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ABSTRACT 

Atmospheric CO2 concentration is increasing at c. 0.5% i', predominantly as the consequence 

of fossil fuel combustion and deforestation. By the end of the 21st century, based on current 

emission rates, the atmospheric CO2 concentration will reach c. 500 Ilmol mor'. Many studies 

have.shown that total plant productivity is enhanced at elevated CO2 concentration and there is 

some evidence to suggest that allocation below-ground is also increased. However, the effects 

this may have on the below-ground carbon fluxes is poorly understood. This thesis investigated 

the effects of Pinus radiata growth at elevated CO2 concentration on the seasonal below-ground 

carbon balance for young Pinus radiata trees in the first two years after planting. 

The study was conducted at the Forest Ecosystems Elevated CO2 Project facility at Bromley, 

Christchurch. Genetically identical Pinus radiata D. Don trees were grown at ambient 

(350 Ilmol mor') and elevated (650 Ilmol mor') CO2 concentration in large open top chambers. 

Bi-weekly fine root measurements were made to investigate firstly whether tree growth at 

elevated CO2 concentration incre~sed carbon allocation below-ground, secondly to determine 

whether the seasonality of the rates of fine root production and loss changed, and thirdly to 

determine whether the fine root distribution was modified. Root measurements were made from 

minirhizotrons placed horizontally at four depths in the soil. A linear relationship was 

determined between root numbers observed from minirhizotrons and root length density and 

root carbon density in the soil. 

Estimates of the seasonal change in carbon flux from the soil surface for tree plots were 

made to determine if the rate of carbon loss from the tree root systems increased at elevated 

CO2 concentration, and whether this could be attributed to increases in the rate of fine root 

growth. A model describinKthe relationship between carbon flux density (j) at the soil surface 

with distance from the tree stems was used to estimate the annual carbon flux from the trees on 

a unit ground area basis. Carbon flux density was measured monthly using a chamber placed on 

the soil surface at 0.35 m from the stem which was attached to a gas analyser and, was 

estimated at the stem from soil CO2 concentratrQ;1s at four depths using a one-dimensional gas 

diffusion model. 

More carbon was allocated to root production for trees growing at elevated CO2 

concentration. After two years, 36% more roots had been produced at elevated CO2 

concentration than at ambient CO2 concentration, although the difference was not significant. In 

the first year, fine root « 1 mm diameter) production at a depth of 0.3 m was observed to occur 

six weeks earlier than for trees at elevated CO2 concentration. However, the same difference 

did .notrecur at the beginning of the second growth season. Seasonal changes of root production 
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were largely explained by changes in soil temperature. Root loss only occurred after one year 

from when the trees were planted and total root loss after two years tended to be greater at 

elevated (14%) than at ambient (9%) CO2 concentration. The life span of fine roots was 

significantly reduced at elevated CO2 concentration and half-lives for roots were estimated to 

be 951 d at ambient and 333 d at elevated CO2 concentration. Root longevity was also a 

function of the time in the season when the roots first appeared. Horizontal and vertical fine 

root distribution tended to differ between the two treatments. Relatively more fine roots were 

concentrated closeto~the $tem for trees growing"at elevated than those at ambient CO2 . 

concentration. In addition, relatively more fine roots occurred deeper in the soil profile for trees 

growing at elevated than for those at ambient CO2 concentration. 

Carbon loss from the root systems of trees growing at elevated CO2 concentration, measured 

as CO2 flux from the soil surface, tended to be higher than that for trees at ambient CO2 

concentration. For the second year of growth, the estimated annual total flux from the tree plots 

was 13% higher in the elevated treatment (1895 g it) than in the ambient (1671 g it) CO2 

treatment. The higher carbon fluxes at elevated CO2 concentration were largely explained by 

increased fine root production. There were strong positive relationships between measurements 

of/and root production, and/and stem growth. Daily changes in/were strongly and positively 

related to temperature. The seasonal change of/was a function of soil temperature and changes 

in root biomass carbon. Both/and root production declined exponentially with distance from 

the stem. These results are relevant when developing sampling procedures to estimate tree or 

plot carbon fluxes. 

This study has shown that there was an increase in below-ground carbon allocation for 

young Pinus radiata trees growing at elevated CO2 concentration and, as a consequence of this, 

carbon efflux from the soil increased. However, long-term studies of trees growing at elevated 

CO2 concentration are needed to determine whether these changes will affect long-term carbon 

balance and lead to increases in soil carbon storage. 
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CHAPTER 1 

INTRODUCTION 

Since 1800, atmospheric carbon dioxide (C02) concentration has increased by c. 30%, largely 

due to combustion of fossil fuels and deforestation, and the concentration is presently 

increasing at a rate of 0.5% i I (Houghton et al. 1996; Melillo et al. 1996). By the end of the 

21st Century, the projected atmospheric CO2 concentration will be c. 500 /lmol mor l
, based on 

the continuation of 1994 emission rates (Houghton et ai. 1996). One response to this increase is 

the so-called "C02 fertilisation effect" on plant growth which may partly explain the global 

carbon imbalance or "missing sink" of 1.6 x 1Q15g i l (King et al. 1997; Wullschleger et al. 

1995). 

Awide range of responses have been recorded for plant species growing at elevated CO2 

concentration. In most cases total biomass was increased, both above- and below-ground, but 

with highly variable responses of rootshoot ratios (Ceulemans & Mousseau 1994; Idso & Idso 

. 1994; Rogers et al. 1996). It has been argued that these changes in allocation pattern are often a 

response to other indirect environmental effects (Eamus & Jarvis 1989; Stulen & den Hertog 

1993). Plant responses at elevated CO2 concentration may be subject to a range of positive or 

negative environmental feedbacks. At the ecosystem level, responses are more complex because 

of the likelihood of multiple, potentially contrasting, interactive feedbacks on plant growth 

(Berntson & Bazzaz 1996b). 

The major components of an ecosystem carbon balance are illustrated in Figure 1-1. 

Photosynthetic responses to elevated CO2 concentration have been well studied (eg. Gunderson 

& Wullschleger 1994; Tissue et ai. 1997). Increased carbon uptake from the atmosphere is 

likely to occur resulting from stimulation of photosynthesis at elevated CO2 concentration. 

However, plants may also acclimate to the increased CO2 concentration and a number of studies 

indicate that photosynthetic "down-regulation" occurs (Amthor 1995; Mooney et al. 1997). 

Approximately 50% of carbon fixed from the atmosphere by photosynthesis is respired; the 

remainder is available for growth, propagation, nutrient acquisition and litter production (Ryan 

1991). Increased below-ground carbon allocation of plants growing at elevated CO2 

concentration is likely to stimulate carbon losses from root and heterotrophic (microbial and 

mycorrhizal) respiration (Lambers et al. 1996). Whilst there is growing recognition of the 

importance of below-ground responses to increasing atmospheric CO2 concentration, there is 

however a lack of quantification and understanding of controls of the below-ground carbon 

fluxes between pools, a salient point that has been noted by a number of authors (eg. Canadell 

et at. 1996; Curtis et at. 1994a; Koch & Mooney 1996; Norby 1994; Tate & Ross 1997; van de 

Geijn & van Veen 1993; van Veen et at. 1991). Integrative studies that determine the changes 
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to carbon fluxes and pools, and the nature of feedbacks between plant and soil at changing 

atmospheric CO2 concentration, are crucial to predicting ecosystem responses to elevated CO2 

concentrations (Norby 1994). 

Solar 
radiation 

Soil 
swface 
effiux 

Respiration 
(root, myconbi7al, 
microbial) 

r-·---· __ ·_· __ ·_ .... _·--1 
! I I . 
I I 

i C-storage I 
1 ___ . ___ . __ ._. __ . ___ .J 

Figure 1-1 Schematic diagram of the major forest carbon balance components. 
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Soils are the most important terrestrial carbon sink for the storage of carbon sequestered 

from the atmosphere. The estimated global soil carbon pool is c. 1400 to 1500 x 1015g and 

accounts for approximately three-quarters of terrestrial carbon (Schlesinger 1991; 1995). 

