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Abstract of a thesis submitted in fulfilment of the 

requirements for the Degree of Doctor of Philosophy 

Characterisation of genes associated with sheep growth and carcass traits 

by 

G. Yang 

Animal growth and carcass composition are of commercial importance for sheep meat 

production. Growth and fat deposition are affected by both environmental factors and genetic 

factors. Genetic selection to produce leaner, fast growing lambs has a long-term benefit for 

the sheep industry. Recent evidence supports the contention that lipolysis is important in the 

regulation of animal feed conversion efficiency and energy utilisation. In humans, genes 

encoding the β3-Adrenergic Receptor (ADRB3), Hormone-Sensitive Lipase (HSL) and 

Uncoupling Protein 1 (UCP1) have been found to be associated with variation in growth-rate 

and body composition. Given these associations in humans, the aims of this thesis were to 

characterise variation in the ovine genes ADRB3, HSL and UCP1, and assess whether there is 

an association between variation in these genes and variation in sheep growth and carcass 

traits. 

Using a Polymerase Chain Reaction-Single Strand Conformational Polymorphism (PCR-

SSCP) method, variation in the three genes was investigated. Next, General Linear Mixed-

effects Models (GLMMs) were used to investigate associations between variation in these 

genes and variation in various growth and carcass traits. The following was found: 

The intron and the 3’untranslated region (3’UTR) of ovine ADRB3 were screened for 

genetic variation in 808 NZ Suffolk sheep and 140 NZ Merino sheep. In the NZ Merino sheep, 

six 3’UTR variants (named a-f) were detected. Sequencing revealed three SNPs (g.*233A>C, 

g.*271C>G, g.*357A>T) and a single nucleotide deletion (g.*257delG) in the 3’UTR of the 

gene. Sixteen ovine ADRB3 intron-3’UTR haplotypes were deduced (named A-a, A-b, A-c, B-

c, C-e, D-d, E-e, F-e, G-f, H-f, I-a, J-f, K-f, L-e, M-f). 

For the 808 Suffolk sheep investigated, in single variant model, the presence of intron 

variant C was associated with higher weaning-weight (P = 0.021) while the presence of A was 

associated with lower weaning-weight (P < 0.001). The presence of C was found to be 

associated with higher post-weaning growth-rate (P = 0.002) and higher Fat Depth above the 

eye Muscle (FDM) (P= 0.033). The presence of B was found to be associated with lower post-

weaning growth-rate (P = 0.002). 
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The presence of 3’UTR variant b was associated with lower weaning-weight (P = 0.001). 

The presence of a was associated with higher post-weaning growth-rate (P = 0.021) and c was 

associated with lower post-weaning growth-rate (P = 0.005). 

The presence of haplotype A-b was associated with a lower weaning-weight (P = 0.001). 

The presence of C-a was found to be associated with higher post-weaning growth-rate (P = 

0.008), while the presence of B-c was associated with lower post-weaning growth-rate (P = 

0.005). 

Variation within three regions (exon 3-4, exon 5-6 and exon 9) of ovine HSL and its 

association with post-weaning growth (n = 538) and carcass traits (n = 262) was investigated 

in NZ Suffolk sheep. Four intron 5 variants (designated A-D) and two exon 9 variants 

(designated a and b) of ovine HSL were detected. In the single variant models, the presence of 

intron 5 variant A in a lamb's genotype was associated with lower Eye Muscle Depth (EMD) 

(P = 0.036) and Eye Muscle Width (EMW) (P = 0.018), whereas the presence of C was 

associated with higher EMD (P < 0.001), EMW (P < 0.001) and FDM (P = 0.017). The 

association of C with higher EMD (P = 0.002) and EMW (P = 0.002) persisted in the multi-

variant model. No association between HSL intron 5 variants and post-weaning growth, or 

between HSL exon 9 variants, post-weaning growth or carcass traits, were found. 

Variation within three regions (the promoter region, intron 2 and exon 5) of ovine UCP1 

and the association of this variation with variation in growth and carcass traits was 

investigated in 587 NZ Suffolk sheep and 236 NZ Romney sheep. Three promoter variants 

(designated A-C) and two intron 2 variants (designated a and b) of ovine UCP1 were detected.  

In the Suffolk sheep studied, promoter variant C was found to be associated with higher 

FDM in single variant model (P =0.033). In the Romney sheep studied, the presence of 

variant B in a lamb's genotype was associated with lower subcutaneous carcass fat grade 

(VGR) (P = 0.005), whereas two copies of C was associated with higher VGR (P < 0.001), 

and a lower hind leg yield (P = 0.032). 

The results suggest these genes could be used as gene-markers in sheep breeding to select 

for desirable growth and carcass quality characteristics. 

Keywords: β3-adrenergic receptor (ADRB3); post-weaning growth; carcass traits; PCR-

SSCP; Hormonal-Sensitive Lipase (HSL), Uncoupling protein 1 (UCP1), variation; genetic 

selection. 
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Abbreviations 

% percent α alpha 
$  New Zealand dollar °C degree Celsius 
β beta μg microgram 
μL microlitre μM micromolar 
μm micrometre A adenine  
ADRB3 beta-3 adrenergic receptor AMP adenosine 

5’monophosphate 
ANOVA analysis of variance AR adrenergic receptor 
ATP adenosine 5’triphosphate BAT brown adipose tissue 
bp base pair C cytosine 
cAMP cyclic adenosine 3’, 5’ 

monophosphate 
cDNA complementary DNA 

transcript of an mRNA 
C/EBPα CCAAT/enhancer-binding protein 

alpha 
CNS central nervous system 

COOH-
terminus 

carboxyl-terminal CRE cyclic AMP response 
element 

CREB cyclic AMP response element binding 
protein 

dATP  deoxyadenosine 
triphosphate 

dCTP deoxycytidine triphosphate dGTP deoxyguanosine 
triphosphate 

DNA deoxyribonucleic acid dNTP deoxynucleotide 
triphosphate 

dTTP deoxythymidine triphosphate EDTA ethylenediaminetetraacetic 
acid 

EMA eye muscle area EMD eye muscle depth 
EMW eye muscle width FDM fat depth above eye 

muscle  
FFA free fatty acids GDF8 growth differentiation 

factor 8 
GH growth hormone GLMM general linear mixed 

model 
GPCR G protein-coupled protein G-

protein 
guanine-nucleotide 
binding protein (subscript 
indicates class) 

GRK G-protein-coupled receptor kinase HCWT hot carcass weight 
HSL hormone-sensitive lipase IGF1R insulin-like growth factor 

1 receptor 
kb kilobase M molar 
MAPK mitogen-activated protein 

kinase 
MAS marker-assisted selection 

ME metabolisable energy mg milligram 
mL millilitre mM millimolar 
mRNA messenger ribonucleic acid ng nanogram 
NH2-
terminus 

amino terminal nm nanometre 

NST non-shivering thermogenesis OAR Ovis aries chromosomes 
PCR  polymerase chain reaction PI3K phosphoinositide 3-kinase 
PKA  protein kinase A PKC protein kinase C 
QTL  quantitative trait loci SE standard error 
SNP  single nucleotide polymorphism SNS sympathetic nervous 

system 
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SSCP single strand conformational 
polymorphism 

TAG triacylglycerol 

TM transmembrane Tris tris (hydroxymethyl) 
aminomethane 

UCP uncoupling protein UTR  un-translated region 
V volt VGR VIAScan Fat Score 
WAT white adipose tissue   
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Amino acid residue abbreviations 

 

Amino Acid 3-Letter 1-Letter Side-chain polarity Side-chain charge (pH 7.4) 

Alanine Ala A nonpolar neutral 

Arginine Arg R basic polar positive 

Asparagine Asn N polar neutral 

Aspartic acid Asp D acidic polar negative 

Cysteine Cys C nonpolar neutral 

Glutamic acid Glu E acidic polar negative 

Glutamine Gln Q polar neutral 

Glycine Gly G nonpolar neutral 

Histidine His H basic polar positive (10%) neutral (90%) 

Isoleucine Ile I nonpolar neutral 

Leucine Leu L nonpolar neutral 

Lysine Lys K basic polar positive 

Methionine Met M nonpolar neutral 

Phenylalanine Phe F nonpolar neutral 

Proline Pro P nonpolar neutral 

Serine Ser S polar neutral 

Threonine Thr T polar neutral 

Tryptophan Trp W nonpolar neutral 

Tyrosine Tyr Y polar neutral 

Valine Val V nonpolar neutral 
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http://en.wikipedia.org/wiki/Asparagine
http://en.wikipedia.org/wiki/Aspartic_acid
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http://en.wikipedia.org/wiki/Glutamine
http://en.wikipedia.org/wiki/Glycine
http://en.wikipedia.org/wiki/Histidine
http://en.wikipedia.org/wiki/Isoleucine
http://en.wikipedia.org/wiki/Leucine
http://en.wikipedia.org/wiki/Lysine
http://en.wikipedia.org/wiki/Methionine
http://en.wikipedia.org/wiki/Phenylalanine
http://en.wikipedia.org/wiki/Proline
http://en.wikipedia.org/wiki/Serine
http://en.wikipedia.org/wiki/Threonine
http://en.wikipedia.org/wiki/Tryptophan
http://en.wikipedia.org/wiki/Tyrosine
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    Chapter 1 

General introduction 

1.1 Background of this study 

Sheep meat is at the core of New Zealand (NZ) red meat exports and the industry remains 

a very important component of the NZ economy. In 2011, the value of red meat exports was 

$6.2 billion and approximately $500 million higher than the previous year (Meat Industry 

Association of New Zealand, 2011). To maintain its position as the largest exporter of sheep 

meat, the industry is looking to double the value of sheep meat exports before 2025, from its 

2011 value of approx. 7 billion to $14 billion (Meat Industry Association of New Zealand, 

2011). 

Strong returns and profitability per hectare for the dairy industry, has led to a significant 

land use shift away from sheep farming. This has been associated with a gradual decline in 

sheep numbers (Figure 1.1). 

 

 

 

 

 

 

 

 

 

 

 

 

There is an increasing customer preference for lean meat because of the perception that 

dietary fat, in particular saturated fat, is linked to obesity and cardiovascular disease (Corley 

and Ward, 2013; Volk, 2007). This trend is unlikely to reverse and accordingly, some markets 

have been shown to financially reward the production of leaner sheep carcasses, while 

penalising the production of fatter carcasses (Bray, 1984). 

Figure 1.1 Changes in livestock numbers from 1990 to 2013. (Sourced from Beef + Lamb 
NZ Economic Service Statistics, NZ). 
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In NZ, many abattoirs base their payments to farmers on a grading system that 

incorporates carcass weight and fat depth (Meat Industry Association of New Zealand, 2011). 

However, fewer than 50% of NZ lamb carcasses meet abattoir expectation (Gooch, 2007). 

Taken along with the decline in sheep numbers, the failure of some carcasses to meet 

expectations in the market, will continue to challenge the NZ sheep industry. 

Carcass quality refers to the composition (proportions of lean, fat and bone) and shape or 

muscularity of slaughtered animals. In the short term, improvement in carcass quality could 

be achieved by changing management strategies; such as altering lamb slaughtering time, 

manipulating the composition of forage (Ball et al., 1997) and processing solutions for the 

slaughter. There are several disadvantages with these approaches: the early slaughtering of 

lamb potentially reducing the efficiency of meat output per unit of land or capital, because the 

lamb has not reached its full potential growth (Simm, 1992); the impracticality of 

manipulating feed quality and quantity in extensive pastoral farming systems and the high 

labour and equipment-cost associated with the trimming of fat. 

In the longer-term, genetic selection has the potential to improve carcass traits and 

contribute to the profitability and sustainability of the sheep industry. Because of its size, the 

NZ sheep population has a large amount of variation for many traits and hence there is 

considerable potential to identify and select superior animals for breeding. This variation also 

provides resilience, as if there are any changes in markets, the diversity can provide sufficient 

variation to rapidly supply animals with the required characteristics. 

According to Safari et al.,(2003), key production traits including growth rate, lean meat 

yield and carcass composition all show moderate heritability (0.20-0.35) and the use of gene 

Marker-Assisted Selection (MAS) could therefore have the potential to improve the accuracy 

of selection for these traits. 

1.2 Aims of this study 

Producing fast growing lambs with lean carcasses is of economic importance for the NZ 

sheep industry. Animal growth and fat deposition is affected by environmental and genetic 

factors.  

Because both growth and fat deposition are dependent on energy partitioning, it is 

conceivable that genetic factors that impact on growth may also impact fat deposition and 

vice versa. Allowing genetic improvements to be made in both traits concurrently can serve 

the dual purpose of increasing lamb growth-rates while reducing the excessive fat content in 

carcasses. 
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Recent evidence supports the importance of lipolysis in regulating animal feed 

conversion efficiency and energy utilisation. Variation in the genes encoding the ovine β3-

Adrenergic Receptor (ADRB3) (Clement et al., 1995; De Luis et al., 2008; Evans et al., 2000; 

Forrest et al., 2003; Fujisawa et al., 1998; Horrell et al., 2009; Kurokawa et al., 2008; 

Mirrakhimov et al., 2011; Zhu et al., 2010), Hormone-Sensitive Lipase (HSL) (Carlsson et al., 

2006; Hoffstedt et al., 2001; Lavebratt et al., 2002) and Uncoupling Protein 1 (UCP1) (Evans 

et al., 2000; Heilbronn et al., 2000; Jia et al., 2010; Labruna et al., 2009; Mori et al., 2001; 

Nagai et al., 2011; Schaffler et al., 1999; Shin et al., 2005) have been shown to be associated 

with growth and body composition in a variety of animal species, and thus they have the 

potential to provide insight into growth and carcass traits in sheep. 

The sheep breeds chosen for study in this thesis were the NZ Suffolk and the NZ 

Romney. The Suffolk is a terminal-sire breed producing fast-growing lambs with good 

carcass conformation. The Romney is the most common breed of sheep in NZ and is a dual 

purpose (meat and wool) breed. Because of the popularity of these sheep breeds in the NZ, an 

understanding of the genes affecting the genetic potential for growth and variation in carcass 

traits in these sheep breeds could benefit the New Zealand sheep industry. 

In this research, Polymerase Chain Reaction-Single Strand Conformational 

Polymorphism (PCR-SSCP) was used to identify variation in the ovine genes ADRB3, HSL 

and UCP1, and this was coupled with nucleotide sequencing to ascertain the nature and extent 

of the genetic variation. Association of the variation in the genes with variation in selected 

growth and carcass traits was subsequently investigated, and the potential of any associations 

as gene-marker for breeding explored. The aim is to contribute to the understanding of how 

variation in lipolytic genes may affect growth and carcass traits in sheep. An outline of the 

thesis structure is shown in Figure 1.2. 
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Figure 1.2 Outline of the chapters. 
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    Chapter 2 
Literature review 

In the following literature review, the key factors that are known to underpin animal 

growth and carcass traits are described and the potential to exploit genetic factors to enable 

the breeding of better sheep is discussed. 

2.1 The physiology of animal growth 

In general, animal growth is a process that involves the realisation of an animal’s genetic 

potential to increase in size and develop body functions under particular environmental 

influences. Cumulative weight plotted against animal age typically follows a sigmoid curve, 

which is composed of a pre-pubertal phase, a self-accelerating phase and a self-inhibiting 

phase. Although body size is genetically determined, it can be altered by nutritional and 

hormonal factors (Gluckman, 1986; Widdowson, 1980). Such factors may inhibit cell division 

and cause the mature body size to be less than the genetically determined maximum. 

Accordingly, animal nutrition is of critical importance to growth and hence in livestock 

production systems, feeding is said to “drive” growth. 

The partitioning of gross energy in animals 

In intensive livestock production systems, feed costs account for 50-70% of total 

production costs. The feed is also account for a large component of the productivity of 

extensive production systems (Moore et al., 2006). It is accordingly important to maximise 

the utilisation of the feed. 

The energy derived from the feed consumed by animals is partitioned in different ways 

(Freer and Dove, 2002). Gross energy (GE) is the total energy intake derived from feed 

(Figure 2.1). When the un-utilised and indigestible energy is expelled as faeces, the 

“remaining energy” utilised in further metabolic processes is called “digestible energy”. Of 

this component, energy loss occurs in the process of ruminant fermentation, including the 

release of combustible gases such as methane. This leaves metabolisable energy (ME), the 

energy effectively available for an animal’s metabolism. Metabolisable energy is used for 

maintenance, heat production, muscle growth, pelage growth, lactation and reproduction, (see 

Figure 2.1 reviewed in Freer and Dove, 2002). 
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The ME component utilised for maintenance (named MEm) can be considered as an 

“overhead cost” to growth. As an animal’s MEm is determined by its size then the means for 

reducing feed costs to a minimum in growing animals, is to aim to maximise growth per unit 

of feed. This can be achieved by either providing nutrient rich feed, or by genetic selection to 

improve growth-rate, or both (reviewed in Lawrence and Fowler, 2002). 

The equation: EB = (MEm-H) has been used to describe animal energy homeostasis 

(Verstegen and Henken, 1987). When Energy Balance (EB) is zero, it means that the ME 

intake equals the energy lost as heat, and the animal is said to be “at maintenance”. In this 

state, an animal is stable in weight and in chemical composition over a period of time. When 

EB is positive and the ME intake is higher than the maintenance requirement (MEm); an 

animal partitions energy into growth. In contrast, when EB is negative, ME is below the 

maintenance requirement, MEm is then derived from catabolic processes within the body and 

the animal loses weight. 

Animal maturity and growth efficiency 

As a consequence of the different timing and rates of cell differentiation and 

proliferation, certain tissues, organs and body parts mature at different rates. An animal’s 

degree of maturity is an important factor in determining animal growth and carcass-

composition. Webster (1977) reported that the efficiency of Energy Retention (ER) reaches a 

maximum at around 25% of mature body weight and then declines dramatically. This is 

consistent with the work of Rattray et al., (1974) who reported that in a growing animal the 

deposition efficiencies of protein and fat are extremely high in very young animals, and 

energetic efficiency is therefore higher than in older individuals. Hammond (1959) also 

described the sequential maturation of different tissues in growing animals. In this sequence, 

the last tissue to mature is fat. 

Figure 2.1 Partitioning of dietary energy. (Adapted from Freer and Dove, 2002). 
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Protein synthesis is linearly related to heat production, and that heat is mainly generated 

from the protein synthesis mechanisms (Webster, 1980). The greatest proportion of ME intake 

is therefore dissipated as heat (Figure 2.2) and according to Webster (1980), the maximum 

proportion of ME that can be retained as protein in meat is around 8%, even in intensively fed 

species such as broiler chickens. In semi-intensively fed species like cattle and sheep, the 

proportion of ME retained as protein in meat is below 3%. In comparison, the proportion 

detained as fat is more variable, but accounts for 5-20% of the ME in cattle and sheep 

(Webster, 1980). It can be concluded that protein accretion in meat is not very efficient in the 

context of energy demand. 

Ørskov and McDonald (1970) found that the energy required for protein synthesis in 

sheep is higher than that for fat synthesis. The difference in the energy requirement of muscle 

and fat synthesis is due to the difference in their water content, as lean muscle tissue is 

approximately 75% water by weight and 20% protein, while body fat is approximately 30% 

water by weight (Warriss, 2010). Rattray et al., (1974) confirmed that daily protein and fat 

deposition were highly correlated in sheep and confirmed that the energetic cost of protein 

deposition, was much greater than that of fat. 

Gender also appears to affect the efficiency of energy use for growth. For example in 

sheep, Bull et al., (1970) found that the net efficiency of the ME utilised for weight gain is 

65.5% for ewes, and 57.6% for rams. The gains of the ewes contained significantly more fat. 

The difference in the energetic efficiency of muscle and fat gain suggests that if there are 

changes in the ratio of fat to muscle resulting from either additional feeding, maturation 

processes or genetics, then the overall energetic efficiency of weight gain could also vary 

(Sutherland et al., 1974). The changes in energy partitioning may in turn cause increases in 

energy intake and body weight (Galgani and Ravussin, 2010). 

Overall, in an animal production system, fat deposition in an animal’s body costs a large 

amount of feed energy. Much of this fat may be removed and wasted after the animal is 

slaughtered especially if lean meat is desired, therefore the success of the NZ lamb industry 

has been strongly related to improvements in lean muscle growth-rates and in minimising 

excessive fat deposition in carcasses. 

2.2 Fat deposition and meat value 

Body fat deposition can occur in various depots including under the skin (known as 

subcutaneous fat), surrounding organs (known as visceral fat), between muscles (known as 

intermuscular fat) and between muscle fibre bundles (known as intramuscular fat). As a 
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consequence of  the high levels of saturated fat and cholesterol in those fat depots, and these 

substance being considered to be associated with heart disease in humans (Volk, 2007), fat 

deposition is considered unacceptable by some customers.  

While abdominal and subcutaneous fat are often considered to be unfavourable traits, 

intramuscular fat (or marbling) can be considered a favourable trait. In beef cattle, 

intramuscular fat contributes to sensory palatability including attributes like tenderness, 

juiciness, and flavour (Oddy et al., 2001). Nishimura et al., (1999) reported that intramuscular 

fat in the longissimus muscle of cattle might physically alter connective tissue structures and 

thereby reduce the toughness of the meat. In this context, a challenge for the NZ sheep 

industry might be to reduce the levels of subcutaneous fat on carcasses, without leaving the 

meat dry and tasteless as a result of an accompanying drop in intramuscular fat levels. 

In order to make best use of animal fats and the various fat depots, knowledge of such 

things as the hormonal pathways that affect growth, fat deposition and partitioning is 

essential. 

2.3 Hormones that regulate growth and fat deposition 

External factors such as nutrition are necessary to supply metabolisable energy for animal 

growth and body fat deposition. There are also many intrinsic factors involved in the 

regulation of growth and body fat deposition, including hormonal and genetic factors. A 

highly integrated neuro-hormonal system is known to be important for animal growth 

including hormones secreted by the pituitary, thyroid and parathyroid glands, and the ovaries 

and testes. This hormonal system minimises the impact of short-term fluctuations in energy 

balance.  

