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t 

Acid Coagulation Properties of Milk Powder 

by 

Tracey Anna Feary 

 

Abstract 

 

The relationship between heat treatment classification and the acid coagulation properties of 

reconstituted skim milk powders was investigated. 

Fifteen samples of commercial skim milk powder, acidified with glucono-δ-lactone (GDL), 

were analysed using a Bohlin C-VOR rheometer. Powders varied in stated heat treatment 

classification (based on WPNI) and country of manufacture.  

It was shown that low heat powders (WPNI ≥ 6.0) and powders without heat classification 

coagulated more slowly than medium heat or high heat treated powders. Gel strength (storage 

modulus, G’) of the acidified milks was also influenced by heat treatment classification. Low 

heat and unclassified powders produced weaker gels (40-50 Pa) than medium and high heat 

milk powders (>228 Pa), however low heat powders from Sweden did not follow the same 

trend. 

Using reversed-phase high performance liquid chromatography (RP-HPLC), concentrations of 

major proteins were determined. It was shown that powders with lower levels of native whey 

protein had better coagulation characteristics (faster coagulation times and higher gel 

strengths) than milk powders with higher native whey protein concentration. This correlated 

to increasing heat treatment classification and WPNI. These findings suggest that the heat 

induced modifications of milk proteins enhance coagulation properties, and that low heat milk 

powders are less suitable for acid milk gel applications. 

 

 

Keywords: Skim milk powder, milk proteins, acid coagulation, gelation, rheology, heat 

treatment,  high performance liquid chromatography 
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    Chapter 1 

Introduction 

1.1 Milk and dairy products 

Milk has been a part of the human diet for thousands of years. It consists of a large number of 

substances, including protein, fat, lactose, water and minerals, and is often regarded as a 

complete food as it is capable of sustaining life on its own. 

In a commercial sense, milk has a major advantage over other foods because of its versatility 

and flexibility. Milk can be processed into a vast number of products, many of which can be 

used as ingredients in a wide range of foods, which have both functional and nutritional 

considerations in mind. The financial significance of milk utilisation through the development 

of new and value-added dairy products is well recognised.  

The properties and yield of dairy products are greatly influenced by: 

• the amounts and relative proportions of each of the milk constituents 

• processing conditions 

These two points are of major significance to this thesis and will be discussed shortly. 

1.1.1 Milk powder 

Milk powder is a major dairy commodity made by evaporating milk to dryness. Large scale 

manufacture is accomplished through spray drying; a process in which pasteurised milk is 

concentrated by evaporation, then sprayed into a heated chamber where moisture immediately 

evaporates leaving fine particles of powdered milk solids.  

The production of milk powder from milk facilitates transportation and storage, and prolongs 

shelf-life. Milk powder is more versatile than liquid milk, and can be used in a large number 

of applications. It is used widely as an industrial ingredient in value added products, 

incorporated into foodstuffs such as confectionary, ice cream, bakery goods, infant formulae, 

fortified nutritional blends, convenience foods, and fermented dairy products. 
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1.1.2 Yoghurt 

Yoghurt is a well-known fermented dairy product, popular world over for its textural and 

sensory attributes. Technically speaking, yoghurt is an acidified milk gel.  It is commonly 

produced by adding a starter culture of lactic acid bacteria (Streptococcus thermophilus and 

Lactobacillus delbruekii subspecies bulgaricus) to milk. These bacteria convert the milk sugar 

lactose to lactic acid and acetaldehyde, which are responsible for the distinctive sour taste and 

aroma of yoghurt, respectively. Moreover, the acid produced too, gives rise to the 

characteristic semi-solid gel texture of yoghurt, acting on the milk proteins causing a viscous 

milk gel and prolonging the shelf life of the product. 

1.1.3 Yoghurt powder 

One recent application of milk powder is its use in yoghurt powder. This product is a 

preparation of milk powder and freeze-dried starter culture, sold to consumers for personal 

yoghurt manufacture. The powder is reconstituted with cold water, and incubated between 30 

and 40ºC in a vacuum flask for 8-10 hours, resulting in freshly set yoghurt. 

Customer complaints have been received however, regarding the coagulation ability of 

yoghurt powders for yoghurt making at home. Specifically, concerns have been raised about 

the lack of curd firmness after the recommended incubation time. While it is possible that 

such problems could be linked to the resuscitation and growth ability of the culture, in-depth 

investigations looking at the contribution of the milk powder have not been carried out.  

1.2 Factors affecting acid coagulation 

Milk is made up of many components, with one of the main constituents being protein. As 

stated earlier, the properties and yield of dairy products are influenced to a great extent by the 

amounts and relative proportions of each of the milk constituents. Milk proteins (caseins and 

whey proteins) play an enormous role in the acid gelation process of milk, and for this reason 

will be focussed on throughout this thesis. 

Liquid milk for fermented milk products is generally subjected to a reasonably severe heat 

treatment (e.g. 90ºC for 10 minutes) with a marked effect on the end product. At such 

temperatures, whey proteins denature and aggregate with casein micelles and dissociated 

casein molecules via disulphide bonding. These protein interactions form a highly cross-

linked gel network. A comprehensive description of these phenomena is given in chapter 2. 
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1.3 Objectives of the study 

A large amount of research has been conducted into the heat-induced modifications of milk 

proteins and the effects on gel formation. In spite of this, little has been published on the 

effect of heat treatment received during the manufacture of milk powder in regards to gelling 

ability. 

With the issues outlined above in mind, the objective of this project was therefore to examine 

the effect of processing heat treatments, dry matter, incubation temperature and protein 

profiles on the acid coagulation properties of reconsituted milk powder. 

 

The outline of the report of this project is as follows: 

• Literature review of milk protein chemistry and its significance in relation to the 

functional properties of milk powder and fermented products (Chapter 2)  

• Rheological analysis (coagulation time and curd strength) at different incubation 

temperatures of acid gels made from reconstituted milk powder of different dry matter 

concentrations and processing heat treatments (Chapter 3) 

• Analysis of the individual protein composition (protein profile) of the milk powders 

used in the project (Chapter 4) 

• General discussion and conclusions of the results and implications for future research 

(Chapter 5)  
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    Chapter 2 

Review of the Literature 

 

2.1 Milk and milk proteins 

Milk is a complex and variable mixture of water, lactose, fat, protein, organic acids and 

minerals, as well as a vast number of other substances.  The focus of this project is on the 

protein fraction of milk. Bovine milk contains about 3.5% total protein. Of this, 

approximately 80% are caseins, chemically defined as the milk proteins that precipitate at pH 

4.6, and the other 20% are those that remain in solution; known as whey or serum proteins. 

Neither the casein nor the whey protein fractions are homogeneous in their composition. 

Typical concentrations of the major casein and whey proteins are shown in Table 2.1 

 

  

 
Protein 

Typical concentration 

in milk (g/L) 

    
 Caseins: 

  

25.2 

 

 αs1-casein αs1-CN 10 
 

αs2-casein αs2-CN 2.6 
 β-casein β-CN 9.3 
 κ-casein κ-CN 3.3 
    
 Whey proteins: 

  

5.6 

 

 β-lactoglobulin β-LG 3.2 
 α-lactalbumin α-LA 1.2 
 Serum albumin BSA 0.4 
 Immunoglobulin Ig 0.8 
       

Table 2.1 Typical concentrations of the proteins in milk (Ng-Kwai-Hang, 2002) 
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2.1.1  Caseins 

The first evidence of different components in the casein fraction in milk was provided by 

Mellander in 1939. Using electrophoresis, three different caseins were separated; α-casein, β-

casein and γ-casein, named in order of decreasing migration ability. Waugh & von Hippel 

(1956) divided α-casein into αs-(calcium-sensitive) and ĸ-casein (calcium-insensitive), with 

Annan and Manson (1969) showing further subdivision of αs- casein into αs1- and αs2-casein. 

Groves (1969) showed that γ-casein represented the C-terminal segment of β-casein after 

proteolytic cleavage by plasmin. Consequently, the casein fraction of milk is made up of αs1-, 

αs2-, β- and ĸ-caseins in proportions of approximately 4:1:4:1. 

Due to high proline content, caseins show little tertiary or organised secondary structure (Fox 

& McSweeney, 1998). This accounts for the stability of caseins against heat denaturation as 

there is very little structure to unfold.  The casein peptide chains contain polar and apolar 

regions giving them an amphiphilic structure. This, as well as their proline and phosphate 

content, is the basis for the ability of caseins to form micelles.  Phosphate groups are 

esterified to the caseins via the hydroxyl groups of serine. These phosphoserine residues bind 

calcium, which binds colloidal calcium phosphate (CCP). It is these bonds that contribute to 

the linking of caseins together, and the formation of micelles. Milk has a very high calcium 

concentration, approx. 1200 mg/L, and about half is bound to casein via CCP. The 

concentration of protein and calcium in milk would cause precipitation of  αs1-, αs2- and β-

casein (by binding to their phosphoserine residues), however the ĸ-casein, which is soluble in 

calcium, interacts with and stabilises the other caseins to initiate micelle formation and a 

stable colloidal state (Farrel  et al., 2006). Around 95% of caseins in milk are aggregated in 

micelles, functioning to fluidise the casein molecules and soluble calcium and phosphate 

(Farrel et al., 2006).  

