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Abstract: Non Invasive Time Domain Reflectometry (TDR) may be used to estimate the volumetric 
moisture content, θv, with depth for a variety of sample materials. The forward physical model is 
couched in terms of a moment method where integration is performed over a descretized sample space 
to estimate the measured propagation time tp down a pair of parallel transmission lines. We show that 
the inverse solution to this, which recovers relative permittivity and thus θv, is greatly facilitated by a 
simplification of the system geometry via, 1) realistically modeling the prior density of the sample,  
2) using this prior with the inherent system symmetry to reduce the number of required discretization 
cells, and 3) determining a physically meaningful reduction operator to allow a coarse discretization 
mesh to be used. The observational equation is expressed in the Bayesian paradigm with the most 
accurate and robust solution obtained using the Conditional Mean of the posterior distribution 
constructed via a Monte Carlo method. Results of simulation show that the method is capable of 
providing accurate estimates of the moisture density profile down to a depth of 100 mm with an error 
of less than 4 %. Further, the reduction in the number of descretized cells required to accurately 
estimate these profiles means that the inversion procedure is quick enough to enable the real time 
application of the equipment, a fundamental requirement in the development. Copyright © 2009 IFSA. 
 
Keywords: Time domain reflectometry, Bayesian, Non invasive, Moisture content, Transmission 
lines, Electromagnetic sensor 
 
 
 
1. Introduction 
 
The ability to calculate moisture content in soils has been developed over the past 50 years, primarily 
to maximize water use efficiency in agriculture and to understand subsurface hydrological processes. 
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Three basic methods have been developed over this period, namely; gravimetric, neutron scattering 
and electromagnetic [1], [2]. Gravimetric methods are accurate but have the disadvantage that the 
sample must be removed, while neutron scattering sensors must be closely monitored and cannot be 
left unattended, since they pose a health risk. The role of electromagnetic sensors, which suffers 
neither of these disadvantages, has thus become of increasing importance for soil moisture content 
measurement. Most of the current electromagnetic systems estimate the relative permittivity, εr, of the 
sample by deploying two or more metallic probes into the soil to measure the capacitance or 
impedance between them, or as in the case Time Domain Reflectometry (TDR), the time delay of a 
pulse sent down a pair of probes acting as a transmission line. The εr of the sample is then related to its 
volumetric moisture content, θv by an empirical relationship such as those derived by [3] and [4]. 
Since water has a high relative permittivity, εr  80, compared to values of εr ≤ 5 for most other 
components that make up typical samples the pulses velocity change is most sensitive to the amount of 
water present. The measured permittivity can be related to the samples dielectric properties by a real 
part representing the stored energy of the system and an imaginary part describing its energy 
dissipation: 
 

, (1)

 
where  is the stored energy of the system,  is the electrical conductivity between the probes, 

 is the molecular relaxation of the water molecules and  is the frequency of the probe signal. 
 
In this work we assume a lossless media so that the imaginary part of (1) becomes negligible and the 
effective permittivity for the system is . In those cases where this is not justifiable [5] have 
developed a method whereby allowance for the conductivity part of the loss can be easily incorporated. 
 
For the invasive TDR system a pair of parallel transmission lines are inserted into the sample and a 
short pulse is sent down them generating a static electric field. This field causes the sample dielectric 
to produce an opposing polarization field that reduces the phase velocity of the pulse. The velocity of 
the pulse can be given in terms of the permittivity and permeability of the sample by: 
 

, (2)

 

where is the relative permittivity, c is the speed of light and  is the relative permeability 
(which is equal to one for most soils). By measuring the time the pulse takes to travel down the 
transmission line of length, d, and back again after a reflection from the end, the propagation time can 
be related to  from (2) (with ) by: 
 

 (3)

 
Woodhead [6] extended this TDR arrangement by deploying the transmission lines external to the 
sample, effectively creating a non-invasive system. Being non-invasive the system can be used on a 
greater variety of materials including timber, concrete, road seal etc, with the added advantage that it 
does not alter the medium (.e.g. cause water wells around inserted probes) being tested. For this new 
system geometry the relationship defined by (2) and (3) no longer applies. Using a tomographic 
technique based upon discretisation of the x- y plane through the system geometry (Fig. 1), a new 
equation relating the pulse propagation time, , to the sample permittivity, , can be constructed [6] 
of the form: 
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 (4)

 
This equation represents the forward construction of the physical system where the form of  is 
specified in section 2. Since we seek an estimate of  from a measured value of  it is the inverse of 
this equation that is required: 
 

 (5)
 
In common with many other inverse problems, the solution of (5) is somewhat problematic. The 
forward function is both non-linear and ill-conditioned thus an estimate of  by the inverse process 
requires some form of regularized optimization technique. Further, since no analytic solution to the 
forward model is available, the method of moments technique in which the sample is discretised, is 
used as an approximation to the solution. The level of discretisation, or mesh size, will of course have 
an effect upon the accuracy of this approximation. 
 