The pituitary gland, for example, secretes Growth Hormone (GH), also called 

somatotropin. Growth hormone plays many roles in the body: it stimulates bone and muscle 

growth, maintains the normal rate of protein synthesis in all body cells, and it speeds up the 

release of fats as an energy source for growth.  

The somatotropic axis is composed of multiple effectors and there are many points of 

regulation within the axis, including feedback loops. These function to maintain homeostasis 

in both physiological and patho-physiological situations. The axis is stimulated by secretion 

of GH in the anterior pituitary gland. The actions of GH on peripheral tissues occurs through 

interaction with specific Growth Hormone Receptors (GHR) and subsequent endocrine, 

paracrine and autocrine events. Many of these are mediated via the Insulin-like Growth Factor 

(IGF) system and its regulators. The insulin-like growth factor system, in turn, promotes 
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tissues growth by changing protein, carbohydrate and lipid metabolism (Ahmed and 

Farquharson, 2010). 

2.4 The growth of different body tissues 

When an animal has energy available for growth, the muscle, bone and fat tissues of body 

may then start growing under the effects of both hormonal and genetic factors. The growth of 

the various tissues affects the rate of weight gain, feed-conversion efficiency and carcass 

composition. 

Carcass composition refers to the proportion of the major tissues: muscle, fat and bone in 

the carcass. These major tissues show differential growth during development. In early 

development: bone growth is described as having low growth impetus, muscle tissue shows 

intermediate growth impetus and fat tissue shows high growth impetus, particularly after the 

fattening phase begins (Berg and Butterfield, 1968). 

The differential growth of tissues influences carcass composition and thus carcass value. 

Accordingly, factors influencing differential tissue growth should be understood in order that 

carcass-fat composition can be manipulated. 

It is also necessary to understand the growth of different tissues in detail before the effect 

of genetic influences on growth and carcass composition can be fully understood. 

The growth of bone: osteogenesis 

The terms osteogenesis and ossification are often used synonymously to indicate the 

process of bone formation. Bone growth occurs both in the cartilage (endochondral growth) 

and in the membrane (intra-membranous growth). Endochondral ossification is responsible 

for the growth in bone length, while intra-membranous ossification deposits bone on the 

surface of pre-existing bone structures (reviewed in Lawrence and Fowler, 2002). 

In the process of endochondral ossification, the future bones are first formed as hyaline 

cartilage “models”. The perichondrium that surrounds the hyaline cartilage models becomes 

infiltrated with blood vessels and osteoblasts and changes into a periosteum. The cartilage in 

the epiphyses continues to grow so the developing bone increases in length. Later, usually 

after birth, secondary ossification centres form in the epiphyses. 

In the process of intra-membranous ossification, the bones are first formed as connective 

tissue membranes. These sheet-like connective tissue membranes are then replaced with bony 

tissue. These bones are called intra-membranous bones (Bruder et al., 1994). 
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Osteoblasts are the cells responsible for the formation and organisation of the 

extracellular matrix of bone cells and its subsequent mineralisation. They are derived from 

bone marrow mesenchymal precursor cells known as osteoprogenitor cells (Figure 2.3). 

Under the effect of growth factors, specifically Bone Morphogenetic Proteins (BMPs), 

osteoprogenitors are induced to differentiate into chondrocytes (Agata et al., 2007). 

Additionally, other growth factors including Fibroblast Growth Factor (FGF), Platelet-

Derived Growth Factor (PDGF) and Transforming Growth Factor Beta (TGF-β), also promote 

the division of osteoprogenitors, and potentially increase osteogenesis (Lee et al., 2013). 

Once osteoprogenitors start to differentiate into osteoblasts, they begin to express a range 

of genes including the osterix gene (SP7), constans-like 1 gene (Col1), bone sialoprotein gene 

(BSP), Macrophage Colony-Stimulating Factor gene (M-CSF), alkaline phosphatase gene 

(ALP), osteocalcin gene (BGLAP), osteopontin gene (OPN), and osteonectin gene (SPARC) 

(Ringe et al., 2008; Szulc et al., 2005). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.3 The process of osteogenesis. Bone formation is characterised by the replication of 
mesenchymal cells and the differentiation of osteoprogenitor cells into mature osteoblasts and 
mature chondrocytes. FGFs act through FGFRs to control several genes involved in osteoblast 
commitment and differentiation. FGF, Fibroblast Growth Factor; FGFR, Fibroblast Growth Factor 
Receptor; PDGF, Platelet-Derived Growth Factor; TGF-β, Transforming Growth Factor beta; 
ALP, Alkaline Phosphatase; COL1, Constans-Like 1; OP, Osteopontin; OC, Osteocalcin. 
(Adapted from Marie, 2003). 
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The growth of muscle: myogenesis 

Development of skeletal muscle (myogenesis) starts at an early stage of embryonic 

development, with all muscle cells originating from the myotome and dermomyotome regions 

of the somite (Maltin et al., 2001) (Figure 2.4).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Myogenesis is initiated by protein factors including Wingless (Wnt) and Sonic hedgehog 

homolog (Shh) derived from the neural tubes (Wigmore and Evans, 2002). The protein factors 

of Wnt and Shh switch on the expression of the Paired box 3 gene (PAX3) and Paired box 7 

gene (PAX7). Pax 3 and Pax 7 then activate the primary myogenic basic Helix-Loop-Helix 

(bHLH), transcription factors, Myogenic factor 5 (Myf5) and Myoblast determination protein 

Figure 2.4 The process of myogenesis. During myogenesis, mesodermal stem cells become 
committed to the skeletal muscle cell lineage. This depends on myogenic transcription factors (such as 
PAX3, PAX7, MyoD and Myf5). Muscle precursor cells (myoblasts) remain in a proliferation state 
until they are “instructed” to differentiate. Differentiation is accompanied by cell-fusion and the 
expression of many muscle-specific genes including Shh, Sonic Hedgehog; PAX3, Paired box 3; 
PAX7, Paired box 7; MyoD, Myoblast determination protein 1; Myf5, Myogenic factor 5; p21, cyclin-
dependent kinase inhibitor 1A; MEF2, Myocyte Enhancer Factor-2; Rb, Retinoblastoma; Myf6, 
myogenic factor 6; and MLP, Muscle LIM Protein. (Adapted from Hettmer and Wagers, 2010). 
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1 (MyoD), which leads to the development of the muscle-cell lineage (Maroto et al., 1997; 

Tajbakhsh et al., 1997). Myoblast determination protein 1 and Myf5 are therefore both 

considered to be the hallmarks of terminal specification to the muscle-cell lineage (Pownall et 

al., 2002). This muscle-cell lineage accordingly involves mesodermal progenitor cells 

becoming myoblasts (Brameld et al., 1998; Buttery et al., 2000). 

Once differentiated, myoblasts migrate into the adjacent embryonic connective tissue or 

mesenchyme and express other muscle-specific genes such as the Myogenin gene (MYOG) 

and Myogenic Factor 6 gene (MYF6) (Knudsen, 1985; Knudsen et al., 1990). They proliferate 

until they encounter a shortage of Fibroblast Growth Factor (FGF). At this point, the 

precursor cells in different regions of the embryo can differentiate into skeletal, cardiac and 

smooth muscle (McKinsey et al., 2001). 

After proliferation, myoblasts fuse into muscle “straps” to form multinucleated early 

myotubes (Yagami-Hiromasa et al., 1995). Once muscle cells have matured in response to 

myostatin signalling, a cyclin-dependent kinase inhibitor 1A (Cip1, p21) is up-regulated and it 

then inhibits cyclin-E·Cdk2 and retinoblastoma (Rb) protein activity. This subsequently can 

lead to the arrest of myoblasts in the G1 phase and hence, inhibit their proliferation (Thomas 

et al., 2000) and the proliferation of satellite cells (McCroskery et al., 2003). The activation of 

these satellite cells can result in the development of new fibres (Charge and Rudnicki, 2004). 

In this process, a protein named myostatin (also known as Growth Differentiation Factor 

8, GDF8) has been found to be important because it inhibits the differentiation of myoblasts 

into mature muscle fibres (Carnac et al., 2006). It binds to the activin type II receptor (Joulia-

Ekaza and Cabello, 2007), and utilises Activin-Like Kinase Receptor-4 (ALK4) in myoblasts 

(Lee et al., 2005). These factors then induce myostatin-specific gene regulation. 

It is concluded that myoblast number, myofibre number and subsequent muscle 

differentiation are regulated by myostatin (Thomas et al., 2000). 

At the cellular level, the loss or malfunction of myostatin decreases the cytoplasmic 

phosphorylation of Smad2/3 and down-regulates p21 (Ohsawa et al., 2008). These inhibitory 

effects in-turn cause hyper-phosphorylation of the Retinoblastoma (Rb) protein, which binds 

to the transcription factor E2F-DP (Otto and Patel, 2010). This leads to progression of the cell 

cycle into the S phase. At the tissue level, elevated myoblast proliferation leads to an increase 

in the number of committed myoblasts, resulting in both muscle cell hyperplasia (an increase 

in the number of muscle fibres) and hypertrophy (an increase in muscle fibre size), and 

subsequent dramatically increased skeletal muscle mass (Thomas et al., 2000). This abnormal 
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phenotype has been called “double-muscling” (Kambadur et al., 1997; McPherron and Lee, 

1997). 

Double-muscling is characterised by dramatically increased muscle mass, specifically in 

the regions of the proximal forequarter and hindquarter muscles. This leads to prominent 

muscular protrusion and intra-muscular boundaries (Kambadur et al., 1997). Double-muscled 

cattle carcasses have a higher proportion of lean meat than normal cattle, as well as having an 

improved quality of lower-priced cuts of meat. This results in substantial improvement in total 

carcass value (Arthur, 1995). Double-muscled cattle therefore also have a higher efficiency in 

converting feed into lean muscle and a lower content of intra-muscular fat, connective tissue, 

bone and digestive tract (McPherron and Lee, 1997). This increased feed-conversion 

efficiency can benefit farmers because it can reduce production costs, give higher production 

yields and alleviate grazing pressure. 

Although double-muscling in cattle may be beneficial to farmers, there are also some 

disadvantages, including reduced fertility in female cattle, delayed sexual maturation, an 

increased incidence of dystocia and an increased likelihood of bone breakages (Bellinge et al., 

2005; Hanset, 1991; McPherron and Lee, 1997). Because of the higher content of white 

muscle fibres and a lower content of myoglobin, double-muscled meat is paler than normal 

meat (West, 1974) and this may affect consumer preferences. In addition, as a result of having 

reduced collagen and connective tissue content (Arthur, 1995), double-muscled meat has been 

reported to be more tender than normal meat ( Bass et al., 1999; Uytterhaegen et al., 1994). 

In sheep, a miRNA target site created by a nucleotide substitution in the 3’ untranslated 

region (3’UTR) of Myostatin gene (MSTN) (Callis et al., 2007) down-regulates MSTN 

translation. This decreases serum myostatin levels and ultimately results in muscle fibre 

hypertrophy and a disruption of muscle homeostasis (McCarthy and Esser, 2007). This 

nucleotide substitution has been found to commonly exist in the Texel sheep breed and 

together with some other variation in ovine MSTN, has been developed into gene-marker tests 

called MyoMAX® and MyoMAXGold® by Zoetis NZ. A lamb that inherits one MyoMAX® 

allele has been shown to have 5% more muscle mass in the legs and loin, while also having 

7% less carcass fat (Zoetis, Pfizer Animal Health, Dunedin, NZ). 

The growth of adipose tissues: adipogenesis 

In normally growing animals, the growth of adipose tissues accompanies skeletal and 

muscle growth. Beyond a certain body weight, fat gain becomes a large and constant portion 

of weight gain (Searle et al., 1972). The accretion of both fat and protein occur 
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simultaneously in early growth, while in later growth the rate of protein accretion slows down 

(Figure 2.5). 

The rate of fat accretion is more closely related to the amount of energy available in 

excess of requirements for maintenance and lean growth, than to specific metabolic changes 

in adipose tissues (Sainz, 1990).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In mature ruminants, when energy intake is in excess of current energy requirements, this 

energy can be converted to fatty acids which, after esterification to form triacylglycerol 

(TAG), are deposited as adipose tissue. When energy intake fails to meet current energy 

needs, the energy deficit is met by the degradation of adipose tissue through the hydrolysis of 

TAG. Accordingly, the amount of lipid stored in adipocytes reflects the cumulative supply of 

feed over time and the balance between energy intake and energy expenditure (Rosenbaum et 

al., 1997). 

At the cellular level, fat deposition is determined by the relative rates of anabolism 

(lipogenesis) and catabolism (lipolysis) in adipocytes and it involves a variety of both 

lipogenic and lipolytic factors (Vernon et al., 1986). 

Adipogenesis is the process by which mature adipocytes are formed from small, 

undifferentiated cells called adipoblasts. Adipoblasts contain no lipogenic enzymes or lipid 

droplets (Figure 2.6). They are derived from pluripotent mesenchymal cells and differentiate 

to pre-adipocytes that contain functional lipogenic enzymes and accumulated lipid droplets. A 

mature adipocyte is formed by the enlargement of these lipid droplets, through the actions of 

Figure 2.5 Idealised log-log plot of fat and protein accretion against body weight for sheep, 
rat, pig and cattle. (Adapted from Bergen, 1974). 
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Brown adipose tissue is considered a thermogenic tissue and contains more 

vascularisation and sympathetic innervations than WAT. Brown adipose tissue is present in 

most mammals during the pre-natal period and is responsible for diet- and cold-induced Non-

Shivering Thermogenesis (NST) (Lowell et al., 2000). BAT contains a large number of 

mitochondria (Hull and Segall, 1966; Rosell and Belfrage, 1979; Sbarbati et al., 1987) and a 

tissue-specific protein called uncoupling protein 1 (UCP1) that stimulates NST (Klingenberg 

and Huang, 1999) by uncoupling oxidative respiration from ATP production (Girardier, 1977; 

Heaton et al., 1978), which results in heat production.  

In cattle and sheep, almost all adipose tissue at birth is BAT at birth. However, within the 

first week of neonatal life, BAT is changed into WAT via trans-differentiation of brown 

adipocytes into white adipocytes (Casteilla et al., 1989b). Brown adipocytes are smaller and 

contain less lipid droplets than white adipocytes and TAG are stored as multilocular droplets 

in brown adipocytes, contrasting the unilocular droplets of white adipocytes (Himms-Hagen 

et al., 2000). 

Some reports suggest the existence of a putative third type of adipocyte referred to as a 

“convertible white adipocyte” (Cousin et al., 1992; Himms-Hagen et al., 2000; Loncar, 1991). 

Recently, this third type of adipocyte has been characterised and named “brite” adipocytes. 

These adipocytes also have the capacity to express UCP1, but do not share some biological 

functions with brown adipocytes (Walden et al., 2012). 

Although lipogenesis in white adipocytes has been well described, in brown adipocytes it 

is less well understood. 

The degradation of lipid: lipolysis 

When animals are exposed to cold-fasting or physical activity, a drop in blood glucose 

stimulates the Sympathetic Nervous System (SNS) to trigger the degradation of lipid stored in 

adipocytes. This is known as lipolysis (Figure 2.7) (Migliorini et al., 1997). The SNS 

innervates both WAT and BAT (Ballard et al., 1974; Slavin and Ballard, 1978; Wirsen and 

Hamberger, 1967), but because the sympathetic innervations are denser in BAT than WAT, 

the neural derived catecholamine norepinphrine is thought to play a greater role in BAT, 

whereas catecholamine derived from the circulation, plays a relatively greater role in WAT 

(Collins et al., 1996; Garofalo et al., 1996; Hausberg et al., 2002). In WAT, the adipocyte-

derived hormone leptin increases energy expenditure by acting on hypothalamic centres that 

increase sympathetic outflow. Increased sympathetic tone stimulates lipolysis and the release 

of Fatty Acids (FAs) from WAT stores (Figure 2.7). 
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NST (Ashwell et al., 1983). Recent studies have also found there is muscle-based NST 

regulated by Sarcolipin (Bal et al., 2012). Given that both brown adipocytes and muscle cells 

originate from the same precursor cells (Walden et al., 2012), it is suggested that brown 

adipocytes and muscle cells may share the similarity in generating NST, due to an 

evolutionary constraint. 

Some studies have suggested that HSL can also interact with Fatty Acid Binding Protein 

4 (FABP4, also known as adipocyte Protein 2, aP2) (Shen et al., 1999), an intracellular carrier 

protein for fatty acids. The gene of FABP4 is primarily expressed in adipocytes and 

macrophages (Baxa et al., 1989). Stimulation of FABP4 depends on the presence of FFA and 

it may be related to the activation of HSL in adipocytes (Shen et al., 1999). Mice that are 

FABP4-deficient exhibit reduced lipolytic efficiency (Scheja et al., 1999; Shen et al., 1999), 

as well as reduced insulin secretion (Shen et al., 1999). 

Catecholamine not only stimulate lipolysis, but also show anti-lipolytic effects through 

binding to the α2AR (ADRA2). This reduces cAMP levels in adipocytes (Limon-Boulez et al., 

2001). Therefore, the α2/β3 Adrenergic Receptor (AR) ratio in adipocytes determines whether 

catecholamine is used for lipolysis or to inhibit lipolysis (Lafontan and Berlan, 1995). 

Besides the AR-PKA cascade in adipocytes (Figure 2.8), the ARs also can trigger a PKA-

independent pathway that involves stimulation of the Extracellular signal-Regulated Kinase 

1/2 and Mitogen-Activated Protein Kinase (ERK1/2-MAPK) cascade in adipocytes (Cao et 

al., 2001; Nakata, 2004). This pathway occurs as a result of the ARs’ coupling to the G-

protein subtype Gi (Soeder et al., 1999) and appears to account for 15-25% of total lipolysis 

(Greenberg et al., 2001). Collins et al., (2004) found that lipolysis is mainly activated by the 

PKA pathway when low catecholamine concentrations occur, whereas the ERK1/2 pathway 

may be more important at higher concentrations of epinephrine. 
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2.5 Manipulation of body composition and minimising fat deposition 

The flow of energy repartitioned into parts of the body that are growing has been 

investigated using β-agonists. After stimulation with β-agonists, the fatty acids that are 

released in adipose tissue appear to be diverted towards the provision of energy for protein 

synthesis (Ghorbani, 2012; McDowell and Annison, 1991). They lead to the repartitioning of 

energy to support both protein synthesis and a higher basal metabolic rate. Subsequently, 

muscle growth is enhanced and adipose tissue growth is reduced. This ultimately results in an 

increase in lean mass and a reduction in fat deposition. The effect may be enhanced by a 

simultaneous reduction in protein degradation and an increase in growth hormone levels 

(Ghorbani, 2012; McDowell and Annison, 1991; Yue, 2011). Beta-agonists have been 

approved for use in livestock production. Ractopamine (Paylean®; Elanco Animal Health, 

Greenfield, IN) was approved for use in swine in 1999, and later for cattle (Optaflexx®, 

Elanco Animal Health, Greenfield, IN) in 2003. Zilpaterol (Zilmax®; Merk Corp., Summit, 

NJ) was approved for use in cattle in South Africa and Mexico, and received FDA approval 

for use in cattle in the United States in 2006. 

Figure 2.8 The process of lipolysis in adipocytes. This diagram illustrates some of the factors 
involved in the process of lipolysis in adipocytes. SNS, Sympathetic Nervous System; ADRB3, 
β3-adrenergic receptors; PKA, Protein Kinase A; HSL, Hormone-Sensitive Lipase; TAG, 
triacylglycerols; FFA, Free Fatty Acids; UCP1, Uncoupling protein-1; CREB, cAMP Response 
Element-Binding Protein. (Adapted from Langin, 2006). 
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The effects of β-agonists on animal growth and carcass traits has been found to involve 

the binding of the agonists to ADRBs and the trigger of various regulatory cascades, hence 

the ADRBs are thought to play an important role in the regulation of body composition and 

growth. 

2.6 ADRB3-mediated lipolysis and fat deposition and growth 

In adipose tissues, the major effects of β-agonists on adipose tissue are an increase in 

lipolysis and reduction in lipogenesis (Yang and McElligott, 1989). Recent studies have 

emphasised the important role that ADRB3-mediated lipolysis plays in the degradation of fat 

and repartitioning of the energy into protein gain. In humans, impaired lipolysis could lead to 

excessive ectopic lipid deposition in non-adipose tissues, which leads to lipo-toxicity, and it is 

associated with metabolic diseases such as type-2 diabetes (DeFronzo, 2004; Lelliott and 

Vidal-Puig, 2004; Slawik and Vidal-Puig, 2006; Unger et al., 2010). 

The lipolytic genes ADRB3, HSL and UCP1, and fat deposition and growth 

The genes encoding ADRB3, HSL and UCP1, which are all the factors in ADRB3-

mediated lipolysis have been reported to be associated with variation in human growth and 

body composition (Klannemark et al., 1998; Shin et al., 2005; Silver et al., 1999). 

The important role of ADRB3, HSL and UCP1 in growth and fat catabolism has become 

evident from the analysis and examination of mice made deficient in ADRB3 (Revelli et al., 

1997; Susulic et al., 1995), HSL (Fortier et al., 2004; Haemmerle et al., 2002; Osuga et al., 

2000; Voshol et al., 2003) and UCP1 (Surwit et al., 1998) and human patients with mutations 

in the ADRB3 (Kurokawa et al., 2008; Silver et al., 1999), HSL (Hoffstedt et al., 2001; 

Klannemark et al., 1998; Lavebratt et al., 2002; Magre et al., 1998; Nieters et al., 2002; Qi et 

al., 2004) and UCP1 (Kotani et al., 2007; Shin et al., 2005). 

In sheep, variation in ADRB3 has been reported to be able to cause the differences in pre-

weaning growth (Forrest et al., 2003; Horrell et al., 2009), carcass composition (Forrest et al., 

2003) and survival (Forrest et al., 2007; Forrest et al., 2003; Forrest et al., 2006).  