Several theories about the casein micelle structure have been proposed (Fig. 2.1). The sub-

micelle model (Schmidt, 1982) evolved after evidence from electron microscopy and light 

scattering suggested that the casein micelle was an assembly of small sub-units. In this model, 

the casein proteins are said to be hydrophobically aggregated to form the sub-micelle units, 

and these units are linked by CCP to form the micelle. The distribution of ĸ-casein between 

sub-micelles is heterogeneous, and the sub-micelles with high levels of ĸ-casein are located at 

the surface whereas those with low levels are located in the interior. On the surface of the 

micelle, the hydrophilic and negatively charged C-terminal ends of the ĸ-casein protrude out 

and form a hairy layer that prevents micelle-micelle aggregation by steric and electrostatic 

repulsion (Walstra, 1999).  



 

In recent years, new models that do not rely on the formation of sub

proposed (Holt and Horne, 1996; Horne, 1998). The d

proposes that the individual casein molecules interact via hydrophobic regions in their 

primary structure. 

Although there is no unanimously accepted model, there are some general properties that have 

been agreed on. These include the notion that a) partly

the hydrophilic tail of ĸ-casein located mainly near the micelle surface, and b) that CCP has 

an integral role in micelle structure.

Figure 

 a) The sub-micelle model (Walstra, 1999), 

a) 

b) 

In recent years, new models that do not rely on the formation of sub

proposed (Holt and Horne, 1996; Horne, 1998). The dual-binding model of Horne (Fig 2.2a) 

proposes that the individual casein molecules interact via hydrophobic regions in their 

lthough there is no unanimously accepted model, there are some general properties that have 

ese include the notion that a) partly-hydrophobic caseins are stabilised by

casein located mainly near the micelle surface, and b) that CCP has 

an integral role in micelle structure.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.1 Models of the casein micelle; 
micelle model (Walstra, 1999), b) The dual binding model (Horne, 1998).
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In recent years, new models that do not rely on the formation of sub-micelles have been 

binding model of Horne (Fig 2.2a) 

proposes that the individual casein molecules interact via hydrophobic regions in their 

lthough there is no unanimously accepted model, there are some general properties that have 

hydrophobic caseins are stabilised by 

casein located mainly near the micelle surface, and b) that CCP has 

) The dual binding model (Horne, 1998). 
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2.1.2 Whey proteins 

Whey proteins share few common features other than being soluble at pH 4.6. The three main 

whey proteins are β-lactoglobulin (β-LG), α-lactalbumin (α-LA) and blood serum albumin 

(BSA), which make up 50, 20 and 10% of total whey protein respectively. The remaining 

20% consists of immunoglobulins, and trace amounts of several other proteins including 

enzymes. 

Unlike caseins, whey proteins are globular with organised secondary and tertiary structures. 

This means they are susceptible to heat denaturation (DeWit & Klarenbeek, 1984). Whey 

proteins possess a number of cysteine residues as internal disulphide bonds (Fox & 

McSweeney, 1998). On denaturation, a reactive thiol group of β-LG is exposed, which forms 

disulphide-thiol bonds with other β-LG molecules as well as with ĸ-casein and to some extent 

with αs2-casein (Sawyer, 1969; Creamer et al., 2004; Lowe et al., 2004).  

 

2.1.3 The effect of heat on milk proteins 

The effect of heat on the milk system is an important consideration in dairy chemistry, as heat 

treatments are involved in the manufacture of most milk products. When milk is heated, a 

number of reactions occur. The importance of each reaction is determined by the heating 

conditions, as well as milk composition and concentration products (Anema, 2009). In regards 

to milk proteins, reactions of particular significance are whey protein denaturation, the 

interactions of denatured whey proteins with other proteins, including caseins on the micelle 

surface and caseins dissociated from the micelles. These three reaction processes can alter the 

physico-chemical properties of milk and play a major role in determining the stability of milk 

and the functional performance of heated milk products; a key point, which will be of 

relevance later in this thesis. 

When milk is heat-treated at temperatures of 60ºC and above, the whey proteins unfold and 

irreversibly denature. As well as this, caseins, particularly ĸ-casein, dissociate from the 

micelles. As previously mentioned, disulphide-thiol bonding can then occur, causing whey 

proteins to aggregate with themselves as well as with ĸ-casein. The formation of complexes 

between whey proteins and ĸ-casein during heat treatment markedly affects the protein 

organisation in both the colloidal and serum phases of milk, and consequently its 

technological applications. Because of this, much research has been conducted into this area, 

and this has been summarised in a recent review carried out by Donato and Guyomarc’h 

(2009). These authors discuss the proposed pathways for whey protein/ĸ-casein complex 

formation. Initially, primary aggregates of denatured β-lactoglobulin or β-lactoglobulin/α-
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lactalbumin form. These then bind to the surface of the casein micelle. Various studies have 

shown a positive relationship between the denatured whey proteins and the dissociated ĸ-

casein, both found in the serum phase of milk after heat treatment. This evidence suggests that 

formation of the serum whey protein/ĸ-casein complexes is related to dissociation of the ĸ-

casein. However it remains unclear as to whether the dissociation of ĸ-casein occurs before or 

after its interaction with denatured β-lactoglobulin. Some studies have shown that the 

dissociation ĸ-casein is related to the concentration of β-lactoglobulin or of β-lactoglobulin’s 

free thiol group (Donato et al., 2007; Renan et al., 2007), while other studies have shown that 

of ĸ-casein dissociation can occur in the absence of whey protein denaturation (Anema  et al., 

2007).  

In any case these complexes, essentially contain denatured whey protein and ĸ-casein in a 

ratio of 1-5 whey proteins : 1 casein, assembled mainly through disulphide bonding and 

hydrophobic interactions (Guyomarc’h et al., 2003; Jean et al., 2006; Donato et al., 2007; 

Anema, 2007). Traces of other caseins may be found (Jean  et al., 2006), especially in the 

micelle-bound complexes (Guyomarc’h  et al., 2003). It has been shown that the size of the 

complexes increases with heating (Anema & Li, 2003; Anema et al., 2004; Renan  et al., 

2007), but decreases (along with density) when more ĸ-casein is involved (Donato & 

Guyomarc’h, 2009). It has also been shown that the complexes have an increased surface 

hydrophobicity compared to casein micelles (Jean et al., 2006; Guyomarc’h et al., 2007), 

meaning the serum complexes should be prone to hydrophobic reactions. 
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2.1.4 Methods of milk protein analysis 

2.1.4.1 Total protein determination 

 In milk, as well as in other foodstuffs, nitrogen is the element which essentially characterises 

proteins. Because of this, nitrogen determination has always been used as a standard method 

for the protein content in food. In dairy products, the nitrogen compounds are made up of 

78% caseins and 17% whey proteins while urea, free amino acids and peptides make up the 

remaining 5% of the non-protein nitrogen fraction (NPN). 

The Kjeldahl method (IDF standard 20-2: 2001) is internationally recognised as the reference 

method for measuring protein content in milk products, and is listed as such in the Codex  

Alimentarius. It was first published in 1883 by Kjeldahl in Denmark. The principle of the 

method is as follows: the sample is digested in concentrated sulphuric acid, converting the 

nitrogen into ammonium sulphate. After the digest, the ammonium sulphate is then converted 

into ammonia gas by heating with sodium hydroxide. The ammonia is then steam distilled 

into an excess of boric acid solution to trap the volatile ammonia by forming ammonium 

borate. The amount of ammonia trapped in the borate is determined by titration with standard 

hydrochloric acid or sulphuric acid. 

The Kjeldahl method has its advantages and disadvantages. Precision and reproducibility is 

good and because of the method’s wide use, it has become the standard method for 

comparison against other methods. However, the method assumes that all the nitrogen present 

in a sample is protein, and, because NPN is included in this total nitrogen result given, the 

protein content is often overestimated.  

2.1.4.2 Denatured whey protein determination 

A lot of research has been directed towards determining and understanding the denaturation 

processes of the major whey proteins when milk is heated. Early studies (e.g. Rowland, 1933) 

precipitated the casein and denatured whey protein by adjustment of pH to the isoelectric 

point of the casein (4.6) and analysed the supernatant using the Kjeldahl method. This was 

then compared to the Kjeldahl results for the original milk, giving estimates of initial native 

whey protein levels and levels after heat treatment. However, because of the need for more 

rapid analysis, the whey protein nitrogen index (WPNI) method was developed. In the WPNI 

method, the casein and denatured whey protein are co-precipitated from milk using a 

saturated solution of sodium chloride. The co-precipitate is removed by filtration, and the 

remaining native whey proteins are reacted with a known excess of protein binding dye 

(amido black). The protein-dye complex is removed by centrifugation and the remaining dye 

is measured colormetrically.   
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Although the WPNI method is fairly reproducible and can give an estimate of the level of 

whey protein denaturation, research into the denaturation and interactions of the individual 

whey proteins requires more accurate separation and analysis procedures. There are several 

quantitative methods for separating and determining the level of individual whey proteins in 

milk. Methods that have been used include polyacrylamide gel electrophoresis (e.g. Hillier & 

Lyster, 1979), capillary electrophoresis (e.g. Fairise and Cayot, 1998) high performance liquid 

chromatography (e.g. Kessler & Beyer, 1991) and various immuno-based assays (e.g. Lyster, 

1970). While these may be more appropriate, they can be more technically difficult and time 

consuming. 

