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Abstract of a thesis submitted in partial fulfilment of the requirements for 
the Degree of Masters of Science 

Investigating variation in associations with belowground micro-organisms 

of historic and current white clover germplasm 

By 

John Ramana 

 

White clover (Trifolium repens) is regarded as one of the most important forage legume 

in temperate regions of the world, and is very important to the New Zealand pastoral 

industries. The symbiotic relationship between clover and the soil bacterium Rhizobium 

leguminosarum biovar trifolii (rhizobia) is the basis of the nitrogen (N) fixation ability of 

clover. White clover breeding started intensively in the late 1920’s in New Zealand. Clover 

breeding programmes have largely focused on above ground characteristics in selection 

of new cultivars. This has usually been carried out in high soil nitrogen environments, due 

to fertilizer use. This is the first study to investigate whether plant breeding may have 

impacted on white clover and it’s below ground associations. 

Six cultivars of white clover were used. Three newer cultivars (Tribute, Kopu II, Crusader), 

and three older cultivars (Huia, Irrigation, Louisiana) which were paired based on 

physiological characteristics and growth habits. Three major below ground associations 

were analyzed in this project and these were i) plant interactions with rhizobia to 

examine whether there is preferential selection of efficacious strains of rhizobia by the 

older cultivars, ii) interaction with arbuscular mycorrhizal fungi (AMF) and the 

responsiveness of clover cultivars to different species of AMF, iii) interaction with the 

wider rhizosphere bacterial community, to determine whether the cultivars preferentially 

selected more beneficial associations in a complex soil background.  

Symbiotic potential assays in vitro showed that the cultivars Irrigation and Louisiana 

produced significantly different shoot dry weight when inoculated with six different 

strains of rhizobia (P=0.038, and P=0.013, respectively). Cultivars Huia and Tribute 
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showed strong trends (P=0.052, and P=0.059, respectively). Based on plant dry weight, 

rhizobia groups of “highly effective” and “less effective” strains were identified for these 

four cultivars and used to examine if there was preferential selection of highly effective 

strains. Out of the four cultivars, only Huia and Louisiana had significantly more “highly 

effective” and significantly less “less effective” rhizobia strains occupying their nodules 

than was expected by chance (P<0.001).  

This was the first study to examine the bacterial rhizosphere and root endophyte 

communities of old and new cultivars of white clover. 16S gene sequencing using Illumina 

HiSeq showed that the bacterial communities in the root and rhizosphere were 

significantly different from each other (PERMANOVA, P=0.001) in richness and diversity. 

Sequencing also revealed that plant morphotype was the main factor influencing 

bacterial community structure in the rhizosphere and roots of white clover, as cluster 

analysis showed that the samples grouped together according to their leaf size 

(PERMANOVA, P=0.001) and not by cultivar age. Illumina sequencing also showed there 

were differences among the pairs of cultivars in relation to the most abundant class 

observed. Alphaproteobacteria (42.3-52.6%) was the most abundant class for old/new 

matched pairs Irrigation/Crusader, and Louisiana/Kopu II, whereas the most abundant 

class for matched pairs Huia/Tribute was the Gammaproteobacteria (32.8%). 

DGGE showed that cultivar significantly affected AMF community structure in the 

rhizosphere (PERMANOVA P=0.006). However, there was high variation among replicates 

of the same cultivar (P<0.05), and principal coordinate analysis did not show any grouping 

by cultivar. 

Overall this study revealed that strains of R. leguminosarum vary in their efficacy when in 

symbiosis with different cultivars. The results suggested that older cultivars may be 

better able to select for more effective strains of rhizobia than newer cultivars, and may 

be able to exploit a wider range of rhizobia. This study also identified that the main factor 

affecting the bacterial rhizosphere and root communities of white clover was cultivar 

morphotype.   

Keywords: Trifolium repens, Rhizobium leguminosarum, Illumina HiSeq, DGGE, host 

selection, rhizosphere, root endophyte community, arbuscular mycorrhizae  
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1 Literature Review 

 

1.1 Introduction 

Nitrogen (N) is an essential element for plant growth because it plays a central role in the 

molecular make-up of DNA, RNA, ATP and proteins. Nitrogen is also an essential 

component of other key compounds including chlorophyll, auxin, cytokinins, alkaloids and 

glucosinolates. All of which play a very important part in plant growth regulation and in the 

intake and conversion of light into chemical energy (Andrews et al., 2013). 

 Since the 1960’s the main aim of the agricultural industry has been to maximise output 

per unit of land area and N fertilizer was heavily used to try and achieve this (Andrews et 

al., 2009). Generally crop plants are only able to take up and convert around 20-40% of 

exogenously supplied N and the remainder is lost to the aqueous and atmospheric 

environment. This has become a serious concern of recent times with problems such as 

eutrophication becoming more apparent (Andrews et al., 2009); (Andrews and Lea, 2013). 

Nitrate (NO3-) and urea are very soluble, unlike ammonium (NH4+) which binds to negative 

charges in the soil. Therefore, nitrate can easily run off into the surface water or flow into 

the groundwater (Andrews and Lea, 2013). Water contaminated by nitrate at high 

concentrations is a serious health risk for humans (Powlson et al., 2008). 

New Zealand’s pastoral farming underpins its most profitable export commodities. The 

New Zealand dairy industry earns 26% of the country’s export revenue, followed by the 

sheep and beef industry at 7.4% and 7.1%, respectively (Statistics New Zealand, 2016). To 

maintain its international competitiveness, the pastoral industry has relied on a high 

quality feed source that is cheap and which can be used year round – namely white 

clover/ryegrass based pastures (Rattray et al., 2005). It has been common practise for 

white clover to be sown as the main legume with ryegrass, and this has been relied upon 

for nitrogen fixation into the pasture (Lindström et al., 2010). However, it is a very common 

practice to use fertilizer N to increase productivity and reduce seasonal variation in feed 

supply (Brock and Hay, 2001). 
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 An important aspect of a grass-clover mixture is to retain an adequate proportion of 

white clover in the pasture. Sufficient white clover content helps to optimize the benefits 

of nitrogen fixation and to make best use of the superior feed value of white clover. 

Other advantages to using white clover are improved sward quality and 

complementation of growth patterns with many commonly used grasses (Elgersma et al., 

2000; Rattray et al., 2005). Unlike red clover, white clover grows lower to the ground and 

grows more laterally. Studies conducted by Eerens and Ryan (2000) in the Southland of 

New Zealand showed that sheep farmers could produce 25% more dry matter; 40% more 

carcass weight and 25% more wool from mixed ryegrass/white clover swards without 

exogenous N, as compared to ryegrass alone with 270 kg N/ha annually. Other estimates 

of the amount of N fixed annually by white clover are approximately 1.3 M tonnes in New 

Zealand pastures (Walker and Woodfield, 1996). This highlights white clover as a crucial, 

economically important member of agricultural pastoral systems. 

1.2 White Clover 

White clover breeding started intensively in the late 1920’s in New Zealand, happening at 

the same time as similar programmes in various other countries such as the UK, Denmark 

and Australia (Caradus et al., 1996a). White clover is regarded as the most important 

forage legume in the temperate regions of the world, and is very important to New 

Zealand agricultural industries (Rattray et al., 2005). It is a perennial legume that spreads 

by creeping stolons which root at the nodes and go on to form new daughter plants 

(Rattray et al., 2005). White clover fixes atmospheric nitrogen owing to a symbiotic 

relationship with Rhizobium bacteria in the roots. The nitrogen which is fixed, becomes 

available to surrounding plants once portions of clover stolons and roots die, decay, and 

are mineralised to release nitrogen (Eerens and Ryan, 2000). It is winter dormant and 

shows peak growth and N2 fixation in early/mid summer (Andrews et al., 2007).  

White clover varieties are classified based on leaf size, measured on spaced plants. 

Usually varieties with small leaves maintain good ground cover under intensive sheep 

grazing. Whereas, varieties with larger leaves are better suited to swards under cattle 

grazing or cutting, and fodder (Andrews et al., 2007). For both dairy and sheep grazing 

systems, it has been noticed that increasing the clover content of the pastures leads to a 
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significant increase in livestock production. For example, in the South Island high country, 

oversowing pastures with white clover and topdressing resulted in the sheep being 

attracted to the more palatable pastures (Rattray et al., 2005). White clover is regarded 

as a high quality component of grazed pastures because of its nutritive value. It has 

higher concentrations of crude protein, water soluble carbohydrates (sugars), lower 

concentration of lipids, readily fermentable carbohydrates, lignin, cellulose and fiber 

compared to perennial ryegrass (Caradus et al., 1996b; Rattray et al., 2005). 

1.2.1 Breeding history 

White clover is an outbreeding species with individual plants usually being self-sterile. It 

is an allotetraploid that forms bivalents and shows disomic inheritance (Abberton and 

Marshall, 2005). In the early 1970’s it was acknowledged that different types of white 

clover were needed for various environments and management systems. This led to the 

development of a range of cultivars, which suited to a wider range of environments 

(Mather et al., 1996; Rattray et al., 2005). Until then there was only one general purpose 

white clover that was being used and this was a cultivar developed in New Zealand called 

Grasslands Huia (Brock, 1988). Natural selection and the assistance of plant breeders 

have segmented the species into cultivars with distinct leaf sizes and this has increased 

the utility of white clover (Mather et al., 1996). Small leaf type clovers are utilized best in 

hard grazing situations where persistence is an important factor. Large leaved clover 

types are more suited for lax grazing but also possess an adaptability which has allowed 

these species to grow in sub-tropical regions (Mather et al., 1996). However, the largest 

use has been of the intermediate leaf type clover which is ideally represented by the 

Grasslands Huia cultivar. 

1.3  Microbial Symbioses 

1.3.1  Rhizobia 

The symbiotic relationship between clover and soil bacterium Rhizobium leguminosarum 

biovar trifolii is the basis of the N fixation ability of clovers. The rhizobia infect clover 

roots and then proceed to form nodules (Rattray et al., 2005). Nitrogen fixation is when 

the bacteroids present in the nodule convert nitrogen from the atmosphere, into plant 
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available nitrogen. In this symbiosis, the plant provides the bacteria with energy and 

nutrients, and in return benefits from the fixed nitrogen. This symbiotic relationship 

underpins the nitrogen economy of New Zealand pastures, and plays a crucial role in 

sustainable agriculture (Rattray et al., 2005; Wang et al., 2012). 

Rhizobia are Gram-negative, aerobic bacteria, and are currently classed as α-

proteobacteria (Suzaki and Kawaguchi, 2014). The development of nodules is a 

consequence of several different stages of interaction, each increasing with specificity for 

a given host-legume pairing (HIRSCH, 1992; Spaink, 2000; Downie, 2010).  

The first stage of specificity in the formation of a nitrogen-fixing symbiosis is when the 

plant produces flavonoid signals recognised by free living soil rhizobia which in turn 

activates their NodD proteins. These proteins bind to the conserved Nod-box in the 

promoters of bacterial nodulation genes which induces their expression (Oldroyd et al., 

2011; Wang et al., 2012). These Nod genes code for specific enzymes for the synthesis of 

Nod factors. The nod factors are recognized by transmembrane Nod factor receptors on 

the plant surface in a strain- and ecotype- specific fashion. The specificity of Nod factors 

lie in modifications such as the length and saturation of the acyl group (Wang et al., 

2012). The activation of the Nod factor receptors triggers a change in the growth of root 

hairs. Once the root hairs perceive Nod factors, there is an initial short interruption of 

symmetrical polar growth which can sometimes accompany a swelling at the root-hair 

tip. After this, growth resumes at the root tip to form a branch. This new growth can 

cause the root hair to bend back on itself, or in the case of a branch against the main part 

of the root hair, and in both cases leads to the bacteria becoming trapped between 

oppressed cell walls and forming an infection pocket (Oldroyd et al., 2011). There is also a 

possibility that there are other mechanisms aside from Nod factors that affect nodulation 

specificity. Rhizobia also use surface polysaccharides to modulate host range. The plant 

receptors for these are currently unknown but could potentially resemble animal 

receptors for surface polysaccharides targeting pathogenic bacteria (Wang et al., 2012). 
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Furthermore, in some rhizobial strains, NodD proteins also induces the expression of Ttsl, 

which codes for a transcriptional regulator that binds to highly conserved promoter 

elements called tts boxes. These boxes are found upstream of operons encoding the type 

III secretion machinery of effectors. The recognition of effector proteins by R genes 

present in some varieties of plants limits hosts range, adding further specificity (Wang et 

al., 2012). A visual diagram of the molecular dialogue that takes place in nodulation can 

be seen in Figure 1.1 below. 

 

Figure 1.1 The stages of host specificity and molecular dialogue occurring between rhizobial 
bacteria and the plant host. Retrieved from Wang, et al (2012).  

 

Rhizobia in New Zealand Soils 

The rhizobia that nodulate clovers, were not present in New Zealand prior to European 

settlement, but were introduced most likely as dust on plants and contaminants in soil, 

stock hooves and agricultural equipment (Lowther, 2010). Before 1955, commercially 

produced rhizobia inoculants available in New Zealand were mainly for lucerne, however, 

by 1957 clover inoculants were also readily available (Lowther and Kerr, 2011). This 

occurred at approximately the same time as large scale land clearing and development 

began to take place, especially in acidic soils cleared out of scrub. In these sites clovers 

usually failed to nodulate because of the absence, or low populations, of resident 
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rhizobia. To overcome this issue clover seed were inoculated with rhizobia prior to 

sowing (Lowther, 2010) using peat slurries. Strains recommended for use in New Zealand 

and present in manufactured inoculants were PDDCC 2666, 2668, 2153, while strain CC 

275e (PDDCC 2163) was recommended for Australian inoculants sold in New Zealand. 

When oversown with coated seeds, the percentage of seedlings nodulated ranged from 

40-49% using these strains. This was a contrast to Australian inoculant strain TA1 which 

only nodulated 17% of seedlings. This low nodulation was likely due to its poor survival 

on seed before, or on the soil surface after oversowing. No rhizobia capable of nodulating 

white clover were detected on any of the sites this experiment was conducted on 

(Lowther and Johnstone, 1978; Lowther and Kerr, 2011).  

In other studies conducted by Gaur and Lowther (1982a, 1982b) results showed that 

strains performed differently depending on whether the inoculated seed was sown into 

cultivated soil or oversown. In a cultivated situation, strain PDDCC 2163 which is a New 

Zealand re-isolate of the strain recommended for Australian inoculants marketed in New 

Zealand, showed no apparent effect on nitrogen uptake or clover growth. It resulted in a 

nodule occupancy of only 8 to 32% (Gaur and Lowther, 1982b). However, unlike many 

overseas trials conducted, Gaur and Lowther (1982b) found that the most persistent and 

competitive strain was PDD 4144: a New Zealand isolate of Australian strain TA1. 

Inoculant strains were identified by immuno-identification.  

It is important to note that most of the research into strain selection of rhizobia in New 

Zealand was done with Grassland Huia white clover. Therefore, the efficacy of certain 

strains may vary based on the cultivar of white clover used. A very common measure of 

assessing the efficacy of rhizobia strains is by measuring the shoot dry weight (Ryle et al., 

1981; Sánchez et al., 2014; Pereyra et al., 2015). A study conducted by Ryle et al. (1981) 

showed that shoot/root ratios of nodulated plants were always higher when compared to 

non nodulated plants.  

Clover rhizobia have now spread widely throughout New Zealand, and in a majority of 

situations the soil naturally contains high levels of resident rhizobia capable of nodulating 

white clover. Resident populations of rhizobia in New Zealand pastoral soils can range up 

to 1,000,000 per gram of soil (Lowther, 2010). The resident rhizobia present in the soils 
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are well adapted to the local conditions and compete with the introduced strains for 

nodule sites (Dowling and Broughton, 1986). The number of rhizobia on commercially 

inoculated and coated seed are usually very low, and  results from trials conducted in 

New Zealand and overseas show that these strains form a small portion of nodules and 

have little or no effect on clover growth (Lowther, 2010). However, lime coating of seeds 

can provide a localised increase in pH to enhance nodulation in soils with lower pH where 

clover is oversown, especially in situations where soil liming is not economical (Lowther 

and Kerr, 2011). More understanding of the mechanisms involved in protecting of 

rhizobia from harsh conditions during the coating, storage and sowing of legume seed 

would result in a higher quality product for farmers when sowing.  

Rhizobia partner choice and mutualism stability 

In the symbiotic relationship 15-20% of the photosynthetic carbon obtained by the plant 

supports the growth of rhizobium containing nodules, and approximately 15% is exuded 

into the wider rhizosphere (Kiers and Denison, 2008). Typically, a plant associates with 

several rhizobial genotypes, all of whom will vary in mutualistic benefit. This can create a 

situation where some microbes may obtain all the benefits of being in a symbiosis while 

contributing less to the plant. Therefore, it would make sense for an evolutionary 

mechanism to be in place to reduce the fitness costs from “cheating” microbes.  Kiers and 

Denison (2008) state that plant sanctions that discriminate among microbial partners 

based on their symbiotic performance are an important mechanism used to modulate the 

rhizobia-legume symbiosis. Several authors have argued that microbial cooperation could 

be maintained if plants preferentially allocated resources to nodules that contain strains 

of cooperative and high performing rhizobia (Simms et al., 2006). A study conducted on 

wild Lupinus arboreus inoculated with a mixture of good/mediocre and mediocre/poor 

rhizobial strains showed that from 301 nodules, DGGE banding patterns from only two 

nodules suggested occupancy by more than one rhizobia. Their findings showed that of 

18 plants inoculated with both good and mediocre strains, seven plants were nodulated 

by both strains, and the 11 remaining plants were all nodulated by the mediocre strain. 

However, their results showed that occupant identity accounted for a significant amount 

of the variation in nodule size within plants with smaller average size among nodules 
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occupied by the mediocre strains. These results perhaps illustrate the host’s ability to 

limit nutrients and resources to nodules that are occupied by poor strains. 

Another study conducted by Nangul et al. (2013) showed some specificity for rhizobia in 

arrow-leaf clover where 43% of nodules were occupied by a specific genotype. This work 

further shows the selectivity that can be displayed by clover toward a particular 

rhizosphere symbiont. 

1.3.2  Arbuscular Mycorrhizal Fungi 

In the context of ubiquity and partnerships throughout the plant kingdom, mycorrhizal 

relationships are the most significant plant-microbe symbiosis (Jeffries et al., 2003). Of 

these, arbuscular mycorrhizal fungi form the most ancient and widespread mycorrhizal 

relationships (Vandenkoornhuyse et al., 2003; Chen et al., 2010). 

Arbuscular mycorrhizal fungi (AMF) are symbiotic soil fungi which colonize the roots of a 

large majority of plants (Douds and Millner, 1999). They are globally distributed and are 

one of the most abundant below ground symbioses. More than 80% of plant species can 

form arbuscular mycorrhizal symbioses, however, only a relatively few species from a 

taxon known as the Glomeromycota are involved (Jeffries et al., 2003). This symbiotic 

relationship involves a bi-directional nutrient flow, where the fungi receives carbon from 

the plant (this is approximately between 10-20% of net photosynthates) and the plant in 

return obtains mineral nutrients and water (Jeffries et al., 2003; Nall, 2010). The 

photosynthetic C that the fungus receives, is in turn delivered to the soil via fungal 

hyphae. The extra-radical hyphae of AMF therefore act as a direct conduit for host C into 

soil and contribute directly to its C pools. This bypasses the process of decomposition and 

consequently stimulates the activity of other soil biota present. This phenomenon 

however, seems to be a selective process and particularly microbes having antagonistic 

activity against soil borne pathogens are stimulated (Jeffries et al., 2003). 