The objective of this paper is to describe a methodology for improving the accuracy and efficiency of 
the inverse defined by (5) via a Monte Carlo simulation. 
 
 
2. Background 
 
The steps in defining the function f in the forward model of (4) are derived by Woodhead [6] which we 
briefly recount here. When an incident electric field,  is imposed upon a dielectric of volume , the 
dipole moment P, of the volume produces an electric field, . The total electric field is then: 
 

 (6)
 
Using the constitutive relationship  this becomes, after some re-arrangement: 
 

, (7)

 
where  is the permittivity of free space and  is the relative permittivity of the dielectric.  may 
be calculated at a point r from the polarization element P via: 
 

 
(8)

 
So that (7) becomes: 
 

 
(9)

 
 
and this may be expressed in terms of a linear operator, L, acting upon P, [10] as: 
 

 (10)
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Upon discretisation into N cells, as depicted in Fig. 1, the polarization field of (8) becomes: 
 

 
(11)

 
where m is the cell at which the polarization field from cell n (source cell) is to be calculated. Since, by 
model assumption, the z-component is constant, expanding over the gradient function gives: 
 

, 

(12)

 
where  and  are the x and y differences between the points m and n respectively. Note that 
when m = n (i.e. the cells own polarization field) components become: 
 

 

(13)

 
By using the method of moments with a subsectional basis function defined as non zero only for the 
source cell, Harrington [10] showed that (10) can be written in the discrete matrix form: 
 

 (14)
 
with the components of L given by the square bracketed part of (12) for  and by 
 

 

(15)

 
when , where . Since both L and P are functions of the independent variable, 

(14) is non-linear. 
 
Woodhead [6] extended the discretised model of (14) by introducing the concept of a transmission line 
to produce the incident field , so that the pulse velocity, v, due to the dielectric interaction can be 
given by the telegraphers equation (e.g. [11]): 
 

 
(16)

 
so that 
 

, 
(17)
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where  is the total voltage between the transmission lines,  is the component due to the 
polarization field induced by the dielectric sample and  is the component due to the incident electric 
field directly from the transmission lines; d is the length of the transmission line;  is the propagation 
time of the pulse from the beginning of the line to its reflection at the end and back to the beginning; 
ρ is the line charge density; µ is the magnetic permeability; b is the spacing between the parallel lines, 
and a is the diameter of the transmission lines. 
 
The only unknown on the right hand side of (17) is the polarization induced voltage, , contained in 
the total voltage  Equation (17) may thus be succinctly represented by: 
 

 (18)
 
Following the method of [7] both the transmission lines and sample can be imbedded in the 
discretisation space, depicted by Fig. 1, so that: 
 

, 
(19)

 
where M is the number of cells between the transmission lines and w is the width of the cell. 
 
 

 
 

Fig. 1. The 2D geometry of discrete cells and parallel transmission lines used to define the system matrix 
equation. The cells between the transmission lines are those (M of them) included  

in the calculation of . Each of the cells has a width w. 
 
 
For any particular value of permittivity in each sample cell, the polarization P within it can be 
calculated from (14) since  so for those cells: 
 

, 
 

(20)

 
 
where the delta function indicates that only components of cells between the transmission lines are 
selected. We represent this in the simplifying function notation as: 
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 (21)
 
The forward solution defined by (4) can now be formed by the composition of the two functions Ψ and 
Φ so that: 
 

 (22)
 
 
3. Bayesian Formulation 
 
In exploring the solution to the inverse problem outlined by (4) we use the Bayesian framework as 
described for example by [8] and [9]. In this representation (4) may be written in the observational 
form as: 
 

, (23)
 
where now T and F represent the random variables (with  and  as realizations) and we have 
added  as the measurement noise, assumed to be independent of F. An inverse solution to this 
equation can be given in terms of the variable densities by the well know Bayes Formula: 
 