2.1.4.3 High performance liquid chromatography  

High performance liquid chromatography (HPLC) allows rapid and automated analysis of 

milk proteins which is characterised by good separations, high resolutions and accuracy, and 

reproducible results.  

Milk proteins may be separated and quantified by HPLC on the basis of their differing 

hydrophobicities.  Reversed phase HPLC (RP-HPLC) is one such technique and will be used 

in this project. Recent applications of RP-HPLC in milk protein quantification include studies 

conducted by Bordin et al. (2001), Veloso  et al. (2002) and Bonfatti et al. (2009). 

2.1.4.4 Capillary electrophoresis  

Capillary electrophoresis is another rapid method of protein separation and quantification. 

This technique separates ionic species by their charge and frictional forces and was first used 

to separate whey and casein proteins simultaneously (de Jong et al., 1993).  Recently, it has 

been developed to analyse not only concentration, but phosphorylation level and genetic 

polymorphisms of milk proteins (Heck et al., 2008). 
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2.2 Milk powder 

Milk powder is dehydrated milk solids. Its manufacture involves the gentle removal of water 

from liquid milk at the lowest possible cost under stringent hygiene conditions while still 

retaining all the desirable properties of liquid milk; colour, flavour and nutritional value 

(Pearce, 1995). Whole (full cream) milk contains typically about 87% water, while skim 

(defatted) milk contains about 91%. During milk powder manufacture, this water is removed 

by boiling at a low temperature under reduced pressure in a process known as evaporation. 

The resulting concentrated milk is then sprayed as a fine mist into hot air to further remove 

moisture and give a powder. 

The main reasons for converting milk into a powder form are to reduce bulk for storage and 

transport, to extend shelf-life by reducing water activity and thus preventing or slowing 

spoilage reactions and to change the product chemically, physically and/or functionally for 

particular end uses (Pearce, 1995). 

2.2.1 Spray dried milk powder processing 

Milk powder manufacture (Fig. 2.2) starts with raw milk received at the factory. This is 

pasteurised (held 72ºC for 15 seconds), and then separated into skim milk and cream fractions 

using a centrifugal separator.  In whole milk powder manufacture, cream is added back into 

the skim milk to produce milk with a standardised fat content of 26-30% (dry basis). Surplus 

cream is used to make other products such as butter or anhydrous milk fat. 

Preheating is the next step in milk powder production and is critical to end product 

functionality and shelf life. This process involves heating the standardised milk to 

temperatures between 75 and 120ºC and holding for a specific length of time. The exact 

heating and holding time depends on the type of product and its intended end use.  Preheating 

causes controlled denaturation of whey proteins, destroys bacteria, inactivates enzymes, 

generates natural antioxidants (which in turn prevent the oxidation of fat in whole milk 

powder), and imparts heat stability. Preheating may be done with indirect heat via heat 

exchangers or with direct heat via steam injection or infusion, or by a combination of the two. 

Evaporation follows the preheating step. Skim milk is concentrated from 9 to 50% w/w total 

solids in multiple stages (effects) in a falling film evaporator. The evaporation is carried out 

under a vacuum at temperatures between 40 and 70ºC. The flow of concentrated milk 

(concentrate) and vapour leaving the evaporator is essentially co-current, with the concentrate 

leaving at a temperature between 40 and 58ºC. The water vapour driven off of the milk is 

normally used to heat the next effect of the evaporator, which is operated at a lower pressure 

and temperature than the preceding effect. This vapour may be compressed mechanically or 
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thermally, for use as heating steam in the same or the prior effect. More than 85% of the water 

in milk can be removed in the evaporator. 

The concentrate from the evaporator is heated immediately (70-80ºC) before spray drying. 

This reduces concentrate viscosity and the drier load. Whole milk concentrate is homogenised 

at this step to reduce fat globule size. 

Spray drying involves atomizing the milk concentrate from the evaporator into very fine 

droplets. This is done at the top of a large drying chamber, a drier, in a flow of hot air (180-

245ºC) using either a spinning disk atomizer or a series of high pressure nozzles. As the 

atomized droplets fall through the hot air, water is removed, reducing the moisture content to 

around 6%. A fine powder results, with a mean particle size of typically <0.1 mm diameter.  

Final or secondary drying takes place in a fluid bed, or series of such beds, in which hot air is 

blown though a layer of ‘fluidised’ powder, removing  water to give the product a moisture 

content of 2-4%. Cyclones are then used for primary separation of fine powder from the 

exhaust air. Bag filters are used for final treatment of exhaust air. 

From the fluid bed, the powder is stored in hoppers until it is ready for export to the packing 

line.  

Once a powder has been manufactured, proximate analysis, as well as physical, 

microbiological, sensory and functional tests are carried out to ensure the product is suitable 

for its intended application. Tests that are routinely used for checking quality and grading 

milk powder are listed in Appendix A. 
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Figure 2.2 Flow diagram of the milk powder manufacturing process (Pearce, 1995) 
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2.2.2 Milk powder applications and functionality 

As previously mentioned, the main purposes for producing milk powder from milk are to 1) 

reduce bulk for storage and transport, 2) extend shelf-life and 3) change the product 

chemically, physically and/or functionally for particular end uses. The first two points are 

highly significant from an export point of view; e.g. dried milk is a cost effective and 

convenient method of meeting the needs of people in countries that produce less milk than is 

consumed. However it is the final point which is of most relevance to this study and will be 

discussed in detail here.   

Milk powder is used widely as an industrial ingredient in value-added products. It is 

incorporated into foodstuffs such as confectionary, ice cream, bakery goods, infant formulae, 

fortified nutritional blends, convenience foods and fermented dairy products such as yoghurt. 

Depending on the desired end product, plant conditions can be modified to produce powder to 

meet a customer’s specification. An example of this is powder agglomeration. Standard 

powders, because of their fine dusty nature, do not reconstitute well in water. To counter this, 

agglomerated “instant” powders were developed. During processing, the small particles of 

powder (“fines”) leaving the drier are recovered in cyclones and returned to the drying 

chamber in close proximity of the atomiser. The wet concentrate droplets collide with the 

fines and stick together, forming larger, irregular shaped agglomerates.  The result is a less 

dusty product that dissolves in water more easily. 

2.2.3 Influence of preheat treatment on milk powder functionality  

Another processing consideration, highly important to powder functionality, is the level of 

preheat treatment received. As previously mentioned in section 2.1.3 of this review, heating of 

milk to temperatures above 60ºC induces chemical changes, namely the modification 

(denaturation) of whey proteins. Because of this, the extent of whey protein denaturation is 

commonly used as an index to estimate the total heat treatment applied to a milk powder 

during manufacture. This in turn gives an approximation of the powder’s expected functional 

properties.  

In the early 1960s, the American Dry Milk Institute (now the Amercian Dairy Products 

Institute), published standards of dry milk. Employing WPNI, the widely accepted heat 

classification of milk powder was put in place. Low, medium and high heat categories were 

established to reflect the application of increasing preheat temperatures before milk 

evaporation. As shown in table 2.2 values are reported as “milligrams of undenatured whey 
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protein nitrogen per gram of (skim) milk powder”, with  a working range of >6 for low heat 

treatments, to <2 for high heat treatment. 

 

 

 

The heat classification of milk powders was originally introduced in order to supply skim 

milk powder suitable for incorporation in bread. The addition of milk solids improves the 

eating quality and shelf life of bread, however milk powder of low or medium heat treatment 

depresses loaf structure. Because of this, a simple system for high heat powder classification 

was required. Other applications of high heat powder include recombined evaporated milk 

which withstands in-tin heat sterilisation (ie. is heat stable).  

While high heat treatments are related to improved keeping quality of powder, other 

functionality factors must be taken into consideration. High preheat temperatures are 

generally associated with greatly increased concentrate viscosity, plant fouling and decreased 

solubility of the final product. Also, high heat powders are not as suitable as low heat powders 

for typical beverage use (instant milk powder) or for the manufacture of recombined hard 

cheeses. Minimal levels of whey protein denaturation are necessary in these applications to 

retain similar sensory properties to fresh milk on reconstitution, and to reduce interference 

with syneresis (moisture expulsion), respectively.  

Heat 

Treatment 

Classification 

 

Typical preheat 

 combination of 

 temperature/time 

 

WPNI 

(mg of N / g 

powder) 

Functional 

properties 
Applications or end uses 

 
Low heat 

 
70ºC/15 s 

≥ 6.0 

 
Solubility 
Lack of 

cooked flavour 

 
 

Recombined milk 
Cheese making 
Standardisation 

 

Medium heat 95ºC/35 s 6.0 - 1.5 

Emulsification 
Foaming 

Water 
absorption 
Viscosity 

Ice cream 
Confectionary 

High heat 120ºC/120 s ≤ 1.5 

 
Heat stability 
Water binding 

Gelation 

 
Recombined evaporated milk 
Sweetened condensed milk 

Bakery products 
 

       

Table 2.2  Heat classification of skim milk powders  based on the WPNI, the typical 
heat treatments used in their manufacture, their functional properties and suggested 
applications (adapted from Kelly et al., 2003) 
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gel network is built up between whey protein–ĸ-casein-complexes, and whey protein–ĸ-

casein-micelle-complexes. 