Differences in morphological and development traits of AMF have been used to classify 

them into seven genera and five families. However, it is not yet clear whether existing 

taxonomic groups, which have been based almost entirely on morphological traits are a 

useful indicator of their ecology (Hart and Reader, 2002). AMF have recently been 

reclassified into a separate fungal phylum, the Glomeromycota. Members of the 
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Glomeromycota typically form characteristic, tree-like structures called arbuscules in the 

root cortical cells of host plants, outside the plasma membrane (Facelli et al., 2009). 

Arbuscules and intracellular coiled hyphae in  root cortical cells play important roles in 

nutrient transfer between symbionts. One of the main nutrients transferred from the 

AMF to the plant partner is phosphorus (P) which is highly immobile in soil. After 

nitrogen, P is the second most limiting element limiting agricultural and crop production 

(Jeffries et al., 2003; Nall, 2010). The hyphae have the ability to access pores of 

considerably smaller diameters than roots and this greatly increases the volume of the 

soil solution from which P can be absorbed as orthophosphate (Facelli et al., 2009; 

Kaschuk et al., 2009). In a study conducted by Chen, et al. (2010) it was found that P 

concentration was higher in mycorrhizal clover plants than in non-mycorrhizal plants. 

Also, P concentration of mycorrhizal clover plants increased significantly with increasing 

growth rate. AMF can also increase uptake of N from the soil, either directly or due to 

improvements in the plant P supply (Eason et al., 2001). It has been well documented 

that the high-affinity Pi transporters found in the plasma membrane of extra-radical 

hyphae play a central role in inorganic phosphorus (Pi) uptake from the soil (Hijikata et 

al., 2010). For host plants however, the mycorrhiza-specific plant Pi transporters localized 

on the periarbuscular membrane are responsible for the uptake of Pi released from the 

arbuscules (Hijikata et al., 2010). 

It is believed that sanctioning as a method to discriminate against poor rhizobia could 

also be a mechanism that extends to other rhizosphere mutualisms such as mycorrhizal 

fungi, root endophytes, and possibly other free living rhizosphere microorganisms (Kiers 

and Denison, 2008).  

In a study conducted by Helhason, et al. (2002) on five woodland plants inoculated with 

four mycorrhizal fungi showed that, Glomus hoi consistently occupied a large proportion 

of root systems and outperformed other fungi. It improved P uptake and enhanced 

growth of four out of five plant species. Colonisation from the other fungal isolates was 

described as sparse and patchy. AMF success was measured by percentage of root 

colonized and plant success by phosphorus concentration in leaf, root and stem tissue. 

This potentially shows the specificity of cooperation displayed towards AMF by these 

woodland plants and could indicate possibility for a similar result in some legumes.  
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Another study that showed evidence of AM fungal host-plant preference was performed 

by Vandenkoornhuyse, et al. (2003). Their experiment was conducted with three co-

existing grass species (Agrostis capillaris, Festuca rubra, Pos pratensis). The level of AM 

fungal diversity found between communities was analysed using T-RFLP. Their results 

clearly confirmed that an AM fungal host-plant preference exists, even at the level of 

different grass species. The AM fungal communities colonising A. capillaris were 

statistically different from the others (P<0.05).  

Therefore, there is likely to be a host preference/ selection process present with the 

AMF-Plant symbiosis, however there is little research done on whether this is the case in 

legumes, specifically clover.   

1.3.3 Plant growth promoting bacteria (PGPR) 

The rhizosphere is the small area of soil directly influenced by the root. It is richer in 

bacteria than the surrounding bulk soil (Lugtenberg and Kamilova, 2009). The microbes in 

the rhizosphere benefit because the metabolites exuded by the plant roots can be 

utilized as nutrients. Therefore, the concentration of bacteria in the rhizosphere is 10 – 

1000 times higher than that in the bulk soil. In order to exert their beneficial effects in the 

root environment, the bacteria need to be rhizosphere competent. For example, be able 

to compete well with other rhizosphere microbes for the nutrients exuded by the roots 

and also for space that could be potentially occupied on the roots (Lugtenberg and 

Kamilova, 2009). Rhizobacteria that benefit plant growth and development are called 

plant growth promoting bacteria (PGPR). The most studied PGPR are Gram-negative, and 

the most common strains are members of the fluorescent pseudomonads (Antoun et al., 

1998). 

1.3.3.1 Pathogen inhibitors 

Some bacteria can interact with plant roots and increase resistance to pathogenic 

bacteria, fungi and viruses. This can be done in two ways, via systemic acquired 

resistance (SAR), and induced systemic resistance (ISR). SAR occurs when a plant is 

infected by a pathogen and then develops an enhanced resistance to further pathogen 

attack. In the SAR state plants are primed to activate defence responses more quickly and 

effectively the second time they encounter pathogen attack (Conrath, 2006). An ISR 
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response occurs when PGPR present in the rhizosphere prime the whole plant for 

enhanced defence  against a broad range of pathogens (Choudhary et al., 2007). ISR was 

first discovered by the findings that resistance can be induced by the rhizobacterium 

Pseudomonas sp. strain WCS417r against Fusarium wilt of carnation and by selected 

rhizobacteria against the fungus Colletotrichum orbiculare in cucumber (Lugtenberg and 

Kamilova, 2009). ISR is dependent on jasmonic acid and ethylene signalling in the plant. 

There are several individual bacterial components that induce ISR, such as flagella, 

salicylic acid and siderophores (Kloepper et al., 1980; Lugtenberg and Kamilova, 2009).  

1.3.3.2 Siderophore producers 

Some PGPR produce extracellular siderophores (microbial iron transport agents) which 

efficiently binds complex environmental iron, making it less available to native microflora. 

A study conducted by Kloepper, et al. (1980) examined the mechanisms of how a 

commercial inoculant of Pseudomans fluorescens-putida when inoculated on seed were 

promoting growth and increase in yields of crop plants. Their studies showed evidence 

that the PGPR mechanism of antagonism was by depriving native microflora of iron. The 

PGPR produces extracellular siderophores (microbial iron transport agents) which 

efficiently complex environmental iron, making it less available to native microflora. 

 

1.3.3.3 P solubilizing bacteria 

Phosphorus exists in two forms in the soil, as organic and inorganic phosphates. The 

ability to convert insoluble phosphate (both organic and inorganic) compounds in a form 

accessible to the plant is very important for PGPR to have in increasing plant yields (Hayat 

et al., 2010). There are many bacterial strains belonging to several genera such as 

Pseudomonas, Bacillus, Rhizobium, Burkholderia, Achromobacter, Agrobacterium, 

Microccocus, Aerobacter, Flavobacterium, and Erwinia,  that possess the ability to 

solubilize insoluble inorganic phosphate compounds, with the first three genera 

mentioned being the most powerful P solubilizers (Hayat et al., 2010). The production of 

organic acids, especially gluconic acid is the most common agent of mineral phosphate 

solubilization by bacteria like Pseudomonas sp., Erwinia herbicola, Pseudomonas cepaci 

and Burkholderia cepacia. While another common organic acid which is identified in 
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strains with phosphate-solublizing ability is 2-ketogluconic acid. This has been found to be 

present in Rhizobium leguminosarum, Rhizobium meliloti, Bacillus firmus, and several 

other unidentified soil bacteria (Hayat et al., 2010). 

1.3.3.4 Auxin producers 

Symbiotic and non-symbiotic bacteria can promote plant growth directly via the 

production of plant hormones. PGPR can synthesise and export phytohormones which 

play a regulatory role in plant growth and development. These are known as plant growth 

regulators. Auxins are one of the five well-known classes of plant growth regulators and 

one which has received a lot of attention. The most abundant physiological auxin found 

in plants is indole-3-acetic acid (IAA), which is known to stimulate both rapid and long 

term responses in plants. It has been estimated that 80% of the bacteria isolated from 

the rhizosphere can  produce IAA (Hayat et al., 2010). The abundance of IAA in plants and 

the widespread ability to produce it by rhizobacteria implies this is a very important 

phytohormone in plant health and stability. As well as IAA, bacteria such as Paenibacillus 

polymyxa and Azospirilla also release other compounds in the rhizosphere such as, 

indole-3-butyric acid (IBA), Trp and tryptophol or indole-3-ethanol (TOL). These indirectly 

contribute to plant growth promotion (Hayat et al., 2010). 

There is little research on selection for, and exclusion of, rhizosphere bacteria. However, 

if selection measures occur for rhizobia and AMF, it is likely that this would be extended 

to PGPR as well. Kiers and Denison (2008) in their review of sanctions, cooperation and 

the stability of plant-rhizosphere mutualisms, conclude that cooperation between 

endophytic microbes and plant is plausible, and that any mechanism that selectively 

favours some fraction of microbes associated with a plant’s roots, based on the benefits 

they provide the plant, would be functionally the same as sanctions from the perspective 

of the microbes. 

1.4 Rhizosphere and endophytic community analysis 

Rhizospheric and endophytic organisms, are both known to have beneficial effects on 

host plants (Eevers et al., 2015). Study of microbial communities can be performed using 

both cultivation-dependent and independent approaches (Wagner et al., 1993; Tunney et 

al., 2011). Traditionally, the analysis of soil microbial communities has relied heavily on 
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culture dependent techniques, using a vast range of culture media designed to maximize 

the recovery of different microbes present (Hill et al., 2000). Rhizospheric bacteria are 

known to be more easily cultivable compared to endophytic species. This is because 

endophytes reside within plant tissue which results in exposure to a more specific and 

stable habitat than rhizospheric bacteria (Eevers et al., 2015). However, endophytes are 

also more closely associated with, and dependent on the host plant.  

To thoroughly investigate endophytic communities, they must be cultivable under 

laboratory conditions. This is not always possible and cultivation-dependent techniques 

can substantially underestimate the number of organisms present in and around plant 

tissues. The literature suggests that only 0.001% to 1% of endophytes present in plant 

tissues are cultivable (Eevers et al., 2015). Due to the inherent limitations of culture-

based methods, microbial ecologists are moving toward culture-independent methods 

for community analysis (Hill et al., 2000). 

1.4.1 Denaturing Gradient Gel Electrophoresis (DGGE) 

DGGE works based on the denaturation of DNA strands based on their nucleotide 

sequence composition. PCR products with different compositions but of the same length 

will migrate different distances when they are exposed to a gradient of denaturing 

conditions. This results in unique DNA fingerprints when DGGE is used to separate PCR 

products (Nakatsu et al., 2000). DGGE can target the 16S rRNA and 18S rRNA genes, for 

analysis of bacterial and fungal communities including AMF (Boon et al., 2002; Agnelli et 

al., 2004; Oliveira et al., 2009). A study conducted by Oliveira et al (2002) assessed the 

mycorrhizal community in the rhizosphere of maize (Zea mays L.) genotypes with 

contrasting phosphorus efficiency. They found that maize genotypes had a greater 

influence on the rhizosphere mycorrhizal communities than the level of P in the soil. 

DGGE profiles from maize roots also showed bands that were present in only P efficient 

genotypes suggesting that P efficient maize genotypes were selectively colonised by 

some mycorrhizal groups. 

Although there are many advantages of using DGGE, such as its ability to analyse multiple 

samples, its reproducibility, and speed (Kirk et al., 2004), there are also limitations. These 

include, PCR biases, laborious sample handling, and it is estimated DGGE can only detect 
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1 -2% of the microbial population representing dominant species present in the 

environmental sample (Kirk et al., 2004). It is also possible the DNA fragments of different 

sequences are similar in their mobility and denaturing characteristic on the 

polyacrylamide gel. Therefore, one band may not always be representative of one 

species. Although DGGE provides insight into community structure, it does not give any 

information regarding what is actually present, as it does not generate DNA sequence 

data. 

1.4.2 DNA metabarcoding using next generation sequencing (NGS)  

Metabarcoding is the high-throughput multi-species identification from environmental 

samples, and its main function is to identify taxa present in any particular environmental 

sample (Taberlet et al., 2012). So not only does this tool help identify uncultured 

organisms but the multi-species nature of the technique gives an indication of the full 

variety of species found in a given environmental sample. Environmental samples are 

collected, stored at -80  Cͦ to preserve the sample and DNA extracted. Marker genes 

usually on the rRNA are amplified using conserved primer pairs (Bik et al., 2012). 

Ribosomal RNA is considered an ideal target, especially for phylogenetic relationships 

because it is universal and contains both highly conserved as well as variable domains 

(Patwardhan et al., 2014). After sequencing, large databases such as SILVA, Greengenes 

and Ribosomal Data Project (Bacci et al., 2014) make it possible to assign bacterial 

taxonomy. A study conducted by Edwards et al. (2015), using the Illumina Miseq platform 

to study the root microbiome of rice (Oryza spp.) found that in greenhouse conditions, 

microbiome composition varied with soil source and genotype. However, under field 

conditions, geographical location and cultivation practices were factors contributing to 

microbiome variation. This technology could also be used to study microbial communities 

of white clover. To date there are no published studies examining the rhizosphere and 

root endophytes of old and new cultivars of white clover, but NGS could provide valuable 

information on how plant breeding may have affected the associations of white clover. 
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1.5 Aims and objectives of this research 

Considering the high economic importance of white clover in New Zealand, and decades 

of breeding focused on above ground characteristics, there has been no research to 

examine the impacts of this breeding on its associations. The aim of this research is to 

examine whether 80 years of white clover breeding has affected a new cultivar’s ability to 

form effective below ground associations. 

The finding of this research will provide information on i) whether breeding has 

impoverished current clover germplasm in its ability to form beneficial below ground 

associations or to sanction poorly performing associations and  ii) will potentially identify 

clover lines with superior ability to form beneficial associations providing candidate lines 

to use in further breeding. To achieve this, three objectives were developed as outlined 

below: 

1. To examine the relative ability of new and old* varieties of white clover to form 

symbioses with strains of R. leguminosarum that vary in ability to fix N. 

2. To investigate the responsiveness of the various clover lines to different species of 

AMF and AMF mixtures.  

3. To determine whether cultivars that formed the most interactions with effective 

soil micro-organisms in vitro were also able to do so in soil 

 

 

 

 

 

 

 

 

*New and old refer to the era in which the cultivar was released. 
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2 Comparative interaction of six cultivars of Trifolium repens 

with microbial symbionts in vitro  

 

2.1 Introduction 

Genetic improvement of pasture plants through plant breeding has been pursued in New 

Zealand for over 75 years (Easton et al., 2002). However, the focus has aimed at gaining 

productivity, disease resistance, and forage quality (Easton et al., 2002), with little 

attention given to the below ground associations. Therefore, newer germplasm are in 

danger of, or may already be, impoverished in their ability to form these associations or 

to discriminate against poorly performing partners. Numbers of naturalized Rhizobium 

strains in New Zealand soils can reach 106 CFU/g (typically 103- 104) with populations 

varying from 51-102% effectiveness (relative to commercial standards). In this 

background of high rhizobial diversity the ability of a white clover cultivar to select 

effective symbionts would be advantageous. A study conducted on soybean by Kiers, 

Hutton et al. (2007) showed that older cultivars produced more seed when infected with 

a mixture of effective and ineffective rhizobia. They also found that when infected by 

symbionts varying in quality, legume defences against poor-quality partners had 

worsened under artificial selection (modern breeding).  

Partner selection is also thought to be a key factor in stabilizing mycorrhizal symbiosis. 

Both plants and arbuscular mycorrhizal fungi (AMF) can preferentially allocate resources 

to superior partners (Bever et al., 2009; Werner and Kiers, 2015). A study conducted by 

Bever et al. (2009) showed that Allium vineale plants in a split root system preferentially 

allocated photosynthetic products to the side of the root system colonized by a more 

mutualistic AMF. This resulted in higher spore production by the beneficial AMF 

compared to their non-beneficial counterparts. However, this effect was not noticed 

when the AMF were mixed on the same root system. 

The objectives of this chapter were, (i) to rank the efficacy of six strains of R. 

leguminosarum against six different cultivars of white clover (three old and three new); 

(ii) to determine if there is a preferential selection by old or new cultivars of white clover 

to select effective strains of R. leguminosarum from a mixture; (iii) to investigate the 
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responsiveness of the six cultivars of white clover lines to different species of AMF and to 

AMF mixtures. 

2.2 Materials and Methods  

2.2.1 Cultivars of Trifolium repens 

Six cultivars of Trifolium repens were chosen to compare against each other; three newer 

varieties and three older varieties, and from a range of large, intermediate, and small leaf 

sizes. These are: C20133 Grasslands Kopu II, C20132 Crusader, C21905 Grasslands 

Tribute, C3608 Louisiana, C2027 Grasslands Huia, and C13174 Irrigation (Table 2.1). Seeds 

for all the cultivars were obtained from the Margot Ford Germplasm Centre in New 

Plymouth, New Zealand. The new and old cultivars were matched to each other based on 

their leaf physiology and growth habits as shown in Table 2.1.  

Cultivar details 

Grasslands Kopu II (2003) 

 The highest producing white clover available in the large leaf class. It provides high feed 

quality with improved soluble carbohydrate levels and has the highest tolerance to clover 

root weevil amongst large leaf cultivars (Wrightson-Seeds, 2014) 

Crusader (2001) 

Crusader is a small leaf variety released in 2001. It has a very high total sward and clover 

yield for a small leaf variety. It is persistent making it an excellent grazing clover. It also 

grows well with pasture, and the grass in the sward will not be thinned out (Goldcrop, 

2013). 

Grasslands Tribute (2003)  

Tribute is a medium leaved white clover released in 2003. It was bred for good drought 

tolerance and winter activity in Victoria, Australia from crosses with elite New Zealand 

germplasm. Tribute is known for its consistent performance and persistence under 

grazing. It shows strong stolon growth in all seasons but has especially good cool-season 

growth, and shows good drought tolerance in Canterbury (Woodfield, Clifford et al. 

2003). 
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Irrigation (1936) 

Also known as Tongala, and Ulmarra, Irrigation was first certified in 1936. It is a medium 

to large leaved. It has been described as similar to Grasslands Huia but larger leaved and 

more prostrate in growth. In New Zealand, its performance is poorer than Huia when 

grown in spaced plants. Irrigation also shows some resistance to rugose leaf curl virus 

(Caradus, 1986; Caradus and Woodfield, 1997). 

Huia (1964) 

Originally known as New Zealand Certified Mother seed but was renamed to Grasslands 

Huia in 1964. It is a medium leaved clover and has a dense shoot morphology. It shows a 

consistently high proportion in grass mixed swards in New Zealand. However, it is the 

most susceptible of New Zealand Grasslands cultivars to clover rust infection (Caradus 

and Woodfield, 1997). 

Louisiana (1957) 

Released in 1957 (Caradus and Woodfield, 1997). Louisiana has a large leaf size and its 

stolon growing point density is relatively low compared to Huia. It shows significantly 

lower clover DM yield, clover content, and stolon density under rotational grazing in New 

Zealand. When compared with 158 other clover varieties it was in the bottom 10% of the 

other lines for the proportion of clover in the sward at final harvest.  

