.994 
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Table A1.2. Correlation (Pearson's correlation coefficient) between all variables during spring. Figures in bold represent a significant 
correlation. Description of terms is presented on page 144. 

LWG 
LWGU,75 0.983 LwaU,D 

All 0.473 0.471 All 
ItA -0.587 -0.596 -0.915 1/A 
P-H 0.534 0.536 0.983 -0.969 P-H 
IIp-h -0.604 -0.619 -0.800 0.973 -0.888 1/p-h 
Geno 0.361 0.256 0.000 0.000 0.000 0.000 Geno 
Par 0.228 0.158 -0.153 0.179 -0.168 0.179 0.657 Par 
Sou 0.054 0.029 0.045 -0.062 0.056 -0.065 0.019 0.026 Sou 
Lwt 0.509 0.379 0.194 -0.266 0.227 -0.288 0.727 0.492 0.124 Lwt 
PreH 0.610 0.618 0.830 -0.983 0.914 -0.994 0.034 -0.161 0.072 0.304 PreH 
1IPH -0.583 -0.601 -0.670 0.907 -0.777 0.978 -0.006 0.170 -0.066 -0.298 -0.956 1IPH 
PostH 0.570 0.572 0.909 -0.989 0.967 -0.956 0.011 -0.184 0.074 0.258 0.979 -0.882 PostH 
PreM 0.602 0.615 0.777 -0.965 0.873 -0.998 0.014 -0.172 0.074 0.298 0.995 -0.980 0.954 PreM 
1IPM -0.576 -0.594 -0.672 0.909 -0.780 0.979 0.005 0.180 -0.069 -0.289 -0.958 1.000 -0.885 -0.981 1IPM 
PostM 0.564 0.567 0.918 -0.983 0.973 -0.940 -0.003 -0.189 0.074 0.243 0.967 -0.854 0.997 0.938 -0.859 
Avail 0.500 0.497 0.997 -0.938 0.993 -0.835 0.012 -0.152 0.050 0.215 0.866 -0.712 0.936 0.816 -0.714 
GPM 0.602 0.613 0.763 -0.950 0.867 -0.977 0.013 -0.173 0.081 0.287 0.987 -0.946 0.957 0.986 -0.949 
Grass -0.172 -0.181 -0.441 0.420 -0.390 0.414 0.000 0.059 0.020 -0.128 -0.355 0.446 -0.322 -0.369 0.438 
Clover -0.008 -0.001 0.197 -0.133 0.118 -0.128 -0.000 -0.006 -0.042 0.049 0.062 -0.178 0.031 0.081 -0.169 
Dead -0.353 -0.367 -0.624 0.678 -0.618 0.688 -0.000 0.112 -0.008 -0.207 -0.637 0.710 -0.593 -0.652 0.704 
Stem -0.455 -0.483 -0.209 0.579 -0.362 0.750 0.000 0.125 -0.052 -0.258 -0.699 0.866 -0.546 -0.766 0.863 

I Repro 0.345 0.364 0.474 -0.609 0.498 -0.670 -0.000 -0.1 Qi_ ~Q.Q9J_ 0.216 0.605 -0.737 0.520 0.642 -0.730 

Avail 
GPM 0.806 GPM 
Grass -0.420 -0.216 Grass 
Clover 0.164 -0.080 0.955 Clover 
Dead -0.621 -0.522 0.945 -0.808 Dead 
Stem -0.265 -0.731 0.288 -0.100 0.514 Stem 
~epro 0.482 0.508 -0.914 0.789 -0.974 -0.650 

-

PostM 
0.943 
0.950 
-0.275 
-0.017 
-0.548 
-0.505 
0.466 

-+:>. 
N 



Table Al.3. Correlation (Pearson's correlation coefficient) between all variables during summer. Figures in bold represent a significant 
correlation. Description of terms is presented on page144. 