Therefore, changes to below-ground carbon allocation and cycling are likely to have significant 

effects on the carbon balance for terrestrial ecosystems. Improved understanding of the soil 

carbon fluxes will allow better model predictions of ecosystem and global carbon budgets. 

Several studies at elevated CO2 concentration have shown that carbon allocation below­

ground is increased (eg.Gorissen 1996; Norby et al. 1987i Schapendonk et at. 1997). Some 

studies have suggested that the increased carbon allocation to the soil and reduced rates of 

decomposition of plant material at elevated CO2 concentration are likely to lead to increased 

ecosystem carbon storage (van Ginkel et al. 1997). Other studies indicate that the rate of 

decomposition is not always reduced at elevated CO2 concentration, and that whilst green 

leaves tend to have greater C:N ratios, senescent litter is often of the same quality as that for 

litter produced by plants growing at ambient CO2 concentration (Franck et aL. 1997; Hirschel et 

al. 1997). Other evidence indicates that the rate of carbon cycling of some plant components 

may be increased. This is likely to limit the increase in soil carbon storage (Komer & Arnone 

1992; Ross et aL. 1996). Detection of changes in soil ecosystem carbon storage is only likely to 

occur in the long-term or with experimental designs that are statistically more powerful, as the 

carbon pools in most soils are much larger than likely changes due to increases in below-ground 

carbon allocation at elevated CO2 concentration (Hungate et aL. 1996). 

A range of plant-mediated changes to soil carbon fluxes have been measured at elevated 

CO2 concentration. These include increases in root respiration (Lambers et aL. 1996), root 

turnover (Berntson & Bazzaz 1997; Fitter et aL. 1996; Pregitzer et aL. 1995), carbon exudation 

from roots (Norby et al. 1987; Rouhier et al. 1996) and mycorrhizal infection (O'Neill et aL. 

1987; Rygiewicz et aL. 1997). Indirect effects of the increase in below-ground carbon allocation 

include increased microbial biomass (Runion et aL. 1994; Zak et aL. 1996) and soil respiration 

(Luo et al. 1996; Ross et al. 1995). 

Prediction of ecosystem responses to enhanced CO2 concentration will require improved 

mechanistic understanding of the positive and negative feedbacks that occur between soil and 

plants (Berntson & Bazzaz 1996b). Most ecosystem studies at elevated CO2 concentration have 

been conducted with short-lived and short-statured vegetation and young trees (Mooney et aL. 

1997). Most of the experiments studying tree responses have been conducted with seedlings for 

one growing season or less (Ceulemans & Mousseau 1994). 

Forests are a major component of the terrestrial biome. It is estimated that they account for 

up to 80% of-the terrestrial above-ground carbon pool and c. 40% of the below-ground carbon 

pool (Dixon et aL. 1994). Within the forest ecosystems higher than two-thirds of the carbon is 

below-ground (Dixon et aL. 1994). Carbon in forest soils tends to have long residence times, 
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particularly for sites at high latitudes. Forest soil carbon sinks have the potential to increase if 

more carbon is allocated below-ground (Bird eta!' 1996). In New Zealand, forests cover 

c. 8 x 106 ha, equivalent to 30% of the total land area. The main commercial forestry species, 

Pinus radiata, occupies c. 1.5 x 106 ha of this forest area (April 1996), accounting for 91 % of 

the plantation forest estate (New Zealand Forest Owners Association 1997). Therefore, in 

addition to its commercial importance for New Zealand, this forest ecosystem is also a major 

carbon sink (Hollinger et al. 1993). 

Nature and scope of the thesis 

This study contributes to the Forest Ecosystems Elevated CO2 project at Bromley, 

Christchurch. Large open-top chambers, the same as those described by Heagle (1989), are 

being used in a long4erminvestigation of the effects of elevated CO2 concentration on the 

growth of clonal Pinus radiata D. Don trees (Whitehead et a!. 1995). Tissue culture 

propagatiuu techniques were used to produce clonal plantlets (Davies et a!. 1992) to remove the 

effects of genetic variability in this study. Trees were propagated, and subsequently grew, at 

ambient (350 /lmol mor l
) and elevated CO2 concentration (650 /lmol mor l

). The Forest 

Ecosystems Elevated CO2 project (Project 1105) contributes to the Core Research Programme 

for the GCTE (Global Change and Terrestrial Ecosystems) component of the IGBP 

(International Geosphere-Biosphere Programme). 

The primary objective of this thesis was to investigate the seasonal below-ground carbon 

fluxes from clonal Pinus radiata D. Don trees growing at ambient and elevated CO2 

concentrations. The carbon fluxes investigated were fine root carbon production and loss, and 

the CO2-C (carbon) efflux measured at the soil surface. This flux, often referred to as soil 

respiration, is the sum of root and heterotrophic respiration. 

To measure the carbon fluxes of individual trees growing in open-top chambers at ambient it 

was important to exclude soil carbon inputs from sources not related to the study trees. This 

was achieved by isolating the root systems of the trees to a depth of 1.2 m by sheets buried in 

the soil before trees were planted and by growing trees in a soil with very low carbon 

concentration. 

Fine root production, loss and longevity were measured using video recordings made from 

minirhizotrons (Upchurch & Ritchie 1983) buried beneath individual trees. Minirhizotron root 

observations were converted to root length and root carbon densities with destructive soil-root 

measurements made adjacent to additional minirhizotrons. Soil surface carbon fluxes were 

measured with a soil respiration chamber and infrared gas analyser, and estimated using a gas­

diffusion model, with soil CO2 concentration measurements sampled from chambers buried 

beneath the tree. 
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A longer tenn goal, which the findings of this thesis will contribute to, is the modelling of 

whole-tree carbon balances growing at ambient and elevated CO2 concentrations. 

Objectives and thesis organisation 

The structure of the research in the thesis is shown in Figure 1-2. The objectives of the thesis 

are described below with the appropriate chapters which address them. 

1. Detennine a suitable methodology for investigating the effects of tree growth at elevated 

CO2 concentration in terms of carbon for: (i) fine root production and loss, and (ii) the soil 

surface carbon flux density. 

Chapter 2: Seasonal root distribution and soil surface carbon fluxes for one-year­

old Pinus radiata trees growing at ambient and elevated carbon dioxide 

concentration 

2-. -To investigate the-effects of tree growth at elevated CO2 concentration on seasonal fine root 

carbon dynamics and distribution. 

Chapter 2: As above 

Chapter 3: Growth, loss, and vertical distribution of Pinus radiata fine roots 

growing at ambient and elevated CO2 concentration 

3. To detennine the effects of tree growth at elevated CO2 concentration on the seasonal 

changes in carbon flux from the soil, and CO2 concentrations in the soil. 