Table 2.1 Matched pairs of old and new cultivars based on leaf physiology and growth 

habits. Date of release in brackets 

Pair Old New 

1. (Small leaf) Irrigation (1936)  Grasslands Crusader (2001) 

2. (Medium leaf) Grasslands Huia (1957) Grasslands Tribute (2003) 

3. (Large leaf) Louisiana (1930s) Grasslands Kopu II (2003)  
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2.2.2 Seed Preparation 

Seeds were scarified by placing approximately 30 seeds at a time between two sheets of 

fine sand paper (Grade P150). The seeds were rubbed gently between the sheets of 

paper for 1 min. Once scarified the seeds were then surface sterilized by immersion in 

70% ethanol for 1 min, followed by 4% sodium hypochlorite for 30 s, followed by six 

rinses in sterile Millipore water for 1 min each. After this, the seeds were left to soak in 

sterile Millipore water overnight in darkness at 4°C. The following day seeds were placed 

onto 10% water agar (10 g of Davis Agar per L of water). The plates were wrapped in 

aluminium foil and placed in an incubator at 22 ͦC for 3-5 days to germinate. 

2.2.3 Preparation of Rhizobium leguminosarum strains for inoculation 

Six strains (1302, 316, 451, S12N10, S26N9, TA1) were selected from the Lincoln 

University Culture Collection based on symbiotic potential data produced as part of the 

MBIE programme “Improved forage legume-rhizobia performance” (Appendix 6.1). 

Pure cultures contained in 1.7 mL tubes were retrieved from the -80°C freezer and 

thawed at room temperature for 15 min. Each 1.7 mL tube was vortexed for 10 s to 

ensure the contents were uniformly mixed. Using a sterile plastic loop, one loopful of the 

pure culture was streaked onto yeast mannitol agar (YMA; 1 g yeast extract, 4 g mannitol, 

0.5 g dipotassium phosphate, 0.2 g magnesium sulphate, 0.1 g sodium chloride, 15 g agar 

in 1 L reverse osmosis [RO] water, autoclaved for 15 min at 121 ͦC and 15 Psi) and 

incubated in darkness at 25 ͦC for 4 d. 

Once the plates had been incubated, a single colony was transferred to a 15 mL tube 

containing 4 mL of sterile yeast mannitol broth (YMB;  1 g yeast extract, 4 g mannitol, 0.5 

g dipotassium phosphate, 0.2 g magnesium sulphate, 0.1 g sodium chloride in 1 L RO 

water, autoclaved for 15 min at 121 Cͦ and 15 Psi) and vortexed for 10 s to mix. A control 

tube was filled with 4 mL of sterile YMB. Tubes were incubated in a shaker (Labnet) for 24 

h at 200 rpm at 28°C. 

After incubation, the tubes were vortexed for 5 s and 1 mL was then taken from each 

tube for optical density reading in a spectrophotometer at 600 nm. Based on the 

absorbance reading, the tubes were diluted with 0.5% sterile saline to obtain a reading 

close to 0.167 which is approximately equivalent to a concentration of 1×108 cells per mL 
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(Weir, 2006). Based on this reading the cultures were diluted further to an absorbance 

reading of 0.00167 to reach approximately 1×106 cells per mL. 

2.2.4 Experiment 1 – Symbiotic potential of Trifolium repens cultivars 

paired with different strains of Rhizobium leguminosarum 

2.2.4.1 Preparation of tubes 

 Vermiculite (Exfoliators AUST PTY LTD) was pressed down into 50 mL plastic tubes and 

filled to the 35-mL mark. After this, each tube received 20 mL of minimal N Mc Knight 

solution (Calcium chloride 0.25 mL (2% w/v), Magnesium sulphate 0.25 mL (40% w/v), 

Potassium dihydrogen orthophosphate 1 mL (10% w/v), Potassium chloride 1 mL (15% 

w/v), Trace elements stock solution 0.25 mL, EDTA-FeCl3 0.75 mL (02% EDTA, <1%  

FeCl3), Sodium hydroxide 0.25 mL (4% w/v), Millipore water 1000 mL, 100 mM 

ammonium nitrate 1 mL/L). The lids of the plastic tubes were loosely screwed on and the 

tubes were autoclaved to ensure sterility. 

Once the tubes had been autoclaved, seedlings of Trifolium repens that had been 

germinated on water agar as described in Section 2.2.2 were gently placed into the 

tubes with long tweezers which had been sterilized by being dipped into 96% ethanol 

and passed through a flame. Seedlings were selected to be healthy and of as consistent 

size as possible. Each cultivar was replicated five times in separate tubes. 

2.2.4.2 Inoculation of Trifolium repens cultivars 

Each of the strains of R. leguminosarum were prepared for inoculation as described in 

Section 2.2.3. There was a total of eight treatments, one for each strain of R. 

leguminosarum (six treatments), along with an added nitrogen control and negative 

control treatment which received no extra nutrition other than the initial addition of 

minimal N Mc Knight solution all plants received.  

Germinated seedlings were inoculated at the same time they were placed in the 50 mL 

tubes. To each plant in the six treatments requiring inoculation with a strain of R. 

leguminosarum, 500 µL of the respective strain was applied at the base of the plant. The 

nitrogen control plants received 500 µL of 0.85% NaCl solution after sowing and then 9 

days later given 230 µL of sterile 1 M ammonium nitrate solution. The plants in the 

negative control treatment received 500 µL of 0.85% NaCl solution. 
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Once the seedlings had been sown, clear cellophane was wrapped around the top of 

tubes and a small hole pierced with a 1 mL sterile plastic pipette tip to allow for air 

circulation and watering. The cellophane was applied to maintain moisture in the tubes. 

Ten randomly selected tubes were weighed, the average weight taken, and this figure 

was used as the weight the tubes were watered to throughout the experiment. The 

plants were placed in a growth room at 16 h light and 8 h dark conditions, at 22°C and left 

to grow for six weeks. During the first three weeks, the plants were watered to weight 

with sterile Millipore water every three to four days. After three weeks, when the tallest 

plants were reaching the top of the tubes, the cellophane was removed. After this the 

plants were watered to weight every 2-3 days. 

2.2.4.3 Experimental design 

Five randomized blocks were set up, each block containing 56 plastic tubes containing the 

seedlings. Each block was made with three white plastic tube racks holing 21 tubes each. 

The third plastic rack in each block had only 14 tubes. 

2.2.4.4 Assessment  

2.2.4.4.1 Shoot dry weights and nodule count 

Once the plants had grown for six weeks, the shoots were cut at the crown and placed in 

labelled paper bags. Each plant was carefully removed to ensure no vermiculite adhered 

to the shoots. The shoots were then subsequently dried in the oven at 65°C for 72 h and 

weighed again to obtain dry weight data. For each plant, the total number of nodules 

present on the root was counted.  

2.2.4.4.2 Nodule strain confirmation 

Roots were carefully removed from the vermiculite and washed under tap water. Three 

random nodules were then taken from each plant and placed in a mesh sieve and surface 

sterilized in a laminar flow unit by immersion in 70% ethanol for 10 s, followed by 2 min 

in 4% sodium hypochlorite, and 4 baths in sterile Millipore water for 30 s each.  

Once sterilized each nodule was crushed using a sterile glass rod in a sterile Petri dish. 

Once crushed a small drop of sterile water was placed on the crushed nodule to create a 

wet slurry which was streaked onto yeast mannitol agar (YMA) (Appendix 6.2) using the 
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same glass rod. The plates were then wrapped in cellophane and placed in an incubator 

at 20  Cͦ in darkness for 3-5 d. Once colonies had grown the plates were stored at 4°C until 

needed for direct colony PCR. 

Colony PCR and Genotyping 

The genotype of the strains occupying the nodules was determined by enterobacterial 

repetitive intergenic consensus PCR (ERIC-PCR) as described by Versalovic et al. (1991). 

The master mix was produced by combining 10 µL of DreamTaq™, 1 µL of ERIC1 primer 

(50 M) sequence (5’ATGTAAGCTCCTGGGGATTCAC3’), 1 µL of ERIC2 primer (50 M) 

sequence (5’AAGTAAGTGACTGGGGTGAGCG3’), and 7 µL of sterile water per sample. 

Nineteen µL of this master mix was aliquoted into a PCR tube. A sterile plastic 10 µL 

pipette tip was used to touch single colonies and then mixed with the aliquoted PCR 

reagents in each tube. The PCR was set up to run for an initial denaturation of 3 min at 95 

 ͦC, followed by 40 cycles of 1 min at 95  ͦC, 1 min at 52  ͦC, and 1 min at 72  Cͦ. A final 

extension of 10 min at 72  ͦC was also included to complete the reaction. 

The PCR products were separated by electrophoresis in a 1% agarose gel for 40 min at a 

constant 120 V. The gel was stained in ethidium bromide for 20 min and then rinsed in 

water for 10 min. Band patterns were then observed under UV light in a FireReaderTM 

(UVITEC) and compared to that generated by a pure culture of the original cultured 

strains. 

2.2.4.5 Statistical analysis 

It is important to note some cultivars had mortality in some treatments which may have 

affected the data, this was treated as a missing value in the ANOVA analysis. 

The effects of the treatments on plant dry weight, and treatment on nodule number and 

nodule score were subjected to analysis of variance (ANOVA) using GenStat 16th version 

(VSN International, Hemel Hempstead, UK). The treatment means (excluding nitrogen, 

and negative controls) for each cultivar were compared using Fisher’s least-significant 

difference tests (LSD) at a P value of P<0.1 on GenStat 16th version (VSN International, 

Hemel Hempstead, UK). Bar charts of mean dry weights were prepared in R Studio 

(Version 1.0.143©). The groupings obtained in this experiment will be used for a test of 

equal proportions in experiment 2. 
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2.2.5 Experiment 2 – Symbiont selection by Trifolium repens cultivars 

inoculated with multiple strains of Rhizobium leguminosarum 

2.2.5.1 Preparation of seedlings 

Seedlings were grown in sterile 50 ml plastic tubes as described in Section 2.2.4.1, 

containing seedlings of T. repens that had been germinated on water agar as described in 

Section 2.2.2.   

2.2.5.2 Inoculation of Trifolium repens cultivars 

A total of three treatments were applied in this experiment. Treatment 1, was a mixture 

of the six strains of R. leguminosarum described in Section of 2.2.3. This mixed inoculum 

was prepared by adding 6 ml of each strain of R. leguminosarum (strains 1302, 316, 451, 

S12N10, S26N9, TA1) to make a final concentration of 1 x 106 cells per mL in 0.85% (w/v) 

NaCl to a 50 ml tube. To this 14 ml of 0.85% NaCl was added to reach a final volume of 50 

mL. The tube was vortexed for 10 s prior to inoculating plants with 500 µL of this R. 

leguminosarum strain mixture.   

Treatment 2 was a nitrogen control treatment, which received 500 µL of sterile 0.85% 

NaCl solution on day one, when the rhizobia treated plants received 500 µL of inoculant. 

Positive control plants also received 230 µL of sterile 1 M ammonium nitrate solution 

nine days post inoculation.  

Treatment 3 was a negative control treatment. These plants also received 500 µL of 

sterile 0.85% NaCl solution on day one along with the positive control plants. Plants 

within the negative control treatment did not receive any further nutrition apart from the 

usual watering to weight. 

Once the seedlings had been sown, they were grown for six weeks as described in Section 

2.2.4.2. 

2.2.5.3 Experimental Design 

Five randomized blocks were set up, each block containing 18 tubes, one tube per 

treatment (inoculated, positive control, and negative control), per cultivar. The tubes 

were held in white plastic racks which hold up to 21 tubes each in three rows of six.  
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2.2.5.4 Assessment 

2.2.5.4.1 Shoot dry and fresh weights 

Once the plants had grown for six weeks, the shoots were harvested as described in 

Section 2.2.4.4.1. 

2.2.5.4.2 Identification of strains present in nodules 

Strain isolation 

Strains were isolated from the first ten nodules taken from the top of the main tap root 

as described in Section 2.2.4.4.1. The genotype of the strains occupying the nodules was 

determined by ERIC-PCR as described in Section 2.2.4.4.2. 

2.2.5.4.3 Statistical analysis 

The effects of the treatments on plant dry weight were subjected to ANOVA using 

GenStat 16th version (VSN International, Hemel Hempstead, UK). Based on the ranking 

and groups formed in Experiment 1, differences in expected and observed nodule 

occupancy for each of the six cultivars were analyzed using a test of equal proportions 

using R Studio (Version 1.0.143©). Proportions were calculated based on an equal chance 

of each strain nodulating (33.33%).  

2.2.6 Experiment 3 – Colonization of Trifolium repens cultivars by 

arbuscular mycorrhizal fungi (AMF) 

2.2.6.1 Preparation of AMF spore inocula 

Three species of AMF were obtained from the Plant Microbiology Culture Collection 

(Lincoln University).  The species were Acaulospora capsicula isolated from roots of 

macrocarpa (Cupressus macrocarpa) in 2006, Acaulospora laevis isolated from roots of 

apple (Malus domestica) in 2006 and Funneliformis geosporum (syn. Glomus geosporum) 

isolated from grape (Vitis vinifera) in 2006. Spores were recovered from stored pot 

cultures (Ridgway et al., 2006) using the sucrose density centrifugation method 

(Brundrett et al., 1996). Twenty grams of each pot culture was placed into a 250 mL 

beaker and 200 ml tap water added. The beaker was stirred to mix the contents and left 

for 2 min to allow debris to settle. The beaker was then carefully poured through a 

stacked set of 750 µm, 500 µm, and 50 µm sieves. The contents of the 50 µm were 
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carefully poured into another small beaker and this liquid was then divided between four 

50 mL tubes (approximately 5-10 mL each). The volume in each 50 mL tube was increased 

to 50 mL with tap water. The tubes were centrifuged for 5 min at 805 x g. The 

supernatant was discarded, the pellet re-suspended in 50% w/v sucrose and then 

centrifuged for 1 min at 805  g. The supernatant was washed into a 50 µm sieve and 

rinsed thoroughly in tap water to remove sucrose. The washed contents were tipped into 

a plastic funnel lined with filter paper. Once filtration was complete, the filter paper was 

placed in a Petri dish at 4°C and stored for up to 1 week before use. 

For inoculation of clover, healthy (unblemished) mature spores were collected from the 

Petri dishes using a super fine tip paint brush and placed onto individual pieces of filter 

paper (3 cm  3 cm). Each clover cultivar received each of four treatments and they 

consisted of each of the three AMF species alone and a mixture consisting of equal parts 

of each AMF species.  For the individual AMF species treatments, the inoculum was 

prepared by placing 15 spores on a 22 cm piece of filter paper. For the AMF mixture 

treatment, the inoculum was prepared by placing 5 spores of each of the three different 

AMF species (A. capsicula, A. laevis, F. geosporum) on a 22 cm piece of filter paper. 

Spores were examined under a stereo microscope and blemished, damaged, broken or 

immature spores were not selected. 

2.2.6.2 Inoculation of Trifolium repens cultivars 

This experiment was done in sterile 275 mL clear plastic cups (BudgetTM). To each cup five 

small holes for drainage were pierced in the bottom using a soldering iron. Each cup was 

half filled with sterile vermiculite (Exfoliators AUST PTY.LTD). Two squares of filter paper 

(22 cm) each containing 15 AMF spores of the same species were placed on the 

vermiculite on opposite sides of the cups. Approximately 4 cm of vermiculite was added 

on top of the filter paper and a mark was made on the lip of each cup to identify where 

the filter paper was located.  Once the pots were filled with vermiculite, all pots were 

given 95 mL of either modified minimal N McKnight’s solution  or standard minimal 

McKnight’s solution. Modified McKnight’s solution in which KH2PO4 was substituted for 

hydroxyapatite (insoluble P form) to the match the molecular weight of phosphorus 

present in the original recipe (Appendix 6.5). McKnight solution was added to all pots 

receiving AMF. The soluble phosphate control received standard McKnight’s and the 
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insoluble phosphate control received modified McKnight’s solution. The soluble and 

insoluble P controls did not receive AMF spores but did receive empty pieces of filter 

paper. Each treatment was replicated 5 times. 

 

 

Figure 2.1  Experimental set up showing the pieces of filter paper containing spores placed 

inside a plastic cup with vermiculite and then covered with more vermiculite. 

 

Five day old seedlings of similar size that had been germinated on water agar were sown 

into the pots directly above the filter paper. The pots were placed in a randomized 

complete block design in a growth room with 16 h light and 8 h dark conditions at 22 °C 

and left to grow for seven weeks. Pots were watered to weight every 2-3 d. in addition, as 

the plants had not been inoculated with rhizobia, adequate N for growth was provided by 

applying 920 µL of sterile 0.0625 M ammonium nitrate to each plant at 7 and 20 d after 

sowing. 

 

2.2.6.3 Assessment 

2.2.6.3.1 Shoot dry weights 

Each plant was cut at the crown using scissors and the foliage placed in label paper bags 

and dried in the oven at 65  ͦC for 72 h. The dried shoots were then weighed to obtain dry 

weight data. 
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2.2.6.3.2 AMF colonization 

Roots were washed and stored in glass universals bottles for 48 h until processed. Roots 

were then immersed in 10% KOH and autoclaved for 10 min. Then roots were poured out 

on a tea strainer and the KOH drained into a beaker. Next, the roots were rinsed in 10% 

HCL and then immersed in lactoglycerol blue stain (0.05% (w/v) Trypan blue in 

lactoglycerol (Lactic acid:glycerol:water =1:1:1 v:v:v)) overnight. The following day the 

stain was removed and the roots were stored in lactoglycerol. It was noted that this 

process did not adequately clear the roots so the procedure was repeated by re-

immersing the roots in 10% KOH at 80  ͦC for 20 mins then staining and de-staining as 

previously described. 

The presence or absence of mycorrhizal colonization was noted in 5 fields of view each 

from two random lateral roots near the bottom of the tap root under a compound 

microscope at 40× magnification as described by Brundrett et al. (1996) and recorded as 

success and fail data. 

2.2.6.4 Statistical analysis 

The effects of the treatments on plant dry weight were subjected to ANOVA using 

GenStat 16th version (VSN International, Hemel Hampstead, UK). The presence and 

absence of mycorrhizal colonization was analyzed using a linear regression and then with 

a Tukey family-wise confidence interval (95%) between the treatment levels for each 

cultivar in R studio (Version 1.0.143©). 
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2.3 Results 

2.3.1 Experiment 1 Symbiotic potential of six clover cultivars with different strains of 

Rhizobium leguminosarum 

Out of the six clover cultivars, only Irrigation and Louisiana produced significantly 

different shoot dry weight (SDW) (P<0.05) when inoculated with different strains of R. 

leguminosarum (Figure 2.2).  Inoculation of Irrigation with R. leguminosarum isolate TA1 

produced more SDW than inoculation with any of the other five strains (P=0.038). For 

Louisiana, R. leguminosarum strains 451 and 316 produced more SDW (P=0.013) than the 

other four strains. There were strong trends for Huia (P=0.052) and Tribute (P=0.059) to 

produce more SDW when inoculated with strain 451 and strains 451/TA1, respectively.  

The inoculant treatments did not affect the SDW produced by Crusader and Kopu II 

(P=0.160 and P=0.114, respectively). 