2.3.3 Factors affecting acid coagulation 

The process of acid coagulation of milk is influenced by many different factors, mainly pH 

(during heat-treatment), temperature (heat-treatment and during incubation) and whey protein 

concentration as outlined below.  

The effect of temperature prior to acidification has been widely documented and will be 

focussed on in this study. Compared with unheated milk, milk heated at high temperatures (up 

to 100ºC) for several minutes results in acid milk gels with greatly improved characteristics. 

Some of the first to report heat induced changes were Dannenberg and Kessler (1988) who 

showed that gel firmness was increased as a consequence of denatured whey protein and ĸ-

casein interactions. Since then, numerous studies of gel viscoelasticity and microstructure 

have been carried out, revealing that heat-treated milk gels have more homogeneous networks 

with higher connectivity, lower porosity, and a higher whey retention capacity (reviewed in 

Donato & Guyomarc’h, 2009). It has also been shown that the pH of gelation is lowered and 

that such heat-induced changes have been positively correlated with the denaturation rate of 

whey proteins and the formation of the denatured whey protein/ ĸ-casein complexes (Donato 

& Guyomarc’h, 2009). 

Recent studies have demonstrated that the pH of milk during heat treatment is another factor 

affecting coagulation properties (Anema & Li, 2003; Donato et al., 2006). This can markedly 

influence the level of denatured whey protein/casein micelle interaction and ĸ-casein 

dissociation and subsequently the gels formed on acidification. For example, gels produced 

from milk that had been adjusted to pH 7.1 prior to heat treatment were approximately twice 

as firm as those heated at pH 6.5 (Anema et al., 2004). This increase in firmness has been 

explained by denatured whey protein distribution, with more serum complexes (as opposed to 

casein bound complexes) observed in the firmer gels (Anema et al., 2004). 

Because of its responsibility in the formation of gel structure, the protein fraction of milk is an 

obvious factor influencing acid coagulation properties. Increasing milk concentration 

increases protein concentration. An increased number of protein components means more 

contact points within a given unit area and greater structural connectivity; subsequently gel 

firmness is increased (Anema, 2008). The composition of the protein fraction of milk is also 

significant, with the importance of whey proteins and ĸ-casein and denaturation level already 

discussed.  
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Genetic polymorphisms in both caseins and whey proteins have shown to influence protein 

expression and physico-chemical properties. For example, the B allele of ĸ-casein has been 

associated with higher ĸ-casein concentration in milk compared to A and also with higher 

total protein and casein ratio (Hallen, 2008). This author also showed that AA and AB 

genotypes of β-lactoglobulin are associated with increased total β-lactoglobulin concentration 

in milk compared to cows carrying BB alleles. 

2.4 Acid coagulation properties of reconstituted milk powder 

Many studies have used reconstituted skim milk powder for studying the acid gelation of milk 

(e.g. Lucey et al., 2000; Lee & Lucey, 2004; Anema, 2008a,b). This allows variables such as 

milk concentration and composition to be controlled easily, as milk powder is generally well 

characterised by routine proximate analysis. However, proximate analysis does not provide 

detail (concentration, denaturation level, or genotype) on individual caseins or whey proteins. 

This is unfortunate when specific protein interactions are the key to functional properties, 

such as gel formation, in milk. 

A vast amount of research has been devoted to the heat-induced modifications of milk 

proteins and the unequivocal effects on gel formation. In spite of this, little has been 

published on the effect of heat treatment received during the manufacture of milk powder in 

regards to fermented product applications. 

With the issues outlined above in mind, the objective of this project therefore was to examine 

the protein profiles and the effect of preheat treatment on the acid coagulation properties of 

reconsituted milk powder. 
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    Chapter 3 

Rheological Characteristics of Reconstituted Milk 

Powder 

3.1 Introduction 

Acid coagulated dairy products are popular due to their semi-solid (viscoelastic) textural 

properties. In products such as yoghurt, failure to coagulate and form a sufficiently firm gel 

means a less acceptable product for consumers.  Because of this, monitoring the coagulation 

process and analysing textural properties is of important commercial interest. 

The rheological and textural properties of viscoelastic materials can be determined from 

several test techniques including small amplitude oscillatory rheology (SAOR), large 

amplitude oscillatory shear, penetration, and texture profile analysis.  The ideal method 

should be able to observe the gel formation process, making dynamic and non-destructive 

measurement and techniques such as SAOR the most useful. 

A structured system, such as the cross-linked network of a milk gel, will gain energy from 

oscillatory motion as long as the motion does not disrupt the structure. This energy is stored 

in the sample and is described by storage modulus (G’). The magnitude of the storage 

modulus depends on the number of interactions between the components in a sample and the 

strength of each interaction; it is a measure of the structure of a sample. Storage modulus is 

therefore a very useful means of monitoring structural changes in a sample, such as those 

during milk coagulation. 

Many studies have used SOAR for examining the coagulation properties of milk and milk 

powder under various conditions (e.g. Vasbinder et al., 2003; Lee & Lucey, 2004; Lakemond 

& van Vliet, 2008; Anema, 2008a,b). Few however, with the exception of Augustin et al. 

(1999) and Lucey et al. (1997), have investigated the differences in coagulation properties of 

different milk powders.  

This chapter describes the coagulation properties of different reconstituted skim milk powders 

as determined by SAOR. Coagulation times and final gel strengths of the samples, determined 

on the basis of storage modulus, were studied.  

The effects of experimental factors on coagulation properties were also investigated. 

Incubation temperature was varied with the expectation that it would influence coagulation 

time and gel strength. To examine the effect of milk solids concentration on these parameters, 
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solutions of 11% and 14% total solids were used. These concentrations were chosen to 

simulate fresh skim milk and yoghurt dry matter concentrations respectively. 

Strength of the set gels after cooling was also studied,  as commercial acidified milk products 

(e.g. yoghurt) are usually stored and often consumed at refrigerator temperatures 

(approximately 5ºC).  

 

3.2 Methods and materials 

3.2.1 Milk powder samples 

15 samples of commercial skim milk powder were obtained for survey. Of these 7 were 

produced in NZ, while the other eight were manufactured in Europe. Powders ranged in stated 

heat treatment classification; low, medium, high. Two samples did not have heat treatment 

defined. WPNI was specified for 12 of the 15 samples. 

Full proximate analysis reports of the powder samples were not available. Information on 

manufacture and processing conditions from dairy companies could not be obtained due to 

their confidentiality concerns, and little other information was unfortunately provided on each 

sample. 

3.2.2 Chemicals and reagents 

Glucono-δ-lactone (GDL), with a stated purity of 99-100%, was purchased from Sigma-

Aldrich Pty. Ltd, Stockholm, Sweden. Distilled water was used throughout. 

3.2.3 Preparation of reconstituted milk powder 

Milk powder samples were prepared to 11 and 14% total solids (w/v). Powder was weighed 

and mixed with a small amount of water to form a homogeneous paste. This was made up to 

volume in a measuring cylinder and transferred into a beaker. The solution was mixed for 30 

minutes with a magnetic stirrer, and left to stand for a further 30 minutes at room temperature. 

The milk was then refrigerated overnight before analysis the following day. 

3.2.4 Rheological analysis 

A standardised amount of GDL (0.18 g per g of milk powder) was added to each reconstituted 

milk. This equated to 2 and 2.5% GDL (w/v) for 11% and 14% TS milks, respectively. Each 

solution was mixed vigorously with a spatula for 30 seconds. The solution was then 

transferred immediately to the C25 measuring cup of a Bohlin VOR rheometer (Malvern 

Instruments Nordic AB, Uppsala, Sweden) fitted with a 2 g cm torsion bar. Oscillation mode 
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was used with a frequency of 1 Hz and a constant strain of 0.0412. Photographic 

documentation of the rheometer set up may be seen in Appendix B.1. 

Each measurement was carried out for 5 hours at a set incubation temperature (20, 30 and for 

some samples also at 40ºC). After 5 hours, the test temperature was ramped down over a 30 

minute period, before being held at 5ºC for 15 minutes. Curd firmness (storage modulus; G’) 

of the developing gel was plotted against time. Coagulation time (CT) was recorded as the 

time from GDL addition until a 0.5 Pa increase in elastic modulus was detected by the 

instrument. Curd firmness was recorded after 5 hours and again at the end of the 5ºC period. 

Rheological measurements of samples were carried out only once at the selected testing 

conditions (varied temperature or milk concentration). This was due to the highly time 

consuming nature of the test; nearly 6 hours per sample. However, before sample testing 

commenced, the reproducibility of the method was studied. 
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3.3 Results 

3.3.1 Repeatability of the rheological measurements  

A powder was reconstituted a total of 10 separate times, each analysed on the rheometer (see 

appendix B.2 for an illustration of this). Mean coagulation time, gel strength at 5 hours, and 

gel strength at 5ºC was 1.18 ± 0.04 hours, 203.6 ± 14.6 Pa, and 435.7 ± 25.7 Pa respectively. 

The results verified the reliability of the method, and the decision to place confidence in 

unduplicated runs was made. 

