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Abstract of a thesis submitted in partial fulfilment of the 

requirements for the Degree of Doctor of Philosophy. 

Abstract 

The Effects of Substrate, Temperature and Soil Fertility on Respiration and 

N2O Production in Pastoral Soils 

 

by 

Yoshitaka Uchida 

 

Soil respiration (RS) and N2O emissions from pastoral ecosystems are responsible for a 

substantial portion of global greenhouse gas budget. The soil processes responsible for RS and 

N2O emissions are sensitive to soil temperature (TS). However, there are many points which 

are uncertain in this temperature sensitivity of soil processes, because of the complexity of the 

mechanisms controlling the processes. The temperature sensitivity is defined as a proportional 

increase of the rate of soil process or activity per a unit change of soil temperature. An 

important factor controlling the temperature response of the soil processes is substrate 

availability. Hence the objectives of this research were (1) to quantify the interaction between 

temperature and soil substrate availability on soil microbial activity in the absence of plant 

substrate inputs, (2) to determine the temperature sensitivity of respiration sourced from root-

derived C (RRD) and soil organic matter decomposition (ROM) in two pasture soils of 

contrasting nutrient status, and (3) to investigate the effects of a urine deposition events on RS 

and N2O fluxes.  

The first experiment measured the changes in soil microbial respiration (RM) without plants 

present at 3°, 9°, and 24°C. At 9° and 24°C, RM was significantly reduced within 2 days while 

RM remained constant for 14 days at 3°C. The decrease in RM at higher TS was caused by 

substrate depletion but the substrate depletion was not indicated by the soil‟s water soluble 

and hot-water soluble C. The first experiment showed that at higher TS, soil microbes could 

access soil C that was not accessible to soil microbes at lower TS. The second experiment 

focused on the temperature sensitivity of RS with plants present in two soils with contrasting 

nutrient status (fertility). The components of RS; RRD and ROM were separatedly measured 

using a natural 
13

C abundance technique. The results suggested the temperature sensitivity of 

ROM was significantly reduced in the low fertility soil only when plants were actively 
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growing, while the temperature sensitivity of RRD was unaffected by soil nutrient status. 

Finally the third experiment investigated the changes in soil N2O emissions and RS following 

a urine deposition event on a pasture soil at various TS (11°, 19°, and 23°C) with or without 

plants present. Soil moisture was increased from 50% to 70% water-filled pore space at 21 

days following the urine deposition event. Soil-N contributed to soil N2O emissions only at 

the early phase of the experiment, especially at higher TS, and the contribution was lesser 

when plants were present. The presence of plants increased N2O flux particularly when soil 

moisture contents were high, and when TS was > 19°C. Urine application primed soil C and 

increased the rate of RS. The magnitude of urine-induced priming of soil C was relatively 

larger at lower TS, and was larger when plants were absent based on the estimation from 

cumulative RS. Based on the results obtained using a natural 
13

C abundance, when plants were 

present, urine application increased the contribution of ROM to RS particularly at 19°C.  

This study indicates that the responses of soil N2O fluxes and RS to temperature changes are 

markedly affected by plant presence and soil nutrient status. Both urine addition and plant 

activity primed RS but the magnitude of the priming effect was influenced by other factors 

(e.g. TS). To accurately predict the global warming feedback of belowground soil processes, 

the factors affecting the aboveground plant activity (e.g. soil nutrient status) have to be taken 

into account.  

Keywords: Carbon, pasture, water soluble C, soil temperature, soil respiration, atmospheric 

CO2, organic matter, 
13

C, root exudate C. 
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    Chapter 1 

Introduction 

1.1 Background 

This thesis reports the outcomes of a PhD research project where the overall theme of the 

study was to identify the effects of substrate, temperature and soil fertility on soil respiration 

(RS) and N2O emissions from pastoral soils. Soil respiration occurs as a result of microbial or 

plant processes. The substrate supply for RS is affected by soil temperature (TS) (Jacobson and 

Alexander, 1980; Kirschbaum, 2006). Carbon (C) substrates for soil microbes are provided by 

plants but there is considerable debate around the potential interactions that occur between C 

substrate inputs from plants, soil microbial activity, and TS (Pendall et al., 2008).  

Rates of RS are very sensitive to changes in TS. One model suggests that a 1°C increase of TS 

at 10°C causes a 10% increase in RS (Lloyd and Taylor, 1994). It is hypothesised that a small 

change in RS could have a significant impact on atmospheric CO2 concentrations since 

terrestrial ecosystems, including vegetation and soils, are one of main reservoirs of C on 

Earth, containing 2200 Gt C, or approximately three times the C in the atmosphere (Schimel, 

1995). 

According to the Intergovernmental Panel on Climate Change (IPCC), the global average 

surface temperature has been increasing and this trend is likely to continue (IPCC, 2007a). 

Future climate scenarios have been assessed and a warming of 0.2°C per decade is projected. 

It is considered likely that global warming will influence RS and soil N2O emissions but 

uncertainty remains high with regards to the magnitude of the influences caused by global 

warming (Rustad et al., 2000). 

Soil N2O emissions are generated by microbial nitrification and denitrification processes and 

these processes are regulated by temperature. Soil N2O emissions from pastoral ecosystems 

are an important contributor to the global N2O budget (Oenema et al., 1997) and global 

warming is also expected to impact upon N2O emissions from soils (Smith, 1997). Despite 

this there are very few studies that have examined the effects of temperature on N2O fluxes in 

pastoral ecosystems and none that have examined the effect of TS changes on urine-N derived 

N2O fluxes.  

If the uncertainty surrounding the prediction of future changes in RS and soil N2O emissions, 

with respect to global warming, is to be reduced then the C substrate supplying processes 
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from the plants must also be considered. The availability and the amount of the C substrate 

required to perform RS may be reduced or depleted when plants are not actively growing and 

plant activity is influenced by temperature. Carbon substrate is also required for soil N2O 

emissions when N2O is produced via heterotrophic processes. Hence, the temperature 

response of RS and soil N2O emissions is controlled by the complex interaction of 

soil/plant/animal processes and the interaction is not well understood. 

1.2 Research objectives 

The objectives of this project were to: 

 Quantify the interaction between TS and soil substrate availability on soil 

microbial activity in the absence of plant substrate inputs; Chapter 3. 

 Determine the temperature response of respiration sourced from root-derived C 

(RRD) and soil organic matter decomposition (ROM) in two pasture soils of 

contrasting nutrient status, with and without plants present; Chapter 4. 

 Investigate the effects of urine application, TS, and plants on soil N2O and 

carbon dioxide (CO2) fluxes; Chapter 5. 

1.3 Thesis structure 

This thesis is divided into 6 chapters. The first and second chapters provide a general 

introduction and a review of the relevant literature, respectively. The following three chapters 

(3, 4 and 5) contain short introductions, materials and methods, results and discussion sections. 

Finally chapter six provides an overall discussion, summary and recommendations for future 

work. In brief each chapter contains the following: 

Chapter 1 This chapter briefly introduces information on processes pertaining to RS and 

N2O emissions in pasture soils and the global importance of these processes. 

Chapter 2 This chapter is a literature review that describes the current knowledge of RS 

and soil N2O emissions from pasture soils. It has been suggested that 

increasing global temperature will exert a positive feedback with respect to 

global warming. However, there are many sources of uncertainty in the 

prediction of future RS as the review shows. To the best of my knowledge there 

are very few if any studies that have examined the implications of global 

warming with respect to N cycling in pasture soils and associated N2O 
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emissions. This review discusses these aspects and states a case for the 

research performed. 

Chapter 3 This chapter discusses the responses of soil microbial respiration to changes in 

TS and substrate availability. The experiment was performed using a fertile 

pasture soil without plants present.  

Chapter 4 This chapter describes the responses of root-derived C respiration (RRD) and 

soil organic matter decomposition (ROM) to changing TS, in two pasture soils of 

contrasting nutrient status. The experiment was performed using soils with 

plants, and RRD and ROM were separated using a natural 
13

C stable isotope 

abundance technique. 

Chapter 5 This chapter reports a laboratory experiment that focused on N2O emissions 

and RS following a bovine urine deposition event at different TS in the presence 

of plants. A natural 
13

C abundance technique was used in this experiment to 

determine CO2 sources while the bovine urine was 
15

N-enriched in order to 

assess the N source of the N2O emissions. 

Chapter 6 This chapter summarizes the major findings reported in this thesis and contains 

recommendations for future research.  
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    Chapter 2 

Literature Review 

2.1 Introduction 

Pastoral ecosystems provide most of the milk, wool and much of the meat for human 

consumption (Humphreys, 1997). The increasing global population has been placing pressure 

on pastoral ecosystems to increase their production efficiency. At the same time, there is an 

increasing demand for pastoral ecosystem production to be performed in an environmentally 

sustainable way (White, 2000).  

Pastoral ecosystems play a key role in regulating global carbon (C) and nitrogen (N) budgets 

because pastoral soils are an important reservoir of both organic C and N (Amundson, 2001). 

Unlike forest ecosystems, pastoral ecosystems are dominated by fast-growing plant species 

and they are disturbed by grazing animals (Bardgett and Wardle, 2003). In pastoral 

ecosystems plants assimilate C via photosynthesis. Plants also need inorganic forms of N for 

their growth. The ruminant grazing animal subsequently disaggregates the C and N combined 

in the herbage pool, with N redistributed predominantly in the urine stream while C 

dominates in the dung stream. There is also a considerable loss of C in the form of methane 

(CH4) during enteric fermentation (Johnson and Johnson, 1995). The latter is not considered 

hereafter. Carbon and N may also be returned to the pasture soil via plant litter (Schuman et 

al., 1999). Subsequently some of the C and N deposited onto the pasture soil, in the various 

organic pools, may be returned to the atmosphere as carbon dioxide (CO2) via soil respiration 

(RS) processes or as nitrogenous gases such as ammonia and nitrous oxide (N2O) via N 

transformation processes (Flessa et al., 2002).  

Nitrous oxide is a greenhouse gas and a precursor to compounds responsible for stratospheric 

ozone depletion (Ravishankara et al., 2009). Currently atmospheric concentrations of N2O are 

increasing at 0.26% yr
-1

 (Forster et al., 2007). Worldwide, grazed pastures are responsible for 

more than 10% of the global N2O emissions (Oenema et al., 1997). Concentrations of 

atmospheric CO2 are also increasing at a rate of 1.4 µl l
-1

 yr
-1

 mainly due to anthropogenic 

activities such as the combustion of fossil fuels (Forster et al., 2007). 

Despite the global efforts of governments and organizations to reduce greenhouse gas 

emissions, the Intergovernmental Panel on Climate Change (IPCC) concluded in its fourth 

Assessment Report (2007b) that both greenhouse gas emissions and the global average 
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surface temperature have been increasing and that these trends are likely to continue. Future 

atmospheric CO2 concentrations, simulated by the coupled climate-carbon cycle models, 

range between 730 and 1020 µl l
-1

 by 2100, the former value is approximately twice the 

atmospheric CO2 concentration in 2005 (Meehl et al., 2007). An expert assessment performed 

by the IPCC concluded that if the atmospheric concentrations of greenhouse gases continue to 

increase at the current rate then average global surface temperatures by 2090 to 2099 are 

predicted to increase by as much as 4.0°C (range of 2.4°C to 6.4°C) compared to  the period 

1980-1999. (Meehl et al., 2007).  

Such an increase in the global surface temperature could potentially alter many enzymatic 

activities in pastoral ecosystems, e.g. photosynthesis and soil microbial activities. For 

example, studies have reported that global warming will reduce the efficiency of terrestrial 

ecosystems to absorb atmospheric CO2 (e.g. Cox et al., 2000) because under a warmer 

climate, RS is more likely to increase compared to net primary productivity. As a result, the 

IPCC has predicted that global warming will increase the fraction of anthropogenic derived 

CO2 that remains in the atmosphere thus leading to an additional increase in the atmospheric 

CO2 concentration (Denman et al., 2007).   

However, the response of soil processes to changes in soil temperature (TS) depends on many 

factors (Luo, 2007). For example, the temperature sensitivity of RS, the relative increase in RS 

per unit increase in TS, decreases with increasing TS (Lloyd and Taylor, 1994). Hence, the 

effect of global warming on soil processes may depend on the average value of TS at the site 

(Lloyd and Taylor, 1994; Tjoelker et al., 2001). Heterotrophic RS and N2O emissions depend 

on C substrate availability and this availability influences the response of soil heterotrophic 

processes to TS. For example, RS has been shown to be less sensitive to TS when RS utilises the 

more readily available C substrates (Davidson and Janssens, 2006) or when substrate 

concentration is low (Davidson et al., 2006). Other factors such as plant activity can also 

influence the substrate supply and availability in soils and the relationship between 

aboveground plant processes and belowground soil processes are still not fully understood 

(Atkin et al., 2005; Pendall et al., 2008).  

Currently there are no studies that have simultaneously examined the temperature sensitivity 

of both C and N cycling in grazed pasture ecosystems and very few studies have been 

performed to investigate the temperature sensitivity of soil processes in pastoral ecosystems. 

Undoubtedly this is a result of the complexity of the issues. In this literature review, the 

current understanding of the temperature sensitivities of both C and N dynamics in pastoral 

ecosystems are reviewed. 
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2.2 Soil respiration in pastoral ecosystems 

2.2.1 Carbon cycling in pastoral ecosystems 

In pastoral ecosystems, the largest C input occurs via photosynthesis and is subsequently 

termed gross primary productivity (GPP). Gross primary productivity was estimated to range 

from 100 to 120 Pg C yr
-1

 (Houghton and Woodwell, 1989). Plants fix CO2 from the air and 

assimilate it forming organic C compounds through photosynthesis. A portion of the organic 

C fixed by plants is utilised to supply the plants with energy. This process is called plant 

respiration and CO2 is released back into the atmosphere through this process. Plant 

respiration is also called autotrophic respiration and can be separated into aboveground 

(RLEAF) and belowground plant respiration (RROOT). A pasture plant (Lolium perenne) 

allocates about 50% of the total assimilated C to the belowground pool (Domanski et al., 

2001). Photosynthetically assimilated C is translocated rapidly to the soil. For example, 

within 24 h, approximately 12% of the total assimilated C in annual ryegrass plants (Lolium 

multiflorum Lam.) was found in the soil (Butler et al., 2004). Similarly, a study performed on 

a dairy farm pasture reported that 1.2 – 4.0% of the C uptake by plant leaves was transferred 

to the soil within 4 h (Saggar and Hedley, 2001). 

Pastoral ecosystems also produce CO2 during the microbial decomposition of litter and soil 

organic matter, a process called „heterotrophic respiration (RH)‟. Soil microbial respiration 

also occurs in the rhizosphere, a zone immediately adjacent to the root surface (Richards, 

1987), and this respiration process is called microbial rhizosphere respiration (RRHIZ). Thus, 

the total CO2 emission from a pastoral ecosystem (RE) can be estimated by eqn. 2.1: 

RE = RLEAF + RROOT + RRHIZ + RH      (2.1) 

The total CO2 emission from the soil surface, total soil respiration (RS), is the sum of the 

belowground plant respiration (RROOT), microbial rhizosphere respiration (RRHIZ) and the 

heterotrophic respiration (RH) components (eqn. 2.2): 

RS = RROOT + RRHIZ + RH       (2.2) 

Net primary production (NPP) is defined as GPP less the cost of autotrophic respiration and 

is a measure of the rate at which energy is stored by plants in the form of organic substances 

(Redmann, 1992) thus it is defined as (eqn. 2.3): 

NPP = GPP – RLEAF – RROOT       (2.3) 
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Net ecosystem production (NEP) is classified as the total CO2 exchange at an ecosystem level 

and is the GPP less ecosystem respiration (RE) and is defined as eqn. 2.4: 

NEP = GPP – RE        (2.4) 

It has long been known that aboveground processes, for example, GPP strongly control 

belowground C inputs and RS (Raich and Nadelhoffer, 1989). However, specific mechanisms 

of belowground CO2 production processes in soil are less clear (Pendall et al., 2008). 

Continuous studies on the belowground processes in pastoral ecosystems are still required 

because pastoral soils contain approximately 30% of global soil C stocks (White et al., 2000) 

and are considered as a sink or source for CO2 (Johnson et al., 1995). A review article on RS 

in pastoral ecosystems has shown that reported values of RS in temperate grassland vary from 

52 to 1004 g C m
-2

 yr
-1

 and that the factors controlling RS (e.g. temperature and grazing) vary 

among sites, with the review concluding that the reasons for the variability were poorly 

understood (Wang and Fang, 2009). 

2.2.2 Soil respiration processes 

Total soil respiration (RS) is the sum of the respiration processes that occur in belowground 

plant tissues and soil microbial activity (eqn. 2.2). Physiologically, respiration is a series of 

metabolic processes that break down organic C containing compounds to liberate energy, 

water, and CO2 in a cell (Luo and Zhou, 2006). Carbon-containing compounds are used as the 

substrate for RS. The C substrates in soils are derived from organic material and these can be 

separated into fresh, incompletely decomposed material, and well decomposed material 

known as „humus‟ (Kononova, 1966). Since these C compounds decay and accumulate at 

different rates (Schlesinger, 1977), RS can be delineated according to sources of C substrate 

supply. This section of the literature review outlines each of the RS processes according to the 

C substrate source utilised. 

2.2.2.1 Root respiration 

Root respiration utilises relatively labile C substrates, for example, sugars, proteins, lipids, 

and other materials produced within the plant (Thornley, 1970). In a laboratory experiment 

using ryegrass plants, RROOT accounted for between 1.5 and 6.5% of the photosynthetically 

assimilated C over an 8 day period (Kuzyakov et al., 1999). Photosynthetically fixed C has 

been shown to be respired by roots within 30 minutes, thus the shoot to root transport of C in 

plants is a very rapid process (Weixin et al., 1993). Total plant respiration, including RLEAF 

and RROOT, is therefore strongly related to photosynthesis and plant growth (Lloyd and 

Farquhar, 2008). The maintenance respiration rate of roots is linearly correlated to the root 
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weight (Veen, 1981). In general, root production in pastoral ecosystems is proportional to the 

aboveground production but the relationship between shoot and root growth is dynamic due to 

seasononal and plant growth stage effects and grazing events (Garwood, 1967; Kuzyakov et 

al., 1999; Mattew and Yang, 1998; Meharg and Killham, 1990; Schuman et al., 1999).  

2.2.2.2 Rhizosphere respiration and root-derived C respiration 

The release of substances into the soil from root surfaces is termed rhizodeposition, and 

because of this process the soil adjacent to the root presents a favourable habitat for soil 

microorganisms and is termed the rhizosphere (Shamroot et al., 1968). In the rhizosphere, the 

population density of soil microbes is higher when compared to that of the bulk soil (Buyer et 

al., 2002; Waldrop and Firestone, 2004a). The microbes in the rhizosphere respire using the 

substrates released from the roots (RRHIZ). A previous study using ryegrass plants has reported 

that 2.0 to 8.0% of the photosynthetically assimilated C was respired in the rhizosphere within 

8 days, and these values were similar to those of RROOT from the same study noted above 

(Kuzyakov et al., 1999).  

Both the plant roots and the microbial rhizosphere respiration processes utilise the recently 

produced C substrates from plants (Lynch and Whipps, 1990). Many previous studies have 

termed the sum of the respiration that occurs as a result of RROOT and RRHIZ, autotrophic 

respiration, RA (e.g. Olsson et al., 2005; Tang and Baldocchi, 2005). However, this frequently 

used term is incorrect because microbes in the rhizosphere decomposing the recently added C 

substrates are heterotrophic microbes (Bond-Lamberty et al., 2004; Kuzyakov, 2006).  

Hence, in this thesis, the terms „root-derived C respiration (RRD)‟ and „soil organic matter C 

decomposition (ROM)‟ will be used. The root-derived C respiration is defined as the sum of 

RROOT and RRHIZ since they utilise the recently produced soil C substrates from plants. Similar 

to this approach, Kirschbaum (2004) modelled soil C substrate dynamics using a system 

consisting of just two substrate pools, a fast and a slow pool and the same approach has been 

taken in other previous studies (e.g. Melillo et al., 2002; Trumbore, 2000). Soil organic matter 

C decomposition is defined below (section 2.2.2.3).  

According to a review article, the contributions of RRD to RS can be as high as 90% hence RRD 

is a very important component of RS (Hanson et al., 2000). A large percentage (64 to 86%) of 

the C substrates added to soils are rapidly respired but about 2 to 5% of the net C assimilated 

by plants remains in the soil (Hütsch et al., 2002) and plays a critical role in the formation of 

soil organic matter. Soil organic matter is relatively more stable and less microbially available 

compared to the root-derived C. Despite this fact the less labile soil organic matter can be 
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utilised for respiration although the breakdown of soil organic matter involves complex 

processes.  

2.2.2.3 Decomposition of soil organic matter and ‘ROM’ 

A large proportion of the soil organic matter pool is stabilised and protected from physical, 

chemical, and/or biochemical decomposition (Six et al., 2002). Hence, soil organic matter is 

decomposed very slowly when compared to the root-derived C pool. The size of the soil 

organic matter C pool is much larger than the size of the root-derived C pool in the soil 

(Gaudinski et al., 2000). Hence, in the absence of rhizodeposition soil microbes can only 

utilise the existing soil organic matter pool and they produce CO2 at a relatively low but 

constant rate, over long periods (Joergensen et al., 1990). In forest soils the average age of 

soil organic matter C, based on 
14

C measurements, ranged from 200 to 1200 yr, but the age of 

the C respired averaged 7 yr because the predomiant C source for RS was RRD (Trumbore, 

2000). Similarly, the age of soil organic matter C in pasture soils can be up to 12,000 years in 

deep (80 cm depth) soils at high altitude but the age of C measured in RS from pastoral soils 

has been reported to range from 15 to 31 yr (Townsend and Vitousek, 1995). Hence, the 

contribution of ROM to RS is relatively low when plants are present. However, the soil organic 

matter C pool is considerably larger than the root-derived C pool and so interest in changes in 

the rate of soil organic matter decomposition, as a consequence of changes in TS, has 

increased because of its importance to the global C cycle (Trumbore, 2000).  

2.2.2.4 Priming effect 

The presence of living plants may increase ROM by 3- to 5-fold, or decrease its rates by 10% 

to 30% (Kuzyakov, 2002). This change in ROM is due to a process termed the „priming effect‟ 

(Parnas, 1976). In a review paper by Kuzyakov (2002), seven possible mechanisms to explain 

priming effects were suggested: 1) the presence of plants results in faster drying-rewetting 

cycles in soil, thus increasing ROM: 2) breaking down of soil aggregates by growing roots 

exposes a portion of the physically protected soil organic matter pool to soil microbial attack: 

3) plant root uptake of organic substances reduces the size of available soil organic matter 

pool for microbes, thus reducing ROM: 4) increasing microbial activity in the rhizosphere 

enhances microbial turnover and consequently increases the release of mineral N and CO2: 5) 

the presence of plants induces competition for mineral N between plant roots and soil 

microbes, thereby depressing ROM: 6) soil microbes prefer to respire the root-derived C 

compared with soil organic matter C, resulting in a decrease in ROM due to the presence of 

plant root exudation: 7) soil microbial activity increases in the rhizosphere and this leads to an 
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increase in ROM in order to obtain limiting N that has become limiting as a result of the 

enhanced microbial activity.  

It has been concluded that although all of the mechanisms above are involved in priming, the 

biological factors are considered to be more important than the physical factors (Dormaar, 

1990). A reason for this is that the growth stage of plants and the intensity of photosynthesis 

both influence the magnitude of the priming effect (Kuzyakov and Cheng, 2001a; Kuzyakov 

et al., 2001). A previous study has suggested that the absence of light caused a reduction in 

the priming effect because root-derived C inputs from the plant (wheat) decreased in the 

absence of photosynthesis (Kuzyakov and Cheng, 2001a). The priming effect may also be 

influenced by soil fertility because plants allocate a relatively larger percentage of their net C 

assimilation to the belowground C pool in low fertility soils compared to high fertility soils 

(Warembourg and Esterlich, 2001). In addition, the mineral N status in soils, which is 

influenced by soil fertility, may influence priming effects because ROM is enhanced when soil 

mineral N is low (Bremer and Kuikman, 1997).  

However, very few studies have investigated the combined effects of different plants or soils 

on ROM in one experiment (Kuzyakov, 2002) and further studies are required to elucidate the 

role of plants.  

2.2.3 Factors controlling soil respiration 

The components of RS discussed above involve many different chemical, physical, and 

biological processes and these are influenced by various biotic and abiotic factors. These 

factors include substrate quantity and availability, soil fertility and temperature.  

2.2.3.1 Substrate quantity and availability 

In soils, respiration sourced from root-derived C is influenced by plant photosynthesis and 

plant growth rates since the root-derived C substrates are exuded by or sloughed off plant 

roots. The residence times of root-derived C substrates are relatively short. In pasture soils RS 

was shown to decrease by 70% within a week following the application of clipping and 

shading treatments to aboveground vegetation (Craine et al., 1999; Wan and Luo, 2003). 

Clipping and shading treatments reduce photosynthesis by limiting the light received by the 

plants, thus there is a clear link between whole plant C gain and RS. In pastoral ecosystems, a 

large proportion of RS originates from the decomposition of recently added and highly 

available root-derived C substrates from plants (Domanski et al., 2001).  

Without plants present, RS in pastoral soils decreases rapidly but can continue at a low rate for 

an extensive period of time. Feng and Simpson (2009) reported that without plants present, RS 
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in a grassland soil was 12.6 µg CO2 kg
-1

 s
-1

 at 1 d following the start of an incubation at 20°C, 

the RS rate decreased 40% in the first week and then the RS rate slowly decreased to be 1.3 µg 

CO2 kg
-1

 s
-1

 after 370 d. This decline was due to soil microbes only having more recalcitrant 

C substrates available for respiration, compared to the root-derived C substrates. Plant 

residues are normally the last to start degrading and are decomposed relatively slowly (Berg 

et al., 1982). However, the decomposition of recalcitrant C is not limited by substrate supply 

because recalcitrant C is relatively abundant in soils. In a pasture soil, it was shown that only 

1.4 – 3.8% of total soil C was available to microbes and the rest was relatively recalcitrant, 

when the soil was incubated at 20° - 40°C for 225 d (Townsend et al., 1997).  

2.2.3.2 Temperature 

The relationship between temperature and the biochemical respiration process can be 

described by an exponential equation (van't Hoff, 1884) or an Arrhenius equation (Arrhenius, 

1898). To express the influence of temperature on RS, the term “temperature sensitivity” has 

been recently used in studies of RS (e.g. Davidson and Janssens, 2006). This term defines the 

relative change in RS caused by a particular range of temperature change. Temperature 

sensitivity is often shown as a Q10 value (Singh and Gupta, 1977). The Q10 value is a factor 

that represents the increase in RS rates when a temperature is raised by 10°C. If there is an 

exponential relationship between RS and temperature, then the following equation (eqn. 2.5) 

can be used to calculate the Q10 value by assuming Q10 is a constant over the temperature 

range, where R2 and R1 are RS observed at temperatures T2 and T1 respectively (Fang and 

Moncrieff, 2001). 

         (2.5) 

Early studies of RS often expressed the relationship between RS and temperature using a 

constant Q10 value of approximately 2 (Singh and Gupta, 1977). However, a more recent 

study suggested that the use of a constant Q10 value did not express the relationship very well. 

Lloyd and Taylor (1994) reported that the Q10 value changed widely over different 

temperature ranges and the Q10 value was larger at a lower temperature range. Hence, 

according to Lloyd and Taylor (1994), when no other factors are limiting RS, the rate of RS 

and TS have an Arrhenius type relationship as follows (eqn. 2.6):  
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where R10 is the rate of RS at 10°C and E0 is a parameter related to the activation energy. The 

parameter T0 describes a temperature (K) when R = 0. Using the Lloyd and Taylor model 

(eqn. 2.6), a 1°C increase in temperature increases RS by 10% at 10°C when no other factors 

are limiting RS (Lloyd and Taylor, 1994). Other limiting factors of RS can be nutrient supply, 

soil moisture, and the availability of soil organic matter. This is notable given the current 

predictions of future mean global surface temperature at 2090 to 2099 may be as much as 4°C 

higher compared to the mean global temperature over the period 1980 to 1999.  

2.2.3.3 Effects of substrate supply and availability on the temperature 
sensitivity of soil respiration 

Despite many experimental reports, there is still no scientific consensus on the temperature 

sensitivity of RS (Kirschbaum, 2006). Kirschbaum (2006) concluded that substrate availability 

played a critical role in determing the temperature sensitivity of RS, and that if the substrate 

availability changed during the period of measurement then this would confound the resulting 

temperature sensitivity of RS. For example, when no factors but temperature are affecting RS, 

the faster RS that occurs at a warmer temperature depletes the available C pool relatively 

quicker, thus reducing the RS rate. All things being equal substrate depletion is less likely to 

occur under cooler conditions. Hence, changes in C substrate pools at different temperature 

may bias the inferred temperature sensitivity (Gu et al., 2004).  

An increase in TS can also increase plant photosynthesis and subsequent root-derived C 

substrate supply. Substrate depletion of the root-derived C pool can occur if the rate of C 

input is smaller than the RS rate. For example, Piao et al. (2008) reported that, based on the 

analysis of the changes in the atmospheric CO2 concentration over the past two decades, there 

was a trend towards an earlier autumn-to-winter CO2 build-up in the atmosphere, suggesting 

increasing soil C losses in autumn. Piao et al. (2008) concluded that while both plant 

photosynthesis and RS increased during autumn warming the increase in RS was greater. 

Autumn temperatures over the research period focused on by Piao et al. (2008) rose by 0.8°C 

over two decades. Conversely, Piao et al. (2008) found spring warming enhanced C 

sequestration because of a longer growing season and greater photosynthetic activity due to an 

increase in the average spring TS (1.1°C) over the two decade study period. Piao et al. (2008) 

concluded that the increase in RS during autumn warming was offsetting 90% of the increased 

CO2 uptake during spring and that the predicted increase in global surface temperature may 

change this balance between RS and CO2 uptake. Hence, the relationship between substrate 

supply and RS can contribute significant uncertainty to future projections for the effects of 

global warming on terrestrial ecosystems (Luo, 2007).   
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The temperature sensitivity of RS also increases with the increasing molecular complexity of 

the C substrate (Bosatta and Ågren, 1999; Davidson and Janssens, 2006). Hence, in soils, 

organic matter decomposition is theoretically more temperature sensitive compared to 

respiration sourced from root-derived C because the molecular complexity of root-derived C 

is less than that of organic C. Work by Hartley and Ineson (2008), supporting this theory, 

showed that without plant C inputs, the temperature sensitivity of RS increased significantly as 

incubation time increased. Hartley and Ineson (2008) incubated a garden soil for 124 d 

without plants over a temperature range of 10° to 20°C. The Q10 values increased from 3.0 at 

day 7 to 3.2 at day 124, as the recalcitrance of the soil C increased. However, equal 

temperature sensitivities have also been reported for the decomposition of soil C with variable 

recalcitrance (Bååth and Wallander, 2003; Conen et al., 2006). Davidson et al. (2006) have 

proposed that the variability in the temperature sensitivities of RS are due to the multiplicative 

effects of several temperature-sensitive processes, namely, diffusion of oxygen and soluble C 

substrates through the air and water phases of the soil, diffusion of C substrates across cellular 

membranes, growth of microbial populations and root tissues, and enzyme activity. Bradford 

et al. (2008) also reported, using a > 15 year soil warming experiment, that in the long-term, 

the temperature sensitivity of RS was influenced not only by the substrate depletion but also 

by the thermal adaptation of microbial respiration. Further research is required in this area to 

improve the understanding of the variability in temperature sensitivities of RS. 