Strains that produced significantly more SDW (P≤0.05), or those that showed a strong 

trend (P≤0.06) for producing more SDW, were classified as ‘highly effective’ associations 

(Table 2.2). For cultivars capable of selecting symbiotic partners it was assumed that 

these strains would be present in a greater abundance than that solely produced by 

chance. 
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Table 2.2  Mean shoot dry weights (mg) of all six white clover cultivar inoculated with each of six strains of Rhizobium leguminosarum. Shaded cells are 

strains that are ‘highly effective’ (P≤0.6) when in symbiosis with a specific cultivar. Significance was determined by using Fisher’s least significant 

LSD. 

 Cultivar Treatment 

 1302 316 451 S12N10 S26N9 TA1 

       

Huia 3.71 a 3.86 a  8.59 b 2.60 a 4.36 a 4.82 a 

Tribute 7.46 c 2.74 ab 0.66 a 4.49 bc 0.62 a 4.78 bc 

Irrigation 5.32 a 4.95 a 4.60 a 1.76 a 2.87 a  10.30 b 

Crusader 4.20  3.46 2.13  1.24  1.20  3.12 

Louisiana 1.59 a 3.38 bc 3.98 c  1.66 a 1.84 a 2.29 ab  

Kopu II 6.18  4.68  5.73  1.60  2.35  2.48  
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2.3.1.1 Nodule numbers of R. leguminosarum 

The total number of nodules was noted for each inoculant treatment, across all live plants. 

There was a significant cultivar × treatment effect on total nodule numbers (P<0.001) as the 

strain of R. leguminosarum forming the most nodules varied between cultivars. For example, 

strain 451 formed the most nodules on Huia, but it formed the second least on Tribute. There 

were no nodules found on any positive or negative control plants. Fisher’s least significant 

difference was used to identify nodule numbers that were significantly different for each 

cultivar (Table 2.3). 

2.3.1.2 Strain confirmation 

All nodules plated for confirmation were confirmed using direct colony ERIC PCR and no bright 

bands other than the expected were noticed (Figure 2.3). 

 

 

Figure 2.3  Agarose gel (1%) of ERIC-PCR products for bacteria recovered from nodules of Trifolium 
repens inoculated with strain 451 (left), and strain 316(right). 1kb – 1kb plus DNA ladder 
(Invitrogen) and C – negative control.  

451 316 C 
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Table 2.3 Total number of nodules for all six white clover cultivar across each inoculant treatment. Across each row, values with the same letters 
are not significantly different at the P  value prescribed at the end of each row 

 

Cultivar Inoculant Treatment LSD 

value 

 1302 316 451 S12N10 S26N9 TA1  

Huia 4.74 a 5.80 ab 17.53 b 8.39 abc 13.20 cd 13.0 bcd P = 0.05 

Tribute 13.3 ab 4.99 a 2.13 a 10.87 ab 1.12a 19.16 b P = 0.05 

Irrigation 14.36 b 15.60 b 11.86 ab 10.60 ab 5.49 a 16.75 b P = 0.05 

Crusader 5.21 a 10.60 ab 8.0 ab 12.8 b 5.37 a 10.0 ab P = 0.1 

Louisiana 9.0 a 15.20 b 9.20 a 10.42 ab 6.0 a 10.16 ab P = 0.05 

Kopu II 10.75 a 9.20 a 10.99 a 7.70 a 11.25 a 29.74 b P = 0.05 

Mean 

across all 

cultivars 

10.10 a 10.54 a 10.62 a 10.33 a 7.80 a 16.40 b P = 0.05 
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2.3.2 Experiment 2: Symbiotic selection by Trifolium repens cultivars inoculated with 

multiple strains of Rhizobium leguminosarum 

2.3.2.1 Dry weights  

There was a significant difference in dry weight between each of the three treatments 

(positive control, negative control, and rhizobia mixture P < 0.001). The plants that 

received the mixture of rhizobia had dry weights significantly greater than the 

uninoculated controls, but significantly lower than the positive control (Table 2.4). There 

was also a significant difference in total dry weight between cultivars (P <0.001) (Table 

2.5).  

The total mean dry weights of Huia and Kopu II were significantly higher than those of 

Irrigation and Tribute. For each of the cultivar pairs only Huia/Tribute produced different 

dry weights. There was no significant difference in total dry weight between each of the 

other two cultivar pairs of Louisiana/Kopu II, and Irrigation/Crusader (Table 2.5).  

 

Table 2.4– Total mean dry weights for each treatment. Values with different letters are significantly 
different at P <0.05. 

Treatment Mean DW(mg) 

Positive control 40.92 c 

Rhizobia mixture 19.18 b 

Negative control 3.11 a 
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Table 2.5 Mean dry weights of all six white clover cultivars across all three treatments. Within 
column, values with the same letters are not significantly different at P < 0.05 

 

 

 

 

2.3.2.2 Nodule occupancy 

Rhizobium leguminosarum strain 451 was the most common nodule occupant across all 

the six cultivars of white clover, occupying approximately 55% of the total nodules 

examined. Strain TA1 was the next most abundant occupying approximately 20% of all 

the nodules recovered (Table 2.6). 

Based on the analysis presented in Table 2.3, strains were grouped, with shaded cells 

identifying strain/cultivar combinations that were classed as “highly effective”. Strains 

that were not ‘highly effective’ were termed ‘less effective’ strains. A test of equal 

proportions was conducted to assess whether the number of nodules occupied by strains 

were significantly different than that expected by chance (equal proportions) (Table 2.7). 

The test of equal proportions was conducted based on each strain occupying 16.66% 

(1/6th) of the nodules on each plant. 

Cultivar Mean DW (mg) 

 

Huia  25.17 c 

Kopu II 23.91 c 

Louisiana 22.53 bc 

Tribute 20.97 bc 

Crusader 18.47 ab 

Irrigation 15.36 a 
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Between matched pairs Huia and Tribute, Huia nodules contained more ‘highly effective’ 

strains than would occur by chance (P < 0.001). Out of the 47 total nodules recovered 

from Huia, strain 451 should have occupied only 8 nodules, however 21 more nodules 

contained strain 451 than expected by chance (P < 0.001). 
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Table 2.6 The number of nodules occupied by each strain of Rhizobium leguminosarum for each of the six cultivars of white clover. The strains from some 
nodules were unable to be recovered, therefore in some instances the total number of nodules is less than 50. Shaded cells identify the nodules 
containing the ‘highly effective’ strains for each cultivar as observed in Experiment 1. 

 

Cultivar Number of R leguminosarum strain present Total 

nodules  

 1302 316 451 S12N10 S26N9 TA1  

Huia 4 2 29 4 1 7 47 

Tribute 5 2 23 6 1 13 50 

Irrigation 4 1 18 5 1 7 36 

Crusader 5 3 22 2 0 14 46 

Louisiana 7 2 23 3 0 8 43 

Kopu II 2 2 34 4 1 5 48 

Total number of 

nodules across 

cultivars 

27 12 149 24 4 54 270 
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Table 2.7 Difference in expected versus observed nodule occupancy for ‘highly effective’ or ‘less effective’ strains across cultivars. P values in this table are 
generated from a test of equal proportions. Cultivars Crusader and Kopu II were omitted from the table as no significant difference in their 
interaction with strains had been observed in experiment 1.  

 

Cultivar Highly Effective 

Strain(s) 

P value ‘less effective’ 

Strains 

P value 

Huia +21 P < 0.001 -21 P <0.001 

Tribute -3 P = 0.3348 +3 P 0.2587 

Irrigation +1 P = 0.7366 -1 P = 0.8661 

Louisiana +16 P <0.001 -13 P <0.001 



53 

2.3.3 Experiment 3 Colonization of white clover cultivars with different arbuscular 

mycorrhizae 

2.3.3.1 Shoot dry weights 

The different AMF treatments did not affect plant dry weight (P=0.698), however, there 

was a slight trend of differences in dry weight between cultivars (P=0.101). There was no 

significant interaction between treatments and cultivars (P=0.470).  

2.3.3.2 AMF colonization 

The presence or absence of mycorrhizal colonization was noted in 5 fields of view each 

from two random lateral roots near the bottom of the tap root under a compound 

microscope at 40× magnification. It is important to note that there was considerable 

fungal (possibly AMF or oomycete) contamination in the positive and negative control 

plants (Figure 2.4). 

 

 

 

 

 

 

 

Figure 2.4 Example of the contamination seen in roots of a Crusader positive control plant. 
This type of contamination was seen throughout the experiment  

 

A Tukey family-wise confidence interval (95%) showed no significant difference in AMF 

colonization between treatments for Huia, Tribute, or Irrigation (Table 2.8). Crusader 

showed significant differences in colonization between the five treatments (Figure 2.5), 

however in four of those differences, the control treatments have significantly more 

colonization than the inoculated treatment. Louisiana and Kopu II were the only matched 

pairs that showed significant differences in colonization (Figure 2.5). 
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Table 2.8 Family-wise Tukey Test P values for colonization differences between treatments for 
each of the six cultivars of white clover. Significant interactions in bold. 

Treatment Pair Huia Tribute Irrigation Crusader Louisiana Kopu II 

A. laevis - A. capsicula 0.35 0.99 0.88 0.01 0.42 0.007 

F. geosporum – A. capsicula 0.99 0.99 0.97 0.97 0.89 0.97 

Mixture – A. capsicula 1.00 1.00 0.99 0.99 0.007 0.99 

Neg C – A. capsicula 0.99 0.87 0.97 0.02 0.10 0.98 

Pos C – A. capsicula 1.00 1.00 0.52 0.01 0.19 0.36 

F. geosporum – A .laevis 0.10 1.00 0.50 0.09 0.95 0.13 

Mixture – A. laevis 0.47 0.96 0.70 0.01 0.43 0.001 

Neg C – A. laevis 0.57 0.41 1.00 1.00 0.88 0.001 

Pos C – A. laevis 0.28 0.99 0.99 1.00 0.98 0.69 

Mixture – F. geosporum 0.94 0.99 1.00 0.99 0.08 0.89 

Neg C – F. geosporum 0.93 0.47 0.74 0.10 0.46 0.73 

Pos C – F. geosporum 1.00 1.00 0.18 0.08 0.70 0.89 

Neg C - Mixture 1.00 0.85 0.85 0.02 0.99 0.99 

Pos C – Mixture 0.99 0.99 0.39 0.01 0.91 0.18 

Pos C – Neg C 0.99 0.59 0.99 0.99 0.99 0.13 
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2.4 Discussion 

 

White clover is predominantly an outcrossing species and shows disomic inheritance. 

Therefore, populations of white clover are a heterogeneous mixture of heterozygous 

individuals. This results in high levels of genetic variation both within and between 

populations. This contributes to broad environmental adaption and phenotypic plasticity 

of white clover (Woodfield, 1996; Jahufer et al., 2013). A study conducted by Jahufer, et 

al. (2013) found significant genotypic variation for a range of aboveground traits such as 

internode length, node number, stolon branching, and stolon thickness.  To account for 

this variation, it is important to include high amounts of replication in experiments. The 

five replicates used in the experiments may not have been enough to obtain good 

statistical resolution, and could have been the reason for not seeing significant 

differences in the first benchmarking experiment. Alternatively, the opposite is also a 

possibility, where, the combination of the low replication and plant mortality, false 

positives were observed, where, with higher replication, some differences may not have 

been significant.  

An issue that contributed to the lack of replicates was the low germination of seeds. Due 

to the age of the seeds, the germination percentage of the old cultivars was around 30%. 

These seeds were also expensive and difficult to obtain. This low germination rate made 

it difficult to obtain enough plants to increase the statistical resolution of the 

experiments. A suggestion for the future might be to plan a pilot experiment focusing on 

the germination rates of seeds of various white clover cultivars and adding seed 

germination as an added criteria for cultivar selection, or alternatively using newer seed. 

The number of nodules formed by each strain when used as the sole inoculant on each of 

the six clover species varied. The best strain did not always produce the most nodules. 

For example, strain S12N10 formed the most nodules on Crusader and was the least 

effective strain in terms of dry weight. A similar result was reported by Sachs et al. (2010) 

who showed that when effective and ineffective bradyrhizobia were applied to Lotus 

strigosis, that the ineffective strain induced the most nodules per plant. The high number 

of nodules created by S12N10 and the minimal benefit to the plant host is indicative of a 

‘cheating’ strain. A reason for the proliferation of S12N10 nodules on Crusader could be 
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that, because the host was growing in a low nitrogen environment survival relied on 

forming a symbiosis driving the initiation of nodules. Once the nodule had been formed 

the low N fixation by this strain may have induced the plant to initiate more nodules 

rather than allocate carbon to the ineffective symbiont. This is a hallmark of the sanction 

theory. In contrast, R. leguminosarum strain 451 formed the most nodules on Huia and 

was also the most effective strain for Huia. This finding supports the sanctions hypothesis 

(Kiers and Denison, 2008) which proposes that one of the ways mutualistic interactions 

are stabilized is when individuals preferentially reward more mutualistic (beneficial) 

behaviour (West et al., 2002). 

Some cultivars of white clover were effective with a greater number of strains, compared 

to others. For example, Huia was only effective with strain 451, however, Kopu II did not 

show any significant differences between its rhizobia treatments. Being effective with a 

wider range of strains is of benefit to the plant as the cultivar has a greater likelihood of 

forming an effective symbiosis when choice of partners is limited (Mpepereki et al., 

2000). However, in the case of Kopu II, there was no significant difference between the 

number of nodules from its least effective (S12N10) and most effective strain (1302) 

produced as sole inoculants. In contrast, the most effective strain for Huia nodulated 

significantly more than the least effective strain when applied as a sole inoculant. This 

would suggest that although Huia was less able to form effective symbioses with diverse 

strains, it can restrict nodulation by poor contributors. A reason this contrast is 

interesting is because a study conducted by Jahufer, et al. (2003) analyzing the genetic 

diversity and variation among 32 white clover cultivars using microsatellite (SSR) markers 

showed that Kopu II had a strong Huia contribution to its pedigree. A dendrogram based 

on cluster analysis of cultivars by  SSR marker matrix, had Huia and Kopu II in adjacent 

groups (Jahufer et al., 2003). The study also showed that Huia was one of the cultivars 

with the most unique microsatellite alleles (4). SSR variations in protein-coding regions 

can lead to a gain or loss of gene function via several means such as frameshift mutations 

(Li et al., 2004). These unique alleles could have a role to play in the contrast seen 

between the two cultivars in the variety of effective partners and ability to sanction 

ineffective partners. There may also be other SSRs in other regions that could lead to this 

difference in ability to express partner choice. A possible draw back to having multiple 
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effective partners could be a more relaxed defence against ineffective symbioses as could 

have been the case with Kopu II.  

Experiment one also showed different strain/cultivar combinations were more effective 

than others. A study conducted by Burdon, et al. (1999) on the variation in effectiveness 

of native rhizobia and species of temperate Australian Acacia showed similar results. All 

rhizobial isolates showed a capacity to induce nodulation on the host plants, however, 

the symbiotic effectiveness of the resulting relationship was variable between half-sib 

families. Bacterium-legume specificity was also demonstrated between Rhizobium 

meliloti and Medicago sativa L. genotypes and this was a significant component of the 

variability in plant yield (Chanway et al., 1991). This could indicate that the symbiosis 

between rhizobia and their hosts is one in which genetic differences that can impact the 

mutualism may occur due to the host and the bacterium (Parker, 1995; Burdon et al., 

1999). The genotypic variability among the six cultivars and genetic variation among the 

strains chosen could be a major driver in the variation of effectiveness seen in different 

clover/rhizobia combinations.  

When the six strains of rhizobia were inoculated as a mixture to the six cultivars, strain 

451 outcompeted all the six strains being the most dominant nodule occupant across all 

the six white clover cultivars. Out of the 270 nodules genotyped, strain 451 occupied 149 

nodules, and commercial standard TA1 was the next more prominent, occupying 54 

nodules. A reason for strain 451’s competitive edge could be its ability to initiate infection 

and nodulate quickly, and efficiently, providing it an advantage over strains that are 

slower. Initial nodules are known to apically suppress further nodulation in legumes 

(Kosslak et al., 1983; Dowling and Broughton, 1986). A study conducted by Kosslak, et al. 

(1983) on the effects of pre-exposure of soybean roots to Rhizobium japonicum strains 

found that the delayed inoculation of a second strain influenced competition. When less 

competitive strains were inoculated before competitive strains, the proportion of nodules 

occupied by the less competitive was increased. Some rhizobia are also known to 

produce peptide antibiotics such as trifolitoxin which has resulted in significantly 

increased nodule occupancy values in non-sterile soil (Robleto et al., 1998). There is a 

benefit for the strain which can nodulate first, and perhaps the success of strain 451 to 

nodulate can be attributed to its ability to beat its competitors for initial nodulation. 
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Further analysis would need to be conducted on strain 451 to see if it exploited the 

production of biochemical compounds as a tool to overcome competitor strains.  

The competitive ability of strain 451 was highlighted by the fact that it could dominate 

nodule occupancy across all cultivars even when it was labelled as an “less effective” 

strain for a particular cultivar from Experiment 1. “Cheater” strains, as defined by Kiers 

and Denison (2008) are strains that are highly competitive for nodulation and abundant 

inside nodules but provide little or no benefit to plants. However, experiment 1 also 

revealed that 451 was an effective strain for cultivars e.g. Huia. Therefore, it is possible 

for a strain to act both as an effective mutualist and a “cheater” depending on the host 

plant it is inhabiting. This shows that some strains of rhizobia could have a very host 

specific interaction at the plant cultivar level. A study conducted by Lewis-Henderson and 

Djordjevic (1991) found that a nod gene, nodM, is involved in restricting the host range in 

a cultivar specific manner for R. leguminosarum strain TA1. There was also a negatively 

acting cultivar specificity locus csn-1 which was identified in the study. The action of 

these two gene products among others could be responsible in modifying the chemical 

and molecular signals exuded by strain TA1 to generate an incompatible response with 

subterranean clover cultivar Woogenellup (Lewis-Henderson and Djordjevic, 1991). 

Although the expression of these genes stops TA1 from nodulating cultivar Woogenellup, 

there could be genetic triggers responsible for the extreme cultivar specific efficacy of 

strain 451, which may help dictate its role as an excellent mutualist or as a “cheater” 

strain. 

Cultivar age may have an impact on the ability of a white clover cultivar to select for, and 

discriminate against, effective and ineffective strains of rhizobia. Among the three 

matched pairs of white clover cultivars, a difference in strain selection was seen between 

Huia and Tribute (Table 2.8). When presented with a strain mixture inoculant, Huia (an 

older cultivar) had 21 more “best performing” strains occupying nodules than expected 

by chance (P <0.001), whereas, its match pair Tribute did not have significantly more 

“best performing” strains occupying its nodules (P=0.335). This result indicates that 

clover plants may be able to display a degree of partner choice. A study on Medicargo 

Trancatual and two strains of Sinorhizobium meliloti displaying different nitrogen fixation 

phenotypes, showed in a split root experiment that pre-infection partner choice was 
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displayed by the host plant. The side of the root associating with the N fixing strain, 

formed a greater number of nodules than the non-fixing strain (Gubry-Rangin et al., 

2010). A study conducted on soybean by Kiers, et al. (2007) showed that older cultivars 

were more competent when infected with a mixture of effective and ineffective rhizobia. 

Older cultivar produced more seeds in such environments, suggesting their benefit could 

be a result of partner choice and sanctions against “cheater” strains.  This suggested that 

when infected by symbionts varying in quality, legume defences against poor-quality 

partners had worsened under artificial selection. Among these three old and new pairs of 

clover cultivars, the comparison of Huia and Tribute support this hypothesis. 