LWG 
LWGu.1> 0.941 LWGU

'" 

All 0.543 0.545 All 
l/A -0.589 -0.616 -0.947 l/A 
P-H 0.580 0.554 0.984 -0.943 P-H 
l/p-h -0.608 -0.612 -0.896 0.983 -0.917 l/p-h 
Geno 0.104 -0.154 0.000 0.000 0.150 -0.134 Geno 
Par 0.067 -0.099 0.060 -0.079 0.175 -0.180 0.680 Par 
Lwt 0.164 -0.061 0.202 -0.246 0.310 -0.342 0.684 0.593 Lwt 
PreH 0.575 0.616 0.872 -0.982 0.877 -0.987 0.006 0.090 0.260 PreH 
1IPH -0.605 -0.658 -0.736 0.911 -0.750 0.942 0.004 -0.105 -0.264 -0.963 1IPH 
PostH 0.539 0.564 0.951 -0.991 0.950 -0.970 0.020 0.077 0.249 0.971 -0.873 PostH 
PreM 0.505 0.555 0.822 -0.953 0.828 -0.962 0.007 0.073 0.253 0.988 -0.948 0.956 PreM 
1IPM -0.541 -0.592 -0.801 0.949 -0.808 0.965 -0.000 -0.079 -0.259 -0.990 0.976 -0.938 -0.994 1IPM 
PostM 0.420 0.458 0.876 -0.940 0.875 -0.923 0.019 0.048 0.233 0.942 -0.834 0.972 0.963 ~0.932 PostM 
Avail 0.550 0.561 0.995 -0.973 0.982 -0.931 0.003 0.065 0.217 0.915 . -0.792 0.977 0.874 -0.855 0.914 
GPM 0.385 0.456 0.574 -0.792 0.592 -0.835 0.013 0.069 0.240 0.887 -0.908 0.796 0.938 -0.940 0.858 
Grass -0.713 -0.726 -0.832 0.895 -0.835 0.898 0.000 -0.129 -0.246 -0.875 . 0.888 -0.832 -0.793 0.830 -0.694 
Clover -0.474 -0.511 -0.908 0.970 -0.903 0.951 -0.000 -0.047 -0.231 -0.967 0.868 -0.990 -0.973 0.950 -0.994 
Dead 0.374 0.447 0.559 -0.781 0.576 -0.823 0.000 0.052 0.233 0.878 -0.901 0.785 0.931 -0.934 0.851 
Stem -0.545 -0.606 -0.607 0.829 -0.627 0.878 0.000 -0.100 -0.261 -0.913 0.983 -0.791 -0.917 0.950 -0.779 
R~ 0.486 0.536 0.835 -0.954 0.838 -0.957 0.000 0.059 0.246 0.983 -0.929 0.963 0.998 -0.988 0.977 

GPM GPM 
Grass -0.622 Grass 
Clover -0.850 0.764 Clover 
Dead 0.999 -0.607 -0.842 Dead 
Stem -0.942 0.803 0.805 -0.939 Stem I 

Repro 0.928 -0.774 -0.983 0.922 -0.895 I 

c· 
;;. " 

" 

Avail 
0.652 
-0.846 
-0.943 
0.638 
-0.676 
0.885 
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Allowance 
1/All = 
Per-H = 
1/per - head = 
Geno= 
Sou = 
Avail = 
Par = 
LWG= 
LWGO.75 

Liveweight = 
PreH= 
IlPreH = 
PostH = 
PreM= 
IlPreM = 
PostM = 
GPM= 

Grass = 
Clover = 
Dead = 
Stem = 
Repro = 

Key 

allowance on a metabolic liveweight basis 
reciprocal of allowance on a metabolic liveweight basis 
allowance on a per head basis 
reciprocal of allowance on a per head basis 
genotype, red or hybrid 
original source of animals 

Availability (pre-grazing height x allowance per head) 
genotype determined by blood typing (expressed as the proportion of elk genes) 
liveweight gain (glday) 
liveweight gain (gIW o.75/day) 
initialliveweight (kg) for each 

pre-grazing pasture height 
reciprocal of pre grazing pasture height 

post-grazing pasture height 
pre-grazing pasture mass 
reciprocal Of pre-grazing pasture mass 
post-grazing pasture mass 
green pasture mass (pre-grazing pasture mass x (l-(dead material + reproductive 
growth %» _ 
percentage of grass leaf in the sward 
percentage of clover in the sward 
percentage of dead material in the sward 
percentage of pseudo-stem in pasture 
percentage of reproductive growth 
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Appendix II 

Average LWG (glday) (1 March to 1 Nov) 

100 125 150 175 200 225 

percentage of animals reaching 92 kg 
· ...... .. .............. . 