-- Chapter 2: As above 

Chapter 4: Seasonal and radial CO2 fluxes from root-soil systems of young Pinus 

radiata trees growing at ambient and elevated CO2 concentration 

4. To investigate the effects of fine root distribution on the carbon flux from the soil. 

Chapter 4: As above 

To address objectives 3 and 4 a model of CO2 gas diffusion (Cook et at. 1997) was used and is 

included as an Appendix. Chapter 5 is a synthesis of the results. 
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Chapter 1 
Introduction 

Chapter 2 
Seasonal fine root 

distribution and soil surface 
carbon efflux for 
one-year-old trees 

Appendix 
One-dimensional 

gas diffusion 
model 

Chapter 4 
Seasonal and radial soil 

surface carbon efflux from 
tree-soil system 

Chapter 5 
Summary and Synthesis 

Figure 1-2 Flow diagram of thesis layout 
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CHAPTER 2 

SEASONAL ROOT DISTRIBUTION AND SOIL SURFACE CARBON FLUXES 
FOR ONE-YEAR-OLD PINUS RADIATA TREES GROWING AT AMBIENT 

AND ELEVATED CARBON DIOXIDE CONCENTRATION t 

STEPHENM. THOMAS', DAVID WHITEHEAD2
•
3

, JOHN A. ADAMS I
, JEFFB. REID4

, 

ROBERT R. SHERLOCK I and ALAN C. LECKIE2 

'Department of Soil Science, Lincoln University, PO Box 84, Lincoln University PO, Canterbury, New 
Zealand, 2New Zealand Forest Research Institute, University of Canterbury, Private Bag 4800, 
Christchurch, New Zealand, Landcare Research, PO Box 69, Lincoln 8152, New Zealand, 4New Zealand 
Institute for Crop & Food Research Ltd., PO Box 85, Hastings, New Zealand 

Summary 

The increase in numbers of fine «0.5 mm diameter) roots for one-year-old clonal Pinus radiata D. Don 

trees grown at ambient (362 /lmol mor l
) and elevated (654 /lmol mor') CO2 concentrations were 

. estimated using ·minirhizotron tubes placed horizontally at a depth of 0.3 m. The trees were grown in large 

open-top field chambers and were well supplied with water and nutrients. Destructive harvesting of [(.Jots 

along an additional tube showed that there was a linear relationship between root number estimated from 

the minirhizotron and root length density, L." and root carbon density, Cy in the surrounding soil. 

Root distribution decreased with horizontal distance from the tree. At a depth of 0.3 m, 88 % of the 

total Cy was concentrated in a radius of 0.15 m from the stem of trees growing at elevated CO2 

concentration, compared with 35 % for the trees growing in ambient conditions. Mean Cy along the tubes 

ranged up to 5 X 10-2 /lg mm-3 and tended to be greater for trees grown at elevated CO2 concentration, 

although the differences were not significant. Root growth started in spring and continued until late 

. summer. There was no significant difference in the seasonal rates of increase in Cy between the treatments, 

but roots were observed four weeks earlier for trees growing at elevated CO2 concentration. No root 

turnover occurred at this depth during the first year after the trees were planted. 

Mean values of carbon flux density at the soil surface,fm increased from 0.02 to 0.13 g m-2 h-' during 

the year andfo was 30 % greater for trees grown at-elevated CO2 concentration. Diurnal changes info were 

related to air temperature. The seasonal increase info continued through the summer and into early 

autumn, well after temperature had begun to decline, suggesting that this increase was partly attributable 

to the increase in Cv as the roots colonised the soil profile. 

Keywords: Pinus radiata D. Don, root length, minirhizotron. carbon flux, elevated CO2 concentration 

t Published in Tree Physiology, 16,1015-1021,1996. 
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Introduction 

Many short-term studies have shown that trees respond to a doubling of atmospheric CO2 

concentration with an increase in biomass (eg. Idso & Idso 1994), but the long- term effects of 

global change on carbon uptake and storage by forest ecosystems are less certain. In particular, 

it is difficult to predict changes in turnover and storage of carbon in the roots, and losses of 

below-ground carbon by respiration and leaching (Melillo et aL. 1993). For further progress, it 

is important to quantify the allocation of carbon below-ground in relation to above-ground 

carbon assimilation and the regulation of these processes by environmental variables. 

Fine root annual net primary production in conifers can exceed the values for foliage in 

developing stands (Gower et aL. 1994) and there are marked seasonal changes (Santantonio & 

Grace 1987). The use of minirhizotron tubes offers a non-destructive technique that is used 

widely to estimate seasonal changes in the numbers ofroots (Brown & Upchurch 1987), 

although there are important, unresolved issues related to scaling from images of roots observed 

within a small volume of soil surro""ding the tube, to the distribution of roots in the bulk soil 

(Reid & Bowden 1995). To convert root numbers measured from minirhizotron tubes into root 

length density, 4, and root carbon density, Cv, requires destructive harvesting of roots in the 

soil next to the tubes. 

The loss of soil carbon by roots and soil organisms, or respiration, measured as the CO2 flux 

density at the soil surface,fo, is positively related to temperature (Lloyd & Taylor 1994) but 

also depends on the root density (Haynes & Gower 1995). Increases info have been measured in 

response to trees grown at elevated CO2 concentration (eg. Johnson et al. 1994) resulting from 

enhanced root activity. 

The objective of this-study-was to determine differences in the seasonal changes in 4, Cvand 

fo for Pinus radiata D. Don trees growing at ambient (362 mmol mor l
) and elevated 

(654 mmol mor l
) CO2 concentration in open-top chambers during the first year of growth. 

Materials and methods 

Site description 

Measurements were made on trees growing in eight large open-top chambers at Christchurch, 

New Zealand (latitude 43°32'S, longitude 172°42'E, elevation above sea Ie-vel 9 m). The flat site 

was on recently stabilised, weakly developed Kairaki dune sand, which was free to rapidly 

draining (New Zealand Soil Bureau 1974). When the trees were established the concentrations 
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of soil total carbon and nitrogen were 0.11 and 0.01 %, respectively. Mean annual temperature 

was 12.2 °C,witha mean daily range of 3.5 °e, and mean annual rainfall was 616 mm. 

The design of the open-top chambers was identical to that described by Heagle et aL. (1989). 

Each chamber was 4.7 m in diameter and 4.3 m in height. Air was supplied to the chambers by 

large fans, providing about two air exchanges per minute. This was sufficient to maintain the 

temperature and humidity within the chambers close to ambient conditions (Whitehead et al. 

1995). In four of the chambers the CO2 concentration was elevated by introducing a supply into 

perforated tubes situated behind the fan. Air temperature, air saturation deficit and CO2 

concentration were measured continuously in all chambers using an automatic sampling system 

described by Whitehead et aL. (1995). Mean (± standard error) CO2 concentrations were 

362 ± 37 and 654 ± 69 Ilmol mor l for the ambient and elevated treatments, respectively. 

Two rigid, plastic sheets radiating from the centre to the edge of each chamber were dug into 

the soil to a depth of 1.2 m. This provided an area equal to one sixth of the total chamber and 

isolated the root systems of the measurement trees from those of other trees in the chambers. 

The minirhizotron tubes were installed before planting with access to the tubes provided by 

lined pits dug external to the chambers. 

Pinus radiata was propagated by tissue culture methods (Davies et al. 1992) from a single 

bud taken from a four-year-old tree. This provided a genetically identical tree in each chamber. 

The tree material was propagated, rooted and grown at ambient or elevated CO2 concentration 

in controlled environment facilities to ensure that it was fully acclimated to the treatment. The 

trees were planted in the open-top chambers in autumn (April) 1994. The roots were inoculated 

with mycorrhizae by including litter from an adjacent forest plantation with the roots. Irrigation 

was supplied each night to maintain well~watered conditions throughout the year. A balanced 

fertiliser (Osmocote Plus, Grace Sierra International, The Netherlands) was applied to the soil 

surface at three monthly intervals to supply nitrogen to the trees at a rate equivalent to 

15 g m-2 il. Measurements were made during the year following planting. Half-hourly 

measurements of air temperature at 1.5 m above ground-level and solar irradiance were made 

continuously. 

Stem basaL area 

Stem basal areas of the eight trees were measured every 2 weeks from winter (August) until late 

summer (February). A further set of measurements was made in the following autumn (April). 

_ Measurements were taken ata height of 0.01 m above the soil surface. 
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Numbers of roots 

Before the trees were planted, a 1.8 m long acrylic minirhizotron tube with internal and external 

diameters of 34 and 38 mm, respectively, was installed horizontally at a depth of 0.3 m below 

the ground surface between the centre and the edge of each of the eight chambers. The depth 

was chosen because up to 90 % of the total fine roots occur within this zone in Pinus radiata 

plantations (Nambiar 1983). Two parallel transect lines 20 mm apart were etched on to the 

outside surface_ along thelength of each tube and lines at 20 mm intervals were etched 

perpendicular to the long axis of the tube. This provided reference for distances along the tubes. 