Difference in nodule occupancy by strains in experiments one and two were most likely 

due to the interaction between host and plant. However, differences in cell numbers 

added to the pottle system could also have created some variation. Cell numbers were 

calculated using the method of Weir (2006 ) which measures optical density (OD) at 600 

nm, with OD600 of 0.167 equivalent to 1×108 cells per mL. Previous work in the Lincoln 

University “rhizobia group” has shown that these OD600 readings are relatively accurate 

(Ridgway pers.comm)  and plating of strains during the experiments confirmed this. 

During the course of the first two experiments fungal growth/contamination was seen on 

positive control plants. This was only found in the positive control plants and did not 

seem to affect their growth. This could have been due to the added nitrogen. 

Contamination must have been air borne as the plants were always watered with sterile 

water. The air conditioning unit in the growth room in which the plants were grown may 

be in need for a clean. Growing the tubes in a concealed growth chamber next time may 

help in reducing chances for contamination. A growth chamber would also decrease the 

amount of foot traffic of other people moving around the growth room where soil based 

experiments were also being run simultaneously. 

In the third experiment, whenever the mixture treatment was significantly different from 

another treatment in regards to AMF colonization, the mixture treatment always had a 

lower amount of colonization. A study conducted by Engelmoer, Behm et al. (2014) using 

in vitro root organ cultures and two closely related AMF species Rhizophagus irregularis 

and Glomus aggregatum, showed that competitive interactions between AMF species 

reduced the overall fungal abundance. Competition was most intense for resources 
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within the host, where both species negatively affected each other’s abundance. This 

could be a reason why the only significant difference seen with the mixture treatment 

was where there was significantly less colonization. In some cases the colonization in the 

control plants was more than the treatment. This could possibly indicate there was only 

one major fungal contaminant present in the uninoculated controls and therefore did not 

need to compete with other microorganisms. 

There was a large amount of contaminant non-septate hyphae observed in the roots of 

plants in  experiment three, with no significant difference in colonization between the 

positive and negative control plants compared to all the inoculated treatments. The non 

septate hyphae is likely to be oomycete. Oomycetes are similar to fungi in growth and 

morphology, however, they always have nonseptate hyphae and are common pathogens 

of seedlings (Fawke et al., 2015). Oomycete sporangia release swimming zoospores as a 

means of dispersal through water (Birch et al., 2012). This water borne dispersal could 

have been an avenue for infection for this experiment. The large amount of McKnights 

solution required for the experiment was made in buckets which were wiped with 

ethanol, and produced using sterile chemicals. However, non autoclaved Millipore water 

was used, and also non sterlised Millipore water was used for watering. It was assumed 

that the filters in the Millipore system would exclude oomycetes, however, once the 

solutions were made up, they were also left in the buckets overnight, providing an 

opportunity for contamination to occur.  

Another assumption that was made is that the cups which were bought came sterile from 

the manufacturer. No extra steps such as exposing to UV or soaking in bleach was 

performed to ensure complete sterility, which could have helped minimize 

contamination. The plants were also grown in a growth room which had soil experiments 

running simultaneously and did not have a source of ventilation and high traffic areas 

around the pots when people would be watering or checking other experiments. 

Due to the heavy extent of the contamination seen in the positive and negative controls, 

the results of this experiment cannot be analysed with much integrity. A reason for such 

obvious contamination in the trial could be that AMF are known to have little, or no, host 

specificity (Zhu et al., 2000). Less specificity means it is a lot easier for a microorganism to 

infect and affect the growth of a plant. Due to the clear presence of fungal 
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contamination, the results seen could be heavily skewed by the invading organisms. A 

way to safeguard for this and improve the resolution of the results to better understand 

what is affecting the plants would be to incorporate molecular identification once the 

experiment is over to make sure exactly what was infecting the plant roots.  

 

2.5 Conclusions 

In summary, Experiment 1 identified highly effective rhizobial strain-host combinations. 

When applied in mixtures some rhizobia strains were found in greater numbers than 

would occur by chance demonstrating that for some cultivar/ strain combinations a 

selection process for nodule entry occurred. However, this was not observed in all 

cultivars suggesting that cultivar type may have been a driver for rhizobia selection in-

vitro. For example, the paired cultivars of Huia and Tribute were different in their ability 

to select highly effective partners, with Huia better able to do this than Tribute.  

Experiment three was inconclusive due to the large amount of oomycete contamination. 
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3 The rhizosphere and root microbiome of Trifolium repens 

3.1 Introduction 

Agricultural soils are rich in microbial communities with bacterial populations varying 

from 102  to 1011 per gram of soil. The rhizosphere is the thin (3-5 mm) zone of soil near 

the roots, which is home to an extremely high number of microorganisms, and is 

considered to be one of the most dynamic interfaces on earth (Philippot et al., 2013). 

However, only a small subset of this microbial community is successful in colonizing plant 

roots (Hartmann et al., 2009; Gaiero et al., 2013). Endophytic and rhizospheric microbes 

can benefit plants in many ways, including improving nutrient supply, protecting against 

pathogens, helping to withstand high soil temperature, and producing phytohormones 

that could benefit the host (Kiers and Denison, 2008). Regulation of the community 

composition of bacteria colonizing roots can be strictly controlled by the plant. The ability 

of plants to discriminate among partners based on symbiotic performance has been 

observed for the legume-rhizobia interaction and thus may exist in more rhizosphere 

mutualisms, and root endophytism (Kiers and Denison, 2008).  

As many organisms in the rhizosphere and roots of plants are not culturable outside their 

host (Hill et al., 2000), the study of these communities is most effectively conducted using 

molecular tools. For several years, the most common approach has been denaturing 

gradient gel electrophoresis (DGGE). In this process, nested PCR with taxa specific primers 

containing a GC clamp are arrayed on a denaturing gel. This technique has been used to 

characterize the microbial community structure of several legumes (Sharma et al., 2005). 

A study conducted by Sharma et al. (2005) using DGGE found distinct profiles between 

the rhizosphere bacterial communities of faba beans, peas, and white lupin. More 

recently DGGE has been superseded by next generation sequencing (NGS) platforms, 

which provides a deeper resolution by detecting more species with greater accuracy than 

DGGE (Yu et al., 2015; Qin et al., 2016). However due to low cost, expected low diversity 

and the lack of suitable AMF specific primers, DGGE is still used as a molecular tool to 

provide an overview of AMF community structure.  A study conducted by Wigley et al. 

(2017) used Illumina sequencing to investigate the microbiome inside lucerne nodules. 
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Their study found that the genus Sinorhizobium was the dominant genus in nodules, 

comprising 90-99% of all sequences, but also showed that other taxa were present. 

Results from the previous chapter show there are differences between some old and new 

cultivar pairs in the efficacy of rhizobial partners chosen. Therefore, there may also be 

some differences in the wider microbial community recruited by the cultivars to the 

rhizosphere and roots. The objectives of this chapter were to, (i) investigate differences in 

the microbial communities recruited into the rhizosphere and roots of old and new 

cultivars of white clover when grown in the same soil; (ii) examine the AMF community 

structure of the different cultivars of white clover; (iii) investigate the symbiotic potential 

of the strains of rhizobia recruited by cultivar pair Huia and Tribute grown in the same 

soil.  

 

3.2 Materials and methods 

3.2.1 Cultivars of Trifolium repens 

Six cultivars of Trifolium repens were used as described in Section 2.2.1. 

3.2.2 Seed preparation 

Seeds were prepared for sowing as described in Section 2.2.2. 

3.2.3 Experiment 4 

3.2.3.1 Soil 

White clover cultivars were grown in soil obtained from Lincoln University paddock H18 

(Coordinates -43.648762, 172.461245). Soil test results are in Appendix 7.1. The soil was 

collected from the west side of the paddock (Figure 3.1) using a spade. The top layer of 

grass was removed and only ~30 cm of the top soil was collected into plastic bags. After 

collecting the soil was passed through a 20 mm sieve to remove stones and plant debris 

and stored in a large plastic container for one week before use. 
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Figure 3.1  Aerial view of paddock H18 (highlighted in red) where soil was collected from. Image 

obtained from google maps satellite on 15/08/2017.  

 

3.2.3.2 Experimental Design 

White clover seedlings that had been germinated on water agar as described in Section 

2.2.2 were sown into 500 mL black square plastic pots (Interworld Plastics). Pots were 

filled to the top with the sieved soil, and one seedling was planted in the center of the 

pot. Seedlings were healthy and of as consistent size as possible. Each cultivar was 

replicated 10 times. Ten randomized blocks were set up, each consisting of six pots. 

The plants were left to grow for 12 weeks (November 16th 2016 till February 1st 2017) in 

the Lincoln University shade house and were watered with tap water when necessary. 

3.2.3.3 Harvest 

3.2.3.3.1 Shoot dry weights 

Once the plants had grown for twelve weeks. Each plant was carefully removed to ensure 

no soil adhered to the shoots. The shoots were cut at the crown, placed in labelled paper 

bags, dried in the oven at 65°C for 72 h and weighed to obtain shoot dry weights. 

3.2.3.3.2 Rhizosphere soil collection 

Roots were carefully removed from the pots and gently shaken to remove loosely 

adhering soil, any soil that remained attached to the root was termed rhizosphere soil. 
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Each root was placed in a sterile 50 mL plastic tube which was filled to 35 mL with sterile 

Millipore water. Tubes were vigorously shaken for 2 min to wash the rhizosphere soil 

from the roots. The roots were then removed, rinsed under tap water and set aside for 

further use. The tubes were centrifuged for 5 min at 805 x g and the supernatant 

discarded. The tubes containing the rhizosphere soil were stored at -80°C until needed 

for DNA extraction. 

3.2.3.3.3 Root harvest and fresh weight 

After rhizosphere soil collection, the roots were washed under tap water for 

approximately 5 s, blotted dry with a paper towel and weighed (fresh weight). Three 

plants were randomly selected from each cultivar and two nodules were cut at random 

from each root. Random plants and nodules per plant were selected by assigning each a 

number and then using a random number generator (www.randomizer.org) to identify 

plants/nodules for sampling. Nodules were surface sterilized and plated onto YMA as 

described in Section 2.2.4.4.2. 

A piece of lateral root (approximately 5-10 cm) was placed in a sterile 1.7 mL plastic tube 

filled with 20% glycerol and stored at -80°C until use. 

3.2.3.4 PMA cross linking 

Root pieces were surface sterilized as described in Section 2.2.4.4.2. Root tissue was then 

treated with propidium monoazide (PMA) before DNA extraction. PMA is a membrane-

impermeable dye that selectively penetrates cells with damaged membranes. Once PMA 

penetrates the cell it intercalates DNA upon exposure to intense visible light. This results 

in the DNA from dead cells not being amplified by PCR (Nocker et al., 2007). PMA 

treatment after surface sterilization but prior to DNA extraction ensured that 

amplification was mainly of DNA from viable fungal and bacterial endophytes. 

For PMA treatment the sterile root pieces were soaked in 500 µL sterile water using 

transparent 1.7 mL tubes (Axygen, USA) and 1.25 µL 20 mM PMA (Biotium Inc., USA) 

added. The samples were incubated in darkness for 5 min and then exposed to a 650-W 

halogen light for 5 min. Samples were placed on ice to avoid overheating from the lamp. 

The tubes were turned every 4 min to ensure even light exposure to all parts of the root. 

http://www.randomizer.org/
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3.2.3.5 DNA extraction 

Root DNA was extracted using the PowerPlantTM DNA isolation kit (MOBIO laboratories, 

USA) following the manufacturer’s instructions. One gram of root tissue was crushed 

and ground to a fine powder with liquid nitrogen, of which up to 50 mg of was used for 

DNA extraction. The DNA was stored at -20  Cͦ.  

Approximately 0.25 g of rhizosphere soil was used for DNA extraction. DNA was 

extracted using the Qiagen DNeasy ® Powersoil ® DNA extraction kit as per the 

manufacturer’s instructions. Extracted DNA was stored at -20  ͦC. 

3.2.3.6 Investigation of AMF community structure using DGGE 

Extracted rhizosphere DNA from Section 3.2.4.5 was stored at -20°C for PCR-DGGE 

analysis. To investigate the genetic diversity of AMF, 18S rRNA fragments of AMF were 

amplified using a nested PCR strategy. In the first PCR reaction used primers AML1/AML3, 

the 1 µL of PCR products from this reaction were used as a template for the second 

reaction using primers NS31-GC/GLO1 (Higo et al., 2015). 

DGGE was performed with a Cipher DGGE Electrophoresis system (CBS Scientific). The gel 

was prepared in the following way: Gel bond (SERVA, Germany) was placed on the DGGE 

glass plates before pouring the gradient gel. A linear gradient gel from 30% to 45% of 

denaturants was poured using 8% (w/v) polyacrylamide gel (acrylamide/bis solution, 

37.5:1). Each gradient solution contained 0.0012% (v/v) tetramethylethylenediamine 

(TEMED) and 0.07% (w/v) ammonium persulfate (APS) (Biorad, New Zealand) as catalysts 

for polymerization of acrylamide and bis-acrylamide. After 30-40 min of gradient gel 

polymerization, approximately 2-3 mL of stacking gel solution of 0% denaturant 

polyacrylamide gel (acrylamide/bis solution, 37.5:1), 0.002% TEMED and 0.1% APS were 

poured onto gradient gel and the DGGE gel comb inserted. The prepared gel was placed 

in the Cipher DGGE Electrophoresis system tank containing 0.5 x TAE. 

Ten µL of PCR product was mixed with 10 µL of loading dye (0.5% bromophenol blue, 

0.5% xylene cyanol and 70% glycerol in ddH20) and loaded into a single well on the 

gradient gel. The gels were run in 0.5 x TAE buffer for 16 h at 90 V and 60  Cͦ. After the 

running process had finished, the glass plates were removed and the gels were soaked in 

200-250 mL of fixative solution (40% ethanol, 2% acetic acid in water) for 3 min. The gels 
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were stained using 200-250 mL of silver stain solution (0.1% (w/v) silver nitrate) for 10 

min. The silver stain was decanted and the gels were rinsed using Millipore water for 2 

min. Gels were developed with 200-250 mL of developer solution (3% (w/v) sodium 

hydroxide and 0.01% (v/v) formaldehyde solution in Millipore water) for 30-40 min. After 

developing the gels were soaked in 200-250 mL of Cairns’ preservation solution (25% 

ethanol, 10% glycerol in water) and subsequently placed in a drying oven at 65  ͦC for 24 

h. The dried gel was scanned and the converted file (.jpeg) used for further analysis of the 

microbial communities. 

3.2.3.7 Investigation of root endomicrobiome and rhizospheric microbial community 

using Illumina Hiseq metabarcoding  

The taxonomic composition of the root microbiome (both internal and rhizosphere) was 

produced by amplicon sequencing of total bacteria libraries using the Illumina HiSeq 

platform by Novogene, Beijing, China. 

 The hypervariable V3-V4 region (expected size approximately 300 bp) of the 16S rRNA 

gene from the rhizosphere and root bacterial endophytes was amplified according to the 

protocol described by Klindworth et al. (2012) using primers F341 (5’- CCT AYG GGR BGC 

ASC AG-3’) and R806 (5’- GGA CTA CNN GGG TAT CTA AT-3’). These primers had been 

extended to include a unique barcode and Illumina cell flow adaptors (Appendix 7.2.3). 

Details of unique barcode combinations are in Appendix 7.2.4. The PCR mixture 

contained 12.5 µL 2 x KAPA HiFi HotStart ReadyMix (Kapa Biosystem, South Africa), 5 µL 

each of forward and reverse primer (1 mM), and 2.5 µL of genomic DNA (5 ng/ µL). The 

following PCR conditions were used: initial denaturation at 95  ͦC for 3 min, followed by 35 

cycles consisting of denaturation (98  ͦC for 20 s), annealing (55  ͦC for 15 s), and extension 

(72  ͦC for 40 s) and a final extension step at 72°C for 1 min. 

PCR products (5 µL) were separated by electrophoresis on a 1% w/v agarose gel in 1 x TAE 

buffer (40 mM Tris acetate, 2 mM Na2EDTA, pH 8.5) at 10 V/cm  for 45 min alongside a 

1kb+ DNA ladder (Invitrogen). Gels were stained with ethidium bromide (0.5 µg per mL 1 

x TAE) for 15 min, rinsed in RO water and photographed under UV light in a FireReaderTM 

(UVITEC) to verify the PCR had worked. The root samples produced a single band, and 

were purified using a PCR clean up kit from Qiagen (MOBIO laboratories, USA) according 

to the manufacturer’s instructions. The soil rhizosphere samples displayed multiple bands 
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on the gel. The band of the desired size range (440-480 Bp) was excised using a sterile 

scalpel on a UV gel box, placed in a sterile 1.7 ml plastic tube and the PCR product 

recovered using a ZymocleanTM Gel DNA Recovery Kit (Zymo-Research, USA).  

A fungal 18s library was also prepared for sequencing (Appendix 7.2.6), however, not 

enough data was generated from the sequencing and thus was excluded from further 

analysis. 

The DNA concentration of the purified PCR products was measured using the Qubit 

dsDNA HS Assay kit (Thermo Fisher Scientific, USA). Based on these concentrations the 

products were pooled into two tubes (tube one was all 16S samples, and tube two was 

the ITS2 samples) based on their relative concentrations to make a final 1.5 g of DNA in 

each tube as specified by the sequencing company (Novogene, Beijing, China).  

 

3.2.3.8 Statistical Analysis 

The cultivar differences in plant dry weight, were subjected to analysis of variance 

(ANOVA) using GenStat 16th version (VSN International, Hemel Hempstead, UK).  

The raw 16S sequencing data was analysed with assistance from Aurelie Laugraud 

(Bioinformatician, AgResearch). Paired-end reads were assembled using Flash v1.2.11 and 

unpaired sequences were discarded (Magoč and Salzberg, 2011). The sequences were 

trimmed and separated according to their barcodes using Flexbar v2.4 (Dodt et al., 2012). 

Reads were clustered to operational taxonomy units (OTUs) on the open source software 

package QIIME 1.8.0 (http://qiime.org) followed by taxonomic assignment of 

representative sequences with a 80% threshold based on the reference database 

Greengenes release gg_13_8_99 (DeSantis et al., 2006). All reads assigned to chloroplasts 

and mitochondria were removed prior to further analysis. The OTU table generated was 

rarified to the sample with the lowest number of read counts by randomly selecting 

subsets of sequences using a script provided as part of the QIIME 1.8.0 software 

(Caporaso et al., 2010). Reads assigned as chloroplasts, mitochondria, and “unassigned” 

were removed in QIIME, and low abundance reads (<10) and reads present <0.01% were 

removed using USEARCH V1.8. To calculate the alpha diversity, bacterial richness was 

estimated using the number of observed OTUs and the bacterial diversity was 

http://qiime.org/
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determined using the Simpsons Index in USEARCH V8.1 in QIIME 1.8.0 open source 

software package. The taxonomy bar charts were generated and visualized using R studio 

version 1.0.143©. Beta diversity was assessed by performing principal coordinate analysis 

based on calculating the Bray Curtis distance matrix using Primer 7 software (Primer-E 

Ltd, Plymouth Marine Laboratory, UK). 