Because greater variation than that already described is suspected in the ADRB3 and 

variation in HSL and UCP1 has not been investigated in sheep. Variation in these gene could 

potentially be used as gene markers for production traits if such associations exist. In this 

study, further investigations of these genes and their roles in ovine growth and carcass-

composition are performed. 
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    Chapter 3 

Extended haplotypes of the ovine β3-adrenergic receptor 
gene (ADRB3) and their association with growth and 

body composition traits in sheep 

3.1 Introduction 

The ADRB3 is a member of the G-protein coupled receptor (GPCR) superfamily. To 

date, at least nine subtypes of AR have been identified, including six α- and three β-subtypes 

(called α1A AR (ADRA1A), α1B AR (ADRA1B), α1D AR (ADRA1D), α2A AR (ADRA2A), 

α2B AR (ADRA2B), α2C AR (ADRA2C), ADRB1, ADRB2 and ADRB3, respectively). Some 

studies have suggested the presence of a putative β4AR (ADRB4) in mice (Kaumann and 

Lynham, 1997), but it has also been suggested to be a novel ADRB3 isoform (Kaumann et al., 

1998). The ADRB3 is present on BAT and WAT (Arch et al., 1984), while ADRB1 and 

ADRB2 are mainly present in heart and skeletal muscle, respectively (Kim et al., 1991; 

Williams et al., 1984). 

The ARs can selectively couple to different G-protein subtypes, especially to Gs and Gi, 

and stimulate different downstream pathways in different tissues (Dascal, 2001; Mirshahi et 

al., 2002; Steinberg, 2000). 

The ovine ADRB3 protein 

Sheep ADRB3 is 405 amino acids in length. It is comprised of seven transmembrane 

(TM) α-helices that form three extracellular loops including an NH2-terminus and three 

intracellular loops including a COOH-terminus (Figure 3.1). 

The structure of ovine ADRB3 is stabilised by two disulphide bonds that are formed 

between cysteine residues in the second and the third extracellular loops (aa 110-196 and aa 

189-195). A ligand binding site and a G-protein coupling site have been located at the centre 

of three extracellular domains and the third intracellular loop of ADRB3, respectively 

(Kobilka et al., 1988). Ligand-binding causes conformational changes in the intracellular 

loops of ADRB3 and this leads to uncovering of the previously blocked G-protein binding-

site. This in turn, activates the coupling of ADRB3 with Gs or Gi protein (Filipek et al., 2004; 

Meng and Bourne, 2001). 

At the NH2-terminus, two putative glycosylation sites (Guillaume et al., 1994) have been 

found in ovine ADRB3 (Figure 3.1). Unlike ADRB2 which contains many potential 
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ID: 397356), chromosome 27 in cattle (GenBank, Gene ID: 281606) and chromosome 26 in 

sheep (GenBank, Gene ID: 100294559). 

Ovine ADRB3 is approximately 2.5kb in length. It is composed of a large first exon of 

approximately 1.1 kb that encodes the first 398 amino acid residues, and a small second exon 

of approximately 21 bp that encodes the seven consistency COOH-terminal residues (Figure 

3.2). An intron only exists in ADRB3, but not in ADRB1 and ADRB2 (Bensaid et al., 1993; 

Granneman et al., 1993; van Spronsen et al., 1993). In rats, the intron of ADRB3 contains 

potential binding sites for transcription factors involved in tissue-specific expression 

(Granneman et al., 1993). 

ADRB3 “knockout” mouse phenotypes  

An understanding of ADRB3 is important as any variation in the intact gene may cause 

structural and functional changes in the protein. Studies have shown that ADRB3 “knockout” 

mice have reduced lipolysis and decreased muscle mass (Revelli et al., 1997; Susulic et al., 

1995). Lowell et al., (2000) found that ADRB3-deficient mice also showed impaired 

thermoregulatory activity and decreased UCP1 mRNA levels in responses to cold-exposure. 

The results from these gene “knockout” studies indicated that the ADRB3 is critical for animal 

energy homeostasis and variation in this gene may also cause changes in the expression and 

function of other genes and subsequently result in changes in growth performance (Lowell et 

al., 2000). 

Associations between variation in ADRB3 and variation in phenotypic traits 

In humans, a missense mutation in codon 64 of ADRB3, leading to the replacement of 

tryptophan by arginine (Trp64Arg) in the protein, has been reported to be associated with 

increased body weight, early development of type 2 diabetes mellitus, and clinical features of 

insulin resistance in several populations (Silver et al., 1999). In these studies, the Arg 64 

allele of the ADRB3 was associated with Metabolic Syndrome (MS) components such as 

obesity and decreased High-Density Lipoprotein Cholesterol (HDL-C) levels (Mirrakhimov et 

al., 2011). 

Exon 1 Exon 2 Intron 

Figure 3.2 Structure of ovine β3-adrenergic receptor gene (ADRB3). 
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However, such findings have not been consistent among studies. Kurokawa et al., (2008) 

reported association between the Trp64Arg polymorphism and variation in Body Mass Index 

(BMI) in East Asians, but not in Europeans, by genotyping a large number of individuals (n = 

44 833). The Arg 64 allele had a frequency of 32.7% in the East Asian populations. In 

contrast, only 14.5% of Europeans carry the Arg 64 allele. The Arg 64 allele was also 

associated with increased fasting insulin levels in Asians, but not Caucasians (Zhan and Ho, 

2005).  

In Duroc pigs, a nucleotide insertion/deletion of a thymine base in exon 2 of porcine 

ADRB3 has been described and associated with variation in loin Eye-Muscle Area (EMA) 

(Hirose et al., 2009; Tanaka et al., 2007). No association was detected between this variation 

and growth-rate or fat deposition (back-fat thickness and intramuscular fat content) (Hirose et 

al., 2009). A similar study failed to detect this polymorphism in other pig breeds (Polish 

Landrace, Polish Large White and a Polish synthetic line) (Cieslak et al., 2009). This suggests 

that the variation in porcine ADRB3 may be breed-specific. 

In cattle, variation within the intron of ADRB3 has been reported (Hu et al., 2010). A 

comparative analysis of human chromosome 8 and bovine chromosome 27 suggests that 

bovine ADRB3 may play an important role in partitioning body fat deposition in dairy cattle 

and be associated with the “dairy form” trait, an important indicator of a dairy cow’s capacity 

to utilise energy into milk production, rather than in fat storage (Connor et al., 2006). 

In sheep, variation in both coding and non-coding regions of ADRB3 has been reported in 

breeds that include traditional European/English breeds and crossbred sheep (Byun et al., 

2008; Forrest et al., 2003) and some Chinese sheep breeds (Yang et al., 2009). Among all of 

the ovine ADRB3 variants identified to date, the putative polypeptide encoded by variant D 

shows two amino acids substitutions (Val52Ala and Leu322Val, Forrest et al., 2003), which 

occur in positions that are normally conserved in all ADRBs and that are thought to be 

involved in ligand-binding (reviewed in Strosberg, 2000). 

It is notable that most of the variation detected in the ADRB3 are in the non-coding 

region. In the ADRB family, an intron only exists in ADRB3 and not in ADRB1 or ADRB2 

(reviewed in Strosberg, 2000). This unique existence of intron in ADRB3 suggests that this 

region may play important role in regulation of ADRB3 expression and be important for the 

function of ADRB3. Forrest et al., (2007) found an association between variation in the ovine 

ADRB3 intron and lamb cold-survival by genotyping 13427 lambs from 13 different breeds 

born on 22 different farms throughout the South Island of NZ. These results underpin the use 

of ovine ADRB3 as a gene-marker for breeding more cold-tolerant lambs, and a gene-marker 



 26 

test for lamb cold-tolerance is now commercially available from the Gene-Marker Laboratory, 

Lincoln University, NZ. Forrest et al., (2003) also reported the association between variation 

in ovine ADRB3 intron and variation in birth weight, pre-weaning growth-rate and carcass 

traits. 

In the NZ Romney sheep, an association between variation in the ovine ADRB3 intron 

and variation in post-weaning growth-rate has been reported (Horrell et al., 2009), but no 

association between intron variants and birth weight were detected. In Horrell’s study (2009), 

the presence of intron variant A was found to be associated with pre-weaning growth-rate. It is 

noteworthy that ninety-four percent of those Romney lambs studied possessed intron variant 

A. In addition, in previous studies (Byun et al., 2008; Forrest and Hickford, 2000; Forrest et 

al., 2007; Forrest et al., 2003; Forrest et al., 2006; Horrell et al., 2009), intron A was found to 

be a common variant in some sheep breeds. However, because of the ambiguities in the 

sequence data derived from the Polymerase Chain Reaction-Single Strand Conformational 

Polymorphism (PCR-SSCP) banding pattern of variant A, greater sequence variation within 

the extended ADRB3 A sequence has been suggested (Forrest et al., 2003). Therefore, it would 

be helpful for using ovine ADRB3 as a gene-marker if extended variation and haplotypes in 

the gene could be identified. 

Research reveals that the 3’UTR of ADRB2 mRNA may have roles in post-transcriptional 

regulatory mechanisms that are involved in the stability and degradation of various cellular 

RNAs, sub-cellular targeting and translation of many transcripts (Tholanikunnel and Malbon, 

1997; Yang et al., 1997). Deletion of the 3’UTR sequences resulted in 2-2.5 fold increases in 

ADRB2 expression (Subramaniam et al., 2011). 

The similarities of the ADRB2 3’UTRs from humans and rodents were calculated to be 

73% and 79%, respectively (Nakada et al., 1989), thus, it is presumed that this regions contain 

genetic elements that are required to regulate receptor expression and therefore have been 

subject to selective pressure to preserve their sequence (Nakada et al., 1989). The ADRB1 

mRNA has also been reported to be post-transcriptionally regulated at the level of mRNA 

stability and undergo accelerated agonist-mediated degradation via interaction of its 3’UTR 

with RNA binding proteins (Nakada et al., 1989). To date, little has been revealed about 

characteristics of ovine ADRB3 3’UTR. 

Given the important role of variation in ADRB3 and its association with sheep growth, in 

this chapter, extended haplotypes of ovine ADRB3 were defined by investigating variation 

within both the intron and 3’UTR region. Next associations between ovine ADRB3 haplotypes 

and selected growth and body composition traits in the NZ Suffolk sheep were investigated. 
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3.2 Material and methods 

Sheep analysed and blood collection 

There were 948 lambs studied in total, including 808 NZ Suffolk lambs from 38 sire-lines 

and eight studs (see Appendix A), and 140 NZ Merino sheep from eight sire-lines. The latter 

were known to include sheep possessing the thirteen previously described ADRB3 intron 

variants (A-M) (Byun et al., 2008; Forrest et al., 2003; Yang et al., 2011). 

Blood was collected from the ear using side-cutters onto FTA® cards (Whatman, 

Middlesex, UK). This sampling approach did not require ethical approval as ear-clipping is 

considered a standard sheep management practice. 

Sheep investigated to define haplotypes of ADRB3 

The 140 NZ Merino ewes and their lambs that were known to have the 13 previously 

described intron variants of ADRB3, were investigated for variation in the 3’UTR and 

haplotypes of ovine ADRB3. 

Sheep investigated for growth traits analyses 

The Suffolk breed was used for growth analyses. This breed has been widely used as a 

terminal sire throughout the world because of its excellent growth-rate and lean meat 

production. 

Because lambs birth weights were not available for dataset, the pre-weaning growth rate 

were not investigated in this study. The weights of the NZ Suffolk lambs from different farms 

were recorded at weaning (approximately 12 weeks of age), and at six months of age. Sire, 

gender and birth rank (whether the lamb was born single, twin, triplet or quad) of the lambs 

were recorded at birth. The post-weaning growth-rate of the NZ Suffolk lambs was calculated 

as the average weight gain per day (gram/day), from weaning to 6-months of age. 

Sheep investigated for body composition traits analyses 

The 225 NZ Suffolk ram lambs were chosen at 6-8 months of age for ultrasound scanning 

to estimate body composition. Traits including loin Eye Muscle Width (EMW), Eye Muscle 

Depth (EMD) and Fat Depth above the Eye Muscle (FDM) were measured. 

DNA purification 

Genomic DNA was purified from sheep studied using a two-step method described by 

Zhou et al., (2006). In this method, a 1.2mm blood disc was punched from each blood spot 
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and was transferred into a 200 µL PCR tube. Solution of 200 µL of 20mM NaOH was added 

to the tube and it was incubated for 30 min at room temperature. The solution was then 

discarded, and the disc was equilibrated in 200 µL of 1 × TE buffer (10mM Tris-HCl, 0.1mM 

EDTA, pH 8.0). After removal of the TE buffer, the disk was air-dried, prior to its use in 

PCR. 

PCR primer design 

Two sets of primers were designed based on a published ovine ADRB3 sequence 

(GenBank accession number: DQ269497) to amplify the intron and the 3’UTR region of 

ovine ADRB3 (see Figure 3.3). 

PCR amplification and SSCP analysis 

Multiplex PCR amplification of both the intron and 3’UTR fragments was carried out in a 

single 15 μL reaction, containing the genomic DNA on a 1.2mm diameter punch of FTA 

paper, 0.5μM of intron and 3’UTR primer pairs for ovine ADRB3, 150μM of each dNTP 

(Eppendorf, Hamburg, Germany), 0.5 U of Taq DNA polymerase (Qiagen, Hilden, Germany) 

and 1 × reaction buffer supplied with the polymerase enzyme (containing 1.5mM MgCl2). 

After initial denaturation at 94◦C for 2 min, 35 cycles of 94◦C for 30 s, 60◦C for 30 s and 72◦C 

for 30 s were utilised, followed by a final 5-min extension at 72◦C. 

A 0.7 μL aliquot of the PCR products was mixed with 7 μL of loading dye (98% 

formamide, 10mm EDTA, 0.025% bromophenol blue, 0.025% xylene-cyanol). After 

denaturation at 94◦C for 5 min, samples were rapidly cooled on wet ice and then loaded on 16 

× 18 cm, 12% acrylamide⁄bisacrylamide (37.5:1) (Bio-Rad) gels. Electrophoresis was 

performed using Protean II xi cells (Bio-Rad), at 290 V for 18 h at 25◦C in 0.5 × TBE buffer. 

Gels were silver-stained according to the method of Byun et al., (2009). In this method, gels 

were fixed and stained in a solution containing 10% ethanol, 0.5% acetic acid, and 0.2% silver 

nitrate (for anywhere between 3 and 20 min). The gels were rinsed with distilled water once 

and then developed with a solution of 3% NaOH and 0.1% HCOH (pre-warmed to 55 °C) 

until dark staining bands appear on the yellow background of the PCR-SSCP gels (varies 

between 5 and 10 min). Development was then stopped with a solution containing 10% 

ethanol and 0.5% acetic acid. SSCP banding patterns then could be observed directly from the 

gels. 

Amplicons representative of the previously reported intron variants (variants A-M) (Yang 

et al., 2009) and the 3’UTR variants identified in this study were also included in each 
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polyacrylamide gel and their banding patterns were used as PCR-SSCP pattern standards for 

determining intron and the 3’UTR genotypes of the individual sheep. 

Sequencing of ovine ADRB3 variants and sequence analysis 

Amplicons representative of different PCR-SSCP patterns from sheep that were 

homozygous for the each region of the ovine ADRB3 were directly sequenced at the Lincoln 

University DNA Sequencing Facility. For rare variants, only found in heterozygous sheep, a 

band corresponding to the rare variant was excised as a gel slice from the first PCR-SSCP gel. 

This gel slice was macerated, then used as a template for re-amplification with the original 

primers to produce a PCR-SSCP gel pattern equivalent to a sheep homozygous for that rare 

variant. This second amplicon was then directly sequenced. Sequence alignments, translations 

and comparisons were carried out using DNAMAN (version 5.2.10, Lynnon Biosoft, 

Vaudreuil, Canada). The BLAST algorithm was used to search the NCBI GenBank databases 

(http://blast.ncbi.nlm.nih.gov/) for homologous sequences. 

Haplotype determination 

For progeny that typed as homozygous in either of the regions, haplotype could be 

directly inferred based on the co-inheritance of sequences. For example, for an animal 

presenting with intron genotype AA and the 3’UTR genotype ab, the presence of haplotypes 

A-a and A-b could be confirmed. 

For progeny that typed as heterozygous in both regions, the sire haplotypes could be 

deduced by comparison with previously defined haplotypes and comparison with other 

progeny from the same sire. Any given half-sib progeny’s diplotype consists of one haplotype 

common to both its sire and to half of its siblings, along with a maternally derived haplotype. 

For example, for a sire having a diplotype of A-b/B-c, approximately half of its offspring will 

have the haplotype A-b, while the other half will be B-c. 

Statistical analyses 

Analysis of association between ovine ADRB3 intron and 3’UTR variants and selected 

traits in the NZ Suffolk sheep 

General Linear Mixed-effects Models (GLMMs) were used to explore the effect of the 

presence of a particular intron or 3’UTR variant in a sheep’s genotype on growth-rate and 

body composition traits. 



 30 

All statistical analyses were performed using SPSS version 19 (SPSS Inc., Chicago, IL, 

USA). General Linear Mixed-effects Models (GLMMs) were used to assess the effects of the 

presence/absence of a particular sequence variant in a lamb’s genotype, on post-weaning 

growth-rate (n = 538 lambs), and various body composition traits (n = 262 ram lambs) 

including EMW, EMD and FDM. Gender (for growth-rate analysis only, as body composition 

traits were only assessed in ram lambs) and birth rank were fitted as fixed factors and sire was 

fitted as a random factor in order to correct for sire effects as well as farm effects such as 

management and environmental effects (each sire was used exclusively on one farm). 

The generalized statistical model used to test the sequence variant (or genotype – see 

below) effects was as follows: Yijk = µ + τi + βj + αk + Єijk; where Yijk = traits evaluated on the 

ith level of the fixed factor genotype (τi), the jth level of the fixed factor birth rank (βj) and the 

kth sire of random effect (αk); where µ = overall mean for each trait and Єijk is the random 

error for ijk. 

Each variant was coded as present (1) or absent (0) for each animal’s genotype. Initially, 

single-variant models were performed to ascertain which variants should be included in 

subsequent multi-variant models and to assess whether the effect of the variants were 

independent of the other variants. The multi-variant models included any variant that had a 

variant-trait association in the single-variant models with a P value of less than 0.200 (and 

which could thus potentially impact on the trait of interest). For variants that had homozygous 

forms higher than 5% of all genotypes (thus providing an adequate sample size) a second set 

of analyses was performed, this time with the number of variant copies present in the animal’s 

genotype included (i.e. 0, 1 or 2) in place of presence/absence of coding, followed by planned 

orthogonal contrasts to ascertain whether additive, dominant or recessive effects were present. 

For genotypes with a frequency greater than 5% (thus having adequate sample size per 

group), a GLMM (fixed effect: genotype, gender [not for body composition analysis, and 

birth rank; random effect: sire) and multiple pair-wise comparisons with a Bonferroni 

correction were used to ascertain the effect of genotype on weaning weight, growth rate and 

body composition traits. 

Analysis of association between ovine ADRB3 haplotypes and selected traits in the NZ 

Suffolk sheep 

The association of the variants from these two regions were then investigated by 

assessing the effect of the presence of a particular intron-3’UTR haplotype in a sheep’s 

diplotype on growth-rate and body composition traits.  
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Birth rank and gender were fitted as fixed factors. Sire-group was fitted as a random 

factor in order to correct for farm-specific management and environmental effects and 

because no sire was used on more than one property. Single-haplotype present/absent models 

were performed to ascertain which haplotype should be included in subsequent multi-

haplotype models and such that we could assess whether the effect of the single haplotypes 

was independent of the other haplotypes in the diplotype. The multi-haplotype models 

included any haplotype that had associations with post-weaning growth-rate in the single-

haplotype models with a P value of less than 0.200. 

Each haplotype was coded as present (1) or absent (0) for each animal’s diplotype. For 

haplotypes that had homozygous forms greater than 5%, a second set of analyses was 

performed; this time with the number of haplotype copies present in the animal’s diplotype 

included (i.e. 0, 1 or 2) in place of the presence/absence of the haplotype. This was followed 

by planned orthogonal contrasts to ascertain whether additive, dominant or recessive effects 

could be observed. 

For diplotypes with a frequency greater than 5%, a GLMM (fixed effect: diplotype, 

gender and birth rank; random effect: sire) and multiple pair-wise comparisons with a 

Bonferroni correction, were used to estimate the association between diplotype, weaning-

weights, post-weaning growth-rates and body composition traits. 

3.3 Results 

Correlations between lamb growth and body composition traits in the NZ Suffolk sheep 

Pearson correlation coefficients between the lamb growth data and various body 

composition traits evaluated are listed in Table 3.1. Lamb post-weaning growth-rate was 

correlated with EMD (R = 0.433, P < 0.010), EMW (R = 0.179, P < 0.010) and FDM (R = 

0.287, P < 0.010). Weaning-weight was correlated with EMD (R = 0.566, P < 0.001), EMW 

(R = 0.593, P < 0.001) and FDM (R = 0.508, P < 0.001), but not post-weaning growth-rate (R 

= 0.098, P > 0.050). 
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Table 3.1 Correlation coefficients for comparisons between lamb growth and body composition 
traits in the NZ Suffolk sheep 

** Correlation is significant at the 0.010 level (2-tailed). 

Variation within the 3’UTR of ovine ADRB3 

Six unique PCR-SSCP banding patterns were observed for the approximately 304 bp 

3’UTR amplimers of ovine ADRB3 (Figure 3.3). 

 

 Weaning-Weight 

(WWT) 

Eye Muscle Depth 

(EMD) 

Eye Muscle Width 

(EMW) 

Fat Depth above the 
eye Muscle (FDM) 

Post-weaning Growth-

rate 
0.098 0.433** 0.179** 0.287** 

Weaning-Weight 

(WWT) 
 0.566** 0.593** 0.508** 

Eye Muscle Depth 

(EMD) 
  0.630** 0.561** 

Eye Muscle Width 

(EMW) 
   0.574** 
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Figure 3.3 The PCR-SSCP patterns and the single nucleotide variations detected in the intron and 3’UTR of ovine ADRB3. Two regions of ovine ADRB3 
amplified were shown in diagonal lines pattern; The 5’UTR in exon 1 and 3’UTR in exon 2 of the gene are shown in blank boxes. The primer coordinates are 
defined by a sequence of ovine ADRB3 (DQ269497); The PCR-SSCP patterns observed in NZ Suffolk sheep are shown in bold italics; The positions of single 
nucleotide variations in the intron and 3’UTR of ovine ADRB3 are described relative to ovine ADRB3 coding sequence (DQ269497) and named according to 
sequence variation nomenclature (http://www.hgmd.cf.ac.uk/docs/mut_nom.html). 
 