2.2.3.4 Soil fertility and microbial biomass 

Soil respiration is strongly related to NPP of plants (section 2.2.1) and soil fertility is a key 

factor determining the NPP (Robertson et al., 1997). In this thesis, soil fertility is defined as 

the soil‟s nutrient availability. Soil fertility controls the decomposition rate of soil C 

substrates (Melillo et al., 1982). For example, an experiment performed in Hawaiian forests 

showed that N and phosphorus (P) availability controlled the decomposition of litter in soil 

(Hobbie and Vitousek, 2000). A similar study performed in a grassland ecosystem has 

concluded that soil microbial respiration was limited by P availability, whereas N limited soil 

microbial respiration in soils with high levels of available P (Amador and Jones, 1993). A 

study by Hobbie and Vitousek (2000) found that other factors in addition to nutrient 

availability, for example, the abundance of soil fauna (i.e. earthworms and insects), also 

controlled the rates of RS.  

Soil fertility influences soil microbial community structure and population (Mawdsley and 

Bardgett, 1997; Orchard et al., 1992) and in pastoral ecosystems, RS has been shown to be 

related to soil N status. For example, Lovell et al. (1995) reported that soils receiving 
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continuous inputs of N fertiliser over a long term had a reduced root mass compared to 

unfertilised soils which subsequently resulted in lower microbial biomass and lower RS. 

Bardgett et al. (1999) also observed a biomass effect when they measured higher RS from 

low-input, unfertilised grasslands than from intensively managed systems and they concluded 

this was because of the reduced size of the active microbial biomass in intensively managed 

systems. It was shown by Bardgett et al. (1999) that the proportion of fungi relative to 

bacteria increased in the unfertilised grasslands, suggesting the microbial community structure 

also plays a key role in determining RS response. Further studies are required to determine the 

significance of soil fertility in pastoral ecosystems with respect to RS.  

2.2.3.5 Urine effects on soil respiration and C substrate supply 

Soil organic matter decomposition rates (ROM) respond positively to urine applications. For 

example, Kelliher et al.  (2005b) showed that following a urine application, ROM in a sieved 

pasture soil increased for 9 d when compared to ROM in a control soil. Plant growth and plant 

nutrient uptake have also been shown to be improved for approximately 2 months following 

urine deposition onto pasture (During and McNaught, 1961). Given the significance of the 

relationship between plant growth and RS described above (section 2.2.1) it would be 

expected that this enhanced plant growth would enhance root-derived C supply. However, 

Vines and Wedding (1960) reported that the large concentrations of ammonia reduced the 

respiration sourced from root-derived C because of the ammonia‟s potential toxic effect, 

although plants were treated with gaseous ammonia rather than urine-derived ammonia in this 

study.  

Urine deposition onto pasture ultimately leads to higher plant N content (Bol et al., 2004). As 

N content increases so too does the photosynthetic capacity of plants (Schulze et al., 1994). 

Thus this increases the supply of root-derived C. In fact Burton et al. (2000) stated that RRD 

was more dependent on N availability than TS. The study by Burton et al. (2000) proposed 

that greater metabolic activity of roots in N-rich zones lead to greater C allocation to those 

roots, and thus increases in RRD (at a given temperature) occur when a soil‟s available N 

content is higher. Ruminant urine deposition also increases soil microbial utilisation of C 

substrates, based on a community level physiological profiles analysis, and increases the 

number of bacteria which in turn affects C substrate respiration (section 2.2.3.4) (Williams et 

al., 2000). 

Shand et al. (2002) reported significant root scorching and the death of roots following urine 

deposition as a result of the ensuing high soil pH (~ 9.0). Approximately 6% of the live roots 

had been killed 56 d after urine treatment (Shand et al., 2002). Dead roots are readily 
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decomposed by soil microorganisms (Larionova et al., 2006). In addition, solubilisation of 

soil organic C has been shown to occur following urine application. Water-soluble C levels 

increased from 104 to 1090 mg C kg
-1

 within 5 h following a urine application when the urine 

was applied to a clipped pasture soil (Monaghan and Barraclough, 1993). Thus urine 

deposition has an indirect effect on RS by stimulating the release of C substrate suitable for 

RS. Contrary to this are the results of Ambus et al. (2007) who stated that RS was unaffected 

by urine deposition and that the increase of soil CO2 fluxes was mainly due to urea 

hydrolysis. However, Clough and Kelliher (2005) showed that, in a pasture soil at 20°C, CO2 

produced from RS following a urine application was greater than the amount of CO2 that could 

have been produced solely from the urine. Clough and Kelliher (2005) concluded that the 

priming effect was induced by the urine application and this lead to the increase (45%) in RS. 

2.2.4 Methods to investigate the factors controlling soil respiration in pasture 
soils 

Ecosystem models predict an increase in RS in response to increasing TS but with high degrees 

of uncertainty (Schimel et al., 1994). One of the areas in which the models are not successful 

is predicting which of the C pools is utilised (soil organic matter or root-derived C) (Zobitz et 

al., 2008). As noted above this literature review does not emphasize the distinction between 

RROOT and RRHIZ and the sum of the two respiration pathways is termed „RRD‟. Theoretically, it 

is possible to separately quantify RROOT and RRHIZ but currently available methods have 

difficulty in accurately quantifying the two components (Kuzyakov, 2004).  

A review article (Hanson et al., 2000) concluded that the approaches for measuring RRD and 

ROM could be broadly separated into three categories: component integration, root exclusion, 

and isotopic approaches. Isotopic methods have an advantage over component integration and 

root exclusion methods because they avoid the disturbance effects and they can measure RRD 

and ROM concurrently. The isotopic method approach is described in section 2.2.4.1. Other 

methods involve the removal of roots from soils and are based on the assumption that the ROM 

and RRD rates are not influenced by the removal of roots and other disturbance to the 

ecosystem. When the component parts of RS (i.e., roots and bulk soil) are separated, 

uncontrolled factors, e.g. soil moisture, may influence the respiration processes and create 

artefacts. The disadvantage of isotopic methods is the complexity of the experimental setup 

and the difficulty and cost of analytical measurements since isotopic methods often involve 

the artificial labelling of plants with a tracer. To overcome the disadvantage of isotopic 

methods natural 
13

C abundance techniques have been developed and Hanson et al. (2000) 
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have concluded that natural 
13

C  abundance techniques will become an increasingly popular 

for determining ROM and RRD. 

2.2.4.1 Natural 13C abundance technique 

There are two naturally occurring stable isotopes of C (
12

C and 
13

C) and the natural abundance 

of C in atmospheric CO2 is 1.1%. The ratio of 
13

CO2 to 
12

CO2 is used to generate a value 

termed „delta thirteen C‟ (δ
13

C which is expressed as follows in units of ‰, pronounced “per 

mill” (eqn. 2.7). 

10001
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C13 




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R

R
        (2.7) 

where R is the ratio of 
13

C to 
12

C in the sample or standard. The R (standard) is an established 

reference for 
13

C and is called Pee Dee Belemnite (PDB) standard. The δ
13

C value of 

atmospheric CO2 recorded recently in 2009 was -8.28‰ based on the extended record derived 

from INSTAAR/NOAA δ
13

C (CO2) discrete measurements at Mauna Loa (Tans, 2009). Plant 

materials have a different δ
13

C value because enzymes involving in photosynthesis 

discriminate against 
13

CO2. The mechanisms of the discrimination differ  between C3 and C4 

plants because different enzymes operate in C3 and C4 photosynthesis pathways (Bender, 

1968). The C3 plants are generally temperate species which follow the Calvin cycle of 

photosynthesis. The C4 plants are tropical plants and they have a relatively more efficient 

enzyme to fix CO2 but the enzyme requires a relatively high temperature to efficiently 

operate. The name “C4” comes from the fact that they initially fix CO2 in four-carbon 

dicarboxylic acids (Kortschak et al., 1965).  

The δ
13

C abundance values in C3 and C4 plant tissues range from -25 to -32‰ and -12 

to -15‰, respectively (Boutton et al., 1999). Plant residues are the dominant source of soil 

organic matter in pasture soils. Hence, soil with a long-term vegetative cover of either C3 or 

C4 plants will have soil δ
13

C abundances that reflect those of the respective C3 or C4 plant 

material grown (Schönwitz et al., 1986). The difference between the C3 and C4 plants and 

soils can be utilised to discriminate soil CO2 flux sources. For example, if C3 plants are 

growing on a „C4 soil‟, where soil organic matter has been produced, over time, from C4 plant 

organic matter, then it is possible to determine the CO2 flux source(s).  

The fraction of CO2 derived from root-derived C (fRD) can be calculated using the following 

mass balance equation (eqn. 2.8; Lin et al., 1999):  
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where the subscripts „SOIL‟, „OM‟, and „ROOT‟ refer to the CO2 respired from the soil 

surface (i.e. RS), the CO2 respired from the background soil (ROM), and the CO2 respired from 

the roots (RRD), respectively (Lin et al., 1999). Previous studies have successfully separated 

ROM and RRD using this technique (Millard et al., 2008; Rochette et al., 1999). The method has 

been used to show that ROM and RRD are influenced by season and soil moisture in a broad-

leaved forest (Sakata et al., 2007). It has also been used in a boreal mixed coniferous forest 

where it was shown that weather conditions markedly influenced RRD but not ROM (Ekblad 

and Högberg, 2001). However, no previous studies have investigated the temperature 

sensitivity of ROM and RRD in pastoral soils using the natural 
13

C abundance technique.  

2.3 Soil N2O emissions 

2.3.1 The importance of soil N2O emissions 

The concentration of N2O in the atmosphere has increased linearly by 0.26% yr
-1

 for the 

period 1998 – 2005 and equalled 319 ± 0.21 µl l
-1

 in 2005 (Forster et al., 2007). While 

uncertainty remains with respect to the total global sources of N2O, agriculture is believed to 

contribute about 80% of the anthropogenic emissions of N2O, and of this livestock production 

systems contribute about 30% of the emissions (Davidson and Mosier, 2004; Oenema et al., 

2001). The total N2O emissions from animal production systems were estimated to be 1.5 Tg 

N in 2000 (Oenema et al., 2005). Agricultural sources of N2O include; synthetic fertilisers, 

animal excreta and crop residues (de Klein et al., 2001). Ruminant urine is considered to be an 

important source of N2O (Oenema et al., 1997). In New Zealand, ruminant urine is the largest 

potential source of anthropogenic N2O emissions accounting for about 50% of the total N2O 

emissions (de Klein et al., 2001), with N2O contributing 17% of New Zealand‟s greenhouse 

gas emissions in 2007 (Petrie et al., 2007). The N2O molecule has a life time of approximately 

114 years and has the warming potential of 298 times greater than that of CO2 over a 100 year 

period (Forster et al., 2007). Currently N2O is also the dominant ozone-depleting substance 

and it is expected to remain so throughout the 21
st
 century (Ravishankara et al., 2009).  

2.3.2 Processes of nitrous oxide production in pastoral soils 

2.3.2.1 Nitrification 

Ruminant urine is the major source of N2O emissions from grazed pastoral soils (de Klein et 

al., 2001). The major N component in urine is urea (CO(NH2)2) and it makes up 50 to 90% of 

the N contained in urine (Bussink and Oenema, 1998; Doak, 1952). Following the deposition 
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of urine onto soil, urea is rapidly hydrolyzed by the enzyme urease and ammonium ions 

(NH4
+
) are formed (eqn. 2.9; Reynolds et al., 1985): 

  

CO(NH2)2 + 2H2O → (NH4)2CO3 ↔ 2NH4
+
 + CO3

2-
    (2.9) 

 

Nitrification is the oxidation of ammonia (NH3) to nitrate (NO3
-
) (Figure 2.1) and it is 

performed by both bacteria and archaea (Leininger et al., 2006). Nitrification occurs in soils 

with relatively high O2 contents. Ammonia and NO2
-
 are the electron donors in nitrification 

processes and the microbes obtain their C from CO2, in a process called autotrophic 

nitrification (Wezermal and Gannon, 1967). Heterotrophic nitrification may also occur under 

acid conditions in pastoral soils (Islam et al., 2007). Nitrous oxide is produced during 

oxidation of NH3 and hydroxyamine (NH2OH) and in soils (Yoshida and Alexander, 1970), 

and occurs when the soil is well aerated (Blackmer and Bremner, 1977).  

 

     N2O                  

       ↑                    

NH3 → NH2OH → NO2
-
 → NO3

-
 

Figure 2.1 Outline of the nitrification pathways (after Wrage et al., 2001). 

 

2.3.2.2 Denitrification 

Denitrification is the biological reduction of NO3
-
 to N2 (Figure 2.2). The organisms involved 

in the denitrification processes are predominatly heterotrophic microorganims hence they 

utilise organic C substrates. The microbes involved in denitrification are facultative anaerobes 

which mean they can use both O2 and NO3
-
 (or NO2

-
) as the electron acceptors (John, 1977). 

Hence, the presence of O2 stops denitrification and denitrification occurs in soils under 

conditions of O2 depletion (Bremner and Shaw, 1958; Russow et al., 2009). Both NO and 

N2O are obligate intermediates of denitrification (Payne, 1973; Russow et al., 2009). 
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                            Gaseous Losses 

                            ↑           ↑         ↑ 

NO3
-
 → NO2

-
 → NO(g) → N2O(g) → N2(g) 

Figure 2.2 Outline of the denitrification pathway (after Hoschstein and Tomlinson, 

1988). 

 

2.3.2.3 Coupled nitrification-denitrification  

In soils, coupled nitrification-denitrification occurs where there are anaerobic-aerobic 

interfaces (Wrage et al., 2001). Nitrite (NO2
-
) or NO3

-
 produced during nitrification can be 

utilized by denitrifiers. Hence, coupled nitrification-denitrification occurs in soils where 

favourable conditions for both nitrification and denitrification are present (Figure 2.3). In 

terms of N2O production, coupled nitrification-denitrification can be very important. For 

example, Khdyer and Cho (1983) observed that in a forest soil, N2O following an addition of 

urea was mainly produced when the conditions were sub-obtimal for both nitrifiers and 

denitrifiers, and they concluded that the coupled nitrification-denitrification was the main 

source of N2O when urea was applied on the surface of Wellwood soil samples at 20°C. 

When a cattle manure was applied to an aerobic soil, coupled nitrification-denitrification was 

again the predominant cause of N loss from the soil to the atmosphere (Nielsen and Revsbech, 

1998).  

2.3.2.4 Chemodenitrification  

Chemodenitrification is the abiotic chemical decomposition of NO2
-
 with organic or inorganic 

compounds (Wrage et al., 2001). Chemodenitrification occurs in soils of low pH  (< 5) (van 

Cleemput and Baert, 1984) and it has been reported to be a significant source of N2O when 

high concentrations of NO3
-
 have accumulated (Anderson and Levine, 1986).  

2.3.2.5 Nitrifier-denitrification 

Nitrifier-denitrification is performed only by nitrifiers, whereas nitrifiers and denitrifers are 

involved in coupled nitrification-denitrification (Wrage et al., 2001). In nitrifier-

denitrification, nitrifiers oxidize NH3 to NO2
-
 then reduce the NO2

-
 to N2O and N2 (Figure 

2.3). Nitrifier-denitrification can be the predominant source of soil N2O fluxes when soil 

moisture contents are low (Webster and Hopkins, 1996). Using a dual-isotope labelling 

method (
18

O and 
15

N), Wrage et al. (2005) showed that nitrifier-denitrification contributed 

37% of soil N2O emissions 6 h following the addition of 
15

N-labelled ammonium nitrate to an 

arable soil. Russow et al. (2009) reported that nitrifier-denitrification occurred when soil 
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oxygen contents were between 2 to 5%. However, studies focusing on nitrifier-denitrification 

and soil N2O fluxes are sparse and further studies are required (Wrage et al., 2001). 

 

 

Figure 2.3. The pathways for coupled nitrification-denitrification and nitrifier 

denitrification. The overlapping boxes symbolize the possibility of a coupling between 

nitrification and denitrification. In the proposed pathway of nitrifier-denitrification, 

NO2
-
 is reduced and NO3

-
 is not formed (after Wrage et al., 2001). 

 

2.3.3 Factors controlling soil N2O emissions 

The factors controlling soil N2O emissions are complicated due to the many processes 

involved. The following literature review discusses the impact of the major factors controlling 

soil N2O emissions, namely, soil pH, substrate supply and availability, temperature, and soil 

moisture. In addition, the importance of urine deposition events with respect to soil N2O 

emissions from pastoral ecosystems is discussed.  

2.3.3.1 Soil pH 

Soil pH influences the rates of denitrification and the N2O:N2 ratio (Focht and Verstraete, 

1977). The optimum pH range for denitrification has been reported as being between pH 7.0 

and 8.2 (Delwiche and Bryan, 1976). However, Šimek et al. (2002) have reported that there 

was no simple relationship between denitrifying enzyme activity and soil pH and that soil 

denitrifiers could adapt to soils at different pH. The N2O:N2 ratio decreases as soil pH 

increases (Hauck and Melstead, 1956). During nitrification, an increase in soil pH generally 

increases nitrification activity but the optimum pH has varied from 3.0 to 9.5 and depends on 

the ecosystem (Kyveryga et al., 2004; Ste-Marie and Paré, 1999). In a pastoral ecosystem, the 

effect of soil pH on N2O emissions is influenced by soil moisture contents, for example, 

Clough et al. (2004) reported that under saturated soil conditions, soil N2O emissions from a 

Refer to Wrage et al. 2001 
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urine patch increased with soil pH between pH 4.7 to 6.6 but when soil moisture contents 

were at the field capacity, soil N2O emissions decreased with increasing soil pH.  

2.3.3.2 Substrate supply and availability 

For the heterotrophic microbes involved in N2O production, organic material acts both as a C 

source and as a hydrogen donor. Hence, N2O production is normally greatly enhanced upon 

the addition of soil organic C. For example, the addition of glucose markedly enhances the 

denitrification rate in soils under anaerobic condition (Azam et al., 2002; Jacobson and 

Alexander, 1980). Bailey (1976) reported that, in pastoral ecosystems, readily available 

organic C is supplied from plant roots and that the presence of roots increased denitrification 

rates. Conversely, Sauer et al. (2009) concluded that soil inorganic N uptake by plants during 

the winter-spring period reduced N2O emissions from a pasture soil. Thus, studies focusing on 

the effects of plants on soil N2O emissions show contradicting results. Burford and Bremner 

(1975) published a classic study that demonstrated there was a very strong (r = 0.99) linear 

relationship between denitrification rate and the soil‟s water-soluble C content when there 

was enough NO3
-
 present. Hence, factors that affect the magnitude and quality of the soil‟s 

various C pools (e.g. plant activity) also have the potential to control the C substrate supply 

available for heterotrophic induced N2O emissions. 

2.3.3.3 Temperature 

The mechanisms controlling the effect of temperature on soil N2O emissions are complex 

because multiple processes are responsible for soil N2O emissions (Li et al., 1992). The 

optimum temperature for nitrification has been reported to be 35°C (Hadas et al., 1986) 

whereas for denitrification, the optimum may be as high as 65°C (Bremner and Shaw, 1958). 

However, soil N2O emissions may not always respond positively to temperature. For example, 

Gödde and Conrad (1999) demonstrated that soil N2O emissions can be greater at a low 

temperature (4°C) compared to a higher temperature (15°C) and their study concluded that 

soil microbes are able to adapt to low temperatures. The N2O:N2 ratio was shown to decrease 

with increasing temperature probably due to increasing denitrification rates at higher 

temperatures (Avalakki et al., 1995; Maag and Vinther, 1996). Conversely, Firestone (1982) 

reported that N2O produced via denitrification could be enhanced relative to the other 

products at low temperatures. Temperature may indirectly influence soil N2O emissions, for 

example, a TS increase may increase RS, causing O2 concentration to decrease, thus creating 

favourable denitrification conditions and increasing denitrification (Parkin and Tiedje, 1984). 

Soil microbial populations or community structures may also influence the responses of soil 

N2O production mechanisms to temperature because N2O fluxes in soils sampled at the same 
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site, but in different seasons, have been shown to respond differently to soil temperature 

changes (Struwe and Kjøller, 1991).  

2.3.3.4 Soil moisture 

Soil moisture has a strong influence on soil N2O emissions, since it controls the degree of 

aeration (Smith et al., 2003). When soil moisture contents are high, air permeability declines, 

reducing soil aeration, and denitrification is promoted under the low O2 conditions (Grable, 

1971). Generally the higher the soil moisture content, the more N2O is emitted from soils 

because microbial activity is limited in dry soils (Weitz et al., 2001). Also, high N2O 

emissions are commonly observed during a sudden and large change in soil moisture 

(Müller et al., 1997). However, when soils are completely saturated or are under completely 

anaerobic conditions, N2O may further be reduced to N2 via denitrification (Letey et al., 

1980). Hence, soil N2O emissions may peak at soil water-filled pore space (WFPS) values of 

75% to 90% (Khalil and Baggs, 2005; Klemedtsson et al., 1988). Nitrous oxide production by 

nitrifiers is also affected by soil moisture. For example, Skopp et al. (1990) found that the 

optimal soil water content for nitrification was 60% WFPS. The effect of soil moisture on soil 

N2O emissions may also vary according to soil structure and texture. Chalamat (1985) 

reported that the number of anaerobic sites was higher in fine structured soils. Hence, an 

increase in soil moisture content may have a more significant effect in fine textured soils if 

N2O emissions are from denitrification. A sudden change in soil moisture, due to drying-

wetting cycles, has an effect on soil N2O emissions because a sudden wetting can solubilize 

soil C, feeding heterotrophic microbes (Rudaz et al., 1991). 

2.3.3.5 The interaction between soil moisture and temperature 

The temperature response of soil N2O emissions is reported to be influenced by soil moisture 

(Schindlbacher et al., 2004). A review of soil N2O emission data, defined as an emission 

factor (EF), for grassland systems across Europe, showed that the percentage of N2O-N 

produced per unit of fertiliser N added, increased markedly with an increase in TS, but only 

when WFPS was between 60 and 90% (Flechard et al., 2007). In Figure 2.4, it can be seen 

that EF values of up to 6.5% were predicted for a soil temperature at 25°C and a WFPS of 

between 70% and 80%, whereas at the same temperature and at a WFPS below 50% and 

above 90%, EF values of < 1% were predicted (Flechard et al., 2007). At lower TS, changes in 

soil N2O emissions with changes in soil moisture are reported to be relatively small (Maag 

and Vinther, 1996).  
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Figure 2.4 The modelled response of the emission factor (EF) from fertilizer to soil 

temperature and WFPS (after Flechard et al., 2007). 

 

Hence, soil N2O emissions can occur at high temperatures (~ 25°C) and high soil moisture 

contents but in practice, such optimum conditions seldom occur in pastoral systems and soil 

moisture contents are generally lower when temperatures are higher (McKenzie et al., 1999). 

A field study performed in a pastoral system in Switzerland has concluded that soil water 

content was the main factor controlling soil N2O emissions (Rudaz et al., 1999). Despite this 

the rewetting of dry soil may also cause a marked increase in soil N2O emissions as 

demonstrated during an incubation study at a constant TS of 14°C, hence the interaction 

between soil moisture and temperature is a critical determinant of soil N2O emissions (Ruser 

et al., 2006). 

2.3.3.6 Urine deposition 

In pastoral ecosystems, urine-N is the single most important source of soil N2O emissions (de 

Klein et al., 2001). A brief description of soil N transformation processes which occur 

following the application of urine were described earlier (section 2.3.2). A portion of the N 

contained in the ingested pasture is returned to the soils as urine-N from the grazing animals. 

This N is predominantly in the form of urea. The urine-N is not evenly distributed onto the 

pasture but deposited in small concentrated patches, termed urine patches. The concentration 

of N under a urine patch can be as high as 1000 kg N ha
-1

 (Haynes and Williams, 1993). A 

previous study has estimated that between 0.1 and 3.8% of ruminant urine-N is emitted to the 

atmosphere as N2O (Oenema et al., 1997).  

Refer to Flechard et al. 2007 
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The mineralization of soil organic N also increases under the soils treated with urine. The 

increase in the N mineralisation may occur due to an increase in microbial activity under the 

urine patch (Zaman et al., 1999). The increased plant activity under a urine patch, a 

consequence of the fertiliser effect of the urine constituents, may also lead to the higher rates 

of N mineralisation (Thompson and Fillery, 1997).  

As noted above (section 2.2.3.5) the application of urine to soils leads to a rapid increase in 

soil pH due to the hydrolysis of urea (Doak, 1952). The increase in soil pH increases the 

solubility of soil organic C (Monaghan and Barraclough, 1993). In addition, C substrates can 

increase in urine-treated soils due to the root scorching events (Carter et al., 2006). Shand et 

al. (2002) observed in a field experiment that the increase of soil pH after the application of 

sheep urine on pasture was followed by an increase of  dissolved organic C in the soil. Hence, 

urine provides both N and C substrates for subsequent nitrification and denitrication 

processes. Nitrous oxide is produced through both nitrification and denitrification and 

following a urine application, denitrification may be the main N2O producing process, 

however, this depends greatly on soil water content (van Groenigen et al., 2005).  

2.3.4 Methods to investigate the factors controlling soil N2O emissions in 
pasture soils 

2.3.4.1 Nitrogen isotope technique 

To investigate the N2O source following urine-N deposition, a 
15

N isotope technique has 

commonly been used (Wachendorf et al., 2008). For example, Clough et al. (2004) studied the 

fate of 
15

N-labelled urea mixed with synthetic urine applied to a pasture soil (500 kg N ha
-1

). 

Over a 85 d incubation period following urine-N addition, < 0.1 to 1.7% of 
15

N applied was 

recovered as N2O-N. Clough et al. (2004) investigated the effects of soil pH and soil moisture 

contents on soil N2O emissions and the 
15

N isotope technique successfully allowed the 

treatment effects on soil N2O emissions to be quantified. Bronson et al. (1999) also showed, 

using a 
15

N labelled urine, that the short-term N dynamics under urine patches could be 

studied using a 
15

N isotope technique. Bronson et al. (1999) concluded that following urine 

addition to a soil with plant litter on its surface, the major loss of urine-N due to NH3 

volatilization with negligible losses of N2O from urine-N. The 
15

N isotope technique is a 

standard technique used to investigate N transformations under urine patches.   

2.4 Global warming and the pastoral ecosystem 

The IPCC reported that global mean surface temperatures have risen by 0.13 ± 0.03°C per 

decade over the last 50 years (Trenberth, 2007) and it has been shown that NPP responds on a 
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global basis to small changes in temperature e.g. a drop of 0.5°C as a result of the Mount 

Pinatubo volcano eruption in 1991 decreased the NPP of the global boreal zone by 25 g C m
-2

 

yr
-1

 in 1992 (Lucht et al., 2002). Understanding the effect of temperature on soil processes is 

critically important for predicting the responses of the pastoral ecosystem to global warming 

in terms of the role temperature will play in mediating either positive or negative feedbacks 

on RS (Cox et al., 2000; Luo et al., 2001; Melillo et al., 2002) and N2O emissions (Smith, 

1997). In this section, recent literature is reviewed with respect to the current trends and 

predictions for global warming, in order to provide an overview of the complex relationships 

between global warming and soil processes in pastoral ecosystems. 

2.4.1 Changes in global mean atmospheric temperature 

The Fourth Assessment report (AR4) of the Intergovernmental Panel on Climate Change 

(IPCC, 2007b) states that over the last 100 years, the global mean surface temperatures have 

risen 0.74 ± 0.18°C (Fig. 2.5) and this is unequivocally attributed to anthropogenic activity. 

Future climate scenarios have been assessed and a warming of 0.2°C per decade is projected. 

However, if the atmospheric concentrations of greenhouse gases continue to increase at the 

current rate then average global surface temperature by 2090 to 2099 are predicted to increase 

by as much as 4.0°C (range of 2.4°C to 6.4°C) compared to  the period 1980-1999 (Meehl et 

al., 2007).  

 

  

Figure 2.5 Observed changes in global average surface temperature based on the global 

average surface temperature in 1990. The shaded areas are the uncertainty intervals 

estimated from a comprehensive analysis of known uncertainties (after IPCC, 2007b). 

 

Year 

1900 1850 1950 2000 

Refer to IPCC AR4 report 2007 
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For New Zealand, the predicted changes in climate, resulting from global warming, are 

predicted to vary with geographical region (Christensen, 2007) with the mean surface 

temperature increases for New Zealand predicted to be 0.9°C by 2040 and 2.1°C by 2090. 

New Zealand‟s Ministry for the Environment (2008) has stated that this predicted increase in 

temperature, along with other possible changes in climate, may change the frequency and 

intensity of existing risks and hazards, but may also bring opportinuties in agricultural sectors 

(e.g. the potential to grow new crops).  

2.4.2 Potential effects of global warming on soil processes in pastoral 
ecosystems 

2.4.2.1 Potential effects of global warming on soil respiration 

In pastoral ecosystems, almost every aspect of the soil-plant continuum, for example, plant 

growth, soil microbial activity, and soil moisture characteristics have been shown to be 

affected by changes in soil and atmospheric temperature (Thornley and Cannell, 1997). The 

study by Thornley and Cannell (1997) analysed the effects of increasing both annual mean 

atmospheric and TS by 5°C, where the 5°C increase in atmospheric and TS represented an 

extreme in order to demonstrate the response of soil processes. As noted above (section 

2.2.3.2) RS is very sensitive to TS hence, it is considered likely that global warming will 

increase RS but uncertainty remains high with respect to the magnitude of any changes in RS 

as a result of global warming (Rustad et al., 2000).  

A small change in RS could potentially have a significant impact on atmospheric CO2 

concentrations because on a global scale, terrestrial ecosystems, including vegetation and 

soils, are one of the main reservoirs of C on Earth, containing 2200 Gt C, or approximately 

three times the C in the atmosphere (Schimel, 1995). Hence a small increase in the rate of RS 

as a consequence of global warming, could have a significant impact on atmospheric CO2 

concentration, if all other factors remained the same.  