Analysis of the AMF communities was performed using Phoretix 1D Pro Gel Analysis 

(Totallab, UK). A matrix based on the presence/absence of bands generated from 

Phoretix binary data was analyzed using Primer version 7 (Primer-E Ltd, Plymouth Marine 

Laboratory, UK) multivariate software package. Resemblance matrices for community 

profiles were built by calculating similarities between each pair of samples using Jaccard 

ordination were generated to interpret multivariate distance between samples and 

factors. PERMANOVA tests were used to test the statistical difference between AMF 

communities between samples. The number of bands per lane was used as a diversity 

indicator of AMF taxa richness. AMF richness was analysed with a general linear model 

(GLM) to determine the significance of factors and followed by Fisher’s ad-hoc analysis. 

 

3.2.4 Experiment 5 – Symbiotic potential of rhizobia strains isolated from the nodules 

of Huia and Tribute, from Experiment 4. 

 

3.2.4.1 Preparation of seedlings 

Seedlings of cultivars Huia and Tribute were germinated on water agar as described in 

Section 2.2.2. Seedlings were placed in sterile 50 mL plastic tubes as described in Section 

2.2.4.1. Only Huia and Tribute seeds were used in this experiment in order to achieve 

high replication (15) with the amount of remaining seed available. 

3.2.4.2 Inoculation of Trifolium repens cultivars 

Six nodules were plated from each of the two cultivars (2 nodules from each of 3 

replicate plants) and the symbiotic potential of each of the 12 strains were tested 

individually, along with a positive and negative control treatment. These comprised the 

14 treatments. 
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 The nodules from plants grown in field soil were surface sterilized and plated as 

described in Section 2.2.4.4.2. Resultant colonies were sub cultured three times to ensure 

purity and single colonies were selected for re-inoculation and assessing symbiotic 

potential. 

Inoculum from each of the 12 strains was prepared as described in Section 2.2.3. 

The tubes were prepared as described in Section 2.2.4.1 and the tube inoculated as 

described in Section 2.2.4.2. 

Once the seedlings had been sown, they were grown for six weeks in conditions 

described in Section 2.2.4.2. 

3.2.4.3 Experimental design 

Fifteen randomized blocks were set up, each block containing 28 tubes, one tube per 

treatment (12 inoculated, positive control, and negative control), per cultivar. The tubes 

were randomly placed in two white plastic racks. Plants were watered to weight with 

sterile Millipore water every two days. 

3.2.4.4 Assessment 

3.2.4.4.1 Shoot dry weights 

Once the plants had grown for six weeks, the shoots were harvested as described in 

Section 2.2.4.4.1. 

3.2.4.4.2 Statistical analysis 

The effects of the strains on plant dry weight for each treatment were subjected to 

ANOVA using GenStat 16th version (VSN International, Hemel Hempstead, UK).  

Treatment differences were compared using Fisher’s Protected LSD at 0.05. 
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3.3 Results 

3.3.1 Experiment 4 shoot DW and root FW 

There was no significant difference in shoot dry weight (P =0.386), or root fresh weight (P 

=0.987) between the six clover cultivars (Table 3.1). 

 

Table 3.1 Mean shoot dry weight (mg), and root fresh weight (mg) for each of six white clover 
cultivars grown in the same soil for 12 weeks. 

Cultivar Mean Shoot DW (mg) Mean Root FW (mg) 

Huia 263 623 

Tribute 201 546 

Irrigation 315 623 

Crusader 237 630 

Louisiana 323 659 

Kopu II 206 617 

 

 

3.3.1.1 Root and rhizosphere bacterial community structure using Illumina HiSeq 

metabarcoding 

A total of 2,002,903 reads were generated after initial quality filtering and excluding 

unmatched paired end reads. Chloroplast, mitochondria and “unassigned” reads were 

excluded from the OTU table before further analysis and these accounted for 16% of the 

total reads. A total of 1,689,775 reads remained and these were divided among a total of 

88,211 OTUs. The total number of reads per cultivar, roots and rhizosphere are presented 

in Table 3.2. An average of 172,736, and 108,878 reads were obtained from the root 

(min=8051, max=145893), and rhizosphere (min=15051, max=60503), respectively. 
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Bacterial community richness was much higher in the rhizosphere than inside plant roots 

(Table 3.3). The bacterial community structure was significantly different in the roots and 

the rhizosphere (PERMANOVA, P=0.001), forming two distinct clusters (Figure 3.2). 

Therefore, the data was split into these two groups for further analysis. Low abundance 

OTUs were classified as those with less than 10 reads (Yeoh et al., 2017) and were 

discarded from analysis.  

 

 

 

Table 3.2 Number of sequences per cultivar and replicate plant from root (a) and rhizosphere (b) 
samples generated by Illumina Hiseq. 

(a) 

 Cultivar 

Plant Root Huia Tribute Irrigation Crusader Louisiana Kopu II 

1 116522 85253 47865 54422 66807 69630 

2 31459 145893 22590 50826 8051 32227 

3 89559 48067 22980 37353 37174 69828 

Total   237540 279123 93435 142601 112032 171685 

 

(b) 

 Cultivar 

Plant Rhizosphere Huia Tribute Irrigation Crusader Louisiana Kopu II 

1 48182 60503 31521 31875 31296 48811 

2 23802 48764 15868 29264 15051 43904 

3 45015 53424 27188 26265 28205 44331 

Total 116999 162691 74577 87404 74552 137046 
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Table 3.3 The average richness and Simpson index for non-rarefied root (a) and rhizosphere (b) 
OTUs of the six white clover cultivars. Richness is the number of OTUs observed. Simpson 
index shows probability that two randomly selected reads will belong to the same OTU. 
Values close to 1 indicate that a single large OTU dominates the sample, small values 
indicate that the reads are distributed over many OTUs and hence, higher diversity. 

 Cultivar 

(a)  

Plant Root  

 

Huia Tribute Irrigation Crusader Louisiana Kopu II 

Richness 289 301 157 249 201 386 

Simpson’s index 0.461 

 

0.487 0.485 0.465 0.478 0.457 

 

 Cultivar 

(a)  

Plant Rhizosphere 

 

Huia Tribute Irrigation Crusader Louisiana Kopu II 

Richness 4242 4721 3564 3850 3498 4414 

Simpson’s index 0.005 

 

0.005 0.005 0.008 0.006 0.006 
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Figure 3.2  Principal coordinate plot showing the difference between root and rhizosphere bacterial 
communities for six cultivars of white clover after removal of chloroplast, mitochondria, 
and “unassigned” reads. 

 

 

 

3.3.1.2 Root endomicrobiome analysis 

Greenegene id Denovo64224 (Rhizobium leguminosarum), and Denovo33832 (genus 

Rhizobium) were dominant OTUs in the roots and when combined they accounted for 

97.9% of the total root reads (502877 and 483648 reads, respectively). These OTUs were 

likely to have originated mainly from nodules included in the DNA extraction process and 

were common to all cultivars. Thus, they were excluded from further analysis to allow a 

focus on the composition of other bacterial endophytes within the roots of the different 

cultivars. Low abundance reads, those which occurred at ≤0.1%  were also removed 

(Yeoh et al., 2017), leaving a total of 18842 reads, and 137 OTUs. Differences in phylum 

composition between each of the cultivars and the replicate plants is shown in Figure 3.3. 

Proteobacteria were the dominant phyla (51-96.3%) in 17 out of the 18 plants. Plant 1 of 

cultivar Crusader differed from the other plant samples with the phyla Bacteroidetes 

being most abundant (75%) (all of which belonged to the genus Chitinophaga). 
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Figure 3.3  Community structure of root endophytic bacteria in all samples of white clover show by 
metabarcoding with Illumina HiSeq 16S rRNA amplicon sequencing at phylum level. 
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Plant cultivar was the major driver of the root endomicrobiome (PERMANOVA P=0.001 

(Figure 3.4). When grouped according to their morphology (matched pairs), the root 

endophytic bacterial communities between the three groups was significantly different 

(PERMANOVA P=0.001). However, there were no significant differences within matched 

pairs, Huia/Tribute, Irrigation/Crusader, and Louisiana/Kopu II (PERMANOVA P=0.214, 

P=0.292, and P=0.098, respectively). Although there was a trend (P=0.098) for a 

difference between Louisiana/Kopu II.  

 

 

 

Figure 3.4  Principal coordinate plot showing rough groupings of the white clover cultivars. Bacterial 
read numbers were rarefied to 162 (as the smallest number of reads). Three circles 
outline the groupings. 

 

 

Bacterial read numbers were rarefied to the smallest number of reads for each of the 

three pairs of matched clover cultivars and differences the root bacterial communities at 

the phylum (Figure 3.5) and class (Figure 3.6) levels determined. The bacterial phylum 

Proteobacteria was the most abundant in all three groups (67.4 - 91.8%). Less abundant 
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phyla were the Actinobacteria (2.3 - 3.1%), Firmicutes (0.4 - 4.2%), and Acidobacteria (0- 

0.3%). At the class level, Alphaproteobacteria were the most abundant in the 

Irrigation/Crusader and Louisiana/Kopu II matched pairs, ranging from (42.3-52.6%). The 

most abundant class for the Huia/Tribute pair was Gammaproteobacteria (32.8%). The 

second most abundant class was different for each of the three matched pairs, being 

Alphaproteobacteria for Huia/Tribute (32.4%), Saprospirae for Irrigation/Crusader 

(21.2%) and Betaproteobacteria for Louisiana/Kopu II (38.5%). 

 

 

 

 



 

79 

Figure 3.5 Community structure of endophytic bacteria in the roots of the three different paired 
groups of white clover as shown by metabarcoding with Illumina HiSeq of the 16S rRNA 
amplicon at the phylum level. Bacterial reads were rarified to 696, 162, and 311 as the 
smallest number of reads for each of the three groups (Huia/Tribute [HU/TR], 
Irrigation/Crusader[(IR/CR], Louisiana/Kopu II [(LU/KP]), respectively. 
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Figure 3.6  Community structure of endophytic bacteria in the roots of the three different paired 
groups of white clover as shown by metabarcoding with Illumina HiSeq of the 16S rRNA 
at the class level. Bacterial reads were rarified to 696, 162, and 311 as the smallest 
number of reads for each of the three groups (Huia/Tribute [HU/TR], Irrigation/Crusader 
[IR/CR], Louisiana/Kopu II [LU/KP]), respectively. 
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3.3.1.3 Rhizosphere bacterial community analysis 

In, total 263761 reads representing 345 bacterial OTUs and were detected in the 

rhizosphere soil of the six cultivars after the removal of low abundance OTUs present at 

≤0.1% relative abundance (Yeoh et al., 2017). Read numbers were rarefied to 5898 as the 

lowest number of reads per sample to determine the bacterial community of the 

rhizosphere of white clover at phylum level (Figure 3.7).  The phylum Proteobacteria was 

the most abundant in all the samples (53.8 - 69.2%). Phylum Actinobacteria, 

Acidobacteria, and Bacteroidetes were the next two most abundant taxa in all the 

samples (6.8 - 19.4%, 4.6 - 14.9%, and 2 - 13.1%, respectively). These four taxa collectively 

represented 91.5% of taxa present in rhizosphere soil of all six cultivars of white clover. 

Analysis of the rhizosphere bacterial communities showed that plant cultivar significantly 

affected bacterial community composition in the rhizosphere (PERMANOVA P=0.001). 

The Principal coordinate plot appeared to show some clustering of cultivars according to 

physical morphology (Figure 3.8). When grouped into these physiological pairs, there was 

significant difference between the rhizosphere community structure between the three 

groups (PERMANOVA P=0.001). Bacterial read numbers were rarefied to the smallest 

number of reads for each of the three pairs of matched clover cultivars and differences 

the rhizosphere bacterial communities at the phylum (Figure 3.9) determined. The 

bacterial phylum Proteobacteria was the most abundant in all three groups (59.5 - 

63.5%). The next most abundant phyla were the Actinobacteria (11.9 – 15.2%). The third 

most abundant phyla were Acidobacteria (9.8 – 10.9%) for pairs Huia/Tribute and 

Irrigation/Crusader. The phyla Bacteroidetes were the third most abundant for cultivars 

Louisiana/Kopu II (Figure 3.9). 
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Figure 3.7  Community structure of rhizosphere bacteria in all samples of white clover shown by 
metabarcoding with Illumina HiSeq 16S rRNA amplicon sequencing at phylum level. 

 

 

 

 

 

 

 

 

 

 



 

83 

 

Figure 3.8  Principal coordinate plot showing square root transformed Bray-Curtis similarity 
between white clover cultivars based on the rhizosphere bacterial community. Reads 
were rarefied to 5898 as the smallest number of reads. Circles show the clustering of 
cultivars according to physiology. 
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Figure 3.9  Community structure of bacteria in the rhizosphere of the three different paired groups 
of white clover as shown by metabarcoding with Illumina HiSeq of the 16S rRNA amplicon 
at the phylum level. Bacterial reads were rarified to 8988, 5898, and 6425 as the smallest 
number of reads for each of the three groups (Huia/Tribute [HU/TR], 
Irrigation/Crusader[(IR/CR], Louisiana/Kopu II [(LU/KP]), respectively. 
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3.3.1.4 AMF community analysis using DGGE 

A total of 90 different bands (taxa) were identified by DGGE (Appendix 7.2.7). The 

number of bands produced per cultivar ranged from 28 (Crusader plant 2) to 49 (Crusader 

plant 1 and Irrigation plant 2). Clover cultivar affected AMF community composition 

(PERMANOVA P=0.006) (Figure 3.10). Replicate samples from some cultivars were not 

significantly different from each other, such as Louisiana, whereas others were 

significantly different from each other, such as Huia. Figure 3.11 shows that all three 

Tribute replicates are similar and are significantly different from the other cultivars 

(P<0.05). Crusader sample 2 had approximately 20 less bands than the other Crusader 

replicates (Table 3.4) and therefore the samples did not group (Figure 3.11). There was no 

significant difference in AMF community composition between the three old and three 

new cultivars (PERMANOVA P=0.338) 

 

Table 3.4 Number of bands seen from each sample on the DGGE gel to identify AMF community 
composition associated with the different plant replicates for each of the six clover 
cultivars 

 Cultivar 

Plant replicate Huia Tribute Irrigation Crusader Louisiana Kopu II 

1 42 37 35 49 47 45 

2 46 36 49 28 41 47 

3 34 38 45 44 39 36 
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Figure 3.10 Nonmetric multidimensional scaling (MDS) plot showing AMF communities from the      
rhizosphere of different white clover cultivars. 

 

 

 

Figure 3.11  Similarity profile analysis at 95% threshold of AMF from the rhizosphere of six white 
clover cultivars. Samples on different solid lined branches are significantly different, P 
<0.05. Those separated by red dashed lines are not significantly different from each 
other. 
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3.4 Discussion 

Global research has shown that plants are metaorganisms, and that the microorganisms 

that inhabit them play important roles in their physiology and ecology. This is the first 

study to characterize the diversity and structure of the bacterial root endophytic and, 

bacterial and AMF rhizosphere communities of different “old” and “new” cultivars of 

white clover. Understanding whether cultivar affects the structure of microbial 

communities in the root will help to understand the effects of breeding and plant 

physiology on microbial recruitment below ground. At the outset of this work it was 

hypothesized that there would be a difference in the microbial communities present in 

the roots of “old” versus “new” white clover cultivars. To undertake this work, culture 

independent molecular tools NGS and DGGE were used.  

The three most common taxa found in the rhizosphere of the white clover plants were 

Proteobacteria, Actinobacteria, and Acidobacteria. This was consistent with other studies 

as it is these taxa that usually dominate in the rhizosphere (Weinert et al., 2011; Yeoh et 

al., 2017). The three most abundant phyla associated as endophytes of roots were 

Proteobacteria, Actinobacteria, and Bacteroidetes. This general dominance of phyla in the 

rhizosphere and roots of white clover is  similar to that found in other legumes such as 

soya bean and alfalfa (Xiao et al., 2017). 

The high throughput sequencing showed a distinct difference in bacterial community 

structure (Figure 3.3) and diversity (Table 3.3) between the rhizosphere and root 

microbiome of white clover. Community richness was greater in the rhizosphere than in 

the roots. It has been relatively well established in the literature that only a small subset 

of the soil microbial community is successful in colonizing plant roots (Hartmann et al., 

2009; Gaiero et al., 2013). A study conducted by Xiao et al. (2017) characterizing the 

microbiomes of different belowground compartments (nodule and root endophytes, 

rhizosphere, and root zone) of soya bean and alfalfa also showed that different bacterial 

communities were associated with these distinct habitats. Their study also showed the 

diversity of bacterial communities in the rhizosphere and root zone were much higher 

than those of the nodule and root endophytes.  
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In this study the bacterial root and rhizosphere communities of old and new cultivars 

were not significantly different. It is believed that, generally, as plant domestication has 

decreased plant genetic diversity, that this has affected the ability of plants to establish 

beneficial associations with rhizosphere microbes (Pérez-Jaramillo et al., 2016). 

Decreased ability to associate with symbionts has been demonstrated for legumes. 

Mutch and Young (2004) showed that pea and broad bean were much more limited in 

the strains of rhizobia they could interact with as compared to their wild relatives which, 

in contrast, were able to exploit the diverse rhizobial community present in soil. The lack 

of a significant difference between old and new cultivars of white clover in the current 

study may be due to the high amount of genetic variability within white clover cultivars. 

White clover unlike soy bean and other commonly studied legumes, is an outcrossing 

plant, which introduces genetic variability into the experiment. Therefore, the age 

difference between cultivars may not be long enough to notice major differences in 

recruitment of a bacterial community to the roots and rhizosphere. Perhaps, specifically 

examining the rhizobial diversity would have been more likely to demonstrate differences 

between old and new cultivars, as was indicated in the previous chapter. Amplifying and 

sequencing the nodulation genes (such as nodC) which are known to be highly variable 

between taxa (Laguerre et al., 2001; Bontemps et al., 2005) may have identified 

differences in the rhizobial associations of the six cultivars. 

The results from this study showed that the bacterial communities between the paired 

white clover cultivar groups were clustered more loosely in the principal coordinate 

analysis of the rhizosphere, than those recovered from the interior of the root (Figure 3.5, 

Figure 3.9). It is known that plants play an active role in recruiting microorganisms from 

the bulk soil into the rhizosphere through root exudates (Bais et al., 2006). This showed 

that although there was differential recruitment of rhizosphere bacterial communities 

there was greater specificity in root endophytic bacterial communities. This could be 

because plants are able to actively regulate their endophytic associations. One way plants 

regulate endophyte communities is by producing compounds whose function is to 

suppress unrestrained growth and pathogenicity by microbes (Bacon and White, 2016). 

The ability of plants to adjust root exudate composition can vary among plant species and 
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genotype (Lareen et al., 2016), and therefore this could explain the distinct differences in 

microbial communities between cultivar groups. 

The results from this study revealed that the morphology of the cultivar was a significant 

factor affecting the bacterial root endophytes and rhizosphere community of white 

clover. White clover cultivars grouped together within their matched leaf sizes in the 

principal coordinate plots for the roots and rhizosphere (Figure 3.5, Figure 3.9). Studies 

have shown plant developmental stage is a strong driver shaping the rhizobacterial 

community structure (Chaparro et al., 2014; Pérez-Jaramillo et al., 2016). A study 

conducted by Chaparro et al. (2014) showed that Arabidopsis plants can select a subset 

of microbes at different stages of development. Given that the paired cultivars were 

chosen based on their similarity in morphology it may be that their parallel 

developmental stages made their microbiomes more similar to each other. It is possible 

that a particular leaf size physiology allows a plant to release a specific set of exudates 

which alter the rhizobacterial and consequently root endophytic community. Further 

work would need to be done to identify the similarities between specific root exudates 

produced by these cultivars of white clover to ascertain what compounds could be 

responsible in driving rhizobacterial community differences. 

