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Abstract: Cell cycle, which comprises an ordered sequence of phases (G1, S, G2, and M) that leads to 
growth and division of a cell, is an essential part of life and its malfunction may cause formation of tumors and 
cancer. Therefore, study of cell cycle system has been the topic of many computational modelling research 
studies. In this paper, a thorough review of all modelling methods for mammalian cell cycle and corresponding 
models are presented. Due to its high complexity, mammalian cell cycle system has been less modelled than 
other organisms, such as yeast. Majority of models have investigated various parts of mammalian cell cycle, 
with few covering the whole system including all the phases. There are four main modelling types (discrete, 
deterministic continuous, stochastic continuous, and hybrid) that enable researchers to explore and understand 
system properties, such as dynamics of key regulators, oscillation behaviors, feedback loops, etc. Discrete 
models provide an abstract view of the system where different nodes interact with each other based on discrete 
logic. On the other hand, continuous models usually utilize Ordinary Differential Equations (ODEs) to 
incorporate continuous dynamics of the system elements (i.e., protein concentrations). The effect of noise in 
biological systems has been modelled through stochastic models. Hybrid models combine aforementioned 
modelling methods to overcome limitations of individual methods. The paper covers all the above methods 
highlighting their strengths and weaknesses and presents some open questions as promising future prospects 
for modelling cell cycle. 

Keywords: Mammalian cell cycle, computational modelling approaches, Ordinary Differential Equations 
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1. INTRODUCTION 

Cell cycle is a precisely regulated process in which cells of living organisms undergo a sophisticated growth 
and division cycle which eventually leads to the production of two daughter cells. Mammalian cells are in the 
category of eukaryotic cells that have four phases in each cell cycle. The first phase is G1 in which a cell grows 
and becomes ready for DNA replication in S phase (Figure 1). The Restriction Point (R) in late G1 is considered 
as a point of no return because it is here that a cell is committed to either keep continuing cell cycle or exit 
from it (Berridge, 2012). In the second gap phase (G2), the DNA replication accuracy, environmental 
condition, and the volume of the cell are checked. M phase is composed of two main parts: Nuclear division 
and Cell division which are also called Mitosis and Cytokinesis (Cyt), respectively. Mitosis usually has five 
main sub-phases: Prophase (Pro), ProMetaphase (ProM), Metaphase (Meta), Anaphase (Ana), Telophase 
(Telo) as demonstrated in Figure 1. During Prophase, Chromatin condensation, centrosome separation, and 
nuclear envelope breakdown (NEB) are initiated. Next, the spindle assembly is carried out in ProMetaphase 
right before the chromosome alignment on the spindle plate that happens in Metaphase. Completion of spindle 
alignment is a signal to start the next sub-phase, Anaphase where 
all chromosomes are separated and moved toward the opposite 
spindle poles. Finally, in Telophase, the chromosomes become 
decondensed and two nuclei appear. Division into two distinct 
daughter cells is carried out in Cytokinesis phase. At the end of 
M phase, each of the new daughter cells has one of the newly 
created nuclei and its function is similar to that of the parent cell 
(Morgan, 2007). Although the sequence of cell cycle events has 
been known for decades, the underlying regulatory basis was not 
clear until the introduction of checkpoint concept by Hartwell 
and Weinert (1989). They demonstrated that there are some 
checkpoints which arrest cell cycle progression in the case of an 
incomplete event or DNA damage. This arrest provides enough 
time for completing the event or DNA repair process so that the 
fidelity of the genome is maintained (Novák et al., 2003). The 
two important checkpoints are G1-S and G2-M that can be seen 
in Figure 1. 

Cyclin-Dependent Kinases (Cdks) are the core components of cell cycle control system and regulate the 
coordination and timing of cell cycle events. Activation of Cdks in cell cycle is mainly due to binding of 
cyclins. During cell cycle, the levels of Cyclin/Cdks oscillate and these oscillations drive phase transitions.  
Four different kinds of cyclins have crucial effects on mammalian cell cycle system (Cyclin D, Cyclin E, Cyclin 
A, Cyclin B). These cyclins, which bind and activate Cdks, stimulate particular cell cycle events. For example, 
the complex CycA/Cdk2 leads to the phosphorylation of some proteins that begin the DNA Replication in S-
phase. Generally, there are three 
regulatory mechanisms that control 
Cdk activities (Berridge, 2012) as 
shown in Figure 2: (a) Cyclins 
synthesis and degradation (activates 
and deactivates Cdks - bottom part of 
Figure 2); (b) The presence of Cdk 
inhibitors, CKIs (inhibits Cdks - top 
left hand side of Figure 2); (c) Addition 
& removal of inhibitory phosphate 
group by Tyrosine kinases & 
phosphatases, respectively (inhibition 
& activation of Cdks - top right hand 
side of Figure 2). The detailed 
description of these regulators can be 
found in (Morgan, 2007). 

