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Abstract 
Experiments were conducted to assess whether a concept termed ‘attract and reward’ (A&R) 

could enhance conservation biological control (CBC). In A&R, a synthetically-produced 

herbivore induced plant volatile (HIPV) (‘attract’) is combined with a floral resource 

(‘reward’). It is anticipated that the two will work synergistically attracting natural enemies 

into the crop (‘attract’) and maintaining them within the crop (‘reward’).  

The study system consists of brassica, the most commonly occurring brassica herbivores, their 

natural enemies and higher order natural enemies. The HIPV deployed is methyl salicylate 

(MeSA) and the floral resource is buckwheat Fagopyrum esculentum. 

The aim of the first two field experiments, in 2007 and 2008, was to evaluate the effects of 

MeSA and MeSA combined with buckwheat (A&R) on the abundance of arthropods from 

three trophic levels. In 2007, a field experiment was conducted using MeSA alone. The mean 

abundance of the leafmining fly Scaptomyza flava 1(TL2), the diamondback moth (TL2) 

(DBM) parasitoid Diadegma semiclausum 2(TL3) and the hoverfly Melangyna 

novaezealandiae (TL3) was increased in MeSA-treatments by up to 300% and for the brown 

lacewing parasitoid Anacharis zealandica a maximum mean increase of 600% was recorded. 



3TL4 = trophic level 4 
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Significantly more females of the D. semiclausum and M. novaezealandiae were attracted to 

MeSA than males. 

When A&R was deployed in 2008, were arthropods from the third and fourth trophic levels 

affected. For none of the species was there a synergistic effect between ‘attract’ and ‘reward’ 

on their abundance. The brown lacewing Micromus tasmaniae (TL3), two parasitoids of DBM 

and one of cabbage white butterfly Pieris rapae (TL2) increased significantly in treatments 

with buckwheat. The hoverfly Melanostoma fasciatum (TL3) was significantly more abundant 

in treatments with MeSA, but significantly less abundant in treatments with buckwheat. The 

effect of MeSA on the fourth trophic level parasitoid Anacharis zealandica 3(TL4) was 

inconsistent between years. Here it significantly decreased its abundance, while treatments 

with buckwheat increased it.  Significantly fewer male than female D. semiclausum were 

attracted to MeSA only treatments.  

These experiments show that MeSA and buckwheat can have unwanted effects on arthropod 

abundance which may disrupt CBC. To assess the effect of A&R on CBC a further field 

experiment evaluating herbivore densities, predation, parasitism and hyper-parasitism rates 

was conducted. The only effect was significantly higher aphid parasitism in treatments with 

MeSA.  

Based on the results from the field experiments it remained unclear whether it was MeSA or a 

blend of volatiles produced by MeSA-induced host plants that were attractive to the 

arthropods. An olfactory experiment was conducted to evaluate if the aphid parasitoid 

Aphidius colemani can be attracted to two different concentrations of MeSA diluted in 

Synertrol oil. Significantly more parasitoids were attracted to 2.0% MeSA than to air while 

the parasitoid did not respond to the 0.5% concentration.  

These results indicate that A&R has potential as a CBC technique, as long as any unwanted 

side effects can be managed. Although there were no synergistic effects between ‘attract’ and 

‘reward’ on the abundance of individual natural enemies, combining MeSA and buckwheat 

could still be beneficial because the two techniques increase the abundance of different 

natural enemies. 

 

Keywords 
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Chapter 1: Introduction 
 

 

1.1. General introduction 

Ecosystem services (ES) are ‘the conditions and processes through which natural ecosystems, 

and the species that makes them up, sustain and fulfil human life’ Daily (1997). One such 

service is biological control (Daily 1997, Fiedler et al. 2008). Costanza et al. (1997) estimated 

the value of ES to be US$33 trillion/year for the entire biosphere, with biological control 

alone worth US$417 billion/year. Modern agriculture aims to maximise yield and profitability 

(Fiedler et al. 2008). Both the frequent disturbances linked with high intensity agricultural 

practices and the modification of the habitat to an environment low in physical and biological 

resources required by natural enemies of pests (Towners 1972, Powell 1986, Letourneau 

1998, Fiedler et al. 2008), result in a decline in the ES such as biological control (Fiedler et al. 

2008). 

The focus of this thesis is on biological control in the form of conservation biological control 

(CBC). The aim of CBC is to enhance natural enemy fitness – the contribution of a genotype 

to the next generation (Campbell et al. 1999), population size and effectiveness by 

manipulation of the environment to increase survival, fecundity, and longevity of the natural 

enemies and modify their behaviour (Landis et al. 2000). Manipulations may involve creating 

or maintaining physical refuges, providing alternative prey or hosts, or food sources such as 

nectar and pollen, moderating physical conditions for natural enemies through the use of 

ground covers, provision of shelter sites, or use of strip-harvesting methods (van den Bosch et 

al. 1967, Heidger and Nentwig 1989). CBC also includes minimizing pesticide induced 

mortality (Gurr et al. 2000b).
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This thesis will evaluate a new concept in CBC termed ‘attract and reward’ (Jonsson et al. 

2008, Khan et al. 2008). In ‘attract and reward’ the well established habitat manipulation 

technique of floral resource supplementation is combined with a more novel technique of 

herbivore-induced plant volatiles (HIPVs). 

This introduction will explain the major concepts of biological control and CBC with an 

emphasis on floral resource supplementation and it will explain the main theory behind 

HIPVs. It will introduce the novel concept ‘attract and reward’ and provide an overview of the 

study system and the relationships between the studied species. Each research chapter is 

written in the style of a research paper and more detailed reviews of related literature will be 

given in the introduction and discussion to each of these.  

 

 

1.2. Biological control  

The concept of biological control (BC) has been defined multiple times. An early definition 

by De Bach (1964) defined it as “the action of parasites, predators or pathogens in 

maintaining another organism’s population density at a lower average than would occur in 

their absence”.  Later, a commonly accepted definition was provided by Eilenberg et al. 

(2001) who defined it as “The use of living organisms to suppress the population of a specific 

pest organism, making it less abundant or less damaging than it would otherwise be”. 

However, these definitions mention a reduction in pest population densities but do not define 

a damage threshold or include the reduction of pesticide use. For biological control to be 

successful the pest needs to be reduced below some damage threshold (Gurr et al. 2000a). A 

concept that has been developed to determine if an organism needs to be controlled or not is 

called the economic injury level (EIL). This is defined as the lowest density of pest that will 

cause economic damage (Pedigo and Rice 2009).  The economic threshold is normally set 

below the economic injury level. Once the pest population reaches this threshold control 

practices should begin (Hajek 2004).  For the lucerne pest weevil Sitona discoideus Gyllenhal 

(Coleoptera: Curculionidae) in New Zealand, the threshold may be around 60% of the pest‘s 

natural equilibrium population. Consequently, reducing S. discoideus larval densities  to about 

40% through biological control by the introduced parasitoid Microctonus aethiopoides Loan  

(Hymenoptera: Braconidae) is considered successful (Barlow and Goldson 1993). However, 

the control agent does not need to be the single solution to reducing pest densities to still be 

considered useful. A partially effective agent can still be a valuable component in integrated 
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pest management (IPM)-programs (Gurr et al. 2000a). In IPM-programs combine multi pest-

control methods, such as cultural control, host plant resistance, biological control and the use 

of chemical control (Gurr et al. 2004). For example, pesticide use may lower the pest 

population, consequently reducing density-dependent, intra-specific competition within the 

pest population. In the absence of a biological-control agent, the pest population could 

recover quickly through compensatory higher fecundity or survival. As long as the biological 

control agent, even if only partially effective remains successful at low prey/host density it 

may prevent this pest population recovery (Gurr et al. 2000a). 

In classical biological control new, usually exotic, natural enemies are introduced into an area 

in the hope that they will establish and provide ongoing control of the target pest (van 

Driesche and Bellows 1996).  There are several examples of successes of controlling the 

target pest within classical biological control including arthropods, aquatic plants, terrestrial 

plants and vertebrates. For example, in several places the water hyacinth Salvinia molesta 

Mitchell (Saviniaceae), one of the worst aquatic weeds in the world, has commonly been 

permanently controlled through the introduction of the phytophagus weevil Cyrtophagous 

salviniae Calder and Sands (Coleoptera: Curculionidae) (van Driesche and Bellows 1996).  

The success rate of classical biological control in the form of arthropod pest control by 

arthropods between 1880 and 1989 falls within 5-15% (Greathead and Greathead 1992). One 

way the natural enemy population suppression could possibly be increased is through the 

provision of resources other than the target pest, such as non-host foods used in CBC (Gurr 

and Wratten 1999). In CBC, habitat manipulation techniques are used to produce trophic 

cascades. These result in inverse patterns of abundance or biomass across more than one 

trophic level. In a three trophic level food chain, such as crop plants - herbivorous pests – 

natural enemies, enhancing the top predators (natural enemies) may result in lower abundance 

of  mid level consumers (herbivores pest) and a higher abundance of  basal producers (crop 

plants) (Carpenter and Kitchell 1993).  

CBC utilises these ‘top-down’ effects to increase the natural enemy population (Gurr et al. 

2000b). However, habitat manipulation can produce both ‘bottom-up’ and ‘top-down’ effects, 

consistent with the ‘resource concentration’ hypothesis and the ‘enemy’ hypothesis. 

According to both these hypotheses, herbivores are predicted to be more abundant in simple 

systems i.e. monocultures, than in more complex ones (Root 1973). According to the 

‘resource concentration’ hypothesis, the reduction in herbivore abundance in complex habitats 

is caused by mechanisms such as dilution of the contrast between a concentrated crop and the 

soil. This produces a dilution of the visual and chemical stimuli for the herbivore, resulting in 
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decreased colonisation rates and increased emigration rates and thereby a reduction in damage 

to the crop (Gurr et al. 2000b). As the herbivore population in the ‘resource concentration’ 

hypothesis is determined by a lower trophic level, the effects seen are ‘bottom-up’ effects.  

According to the ‘enemy’ hypothesis, predators and parasitoids are more numerous and/or 

effective in more diverse systems than in simple ones (Root 1973). As the herbivore 

population in the ‘enemy’ hypothesis is impacted by a higher trophic level, the effects seen are 

‘top-down’ effects. These effects are utilised in CBC, which specifically involves 

maximisation of the impact of natural enemies by providing key ecological resources and by 

minimizing pesticide-induced mortality (Gurr et al. 2000b) (Figure 1-1). 

                            

 
Figure 1-1. Conservation biological control shares common techniques with habitat manipulation but are 

not synonymous (From Gurr et al. (2000b)). 

 

 

1.3. The application of floral resources within conservation 
biological control  

One type of CBC is the provision of floral resources by non-crop plants grown within or 

around the crop and from which natural enemies can benefit (Tylianakis et al. 2004). The pest 

management purpose of these is to provide omnivorous natural enemies with alternative food 

sources, such as nectar and/or pollen. This may enable the natural enemies to remain in an 

area with temporarily low prey/host densities, preventing them from starving or emigrating 

(Polis and Strong 1996, Landis et al. 2000, Olson et al. 2005). Dietary floral supplementation 

can also increase longevity, fecundity (Landis et al. 2000, Berndt and Wratten 2005, 
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Lavandero et al. 2005, Scarratt 2005) and other components of ecological ‘fitness’ and lead to 

a change in sex ratio (Landis et al. 2000, Berndt and Wratten 2005, Scarratt 2005) and in 

dispersal ability of natural enemies (Wanner et al. 2006). For pro-ovigenic parasitoids, which 

emerge from the pupae with all or nearly all of their eggs mature (Flanders 1950), floral 

resources can lead to an increase in fecundity due to prolonged longevity (Gurr et al. 2005) 

while for synovigenic species, that continuously mature eggs throughout their reproductive 

life (Flanders 1950), floral resources can increase life-time fecundity due to prolonged 

longevity and egg-production rate (Gurr et al. 2005). 

To optimise the provision of floral resources, these must be of the ‘right’ kind (Landis et al. 

1999). The floral attractiveness (Wäckers 2005) as well as seasonal (Abe and Kamo 2003) 

and diurnal (Kovacs et al. 1995, Kovacs 1996) availability (Waller et al. 1981, Wäckers 

2005), accessibility (Vattala et al. 2006) and suitability of the nectar and pollen for  the natural 

enemy and also the effect on the pest need to be considered for each specific case when 

deploying floral resources (Wäckers 2005).  A logical hierarchy for measures of success of 

using floral resource subsidies in CBC would be to answer the questions given by Gurr et al. 

(2007) (Table 1-1). 

Table 1-1. The hierarchy for measure of success of using floral resource subsidies in CBC (From Gurr et 

al. 2007).  

 

1. Aggregation of natural enemies at or near the flowers. 

2. 
An enhancement of the natural enemies' 'fitness' (longevity, 

fecundity and search efficiency). 

3. An increase in parasitism or predation rate of the pest. 

4. A decrease in the pest population density. 

5. 
The pest populations are brought below the relevant economic 

threshold (so avoiding the need to apply insecticides). 

 

However, the level of dependence of natural enemies on non-prey foods varies between true 

omnivores that feed on prey and plant-provided resources in one life stage (Wäckers and van 

Rijn 2005) to life-history omnivores that feed on plant-provided food at least during part of its 

life-cycle (Polis and Strong 1996). For true omnivores, supplementation of floral resources 

may cause a decrease in predation rate because the predator becomes satiated through feeding 
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on plant resources (Jonsson et al. 2009a).  Provision of nectar and pollen can decrease the 

predation rate by ladybeetles (Spellman et al. 2006, Brown and Mathews 2007), predatory 

mites (Wei and Walde 1997) and brown lacewings (Robinson et al. 2008). The developmental 

stage at which plant provided foods can be utilised and what type – nectar, pollen or both – 

varies within consumer groups. Adult green lacewings and hoverflies require both nectar and 

pollen (Stelzl 1991) while adult parasitoid flies and wasps use only nectar (Gilbert and Jervis 

1998). Ladybirds benefit from nectar and pollen as adults and juveniles (Pemberton and 

Vandenberg 1993), while parasitoids benefit from nectar only as adults (Wäckers and van Rijn 

2005). Active pollen-feeding to supplement the diet is common among predacious arthropods 

such as hover flies, ladybirds, green lacewings and predatory mites (Phytoseiidae) (Wäckers 

2005). 

Some studies show how the application of floral resources to agro-ecosystems can increase 

pest control efficiency by natural enemies (Landis et al. 2000, Berndt and Wratten 2005, 

Lavandero et al. 2005, Scarratt 2005, Irvin et al. 2006). Jonsson et al. (2009a) found that 

between 1998 and 2007 the success rate of increasing predation or parasitism rate through 

habitat manipulation in the form of floral subsidies was clearly successful in seven out of 

eleven cases. For the same period, one of five studies showed a clear decrease in pest 

densities and one of two studies showed a reduction in crop damage when floral resources 

were deployed (Jonsson et al. 2009a).  

 

 

1.4. The application of synthetically produced herbivore-induced 
plant volatiles within conservation biological control  

Plants respond to herbivore attack through induced direct or indirect defences (Karban and 

Baldwin 1997). In direct defence the chemicals produced by the plant directly target the 

herbivore (Lou and Baldwin 2003) (‘bottom-up’ control), while in indirect defence the 

chemicals increase herbivore mortality through the recruitment of natural enemies (‘top-

down’ control) (Kessler and Baldwin 2001). The production of herbivore-induced plant 

volatiles (HIPVs) is a form of induced plant defence that may influence both the abundance of 

natural enemies and of herbivores (Dicke et al. 1990a, Dicke et al. 1990b, Petterson et al. 