The tubes were installed with the etched lines facing the soil surface. The trees were planted 

directly above the centre position of the tubes. 

Images of the soil and roots, including the etched lines, were viewed by passing a miniature 

colour CCD camera and wide-angle lens (Models Panasonic WV -KS 152 and GP-LM7R5TA, 

Matsushita Ltd., Osaka) along the tubes. Illumination was provided by four incandescent lights. 

Images were reflected bya mirror mounted at an angle of 45 0 in front of the camera lens and 

these were recorded on to high resolution video tape using a video camera recorder (Model 

TR705E, Sony Corporation, Tokyo). 

The images were captured by a computer (Model Power PC 7100 80AV) using a built-in 

digiti sing card and up to four images from different periods at the same location were displayed 

on the computer monitor. This allowed subtle changes in the characteristics of individual roots 

to be recorded. The numbers of root intersections were counted manually directly from the 

video images displayed on a second monitor. For each 20 mm section, the position, numbers of 

roots intersecting the parallel lines along the length of the tubes, the colour and diameter size 

class «0.5, 0.5-1,1-2,2-3 and 3-4 mm) were recorded. 

Estimation of root length density and root carbon density 

Measurements for conversion of numbers of roots into Lv (root length per unit volume of soil) 

and Cv (root carbon mass per unit volume of soil) were made using an additional minirhizotron 

tube placed under a tree outside the chambers. The tree was provided with the same fertiliser 

and irrigation treatments as the trees inside the chambers. The images of roots along this tube 

were recorded in early winter (May) at the end of the first year and the data were analysed as 

described above. The tree was cut down at the soil surface and the soil was removed to the 

depth of the top of the minirhizotron tube. Immediately adjacent to the tube, cores (100 mm 

long, 75 mmwide and 40 mm deep) were removed from either side using a metal box. The 

cores were positioned at 100 mm intervals along the tubes for direct comparison of Lv with data 

from the images. Each pair of cores from the two sides of the tube were bulked and kept frozen. 
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Roots from the cores were separated by hand-washing the soil on to an 0.5 mm sieve. The 

- roots were sorted by diameter class (as above) and root lengths for each class were measured on 

a grid using the line-intersect method (Tennant 1975). The roots were dried at 70 DC to a 

constant mass, then finely ground and analysed for total carbon concentration (Model Roboprep 

CN analyser, Europa Scientific, Cheshire, UK). Lv and Cv were calculated for each sample. It 

was assumed that the mass of carbon per unit dry mass was the same for roots growing in both 

treatments. 

Soil suiface carbon flux density 

The carbon flux density at the soil surface (fo, g m-2 h- I
) was measured every 4 weeks in the 

open-top chambers using a portable soil respiration system (Model SRC-l, PP Systems, 

Hitchin, UK~ placed on the soil surface (Parkinson 1981). Eightmeasurements were made in 

each chamber at an approximate distance of 0.4 m from the tree stem. Diurnal flux density 

measurements were made in two open-top chambers in late summer (Fet. _ ~ry). Half hourly 

measurements of soil temperature in each chamber at a depth of 0.1 m using copper-constantan 

thermocouples and soil matric potential using calibrated resistance sensors (Model Watennark, 

Irrometer Co. Inc., Riverside, USA) were made with a datalogger in combination with 

multiplexers (Campbell Scientific Inc. Logan, USA). 

Results 

During the measurement period, daily mean air temperature was 13.3 DC with a maximum and 

minimum hourly temperature of 36.9 and -4.0 DC on 26 January and 30 June, respectively. Air 

temperature was lowest in July, began to increase in August with the steepest increase 

occurring during October. Soil temperature at a depth of 0.1 m closely followed air temperature 

(Figure 2-1). Solar irradiance was minimum in late June and maximum in late December and 

the total irradiance for the year was 10.9 kmol m-2
. Analysis of soil matric potential data 

showed that the profile was maintained close to field capacity throughout the year. 

Stem basal area for the trees increased from winter (July) to late summer (January), 

indicating that above-ground growth was continuous throughout the period (Figure 2-1). Basal 

area of trees growing at ambient and elevated CO2 concentration increased from 97 to 373 mm2 

and from 69 to 341 mm2
, respectively during the period. By early autumn (April) mean basal 

area had increased to 642 and 649 mm2 for the ambient and elevated treatments, respectively. 

Although the mean basal area for the trees growing at ambient CO2 concentration was larger 
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initially, the rate of growth was greater for the tree growing at elevated CO2 concentration 

during summer (November to January). 
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Figure 2-1 Seasonal changes in stem basal area, daily mean air (dashed line) and soil at 0.1 m 
(solid line) temperatures, and daily total solar irradiance, for the year beginning in April 1994. 
The symbols refer to the mean (± standard error) stem basal area of 4 trees grown in open-top 
chambers at ambient (0) and 4 trees at elevated (e) CO2 concentrations. 
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Root length density and root carbon density , 

Analysis of data for roots <4 mm in diameter from the cores located immediately adjacent to 

the minirhizotron tube in the plot outside the chambers showed that roots <0.5 mm in diameter 

accounted for 86 % of the total root length but contained only 36 % of the carbon. There was 

only 0.5% of the-total length in roots >2 mm butthis accounted for 19 % of the total carbon, 

owing to the much greater carbon concentration per unit root length for larger diameter roots 

(Table 2-1). For roots <0.5 mm in diameter, the data yielded a range of Lv and Cv up to 

0.048 mm mm-J and 0.59 f.lg mm-3
, respectively. There was a linear relationship between these 

values and the number of root intersections counted from the images recorded by the camera 

along the tube (Figure 2-2). This relationship was used as a calibration to estimate Lv and Cv 

along the 8 tubes in the chambers from measurements of the numbers of root intersections from 

the video images. 

Table 2-1 Total root length, dry mass of carbon and root carbon mass per unit root length for 
different diameter classes of roots from the cores taken immediately adjacent to the 
rninirhizotron tube outside the open-top chambers. An average ratio for carbon to total dry mass 
of 0.44 g g-I measured was used. The total volume of soil from which the roots were extracted 
was 0.01 m3

• The values shown in parentheses are percentages. 

Diameter class Total root length Mass of carbon Carbon mass per unit 

(mm) (m) (g) root length (~g mm-I) 

<0.5 70.48 (86%) 0.769 (36%) 12.3 

0.5-1 8.49 (10.5%) 0.466 (22%) 62.0 

1-2 2.54 (3%) 0.515 (23%) 229.4 

2-3 0.22 (0.3%) 0.168 (7.8%) 846.3 

3-4 0.16 (0.2%) 0.243 (11.2%) 1767.5 

Distribution of carbon root density in the chambers 

There was considerable variability in the numbers of roots observed along the tubes. Near to the 

end of the year in March, the total number of root intersections along the whole tubes for roots 

in all diameter classes varied between 10 and 140. At this time, roots <1 mm in diameter 

accounted for 93 and 97 % of the total length for the ambient and the elevated CO2 

concentration treatments, respectively. When normalised with respect to the total length of 
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roots «0.5 mm diameter) measured along the length of the tubes, the horizontal distribution of 

C'v for roots in all diameter classes combined along the tubes showed a maximum value directly 

below the tree. However, the roots for trees growing at elevated CO2 concentration were more 

concentrated close to the tree than those for the ambient treatment. There were 88 % of the total 

roots «0.5 mm) within a radius of 0.15 m from the tree for the elevated CO2 concentration 

treatment, compared with 35 % in the same zone for trees growing in the ambient treatment 

(Figure 2-3). 
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Figure 2-2 Relationships between the number of observed fine «0.5 mm) root intersections 
within a 100 mm segment along a minirhizotron tube at a depth of 0.3 m and root length 
density, Lv, and root carbon density, Cv, measured from cores taken immediately adjacent to the 
same tube. The slope of the line is 0.051 and 0.0063 for Lv and Cv, respectively and r2=0.80, 
n= 17, p<O.OO 1. 
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Figure 2-3 Distribution of fine «0.5 mm diameter) root length density, Lv, along the 
minirhizotron tubes at a depth of 0.3 m with distance from the centre of the tree for the ambient 
(open) and elevated (closed) CO2 treatments in March, one year after the trees were planted. 
The data have been normalised with respect to the total Lv for each tube and means (± standard 
error) for four tubes in each treatment are shown. 