Following the increase in cell cycle-related experimental data in the last two decades, a variety of 
computational models aimed at understanding the behavior of this complex system have been developed 
(Csikász-Nagy, 2009). Majority of these models have focused on yeast cell cycle. Mammalian cell cycle has 
been less investigated and modelled in comparison to that of other eukaryotes due to its higher complexity. 
Furthermore, most mammalian cell cycle models have concentrated on just a part of cell cycle, such as G1/S 
checkpoint. In this paper, we describe modelling approaches to mammalian cell cycle (discrete, continuous, 

Figure 1. Mammalian cell cycle. 

Figure 2. Three main regulatory mechanisms of Cdk activity.
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deterministic, stochastic and hybrid) and pros and cons of each approach in Section 2 and provide conclusions 
and future prospects in Section 3. 

2. COMPUTATIONAL METHODS FOR MAMMALIAN CELL CYCLE MODELLING 

2.1. Discrete Modelling 

The first category is the group of discrete/logical models that qualitatively describe the system behavior, and 
mostly correspond to Boolean networks. They provide a high degree of abstraction as well as a fundamental 
understanding of the dynamical behavior of a system under different conditions. Such models are not only 
flexible but also easy to fit into cell cycle system. These models introduce the states of species in the form of 
active/inactive (present/absent) and construct causal relationships between them. In this way, they do not have 
the problem of parameter estimation that ODE models have and they in particular are useful for large scale 
networks. A main disadvantage of Boolean modelling is that it cannot describe intermediate states such as slow 
or small state changes and it can easily generate spurious results (Albert & Wang, 2009). Most Boolean models 
of cell cycle were developed for yeast and not many for mammalian cell cycle. In one of the most referenced 
Boolean models of mammalian cell cycle, Fauré et al. (2006) constructed a discrete version of an ODE model 
in synchronous as well as asynchronous updating schemes. They assessed the corresponding merits and 
limitations of these two schemes in determining the regulatory network behavior. A logical simulation software 
named “GINsim” was also developed by this group. However, this model does not take the important effect of 
some cell cycle regulatory proteins such as Cdc25, Wee1, and p16 into consideration.  

Generally, for construction of a discrete model, three main steps should be followed: (1) constructing network 
graph; (2) determining logical nodes; (3) defining updating schemes. Logical operators, such as AND, OR, and 
NOT, are used to define the updating schemes. An example of a discrete graph for a small part of mammalian 
cell cycle, which shows the regulation of Cyclin B controlled by two ubiquitin ligases (APC/Cdc20 & 
APC/Cdh1), is illustrated in Figure 3 (Morgan, 2007). The logical rule for updating the activity of CycB is 
illustrated in Table 1. According to Figure 3 and Table 1, CycB node becomes active (state = 1) if both 
APC/Cdc20 AND APC/Cdh1 are absent or inactive. These ubiquitin ligases may have some effects on other 
elements of cell cycle, but just the effect on CycB has been highlighted to illustrate the Boolean concept. A 
summary of discrete models of mammalian cell cycle highlighting references and coverage (aspect of the cell 
cycle studied) is in Table 2.  

 

2.2. Deterministic Continuous Modelling 

As discrete models are only able to present system variables discretely, continuous models have become more 
popular in the field of cell cycle modelling. The main approach here has been mathematical models based on 
Ordinary Differential Equations (ODEs) that deterministically track the exact concentration of species via 
continuous representation of system dynamics using a set of ODEs (Fuβ et al., 2005). In general, the rate of 
chemical reaction ݉ in a dynamic system is expressed as a function of species (ݕଵ, ,ଶݕ … ,  and	௞) that affect ݉ݕ
can be presented as ݎ௠:  
௠ݎ                                            = ݃௠(ݕଵ, ,ଶݕ … ,  ௞)                (1)ݕ

Different kinetic laws are used to mathematically formulate ݎ௠. Mass Action law and Michaelis-Menten are 
two common kinetic laws used in mathematical models (Sauro, 2012). Mass Action Kinetic is utilized for 
elementary reactions with single transition step (Eq. 2) and describes the rate of reaction as in Eq. (3); therefore, 
change in concentration of reactants and product can be calculated by Eq. (4).  