1994). Production of HIPVs is induced by herbivore feeding damage (Dicke et al. 1990b, 

Geervliet et al. 1997, Geervliet et al. 1998) or by egg deposition on the plant (Hilker and 

Meiners 2002).  
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The effect of plant-produced HIPVs on the behaviour of natural enemies has been 

demonstrated in the laboratory for many systems. For example, many plant species release 

HIPV signals which attract natural enemies of their herbivores. These include Lima beans 

Phaseolus lunatus L. (Fabaceae) (Dicke et al. 1990a), maize Zea mays L. (Poaceae) (Turlings 

et al. 1990), cotton Gossypium hirsutum L. (Malvaceae) (McCall et al. 1993, McCall et al. 

1994), tomato Lycopersicon escelentum L. (Solanaceae) (Thaler 1999), cabbage Brassica 

oleracea L. (Brassicaceae) (Agelopoulos and Keller 1994) and Brussels sprouts B. oleracea  

gemmifera L. (Brassicaceae) (Steinberg et al. 1992).  

HIPVs can both attract natural enemies to herbivore-affected plants and trigger surrounding 

plants to ‘switch on’ their own production of direct or indirect defences (inter-plant 

communication) (Dicke and Bruin 2001). The compounds can also function as ‘primers’ 

signalling to surrounding un-damaged plants an impending herbivore attack without initiating 

a full defence response (Engelberth et al. 2004). Primed plants respond more efficiently once 

under herbivore attack (Engelberth et al. 2004, Heil and Kost 2006). HIPVs can both induce 

and prime the indirect defence mechanism of extrafloral nectar (EFN) production in Lima 

beans and they may also serve as a cue for the plant, enabling a more specific production of 

EFN by the plant (Heil and Kost 2006). Also plants’ floral nectar production can be affected 

by HIPVs. Black mustard Brassica nigra L. (Brassicaceae) treated with jasmonic acid reduces 

nectar secretion and its glucose and fructose concentrations (Bruinsma et al. 2008). 

HIPVs can be synthetically produced and some of these attract natural enemies of herbivores 

(Thaler 1999, Kessler and Baldwin 2001, James 2003b, 2005, James and Grasswitz 2005). 

Several authors have pointed out the potential application of HIPVs for pest suppression 

within sustainable crop management regimes (Dicke et al. 1990a, Thaler 1999, Dicke and 

Hilker 2003, Kessler et al. 2004, Halitschke et al. 2008, Howe and Jander 2008, Khan et al. 

2008). Caution is required, however, as it is possible that effects on second and fourth trophic 

levels may occur.   

 

 

1.5. Effects of floral resources and herbivore-induced plant 
volatiles on arthropods from the second and fourth trophic level  

Both HIPVs and floral resources may invoke unwanted side effects by attracting and/or 

enhancing the fitness of herbivores (Dicke and Minkenberg 1991, Finidori-Logli et al. 1996, 

Baggen et al. 1999, Lavandero et al. 2006) and higher order parasitoids (Araj et al. 2008, 
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Jonsson et al. 2009b). Attraction of higher order parasitoids may cause un-wanted trophic 

cascades. These can occur in a four trophic level food web, such as crop plants - herbivorous 

pests – natural enemy - higher order natural enemy, when the floral resource enhances the top 

predator (higher order natural enemy) more than the lower level natural enemy. This results in 

lower abundance of the lower level natural enemy and a higher abundance of the mid level 

consumers (herbivorous pest) causing a reduction in the abundance of  basal producers (crop 

plants) (Carpenter and Kitchell 1993). 

Consequently, it is important to ensure the provided floral resources benefit natural enemies 

but not the pest or enemies of the natural enemies (Baggen et al. 1999, Adler and Bronstein 

2004, Araj et al. 2006, Jonsson et al. 2009b).  The effect of supplementation of floral 

resources on the population dynamics of the species involved is likely to differ according to 

the food web being investigated. To successfully supply floral resources to enhance biological 

control, knowledge of the system, including the biology of the herbivore, its enemies and their 

interactions with the resource subsidy is needed (Lavandero et al. 2006). 

HIPVs represent a complex chemosensory information package and it is difficult to predict 

whether herbivores are attracted to them (Dicke and Minkenberg 1991, Finidori-Logli et al. 

1996, Dicke and van Loon 2000) or repelled (Dicke and van Loon 2000). Usually, studies of 

the application of HIPVs in the field have focused on their capacity to attract natural enemies, 

even though HIPVs can affect the behaviour or physiology of organisms at multiple trophic-

levels (Dicke and van Loon 2000) including herbivores (Halitschke et al. 2008). One 

explanation for the attraction of herbivores could be the large quantity of volatiles released 

from herbivore infested plants compared with from uninfested ones, making them more 

apparent to herbivores (Feeny 1976, Vet and Dicke 1992). HIPVs may also signify plants that 

have been weakened and are therefore more susceptible to herbivores (Dicke and van Loon 

2000). However, more studies on how HIPVs affect second trophic level arthropods 

(Takabayashi and Dicke 1996, Dicke et al. 2003, Turlings and Ton 2006) under field 

conditions are needed (Takabayashi and Dicke 1996, Dicke et al. 2003).  

Consequently, deploying synthetic HIPVs alone or combining their attraction property with 

floral resources in the ‘attract and reward’ concept needs research specific to each herbivore/ 

natural enemy system as an effect on the second and/or fourth trophic level may either 

increase herbivore abundance or trigger an unwanted trophic cascade.   
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1.6. ‘Attract and reward’ - a concept to potentially enhance 
conservation biological control 

CBC research has historically focused on manipulation of agro-ecosystems by supplying 

resources needed for the natural enemy population to flourish (Landis et al. 2000, Jonsson et 

al. 2008) and minimizing the pesticide induced mortality (Gurr et al. 2000b). However, one 

way to potentially increase the pest-reducing efficiency of the natural enemies further is by 

combining two aspects: 1) attraction of beneficial insects to the crop (‘attract’) and 2) 

maintaining the natural enemy population within the crop (‘reward’) and maximising its 

impact on the pest population. The ‘attract’ method, based on the use of synthetically 

produced HIPVs has shown good results in increasing natural enemy numbers near the crop 

(Thaler 1999, Kessler and Baldwin 2001, James 2003a, James and Grasswitz 2005). Natural 

enemies can benefit from floral resources (‘reward’), for example, by increased ‘ecological 

fitness’ (longevity and fecundity) (Landis et al. 2000, Berndt and Wratten 2005, Lavandero et 

al. 2005, Scarratt 2005). Also, the sex ratio of the natural enemy population can go from a 

male bias towards a 1:1 female/male ratio (Landis et al. 2000, Berndt et al. 2002, Berndt and 

Wratten 2005, Scarratt 2005). It is hoped that the two ‘eco-technologies’ will work together 

synergistically, increasing the pest population reduction efficiency of the natural enemies.  

 

 

1.7. The study system 

1.7.1. Brassicas and their most common pests and their natural enemies 

The study crop throughout the work is forage brassica (Brassica spp (L.) Brassicaceae).  This 

crop was chosen as forage brassicas comprise the largest area of cultivated crops in New 

Zealand with 250 000 ha grown per year (Wilson et al. 2004) and a relatively high number of 

abundant pests are easily sampled.  

The focus of the studies was arthropods from three trophic levels namely, the main brassica 

pest species, their natural enemies and the natural enemies of the natural enemies based on 

known occurrence in New Zealand (Figure 1-2 a and b). Some of the most common 

herbivores reaching pest status in brassicas are the cabbage white butterfly Pieris rapae L. 

(Lepidoptera: Pieridae), the diamondback moth (DBM) Plutella xylostella (L.) (Lepidoptera: 

Plutellidae), the cabbage aphid Brevicoryne brassicae L. (Cameron and Walker 2000, Kok 

2004) and the green peach aphid Myzus persicae Sultzer (Homoptera: Aphididae) (Cameron 

and Walker 2000). The leafmining fly Scaptomyza flava Fallén (Diptera: Drosophilidae) is 
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readily found on some Brassicaceae in New Zealand (Martin et al. 2006) and a integrated pest 

management strategy has been developed in New Zealand for its control in European 

vegetable brassica crops (Cameron and Walker 2000). DBM has become one of the world’s 

most destructive insects on cruciferous crops. The annual cost of managing this herbivore is 

estimated to be US$ 1 billion (Talekar and Shelton 1993).
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a) The four trophic level brassica-herbivore-parasitoid-hyperparasitoid study system 
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b) The four trophic level brassica-herbivore-predator-parasitoid study system 

 

Figure 1-2. The relationship between the species involved in the four trophic level study system. As the system consists of both parasitic and predatory natural enemies 

(third trophic level), it has been split up between these (a and b respectively) to simplify the figure. Note, the lines between the predators and the herbivores are only 

indicative of the main prey consumed as these predators are not monophagus on a specific prey species. The first and second trophic level consists of the same species in 

both figures, with brassica being the crop.
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1.7.2. The herbivore-induced plant volatile and the floral resource deployed in 
the study system 

The HIPV used for the ‘attract’ part of ‘attract and reward’ is methyl salicylate (MeSA), a 

compound that is naturally produced by brassicas in response to herbivore damage (Wilson et 

al. 2004) and MeSA and salicylic acid (SA) are key compounds in the shikimic acid pathway 

involved in the induction of direct and indirect plant defences (Geervliet et al. 1997, van 

Poecke et al. 2001). Synthetically-produced MeSA increases the abundance of micro-

Hymenoptera in grape vines and hop yards (Dicke et al. 2003). Two parasitoid species with 

hosts on brassicas, Cotesia vestalis Haliday and C. glomerata L. (Hymenoptera: Braconidae), 

perceive MeSA produced by herbivore-damaged Brussels sprouts B. oleracea gemmifera, L. 

(Brassicaceae) (James and Price 2004, James et al. 2005, James and Grasswitz 2005). This 

and the accessibility of synthetically produced MeSA in the form of slow release sachets on 

are the reasons why it is used throughout the work in this thesis.  

The flowering plant used for the ‘reward’ part of this work is buckwheat Fagopyrum 

esculentum Moench (Polygonaceae). Lavandero et al. (2005) showed that the 

supplementation with flowering buckwheat in broccoli Brassica oleracea L. increased 

parasitism rate by Diadegma semiclausum Hellén (Hymenoptera: Ichneumonidae) with up to 

twice as many DBM larva parasitized when buckwheat was supplied, compared to when none 

was present. In those experiments, the maximum parasitism rate for non-buckwheat 

treatments was 40% while the corresponding value was 75% for the buckwheat treatments 

(Lavandero et al. 2005). Consequently, buckwheat supplementation in the field can contribute 

to the pest management of DBM (Lavandero et al. 2005). This and other evidence (Stephens 

et al. 1998, Berndt et al. 2002, Tylianakis et al. 2004, Irvin et al. 2006) of the value of 

buckwheat in CBC are the reasons why it is selected in this work. It also has the agronomic 

and experimental advantage of its seed being inexpensive, rapidly germinating and producing 

abundant flowers within a few weeks of sowing (Bowie et al. 1995) 

 

 

1.8. Aims 

Until now ‘attraction’ and ‘reward’ have not been combined. Therefore in this thesis the 

combination of these two ‘eco-technologies’ is examined experimentally in the field and 

laboratory through the provision of a flowering floral resource, buckwheat and a synthetically 

produced HIPV, MeSA.   
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The overall aim is to explore how ‘attract and reward’ affects arthropod abundance across 

three trophic levels (pest, natural enemies of the pest and natural enemies of the natural 

enemies) and, as a consequence biological control in brassicas. The objectives of the 

experiments described in Chapters 2-5 are to find answers to the following questions:  

Chapter 2: Does synthetically-produced MeSA attract arthropods from three trophic levels 

when applied in the field compared to when no MeSA is used? Does the sex ratio differ 

between the arthropods attracted to MeSA compared to when no MeSA is applied?   

Chapter 3: Do any of the treatments: MeSA, buckwheat (BW) or the combined MeSA+ BW, 

attract more arthropods from three different trophic levels than the crop alone (C)? Does the 

application of ‘attract and reward’ have a synergistic effect on the abundance of arthropods 

from three trophic levels? Are there any interactions between MeSA and BW in attracting 

arthropods from three trophic levels?  

Is there a difference in the sex ratio between the arthropods attracted to MeSA, BW, 

MeSA+BW and C? Does the deployment of ‘attract and reward’ (MeSA+BW) have a 

synergistic effect on the abundance of males/females from three trophic levels compared with 

when only BW or MeSA is deployed? Are there any interactions between MeSA and BW in 

attracting males/ females from three trophic levels?  

Chapter 4: Are there differences in herbivore crop damage, natural enemy and herbivore 

densities, parasitism, hyper-parasitism and predation rates when the above four treatments are 

deployed? Are there any interactions between MeSA and BW on the crop damage, natural 

enemy and herbivore densities, parasitism, hyper-parasitism and predation rates? 

Chapter 5: Is the third trophic level aphid parasitoid Aphidius colemani attracted to two 

different concentrations of synthetically-produced MeSA diluted in Synertrol oil? 

 



Chapter 2 

This chapter is based on the following publication:  

Orre, G.U.S., Wratten, S.D., Jonsson, M., Hale, R. 2010. Effects of a herbivore-induced plant 
volatiles on arthropods from three trophic levels in brassica. Biological Control, 53:62-67. 

1TL3 = trophic level 3 
2TL2 = trophic level 2 
3TL4 = trophic level 4 
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Chapter 2: Effects of MeSA on arthropods from 
three trophic levels in turnip Brassica rapa L. 
 

2.1. Abstract 

Synthetically-produced herbivore-induced plant volatiles (HIPVs) attract arthropod natural 

enemies, thereby showing potential for enhancing biological control. However, HIPVs can 

also affect the behaviour of arthropod herbivores and possibly higher-order natural enemies, 

potentially complicating the use of HIPVs as a component of conservation biological control 

(CBC). 

 The aim of the work in this chapter is to understand the effects of HIPVs on the abundance of 

arthropods at three trophic levels. In particular, their effects on the abundance of herbivores 

and enemies of natural enemies are investigated experimentally. A field experiment was 

carried out in a commercial field of turnip Brassica rapa L. (Brassicaceae) (cv. Green Globe). 

A randomized block design was used with a treatment of synthetically-produced methyl 

salicylate (MeSA), in the form of slow-release sachets and a control consisting of the crop 

alone. Yellow sticky traps were used for sampling aerial brassica pests, their natural enemies 

and fourth trophic-level natural enemies within the crop.  

The abundance of the diamondback moth parasitoid Diadegma semiclausum (TL3)1, the 

hoverfly Melangyna novaezealandiae (TL3), the brassica leafmining pest Scaptomyza flava 

(TL2)2 and the lacewing parasitoid Anacharis zealandica (TL4)3 increased significantly in the 

MeSA treatment compared to the controls. Significantly more D. semiclausum (TL3), M. 

novaezealandiae (TL3) females were attracted to MeSA than were males. 

These results are highly relevant to potential future application of HIPVs in pest management, 

as the attraction of arthropods within ‘un-targeted’ trophic-levels may either increase 

herbivore abundance and/or disrupt unwanted trophic cascades.
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2.2. Introduction 

The effect of plant-produced HIPVs on the behaviour of natural enemies has been 

demonstrated in the laboratory for many systems (Steinberg et al. 1992, McCall et al. 1993, 

Agelopoulos and Keller 1994, Thaler 1999). However, it is difficult to predict whether HIPVs 

will attract or repel herbivores (Dicke and van Loon 2000). For example, the herbivorous 

beetle Maladera matrida Argaman (Coleoptera: Scarabaeidae) is attracted to volatiles emitted 

by herbivore-infested Duranata repens L. (Verbenaceae) under laboratory conditions (Vet and 

Dicke 1992) while the spider mite Tetranychus urticae Koch (Arachnida: Tetranychidae) 

avoids intraspecific overcrowding by settling only on plant leaves with low levels of HIPV 

production (Dicke et al. 1990a). HIPVs can also act as oviposition repellents for lepidopteran 

herbivores (De Moraes et al. 2001, Kessler and Baldwin 2001, Sanchez-Hernandez et al. 