!

K CH L D I M G

 

J

 

A 

!

B 

!

C 

!

E 

!

F 

!

Exon 2 Exon 1 Intron 



 34 

Sequencing confirmed that each pattern represented a novel 3’UTR variant of ADRB3 

(designated a-f, GenBank accession numbers: HM776668-HM776673, respectively). 

Three SNPs and a single-nucleotide deletion in the 3’UTR of ovine ADRB3 were 

identified by comparison of the six 3’UTR variant sequences. They are c.*233A>C, 

c.*271G>C, c.*357A>T and c.*257delG, respectively (Figure 3.3). 

Frequencies of the ovine ADRB3 intron and 3’UTR variants in the NZ Suffolk Sheep 

Results from PCR-SSCP analysis of the 808 Suffolk sheep revealed five previously 

reported variant sequences (A, B, C, E and F) in the intron and four variant sequences (a, b, c 

and e) in the 3’UTR of ovine ADRB3. The variant sequences of the intron of ovine ADRB3 

were identified with the following frequencies: A (33.1%), B (25.5%), C (15.7%), E (14.9%) 

and F (10.8%), and in the 3’UTR the frequencies were: a (9.5%), b (25.1%), c (26.4%) and e 

(39.0%). 

Association between ovine ADRB3 intron variants, 3’UTR variants and weaning-weights 

in the NZ Suffolk sheep 

In the single- and multi-variant models (Table 3.2), the presence of A was associated (P < 

0.001 and P = 0.009, respectively) with lower mean weaning-weight. Variant C was 

associated (P = 0.021, Table 3.2) with higher mean weaning-weight in the single-variant 

model, but this effect did not persist in the multi-variant model suggesting the effect was not 

an independent effect. Variant b was associated with lower mean weaning-weight in the 

single- and multi-variant models (P = 0.001 and P = 0.012, respectively), suggesting this is an 

independent allele effect. 

The frequency of the variant A, B, E, b, c, and e homozygous form was greater than 5% 

and so additive, dominant and recessive effects were assessed. Lambs possessing the 

heterozygous A variant were found to have lower mean weaning-weights than those that did 

not have variant A in their genotype (P < 0.050, Table 3.3). Lambs heterozygous for variant b 

had lower mean weaning-weights (P < 0.050, Table 3.3) than those did not have variant b in 

their genotype.  

The genotypes AA, AB, AC, AE, BB, BC, BE, BF and CE in the intron and ab, ac, ae, bb, 

bc , be, cc, ce and ee in the 3’UTR occurred at a frequency of greater than 5%. 

The marginal means for weaning-weights are listed in Table 3.4 for each genotype. Those 

lambs with the intron CE genotype had higher weaning-weight than those with AA (P = 

0.003), AB (P < 0.001), AC (P = 0.0012), AE (P < 0.001), AF (P = 0.001), BB (P = 0.001) and 
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BE (P = 0.005). Those sheep with the BF genotype had higher weaning-weight than AB (P = 

0.046) and AE (P = 0.023). 

The 3’UTR genotype was also found to effect weaning-weight (Table 3.4). Those 

animals with the ae genotype had higher weaning-weight than those with ab (P = 0.012), ac 

(P = 0.022), bb (P = 0.014), bc (P < 0.001), be (P < 0.001), cc (P = 0.005) and ce (P = 0.036). 

Those sheep with the ee genotype had higher weaning-weight than bc (P = 0.004), be (P = 

0.002) and cc (P = 0.036). Those sheep with the ce genotype had higher weaning-weight than 

those with bc (P = 0.021) and cc (P = 0.014). 

Associations between the ovine ADRB3 intron variants, 3’UTR variants and post-

weaning growth-rates 

In the single- and multi-variant models, the presence of B or C was associated with 

variation in post-weaning growth-rate, with B being independently associated (P = 0.017, 

Table 3.2) with lower post-weaning growth and C being independently associated (P = 0.018, 

Table 3.2) with higher in post-weaning growth-rate. Variant c was associated with lower post-

weaning growth-rate in both the single- and multi-variant models (P = 0.005 and P = 0.012, 

respectively), while the increase in post-weaning growth-rate associated with a in the single-

variant model (P = 0.021, Table 3.2), only persisted as a trend (P = 0.054, Table 3.2) in the 

multi-variant model. 

The frequency of homozygous A, B, E, b, c and e was greater than 5% of all genotypes, 

and so additive, dominant or recessive effects could be ascertained (Table 3.3). The 

homozygous and heterozygous forms of B were found to be associated with a significant 

decrease in post-weaning growth-rate (Table 3.3). The homozygous and heterozygous forms 

of c were associated with a significant decrease in post-weaning growth-rate (Table 3.3). No 

other associations were detected (P > 0.050). 

Those marginal means for post-weaning growth-rates are listed in Table 3.4 for each 

genotype occurred at a frequency of greater than 5%. Those animals with the BB genotype 

had lower post-weaning growth-rates than those with AC (P = 0.036), AE (P = 0.034), BC (P 

= 0.021) and CE (P = 0.029). 

Those animals with the ab genotype had higher post-weaning growth-rates than those 

with bb (P = 0.037), bc (P = 0.004), cc (P = 0.007) and ce (P = 0.038). Those sheep with the 

ee genotype had higher growth-rates than bb (P = 0.032), bc (P = 0.002), cc (P = 0.003) and 

ce (P = 0.014). 
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Association between ovine ADRB3 intron variants, 3’UTR variants and selected 

body composition traits in the NZ Suffolk sheep 

In the single variant models, the presence of C was associated with higher Fat Depth 

above the eye Muscle (FDM) (P = 0.033, Table 3.5). No other associations were detected (P > 

0.050). 

The frequency of CC was greater than 5% of all genotypes in 225 Suffolk sheep 

analysed, and so additive, dominant or recessive effects could be ascertained. The 

heterozygous forms of C were found associated with higher FDM (P =0.040) suggesting a 

dominant effect of C. 

The marginal means for FDM for each genotype listed in Table 3.6 occurred at a 

frequency of greater than 5%. Those animals with the AA genotype had lower FDM than 

those with AC (P < 0.001), AE (P = 0.049), BC (P = 0.005) and BE (P = 0.005). Those 

animals with the AC genotype had higher FDM than those with AB (P = 0.002), AE (P = 

0.016), AF (P = 0.004), BF (P = 0.001) and CE (P = 0.001).Those animals with the CE 

genotype had lower FDM than BC (P = 0.039) and BE (P = 0.039). 

Those animals with the ac genotype had higher FDM than those with bb (P = 0.037). 

Those sheep with be genotype also had higher growth-rates than bb (P = 0.003). 

No association (P > 0.050) was detected between intron, 3’UTR genotypes, EMD and 

EMW. 
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Table 3.2 Association between ADRB3 intron, 3’UTR variants, weaning-weights and post-weaning growth-rates in the NZ Suffolk sheep 

Variant   Weaning-weight (kg) Marginal Mean 1 ± Std Error  P value1  Post-weaning Growth-rate (g/day) Marginal Mean 1 ± Std Error P value1 
 Absent n Present n  Absent n Present n 

Intron: single model         
A  33.3 ± 1.19 354 31.5 ± 1.19 454 < 0.001  175 ± 12 354 172 ± 12 454 0.575 
B  32.6 ± 1.19 435 32.1 ± 1.21 373 0.221  179 ± 11 435 165 ± 12 373 0.002 
C  32.0 ± 1.18 594 33.2 ± 1.23 214 0.021  169 ± 11 594 185 ± 12 214 0.002 
E  32.2 ± 1.19 532 32.8 ± 1.23 276 0.266  172 ± 11 532 177 ± 12 276 0.436 
F  32.1 ± 1.18 668 33.2 ± 1.25 140 0.067  172 ± 11 668 178 ± 12 140 0.354 
Multi model (A,C and F fitted as fixed factors in weaning-weight analysis; B and C fitted as fixed factors in post-weaning growth-rate analysis) 
A  33.5 ± 1.19 354 32.0 ± 1.23 454 0.009  Not in model     
B  Not in model      181 ± 11 435 170 ± 12 373 0.017 
C  32.3 ± 1.18 594 33.2 ± 1.24 214 0.082  169 ± 11 594 181 ± 12 214 0.018 
F  32.4 ± 1.18 668 33.2 ± 1.26 140 0.182  Not in model     
3’UTR: single model       
a  32.2 ± 1.18 671 33.3 ± 1.27 137 0.089  172 ± 11 671 186 ± 12 137 0.021 
b  33.2 ± 1.19 373 31.5 ± 1.20 435 0.001  176 ± 12 373 173 ± 12 435 0.497 
c  32.6 ± 1.19 425 32.1 ± 1.20 383 0.285  180 ± 11 425 167 ± 12 383 0.005 
e  31.9 ± 1.21 362 32.7 ± 1.19 446 0.097  172 ± 12 362 176 ± 11 446 0.359 
Multi model (a, b and e fitted as fixed factors in weaning-weight analysis; a and c fitted as fixed factors in post-weaning growth-rate analysis) 
a  32.1 ± 1.18 671 33.0 ± 1.28 137 0.209  171 ± 11 671 183 ± 12 137 0.054 
b  33.3 ± 1.20 373 31.8 ±1.22 435 0.012  Not in model     
c  Not in model      183 ± 11 425 171 ± 12 383 0.012 
e  32.3 ± 1.20 362 32.8 ± 1.21 446 0.339  Not in model     
 

1P value associated with the variant being assessed. Estimated marginal means and P values were derived from GLMMs with variant presence/absence, gender and 
birth rank fitted as fixed factors and sire-line fitted as a random factor (P < 0.050 in bold). 
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Table 3.3 Association of ovine ADRB3 intron, 3’UTR variant copy number with weaning-weights and post-weaning growth-rates in the NZ Suffolk sheep 
 
Variant  Weaning-weight (kg) Marginal Mean 1, 2 ± Std Error  P value1  Post-Weaning Growth-rate (gram/day) Marginal Mean 1, 2 ± Std Error  P value1 

Absent n 1 copy n 2 copies3 n  Absent n 1 copy n 2 copies3 n 
Intron 

A 33.2 ± 1.19a 354 31.2 ±1.20b 369 32.4 ± 1.33ab 85 0.001  176±12 354 174±12 369 168±13 85 0.616 

B 32.6 ± 1.19 435 32.1 ± 1.21 332 31.4 ± 1.55 41 0.368  180±11 a 435 167±12 b 332 154±15b 41 0.005 

E 32.2 ± 1.19 532 32.9± 1.23 252 31.3 ± 1.78 24 0.272  172±11 532 176±12 252 179±17 24 0.728 

3’UTR 

b 33.2 ± 1.19a 367 31.2 ±1.21b 357 32.3 ± 1.34ab 84 0.001  176±12 367 173±12 357 169±13 84 0.689 

c 32.6 ± 1.19 425 32.2 ± 1.21 340 31.3 ±1.54 43 0.412  179±11a 425 168±12b 340 154±15b 43 0.012 

e 31.9 ± 1.20 362 32.5 ± 1.19 369 33.7 ± 1.37 77 0.079  170±12a 362 173±12a 369 189±13b 77 0.069 
1P value associated with intron and 3’UTR variants being assessed. Estimated marginal means and P values were derived from GLMMs with variant copy number, 
gender and birth rank fitted as fixed factors and sire-line fitted as a random factor (P < 0.050 in bold). 
2Means within rows with superscripts in common are not significantly different (multiple pair-wise comparisons with a Bonferroni correction, P > 0.050). 



 39 

Table 3.4 Association between ovine ADRB3 intron, 3’UTR genotypes and key growth traits in 
the NZ Suffolk sheep 
 

Genotype n  Weaning-weight (kg)  

Marginal Mean1, 2 ± Std Error 

Post-Weaning Growth-rate (g /day)  

Marginal Mean1, 2 ± Std Error 

Intron 

AA 86 32.4 ± 1.36ac 168 ± 13ef 

AB 148 31.2 ± 1.31a 166 ± 12ef 

AC 83 32.0 ± 1.40ac 181 ± 13e 

AE 99 30.7 ± 1.35a 180 ± 13e 

AF 54 31.3 ± 1.43ac 177 ± 14ef 

BB 41 31.2 ± 1.56ac 155 ± 15f 

BC 63 32.0 ± 1.41abc 185 ± 13e 

BE 86 32.6 ± 1.40ac 165 ± 13ef 

BF 43 33.4 ± 1.55bc 162 ± 15ef 

CE 47 36.1 ± 1.51b 185 ± 14e 

3’UTR 

ab 38 31.9 ± 1.49cd 191 ±14eh 

ac 38 32.1 ±1.51bcd 183 ± 14efh 

ae 45 35.2 ±1.47a 175 ± 14efgh 

bb 76 32.3 ± 1.34cd 168 ± 13fg 

bc 129 31.2 ± 1.29d 162 ± 12fg 

be 164 31.1 ± 1.25cd 175 ± 12efgh 

cc 42 31.3 ± 1.53d 154 ± 15g 

ce 151 32.9 ± 1.26c 169 ± 12fg 

ee 75 33.9 ± 1.36ab 190 ± 13h 
1Estimated marginal means were derived from GLMMs with genotype, gender and birth rank fitted as 
fixed factors and sire-line fitted as a random factor. 
2 Means in each column for both intron and 3’UTR variants with superscripts in common are not 
significantly different (multiple pair-wise comparisons with a Bonferroni correction, P > 0.050). 
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Table 3.5 Association between ovine ADRB3 intron, 3’UTR variants and selected body 
composition traits in the NZ Suffolk sheep 
 
Trait2 Variant being 

assessed 

Marginal Mean 1 ± Std Error P value1 

Variant absent n Variant present n 

EMD (mm) A 30.4 ± 0.6 116 29.7 ± 0.5 109 0.101 

 B 30.0 ± 0.5 124 30.0 ± 0.6 101 0.972 

 C 30.0 ± 0.5 153 30.6 ± 0.6 72 0.072 

 E 30.0 ± 0.6 156 30.1 ± 0.5 69 0.632 

 F 30.0 ± 0.5 173 30.2 ± 0.6 52 0.616 

 a 30.0 ± 0.5 193 30.8 ± 0.7 32 0.160 

 b 30.4 ± 0.5 116 30.0 ± 0.5 109 0.101 

 c 30.3 ± 0.5 124 30.0 ± 0.6 101 0.972 

 e 29.6 ± 0.6 83 30.2 ± 0.5 142 0.135 

EMW (mm) A 75.8 ± 0.8 116 75.2 ± 0.8 109 0.415 

 B 75.5 ± 0.8 124 75.5 ± 0.9 101 0.940 

 C 75.4 ± 0.8 153 75.8 ± 0.9 72 0.578 

 E 75.4 ± 0.8 156 75.6 ± 0.8 69 0.749 

 F 75.4 ± 0.8 173 75.7 ± 0.9 52 0.683 

 a 75.4 ± 0.8 193 75.8 ± 1.1 32 0.670 

 b 75.8 ± 0.8 116 75.2 ± 0.8 109 0.415 

 c 75.5 ± 0.8 124 75.5 ± 0.9 101 0.940 

 e 75.2 ± 0.9 83 75.6 ± 0.8 142 0.480 

FDM (mm) A 3.4 ± 0.2 116 3.4 ± 0.1 109 0.911 

 B 3.3 ± 0.1 124 3.4 ± 0.2 101 0.800 

 C 3.3 ± 0.1 153 3.5 ± 0.2 72 0.033 

 E 3.4 ± 0.2 156 3.3 ± 0.2 69 0.898 

 F 3.4 ± 0.1 173 3.3 ± 0.2 52 0.403 

 a 3.3 ± 0.1 193 3.6 ± 0.2 32 0.084 

 b 3.4 ± 0.2 116 3.3 ± 0.1 109 0.911 

 c 3.3 ± 0.1 124 3.4 ± 0.2 101 0.800 

 e 3.3 ± 0.2 83 3.4 ± 0.1 142 0.517 
1P value associated with intron and 3’UTR variants being assessed. Estimated marginal means and P 
values were derived from GLMMs with variant copy number, gender and birth rank fitted as fixed 
factors and sire-line fitted as a random factor (P < 0.050 in bold). 
2EMD: Eye Muscle Depth; EMW: Eye Muscle Width; FDM: Fat Depth above the eye Muscle. 
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Table 3.6 Association between ovine ADRB3 intron, 3’UTR genotypes and Fat Depth above the  
eye Muscle (FDM) in the NZ Suffolk sheep 

 
1Estimated marginal means were derived from GLMMs with genotype, gender and birth rank fitted as 
fixed factors and sire-line fitted as a random factor. 
2Means in each column with superscripts in common are not significantly different (multiple pair-wise 
comparisons with a Bonferroni correction, P > 0.050).

Genotype n Fat Depth above the eye Muscle (FDM) (mm) Marginal Mean 1, 2 ± Std Error 
Intron  

AA 26 2.8 ± 0.2a 

AB 27 3.2 ± 0.2ab 

AC 19 4.0 ± 0.2b 

AE 21 3.3 ± 0.2ab 

AF 16 3.2 ± 0.2ab 

BC 25 3.5 ± 0.2b 

BE 17 3.6 ± 0.2b 

BF 22 3.1 ± 0.2ab 

CE 17 3.0 ± 0.2a 

3’UTR   

ac 13 3.5 ± 0.3d 

ae 12 3.2 ± 0.3de 

bb 26 2.9 ± 0.2e 

bc 27 3.1 ± 0.2de 

be 49 3.5 ± 0.2d 

ce 51 3.3 ± 0.2de 

ee 30 3.2 ± 0.2de 
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Haplotypes of ovine ADRB3 

In the 140 Merino sheep investigated, sixteen intron-3’UTR haplotypes of ovine ADRB3 

were deduced: A-a, A-b, A-c, B-c, C-a, C-e, D-d, E-e, F-e, G-f, H-f, I-a, J-f, K-e, L-e and M-f 

(Figure 3.4). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Frequencies of the ovine ADRB3 haplotypes and diplotypes in the NZ Suffolk Sheep 

In the 808 Suffolk sheep investigated, seven ADRB3 haplotypes were found and these 

were composed of the five previously reported intron variants (A, B, C, E and F; GenBank 

accession numbers: AF314200-AF314202, AF314204 and AF314205, respectively) and four 

3’UTR variants (a, b, c and e; GenBank accession numbers: HM776668-HM776670 and 

HM776672, respectively). The frequencies of the individual haplotypes ranged from 0.8% to 

32.5% and various diplotypes ranged from 0.1% to 17.6% (Table 3.7 and Table 3.10, 

respectively). 

Figure 3.4 Diagram of sixteen potential haplotypes within ovine ADRB3 
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Association between ovine ADRB3 haplotypes and weaning-weights in the NZ Suffolk 
sheep 

In the single-haplotype models, the presence of haplotype A-b was associated with lower 

weaning-weight (P = 0.001, Table 3.7). The associations between haplotype A-b and 

weaning-weight persisted in the multi-haplotype models (P = 0.003), with C-a and F-e fitted 

as fixed factors (Table 3.7). No associations of the other haplotypes and variation in weaning-

weights were detected in the multi-haplotype model (Table 3.7). 

The frequency of the haplotype A-b, B-c and E-e homozygous form was greater than 5% 

and so additive, dominant and recessive effects were assessed. Lambs possessing the 

heterozygous A-b haplotype were found to have a lower mean weaning-weight than those that 

did not have haplotype A-b in their diplotype (P < 0.050, Table 3.8). 