ܦ݀  + ܧ݁ ௞→  (2)                                                ܲ݌

ݎ                   = ݇ × ௗ[ܦ] ×  ௘                    (3)[ܧ]

The updating rule for CycB Rationale

CycB: 20ܿ݀ܥ/ܥܲܣതതതതതതതതതതതതതതതത ∧ ݀ܥ/ܥܲܣℎ1തതതതതതതതതതതതതത 
To become active, CycB needs absence of 
two ubiquitin ligases, APC/Cdc20 AND 
APC/Cdh1 (Morgan, 2007). 

Figure 3. An example of a discrete 
Boolean graph for CycB regulation. 
Normal and oval arrows indicate 
activation and inhibition, respectively. 

CycB 

APC/Cdc20 APC/Cdh1 

Table 1. The updating rule for CycB activation  

Table 2. A summary of discrete models of mammalian cell cycle.
Paper (Reference) Coverage

(Huang & Ingber, 2000) G1-S-G2-M
(Fauré et al., 2006) G1-S-G2-M
(Sahin et al., 2009) G1-S
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	ௗ[஽]ௗ௧ = −݀ × 			,ݎ ௗ[ா]ௗ௧ = −݁ × 							,ݎ ௗ[௉]ௗ௧ = ݌ ×    (4)                							ݎ

where ܦ and ܧ are reactants and ܲ is product; ݀, ݁, and ݌ are stoichiometric coefficients; and ݇ is rate constant 
(Sauro, 2012). On the other hand, Michaelis-Menten law is used when the reaction is enzymatic. The typical 
reaction of this type can be shown as follows:  

                							ܵ + ܧ ⇌ ܵܧ	 ݇→ܿ 	ܲ +  (5)                      ܧ

where S, E, ES, and P are substrate, enzyme, enzyme-substrate compound, and product, respectively. ݇௔, ݇௕, 

and ݇௖ are rate constants. There are two assumptions to write the Michaelis-Menten kinetic: ES concentration 
is almost constant; and the total concentration of enzyme (bounded and unbounded) (Etotal) is constant. 
Therefore, Michaelis-Menten equation formulates the rate of enzymatic reaction or change in concentration of 
P as hyperbolic with respect to S, as follows:  

   																		ௗ[௉]ௗ௧ = ௠௔௫ݎ [ௌ]௄ಾା[ௌ]                 (6) 

where ݎ௠௔௫ = ݇௖×[ܧ௧௢௧௔௟] is the maximum reaction rate and ܭெ = ܾ݇+݇ܿ݇ܽ  is Michaelis-Menten constant. The 

detailed description of other kinetic laws (such as Hill Function) can be found in (Sauro, 2012).  

Due to data availability, the last decade of the 20th century has seen much growth in computational modelling 
of cell cycle. The first mathematical model of cell cycle was on “Modelling the cell division cycle: cdc2 and 
cyclin interactions” (Tyson, 1991). Comprising six species, this model could qualitatively represent cell 
division. Tyson characterized “M-phase Promoting Factor” (MPF) as the most crucial regulatory element in 
the cell cycle (MPF corresponds to CycB/Cdk1) which can be regulated by synthesis and degradation of 
cyclins, dephosphorylated by a phosphatase (Cdc25), and phosphorylated by a kinase (Wee1).  Also, Novak 
and Tyson (Novak & Tyson, 1993) showed that “Hysteresis” exists in the MPF–Cyclin relationship and it was 
confirmed experimentally ten years later (Sha et al., 2003), demonstarting the value of computational modelling 
in biological discovery. In 2004, Novak and Tyson developed a mathematical model for the restriction point 
control (Novak & Tyson, 2004) where they investigated the mutations in some key elements of mammalian 
cell cycle, like Cyclin E and Retinoblastoma protein (Rb). They also considered the important effect of growth 
factor on passage through the restriction point by exploring the interactions between Growth factors and cell 
cycle core components, such as Cyclin/Cdks and made a good comparison between mammalian and yeast cell 
cycle dynamics. But their model lacked a strategy to investigate the mechanism of coordination between cell 
growth and division.  