2006). 

 Synthetically produced HIPVs attract natural enemies of herbivores in many cropping 

systems. Applying synthetically produced methyl salicylate (MeSA) and (Z)-3-hexanyl 

acetate (HA) to hops Humulus spp. L. (Cannabaceae) and grape Vitis spp. L. (Vitaceae) vines 

increases the abundance of several species of predators and parasitoids (James 2003b, 2005, 

James and Grasswitz 2005). Tomato plants induced with jasmonic acid can double the rate of 

field parasitism of Spodoptera exigua Hübner (Lepidoptera: Noctuidae) by Hyposoter exiguae 

Viereck (Hymenoptera: Ichneumonidae), an endoparisitic wasp (Thaler 1999). Applying 

synthetic versions of HIPVs naturally produced by Nicotiana attenuata Torr. ex S. Watson 

(Solanaceae) to plants in the field resulted in an increased number of Manduca sexta L. 

(Lepidoptera: Sphingidae) eggs predated by a generalist predator and a reduction in 

oviposition rate of Manduca spp.. As a consequence, the HIPV-mediated plant responses 

reduced the number of herbivores by 90% (Kessler and Baldwin 2001). 

HIPVs show potential to be deployed within pest management (Dicke et al. 1990a, Thaler 

1999, Dicke and Hilker 2003, Kessler et al. 2004, Halitschke et al. 2008, Howe and Jander 

2008, Khan et al. 2008). However, more attention needs to be given to the possible capacity of 

HIPVs to attract organisms at multiple trophic levels (Dicke and van Loon 2000) including 

herbivores (Halitschke et al. 2008) when deployed in the field. For example wild type N. 

attenuata plants producing HIPVs had higher damage by flea beetles in the field compared to 

transgenic ones unable to release HIPVs (Halitschke et al. 2008). 
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The aim of this work is to understand how synthetically-produced MeSA deployed within a 

brassica crop affects arthropods at three trophic levels. Of particular interest are the effects on 

the second and fourth trophic level, as effects on these may disrupt biological control. 

 

 

2.3. Methods 

The effect of synthetically-produced methyl salicylate (MeSA) on the abundance of 

arthropods in turnip Brassica rapa L. (Brassicaceae) (cv. Green Globe) was tested. The study 

was carried out from April 24 to June 12 2007 in a 400m x 470m turnip field near Burnham, 

Canterbury, New Zealand.  

The experiment was set up as randomized block design with 12 blocks, each having one 

treatment with a slow-release sachet of MeSA (P-240-lure, ChemTica International, Zeta 

Industrial Park, La Valencia, Heredia, Costa Rica) and a control consisting of the crop alone. 

Blocks were separated by 67m (east-west) and 80m (north-south) and the treatment and 

control were separated by 67m within each block.  

Yellow sticky traps (24cm x 20cm) (Trappit, Agrisense-BCS-Ltd., UK, sourced from Fruitfed 

Supplies Ltd, New Zealand) were used to sample the number of flying pests and natural 

enemies at each plot. Each trap was attached 10cm above the average height of the turnip 

plants between two stakes and moved upwards as the plants grew, to maintain the distance 

above the plants. In each replicate of the HIPV treatment, one MeSA sachet was attached 1m 

above ground to a string between the wooden stakes, to ensure consistent dispersal of the 

volatile. According to the manufacturers, the volatile would last ‘a season’ but to ensure that 

the chemical did not run out, the sachets were replaced twice, on May 10 and May 31. The 

traps were replaced on May 4, 10, 17, 24 and 31. During the experimental period, the number 

of cabbage grey aphids (TL2) Brevicoryne brassicae, green peach aphids (TL2) Myzus 

persicae, larvae of the diamondback moth (TL2) (DBM) Plutella xylostella and cabbage 

white butterfly (TL2) (CWB) Pieris rapae were counted on all the leaves of 20 randomly 

chosen crop plants in a radius of 1.5m from the trap on April 24, May 4, 10, 17, 24 and June 

12. 

The traps were assessed for the most common brassica herbivores and their associated natural 

enemies and fourth trophic-level parasitoids (see Chapter Section 1.7. for list of species 

recorded). The number of individuals on each trap was counted and their sex was determined 

when possible.  
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The identification and sex determination of S. flava (TL2) were carried out in two steps, due 

to the high number of individuals caught throughout the season (a total of 23,892). First, all 

individuals were identified based on the characteristic traits of Drosophilidae using standard 

keys and reference specimens and then counted. Then, a sub-sample was taken from the traps 

from six of the blocks for one sampling period, April 24 – May 5 as this period had the 

highest number of S. flava (Figure 2-1b). Thirty randomly-chosen Drosophilidae were 

removed from each trap, identified to species and the sex determined using an unpublished 

key for Scaptomyza in New Zealand supplied by Dr N. Martin (Plant & Food Research, New 

Zealand). To assure the Drosophilidae species on the remaining traps were S. flava and to 

detect any potential changes in the sex ratio for this species over time, a further subsample 

was taken for each of the sampling periods. For one randomly chosen trap on each sampling 

period, 25 individuals were removed randomly, identified and their sex determined. For the 

data from the first two sampling periods (April 24-May 4 and May 4-10), all individuals were 

identified and their sex determined, as the total number of individuals for each plot was fewer 

than 25.  

The number of D. semiclausum (TL3) and A. zealandica (TL4) captured per trap throughout 

the sampling period fitted a negative binomial distribution. Consequently, these data were 

analyzed using a generalized linear mixed model (GLMM) with a logratio-link. A fixed model 

was used for the MeSA treatment, sex, different sampling dates and all the interactions 

between these. A random model was used for block within sampling dates and the interactions 

between these.  

No M. novaezealandiae were caught on the traps from the control plots. Consequently to 

analyse differences between sex a GLMM was used on the number of individuals caught on 

the treatment traps. There was no difference in the female: male ratio caught on the traps 

throughout the sampling period (χ2=2.538, df=5, p=0.771). The data fitted a Poisson 

distribution and a GLMM with a logarithm-link and a fixed model for sex and different 

sampling dates and a random model for block was used.  

The difference in the total number of S. flava (TL2) per sampling period was too variable to 

be analyzed with a GLMM; numbers captured ranged from 11 to 8714 per trap. Consequently, 

the data were log10-transformed and analyzed using a residual maximum likelihood model 

(REML). A fixed model was used for the MeSA treatment, the different sampling dates and 

the interactions between these. A random model was used for block within sampling dates and 

the interactions between these. The difference in the proportion of females between the 

treatments for S. flava was analyzed using the sub-sampled individuals from six blocks. The 
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data were arcsine-transformed to fit the model’s assumption of a normal distribution and 

homogeneous variances and were analyzed using a two-sample t-test. 

 

 

2.4. Results 

 

All sub-sampled Drosophilidae individuals were S. flava (TL2). Consequently, all the 

drosophilids were assumed to be S. flava. This was the only brassica herbivore found on the 

traps and the numbers of pests on the sampled crop plants were zero throughout the sampling 

period.  

Of the third trophic level natural enemies expected on the traps, only D. semiclausum (TL3) 

and M. novaezealandiae (TL3) were caught in high enough numbers for the data to be 

analyzed. Only two brown lacewings and 31 M. fasciatum were caught on the traps. 

Consequently the numbers were too low for the data to be analyzed. A. zealandica was the 

only fourth trophic-level natural enemy found. 

The third trophic-level parasitoid D. semiclausum and the hoverfly M. novaezealandiae 

(Figure 2-1b-c.), the fourth trophic-level parasitoid A. zealandica (Figure 2-1a) and the 

second trophic-level leafmining fly S. flava (Figure 2-1d) were significantly more abundant in 

the MeSA-treatment compared to the control (Table 2-1). Significantly more D. semiclausum 

(TL3) (Figure 2-2b) and M. novaezealandiae (TL3) (Figure 2-2c) females than males were 

attracted by MeSA. Both sexes were equally attracted for A. zealandica (TL4) (p=0.923, 

df=1) and S. flava (p = 0.138, df = 10, t = 1.61) (Table 2-1) (Figure 2-2a and d). 
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Figure 2-1. The Mean number (±SE) of individuals per trap for each species during each sampling period. 

The data for S. flava have been back-transformed from log10-transformation. 
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Table 2-1.  Generalized linear mixed model (GLMM) analysis for D. semiclausum, M. 

novaezealandiae and A. zealandica and a residual maximum likelihood model (REML) analysis 

for S. flava on the effect of fixed factors on their abundance. A two-sample t-test analysis for S. 

flava on differences in sex between treatments based on subsamples of 30 individuals taken for 

each treatment from six blocks. Treatment = the effect of either the MeSA-treatment + yellow 

sticky trap or the control consisting of the crop alone + yellow sticky trap.  

 

Species Factor

Wald 

statistic df p-value

Level of 

significance

A. zealandica Treatment 5.35 1 0.021 *

(Fourth trophic level) Sex 11.99 1 <0.001 ***

Time 10.13 5 0.071 NS

Treatment x Sex 0.01 1 0.923 NS

Treatment x Time 1.88 5 0.866 NS

Sex x Time 0.68 5 0.984 NS

Treatment x Sex x Time 0.00 5 1.00 NS

D. semiclausum Treatment 55.73 1 <0.001 ***

(Third trophic level) Sex 3.54 1 0.060 NS

Time 42.72 5 <0.001 ***

Treatment x Sex 4.89 1 0.027 *

Treatment x Time 3.38 5 0.641 NS

Sex x Time 41.85 5 <0.001 ***

Treatment x Sex x Time 4.25 5 0.514 NS

M. novaezealandiae Sex 14.28 1 <0.001 ***

(Third trophic level) Time 16.61 5 0.005 **

S. flava Treatment 204.49 1 <0.001 ***

(Second trophic level) Time 1033.83 5 <0.001 ***

Treatment x Time 28.23 5 <0.001 ***

Sex 10 0.138 NS  
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Figure 2-2. Interaction diagrams over the mean number (±SE) of males and females of three species 

caught per trap for the MeSA-treatment and the control traps over the entire sampling period. The data 

shown for S. flava are based on subsamples of 30 specimens taken for each treatment from six blocks.(The 

connecting lines between the data points do not represent a continuation between the data of each point 

but are used for ease of interpretation of the interaction diagram. (For further information on interaction 

diagrams see e.g. chapter 17 in Fowler (2008)). 
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2.5. Discussion 

2.5.1. Attraction of arthropods from three trophic levels 

Arthropods from three trophic levels were more abundant within the MeSA treatment than 

within the control in the field. This is the first time a higher-order parasitoid has been shown 

to be attracted to a synthetically-produced HIPV. The leafmining fly S. flava also responded 

positively to MeSA.  Previous studies have shown herbivores to be attracted to HIPVs (Dicke 

and Minkenberg 1991, Finidori-Logli et al. 1996). Leafminers can induce the production of 

plant volatiles (Dicke and Minkenberg 1991, Finidori-Logli et al. 1996) and one explanation 

for the attraction of them could be the plants are more apparent to the herbivores (Feeny 1976, 

Vet and Dicke 1992) or weakened and are therefore more susceptible to them (Dicke and van 

Loon 2000). This is the first study showing that synthetically-produced MeSA increases the 

number of D. semiclausum (TL3) and A. zealandica (TL4).  Hymenopterans have previously 

been shown to be affected by MeSA. The abundance of micro-Hymenoptera in grape vines 

and hop yards can be increased with synthetically-produced MeSA (James and Price 2004, 

James et al. 2005, James and Grasswitz 2005) and two other parasitoid species with hosts on 

brassica, Cotesia vestalis Haliday and C. glomerata L. (Hymenoptera: Braconidae), perceive 

MeSA produced by herbivore-damaged Brussels sprouts (Smid et al. 2002). Female D. 

semiclausum (TL3) were significantly more attracted to MeSA than males.  Previous 

laboratory studies on D. semiclausum have shown female parasitoids to be more attracted to 

the chemical cues produced by host-infested cabbage plants than by un-infested ones (Ohara 

et al. 2003). However, the chemical structure of the cues attractive to D. semiclausum remains 

unknown (Ohara et al. 2003, Bukovinszky et al. 2005).  

Specialist parasitoids can be expected to have evolved the capability to utilize host-specific 

volatiles for host search (Dicke and Hilker 2003, Zangerl 2003). The capability of natural 

enemies to learn to associate a specific HIPV or a blend of HIPVs with the presence of its 

prey/host has also been demonstrated for the predatory mite, Phytoseiulus persimilis Athias-

Henriot (Acarina: Phytoseiidae) and its spider mite prey, T. urticae (Dicke et al. 1990c). Also, 

parasitoids ‘primed’ for host recognition increase their in-flight orientation towards host-

related cues under laboratory conditions (Potting et al. 1999). A possible explanation for the 

increased numbers of D. semiclausum (TL3) females compared to males in response to MeSA 

may be that the former have evolved to associate MeSA with host presence.  

M. novaezealandiae (TL3) was significantly more abundant in treatments with MeSA. 

Hoverflies have previously shown to be attracted to synthetically produced MeSA deployed in 

hop yards (James 2005).  
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MeSA has potential to function as a trigger for the plant’s own production of HIPVs (Khan et 

al. 2008). It still remains unclear whether it is MeSA alone or a blend of volatiles produced by 

the host plant after the induction by MeSA that is attractive to the arthropods. It also remains 

unclear whether the significant results in number of arthropods captured where wholly a result 

of attraction from outside or within the field or whether there was a component of 

accumulation of arthropods trough more staying than leaving the crop.  

 

2.5.2. Prospects for biological control using MeSA 

This work shows that the multi trophic attraction property of HIPVs can increase the 

abundance of both pests and the enemies of natural enemies, so HIPVs could potentially 

disrupt biological control. Consequently, the potential for HIPVs to be deployed in crop 

protection will strongly depend on the ability to manage compromising factors, such as the 

unintended attraction of additional herbivores (Turlings and Ton 2006) or higher-order 

parasitoids.  

However, the data analysed in this chapter comprises trap catches only. The yellow sticky 

traps are attractive to herbivores (Sivapragasam and Saito 1986) and to natural enemies 

(Laubertie et al. 2006). Many insects are innately attracted to a few colours, in particular 

yellow, for which, for example, the CWB parasitoid, Cotesia rubecula Marshall 

(Hymenoptera: Braconidae) shows a preference when deprived of sugar foods (Wäckers 

1994). To interpret the population and community consequences of the higher numbers of the 

arthropods caught from the second, third  and fourth trophic levels requires on plant 

assessments of plant herbivore damage (trophic level two), predation/parasitism rates of 

herbivores by third trophic level natural enemies and parasitism rates of trophic level three by 

the fourth trophic level parasitoids. These questions will be addressed in Chapter 4. 



  Chapter 3 

 
1TL3 = trophic level 3 
2TL2 = trophic level 2 
3TL4 = trophic level 4 

26 
 

Chapter 3: Attract and reward: the effect of 
combining buckwheat (Fagopyrum 
esculentum) and methyl salicylate on 
arthropods from three trophic levels in kale 
(Brassica oleracea) L.  
 

 

3.1. Abstract 

Floral resource subsidies can increase the ecological fitness of natural enemies of herbivores 

and are used as a habitat manipulation tool within conservation biological control (CBC). 

Herbivore-induced plant volatiles (HIPVs) attract arthropod natural enemies. One way to 

potentially enhance CBC is the combination of the two ‘eco-technologies’, synthetically 

produced HIPVs with the deployment of floral resource subsidies in a concept termed ‘attract 

and reward’. However, both HIPVs and floral resources can affect the behaviour of arthropod 

herbivores and higher-order natural enemies, potentially complicating the use of these within 

CBC. In this work, a synthetically produced HIPV, methyl salicylate (MeSA) is combined 

with a floral resource, buckwheat Fagopyrum esculentum Moench (Polygonaceae). The aim 

of the work in this chapter is to understand possible synergies in ‘attract and reward’ in 

influencing the abundance of arthropods at three trophic levels. A field experiment was 

carried out in a commercial field of kale Brassica oleracea L. (Brassicaceae) (cv. Sovereign). 