40 .·:· :·0:·: ·:·:·:·:0· :· :·: ·:· : O· :.:.: . :·:·1:·: 9 44 · .... ..... ............. . 

45 .::::: 0:::::::::::0:::: :::::: 0:::::::::::,:: : 38 82 · .. . ....... .. .. . ....... . · .............. . .... . .. . · ...................... . 

50 ::::: 0:::::::::::0: ::::::: :: 5:::::::::: :33: 78 98 
· ..... . .. . ... .. ... ... .. . 
· . . ....... .. ........... . · ........ . . ........... . 

55 :>: O>:::::>~ :: >:::~:::::::::t3: 97 100 · ...... .. .. ........... . · ....... ... ............ . 

60 3 23 68 9S 100 100 

65 19 63 94 100 100 100 

70 57 92 100 100 100 100 

Figure A2.1 The percentage of deer in a group reaching 92 kg liveweight by 1 November based on a 
range of March weaning weights and rates of liveweight gain. Stippled and shaded areas represent 
likely scenarios for red and hybrid deer, respectively. 

Average LWG (glday) (1 March to 1 Oct) 

100 125 150 175 200 225 

percenta2e of animals reachin2 92 k2 

40 : : : : : : 0: : : : : : : : : : :0: : : : : : : : : : 0: : 0 0 5 · .............. ... 

45 · . '0 ' .. . 'il ' . ... O' . <.>. :-:-:-:-:' . . -:-:':-:-: -:. 0 5 29 

50 :::::0:::::::::: :0: ::::: ::::0::: 6 29 69 · .... .. ... .. ..... 

55 :::::0:: :::::::: :0:: ... . ,. 30 70 94 

60 0 6 30 70 94 100 

65 6 31 71 94 100 100 

70 31 71 9S 100 100 100 

Figure A2.2 The percentage of deer in a group reaching 92 kg liveweight by 1 October based on a 
range of March weaning weights and rates of liveweight gain. Stippled and shaded area represents 
likely scenarios for red and hybrid deer respectively. 



Appendix III 

Table A3.1. Weekly mean daily intake (g DMlhd/day) of group-fed deer in winter and spring for 
deer in Chapter 4b. 

Week 1 2 3 4 5 6 7 8 9 

Winter 
Red 1469 1703 1398 1626 1677 1667 1797 1681 
Hyb 1679 1715 1390 1705 1912 1772 1885 1878 

Spring 
Red 2554 2080 2023 2533 2642 2550 2567 2486 2434 
Hyb 2736 2185 2125 2728 2884 2886 2745 3018 2910 
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Mean 
1627 
1742 

2415 
2653 
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Appendix IV 

Establishing appropriate grey scale ranges for image analysis. 

A4.0 Introduction 

Prior to the analysis of CT images, the electronic dissection software (Autocat, NJopson, pers com) 

was calibrated to ensure correct identification of adipose, lean and bone tissue in CT images. 

In previous studies using this equipment, (Nsoso, 1995) calibration of dissection software has been 

achieved by identifying areas in an image which contain exclusively adipose, lean or bone tissue. The 

adipose sample areas for example, were then submitted to Autocat and the grey scale range for 

adipose tissue adjusted so that all pixels in adipose-only-images were recognised as adipose tissue. 

The same calibration was applied for lean and bone. 

However, as outlined in this appendix, although areas of homogenous tissue do have discrete grey 

scale distributions, analysis of whole images revealed overlapping adipose and lean tissue grey scale 

distributions, raising concerns about the appropriate grey scale truncation point, especially between 

adipose and lean tissue. In addition, previous calibrations have been for sheep images rather than deer 

and therefore image analysis software required re-calibration. 