, 
(24)

 
where  is the posterior density,  is the likelihood density function and  is the 
prior density function of the permittivity and will act as a regularization for different physical 
assumptions about the likely structural disposition of  throughout the sample. The term , often 
called the evidence factor, can be viewed as a scaling factor that ensures a unit total probability of the 
posterior density function. Since it plays no part in the evaluation of the required parameters of the 
posterior distribution it is usually ignored so that the above equation becomes: 
 

 (25)
 
To obtain an estimate of  corresponding to the measurement  we can use either the Maximum A 
Posteriori Estimator (MAP) or Conditional Mean (CM) of the posterior distribution given by (25), with 
associated errors given by the covariance . Both the CM and  estimates require integration over 
the posterior density : 
 

 
(26)

 
with the estimate error given by the posterior covariance 
 

 
(27)

 
while the MAP estimate: 
 

 (28)
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is usually achieved by some sort of optimization method. 
 
The construction of the applicable form of (25) for the TDR model will be detailed in section 3.4 after 
some relevant properties of the system (such as parameter independence) are established. 
 
 
3.1. Required Level of Discretisation 
 
In the observational model of (23), T is the measured value of the propagation time, with realization 

. Since no measurements are available, model validation must be carried out using simulated 
data which should be generated at a high enough level of resolution that it is as close as possible to the 
perceived real case. For this case we content ourselves with a level of discretisation that provides a 
model accuracy that cannot be much improved upon by further decreases in mesh size. To determine 
this level of discretisation, the polarization electric field, , between the transmission lines was 
calculated using (22) for an increasing number of individual cells over a constant sample volume. The 
results of this are shown in Fig. 2. Here the polarization field converges to that given by the mesh sizes 
of Res 4 (defined in Table 1). 
 
 

Table 1. Discretisation values. nx, ny, nz, are the number of cells in the directions x, y and z respectively. 
 

Resolution 
Number Cell Size (m) nx ny nz 

Res 1 0.100 4 1 1 
Res 2 0.033 12 3 3 
Res 3 0.020 20 5 5 
Res 4 0.014 28 7 7 
Res 5 0.011 36 9 9 

 
 

 
 

Fig. 2. The polarization field distribution  over the half plane between the transmission lines. Each of the 
curves represents a different Resolution, defined by Table 1, for a constant volume sample. 

 
 
Since Res 5 is computationally inaccessible, even for the small number of test cases required in the 
current development, Res 4 is chosen as being close enough to the continuous case to well 
approximate the operational system. Computationally it is only accessible for a limited number of 
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calculations and will be used in section 3.4 to construct a resolution reduction operator q and in section 
4 to test the inversion procedure. 
 
 
3.2. Operational Discretisation 
 
In the previous section we established that the discretisation level, labeled as Res 4 of Fig. 2 and Table 
1, provided the closest accessible level of mesh size that could represent the true environment. 
Computation at this level of discretisation is very slow however and certainly unacceptable for the real 
time applications required for the TDR. Even the pre-calculation of much of the Monte Carlo sampling 
described in [12] would be impractical at this level. It would therefore be advantageous to perform the 
calculations in the coarser mesh of Res 2, and then use a map Q to project the results into those that 
would have resulted from the finer mesh: 
 

, (29)
 
where the high resolution (Res 4) and low resolution (Res 2) are represented by the subscripts h and l 
respectively. The observational equation (23) for the high resolution, Res 4, can be written in this 
terminology as: 
 

, (30)
 
where  is the propagation time and  is the measurement noise. Applying the operator, Q, this 
becomes: 
 

 (31)
 
with 
 

 (32)
 
being the error introduced by using the coarser discretisation. In this sense the operator Q can be 
termed as the model reduction operator [8]. Putting the total error as: 
 

; (33)
 
the equation (31) can be written as: 
 

, (34)
 
where we have made the assumption throughout this formulation that the discretisation error is 
approximately independent of the relative permittivity, . This is discussed in more detail in section 
3.4. 
 
With the propagation time measurement  and  the form of the likelihood function 
becomes: 
 

, (35)
 
where the subscript  emphasizes that the likelihood distribution is of the same form as the distribution 
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given by the combined error of (33). If the distribution  is close to Gaussian, which is often the case, 
[9] shows that the above equation becomes: 
 

, (36)
 
where  and  are the expectation and covariance respectively of the total error distribution, . Here 
the mutual dependence of  and the approximation error have been ignored, a simplification that will 
be addressed further in the next section. 
 