Those marginal means for weaning-weights are listed in Table 3.10 for each diplotype 

occurred at a frequency of greater than 5%. Lambs with the B-c/F-e diplotype had a higher 

mean weaning-weight than those with the diplotype of A-b/B-c (P < 0.050) and A-b/E-e (P < 

0.050). No other significant difference between diplotypes were detected (Table 3.9). 
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Table 3.7 Association between ADRB3 haplotypes, weaning-weights and post-weaning growth rates in the NZ Suffolk sheep 
 
Haplotype  Frequency 

(%) 
Weaning-weight (kg) Marginal Mean 1 ± 
Std Error 

P value1  Post-weaning Growth-rate (g/day) Marginal Mean 1 ± 
Std Error  

P value1 

Absent n Present n Absent n Present n 
Single haplotype model 
A-b 32.5 33.2 ± 1.19 367 31.5 ± 1.20 441 0.001  176 ± 12 367 172 ± 12 441 0.414 

A-c 0.8 32.4 ± 1.17 796 30.7 ± 2.20 12 0.366  174 ± 11 796 185 ± 22 12 0.271 

B-c 26.0 32.6 ± 1.19 433 31.1 ± 1.20 365 0.221  179 ± 11 433 165 ± 12 365 0.002 

C-a 9.1 32.2 ± 1.18 669 33.3 ± 1.27 139 0.064  171 ± 11 669 186 ± 12 139 0.008 

C-e 4.8 32.3 ± 1.18 729 33.5 ± 1.36 79 0.129  173 ± 11 729 183 ± 13 79 0.167 

E-e 18.3 31.1 ± 1.19 471 32.9 ± 1.21 337 0.082  173 ± 12 471 176 ± 12 337 0.556 

F-e 8.5 32.5 ± 1.18 756 31.8 ± 1.41 52 0.413  173 ± 11 756 178 ± 14 52 0.612 

Multi-haplotype model (A-b, C-a and E-e fitted as fixed factors for weaning-weight analysis; B-c, C-a and C-e fitted as fixed factors for post-growth rate analysis) 
A-b 32.5 33.3 ± 1.25 367 31.7 ± 1.26 441 0.003  Not in model     

C-a 9.1 32.1 ± 1.21 669 32.8 ± 1.31 139 0.265  173±12 669 187±13 139 0.020 

E-e 8.5 32.6 ± 1.19 756 32.4 ± 1.42 52 0.802  Not in model     

B-c 26.0 Not in model      186±12 433 175±12 365 0.017 

C-e 4.8 Not in model      176±11 729 185±14 79 0.257 
 

1P value associated with the haplotype being assessed. Estimated marginal means and P values were derived from GLMMs with haplotype presence/absence, 
gender and birth rank fitted as fixed factors and sire-line fitted as a random factor (P < 0.050 in bold). 
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Table 3.8 Association between ovine ADRB3 haplotype copy numbers and weaning-weights and post-weaning growth-rates in the NZ Suffolk sheep 
 
Haplotype  Weaning-weight Marginal Mean 1, 2 ± Std Error (kg) P value1  Post-Growth-rate Marginal Mean 1, 2 ± Std Error (g /day) P value1 

Absent n 1 copy n 2 copies n  Absent n 1 copy n 2 copies n 
A-b 33.2 ± 1.19a 362 31.2 ± 1.20b 355 32.4 ± 1.34ab 81 0.001  176 ± 12 362 172 ± 12 355 168 ± 13 81 0.622 

B-c 32.7 ± 1.19 433 32.1 ± 1.21 326 31.4 ± 1.55 39 0.368  180 ± 11a 433 167 ± 12b 326 154 ± 15b 39 0.005 

E-e 32.1 ± 1.19 461 33.0 ± 1.21 313 31.4 ± 1.77 24 0.107  173 ± 12 461 175 ± 12 313 178 ± 17 24 0.823 
 

1P value associated with the haplotype being assessed. Estimated marginal means and P values were derived from GLMMs with haplotype copy number, 
gender and birth rank fitted as fixed factors and sire-line fitted as a random factor (P < 0.050 in bold). 
2Means within rows with superscripts in common are not significantly different (Pair-wise comparisons with Bonferroni corrections, P > 0.050). 
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Table 3.9 Association between ovine ADRB3 diplotypes and key growth traits in the NZ Suffolk 
sheep 
 
Diplotype n  Frequency 

(%) 
Weaning-weight (kg) Marginal 
Mean1, 2 ± Std Error 

Post-weaning Growth-rate (g /day) 
Marginal Mean1, 2 ± Std Error 

A-b/A-b 81 10.3 32.6 ± 1.45ab 172 ± 13de 

A-b/B-c 141 17.6 31.3 ± 1.39a 169 ± 12de 

A-b/C-a 46 5.8 32.2 ± 1.60ab 194 ± 14c 

A-b/E-e 88 11.0 30.8 ± 1.44a 179 ± 13ce 

A-b/F-e 48 6.2 31.5 ± 1.52ab 177 ± 14ce 

B-c/B-c 39 5.1 31.6 ± 1.66ab 156 ± 15e 

B-c/C-a 41 5.0 31.4 ± 1.61ab 186 ± 15c 

B-c/E-e 84 10.4 32.9 ± 1.50ab 167 ± 13de 

B-c/F-e 39 4.9 33.7 ± 1.63b 164 ± 15de 

1Estimated marginal means were derived from GLMMs with diplotype, gender and birth rank fitted as 
fixed factors and sire-line fitted as a random factor. 
2Means in each column with superscripts in common are not significantly different (Pair-wise 
comparisons with Bonferroni corrections, P > 0.050). 
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Table 3.10 Association between ovine ADRB3 diplotypes and Fat Depth above the eye Muscle 
(FDM) in the NZ Suffolk sheep 

 
1Estimated marginal means were derived from GLMMs with diplotype, gender and birth rank fitted as 
fixed factors and sire-line fitted as a random factor. 
2Means in each column with superscripts in common are not significantly different (Pair-wise 
comparisons with a Bonferroni correction, P > 0.050). 
 

Diplotype n Fat Depth above the eye Muscle (FDM) (mm) Marginal Mean 1, 2 ± Std Error 
A-b/A-b 26 2.8 ± 0.2a 

A-b/B-c 27 3.1 ± 0.2ac 

A-b/C-e 12 3.8 ± 0.3bd 

A-b/E-e 21 3.2 ± 0.2abc 

A-b/F-e 16 3.1 ± 0.3ac 

B-c/C-a 13 3.7 ± 0.3b 

B-c/C-e 12 3.4 ± 0.3bc 

B-c/E-e 17 3.6 ± 0.3b 

B-c/F-e 22 3.0 ± 0.2ac 
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Association between ovine ADRB3 haplotypes and post-weaning growth-rates in the NZ 
Suffolk sheep 

In the single-haplotype models, the presence of haplotype C-a was associated with higher 

post-weaning growth-rate (P = 0.008; Table 3.7) and the presence of the haplotype B-c was 

associated with lower post-weaning growth-rate (P = 0.002; Table 3.7). The associations 

between haplotypes C-a, B-c and post-weaning growth-rates persisted in the multi-haplotype 

models (C-a: P = 0.020 and B-c: P= 0.017, Table 3.7). No associations of the haplotypes A-b, 

A-c, C-e, E-e and F-e with variation in the post-weaning growth-rates were detected (P > 

0.050, Table 3.7). 

Lambs possessing the heterozygous and homozygous B-c haplotype were found to have 

lower mean post-weaning growth-rates than those that did not have haplotype B-c in their 

diplotype (P < 0.050, Table 3.8). 

For those diplotype frequencies over 5%, lambs (Table 3.9) with the A-b/C-a diplotype 

had a higher mean post-weaning growth-rate than those with the diplotypes of A-b/A-b (P = 

0.017), A-b/B-c (P = 0.003), B-c/B-c (P < 0.001), B-c/E-e (P = 0.003) and B-c/F-e (P = 

0.003). Lambs with the B-c/B-c diplotype had a lower mean post-weaning growth-rate than A-

b/C-a (P < 0.001) and B-c/C-a (P = 0.003). 

Association between ovine ADRB3 haplotypes and selected body composition traits in 
the NZ Suffolk sheep 

Of 225 Suffolk sheep analysed, no association (P > 0.050) was found between ADRB3 

haplotypes and EMD, EMW and FDM. 

Those marginal means for FDM for each diplotype occurred at a frequency of greater 

than 5% were calculated (Table 3.10). Those animals with the A-b/A-b diplotype had lower 

FDM than those with A-b/C-e (P < 0.001), B-c/C-a (P = 0.006), B-c/C-e (P = 0.047) and B-

c/E-e (P = 0.006). Those animals with the A-b/C-e diplotype had higher FDM than those with 

A-b/B-c (P = 0.009), A-b/F-e (P = 0.014) and B-c/F-e (P = 0.003). Those animals with the B-

c/F-e diplotype had FDM lower than B-c/C-a (P = 0.031) and B-c/E-e (P = 0.038). 

No association (P > 0.050) was detected between ADRB3 diplotypes and EMD, and 

EMW. 
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3.4 Discussion 

Association between intron, 3’UTR variant and selected traits  

In this chapter, variation in both the intron and the 3’UTR of ovine ADRB3 was found to 

be associated with weaning-weight and post-weaning growth in the NZ Suffolk sheep. The 

3’UTR variant a was associated with higher weaning-weight and post-weaning growth-rate 

while variant b was associated with lower weaning-weight. Similarly, the 3’UTR variant c 

also tended to be associated with lower weaning-weight and was significantly associated with 

reduced a post-weaning growth-rate. 

The presence of intron variant C was associated with higher mean weaning-weight and 

post-weaning growth-rate. Variant A was associated with lower mean weaning-weight. 

Variant B was associated with lower mean post-weaning growth-rate. This appears to contrast 

half-sib analyses in NZ Merino (Forrest et al., 2003) and NZ Romney (Horrell et al., 2009) 

sheep where progeny inheriting A had significantly higher weaning-weight than their 

littermates inheriting C. However, the frequency of A (33.1%) was notably lower in the NZ 

Suffolk sheep, when compared to its frequency in NZ Romney (73.9%) (Horrell et al., 2009) 

and NZ Merino cross-bred sheep (60%) (Byun et al., 2008). Forrest et al., (2003) speculated 

that the A variant probably represented more than one variant. This was subsequently 

confirmed by identification of three intron-3’UTR haplotypes (A-a, A-b and A-c) associated 

with A in the NZ Merino sheep. Therefore, it is conceivable that the growth traits association 

previously seen with the Merino and Romney sheep is the result of a different intron A-

3’UTR haplotype than that present in the Suffolk population and/or the effect is moderated by 

some other genetic influence or environment effects. 

Extended haplotypes of ovine ADRB3 

Variation was identified in the 3’UTR and intron of ovine ADRB3. Sixteen haplotypes 

were deduced in the sheep studied based on the variation in the 3’UTR and intron region of 

gene. This extended variation is of note as the ADRBs have often been thought of as “house-

keeping genes”. 

It is notable that the previously described ovine ADRB3 variant D, which has been 

associated with reduced cold-tolerance in lambs (Forrest et al., 2006), also appears to have a 

unique sequence in the 3’UTR (designated d), that is not associated with any of the other 

intron variants studied. Given that the variation in this D-d haplotype may alter the binding of 

ADRB3 with hormones and association between the intron variant D with decreased cold-
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survival, it suggests that the D-d haplotype may be also associated with lamb survival traits. 

This needs further work to confirm. 

The majority of the sequence variation within ovine ADRB3 has been reported to be silent 

(Byun et al., 2008; Forrest et al., 2003; Yang et al., 2011). However, silent variation within 

genes may be in linkage disequilibrium with other variation in the gene (or flanking the gene), 

and this may affect gene expression or protein structure and function. Recently, it has also 

been suggested that naturally occurring silent variation within non-coding sequences can 

affect in vivo protein folding, and consequently function. This silent variation may create 

codons in the mRNA for which tRNAs are less available and this may slow the rate of 

translation and protein function (Kimchi-Sarfaty et al., 2007; Komar, 2007). This would 

require further functional studies with ADRB3 to be undertaken to see whether an effect is 

observed. 

Association of ovine ADRB3 haplotypes and key growth traits in the NZ Suffolk Sheep  

This study suggests that ovine ADRB3 has a role in the variation of the growth traits 

which may be of economic importance to sheep farmers and provides a further insight into the 

association between ovine ADRB3 and growth. 

In total, seven previously defined haplotypes were detected, in the NZ Suffolk lambs 

studied. This is somewhat less than the sixteen haplotypes described in the NZ Merino sheep 

breed. Furthermore, the “cold mortality-associated” haplotype D-d (Forrest et al., 2007) 

described previously, was not found in these NZ Suffolk lambs. 

This lower level of ADRB3 diversity in the NZ Suffolk sheep compared to the NZ Merino 

sheep may be because the NZ Suffolk sheep have historically been selected for growth and 

survival (Barwick et al., 1990) and thus they may contain fewer “negative growth-associated” 

haplotypes. 

It is notable that haplotype C-a, which was associated with higher post-weaning growth, 

has a 3’UTR deletion [*257 delA or loss of an adenine at position 1603 of the ovine ADRB3 

sequence (GenBank accession number: AF314200)]. Whether this deletion or its associated 

variation in the gene affects the binding of a microRNA, or in some other way affects mRNA 

stability, however, is still unknown.  

However, of the 808 NZ Suffolk sheep analysed, the frequency of the higher growth-rate 

associated haplotype C-a was considerably lower (9.1%) than other common haplotypes such 

as A-b (32.5%) and B-c (26.0%). Having diplotype A-b/C-a could notionally increase post-
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weaning growth-rate by up to 28.8 ± 9.1% relative to having diplotype B-c/B-c (estimated 

from Table 3.9).  

Interestingly, intron variant C has previously been associated with higher birth weight in 

both NZ Merino-cross (× Coopworth and Dorset Down) sheep (Forrest et al., 2003) and NZ 

Romney sheep (Horrell et al., 2009). It has also been associated with decreased perinatal 

survival across several breeds (Forrest et al., 2007). The lower frequency of C-a in the NZ 

Suffolk sheep may therefore indicate that the haplotype may be associated with compromised 

perinatal survival in this breed as well, and has been selected against by ongoing selection for 

improved survival. 

Given that the overall frequencies of the A-3’UTR haplotypes (33.3%, sum of frequency 

of A-a: 0%, A-b: 32.5% and A-c: 0.8%) was notably lower in the NZ Suffolk sheep than in the 

NZ Romney sheep (73.9%) (Horrell et al., 2009) and the NZ Merino sheep (60%) (Byun et 

al., 2008), it is conceivable that the previous association of intron variant A with higher pre-

weaning growth-rate found in NZ Romney and NZ Merino sheep may because of higher 

frequency of either or both of haplotype A-a or A-c; haplotypes that either were not found at 

all in the NZ Suffolk sheep (A-a) or that are only found at a very low frequency (A-c). Further 

studies will be needed to confirm these associations, to examine whether any of the ADRB3 

haplotypes such as A-b and A-c are breed-specific or sire-specific haplotypes and to ascertain 

if extended variation and haplotypes can be identified in more sheep breeds. 

Association of ovine ADRB3 haplotypes and selected body composition traits in the NZ 

Suffolk Sheep  

The ADRB3 variants and haplotypes were found to not strongly be associated with the 

body composition traits EMD, EMW and FDM. Variant C was found to be associated with 

higher FDM. Given that C was associated with higher wool staple strength (Forrest et al., 

2009), it is suggested that this variant may be associated with varied ADRB3 function.. 

In NZ, variation in ovine ADRB3 is currently used in marker-assisted selection for 

improved cold tolerance. The finding of extended ADRB3 haplotypes and their association 

with post-weaning growth and body composition traits obtained in this work might allow for 

further development of this breeding technology. 
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    Chapter 4 
Variation in the ovine Hormone-Sensitive Lipase gene 

(HSL) and its association with growth and body 
composition traits 

4.1 Introduction 

Hormone-Sensitive Lipase (HSL) is a multifunctional enzyme involved in many 

metabolic processes including lipolysis, FFA mobilisation, BAT-mediated thermogenesis, 

steroidogenesis and male spermatogenesis (Osuga et al., 2000). It is predominantly found in 

WAT and BAT, but also can be found in several non-adipose tissues such as skeletal muscle 

and the testis (Liu et al., 1995). The lipolytic activity of HSL is under the hormonal control of 

catecholamine and insulin (Anthonsen et al., 1998; Frayn et al., 1995; Holm, 2003; Holm et 

al., 1988; Schwartz and Jungas, 1971; Yeaman, 1990). 

The HSL protein 

Protein structure of HSL contains at least four functional domains: an NH2-terminus, a 

catalytic domain, a regulatory domain and a potential lipid-binding domain (Figure 4.1) 

(Contreras et al., 1996). In the regulatory domain of rat HSL, two phosphorylation sites 

named site 1 and site 2 have been identified (Smith et al., 1996). The phosphorylation of site 2 

can cause conformational changes in HSL that renders the regulatory domain susceptible to 

proteolysis. 

In the COOH-terminus, a catalytic triad and a regulatory module (Figure 4.1) are thought 

to be important for the activity of the lipase. The catalytic triad in rat HSL involves three 

residues: a serine residue at amino acid position 423 (Ser-423), an aspartate residue at amino 

acid position 703 (Asp-703) and a histidine residue at amino acid position 733 (His-733). This 

catalytic triad is responsible for the hydrolysis of ester bonds in TAG (Marchler-Bauer et al., 

2011). 

In the catalytic domain, a “GXSXG” motif is highly conserved in almost all lipases and is 

considered the catalytic core of the enzyme (Holm et al., 1994; Tsujita et al., 1989). In rat 

HSL, the substitution of Ser-423 in the “GXSXG” motif, can lead to the complete ablation of 

esterase and lipase activity (Holm et al., 1994). 
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Additionally, two regions (aa 1-300 and aa 300-767) of rat HSL are able to interact with 

the full length HSL peptide. This suggests that a “nose to tail” structure may be involved in 

the regulation of HSL activity (Yeaman, 2004).  

Protein of HSL has different forms in different tissues, and they are generated by 

alternative exons usage in the HSL gene (HSL) (Figure 4.2). In humans, at least six HSL 

forms have been identified to date. One adipocyte HSL form is encoded by a short non-coding 

exon named exon B located 1.5 kb upstream of exon 1, and the second adipocyte HSL form is 

produced by a further alternative splicing of the HSL pre-mRNA that skips over exon 6 and 

generates a catalytically inactive, but phosphorylatable form. Two different testicular HSL 

forms are encoded by exon T1 and exon T2 respectively, and the two HSL forms found in the 

adenocarcinoma cell line HT29, contain different 5’ ends, and are encoded by exon A which 

is located approximately 12.5 kb upstream of exon 1 (Blaise et al., 1999; Blaise et al., 2001; 

Grober et al., 1997; Langin et al., 1993).  

To date, our knowledge of ovine HSL is poor. Recently, two different ovine HSL forms 

(ovHSL-A and ovHSL-B) have been identified (Lampidonis et al., 2008). These two forms are 

homologous in their Open Reading Frames (ORFs) of 2.089 Kb and 2.086 Kb respectively, 

with ovHSL-B lacking the 688th triplet coding for glutamine (∆Q688) (Lampidonis et al., 

2008). Both ovHSL-A and ovHSL-B exhibit homology with HSL from cattle (88%), humans 

(76%), mice (74%), rats (76%) and domestic pigs (79%) (Lampidonis et al., 2011). This 

homology among the mammalian HSLs suggests functional constraint over evolutionary time. 

 

 

 

 

 

 

 

 

 

 

Figure 4.1 The structure of human Hormone-Sensitive Lipase (HSL). The exon limits are 
indicated with dashed lines and the numbers of the corresponding exons. Numbers in 
parentheses indicate the residue position (in the human HSL sequence) of the N- and C-
terminal residues of each β-strand. The catalytic triad is shown, and the phosphorylation sites 
are also indicated. (Adapted from Contreras et al., 1996). 
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The HSL gene (HSL) 

The HSL gene (HSL) has been mapped to chromosome 19 in humans (Holm et al., 1988; 

Levitt et al., 1995), chromosome 7 in rats (Wang et al., 1994), chromosome 6 in domestic pigs 

(Gu et al., 1992), chromosome 18 in cattle (Cordle et al., 1986; Yonezawa et al., 2008) and 

chromosome 14 in sheep (GenBank Gene ID: 100169699). 

HSL is a “mosaic gene”, in which every exon encodes a distinct domain (Langin et al., 

1993). Human HSL is comprised of nine exons that are interrupted by eight introns (Figure 

4.2). Exon 6 encodes the catalytic serine motif (GXSXG), exon 8 encodes the two serine 

phosphorylation sites and exon 9 encodes a hydrophobic region containing the putative lipid-

binding region (Holm et al., 1994). 

Human HSL lacks a “TATA-box” within its 5’-regulatory region (proximal promoter) 

(Grober et al., 1997). However, an AT-rich “TTTAT” sequence is found in the promoter of 

mouse HSL (Laurin et al., 2000; Sztrolovics et al., 1997). This “non-canonical” TATA-box 

has also been reported in the porcine HSL promoter, where two “TATA-like” sequences and a 

reverse “CCAAT-box” have been described (Harbitz et al., 1999). 

Ovine HSL does not appear to have a “TATA-box” within the regulatory region 

(Lampidonis et al., 2008). Instead, several cis-regulatory elements have been described, 

including binding sites for Stimulating Protein 1 (SP1), “CCAAT-box” Binding Factors 

(CBFs) and other trans-acting proteins (Lampidonis et al., 2008; Smale, 1997). 

The full genome sequence of ovine HSL is still unknown, although the 5’regulatory 

region and the cDNA sequence of ovine HSL have been cloned and sequenced (Lampidonis et 

al., 2008). In contrast to bovine HSL which encodes a polypeptide of 756 amino acids (Langin 

et al., 1993), the putative ovine HSL polypeptide has been found to be shorter and in two 

forms of 695 and 694 amino acids length, encoded by ovHSL-A (GenBank accession number: 

DQ647325) and ovHSL-B (GenBank accession number: DQ647326), respectively 

(Lampidonis et al., 2008). 

 

 

  

 

 

Figure 4.2 Genomic organisation of human Hormone-Sensitive Lipase gene (HSL). Coding 
sequences are shown as filled boxes and untranslated regions as open boxes. Exons T1 and T2 are 
used in testis. Exons A and B are used in adenocarcinoma cell line HT29 and adipose tissue, 
respectively. Exons 1 to 10 are used in all tissues expressing HSL. (Adapted from Osuga et al., 
2000). 
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HSL “knockout” mouse phenotype 

HSL “knockout” mice have decreased circulating fatty acid levels and altered TAG 

storage in adipose tissues. This results in impaired lipid and glucose metabolism (Fortier et 

al., 2004; Haemmerle et al., 2002; Osuga et al., 2000; Voshol et al., 2003). In addition, these 

mice also have a reduced quantity of WAT and diminished expression of lipolytic associated 

proteins, but a significantly enlarged BAT reservoir and an increased number of macrophages 

in their WAT (Kraemer and Shen, 2006). The HSL knockouts are found to be resistant to 

high-fat diet induced obesity, have increased thermogenesis and increased expression of many 

adipose specific proteins (Kraemer and Shen, 2006). A recent study demonstrated HSL 

knockout mice also have increased growth-rates and higher bone densities during aging 

compared to normal mice (Shen et al., 2011). In addition, male knockout mice are sterile, due 

to oligospermia (Osuga et al., 2000). These knockout studies reinforce the important role of 

HSL in fat metabolism and growth. 

Association between variation in HSL and variation in phenotypic traits 

In humans, several variant forms of HSL have been described and associated with obesity 

(Hoffstedt et al., 2001; Klannemark et al., 1998; Lavebratt et al., 2002; Magre et al., 1998; 

Nieters et al., 2002; Qi et al., 2004). A nucleotide substitution in the HSL promoter (-60C/G) 

has been reported to be associated with altered HSL promoter activity in vitro (Talmud et al., 

1998). The rare G variant of this polymorphism has been associated with increased insulin 

sensitivity in women, decreased FFA levels in men and increased waist circumference in non-

obese subjects (Carlsson et al., 2006). A recent study reported that this polymorphism is also 

associated with infertility in men (Vatannejad et al., 2011). 

In dairy goats, variation in HSL has been associated with various milk traits including 

milk yield, C18:3 n-6g content, trans-10 cis-12 Conjugated Linoleic Acid (CLA) content and 

C12:0 milk content (Zidi et al., 2010). These results suggest that HSL may play an important 

role in the mobilisation of medium-chain and unsaturated fatty acids. 