Seasonal changes in root carbon density 

The number of roots and values for C were greater for trees growing at elevated CO2 

concentration than for trees at ambient CO2 concentration but, because of variability, the 

differences were not significant (Table 2-2). This difference was apparent in early spring when 

the first roots-were observed and continued throughout the year. 

The increase in Cv at a depth of 0.3 m started in early spring and continued to late summer. 

The first roots appeared eight weeks after the trees were planted. During this early period of 

colonisation, the roots were relatively large (0.5-2 mm diameter). The first fine roots «0.5 mm 

diameter) were observed 20 weeks after planting. Rapid growth started almost four weeks 

earlier for trees growing in the elevated CO2 treatment (Figure 2-4). There then followed a 

rapid linear increase in Cv for all chambers until midsummer (December) followed by a slower 

rate of increase until late summer (February). There is some indication that the rate of increase 
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in Cv declined to low values earlier for trees growing at elevated CO2 concentration 

- (Figure 2-4); During the linear phases; there were no-significant differences in the relative 

increases in Cv between the treatments (Table 2-2). 

Table 2-2 Mean root carbon density, Cv, and mean relative rate of increase in Cv for roots 
<1 mm at a depth of 0.3 m for trees growing at ambient and elevated CO2. Values of Cy along 
the 1.7 m length of the tubes are shown for three dates during the year. The relative rates of 
increase in Cv were calculated for the period between 12 October (t,) and 6 December (t2)' and 
6 December (t,) and 31 January(t2) as (In Cvt2-ln Cvtl)/(t2-t,). The data shown are 
means ± standard error for the four trees in each treatment. 

Date 

c.. (J1g mm-3.ld) 

12 October 

6 December 

31 January 

-Relative rate ~f increase in Cv 

12 October - 6 December 

6 December - 31 January 

Soil suiface carbon flux density 

(a'.ld) 

Ambient 

12.5 ± 9.3 

24.8 ± IS.7 

32.1 ± IS.S 

37.3 ± 11.4 

11.2±S.1 

Elevated 

29.3 ± 14.7 

36.0 ± IS.6 

46.1 ± 17.2 

2S.2 ± 16.4 

16.6 ± 13.S 

Diurnal measurements of fo showed an increase during the early morning to reach a maximum 

around midday, followed by a decrease during the afternoon to reach minimum values just prior 

to dawn (Figure 2-S). In late summer (February), maximumfo in the ambient and elevated 

chambers was 0.092 and 0.099 g m-2 h-', respectively and minimum values were about half of 

these. Values offo in the chambers with elevated CO2 concentration tended to be greater than 

those at ambient CO2 concentration, although the differences were not significant. The diurnal 

changes were attributable to changes in air temperature following an Arrhenius relationship of 

the form 

where T is temperature (OK), To is a base temperature (=227.13 OK), Eo is a constant 

(=308.S6 OK) and A is a variable dependent on the data set (Lloyd & Taylor 1994). 

(1) 

During the year, meanfo was greater for trees growing in the elevated CO2 concentration than 

for trees growing in ambient conditions (Figure 2-6). There was an almost linear increase info 
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between winter (August) and midsummer (January). This was followed by a steeper increase in 

10 during late summer-and a smaller increase during autumn. 
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Figure 2-4 Seasonal increases in fine (<1 mm diameter) root carbon density, Cv, at a depth of 
0.3 m for trees growing at ambient (0) and elevated (e) CO2 concentration. The data have 
been normalised with respect to the final value (28 March) of Cy for each tube. The data shown 
are means (± standard error) for four tubes in each treatment at two-weekly intervals. 
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Figure 2-5 Diurnal measurements of carbon flux density,jo, from the soil surface measured 
around a tree growing at ambient (0) and elevated (e) CO2 concentration on 15 February 
1995. The data shown are means (± standard error) of eight measurements. The relationships 
between/o and air temperature were fitted using the Arrhenius function given in the text and 
values for A for the ambient and elevated treatments are 6.79 and 7.37, respectively. r2=0.52 
(ambient) and 0.54 (elevated) . 

. Discussion 

The measurements of Lv were-variable,-depending on the position along the minirhizotron tubes 

in relation to the tree. No roots were present in the soil before the planting of the trees at the 

start of the year, so the data represent the initial exploration of the soil profile by young, 

actively growing roots. There was a general concentration of roots close to the trees 

(Figure2~3) where the maximum Lv recorded was almost 0.04 mm mm:3
• This was much greater 

than typically low values of Lv measured within young Pinus radiata plantations (Nambiar 

1983), although Lv has been shown to increase to greater values approaching 0.08 mm mm:3 in 

older tree stands (Bowen 1985). Despite the low values of Lv, the rate of growth of individual 

roots at the site was rapid and other measurements showed that roots were present at depths up 

to 0.9 m within six months after the trees were planted (SM Thomas, unpublished data). 
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Figure 2-6 Seasonal measurements of carbon flux density,jo, from the soil surface 
measured around trees growing at ambient (0) and elevated (e) CO2 concentration at 
monthly intervals throughout the year. The data shown are means (± standard error) for four 
trees in each treatment. 

No turnover was apparent in the root systems in the chambers. Root longevity in tree species 

is likely to be more than one year (Vogt & Bloomfield 1991), so it is less surprising that root 

turnover had not yet begun. Turnover of roots in older tree stands can account for up to half of 

the carbon allocated below-ground (Vogt 1991) and it is anticipated that this will be a major 

component of the below-ground carbon balance for the trees in the chambers in subsequent 

years. Roots with diameters less than 1 mm comprised 96 % of the total Lv (Table 2-1). While 

this is particularly important for water and nutrient uptake, in terms of carbon these roots 

accounted for only 58 % of the total. In the young trees the larger roots provide greater storage 

for carbon than fine roots but, in older stands, allocation of carbon to fine root turnover may 

exceed total root biomass (Vogt 1991). 

Working with a range of crops, Smit et al. (1994) found that the relationship between root 

number and Lv and Cv varied with season and between species. A possible explanation was that 

root distribution around the tube is variable. Poor contact between soil and the tubes could lead 
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to variability. Despite this difficulty, the minirhizotron technique provides the most suitable 

.. -non-destructive, replicated method for estimating seasonal-changes in carbon storage in roots. 

There was an apparent increase in the numbers of roots <0.5 mm in diameter, Lv and Cy for 

trees growing at elevated CO2 concentration, although the differences between the treatments 

were not significant (Table 2-2). This was accompanied by an increase in tree basal area 

(Figure 2-1), tree height and biomass (OJ. Sun, personal communication) during the first year 

of growth. Increases in root biomass when trees have been grown at elevated CO2 concentration 

have been reported for woody species (eg. Curtiset al;1990; Idso & Kimball 1992; Norby et al. 

1992), and this may result, at least in soybean (Glycine max (L.) Merr) from changes in root 

morphology, rather than an increase in the number of roots (Rogers et al. 1992a). Increases in 

root dry weight per unit length could be associated with increased carbohydrate concentrations 

(Lewis et al. 1994). In poplar (Populus x euramericana cv. Eugenei), Pregitzer et al. (1995) 

measured increases in the length of fine root and root mortality at elevated CO2 concentration, 

resulting in faster turnover rates of root carbon. 