Illumina HiSeq showed that plant cultivar significantly affected the microbial community 

structure of the roots and rhizosphere of white clover. A study conducted by Weinert et 

al. (2011) showed that for three different potato cultivars, a subset of detected OTUs was 

cultivar-specific. Similar cultivar-dependent effects in the rhizobacterial communities in 

the rhizosphere of young potato plants has also been shown (İnceoğlu et al., 2011). The 

study conducted by İnceoğlu et al. (2011) also found that the cultivar dependent bacterial 

community structures disappeared in later development stages of the plants, such as 

during flowering and senescence. In the current study, plants were harvested well before 

they were fully mature or new flowering. Perhaps analysing the bacterial community of 

the roots and rhizosphere of flowering white clover plants could possibly reveal other 

changes in community structre.  

Principal coordinate analysis showed that there was some variability in the microbial 

communities of the root and rhizosphere within cultivar replicates (Figure 3.5, Figure 3.9). 

Some of this variation could be attributed to the genotypic variability present within 
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white clover (Gustine and Huff, 1999; Jahufer et al., 2013). Plant genotype is known to 

regulate the rhizosphere microbiome between plant species and also between different 

genotypes of the same species (Weinert et al., 2011; Pérez-Jaramillo et al., 2016). A study 

conducted by Aira et al. (2010) on maize showed that plant genotype strongly modified 

the structure of microbial communities in the rhizosphere of maize plants. Their study 

showed plant rhizosphere communities also strongly reacted to other variables such as 

fertilizer treatments. There is no genotypic relationship between morphological matched 

cultivar pairs, and the results of PCO analysis show much closer clustering based on 

morphology indicating genotype is not the most defining variable of white clover root 

and rhizosphere microbial communities. 

Another reason for variation in the replicates could be the amount of root tissue used for 

DNA extraction as the first lateral root, regardless of size and length, was taken for each 

plant. Using a set weight or having a set root order from which to cut could have further 

enhanced the agreement between replicates. To get a broader and accurate 

understanding of the root and soil rhizosphere community, more plant replicates and/or 

triplicate PCRs for each sample could have been conducted and pooled together, 

therefore being more representative of the root.    

Crusader plant one had a much higher abundance of the phyla Bacteroidetes (genus 

Chitinophaga) in its roots than was observed for the other two replicates and among 

every other plant cultivar. Bacteroidetes are one of the most abundant phyla in the roots 

and leaves of Arabidopsis thaliana (Bodenhausen et al., 2013). Recently a study 

conducted by Shaffer et al. (2017) showed that Chitinophaga can be endohyphal, and 

tested its effects on substrate use by its host, a seed-associated strain of Fusarium 

keratoplasticum. For 62% of the substrates the fungal strain harbouring the bacterium 

significantly outperformed the cured strain. This was measured by hyphal density and 

respiration (Shaffer et al., 2017). Therefore, it could be possible it entered the plant root 

in the hyphae of a fungi. The present study also found that the high levels of 

Chitinophaga found in the roots of Crusader plant one did not raise abundance of the 

genus in the rhizosphere. Results showed that the plant dry weight, and shoot fresh 

weights were not significantly different for Crusader from other cultivars. This suggested 

that even though Crusader plant 1 had a higher abundance of Bacteroidetes in the roots, 
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this did not hinder plant shoot and root growth. Thus, the significance of this taxa in 

Crusader plant 1 is unclear. 

Illumina Hiseq revealed that cultivar pair Huia/Tribute had a higher relative abundance of 

gammaproteobacteria in the roots compared to the other cultivars. 

Gammaproteobacteria are known to be opportunistic colonizers of nodules induced by 

rhizobia (Ibáñez et al., 2009). A study conducted by Ibanez et al. (2009) isolated three 

strains of Gammaproteobacteria from nodules and found they were unable to induce 

nodule formation on Arachis hypogaea L. plants, however, when co-inoculated with an 

ineffective Bradyrhizobium strain, they were observed colonizing pre-formed nodules. 

Gammaproteobacteria and can also provide benefits to hosts via the production of 

organic compounds such as L-ascorbic acid and, indole acetic acid which plays a central 

role in plant growth and development (Ghosh et al., 2015; Kumar Ghosh et al., 2015). Out 

of the three match pairs, Huia/Tribute had the lowest abundance of Tenericutes, of which 

some species can be pathogenic (Lee et al., 2000).  

This study also used DGGE as a molecular tool to analyze the structure of AMF 

communities across the rhizosphere of the six white clover cultivars. Although considered 

an older technique, there are advantages and disadvantages associated with DGGE. DGGE 

is relatively cost effective, and can be good to provide a broad overview of microbial 

community structure (Cleary et al., 2012). Some disadvantages of DGGE are that for 

instance, it is likely DGGE will only detect a part of the total diversity from samples as 

most of the DGGE bands will be composed of the more abundant species (Mühling et al., 

2008). Another problem could be that one DGGE band can represent multiple species and 

it is also possible for one species to be represented by many bands (Dowd et al., 2008). 

This could lead to misinterpretation of the community profiles. Due to low cost, expected 

low diversity and the lack of suitable AMF specific primers for NGS, DGGE was chosen as 

the molecular tool to provide an overview of AMF community structure in the 

rhizosphere of white clover.  

DGGE analysis showed that cultivar was a significant factor influencing the composition of 

AMF in the rhizosphere of white clover plants. However, unlike the clustering seen in the 

bacterial root endophyte and rhizosphere communities, the clover cultivars did not 

cluster. The MDS plot (Figure 3.10) and dendrogram (Figure 3.11) showed that cv. Tribute 
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grouped separately from the other cultivars. This indicated that rhizospheric bacterial 

community was not strongly linked to AMF community structure.  A study conducted by 

Becklin et al. (2011) showed that host identity impacted rhizosphere fungal communities 

associated with alpine plant species. Their study showed that AMF community 

composition was influenced by host identity as richness varied among host species. 

Alternatively, there could be a non-mycorrhizal fungal symbiont, such as a helper 

bacteria, associated with Tribute roots that could have had large impact on the AMF 

community structure. A study conducted on young pea plants has shown a stimulatory 

bacterial isolate, enhanced AMF-colonization for Glomus clarum as well as isolates which 

inhibit the germination of spores and infectivity of AMF (Xavier and Germida, 2003).  

As discussed previously, the genetic diversity within white clover is large. A reason for not 

seeing better separation and grouping, between and within cultivar replicates could be 

the low amount of replication used for studying the AMF community structure. Increasing 

the replication could be critical in improving the statistical resolution of the study and 

could uncover other factors influencing AMF community structure among white clover. 

Another reason for the lack of any groupings could be that AMF are spatially distinct on 

the root and some occupy larger sections more vigorously than others (Dodd et al., 2000; 

Hart and Reader, 2002). Species of Glomus tend to be the first colonizers of any root 

system in a mixed soil inocula and the spread of extraradical hyphae are also unique to 

different species (Dodd et al., 2000). Therefore, it is possible that due to the competitive 

nature of Glomus species these may have been the first to colonize and spread 

extraradical hyphae and because the plants were harvested fairly young, other species of 

AMF did not get a chance to establish a significant hyphal presence. A study conducted by 

Dodd et al. (2000) also showed difference in extraradical hyphae of six species of AMF 

grown under the same conditions. Sampling from the rhizosphere soil could be biased to 

the AMF that invest strongly in the growth and distribution of extraradical hyphae and 

thus may have reduced the resolution of the experiment. 

In the last experiment of this chapter the ability of two clover cultivars to select high 

performing symbionts was explored by recovering isolates from the nodules and then 

measuring their symbiotic potential on either Huia or Tribute. The results showed that 

Huia produced more shoot dry weight than Tribute irrespective of which cultivar the 
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rhizobia strain had originated from. Huia also performed better with more strains of 

rhizobia than Tribute. A study conducted by Mutch and Young (2004) showed that wild 

progenitors of broad bean and pea cultivars were better able to exploit a wider range of 

rhizobial symbionts. The results from the current study show that Huia is a more capable 

of utilizing a diverse range of rhizobial symbionts. This confirmed the results seen in 

Section 2.2, where Huia had significantly more associations with effective strains of 

rhizobia than Tribute. However, it was assumed that all strains used for re-inoculation 

were different and the current experiment could have been improved by genotyping each 

strain.  

 

3.5 Conclusions 

In summary this study was the first to describe the bacterial community structure of the 

root and rhizosphere of old and new white clover cultivars. This chapter shows that there 

is strong difference between the bacterial communities in the rhizosphere and root of 

white clover cultivars. It indicated that plant developmental stages are strong drivers of 

microbial community structure, especially for the endomicrobiome.  DGGE showed no 

difference between old and new cultivars or clustering of cultivars in relation to AMF 

community structure in the rhizosphere. Although there was no apparent difference 

between old and newer cultivars it was observed that in the matched Huia/Tribute 

pairing that the older cultivar, Huia, was able to effectively utilize a broader range of 

rhizobial genotypes. 
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4 Concluding discussion 

The overall aim of this thesis was to examine whether ~80 years of white clover breeding 

has affected the ability of newer cultivars to form effective below ground associations. 

This was tested by: 

1. Examining if there was a preferential selection by either “old” or “new” cultivars 

of white clover to select effective strains of R. leguminosarum from a mixture. 

2. Investigating the responsiveness of six cultivars of white clover to different 

species of AMF and AMF mixtures 

3. Examining the root endophytic and rhizosphere bacterial communities of old and 

new cultivars. 

4. Examining the rhizosphere AMF community structure 

In New Zealand, clover breeding programmes have focused on above ground 

characteristics in selection of new cultivars. This has been carried out with a background 

of high nitrogen soil environments, due to fertilizer use. There is evidence in the 

literature which suggests that breeding has decreased the ability of some legumes, such 

as soybeans, to defend against poor-quality mutualists (Kiers et al., 2007). This is the first 

study to investigate whether plant breeding may have impacted white clover and it’s 

below ground associations. 

The ability of old and new cultivars to select effective strains of rhizobia from a mixture 

was investigated in vitro in Chapter 2. Genotyping of R. leguminosarum strains recovered 

from ten nodules from each white clover plant was used to determine which strains had 

occupied nodules from the mixture of highly effective and less effective strains. The 

results showed that two out of the three older cultivars (Huia and Louisiana) of white 

clover selected significantly more highly effective strains and significantly fewer less 

effective strains than would be expected by chance. No new cultivars demonstrated this 

capability. This suggested that plant breeding may have affected a cultivars ability to 

discriminate among rhizobial partners of varying efficacies. These findings were 

consistent with the findings of Kiers et al. (2007) who found soybean defences against 

poor-quality rhizobia have worsened under artificial selection. Though genotyping of 10 

randomly selected nodules showed differences between cultivars, an improvement to the 
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experiment could be to genotype all the nodules on each plant. This would give a more 

complete understanding on the extent of partner choice by each cultivar. Another 

improvement would be to record the size and coloring of all the nodules. This would 

provide an added layer of information to complement the nodule occupancy data. 

Nodule size and colour can be good estimates of how much resources (carbon) are 

allocated to the nodule, and whether a particular nodule is fixing nitrogen (Maier and 

Brill, 1976).  

Chapter 2 also showed that strain 451 was a very competitive nodulator, and was the 

most dominant strain found in the nodules of all the cultivars. The presence of such an 

aggressive competitor strain may lower the resolution of the experiment to identify strain 

selection by the hosts. Using a bigger mixture of strains with similar competitive abilities 

would provide a more even basis for selection. Therefore, it would be interesting to run 

the experiment again without the addition of strain 451. Further investigation could look 

at genetic basis of the competitiveness of strain 451, even though it was not most 

beneficial strain on all cultivars. Such work may identify traits that could be selected for in 

commercial inoculants, improving their success when deployed in the field. 

In Chapter 2, the responsiveness of the six white clover cultivars to AMF and AMF 

mixtures was also examined. No conclusive results were obtained from this experiment 

due to the high amount of contamination (possibly oomycete) that was observed. 

Improvements to the experiment could be, sterilizing the pots in which the plants were 

grown as well as the media. Using sterile Millipore water when watering and preparing 

the minimal nutrient solutions to reduce the risk of contamination from a water borne 

source. Growing the plants in a dedicated soil-less controlled growth chamber instead of 

a growth room where other soil based experiments were run simultaneously would also 

reduce the risk of contamination from the air.  

This was the first study to examine the bacterial rhizosphere and root endophyte 

communities of old and new cultivars of white clover. Illumina HiSeq showed that, for 

white clover, there was a distinct difference between the bacterial communities of the 

root and rhizosphere. Other studies of the microbiome of plants have not shown such a 

distinct separation between the root and rhizosphere microbial communities (Jin et al., 

2014; Xiao et al., 2017). The distinct separation observed in the current study could have 



 

98 

been because no other parts of the plant were sampled and included in the analysis. 

Studies have also shown plant genotype and age shape the leaf and root microbiomes of 

wild perennial mustard (Wagner et al., 2016). As that study indicated that the microbial 

communities of the roots and leaves were linked, it would be interesting to examine the 

microbial communities in the leaves of white clover alongside the root and rhizosphere to 

see if such a relationship was also true for white clover. Analysis was not conducted on 

the microbial community structure of the bulk soil, however, such analysis might have 

shown which microbial communities were selected for in the rhizosphere against a 

background control. This may have further highlighted differences seen between the root 

and rhizosphere microbial communities of the six cultivars. 

Chapter 3 showed that cultivar age did not influence the root and rhizosphere bacterial 

communities of white clover. Instead the results showed that plant morphotype was a 

significant factor and suggested there was a link between the development stage of a 

particular morphotype and bacterial communities recruited into the roots and 

rhizosphere. This link could be further investigated by running the experiment for a 

longer period of time, and sampling key developmental time points, such as flowering, 

seed set and stolon growth. Having more information across different growth stages 

would improve resolution of the degree to which plant development affects bacterial 

communities in the roots and rhizosphere. It would also be interesting to analyze the root 

exudates produced by the different cultivars to verify whether they contribute to host 

mediated selection of microbial communities (Aulakh et al., 2001; Kidd et al., 2001). 

DGGE analysis of the AMF community in the rhizosphere of white clover plants showed 

there was a significant cultivar effect but no grouping by cultivar pairs. It was likely that 

Glomus species were the first to colonize and generate extra-radical hyphae, therefore 

limiting opportunity for other AMF to establish their presence on root surfaces. A time 

course or harvesting and analyzing more of the rhizosphere soil may have improved this 

experiment. In addition, extracting DNA from the whole root system and identifying the 

AMF community may also have been a better approach.   

In experiment 5 of Chapter 3, only matched pair cultivars Huia and Tribute were chosen 

to assess the symbiotic potential of the rhizobial symbionts retrieved from nodules. These 

two cultivars were chosen because these are the current and former “benchmark” 
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cultivars of white clover used in New Zealand agriculture. The results showed that Huia 

was able to effectively utilise a wider range of rhizobial strains than its matched pair, 

Tribute. Similar results have been noted in other legumes, where wild cultivars were 

better able to exploit the rhizobial symbionts in the soil than domesticated cultivars 

(Mutch and Young, 2004). Seed germination, and availability was also an important factor 

in the selection choice of these cultivars, due to the replication required. Sufficient seed 

was available for these two cultivars but not others. 

Genetic variation played a big role in the results of this thesis. Significant differences 

between the six individual rhizobia strains was not seen for all cultivars in Experiment 1. 

This is likely due to the low replication used for this experiment. This was important as 

this was the main benchmarking experiment from which the strain rankings were made 

for experiment 2. Improving the replicate number to 15 or 20 could have decreased the 

variation seen and provided a more robust ranking of rhizobia strains for each cultivar to 

carry forward to experiment 2. Another way to reduce the effect of white clover genetic 

variation in this experiment would be to propagate replicates using stolon cuttings. 

Variation among replicates was also visible in the Chapter 3 in the PCOs for the root and 

rhizosphere bacterial communities, and the AMF rhizosphere communities. An 

improvement to the experimental design for the NGS and DGGE experiments would also 

be to increase the number of replicates. However, increasing replication would also 

increase the financial cost of the experiment.    

In summary, this study confirmed reports that strains of R. leguminosarum vary in their 

efficacy when in symbiosis with different cultivars. The results also supported the 

hypothesis that plant breeding has caused a relaxation in rhizobia partner selection by 

newer cultivars of white clover. The findings of this study also show that the bacterial 

communities of the root and rhizosphere are strongly affected by cultivar morphotype. 

Several promising areas of future research were identified, such as the mechanistic basis 

for the observed differences in rhizobia partner selection, and the mechanism of why 

morphotype is a driver of bacterial communities in the root and rhizosphere.  
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6 Appendices for Chapter 2 

6.1 Data from “Improved forage legume-rhizobia performance” MBIE trial 

 

Table 6.1 Mean shoot DWs Rhizobium leguminosarum strains on white clover cultivar Tribute 

from the MBIE trial. Strains with a * were tested on white clover cultivar S10. 

Strain DW (mg) 

TA1 12.82 

451 16.02 

1302 19.15 

316 15.53 

S12N10 * 0.4  

S26N9 * 1.1 

 

6.2 Yeast Mannitol Agar  

1 g yeast extract  

4 g mannitol   

0.5 g dipotassium phosphate  

0.2 g magnesium sulphate 

 0.1 g sodium chloride  

15 g agar  

1 l water  

 

Autoclave for 15 minutes at 121°C and 15 Psi 

 

6.3 Water Agar 

10 g Davis Agar 

1 l water 

 

Autoclave for 15 minutes at 121°C and 15 Psi 
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6.4 Yeast Mannitol Broth 

1 g yeast extract  

4 g mannitol   

0.5 g dipotassium phosphate 

0.2 g magnesium sulphate  

0.1 g sodium chloride  

1 l water  

  

Autoclave for 15 minutes at 121°C and 15 Psi 

 

6.5 McKnight’s nutrient solution  

Stock solutions (Unkovich et al., 2008) 

Chemical  

Calcium Chloride 20g/l 

Magnesium sulfate 400g/l 

Potassium dihydrogen orthophosphate 100g/l 

Potassium chloride 150g/l 

Trace elements stock solution  

-Boric acid 2.86g 

-Manganese sulfate  2.03g 

-Zinc sulfate 0.222g 

-Copper sulfate 0.079g 

-Molybdic acid 0.09g 

Added together and diluted to 1l  

EDTA stock solution (stored in dark)  

-Ethylene diamine tetra-acetic, sodium salt (EDTA 2g 

-60% wt/vol ferric chloride solution  16.8 ml 

Added together and diluted to 1l  

Sodium hydroxide  40g/l 

Ammonium nitrate  8g/l 
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Each stock solution was prepared by being dissolved in distilled water and autoclaved for 

15 minutes at 121°C and 15 Psi 

McKnight’s Min N (for 1l working solution) 

Calcium chloride 0.25ml 

Magnesium sulfate 0.25ml 

Potassium dihydrogen orthophosphate 1ml 

Potassium chloride 1ml 

Trace elements stock solution 0.5ml 

EDTA stock solution 0.75ml 

Sodium hydroxide 0.25ml 

Ammonium nitrate 1ml 

Diluted in 1 l distilled water autoclaved for 15 minutes at 121°C and 15 Psi 

 

McKnight’s insoluble P altered recipe (for 1 l working solution) 

Same as McKnight’s Min N, but Potassium dihydrogen orthophosphate replaced with 123.1 mg 

hydroxyapatite. 