2.4.2.2 Acceleration in carbon loss from soil and soil carbon cycle feedback 

Global warming can potentially increase C loss from soil to atmosphere due to enhanced RS 

and this phenomenon could further accelerate global warming (Cox et al. 2000), resulting in a 

positive feedback. Global warming directly influences factors controlling RS such as soil 

microbial community function via processes such as soil enzyme activity (shown as a „direct 

feedback‟ in Fig. 2.6). Further indirect effects occur as secondary processes. For example, 

elevated temperatures may enhance NPP and rhizodeposition (Fig. 2.6). The increase in NPP 

increases root-derived C substrate supply for RRD, and RRD can prime ROM. The relationship 

between NPP and RS is stronger in grassland compared to forest sites, possibly because there 
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is no allocation of C to wood production in grasslands, thus grasses may have more 

photosynthate available for RS (Raich and Tufekciogul, 2000). It was reported that in long-

term pasture ecosystems, losses from respiration exceeded the inputs from photosynthate and 

resulted in a long term (17 – 30 years) C loss from soils (Schipper et al., 2007). Hence, the 

better understanding of the relationship between C substrates and respiration in grassland 

ecosystems is critical to accurately predict the effect of global warming on soil C in grassland 

ecosystems. Bardgett et al. (2008) have concluded that the consideration of both direct and 

indirect impacts of global warming on soil microbes and RS processes is critical in order to 

make progress in understanding the soil C cycle feedback.  

There are considerable gaps in our understanding of belowground processes (e.g. RS) when 

compared to our knowledge of aboveground processes (e.g. photosynthesis) (Pendall et al., 

2008). However, the issue is complicated further by the knowledge that aboveground and 

belowground processes strongly interact (Bardgett et al., 2008). For example, actively 

growing plants are reported to enhance or supress ROM (Kuzyakov et al., 2000). Soil microbes 

are also reported to determine plant community and productivity (Wardle et al., 2004). Hence, 

there is an urgent need for greater understanding of how RS directly and indirectly responds to 

global warming. 

 

 

Figure 2.6 Direct and indirect effects of climate change on soil microbial communities 

and routes of feedback to global warming through soil respiration (RS) (After Bardgett 

et al. 2008). 
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2.4.2.3 Potential effects of global warming on soil N2O emissions 

As noted above, N2O production from soils is positively correlated to TS (section 2.3.3.3) 

hence, a positive feedback in response to global warming is predicted for soil N2O emissions 

(Smith, 1997). A mathematical model, the Denitrification-Decomposition (DNDC) model (Li 

et al., 1992), has predicted that in a maize field under a humid climate, soil N2O emissions are 

very sensitive to TS, and annual N2O fluxes will increase by 13% if annual mean TS increases 

by 1°C (Li et al., 1996). The increase in soil N2O emissions may be partially due to increased 

enzymatic activity during N2O production and the increased release of soil N due to enhanced 

mineralisation (Lükewille and Wright, 1997). The model (Li et al., 1992) also predicted an 

increase in mineralisation when TS increased. The increase in mineralisation of N and TS may 

also increase NPP (Rustad et al., 2001), leading to increased root exudation and C inputs into 

the soil which may further increase soil N2O emissions (Song and Zhang, 2009).  

In complete contrast, using another mathmatical model for soil N2O emissions (Carnegie-

Ames-Stanford or CASA model), Potter et al. (1996) have concluded that a 20% increase in 

TS was likely to reduce soil N2O emissions by between 1 to 21% in many different types of 

ecosystems including pastoral ecosystems because reduced soil moisture contents and 

increased plant N uptake, influenced by the increase in TS, will negatively influenc soil N2O 

emissions. Similar to Potter et al. (1996), Hantschel et al. (1995) conducted a soil warming 

experiment (+ 3°C TS) and showed that soil N2O emissions from a cropping farm over a 3-

month winter period decreased as a result of soil warming.  

Further investigation of the factors controlling soil N2O emissions is therefore critical since 

70% of global N2O emissions originate from soils (Conrad, 1996). New Zealand‟s agricultural 

greenhouse gas inventory has a significant soil derived N2O component, as discussed above 

(section 2.3.3.3), hence a small change in TS could have a marked effect on soil N2O 

emissions and New Zealand‟s agricultural greenhouse gas inventory. 

2.5 Recommendation for research 

A very complex interaction of soil/plant/animal processes and environmental factors controls 

RS and N2O emissions. These complex interactions need to be investigated to improve our 

knowledge of the temperature response of RS and N2O emissions.  

Firstly the influence of readily available C supply on the relationship between TS and RS must 

be studied. Soils contain a small amount of readily available C substrates, which deplete 

within days without plants, and a large amount of less available or non available C substrates. 

It is known that soil microbes preferably utilise readily available C substrates but they also 
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slowly utilise less available C substrates. However, uncertainty remains high with respect to 

microbes ability to decompose less available C at different TS.   

To further improve our understanding of the interaction between plants and readily available 

C substrate supply to soils, further studies on RS substrates are critically important. Current 

models for the temperature sensitivity of RS fail to accurately describe the relationship 

between ROM and RRD (Zobitz et al., 2008). The relationship between ROM and RRD at different 

TS needs to be studied using stable isotope techniques. The predicted acceleration of C loss 

from soils due to global warming (section 2.4.2.2) is strongly related to ROM whereas RRD may 

indirectly be related to the acceleration of soil C loss because plant activity can also increase 

ROM (priming effect). It is unclear how soil nutrient availability affects the priming effect and 

the temperature response of ROM and RRD. This needs to be examined.    

In pastoral ecosystems, the high concentration of N deposited in ruminant urine patches 

increases both plant production and readily available C substrate supply to soils resulting in 

high soil CO2 and N2O fluxes. Because of an increase in soil pH, which solubilises soil 

organic matter and the high N loading under urine patches, the factors controlling the 

temperature response of soil CO2 and N2O fluxes from urine patches could be different when 

compared to other ecosystems (e.g. forests). Thus, studies of soil CO2 and N2O fluxes from 

urine patches at varying TS are needed to increase our knowledge of the pastoral ecosystem‟s 

response to potential increases in global mean surface temperatures. 
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    Chapter 3 

Soil microbial respiration responses to changing 

temperature and substrate availability in fertile 

grassland 

A manuscript from this study has been accepted for publication in  the 

Australian Journal of Soil Research: Uchida, Y., Clough, T.J., Kelliher, F.M., 

and Sherlock, R.R. Soil microbial respiration responses to changing temperature 

and substrate availability in fertile grassland. This is refered to in later chapters 

as Uchida et al. (2010). 

 

3.1 Abstract 

A relationship between soil respiration rate (RS) and temperature (TS), has been understood to 

be predicated on carbon (C) substrate availability. However, unlike TS, C availability in soils 

is not a state variable that can be readily measured. The C in soils has come from plants, so 

the C supply rate can be affected by the weather and nutrient supply. I studied a fertile soil 

beneath pasture, measuring RS across a range of temperate-climate TS values. The objectives 

for the study were to: (1) quantify the synchrony of diurnal changes in TS and RS beneath 

pasture under conditions favourable for plants, (2) quantify responses of microbial respiration 

(RM) to the removal of plants and depletion of C supply over time at various TS and (3) 

determine if RM was related to water (20ºC) soluble (WSC) and hot-water (80ºC) soluble C 

(HWSC) contents of the soil. At a grassland site, RS increased with TS as predicted by an 

Arrhenius type relationship. Sampled soil was incubated at 3°, 9° and 24°C and RM was 

measured over 14 d. In addition soil samples were pre-incubated at 3° or 9°C for both 5 and 

14 d, then incubated at 24°C for 1 d and RM was measured. On day 2, RM was less than 

predicted at 24° and 9°C, respectively, suggesting a C availability limitation. The time courses 

of RM, revealed that at 24°C, RM utilised C that was not utilised at lower TS, indicating that 

evidently recalcitrant C was available to microbes at a warmer temperature. The responses of 

RM at 24°C after the pre-incubation treatments were identical for the 3°C and 9°C pre-

incubation treatments although significantly more C was respired during pre-incubation at 

9°C. The WSC and HWSC contents were unaffected by TS and did not provide useful 

measures of the C substrate available for RM.  

. 
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3.2 Introduction 

In soils, the relationship between microbial respiration (RM) and temperature (TS) is of 

heightened interest (e.g. Cox et al., 2000). The mean global surface temperature has been 

predicted to increase by 2.4° to 6.4°C over the next 90 years (Meehl et al., 2007). Microbial 

respiration can be very sensitive to TS and soils contain a large reservoir of C (approximately 

1500 Gt C - Amundson, 2001). Thus warmer soils could accelerate the rate of increase in the 

atmospheric CO2 concentration and further induce global warming (Amundson, 2001; 

Davidson and Janssens, 2006; Kirschbaum, 1995). According to Lloyd and Taylor (1994), a 

1°C increase in TS may increase RM by 10% at 10°C. The effect of a 1°C increase in TS on RM 

varies inversely to TS; hence RM is more temperature sensitive at lower TS.  

Soil microbial respiration (RM) utilises C substrates of varying availabilities. Low molecular 

weight C substances such as sugars and organic acids are more readily utilised by microbes, 

so called „readily available C substrates‟ (Sikora and McCoy, 1990; Townsend et al., 1997). 

Their residence time in soils can be measured in terms of days (Domanski et al., 2001). Soils 

also contain C substrates that are either not available or less readily available to microbes 

because they are physically and/or chemically protected. Their residence time in soil can be > 

1500 yr (Parton et al., 1987) and these protected C substrates have been called „recalcitrant C 

substrates‟ (Rovira and Vallejo, 2002; Six et al., 2002). The recalcitrant C substrate fraction in 

a soil is normally much larger than the readily available C substrate fraction because soil 

microbes preferably consume readily available C substrates at faster rates (Koepf, 1953; 

Townsend et al., 1997).  

The rate of readily available C substrate supply is related to plant photosynthesis and growth. 

The relationship can be expressed as; 

        

NPP = GPP (1 -φ)         eqn. 3.1 

 

where NPP, GPP, φ are net primary production, the average rate of photosynthesis, and the 

proportion of assimilated C lost through plant respiration as well as other processes such as 

exudation of readily available C substrate from plants to soil, respectively (Lloyd and 

Farquhar, 2008). The study of Lloyd and Farquhar (2008) has reported that the parameter φ 

was relatively constant. Hence, I can infer that soil fertility, which strongly controls NPP, also 

affects readily available C substrate supply to soils. The C assimilated by pastoral plants can 
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be made available for RM within 24 h and the turnover of recently assimilated C was 

estimated to have been completed in 3 – 4 d according to Butler et al. (Butler et al., 2004). 

Saggar and Hedley (2001) also reported that within 4 h of pulse 
14

C application, 7 – 12% of 

the 
14

C was detected in roots. Hence soil fertility, influences readily available C supply to 

soils from plants, and RM can be strongly correlated on a short-term basis.  

The decomposition of recalcitrant C substrates is not normally limited by substrate supply 

from plants. Soil microbes consume recalcitrant C substrates at much slower rates (van Hees 

et al., 2005). Hence, RM can be limited during microbially favourable temperature conditions 

if the readily available C substrate supply is exhausted and soil microbes have only 

recalcitrant C substrates to obtain their energy. This is called substrate limitation (Kirschbaum, 

2006). The response of RM to TS can be suppressed by substrate limitation (Hartley et al., 

2008). It should be noted that the predicted increase in mean global temperature does not 

occur in isolation, but that it is predicated on the increasing concentration of atmospheric 

CO2. This may confound the relationship between RM and TS. In fact a meta-analysis of 117 

free air carbon dioxide enrichment (FACE) and open top chamber studies by de Graaff et al. 

(2006) reported soil respiration increased  by 17.7% although the C dynamics were highly 

dependant on soil nutrient supply. Experiments performed in a grazed pasture FACE facility 

located in a New Zealand grazed temperate grassland showed that while root growth and root 

turnover rates increased under elevated CO2 (Allard et al., 2005) the uncertainty of the effect 

of increased atmospheric CO2 concentration on microbial activity in a grazed temperate 

grassland remained high (Allard et al., 2006; Allard et al., 2005). It has also been suggested 

that substrate limitation will become more common in soils if global temperatures increase, as 

soil microbes are forced to utilise more recalcitrant C substrates because an increase in TS 

may cause a greater increase in RM compared with the increase of C inputs to soils from 

plants, although this may depend on soil types and substrate availability (Christensen et al., 

1999; de Graaff et al., 2006; Piao et al., 2008).  

Hence more studies are required to investigate the relationship between C substrate limitation 

and the response of RM to TS (Kirschbaum 2006). Carbon substrate availability has received 

the least attention as a controller of RM, probably because it is very difficult to measure 

(Davidson et al., 2006). Simple and commonly reported methods for estimating readily 

available C substrates include water soluble C (WSC) and hot-water soluble C (HWSC) 

analyses. These have been used as indicators of substrate availability in soils (Davidson et al., 

1987; Ghani et al., 2003; Haynes, 2000). Grazing intensity, land use types, denitrification 

activity, root activity and microbial biomass C have been shown to be closely related to WSC 
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or HWSC in previous studies (Burford and Bremner, 1975; Cheng, 1996; Ghani et al., 2003; 

Sparling et al., 1998). Microbial availability and molecular weights of substances in WSC are 

influenced by land use, management and sampling depth of the soil profile (Boyer and 

Groffman, 1996; Jandl and Sollins, 1997). Kelliher et al. (2005b) concluded that RM was not 

proportional to WSC at constant TS. However, the relationships between WSC, HWSC, and 

short-term changes in RM at varying temperatures remain uncertain.  

The first objective of this study was to measure the response of total soil respiration (RS) to TS 

at a grassland site. This recognized that the most rapid and largest predicted changes in TS can 

also happen within a daily timeframe. The second objective was to change TS of the sieved 

soil and measure the response of RM without plants. The third objective was to change TS and 

the quantity of C available to the microbial community and measure the response of RM, while 

the fourth object was to determine if RM responded to changes in WSC and HWSC that have 

been proposed to indicate available C in soils. I hypothesised that at higher temperatures, 

readily available C in a pasture soil would be depleted more rapidly by RM and that this would 

be indicated by the WSC and HWSC measurements. 

3.3 Materials and Methods 

3.3.1 Field measurements of soil respiration rates 

To measure the response of RS to changing TS an irrigated and regularly fertilised grassland 

site, producing in excess of 18 tonnes ha
-1

 of herbage dry matter yr
-1

, at Lincoln, New Zealand 

(43°
 
39‟S, 172°

 
29‟E, 8 masl) was selected. The soil is a poorly drained Temuka silt loam 

(Soil Survey Staff, 1998). In this study, the term RS includes root and microbial respiration. 

Soil microbial respiration, which was measured from sieved soils (0 – 50 mm depth) without 

plants, was termed RM (see below). I measured RS at the field site at intervals over 16 h during 

a sunny day in autumn (3
rd

 April 2009). Sunrise and sunset on the day were at 7:40 a.m. and 

at 7:08 p.m., New Zealand Standard Time (NZST), respectively. It was assumed that TS and 

RS would change in synchrony over the day indicating no substrate limitation of RS because 

the grass would supply C substrates to soils as required. The soil was well-watered, with 

measurements conducted one day after rain. The soil‟s water-filled pore space (WFPS) was 

59 ± 6% and the bulk density (0 – 5 cm depth) was 980 ± 80 kg m
-3

 (± SEM, n = 3). To 

measure RS, 5 PVC collars (5 cm depth and 10 cm in diameter) were inserted 24 h beforehand 

with vegetation clipped. A portable chamber with an infrared gas analyser (SRC-1 and EGM-

1, PP Systems, Hitchin, UK) was used to measure RS. At a depth of 1 cm, TS was 
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continuously measured with a thermocouple probe and data logged using a HOBO data logger 

(Onset Computer Co.).   

To quantify the response of RS to changes in TS the model developed by Lloyd and Taylor 

(1994) (eqn. 3.2) was used. The parameter R10 is the respiration rate at 10°C, TS is expressed 

in Kelvin (K), and 308.56 (K) is a parameter analogous to the activation energy derived from 

the soils data analysed by Lloyd and Taylor. Rx is either RS or RM (the latter measured in 

laboratory experiments described below). This equation yields a decreasing response of Rx to 

changing TS. The model may be written following „eqn 11‟ of Lloyd and Taylor‟s paper 

(1994). 

 

        eqn. 3.2  

 

3.3.2 Preparation of soil for laboratory experiments 

Soil samples (0 – 5 cm depth) were collected from a local dairy farm at Lincoln, New Zealand 

in early autumn 2009. The soil is a poorly drained Temuka silt loam (Soil Survey Staff, 

1998). At sampling, the vegetation was principally perennial ryegrass (Lolium perenne L.) 

and white clover (Trifolium repens L.). Chemical tests showed the soil to have a pH, organic 

matter, total C, and total N contents of 5.9, 15.5%, 9.0%, and 0.90%, respectively. At 

sampling the soil moisture content was 64% (WFPS). The pasture was grazed by dairy cattle 

every 21 – 28 d. Sample processing included the removal of roots and litter by hand and 

passage through a 5.6 mm mesh sieve. The sieved soil was packed to a depth of 5 cm into 

PVC containers (6 cm deep and 10 cm in diameter) and water was added to bring the soil 

moisture content up to 0.54 g H2O g
-1

 dry soil (66% water-filled pore space), an optimum 

level for RM (Howard and Howard, 1993; Rey et al., 2005). The soil had been sieved and 

placed in the PVC containers within 4 h of sampling to minimize the loss of readily available 

C substrate during processing. The containers were maintained at the same moisture content 

throughout the experiment by daily spraying water onto the soil surface. This was achieved by 

maintaining the weight of soil plus PVC containers, at the beginning of the experiment, 

during the whole incubation period. 
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3.3.3 Incubation procedure and soil respiration rate measurements 

To measure the responses of RM over time at varying TS without plant C inputs, the soil 

samples were separated into three groups of eight cores and incubated, in temperature-

controlled incubators, at either 3°C (3.23 ± 0.39°C), 9°C (9.05 ± 0.05°C), or 24°C (24.2 ± 

0.15°C) (± SEM). The TS shown in brackets was the mean of measured values from randomly 

chosen soil containers, every other day. The chosen temperature treatments were based on an 

hourly TS (10 cm depth) frequency distribution over years 2006 – 2008 measured beneath 

grass that was mown regularly at a weather station near the soil sampling site (Fig. 3.1a). On 

average, the hourly TS changed 7.2 ± 3.3°C (± standard deviation) within a day. The daily TS 

range varied from zero to 15°C (Fig. 3.1b).  
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Figure 3.1 (a) Hourly average soil temperature (10 cm depth) frequency distributions 

for years 2006 - 2008 at Lincoln, New Zealand, beneath mown grass. The arrows are 

the three treatment temperatures in the laboratory study. (b) Frequency distribution of 

daily temperature range during year 2007 calculated using the hourly measurements. 

These data were obtained from New Zealand’s National Climate Database 

(cliflo.niwa.co.nz). 

 

The first measurement of RM was started within 24 h following the start of the incubation so 

that the microbial activity associated with the decomposition of readily available C substrates 

could be evaluated (Feng and Simpson, 2009). The RM was measured at 24, 48, 72, 96, 120, 

144, 192, and 336 h following the start of the incubation. A portable chamber with an infrared 



 48 

gas analyser was used to measure RM as described above. Values for RM are expressed as a 

mass of CO2 (µg CO2) per unit mass of contained soil (kg
-1

) per unit time (s
-1

). I hypothesised 

that RM would decrease over time as readily available C substrates in the soil samples 

decreased. To quantify the decrease in RM over time a model (eqn. 3.3) was fitted to the data 

with three parameters (a, b, and r).  

 

          eqn. 3.3 

 

An asymptote was determined by parameter a (µg CO2 kg
-1

 s
-1

), b was a scaling factor, and t 

was time (h) following the start of the incubation. The parameter r is a decay factor and the 

exponential time constant (see below) is related to r. I chose this model since this has been 

successfully used to describe the changes in RM over time during laboratory incubation 

(Kelliher et al., 2005b; Paul et al., 1999). The parameters were fitted using a non-linear least 

squares method, the errors for the parameters were calculated based on the sum of squared 

residuals, with the assumption that the errors were normally distributed. Statistics were 

performed using GENSTAT (Release 11, Lawes Agricultural Trust, Rothamsted, UK). The 

areas below the fitted curves for each treatment temperature were determined by integration to 

estimate the amount of CO2-C lost to the atmosphere during the incubation period. 

To further investigate the differences in the parameters for eqn. 3.3 time constants were 

estimated for the decreases in RM. A time constant is a period (h) over which a variable (RM) 

would have decayed to an asymptote if the initial rate of decay (the initial slope) had 

continued. The time constants were obtained by using the parameter a as an asymptote and 

calculating a 63% step change based on the change from the first RM measurement (at 24 h) to 

the asymptote.  

3.3.4 Effects of pre-incubating temperature on soil respiration rate 

An additional sixteen soil cores were prepared, and were separated into two groups of eight 

cores. These groups were pre-incubated at either 3° or 9°C. The experimental design for this 

part of the experiment was a completely randomized block with four replicates. After 72 h in 

the incubators at either 3° or 9°C, four of the eight cores in each incubator were removed and 

placed in another incubator at 24°C. Then RM was measured 24 h after incubation at 24°C (96 

h following the start of the incubation). This procedure was repeated for the remaining soil 

cores after 336 h in the incubators at either 3° or 9°C followed by 24 h incubation at 24°C (i.e. 

tbraR m
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360 h following the start of the incubation). The effects of pre-incubation temperatures (3° 

and 9°C) and pre-incubation length (70 h and 336 h) on RM at 24°C were compared with RM 

from the soil cores continuously incubated at 24°C.  

3.3.5 Water soluble C and hot water soluble C measurements 

The water soluble carbon (WSC) and the hot-water soluble carbon (HWSC) were determined 

using a procedure described by Ghani et al. (2003). The experimental design for this part of 

the experiment was a completely randomized block with three replications. Soil cores 

described above were randomly assigned to one of the three incubators at either 3°, 9°, or 

24°C and fresh soil samples (equivalent of 25 g dry soil) were removed from three randomly 

chosen soil cores from each incubator at 24, 72, 192, and 336 h following the start of the 

incubation. Then the soil samples were placed in 300 ml centrifuge bottles and shaken with 

150 ml of distilled water at 20°C for 1 h. The samples were then centrifuged for 30 min at 

4000 rev min
-1

, the supernatant filtered through a 0.45 µm cellulose membrane filter, and the 

amount of soluble organic C determined using a total C analyser (TOC-5000A, Shimadzu 

Oceania Pty Ltd, NSW, Australia). This was the WSC fraction of the soil organic C. A further 

150 ml of distilled water was added to the sediments remaining in the centrifuge tubes after 

the supernatants (WSC) were decanted and the tubes were capped and left for 16 h in a hot-

water bath at 80°C. The samples were then centrifuged, filtered, and analysed for soluble 

organic C contents using the same methods as for the WSC analysis. This was the HWSC 

fraction of the soil organic C. Values of WSC and HWSC are expressed here as a mass of C 

(mg C) per unit mass of the contained soil (kg
-1

).   

3.3.6 Statistical analysis 

One-way analysis of variance tests were performed on RM, WSC, and HWSC for each day of 

measurement to determine significant differences between the temperature treatments from 24 

h to 336 h. Each data set was tested for normality according to the Anderson-Darling 

normality test and the data set was normally distributed (Anderson and Darling, 1952).   

3.4 Results 

3.4.1 Field measurements of soil respiration 

Over the day TS varied from 9° to 15°C while RS increased from 116 ± 3 µg CO2 m
-2

 s
-1

 just 

before sunrise to 182 ± 21µg CO2 m
-2

 s
-1

 late in the afternoon (Fig. 3.2a). Substrate limitation 

was not indicated because RS and TS data corresponded to the Lloyd and Taylor model (r
2
 = 

0.92, Fig. 3.2b). The response of RS to changes in TS was rapid, for example, the largest 
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increase in TS occurred between 14:20 a.m. and 15:40 a.m. (NZST), when TS and RS increased 

by 2.3°C and 30 µg CO2 m
-2

 s
-1

 (22%), respectively. Measurements of RS taken late in the 

afternoon onwards were relatively variable. Some of the RS measurement locations were 

shaded due to nearby trees while TS was measured at one location, the variable shading 

affected RS. Based on the Lloyd and Taylor equation (eqn. 3.2), the parameter R10 was 

estimated as 114 µg CO2 m
-2

 s
-1

.  
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Figure 3.2 Soil respiration rate (RS, μg CO2 m
-2

 s
-1

) and continuously measured soil 

temperature (1 cm depth) during a fine day, 3
rd

 April 2009, at Lincoln, New Zealand. 

Diel courses of the soil temperature (solid line, °C) and RS (●) over time are shown in 

(a) and the curve in (b) was fitted to the data by regression, as described in the text. 

The Lloyd and Taylor model was fitted according to R10, RS at 10°C, and accounted for 

92% of the variance. 
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3.4.2 Effects of temperature on soil CO2 flux 

At 3°C, RM did not significantly change over the 336 h incubation period. However, RM 

declined significantly over time for soils at 9° and 24°C (Fig. 3.3). At 9°C and 24°C, RM was 

approximately halved after an incubation period of approximately 48 h but the amount of CO2 

respired was significantly greater at 24°C. The exponential decay model (eqn. 3.3) fitted the 

data well and the parameters are shown in Table 3.1. The mass of C emitted as CO2 to the 

atmosphere from 24 h until 336 h was 295 ± 25, 354 ± 25, and 726 ± 18 mg C kg
-1

 soil at 3°, 

9°, and 24°C, respectively. There was a significant effect of TS on the amount of CO2-C 

emitted during the incubation period (p < 0.01). The time constants (h) for RM at 24°, 9°, and 

3°C were 76 ± 4, 53 ± 3, and 185 ± 55 h, respectively. The time constants for RM at 24° and 

9°C, which were not significantly different from each other, were significantly shorter than 

the time constant for RM at 3°C based on the Fisher‟s individual confidence interval test (p = 

0.05). 
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Figure 3.3 Soil microbial respiration rates (RM) for samples incubated at three 

temperatures. Error bars are SEM. The curves were fitted to the data by regression 

using a model of the form RM (t) = a + br
t
. An asymptote was determined by parameter 

a, b was a scaling factor, and t was time (h) elapsed during the incubation. The values 

for parameters a, b, and r are shown in Table 3.1. 
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Table 3.1   The parameters describing the responses of soil respiration rate over time at 

different temperatures. The model used was RM = a + br
t
 and standard errors for each 

parameters are shown in the “s.e.” columns. For each parameter, different letters 

denote significant differences. 

  3°C 9°C 24°C 

parameter estimate s.e. estimate s.e. estimate s.e. 

r 0.9943
a
 0.0139 0.9629

a
 0.0199 0.9813

a
 0.0033 

b 0.561
c
 0.493 2.660

b
 1.460 5.167

a
 0.528 

a 0.714
b
 0.607 1.128

b
 0.118 1.823

a
 0.175 

 

The response of RM to TS was predicted by the Lloyd and Taylor model (eqn. 3.2) on the first 

day of incubation (Fig. 3.4). The parameter R10 was 2.3 µg CO2 kg
-1

 s
-1

. To compare this R10 

value with the R10 obtained from the field study, the R10 from the laboratory study was 

converted to µg CO2 per unit area (m
-2

) per second using the soil bulk density (980 ± 80 kg m
-

3
) and a depth of 5 cm, thus the estimated R10 for the current laboratory study was 113 µg CO2 

m
-2

 s
-1

. 
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Figure 3.4 The responses of soil microbial respiration to soil temperature (symbols) 

and the Lloyd and Taylor model (solid line). Error bars are SEM (n = 8). The Lloyd 

and Taylor model was fitted to the soil microbial respiration rate at 3°C, 24 h into the 

incubation. The parameter R10 (respiration rate at 10°C) is noted on the figure using 

different units, μg CO2 kg
-1

 s
-1

 and μg CO2 m
-2

 s
-1

. The latter units included a bulk 

density of 980 kg m
-3

 and depth of 0.05 m. 
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3.4.3 The effect of temperature alteration on soil respiration rates 

Soil samples were pre-incubated at 3° or 9°C for 72 h or 336 h, and then incubated at 24°C 

for 24 h. The RM flux was measured immediately following the 24 h incubation at 24°C. The 

RM fluxes from soil samples at 3°C with 72 h pre-incubation, and at 3°C with 336 h pre-

incubation, at 9°C with 72 h pre-incubation, at 9°C with 336 h pre-incubation were 3.8 ± 0.4 

µg CO2 kg
-1

 s
-1

, 3.1 ± 0.1 µg CO2 kg
-1

 s
-1

, 3.6 ± 0.3 CO2 µg kg
-1

 s
-1

 and 2.9 ± 0.2 CO2 kg
-1

 s
-1

, 

respectively (Fig. 3.5). Overall, pre-incubation temperature (3° and 9°C) did not significantly 

change RM at 24°C, but the longer pre-incubation period (336 h) reduced RM (p < 0.05) at 

24°C, when compared to RM at 24°C from soils incubated for 72 h.  

The values for RM at 24°C after 72 h and 336 h of pre-incubations at lower temperatures 

(averaged over pre-incubation temperatures) were, on average, 38 ± 8% and 62 ± 12% higher 

than the RM of soil samples continuously incubated at 24°C for the same periods but the two 

proportional increases were not significantly different.   
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Figure 3.5 The effects of pre-incubation temperature and period on soil microbial 

respiration (RM) at 24°C. The bars at 96 h are RM after a 24 h incubation at 24°C for 

samples that were pre-incubated at 3° (black bar) and 9°C (silver bar) for 72 h. The 

bars at 360 h are RM after a 24 h incubation at 24°C for samples that were pre-

incubated at 3° (black bar) and 9°C (silver bar) for 336 h. Error bars are SEM (n = 4). 

The curves shown in Fig. 3.3 portray RM over time for samples that were continuously 

incubated at 24°, 9°, or 3°C.  
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3.4.4 Effects of temperature on WSC and HWSC 

The concentrations of WSC and HWSC extracted from the incubated soils did not change 

significantly over time (Fig. 3.6). No clear relationship was observed between RM and either 

WSC or HWSC. There was also no clear effect of TS on WSC and HWSC. On average, the 

amounts of WSC and HWSC varied from approximately 150 to 350 mg C kg
-1

 dry soil and 

3600 to 4200 mg C kg
-1

 dry soil, respectively, during 336 h of incubation. 
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Figure 3.6 Water soluble C content (a) and hot-water soluble C content (b) of soil 

samples incubated at 3°, 9°, and 24°C. The error bars were SEM (n = 3).   
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3.5 Discussion 

3.5.1 Responses of soil respiration to changing temperatures 

In the field, RS responded in synchrony with TS which changed significantly and rapidly 

during the day. The responses of RS to TS were predicted by the Lloyd and Taylor model. 

Thus, I concluded that the pasture plants had supplied the required readily available C for RS. 