A factorial design was used with two treatments: with or without buckwheat and with or 

without MeSA. The control (without MeSA and without buckwheat) consisted of the crop 

alone. Yellow sticky traps were used for sampling aerial brassica pests, their natural enemies 

and fourth trophic-level natural enemies within the crop.  

The abundance of the diamondback moth (DBM) Plutella xylostella (TL2) parasitoids 

Diadegma semiclausum 
1(TL3), Diadromus collaris (TL3), the cabbage white butterfly 

2(TL2) (CWB) Pieris rapae parasitoid Cotesia spp. (TL3), the omnivorous brown lacewing 

Micromus tasmaniae (TL3) and its parasitoid Anacharis zealandica 3(TL4) increased 

significantly in treatments with buckwheat compared to treatments with no buckwheat. The 

abundance of A. zealandica (TL4) was significantly lower in treatments with MeSA compared 
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to ones without. The hoverfly Melanostoma fasciatum (TL3) was significantly more abundant 

in treatments with MeSA than treatments without MeSA but significantly less abundant in 

treatments with buckwheat compared to ones with no buckwheat.  

Significantly fewer male than female D. semiclausum (TL3) were attracted to the MeSA only 

treatments with a sex ratio of 1:1 for MeSA treatments while treatments with buckwheat had 

60% males and 40% females.  

There is a clear preference of natural enemies either to buckwheat or MeSA but none of the 

arthropod species showed a synergistic effect in their abundance when the A&R was 

deployed. Rather, in some cases one treatment could have a negative effect on the abundance 

of the natural enemy as in the case with M. fasciatum that appeared deterred by buckwheat. 

These results are highly relevant to potential future deployment of the concept ‘attract and 

reward‘ as a pest management tool, as the attraction of arthropods in ‘un-targeted’ trophic-

levels and the deterrence of some species of natural enemies may disrupt CBC.  

 

 

3.2.  Introduction 

One form of CBC is the supplementation of dietary floral resource subsidies for natural 

enemies. These can increase natural enemy longevity, fecundity (Landis et al. 2000, Berndt 

and Wratten 2005, Lavandero et al. 2005, Scarratt 2005, Irvin et al. 2006) and other 

components of ecological ‘fitness’ (Chapter Section 1. 1.) and can lead to a change in sex 

ratio (Landis et al. 2000, Berndt and Wratten 2005, Scarratt 2005) and in dispersal ability 

(Wanner et al. 2006) and host/prey search area (Kean et al. 2003) of natural enemies. The 

results from field trials with floral resource subsidies have been mixed. For example, Jonsson 

et al. (2009a) found that of the 11 studies that were published between 1998- 2007, on the 

effect of floral subsidies on natural enemies of invasive pests in different agricultural systems, 

seven demonstrated an increase in predation/parasitism rates and one showed effects at pest 

population and crop level (Jonsson et al. 2009a).  

In this chapter the potential to further increase the pest-reducing efficiency of natural enemies 

is explored. Floral resource subsidies are, for the first time combined with the natural enemy 

attraction properties of synthetically produced HIPVs (Thaler 1999, Kessler and Baldwin 

2001, James 2003b, 2005, James and Grasswitz 2005) in a concept termed ‘attract and 

reward’ (A&R) (Jonsson et al. 2008, Khan et al. 2008) (Chapter 1.6.). Both HIPVs (Dicke et 

al. 1990a, Thaler 1999, Dicke and Hilker 2003, Kessler et al. 2004, Halitschke et al. 2008, 
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Howe and Jander 2008, Khan et al. 2008) and floral resources (Gurr et al. 2000b, Gurr et al. 

2004, Heimpel and Jervis 2005, Wilkinson and Landis 2005, Jonsson et al. 2009a) show 

potential to be deployed within pest management. It is predicted that the natural enemy 

attraction properties of HIPVs would increase the movement of natural enemies into the crop 

from surrounding habitats (‘attract’) and that the floral subsidies deployed within the crop 

would be utilised by the attracted natural enemies which would remain longer within the crop 

(‘reward’). The idea is that the two ‘eco-technologies’ will work together synergistically, 

increasing the natural enemies’ efficiency to a level greater than when the two ‘eco-

technologies’ are deployed separately. However, they can both invoke unwanted side effects 

by benefiting arthropods from second (Dicke and Minkenberg 1991, Finidori-Logli et al. 

1996, Baggen et al. 1999, Lavandero et al. 2006) and fourth trophic levels (Araj et al. 2008, 

Jonsson et al. 2009b).  

This chapter uses the same forage brassica model explored in Chapter 2 but here MeSA, the 

chosen HIPV to be deployed within the experiments of this thesis is combined with a floral 

resource supplementation in the form of buckwheat Fagopyrum esculentum (see Chapter 

Section 1.7.2.). Previous field studies on the application of synthetically produced MeSA have 

shown it to attract natural enemies of herbivores in hops and grapes (James 2003b, James and 

Grasswitz 2005). Floral resources have previously been deployed within brassica crops 

(Morris and Frank 2000, Lavandero et al. 2005, Lee and Heimpel 2005) and buckwheat has 

previously been successfully deployed within brassicas (Lavandero et al. 2005, Lee and 

Heimpel 2005). Supplementation with flowering buckwheat in broccoli Brassica oleracea L. 

increased the parasitism rate by D. semiclausum of the diamondback moth (DBM) with more 

than twice as many DBM larvae parasitized when buckwheat was supplied compared to when 

no buckwheat was present. The maximum parasitism rate was increased by 88% for 

buckwheat treatments compared to non-buckwheat treatments (Lavandero et al. 2005). In 

cabbage B. oleracea L. (Brassicaceae), flowering borders of buckwheat increased parasitism 

rates of Voria ruralis Fallén (Diptera: Tachinidae) on Trichoplusia ni Hübner (Lepidoptera: 

Noctuidae) larvae, Cotesia rubecula on cabbage white butterflies (CWB) and Diadegma 

insulare Cresson (Hymenoptera: Ichneumonidae) on DBM (Lee and Heimpel 2005). 

The aim of the work in this chapter is to explore the concept of A&R and its effect on the 

abundance of arthropods from three trophic levels. Of interest are any synergistic effects 

between the two ‘eco-technologies’ and any negative interactions between the two. Also, 

effects on the second and fourth trophic level are of interest as these may disrupt biological 

control.  
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3.3. Methods 

3.3.1. Field design and sampling methods 

The effect of synthetically-produced methyl salicylate (MeSA), flowering buckwheat (BW) 

and the combination of the MeSA and BW on the abundance of arthropods in kale (B. 

oleracea cv Sovereign) was tested. The study was carried out from January 30 to March 3 

2008 across three different kale fields (Figure 3-1) at Lincoln University Research Farm, 

Silverwood, Hororata, Canterbury, New Zealand. The experiment was set up as a randomized 

block design with four blocks in field 1, three  in field 2 and two in field 3 (Figure 3-2). 

 

Figure 3-1.  Field locations on Silverwood farm. The experiment was carried out in three kale fields. 
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Figure 3-2. The location of the blocks and the plots in the three fields. Each block was separated by 45m 

(east-west) and 55m (north-south) and the centre of each plot within a block was separated by the same 

distances. Dotted blue line - - - encloses the four plots each block consisted of.  Note: figure not to scale. 

 

Each block consisted of three treatments and a control. The treatments were one treatment 

with a slow-release sachet of MeSA (MeSA) (P-240-lure, ChemTica International, Zeta 

Industrial Park, La Valencia, Heredia, Costa Rica), one with a 3m x 3m flowering buckwheat 

plot (BW), one with a slow release sachet of MeSA combined with a 3m x 3m plot of 

flowering buckwheat (MeSA+BW) and a control (C) consisting of the crop alone. A 50 m 

margin was left around the edge of each field to avoid possible edge effects. Blocks were 

separated by 45m (east-west) and 55m (north-south) and the treatments and control plots 

within each block were separated by the same distances respectively (Figure 3-2).  

Yellow sticky traps (24cm x 20cm) (Trappit, Agrisense-BCS-Ltd., UK, sourced from Fruitfed 

Supplies Ltd, New Zealand) were used to sample the number of aerial brassica pests and their 

natural enemies at each plot. Each trap was attached 10cm above the mean height of the kale 

plants between two stakes and moved upwards as the plants grew, to maintain the distance 

above the plants. In each replicate of the HIPV treatment, one MeSA sachet was attached 1m 

above ground to a string between the wooden stakes, to ensure the volatile would disperse 

throughout the field (Figure 3-3). According to the manufacturers, the volatile would last ‘a 

season’ but to ensure that the chemical did not run out, the sachets were replaced twice, once 

on February 13 and once February 27. The traps were replaced on February 6, 13, 20 and 27.  
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In treatment plots with buckwheat, buckwheat seeds were sown in 3 m x 3 m squares in the 

centre of each plot. The first lot of buckwheat seeds were sown on December 19, 2007. Space 

was left between the lines of buckwheat and new seeds were sown on January 9 and 30 2008, 

to ensure continuous presence of flowering plants during the experimental period. 

 

Figure 3-3. The layout of a plot with the combined treatment of MeSA and a 3m x 3m plot of buckwheat.  

 

During the experimental period the number of cabbage grey aphids, green peach aphids, 

larvae of the DBM and CWB and Scaptomyza flava leaf mines were counted on all the leaves 

of 20 randomly chosen kale plants in a radius of 1.5m from the trap on March 11. 

The traps were assessed for the most common brassica herbivores and their associated natural 

enemies and fourth trophic-level parasitoids (see 1.7. for list of species recorded). The number 

of individuals on each trap was counted and the sex was determined for the species that could 

be sex determined without being removed from the traps these were D. semiclausum (TL3), 

D. collaris (TL3), M. fasciatum (TL3), M. tasmaniae (TL3) and A. zealandica (TL4). 

3.3.2. Statistical analysis 

The number of D. semiclausum (TL3), D. collaris (TL3), Cotesia spp. (TL3), M. fasciatum 

(TL3), the brown lacewing M. tasmaniae (TL3) and A. zealandica (TL4) captured per trap 

throughout the sampling period fitted a negative binomial distribution. Consequently, these 

data were analyzed using a generalized linear mixed model (GLMM) with a logarithm-link. A 

1m 

3m 

3m 
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fixed model was used for the MeSA-treatment, BW-treatment, sex, different sampling dates 

and all the interactions between these and a random model for block within sampling dates 

and the interactions between these. Sex was excluded from the fixed model for Cotesia spp. 

(TL3) and the brown lacewing (TL3) for which sex could not be determined on the traps.  

However, only 7 D. collaris (TL3) were caught on the traps during the last two sampling 

periods (Figure 3-4b). To be able to include sex as a variable in the analysis of the species 

these two sampling periods were not included. Only a total of 36 A. zealandica (TL4) were 

caught on the traps during the total sampling period. This was too few to be able to include 

sex as a variable in the analysis. 

The level of significance was Bonferroni-adjusted to p<0.0083=*, p≤0.0008=** and 

p≤0.0002=*** due to the high number of species (six) analysed per trap. 

The number of pests and leaf mines on the plants from the on plant pest count was too low to 

be analysed.  

 

 

3.4. Results 

Of the third trophic level natural enemies expected on the traps (see Chapter Section 1.7. for 

list of species recorded), D. semiclausum, D. collaris, Cotesia spp., M. fasciatum and the 

brown lacewing were caught in high enough numbers for the data to be analysed. A. 

zealandica was the only fourth trophic-level natural enemy found.  

Treatments with buckwheat had a significantly higher abundance of the two diamondback 

moth (TL2) (DBM) parasitoids D. semiclausum (TL3) (Figure 3-4a), D. collaris (TL3) 

(Figure 3-4b), the cabbage white butterfly (TL2) (CWB) parasitoid Cotesia spp. (TL3) 

(Figure 3-4c), the omnivorous brown lacewing M. tasmaniae (TL3) (Figure 3-4e) and its 

parasitoid A. zealandica (TL4) (Figure 3-4f) (Table 3-1). The abundance of A. zealandica 

(TL4) was significantly lower in treatments with MeSA compared to ones without (Table 

3-1).  The hoverfly M. fasciatum (TL3) was significantly more abundant in treatments with 

MeSA than treatments without but significantly less abundant in treatments with buckwheat 

compared to ones with no buckwheat (Figure 3-4d) (Table 3-1).  

Significantly fewer male than female D. semiclausum (TL3) were attracted to the MeSA only 

treatments (Table 3-1) with a sex ratio of 1:1 for MeSA treatments while treatments with 

buckwheat had 60% males and 40% females (Figure 3-5).  
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The numbers of brassica herbivores on the sampled crop plants from March 11 were too few 

to be analysed. 
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Figure 3-4. The mean number (±SE) of individuals per trap for each species during each sampling period. 

The significance levels have been Bonferroni-adjusted p<0.0083=*, p≤0.0008=** and p≤0.0002=**
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Table 3-1.  Generalized linear mixed model (GLMM) analysis for Diadegma semiclausum, Diadromus 

collaris, Cotesia spp. Melansotoma fasciatum, Micromus tasmaniae and Anacharis zealandica. MeSA = the 

effect of treatments with MeSA + yellow sticky trap.  BW= the effect of treatments with buckwheat + 

yellow sticky trap. The significance levels have been Bonferroni-adjusted p<0.0083=*, p≤0.0008=** and 

p≤0.0002=*** 

Species Factor
Wald 

statistic
df p-value

Level of 

significance

Diadegma semiclausum BW 9.52 1 0.002 *

(Third trophic level) MeSA 5.06 1 0.025 NS

Sex 26.87 1 <0.001 *

Time 32.45 4 <0.001 *

BW x MeSA 2.83 1 0.092 NS

BW x Sex 1.15 1 0.283 NS

MeSA x Sex 8.51 1 0.004 *

BW x Time 29.13 4 <0.001 *

MeSA x Time 2.07 4 0.723 NS

Sex x Time 33.99 4 <0.001 *

BW x MeSA x Sex 2.39 1 0.122 NS

BW x MeSA x Time 9.95 4 0.041 NS

BW x Sex x Time 0.52 4 0.972 NS

MeSA x Sex x Time 1.41 4 0.843 NS

BW x MeSA x Sex x Time 4.33 4 0.363 NS

Diadromus collaris BW 81.3 1 <0.001 *

(Third trophic level) MeSA 0.19 1 0.664 NS

Sex 28.37 1 <0.001 *

Time 21.66 2 0.005 NS

BW x MeSA 3.75 1 0.054 NS

BW x Sex 1.26 1 0.264 NS

MeSA x Sex 4.07 1 0.045 NS

BW x Time 3.75 2 0.156 NS

MeSA x Time 1.12 2 0.572 NS

Sex x Time 17.93 2 <0.001 *

BW x MeSA x Sex 2.46 1 0.118 NS

BW x MeSA x Time 9.78 2 0.009 NS

BW x Sex x Time 0.24 2 0.885 NS

MeSA x Sex x Time 1.27 2 0.531 NS

BW x MeSA x Sex x Time 0 2 1.000 NS

Cotesia  spp BW 116.36 1 <0.001 *

(Third trophic level) MeSA 0.01 1 0.926 NS

Time 46.72 4 <0.001 *

BW x MeSA 2.00 1 0.160 NS

BW x Time 6.17 4 0.195 NS

MeSA x Time 12.91 4 0.015 NS

BW x MeSA x Time 12.45 4 0.018 NS

Melanostoma fasciatum BW 47.65 1 <0.001 *

(Third trophic level) MeSA 30.49 1 <0.001 *

Sex 0.39 1 0.535 NS

Time 17.8 4 <0.001 *

BW x MeSA 6.13 1 0.013 NS

BW x Sex 1.56 1 0.212 NS

MeSA x Sex 0.15 1 0.696 NS

BW x Time 2.29 4 0.682 NS

MeSA x Time 2.63 4 0.622 NS

Sex x Time 12.6 4 0.013 NS

BW x MeSA x Sex 5.66 1 0.017 NS

BW x MeSA x Time 4.59 4 0.332 NS

BW x Sex x Time 1.27 4 0.866 NS

MeSA x Sex x Time 9.34 4 0.053 NS

BW x MeSA x Sex x Time 0.23 4 0.994 NS

Micromus tasmaniae BW 23.25 1 <0.001 *

(Third trophic level) MeSA 4.37 1 0.039 NS

Time 93.14 4 <0.001 *

BW x MeSA 5.39 1 0.022 NS

BW x Time 1.91 4 0.752 NS

MeSA x Time 4.86 4 0.308 NS

BW x MeSA x Time 4.08 4 0.400 NS

Anacharis zealandica BW 19.96 1 <0.001 *

(Fouth trophic level) MeSA 16.4 1 <0.001 *

Time 3.3 4 0.521 NS

BW x MeSA 2 1 0.160 NS

BW x Time 9.36 4 0.059 NS

MeSA x Time 2.28 4 0.685 NS

BW x MeSA x Time 0.07 4 0.999 NS  
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Figure 3-5. The mean number (±SE) of females and males of Diadegma semiclausum caught per trap for 

the MeSA, buckwheat, MeSA + buckwheat-treatments and the control over the entire sampling period.  