There was a difference in the timing of root appearance and the increase in Lv between the 

treatments (Figure 2-4). The first roots were visible 8 weeks after the trees were planted and 

these were large (>0.5 mm) in diameter. The fine roots did not begin to appear until 20 weeks 

after planting. By 24 weeks Lv for the trees growing at elevated CO2 concentration was greater 

and this difference remained until the end of the period of growth in late summer. Because 

there was no significant difference in the relative rates of increase in Cv between the treatments 

(Table 2-2) the increase in Cy resulted from an earlier start to the period of growth. The growth 

of roots continued throughout the spring and summer (Figure 2-4) and the rate of growth did 

not decrease until well after air temperature had reached maximum (Figure 2-0. This contrasts 

with the marked seasonality observed in mature Pinus radiata stands by Santantonio 

and Grace (1987) where the rate of change of fine root biomass peaked in early spring then 

continued to fall to reach near zero by late summer. It is likely that the continuous growth in Lv 

(Figure 2-4) and tree basal area (Figure 2-1) are attributable to the availability of water and 

nutrients throughout the year and the trees being in the early establishment growth phase. 

Rates of carbon flux density from the soil surface,fo, were approximately 30% greater for 

trees growing at elevated CO2 concentration throughout the year (Figure 2-6). This is consistent 

with results for other coniferous species (Johnson et al. 1994; Pajari 1995). The change inJo is 

attributed to increased photosynthate to roots resulting in increased metabolic and microbial 

activity, and increased growth of roots (Norby 1994). Values ofJo were low in comparison with 

those measured for mature plantation conifers (Haynes & Gower 1995), reflecting the low 

carbon concentration in the soil before the trees were planted and the low Cv values. 

Measurements ofJo are sensitive to changes in temperature (Figure 2-5) but, during the late 

summer,fo continued to increase (Figure 2-6),well after air temperature had begun to decline 
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(Figure 2-1). Mean air temperature for the four months from December varied between only 

20.2 and 22.9 °C, but there was a large increase in-Cv (Figure2-4) andfo (Figure 2-6). This 

suggests that the increase info was attributable to an increase inC. rather than temperature. 
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Abstract 
Increased carbon allocation below-ground in forest ecosystems is a likely consequence of rising 

atmospheric CO2 concentration. If this results in changes to fine root growth, turnover and distribution 

long-term soil carbon cycling and storage could be altered. 

Bi-weekly measurements were made to determine the dynamics and distribution of fine roots « 1 mm 

diameter) for Pinus radiata trees growing at ambient (350 limol mor l
) and elevated (650 limol morl

) CO2 

concentration in large open-top chambers. Measurements were made using minirhizotrons installed 

horizontally at depths of 0.1, 0.3, 0.5 and 0.9 m. 

During the first year, at a depth of 0.3 m, the increase in relative growth rate of roots occurred 6 weeks 

earlier in the elevated CO2 treatment and the maximum rate was reached 10 weeks earlier than for trees in 

the ambient treatmenLAfter 2 years, cumulative fine root growth (Pt) was 36% greater for trees growing 

at elevated CO2 than at ambient CO2 concentration, although this difference was not significant. A model 

of root growth driven by daily soil temperature accounted for between 43 and 99% of root growth 

variability. 

Total root loss (4) was 9% in the ambient and 14% in the elevated CO2 treatment, although this 

difference was not significant. Root loss was greatest at 0.3 m. In the first year, 62% of fine roots grown 

between mid-summer and late-autumn disappeared within a year in the elevated CO2 treatment, but only 

18% in the ambient CO2 treatment (p<O.O 1). An exponential model relating L t to time accounted for 

between 74 and 99% of the variability. Root cohort half-lives were 951 d for the ambient and 333 d for 

the elevated treatment. 

Root length density decreased exponentially with depth in both treatments, but relatively more fine 

roots grown in the elevated CO2 treatment tended to occur deeper in the soil profile. 

Keywords: Pinus radiata, elevated CO2 concentration, fine root production, fine root loss, root 

distribution, minirhizotron 

t Accepted by Global Change Biology. 
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Introduction 

In forest ecosystems, fine root growth represents an important component of the carbon budget 

with between 3 and 60% of net primary production allocated to the roots (Vogt et ai. 1996; 

Landsberg & Waring 1997). Both fine root growth and subsequent turnover represent 

considerable carbon inputs to the soil. In temperate forests, fine root turnover may equal or 

exceed carbon inputs from above-ground litter production (Vogt et al. 1986b). 

Many studies have shownthatcarbon assimilation and growth are enhanced when plants are 

grown at elevated CO2 concentration (Rogers et at. 1994). In woody plants, this is often 

accompanied by an increase in the ratio of below-ground to above-ground biomass (Eamus & 

Jarvis 1989; Ceulemans & Mousseau 1994). There is strong evidence to suggest that increased 

allocation of carbon to roots may lead to changes in the below-ground carbon pools (Norby et 

al. 1987; O'Neill et ai. 1987; Norby et ai. 1992; Zak et al. 1993; Rouhier et ai. 1994; Rygiewicz 

et al. 1997), and rates of cycling between the pools may be altered. However, the integrated 

effects of elevated CO2 concentration on the processes of carbon cycling in the soil are unclear 

(van Veenet al. 1991; van de Geijn & van Veen 1993; Canadell et al. 1996b). There is 

evidence to indicate that greater fine root production than turnover, and slow rates of 

decomposition may be responsible for recent increased carbon accumulation in some forest 

soils (Steele et at. 1997). Any long term increase in soil carbon storage is also likely to be a 

function of soil-type, nutrient availability and moisture status (Tate & Ross 1997). 

In order to predict the effects of elevated CO2 concentration on the dynamic processes 

regulating the carbon pools in the soil, it is important to estimate the input of carbon from the 

growth and turnover of fine roots. In many studies, these components have not been determined 

separately. It is likely that the rates of growth and loss are regulated by environmental and 

physiological variables and estimation of each component is required for inclusion in models 

describing soil carbon dynamics. Limited evidence suggests that changes in the rate of fine root 

turnover for trees growing at elevated CO2 is Variable (Eissenstat & Yanai 1997) and may be 

dependent on the species and soil nutrient status (Pregitzer et al. 1995). 

Estimates of fine root growth and turnover have been made predominantly by destructive 

sampling using soil cores (Vogt et al. 1986a; Persson 1990; Vogt etal. 1993), but concurrent 

seasonal changes in growth and mortality can lead to large errors (Persson 1983; Santantonio & 

Grace 1987; Hendrick & Pregitzer 1993; Reid et al. 1993). More recently, video recording of 

images from minirhizotron tubes buried in the soil profile (Upchurch & Ritchie 1983) has 

allowed non-destructive, repetitive in situ measurements of individual roots. The technique is 

well suited to investigating the timing of root growth-and loss and, by following the progress of 

individual roots, the data can be used to estimate root longevity and turnover (Curtis et al. 

1994a; Hendrick & Pregitzer 1996a; Steele et al. 1997) and changes in the vertical distribution 
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of roots with depth in the soil profile (Day et at. 1996; Hendrick & Pregitzer 1996b; van 

Vuuren et-al. 1997). There has also been a number of successful estimations of root biomass 

using comparisons between minirhizotron data and root cores (Hendrick & Pregitzer 1996a). 

The technique can be used to estimate the seasonal changes of root carbon density, the root 

carbon mass per unit volume of soil (Thomas et at. 1996). 

The long-term effects of elevated CO2 concentration on the carbon balance for trees is being 

measured by growing Pinus radiata D. Don in large, open-top chambers at ambient and 

-- elevated CO2 concentration at a site in Christchurch,-New Zealand. As a contribution to the 

larger project, this study was undertaken to investigate the effects of the treatment on fine roots 

and soil carbon dynamics for a period of two years from the time of tree establishment. The 

objectives of this study were to measure the seasonal growth, loss, longevity and turnover of 

fine roots for the trees in the two treatments, and to determine the effect of elevated CO2 

concentration on the vertical distribution of roots. 