In 1999, Aguda and Tang published a detailed mathematical model to investigate the kinetic origin of 
restriction point in mammalian cell cycle (Aguda & Tang, 1999). In the same year, Aguda explored the effect 
of DNA damage on G2/M checkpoint  (Aguda, 1999). Iwamoto et al. who partly utilized Aguda’s models, 
started to develop more complex models of mammalian cell cycle checkpoints and investigated the effect of 
DNA damage (following UV-irradiation) on G1/S transition in mammalian cell cycle  (Iwamoto et al., 2008). 
This study inspired Ling et al. to investigate the robustness of G1/S checkpoint in depth. Using Type II Error, 
they introduced a novel approach to quantify the percentage of damaged cells passing G1/S checkpoint under 
different system perturbations (Ling et al., 2010). In 2011, Iwamoto et al. added G2/M checkpoint to their 
previous model in order to make it more comprehensive and meaningful as it then covered almost the whole 
cell cycle. (Iwamoto et al., 2011). This model was insightful in that it could determine cell fate based on DNA 
damage strength. One of the most complete models of mammalian cell cycle was constructed by Gauthier and 
Pohl (2011). It included both molecular and cellular systems from nucleotides and amino acids to proteins (33 
cell cycle proteins) and consisted of 387 equations and around 1100 rates represented in elementary mass action 
kinetics. The authors presented a table to describe the corresponding location, ubiquitinator, inducer, activator, 
inactivator, and function of each cell cycle protein. This model presented some predictions on both molecular 
and system levels including the effect of cell growth (Gauthier & Pohl, 2011). A summary of ODE models of 
mammalian cell cycle including the corresponding reference and coverage is given in Table 3. 

 Table 3. A list of deterministic continuous (ODE) models of mammalian cell cycle. 
Paper 

(Reference) 
Coverage 

Paper 
(Reference)

Coverage 
Paper 

(Reference)
Coverage 

Paper 
(Reference) 

Coverage 

(Tyson, 1991) G2-M (Aguda, 1999) G2-M 
(Chassagnole et 

al., 2006) 
G1-S-G2-M (Ling et al., 2010) G1-S 

(Hatzimanikatis et 
al., 1995) 

G1-S 
(Qu, Weiss, et 

al., 2003) 
G1-S 

(Csikász-Nagy 
et al., 2006) 

G1-S-G2-M 
(Conradie et al., 

2010) 
G1-S-G2-M 

(Obeyesekere et 
al., 1995) 

G1-S 
(Deineko et al., 

2003) 
G1-S 

(Tashima et al., 
2007) 

G2-M 
(Iwamoto et al., 

2011) 
G1-S-G2-M 

݇௔݇௕
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The drawback of deterministic models such as ODE is that model complexity increases with the number of 
chemical reactions. Furthermore, it is hard to estimate kinetic parameters with the limited available data and it 
becomes even harder for large scale systems.  

2.3. Stochastic Continuous Modelling 

The third category of models is based on the fact that the functionality of cell cycle regulatory network is often 
influenced by noise. Unlike deterministic models, stochastic models consider the random variations in 
concentration of biological species. They are suitable for cases where concentration levels of the species are 
lower than that which are applicable to deterministic ones (of the order of many hundreds or above). So, as 
concentrations become lower, the variability of concentration becomes higher and therefore the random 
element in chemical interactions becomes significant (Donnet & Robert, 2012). Generally, stochasticity is 
presented by Gillespie Stochastic Simulation Algorithm (GSSA)  (Kar et al., 2009) or Stochastic Langevin 
Equations (SLA) (Steuer, 2004). The mathematical details of 
these algorithms can be found in the above references. As 
stochastic models take the number of molecules into account 
(instead of concentrations), they suffer from the problem of 
computational complexity. There are not many stochastic 
models of mammalian cell cycle (Table 4).  

