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Abstract 

Most reservoirs contain stratified fluid and selective withdrawal is used to obtain water of 
the desired properties. Initially we review the case with an infinite upper layer with a sharp 
inteIface. When the total discharge is specified, then the ratio of the discharge from each 
layer is determined by the criteria of smoothness at the virtual control (i.e. the critical point). 
At this point, the long wave velocity on the interface is zero. For the case when the upper 
layer depth is large, we show that the control is in the valve and the virtual control (which 
determines the ratio of the discharge in each layer) moves further from the source as the total 
discharge increases. When there is a finite upper layer, a portion of the flow is in the duct 
and a portion of the flow is in the free surface. We derive the criteria for the virtual control 
in the free suIface flow and show that the duct control occurs first. If we then assume that 
the flow is not over-specified, we determine the necessary conditions for a smooth transition 
between the duct and the free sUlface flow. This enables us to determine the minimum ratio 
of the upper layer depth to the lower layer depth for the steady duct solution to be valid. This' 
contrasts with the conclusions of Bryant and Wood (1976). 

1. Introduction 
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In most reservoirs at some time of the year, the water is stratified and it is well known 
that the stratification inhibits the vertical motion without restricting the horizontal 
motion. Given an appropriate intake tower with multiple ports, this allows selective 
withdrawal to manage the water quality from the outlet. This method has been used 
for sometime (e.g. Craya, 1949, Gariel, 1949, Harleman et al., 1959), Nece, 1970). 
There is a very good review of the state of the art in Lawrence and Imberger (1979). 
This paper extends the work when there are sharp interfaces and the outlet is 
positioned on a vertical reservoir wall. The case considered is illustrated in Figure 1 
when two layers are flowing and where the depth and densities of the layers at infinity 
are do and po, dl and PI and d2 and P2 respectively. We then define 

PI = Po + flPI ; P2 = Po + flPl + flp2 
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Figure 1: The reservoir with two layers flowing and where the depth of the layers at 
infinity are do and po, dI and PI and d2 and P2 respectively. 

2. The critical discharge for a single layer 
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Assume that we have an outlet below the lowest sharp interface. If the discharge is 
small and the flow is assumed irrotational, then the interface is illustrated in Figure 2. 
In this figure, it is important to note the stagnation point is on the reservoir wall. As 
the discharge increases, the flow will suddenly change and the flows come from both 
layers. Craya (1949) assumed the flow was spherically symmetric and determined a 
critical flow without the stagnation point. In this case, the Bernoulli equation was 
used 

(1) 

and differentiated with respect to r so as to determine the maximum discharge. Craya 
showed that the maximum discharge occurs when the depth above the sink is 0.8 
times the upstream depth (d2), and Qc, the critical discharge! at which the upperlayer 
is drawn into the flow was 

(2) 

! The critical discharge is defined such that for QTo!.11 ::; Qc, flow is restricted to the lower layer, and for 
QTotal > Qc, flow is from both layers. 



3 

r 

Figure 2: The flow when the discharge is less than the critical discharge for a single 
layer 

Craya's results were verified by Gariel (1949). However, it must be noted that these 
are difficult experiments since there is always a boundary layer at the interface and 
this makes the determination of the critical discharge a matter of judgement. Indeed, if 
we had a truly irrotational fluid, the transition between a flow with a stagnation point 
through critical discharge to a two-layer discharge would be so fast that it is doubtful 
that this value could ever be determined. 

3. The case when the upper layer is infinite but the discharges come from both 
layers 

When the discharge at the valve exceeds this value then some of the fluid must come 
from both layers and in this case there is a virtual control that sets the discharge ratio. 
Wood (1978) modified the spherically symmetric assumption for the two layers in a 
sector of a sphere and determined the virtual control. Lawrence and Imberger (1979) 
experimentally showed that the spherically symmetric assumption worked reasonably 
well for half a sphere and Figure 1 illustrates this case. The Bernoulli equations for 
the two layers are subtracted and we get 

(3) 

where 

Q'2 _.!2Q2 
1 - I 

P2 
(4) 
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Differentiating (3) with respect to r and defining the Froude numbers 

and 

we get 

(5) 

We define the virtual control as the section where the denominator in (5) equals zero 

(6) 

Close to the valve, the Froude numbers are large and the denominator tends to a large 
negative value; as r tends to infinity, the denominator tends to a value of one (Figure 
3). 
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Figure 3: The values of Dee as a function of radius for the closed conduit 
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In order for the flow to remain determinate, the numerator in (5) must also equal zero 
at some point. If the subscript v is used to define values at the virtual control, then 
combining these conditions with the subtracted Bernoulli equations we get 

(7) 