However, the laboratory study showed that C substrate limitation of RM occurred within 1 d at 

24°C. The parameter R10 for RS from the field study was 114 µg CO2 m
-2

 s
-1

 including root 

and microbial respiration. Unexpectedly, this R10 was similar to R10 for RM from the 

laboratory studies that included only microbes (113 µg CO2 m
-2

 s
-1

, Fig. 3.4). This suggested 

RM measured in the laboratory had been unduly large. This was interpreted to reflect a 

microbial stress response to disturbance caused by sieving of the samples prior to incubation 

and measurement. Earlier field studies showed that for intensively managed grassland soils, 

R10 for RS was  200 µg CO2 m
-2

 s
-1

 (Kelliher et al., 2002; Tate et al., 2000). The C supply 

rate can be affected by the weather and nutrient supply, and different soils having different 

R10 for RS may have  different availabilities of C substrates (Paul et al., 1999; Singh et al., 

2009). In a fallow field without plants, RS also responded in synchrony with TS which 

changed significantly and rapidly during the day but R10 for RS was only 10 µg CO2 m
-2

 s
-1

 

(Nakadai et al., 2002). 

During the laboratory incubations, RM decreased significantly at the initial stage of the 

incubation for the soil samples at 9° and 24°C. However, RM from the samples at 3°C was 

relatively constant (Fig. 3.3). The rates of decrease in RM at 9° and 24°C were similar to 

values from earlier studies where RM decreased by approximately 50%, within 3 d after 

clipping vegetation (Craine et al., 1999; Wan and Luo, 2003). The decrease of RM was caused 

due to C substrate limitation. A previous study showed that when TS was held constant at 

20°C, applying readily available C to soil, in the form of dried ground pasture leaves, 

corresponded with RM increasing nearly immediately and significantly for 17 days (Kelliher et 

al., 2007).  

According to the time constants, RM at 9°C and 24°C decayed at a similar rate but the amount 

of C evolved was significantly larger at 24°C, suggesting that the microbial community‟s 

ability to access the more recalcitrant soil C fraction(s) was positively related to TS. Towards 

the end of the incubation period, RM was clearly substrate limited at 9°C and 24°C but the 

soils at 24°C had a significantly higher RM (Fig. 3.3). The amount of C emitted before RM 

showed signs of substrate limitation was also much larger for soil samples at 24°C as 
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indicated by higher RM in soil samples at 24°C compared to samples at 9°C and by the fact 

that the time constants calculated from the eqn. 3.3 were not significantly different between 9° 

and 24°C. While these results support earlier studies (Koch et al., 2007; Kuzyakov, 2002; 

Mikan et al., 2002), where microbes decomposed more recalcitrant C at higher temperatures, 

this study was done at much lower temperatures corresponding to a temperate climate.   

The apparently reduced temperature sensitivity of RM from soil, after C substrate supply 

ceased (Fig. 3.4), has been reported for other soils, although these were forest soils or pastoral 

soils at a much higher temperature range (20° to 40°C) (Kirschbaum, 2006; Townsend et al., 

1997; Winkler et al., 1996). The information on the relationship between the C substrate 

limitation and RM in pasture soils at field temperatures is particularly important because, when 

TS was held constant, the response of RM to readily available C application was significantly 

faster and greater for soil sampled at a highly productive dairy farm pasture compared to soil 

sampled at a pristine forest that had never been fertilized (Kelliher et al., 2005a). During the 

plant growing season, it has been reported RM responded to TS according to the Arrhenius type 

relation but the response lessened significantly when the plants were dormant or absent 

(Kirschbaum, 2006; Rustad et al., 2001). Kirschbaum (2006) emphasized the importance of 

seasonal changes in the apparent temperature sensitivity of RM caused by different levels of C 

substrate limitation. The current study supports this idea but I also note that the apparent 

temperature sensitivity of RM in pasture systems could change significantly on a daily basis if 

the rate of readily available C substrate inputs from the vegetation did not change in 

synchrony. Pasture plants can transfer C belowground rapidly. An earlier study showed that, 

in high fertile pastoral soils, more than 10% of the C uptake by ryegrass was transferred to the 

soil within 24 h (Butler et al. 2004). Similarly, Saggar and Hedley (2001) reported that 1.2 – 

4.0% of the C uptake by dairy farm pasture was transferred to the soil within 4 h. It is also 

important to note that temperature influenced the efficiency of C utilization (Steinweg et al., 

2008). Steinweg et al. (2008) reported that the microbial community was more efficient, 

released less CO2 per unit of assimilated C, at lower temperatures. Hence, further study is 

needed to investigate the interaction between the efficiency of C utilization, C substrate 

availability, and TS.  

3.5.2 WSC and HWC 

I tested two measures proposed to determine the amount of readily available C substrates in 

soils namely, WSC and HWSC analyses. Neither indicated the occurrence of substrate 

limitation with respect to RM. At 24°C, for example, RM decreased approximately 70% during 

the 336 h incubation and the soil emitted 726 ± 18 mg C kg
-1

 soil, as CO2, to the atmosphere. 
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During the same period of incubation at 24°C, WSC and HWSC were constant at 

approximately 30% (~ 200 mg C kg
-1

 soil) and 550% (~ 4000 mg C kg
-1

 soil) of the amount 

of C emitted to the atmosphere (Fig. 3.6). An earlier treatment that had significantly changed 

RM over time was not related to WSC at constant TS of 20°C for soil sampled from the same 

dairy farm (Kelliher et al., 2005b). However, the current study encompassed a wide range of 

temperature and highlighted the fact that neither WSC nor HWSC were related to RM. Two 

studies reported a strong linear relationship between WSC and RM when different soil types 

were compared and when soils were incubated for a longer period (Liu et al., 2006; Wang et 

al., 2003). Wang et al. (2003) compared soils sampled from 25 different locations and their 

WSC contents varied from 50 to 1000 mg C kg
-1

 soil. The WSC contents were linearly 

correlated to CO2-C evolved in 7 d of incubation at 35°C. Liu et al. (2006) incubated two soils 

at 30° and 10°C for 35 d and corresponding values of WSC contents were significantly 

different at the end of the experiment. The difference between the current study and previous 

studies suggested that WSC and HWSC may not be useful for indicating short-term changes 

in RM over time from one type of soil. 

3.5.3 The effect of pre-incubation treatments 

The pre-incubation experiment indicated that soils maintained readily available C for a longer 

period at the lower TS. The experimental design was similar to a study by Koepf (1953), who 

reported that the pre-incubating temperature controlled the responses of RM to TS. The current 

study had a much lower pre-incubating temperature range (3° – 9°C) compared to Koepf 

(1953) (10° – 30°C). At the soil sampling site, TS was < 10°C for 50% of the time between 

2006 to 2008. The two pre-incubating TS (3° and 9°C) did not differ in their effect on RM 

when samples were shifted to the higher TS (24°C). This was different than Koepf (1953) who 

reported that different pre-incubating temperatures (10° to 30°C) had different effects on RM 

when samples were shifted to 30°C but results from the current study agree with Bekku et al. 

(2003) who reported that the pre-incubation of soil samples from an abandoned field at 8° and 

12°C for 17 d did not affect the response of RM to TS. I expected different responses of RM at 

24°C when samples were pre-incubated at 3° and 9°C since the amount of C lost during the 

pre-incubation was significantly larger at 9°C. At the sampling site‟s average TS of 9°C, the 

microbial community structure might have been able to respond more efficiently to the later 

increased TS. Pre-incubation at the minimum TS of 3°C may have set the community in a state 

of dormancy and the 24 h period at a higher TS (24°C) may not have been long enough for a 

complete recovery to the potential microbial activity. The alteration of soil microbial 

community structure due to an increase in TS has been previously reported but for much 
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longer periods of incubation (Feng and Simpson, 2009). The responses of RM from soils pre-

incubated for 72 h was higher overall than in those pre-incubated for 336 h. Therefore readily 

available C substrates were slowly lost during the pre-incubations even at lower TS. This type 

of information is potentially useful for accurately predicting increases in RM when TS 

increases rapidly.      

3.6 Conclusions 

At the field site, RS responded rapidly to changes in TS, increasing 20% in one hour when TS 

increased by 2°C as predicted by an Arrhenius type relation. Soil incubated in the laboratory 

in the absence of plants showed that RM became C substrate limited within a few days at 9° 

and 24°C. At 3°C, RM was relatively constant at 1.05 ± 0.03 µg CO2 kg
-1

 s
-1

 for 14 d, 

suggesting a TS limitation. The TS values chosen for the incubation experiments were the 

maximum, average, and minimum based on the frequency analysis of TS at the field site. At 9° 

and 24°C, RM declined by one time constant (63% decrease within 53 ± 3 and 76 ± 4 h, 

respectively) but RM at 24°C declined to a significantly higher asymptote value than that for 

RM at 9°C. This suggested that microbial ability to access the more recalcitrant C fraction(s) 

in soils was temperature dependent. The values of WSC and HWSC contents were 

unexpectedly constant for 14 d at all of the treatment temperatures and were not proportional 

to changes in RM. Thus, measuring WSC and HWSC did not indicate the microbially 

available C substrate. The non-significant differences in RM at 24°C, after samples were pre-

incubated for 14 d at 3° or 9°C, suggested that more recalcitrant C substrate was respired at 

the warmer pre-incubation temperature. This study has shown that RS beneath high fertility 

pasture responded rapidly to TS change when the C supply was sufficient. When the C supply 

was removed, RM was dependent on both TS and C substrate availability. Further research is 

required on the mechanisms and effects of C supply in relation to the microbial community of 

soils, respiration, temperature, and soil fertility.  
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    Chapter 4 

Fertility and plants affect the temperature sensitivity of 

carbon dioxide production in soils 

A manuscript from this study has been submitted to Plant and Soil: Uchida, Y., 

Hunt, J.E., Barbour, M.M., Clough, T.J., Kelliher, F.M., Sherlock, R.R. Fertility 

and plants affect the temperature sensitivity of carbon dioxide production in 

soils. 

 

4.1 Abstract 

Soil temperature can strongly regulate soil respiration (RS). However, despite abundant 

literature, the predicted response of RS to possible climate change remains uncertain. I 

hypothesized that some of the variability in results to date was due to the influence of soil 

fertility and absence or presence of plants. Using dairy farm pastoral soils of contrasting 

nutrient status, e.g. Olsen P, C: N ratio, and available N, the temperature sensitivity of RS was 

measured. Measurements made in soil samples incubated at 13 – 27ºC for several days 

without plants showed respiration derived from organic matter (ROM) averaged 3 times 

greater in the high fertility soil. In the previous chapter, the term “RM” was used to express 

soil microbial respiration in the absence of plants. However, RM included root-derived C 

respiration because RM was measured immediately following the removal of plants from the 

soil. In this chapter, the term “ROM” was used to express soil microbial respiration solely from 

soil organic matter decomposition and the utilisation of root-derived C is termed RRD. For 

both soils, without plants present, ROM increased similarly by 3 – 4 times over this 

temperature range. By growing C4 or C3 grass species in soils with a different isotope 

signature, and making measurements of the natural 
13

C abundance of CO2 derived from RS, 

the rate of root-derived respiration (RRD) and ROM without disturbance were determined. The 

temperature sensitivity of RRD was not affected by soil fertility and RRD contributed more than 

70% of RS, on average. However, with plants, ROM was constant in the low fertility soil in 

contrast to the soil-only incubations at different temperature. In the high fertility soil, with 

plants, ROM doubled as soil temperature increased from 17 – 27ºC. The results did not support 

the idea of a universal nor simple relationship between temperature and carbon dioxide 

production in soils. 
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4.2 Introduction 

Soil respiration (RS) plays a critical role in the carbon (C) cycle of terrestrial ecosystems with 

approximately 20 – 40% of all non-anthropogenic CO2 inputs to the atmosphere produced 

from soils (Raich and Schlesinger, 1992; Raich and Potter, 1995). Soil respiration rates are 

positively related to plant productivity (Raich and Schlesinger, 1992) and are negatively 

related to C:N ratio (Thomsen et al., 2008). In recent years, many studies have focused on 

partitioning RS into its components to understand the relationship between sources of CO2 and 

the environmental factors controlling them. A natural 
13

C abundance method enabled the 

measurements of RS components without any disturbance to the system (Hanson et al., 2000; 

Millard et al., 2008; Robinson and Scrimgeour, 1995), by exploiting the difference in δ
13

C 

signatures of C fixed by C3 and C4 photosynthetic pathways (O'Leary, 1988). With this 

method, a C4 plant was grown in a soil developed under C3 vegetation (C3 soil), and vice 

versa. A linear mixing model was used with the δ
13

C abundances and CO2 concentrations of 

the two naturally labelled contributing sources of RS.  

The two contributing sources of RS were root-derived C and soil C (Trumbore, 2000). Carbon 

that is respired from root-derived C includes microbial rhizosphere activity, as well as root 

respiration, and is strongly coupled to photosynthetic activity because it utilizes C substrates 

recently added to soil by plants (Heilmeier et al., 1997). Hereafter, root-derived C respiration 

is defined as RRD. The respiration of soil C originates from soil organic matter decomposition. 

The soil organic matter pool is considerably larger than the root-derived C pool and interest in 

soil organic matter decomposition has increased recently because of its importance to the 

global C cycle (Trumbore, 2000). Hereafter respiration from the soil organic matter pool is 

defined as ROM. Soil organic matter is heterogeneous with respect to decomposition because 

soil organic matter consists of several pools, with characteristic turnover times of less than a 

year to over several hundred years (Parton et al., 1987). The turnover time of soil organic 

matter depends on the recalcitrance of soil organic matter (Trumbore, 2000). 

Many studies have shown that increases in soil temperature (TS) increase ROM (e.g. 

Kirschbaum, 1995). It has been predicted that global warming may cause a significant 

increase in ROM, resulting in an increase in atmospheric CO2 and an acceleration of climate 

change (Cox et al., 2000). Most of CO2 produced during ROM is derived from relatively short-

lived soil organic matter but the age of soil C utilized by ROM varies. For example, in boreal 

forest sites, the age of soil C utilized by ROM was 2 – 30 years but in tropical soils, it was <1 

year. The age of soil C is related to the recalcitrance of soil C. The effect of TS on ROM may 

vary depending on the relative size of the soil organic matter pools and their respective 
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recalcitrance. The decomposition of relatively more recalcitrant soil organic matter may be 

more temperature sensitive (Bol et al., 2003; Hartley and Ineson, 2008; Vanhala et al., 2007). 

Thermodynamically, the more enzymatic steps that are required for decomposition, the more 

temperature sensitive the entire process (Bosatta and Ågren, 1999).  

Soils have rarely been studied with and without plants, with regards to ROM. However, Bader 

and Cheng (2007) showed that, using a soil sampled at a cottonwood tree forest, the 

temperature sensitivity of ROM markedly changed when plants were present, when compared 

to ROM without plants. This is because plants can significantly influence ROM, a phenomenon 

commonly termed the “priming effect” (Bingeman et al., 1953). Plants can either accelerate 

ROM or suppress it (i.e. a negative priming effect) (Cheng et al., 2003; Cheng, 1996).   

The relative magnitude of the priming effect may depend on the size of the soil organic C 

pool (Kuzyakov et al., 2000), plant species and phenology (Cheng et al., 2003), 

photosynthetic intensity (Kuzyakov and Cheng, 2001b), plant biomass (Dijkstra et al., 2006), 

and soil nutrient status such as soil-N content (Liljeroth et al., 1994). Soil temperature may 

also indirectly affect the magnitude of the priming effect by controlling plant activity (Scott-

Denton et al., 2006). Thus, the temperature sensitivity of ROM may be influenced by both the 

presence of plants and soil fertility. Currently there are no studies that have observed the 

influences of plant presence and soil fertility on the temperature sensitivity of RS, ROM and 

RRD in pastoral soils.  

In this study, a natural 
13

C abundance method was used to measure the contribution of ROM 

and RRD to total RS. This technique permitted the distinction between ROM and RRD, rather than 

strictly microbial versus root respiration. However, I argue that the root-derived C pool will 

dominate the root and associated microbial rhizosphere respiration, while CO2 released 

carrying a soil C isotope signal must derive from microbial activity in the bulk soil. There was 

no contribution to RS from litter decomposition due to the lack of litter production over the 

time period of the study.  

To investigate the effect of soil fertility on the temperature sensitivity of RS, with respect to 

ROM and RRD, Two dairy farm pasture soils of contrasting nutrient status and plant 

productivity were sampled. It was hypothesised that soil nutrient status would influence the 

temperature sensitivity of ROM in the absence of plants, but in the presence of plants, both 

photosynthetic activity and soil nutrient status would affect the temperature sensitivity of 

ROM. This hypothesis was based on the assumption that RRD is closely associated with plant 
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activity while ROM is associated both with the recalcitrance of soil organic matter and nutrient 

availability in soils. 

4.3 Materials and methods 

4.3.1 Soil 

Soils were sampled (0-5 cm depth) from two dairy-farm pasture sites; one from an extensively 

managed low productivity dairy farm at Kerikeri, Northland, New Zealand (35°16‟S, 

173°55‟E, 79 masl) and the other from an intensively managed high productivity dairy farm at 

Lincoln, Canterbury, New Zealand (43°39‟S, 172°29‟E, 8 masl). The mean annual TS (10 cm 

depth, in years 2006 to 2008) at the respective sampling sites were 15.0 ± 1.1°C and 10.5 ± 

0.2°C, respectively (± SD based on the average TS for the three years). The Lincoln soil had a 

high fertility (HF), indicated by nutrient contents significantly greater than the low fertility 

(LF) Kerikeri soil (Table 4.1). The LF soil was a well-drained Kerikeri friable clay loam 

(Mottled Orthic Granular Soil; Hewitt, 1993)(Typic Haplohumox; Soil Survey Staff, 1998) 

and the HF soil was a poorly drained Temuka silt loam (Typic Orthic Gley Soil; Hewitt, 

1993) (Fluvaquentic Endoaquept; Soil Survey Staff, 1998). I recognize the fact that the two 

soils were of different parent material but the definition of fertility is based on measured 

variables (Table 4.1). The LF soil was dominated by a C4 pasture grass (kikuyu, Pennisetum 

clandestinum Hochst.) and the HF soil was dominated by a C3 perennial ryegrass (Lolium 

perenne L.). At both sites, these pasture species had been present for > 20 years. Soils were 

passed through a 5.6 mm sieve and were stored for approximately 2 months at < 4°C.  
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Table 4.1 Selected properties of the LF and HF soils. The soil test was performed by R 

J Hill Laboratories Limited, Hamilton, New Zealand. Total nutrient was measured 

using an EPA Aqua Regia digest method. Available N was measured using an 

anaerobically mineralizable N method. Water soluble C and hot-water soluble C were 

measured using a method described by Ghani et al. (2003) and are the mean ± SEM (n 

= 3). The soils were collected in April 2009. 

Soil LF soil HF soil 

pH 5.6 5.9 

Olsen P (mg l
-1

) 18 33 

Potassium (mmol kg
-1

) 2.4 5.7 

Calcium (mmol kg
-1

) 58 103 

Magnesium (mmol kg
-1

) 8.5  19.7  

Sodium (mmol kg
-1

) 2.5 5.3 

CEC (cmolc kg
-1

) 21 35 

Base saturation (%) 64 74 

Soil density (g cm
-3

) 0.92 0.70 

Available N (15 cm depth, kg ha
-1

) 414 640 

Organic matter (%) 13.3 15.5 

Total C (%) 7.7 9.0  

Total N (%) 0.66 0.90  

C: N ratio 11.7 10.0  

Anaerobically mineralisable N (kg ha
-1

) 299 606 

Water soluble organic C (mg C kg
-1

) 161 ± 50 277 ± 24 

Hot-water soluble organic C (mg C kg
-1

) 2424 ± 556 4658 ± 121 

 

4.3.2 Preparation of pots 

The sieved soils were packed to a 10 cm depth into funnel shaped pots (12 cm deep, 22 cm 

and 10 cm in diameter on the top and the bottom, respectively). Each pot contained the 

equivalent of 2200 g dry soil. The soil C in the LF and HF soils was derived from the original 

plant cover, kikuyu (C4) and perennial ryegrass (C3), respectively. Preliminary studies showed 

that the δ
13

C signatures of CO2 respired from ROM in the LF and HF soils without plants at 

15°C were -13.6 ± 0.2 and -27.4 ± 0.1‰ (expressed as δ
13

CV-PDB), respectively (± SEM). 

Hence to create a difference in δ
13

C signatures between ROM and RRD, C3 perennial ryegrass 

(L. perenne) was planted into the previously C4 LF soil and C4 paspalum (Paspalum dilatatum 

Poir.) was planted into the previously C3 HF soil. These species typify pastures grown in the 

temperate and sub-tropical climate regions of New Zealand. The seeds of each species were 

only planted on the edge of each pot and an aluminium collar (7 cm depth and 14 cm in 

diameter) was inserted into the middle of the soil surface of each pot to allow RS 
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measurements to be made (see section 4.3.3). The pots were maintained at 20°C in a 

glasshouse and watered daily for 8 – 12 weeks until plants had established. Urea fertilizer was 

applied three times during the establishment of the plants at 1, 3, and 5 weeks following the 

germination of the seeds (60 kg N ha
-1

), but no fertilizer was applied three weeks prior to RS 

measurements. Pots without plants were also prepared to obtain the δ
13

C signatures of the 

bulk soil. These were used to obtain the δ
13

C signatures of CO2 respired from ROM (see 

section 4.3.4).  

4.3.3 Total soil respiration measurements   

Four and six replicate pots of the LF and HF soil, respectively, with plants, were allocated to 

one of four nominal temperature treatments (10°, 15°, 20°, and 25°C). Temperature 

treatments were applied using controlled-environment growth cabinets at ambient CO2 

concentrations, 70% humidity with a 16 h day length. Soil temperature (TS) was measured 

with a thermocouple (5 cm depth) during the collection of soil-respired CO2. Although 

cabinet temperatures were stable to within 1°C of the set point, TS was increased by radiation 

loading. Hence, the actual measured TS are used in the analysis. There were three replicate 

pots of each soil type without plants. Photosynthetic photon flux density was 650 - 700 µmol 

m
-2

 s
-1

 at the height of the uppermost leaves (measured with a quantum sensor, L190SA; Li-

Cor, Inc., Lincoln, NE, USA). One day before the application of the temperature treatments, 

pots were watered to field capacity, drained, and then weighed after 12 h to obtain a value for 

field capacity. The soil moisture was then maintained at field capacity throughout the 

experiment by daily watering onto the soil surface. Field capacity was chosen since the 

optimum soil moisture content for RS has been frequently found at this level of soil moisture 

(Howard and Howard, 1993; Rey et al., 2005). 

Pots were conditioned for at least 6 d in the growth cabinet at the appropriate treatment 

temperatures and measurements of RS were performed between day 7 and 13 following the 

start of temperature treatment. A portable chamber with an infrared gas analyser (SRC-1 and 

EGM-1, PP Systems, Hitchin, UK) was used to measure RS. The chamber was directly 

connected onto the aluminium collar on soil surface. The values of RS were expressed as a 

mass of CO2 (µg CO2) per unit mass of dry soil (kg
-1

) per unit time (s
-1

) and also as a mass of 

CO2 (µg CO2) per unit mass of plant biomass (g
-1

) per unit time (s
-1

).  

4.3.4 Collection of respired CO2 from various sources and δ13C measurements   

Soil-respired CO2 (RS) was collected into evacuated 2 l Tedlar® bags immediately after the RS 

rates were measured using an open chamber system, described by Midwood et al. (2008). 
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Midwood et al. (2008) used an open chamber with a CO2 free air to sample soil-respired CO2 

without the influence of atmospheric CO2. To collect CO2 respired from RRD, roots were 

separated from the soil after the measurement of RS. The roots were then gently washed to 

remove soil, placed in Tedlar® bags, and the bags flushed with CO2-free air. To collect CO2 

respired from ROM, a sub-sample of the soils in the pots without plants was placed in Tedlar® 

bags and flushed with CO2-free air. Bags with either roots or soils were incubated at the 

appropriate treatment temperatures until the concentration of CO2 in the bags reached the 

calibrated concentration range of the tuneable diode laser (350 to 500 µmol mol
-1

) where upon 

they were analysed for δ
13

C values.  

The δ
13

C values of CO2 sourced from RS, RRD, and ROM were determined using a tuneable 

diode laser absorption spectrometer (TDL, TGA2000, Campbell Scientific Inc. Logan, UT, 

USA), with a precision of ± 0.1‰. The TDL system quantitatively assesses the concentrations 

of 
12

CO2 and 
13

CO2 at the same time using a laser absorption spectrometry. The TDL was 

described by Bowling et al. (2003). The δ
13

C values of CO2 sourced from RS, RRD, and ROM 

were termed δ
13

CRs, δ
13

CRD, and δ
13

COM, respectively.  

4.3.5 Calculation of ROM and RRD rates 

The ratio ROM/RS = fOM was calculated using a mixing model (eqn. 4.1) described by 

Kuzyakov (2004). The remainder was called fRD (eqn. 4.2). The rates of ROM and RRD were 

obtained by multiplying fOM or fRD, respectively, with the plant biomass based values of RS.  

 

         (4.1) 

          (4.2) 

 

When there were plants, RS was expressed on the basis of both plant biomass and soil weight, 

the later for comparison with RS measured from the soil samples in the absence of plants.  

The variances (i.e. the square of standard errors, σ) of fOM were calculated as described by 

Phillips and Gregg (2001) (eqn.4.3):  
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 (4.3) 

 

where σ
2
(δ

13
CRs), σ

2
(δ

13
COM), and σ

2
(δ

13
CRD) represent the variances of δ

13
CRs, δ

13
COM and 

δ
13

CRD, respectively. The variance of fRD was also determined by switching the δ
13

COM and 

δ
13

CRD subscripts in eqn. 4.3. All statistical analyses were performed in GenStat (Lawes 

Agricultural Trust, Rothamsted, UK).    

4.3.6 Temperature sensitivity analysis 

The Lloyd and Taylor model  (eqn. 4.4) was used to describe the temperature sensitivity of 

RS, ROM and RRD (Lloyd and Taylor, 1994).  

 

        (4.4) 

 

The Arrhenius-type model had three parameters (R10, E0, and T0). The variable TS was 

measured simultaneously with the RS measurements, and Rx was either RS, ROM or RRD. The 

R10 was a scaling parameter and it equated to Rx when TS = 10°C. The E0 (K) was the 

activation energy divided by the gas constant and the T0 determined the temperature minimum 

(K) at which predicted Rx reached zero. Recent studies used the Lloyd and Taylor model 

without constraining the parameters (Mäkiranta et al., 2008; Richardson and Hollinger, 2005). 

I did not constrain E0 or R10 but T0 was set at 227.13K, as described by Lloyd and Taylor 

(1994). The two parameters were fitted to the data set using non-linear regression using 

GenStat (Lawes Agricultural Trust, Rothamsted, UK). 

The Rx data, based on soil weight, were used to fit the model. However, for the soils with 

plants, temperature sensitivity of Rx per unit of soil weight might have been biased since plant 

biomass (g) per pot, measured after the Rx measurements, was significantly different between 

temperature treatments because the plants grew faster at higher temperature during the pre-

conditioning and CO2 measurement periods. Thus, in order to fit the Rx data to the model 

without the bias, Rx data were expressed on a plant biomass basis when plants were present.   

The E0, obtained from the fitted Lloyd and Taylor model, were compared, based on the 

standard error of the difference (z) between two E0 values. The significance of the difference 
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(p value) was then obtained by comparing the difference between the parameters, divided by 

z, and using standard normal curve areas (z > 1.96 corresponds to p < 0.05). The same 

approach was used to compare R10.    

4.3.7 Photosynthetic rate measurements and herbage sample analysis 

Measurements of leaf photosynthesis (A) were made on fully expanded leaves using a 

portable photosynthesis system (LI6400; Li-Cor, Inc. Lincoln, NE, USA) fitted with a leaf 

chamber 1 – 3 d before RS was measured. The light intensity within the leaf chamber was set 

to match growth photosynthetic photon flux density at the uppermost leaves. Relative 

humidity and CO2 concentration were not controlled within the leaf chamber, and averaged 56 

± 2% and 396 ± 5 µl l
-1

 respectively. A was measured at the four treatment temperatures 

described above (10° to 25°C) and the temperature sensitivity of A was interpreted from 

measured leaf temperature. Photosynthetic rates for the whole pot were estimated by 

multiplying A (per unit leaf area) by the total live leaf area per pot. Pot leaf area was 

calculated from measured specific leaf mass (65 ± 9 and 41 ± 10 g m
-2

 for ryegrass and 

paspalum, respectively) and total leaf dry weight per pot. This estimate of total A per pot 

makes the simplifying assumption that all leaves are equally exposed to the same radiation 

and microclimate conditions. Even though this assumption is not strictly valid, it is argued 

that it is appropriate because it is the relative differences between pots that are important, 

rather than the absolute rate of C fixation. 

After RS measurements and plants were harvested then dried at 65°C, weighed and finely 

ground. The leaf and root samples were then separately analysed for N content using an 

automated mass spectrometer (PDZ-Europa 20-20, Crewe, UK). These N contents (%) were 

multiplied by leaf and root biomass data and the effect of temperature treatments and soil type 

were investigated based on the N contents in the leaf and root biomass per pot using a 

two-way ANOVA. Root biomass was obtained by separating and gently washing the roots 

from the soil after the measurement of RS and drying them in an oven (65°C).  
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4.4 Results 

4.4.1 Respiration sourced from soil C without plants 

Without plants and at the lowest TS, the rate of ROM in the LF soil (0.15 ± 0.04 µg CO2 kg
-1

 

soil s
-1

) was half the rate in the HF soil (0.31 ± 0.04 µg CO2 kg
-1

 soil s
-1

, p < 0.05, Fig. 4.1a). 

The rate of ROM in the HF soil was significantly higher than in the LF soil at all temperature 

treatments except at 25°C (Fig. 4.1a). The Lloyd and Taylor model fitted the change in ROM 

and TS in the LF and HF soils well (r
2
 ≥ 0.90, Fig. 4.1a). The E0 values for the LF soil (504 ± 

103 K) and for the HF soil (273 ± 59 K) were not significantly different (p = 0.06) but R10 

was significantly (p < 0.05) larger for the HF soil.   