A4.1 Materials and Methods 

A4.1.1 Analysis of grey scale distribution 

Images from an ad lib. fed animal were used in the calibration of Autocat as they were the only 

images that contained significant areas of adipose tissue. (Figure A4.4). Photomagic (Micrografx Inc) 

was used to "dissect out" areas of adipose, lean and bone from sites in the shoulder, thorax and rump. 

These were repeatedly submitted to Autocat increasing the grey scale range "dissected" by 5 grey 

scale value ranges with each submission to form a grey scale distribution of pixels. A distribution of 

grey scales was also generated for the three entire images. 

A4.1.2 Spatial distribution 

The spatial distribution of pixels in various ranges of grey scale was studied using Catwoman 

software (NJopson, pers com.). Catwoman highlighted pixels in a specified grey scale range. Only 

the rump area which contained significant areas of adipose lean and bone were used in this study. 

A4.2 Results & discussion 

The total area (mm2
) of tissue in each grey scale of dissected adipose lean and bone from 3 separate 

sites (shoulder, thorax and rump) is given in Figure A4.1. The distributions of both adipose and lean 
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appear to be normally distributed and discrete. The mean (± SD) grey scale for adipose, lean and 

bone was 87.1 ± 5.2,169 ± 5.7 and 254 ± 0.0 respectively. The wide range in density of bone was 

collapsed into a singe grey scale (254) by Bitman (NJopson, pers com.). There was no difference in 

either the mean or standard deviation of distributions between red deer and hybrids. 

700 

600 

cr 500 

I 400 
co 300 
! 
<C 200 

100 

0 
T"" -.::t ,.... 0 C") co 0) C\J 

T"" N -.::t LO co ,.... 0) 

Grey Scale 

Figure A4.1. The grey scale distribution of homogenous areas of adipose lean and bone from the 
rump of a ad. lib. fed red deer and the dissection range employed by Nsoso (1995). 

Based on the grey scale distribution of homogeneous tissue the Autocat range employed by N soso, 

(1995) (1-130, 131-250 and 251-255 for adipose, lean and bone, respectively) would have correctly 

identified all tissues in this example. They also met Nsoso's (1995) criteria that the range between 

grey scale truncation points be greater than 3 times the standard deviation from the mean for each 

distribution. 

However when the grey scale distribution of a whole animal image was generated the individual 

tissue distributions were much less discrete (Figure A4.2). 

6000 ~------------------------------------------~ 

5000 

N- 4000 
E 
.5. 3000 
co 
! 

<C 2000 

1000 

o~----------~ .. ~ .. 
Grey Scale 

Figure A4.2 Grey scale distribution of 3 images (shoulder, thorax and rump) of a deer in good 
condition 

While it is evident that the three distributions seen in Figure A4.1 still exist, there is area in the whole 

image which occurs outside the grey scales of homogenous tissue. Identifying what these extra pixels 
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represented wa considered nece sary before a deci ion to include or exclude these from analysis or 

include as adipose or lean was made. To aid in identification the spatial distribution of the extra 

pixels within an image was generated using Catwoman software. 

Figure A4.3 hows the spatial distribution of pixels in the grey scale range 1-70, a grey cale range 

not containing pixels in homogeneous tissue. The pixels in this range largely occurred around the 

outside of the image, were a small percentage (2%) of the total number of pixels and probably 

occurred due to a partial voluming effect. This occurred when more than one tissue was found in a 

single pixel, such as the skin air interface. The grey scale assigned to that pixel would have reflected 

the average den ity of each tissue and the relative amounts of each tissue within the pixel. Pixels 

which contained mostly air (grey scale 0) but a little adipo e (grey scale about 100) had an average 

grey scale close to 0 simply because of the greater proportion of air in the pixel. Air-tissue pixels with 

increasing amounts of tissue would have an increa ingly greater grey cale value. 

Figure A4.3. A rump CT image showing the distribution of pixels corresponding to a grey scale 
between 1-70 for a weLL conditioned deer. Highlighted pixels represent 2% of total pixels and 
probably repre enl a partial voluming effect. 