The values of  can be pre-calculated because of the unique system geometry and operational 
constraints [12], so once the operator q is known the calculation speed of (35) is acceptable for real 
time application. The required posterior density is thus: 
 

 (37)
 
 
3.3. Prior Densities 
 
As discussed in [12] for many cases of practical interest the moisture within the sample can be 
considered as being stratified in the x -z plane. Apart from reducing the number of unknown 
permittivity values to be calculated, plane stratification also leads to symmetry in the x - z plane that 
can be utilized to decrease the number of dimensions of the inverse system. In keeping with this 
stratified geometry of the sample we define three prior distributions for , each representative of a 
number of real world scenarios. In the first case, the prior is given as a positive increase in relative 
permittivity with depth. With the discretisation level of Res 4 it can be defined as: 
 

, (38)
 
where ,  is the uniform distribution and . 
 
The second prior is similarly defined but with a decrease in permittivity with depth, so that the 

incremental permittivity between layers is defined by . For both of these distributions the 
maximum change of  over the sample depth is 14. A third prior is included as a subset of the first, 
that of a positive linear gradient over the sample. In this case the  value of the upper boundary of the 
sample is chosen from the distribution , while the lower sample boundary value is 
chosen from .  for the centre of each depth layer is then obtained by linear 
interpolation. Each of these will be used in the examples that follow. 
 
 
3.4. Mapping Operator 
 
After defining the form of  the next immediate concern is to find a model reduction operator Q 
that maximizes the decrease of in (32) and thus  in (37). For such an operator to be useful it 
must be only weakly dependant on the actual sample relative permittivity . 
 
The Fig. 3 is a plot of the propagation times  and when the sample is discretised to the level of 
Res 2 and Res 4 respectively, for 200 different simulations. The values for each of the layer 

permittivities of Res 4 are generated by a prior distribution,  defined in section 3.3. Res 2 
values for each case are calculated at the cell centre points of the three layers by Lagrange 
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interpolation over the midpoints of the seven Res 4 cells. The Fig. 3 shows the relationship between 
the two propagation times for the transmission line height above the sample of . A good 
fit to the data for each height in this figure is achieved by the polynomial: 
 

 (39)
 
where a, b and c are chosen for each of the different heights. In terms of the Bayesian paradigm of (37) 
then: 
 

 (40)
 
Values of the coefficients for this polynomial are easily calculated by any of the standard fitting 
routines and are applicable to all measurements with the same geometrical relationships and prior 
relative permittivity distributions. The form of (40) is also a valid approximation for the reduction 
operator when the other prior distributions defined in section 3.3 are used, though the coefficients at 
similar heights may differ. 
 
 

 
 

Fig. 3. The form of the projection operator Q between the low resolution and high resolution discretisation 
models for a transmission line heights  = 0.014 m above the sample.  and  are the propagation times for 

Res 2 and Res 4 respectively. Other heights above the sample give a similar relationship. 
 
 
Table 2 shows the standard deviation, , of data difference from the fitted polynomial for the 
different priors discussed above. These values can be used for defining the distribution  in (33) and 
together with the measurement noise , constitute the total error, from which the covariance,  of 
(37) is extracted. The mean error in all fitted cases is zero and since we have . 
Further, the low dependence of the discretisation error on  shown explicitly in Fig. 3, strengthens the 
ability of the enhanced error model of (37) to represent the real situation. 
 

 
Table 2. The standard deviation, , of data fitted to (40) for the indicated transmission line heights.  

Given in ps ( ). 
 

   
 30.0 13.7 7.6 
 27.8 10.5 5.6 

linear +ve 12.5 6.7 3.2 
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Using  from Table 2 and  from previous experimental work [12], the Gaussian 
distributions  and  can be defined for (33). The errors are dependent upon the current transmission 
line height only, so: 
 

 (41)
 
is a diagonal matrix containing the total error variance for each height. Re-writing (37) with  and 
the covariance  gives the form of the posterior density used in subsequent simulations as: 
 

 (42)
 
Thus the posterior distribution of  can be generated with the computationally accessible Res 2. 
From this distribution an estimate of  for each layer can made from the CM of (26) with its 
associated error estimate given by the covariance defined by (27). 
 