4.4.2 Soil respiration rates with plants present 

When averaged across all levels of temperature, in the presence of plants, RS in the LF and 

HF soil (1.52 ± 0.17 and 1.83 ± 0.16 µg CO2 kg
-1

 soil s
-1

, respectively) did not differ 

significantly (Fig. 4.1b). At the lowest TS, RS in the HF soil (0.53 ± 0.06 µg CO2 kg
-1

 soil s
-1

) 

was significantly lower than RS in the LF soil (1.18 ± 0.09 µg CO2 kg
-1

 soil s
-1

) but RS did not 

differ between the two soils at other levels of TS. The Lloyd and Taylor model again described 

the relationship between RS and TS in the LF and HF soil well, when RS was described based 

on plant biomass (r
2
 ≥ 0.90, Fig. 4.1c). The E0 for RS was significantly larger (p < 0.05) for 

the HF soil (462 ± 71K) than the LF soil (277 ± 62K) (Fig. 4.1c). For the LF soil, the R10 

value was significantly larger (p < 0.001) than for the HF soil (Fig. 4.1c).   
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Figure 4.1  (a) ROM without plants at different soil temperatures in the LF soil (○) and 

HF soil (●) without plants, and (b) RS with plants present expressed as on a unit soil 

basis, or (c) expressed on a unit plant basis. Dashed and solid lines represent the best 

Lloyd and Taylor (1994) model fitted to ROM or RS, respectively. The E0, R10, and r
2
 

values are next to the corresponding curves, with the SE. Error bars are SEM (n = 3, 4, 

and 6 for soils without plants, the LF soil with plants, and the HF soil with plants, 

respectively). Note different y axis scales. Data in Fig. 4.1(c) was used to separate RS 

into ROM and RRD and the results are shown in Fig. 4.2a and b. 
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4.4.3 Effects of soil fertility and temperature on ROM and RRD 

The RS data described in Fig. 4.1c was partitioned into the rates of ROM and RRD using the data 

in Table 4.2 (Fig. 4.2a and 4.2b). When TS increased from 13° to 27°C, the ROM/RS ratio (= 

fOM) decreased from 0.29 ± 0.02 to 0.08 ± 0.05 in the LF soil while the fOM in the HF soil 

increased from 0.10 ± 0.03 to 0.43 ± 0.03 (Fig. 4.2c and 4.2d). In the HF soil, there was no 

significant difference between the temperature sensitivity (E0) of ROM with and without plants. 

For RRD, there was no effect of soil fertility on the temperature sensitivity.  

When ROM in the presence of plants (Fig. 4.2a and 4.2b) was expressed based on the soil 

weight, ROM at the lowest treatment TS (~13°C) in the LF soil (0.29 ± 0.03 µg CO2 kg
-1

 soil s
-

1
) was larger than the ROM without plants at 13°C in the LF soil. For the HF soil, ROM in the 

presence of plants at 13°C (0.05 ± 0.01 µg CO2 kg
-1

 soil s
-1

) was lower than ROM without 

plants at 13°C. In the HF soil with plants, the ROM rates increased to 0.76 ± 0.09 µg CO2 kg
-1

 

soil s
-1

 at the highest TS (~26°C), while in the LF soil with plants, the ROM rates remained 

constant at higher TS.   
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Figure 4.2 ROM and RRD and their contributions to RS in the LF soil (a and c) and HF 

soil (b and d). Solid and dashed line in (a) and (b) represent the best Lloyd and Taylor 

(1994) model fitted to ROM and RRD, respectively. Parameters (E0 and R10) for the fitted 

Lloyd and Taylor model and r
2
 values are next to the corresponding curves along with 

the SE. Error bars represent SEM (n = 4 and 6 for the LF soil and the HF soil, 

respectively). Error bars in (c) and (d) represent propagated SEM for the fraction of 

ROM in RS calculated according to Phillips and Gregg (2003) (eqn. 4.3). 
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Table 4.2 The δ
13

C abundances of soil-respired CO2 (δ
13

CRs), CO2 sourced from RRD 

(δ
13

CRD), CO2 sourced from ROM (δ
13

COM), and calculated fractions of ROM (fOM) and 

RRD (fRD) in RS from the (a) LF and (b) HF soil, respectively. Errors of the δ
13

C 

abundances represent SEM (n = 4: δ
13

CRs and δ
13

CRD for LF, n = 6: δ
13

CRs and δ
13

CRD 

for HF, n = 3: δ
13

COM). The propagated errors for the fractions (fOM and fRD) were 

calculated based on the errors of the δ
13

C abundances using a method described by 

Phillips and Gregg (2001). ***, **, and ns denote the significant effect of treatment 

temperature with p < 0.01, p < 0.05, and p ≥ 0.05, respectively. 

(a) LF soil (C4 soil)         

 δ
13

CRs(‰) δ
13

CRD(‰) δ
13

COM(‰) fOM fRD 

Treatment °C *** *** ns *** *** 

10°C  -26.7 ± 0.2  -30.8 ± 0.1  -16.7 ± 0.5  0.29 ± 0.02  0.71 ± 0.02 

15°C  -26.2 ± 0.4  -28.2 ± 0.3  -17.1 ± 0.2  0.18 ± 0.05  0.82 ± 0.05 

20°C  -27.0 ± 0.3  -28.3 ± 0.5  -17.1 ± 0.7  0.12 ± 0.06  0.88 ± 0.06 

25°C  -27.8 ± 0.4  -28.6 ± 0.3  -18.2 ± 0.2  0.08 ± 0.05  0.92 ± 0.05 

      

(a) HF soil (C3 soil)         

 δ
13

CRs(‰) δ
13

CRD(‰) δ
13

COM(‰) fOM fRD 

Treatment °C ** *** ns *** *** 

10°C  -15.0 ± 0.3  -13.7 ± 0.1  -26.8 ± 0.4  0.10 ± 0.03  0.90 ± 0.03 

15°C  -17.2 ± 0.6  -12.5 ± 0.2  -25.3 ± 0.4  0.37 ± 0.07  0.63 ± 0.07 

20°C  -17.1 ± 0.3  -13.4 ± 0.2  -27.2 ± 0.9  0.27 ± 0.04  0.73 ± 0.04 

25°C  -18.1 ± 0.2  -12.6 ± 0.2  -25.5 ± 0.4  0.43 ± 0.03  0.57 ± 0.03 
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4.4.4 Carbon assimilation rates and RRD 

As expected, C assimilation rates (net photosynthetic rate, A) increased with increasing leaf 

temperature for both ryegrass and paspalum (Fig. 4.3). At < 15°C ryegrass in the LF soil had 

higher values of A per unit leaf biomass than paspalum in the HF soil (Fig. 4.3). For ryegrass, 

there was no further increase in C assimilation rates above 20°C while assimilation rates for 

paspalum continued to increase, reflecting higher thermal optima for C4 photosynthesis 

(Long, 1999).  

The calculated A per pot reached a maxima at 20° and 25°C for ryegrass (62 ± 4 µg CO2 pot
-1

 

s
-1

) and paspalum (185 ± 15 µg CO2 pot
-1

 s
-1

), respectively (Table 4.3). The RRD rates as a 

percentage of the net C assimilation rates (RRD/A) were 6.4 ± 0.8 and 2.2 ± 0.4% for ryegrass 

and paspalum, respectively (Table 4.3), when averaged across all temperature treatments. 

Hence, RRD/A was three times greater in the LF soil than in the HF soil. For the HF soil, 

RRD/A increased as TS increased. The differences in RRD/A between temperature treatments 

were relatively small when compared to the differences between plant species (Table 4.3).  
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Figure 4.3 Temperature response of the carbon assimilation rates of ryegrass (○, LF 

soil) and paspalum (●, HF soil). Error bars represent SEM (n = 4). 
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Table 4.3 Leaf and root biomass per pot measured immediately following the RS 

measurements and the estimated fractions of CO2 respired via RRD per unit weight of 

net CO2 fixed by photosynthesis (A). The errors represent SEM (n = 4).    

  

Leaf 

biomass 

Root 

biomass A RRD RRD/A 

  (g pot
-1

) (g pot
-1

) 

(μg CO2 

pot
-1

 s
-1

) 

(μg CO2 

pot
-1

 s
-1

) (%) 

LF soil      

10°C 9.0 ± 0.6 3.7 ± 0.2 39 ± 2 1.5 ± 0.1 4.0 ± 0.9 

15°C 6.1 ± 0.7 1.6 ± 0.3 36 ± 2 2.6 ± 0.4 7.4 ± 1.8 

20°C 8.2 ± 0.8 3.0 ± 0.5 62 ± 4 4.1 ± 0.5 6.6 ± 1.2 

25°C 5.7 ± 0.3 1.4 ± 0.2 45 ± 3 3.4 ± 0.6 7.7 ± 1.7 

HF soil      

10°C 16.6 ± 1.2 5.5 ± 0.6 30 ± 3 0.9 ± 0.1 3.1 ± 1.3 

15°C 27.2 ± 0.7 4.2 ± 0.4 59 ± 6 1.7 ± 0.2 2.8 ± 0.8 

20°C 26.9 ± 5.5 7.6 ± 1.0 167 ± 15 2.8 ± 0.6 1.7 ± 0.4 

25°C 19.5 ± 2.2 3.6 ± 0.1 185 ± 15 2.5 ± 0.3 1.4 ± 0.3 

 



 76 

4.4.5 Herbage sample analysis 

Paspalum leaves and roots in the HF soil always contained significantly (p < 0.01) more N 

than ryegrass leaves and roots in the LF soil (Fig. 4.4a and b). There was no significant trend 

in leaf or root N related to changes in temperatures for either species.  
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Figure 4.4 Total N contents of leaf (a) and root (b) biomass of ryegrass (○, LF soil) and 

paspalum (●, HF soil) grown at four temperatures. Error bars are SEM (n = 4 and 6 

for the LF soil and the HF soil, respectively). 
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4.5 Discussion 

4.5.1 Total soil respiration and ROM with and without plants present 

Without plants, greater nutrient (e.g. N and P) and C substrate availability (total C and water 

soluble C contents, Table 4.1) accounted for significantly larger ROM in the HF soil. Previous 

work by Cleveland et al. (2006) also showed that soil nutrient availability was positively 

correlated to ROM in a tropical rain forest soil. In the two soils, evidently, there was 

sufficiently available C for ROM to more than double as TS increased from 13 – 27°C. In the 

presence of plants, the same was true but in the LF soil, nearly all C emitted from the soil 

surface was from the roots i.e. RRD. Unexpectedly, the ROM from the LF soil surface was 

constant across the 14°C range of TS in the presence of plants. As stated, indicative 

measurements suggested nutrient and C substrates were limited in the LF soil‟s organic 

matter. However, growing in the LF soil, ryegrass C assimilation rate doubled as TS increased 

from 13 – 27°C. Thus, to meet the „demand‟ of increased TS on CO2 production in the LF soil, 

microbes used the increasingly available root-derived C. In the HF soil, as TS increased, 

microbes used broadly similar proportions of soil C (ROM) and root-derived C (RRD). The 

previous study in this thesis found that, using the HF soil, after the removal of roots, RS rate 

halved within 4 d at the TS range of 9 – 24°C due to C substrate limitation (Uchida et al., 

2010). However, it was also concluded (Uchida et al. 2010) that, in the HF soil, RS at higher 

TS could remain relatively higher during the period of C substrate limitation, compared to RS 

at lower TS because microbes were able to access more recalcitrant C substrate as the 

temperature increased. The current study concurs with this previous finding as shown in Fig. 

4.2b where the rate C respired from the old C pool (ROM) increased with increasing 

temperature. I recognise that the current study was a short-term laboratory based and if this 

study was performed for a longer period, other factors such as soil microbial adaptation 

(Bradford et al., 2008) might have played an important role in relation to the temperature 

response of ROM. However, I believe that although the current study was performed during a 

short-term period, the difference between the temperature responses of ROM with and without 

plants present, and between the HF and LF soils, are extremely large and worth noting to 

improve the future prediction of RS in pastoral soils.  

Fertility affected ROM in soils responding to changing TS. Heightened interest in the 

temperature sensitivity of ROM has been motivated by an implied and apparently appealing 

connection between the sustainability of soil C storage and the global warming. However, 

under carefully controlled, though short-term conditions, this hypothesis was not supported by 

in situ measurements in the LF soil with plants present. The results show that the situation is 
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more complex because of the effect of TS on soil C respiration can also be affected by fertility 

and not just the „availability‟ of soil C and root-derived C for microbial utilisation. 

Despite the earlier results of chapter 3, a study by Wang et al. (2003) showed that water 

soluble C contents and ROM were strongly correlated (linear relationship, r
2
 = 0.89) based on 

the comparison of 25 different soils, without plants present. Hence the relationship between 

the rates of ROM and soil fertility observed in the current study without plants present, agrees 

with this earlier work. However, the results with respect to the temperature sensitivities of 

ROM in the LF and HF soils, in the absence of plants, contradict previous work (Bosatta and 

Ågren, 1999; Hartley and Ineson, 2008; Vanhala et al., 2007) that suggested the temperature 

sensitivity of ROM was negatively correlated to the microbial availability of C. In the current 

study, the microbial availability of C was higher in the HF soil, when compared to the LF 

soil, based on the fact that R10 in the HF soil was higher than the LF soil without plants (Fig. 

4.1a). However, ROM in the two soils was equally temperature sensitive in the current study, 

although more replication might have changed these results because the difference between 

the temperature sensitivity of ROM in the LF and HF soils without plants was marginally 

significant (p = 0.06, Fig. 4.1a). Hartley and Ineson (2008) showed that, in the absence of 

plants using a soil from an experimental garden, the temperature sensitivity of ROM was 

positively related to the recalcitrance of soil organic matter. Vanhala et al. (2007) also showed 

that the decomposition of soil organic matter formed from recently (less than 5 years old) 

sown crops was more temperature sensitive than the decomposition of relatively older soil 

organic matter. However, previously reported studies have compared ROM from soil organic 

matter pools of difference recalcitrance in the same soil, whereas the current study compared 

two soils sampled at two separate sites. Hence, a simple comparison between the current 

study and previous work may be difficult. The two soils used in the current study not only 

differed in their nutrient status and water soluble C contents, but also differed in soil types 

and the history of aboveground species, hence these factors may have influenced the 

temperature sensitivity of ROM in the absence of plants. 

In the presence of plants, the range in the E0 of RS in the LF and HF soils (Fig. 4.1c) 

encompassed the previously reported E0 value obtained from a grazed pastoral soil (E0 = 

369.20 ± 8.50) (Brown et al., 2009). However, there was no statistically significant difference 

between the previously reported E0 value and the E0 values for RS obtained in the current 

study.  

The δ
13

C values of the bulk soil-respired CO2 for the HF and LF soils (Table 4.2) were 

similar to the previously reported δ
13

C values of C3 (-26‰, Balesdent et al., 1987) and C4 (-14 
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to -19‰, Nissenbaum and Kaplan, 1972) soils, respectively. The δ
13

C values of the ryegrass 

and paspalum roots in the current study (Table 4.2) were also similar to the previously 

reported δ
13

C values of C3 and C4 plants, respectively (O'Leary, 1988).  

The extremely low temperature sensitivity of ROM in the LF soil, with plants present (Fig. 

4.2a), indicated that soil microbes in the LF soil were more likely to preferentially utilise the 

root-derived C when it was available, as opposed to the bulk soil C (Kelliher et al., 2005a). It 

was probably because of low microbial availability of soil C in the LF soil. Conversely, for 

the HF soil, the temperature sensitivity of ROM with plants (Fig. 4.2b) remained high, when 

compared to ROM without plants (Fig. 4.1a). Dijkstra et al. (2006) reported that at an optimum 

TS, the magnitude of the priming effect (the increase in ROM when root-derived C was added 

to soil) was significantly higher in fertile soils (organic farm soils) when compared to less 

fertile soils (annually cultivated grassland soils) and the results from the current study agree 

well with this phenomenon. A priming effect occurs only when the microbial biomass 

increases or when it is activated by the addition of readily available C from plants (Kuzyakov 

and Bol, 2006). Hence, in the current study, ROM in the LF soil was potentially suppressed due 

to a lower availability of soil C, while in the HF soil, microbial activity increased and primed 

more efficiently as a result of increased plant activity as evidenced by enhanced rates of 

photosynthesis, especially at higher TS.  

A further explanation for the difference in the temperature sensitivities of ROM may have been 

the soils‟ N contents. In the current study, the N content in the plant biomass, on a per pot 

basis, was higher in the HF soil (Fig. 4.4). Thus, higher soil N availability in the HF soil 

probably increased the activities of soil enzymes related to ROM especially at higher TS, 

resulting in higher temperature sensitivity of ROM in the HF soil. The positive relationship 

between soil N availability and ROM was previously reported in a herb based ecosystem and in 

a tropical forest (Manning et al., 2008; Waldrop and Firestone, 2004b).   

4.5.2 Root-derived C utilisation and C assimilation rates 

Since the values of E0 for RRD were similar in both soils (Fig. 4.2a and b) and because they 

were also similar to the value for E0 that had been determined by Lloyd and Taylor (1994), 

based on an analysis of RS data from a wide range of ecosystems, it can be concluded that the 

C supply from plants was not limiting RRD (Davidson et al., 2006). The results from the 

current study also agreed with Flanagan and Johnson (2005) who showed that, in a grassland 

ecosystem, aboveground activity was a good proxy for accounting for the variations in RRD. 

Moyano et al. (2008) also showed that, in a forest ecosystem, microbial rhizosphere 
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respiration was strongly correlated to photosynthetic activity. However, results from the 

current study differed from those of Fitter et al. (1998) who reported that root respiration rates 

from plants adapted to warmer temperatures were more temperature sensitive. I found no 

increase in the temperature sensitivity of RRD in paspalum, a C4 plant which is adapted to a 

warmer climate, relative to ryegrass (C3 plant). 

The fact that the percentage of A subsequently respired via RRD (RRD/A, Table 4.3) was 

significantly lower for the paspalum in the HF soil compared to the ryegrass in the LF soil 

contradicts previous reports which showed that the percentage of assimilated C lost as RRD 

was relatively higher in tropical plants when compared to temperate plants (Lloyd and 

Farquhar, 1996; Lloyd and Farquhar, 2008). However, in the previous works, tree species 

were the focus of the studies rather than pasture species, and also the RRD/A values were 

estimated at the ecosystem level, rather than on a per pot basis as in the current study. Also, I 

made some assumptions when determining the C input into the soil from plants (see section 

4.3.7) and these might have influenced the current results. 

4.6 Conclusion 

Without plants present, ROM in the HF soil was double that in the LF soil. The response of 

ROM to a change in TS was significant, doubling for a temperature increase of 10° to 20°C, and 

statistically indistinguishable for the two soils. When plants were grown in the soils RRD was 

similarly responsive to TS, although RRD was 4-fold greater for ryegrass plants growing in the 

LF soil. When plants were grown in the HF soil and TS was doubled (13° to 26°C), ROM 

increased 19-fold. However, when plants were grown in the LF soil and TS was doubled, ROM 

remained constant. This was attributed to preferential, microbial utilization of root-derived C 

and limited availability of soil C. The non-destructive measurement of ROM with growing 

plants suggested nutrient and C availabilities regulated the soil‟s temperature sensitivity. This 

may not seem to bode well for the prospect of conserving C in highly fertile soils when 

growing pasture plants under warmer conditions, but recalcitrance of soil C in the low fertility 

soil seemed potentially promising from this perspective. The results of the current short-term 

study conducted under controlled conditions warrant further, longer-term study under field 

conditions.   
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    Chapter 5 

Effects of bovine urine, plants and temperature on 

nitrous oxide and carbon dioxide emissions from a low 

fertility soil 

5.1 Abstract 

Pastoral agriculture involves ruminant animals being fed by year-round grazing.  Nitrogen (N) 

utilisation by ruminants is relatively low, and in urine patches up to 1000 kg ha
-1

 of N may be 

deposited, mostly in the form of urea.  This N may be kept in the system through uptake by 

plants and immobilisation, or lost via ammonia volatilisation, leaching, or gaseous emission 

to the atmosphere as nitrous oxide (N2O), nitric oxide (NO) and dinitrogen (N2).  These 

processes can be affected by temperature as can urea hydrolysis that significantly raises the 

soil pH, depending on the buffering capacity, liberating some of the soil‟s organic matter by 

solubilisation. Temperature and carbon substrate availability can also strongly affect carbon 

dioxide (CO2) emissions from soils. I postulated that the response of soil CO2 and N2O 

emissions following bovine urine application would be affected by plants, temperature and 

soil fertility. Dairy cattle urine was collected near Lincoln, labelled with 
15

N, and applied at 

590 kg N ha
-1

 to a low fertility soil (previously studied in Chapter 4) that came from a dairy 

farm located about 1000 km north of Lincoln, near Kerikeri. At a soil temperature of 23ºC, 

with and without growing ryegrass plants, the urine application induced a significant increase 

in the N2O emissions that was greater than that at 11ºC. At 23ºC, with and without plants, 0.7 

and 2.2% of the applied N was directly emitted as N2O, mostly over a 3 d period of incubation 

when the soil‟s water-filled pore space was at 70%. The corresponding recoveries of 
15

N 

were, 0.6 and 1.5%. This suggested the plants had induced an almost 3-fold increase in the 

emissions and the emitted N2O had mostly come from the applied urine. This was thought to 

have reflected the soil‟s low N availability. Urine application induced a significant carbon (C) 

priming effect because, without plants, the net CO2 emissions (treated minus control) were 

significantly greater than zero. Thus, in contrast to the N2O emissions, enhanced C 

mineralisation of the soil‟s organic matter was thought to have accounted for the increased 

CO2 emissions. Without plants, urine application induced the CO2 emissions at 23ºC to be 

42% greater than that at 11ºC. Without a C substrate availability limitation, soil microbial 

CO2 emissions at 23ºC should have been about 120% greater than that at 11ºC. Thus, 

following urine application to soil at 23ºC, the CO2 emissions were evidently limited by 
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„insufficient‟ C substrate availability. This was thought to have reflected the soil‟s low C 

quality (WSC and HWSC, Table 4.1). With plants, CO2 emissions also increased significantly 

in response to urine application but similarly at the two temperatures. This implied further 

effects of plant performance on soil CO2 emissions at different temperatures.  

5.2 Introduction 

Ruminant urine deposition creates a significant nitrogen (N) input to grazed pasture soil 

ecosystems. The rate of N deposition during a dairy cattle urination event may range from 500 

– 1000 kg N ha
-1

 (Haynes and Williams, 1993). These high rates of N are in excess of the 

pasture‟s immediate demand and as a result the urine patches contribute significantly to the 

global nitrous oxide (N2O) budget (Oenema et al., 1997). Nitrous oxide is a greenhouse gas 

with a global warming potential 298 times that of CO2 over a 100 year time frame, and the 

atmospheric concentration of N2O continues to rise (Forster et al., 2007). Nitrogen oxides 

(NOx = NO + NO2) catalytically destroy stratospheric ozone (Crutzen, 1970) and the 

terrestrial emissions of N2O are a significant source of stratospheric NOx (Matson and 

Vitousek, 1990). Hence, Ravishankara et al. (2009) recently showed that N2O emission is 

currently the single most important ozone-depleting gas. 

The soil C pool (1580 Gt C) contains approximately twice as much C as the atmospheric C 

pool (750 Gt C) and it contributes to terrestrial CO2 production (Schimel, 1995). Soil C 

substrates available for soil respiration (RS) may comprise the original soil organic matter 

pool i.e. soil organic C, or recently deposited C such as root exudates i.e. root-derived C, the 

latter being associated with root and rhizosphere activity (Trumbore, 2000). The 

decomposition of soil organic C (ROM) under urine patches has been shown to be enhanced 

following urine addition to soils and this phenomenon was interpreted as a urine-induced 

priming effect (Clough and Kelliher, 2005). Urine-induced priming possibly occurs because 

of the solubilisation of soil organic matter which is a result of the elevated soil pH that ensues 

during urea hydrolysis (Sherlock and Goh, 1984). Enhanced pasture production following 

urine deposition may also lead to greater utilisation of root-derived C (RRD) within the urine 

patch, since increased plant production may increase root exudation per unit volume of soil 

(Ledgard et al., 1982). Conversely, a short-term (14 d) decrease in root-derived C utilisation, 

after urine deposition, has also been reported due to the fact that the high soil pH damaged 

pasture roots (Ambus et al., 2007). 

Soil CO2 fluxes (
2COF ) following ruminant urine deposition are a combination of both abiotic 

processes, such as urea hydrolysis, and biological  processes such as RS (Follett et al., 2001; 
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Lovell and Jarvis, 1996). About 70 – 90% of urine-N is urea (Doak, 1952) and urea is rapidly 

hydrolysed in soils in accordance with eqn. 5.1: 

CO(NH2)2 + 2H2O → 2NH4
+
 + CO3

2-     
(5.1) 

Hydrolysis of the carbonate ions results in an increase in soil pH (eqn. 5.2): 

 CO3
2-

 + H2O ↔ HCO3
-
 + OH

-      
(5.2) 

The high pH and presence of ammonium (NH4
+
) ions lead to the creation of ammonia (NH3) 

gas (eqn. 5.3) and as this NH3 is volatilized a decrease in pH occurs accompanied by the 

release of CO2 according to Avnimelech and Laher (1977) (eqn. 5.4).  

 NH4
+
 → NH3 (g) + H

+        
(5.3) 

 H
+
 + HCO3

-
 ↔ CO2 + H2O       (5.4)  

Soil temperature (TS) affects the mechanisms responsible for both N2O and CO2 production 

from soils (McKenney et al., 1980; Tiedje, 1988). During a field study, with plants (maize) 

present in a silty clay soil, an exponential relationship occurred between TS and N2O flux, 

when TS ranged from 11° to 26°C (e.g. Song and Zhang, 2009). Soil moisture was not 

controlled in the study by Song and Zhang (2009), ranging from 24 to 78% WFPS.  

With respect to RS a 1°C increase in TS may increase RS by 10% at 10°C (Lloyd and Taylor, 

1994) if other factors, such as soil moisture, are not limiting. The response of these N2O and 

CO2 producing processes, to changes in TS, may also be influenced by other factors, for 

instance, an irrigation treatment (10 mm) reduced the relative responses of soil N2O fluxes to 

TS for 7 d, when TS ranged from 10° to 20°C (de Klein and Van Logtestijn, 1996). The 

availability of soil C substrates, supplied from plants, has also been shown to influence the 

response of RS to TS (Hartley and Ineson, 2008). Similarly, the previous experiment (Chapter 

4) showed that plants and soil nutrient status influenced the response of RS to TS with plants 

reducing the response of RS to TS under low fertility conditions. While under high fertility 

conditions, as would occur in a urine patch, RS was sensitive to TS both with and without 

plants.   

Anthropogenically driven climate change is expected to result in an increase in the mean 

global surface temperature of between 1.8° – 4.0°C (IPCC, 2007a). This could potentially 

create a positive feedback for both soil N2O and CO2 fluxes because an increase in TS tends to 

increase the rate of soil processes (Cox et al., 2000; Smith, 1997). Abdalla et al. (2009) 

reported that denitrification in grazed pastoral soils (in the absence of plants) was very 
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sensitive to temperature, with temperature ranging between 10 – 25°C, but they did not 

document how the temperature responses of soil N2O and CO2 fluxes would be influenced by 

the presence or absence of either plants or ruminant urine. 

Many studies have studied soil N2O and CO2 emissions from urine patches in pastoral 

ecosystems. For example, Clough et al. (2003) studied both soil N2O and CO2 emissions 

following a urine addition but this study was performed without plants and at a constant 

temperature (20°C). However, despite the global significance of anthropogenically induced 

N2O and CO2 emissions from agriculture and land use change, there are no studies that have 

compared the soil N2O and CO2 emissions from urine patches with or without plants under 

varying TS. This information is critically important because pastoral ecosystems play an 

important role in the global C and N cycles and the size and distribution of greenhouse gas 

sources and sinks remains uncertain (Fowler et al., 1997; Ojima et al., 1993) as does their 

response to increased TS resulting from predicted climate change.  

To determine the C sources contributing to the 
2COF  i.e. recently added C from roots and 

urine (RRDU) or recalcitrant C from soil organic matter (ROM), and their response to changes in 

TS, a natural 
13

C abundance technique was used (Millard et al., 2008; Robinson and 

Scrimgeour, 1995). This method was based on the difference in the δ
13

C values of the C fixed 

by C3 and C4 plant photosynthetic pathways (O'Leary, 1988). A C3 perennial ryegrass (Lolium 

perenne) was grown in a soil developed under C4 vegetation (C4 soil) with C3 bovine urine. 

Similarly to determine the source of the N2O-N and the response of the source to changes in 

TS (soil versus urine) the urine was labelled with 
15

N-enriched urea, thus enabling the 

distinction between soil-N and urine-N. The distinction between N2O originating from soil-N 

and from urine-N is important because it is expected that as TS increases soil-N mineralization 

will increase (Kladivko and Keeney, 1987; Stanford et al., 1973). The aim of this study was to 

investigate the effects of urine application, TS, and plants on soil N2O and CO2 fluxes. 

5.3 Materials and Methods 

5.3.1 Soil collection and treatment structure 

Soil samples (0 – 5 cm depth) were collected from a dairy pasture site at Kerikeri, Northland, 

New Zealand (35°18‟S, 173°93‟E, 79 masl). The primary vegetation on the soil was a C4 

Kikuyu grass (Pennisetum clandestinum Hochst.) and the soil was a well drained Kerikeri 

friable clay loam (Typic Haplohumox; Soil Survey Staff, 1998). The Kikuyu grass had been 

present for > 20 years. Soil samples were sieved to pass through a 5.6 mm mesh, plant root 
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material was removed, and the soil was stored at < 4°C. The mean annual TS at the sampling 

site (10 cm depth in years 2006 to 2008) was 15.0 ± 1.1°C (± SD).  

Sieved soils were packed to a depth of 10 cm into funnel shaped pots (12 cm deep, 22 cm and 

10 cm in diameter on the top and the bottom, respectively). Each pot contained the equivalent 

of 2200 g dry soil. Soil-C in the sampled soil originated from C4 plants and had a mean δ
13

C 

value of -19.6 ± 0.01‰ (± SEM, all δ
13

C values are expressed relative to Vienna PeeDee 

Belemnite; δ
13

CV-PDB). Hence to create a δ
13

C gradient between the soil-C and plant-C, a C3 

perennial ryegrass (Lolium perenne L.) was planted. The ryegrass seeds were planted on the 

edge of each pot (Plate 5.1) and an aluminium collar (7 cm depth and 14 cm in diameter) was 

inserted into the middle of the soil surface of each pot to allow N2O and CO2 flux measuring 

equipment to be placed (see below). The pots were maintained in a glasshouse at 20°C and 

were watered every day for 8 – 12 weeks until the ryegrass plants had established (Plate 5.1). 

Urea fertiliser was applied three times, 1, 3, and 5 weeks following seed germination, during 

plant establishment (60 kg N ha
-1

 in total as urea) but no fertiliser was applied three weeks 

immediately prior to treatment application and the subsequent N2O and CO2 flux 

measurements. Pots without plants were also prepared to act as controls and they were also 

placed in the glasshouse for 8 – 12 weeks and received the same inputs as the planted pots. 

  

 

Plate 5.1 Pots with and without ryegrass plants immediately before soil N2O and CO2 

fluxes were measured. The ryegrass were growing on the edge of each pot and an 

aluminium collar was inserted to a depth of 5 cm in the middle of the pot. 
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Pots were then allocated to air temperature treatments, at either 7°, 15° or 20°C which were 

applied using controlled-environment growth cabinets (PGV36, Controlled Environments Ltd, 

Winnipeg, Canada), with ambient CO2 concentrations, a 70% humidity and a 16 h day length. 