Materials and Methods 

Measurements were made on six Pinus radiata D. Don trees, three grown at ambient 

(350 ~mol marl) and three at elevated (650 ~mol marl) CO2 concentration. The trees were 

individually located in six identical large open-top chambers at Christchurch, New Zealand 

(latitude 43° 32' S, longitude 172° 42' E, elevation above sea level 9 m). Each open-top chamber 

was 4.7 m in diameter and 4.3 m high. Full details of the experimental facility and the 

performance of the open-top chambers have been described by Whitehead et at. (1995). The 

trees were propagated from a single bud from a four-year-old tree using tissue culture at 

ambient or elevated CO2 concentration to allow acclimation to the treatments (Davieset at. 

1992). This provided genetically identical trees in each chamber. The trees were planted in 

April (autumn) 1994. 

The trees were growing freely in an Ustipsamments sandy mixed mesic soil (Soil Survey 

Staff 1990), described as recently stabilised, weakly developed, rapidly, freely draining Kairaki 

dune sand (New Zealand Soil Bureau 1974). Across the site there were small differences of up 

to 0.2 m in the elevation of the soil surface. Depth to the water-table was monitored weekly at a 

site approximately 500 m from the chambers, but at the same elevation. Inside the chambers, 

the root systems of the trees were confined to an area equal to one sixth of the total chamber 

area using rigid plastic sheets that were placed to a depth of 1.2 m. The trees were irrigated 

each night to ensure adequate water supply. -During' the first year a balanced fertiliser 

(Osmocote Plus, Grace Sierra International, The Netherlands) was applied to the soil surface at 

three monthly intervals to supply nitrogen at a rate equivalent to 15 g m-2 y"1, and during the 

second year at monthly intervals to supply nitrogen at a rate equivalent to 60 g m-2 il. The 
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fertiliser was in a form designed to be released slowly over a five to six month period, and had 

an elemental formulation of 15% N (as NH4 and N03 in approximately equal proportions), 

4.4% P, 10% K, 1.2% Mg and trace elements. 

Prior to planting, an acrylic, minirhizotron tube was installed horizontally, beneath each tree 

at each of the following depths: 0.1, 0.3, 0.5 and 0.9 m, using the procedure described by 

Thomas et al. (1996). Each tube was 1.8 m long, with internal and external diameters of 34 and 

38 mm, respectively. Two parallel lines were etched 20 mm apart along the outer surface of the 

tubes and, perpendicular to-these, lines were etched at 20 mm intervals. These lines provided 

references for locations along the tube. Each tree was planted directly above the centre position 

of the tubes, except the tube at 0.1 m which was necessarily laterally offset from the tree. The 

minirhizotrons were also slightly offset in the horizontal plane, to minimise the chance of 

repeated measurements of the same roots at two or more depths. 

Inside the chambers, half-hourly average air temperatures were measured at 1.5 m above the 

soil surface. Mean annual air temperature at the site was 12.2 DC, with a mean daily range of 

3.5 DC. Average hourly soil temperatures were measured adjacent to the minirhizotron tubes at 

the four depths in each chamber. 

Stem basal area at 0.01 m above the soil surface was measured at approximately monthly 

intervals from August 1994 (winter). Relative growth rates for stem basal area, Rs were 

calculated for each interval following Hunt (1982). 

Seasonal measurement of fine roots 

Over a period of two years, bi-weekly measurements of the growth and loss of fine roots 

(<1 mm diameter)-were made by counting the roots on images captured from the minirhizotrons 

by passing a camera down the tubes as described by Thomas et al. (1996). Images taken at 

20 mm intervals along the tubes were digitised and analysed using the software package 

RooTracker (Duke University, Durham, NC, USA). Tracings of individual roots were made and 

the diameter and condition were recorded. 

Fine roots were recorded the first time they were observed, and re-measured until they 

disappeared; Fine root growth at timet (Pt) was defined~as the difference between the number 

of new roots present at times t and t-l, and fine root loss (Lt) was defined as the number of roots 

that had disappeared during the same time interval. After disappearance of a root, the location 

of the image was re-visited for at least two successive measurement intervals to ensure that the 

loss was permanent. Pt and Ltcould be considered in terms of root number (nr), total length 

(mm) or root length density (Lv) defined as root length per unit volume of soil (km m-3
). 

In each of two plots located outside the chambers, an additional tree was planted directly 

above a minirhizotron tube installed horizontally at 0.3 m and supplied with fertiliser and 
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irrigated in a manner identical to the trees growing inside the chambers. In May 1995 and 

-January 1996, the number of roots for each 100 mmlengthofthe tube (n,) was counted from 

recorded images, and Lv was independently and destructively measured by taking rectangular 

soil cores (100 mm long x 70 mm wide x 40 mm deep) immediately adjacent to the tubes at 

100 mm intervals, using the procedures described by Thomas et al.(l996). Data for the two 

dates were pooled (33 samples) to give the linear relationship Lv = 1.05 n, km m-3 (r2=0.85, 

p<O.OOl). This relationship was used to eSlimate Lv from measurements of n, made from 

minirhizotrons in the ambient and elevated CO2 treatments at each sample date. Estimates of Lv 

in this paper are calculated using the average Lv along the length of each minirhizotron tube. 

Model of root growth and loss 

Net root growth over a time interval teNt) is the difference between root growth and loss, such 

that 

(1) 

The seasonal growth of roots was explained using a model based on temperature. Preliminary 

investigation suggested that a function driven by growing degree days was appropriate, such 

that 

P, = 0, 

P, = apCT - To)' 
(2) 

where P, is the rate of root growth, T is the soil temperature, To is the base temperature below 

which no growth occurs, set at 7°C, and ap is the maximum Pt. 

Changes in-soil temperature withtime at a given depth were approximated by the sine 

function 

(3) 

where, Ta is average annual temperature, b is the amplitude, t is the day number, l{J is the phase 

and p is the period (365 days). Substituting equation (3) into equation (2) and integrating gives 

P, =a, {(T. - T, )(t - t,) - ~: [cos 2"'(~ + ~) - cos 2"'(t~ + ~)]} (4) 

where to is the time when T = To. 

The model was fitted to the root growth data independently .for the first and the second years 

using measurements of T at the depth of each minirhizotron. For each growth period, root 

growth was initiated when T>To and stopped when T<To. 
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Examination of root loss data showed that this was best described by an exponential 

function with time, t, as 

where a) is the maximum loss of roots and k) is the relative change in root loss. 

(5) 

Mean relative growth rates (Rp) and mean relative loss rates (R)) were calculated for 

intervals (t2 - t)) of approximately 28 days following Hunt (1982), as Rp = (lnPt,t2 -lnPt,tl)/(t2-

h) and Rl = (lnLr.t2 -lnLr,tl)/(h - t1)' 

Fine root longevity 

For two cohorts of roots, those produced either in the first half (July to December) or in the 

second half (January to April) of the first growing season, the ratios of surviving roots to the 

initial number of roots were calculated for each 2~weekly period. The results were analysed 

using least squares regression for four periods after the appearance of the first cohort. The 

periods were from mid-summer (January) to late-autumn (April), late-autumn to mid-winter 

(July), mid-winter to early summer (November), and early-summer to late-autumn. The half-life 

of the root cohorts (time taken for 50% of the roots to disappear) was calculated by In(2)/b, 

where b was the slope of the regression of the logarithm of the fraction of surviving roots 

against time for the final period (December to March). 

Vertical distribution offine roots 

The distribution of net root growth with depth (Ntz) was estimated from measurements of roots 

at depths of 0.1, 0.3, and 0.5 m and the data were fitted to an exponential function of the form 

N = a e(-k,z) 
tz z (6) 

where az is the maximum Ntz at z = 0, and kz describes the relative decrease in roots with depth, 

z. 

Statistical analysis 

Parametric techniques were used to compare treatment, year and depth effects, where initial 

investigation of the distributions did not reveal any significant departures from normality or 

lack of homogeneity in variances. When required, Lv data were transformed logarithmically to 

correct for non-homogenous variance and arcsin transformations were used to normalise the 

distributions of survivorship data. In the case of az and kz, the variables were non-normally 

distributed and the Mann-Whitney U test was used to compare the treatments. Repeated 
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measures ANOV A was used to compare the treatment, depth and time effects for relative rates 

of stem growth (Rs), root growth (Rp), -and root loss (Rt), a p' at and kt. Where significant 

interaction effects were detected these were further explored using Independent t-tests. 