 

Table 3. System parameters 
 

Parameter Value (m) 
Sample Depth 0.1  
Transmission Line  
Length d = 1 
Diameter a = 0.01 
Separation b = 0.3  
Heights (0.006, 0.001, 0.014) 

 
 
3.5. Some Practical Simplification for Computation 
 
The posterior distribution  may be generated by the Monte Carlo approach described by [12] 
with an estimate for its value given by the CM. Although in this scheme much of the likelihood 
function  is pre-calculated using (22), the large number of calculations required together with 
possible real time refinements results in a heavy computational burden for the required level of 
discretisation. To reduce the computational effort to something manageable the previous sections 
looked at reducing the number of dimensions of the observational form. Another purely physical 
reduction in complexity can be achieved by simplifying the geometry represented in Fig. 1. 
 
The geometry depicted in Fig. 1 indicates that a potentially large number of cells represent air, with a 
known permittivity of . These cells, apart from those between the transmission lines, provide no 
extra information and can be discarded. Removing these cells from the model the polarization of the 
sample cells may now be related to those cells between the transmission lines by a gradient function 
similar to that given by the bracketed terms of (12) ([12]). If G is this gradient function, then the 
polarization in each sample cell ( ) may be related to the field between the transmission lines ( ) by: 
 

 (43)
 
applying it to (14) after some rearrangement gives: 
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, (44)
 
where  and L now refer only to the sample cells. 
 
As discussed in [12] for many cases of practical interest the moisture within the sample can be 
considered as being stratified in the x -z plane. Apart from reducing the number of unknown 
permittivity values to be calculated, plane stratification can again also lead to a further simplification 
in the specification of the forward model. Fig. 4 represents a sample material with N cells and 
consequently N unknown values of permittivity. By assuming plane stratification the number of 
unknown permittivities is reduced to the number of stratum (5 in the example of Fig. 4). In theory if 
there are N unknown values of permittivity there must be N independent measurements of the 
propagation time, . For example, for five stratums each having an unknown value of , five 
measurements of  are required to specify the system of equations represented by Error! Reference 
source not found.. To generate an independent set of components, each measurement of  is made at 
a different height of the transmission lines above the sample. From this argument it is clear that the 
planar stratification also decreases the number of required measurements. 
 

 
 

Fig. 4. Physical geometry of the TDR system. Because of the form of the gradient field, it is essential that the 
centers of the cells between the lines are aligned with those of the sample. 

 
 
Another important simplification in the geometry can be made by considering the symmetry of the 
system. The component values of the entire samples polarization and their effect on  between the 
transmission lines can be represented by a reflection of the shaded quarter space shown in Fig. 4. 
Hence, by avoiding duplication of symmetric cells, it is possible to further reduce the components of L, 
G and  by a factor of four. 
 
 
4. Results 
 
Having formulated a solution to the operational objectives outlined in the Introduction it remains to 
show how well it performs. Since this is a simulation, it is sensible to test the operational procedure by 
using the high resolution and computationally intensive (Res 4) simulated values to represent the “real 
world” instantiation of the TDR system and measurement. 
 
Table 3 describes the physical dimensions of the transmission lines and their heights above the sample. 
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These parameters remain constant throughout all simulations (including those of the previous section) 
in this paper. 
 
 
4.1. Relative Permittivity Profiles 
 
Random values of  were assigned to each one of the 7 depth layers defined by Res 4, according to 
the prior scenarios depicted in Table 2. Using (4), the simulated (or measured) value for  was then 
calculated at each transmission line height. Using the appropriate value for the reduction operator, q, 
and the Monte Carlo procedure detailed in [12] for the lower resolution , the posterior density of 
(42) was generated. An estimate for  was then determined from the CM of (26) and compared with 
the original  values. Since Res 4 has 7 layers its profile is linearly interpolated to the cell centers of 
the Res 2 case for this comparison. 
 
Table 4 shows the standard deviation of the difference between the simulated and estimated value of 

 for 200 cases of each prior scenario. The standard deviation for each case is small compared to the 
range of  covered and is well within requirements for practical use, where volumetric moisture 
content is to be estimated (next section). Note that there is a small decrease in the error as the prior 
distribution is more tightly constrained (i.e. between the more flexible uniform distribution profiles 
and the constrained linear profile). 
 
 

Table 4. Standard Deviation, , of the difference between the estimated and simulated values of . 
 

Layer Depth (m)   linear 
1 0.016 0.46 0.43 0.21 
2 0.050 0.45 0.46 0.34 
3 0.066 0.74 0.65 0.65 

 
 
Note, because  is Gaussian with mean  and a large number of samples are used, one can either 
use the form of the likelihood function in (42) or the simplified version taking into account only the 
measurement noise variance , to obtain the statistics on the error in determining . In the 
following, the form of (42) is used since it is the most general. 