Photosynthetically active radiation (PAR) was measured with a quantum sensor (L190SA; Li-

Cor, Inc., Lincoln, NE, USA), giving a maximum midday irradiance of 400 µmol m
-2

 s
-1

 PAR 

at the surface of the uppermost leaves. Because of the radiation from the fluorescent tubes and 

incandescent lamps in the cabinets, TS was approximately 3°C higher during soil CO2 and 

N2O flux measurement periods (between 1 to 3 p.m.), averaging 10.6 ± 0.8°, 18.9 ± 0.9°, and 

23.2 ± 0.8°C in the cabinet at the air temperature of 7°, 15°, and 20°C, respectively. Hence, 

from here on, the three treatment temperatures are denoted as 11°, 19°, and 23°C.  

The pots were pre-conditioned in the growth cabinets for 7 d at their allocated temperature 

treatments. Then pots had urine treatments applied. Pots contained either soil with ryegrass 

plus urine, soil with ryegrass minus urine, soil minus ryegrass plus urine, and soil minus 

ryegrass minus urine, and these are subsequently referred to as ryegrass + urine, ryegrass 

control, soil + urine, soil control, respectively. Three replicates of each treatment were 

allocated to each temperature treatments. The experimental design was a split plot design. 

Three temperature treatments formed the main plots, ryegrass the split plot and urine the split-

split plot treatment.  

The bovine urine was collected from Friesian dairy cows that had been grazing perennial 

ryegrass/white clover (Trifolium repens) pasture (C3 plants) at the Lincoln University dairy 

farm during an afternoon milking. The urine contained 7.31 ± 0.05 g N l
-1

. Immediately 

before the urine was applied, the urine was enriched with 
15

N using 
15

N enriched urea (98 

atom % 
15

N, Isotec
TM

) to give a final total N concentration of 7.47 ± 0.06 g N l
-1

 with a 
15

N 

enrichment of 0.996 ± 0.002 atom% 
15

N. Then 300 ml (equivalent to 590 kg N ha
-1

) of the 

urine was applied evenly to the surface of the soils on the ryegrass + urine and soil + urine 

pots. The control pots received the same volume of deionised water. The soils were then 

maintained at 50% WFPS for 408 h following the urine application by daily spraying water 

onto the soil surface (termed „moderate moisture phase‟) then at 408 h the WFPS was 

increased to 70% and maintained at this WFPS until the end of the experiment (termed „high 

moisture phase‟) which was 672 h following the urine application. 

5.3.2 Measurement of soil N2O fluxes and 15N enrichment 

Soil N2O fluxes were measured at 24, 48, 72, 120, 192, 240, 288, 360, 432, 456, 504, 552, 

600, and 672 h following the urine application. To measure the N2O fluxes, a headspace (1.16 
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l) was created in the centre of each pot using a round plastic canister (PC9603, Milano) which 

was sealed by filling a trough in the aluminium collar, previously inserted, with water (Plate 

5.2). Following checks for linearity of the N2O flux, gas samples were taken after 30 minutes. 

Gas samples (8 ml) were taken from the headspace, via septa inserted in the canister, using a 

glass gas-tight syringe and placed in 6 ml Exetainers®. The over pressurization avoided the 

contamination of the sampled gas by ambient air through the septa. Duplicate ambient air 

samples were also taken and placed in 6 ml Exetainers® at each sampling.  

 

 

Plate 5.2 Soil N2O flux sampling. A headspace was created in the centre of each pot 

using a round plastic canister which was sealed by filling a trough in the aluminium 

collar, previously inserted, with water. Gas samples were taken from the headspace, via 

septa inserted in the canister, using a gas-tight syringe. 

 

The 6 ml gas samples were first equilibrated to atmospheric pressure and then analysed for 

N2O using a gas chromatograph (GC; 8610, SRI Instruments, CA), fitted with an electron 

capture detector, interfaced to a liquid auto sampler (Gilson 222XL, Middleton, WI, USA) 

which had been adapted to take a purpose-built double concentric injection needle (PDZ-

Europa, Crewe, UK). This enabled the entire gas sample to be flushed rapidly from the 
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Exetainers® into the GC which had a configuration similar to that used by Mosier and Mack 

(1980).  

The 
15

N enrichment of the N2O-N flux was determined by taking 15 ml gas samples at 24, 72, 

120, 288, 456, and 672 h following the urine application and placing these in 12 ml 

Exetainers®. These 12 ml N2O samples were also equilibrated to atmospheric pressure, 

immediately prior to analysis, and then analysed for 
15

N enrichment, using an isotope-ratio 

mass spectrometer (IRMS; PDZ-Europa 20-20) as described by Steven et al. (1993).     

5.3.3 Measurement of soil CO2 fluxes and the calculation of the amount of soil-
respired CO2 

Soil CO2 fluxes (
2COF ) were measured, every 48 h, using a portable chamber with an infrared 

gas analyser (SRC-1 and EGM-4, PP systems, Hitchin, UK). The chamber connected directly 

onto the circular aluminium soil respiration collar placed on each pot and the flux was 

determined over a 2 min period. 

To compare the response of 
2COF over time (h, hours after the urine application), the 

exponential decay model (eqn. 5.5) was fitted to the data by adapting the equation of Kelliher 

et al. (2007): 

hbraF 
2CO          (5.5) 

An asymptote is determined by the variable a (µg CO2 kg
-1

 s
-1

), b is a scaling factor, and r is 

the decay constant, related to the decay rate. Significant differences in the parameters between 

the treatments were obtained using the standard errors of the parameter estimation (see 

below). 

The trapezoidal rule, based on the 
2COF data plotted versus time, was used to calculate the 

amount of CO2 emitted over the course of the incubation (0 – 672 h following the urine 

application). For the + urine treatments, the initial 
2COF (at time zero) following the urine 

treatment was estimated by adding the a and b terms of the fitted model (eqn. 5.5). For the 

control treatments, RS rate at 0 h was extrapolated to equal the RS rate measured at 24 h.  

In order to ascertain the potential urine-derived priming effect under the urine treatments, the 

maximum possible production of CO2 from the applied urine was calculated. Based on the C 

content of the applied urine (1.90 g l
-1

) and the volume applied (300 ml) it was calculated that 

2.09 g of CO2 was the maximum mass of CO2 attributable to the urine addition, assuming that 
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all of the urine-C was released to the atmosphere as CO2 within 672 h following the urine 

treatment. 

5.3.4 The δ13C values of soil-respired CO2 

The δ
13

C values of the soil-respired CO2 (δ
13

CRs) were calculated by adapting the method of 

Ohlsson et al. (2005). This involved sampling a headspace (see above) for soil-respired CO2 

after a period of 30 min, with plants absent. The CO2 15 ml gas samples were then placed into 

12 ml Exetainers® for δ
13

C determination using IRMS (see above) at 24, 360, and 552 h 

following the urine treatment. The δ
13

CRs values were calculated using the following equation 

(Ohlsson et al., 2005) (eqn. 5.6):  

  (5.6) 

where [CO2(headspace)], [CO2(air)], δ
13

CO2(headspace) and δ
13

CO2(air) are the 

concentrations of CO2 in the headspace of the chamber system, the concentration of CO2 

sampled in ambient air, the δ
13

C value of the CO2 in the headspace of the chamber system, 

and the δ
13

C value of CO2 in ambient air, respectively. The assumption was made that the 

δ
13

C values in the ambient air were the same as the initial value of the δ
13

C value in the 

headspace at time zero. Photosynthetic activity and leaf respiration did not influence the δ
13

C 

value of the CO2 in the headspace of the chamber system because leaves were excluded from 

the headspace (Plate 5.2). 

5.3.5 Isotopic analysis of plant and soil and calculation of ROM and RRDU 

In order to measure the contribution of soil organic matter decomposition (ROM) or urine and 

root-derived C utilisation (RRDU) to total RS, the pots were destructively sampled following the 

last soil N2O and CO2 flux determinations at 672 h. The RRDU originated from C fixed by C3 

plants. This estimate of the δ
13

CRDU value makes the simplifying assumption that the δ
13

C 

value of CO2 originating from the applied urine-C (δ
13

C = -30.7 ± 0.4‰) and the root-respired 

C (-29.9 ± 0.7‰, when averaged across temperature treatment) were equal. Even though this 

assumption is not strictly valid due to the potential for fractionation of plant-C following 

harvest by the animal and the subsequent excretion of the urine-C, it is argued here that it is 

appropriate given that the difference in δ
13

C values between urine-C and plant-C was not 

statistically significant when compared to the difference in the δ
13

C values between the C3 

plant and C4 soil (-19.6 ± 0.01‰). To obtain the δ
13

CRDU values, the roots in the treatments 

with plants were carefully removed from the soil, gently washed to remove the soil attached 

   
   (air)CO)(headspaceCO

(air)COδ(air)CO-)(headspaceCOδ)(headspaceCO
Cδ
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S 


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to the roots, placed in Tedlar® bags, and then flushed with CO2-free air. Then the bags 

containing the roots were incubated for 30 min at the appropriate treatment temperatures. 

Then 15 ml gas samples were taken and placed into 12 ml Extainers® using a gas-tight 

syringe via septa embedded on the bags. The CO2 generated was analysed for δ
13

C using 

IRMS as described above.  

The CO2 produced during ROM originated from C originally fixed by C4 plants. To obtain the 

value of δ
13

COM, a sub-sample of the soil in the soil control treatments was placed into 

separate Tedlar® bags and flushed with CO2-free air with gas sampling and analyses 

performed as described above. 

A natural stable isotope (
13

C) abundance method was used to differentiate the 
2COF  

components, based on the approach taken by Lin et al. (1999) where, the proportion of CO2 

originating from the soil organic C pool in the C4 soil (fOM) was calculated as follows (eqn. 

5.7):  

RDU

13

OM

13

RDU

13

R

13

OM
C-C

C-C
S




f         (5.7) 

The variances (i.e. the square of standard errors, σ) of fOM were calculated as described by 

Phillips and Gregg (2001) (eqn. 5.8):  
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where σ
2
(δ

13
CRs), σ

2
(δ

13
COM), and σ

2
(δ

13
CRDU) represent the variances of δ

13
CRs, δ

13
COM and 

δ
13

CRDU, respectively. The variance of fRDU was also determined by switching the δ
13

COM and 

δ
13

CRDU subscripts in eqn. 5.8.  

Separate sub-samples of soil from each pot were also analysed for soil inorganic-N (NH4
+
-N 

and NO3
-
-N) concentrations by extracting these with 2 M KCl (1:10) for 1 h, and then 

filtering (Whatman 42) the extracts prior to colorimetric analysis on an auto-analyser. This 

had a detection limit for NO3
-
-N and NH4

+
-N of 0.10 and 0.01 mg l

-1
, respectively (Alpkem 

FS3000 twin channel analyser; application notes P/N A002380 and P/N A002423). 

5.3.6 Photosynthesis rate measurements and herbage sample analysis 

Leaf photosynthesis rates (A) were determined using a portable photosynthesis system 

(LI6400; Li-Cor, Inc. Lincoln, NE, USA), fitted with a leaf chamber, on three occasions; 96 h 

prior to urine application, and at 240 and 552 h post urine application. Light intensity within 
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the leaf chamber was the same as the photosynthetically active radiation within the growth 

chambers, measured with a quantum sensor as described above.  

Photosynthetic rates for the whole pot at 552 h were estimated by multiplying A (per unit leaf 

area) by the total live leaf area per pot. Pot leaf area was calculated from measured specific 

leaf mass (65 ± 9 g m
-2

) and total leaf dry weight per pot. This estimate of total A per pot 

made the simplifying assumption that all leaves were equally exposed to radiation and 

microclimate conditions. Even though this assumption is not strictly valid, it is argued that it 

is appropriate because it is the relative differences between treatments that are important, 

rather than the absolute rate of C fixation. Estimates of total A per pot were used to determine 

the percentage of root- and urine-derived CO2–C (RRDU) in photosynthetically fixed C. 

All plants were harvested immediately after the last soil N2O and CO2 flux measurements 

(672 h). Aboveground and below ground vegetation was dried (65°C, 48 h), weighed, and 

finely ground prior to being analysed for N content and 
15

N enrichment using Dumas 

combustion in conjunction with IRMS. Percentage recovery of 
15

N in plant material was 

determined according to Cabrera and Kissel (1989).  

5.3.7 Statistical and data analysis 

The N2O flux data were transformed (log10 (flux + 1)). Then two-way analysis of variance 

(ANOVA) was performed on the log transformed N2O flux (GenStat; Lawes Agricultural 

Trust, Rothamsted, UK) and the 
2COF data to determine the effect of the urine and ryegrass 

treatments at a given sampling time, and at each treatment temperature.  

For the 
2COF data, the parameters, obtained from the exponential decay model (eqn. 5.5), were 

compared based on the standard errors of the parameter estimation. The significance (p value) 

of any difference between the measured parameters, divided by the standard error of the 

difference (z), and using standard normal curve areas (z > 1.96 corresponds to p < 0.05).  

The Lloyd and Taylor model was used to describe the temperature response of 
2COF (Lloyd 

and Taylor, 1994). This model is an Arrhenius-type with three parameters (eqn. 5.9). The 

variable Rx is 
2COF . The R10 is a scale parameter and it equates to Rx when TS = 10°C. The E0 

(K) is the activation energy divided by the gas constant and the parameter T0 determines the 

temperature minimum (K) at which predicted Rx reaches zero. The E0, which determines the 

temperature sensitivity, was not constrained and neither was R10, but T0 was set at 227.13K, as 

described by Lloyd and Taylor (1994). The same approach was previously used by Mäkiranta 
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et al. (2009). The two parameters were fitted to the data set using non-linear regression using 

GenStat (Lawes Agricultural Trust, Rothamsted, UK). 
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5.4 Results 

5.4.1 Basic information for soil and 
urine 

The soil C:N ratio, organic matter, and water 

soluble C contents were 11.7, 13.3 g kg
-1

, 

and 161 mg C kg
-1

, respectively. Total C, 

total N, and atom% 
15

N for the soil were 77 

mg kg
-1

, 6.6 mg kg
-1

 and 0.426 atom% 
15

N, 

respectively. Other soil characteristics are 

described in the previous chapter (Table 4.1).   

5.4.2 Soil N2O fluxes over time 

Under the moderate moisture phase, soil N2O 

fluxes increased 24 h after urine application 

at 19° and 23°C and after 48 h at 11°C, and 

then N2O fluxes declined (Fig. 5.1). Under 

the moderate moisture phase, the soil N2O 

fluxes at 24 h were higher (p < 0.05) in the 

soil + urine treatment (23 ± 4 µg N2O-N kg
-1

 

h
-1

) compared to the fluxes from the ryegrass 

+ urine treatment (6 ± 2 µg N2O-N kg
-1

 h
-1

), 

when averaged across temperature treatments 

(Fig. 5.1).  

Under the high moisture phase, the highest 

N2O fluxes occurred 48 h after the increase 

in WFPS (456 h after urine application), 

when averaged over all temperature 

treatments (Fig. 5.1). At 48 h after the 

increase in WFPS, increasing temperature 

also significantly (p < 0.05) increased N2O 

fluxes, when averaged over all urine and 

plant treatments. Also, at 48 h, urine 

treatment significantly (p < 0.001) increased 

N2O fluxes. When compared to N2O flux 

peaks under the moderate moisture phase, the 

N2O flux peaks under the high moisture 

phase were markedly higher (p < 0.05). Only 

under the high moisture phase at 23°C did 

the presence of ryegrass significantly 

enhance N2O fluxes (p < 0.05) (Fig. 5.1c). 
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Figure 5.1 The effect of urine and 

ryegrass on soil N2O fluxes over time (h) 

at (a) 11°C, (b) 19°C and (c) 23°C. The 

N2O fluxes were measured twice before 

cow urine application at 0 h. Error bars 

are the SEM (n = 3). The vertical dashed 

line shows the timing of the increase in 

the soil moisture from 50% to 70% 

WFPS (at 408 h following the urine 

application). 
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5.4.3 Cumulative N2O-N 

During the moderate moisture phase (0 – 408 h), without urine, cumulative N2O-N emissions 

were not influenced by plant presence, when averaged across temperature treatments. Despite 

the shorter period of the high moisture phase, at both 19° and 23°C, with urine present, 

cumulative N2O-N emissions were higher (p < 0.01), when compared to the cumulative N2O-

N emissions in the moderate moisture phase (Table 5.1). When urine and plants were present, 

increasing TS increased (p < 0.05) cumulative N2O-N emissions during the high moisture 

phase by 2.1 and 4.1-fold at 19° and 23°C, respectively, when compared to cumulative N2O 

emissions without plants. This was reflected in an increase (p < 0.05) in the percentage 

contribution of cumulative N2O fluxes in the high moisture phase to the total cumulative N2O 

fluxes when ryegrass was present (Table 5.1). 

When considering the entire experimental period (672 h) the addition of urine increased (p < 

0.05) the cumulative N2O emissions (Table 5.1). The addition of urine and an increase in TS 

from 11° to 23°C increased the cumulative N2O fluxes by 21000 µg N2O-N kg
-1

 with plants 

present. Without plants, the increase was only 4000 µg N2O-N kg
-1

 when TS increased from 

11° to 23°C. Without plants, the cumulative N2O-N flux as a % of N applied (EF) was not 

influenced by TS, but with plants, EF increased with increasing TS. The EF values with plants 

were significantly higher at 23°C but not at 11° and 19°C, when compared to the EF values 

without plants. 
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Table 5.1 Cumulative N2O emissions (μg N2O-N kg
-1

) for the moderate moisture phase (0 to 408 h), the high moisture phase (408 to 672 h), 

and the total cumulative N2O-N emission (0 to 672 h). The total cumulative N2O emission is also expressed as a percentage of the urine-N 

applied, an emission factor (EF). Errors are ± SEM (n = 3). The values in brackets (high moisture phase) are the contribution of cumulative 

N2O fluxes in the high moisture phase to the total cumulative N2O emissions (%). 

        Cumulative N2O emissions (μg N2O-N kg
-1

) 

       

      Treatment 11°C 19°C 23°C 

Moderate moisture phase soil control 34 ± 10 250 ± 97 822 ± 535 

   soil + urine 3588 ± 2333 3186 ± 938 4145 ± 1639 

   ryegrass control 52 ± 6 58 ± 12 36 ± 11 

   ryegrass + urine 1454 ± 384 1796 ± 799 3935 ± 1578 

       

High moisture phase soil control 53 ± 18 (61%) 694 ± 428 (74%) 758 ± 167 (48%) 

   soil + urine 1102 ± 784 (24%) 4215 ± 1371 (57%) 4587 ± 140 (53%) 

   ryegrass control 0 ± 4 (5%) 8 ± 0 (13%) 11 ± 1 (24%) 

   ryegrass + urine 500 ± 103 (26%) 9079 ± 3113 (83%) 18788 ± 8060 (83%) 

       

Total   soil control 86 ± 24 944 ± 350 1580 ± 698 

   soil + urine 4690 ± 3117 7402 ± 1754 8732 ± 1540 

   ryegrass control 51 ± 10 67 ± 12 48 ± 11 

   ryegrass + urine 1955 ± 296 10876 ± 3838 22744 ± 7230 
       

Total cumulative N2O-N soil + urine 0.45 ± 0.31% 0.63 ± 0.17% 0.70 ± 0.13% 

 / applied urine N (%) ryegrass + urine 0.19 ± 0.03% 1.06 ± 0.38% 2.23 ± 0.71% 
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5.4.4 15N atom% of N2O-N and the ratio of N2O-N derived from urine-N 

Significant effects occurred due to temperature treatment (p < 0.001) and sampling time (p < 

0.001) with respect to atom% 
15

N values of the N2O-N, with an interaction between these 

factors (p < 0.05). At 11°C, N2O-N atom% 
15

N values increased over time, peaking at 552 h; 

while at 19° and 23°C, the peak atom% 
15

N values occurred at 288 h and 120 h, respectively 

(Fig. 5.2). Plant presence increased (p < 0.05) the 
15

N enrichment of the N2O-N. At 19° and 

23°C this occurred between 0 and 120 h whereas it occurred later at 11°C at 288 to 456 h. At 

the last measurement (552 h), atom% 
15

N values of N2O-N averaged 0.85 ± 0.05 atom% 
15

N, 

thus the atom% 
15

N values for soil N2O-N were very close to the value of the applied 
15

N 

(1.00 atom% 
15

N). At 552 h, there were no significant effects of TS and plants on the atom% 

15
N values of N2O-N. 
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Figure 5.2 Atom% 
15

N of N2O-N fluxes following urine application for (a) 11°, (b) 19° 

and (c) 23°C with (○) and without (●) plants over time (h). The errors bars are SEM (n 

= 3). The vertical dashed line shows the timing of the increase in soil moisture from 

50% to 70% WFPS (at 408 h following the urine application). 
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5.4.5 Nitrogen recovery as nitrous oxide 

Cumulative recovery of the applied 
15

N, as N2O-N, varied from 0.10 ± 0.08 to 1.43 ± 0.40% 

after 672 h (Fig. 5.3). Temperature and ryegrass treatments significantly affected this 
15

N 

recovery (p < 0.05). At 19° and 23°C, the recovery of applied 
15

N was significantly higher 

when ryegrass was present, while at 11°C there was no significant difference in the recovery 

of 
15

N as N2O-N due to ryegrass presence.  
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Figure 5.3 Cumulative recovery of 
15

N applied as N2O-N over time (h). Error bars 

represent SEM (n = 3). The vertical dashed line shows the timing of the increase in the 

soil moisture from 50% to 70% WFPS (at 408 h following the urine application).  

 

5.4.6 Nitrogen contents in soils and plant N uptake 

Without urine application, soil NO3
-
-N and NH4

+
-N concentrations averaged 3 ± 1 and 47 ± 9 

µg g
-1

, respectively, when averaged across all temperature and plant treatments (data not 

presented). Without urine application, there were no significant effects of temperature and 

plant treatments on NH4
+
-N, but plant presence significantly (p < 0.001) reduced NO3

-
-N. 

Urine application increased (p < 0.001) soil inorganic-N concentrations, measured at the end 

of the experiment, but the NH4
+
-N concentrations decreased with increasing TS with no 

interaction due to the plant treatment (Table 5.2). Soil NO3
-
-N concentrations decreased (p < 
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0.05) with increasing TS and the presence of plants did not have effect on soil NO3
-
-N content 

at 11° and 19°C (Table 5.2). However, at 23°C, the NO3
-
-N concentration in the soil + urine 

treatment was higher (p < 0.05) than in the ryegrass + urine treatment (Table 5.2). 

 

Table 5.2 Soil NH4
+
-N and NO3

-
-N concentrations (µg N g

-1
 soil) measured at 672 h 

following  urine treatment. Errors bars are SEM (n = 3). 

Soil  

Temperature Vegetation NH4
+
 NO3

-
 

        

11°C soil + urine 11617 ± 1444 1192 ± 183 

 ryegrass + urine 11583 ± 328 1372 ± 372 

19°C soil + urine 240 ± 56 1323 ± 511 

 ryegrass + urine 347 ± 45 663 ± 158 

23°C soil + urine 132 ± 29 616 ± 37 

  ryegrass + urine 142 ± 12 400 ± 13 

 

The N contents of the leaf and root biomass in the ryegrass + urine treatments were higher (p 

< 0.001) than in the ryegrass control treatments (Table 5.3 and 5.4). Temperature treatment 

had no significant effect on leaf N contents in the ryegrass + urine treatments but increasing 

TS increased (p < 0.01) atom% 
15

N enrichment and 
15

N recovery in the leaf (Table 5.4). In the 

ryegrass + urine treatment, the N concentrations in the root tissue were lower than in the 

leaves, with increasing TS reducing (p < 0.05) the N concentration in the roots but increasing 

(p < 0.05) the percentage of added 
15

N recovered in the roots (Table 5.4).   

 

Table 5.3 Leaf and root %N contents at the end of the experiment (672 h following the 

urine treatment) for the ryegrass control pots. Error bars represent SEM (n = 3). 

Soil  

Temperature Vegetation Leaf Root 

        

11°C ryegrass control 2.33 ± 0.08 1.01 ± 0.07 

19°C ryegrass control 1.45 ± 0.05 0.66 ± 0.03 

23°C ryegrass control 1.37 ± 0.08 0.65 ± 0.08 
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Table 5.4 Ryegrass leaf and root N contents, atom% 
15

N enrichments and 
15

N recoveries (%) for the ryegrass + urine pots. Errors are SEM (n 

= 3). 

    Leaf Root 

Soil 

Temperature Vegetation 

N 

content % 

Atom% 
15

N 

Recovery 

% 
15

N 

N 

content % 

Atom% 
15

N 

Recovery 

% 
15

N 

11°C ryegrass + urine 4.38 ± 0.20 0.648 ± 0.031 1.45 ± 0.52 1.98 ± 0.22 0.613 ± 0.068 0.18 ± 0.11 

19°C ryegrass + urine 4.70 ± 0.11 0.798 ± 0.001 6.43 ± 0.57 1.22 ± 0.02 0.684 ± 0.007 0.58 ± 0.14 

23°C ryegrass + urine 4.64 ± 0.11 0.812 ± 0.005 5.08 ± 0.52 1.28 ± 0.06 0.702 ± 0.009 0.88 ± 0.14 

        

  Significance ns ** ** * ns * 

       Significance refers to the comparison between the temperature treatments. **p < 0.01; *p < 0.05; ns (not significant) 
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5.4.7 Soil carbon dioxide fluxes over time 

The change in soil moisture contents did not influence the soil CO2 fluxes (
2COF ) thus, the 

effects of soil moisture on 
2COF are not considered hereafter. Within 24 h of urine application 

2COF increased from 0.5 ± 0.1 to 10.0 ± 0.5 CO2 kg
-1

 s
-1

, when averaged across all temperature 

and ryegrass treatments (± SEM, Fig. 5.4). This increase (p < 0.05) in 
2COF , as a result of 

urine application, continued until 432 h at 11°C, 192 h at 19°C but only for 120 h at 23°C 

(Fig. 5.4). The relationship between this period of enhanced 
2COF and the accompanying 

temperature treatment was linear (r
2
 = 0.98). The fitted model describing the changes in 

2COF  

over time (eqn. 5.5), showed the r values decreased (p < 0.001) when TS increased from 11° 

to 23°C (Table 5.5). The a values only increased significantly with TS when ryegrass was 

present (Table 5.5). The b values were proportional to TS.  

There was an Arrhenius relationship between the initial 
2COF response (a + b) to urine 

application and TS (Fig. 5.5a). The temperature responses of the initial 
2COF were not 

influenced by the ryegrass treatment. By 672 h after urine application, the effect of urine on 

2COF had abated and was replaced by a ryegrass treatment effect with an Arrhenius 

relationship between TS and 
2COF with plants (Fig. 5.5b). When compared to the parameters 

for the Lloyd and Taylor model fitted to the 
2COF data, for the immediate response of 

2COF

following urine application (Fig. 5.5a), the parameter R10 at 672 h was smaller but the 

parameter E0 at 672 h was not significantly different (Fig. 5.5b).  
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Figure 5.4 The effect of urine and ryegrass treatments on soil CO2 fluxes (µg CO2 kg
-1

 

s
-1

) at (a) 11°C, (b) 19°C and (c) 23°C. Values are means (n = 3) and error bars 

represent SEM. The fitted solid and dotted lines represent the exponential decay model 

(eqn. 5.5) fitted to the data for the ryegrass + urine and soil + urine treatments, 

respectively. The parameters for the models were described in Table 5.5. The vertical 

dashed line shows the timing of the increase of the soil moisture from 50% to 70% 

WFPS (at 408 h following the urine application). 

(a) 11°C

X Data

S
o
il 

C
O

2
 f

lu
x
 (


g
 C

O
2
 k

g
-1

 s
o

il 
s

-1
)

0

2

4

6

8

10

12

14
soil control

soil + urine

ryegrass control

ryegrass + urine

(b) 19°C

X Data

0

2

4

6

8

10

12

14

(c) 23°C

Time (h)

0 100 200 300 400 500 600 700

0

2

4

6

8

10

12

14



 102 

Table 5.5 The estimated parameters and their standard errors for the time response 

model (eqn. 5.5) for 
2COF following urine treatment. The errors are the standard errors 

of the parameter estimation.    

  11°C 

 soil + urine Ryegrass + urine 

Parameter Estimate s.e. Estimate s.e. 

R 0.990 ± 0.0017 0.989 ± 0.0014 

B 9.18 ± 0.77 12.07 ± 0.81 

A 0.10 ± 0.23 0.07 ± 0.22 

     

 19°C 

  soil + urine Ryegrass + urine 

Parameter Estimate s.e. Estimate s.e. 

R 0.981 ± 0.0022 0.979 ± 0.0022 

B 15.36 ± 1.33 18.64 ± 1.51 

A 0.25 ± 0.18 0.66 ± 0.18 

     

 23°C 

  soil + urine Ryegrass + urine 

Parameter Estimate s.e. Estimate s.e. 

R 0.948 ± 0.0067 0.932 ± 0.0116 

B 38.68 ± 7.09 51.30 ± 15.90 

A 0.51 ± 0.16 1.50 ± 0.16 
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Figure 5.5 Soil CO2 fluxes (
2COF ) as a function of temperature (a) at the initial peak 

immediately following the urine treatment and (b) at 672 h following the urine 

treatment. Bars represent SEM (n = 3). Solid and dashed lines represent the best Lloyd 

and Taylor (1994) model fitted to soil + urine and ryegrass + urine treatments (a), and 

ryegrass control and ryegrass + urine treatments (b). The parameters (E0 and R10) are 

next to the corresponding curves, with the standard errors of the parameters. 
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5.4.8 Cumulative CO2 production from soil respiration and abiotic processes 

Urine treatment markedly increased cumulative CO2 production from RS and abiotic processes 

(e.g. urea hydrolysis) (Table 5.6). With ryegrass, cumulative CO2 production increased, when 

compared to cumulative CO2 production without ryegrass (p < 0.001). Increasing TS also 

resulted in increases (p < 0.001) in cumulative CO2 production. An interaction (p < 0.001) 

occurred between temperature and ryegrass treatments with cumulative CO2 production 

increasing 2.2-fold when TS increased from 11° to 23°C with plants, whereas it was only 1.3-

fold without ryegrass, when averaged over the urine treatment.  