 

6.6 Experiment 1 ANOVA  

 

6.6.1 ANOVA result of the effect of six Rhizobium leguminosarum treatment on the 

dry weight of white clover cultivar Huia 

Source DF SS MS F P 

Treatment 5 1.068x10-04 2.137x10-05 2.99 0.052 

Residual 13 9.279x10-05 7.138x10-06   

Total 22 1.935x10-04    

 

 



 

114 

 

 

6.6.2 ANOVA result of the effect of six Rhizobium leguminosarum treatments on the 

dry weight of white clover cultivar Tribute 

Source DF SS MS F P 

Treatment 5 1.762x10-04 3.523x10-05 4.05 0.059 

Residual 6 5.217x10-05 8.695x10-06   

Total 15 2.212x10-04    

 

 

6.6.3 ANOVA result of the effect of six Rhizobium leguminosarum treatment on the 

dry weight of white clover cultivar Irrigation 

Source DF SS MS F P 

Treatment 5 2.168x10-04 4.335x10-05 3.68 0.038 

Residual 10 1.178x10-04 1.178x10-05   

Total 19 2.429x10-04    

 

 

6.6.4 ANOVA result of the effect of six Rhizobium leguminosarum treatment on the 

dry weight of white clover cultivar Crusader 

Source DF SS MS F P 

Treatment 5 4.071x10-05 8.142x10-06 1.83 0.160 

Residual 17 7.558x10-05 4.446x10-06   

Total 26 1.168x10-04    
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6.6.5 ANOVA result of the effect of six Rhizobium leguminosarum treatment on the 

dry weight of white clover cultivar Louisiana 

Source DF SS MS F P 

Treatment 5 2.482x10-05 4.964x10-06 4.11 0.013 

Residual 17 2.055x10-05 1.209x10-06   

Total 26 4.769x10-05    

 

 

6.6.6 ANOVA result of the effect of six Rhizobium leguminosarum treatment on the 

dry weight of white clover cultivar Kopu II 

Source DF SS MS F P 

Treatment 5 8.927x10-05 1.785x10-05 2.22 0.114 

Residual 13 1.044x10-04 8.033x10-06   

Total 22 2.215x10-04    

 

 

 

6.6.7 ANOVA result of the effect of six Rhizobium leguminosarum treatment on the 

number of nodules formed on white clover  

Source DF SS MS F P 

Cultivar 5 252 50.45 1.87 0.321 

Treatment 5 776 155.14 3.650 <0.001 

Cultivar x Treatment 25 1720 68.07 1.601 <0.001 

Residuals 104 4421 42.51   

 



 

116 

 

 

 

 

 

 

 

 

6.7 Experiment 2 ANOVA and Sample proportions test 

 

6.7.1 ANOVA result showing the effect of positive control, negative control, and 

Rhizobium leguminosarum mixture on the dry weight of white clover 

Source DF SS MS F P 

Cultivar 5 5.560x10-4 1.110x10-4 2.602 <0.001 

Treatment 2 0.0172 0.0086 201.391 <0.001 

Cultivar x Treatment 10 1.310x10-4 7.300x10-5 1.710 0.1001 

Residuals 58 0.002480 4.300x10-4   

 

 

6.7.2 Sample proportions test – Huia 

6.7.2.1 Huia – “Highly effective” strains 

data:  29 out of 47, null probability 0.16 
X-squared = 69.6809, df = 1, p-value < 2.2e-16 

6.7.2.2 Huia – “Less effective” strains 

data:  18 out of 47, null probability 0.83 
X-squared = 63.4317, df = 1, p-value = 1.66e-15 

 

6.7.3 Sample proportions test – Tribute 

6.7.3.1 Tribute – “Highly effective” strains 

data:  5 out of 50, null probability 0.16 
X-squared = 0.9301, df = 1, p-value = 0.3348 



 

117 

6.7.3.2 Tribute – “Less effective” strains 

data:  45 out of 50, null probability 0.83 
X-squared = 1.2757, df = 1, p-value = 0.2587 
 
 
 
 
 
 

6.7.4 Sample proportions test – Irrigation 

6.7.4.1 Irrigation – “Highly effective” strains 

data:  7 out of 36, null probability 0.16 
X-squared = 0.1132, df = 1, p-value = 0.7366 

6.7.4.2 Irrigation – “Less effective” strains 

data:  29 out of 36, null probability 0.83 
X-squared = 0.0284, df = 1, p-value = 0.8661 

 

6.7.5 Sample proportions test – Louisiana 

6.7.5.1 Louisiana – “Highly effective” strains 

data:  23 out of 43, null probability 0.16 
X-squared = 42.2177, df = 1, p-value = 8.166e-11 

6.7.5.2 Louisiana– “Less effective” strains 

data:  20 out of 43, null probability 0.83 
X-squared = 38.0295, df = 1, p-value = 6.968e-10 

 

 

6.8 Experiment 3 – AMF 

6.8.1 ANOVA results showing the effect of single and mixed AMF treatment on 6 

cultivars of white clover 

Source DF SS MS F P 

Cultivar 5 0.00126 2.519x10-4 1.886 0.101 

Treatment 5 4.030x10-4 8.058x10-5 0.603 0.698 

Cultivar x Treatment 25 0.00335 1.338x10-4 1.002 0.470 

Residuals 135 0.0180 1.336x10-4   
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7 Appendices for Chapter 3 

 

7.1 Soil test report 
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7.2 Experiment 4 ANOVA 

7.2.1 ANOVA result showing the effect of white clover cultivar on DW for plants  

grown in soil  

Source DF SS MS F P 

Treatment 5 121774 24355 1.075 0.386 

Residual 48 1087229 22651   

 

7.2.2 ANOVA result showing the effect of white clover cultivar on DW for plants 

grown in soil 

Source DF SS MS F P 

Treatment 5 63658 12732 0.122 0.987 

Residual 45 4701804 104485   

 

 

7.2.3 Barcoded HPLC purified primers used for Illumina sequencing of 16S rRNA  

Type (barcode + 

linker + 

direction) 

Code 

Primers (5'-3') (Barcode+linker+Primer) 

2 + F341 2F CGATGTGACCTAYGGGRBGCASCAG 

5 + F341 5F ACAGTGGACCTAYGGGRBGCASCAG 

17 + F341 17F GTAGAGGACCTAYGGGRBGCASCAG 

36 + F341 36F CCAACAGACCTAYGGGRBGCASCAG 

38 + F341 38F CTAGCTGACCTAYGGGRBGCASCAG 

44 + F341 

 

44F TATAATGACCTAYGGGRBGCASCAG 

 

14 + R806 14R AGTTCCGTGGACTACNNGGGTATCTAAT 

26 + R806 26R ATGAGCGTGGACTACNNGGGTATCTAAT 

37 + R806 37R CGGAATGTGGACTACNNGGGTATCTAAT 

1 + R806 1R ATCACGGTGGACTACNNGGGTATCTAAT 
11 + R806 11R GGCTACGTGGACTACNNGGGTATCTAAT 
3 + R806 2R TTAGGCGTGGACTACNNGGGTATCTAAT 
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7.2.4 List of white clover root and rhizosphere samples and barcode combination used 

  

 

Cultivar Location  Replicate 

Forward  

Barcode 

Reverse 

barcode 

Qubit 

reading  

(ng/ml) 

Huia Root 1 2F 1R 189 

Huia Root 2 2F 3R 148 

Huia Root 3 2F 11R 86.1 

Tribute Root 1 2F 14R 119 

Tribute Root 2 2F 26R 0 

Tribute Root 3 2F 37R 186 

Irrigation Root 1 3F 1R 257 

Irrigation Root 2 3F 3R 186 

Irrigation Root 3 3F 11R 242 

Crusader Root 1 3F 14R 335 

Crusader Root 2 3F 26R 154 

Crusader Root 3 3F 37R 183 

Louisiana Root 1 17F 1R 67.5 

Louisiana Root 2 17F 3R 167 

Louisiana Root 3 17F 11R 115 

Kopu II Root 1 17F 14R 54 

Kopu II Root 2 17F 26R 160 

Kopu II Root 3 17F 37R 13.5 

Huia Rhizosphere 1 36F 1R 58.3 

Huia Rhizosphere 2 36F 3R 33 

Huia Rhizosphere 3 36F 11R 24.3 

Tribute Rhizosphere 1 36F 14R 52.7 

Tribute Rhizosphere 2 36F 26R 75.7 
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Tribute Rhizosphere 3 36F 37R 62.8 

Irrigation Rhizosphere 1 38F 1R 143 

Irrigation Rhizosphere 2 38F 3R 93.4 

Irrigation Rhizosphere 3 38F 11R 97 

Crusader Rhizosphere 1 38F 14R 166 

Crusader Rhizosphere 2 38F 26R 154 

Crusader Rhizosphere 3 38F 37R 116 

Louisiana Rhizosphere 1 44F 1R 110 

Louisiana Rhizosphere 2 44F 3R 137 

Louisiana Rhizosphere 3 44F 11R 91.8 

Kopu II Rhizosphere 1 44F 14R 73.7 

Kopu II Rhizosphere 2 44F 26R 124 

Kopu II Rhizosphere 3 44F 37R 93.1 

 

 

7.2.5 Script for NGS analysis 

!/bin/bash 
# join pair end read 
/home/laugrauda/FLASH-1.2.11/./flash Tube_2_Bac_1.clean.fq.gz 
Tube_2_Bac_2.clean.fq.gz 2>&1 | tee flash.log 
# demultiplex 
flexbar -b ../barcodeF.txt -r out.extendedFrags.fastq -bo 6 -bu -be LEFT_TAIL -t F --threads 
12 -o > forward.flexbarout 
for i in F_barcode*.fasta 
do 
#assign barcodes  
flexbar -b ../barcodeR.txt -r $i -bo 6 -bu -be RIGHT_TAIL -t $i --threads 10 -o > 
R.$i.flexbarout 
done 
  
cat F_barcode_2.fasta_barcode_1Reversed.fasta 
F_barcode_1.fasta_barcode_2Reversed.fasta > HuiaS1.fasta 
cat F_barcode_2.fasta_barcode_3Reversed.fasta 
F_barcode_3.fasta_barcode_2Reversed.fasta > HuiaS2.fasta 
cat F_barcode_2.fasta_barcode_11Reversed.fasta 
F_barcode_11.fasta_barcode_2Reversed.fasta > HuiaS3.fasta 
cat F_barcode_2.fasta_barcode_14Reversed.fasta 
F_barcode_14.fasta_barcode_2Reversed.fasta > TributeS1.fasta 
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cat F_barcode_2.fasta_barcode_26Reversed.fasta 
F_barcode_26.fasta_barcode_2Reversed.fasta > TributeS2.fasta 
cat F_barcode_2.fasta_barcode_37Reversed.fasta 
F_barcode_37.fasta_barcode_2Reversed.fasta > TributeS3.fasta 
cat F_barcode_5.fasta_barcode_1Reversed.fasta 
F_barcode_1.fasta_barcode_5Reversed.fasta > IrrigationS1.fasta 
cat F_barcode_5.fasta_barcode_3Reversed.fasta 
F_barcode_3.fasta_barcode_5Reversed.fasta > IrrigationS2.fasta 
cat F_barcode_5.fasta_barcode_11Reversed.fasta 
F_barcode_11.fasta_barcode_5Reversed.fasta > IrrigationS3.fasta 
cat F_barcode_5.fasta_barcode_14Reversed.fasta 
F_barcode_14.fasta_barcode_5Reversed.fasta > CrusaderS1.fasta 
cat F_barcode_5.fasta_barcode_26Reversed.fasta 
F_barcode_26.fasta_barcode_5Reversed.fasta > CrusaderS2.fasta 
cat F_barcode_5.fasta_barcode_37Reversed.fasta 
F_barcode_37.fasta_barcode_5Reversed.fasta > CrusaderS3.fasta 
cat F_barcode_17.fasta_barcode_1Reversed.fasta 
F_barcode_1.fasta_barcode_17Reversed.fasta > LousianaS1.fasta 
cat F_barcode_17.fasta_barcode_3Reversed.fasta 
F_barcode_3.fasta_barcode_17Reversed.fasta > LousianaS2.fasta 
cat F_barcode_17.fasta_barcode_11Reversed.fasta 
F_barcode_11.fasta_barcode_17Reversed.fasta > LousianaS3.fasta 
cat F_barcode_17.fasta_barcode_14Reversed.fasta 
F_barcode_14.fasta_barcode_17Reversed.fasta > Kopu2S1.fasta 
cat F_barcode_17.fasta_barcode_26Reversed.fasta 
F_barcode_26.fasta_barcode_17Reversed.fasta > Kopu2S2.fasta 
cat F_barcode_17.fasta_barcode_37Reversed.fasta 
F_barcode_37.fasta_barcode_17Reversed.fasta > Kopu2S3.fasta 
cat F_barcode_36.fasta_barcode_1Reversed.fasta 
F_barcode_1.fasta_barcode_36Reversed.fasta > HuiaR1.fasta 
cat F_barcode_36.fasta_barcode_3Reversed.fasta 
F_barcode_3.fasta_barcode_36Reversed.fasta > HuiaR2.fasta 
cat F_barcode_36.fasta_barcode_11Reversed.fasta 
F_barcode_11.fasta_barcode_36Reversed.fasta > HuiaR3.fasta 
cat F_barcode_36.fasta_barcode_14Reversed.fasta 
F_barcode_14.fasta_barcode_36Reversed.fasta > TributeR1.fasta 
cat F_barcode_36.fasta_barcode_26Reversed.fasta 
F_barcode_26.fasta_barcode_36Reversed.fasta > TributeR2.fasta 
cat F_barcode_36.fasta_barcode_37Reversed.fasta 
F_barcode_37.fasta_barcode_36Reversed.fasta > TributeR3.fasta 
cat F_barcode_38.fasta_barcode_1Reversed.fasta 
F_barcode_1.fasta_barcode_38Reversed.fasta > IrrigationR1.fasta 
cat F_barcode_38.fasta_barcode_3Reversed.fasta 
F_barcode_3.fasta_barcode_38Reversed.fasta > IrrigationR2.fasta 
cat F_barcode_38.fasta_barcode_11Reversed.fasta 
F_barcode_11.fasta_barcode_38Reversed.fasta > IrrigationR3.fasta 
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cat F_barcode_38.fasta_barcode_14Reversed.fasta 
F_barcode_14.fasta_barcode_38Reversed.fasta > CrusaderR1.fasta 
cat F_barcode_38.fasta_barcode_26Reversed.fasta 
F_barcode_26.fasta_barcode_38Reversed.fasta > CrusaderR2.fasta 
cat F_barcode_38.fasta_barcode_37Reversed.fasta 
F_barcode_37.fasta_barcode_38Reversed.fasta > CrusaderR3.fasta 
cat F_barcode_44.fasta_barcode_1Reversed.fasta 
F_barcode_1.fasta_barcode_44Reversed.fasta > LousianaR1.fasta 
cat F_barcode_44.fasta_barcode_3Reversed.fasta 
F_barcode_3.fasta_barcode_44Reversed.fasta > LousianaR2.fasta 
cat F_barcode_44.fasta_barcode_11Reversed.fasta 
F_barcode_11.fasta_barcode_44Reversed.fasta > LousianaR3.fasta 
cat F_barcode_44.fasta_barcode_14Reversed.fasta 
F_barcode_14.fasta_barcode_44Reversed.fasta > Kopu2R1.fasta 
cat F_barcode_44.fasta_barcode_26Reversed.fasta 
F_barcode_26.fasta_barcode_44Reversed.fasta > Kopu2R2.fasta 
cat F_barcode_44.fasta_barcode_37Reversed.fasta 
F_barcode_37.fasta_barcode_44Reversed.fasta > Kopu2R3.fasta 
#qiime workflow 
#rename sequence and concatenate file 
for i in *[RS][1-3].fasta 
do 
perl /dataset/Wakelin_burkholderia/archive/john/data_release/raw_data/parse.pl $i 
qiimeInput.fasta 
done 
 
 #Processing steps through to OTU table  
pick_de_novo_otus.py -i qiimeInput.fasta -o otus 
  
#remove OUT belonged to chloroplast, mitochondria, and unassigned 
filter_taxa_from_otu_table.py -i out_table.biom -o filtered_otu.biom -n  
c__Chloroplast,f__mitochondria,p__unassigned 
 
#filter OUT’s with <10 reads 
./usearch -otutab_trim filtered_otu.txt -min_otu_size 10 -output trimmed.txt 
 
#Run alpha diversity analysis 
./usearch -alpha_div trimmed.txt -output alpha.txt 
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7.2.6 Fungal 18S Illumina sequencing 

A library of the fungal internally transcribed spacer 2 (ITS2) was constructed utilizing the 

fITS7 as  forward (5′-GTGARTCATCGAATCTTTG-3′), and ITS4 as reverse (5′-

TCCTCCGCTTATTGATATGC-3′) primers which annealed to the 5·8S and LSU rRNA genes, 

respectively (Gweon et al., 2015). These primers had been extended to include a unique 

barcode and Illumina cell flow adaptors. The following PCR conditions were used: initial 

denaturation of 30 s at 95  ͦC, followed by 30 cycles of 30 s at 95  ͦC, 30 s at 52  ͦC and 2 min 

at 72  Cͦ with a final extension of 10 min at 72  Cͦ. 

Although these samples passed the quality control at the sequencing facility, it generated 

a very small amount of poor data which was not used for further analysis or included in 

this thesis. 
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7.2.7 DGGE gel of AMF communities 

 

 

 

Lanes from left to right: Huia 1, Huia 2, Huia 3, Tribute 1, Tribute 2, Tribute 3, Irrigation 1, 

Irrigation 2, Irrigation 3, Crusader 1, Crusader 2, Crusader 3, Louisiana 1, Louisiana 2, Louisiana 3, 

Kopu 1, Kopu 2, Kopu 3. 
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7.3 Experiment 5 ANOVA 

7.3.1 ANOVA result showing the effect of rhizobia strains isolated from cultivars Huia 

and Tribute on DW of both cultivars 

Source DF SS MS F P 

Cultivar 1 231.48 231.48 15.72 <0.001 

Treatment 11 1088.89 98.99 6.72 <0.001 

Cultivar x Treatment 11 225.62 20.51 1.39 0.179 

Residuals 190 2797.30 14.72   

 
 

7.3.2 ANOVA result showing the effect of rhizobia strains isolated from cultivars Huia 

and Tribute on DW of Huia 

 

Source DF SS MS F P 

Treatment 11 851.46 77.41 5.20 <0.001 

Residual 77 1147.27 14.90   

Total 102 1772.26    
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7.3.3 ANOVA result showing the effect of rhizobia strains isolated from cultivars Huia 

and Tribute on DW of Tribute 

 

Source DF SS MS F P 

Treatment 11 615.82 55.98 3.99 <0.001 

Residual 99 1389.18 14.03   

Total 124 2098.38    

 

 

 

 

 

 

 