In pigs, polymorphism in exon I of porcine HSL has been reported and associated with 

variation in Eye Muscle Area (EMA) (Knoll et al., 1998). 

To date, little is known about variation in ovine HSL, or of any association with 

phenotypic traits. A recent study reported the mRNA level of HSL is negatively related to the 

amount of Intra-Muscular Fat (IMF) in Kazak and Xinjiang fine wool sheep (Qiao et al., 

2007). 
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Given the important role that HSL plays in fat metabolism, this suggests that variation 

within ovine HSL may cause variation in the function of the lipase and result in variation in 

growth or body composition traits in sheep. In this chapter, three potentially important regions 

of HSL (exon 3-4, encoding part of the NH2-terminus; exon 5-6, encoding part of the catalytic 

region; and exon 9, encoding part of the COOH-terminus) were investigated to see nucleotide 

variation existed and whether variation if found was associated with post-weaning growth and 

body composition traits in NZ Suffolk sheep. 

4.2 Materials and methods 

Suffolk Sheep analysed and blood collection 

538 NZ Suffolk lambs from 13 sires from different farms in NZ were investigated. The 

process of lamb weight recording is described in Chapter 3. 

262 Suffolk ram lambs were randomly chosen at 6-8 months of age for ultrasound 

scanning to estimate body composition following standard guidelines. Traits measured 

included Eye Muscle Width (EMW), Eye Muscle Depth (EMD) and Fat Depth above the Eye 

Muscle (FDM). 

DNA purification 

See chapter 3. 

PCR amplification, SSCP analysis of exon 3-4, exon 5-6 and exon 9 of ovine HSL 

Three regions of ovine HSL were investigated in this study: region 1 is approximately 

261 bp in length covering a portion of exon 3, all of intron 3 and a portion of exon 4, region 2 

is approximately 351 bp in length covering a portion of exon 5, all of intron 5 and a portion of 

exon 6 and region 3 is approximately 385 bp in length covering a portion of intron 8 and a 

portion of exon 9. Three pairs of primers for amplifying these regions were designed based on 

the published bovine HSL gene sequence (ENSBTAT00000043890) (Figure 4.3). 
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Figure 4.3 The PCR-SSCP patterns and single nucleotide variations detected in three regions of ovine HSL. The three regions of ovine HSL amplified are 
shown. The exons of ovine HSL are shown as black boxes with their numbers under the boxes. The PCR-SSCP pattern names are shown in bold italic. At times 
weaker bands are observed on the gels and these likely represent other less-stable conformers. The positions of the nucleotide substitutions in intron 5 and exon 9 
are described relative to the ovine HSL coding sequence (GenBank accession number: DQ647326). The position of the putative amino acid substitution is defined 
relative to the amino acid sequence of ovine HSL (GenBank accession number: ABG49111.1), named according to sequence variation nomenclature 
(http://www.hgmd.cf.ac.uk/docs/mut_nom.html). 
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Amplifications were performed in a 15 µL reaction containing the DNA on one 1.2mm 

punch of FTA paper. 0.25μM of each primer, 150μM of each of dATP, dCTP, dGTP, and 

dTTP (Eppendorf, Hamburg, Germany), 2.5mM Mg2+, 0.5 U Taq DNA polymerase (Qiagen, 

Hilden, Germany) and 1 × the reaction buffer supplied with the enzyme. The thermal profiles 

for the three regions amplified were composed of 2 min at 94°C, followed by 35 cycles of 30 

s at 94°C, 30 s at an optimised annealing temperature for each amplicon (region 1 at 58°C, 

region 2 at 60°C and region 3 at 60°C) and 30 s at 72°C, with a final extension of 5 min at 

72°C. Amplification was carried out in an iCycler (Bio-Rad Laboratories, Hercules, CA, 

USA). Amplicons were visualized by electrophoresis in 1% agarose (Quantum Scientific, 

Queensland, Australia) gels, using 1 × TBE buffer (89mM Tris, 89mM boric acid, 2mM 

Na2EDTA) containing 200 ng/ml of ethidium bromide. 

An aliquot of 0.7 µL of each amplicon was mixed with 7 µL of loading dye (98% 

formamide, 10mM EDTA, 0.025% bromophenol blue and 0.025% xylene-cyanol). After 

denaturing at 95ºC for 5 min, samples were cooled rapidly on wet ice and then 7.5 µL was 

loaded onto 16 × 18 cm, 14% acrylamide / bisacrylamide (37.5:1) (Bio-Rad) gels. 

Electrophoresis was performed using Protean II xi cells (Bio-Rad). The SSCP conditions were 

optimised for each amplicons. The amplicons of region 1, region 2 and region 3 were run at 

250 V, 18°C; 280 V, 22°C; and 250 V, 25°C, respectively for 18 h in 0.5 × TBE buffer. Gels 

were silver-stained according to the method of Byun et al., (2009). 

Sequencing of the ovine HSL variants and sequence analysis 

PCR amplicons representative of different PCR-SSCP patterns from sheep that were 

homozygous at HSL were directly sequenced at the Lincoln University DNA Sequencing 

Facility. For the variants that were only found in heterozygous sheep, a band corresponding to 

the rare allele was excised as a gel slice from the polyacrylamide gel, macerated, and then 

used as a template for re-amplification with the original primers. This produces a PCR-SSCP 

pattern equivalent to a sheep homozygous for that rare allele. This second amplicon was then 

directly sequenced. Sequence alignments, translations and comparisons were carried out using 

DNAMAN (version 5.2.10, Lynnon BioSoft, Canada). The BLAST algorithm was used to 

search the NCBI GenBank databases (http://blast.ncbi.nlm.nih.gov/) for homologous 

sequences. 

Statistical analyses 

All statistical analyses were performed using SPSS version 19 (SPSS Inc., Chicago, IL, 

USA). General Linear Mixed-effects Models (GLMMs) were used to assess the effects of the 
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presence/absence of a particular sequence variant in a lamb’s genotype, on post-weaning 

growth-rate (n = 538 lambs), and various body composition traits (n = 262 ram lambs) 

including EMW, EMD and FDM. Gender (for growth-rate analysis only, as body composition 

traits were only assessed in ram lambs) and birth rank were fitted as fixed factors and sire was 

fitted as a random factor in order to correct for sire effects as well as farm effects such as 

management and environmental effects (each sire was used exclusively on one farm). 

The generalized statistical model used to test the sequence variant (or genotype – see 

below) effects was as follows: Yijk = µ + τi + βj + αk + Єijk; where Yijk = traits evaluated on the 

ith level of the fixed factor genotype (τi), the jth level of the fixed factor birth rank (βj) and the 

kth sire of random effect (αk); where µ = overall mean for each trait and Єijk is the random 

error for ijk. 

Initially, single-variant models were performed to ascertain which variants should be 

included in subsequent multi-variant models, and such that we could assess whether the effect 

of any given variant was independent of the other variants. The multi-variant models included 

any variant that had associations with post-weaning growth-rate and body composition traits 

in the single-variant models with P < 0.200 (and which could thus potentially impact on the 

traits). For variants that had homozygous forms greater than 5% of all genotypes (thus 

providing an adequate sample size) a second set of analyses was performed, this time with the 

number of variant copies present in the animal’s genotype included (i.e. 0, 1 or 2) in place of 

presence/absence of coding, followed by planned orthogonal contrasts to ascertain whether 

additive, dominant or recessive effects were present. 

For genotypes with a frequency greater than 5% (thus having adequate sample size per 

group), a GLMM (fixed effect: genotype, birth rank and gender if appropriate; random effect: 

sire) and multiple pair-wise comparisons with Bonferroni corrections were used to ascertain the 

association between genotype and post-weaning growth-rate and body composition traits. 

4.3 Results 

Variation within ovine HSL 

Of the 538 NZ Suffolk sheep investigated, four PCR-SSCP patterns were found for 

region 2 amplicons and two PCR-SSCP patterns for region 3 amplicons were observed 

(Figure 4.3). Only one PCR-SSCP banding pattern was observed for the amplicons from 

region 1 (exon 3-4) suggesting there was no sequence variation within this region of ovine 

HSL in the sheep studied. Further sequence analysis of this region was not undertaken. 
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After sequencing, these patterns were confirmed as novel variant sequences of ovine HSL 

and deposited into GenBank with accession numbers as follows: intron 5; A-D, GenBank 

accession numbers KC610083-KC610086, and exon 9; a-b, GenBank accession numbers 

KC585035-KC585036). The SNPs detected in the intron 5 and exon 9 regions of ovine HSL 

are shown in Figure 4.3. 

Frequencies of the ovine HSL variants in NZ Suffolk sheep 

In the 538 Suffolk sheep investigated, intron 5 genotypes AA (27.1%), AB (22.1%), AC 

(14.1%), AD (3.0%), BB (18.2%), BC (7.2%), BD (2.6%), CC (4.2%), CD (1.3%) and DD 

(0.2%) were found with individual variant frequencies of A (46.8%), B (34.3%), C (15.4%) 

and D (3.5%). In exon 9, genotypes aa (49.0%), ab (31.5%) and bb (19.5%) were found with 

individual variants frequencies of a (64.8%) and b (35.2%). 

Association of ovine HSL variants with body composition traits in NZ Suffolk sheep 

In the single-variant models, the presence of intron 5 A was associated with reduced 

EMW (P = 0.031). The presence of C was associated with increased EMW (P = 0.006), EMD 

(P < 0.001) and FDM (P < 0.001) (Table 4.1). The associations between C, and EMW and 

EMD persisted in the multi-variant models (Table 4.1). 

The frequency of homozygous AA (27.1%) and BB (18.3%) sheep were greater than 5% 

and so additive, dominant and recessive effects were assessed for these variants (Table 4.2). 

In the single-variant models, lambs homozygous for A had lower EMW than those that did not 

have A in their genotype (P = 0.014). Similarly, lambs homozygous for A had lower EMD 

than those that did not have A in their genotype (P = 0.047) (Table 4.2). For both traits, the 

estimated marginal means for those animals heterozygous for variant A was intermediate to 

those homozygous for variant A and those without variant A, but it was not significantly 

different to either, thus additive effects could not be confirmed (Table 4.2). 

The intron 5 genotypes AA, AB, AC, BB and BC occurred at a frequency of greater than 

5% in the sheep studied. Marginal means for selected body composition traits for sheep 

possessing each genotype are given in Table 4.3. Sheep with the AA genotype had lower mean 

EMW than those with the AC (P = 0.007), and tended to have a lower mean EMW than those 

with the BC (P = 0.098) genotype (Table 4.3). Sheep with the AC genotype had higher mean 

EMW than those with the AB (P = 0.013) genotype. Similarly, sheep with the AA genotype 

had lower mean EMD than those with the AC (P = 0.017) (Table 4.3). 
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No significant association of ovine HSL intron 5 variants or genotypes with post-weaning 

growth-rate were detected (P > 0.050) and no associations between ovine HSL exon 9 

variation and growth or body composition traits were detected (P > 0.050). 
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1P value associated with the variant being assessed. Estimated marginal means and P values were derived from GLMMs with variant presence/absence and birth 
rank fitted as fixed factors and sire-line fitted as a random factor (P < 0.050 in bold). 
2EMD: Eye Muscle Depth; EMW: Eye Muscle Width; FDM: Fat Depth above the Eye Muscle. 

Trait2 Variant being assessed Other variants in model Mean 1 ± Std Error P value1 
Absent n Present n 

EMD (mm) A None 30.8 ± 0.3 86 30.3 ± 0.2 176 0.128 
B None 30.6± 0.3 132 30.3 ± 0.3 130 0.519 
C None 29.9 ± 0.2 190 31.5 ± 0.3 72 < 0.001 
D None 30.5 ± 0.2 255 31.2 ± 1.0 7 0.504 

 A C 30.7 ± 0.4 86 30.6 ± 0.3 176 0.712 
 C A 29.9 ± 0.3 190 31.5 ± 0.4 72 < 0.001 

EMW (mm) A None 76.7 ± 0.6 86 75.3 ± 0.4 176 0.031 
B None 75.9 ± 0.4 132 75.6 ± 0.5 130 0.609 
C None 74.7 ± 0.4 190 77.7 ± 0.6 72 < 0.001 
D None 75.8 ± 0.4 255 75.7 ± 1.8 7 0.983 

 A C 76.7 ± 0.5 86 75.9 ± 0.4 176 0.243 
 C A 74.9 ± 0.4 190 77.7 ± 0.6 72 < 0.001 

FDM (mm) A None 3.5 ± 0.1 86 3.3 ± 0.1 176 0.228 
B None 3.4 ± 0.1 132 3.3 ± 0.1 130 0.458 
C None 3.3 ± 0.1 190 3.6 ± 0.1 72 0.006 
D None 3.4 ± 0.7 255 3.1 ± 0.3 7 0.344 

Table 4.1 Analysis of association between ovine HSL intron 5 variants and various body composition traits in NZ Suffolk sheep 
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1P value associated with the variant being assessed. Estimated marginal means and P values were derived from GLMMs with variant copy number and birth rank 
fitted as fixed factors and sire fitted as a random factor (P < 0.050 in bold). 
2Means with superscripts in common are not significantly different (multiple pair-wise comparisons with a Bonferroni correction, P > 0.050). 
3 EMD: Eye Muscle Depth; EMW: Eye Muscle Width; FDM: Fat Depth above the Eye Muscle. 

Trait Variant being assessed Other variants in model Mean 1, 2 ± Std Error 
Absent n 1 copy n 2 copies n 

EMD3 
(mm) 

A None 30.9 ± 0.3a 86 30.7 ± 0.3ab 99 29.8 ± 0.3b 77 
B None 30.6 ± 0.3 132 30.4 ± 0.3 82 30.3 ± 0.5 48 

EMW3 
(mm) 

A None 76.7 ± 0.6a 86 75.9 ± 0.5ab 99 74.6 ± 0.6b 77 
B None 75.9 ± 0.4 132 75.4 ± 0.6 82 75.9 ± 0.8 48 

FDM3 
(mm) 

A None 3.5 ± 0.1 86 3.4 ± 0.1 99 3.3 ± 0.1 77 
B None 3.4 ± 0.1 132 3.3 ± 0.1 82 3.4 ± 0.1 48 

Table 4.2 Association between the copy numbers of ovine HSL intron 5 variants and various body composition traits in the NZ Suffolk sheep 
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Trait3 
Mean1, 2 ± Std Error 

 
AA (77) AB (61) AC (36) BB (48) BC (19) 

EMW (mm) 74.4 ± 0.6a 74.4 ± 0.7a 77.7 ± 0.8b 75.6± 0.8ab 77.6 ± 1.1ab 
EMD (mm) 29.7 ± 0.3a 29.9 ± 0.4ab 31.5 ± 0.5b 30.0 ± 0.5ab 31.4 ± 0.6ab 
FDM (mm) 3.3 ± 0.1 3.2 ± 0.1 3.6 ± 0.1 3.4 ± 0.1 3.6 ± 0.2 
 
1Estimated marginal means were derived from GLMMs with genotype and birth rank fitted as fixed 
factors and sire fitted as a random factor. 
2Means with superscripts in common are not significantly different (multiple pair-wise comparisons 
with a Bonferroni correction, P > 0.050). 
3EMD: Eye Muscle Depth; EMW: Eye Muscle Width; FDM: Fat Depth above the Eye Muscle. 

4.4 Discussion 

This is the first report describing variation in ovine HSL and its association with sheep 

growth and body composition traits. Three single nucleotide substitutions in intron 5 and one 

non-synonymous substitution in exon 9 of ovine HSL were identified. The failure to find 

variation in region 1 may be because this region is under greater functional constraint and 

hence be more conserved than other regions of ovine HSL; or may due to PCR-SSCP has not 

detected all potential variaitons in this region of the gene. 

In the 538 NZ Suffolk sheep investigated, it is notable that exon 9 a, which would 

putatively encode a valine at the position 607 (GenBank accession number ABG49111.1) as 

opposed to the isoleucine encoded by b, was common (64.8%). However, no association was 

found between exon 9 variation and growth or body composition traits in the sheep studied. 

This may be because the variation is in an amino acid whose substitution does not affect gene 

expression. However, given that exon 9 of rat HSL encodes a hydrophobic region containing a 

putative lipid-binding region (Holm et al., 1994) and this is likely important for the function 

of HSL, it is never-the-less tempting to speculate that the amino acid substitution (V607I) 

detected in this study, may be associated with some lipid metabolism-related traits by altering 

the structure and function of ovine HSL. This effect of this variation certainly warrants further 

investigation in other sheep of a variety of breeds. 

It is notable that the frequencies of both the intron 5 and exon 9 genotypes of HSL were 

not in  Hardy-Weinberg Equilibrium (HWE). The principle of HWE states that the genetic 

variation in a population will remain constant from one generation to the next in the absence 

of disturbing factors.This could be due to the sheep having been  “selected” and being derived 

from related rams and thus the frequency of the HSL variants may be different between the 

sires and dams of these lambs. It may also be the result of some other effect that changes 

Table 4.3 Association between HSL intron 5 genotype and assessments of some body composition 
traits in the NZ Suffolk sheep 
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genotype frequency. For example,Vatannejad et al. (2011) found that the variation in human 

HSL is associated with inferitility in men. Their study suggested that some of the HSL variants 

may be sex-dependant which causes the differences in the frequencies of HSL variants 

inmales and females. This could be true of sheep too.  It could also be that the genotyping of 

ovine HSL in this study failed in someway and couldn’t accurately detect all the HSL variants.  

In effect, sheep that appeared honmozygous, might actually be heterozygous for one 

undetectable variant and possibly as a result of variation in the primer binding regions 

affecting the ability to amplify that variant.  

The statistical modelling approaches used suggest that the presence of intron 5 A may be 

associated with lower EMA, while the presence of intron 5 C may be associated with 

increased EMA and fat content in body. This suggests it is an independent effect. 

Interestingly, variation within human HSL has been reported to be associated with impaired 

fat metabolism and varied body composition (Hoffstedt et al., 2001). In addition, a study in 

pigs (Knoll et al., 1998) has reported associations between variation in HSL and various body 

composition traits including EMA (Knoll et al., 1998). Given the role HSL plays in lipolysis, 

it could be suggested that the association observed here between variation within intron 5 HSL 

and variation in EMA is because the genetic variation affects the expression of the gene. This 

impaired function of HSL may ultimately affects EMA by altering the intramuscular fat 

content, and this needs further investigation. 

No associations were detected between intron 5 variants, exon 9 variants of HSL, and post-

weaning growth-rate. This may be because the variation in HSL does not directly affect the 

overall weight gain of an animal after weaning, instead altering the subcutaneous and 

intramuscular fat composition of the body, but not so much as to affect overall weight. 

In humans, significant associations have been found between variation in HSL and 

variation in subcutaneous fat deposition including an increased BMI, increased waist 

circumference and increased risk of obesity (Carlsson et al., 2006). However, in this study, 

only a slight association was found between ovine HSL variants and variation in subcutaneous 

fat depth. This might be because only the Suffolk sheep breed was investigated and the small 

range of variation in FDM (ranged from 2 to 5mm). NZ Suffolk sheep have been widely used 

for breeding lean lambs, so further work will need to focus on investigating other Suffolk 

sheep and other “fatter” sheep breeds to confirm the association between ovine HSL variation 

and fat traits. 

In this study, only small numbers of lambs were studied. Future work will be needed to 

investigate larger numbers of NZ Suffolk lambs and lambs from other breeds, and including 
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both ewe and ram lambs. Further work is also needed to characterise the full extent of 

variation within the gene and confirm these preliminary associations between variation within 

intron 5 of ovine HSL and key carcass traits. 
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    Chapter 5 

Variation in ovine Uncoupling Protein 1 gene (UCP1) and its 
association with growth and carcass traits 

5.1 Introduction 

Uncoupling Protein 1 (UCP1) belongs to a family of mitochondrial integral Membrane 

Carrier Proteins (MCPs) (Ricquier and Bouillaud, 2000) and is a distinguishing characteristic 

of BAT because of its role in thermogenesis (Cannon and Nedergaard, 2004). Protein of 

UCP1 has also been found in WAT which could cause energy expenditure in the tissue 

(Flachs et al., 2013). UCP1 dissipates energy as heat by generating a “leak” that enables 

protons to cross the inner mitochondrial membrane. This ultimately uncouples the electron 

transport chain from ATP synthesis leading to NST. The generation of NST through the 

protonophoric function of UCP1 prevents energy being stored as fat promoting its loss as 

heat. Uncoupling Protein 1 is therefore also considered an anti-obesity factor (Nedergaard et 

al., 2005). 

Besides UCP1, four other UCPs; UCP2, UCP3, UCP4 (also known as StUCP) and UCP5 

(also known as AtUCP or BMCP-1) have been identified to date (Krauss et al., 2005; 

Ricquier and Bouillaud, 2000). Because UCP4 and UCP5 phylogenetically belong to a 

different group (Borecky et al., 2001), the UCP family is often considered to contain only 

UCP1, UCP2 and UCP3. Despite it sharing structural similarities with the other UCPs, UCP1 

is thought to be the only protein that mediates thermogenesis (Nedergaard et al., 2001). 

The UCP1 protein 

The structure of UCP1 has been described in many studies (Kim et al., 2011). It is 

composed of six transmembrane (TM) α-helices (Figure 5.1) (Garlid et al., 2000; Hoang et al., 

2013). It shares homology with other members of the greater MCP family, including a 

tripartite structure that is thought to be conserved (Borecky et al., 2001; Garlid et al., 2000). In 

rat UCP1, three prolines (P32, P132 and P231) have been found with one in each part of the 

tripartite structure, and these are thought to be important for the function of UCP1. Two 

amino acid sequences and a GDP-binding domain, found to be conserved across mammals, 

have been found in UCP1. But they are not found in any other MCPs, not even the closely 

related UCP2 and UCP3 (Borecky et al., 2001; Garlid et al., 2000). These sequences are 

found at the middle of the central loop and in the last part of the COOH-terminus. The actual 

function of these conserved sequences is still unclear (Echtay et al., 1998; Urbankova et al., 
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2003), but their unique and consistent presence in UCP1 from different species, suggests that 

they could be of importance for the function of this protein.  