3.3.2 Coagulation time (CT) 

Milk concentration (11 vs 14% TS) did not greatly affect CT (Table 3.1). The greatest 

difference between treatments was 0.25 hrs (15 mins), while the mean difference was just 

0.11 ± 0.02 hrs or (6.6 ± 1.2 mins). 

 

 

 

 

 

Sample  Origin 
Heat treatment 

classification 

 

WPNI 

 (mgN/g) 

  

11% 

(hrs) 

14% 

(hrs) 

∆CT 

11 vs 14%  

(hrs) 

1 NZ Medium 2.9 1.08 1.09 0.01 

2 NZ Medium 2.9 0.94 0.94 0.00 

3 NZ Medium 2.6 1.01 0.91 0.10 

4 NZ Medium 1.7 0.96 0.77 0.19 

5 NZ Medium 3 1.12 1.14 0.02 

6 NZ Low 7.6 1.68 1.89 0.21 

7 NZ High 0.5 1.04 0.93 0.11 

8 Sweden Medium 3.9 0.87 0.80 0.07 

9 Sweden Low 6 0.92 0.94 0.02 

10 Sweden Low 6 1.09 1.16 0.07 

11 Sweden Medium 5.3 0.81 0.78 0.03 

12 Sweden High 0.9 0.81 0.81 0.00 

13 Sweden Unspecified Unspecified 1.71 1.96 0.25 

14 Sweden Unspecified Unspecified 1.59 1.54 0.05 
15 

 
Netherlands 

 
Low 

 
Unspecified 

 
2.01 1.93 0.08 

Std Dev = 0.11 

 

Table 3.1 Coagulation times of different reconstituted skim milk powders at 
different total solids concentrations (11 vs 14%) 
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The CT of milk powder samples reconstituted to 14% total solids are shown in Table 3.2. 

From this data it can be seen that coagulation time decreased with increased incubation 

temperature. 

With regards to the different powders, lengthened coagulation times were generally seen in 

the low heat samples and those with no heat classification specified (samples 6,10,13,14,15). 

This trend was observed at all test temperatures, but was more pronounced at 20°C. 

 

 

 

Sample  Origin 
Heat treatment 

classification 

 

WPNI 

 (mgN/g) 

  

 

CT, 40°C 

(hours) 
CT, 30ºC 

(hours) 

 

CT, 20ºC 

(hours) 

 

1 NZ Medium 2.9 
 

0.33 1.09 3.15 

2 NZ Medium 2.9 ND 0.94 2.60 

3 NZ Medium 2.6 ND 0.91 2.64 

4 NZ Medium 1.7 ND 0.77 2.58 

5 NZ Medium 3 ND 1.14 2.80 

6 NZ Low 7.6 0.76 1.89 4.09 

7 NZ High 0.5 0.29 0.93 2.75 

8 Sweden Medium 3.9 ND 0.80 2.19 

9 Sweden Low 6 ND 0.94 2.36 

10 Sweden Low 6 ND 1.16 3.54 

11 Sweden Medium 5.3 0.26 0.78 2.44 

12 Sweden High 0.9 0.21 0.81 2.47 

13 Sweden Unspecified Unspecified ND 1.96 3.36 
14 Sweden Unspecified Unspecified ND 1.54 3.07 
15 

 
Netherlands 

 
Low 

 
Unspecified 

 
0.77 1.93 

 
4.28 

 
            

 
                     ND = Not determined 

  

Table 3.2 Coagulation times of different reconstituted skim milk powders (14% TS) 
at varied run temperatures 
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An example of a typical rheometer run result, following the coagulation of different 

reconstituted milk powders, may be seen in Figure 3.1. Notice the small difference of the CT 

between medium and high heat treated powder milk and the much slower CT of the low heat 

powder milk.  

  

Figure 3.1  Example of rheological behaviour of different (low, medium and high heat) 
reconstituted milk powders acidified with GDL. Graph produced from Bohlin VOR 

rheometer data output. 
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3.3.3 Gel strength 

Gel firmness of samples, expressed as G’ after 5 hours at the given incubation temperature, 

are shown in Table 3.3. When tested at 20ºC compared to 30ºC,  G’ decreased at least 56% in 

all except two samples (samples 13 and 14). Of the samples tested at 40ºC, both G’ increases 

and decreases were observed when compared to the 30ºC data. 

At all tested temperatures, it appeared that the lowest G’ values were generally produced by 

the low heat samples and those with unspecified heat class (samples 6,13,14,15). However, 

the Swedish low heat samples (9 and 10) did not behave like the NZ low heat (sample 6). 

These displayed much higher G’ values at both 30ºC (274 and 231 Pa compared to 41) and 

20ºC (99 and 33 Pa compared to 13) respectively.      

      

  

 

 

Sample  Origin 
Heat treatment 

classification 

 

WPNI 

 (mg N / g) 

  

G’ 

40ºC 

(Pa) 

G’  

30ºC 

(Pa) 

 

G’ 

20ºC 

(Pa) 

 

 
∆G’ 

between 30 

and 20ºC 

(%) 

1 NZ Medium 2.9 
 

323 
 

229 47 
 

-79 
2 NZ Medium 2.9 ND 239 77 -68 
3 NZ Medium 2.6 ND 255 81 -68 
4 NZ Medium 1.7 ND 310 98 -69 
5 NZ Medium 3 ND 238 61 -74 
6 NZ Low 7.6 27 41 13 -68 
7 NZ High 0.5 416 284 69 -76 
8 Sweden Medium 3.9 ND 357 130 -64 
9 Sweden Low 6 ND 274 99 -64 

10 Sweden Low 6 ND 231 33 -86 
11 Sweden Medium 5.3 374 386 121 -69 
12 Sweden High 0.9 192 298 131 -56 
13 Sweden Unspecified Unspecified ND 40 33 -17 
14 Sweden Unspecified Unspecified ND 46 39 -15 
15 Netherlands Low Unspecified 66 50 14 -72 

            
 

ND = not determined 

 

  

Table 3.3 Gel strength of different reconstituted skim milk powders (14% TS) with 
varied run temperatures 

 



 

Figure 3.2 shows the effect of milk concentration on gel strength. Samples prepared at a lower 

total solids concentration (11%) had 

than 14%. 

 

Figure 3.2 Comparison of gel strength with varied milk c
prepared at  lower TS concentration (11% versus 14%) produced gels with lower 

Figure 3.2 shows the effect of milk concentration on gel strength. Samples prepared at a lower 

total solids concentration (11%) had 41% lower G’ values on average after 5 hours at 30ºC, 

 

Comparison of gel strength with varied milk concentration. Milks 
prepared at  lower TS concentration (11% versus 14%) produced gels with lower 

G’ values after 5 hours. 
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Figure 3.2 shows the effect of milk concentration on gel strength. Samples prepared at a lower 

41% lower G’ values on average after 5 hours at 30ºC, 

oncentration. Milks 
prepared at  lower TS concentration (11% versus 14%) produced gels with lower 



 

Cooling the gels had a marked effect on gel strength. G’ values at the end of the 15 minutes at 

5ºC period were at least double that 

3.3) 

 

 

 

 

 

 

Figure 3.3 Comparison of gel strength before and after cooling at 5ºC. 

Cooling the gels had a marked effect on gel strength. G’ values at the end of the 15 minutes at 

were at least double that  recorded at the end of the 5 hour incubation at 30ºC (Fig. 

 

Comparison of gel strength before and after cooling at 5ºC. 
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3.4 Discussion 

The use of small amplitude oscillatory rheology (SAOR) to investigate the coagulation 

properties of milk is a powerful tool that has been used by a number of researchers(e.g. 

Vasbinder et al., 2003; Lee & Lucey, 2004; Lakemond & van Vliet, 2008; Anema, 2008a,b). 

In this study SAOR technology, utilising the latest Bohlin C-VOR system, showed that 

coagulation times of reconstituted skim milk powders was decreased with increased run 

temperature, but not affected by dry matter concentration. Gel strength was increased with 

increased milk concentration , and was also influenced by incubation temperature. Cooling of 

the developed gels increased gel strength. With regards to the heat classification of samples, 

the general trends observed were longer coagulation times and lower final G’ values in the 

classified low heat and unclassified heat treatment samples compared to the medium and high 

heat classified samples. 

Milk concentration did not affect coagulation time because GDL addition was standardised, 

with equivalent amounts of acid used per gram milk powder. Subsequently the acidification 

rate was standardised. 

Decreased coagulation time with increased incubation temperature could be explained by 

reaction kinetics; a higher incubation temperature meant that a higher rate of GDL hydrolysis 

to gluconic acid took place. In all likelihood, it was faster acid production at the higher 

temperature that lead to shorter gelation times (pH of gelation reached more quickly), and this 

has been documented in several other studies that also used GDL for milk acidification (e.g. 

Fetahagic et al., 2002; Anema, 2008b).  

Milks incubated at 30ºC compared to 20ºC had higher G’ values after 5 hours. This is a trend 

that has been observed by others (Anema, 2008b), and may be put down to the higher GDL 

hydrolysis and acidification rate. However, when samples were incubated at 40ºC, G’ did not 

increase further as expected. In samples 6, 11 and 12, G’ was lower at 40ºC compared to gels 

produced at 30ºC.  One possible reason for this may be the loosening of intermolecular forces 

in casein particles caused by solubilisation of colloidal calcium phosphate.  Work by Lucey et 

al. (2000) and Anema (2008b) both  suggested this when incubation at 40ºC resulted in faster 

acidification but weaker gels. 