After subtracting the maximum potential urine-derived CO2 flux (see above) from the 

cumulative CO2 flux it was observed that the cumulative RS (p < 0.001) was higher under the 

urine application when compared to the control treatments. Without plants, the urine 

treatment effect was 40% greater at 23°C than at 11°C (Table 5.6(d)). With plants, the urine 

treatment effect (Table 5.6(d)) was not affected by TS but urine treatment increased RS 1.48 g 

CO2 kg
-1

 over the course of study, when averaged across temperature treatments. This 

increase in cumulative RS, due to the urine application, was interpreted as urine-induced 

priming. In Table 5.6(e), the magnitude of the urine-induced priming is expressed as a 

percentage of the cumulative RS from the + urine treatment divided by the cumulative RS from 

the control treatment in the comparable ryegrass and temperature treatments. Decreasing TS 

increased (p < 0.05) the magnitude of the urine-induced priming effect but urine-induced 

priming decreased (p < 0.05) with plants present at 19° and 23°C, but not at 11°C. When the 

urine-induced priming effect based on soil weight (Table 5.6) was normalized using leaf 

biomass (Table 5.8), the urine-induced priming effect, with plants, was 1134 ± 363, 141 ± 16, 

and 109 ± 11% at 11°, 19°, and 23°C. Thus, when compared to the calculated urine-induced 

priming effect based on soil weight (Table 5.6), the magnitude of the urine-induced priming 

effect based on leaf biomass was smaller. However, the urine-induced priming effect was still 

clearly observed at 11° and 19°C when plants were present. 
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Table 5.6 (a) Total cumulative CO2 flux (RS plus urine derived abiotic CO2 production) and (b) CO2 production due to RS (cumulative CO2 

flux minus urine derived CO2 flux) over the course of study (672 h). In the + urine treatments, the amount of CO2 emitted from (a) total 

cumulative CO2 flux was calculated first and then the amount of CO2 emitted from urea hydrolysis (2.09 g CO2 kg
-1

 soil) was deducted to 

obtain (b) the flux due to RS. The urine application effect (b – c) is shown in (d). The relative increase in RS due to a urine application when 

compared to (c) cumulative CO2 flux in the control treatments i.e. the urine induced priming is shown as a percentage (e). The errors indicate 

SEM (n = 3). 

Temperature Ryegrass treatment (a) Total 

cumulative CO2 

flux in + urine pots 

(RS + abiotic) 

(b) Cumulative 

CO2 flux from RS 

in + urine pots (a – 

2.09 g CO2 kg
-1

) 

(c) Cumulative 

CO2 flux from RS 

in control pots 

(d) Urine 

application effect 

(b – c) 

(e) Magnitude of 

urine-induced 

priming (b/c, %) 

  g CO2 kg
-1

 soil  

11°C Soil 3.45 ± 0.32 1.36 ± 0.32 0.11 ± 0.04 1.25 ± 0.32 1236 ± 535% 

 Ryegrass 4.10 ± 0.47 2.01 ± 0.47 0.35 ± 0.07 1.66 ± 0.48 574 ± 177% 

19°C Soil 3.63 ± 0.22 1.54 ± 0.22 0.34 ± 0.06 1.20 ± 0.23 453 ± 103% 

 Ryegrass 4.88 ± 0.12 2.79 ± 0.12 1.56 ± 0.14 1.23 ± 0.18 179 ± 18% 

23°C Soil 4.20 ± 0.17 2.11 ± 0.17 0.42 ± 0.03 1.69 ± 0.17 502 ± 54% 

  Ryegrass 6.81 ± 0.11 4.72 ± 0.11 3.18 ± 0.03 1.54 ± 0.11 148 ± 4% 
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5.4.9 The δ13C values of soil-respired C and the sources of soil respiration 

The δ
13

C values of CO2 respired from the soil control treatment (C4 soil, δ
13

COM) and of root-

respired CO2 (C3 plant, δ
13

CRD) are listed in Table 5.7. Temperature treatment had no effect 

on the δ
13

C values of either δ
13

COM or δ
13

CRDU. The mixing model (eqn. 5.7) was applied to 

the soil + urine, ryegrass control, and ryegrass + urine treatments to determine the relative 

fractions of the C pool sources in the CO2 fluxes. 

 

 

 

 

 

 

 

 

 

Table 5.7 The δ
13

C signatures obtained from the end members. The values for δ
13

CRDU 

and δ
13

COM originated with CO2 produced from plant roots and the soil control pots, 

respectively. The errors are SEM (n = 3). 

Temperature δ
13

COM δ
13

CRDU 

11°C -16.74 ± 0.72 -28.80 ± 0.51 

19°C -18.36 ± 0.37 -29.77 ± 0.72 

23°C -18.82 ± 0.41 -31.23 ± 0.23 

significance ns ns
 

Significance refers to the comparison between the 

temperature treatments. **p < 0.01; *p < 0.05; 
ns

 (not 

significant). 
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At 11°C, there were no significant effects of 

urine or ryegrass treatments on the δ
13

C 

values of soil-respired C at any sampling 

time (Fig. 5.6a). At 19°C, the δ
13

C values in 

the ryegrass + urine treatments were more 

enriched (p < 0.05) than the δ
13

C values of 

the ryegrass control treatments at 360 and 

552 h, respectively (Fig. 5.6b). The δ
13

C 

values of the soil + urine treatment at 19°C 

were more enriched (p < 0.05) than the 

ryegrass + urine treatment at 360 h. At 23°C, 

there was no significant difference between 

treatments at 24 h, but at 360 and 552 h, the 

δ
13

C values of the soil-respired C in the soil 

+ urine treatment were more enriched (p < 

0.01) than in the ryegrass control and 

ryegrass + urine treatments (Fig. 5.6c). At 

23°C, there was no significant difference 

between the δ
13

C values of soil-respired C in 

the ryegrass control and ryegrass + urine 

treatments at any time. 
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Figure 5.6 The δ
13

C values of soil-

respired CO2 over time. Error bars 

represent SEM (n = 3). The horizontal 

dashed and dotted lines represent the 

δ
13

C values of soil organic matter C 

(δ
13

COM) and of root-respired CO2 

(δ
13

CRDU), respectively (see Table 5.7). 

The lines were shown on the figures to 

indicate the δ
13

C values of the two 

potential contributing sources of the CO2 

flux. The vertical dashed line shows the 

timing of the increase of the soil moisture 

from 50% to 70% WFPS (at 408 h 

following the urine application). 
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The δ
13

C values used to calculate the 

contribution of soil organic matter 

decomposition to 
2COF (fOM) are shown in 

Table 5.7. Overall, there were significant 

effects of sampling time (p < 0.001), 

temperature (p < 0.01), ryegrass (p <0.001), 

and urine treatments (p < 0.001) on the fOM 

values (Fig. 5.7). At 11°C, the fOM values 

changed over time, increasing (p < 0.05) 

from 24 h to 360 h prior to decreasing again 

at 552 h (Fig. 5.7a). Ryegrass and urine 

treatments had no statistically significant 

effect on the fOM values at 11°C. At 19°C, the 

fOM values were low at 24 h before increasing 

to dominate the CO2 flux by 360 h (p < 0.05), 

before they too declined at 552 h, in the soil 

+ urine treatment (Fig. 5.7b). In the ryegrass 

control treatment at 19°C the fOM values 

decreased (p < 0.05) from a value of 

approximately 0.6 at 24 h to a value of 

approximately 0.3 at 360 and 552 h (Fig. 

5.7b). The fOM values were relatively 

constant over time for the ryegrass + urine 

treatment at 19°C (Fig. 5.7b). At 23°C in the 

soil + urine treatments the fOM values 

increased between 24 and 360 h and followed 

the trend seen at 19°C (Fig. 5.7c). The 

ryegrass + urine and ryegrass control 

treatments also showed the same trends, with 

comparable values, as at 19°C, with the fOM 

values decreasing over time in the ryegrass 

control and remaining relatively constant in 

the ryegrass + urine treatment (Fig. 5.7c).  
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Figure 5.7 The effect of urine and 

ryegrass treatments on fOM over time (h) 

at (a) 11°C, (b) 19°C and (c) 23°C. The 

error bars represent SEM (n = 3). The 

vertical dashed line shows the timing of 

the increase of the soil moisture from 

50% to 70% WFPS (at 408 h following 

the urine application). 
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The ROM rates with plants (RS minus RRDU), calculated based on the fOM (Fig. 5.7) and RS 

values (Fig. 5.4), showed that at 360 and 552 h, ROM in the ryegrass + urine treatment was 

consistently higher than ROM in the ryegrass control treatment at all the temperature 

treatments (Table 5.8). However, the magnitude of the priming effect on ROM in the ryegrass 

+ urine treatment was significantly higher than in the ryegrass control treatment only at 11°C 

360 h and 23°C 552 h (Table 5.8).  

Table 5.6 presents the estimation of RS without urine derived abiotic CO2 production. 

However, with plants present, RS can further be separated into ROM and root-derived 

respiration (RRD), hence the comparison of RS without plants (ROM only) and RS with plants 

(ROM and RRD) would be difficult if only the data in Table 5.6 was available. Hence, Table 5.8 

shows the estimated ROM values with plants present (RS minus RRD and urine derived abiotic 

CO2 production) and it makes possible the direct comparison of „ROM with plants‟ and „ROM 

without plants‟. However, the values in Table 5.6 are based on the cumulative CO2 flux 

throughout the experimental period (0 – 672 h), whereas the values in Table 5.8 are based on 

the CO2 fluxes at particular times during the experiment (360 and 552 h).
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Table 5.8 The magnitude of priming effect on ROM induced by (d) ryegrass presence and (e) ryegrass + urine presence at 360 and 552 h 

following urine application calculated based on ROM in the (a) soil control, (b) ryegrass control, and (c) ryegrass + urine treatments. The ROM 

rates were calculated from the fraction of ROM contributing to RS (fOM, Fig. 5.7), and the measured RS rates (Fig. 5.4). The error bars 

represent SEM (n = 3). 

    ROM (µg CO2 kg
-1

 s
-1

)         Magnitude of priming effect (%) 

  (a) soil control 

(b) ryegrass 

control (c) ryegrass + urine  

(d) Priming induced 

with ryegrass 

present, (b)/(a) 

(e) Priming induced 

with ryegrass and urine 

present (c)/(a) 

             

11°C 360 h 0.03  ± 0.01  0.03  ± 0.02  0.24  ± 0.08   99  ± 58%  724  ± 303% 
*
 

 552 h 0.03  ± 0.02  0.02  ± 0.00  0.03  ± 0.01   54  ± 31%  86  ± 61% 
ns

 

19°C 360 h 0.10  ± 0.04  0.10  ± 0.03  0.49  ± 0.07   100  ± 51%  502  ± 228% 
ns

 

 552 h 0.22  ± 0.04  0.23  ± 0.03  0.47  ± 0.08   104  ± 22%  212  ± 51% 
ns

 

23°C 360 h 0.10  ± 0.02  0.34  ± 0.03  0.40  ± 0.09   350  ± 91%  407  ± 136% 
ns

 

  552 h 0.21  ± 0.02  0.53  ± 0.07  0.83  ± 0.05    257  ± 45%  405  ± 49% 
*
 

Significance refers to the differences between (d) and (e). **p < 0.01; *p < 0.05; ns (not significant) 
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At 24 h, increasing TS significantly (p < 

0.001) increased the fOM values, when 

averaged across ryegrass and urine 

treatments (Fig. 5.8a). The fOM values for the 

ryegrass control treatment were higher (p < 

0.01) than the values for the ryegrass + urine 

and soil + urine treatments at 24 h (Fig. 

5.8a). At 360 h, there was no significant 

effect of temperature treatment when values 

were averaged across treatments (Fig. 5.8b). 

However, the soil + urine treatment had 

higher (p < 0.01) fOM values when compared 

to the values for the ryegrass + urine and 

ryegrass control treatments at 360 h (Fig. 

5.9b). At 552 h, there were significant (p < 

0.05) effects of temperature, ryegrass and 

urine treatments. Increasing temperature 

increased the fOM values, at 552 h, for the soil 

+ urine and ryegrass control treatments. The 

soil + urine treatment again had a 

significantly (p < 0.01) higher fOM value 

when compared to the values for the ryegrass 

control treatment at 552 h but the difference 

was smaller than 360 h (Fig. 5.8c). The soil 

+ urine treatment also had a significantly (p 

< 0.01) higher fOM value when compared to 

the values for the ryegrass + urine treatment 

at 552 h (Fig. 5.8c).   
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Figure 5.8 The effect of temperature, 

ryegrass and urine treatments on the 

contribution of fOM to the CO2 flux, (a) 24 

h, (b) 360 h, and (c) 552 h following a 

urine application. The error bars 

represent SEM (n = 3). 
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5.4.10 Photosynthesis rates and plant 
growth 

Increasing temperature significantly (p < 

0.001) increased photosynthesis rates (A) 

when averaged across the urine treatments. 

Urine application decreased (p < 0.05) A at 

240 h at 11° and 23°C (Fig. 5.9a and c) but 

not at 19°C (Fig. 5.9b). At 552 h, A in the + 

urine treatments was higher (p < 0.05) than 

in the control treatment at 23°C, but at 11°C 

A in the + urine treatment remained lower (p 

< 0.01) than in the control treatment at this 

time.  

Increasing temperatures had a positive effect 

(p < 0.01) on leaf and root biomass (Table 

5.9). Urine treatment had a negative effect (p 

< 0.01) on the root biomass at all of the 

treatment temperatures whereas urine 

treatment had no effect on the leaf biomass 

(Table 5.9). 

Using the plant biomass data in Table 5.9 and 

the photosynthesis data at 552 h, the 

photosynthesis rates were also expressed as 

per unit of plant biomass (leaf + root) to 

compare with previously measured values in 

Chapter 4 (Fig. 4.3). With urine, A increased 

with temperature whereas without urine, A 

remained constant across treatment 

temperatures. This was because, without 

urine, leaf: root ratio was markedly decreased 

with increasing temperature (Table 5.9). 
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Figure 5.9 Photosynthesis rates (µmol 

CO2 m
-2

 s
-1

) of ryegrass plants in the 

ryegrass+urine and ryegrass control 

treatments at (a) 11°C, (b) 19°C and (c) 

23°C over time (h). The measurements 

were taken 96 h before the urine 

application (-96 h), and 240 h and 552 h 

following the urine application. Values 

are means of 6 measurements taken from 

three different pots and the error bars 

represent SEM (n = 6). The vertical 

dashed line shows the timing of the 

increase in soil moisture from 50% to 

70% WFPS (at 408 h following the urine 

application). 
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Table 5.9 Leaf and root dry weight biomass (g pot
-1

) at the end of the experiment (672 h 

following the urine treatment). The data is the average of three replicates and the error 

bars represent SEM (n = 3).  

Temperature Vegetation Leaf Root 

    g pot
-1

 

11°C ryegrass control 4.64 ± 0.53 4.36 ± 0.91 

 ryegrass + urine 2.52 ± 0.56 0.59 ± 0.19 

19°C ryegrass control 6.72 ± 0.26 8.45 ± 1.74 

 ryegrass + urine 8.65 ± 0.44 3.29 ± 0.69 

23°C ryegrass control 7.75 ± 0.80 10.89 ± 1.98 

  ryegrass + urine 10.35 ± 0.09 5.34 ± 0.78 
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Figure 5.10 Temperature response of the carbon assimilation rates, at 552 h, of 

ryegrass with (○) and without (●) urine treatment. Error bars represent SEM (n = 4). 
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For the photosynthesis data measured at 552 h, the percentage of CO2 respired via RRDU per 

unit weight of net CO2 fixed by photosynthesis (A) was calculated (Table 5.10). This 

calculation was performed based on the assumption that abiotic CO2 fluxes from urine ceased 

by 552 h following the urine application and root-derived C was the only source of RRDU. 

Increasing TS (p < 0.001) significantly increased the percentage of RRDU per unit of A. There 

was a significant interaction (p < 0.05) between temperature and urine treatments in terms of 

the percentage of RRDU per A. At 11°C, urine application increased the percentage of soil-

respired CO2 per A whereas at 19° and 23°C, the effect of urine application was the opposite 

(Table 5.10). 

 

Table 5.10 The estimated fractions of urine and root-derived C utilisation (RRDU) per 

unit weight of net CO2 fixed by photosynthesis at 552 h following urine application. 

The errors represent SEM (n = 3). 

Soil  

Temperature Treatment RRDU / A (%) 

11°C ryegrass control 0.40 ± 0.09 

 ryegrass + urine 0.48 ± 0.27 

19°C ryegrass control 2.32 ± 0.25 

 ryegrass + urine 0.82 ± 0.40 

23°C ryegrass control 2.89 ± 0.03 

  ryegrass + urine 2.19 ± 0.14 
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5.5 Discussion 

5.5.1 Effects of temperature, soil moisture, ryegrass and urine on soil N2O flux 

Increased soil N2O fluxes both with and without ryegrass present, following urine application, 

can be attributed to the enhanced supply of N made available following the hydrolysis of the 

urea-N contained in the urine. This fact is supported by the high soil inorganic-N 

concentrations measured at the end of the experiment (Table 5.2).  

At 11°C, without plants, urine application to the soil induced a greater cumulative N2O flux 

than that with plants (Table 5.1). At 11°C, plants corresponded with a halving of the EF. This 

may have reflected the soil‟s low N availability due to its low fertility, and consequent urine-

N uptake by plants. Any plant uptake of N may have also reduced N2O via nitrification since 

nitrifying bacteria and plants compete for NH4
+
-N (Verhagen et al., 1995). Urine-derived N, 

as NO3
-
-N, would still be coming „on stream‟ within 48 h of urine application and it is likely 

that substrates for denitrification would have been limited to antecedent inorganic-N at this 

time. The hydrolysis of urea was more relatively prolonged at 11°C, based on soil CO2 flux 

data (discussed below), and this supports the assumption that substrates for denitrification was 

limited at this time.  

Another reason for lower N2O fluxes occurred with plants, at 11°C, could have been due to 

soil structure changes resulting from ryegrass root growth, since roots can reduce the 

anaerobic environments in soils that are preferred by denitrifying bacteria (Cornish, 1993). 

Although countering this would be the effect of oxygen consumption by ryegrass roots and 

exudation of C by roots which could both have enhanced N2O reduction via denitrification. 

Even in the presence of urine, the measurements of photosynthesis showed that C was being 

fixed by ryegrass, despite the possible occurrence of ammonia toxicity and root-scorching due 

to high soil pH. Some of this C would have been rapidly released via root exudation (Day and 

Detling, 1990). However, the C exudation by roots at 11°C could have been too small to 

supply the demand by denitrifiers because photosynthesis rates were approximately a half of 

those at 19° and 23°C (Fig. 5.9). Without plant-derived readily available C, soil N2O 

emissions have been reported to be low under urine patches (Carter et al., 2006). The low 

photosynthesis rates at 11°C may have been because of higher salt concentrations, a result of 

reduced N uptake and slower nitrification rates but also most likely because the 11°C 

temperature is approaching the minimum temperature (6 – 7°C) at which perennial ryegrass 

grows (Peacock, 1975). The ryegrass root biomass at 11°C, as a proportion of leaf biomass, 
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was markedly lower (Table 5.9) and this would also have reduced the potential for 

distributing root C exudates. 

At 19° and 23°C, urine application to the soil induced a significant increase of the N2O fluxes. 

The emission factors at 19° and 23°C were greater than that at 11°C, with and without plants. 

At 19° and 23°C, without plants, soil N2O fluxes following urine application were smaller 

than those with plants.  

The reason that ryegrass increased soil N2O fluxes at 19° and 23°C in the presence of urine 

was probably due to enhanced plant activity at these TS and the associated increase in root 

exudates. As the TS increased the leaf and root dry masses also increased along with 

photosynthetic C fixation, resulting in greater C supply to the soil microbial community. Soil 

NO3
-
-N would also have been prevalent, based upon previous urine studies (e.g. Clough et al., 

2009) and in conjunction with the enhanced C exudation and elevated WFPS denitrification 

could have occurred. A previous field study has also reported a positive influence of plant 

roots on soil N2O fluxes using maize plants (Song and Zhang, 2009).   

The occurrence of higher N2O fluxes immediately post urine application, during the moderate 

moisture phase, agrees with previous studies performed in urine patches at similar soil 

moisture contents (~50% WFPS) (Carter, 2007; Yamulki et al., 1998). The reason that the soil 

N2O fluxes initially peaked within 48 h following the urine application, during the moderate 

moisture phase, was most likely due to the increase in WFPS that occurred as a result of the 

urine application, which would have made the soil more anaerobic and potentially enhanced 

denitrification of antecedent inorganic-N. Bouwman (1998) reported that denitrification rates 

increased with increasing soil moisture and highest denitrification rates were found at a WFPS 

above 60%. 

Soil N2O flux rates peaked at 225 µg N2O-N kg
-1

 h
-1

 (equivalent to 13000 µg N2O-N m
-2

 h
-1

) 

in the current study (19 d following the urine application at 23°C with plants). The N2O flux 

rates are comparable to other studies, for example, Luo et al. (2008) measured soil N2O fluxes 

following the addition of cow urine (applied at 1000 kg N ha
-1

) on a New Zealand pasture, 

and the recorded values for the fluxes were up to 6000 µg N2O-N m
-2

 h
-1

 under comparable 

soil NO3
-
 and moisture conditions. Uchida et al. (2008) also recorded peak soil N2O fluxes of 

8000 µg N2O-N m
-2

 h
-1

 900 h after the application of fresh cow urine (at 15°C, equivalent to 

340 kg N ha
-1

) when a pasture soil was repacked and heavily compacted. Thus the N2O flux 

results are well within what would be expected under normal pasture conditions. 
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Following the increase in soil moisture at 408 h the observed increase in the N2O flux was 

again most likely a consequence of the increased WFPS enhancing denitrification. This is also 

consistent with previous work that has shown a marked increase in N2O emissions when 

WFPS exceeds approximately 60% (Clough et al., 2004; Linn and Doran, 1984). Pihlatie et 

al. (2004) also reported that the dominant N2O production process in soils changed from 

nitrification to denitrification when soil moisture content was increased from 40% to 100% 

WFPS. At a similar soil moisture content to the moderate moisture phase in the current study 

(WFPS = 50%), nitrification and denitrification were found to contribute equally to the N2O 

production under a urine patch (Carter, 2007), but denitrification was reported to be the 

dominant source of N2O under the high moisture condition (WFPS = 70%) (Monaghan and 

Barraclough, 1993). Russow et al. (2009) has shown that denitrification increases 

significantly when the oxygen percentage in the soil falls below 2%, and as WFPS increases 

microsites for denitrification become more numerous as oxygen content in the soil decreases. 

The response to elevated WFPS at 408 h was further influenced by TS and this is discussed 

below. 

The availability of substrate N strongly controls soil N2O fluxes (Tiemann and Billings, 2008). 

During the moderate moisture phase, the lack of any effect of TS on soil N2O fluxes, in the 

absence of urine indicates that the response to TS depended on N substrate availability, and 

that there was insufficient N to be lost via nitrification or denitrification pathways. Thus it 

follows that the presence of ryegrass also had no influence on N2O fluxes in the absence of 

urine during the moderate moisture phase, since N substrate would presumably have been 

even less available for soil microbes when plant competition for N was also present.  

Hence the changes in N2O fluxes to TS following the soil moisture increase, observed in the 

current study, were probably due to the responses of both denitrifiers and ryegrass to TS. 

Temperature optima for denitrification have been reported to be 60° to 75°C (Keeney et al., 

1979) while the optima for ryegrass is 18° to 21°C (Mitchell, 1956). However, N2O 

production via nitrifiers cannot be ruled out and NH4
+
-N was still present in all urine 

treatments at the end of the experiment. Temperature optima for nitrifiers have been reported 

as approximately 35°C (Stark, 1996) thus the N2O fluxes may have been partially formed via 

nitrification.   

The results agree with a previous review article, focusing on grassland systems, which 

concluded that soil N2O fluxes are the most sensitive to temperature at a soil moisture content 

range of 60 to 80% WFPS (Flechard et al., 2007). However, the novelty of these current 



 118 

results is the demonstration of the interaction between pasture plants, temperature and 

ruminant urine and their essential effects on N2O fluxes.  

5.5.2 15N enrichment and recovery as N2O  

 During the first 120 h at ≥ 19°C, the contribution of urine-N to soil N2O fluxes was higher 

with plants presence, when compared to the N2O fluxes from soils without plants, as shown 

by the N2O-
15

N enrichment (Fig. 5.2). The fact that the same effect was later observed 

between 120 and 240 h at 11°C indicates that the effect was temperature driven, in addition to 

any effect the presence of ryegrass had. Temperature affects biological processes, such as 

microbial activity and plant growth, and abiotic processes such as urea hydrolysis. As 

described above (section 5.2) the hydrolysis of urea results in elevated CO2 fluxes and a 

return to the antecedent pH level, which of course may change further due to nitrification. 

This elevated CO2 flux was observed to be of much shorter duration as TS increased (section 

5.4.7), indicating that urea hydrolysis was faster at higher TS. This means the soil NH4
+
-N 

pool would have formed more rapidly at higher TS leading to progressively earlier microbial 

utilisation of this soil NH4
+
-N pool as TS increased. During this period, higher 

15
N enrichment 

was observed in the N2O from the ryegrass + urine treatment when the soil was at the 

moderate moisture phase. This would have favoured nitrification and denitrification as 

opposed to predominantly denitrification after 408 h (the high moisture phase). Thus N2O 

could have derived from either mechanism. However, for plants to influence the N2O-
15

N 

enrichment there would have needed to be an increased C exudate supply at the higher TS 

influencing denitrification due to enhanced ryegrass growth at these temperatures (after NH4
+
-

N subsequent nitrification would have enhanced the nitrite pool and this may have been 

denitrified), or due to the microbial environment being enhanced by presence of the plant 

rhizosphere. The exact mechanism cannot be determined from the results obtained so far and 

warrant further investigation. 

It was expected that as TS increased, the contribution of urine-N to the N2O flux would 

decline since soil-N mineralisation is considered to increase with TS (Kladivko and Keeney, 

1987; Stanford et al., 1973). However, the 
15

N enrichment of the N2O flux did not differ at 

552 h due to TS indicating that urine-N presence and not TS determined the N2O-N source. At 

the end of the experiment (672 h), ≤ 15% of the N2O-N originated from soil-N. More soil-N 

would be available for soil microbes to produce N2O at higher TS.  

This may have been because the amount of mineralised soil-N was relatively small compared 

to the applied urine-N. The C:N ratio of the soil used in the current study was 11.7 and the 
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estimated mineralised C (based on the cumulative RS during the experiment at 23°C without 

plants) was 2.11 g CO2 kg
-1

 (0.58 g CO2-C kg
-1

). Given these values, the amount of N 

mineralised might have been relatively small (0.58 / 11.7 = 0.05 g N kg
-1

) when compared to 

the amount of N applied as urine-N (1.02 g N kg
-1

). Soil respiration data from the control 

treatments in the current study (section 5.5.3) indicates that the soil microbial activity (RS) 

was relatively low when compared to similar previous studies using a more fertile pastoral 

soil with a history of highly productive pasture species i.e. ryegrass and white clover (e.g. 

Clough and Kelliher, 2005). Thus, soil microbes in the soil may have not been actively 

mineralising labile organic N even at high TS in the current study. In support of this 

hypothesis are the results of Di and Cameron (2008) who reported that approximately 40% of 

the N2O flux was derived from soil-N following urine application (equivalent to 1000 kg N 

ha
-1

), over a 2 month period, in a high fertility pasture soil with a ryegrass and white clover 

sward. Soil N mineralisation can also be higher in a pasture with legume species, used in the 

study by Di and Cameron (2008), compared to mineralisation in a monoculture non-legume 

sward, used in the current study, because of the N fixation performed by clovers (Elgersma 

and Hassink, 1997). Also, a previous study reported that N immobilisation rates were 

positively related to TS but were also dependent on the nature of the C substrates (Nicolardot 

et al., 1994). Hence, in the current study, mineralised soil-N might have been immobilised 

into the microbial-N pool instead of being used for N2O production. 

Nitrous oxide emissions were not measured in previous experiments (Chapter 3 and 4). 

However, in a fertile pasture soil without plants, I observed a positive relationship between 

microbial ability to access more recalcitrant organic matter and TS (Uchida et al., 2010). 

Similarly, in Chapter 4, I showed that the fraction of ROM to RS increased with TS in a fertile 

soil with plants. However, in a less fertile soil, used in the current experiment, the phenomena 

described above were not observed and ROM remained constant across TS ranging from 13° – 

27°C (Fig. 4.2). Thus, the increase in soil microbial activity and consequent soil-N 

mineralisation with increasing TS might not have been occurring in the low fertility soil used 

in the current experiment due to low microbial activity. These may explain the relatively low 

contribution from soil-N to the N2O fluxes in the current study. It is likely that more soil-N 

would have been available for soil microbes to produce N2O if a more fertile soil was used in 

the current study because in a fertile soil, the mineralization of soil-C and soil-N is more 

likely to occur and the relatively lower C:N ratio in fertile soils suggest that more N is 

mineralized per a unit of soil organic matter mineralization. 
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Although urine-induced soil-N mineralisation did not increase with TS in the current study, 

urine-induced priming increased RS (section 5.5.3). Similarly, Gao et al. (2009) reported that, 

in soils with high C:N ratio (> 13), RS positively responded to TS while N mineralisation rates 

were below zero and were constant when TS ranged from 5° – 15°C. However, many models 

predict a positive relationship between RS and soil-N mineralisation (Rodrigo et al., 1997). 

Further study is required to investigate how background soil characteristics, for example, soil 

fertility, labile organic C and N contents, and general soil fertility, influence the contribution 

of soil-N to N2O fluxes under urine patches and the response of the pasture N cycle to soil 

warming. 

The increased recovery of 
15

N as N2O-N during the high moisture phase, particularly in the 

presence of ryegrass, and elevated TS (Fig. 5.3), occurred for reasons outlined above with 

respect to N2O fluxes, i.e. the probable increase in denitrification during this phase due to 

enhanced anaerobic and warmer conditions with increased root exudate C supply. Such 

moisture induced effects have also been observed previously, for example, Clough et al. 

(2004) reported increases in 
15

N recovery from < 0.1 – 0.4% to 0.4 – 1.7% when soil moisture 

contents were increased from field capacity to saturated conditions over an 85 day period. 

At 11° and 19°C, with and without plants, the EF, estimated from the cumulative N2O fluxes 

(Table 5.1), was larger than the percentage recovery of 
15

N. At 11°C, similar to the EF, plant 

corresponded with a halving of the percentage recovery of 
15

N (Fig. 5.3). At 19° and 23°C, 

plants increased the EF (Table 5.1) and the percentage recovery of 
15

N (Fig. 5.3). The EF was 

remarkably similar to the percentage recovery of 
15

N, at 23°C. This comparison suggests that 

virtually all of the emitted N2O derived from the applied urine-N at 23°C and N 

mineralisation did not contribute to the emitted N2O.   

The range in the percentage recovery of 
15

N, as N2O-N, in this study (Fig. 5.3) is comparable 

to previous studies listed below. In a field study conducted at a TS of 10°C on a ryegrass 

dominated pasture, the percentage of 
15

N recovered as N2O-N was 0.05% after 720 h 

following urine application (1030 kg N ha
-1

) (Wachendorf et al., 2008). Clough et al. (1996) 

conducted a lysimeter study with a silt loam mineral soil and recovered 3% of 
15

N applied as 

N2O-N 100 d after urine application (500 kg N ha
-1

). The percentage of 
15

N recovered as N2O-

N will vary according to soil type (Clough et al., 1998) and experimental duration.  