 

 

 

3.5. Discussion 

Arthropods from two trophic levels were affected by the deployment of elements from ‘attract 

and reward’. For none of the species was there a synergistic effect between ‘attract’ (MeSA) 

and ‘reward’ (BW) on their abundance. The natural enemies were attracted either to 

buckwheat or MeSA. In one case, the natural enemy, M. fasciatum appears repelled by 

buckwheat.  

Natural enemies that were more abundant in buckwheat treatments were D. semiclausum, D. 

collaris and Cotesia spp. and the brown lacewing M. tasmaniae. Parasitoids have previously 

been shown to be benefit from buckwheat (Stephens et al. 1998, Berndt et al. 2002, Tylianakis 

et al. 2004, Lavandero et al. 2005, Lee and Heimpel 2005, Irvin et al. 2006). Both Cotesia 

rubecula (Lee and Heimpel 2005) and D. semiclausum (Lavandero et al. 2005) have in field 

studies shown an increased parasitism rate with access to buckwheat.  D. semiclausum that 

has fed on buckwheat can have an increased maximum parasitism rate from 40% with no 

buckwheat to 75% (Lavandero et al. 2005). 

Significantly fewer male then female D. semiclausum (TL3) were attracted to the MeSA only 

treatments with a sex ratio of 1:1 for MeSA treatments compared with 60% males and 40% 

females with buckwheat. Parasitoids can learn to associate a specific HIPV or a blend of 
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HIPVs with the presence of its host (Takabayashi and Dicke 1996). A specialist parasitoid, 

such as D. semiclausum may have evolved the capability to utilize host-specific volatiles for 

host search (Dicke and Hilker 2003, Zangerl 2003) and D. semiclausum females may have 

evolved to associate MeSA with host presence. D. semiclausum feeds on buckwheat 

(Lavandero et al. 2005). A possible explanation for the increased numbers of D. semiclausum 

males in treatments with buckwheat may be that the males ‘prefer’ feeding to mating. 

However, information on the feeding status (fed/unfed) and mating status (mated/unmated) of 

the males and females attracted are needed.  

The effect of floral resources on the second trophic level true omnivorous brown lacewing 

depends on prey density, such as aphids (Jonsson et al. 2009b). Buckwheat has previously, 

under laboratory conditions shown to increase the longevity (Robinson et al. 2008) and in the 

field the number of eggs oviposited by the brown lacewing (Jonsson et al. 2009b) when aphid 

densities were low. Consequently, buckwheat can help lacewings survive periods with low 

density of prey and it can help them maintain a high rate of oviposition as long as some prey 

are available (Jonsson et al. 2009b). The density of aphids was low in this field study based on 

the data from the pest count on March 11. Therefore, the brown lacewing’s preference to 

buckwheat could be due to lack of aphids so the lacewing needed the buckwheat for survival.  

The hoverfly M. fasciatum (TL3) was more abundant in treatments with MeSA than those 

without, while it was less abundant in treatments with buckwheat. The attraction of hoverflies 

to synthetically produced MeSA is in accordance with James’ (2005) findings, where 

synthetically produced MeSA deployed in a hop yard attracted species of hoverflies. In 

Chapter 2 Melangyna novaezealandiae (TL3) was attracted to MeSA.  Hoverflies utilise 

buckwheat as a floral resource (Laubertie 2007). The lower number of hoverflies caught on 

the traps in the buckwheat treatments could be due to the hoverflies were more attracted to the 

flowers than to the sticky trap and therefore was caught in lower numbers on the traps. 

,A. zealandica, the fourth trophic level parasitoid of the omnivorous brown lacewing was 

more abundant in treatments with buckwheat than ones without. This supports the yellow 

water-trap data of Stephen et al. (1998). The parasitoid feeds on floral nectar of buckwheat 

and under laboratory conditions, both male and female A. zealandica parasitoids with access 

to buckwheat live 7-8 times longer than ones with access to water only (Jonsson et al. 2009b). 

In this study the brown lacewing, the host of A. zealandica was more abundant in treatments 

with buckwheat than the ones with none. Consequently, the reason for the parasitoids 

preference to buckwheat could be due to the presence of both host and food resource within 

these treatments. Contrary to the results from Chapter 2, A. zealandica was significantly lower 
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in treatments with MeSA compared to ones without. A potential explanation could be linked 

to its host, the brown lacewing. In the study from Chapter 2 the only two lacewings were 

caught on the traps throughout the sampling period. Hence, A. zealandica would have 

experienced a lack of hosts and was reacting on the only signal present within the crop, the 

treatment of synthetically produced MeSA. Other hymenopterans have previously been 

shown to be affected by MeSA and their abundance can be increased by the deployment of the 

synthetic version of volatile in the field (James and Price 2004, James et al. 2005, James and 

Grasswitz 2005). However, in this case there was a presence of host within the buckwheat and 

A. zealandica can benefit from the buckwheat (Jonsson et al. 2009b). Consequently, the 

parasitoid would have preferred buckwheat treatments to treatments with MeSA alone which 

lacked both hosts and a food resource.   

MeSA has potential to function as a trigger for the plant’s own production of HIPVs (Khan et 

al. 2008) it still remains unclear whether it is MeSA alone or a blend of volatiles produced by 

the host plant after the induction by MeSA that is attractive to the arthropods.  

 

 

3.6. Prospect for biological control using ‘attract an reward’ 

This work shows that both HIPVs and buckwheat can increase the abundance of most natural 

enemies. However, in none of the cases did the combined deployment of buckwheat and 

MeSA work synergistically on the abundance of any individual natural enemy species but 

rather, the natural enemies ‘preferred’ buckwheat or MeSA alone. In one case a deterrent 

effect of buckwheat on the natural enemy (TL3) could be seen, as in the case of M. fasciatum. 

Consequently, deploying buckwheat and MeSA together might compromise biological control 

due to deterrence or other negative interactions between the treatments decreasing the 

abundance of some natural enemies.  

Buckwheat increased the abundance of enemies of natural enemies (TL4). Consequently, the 

potential for buckwheat and HIPVs to be deployment in crop protection will strongly depend 

on the ability to manage compromising factors such as the unintended attraction of additional 

herbivores (Turlings and Ton 2006) or higher order parasitoids (Baggen et al. 1999, 

Lavandero et al. 2006, Jonsson et al. 2009b).   

As in Chapter 2 the data analysed in this chapter comprises trap catches only. The yellow 

sticky traps are attractive to herbivores (Sivapragasam and Saito 1986) and natural enemies 

(Laubertie et al. 2006). Many insects are innately attracted to a few colours, in particular 
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yellow, for which, for example, the parasitoid, Cotesia rubecula Marshall (Hymenoptera: 

Braconidae) shows a preference when deprived of sugar foods (Wäckers 1994). To interpret 

the population and community consequences of the negative interactions between the two 

treatments, the deterrence of some natural enemies and the increase in on-plant populations 

and in abundance of the second and fourth trophic level species requires assessment of 

increased rates of plant damage by herbivores and predation and parasitism rates by both third 

and fourth trophic-level natural enemies. These questions will be addressed in Chapter 4.  



  Chapter 3 

1 TL2 = trophic level 2 
2 TL3 = trophic level 3 

41 
 

Chapter 4: ‘Attract and reward’: the effect of 
combining buckwheat (Fagopyrum 
esculentum) and methyl salicylate on herbivore 
densities, predation, parasitism and hyper-
parasitism rates 
 

 

4.1. Abstract 

An increased natural enemy abundance is not enough to show that habitat manipulation 

techniques, such as the combination of floral resource supplementation with the deployment 

of synthetically produced herbivore-induced plant volatiles (HIPVs), are successful tools for 

improving conservation biological control (CBC). To be able to conclude that the habitat 

manipulation techniques are successful in bringing the herbivore population below a damage 

threshold, their effects on crop damage and on pest and higher-order natural enemy population 

densities (and ideally their impacts) need to be assessed. 

Floral resource supplementation increases herbivore parasitism rates and attracts predators of 

herbivores. HIPVs can increase both parasitism and predation rates of herbivores in the field. 

In this work, a synthetically produced HIPV, methyl salicylate (MeSA) is combined with a 

floral resource, buckwheat (BW) Fagopyrum esculentum to test the ‘attract and reward’ 

(A&R) concept.  

The aim of the work presented in this chapter is to understand the population and community 

consequences of A&R by assessing its effect on herbivore crop damage, natural enemy and 

herbivore densities and parasitism, hyper-parasitism and predation rates. A field experiment 

was carried out in a commercial field with a mixture of kale Brassica oleracea and swedes 

Brassica napus. A two factorial design was used with two treatments: with or without BW and 

with or without MeSA. The control (without MeSA and without BW) consisted of the crop 

alone. Herbivore damage by the leafmining fly Scaptomyza flava 1(TL2), densities of the 

cabbage aphid Brevicoryne brassicae (TL2), the green peach aphid Myzus persicae (TL2) and 

larvae of the cabbage white butterfly (TL2) (CWB) Pieris rapae and of the diamondback 

moth (TL2) (DBM) Plutella xylostella were assessed by on-plant counting on brassica plants.  
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The density of larvae of the natural enemies: ladybirds 2(TL3) (Coleoptera, Coccinellidae), 

hoverflies (TL3) (Diptera: Syrphidae) and lacewings (TL3) (Neuroptera: Hemerobiidae) and 

aphid parasitism rates were also assessed. Rates of aphid hyper-parasitism were assessed by 

collecting parasitized aphids (aphid mummies) and rearing them to parasitoid emergence. For 

24h predation rates, eggs of Helicoverpa armigera Hübner (Lepidoptera: Noctuidae) were 

used as sentinel prey.  

Aphid densities, hyper-parasitism and predation rates were not significantly different between 

treatments while there was a significant increase in aphid parasitism rates for treatments with 

MeSA compared to treatments without. However overall, aphid parasitism rates were low, 

with a mean parasitism of 0.08 (SE±0.01) per plant, independent of treatment. This may 

explain the lack of treatment effect on aphid densities.  

 

 

4.2. Introduction 

For biological control to be successful, the pest population needs to be reduced to below an 

established damage threshold (Gurr et al. 2000a). Gurr et al. (2007) pointed out the 

importance of assessing the effect of habitat manipulation techniques on pest populations and 

crop damage rates to evaluate the success of conservation biological control (CBC) (Chapter 

1 Table 1-1). However, few studies have included the effect CBC on the first, the second 

(Jonsson et al. 2009a) and the fourth trophic level (Gurr et al. 2000b). Previous work on the 

deployment of synthetically-produced herbivore-induced plant volatiles (HIPVs) within CBC 

has mainly focused on the increased abundance of natural enemies within the crop (James 

2003b, a, James and Price 2004, James 2005, James et al. 2005, James and Grasswitz 2005), 

only a few studies have shown effects on predation or parasitism rates (Thaler 1999, Kessler 

and Baldwin 2001). However, to be able to draw any conclusions regarding the potential 

success of deploying any type of habitat manipulation technique within CBC, both direct 

(increased predation and/or parasitism rates ) and indirect effects (increased higher-order 

parasitism rates) of the manipulation on pest populations and the crop needs to be assessed.  

This chapter uses the same forage brassica model explored in Chapters 2 and 3 and combines 

MeSA with buckwheat (BW) Fagopyrum esculentum the HIPV and floral resource deployed 

within the experiments of this thesis in the concept termed ‘attract and reward’(A&R) 

(Jonsson et al. 2008, Khan et al. 2008) (Chapter Section 1.6.). 
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The application of floral resources as a tool in CBC increases pest parasitism rates in different 

agricultural systems including brassicas (Jonsson et al. 2009a, Lavandero et al. 2005, Lee and 

Heimpel 2005).  

There are no studies on the effect of buckwheat supplementation in brassicas on aphid 

parasitism rates. However, under laboratory conditions alyssum L. Lobularia maritima 

(Brassicaceae), buckwheat, coriander Coriandrum sativum L. (Apiaceae) and phacelia 

Phacelia tanacetifolia Bentham (Bolraginaceae) significantly increase the parasitism rate of 

pea aphids Acyrthosiphon pisum Harris (Homoptera: Megaspilidae) by Aphidius ervi, with 

buckwheat having the significantly greatest effect on parasitism rates.  The aphid hyper-

parasitoid Dendrocerus aphidium Rondani (Hymenoptera: Megaspiliae) also showed an 

increase in parasitism rate with access to buckwheat, coriander and phacelia (Araj et al. 

2008).  

Synthetically-produced HIPVs can attract natural enemies of herbivores (Thaler 1999, Kessler 

and Baldwin 2001, James 2003b, 2005, James and Grasswitz 2005) and this could potentially 

be utilised for pest suppression within sustainable crop management regimes (Dicke et al. 

1990a, Thaler 1999, Dicke and Hilker 2003, Kessler et al. 2004, Halitschke et al. 2008, Howe 

and Jander 2008, Khan et al. 2008). In the field, tomato plants induced with jasmonic acid can 

double the rate of field parasitism of Spodoptera exigua Hübner (Lepidoptera: Noctuidae) by 

Hyposoter exiguae Viereck (Hymenoptera: Ichneumonidae), an endoparisitic wasp (Thaler 

1999). Applying the synthetic versions of HIPVs naturally produced by Nicotiana attenuata 

Torr. Ex S. Watson (Solanaceae) to plants in the field resulted in an increased number of 

Manduca sexta L. (Lepidoptera: Sphingidae) eggs predated by a generalist predator Geocoris 

pallens Stål (Heteroptera: Lygaeidae) and a reduction in oviposition rate of Manduca spp.. As 

a consequence, the HIPV-mediated plant responses reduced the number of herbivores by 90% 

(Kessler and Baldwin 2001).  

Results from Chapters 2 and 3 have shown the capacity of an HIPV, MeSA and floral 

resources, buckwheat not only to increase the abundance of natural enemies but also of 

herbivores and  fourth trophic level natural enemies. Effects of A&R on pest densities, 

parasitism rates at multiple trophic levels and on crop damage need to be determined before 

A&R can be considered to be a viable pest management strategy. 

The aim of the work in this chapter is to understand the effects of A&R on herbivore crop 

damage, herbivore densities, parasitism, hyper-parasitism and predation rates.  This is 

important as unwanted effects of A&R on second and fourth trophic level arthropods or any 
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deterrent or negative interaction between MeSA and buckwheat may disrupt the intended 

improvement in biological control efficiency.  