The observations of increased gel strength with increased milk concentration were expected. 

Increasing milk concentration increases protein concentration, and consequently an increase 

the number of protein interactions in the gel network. G’ directly measured the increase. 

Similar work conducted by Anema (2008a) showed the same trend; higher final G’ values in 

milk gels with higher total solids concentration.  
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All gels showed marked increases in G’ after being cooled at 5ºC in this study. This trend has 

been described in other studies (Lucey et al., l997; Anema, 2008b), and may be explained by 

hydrophobic interactions. Hydrophobic reactions are strongly dependent on temperature and 

play an important role in the assembly of casein micelles (Horne, 1998). It has been suggested 

that the decreased strength of hydrophobic interaction when the temperature is reduced may 

lead to a less compact conformation of the casein molecules, subsequently increasing their 

size within the acid gel network. This is thought to alter the balance between inter-particle and 

intra-particle bonds, so that there are more inter-particle bonds between casein molecules as 

the temperature is reduced, resulting in notable increases in G’ (van Vliet et al., 1989). 

The slower coagulation times and low gel strengths observed in the low heat and unclassified 

heat treatment samples (particularly obvious in samples 6, 13, 14 and 15) may be related to 

protein composition and processing conditions, namely a lower level of thermally denatured 

whey protein. As already described in the literature review, denatured whey proteins are 

critical in the gelation of acidified milk. While samples 13 and 14 had no WPNI or heat 

classification stated, it could be assumed that they contained low levels of denatured whey 

protein and were low heat powders on the basis of their poor coagulation properties. This 

assumption can be supported by work conducted by Augustin et al. (1999). These authors 

examined the effects of varied preheat treatments of milk powder (specific time and 

temperature combinations), looking at the coagulation properties of yoghurt prepared from 

each powder. Yoghurt gel strength and syneresis level was analysed, as was denatured whey 

protein concentration. Denatured whey protein level increased with increased preheat 

treatment as expected. Trends between higher denatured whey protein concentration and 

increased gel firmness were noted, as well as decreased whey drainage (syneresis). It is 

possible that similar underlying whey protein and heat treatment trends were being witnessed 

in this study with regards to the different coagulation abilities of different powders. 

Another relevant study, examining the effects of preheat treatment on the rheological 

properties reconstituted milk powder gels, was that of Lucey et al. (1997). Acid gels made 

from high, medium, low and ultra low heat skim milk powder were investigated. The results 

of this project could be described as similar to study conducted by Lucey et al. (1997), where 

the rheological results of high and medium heat milk powders produced gels with higher G’ 

values than gels made from low heat milk powders. Other trends, such as reduced coagulation 

time with increasing heat treatment, may also relate to observations in this study. 

Lucey et al. (1997) found that gel strength and coagulation time only differed slightly 

between high and medium heat powders, but a large difference existed between these and the 

low heat powders. It is possible that this trend was also being seen in this study. In the New 
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Zealand powders for example, the high heat sample had a similar G’ to the medium heats (284 

Pa compared to an average of 254 Pa), yet the low heat sample was much lower (41 Pa). 

When considering the low heat European samples however, samples 9 and 10 did not follow 

the same trend. The gel strength of these samples, compared to all other low heat or 

unclassified samples (6, 13, 14, 15), was markedly higher (274 and 231 Pa compared to 41, 

40, 46 and 50 respectively). One possible reason for this contrast may be differences in 

WPNI. The New Zealand low heat sample had a reported WPNI value of 7.6 mg N/g, while 

samples 9 and 10 were 6.0 mg N/g. This meant that the New Zealand sample contained higher 

amounts of undenatured whey protein, indicating a lower level of heat treatment. It is possible 

that, at 6.0 mg N/g compared to 7.6 mg N/g, enough whey protein was thermally denatured by 

preheat treatment to form a sufficiently firm gel network.  

However, because of low sample numbers and missing information (heat classification and/or 

WPNI values) this is purely speculation. Protein analysis of all samples was therefore 

required to confirm any such threshold effects, and/or relationships between protein levels and 

coagulation properties. This is investigated in the following two chapters. 

It was observed that Swedish medium heat powders produced stronger gels compared to the 

New Zealand counterparts. Samples 8 and 11 (Swedish) had an average final G’ of 372 Pa, 

while the average of the New Zealand medium heats (samples 1-5) was 254 Pa. While there 

were not enough samples/results to confirm statistical differences, these dissimilarities may be 

explained by differences in milk composition due to different cow breeds; Swedish Holstein 

and Swedish Red & White, versus New Zealand Holstein Fresian and Jersey. Differences in 

levels of individual milk proteins became of even more interest for this reason. 
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    Chapter 4 

Protein Profiling on Milk Powders 

4.1 Introduction 

Milk protein is divided into two major fractions; caseins and whey proteins.  Unlike caseins, 

whey proteins are susceptible to thermal denaturation owing to their globular tertiary structure 

(Fox & McSweeney, 1998). The unfolding of this structure largely determines the behaviour 

of milk in subsequent applications (Anema, 2009). 

During the manufacture of milk powder, milk undergoes several heat treatments; 

pasteurisation, preheating and drying. The level of native whey protein remaining in final 

product is measured by the WPNI method.  WPNI analysis is the industry standard for 

indicating the thermal history of the milk, particularly preheat treatment (Anema, 2009). Total 

protein in the final product is routinely measured by Kjeldahl analysis (IDF Standard, 2001). 

Unfortunately, Kjeldahl and WPNI analysis do not provide any information on individual 

caseins or individual whey protein levels. Because of the interest in the denaturation level and 

interaction of the individual proteins in relation to coagulation ability, particularly the 

associations between β-lactoglobulin and κ-casein (Dannenberg & Kessler, 1988) this study 

required methods of more accurate milk protein separation and analysis. Capillary 

electrophoresis (CE) was used to examine the various protein fractions in milk under 

denaturing conditions. Upon examination of these results, it was decided that another method 

of protein quantification was required. Subsequently, two HPLC methods were employed; 

one to quantify total protein levels regardless of state (analysed after denaturation) and one to 

analyse whey proteins in only their native (undenatured) state. 
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4.2 Methods and materials 

4.2.1 Capillary electrophoresis quantification of milk proteins 

4.2.1.1 Chemicals 

Hydroxymethyl-aminomethane (TRIS), 3-morpholinopropanesulphonic acid (MOPS), 

ethylene-diamine-tetraacetic acid disodium salt dihydrate (EDTA), dithiothreitol (DTT) 

methylhydroxyethylcellulose 30000 (MHEC), citric acid, urea, and sodium citrate were all of 

analytical grade, purchased from Sigma Aldrich (Stockholm, Sweden). 

4.2.1.2 Buffer preparation 

The sample buffer (pH 8.6) consisted of 167 mM TRIS, 42 mM MOPS, 67 mM EDTA, 17 

mM DDT, 6M urea and 0.05% (w/w) MHEC. The run buffer (pH 3.0) consisted of 0.19 M 

citric acid, 20 mM sodium citrate, 6 M urea and 0.05% (w/w) MHEC. 

4.2.1.3 Sample preparation 

Aliquots of the 15 reconstituted milk powder samples remaining from rheological analysis 

(see section 3.2.3), were saved and frozen at -15ºC until capillary electrophoresis analysis was 

carried out. A thawed sample (335 µL) was taken and mixed with 500 µL sample buffer. 

After mixing, the sample solution was left at room temperature for 1 h and subsequently 

centrifuged for 5 minutes at 5000 g.  

4.2.1.4 Capillary electrophoresis 

Capillary electrophoresis of reconstituted milk powder samples was carried out on a Beckman 

P/ACE MDQ Capillary Electrophoresis system controlled by 32 Karat™ Software, version 

7.0 (Beckman Instruments, CA, USA). The method of separation used was as described by 

Heck et al. (2008). Separation was carried out in fused silica capillaries with dimensions 40 

cm x 50 µm I.D.  Samples were injected by pressure at 0.5 psi for 20 seconds. Detection was 

achieved with a UV detector set at 214 nm. Data was processed with the P/ACE System 

Series Software. Standard curves were constructed from a protein mixture (α-LA, β-LG, αS2-

CN, αS1-CN, κ-CN, β-CN A1, β-CN A2) injected at various volumes. 
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4.2.2 High performance liquid chromatography determination of total milk 
proteins  

4.2.2.1 Chemicals 

Acetonitrile (CH3CN), hydrochloric acid (HCl), trifluoroacetic acid (TFA), urea, tris-HCl, tri-

sodium citrate and dithiothreitol (DTT) were used. All chemicals were of HPLC analytical 

grade and purchased from VWR International (Lutterwoth, United Kingdom). Demineralised 

ultrapure water was used throughout. 

4.2.2.2 Buffer preparation 

Buffer A (0.1% TFA in water) and buffer B (0.1% TFA in acetonitrile) were prepared by 

adding 1 mL of TFA into 999 mL of water or acetonitrile respectively. 

Sample buffer for protein denaturation was prepared by dissolving 24 g urea, 0.78 g Tris-HCl, 

0.65 g tri-sodium citrate and 38 mg DDT in 42 mL water. Dilution buffer was prepared by 

dissolving 18 g urea in 45 ml 0.1% TFA (buffer A).  