 
 
4.2. Moisture Profiles 
 
The object of the TDR method is to measure the moisture content profile of a sample with depth. The 
inverse methodology discussed previously has focused upon relative permittivity since the mapping 
from this to a moisture estimate is straightforward and can be applied after the inversion procedure. 
Topp [3] showed that this mapping could be described by: 
 

, (45)
 
where  is the volumetric moisture content. 
 
As a realistic example of an application for which the TDR is intended, consider the moisture profile 
of a sample of unsaturated loamy soil. Under typical conditions, the moisture content in the sample 
increases with depth as the sun dries out the top layer during the day. Fig. 5a represents such a 
situation with some added complexity in the mid depth simulating soil material variation. Typical 
moisture profile variation over a depth of 0.1 m can be anywhere between 0 % to 25 %, (e.g. [14]) so 
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this example is close to the maximum variation expected. From the original profile,  values 
corresponding to the cell centers of the fine mesh are taken and converted to the corresponding  via 
interpolation of Error! Reference source not found.. These values are then used for the Res 4 
permittivity profile to generate the simulated observations, , after which the method described in the 
previous section is used to estimate the value of  with the reduced system calculations. The 
estimates, returned to volumetric moisture via Error! Reference source not found. are also shown in 
Fig. 5a. A second example is given in Fig. 5b where the moisture content nears field capacity at the 
surface and dries out with depth, a situation during heavy rain. Both examples show a good 
reconstruction of the moisture profile, albeit at the lower depth resolution corresponding to the 3 layer 
discretisation of Res 2. Also shown on both figures are the MAP estimates of  for the three coarse 
mesh layers, using the same Monte Carlo data. Their poor ability to reconstruct the simulated curve 
indicates that a minimization procedure would require further real time processing (e.g. extended 
distribution sampling using some form Markov chain Monte Carlo method). There seems little to be 
gained from pursuing this path at present. 
 

 

 
 

(a) 
 

(b) 
 

Fig. 5. (a) Simulated depth profile for the percentage volumetric moisture content,  of a soil sample. The 
form of the moisture distribution with depth follows the prior distribution of permittivity given by  

 between layers. Physically this corresponds to a loamy soil drying near the surface. The solid line is 
the original model for the moisture content depth profile, while the ▲ are the points chosen for the midpoint of 
the 7 layer Res4 representation. The CM and MAP estimates of the inverse in Res 2 are shown as  and  
respectively. (b) Similar but with a permittivity prior of  between the layers. The physical situation 
represents moisture content near field capacity at the surface and drying with depth. The CM estimate is shown 
by . Note that only one MAP estimate ) is within the plot range. 

 
 

In more general terms than the examples above, the expected error in volumetric moisture content, , 
can be derived from applying  of Table 4 to the differential of Error! Reference source 
not found.: 
 

 (46)
 
For more general cases [13] showed that the expected error in percentage  for the two relative 
permittivity priors defined by and  is less than 4% at all depths indicating excellent 
resolution compared to invasive techniques (e.g. [15], [16]). 
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5. Conclusion and Discussion 
 
The aim of this work has been to simplify the TDR inversion model so that its real time application 
can be achieved. To this end we have decomposed the original model into a reduced set of cells by 
exploiting both planar geometry and system symmetry. This together with the likely distribution of 
moisture content with depth provided a powerful prior model for the inverse process defined in a 
Bayesian framework. The level of discretisation required to avoid errors through the discretisation 
itself has been determined to be given by a cell size of 0.014 m for the proposed operational system 
geometry. Since this level of discretisation is impractical for operational use, an effective reduction 
operator has been developed that allows the TDR inversion procedure to be carried out at a much 
coarser mesh level (a cell size of 0.0333 m). Further, the use of this reduction operator produces a 
relatively small error in the CM estimate of the relative permittivity in the layered sample. With the 
Monte Carlo approach previously developed [12], the inversion is easily accommodated within a time 
scale and accuracy suitable for “in the field” use of the TDR equipment. As pointed out, many 
practical samples do not have a rapidly changing permittivity (or direction of gradient) over the  
100 mm or so of depth, so for many practical purposes the prior scenarios studied are appropriate. 
 
In practice there are a number of considerations to be assessed when applying the procedure described 
here to an operational system. These include the dependence of the reduction operator on the moisture 
(or relative permittivity) profile and improving the representation of the electric field within the 
method of moments formalism. [13] discusses these issues more fully. 
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