 

 

4.3. Methods 

4.3.1. Experimental design of field experiment 

This experiment tested the effect of synthetically-produced MeSA, flowering BW and the 

combination of MeSA and BW on the density of natural enemies and herbivores, egg 

predation rates and on aphid parasitism and hyper-parasitism rates in a commercial field with 

a mixture of kale B. oleracea and swedes B. napus. The study was carried out from December 

5 2008 to March 31 2009 in a 170m x 220m brassica field near Selwyn Huts, Canterbury, 

New Zealand. 

The experiment was set up as a randomized block design with eight blocks each of which 

consisted of three treatments and a control. The treatments were one treatment with a slow-

release sachet of MeSA (MeSA) (P-240-lure, ChemTica International, Zeta Industrial Park, La 

Valencia, Heredia, Costa Rica), one with a 3m x 3m flowering buckwheat plot (BW), one 

with a slow release sachet of MeSA combined with a 3m x 3m plot of flowering buckwheat 

(MeSA+BW) and a control (C) consisting of the crop alone. Blocks were separated by 34m 

(east-west) and 24m (north-south) and the treatment and control plots within each block were 

separated by 34m (east-west) and 24m (north-south) within each block (Figure 4-1).  

The first buckwheat seeds were sown on December 5, 2008. A 15 cm space was left between 

the rows of buckwheat. New seeds were sown in these on December 12 2008, January 6 and 

February 24 2009 5 cm from the row sown at the previous date, to ensure continuous presence 

of flowering plants during the experimental period. 

 

4.3.2. Sampling methods 

Three different sampling methods were used to assess herbivore crop damage, natural enemy 

and brassica pest densities, aphid parasitism and hyper-parasitism and egg predation rates. 

The number of leaf mines from S. flava (TL2), cabbage aphid (TL2) Brevicoryne brassicae 

and the green peach aphid (TL2) Myzus persicae, aphid mummies (parasitized aphids) and 

larvae of DBM (TL2), CWB (TL2), ladybirds (TL3), hoverflies (TL3) and lacewings (TL3) 

were counted in situ on all the leaves of 12 plants per plot in four directions 1.5m from the 
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centre of each plot (Figure 4-1) on three occasions, January 9, February 25 and March 23 

2009.  

 

C 

The kale plants on which the 

number of herbivores and 

herbivore natural enemies were 

counted 

 

Buckwheat treatment 

 

MeSA treatment  

 

Control treatment 

 

C 

24m 

34m 

3m 

3m 

N 

1.5m 

 

Figure 4-1. The location of the 12 plants per plot on which pest and natural enemy counts were done. The 

plants were located 1.5m from the centre of each plot. The plants on each side within a plot were separated 

by 1m.  

 

Aphid mummies were collected to estimate aphid hyper-parasitism rates on February 26 2009. 

A total of 100 mummies per plot were collected within a 0.5m wide strip between 1.5m and 
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2m from the centre of the plot on randomly chosen plants (Figure 4-2). Only one colony per 

plant was collected. A colony was defined as aphids clustering together on a leaf. In the field, 

the leaves with the mummies were removed and brought back to the laboratory.  A maximum 

of five randomly chosen mummies per colony was then removed and stored in 0.6ml vials to 

parasitoid emergence. The emerged parasitoids were identified, counted and the proportion of 

hyper-parasitized aphids was determined. 

 

 

C 

The 0.5m strip within which the 

plants, from which the aphid 

mummies were collected, were 

located 

 

Buckwheat treatment 

 

MeSA treatment  
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 34m 

3m 

3m 

 

Figure 4-2. The plants on which aphid mummies were collected were located between 1.5m and 2m from 

the centre of each plot.  
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H. armigera Hübner (Lepidoptera: Noctuidae) eggs (obtained from Anne Barrington, 

HortResearch, Auckland, New Zealand) were used as sentinel baits to assess 24h predation 

rates. Baits were deployed in the field on two occasions, February 27 and March 25 2009. 

Two eggs were glued (3M, Repositionable 75, Spray Adhesive) on a diagonal to a 5 cm x 5 

cm cards of sandpaper (P150 Tufbak) (Figure 4-3) to simulate eggs from herbivorous 

lepidopterans, such as the CWB. This density was used as CWBs lay their eggs singly 

(personal observation). Two cards of sandpaper were attached to the back of a kale leaf 1.5m 

from the centre of the plot in four directions (Figure 4-4). 

The baits were left in the field for 24h before collection. The numbers of eggs remaining on 

the sandpapers were counted and missing eggs were assumed predated. Mean 24h predation 

rate was calculated based on mean proportion predated eggs per plot for both sampling dates. 

 

5cm 

1cm 

H. armigera egg 

 
Figure 4-3. Two H. armigera eggs were glued onto cards of sandpaper 1cm from the edge of the card.  
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Figure 4-4. The location of the plants within the plots on which the sandpaper cards with H. armigera eggs 

were attached. The plants on each side within a plot were separated by 1m.  

 

4.3.3. Analysis 

The effect of the three different treatments on aphid density and proportion parasitized aphids 

was analysed for the data from pest count number two, February 25. The effect of the three 

treatments on aphid hyper-parasitism levels was analysed for data from the aphid mummy 

collection on February 26. Block 8, the MeSA+BW in block 1 and the BW treatment in block 

4 were excluded from all analysis as treatments with buckwheat did not have flowering 

buckwheat.  

For the total number of aphids per plant the sum of aphids and aphid mummies was used. To 

analyse aphid density an unbalanced two-way ANOVA was conducted on mean number of 



  Chapter 3 

49 
 

aphids per plant for each plot. To satisfy the assumption for equal variance and normal 

distribution for the ANOVA model, all analysis was conducted on square root transformed 

data.  

Proportion parasitized aphids was calculated based on the total number of aphid mummies out 

of the total number of aphids (aphids + aphid mummies) per plot. A GLM with a binomial 

distribution and a logit-link function was conducted to analyse mean proportion of aphids 

parasitized per plot. There was evidence of over-dispersion of the data so the program 

estimated the dispersal parameter.  

Hyper-parasitism rates were calculated based on proportion hyper-parasitized mummies out of 

the 100 mummies collected per plot. An unbalanced two-way ANOVA was conducted on 

mean proportion of aphids parasitized per plot to analyse hyper-parasitism rate. To satisfy the 

assumption for equal variance and normal distribution for the ANOVA-model all analysis was 

conducted on arcsine (√(x)) transformed data as this fitted the data best to a normal 

distribution.  

The effect of the tree treatments on predation rates was tested based on proportion predated 

eggs per plot for both dates. The data was arcsine (√(x)) transformed to fit a normal 

distribution and a repeated measures REML was conducted on proportion of eggs predated 

per plot.  

The number of aphids was too low from the previous pest count on, January 9 to be analysed. 

On the third pest count, on March 23 the mean parasitism level was extremely high with 79% 

(SE ± 3%) of the aphids being parasitized and with an average of 74% (SE ± 2%) of the plants 

having 100% parasitism. Consequently, the data could not be analysed. The number of leaf 

mines, larvae of DBM and CWB and of hoverflies, ladybirds and lacewings counted on the 

plants were too low during the entire sampling period to be analysed.  

 

 

4.4. Results 

There was no significant difference in the aphid densities for the different treatments (Figure 

4-5) (Table 4-1). 
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Figure 4-5. The mean number (±SE) of aphids per plant for the MeSA, buckwheat, MeSA + buckwheat-

treatments and the control. The data have been back-transformed from square root-transformation. 

MeSA= MeSA only treatment, BW=buckwheat only treatment, MeSA+BW=combined treatments with 

buckwheat and MeSA and C=control treatment.  

 

Significantly more aphids were parasitized in treatments with MeSA compared to treatments 

with no MeSA (Figure 4-6) (Table 4-1). 

  

Figure 4-6. The mean number (±SE) of parasitized aphids per plant for the MeSA, buckwheat, MeSA + 

buckwheat-treatments and the control.  

 

The level of hyper-parasitism was independent of treatments (Table 4-1) with a back-

transformed mean proportion of 91% (SE +1.4%, -1.7%) hyper-parasitized aphids (Figure 

4-7). 
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Figure 4-7. The mean (±SE) proportion of hyper-parasitized aphids per plant for the MeSA, buckwheat, 

MeSA + buckwheat-treatments and the control. The data have been back-transformed from arcsine-

transformation. MeSA= MeSA only treatment, BW=buckwheat only treatment, MeSA+BW=combined 

treatments with buckwheat and MeSA and C=control treatment. 

 

Back-transformed mean daily predation rate based on both dates was 77% (SE +12%, -15%), 

independent of treatment (Table 4-1) (Figure 4-8).  

 

Figure 4-8. The mean (±SE) predation rate per plot for the MeSA, buckwheat, MeSA + buckwheat-

treatments and the control for the two sampling dates. The data have been back-transformed from 

arcsine-transformation.  

 

The number of brassica herbivores, leaf mines from S. flava and larvae of ladybirds, 

hoverflies and lacewings on the sampled crop plants were too low for the data to be analysed.   
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Table 4-1. An un balanced two-way ANOVA analysis for aphid densities and aphid hyper-parasitism, 

GLM analysis for aphid parasitism and a repeated measures REML for egg predation rates. MeSA = the 

effect of treatments with MeSA , BW= the effect of treatments with buckwheat.  

Factor
Wald 

statistic
df F-value

Level of 

significance

Aphid density BW 1 0.385 NS

MeSA 1 0.882 NS

BW x MeSA 1 0.690 NS

Aphid parasitism rater BW 1 0.930 NS

MeSA 1 0.026 *

BW x MeSA 1 0.359 NS

Aphid hyperparasitism rate BW 1 0.718 NS

MeSA 1 0.339 NS

BW x MeSA 1 0.271 NS

Predation rate BW 0.00 1 0.960 NS

MeSA 0.13 1 0.716 NS

Time 0.26 1 0.638 NS

BW x MeSA 0.00 1 0.972 NS

BW x Time 0.11 1 0.740 NS

MeSA x Time 1.26 1 0.269 NS

BW x MeSA x Time 3.17 1 0.083 NS  

 

4.5. Discussion 

Aphid parasitism rates were significantly higher in treatments with MeSA than in those with 

none. Behavioural work on aphid parasitoids has demonstrated the role of plant volatiles in 

their foraging (Powell and Zhang 1983, Powell and Wright 1992, Wickremasinghe and van 

Emden 1992, Grasswitz and Paine 1993, Guerrieri et al. 1997, Powell et al. 1998) and the 

aphid parasitoid Aphidius ervi uses HIPVs in the search for its host Acyrthosiphon pisum 

Harris (Homoptera: Aphididae) (Du et al. 1996, Guerrieri et al. 1997) under laboratory 

conditions. However, this is the first time the effect of a synthetically produced MeSA has 

been shown to increase parasitism rates in the field. But, the increased parasitism rate in 

treatments with MeSA seems not to have affected aphid densities, as these were not 

significantly different between treatments. 

Aphid parasitoid parasitism rates were not significantly affected by the treatments. However, 

the overall hyper-parasitism rates were close to 100%, with a back-transformed mean 

proportion of 91% (SE +1.4%, -1.7%) hyper-parasitized aphids per plot. Consequently, the 

results could be due to a lack of hosts and hence any effects of the treatments could have been 

over-ridden by host limitation. This is also supported by the observed high levels, 74% (SE ± 

2%) of aphid colonies with 100% parasitism on March 23. 
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Both buckwheat (Pontin et al. 2006) and synthetically produced HIPVs (Kessler and Baldwin 

2001) have previously been shown to accumulate arthropod predators of herbivores. 

However, in this study, there was no significant effect of treatments on predation rates of the 

egg of H. armigera. The deployment of H. armigera eggs within the field was to simulate 

eggs from herbivorous lepidopterans such as the CWB. CWB eggs in cabbage fields often 

suffer from quite high mortality from arthropod predation (Schmaedick and Shelton 1999). 

Also in this case could a high predation rate of the H. armigera eggs be seen with a back-

transformed mean daily predation rate of 77% (SE +12%, -15%), independent of treatment.  

The lack of significant treatment effects could be due to the arthropod predators not utilising 

the buckwheat (the presence of any egg predators on the buckwheat flowers was never 

observed during this study) or responding to MeSA. The depositing of lepidopteran eggs on 

plants can induce the production of HIPVs (Hilker and Meiners 2002). However, it is not 

known if MeSA is one of the volatiles induced by egg deposition, neither is it known if 

synthetically-produced MeSA is one of the volatiles involved in previously-observed 

increases in predation as a response to HIPVs (Kessler and Baldwin 2001). Consequently, 

predatory arthropods may not have learnt to associate the presence of MeSA with the presence 

of prey (Dicke et al. 1990c) and hence have not responded to the presence of the volatile in 

these experiments.  

 

4.5.1. Prospects for biological control using ‘attract and reward’ 

This work shows that MeSA could potentially increase aphid parasitism rates. However, to be 

able to conclude the effect this may have on aphid densities the experiment would have to be 

repeated throughout a season as there is a time lag between aphid parasitism and a reduction 

in number of aphids. Overall aphid parasitism rates were low with a mean parasitism of 8% 

(SE±1%) per plant, independent of treatment  and with only a 3% increase in mean parasitism 

rate between the lowest (buckwheat and control, mean parasitism of 7% per plot) and the 

highest (MeSA, mean parasitism of 10% per plot) (Figure 4-6). Consequently, the increase in 

parasitism would probably not have an effect on aphid densities and the effect of MeSA on 

parasitism rates in this case is low.  

As in a previous chapter (Chapter 3), MeSA has been shown to have a positive effect on some 

aspects of CBC, in this case aphid parasitism rate, while the presence of buckwheat had no 

effect on aphid parasitism. This is contrary to expectations, as the aim of the A&R concept is 

to combine the two ‘eco-technologies’ to work synergistically, increasing  pest population 

reduction rates by natural enemies.  
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It still remains to be shown that the observed increased abundance (usually on traps) of some 

arthropod natural enemies of pests in response to A&R (Chapter 3) can be translated into 

increased pest reduction rate by the natural enemies, followed by a lower rate of  herbivore 

damage of the crop. This information is needed to be able to conclude whether the concept 

can be considered successful or not as a tool to improve CBC (Gurr et al. 2007).  
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Chapter 5: Attraction of the aphid parasitoid 
Aphidius colemani to synthetically produced 
methyl salicylate in Synertrol oil  
 

 

5.1. Abstract 

Aphids can cause both direct damage to brassica crops and be vectors of viruses thereby 

reducing crop yields. Aphidius colemani parasitizes Myzus persicae, an aphid commonly 

occurring within brassica crops. Aphid feeding can induce the production of methyl salicylate 

(MeSA) which is an herbivore-induced plant volatile (HIPV) that can function as an attractant 

to natural enemies of the aphids.  

Synthetically-produced methyl salicylate has potential to trigger the plant’s own production of 

HIPVs. It still remains unclear whether it is MeSA alone or a blend of volatiles produced by 

the host plant after the induction by MeSA that is attractive to the arthropods in the field 

experiments in Chapter 2 and 3.  

The synthetically-produced MeSA sachets deployed within the previous chapters of this thesis 

is mixed with organic oil in a commercial product.  However, the concentration of the volatile 

in the sachets is not known. The aim of this chapter is to evaluate if Aphidius colemani can be 

attracted to synthetically-produced MeSA mixed with Synertrol oil.  Using a Y-tube 

olfactometer, the response of A. colemani to 0.5% (w/v) and 2.0% (w/v) MeSA diluted in 

Synertrol oil compared to air was investigated. Significantly more parasitoids were attracted 

to 2.0% MeSA than to air while the parasitoid did not respond to the lower concentration.  

This is the first time that synthetically-produced MeSA has been shown to be attractive to a 

parasitoid in an olfactometer experiment.  