The GDP-binding site of UCP1 has been proposed to be involved in mediating UCP1-

dependent thermogenesis through its competitive binding to FFA and GDP in mitochondria 

(Huang and Klingenberg, 1996). This binding can cause conformational changes in UCP1. 

 

 

 

 

 

 

 

 

 

 

 

 

The UCP1 gene (UCP1) 

The UCP1 gene (UCP1) has been mapped to chromosome 4 in humans (GenBank, Gene 

ID: 7350), chromosome 8 in mice (GenBank, Gene ID: 22227), chromosome 19 in rats 

(GenBank, Gene ID: 24860), chromosome 17 in cattle (GenBank, Gene ID: 281561), 

chromosome 19 in dogs (GenBank, Gene ID: 403574), chromosome 8 in pigs (GenBank, 

Gene ID: 751863) and chromosome 17 in sheep (GenBank, Gene ID: 494434). It has been 

cloned from humans and sequenced (Cassard et al., 1990), and sequences have been revealed 

for mice (Kozak et al., 1988), rats (Bouillaud et al., 1988), domestic dogs (Ishioka et al., 

2002), cattle (Casteilla et al., 1989a; Sonstegard and Kappes, 1999) and sheep (Yuan et al., 

2012). 

Two regulatory regions have been described in the human and rat genes: a proximal 

promoter and a more distal enhancer region (del Mar Gonzalez-Barroso et al., 2000; Yubero 

et al., 1994). The promoter region contains TATA and CCAAT elements, two C/EBP sites 

Figure 5.1 The structure of rat Uncoupling Protein 1 (UCP1). Two-dimensional representation 
of the folding of rat UCP1. Shaded boxes correspond to a-helices and they are numbered following 
the nomenclature described by Pebay-Peyroula et al., (2003). Residues conserved in all the 
analysed UCPs (UCP1, UCP2, UCP3 and plant UCPs) are shown in red. Amino acid residues that 
are shared across species in UCP1 and that have consistency indexes above 50% are shown in 
green. (Adapted from Jimenez-Jimenez et al., 2006; Hoang et al., 2013). 
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and other potential binding sites (Yubero et al., 1994). An enhancer region at around -2.5kb in 

rodent UCP1 and -3.5kb in human UCP1 has also been described (del Mar Gonzalez-Barroso 

et al., 2000). This region contains a multipartite response element (del Mar Gonzalez-Barroso 

et al., 2000) and many smaller response elements including CREs (Kozak et al., 1994; Rim 

and Kozak, 2002), Retinoic Acid Response Elements (RAREs) (Alvarez et al., 1995, 2000), 

Peroxisome Proliferator-Activated Receptor Response Elements (PPREs) (Barbera et al., 

2001; Sears et al., 1996) and thyroid or T3 Response Elements (TREs) (Cassard-Doulcier et 

al., 1994; Rabelo et al., 1995, 1996). These sites can amplify the effects of norepinephrine on 

UCP1 transcription (Bianco et al., 1988; Hernandez and Obregon, 2000). 

The UCP1 “knockout” mouse phenotype 

Monemdjou et al., (2000) described increased mitochondrial proton leakage in the 

skeletal muscle mitochondria of UCP1 “knockout” mice. The mice are found to be sensitive 

to cold, due to impaired thermogenesis in BAT. UCP1 knockout mice also have a higher risk 

of obesity than normal mice (Bachmanov et al., 2001). Conversely, transgenic mice over-

expressing UCP1 have been reported to have elevated UCP1 levels and reduced adiposity 

(Hofmann et al., 2001). 

Associations between variation in UCP1 and variation in phenotypic traits 

In humans, variation within UCP1 has been associated with variation in body fat mass 

and waist-to-hip ratios in Korean females (Shin et al., 2005). A large scale study in a 

Caucasian population suggested -3826A/G does not play a major role in the pathogenesis of 

obesity and diabetes (Schaffler et al., 1999). Nevertheless, the G variant has been suggested to 

be able to either act together with, or in interaction with, variation in other lipolytic genes 

such as ADRB3 and Adiponectin gene (Adipoq) to accelerate the development of obesity 

(Evans et al., 2000; Heilbronn et al., 2000), accumulation of visceral fat (Tsunekawa et al., 

2011) and predisposition to severe liver steatosis (Labruna et al., 2009). 

Uncoupling Protein 1 gene is disrupted in some pig breeds and these piglets appear to 

lack BAT (Berg et al., 2006). In these pigs, the sequence spanning exons 3 to 5 is eliminated 

by a deletion. In the exons remaining in these pigs, three additional disrupting mutations are 

also detected (Berg et al., 2006). In comparison with UCP1 sequences of humans, cattle and 

mice, the rate of non-synonymous substitutions is higher in pig UCP1, suggesting that this 

gene has been disrupted during their evolution (Berg et al., 2006). This may explain why 

piglets are poor at thermoregulation. 
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To date, only a few studies have attempted to detect variation within ovine UCP1. In a 

recent report, variation in the coding and non-coding region of ovine UCP1 has been 

described (Yuan et al., 2012), but no association with any traits was reported. The gene was 

located on OAR17 (Yuan et al., 2012), and the coding sequence of ovine UCP1 is similar to 

many species with a high similarity to cattle (95%), horse (88%), human (84%), macaque 

(84%), dog (81%) and rat (81%) sequences (Yuan et al., 2012). The gene is approximately 6.6 

kb in length with a coding sequence of approximately 1.6 kb, and is composed of six exons 

and five introns. To date, variation has been found in ovine UCP1 and this variation appears 

to affect the mRNA level of ovine UCP1 in different tissues (Yuan et al., 2012). Whether 

variation in ovine UCP1 is associated with variation in sheep traits, including growth and 

carcass traits, has not been reported. 

In humans, variation were found in the UCP1 promoter region (-3826A>G, -1766A>G), 

exon 2 p.Ala64Thr (Shin et al., 2005) and exon 5 p.Met229Leu (Mori et al. 2001), which 

were associated with fat metabolism, obesity and diabetes (Jia et al., 2010; Nagai et al., 2011). 

The promoter region plays an important role in transcription regulation through interacting 

with a spectrum of regulatory elements. Variation in the promoter region of the gene could 

alter the expression level of mRNA and thus, function of the protein. Variation in the exons 

could lead to a substitution in amino acids sequence, this could also affect the function of 

protein.  

Therefore, given the important role that variation in UCP1 plays in the function of UCP1 

and fat metabolism, in this chapter variation in the promoter, intron 2 and exon 5 regions of 

the ovine UCP1 was investigated and its association with growth and carcass traits studied in 

NZ Suffolk and NZ Romney sheep. 

5.2 Materials and methods 

Sheep Studied and Data Collection 

In total 823 sheep, including 587 NZ Suffolk sheep from 30 independent sires and six 

studs, and 236 NZ Romney sheep from 12 independent sires were investigated. 

NZ Suffolk lamb blood samples were supplied by the Gene-Marker Laboratory, Lincoln 

University. NZ Romney lamb samples were collected from the “Ancare-Merial Romney NZ 

Saleable Meat Yield Trial”. This trial was carried out at “Gleneyre”, Oxford, North 

Canterbury, NZ and “Osborne” farm, Ashhurst, NZ. 

The method of lamb live-weight calculation and collection of body composition data are 

described in Chapter 3. 
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For the 236 NZ Romney sheep, carcass traits: including fat composition scores (VGR), 

lean meat yield in the hind-leg (leg yield), loin (loin yield) and shoulder (shoulder yield), and 

total yield (the sum of the leg, loin and shoulder yields for any given carcass), were estimated 

at slaughter using VIAscan ® (VIAScan® Sastek, Hamilton, QLD Australia). The VIAscan® 

technology developed by Meat and Livestock Australia and described in Hopkins et al., 

(2004), is based on video imaging. Loin yield, shoulder yield and leg yield is the percentage 

of lean tissues as a proportion of the Hot Carcass Weight (HCWT). Total yield is the sum of 

the leg, loin and shoulder yield for any given carcass.  

DNA purification 

Blood samples were collected from individual animals (for method, see chapter 3) and 

genome DNA was purified (for method see Chapter 3). 

Primer design 

Three regions of ovine UCP1 were investigated in this study: region 1 is approximately 

350 bp in length covering a portion of the promoter, region 2 is approximately 325 bp in 

length covering a portion of intron 2 and region 3 is approximately 233 bp in length covering 

the whole of exon 5 (see Figure 5.2). Three pairs of primers were designed based on a 

published ovine UCP1 gene sequence (GenBank accession number: JN604985.1) (Figure 

5.2). 

PCR amplification of the promoter, intron 2 region and exon 5 region of ovine UCP1 

and PCR-SSCP analysis  

Amplifications were performed in a 15 µL reaction containing the DNA on one 1.2mm 

punch of FTA paper. 0.25μM of each primer, 150μM of dATP, dCTP, dGTP, and dTTP 

(Eppendorf, Hamburg, Germany), 2.5mM Mg2+, 0.5 U Taq DNA polymerase (Qiagen, 

Hilden, Germany) and 1 × the reaction buffer supplied with the enzyme. The thermal profiles 

for the three regions amplified were 2 min initial denaturation at 94°C, followed by 35 cycles 

of 30 s at 94°C, 30 s at an optimised annealing temperature for each region (promoter at 62°C, 

intron 2 at 61°C and exon 5 at 60°C) and 30 s at 72°C, and with a final extension of 5 min at 

72°C. Amplification was carried out in an iCycler (Bio-Rad Laboratories, Hercules, CA, 

USA). 
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Amplicons were visualized by electrophoresis in 1% agarose (Quantum Scientific, 

Queensland, Australia) gels, using 1 × TBE buffer (89mM Tris, 89mM boric acid, 2mM 

Na2EDTA) and containing 200 ng/ml of ethidium bromide. 

An aliquot of 0.7 µL of each amplicon was mixed with 7 µL of loading dye (98% 

formamide, 10mM EDTA, 0.025% bromophenol blue and 0.025% xylene-cyanol). After 

being denatured at 95 ºC for 5 min, samples were cooled rapidly on wet ice and then 7.5 µL 

were loaded onto 16 × 18 cm, 14% acrylamide / bisacrylamide (37.5:1) gels. Electrophoresis 

was performed using Protean II xi cells (Bio-Rad). The amplicons from the promoter, intron 2 

and exon 5 regions were run at 350 V, 22°C; 280 V, 21°C; and 250 V, 25°C, respectively for 

18 h in 0.5 × TBE buffer. Gels were silver-stained according to the method described by Byun 

et al., (2009). 

Sequencing of ovine UCP1 variants and sequence analysis 

Amplicons representative of different PCR-SSCP patterns from sheep that were 

homozygous for any given region were directly sequenced at the Lincoln University DNA 

Sequencing Facility. For the rarer variants that were only found in heterozygous sheep, a band 

corresponding to the rare variant was excised as a gel slice from the polyacrylamide gel, 

macerated and then used as a template for reamplification with the original primers. This 

produces a PCR-SSCP pattern equivalent to a sheep homozygous for that rare allele. This 

second amplicon was then directly sequenced. Sequence alignments, translations and 

comparisons were carried out using DNAMAN (version 5.2.10, Lynnon BioSoft, Canada). 

The BLAST algorithm was used to search the NCBI GenBank databases 

(http://blast.ncbi.nlm.nih.gov/) for homologous sequences. 

Statistical analyses 

All statistical analyses were performed using SPSS version 19 (SPSS Science Inc., 

Chicago, IL, USA). General linear mixed-effects models (GLMMs) were used to assess the 

effect of the presence of a particular sequence variant in a sheep’s genotype on post-weaning 

growth-rate and carcass traits: including subcutaneous fat depth (VGR), hind-leg yield, loin 

yield, shoulder yield and total carcass yield. Gender and birth rank were fitted as fixed factors 

in these models and sire of each lamb were fitted as a random factor. As each sire was only 

used on a single farm, sire effects were therefore confounded with farm-specific management 

or environmental effects, and thus only sire was corrected for in the models and as a proxy for 
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other farm-related effects. Only male Romney lambs were slaughtered, so gender was not 

fitted to carcass trait analyses. 

The generalized statistical model used to test the sequence variant (or genotype – see 

below) effects was as follows: Yijk = µ + τi + βj + αk + Єijk; where Yijk = traits evaluated on the 

ith level of the fixed factor genotype (τi), the jth level of the fixed factor birth rank (βj) and the 

kth sire of random effect (αk); and where µ = overall mean for each trait and Єijk is the random 

error for ijk. 

Each variant was coded as either present (1) or absent (0) for each animal’s genotype. 

Initially, single-variant models were performed to ascertain which variants should be included 

in subsequent multi-variant models, and such that we could assess whether the effect of a 

given variant was independent of the other variants. The multi-variant models included any 

variant that had associations with post-weaning growth-rate and carcass traits in the single-

variant models with a P value less than 0.200 and which could thus potentially have impact 

on the growth-rate and carcass traits. 

For variants that had homozygous forms greater than 5% of all genotypes (thus providing 

an adequate sample size) a second set of analyses was performed, this time with the number 

of variant copies present in the animal’s genotype included (i.e. 0, 1 or 2) in place of variant 

presence/absence, followed by planned orthogonal contrasts to ascertain whether additive, 

dominant or recessive effects were present. 

For genotypes with a frequency greater than 5%, a GLMM (Fixed effects: 

variant/genotype, gender and birth rank. Random effect: sire) and multiple pair-wise 

comparisons with Bonferroni corrections were used to ascertain the association of genotype 

with post-weaning growth-rate and carcass traits. 

5.3 Results 

Variation within ovine UCP1 

Amplicons of approximately 350 bp for the promoter, 325 bp for intron 2 and 233 bp for 

exon 5 were obtained from ovine genomic DNA using the methods described above. 

Only one PCR-SSCP banding pattern was observed for the exon 5 amplicons in the NZ 

Suffolk and NZ Romney sheep studied. Accordingly, further sequencing and association 

analysis with exon 5 was not undertaken. 
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Three PCR-SSCP banding patterns (named A-C) (Figure 5.2) were detected for the 

promoter amplicons in both the NZ Suffolk and NZ Romney sheep. After sequencing, these 

patterns were confirmed to be produced by three novel sequences and these were deposited 

into GenBank with accession numbers (KC243136 - KC243138). Two PCR- SSCP patterns 

were observed for intron 2 amplicons (these were named a and b) in the NZ Suffolk sheep, 

but were not found in the Romney sheep which were exclusively of the a variant. Nucleotide 

sequence variation in the two amplicons is summarised in Figure 5.2. Two SNPs were 

revealed in the promoter region and one SNP in the intron 2 region. 

Frequencies of promoter and intron 2 variants in NZ Romney and NZ Suffolk sheep 

Of the 587 NZ Suffolk sheep investigated, promoter genotypes AA (15.1%), AB (36.7%), 

AC (11.4%), BB (21.3%), BC (13.2%) and CC (2.3%) were found, with individual variant 

frequencies of A (38.8%), B (46.6%) and C (14.6%). Two intron 2 genotypes, aa (93.3%) and 

ab (6.7%), with individual variants frequencies of a (96.7%) and b (3.3%), were observed. 

Of the 236 NZ Romney sheep investigated, promoter genotypes AA (24.6%), AB (26.3%), 

AC (30.5%), BB (3.0%), BC (7.2%) and CC (8.4%) were found, with individual variant 

frequencies of A (53.0%), B (19.7%) and C (27.3%). 

The b variant of intron 2 observed in the Suffolk sheep was not observed in the Romney 

lambs. Thus, further association analysis between intron 2 and growth and carcass traits could 

not be undertaken in this breed.  

Correlations between lamb growth and carcass traits in the NZ Romney sheep 

Pearson correlation coefficients between the sheep growth data and various carcass traits 

evaluated are shown in Table 5.1. 

Sheep loin yield was correlated with post-weaning growth-rate (R = 0.147, P = 0.021). 

Total lean meat yield was correlated with post-weaning growth-rate (R = 0.125, P = 0.050). 

Sheep birth weight was correlated with weaning-weight (R = 0.392, P < 0.001) and post-

weaning growth-rate (R = 0.213, P = 0.001). Weaning-weight was correlated with hot carcass 

weight (R = 0.476, P < 0.001), VGR (R = 0.467, P = 0.001), loin yield (R = 0.176, P = 0.006), 

shoulder yield (R = 0.236, P < 0.001) and post-weaning growth-rate (R = 0.729, P < 0.001). 
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Figure 5.2 The PCR-SSCP patterns and single nucleotide variations detected in the promoter, intron 2 and exon 5 regions of ovine UCP1. The three 
regions of ovine UCP1 amplified are shown in a diagonal line pattern. The 5’UTR in exon 1 and 3’UTR in exon 6 of the gene are shows in blank boxes. The cis-
regulatory elements found in the promoter region of the ovine  UCP1 are shown in blank diamond shape (TATA box) and blank circle (CAAT box). The SSCP 
pattern names are shown in bold italic. The PCR-SSCP pattern names are shown in bold italic. The coordinates of primer and single nucleotide variations of 
ovine UCP1 are defined relative to a known sequence of ovine UCP1 (GenBank JN604985.1), and named according to sequence variation nomenclature 
(http://www.hgmd.cf.ac.uk/docs/mut_nom.html). 
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Table 5.1 Correlation coefficients for comparisons between lamb growth and carcass traits in the NZ Romney sheep 

 Weaning-weight (kg) VGR Leg yield Loin Yield Shoulder yield Total yield Post-weaning growth-rate (g/day) 

Birth weight (kg) 0.392** 0.105 -0.066 0.006 -0.048 -0.046 0.213** 

Weaning-weight (kg)  0.467** -0.058 0.176** 0.236** 0.112 0.729** 

VGR   -0.440** -0.014 0.135* -0.173** 0.227** 

Leg yield    0.667** 0.473** 0.878** 0.079 

Loin Yield     0.623** 0.883** 0.147* 

Shoulder yield      0.785** 0.105 

Total yield       0.125* 

* 0.010 < P ≤0.050, ** 0.001 < P ≤ 0.010, *** P ≤0.001. 
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Association between ovine UCP1 variation and carcass traits in the NZ Romney sheep 

In the single-variant (presence/absence) models, the presence of promoter variant B was 

associated with lower VGR (P = 0.005, Table 5.2). The associations with B detected in the 

single-variant models persisted in the multi-variant models (Table 5.2). The presence of A was 

associated with lower VGR (P = 0.041) in the multi-variant model only. The frequency of 

genotype BB was not greater than 5% so its association was not analysed. 

Lambs inheriting two copies of C (homozygous for C) had a higher mean VGR than 

those with one copy of C, or those that did not have C in their genotype (Table 5.3), whereas 

lambs inheriting two copies of C had a lower mean lean hind-leg meat yield than those with 

one copy of C and those that did not have C in their genotype (Table 5.3). 

Five promoter genotypes AA (n =58), AB (n = 62), AC (n = 72) and BC (n = 17) and CC 

(n= 20) occurred at a frequency of greater than 5%. The UCP1 genotype was found to have a 

significant effect on mean VGR (Table 5.4). 

Association of ovine UCP1 variants with body composition traits in the NZ Suffolk sheep 

Of the 225 NZ Suffolk sheep analysed, no association (P > 0.050) was found between 

promoter variant and EMD and EMW. 

In the single-variant (presence/absence) models, the presence of promoter variant C was 

associated with higher FDM (P = 0.033) (Table 5.5). No other associations were detected. 

Those marginal means for FDM for each genotype occurred at a frequency of greater 

than 5% were listed in Table 5.6. Those animals with the BB genotype had lower FDM than 

those with AB (P = 0.019), AC (P = 0.003) and BC (P = 0.010). No other associations were 

detected. 

Association of ovine UCP1 variants with post-weaning growth-rate in the NZ Suffolk 

and Romney lambs 

No association (P > 0.050) was found between ovine UCP1 variation and mean birth 

weight, weaning-weight and post-weaning growth-rate in the NZ Suffolk and the NZ Romney 

sheep studied. 
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Table 5.2 Association between presence/absence of ovine UCP1 promoter variants and various carcass trait measures in the NZ Romney sheep 

1P value associated with the variant being assessed. Estimated marginal means and P values were derived from GLMMs with variant (absent and present) and birth 
rank fitted as fixed factors and sire fitted as a random factor (P < 0.050 in bold). 
2VGR represents VIAScan Fat Score. 
3Lean meat yield expressed as a percentage of hot carcass weight. 
4Total yield is the sum of the hind-leg, loin and shoulder yield. 

Trait Variant being 
assessed 

Other variant in the 
model 

Mean 1 ± Std Error P value1 
Absent  n Present  n 

VGR2 A None 8.0 ± 0.40 44 7.2 ± 0.18 192 0.062 
 B None 7.7 ± 0.21 150 6.6 ± 0.31 86 0.005 
 C None 7.1 ± 0.23 127 7.7 ± 0.25 109 0.084 
 A B, C 7.9 ± 0.41 44 7.0 ± 0.20 192 0.041 
 B A, C 8.1 ± 0.29 150 6.8 ± 0.33 86 0.004 
 C A, B 7.5 ± 0.32 127 7.5 ± 0.28 109 0.917 
Hind-leg yield (%) 3 A None 21.5 ± 0.19 44 21.5 ± 0.08 192 0.806 
 B None 21.4 ± 0.10 150 21.7 ± 0.15 86 0.067 
 C None 21.6 ± 0.11 127 21.4 ± 0.12 109 0.271 
Loin yield (%) 3 A None 14.7 ± 0.14 44 14.8 ± 0.06 192 0.304 
 B None 14.8 ± 0.07 150 14.8 ± 0.11 86 0.687 
 C None 14.8 ± 0.08 127 14.8 ± 0.09 109 0.631 
Shoulder yield (%) 3 A None 18.0 ± 0.13 44 18.0 ± 0.06 192 0.987 
 B None 17.9 ± 0.07 150 18.0 ± 0.10 86 0.505 
 C None 18.0 ± 0.08 127 18.0 ± 0.08 109 0.822 
Total yield (%) 4 A None 54.1 ± 0.39 44 54.3 ± 0.18 192 0.691 
 B None 54.1 ± 0.21 150 54.5 ± 0.31 86 0.375 
 C None 54.4 ± 0.23 127 54.2 ± 0.25 109 0.574 
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1P value associated with the variant being assessed. Estimated marginal means and P values were derived from GLMMs with variant (absent, one copy and two 
copies) and birth rank fitted as fixed factors and sire fitted as a random factor (P < 0.050 in bold). 
2Means across rows with different superscripts are significantly different (multiple pair-wise comparisons with a Bonferroni correction, P > 0.050). 
3VGR represents VIAScan Fat Score. 
4Lean meat yield expressed as a percentage of hot carcass weight. 
5Total yield is the sum of the hind-leg, loin and shoulder yield.