Consequently, those pixels which contain greater than half their area as air hould be left out. The 

tissue area lost by this action would be compensated for by the air included in those pixels with 

greater than half their area a tissue. 
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It is likely that the partial voluming effect takes place between the air and kin. Because the image is 

placed at a random position within the pixel matrix a random distribution of pixel air tissue ratio i 

expected and hence similar numbers of pixels in each greyscale. Assuming that pixels containing 

100% skin ti sue rarely have a grey cale value of less than 70 (Figure A4.1) on average all pixels 

with a grey scale value of greater than 35 should contain more than half their area of tissue. The 

lower value therefore for adipose should be 35. 

Although adipose and lean distributions do not appear to overlap (FigureA4.]), partial voluming at 

the adipose-lean interface creates pixels with a grey scale value in thi range. Applying the same 

rationale for the adipose-lean interface as for skin-air interface a grey scale value of less than 120 

(intermediate of the upper adipose value 100 and the lower lean value 140 from Figure A4.1) will 

contain more adipose than lean and therefore should be considered as a adipo e pixel while those 

greater than] 20 will contain more lean than adipose and therefore hould be considered as lean. 

Therefore pixel in a grey scale between 35 and 120 (Figure A4.l) were considered to represent 

adipose tissue. 

Figure A4.4 CT Image showing distribution of pixels in the greyscale range 35-120 corresponding 
with adipose. Highlighted pixels are 11% of total pixels 
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The truncation point between lean and bone was determined in similar fashion. Lean had an upper 

range of 190 grey scale (Figure A4.1) and the mid-point between lean and bone (grey scale 256) was 

223, which was adopted as the truncation point between lean and bone. Therefore, lean was defined 

by pixels with a grey scale between 121 and 223 (Figure A3.5) and bone between 224 and 256 

(Figure A4.6). 

The number of images on which this calibration was based is small (n = 3) and a larger sample size 

may have revealed a slightly different distribution. ill light of this, a sensitivity analysis was 

undertaken to demonstrate how sensitive the final analysis was to small changes in grey scale 

truncation values. 

Table A4.1. Total weight (g) and percentage of whole animal of dissected adipose and lean tissue at 
various grey scale ranges. 

Adipose Lean 

Grey scale Wt(g) % of animal Grey scale Wt (g) % of animal 

1-120 3922 8.7 120-223 35322 80.2 

1-130 5313 11.8 130-223 33931 77.0 

35-120 3513 7.9 130-233 34165 77.1 

40-120 3458 7.4 

40-125 4180 9.4 

Excluding pixels with more than half their area as air had little effect (1 %) on total adipose dissected 

(1-120 vs 35-120). A 5 grey scale shift in the lower value 40-35 realised a 0.2% change in total 

adipose dissected. However, extending the upper grey scale range for adipose from 120 to 125 

increased total dissectible adipose by 1.7%. Similarly, for lean, reducing the lower grey scale value 

by 10 from 130 to 120 increased total dissectible lean by 2.2 % or 1.39 kg. illcreasing the upper value 

by the same amount had little effect (0.1 %) on total dissectible lean. 

The mass of tissue was relatively insensitive to the lower adipose and upper lean grey scale settings 

because of the low frequency of pixels in these areas (Figure A4.6). However, the truncation point 

between adipose and lean has a relatively large effect on both tissues. 

- .. 
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Figure A4.S CT image with pixels in the lean (121-223) grey scale range. About 75 % of total image 
pixels are highlighted 

Figure A4.6. CT image of pixels at 255 grey scale corresponding to bone. A total of 11 % of pixels 
are highlighted. 
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A4.3 Conclusion 
When whole images were analysed there were no discrete distributions for adipose and lean, rather a 

continuum of grey scales as a result of partial voluming where two different tissues (or air) were 

present in a single pixel. The truncation points within the grey scale range which determined adipose 

lean and bone were determined such that it was the most abundant tissue in each pixel which decided 

to which tissue group it was associated. A sensitivity analysis indicated the final analysis of the 

proportions of adipose lean and bone present in each set of images was generally insensitive to small 

changes in truncation points. 
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