 

 

5.2. Introduction 

One commonly occurring herbivore in brassica crops is the green peach aphid Myzus 

persicae. Colonies of the aphids can reduce the vigour and the yield potential of the crop and 

transmit viruses (Ferguson and Blake 1985), such as the turnip yellows virus (TuYV) (Stevens 

et al. 2008). TuYV is probably the most important viral disease of oilseed rape in the United 
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Kingdom and is probably the main reasons why commercial oilseed rape crops do not reach 

their genetic yield potential. The main virus vector of TuYV is M. persicae (Stevens et al. 

2008). Field experiments on oilseed rape Brassica napus in Australia have shown that crops 

that suffer 96% and 100% infection of TuYV had a 46% and 37% yield reduction respectively 

(Jones et al. 2007). Managing TuYV spread and hence the virus from causing similar losses in 

the United Kingdom during mild winters could raise the average yield at individual crop level 

from 3.3 t/ha to between 4.4 t/ha and 6.0 t/ha. Assuming between 10-15% of the losses could 

be prevented by controlling TuYV the value of the yield improvement would be around ₤60-

90 million/year for UK oilseed rape growers. Similarly at 50% occurrence of the virus, the 

value of the yield improvement could be ₤30-40 million/year (Stevens et al. 2008). TuYV is 

also present in New Zealand in turnip, sugar beet and fodder beet and M. persicae is an 

efficient vector of the virus, with a minimum acquisition period of 5min feeding, a minimum 

inoculation feeding period of 3min and a latent period of 9-27h in Canterbury, New Zealand 

(Kyriakou et al. 1983). Other important viruses spread by the green peach aphid in New 

Zealand are different types of mosaic virus (Lamb 1960). The cauliflower mosaic virus can 

for example cause up to 30% yield loss in cauliflowers Brassica oleracea in some parts of 

New Zealand (Fry 1952).  

Aphidius colemani is a parasitoid of M. persicae. It is commercially produced for biological 

control of M. persicae in glasshouses (Grasswitz and Paine 1993) and is commercially 

available in New Zealand (from e.g., Zonda Resources Ltd. Auckland, New Zealand and 

Bioforce Ltd, Drury, New Zealand).  The parasitoid is a polyphagus parasitoid of aphids 

which probably originates from northern India or Pakistan and has spread throughout most of 

the world (Starý 1975).  

Aphid feeding by the pea aphid Acythosiphon pisum can influence the release of HIPVs in 

broad beans Vivia faba (Du et al. 1998).  Aphids produce little feeding damage and are 

perceived as pathogens by the plant (Walling 2000). Salicylic acid (SA) is a key component in 

the shikimic pathway that is thought to be responsible for defence against aphids and other 

phloem feeders (Walling 2000, Kaloshian and Walling 2005). Green peach aphid feeding can 

trigger SA-dependent gene responses in Arabidopsis (Brassicaceae) (Moran and Thompson 

2001) and may therefore induce volatiles that attract the aphid parasitoid Diaretiella rapae 

(Girling et al. 2006). Soybean plants Glycine max L. (Fabaceae) releases significantly more 

methyl salicylate (MeSA) when infested by soybean aphids Aphis glycines Matsumura 

(Hemiptera: Aphididae) and synthetically produced MeSA attracts in the field significantly 

more Coccinella septempunctata L. (Coleoptera: Coccinellidae) that predate on this aphid 
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(Zhu and Park 2005). Applying synthetically produced SA to M. persicae damaged Brussels 

sprouts B. oleracea var. Gremmifera L. (Brassicaceae) increased the  proportion of aphids 

parasitized by A. colemani, with almost twice as many aphids parasitized when 10mM SA 

was applied to the foliage of the Brussels sprouts, compared to no SA (Karatolos and Hatcher 

2009).  

The synthetically-produced MeSA sachets deployed within the previous chapters of this thesis 

is mixed with organic oil in a commercial product.  It still remains unclear if the observed 

increase in natural enemy abundance in response to the synthetically-produced MeSA  is due 

to MeSA alone attracting the arthropods or due to the plants being induced by the volatile to 

produce their own HIPVs (Khan et al. 2008) (Chapters 2 and 3).  

The aim of this chapter is to evaluate if two concentrations, 0.5% (w/v) and 2.0% (w/v), of 

synthetically-produced MeSA mixed with the organic oil, Synertrol can be attractive to A. 

colemani compared to clean air. These concentrations have been shown to increase the 

abundance of hymenopterans in broccoli B. oleracea and sweet corn Zea mays L. (Poaceae) 

(Simpson et al. 2009).  

 

 

5.3. Methods 

The experiment was carried out using methods similar to the ones used by Girling et al. 

(2006) on Diaretiella rapae and Pareja et al (2009) on Aphidius ervi. Green peach aphids M. 

persicae reared on Chinese cabbage Brassica rapa and parasitized by A. colemani were 

obtained from Zonda Resources Ltd. (Auckland, New Zealand). The parasitized aphids (aphid 

mummies) were removed with soft forceps from the Chinese cabbage plants and allowed to 

emerge in a chamber. This was a dark 250ml container in which the mummies were placed. A 

hole was made in the lid and a ventilated Perspex cylindrical cage was placed over the hole of 

the container. The cage was lit from above and the emerged wasps were collected from it 

(Girling et al. 2006) (Figure 5-1). The chamber was kept at 21˚C and in a 16:8h light: dark 

regime. Emerged parasitoids were fed 10% (w/v) glucose solution with 3µl of yellow food 

colouring (Hansells, yellow colouring, colour 102,Old Fashion Foods Ltd, Auckland, New 

Zealand) on cotton wool and allowed to mate (Pareja et al. 2009). The yellow food colour has 

shown to increase the attraction of parasitoids to the sugar solution (Personal communication, 

Graham Walker, Plant and Food Research, Auckland, New Zealand). 
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Figure 5-1. The chamber used for the collection of the emerged A. colemani from the aphid mummies.  

 

The experiment was conducted over three days with two concentrations of MeSA diluted in 

Synertrol oil (Organic Crop Protectants, NSW Australia, www.ocp.com.au). These were 0.5% 

(w/v) and 2% (w/v). On day 1 and 2 was the parasitoid’s response to the MeSA concentration 

of 0.5% (w/v) tested and on day 3 was the response to the 2.0% (w/v) concentration tested. 

One day old fed (Girling et al. 2006, Pareja et al. 2009) and mated females were used (Pareja 

et al. 2009). The females were separated from males and ‘primed’ as this can increase aphid 

parasitoids’ response to an odour source (Girling et al. 2006). ‘Priming’ was done by giving 

the females experience of 100-150 M. persicae combined with synthetically-produced MeSA. 

The females were transferred into a cylindrical (19cm x 10cm diameter) ventilated Perspex 

cage with aphids and a filter paper (Whatman, 4.25cm diameter) with 1µl of the tested 

concentration of MeSA 1 h prior to the experiment (Girling et al. 2006).  

Dual-choice tests were carried out using an olfactometer set-up (Analytical Research Systems 

Inc, Florida, USA) with a glass Y-tube olfactometer with a 3.5cm internal diameter, a 22cm 

stem and 30cm arms at a 70˚ angle (Figure 5-3). Air was pumped through a hydrocarbon filter 

(1) and divided by a T-junction into two separate humidifying bubblers (2), containing 

deionised water, through Teflon tubing (3) into two separate flow meters (4), which regulated 

the flow rate to 400ml/min (Girling et al. 2006). The air then passed through Teflon tubing (5) 
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into two volatile collection chambers (6) into which the volatile sources to be tested were 

placed. From here, the air flowed into the arms of the Y-tube (7) (Figure 5-2). 
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Figure 5-2. The olfactometer set-up. 
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The Y-tube was placed on a white bench and lit from above with artificial light (6 Lumilux 

cool daylight L30W/865 20000h) (Pareja et al. 2009). All experiments were conducted at 

23˚C (Girling et al. 2006). Both the wasps, in a cage and the volatile, in an air-tight vial was 

placed in the experimental room under the lamp at least 1h before the experiments were 

conducted to allow the wasps to acclimatize to the light level and temperature and the volatile 

to adapt to the  temperature (Girling et al. 2006).  

The olfactometer was divided into three sections in accordance with the methods used by 

Girling et al (2006). The first section was the ‘stem’, defined as the first 21cm of the main 

arm of the Y-tube. The next section was the ‘choice zone’, the area in which the parasitoid 

made its ‘choice’ between the two arms of the Y-tube. It was defined as the first 3cm of each 

arm of the olfactometer from the end of the stem. The final section was the ‘arms’ of the 

olfactometer, the remaining 27cm of the Y-tube (Figure 5-3) (Girling et al. 2006). A single 

‘primed’ female parasitoid was introduced to the Y-tube in a removable inlet cage at the 

bottom of the stem (Figure 5-2). Each female was given 5min to make a choice (Girling et al. 

2006, Pareja et al. 2009) between 1µl of MeSA diluted in Synertrol oil (MeSA+ Synertrol oil) 

of respective concentration applied to filter paper (Whatman, 4.25cm diameter) (Koschier et 

al. 2000) and clean air.  A female was considered to have made a ‘choice’ when it crossed the 

‘choice line’ and first entered one arm (Girling et al. 2006, Pareja et al. 2009).  

After each individual was tested, the Y-tube was turned over for the next test, to eliminate any 

directional biases by the parasitoid (Girling et al. 2006). The Y-tube was first cleaned with 

detergent, then distilled water and finally with 100% acetone (Pareja et al. 2009), and dried in 

an oven at 50˚C (Kvedaras et al. 2009) between every third run (Pareja et al. 2009) to remove 

any volatiles adhered to the glass. For the 0.5% (w/v) MeSA concentration was a total of 52 

wasps tested and for the 2% concentration a total of 51 wasps.  
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Figure 5-3. The dimensions of the Y-tube and the three zones it was divided into. 

 

 

The number of A. colemani making a choice was analysed based on the null hypothesis that 

the probability of the response to tested compound or the clean air is equal to 50%. 

Consequently, differences in response were analysed using a one-sample binomial test with a 

proportion success of 0.5 and a 95% confidence interval.  

 

 

5.4. Results 

The percentage of A. colemani that did not respond in the experiment using 0.5% (w/v) MeSA 

diluted in Synertrol oil (MeSA +Synertrol oil) compared to clean air was high, 71.2% (Figure 

5-4). The parasitoid was not differentially attracted to either source with 15.4% choosing 

MeSA +Synertrol oil compared to 13.5% choosing clean air (Figure 5-4). 
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Figure 5-4. Response of A. colemani in the Y-tube to 0.5% (w/v) MeSA mixed with Synertrol oil (MeSA+ 

Synertrol oil) compared to clean air. n=the number of individuals. 

 

Significantly more A. colemani were attracted to 2.0% (w/v) MeSA diluted in Synertrol oil 

compared to clean air (p=0.035) with 32.7% choosing 2.0% MeSA+ Synertrol oil compared 

to 11.5% choosing clean air. 53.8% of the wasps did not respond (Figure 5-5). 
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Figure 5-5. Response of A. colemani in the Y-tube to 2% (w/v) MeSA mixed with Synertrol oil (MeSA+ 

Synertrol oil) compared to air. n= the number of individuals.  

 

 

5.5. Discussion 

Significantly more A. colemani were attracted to 2.0% (w/v) MeSA+ Synertrol oil than to 

clean air. 53.8% of the parasitoids did not respond. This is similar to the proportion that did 

not respond in experiments with a significant result in Girling et al.(2006).  71.2% of the 

parasitoids did not make a choice when exposed to 0.5% (w/v) MeSA + Synertrol oil and of 

the ones making a choice 8 (15.4%) individuals chose MeSA and 7(13.5%) air. These 

proportions are similar to those observed by Girling (2006), who concluded that D. rapae was 

not attracted to either of the odour sources. Thus, this study suggests that A. colemani is 

attracted by synthetically-produced MeSA alone, at least if deployed at certain concentrations. 

However, this does not exclude the possibility that this parasitoid also responds to other 

HIPVs induced by MeSA in the field.  
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This is the first time synthetically-produced MeSA has been shown to be attractive to a 

parasitoid in an Y-tube olfactometer experiment Karatolos and Hatcher (2009) were the first 

to study the effect of synthetically-produced SA on the aphid M. persicae and the aphid 

parasitoid, A. colemani in a glasshouse laboratory study. Previous olfactory studies using 

synthetically produced HIPVs have included assessing the ability of female parasitoids to 

learn to associate a volatile with host presence (D'Alessandro et al. 2006) and the attraction of 

different volatile compounds to herbivorous thrips (Koschier et al. 2000).  

Previous studies have shown that very low concentrations of an HIPV are needed to attract 

arthropods (Koschier et al. 2000, Karatolos and Hatcher 2009). Karatolos and Hatcher (2009) 

found that a concentration of 10mM of SA was enough to increase the number of M. persicae 

parasitized by A. colemani, but, at this concentration there was a reduction in parasitoid 

emergence. Also, the aphid mortality was increased at this concentration (Karatolos and 

Hatcher 2009). The release rate of MeSA in Synertrol oil at 23˚C is un-known and 

consequently the concentration of the volatile that the wasp experienced in the Y-tube is also 

un-known. A concentration of 0.5% (w/v) of MeSA in Synertrol oil might attract A. colemani 

at a different, higher temperature.  

Hymenopterans can be attracted to the Synertrol oil alone when deployed in sweet corn 

although the same attraction has not been seen for the oil deployed in broccoli (Simpson et al. 

2009). However, if the oil was attractive to A. colemani in the present study the wasp should 

have reacted positively on the lower concentration of MeSA, 0.5% (w/v) as this concentration 

contained 99.5% oil compared to the 2.0% (w/v) that contained 98% oil. Consequently, it can 

be assumed that the attraction of the parasitoid was to MeSA and not the Synertrol oil.  

 

5.5.1. Suggestion for future olfactometer Y-tube experiments 

There is a need for more extensive experiments before any firm conclusions can be drawn 

regarding the attractiveness of synthetically-produced MeSA to A. colemani. 

Experiments comparing the attraction of A. colemani to Synertrol oil alone on filter paper and 

Synertrol oil mixed with synthetically produced MeSA on filter paper are needed to eliminate 

the possibility that the observed attraction is not due to the wasp being attracted to the oil or 

the filter paper.  Tests comparing the two concentrations against each other would further 

confirm that A. colemani is not attracted to MeSA with a concentration of 0.5%.  

We still do not know if certain HIPVs induced by MeSA are attractive to A. colemani. This 

could be tested by comparing the parasitoids response to odours from MeSA-exposed and 
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non-exposed plants in a Y-tube olfactometer and  then collect the volatiles from the same 

plants used in the bioassays and analyse their volatile profiles with gas chromatography (GC) 

using methods similar to those of Pareja et al.(2009).  
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Chapter 6: Discussion 
 

 

6.1. Introduction 

The effect on the ecological ‘fitness’ of  herbivore natural enemies by the deployment of floral 

resources within conservation biological control (CBC) has been increasingly studied.  

However, supplementation with floral resources has not always improved the efficiency of 

natural enemies enough to see an effect cascade down to the abundance of the target herbivore 

pest and the extent of crop damage (Jonsson et al. 2009a). Effects on these trophic levels are 

needed to be able to evaluate the success of CBC (Gurr et al. 2007). Research on how to 

optimise the provision of floral resources has included studies of the nectar and pollen 

availability (Waller et al. 1981, Wäckers 2005), accessibility (Vattala et al. 2006) and 

suitability for natural enemies. However, one concern is that the supplementation of floral 

resources only redistributes the natural enemies within the crop, increasing their abundance 

only close to the deployed resources rather than throughout the crop. One way to potentially 

attract natural enemies into the crop from surrounding habitats, such as field margins, could 

be the use of herbivore-induced plant volatiles (HIPVs), as these have been shown to attract 

natural enemies (Dicke et al. 1990a, Turlings et al. 1990, Steinberg et al. 1992, McCall et al. 