Then 

Q; =![ (1 + sin ¢2v)3 (2 - sin ¢2V )] 
Q 2 8 sins A. 

c 'f'2v 

(8) 

and 

(9) 

and hence 

(10) 

In a very elegant experiment, Lawrence and Imberger (1979) verified this expression 
(see Figure 5). 
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Figure 4: Comparison of experimental results of Lawrence and Imberger (1979) with 
the calculation of Q/Qt as a function of Q/Qc 



4. The determination of the maximum discharge with a finite upper layer 

So far we have assumed that the depth of the upper layer (d l ) is infinite. We now 
discuss the case when the upper layer is finite. We have shown that when the upper 
layer is infinite, the virtual control detelmines the density of the outlet discharges. 
When the upper layer is finite and the portion of the flow is a free surface flow, we 
must consider the virtual control for the free surface (Wood, 1968). When we take a 
spherical section in the open channel then the angle to the upper layer (<Pl) is a 
variable (see Figure 1). The Bernoulli equation for the upper layer can be written as 
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(11) 

The difference between the Bernoulli equations between the two flowing layers is 

(12) 

Adding (11) and (12) we get 

(13) 

Differentiating (11) and (13) with respect to r and defining the Froude numbers 

we get 

( 2) d sin <P d sin <P ( . 
1- Frl r I + Frl2 r 2 = 2Frl2 sm <PI - sin <P2 ) - sin <PI 

dr dr 
(14) 

and 

d sin ¢I ( 2) d sin ¢2 1. . 
ar + 1- Fr2 r = 2Fr2- (1 + sm ¢2) - ex sm ¢I - sin ¢2 

dr dr 
(15) 



In the solution to the differentials (14) and (15), the denominator is given by the 
determinant, DOC=AD-BC, where 

A = 1- Fr:]2. B = Fr:[2. e = eX" D = 1- Fr.2 
, " 2 

and 

When DOC equals zero, we then have a virtual control in the open channel. Now 
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(16) 

(17) 

To ensure that the problem is not over-specified, there can only be one virtual control. 
In order to determine whether the virtual control lies in the closed conduit or the open 
channel, we need to investigate the nature of DOC at the point of closed conduit 
virtual control (i.e. DCC=O). Consider the case when the valve is turned on slowly. 
After the critical discharge, the viltual control is in the duct. When this is the case, we 
get 

Dee = 1- Fr; -a Frj2 = 0 (18) 

At this point, 

Doe = - F1j2(1- Fr22) = -Frj2aFr[2 
(19) 
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Figure 5: The comparison of values of virtual control in the closed conduit (DCC) 
and the virtual control in the open channel (DOC) with the radius 
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Thus the value of DOC at the virtual control in the closed conduit is negative. Hence 
for all cases, the closed conduit virtual control occurs first. Further, since there can 
only be one control (otherwise the problem is over-specified) the control must lie in 
the closed conduit. Figure 5 shows the variation for the value of DeC and DOC. In 
order to have a completely specified steady flow there must be only one control. For 
all flows we start at this closed conduit control and compute a backwater curve until 
we reach a value when DOC just turns positive. At this point, we use the difference 
Bernoulli equation for the open channel case to calculate the value of the ratio of the 
upstream depths of the two layers. In some cases, this value is negative and for this 
case, we proceed further in the closed conduit until the value becomes positive. Figure 
6 shows the variation of the ratio d1/d2 as a function of QT/Qc as a result of this 
calculation. This implies that when at a particular value of d1/d2, the maximum of 
QT/Qc is calculated and if for that particular value of QT/Qc is exceeded, then there will 
be a flow from layer O. As with the case of a single layer flowing, there is a problem 
in observing the transition of the flow from two layers to three layers. Before the 
three-layer flow is initiated, there would be a stagnation point on the reservoir wall 
and this would suddenly change as the three-layer flow commences. 
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Figure 6: The calculation of d/d2 as a function of Q/Qc 
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5. Conclusions 

When we have two layers of finite depth in a reservoir and the discharge exceeds the 
critical discharge, the ratio of the discharges from each layer is determined by the 
conditions at the virtual control. However, with a finite depth above the lower layer, 
there are two conditions for the virtual control: the first condition using the duct 
equations (DCC=O), and the second using the free surface equations (DOC=O). When 
the discharge just exceeds the critical discharge, we have shown that at the virtual 
control, the value of DOC is negative when DCC=O. As the discharge increases, the 
virtual control moves further away from the sink, but in all cases, the control is in the 
duct. For a set steady discharge, there can only be one virtual control and it is 
assumed that the transition between the closed conduit flow and the open channel 
cannot take place until DOC is positive. This contrasts with the finding of Bryant and 
Wood (1976). Further experiments are required. 
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