4.2.2.3 Sample preparation 

Unfortunately, because of difficulty in transferring samples internationally, not all 15 powders 

analysed for CE in Sweden could be obtained for HPLC testing in New Zealand. However, 

three of the same New Zealand powders (high, medium and low heat; samples 1, 6 and 7 

respectively) were available  for HPLC analysis. These were reconstituted to 10% total solids 

using the same procedure described in section 3.2.3. Skim milk (200 µL) was directly added 

into 800 µL sample buffer and mixed well. After standing for 1 hour at room temperature, the 

sample was centrifuged at 14,000 g for 10 min. The sample was then diluted 1:3 in dilution 

buffer and centrifuged at 14,000 g for 10 min.  

4.2.2.4 Reversed phase high performance liquid chromatography 

The HPLC equipment consisted of a Shimadzu High Performance Liquid Chromatography 

system, equipped with a binary pump gradient unit and autosampler. A photo diode array 

detector was used.  The equipment was controlled by Class V.P. 7.0 software. Separations 

were performed on a reversed-phase analytical column C8 (Zorbax 300SB-C8 RP, Agilent 

Technologies) with a silica-based packing (3.5 µm, 300 Å, 150 x 4.6 I.D.). The 

chromatographic conditions used were as described by Bonfatti et al. (2008). The flow rate 

was 0.48 mL/min, the column temperature was kept at 45ºC, and detection was made at 

wavelengths of 214 and 280 nm. The injection volume was 10 µL. Results were calculated 

from extinction coefficients at 280 nm, α-LA = 20.06, β-LG = 9.41, κ-casein = 9.5, αs1-casein 

= 10.5, αs2-casein = 1, and β-casein = 4.6 (S. Chen, personal communication September 29, 

2009; R&D Scientist at Westland Milk Products Ltd). 
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4.2.3 High performance liquid chromatography of native whey proteins 

4.2.3.1 Chemicals 

Methanol (CH3OH), hydrochloric acid (HCl) and trifluoroacetic acid (TFA) were used. All 

were of HPLC analytical grade and purchased from VWR International (Lutterworth, United 

Kingdom). Demineralised ultrapure water was used throughout.  

4.2.3.2 Buffer preparation 

Buffer A (0.03% TFA in water) and buffer B (0.022% TFA in methanol) were prepared by 

making 0.30 mL or 0.22 mL TFA up to 1 L with water or methanol respectively. 

4.2.3.3 Sample preparation 

Remaining reconstituted powder samples from HPLC analysis of major proteins (section 

4.2.2.3) were adjusted to pH 4.6 with a known amount of 5% HCl. After filtration from the 

curd, the whey was centrifuged at 14,000 g for 10 minutes and pipetted into autosampler vials 

for analysis. 

4.2.3.4 Reversed phase high performance liquid chromatography  

The HPLC equipment was the same as that used in section 4.2.2.  Separations were performed 

on a reversed-phase analytical column C8 (Zorbax 300SB-C8 RP, Agilent Technologies) with 

a silica-based packing (3.5 µm, 300 Å, 150 x 4.6 I.D.). The chromatographic conditions used 

were as follows: isocratic elution for 8.5 minutes at 55% buffer B, then a linear gradient from 

55-79% buffer B over 1 minute, followed by an isocratic elution at 79% buffer B for 9.5 

minutes, then a linear gradient return to starting conditions of 55% buffer B over 1 minute, 

remaining here for further 3 minutes. The flow rate was 1.00 mL/min, the column temperature 

was kept at 42ºC, and the detection was made at a wavelength of 280 nm. The injection 

volume was 50 µL. Results were calculated from α-LA and β-LG standard curves. 
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4.3 Results 

4.3.1 Capillary electrophoresis quantification of milk proteins 

Concentrations of the major protein fractions as determined by capillary electrophoresis 

(electropherogram example shown in Figure 4.1) are presented in Table 4.1. Sample 4, a New 

Zealand medium heat powder, had the highest concentration of major proteins; 33.6 mg/mL. 

Apart from this sample, all other milks had low major protein concentrations compared to the 

reference values e.g. 14 out of 15 samples were outside the expected range.  

There was difficulty in detecting α-LA and αS2-CN. This may have contributed to the low 

concentrations of major proteins; however, it is likely that the low levels of β-LG and β-CN 

found had a greater influence. The concentrations of these proteins were significantly lower 

than those reported in the literature; less than half in most cases. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.1 Example of an electropherogram of milk proteins. 
α-LA: alpha-lactalbumin; β-LG: beta-lactoglobulin; α S2-CN: alpha S2-casein; 
α S1-CN: α S1-casein; α S0-CN: α S0-casein; κ-CN: kappa casein; β-CN A1: 

beta-casein A1; β -CN A2: beta-casein A2. 
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Sample 
 

Heat 
treatment  

 
  WPNI 

 

α-LA β-LG αS2-CN αS1-CN ?-CN β-CN Total 

  
mg N/g mg/ml mg/ml mg/ml mg/ml mg/ml mg/ml mg/ml 

 
1 Medium 2.9 1.1 1.4 1.2 12.2 5.5 6.5 27.9 
2 Medium 2.9 1.0 1.2 1.4 8.7 4.8 6.3 23.4 
3 Medium 2.6 1.1 1.2 1.2 10.2 6.1 7.0 26.8 
4 Medium 1.7 1.2 1.3 1.5 13.2 6.9 9.5 33.6 
5 Medium 3 1.1 1.2 ND 10.6 6.1 9.8 28.8 
6 Low 7.6 1.0 1.2 ND 9.6 5.6 6.3 23.7 
7 High 0.5 0.8 0.9 ND 5.0 4.6 5.2 16.5 
8 Medium 3.9 1.2 1.4 ND 9.5 4.5 4.7 21.3 
9 Low 6 1.2 0.6 ND 5.2 3.0 4.5 14.5 
10 Low 6 1.3 0.7 ND 5.8 3.0 5.5 16.3 
11 Medium 5.3 1.2 0.6 ND 5.4 3.2 4.5 14.9 
12 High 0.9 ND 0.6 ND 4.1 3.0 4.5 12.2 
13 Unknown Unknown 1.2 0.5 ND 4.9 2.9 4.1 13.6 
14 Unknown Unknown 1.2 0.8 ND 5.3 2.9 4.7 14.9 
15 Low Unknown 1.1 0.7 ND 5.9 2.9 4.9 15.5 

  
                Reference values 

 (Ng-Kwai-Hang, 2002) 
 

1.2  3.2  2.6  10  3.3  9.3  29.6 

  
 

       
     

 

  ND = not detectable 

 

 

 

 

Table 4.1 Concentration of milk proteins in reconstituted milk powder samples as determined 
by capillary electrophoresis. There was difficulty in α S2-casein detection. 

 

 

 

  κ-CN 
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4.3.2 High performance liquid chromatography  

 
Concentration totals of milk proteins after denaturation, as determined by the RP-HPLC, are 

shown in Table 4.2. This established that the samples had typical overall protein 

concentrations (approximately 3.5%) and that there were no abnormalities in detection. A 

typical chromatogram is shown in Figure 4.2.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Sample                     Caseins (%) 

 

Whey Proteins (%) Total protein 

  
αS1-CN αs2-CN β-CN κ-CN Total CN α-LA β-LG Total WP CN +WP (%) 

Low heat 1.13 0.36 1.17 0.32 2.98 0.11 0.39 0.50 3.48 

Medium heat 1.18 0.43 1.28 0.30 3.19 0.12 0.39 0.51 3.70 
High heat 1.15 0.36 1.36 0.31 3.18 0.11 0.38 0.49 3.67 

Figure 4.2 Typical chromatogram of milk sample analysed by the RP-HPLC method 
outlined in section 4.2.2.  Peaks of major proteins and genotype are labelled: 

α-LA: alpha-lactalbumin; β-LG: beta-lactoglobulin; α S2-CN: alpha S2-casein; α S1-CN: 
α S1-casein; κ-CN: kappa casein; β-CN A1: beta-casein A1; β -CN A2: beta-casein A2. 

 
 

Table 4.2 Concentration (g/ 100 mL) of major milk proteins in reconstituted milk powder 
as determined by RP-HPLC  
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Table 4.3 shows the concentrations of native (undenatured) whey proteins, quantified by the 

second method of RP-HPLC described in section 4.2.3. Decreased native whey protein 

concentrations were observed with increasing heat treatment. 