1993, Agelopoulos and Keller 1994, McCall et al. 1994, Thaler 1999). Synthetically-produced 

HIPVs can increase natural enemy abundance in the field (James 2003b, a, James and Price 

2004, James 2005, James et al. 2005, James and Grasswitz 2005). Combining  the attraction 

properties of synthetically-produced HIPVs (‘attract’) with floral resource supplementation 

(‘reward’) has been termed ‘attract and reward’ (A&R) (Chapter 1) (Jonsson et al. 2008, Khan 

et al. 2008). The aim of the work in this thesis is to evaluate, in a brassica cropping system, 

the effects of A&R on the abundance of arthropods from three trophic levels: herbivores 

(trophic level II), natural enemies (trophic level III) and natural enemies of the natural 

enemies (trophic level IV) and as a consequence biological control in brassicas. It is hoped 

that the two ‘eco-technologies’ will work together synergistically, to enhance the pest 

population reduction efficiency of the natural enemies.  

In this discussion, the results of the experiments described in this thesis are discussed in the 

context of CBC. First, the changes in the targeted natural enemy populations, due to the 

deployment of MeSA and buckwheat are compared against a hierarchy used to evaluate 

success within CBC. Then, potential effects on CBC by the increased abundance of 
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arthropods form untargeted trophic levels are addressed. Finally, potential future research 

questions which have arisen from this thesis are considered.  

 

 

6.2. Levels of success reached using MeSA and buckwheat to 
enhance CBC 

As discussed in Chapter 1, there exists a hierarchy of outcomes of habitat manipulation which 

researchers hope to achieve when conducting CBC work (Gurr et al. 2007). To evaluate the 

success rate of the A&R concept studied in this thesis the results from each of the experiments 

can be compared against these five steps (Table 6-1). The first step is to increase the 

abundance of natural enemies near the flowering plants. This is the first study where 

synthetically-produced methyl salicylate (MeSA) has been deployed within brassicas. 

Consequently, one of the aims of this thesis is to test if the habitat manipulation tool ‘attract’ 

in the form of MeSA will increase the abundance of natural enemies near the source of the 

volatile.  

In Chapter 2, the abundance of the diamondback moth 1(TL2) (DBM) Plutella xylostella 

parasitoid Diadegma semiclausum 2(TL3) and the predatory hoverfly Melangyna 

novaezealandiae (TL3) was increased in the plots with MeSA; thus the first step of the 

hierarchy was achieved (Table 6-1) (Figure 6-1). Also, more females than males were 

attracted by the volatile. This could have further positive effects on the efficiency of D. 

semiclausum as a DBM biological control agent.   

A&R were combined in the form of MeSA and buckwheat (BW) Fagopyrum esculentum in 

Chapter 3. Here also the first step of the hierarchy was achieved (Table 6-1). Significantly 

more brown lacewing Micromus tasmaniae (TL3), parasitoids of the DBM (TL2), D. 

semiclausum (TL3) and Diadromus collaris (TL3) and of the cabbage white butterfly (TL2) 

(CWB) Plutella xylostella, Cotesia spp. (TL3) were caught in treatments with buckwheat 

compared to treatments with none.  Melanostoma fasciatum (TL3) was significantly more 

abundant in treatments with MeSA but significantly less abundant in treatments with 

buckwheat (Figure 6-2). However, no synergistic effect was seen on the abundance of natural 

enemies when the two technologies were combined (Figure 6-2). Significantly fewer male 

than female D. semiclausum (TL3) were attracted to the MeSA only treatments with a sex 

ratio of 1:1 for MeSA treatments compared with 60% males and 40% females with 
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buckwheat. The apparent tendency of MeSA to attract to achieve a lower proportion of males 

could be important as a tool within CBC. However, as discussed earlier (Chapter 2 and 3) 

catching flying insects on sticky traps or other trapping devices reveals nothing on the 

dynamics or efficiency of biological control, including pest population suppression or 

improved yield or quality of the crop. To address this the capability of A&R to accomplish the 

third and fourth step in the hierarchy (Table 6-1) was assessed in Chapter 4 in which the effect 

of A&R on crop damage, natural enemy and herbivore (aphid) density, predation rate of egg 

sentinel baits and on aphid parasitism and hyperparasitism rates were evaluated. Treatments 

with MeSA lead to a significant increase in aphid parasitism rates and the third step in the 

hierarchy was therefore achieved (Table 6-1) (Figure 6-3). However, once again there was no 

synergism between the two treatments.

 

 

Table 6-1. The extent to which work in this thesis achieved the five steps in the hierarchy used to measure 

success within CBC (From Gurr et al. 2007). NB this does only appliy to some of the species studied. 
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1. Aggregation of natural enemies at or near the flowers.    

2. 
An enhancement of the natural enemies' 'fitness' (longevity, 

fecundity and search efficiency). 

3. An increase in parasitism or predation rate of the pest.    

4. A decrease in the pest population density.    

5. 
The pest populations are brought below the relevant economic 

threshold (so avoiding the need to apply insecticides). 

   

 

 

 

 



  Chapter 6 

 
70 

 

 

Figure 6-1. The effect of MeSA on multiple trophic levels from Chapter 2. + = an increase in abundance of 

individuals from the species in treatments with MeSA, 0 = no effect of MeSA on the abundance of 

individuals from the species. Effect on the 1
st 

trophic level, the crop, was measured as difference in 

herbivore damage between the treatment and the control. 
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Figure 6-2. The effect of ‘attract and reward’ on multiple trophic levels from Chapter 3.  + = an increase in 

abundance of individuals from different species in the treatment. - = a negative effect of the treatments on 

the abundance of individual from the species. 0 = no effect of the treatment on the abundance of 

individuals from the species. Effect on the 1
st 

trophic level, the crop, was measured as difference in 

herbivore damage between the treatments and the control.
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Figure 6-3. The effect of ‘attract and reward’ on aphid density, parasitism and hyperparasitism rate and 

on predation rate of egg sentinel baits from Chapter 4.  + = an increase in rate/density in the treatment. - = 

a decrease in rate/density in the treatment. 0 = no effect of the treatment on rate/density. Effect on the 1
st 

trophic level, the crop, was measured as difference in herbivore damage between the treatments and the 

control.  

 

 

6.3. Effects of MeSA and buckwheat on arthropods from 
untargeted trophic levels 

According to the above evaluation of the steps achieved in the hierarchy of success (Table 

6-1), A&R could have a high success rate within CBC even though there is no synergistic 

effect between the two treatments. Some natural enemies ‘prefer’ buckwheat while some 

‘prefer’ MeSA. As long as there are no negative interactions between the two treatments on 

the natural enemies, the result could still be an increase in biological control efficiency.  

However, the effects of the habitat manipulation on the abundance of arthropods from the 

fourth and second trophic levels have been a complicating factor in the above interpretation. 

These effects need to be evaluated as unwanted side effects involving these trophic levels may 

disrupt biological control. Consequently, as mentioned earlier, one of the aims in this thesis is 

to study the effects of the treatments on multiple trophic levels.
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The effect of MeSA on the abundance of arthropods from the second and the fourth tropic 

levels has often been overlooked, even though HIPVs can affect the behaviour or physiology 

of organisms at multiple trophic-levels (Dicke and van Loon 2000). Populations of the 

brassica leafmining pest Scaptomyza flava (TL2) and the lacewing parasitoid Anacharis 

zealandica 3(TL4) increased significantly in the MeSA treatment compared to the controls in 

Chapter 2 (Figure 6-1). However, the increase in abundance of S. flava (TL2) on traps, did not 

translate into crop damage. Consequently, the effect on the crop of the increase in herbivore 

numbers may not be as negative for biological control. HIPVs may signify plants that have 

been weakened and are therefore more susceptible to herbivores (Dicke and van Loon 2000). 

HIPVs can also function as ‘primers’ of surrounding plants (Chapter1.4.) (Engelberth et al. 

2004), enhancing the plants’ response to later herbivore attacks (Engelberth et al. 2004, Heil 

and Kost 2006). One explanation for the lack of crop damage in response to the increased 

abundance of S. flava could be due to’ false advertisement’ by the synthetic MeSA. The 

herbivore may have ‘learnt’ to associate (Dicke et al. 1990c) the presence of MeSA or the 

HIPVs induced by MeSA (Chapter 1.4) with weakened plants.  However, in the current work 

MeSA is of the synthetic version potentially sending out a ‘false’ signal that the crop has been 

weakened. Consequently, the crop is still fully capable of defending itself against herbivores, 

withstanding the herbivore; also the potential ‘priming’ capability of the plants by the 

synthetic MeSA could result in the brassicas responding even more efficiently to the 

leafminer’s attack, although there was no evidence in this work that the herbivore did actually 

attempt to oviposit in, or even land on the brassicas.  

The effect of the increase in A. zealandica (TL4) abundance on the brown lacewing (TL3) 

population cannot be evaluated as only two lacewings were caught on the traps throughout the 

sampling period (Chapter 2). 

An attraction of arthropods from an untargeted trophic levels also occurred when A&R was 

deployed (Chapter 3) (Figure 6-2). The abundance of A. zealandica (TL4) increased in 

treatments with buckwheat. However, it was repelled by treatments with MeSA in Chapter 3 

(Figure 6-2). Potentially, this repellence property of MeSA to some arthropods could be 

utilised as a ‘push’ component in the ‘push-pull’ strategy within an integrated pest 

management programme (IPM) (Cook et al. 2007). It could also be deployed in A&R, 

repelling arthropods occupying unwanted trophic levels (Cook et al. 2007), as long as it is not 

at the expense of decreasing the abundance of target natural enemies. 
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6.4. Future research 

Treatments with MeSA and with buckwheat resulted in an increased abundance of natural 

enemies. However, to be able to interpret what the consequences are of the increase on CBC, 

information on the feeding status (fed/unfed) and mating status (mated/unmated) of the males 

and females attracted are needed. An increased proportion of newly-emerged unmated 

females can be expected to prefer nectar/ pollen feeding to mating and host/prey search and 

hence only numbers on traps are not a good indicator of increased CBC. Also, unmated 

hymenopteran females produce males (haploid) (Noda 2000), which may cause a skewed sex 

ratio in the next generation and hence reduce long-term improvement of CBC. On the other 

hand, mated and fed females can be expected to search for host/prey or nectar/pollen feeding 

and hence an increased proportion of these would be a good indicator of increased CBC. 

Mated hymenopteran females can produce both male and female (diploid) offspring and 

hence have a greater potential for achieving successful CBC. Newly-emerged males can be 

expected to favour nectar/pollen rather than mating and prey search and hence large number 

of these are consequently not a good indicator of increased CBC. Older males can be expected 

to favour mating and prey search and would consequently be good indicators of increased 

CBC, as long as males are not the dominant sex attracted. 

Similar studies on A. zealandica (TL4) are needed to evaluate the effect of the increased 

abundance of the parasitoid on the lacewing population. Buckwheat can, under laboratory 

conditions, increase the lacewing’s longevity (Robinson et al. 2008) and in the field, increase 

the number of eggs oviposited by it (Jonsson et al. 2009b) when aphid densities are low. 

Similarly, buckwheat can increase the longevity of A. zealandica (TL4) under laboratory 

conditions (Jonsson et al. 2009b). However, the extent to which buckwheat affects the 

‘fitness’ of the parasitoid compared to the lacewing in the field is not known (i.e. more or 

equal to that of the lacewing).  

As discussed earlier (Chapter 1), MeSA has the potential to trigger the plant’s own production 

of HIPVs (Khan et al. 2008)  but it still remains unclear whether it is MeSA alone and/or a 

blend of volatiles produced by the host plant after induction by MeSA that is attractive to the 

arthropods. This question is addressed in Chapter 5, where the attraction of mated and fed A. 

colemani (TL3) females to synthetic MeSA is tested. However, further work testing the 

attraction of parasitoids with different feeding and mating status are needed as these have 

consequences for the increase of CBC. Also, including other natural enemies that show and 

increased abundance in response to the synthetic MeSA treatments in the field, such as D. 

semiclausum (TL3) and the two hoverfly species (TL3), would be relevant. 
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The potential induction of the plants’ own production of HIPV still remains to be addressed. 

Experiments on the volatile production of plants exposed to synthetically-produced MeSA 

compared to unexposed plants are needed. 

The success of CBC is expected to be enhanced through the A&R concept by increasing the 

attraction of natural enemies into the crop from surrounding habitats, avoiding redistribution 

of already existing natural enemies within the crop. However, the observed increased 

abundance of natural enemies (on traps in the current work) in response to MeSA could still 

be due to redistribution of them within the crop. Marking and tracking, for example with 

rubidium, (Pickett et al. 2004, Scarratt and Wratten 2004) of the natural enemies in 

neighbouring habitats are needed to show that the natural enemies do indeed enter the crop in 

higher numbers when ‘attract’ is used.  

Floral resource supplementation can be optimised by supplying the natural enemies with 

flowering plants that have optimal nectar and pollen availability (Waller et al. 1981, Wäckers 

2005) and suitability for the natural enemies. Buckwheat Fagopyrum esculentum is 

considered to have nectar and pollen well suited for many natural enemies (Bowie et al. 1995, 

Stephens et al. 1998, Berndt et al. 2002, Tylianakis et al. 2004, Irvin et al. 2006, Lavandero et 

al. 2006). Jasmonic acid (JA)/ methyl jasmonate (MeJA) is involved in the octadecanoid 

pathway that plays an important role in the induction of defences such as some HIPVs 

(Bruinsma et al. 2008). Synthetically produced MeJA can increase the abundance of natural 

enemies in the field (James and Grasswitz 2005). However, JA treated black mustard plants 

Brassica nigra L. (Brassicaceae) have reduced nectar secretion and a lower concentration of 

glucose and fructose of the nectar than control plants. HIPVs can affect the surrounding plants 

by altering their chemical composition (Dicke and Bruin 2001). Deploying synthetically-

produced MeSA in the field could potentially alter the nectar quality and quantity of the 

buckwheat deployed in A&R, consequently reducing its quality as a food resource. 

Experiments on the nectar and pollen quality of buckwheat exposed to synthetically-produced 

MeSA would therefore be relevant.  

 

 

6.5. Conclusions 

Overall, the results from this study indicate that A&R could potentially be deployed as a 

habitat manipulation technique within CBC, even though there were no synergistic effects 

between MeSA and buckwheat on the abundance of natural enemies as initially hypothesised. 
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Combining A&R increases the abundance of natural enemies, some due to effects of 

buckwheat others because of MeSA. However, the results from this study have demonstrated 

that the abundance of arthropods from untargeted trophic levels is also increased by A&R. 

The consequences of these increases on CBC still remain to be fully evaluated. There still 

remain steps in the hierarchy of success in CBC (Gurr et al. 2007) that the A&R concept 

needs to achieve (Table 6-1) and the section (6.3.) above points out some of the additional 

questions remaining to be answered before the A&R concept as a tool to enhance CBC can be 

considered ready to be deployed by end users. In other words, a service providing unit (SPU) 

(Luck et al. 2003) cannot be developed based on the data in this thesis. An SPU is the unit 

required to provide an ecosystem service (ES) (Chapter 1.1.), such as biological control, at 

some defined temporal or spatial scale with the consequences of the deployment defined 

(Luck et al. 2003). Also, the current work addressed brassicas and their pest and natural 

enemy complexes. For other crop systems, the potential caveats identified here would need to 

be explored through new field experimentation. The latter should not use only trapping 

methods but should address, as in this work, the non-targeted trophic levels and the dynamics 

or the predation/parasitism processes involved and, most importantly levels of crop damage. 

Future approaches to sustainable pest management need to be based on well-researched 

ecological science to develop technologies which are readily adopted by agriculturalists and 

which have few external costs (Cullen et al. 2008). The work in this thesis is a contribution to 

that approach; it is increasingly urgent and this is supported by recent reviews on the future of 

world agriculture (Jordan et al. 2007, Landis et al. 2008, Vitousek et al. 2009). 
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