5.5.3 Effects of temperature, soil moisture, ryegrass and urine on soil CO2 flux 

Urine application greatly increased RS (cumulative 
2COF minus the total amounts of CO2 

produced due to urea hydrolysis and from other urine-C) and this was interpreted as a urine-
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induced priming effect (Table 5.6). Clough et al. (2003) observed a similar phenomenon when 

500 kg N ha
-1

 of synthetic urine was applied to a silt loam pasture soil. Clough et al. (2003) 

showed that during a 60 d incubation at 20°C, at field capacity, the control soil and urine 

treated soil produced 3.4 and 4.0 g CO2 kg
-1

, respectively, solely due to RS in the absence of 

plants. Another study by Clough and Kelliher (2005) reported RS from the control and urine 

treated soils (over 10 d) to be 1.6 and 1.1 g CO2 kg
-1

, hence in their study, RS decreased under 

urine patch when compared to RS in the control soil (negative urine-derived priming effect). 

Another study, performed on a grass-clover pasture, also showed that there was no increase in 

RS following a 400 kg N ha
-1

 urine application (Bol et al., 2004). In the current study, at 19°C 

and without plants, the control soil and urine treated soil produced 0.3 ± 0.1 and 1.5 ± 0.2 g 

CO2 kg
-1

 from RS (Table 5.6). Hence the magnitude of the priming effect (RS in the urine 

treated soil / RS in the control soil) was markedly larger for the current study when compared 

to the previous studies above (Clough and Kelliher, 2005; Clough et al., 2003). This may have 

been because of the competition for nutrients between soil microbes under low fertility 

conditions (discussed below). 

The δ
13

C values of 
2COF also support the fact that a significant proportion of the

2COF  

originated from soil-C. When averaged across temperature treatments, approximately 40 and 

70% of 
2COF originated from the soil-C at 24 and 552 h, respectively, in the soil + urine 

treatment (Fig. 5.8). A direct comparison of the amount of respired soil-C estimated by 

cumulative 
2COF and by the δ

13
C values was constrained because the δ

13
C values were 

measured only three times in the current study. However, the trends are the same and of the 

same magnitude when comparing the two methods with regards to the magnitude of priming 

effect. A significant amount of soil-C was almost certainly solubilised, due to an increase in 

soil pH, and respired following urine treatment application.    

There is a significant lack of published information with which to ascertain the factor(s) that 

control the urine-derived priming effect. However, when comparing the current study with the 

previous studies above (Clough and Kelliher, 2005; Clough et al., 2003) it can be seen that at 

low rates of RS the magnitude of the urine-derived priming effect is relatively higher. 

However, this comparison is confounded by differing urine-N rates between the current study 

and the previous studies. The control soil in the study of Clough and Kelliher (2005) showed 

the highest RS rate (1.6 g CO2 kg
-1

 in 10 d) but showed the lowest magnitude of urine-derived 

priming effect, whereas the control soil used in the current study showed the lowest RS rate 

(0.3 g CO2 kg
-1

 in 28 d) but showed the highest magnitude of urine-derived priming effect. 
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Soils used in the previously referenced studies (see above) were from ryegrass and white 

clover pastures and they were relatively more fertile when compared to the soil used in the 

current study (C4 grass pasture). In a previous experiment (Chapter 4), with plants and 

without urine treatment, the fraction of ROM in RS was smaller in a low fertility soil, used in 

the current study (C4 soil), when compared to a high fertility soil (Fig. 4.2), suggesting that 

mineralisation was limited in the low fertility soil when urine was not present. A previous 

study reported that in forest soils, soil organic C mineralisation in the N-poor soils was 

limited by N availability and thus increased strongly after the addition of an N containing 

compound (Hamer and Marschner, 2005), hence similar mechanisms may control the 

magnitude of urine-induced priming effects in pasture soils. Also, Fontaine et al. (2003) 

reported that the priming effect results from the competition for nutrient between the microbes. 

Similarly, Phillips and Fahey (2008) reported that the magnitude of a priming effect was 

stronger in nutrient-poor soils when compared to nutrient rich soils. Hence, the priming effect 

is more likely to occur in low fertility soils with relatively less available nutrients, when 

compared to fertile soils. Therefore, factors such as soil fertility and microbial availability of 

soil nutrients will almost certainly influence the magnitude of urine-derived priming effect. 

Further study is required to assess the influence of soil fertility on RS and possible priming 

effects.  

In the current study, the urine-induced priming effect on RS was greater at lower TS (Table 

5.6(e)) possibly because of slower rates of chemical and biological reactions in the soil at 

lower TS. As noted above the hydrolysis of urea was more relatively prolonged at 11°C thus 

the soil pH possibly remained higher for longer at this temperature and therefore the 

solubilisation of soil organic matter due to elevated soil pH was also likely to have occurred 

over a longer period. This may have made soil C available to the microbial pool for a longer 

period.  

However, the urine treatment effect (increase in the actual amount of CO2 emissions from RS 

when urine was applied, Table 5.6(d)) was not strongly affected by TS. Soil respiration is 

expected to increase 120% when TS increases from 11° to 23°C but in the current study, urine 

treatment effect (Table 5.6(d)) increased only 40% without plants and with urine when TS 

increases from 11° to 23°C, suggesting that the urine treatment effect was limited by 

insufficient C substrate availability. This may have reflected the soil‟s low C quality.  

The estimated fraction of root- and urine-derived CO2 (RRDU) per unit weight of net CO2 fixed 

by photosynthesis (RRDU/A, Table 5.10) increased with increasing TS, when averaged across 

urine treatment. A previous study (Chapter 4) showed that > 70% of soil-respired CO2 
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originated from root-derived C and the values for root-derived C/A increased with increasing 

TS (Table 4.3). Hence the similar trend was observed in Chapter 4 and 5. Given these facts, 

increasing RRDU/A with increasing TS may suggest that plants used assimilated C more 

efficiently at lower TS. Urine treatment markedly reduced RRDU/A at 19°C. The reason for this 

is difficult to fathom but this may be related to the fact that the optimum temperature for the 

ryegrass growth is approximately 19°C (Mitchell, 1956). Hence, this change in plant 

physiology with TS changes might have influenced the magnitude of priming effects. In 

addition, changes in soil microbial community might have had an influence on the magnitude 

of priming effects. However, the mechanisms related to this hypothesis are unknown and 

further research is needed in this area.    

The reason why plant presence would reduce the urine-induced priming effect (Table 5.6) is 

harder to fathom but following on from the logic above it may be that the soil microbial 

community, in the presence of plants, was larger or growing more rapidly following urine 

application and some of the primed soil C may have been incorporated into the microbial C 

pool. It was reported that without plants, the addition of inorganic-N (NH4NO3) to a soil 

induced a short-term (< 30 d) increase in RS when the inorganic-N was added together with 

various plant residues, because the addition of the inorganic-N reduced the C:N ratio and this 

favoured the microbial decomposition of plant residues (Lueken et al., 1962). Thus, the 

reduction of the C:N ratio due to the urine-N addition may have been a factor controlling the 

urine-induced priming effect, and this reduction of the C:N ratio may have occurred more 

efficiently in the absence of plants, due to the lack of plant N uptake, in the current study, 

driving the urine-induced priming effect.  

The time course of 
2COF (RS plus CO2 derived from abiotic processes) following the urine 

treatment in this study was similar to the data obtained from a previous study using a 

grassland soil (Kelliher et al., 2007) where the experiment was conducted at 19.2 ± 1.2°C and 

the parameters b and r obtained by fitting the same model were not significantly different 

from the parameters obtained in the current study at 19°C (Table 5.5). The range in the 

parameter r in this study (Table 5.5) is comparable to previously reported r values in this 

thesis, using a fertile soil without urine (Table 3.1). In the current study, the decline of 
2COF

was faster at higher TS but this trend was not clear in the fertile soil without urine at TS 

ranging from 3° to 24°C (Chapter 3). Based on the differentiation of eqn. 5.5, which may be 

written as d
2COF / dt = {[

2COF  (t) – a]ln(r)}, the natural logarithm (ln) of r expresses the 

magnitude of the decline in 
2COF and this method was previously used to examine the changes 
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in 
2COF over time following urine application on pasture soils (Kelliher et al., 2005b). The 

ln(r) values suggest that after urea application, the magnitude of the decay in 
2COF was 

controlled by TS and not by the plants present (Table 5.11). This was because of the abiotic 

release of CO2 due to urea hydrolysis, as noted above, which increased as TS increased. 

 

Table 5.11 Natural logarithm of the parameter r, determined from eqn. 5.5 (Table 5.5). 

For each ryegrass treatment (ryegrass + urine and soil + urine), dissimilar letters 

represent significant differences between treatment temperatures. 

  ryegrass + urine soil + urine 

11°C -0.011 ± 0.001
a
 -0.010 ± 0.002

a
 

19°C -0.021 ± 0.002
b
 -0.019 ± 0.002

b
 

23°C -0.070 ± 0.012
c
 -0.053 ± 0.007

c
 

 

The values of a, the asymptote, only increased significantly at higher TS in the presence of 

ryegrass and urine, when compared to the a in the soil + urine treatment, because of the 

increasing contribution of root-derived C to RS at higher TS as time progressed. This theory is 

supported by the measured photosynthesis rates. At 11° and 19°C, photosynthesis rates were 

reduced or unchanged by the urine treatment (Fig. 5.9a and b), whereas at 23°C, 

photosynthesis rates had increased 552 h after urine application (Fig. 5.9c). Root exudation 

has also been shown to be temperature dependent over the range 7° – 30°C in a western 

wheatgrass (Agropyron
 
smithii Rydb.) (Bokhari and Singh, 1974). Also, leaf biomass in the 

ryegrass + urine treatment increased at higher TS but decreased at lower TS, when compared 

to the ryegrass control treatment (Table 5.8). This suggests that, at lower TS, urine application 

negatively affected plant growth, possibly because of root-scorching. Thus, the decreased 

plant growth at lower TS and subsequent decrease in root-derived C input in the ryegrass + 

urine treatment is probably the reason for the unchanged value of a with/without ryegrass at 

lower TS.  

In the first experiment (Chapter 3) the values of a increased with increasing TS in the absence 

of ryegrass and urine (Table 3.1). The soil used in Chapter 3 was more fertile, compared to 

the soil used in the current study, and did not receive urine thus direct comparisons are not 

possible. However, it is possible that increased replication in the current study may have seen 

the a values increasing with TS in the absence of ryegrass because there was a trend for a 

positive relationship between TS and the a values but with large errors (Table 5.5).  
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The fact that the increase in soil moisture content had no significant effect on the 
2COF data 

may have been because WFPS was not limiting even at the moderate moisture regime. Doran 

(1984) reported a close relationship between RS and soil moisture content, with peak activity 

at 60% WFPS hence the two WFPS phases used in this experiment, 50% and 70%, might also 

have been close to the optimum in terms of 
2COF . 

5.5.4 The δ13C values of soil CO2 fluxes 

The δ
13

C values from soil organic matter decomposition (δ
13

C OM) and root-derived C 

respiration (δ
13

C RDU), measured in this study (Table 5.7), were typical of the δ
13

C values from 

C4 and C3 plants previously reported (O'Leary, 1988) and comparable to those in Chapter 4 

(Table 4.2). Using the natural 
13

C abundance, ROM could be separately quantified but urine-

derived CO2 and root-derived CO2 could not be separated as shown above because both 

originated from C derived from C3 sources, hence the sum of urine-derived and root-derived 

CO2 was termed RRDU.  

The significant increase in fOM in the ryegrass + urine treatment, when compared to the 

ryegrass control treatment, was observed at 19°C (360 and 552 h) (Fig. 5.7b). Based on the 

δ
13

C values, this was also able to be interpreted as a urine-induced priming effect on ROM with 

plants present. A direct comparison between the urine-induced priming effect indicated by fOM 

and the priming effect previously discussed (Table 5.6) is not appropriate since the previous 

priming effect discussed (Table 5.6) was based on the cumulative RS and this did not 

distinguish between ROM and RRDU. Nevertheless both approaches demonstrate the positive 

urine-induced priming effect, in the current study.  

Fontaine et al. (2003) have reported that a positive priming effect occurred when there was a 

competition among soil microbes for the readily available C. Hence, in this study, there might 

have been a competition for the readily available C between plants and soil microbial 

community only at 19°C while at 11° and 23°C, the priming effect was probably limited due 

to low soil microbial activity at a low TS (11°C) or due to the fact that plants were supplying 

enough readily C substrates hence there was no competition for the readily available C 

(23°C). The optimal temperature for ryegrass growth is 18° to 21°C (Mitchell, 1956), hence in 

the presence of ryegrass, urine treatment may have increased fOM only at 19°C because 19°C 

was the ryegrass‟ optimum temperature. Also, fOM is controlled by the amount (Blagodatskaya 

and Kuzyakov, 2008) and types (Hamer and Marschner, 2005) of added C substrates. 

Blagodatskaya and Kuzyakov (2008) showed that the magnitude of priming effects linearly 

increased until the additions of easily available organic C became 15% of microbial biomass 
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C. I did not measure the microbial biomass C in this experiment hence further study is needed 

in this area. Hamer and Marschner (2005) reported that the combined addition of fructose and 

alanine induced a higher positive priming effect than the single substrate additions. Again, I 

did not measure the components of root-derived C in this experiment hence this could be 

studied in future. In the current study, the combination of urine, ryegrass and the optimum TS 

for plant growth possibly created the optimum conditions for the increase in fOM, when 

compared to the conditions without ryegrass or urine.  

However, the significant increase in the proportion of ROM in RS (fOM) in the ryegrass + urine 

treatment, when compared to the fOM in the ryegrass control treatment, observed at 19°C did 

not result in a significant increase of actual C loss from the soil via ROM. This finding was 

possibly because of the relatively large errors associated in the actual soil CO2 fluxes (RS). 

However, there was a trend for the magnitude of the urine-induced priming effect to be higher 

at 360 h and 552 h in the ryegrass + urine treatment when compared with the ryegrass 

control treatment (Table 5.8).  

With plants and without urine, sources of RS in the current study were either root-derived C or 

soil organic matter C. In Chapter 4, using the same plant and soil used in the current study, 

increasing TS decreased fOM without plants (Table 4.2). However, this was not clearly 

observed in the current study (Fig. 5.8). The two experiments were performed under different 

light levels due to the availability of growth cabinets (700 and 400 µmol m
-2

 s
-1

 PAR in 

Chapter 4 and 5, respectively), thus the light levels could have influenced the plant activity 

and consequent C supply to soil, resulting in the different relationship between TS and fOM. 

Further study is required in this area.   

Without plants, there were only two sources of RS in the current study, ROM and the abiotic 

CO2 production (e.g. urea hydrolysis) because there were no C inputs from plants. Based on 

the δ
13

C values of soil-respired CO2 from the soils without plants, at 24 h following urine 

application, approximately 50 to 70% of RS originated from urine-C and there was no effect 

of TS (Fig. 5.8a). However, at 360 and 552 h, only 0 to 20% of RS originated from urine-C at 

19° and 23°C whereas approximately 50% of RS still originated from urine-C at 11°C (Fig. 

5.8b and c). This was because urea hydrolysis was reduced at the lower TS as shown by the 

model (eqn. 5.5) fitted to the 
2COF  data. Based on the comparison of the r values, it was 

estimated that urea hydrolysis occurred at a slower rate at lower TS.  
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5.6 Conclusion  

This study showed that increasing plant-derived C, at higher temperatures, increased N2O 

fluxes under high moisture conditions. At a lower temperature (11°C), the positive effect on 

plant-derived C on N2O fluxes was not observed.  At the highest temperature treatment 

(23°C), plants increased the EF and percentage recovery of 
15

N by about 3-fold   

Urine application induced a priming effect and enhanced C mineralisation of the soil organic 

matter accounted for the increased RS. Urine application increased 
2COF but the fluxes decayed 

faster as TS increased because urea hydrolysis rates also increased with TS. The urine-induced 

priming effect was relatively larger at lower TS, and was larger without ryegrass present based 

on cumulative RS. This was probably because at lower TS, chemical and biological reactions 

occurred at slower rates, soil pH remained higher for a longer period and there was a longer 

time for soil organic matter solubilisation. The relatively large magnitude of the urine-induced 

priming effect observed in the current study, when compared to previous work, may have 

been because of the lower fertility and lower nutrient status of the soil. In the presence of 

ryegrass, urine application increased the contribution of ROM to RS particularly at 19°C. This 

was reasoned to be due to the optimum temperature for ryegrass growth (18° – 21°C) 

enhancing the competition of nutrients between plants and due to microbes increasing the 

magnitude of priming effect. Further research is necessary to investigate the mechanisms 

controlling the urine-induced priming effect under pasture soils, in particular the response of 

the soil microbial pool and also the relationship between urine-induce priming of C and soil 

N2O emissions.  
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    Chapter 6 

Synthesis and recommendations for further research 

This chapter synthesises my research and identifies emergent opportunities for advancement 

by further research. 

6.1 Overall summary and future work 

6.1.1 Soil microbial respiration responses to changing temperature and 
substrate availability in fertile grassland 

This study used highly fertile soil had been sampled from beneath pasture grazed by dairy 

cattle with the shoots and roots removed. The objective of this study was to quantify the 

interaction between soil temperature and soil substrate availability on soil microbial activity 

in the absence of plant substrate inputs. The soil was incubated in the laboratory under 

constant moisture status. Thus without plants present the quantity of total C substrate was 

fixed. At 3°C, the soil microbial respiration rate (RM) was relatively constant at 1.05 ± 0.03 µg 

CO2 kg
-1

 s
-1

 for 14 d and C substrate had evidently not been depleted, so RM was constant. 

Increasing the incubation temperature from 3° to 24°C corresponded with a doubling of RM 

over the 14 d. However, at 24°C, RM declined by one time constant (by 63%) within 3 d, 

indicating a strong and rapid effect of the depletion of relatively labile C substrate in the 

absence of plants. The lower, asymptotic level of RM maintained over the incubation‟s final 

11 d, at 24°C, was considered to have represented utilisation of more recalcitrant C in the soil 

and it was significantly larger than the constant level of RM at 3°C. This suggested the 

microbial community was utilised C substrate at 24°C that was unavailable at 3°C. The 

methodology employed in this experiment was not able to detect changes in water soluble C 

with cold (20°C) and hot (80°C) water soluble C contents were found to be ineffective as 

indicators of the changes in substrate availability that influenced RM. Clearly a more subtle 

approach is required if such changes in microbially available C are to be detected. I would 

very much like to repeat this study but explore the possibility of using nuclear magnetic 

resonance (NMR) in order to try and detect shifts in the chemical composition of the soil to 

see if they correspond with temperature changes applied. The following questions need to be 

answered: (1) did increasing the incubation temperature to 24°C make more C available due 

to a simple abiotic mechanism or did the temperature change allow the existing microbial 

pool to more easily assess?; and (2) what is the relationship between the amount of available 

C substrates and their recalcitrance at different temperatures? 
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There is another possible scenario to be covered in future research. Again the same type of 

experiment would be performed but both the microbial composition (e.g. fungi versus 

bacteria) and the microbial pool size would be examined. The reason for doing this would be 

to see if dynamic changes in microbial composition or pool size coincided with changes in RM 

and maybe NMR data, as TS were shifted. Bradford et al. (2008) noted that thermal adaptation 

of microbes can occur when soil temperature is changed for a longer period of time and that 

this thermal adaptation can result in changes in the apparent temperature response of RS. Short 

term laboratory incubations may not of course run for sufficient periods for such effects to 

occur.   

The soil used here was the high fertility (HF) soil. In future work it would also be interesting 

to rerun a similar experiment but include the low fertility soil (LF) especially given the lack of 

temperature sensitivity that the LF soil (old C that was not plant derived) displayed in Chapter 

4. Again it would be advantageous to include more subtle measures of the microbial 

community and soil chemistry as discussed above.  

6.1.2 Fertility and plants affect the temperature sensitivity of carbon dioxide 
production in soils 

The objective of this study was to determine the temperature response of respiration sourced 

from root-derived C (RRD) and soil organic matter decomposition (ROM) in two pasture soils of 

contrasting nutrient status, with and without plants. Chapter 3 showed that without plants 

present, RM markedly decreased within a few days due to the depletion of readily available C 

substrates. Many previous studies indicate that live roots significantly influence RM sourced 

from the recalcitrant C substrates via priming effects (section 2.2.2.4). Soil respiration 

sourced from the recalcitrant C substrates was termed ROM in the second experiment. In the 

first experiment, RM measurement was started immediately following the soil sampling and 

RM included the respiration of root-derived C. However, the ROM measurement, measured in 

Chapter 4, was started 8 weeks following the soil sampling hence ROM was purely derived 

from the soil-C. When live roots are present, the priming effect on ROM can be either positive 

or negative (section 2.2.2.4) and may influence the effect of TS on ROM (Bader and Cheng, 

2007). Hence, the second experiment focused on ROM when plants were present.  

The response of ROM to TS may also vary due to the soil‟s nutrient status, e.g. C and N, and 

with plant C inputs (Kuzyakov et al., 2000). Thus, in addition to the nutrient rich dairy farm 

soil (HF soil), used in Chapter 3, an extensively managed low fertility dairy farm soil (LF 

soil) was used in the second experiment.  
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When plants are present, soil CO2 efflux (RS) includes ROM and respiration sourced from root-

derived C (RRD). In Chapter 4, RS was separated into ROM and RRD using a natural 
13

C 

abundance method. 

It was concluded from this experiment that without plants, ROM was equally sensitive to TS in 

the nutritionally contrasting soils, with increasing TS increasing ROM. This is in agreement 

with the results from Chapter 3 with respect to the HF soil. However, when plants were 

present, ROM was markedly less sensitive to TS in the LF soil, but ROM in the HF soil remained 

temperature sensitive. Further research needs to examine this interesting result to find out why 

the temperature sensitivity of ROM was influenced by plant presence and soil fertility. Factors 

such as the size of soil microbial biomass, the microbial community, soil nutrient availability, 

and the type of root-derived C substrates might have influenced the temperature sensitivity of 

ROM. It will be interesting to study changes in the relative microbial communities in terms of 

size and composition at different TS, with/without plants in different types of soils. Both soil 

types had basal urea fertiliser dressings applied prior to treatment applications to ensure plant 

growth but clearly this did not have a unifying effect on soil microbes responsible for 

respiration. In the HF soil the old C basically behaved in a similar manner with and without 

plants. This may have been due to the history of management. In contrast, the quality of the 

soil C substrate may have been so poor in the LF soil that microbes were struggling to utilise 

it. Fig. 4.1 showed that the answer is no, as judged by the relative rates of respiration without 

plants present. In which case it also seems likely the soil microbial pool was of differing size 

and composition. As outlined above for Chapter 3, this component must be examined in 

future studies. It seems incongruous that in the LF soil that root exudate C could make such 

increasing contributions to the total respiration pool as TS increased (Fig. 4.2c). It may be that 

root growth was covering increasing volumes of the pot as TS increased, but it would also be 

interesting to know if fungal respiration increased and if it was due to hyphae being able to 

respond and switch rapidly to more readily available „new C‟ from roots. 

A suitable technique to explore the soil microbial response to plant added „new C‟ would be 

the use of 
13

C labelled phospholipid fatty acid signatures (PLFAs). Using the 
13

C-PLFA 

analysis, changes in soil microbial communities, due to added readily available C substrates, 

can be monitored and the data from this analysis can be used to discuss the changes in ROM 

response to temperature when plants were present. To follow the temporal and spatial 

(distance from roots) response of soil microbes to the introduction of a plant a C3 plant could 

be added to a C4 soil and vice versa with the incorporation of the newly added plant C 

highlighted in the microbial biomass 
13

C signature.  
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Given the results of Chapter 3 and 4 it would be interesting to enhance our understanding of C 

availability by trying to apply a treatment that would make the recalcitrant C more available. 

Soil fertility presents as an influencing factor here and it would be worth investigating how a 

small change in soil pH of the LF soil, or addition of nutrients such as phosphorus might alter 

the soil‟s temperature sensitivity and the microbial community response. Especially given 

what appeared to be an effect of pH on increasing the priming effect observed at lower 

temperature in Chapter 5, where prolonged elevated pH at lower temperatures enhanced 

priming. 

The observed changes in the temperature sensitivity of ROM caused by plant presence and soil 

type potentially have some global significance. Ecosystem models predict that global 

temperature increases tend to reduce soil C storage due to a positive relationship between ROM 

and temperature, resulting in an increase in the atmospheric concentration of CO2 and an 

acceleration of climate change (e.g. Cox et al., 2000). In contrast to the LF soil, a relatively 

more rapid loss of soil C occurred as TS increased in the HF soil, when plants were present. 

Hence, the results suggested that the warming of high productivity and high fertility soils 

could increase the rate of soil C loss to the atmosphere more than that from less fertile soils. 

However, several uncertainties make this far from a simple extrapolation. For example, high 

fertility soils have higher plant productivity and this compensate for the increased respiration 

losses. Another factor not considered in this thesis is the potential effect of elevated 

atmospheric CO2 concentrations that would accompany predicted increases in global mean 

temperatures, and exert feed back over time. 

6.1.3 Effects of bovine urine, plants and temperature on nitrous oxide and 
carbon dioxide emissions from a low fertility soil 

In addition to soil and plant related factors, animal grazing has a major impact on RS and N2O 

emissions in pastoral ecosystems as outlined above (section 2.2.3.5). In this study, the effect 

of urine application, soil temperature (TS = 11°, 19° and 23°C), and plants on soil N2O fluxes 

and RS was investigated.  

Nitrous oxide emissions were higher when the WFPS was increased which indicated that 

denitrification was the driving mechanism. Despite the WFPS being at 70% the N2O flux was 

relatively short lived after increasing the WFPS. If plants were driving denitrification by 

providing heterotrophs with C substrates one might have expected a more prolonged N2O flux. 

The data obtained previously in Chapter 4 from the LF soil (Figure 4.2a) showed that the 

fraction of RS derived from root-C increased substantially as TS increased. Future experiments 

need to also measure the N2 flux and a higher 
15

N enrichment on the urine-N would enable 
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this and could help explain the reduction in N2O at relatively high WFPS. Repetition of such 

an experiment would warrant an examination of the soil microbial pool for atom % 
15

N and 


13

C in order to establish where it was resourcing its substrate supply and the relative 

contributions of the urine-N and plant-derived C. 

A previous pilot study (data not presented here) performed as an honours project showed 

decreasing atom%
15

N enrichment of the N2O flux as TS were increased following a urea 

application. This was thought to be due to mineralized soil N increasing its contribution to the 

N2O flux as soil warmed. I have expected to see a similar result in the current study but in 

retrospect the lack of such a result may be due to soil type. The pilot study used a more fertile 

soil where as this study used a low fertility soil. I would like to repeat this type of study with 

different soil types, varying in fertility (e.g. the HF soil in Chapter 3 and 4) to see if the 

contribution of soil-N to N2O is in fact soil specific (fertility related) and how it changes with 

temperature. If soil C is mineralized so too must be the soil-N it's a question of whether or not 

it goes into the soil microbial pool or the N2O flux. Again though if we note the earlier result 

(Figure 4.2a), where ROM in the LF soil was relatively insensitive to TS increase, it is perhaps 

not surprising we saw no increase in soil-N contributions to the N2O flux as TS increased. 

With respect to the CO2 fluxes there was a progressive shift from an abiotic hydrolysis 

induced mechanism to heterotrophic mechanisms, in the urine treatments, with the shift 

occurring more rapidly as TS increased. This temperature effect was strong and the use of TS 

to predict this effect could be useful in future studies that try to predict the fate of C in pasture 

systems, given that the soil priming effect was greater at the lower TS, which was assumed to 

be a function of the prolonged elevation of soil pH, which is a direct result of prolonged 

hydrolysis. 

The isotopic 
13

C data clearly supported this shift in CO2 source, in the urine treatments. In 

future studies however, more sampling events need be included in the programme. The use of 

C3 and C4 soils in conjunction with C3 and C4 pasture species provides an exciting system for 

research. However, it is not without possible artefacts. The grasses used here both are of 

similar biochemical composition compared to a ryegrass versus maize comparison, where 

maize has more recalcitrant C. Thus, so long as the sites have had a long history of paspalum 

or kikuyu (C4 pasture species) and ryegrass (C3 pasture species) use then the soil organic 

matter loadings should be similar in terms of quality. However, because the soils used here 

(LF and HF) were of different parent material we cannot rule out that factors other than 

general nutritional fertility influenced soil microbial responses to treatments applied. In an 



 133 

ideal situation if the experimental „set-up‟ was repeated a common parent material would be 

included in the soil selection criteria. 

Hence Chapter 4 was performed based on the assumption that soil parent material and plant 

type did not affect the temperature sensitivity of RS and I only focused on the soil nutrient 

status. To test the validity of this assumption, further work needs to be performed using two 

soils with contrasting nutrient status but from the same location and of the same soil type. 

6.2 General comments 

 The experiments conducted in this thesis were also constrained by the availability of 

growth cabinets hence, the number of treatment temperatures were 3 or 4 for each 

experiment. Because of the limited number of treatment temperatures, uncertainties 

around mean values are higher than I would have liked. For example, in Chapter 5, the 

highest magnitude of urine-induced priming of soil C was observed at an intermediate 

temperature (19°C). However, because this experiment had only three treatment 

temperatures, the relationship between the urine-induced priming of soil C and 

temperature could not be clearly described. A model was used to estimate the effect of 

TS on soil processes but the uncertainties with regards to the model fitting could be 

reduced if future studies are performed using a higher number of treatment 

temperatures. 

 In Chapter 3 and 4, soils were pre-conditioned for 7 days at their appropriate treatment 

temperature before the measurements of RS commenced. It was reported that soil 

microbes could adapt to their temperature condition during a pre-conditioning period, 

and that this phenomena could change the apparent temperature sensitivity of RS. Hence, 

further study is needed to investigate the microbial adaptation to different temperatures. 

However, the current studies were performed using soils with live plants hence plant 

growth was another factor to consider when determining the pre-conditioning period. 

Plants grew faster at higher temperature hence the pre-conditioning period had to be 

kept short to minimize the difference in plant biomass among treatment temperatures. 

Future studies need to consider these issues. 

 The experiment in Chapter 4 was performed using two soils; the low (LF) and high 

fertility (HF) soils. However, the first experiment (Chapter 3) was conducted only using 

the HF soil and the third experiment (Chapter 5) was performed only using the LF soil. 

This was because the first experiment had to be started within 4 h of soil sampling and 

this was impossible to perform the experiment in this way using the LF soil, which was 
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obtained from 700 km north of Lincoln University, where I performed the experiment. 

Also, for the first experiment, because locally available cow urine was only C3 labelled, 

I only had the option of using the LF soil, which was a C4 soil to investigate the 

contribution of urine-C to soil respiration. Thus, further work can be performed, by 

developing the third experiment, to investigate the magnitude of urine-induced priming 

effect in a high fertility soil.  
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