Trait Variant 
being 
assessed 

Other variant 
in the model 

Mean 1, 2 ± Std Error P 
value1 Absent n 1 copy  n 2 copies n 

VGR3 A None 8.0 ± 0.40 44 7.1 ± 0.22 134 7.4 ± 0.34 58 0.137 
 C None 7.1 ± 0.22a 127 7.3 ± 0.26a 89 9.7 ± 0.55b 20 < 0.001 
 A C 7.4 ± 0.41 44 8.1 ± 0.32 134 9.0 ± 0.52 58 0.127 
 C A 6.7 ± 0.29a 127 7.4 ± 0.33a 89 10.3 ± 0.67b 20 < 0.001 
Hind-leg yield (%) 4 A None 21.5 ± 0.19 44 21.5 ± 0.10 134 21.5 ± 0.16 58 0.970 
 C None 21.6 ± 0.11a 127 21.5 ± 0.13a 89 20.8 ± 0.27b 20 0.032 
Loin yield (%) 4 A None 14.6 ± 0.14 44 14.8 ± 0.07 134 14.9 ± 0.12 58 0.289 
 C None 14.8 ± 0.08 127 14.8 ± 0.09 89 14.4 ± 0.19 20 0.074 
Shoulder yield (%) 4 A None 18.0 ± 0.13 44 18.0 ± 0.07 134 17.9 ± 0.11 58 0.922 
 C None 18.0 ± 0.08 127 18.0 ± 0.09 89 18.0 ± 0.19 20 0.965 
Total yield (%) 5 A None 54.1 ± 0.40 44 54.3 ± 0.21 134 54.4 ± 0.33 58 0.885 
 C None 54.4 ± 0.23 127 54.4 ± 0.27 89 53.3 ± 0.56 20 0.192 

Table 5.3 Association between ovine UCP1 promoter variant copy numbers and various assessments of yield in the NZ Romney sheep 
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Table 5.4 Association of UCP1 promoter genotype with various carcass measures in the NZ 
Romney sheep 

 
 
 
 
 
 
 
 

 1P value associated with the variant being assessed. Estimated marginal means were derived from 
GLMMs with genotype presence/absence and birth rank fitted as fixed factors and sire fitted as a 
random factor. 
2Means across rows with different superscripts are significantly different (multiple pair-wise 
comparisons with a Bonferroni correction, P > 0.050). 
 3VGR represents VIAScan Fat Score. 
4Lean meat yield expressed as a percentage of hot carcass weight. 
5Total yield is the sum of the leg, loin and shoulder yield. 
 
Table 5.5 Association of UCP1 promoter variant with assessments of body composition traits in 
the NZ Suffolk sheep 

1P value associated with intron and 3’UTR variants being assessed. Estimated marginal means and P 
values were derived from GLMMs with variant copy number, gender and birth rank fitted as fixed 
factors and sire-line fitted as a random factor (P < 0.050 in bold). 
2EMD: Eye Muscle Depth; EMW: Eye Muscle Width; FDM: Fat Depth above the Eye Muscle. 
 
 Table 5.6 Association of UCP1 promoter genotype with Fat Depth above the eye Muscle (FDM) 
in the NZ Suffolk sheep 

 
 
 
 
 
 
 
 
 

1 P value associated with the variant being assessed. Estimated marginal means were derived from 
GLMMs with genotype presence/absence and birth rank fitted as fixed factors and sire fitted as a 
random factor. 
2 Means across rows with different superscripts are significantly different (multiple pair-wise 
comparisons with a Bonferroni correction, P > 0.050). 
3 FDM: Fat Depth above the eye Muscle. 
 

Trait Mean 1, 2 ± Std Error 
AA (58) AB (62) AC (72) BC (17) CC (20) 

VGR3 7.5 ± 0.32a 6.7 ± 0.34a 7.4 ± 0.29a 6.8 ± 0.58a 9.6 ± 0.55b 
Hind-leg yield4 21.5 ± 0.16 21.6 ± 0.17 21.4 ± 0.14 21.8 ± 0.29 20.8 ± 0.27 
Loin yield4 14.9 ± 0.12 14.7 ± 0.12 14.8 ± 0.10 14.9 ± 0.21 14.4 ± 0.20 
Shoulder yield4 17.9 ± 0.11 18.0 ± 0.12 17.9 ± 0.10 18.1 ± 0.21 18.0 ± 0.19 
Total yield5 54.4 ± 0.33 54.3 ± 0.36 54.2 ± 0.31 54.9 ± 0.61 53.3 ± 0.57 

Trait2 Variant being assessed Other variant in model Mean 1 ± Std Error P value1 Absent  n Present  n 
EMD (mm) A None 30.4 ± 0.6 116 29.7 ± 0.5 109 0.101 

 B None 30.0 ± 0.5 124 30.0 ± 0.6 101 0.972 
 C None 30.0 ± 0.5 153 30.6 ± 0.6 72 0.072 

EMW (mm) A None 75.8 ± 0.8 116 75.2 ± 0.8 109 0.415 
 B None 75.5 ± 0.8 124 75.5 ± 0.9 101 0.940 
 C None 75.4 ± 0.8 153 75.8 ± 0.9 72 0.578 

FDM (mm) A None 3.4 ± 0.2 116 3.4 ± 0.1 109 0.911 
 B None 3.3 ± 0.1 124 3.4 ± 0.2 101 0.800 
 C None 3.3 ± 0.1 153 3.5 ± 0.2 72 0.033 

Genotype Fat depth above the eye Muscle (FDM) 
(mm) Mean 1, 2, 3 ± Std Error 

AA 3.3 ± 0.2ab 
AB 3.4 ± 0.1a 
AC 3.7 ± 0.2a 
BB 2.9 ± 0.2b 
BC 3.6 ± 0.2a 
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5.4 Discussion 

This is the first report describing a relationship between variation in UCP1 and carcass 

traits in sheep. Sequencing of portions of the gene revealed two new SNPs in the promoter 

and one that has been reported previously in intron 2 (Yuan et al., 2012). No variation was 

detected in the exon 5 amplicon. Together these results suggest that the promoter of ovine 

UCP1 may be subject to less functional constraint, than other regions of the gene.  

Previously, Yuan et al., (2012) reported variation in exon 5 and promoter region of ovine 

UCP1 in Chinese Fat Tail sheep, while in this study no variation was found in exon 5 and two 

new SNPs were found in the promoter region of gene. This difference in the frequency of the 

UCP1 variants may due to different genetic selection programs being used in different 

countries, or because some of the UCP1 variants are breed-specific, or simply because 

insufficient sheep were studied to fully reveal the variation that exists in sheep. These genetic 

differences need further clarification by investigating more sheep samples and breeds, from 

different areas or countries. 

The promoter sequence of the UCP1 has been reported to be important for gene 

expression through its interaction with the CCAAT/enhancer binding proteins (C/EBP) α and 

C/EBPβ (Yubero et al., 1994). These elements, can amplify the effect of norepinephrine on 

UCP1 transcription and therefore affect fat metabolism and deposition (Bianco et al., 1988; 

Hernandez and Obregon, 2000). In humans, variation within the promoter region of UCP1 has 

been reported to be associated with abnormal fat metabolism phenotypes, including an 

increased risk of hypertension, obesity and type 2 diabetes mellitus (Kieć-Wilk et al., 2002; 

Kotani et al., 2007) and varied body fat mass and waist-to-hip ratio (Shin et al., 2005). In 

addition, variation in the promoter region of human UCP3 has also been found to be 

associated with risk of obesity and variation in cholesterol levels in Japanese population 

(Hamada et al., 2008). In sheep, we found a few regulatory elements in the promoter of ovine 

UCP1. These elements including TATA box, CAAT box are shown in Figure 5.2. It is 

therefore notable that in this study, the variation detected within the promoter of ovine UCP1 

was associated with carcass fat composition (VGR). This suggests that the effects of variation 

in the promoter sequence on the regulation of fat metabolism may be similar in sheep to that 

in humans. 

Interestingly, a recent morphometric study in mice (Almind et al., 2007) has located 

UCP1 in brown adipocytes that are interspersed in the perimuscular and inter-muscular 

adipose tissues of the leg. Additionally, in obesity-resistant mice, dramatically increased 
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levels of UCP1 mRNA, UCP1 protein and mitochondrial uncoupling were detected in hind-

limb skeletal muscle (Li et al., 2000). It is therefore conceivable that the variation observed 

within the promoter of ovine UCP1 could affect the expression of UCP1 mRNA in both 

perimuscular and intermuscular adipose tissues. This might then lead to varied energy 

expenditure and variable fat content in skeletal muscles and consequently affect the lean meat 

yield of hind-leg, shoulder and loin. This requires further investigation, especially to confirm 

whether the leg meat does actually contain more intramuscular fat. This increased 

intramuscular fat may be desirable with respect to meat eating-quality, as has been suggested 

by Dodson et al., (2010). 

Of the 823 NZ sheep typed in this study, it is noteworthy that B had a higher frequency in 

NZ Suffolk sheep (46.6%) than NZ Romney sheep (19.7%). Given that B was associated with 

leaner carcasses in this study, it could be argued that the majority of NZ Suffolk sheep appear 

to be more genetically predisposed to being leaner when compared to NZ Romney sheep. This 

too needs confirmation, both in the NZ Romney and the NZ Suffolk breeds and in other 

breeds that differ in growth and carcass characteristics. 

Variant b was not present in NZ Romney sheep (0%) and rare in NZ Suffolk sheep 

(3.3%). This might suggest that variant b may negatively associate with a trait or traits that 

have been selected against historically. 

The C variant of UCP1 was found to be the least common variant in both breeds (14.6% 

in NZ Suffolk and 27.3% in NZ Romney). The small number of the lambs inheriting C, the 

variant that was associated with higher VGR, might suggest that NZ Romney and NZ Suffolk 

sheep have been selected against having fatter carcasses. Over-fatness is a common cause of 

meat being deemed unacceptable or less desirable in some markets, and because of the 

connection between the consumption of high levels of saturated fat, obesity, cancer, diabetes 

and heart disease (Volk, 2007). Given that having two copies of B is associated with lower fat 

composition score, genetic selection for variant B of ovine UCP1 could benefit breeders in 

future by allowing them to select leaner lambs. 

In this chapter and previous chapter (Chapter 4), because the NZ Suffolk studied were 

stud sheep and the NZ Romney studied were commercial sheep, the carcass traits of these two 

breeds were assessed differently. The carcass characteristics of the NZ Romney sheep were 

measured using VIAscan® and different from the NZ Suffolk sheep in chapter 3 which were 

measured using Ultrasound scanning. 

Ultrasound estimation of genetic merit for carcass traits is based on scanning in the width 

and depth of the loin at the 12th rib of live animals (Figure 5.3). Body composition indices of 
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EMD, EMW, FDM together with live weight at scanning and weaning were measured to 

calculate the genetic merit (Estimated Breeding Values, eBVs) for lean weight, fat weight and 

EMA for the NZ Suffolk sheep. Ultrasound scanning is relatively inexpensive, economic to 

measure a large number of animals in a flock and having moderately accurate predictor of 

weight of muscle and fat in the carcass. 

VIAscan® estimation of sheep carcass traits is based on the video imaging analyses of 

animal’s carcass. VIAscan® technology provides measurements reflecting whole carcass yield 

(Figure 5.4). It has been used to predict eBVs for yield of hind-leg, loin and shoulder cuts. In 

comparison with Ultrasound scanning, VIAscan® provides the key advantages of greater 

accuracy and improved practicability (Cannell et al., 1999). 
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Figure 5.3 Ribeye areas of lamb carcass scanned by ultrasound. A: Eye Muscle Width 
(EMW); B: Eye Muscle Depth (EMD); C: Fat Depth above the eye Muscle (FDM) 
 
 
Figure 5.4 Ribeye areas of lamb carcass scanned by ultrasound. A: Eye Muscle Width 
(EMW); B: Eye Muscle Depth (EMD); C: Fat Depth above the eye Muscle (FDM) 
 

Figure 5.5 Whole lamb carcass scanned by VIAscan® 
 
 
Figure 6.6 Process of multi-gene assisted selectionFigure 5.7 Whole 
lamb carcass scanned by VIAscan®. 
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    Chapter 6 
General Summary and Future Directions 

This thesis focused on the identification of variation within the ovine genes ADRB3, HSL 

and UCP1, and the potential for association between this variation and variation in post-

weaning growth and carcass traits. 

The results from chapter 3 suggest that ADRB3 is highly variable in sheep. This work 

confirmed that ovine ADRB3 could be used as a gene-marker for lamb growth. Variation in 

both intron and 3’UTR of the gene was found to be associated with variation in weaning-

weight and post-weaning growth-rate. Haplotype analysis of the gene gave us a further 

understanding of these associations. According to the statistical modelling results, a single 

copy of ADRB3 haplotype C-a could deliver an increase in daily weight gains. Therefore, it is 

tempting to suggest these associations could underpin development of a tool for selecting 

faster growing lambs. 

Of the sixteen ADRB3 haplotypes defined, seven were detected in NZ Suffolk sheep. The 

rarity of some ADRB3 haplotypes in NZ Suffolk sheep could be due to reduced genetic 

diversity in this breed relative to the NZ Romney sheep, and that it might have come about 

through historical selection for production traits. Further studies will need to investigate 

whether the associations found in this study are consistent across different sheep breeds. 

Given the extended intron variation identified previously in ovine ADRB3 in Chinese breeds 

(Yang et al., 2009), it is also suggested that more variation and haplotypes of the ovine 

ADRB3 may exist, if more sheep breeds from around the world are investigated. This will 

further expand our understanding of the association between variation in this gene and key 

animal traits. 

It is notable that variation in the intron of ovine ADRB3 has also been found to be 

associated with other economic traits in sheep such as wool staple strength, cold-tolerance and 

carcass traits as described by Forrest et al., (2003; 2006 and 2007). Because the haplotype 

covers a larger region of the gene than an individual fragment, the haplotyping method 

developed in this work may help the further understanding of those associations by 

investigating the association between haplotypes and those traits. More accurate haplotypes 

will potentially allow for the detection of stronger associations, especially for the D-d 

haplotype which has been found to be associated with impaired lamb cold-tolerance and was 

absent in the breeds studied here. 
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Recently, a comparative analysis of human chromosome 8 and bovine chromosome 27 

suggests that bovine ADRB3 is located at Quantitative Trait Locus (QTL) that is associated 

with “dairy form”, an estimated index for cows efficiency to mobilise energy stored as fat into 

milk production (Connor et al., 2006). This suggests that haplotypes of ADRB3 may also be 

associated with key milk traits in milking sheep, dairy cows, and other milking animals. 

Therefore, the extended variation now revealed in sheep, suggests greater effort should be 

made to investigate ADRB3 variation in cattle, goat, sheep and other livestock. 

This is the first research reporting the variation in ovine HSL and its association with 

lamb carcass traits. The results in chapter 4 suggest that ovine HSL is moderately genetically 

variable and that variation in this gene is associated with variation in EMA and fat deposition. 

Since EMA represents a primal cut area of a carcass and is considered an important trait for 

quality carcasses, the breeding for lambs that have the C variant could therefore potentially 

benefit the lamb industry by the production of more lambs with larger EMAs. 

However, further work is needed to confirm the associations found in this work by 

investigating the association between variation in HSL and carcass traits in some other “fatter” 

sheep breeds than the NZ Suffolk breeds.  

Although a non-synonymous nucleotide substitution was detected in exon 9 of ovine 

HSL, no association was found between this variation and growth or carcass traits. This may 

once again be because the NZ Suffolk lambs studied have been selected for growth and 

carcasses traits for many years and therefore contain less genetic diversity and a reduced 

frequency of some genetic variants.  

This is also the first research reporting an association between variation in ovine UCP1 

and variation in lamb carcass traits. The results suggest that ovine UCP1 is moderately 

genetically variable. Variation in ovine UCP1 is possibly associated with variation in both 

carcass subcutaneous fat and hind-leg intramuscular fat deposition. This result is once again 

promising for sheep farmers and could potentially be used in sheep breeding. The future use 

of UCP1 testing could possibly help farmers to identify those lambs with greater genetic 

potential to produce leaner carcasses. However, further studies are once again needed to 

investigate the variation in more sheep breeds and confirm the associations revealed between 

ovine UCP1 variation and variation in key carcass traits such as fat content. 

Given the association found between the promoter variants of ovine UCP1 and variation 

in fat composition in lamb carcass, it could be suggested that the promoter region of ovine 

UCP1 may be important for the regulation of UCP1 function and that the variation in this 
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region may have similar effects on fat metabolism in humans and sheep. However, the exact 

mechanism of how this variation affects the expression of UCP1 is still unclear. 

No association was found between variation in ovine HSL, ovine UCP1 and variation in 

post-weaning growth. This may be because that these genes are encoding “down-stream” 

lipolytic factors which are mainly involved in the degradation of fat deposits and thus have 

less effects on growth than on the fat traits. Once again, further study is required to better 

understand this association through investigating variation within more regions of the gene 

and in more sheep breeds. 

The majority of the sequence variation within the genes investigated in this work is 

located in non-coding region and is expected to be silent. However, given the association 

found between these “silent variants” and sheep traits, the variation within ovine ADRB3, 

ovine HSL and ovine UCP1 may be in linkage disequilibrium with other variation in the gene 

(or flanking the gene). Recently, it has also been suggested that naturally occurring silent 

variation within non-coding sequences can affect in vivo protein folding, and consequently 

function (Kimchi-Sarfaty et al., 2007). Silent variation in coding region may create codons in 

the mRNA for which tRNAs are less available and this may slow the rate of translation and 

protein function (Kimchi-Sarfaty et al., 2007; Komar, 2007). This may affect gene expression 

or protein structure and function, which ultimately cause the changes in animal growth and 

carcass traits. This would require further functional studies with these genes to be undertaken 

to see whether an effect is observed.  

Given that the genes for ADRB3, HSL and UCP1 are located on different chromosomes 

(ADRB3 located at OAR chromosome 26, HSL located at OAR chromosome 14 and UCP1 

located at OAR chromosome 17), a direct interaction between these genotypes is unlikely to 

occur. Therefore, the effects of these variants on post-weaning growth and carcass traits are 

expected to be additive and the combination of these additive effects may be able to 

improvement sheep breeding approaches to produce lambs having leaner carcasses and faster 

post-weaning growth-rates. For example, one approach may be utilising these identified 

genetic variants for “multi-gene assisted selection” as shown in Figure 6.1. 
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This approach would provide more accurate criteria for breeding lambs with better 

growth and carcass traits. 

As mentioned before, caution is still needed if breeding for those “better genotypes” in 

other sheep breeds due to the need to confirm the consistency of these associations. Further 

work is also required to ascertain if the same effects are seen in other breeds. 

It is well known that quantitative traits like growth and carcass traits, which vary 

continuously, tend to be affected by the combined effects of one or more genes and the 

environments. Therefore, future work needs to investigate more genes derived from key 

energy metabolism pathways such as the myostatin gene (MSTN), MyoD gene (MYOD1), 

Myf5 gene (MYF5), myogenin gene (MYOG), and Myf6 gene (MYF6). The associations of 

those genes with growth and carcass traits could be combined into a multi-gene assisted 

selection approach to increase the accuracy of genetic selection. 

Figure 6.1 Process of multi-gene assisted selection for ideal sheep. 
 
Figure 6.2 Process of multi-gene assisted selection for ideal sheep. 
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Appendices 

Appendix A: The NZ Suffolk sires used in Chapter 3 and their 
ADRB3 diplotypes 
 

Stud Sire ID1 Sire haplotype Number of progeny 
1 14/07 C-a/E-e 11 
 399/07 B-c/E-e 13 
 56/05 A-b/C-a 10 
 70/01 A-b/C-e 8 
 9/07 A-b/F-e 6 
 94/06 B-c/E-e 4 
 95/06 B-cE-e 14 

2 Lindsay01 C-a/E-e 5 
 Beechbank 206.04 A-b/B-c 2 
 Coleford 213.06 C-a/E-e 15 
 Phoebe 89.05 A-b/A-b 9 
 Stonylea 156.02 E-e/C-a 10 
 Te Takutai 228.2 B-c/C-e 8 
 Waterton 507F.06 B-c/C-a 3 

3 Clifton JM 148.03 A-b/E-e 4 
 Coleford 381.03 A-b/E-e 2 
 Goldstream 192.02 A-b/A-b 5 
 Omagh 131.07 A-b/E-e 13 
 Studholme 20.07 A-b/B-c 10 
 Waimotu 934.07 B-c/C-e 11 

4 GS254/04 A-b/A-b 26 
 PB120/06 A-c/B-c 18 
 Tyanee 110/06 A-b/E-e 13 
 Kyle01 A-b/B-c 15 
 Kyle02 A-b/C-e 37 
 Windsor 2/04 B-c/C-e 45 

5 Punchbowl 41/04 B-c/E-e 60 
6 Co 83/06 E-e/E-e 31 
 Gs 275/04 A-b/E-e 74 
 VA118/07 A-b/E-e 31 
 VA155/06 A-b/F-e 26 
 VA203/07 B-c/F-e 18 

7 BR 106/06 A-b/E-e 59 
 PA 42/06 A-b/B-c 36 
 PA 65/03 A-b/B-c 45 
 PA 76/05 A-b/C-a 67 

8 Gardiner 01 C-a/E-e 17 
 Gardiner 02 A-b/F-e 16 

1Sires in the same stud might be related. 
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