 

 

 

 

 

 

 

 

 

 

 

 

  

Sample Native Whey Proteins (%) 

 
α-LA β-LG Total WP 

Low heat 0.065 0.261 0.326 
Medium heat 0.047 0.099 0.146 

High heat 0.012 0.007 0.019 
 

Table 4.3 Concentration of native major whey proteins in reconsituted milk powder as 
determined by RP-HPLC 
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4.4 Discussion 

It is difficult to draw conclusions from the capillary electrophoresis data. When compared to 

reference values (Ng-Kwai-Hang, 2002), it is apparent that protein losses have occurred in 

most samples. The sample preparation or CE analysis may have caused low recoveries. It is 

possible that samples were not adequately reconstituted, resulting in low protein 

concentration. Another possibility may be that the 6M urea sample buffer was not 

concentrated enough to solubilise all of the protein in the reconstituted sample. In raw milk, 

for which Heck et al. (2008) developed the method, no difficulties in protein separation by CE 

were experienced. Because of time constraints in this study, the validity of this method for 

testing reconstituted milk powder was assumed and not fully established before use. However, 

the process of drying alters milk chemistry, making milk powder vastly different from fresh 

milk. Thermal denaturation of whey proteins takes place and disulphide bonding with κ-

casein occurs. It is more than likely that these enhanced protein-protein interactions interfered 

with separation and that higher amounts of urea are required for complete protein 

solubilisation and determination in milk powder.Consequently the results of CE in this study 

were were inconclusive and uninformative. 

In contrast to the CE results, the total protein concentration determined by HPLC was as 

expected; approximately 3.5%. This placed confidence in the reconstitution method, and it 

was presumed that errors in protein detection had arisen during CE analysis.  

The first HPLC method described analysed the concentration of each individual protein 

fraction using denaturing conditions. The results showed little difference between the 

different powders. The second HPLC method however, analysed whey proteins in their native 

state, and differences between the different powders were apparent. Levels of native whey 

protein decreased with increasing heat treatment category, consistent with the concept of 

thermally induced whey protein denaturation (Anema, 2009).  
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    Chapter 5 

General Discussion, Conclusions and 

Recommendations 

5.1 Relationships between rheology and protein 

Milk proteins have a significant role in the acid coagulation of milk. The association of 

caseins and denatured whey proteins, especially κ-casein and β-lactoglobulin, results in the 

formation of a cross-linked gel network. Heating milk at high temperatures prior to 

acidification denatures whey proteins, and the positive effects of this on coagulation 

properties are well established. Because of this, it is common practice in the food industry to 

subject milk to relatively severe heat treatment when it is intended for use in gelled dairy 

products. 

Rheological characteristics and protein profiles of different reconstituted skim milk powders 

were compared. After acidification of each sample with GDL, small amplitude oscillatory 

rheology was used to follow gel formation and gel firmness. CE was used to quantify the 

individual protein fractions in the milk. Unfortunately the CE data appeared to be 

unsatisfactory; proteins did not separate sufficiently and only half of the expected total protein 

concentration could be accounted for. Because of this, the CE results were not considered 

further, and RP-HPLC was used instead.  

Native whey protein levels (α-LA and β-LG) and the rheological features (CT and G’) of 

three of the New Zealand powders (a low, medium and high heat) were examined. 

Unfortunately, relationships between rheology and protein analysis cannot be confirmed in 

this study due to low sample numbers, varying amounts of information about samples 

(manufacturing conditions, proximate composition), and variation in sample size between 

rheological and protein testing. The results do conform to the well established concept 

however, that increased levels of thermally induced whey protein denaturation improves 

coagulation ability, as decreased CTs  and increased G’ values were observed.  

Much research has been done on protein interactions and the rheological properties during the 

acidification and gelation of milk. Several studies in particular (Anema, 2008b; Lucey et al.,  

1997; Lucey & Singh, 1997; van Marle & Zoon, 1995; van Vliet & Keetels, 1995) have 

discussed the effects of processing variables, especially the preheating of milk on the 

formation and properties of gels prepared by acidification with GDL. Such studies showed 

that the increased heat treatment of milk prior to acidification results in reduced gelation time 
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and increased gel firmness. This was explained by the increased associations between 

denatured whey proteins and caseins.  It is reasonable to apply the same explanation to 

observations made in this study. The reconstituted milks analysed had recieved heat treatment 

during powder manufacture, with heat treatment category and/or WPNI indicating the 

severity. Powders that had recieved greater heat treatments had improved coagulation 

characteristics, and native whey protein analysis showed that higher heat treatments resulted 

in greater levels of whey protein denaturation.  

 

5.2 Conclusion and Recommendations 

Milk powder is more versatile than liquid milk and can be used in a large number of 

applications. Acid coagulated dairy products, such as yoghurt, is an example of a very 

important application.  

In this study, the acid coagulation properties of different reconstituted skim milk powders 

were investigated. The aim was to understand factors that may influence undesirable textural 

properties, as consumer acceptability of acid coagulated dairy products relies largely on this.  

Texture is a physical property that derives from the structure of food and the way its 

constituent ingredients interact. In this study, the structural properties of acid coagulated milk 

gels were examined by rheological analysis. Proteins, the milk constituents of main 

significance to coagulation, were quantified.  

Milk powders classified as low heat coagulated more slowly than powders which were 

categorised as medium or high heat. Furthermore, low heat powders produced weaker gels 

compared to medium and high heat powders.  Milk protein analysis by HPLC showed that 

native whey protein concentration decreased in powders with increasing heat category (low to 

high). 

Although the associations seen between coagulation characteristics and the protein profiles in 

this study are not statistically confirmed, many studies support the notion that increased heat 

treatment of milk improves coagulation properties due to more complexes between caseins 

and denatured whey proteins. It may be suggested that low heat skim milk powder is not as 

suitable as medium or high heat powders in applications where firm texture is an important 

characteristic of  product quality. 

 

The influence of milk powder characteristics on coagulation ability needs to be studied 

further, as its thermal history greatly  influences functionality.   
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A large study with numerous samples of powders varying in heat treatment classification is 

required to statistically confirm the effects of processing conditions on milk proteins and acid 

coagulation ability. This could be extended further than the generalised low, medium or high 

heat classifications, and investigate the effect of specific temperatures during manufacture, 

e.g. preheat, spray drier, and fluid bed temperature. 

Full protein profile analysis of the raw milk and final product, by way of the HPLC assays 

used in this study, could be utilised to look at the effects of thermisation on milk proteins. 

Following this, the acid coagulation characteristics of each reconstituted milk could be 

analysed rheologically, and any relationships between protein profiles and thermal history 

could be stasticially deduced. 

To test the relevance of the results to real life application, the milks could be tested using 

microbial fermentation, rather than just standardised acidification with GDL. Sensory analysis 

could follow, and this would ultimately decide which type of powder is best for the consumer 

in the final product. 

A comprehensive study of this type would be important in predicting and improving the 

textural qualities of value-added milk powder applications, such as reconstituted skim set 

yoghurts. 
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     Appendix A 

 

A.1 Milk powder proximate analysis 

Standard common assay methods of milk powder analysis 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Assay Assay principle 

  
Fat Gerber, volumetric measurement 
 Rose-Gottlieb, gravimetric measurement 
 Near infrared spectroscopy 
  
Moisture 108ºC air oven gravimetric 
 Karl Fischer titration 
 Toluene azeotropic distillation 
 Near infrared spectroscopy 
  
Titratable acidity Reconstitute to standard total solids concentration and titrate 

with standard alkali to pH 8.35 
  
pH Reconstitute to standard total solids concentration, equilibrate at 

a standard temperature, glass electrode 
  
Protein Kjeldahl 
 Kjelfoss 
 Near infrared spectroscopy 
  
WPNI Reconstitute, precipitate casein and denatured whey proteins 

with NaCl, determine residual protein with amido black 
  
Lactose Reconstitute, deproteinate, add chloramine-T and potassium 

iodide, titrate liberated iodine with thiosulphate 
 Near infrared spectroscopy 
  
Ash Char sample, then ash in furnace at 550ºC to constant weight 
  
Free fat Extract with ether and determine gravimetrically 
  
Peroxide value Fat extraction and colourmetric measurement of ferric 

thiocyanate formed by peroxide oxidation Fe2+ and Fe3+ 
  
Insolubility index Reconstitute, centrifuge and determine volume of insoluble 

material 
  
Bulk density Packed density 
 Niro method, Stamph-volumeter 
 Poured density 
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     Appendix B 

 

B.1 Rheometer and operation 

 The Bohlin C-VOR rheometer (Malvern instruments Nordic AB, Uppsala Sweden) used in 
this study 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

C25 sample cup and torsion bar    

Approximately 12 mL of reconstituted milk powder sample 

transferred to here directly after GDL addition. Lid to prevent 

sample evaporation pictured to right 

                              
         Manual control panel 
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Rheometer set up with controlling PC 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Controlling Bohlin software. Oscillation mode was used with a frequency of 1 Hz and a 

constant strain of 0.0412. Red trace = storage modulus (G’), blue trace = elastic modulus 

(G’’), green trace = loss tangent (δ). In this instance it is 10 minutes into analysis time, 

incubation temperature 30ºC. 
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Example of data output from Bohlin software exported into Microsoft® Office Excel®2007 

for manipulation. The variable of interest (G’) could then be plotted against time (see over 

page) 
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B.2 Rheometer repeatability check 

 

Repeatability of rheometer analysis, described in section 3.3.1, illustrated graphically. Log 

plot of G’ against time. 
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     Appendix C 

C.1 HPLC analysis 

Example of data from Shimadzu HPLC software (Class V.P. version 7.0) exported into 

Microsoft® Office Excel®2007 for manipulation. 
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Chromatogram of native whey proteins in different skim milk powders; α-lactalbumin peak 

on left, eluting between minutes 8.5 and 9.0, β-lactoglobulin peaks on right, eluting between 

9.5 and 10.5 minutes. 

 

 

 