2.4. Hybrid Modelling 

The last category of models is hybrid type. They integrate strengths of other methods, such as discrete models 
for rapid changes, continuous models for slow changes, deterministic and stochastic models for predictable 
and unpredictable behaviors, respectively (Kiehl et al., 2004). Majority of hybrid models have aimed to 
overcome the limitations of ODE-based models. Some of these limitations are: (1) problem of passing from 
the number of molecules to concentration levels; (2) difficulty in combining discrete state transitions and 
continuous dynamics which is particularly needed throughout cell cycle; (3) limited available experimental 
data for reaction rates, parameters, and real protein concentrations. In recent years, hybrid modelling has 
become popular and a few cell cycle models, but not many for mammals, have been proposed and proved to 
be successful due to incorporation of the best features of individual models as well as the capability to represent 
different time-scales. Singhania et al. (2011) developed a simplified hybrid model emphasizing the vital effect 
of cyclins in mammalian cell cycle regulation. The authors combined discrete (Boolean), deterministic (ODEs), 
and stochastic approaches, just three different cyclins (Cyclin E, A, and B) and continuous tracking of cell 
mass. Here, cyclins were considered as continuous variables but regulators of cyclins as discrete variables 
which followed Boolean logic with some time delays. However, this model is not completely autonomous and 
the Boolean part could not update itself based on the current system state. Noël et al. (2013) developed a hybrid 
model for mammalian cell cycle by combining discrete and 
continuous methods. They transformed an ODE model 
developed by Csikász-Nagy et al. (2006) into a piecewise 
smooth hybrid model with simplified reaction rates using an 
approximate hybridization scheme. Table 5 presents a 
summary of Hybrid models of mammalian cell cycle. 

3. CONCLUSIONS 

Mammalian cell cycle is the least studied cell cycle system experimentally or through modelling.  The goal in 
this paper was to review computational modelling approaches for mammalian cell cycle to see how models 
have facilitated our understanding of it.  We briefly explained the mechanism of mammalian cell cycle 
regulation system by highlighting the important effect of Cyclin/Cdks as main controllers as well as their 

(Obeyesekere et 
al., 1997) 

G1-S 
(Basse et al., 

2003) 
G1-S-G2-M 

(Pfeuty et al., 
2008) 

G1-S 
(Gauthier & Pohl, 

2011) 
G1-S-G2-M 

(Thron, 1997) G2-M 
(Bai et al., 

2003) 
G1-S 

(Tashima et al., 
2008) 

G1-S 
(Zhang et al., 

2013) 
G2-M 

(Kohn, 1998) G1-S 
(Qu, 

MacLellan, et 
al., 2003) 

G1-S-G2-M 
(Iwamoto et al., 

2008) 
G1-S (Weis et al., 2014) G1-S-G2-M 

(Hatzimanikatis et 
al., 1999) 

G1-S 
(Novak & 

Tyson, 2004) 
G1-S-G2-M 

(Gérard & 
Goldbeter, 

2009) 
G1-S-G2-M 

(Zhang et al., 
2014a) 

G2-M 

(Obeyesekere et 
al., 1999) 

G1-S 
(Alarcon et al., 

2004) 
G1-S-G2-M 

(Hamada et al., 
2009) 

G2-M 
(Zhang et al., 

2014b) 
G2-M 

(Aguda & Tang, 
1999) 

G1-S 
(Swat et al., 

2004) 
G1-S 

(Alfieri et al., 
2009) 

G1-S 

Table 4. Stochastic models of mammalian cell
cycle. 

Paper (Reference) Coverage
(Chiorino & Lupi, 2002) G1-S
(Zámborszky et al., 2007) G1-S-G2-M

(Kapuy et al., 2009) G2-M
(Altinok et al., 2011) G1-S-G2-M

Table 5. Hybrid models of mammalian cell
cycle. 

Paper (Reference) Coverage
(Alfieri et al., 2011) G1-S

(Singhania et al., 2011) G1-S-G2-M
(Noël et al., 2013) G1-S-G2-M
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regulators. The role of checkpoints as the guardians of genome was also highlighted. Then, different modelling 
approaches (Discrete, Deterministic, Stochastic, and Hybrid) that have been used in cell cycle modelling (fewer 
for mammalian) were presented with their pros and cons in terms of complexity, knowledge representation, 
and analysis. There are many open questions that computational models can potentially answer - For example, 
how does a cell decide between survival and death or between temporary cell cycle arrest and permanent cell 
cycle arrest (senescence)? Can a cell stop cell cycle even before G1/S checkpoint if there exists a DNA damage? 
These and many more questions require further experimental as well as computational modelling 
improvements, especially for mammals. Increased understanding of different aspects of mammalian cell cycle 
system and its operation as whole system will greatly help future cancer treatments.  
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