Treatment comparisons of cumulative root growth (PI) and root loss (Li) at each depth, after 

each year, were made using Independent t-tests. The treatment means reported have been back 

transformed. 
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Results 

Mean annual soil temperature changed slightly with depth and was lower at all depths in the 

second year (Table 3-1). The minimum and maximum soil temperatures occurred in June and 

January in the first year of growth, and in July and February in the second year. Maximum daily 

average soil temperatures at a depth of 0.1 m were 26.0 °C in the first year and 20.5 °C in the 

second year. Minimum daily average temperatures were 3.7 °C in the first year and 3.3 DC, in 

the second year (Figure 3-1a). There was no difference between the daily mean air temperature 

(12.6 0C) between the two years. 

Table 3-1 Mean annual soil temperature (Ta), amplitude (b), and phase (¢), at depths of 0.1, 
0.3 and 0.5 m derived using Equation 4 for the two year study period. 

Depth Period Ta b ¢ r2 

(m) (0C) (0C) (d) 

0.1 Apr 94 - Mar 95 14.2 7.1 179 0.89 

Apr 95 - Mar 96 12.6 5.9 176 0.88 

0.3 Apr 94 - Mar 95 14.1 6.5 173 0.91 

Apr 95 - Mar 96 12.7 5.7 172 0.91 

0.5 Apr 94 - Mar 95 14.0 6.0 170 0.93 

Apr 95 - Mar 96 12.8 5.4 168 0.93 

The depth to the water-table ranged from 2.4 m in November 1994 to 1.2 m in July 1994 and 

averaged 1.84 m (Figure 3-1 b). Depth to the water table decreased from late autumn (April) to 

reach a minimum in winter (June and July), and fell during summer. However, rapid changes 

occurred throughout the study period such as the decrease of 0.69 m in depth to the water table 

during a 21 day period in early winter in 1995 (Figure 3-1b). The water table did not rise above 

theminirhizotronsbut, during the winter, it rose to within 02 m of the deepest tubes at 0.9 m. 

This resulted in a seasonally fluctuating root zone water content at that depth. 

There was high variability in the number of fine roots at 0.9 m, with a large number 

observed from some of the minirhizotrons (Figure 3-2d). There was evidence to indicate that 

this was an artefact of the seasonally fluctuating water-table and capillary fringe. Gravimetric 

soil water measurements made at and above the water table showed that the capillary fringe 

extended to between 0.4 and 0.6 m (S M Thomas, unpublished data). Furthermore, excavation 

of the soil profile from 1 m to the water-table at 1.5 m (made from the access pits to the 
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minirhizotron tubes) revealed mottling and reduced colours, and fine roots were observed 

between I and 1.4 m. Observations also indicated that· many of the deeper roots had senesced. 

Since fine root growth at 0 .9 m was likel y to have been influenced by fluctuations in soil water 

content, these data were excluded from ubsequent analyses for treatment effects . 
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Figure 3-1 (a) Daily average soil temperature, at a depth of 0 . 1 m (solid line) , and daily 
average air temperature in the open-top chambers (dotted line) for the two-year study period 
from April 1994 in the large open-top chambers . (b) Water-table fluctuations below the soil 
surface at the site. 
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Figure 3-2 Cumulative increases in fine root growth (PI) at depths of (a) 0.1, (b) 0.3, (c) 0.5 
and (d) 0.9 m for Pinus radiata trees grown at ambient (0) and elevated (e) CO2 

concentration. The data are means ± standard error for three replicates. 
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Stem basal area 

At the start of the measurements, mean stem basal area (± standard error) was highest for trees 

growing in the ambient treatment (114 ± 13 mm2
) than for those at elevated CO2 treatment 

(78 ± 3 mm2
). However, two years after planting, mean stem basal areas had increased to 

3626 ± 380 mm2 for the ambient and 4150 ± 454 mm2 for the elevated CO2 treatment 

(Figure 3-3). The increase was 16% greater for the trees growing at elevated CO2 concentration, 

although the difference was not significant (p>O.I). Growth occurred throughout the year until 

late autumn, then decreased to a minimum in late winter (Figure 3-4). In the first year, 

maximum Rs was 1.2 x 10-2 d- I for trees grown at ambient CO2 (occurring in January) and 

1.4 x 10-2 d- I for trees growing at elevated CO2 in November (Figure 3-4). In the second year 

the rates decreased and the maxima, occurring in January, were 7 x 10-2 d- I for the ambient and 

8 x 10-2 d- I for the elevated CO2 treatment, although the differences were not significant 

(p>O.I). 
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Figure 3-3 Cumulative increase in stem basal area for Pinus radiata trees grown at ambient 
(0) and elevated (e) CO2 concentration. The data are means ± standard error for three 
replicates. 
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Figure 3-4 Relative rates of increase of stem basal area (R.) for Pinus radiata trees grown at 
ambient (0) and elevated (e) CO2 concentration. The data shown are means for three 
replicates. 

Fine root growth 

A total of 2263 fine roots were observed during the two year study. Roots were often white 

when they were first observed and soon changed to a darker colour, normally within 2 to 6 

weeks. Mycorrhizal roots were often brown when first observed. At the start of the experiment 

. fine roots appeared in the elevated CO2 treatment earlier than those growing in the ambient 

treatment. Fine roots grew throughout the year, with most growth occurring from early spring to 

late-autumn and very low rates of growth during winter (Figure 3-2a-d PI at a depth of 0.3 m 

was significantly greater in the elevated CO2 treatment than the ambient treatment after the 

second year (p<O.OI), but not the after the first year (p>O.l). 

Rates of root growth in the winter were low, but were greatest at a depth of 0.1 m. In the 

second year,root growth at all depths increased in spring at the same time (Figure 3-2b). At the 

end of the study, cumulative root growth for trees growing at elevated CO2 concentration was 

114% greater at 0.3 m (p<0.05) than for the ambient treatment. The large difference in root 

growth between the treatments at 0.5 m (241 %) was not significant (p>O.I) and there was no 

difference at a depth of 0.1 m (p>O.l). When the data from all the minirhizotrons in each 

treatment were pooled (excluding data at a depth of 0.9 m), 36% more fine mots were produced 

in the elevated than in the ambient CO2 treatment (p>O.1). 
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Figure 3-5 Cumulative loss of fine root length density, Lt, measured at depths of (a) 0.1 m 
and (b) 0.3 m for Pinus radiata trees grown at ambient (0) and elevated (e) CO2 

concentration. The data shown are means ± standard errors for three replicates. 

The model of root growth based on temperature in Equation 4 accounted for the seasonal 

variability. For data from individual minirhizotrons, the model accounted for between 43 and 

97% of the variability in the first year. This improved slightly in the second year to between 64 

and 99% of the variability. The parameter apdiffered between depths, although treatment 

differences were not significant (Table 3-2). Values of ap were significantly greater in the 

second year than in-the first year for the ambient (p<0.05) and elevated (p<O.O 1) treatments at a 

depth of 0.1 m, but not at the other depths. Values of ap were greater nearer the surface 

although the differences were not significant in the first year. In the second year, values for ap 

were significantly greater at a depth of 0.1 m than at 0.5 m for both treatments (p<0.05). 

Fine root loss 

Root loss was low in the first year and was only detectable at a depth of 0.3 m for trees 

growing at elevated CO2 concentration (Figure 3-5). A rapid increase in root loss occurred from 

the beginning of the second growth period. Roots disappeared at all depths except at 0.9 m. By 

the end of the study, total root loss was significantly greater (192%) at 0.3 m (p<0.05). There 

was no difference between treatments at 0.1 m (p>O.l) and, at 0.5 m, root loss was only 

observed for half of the chambers and occurred only towards the end of the second year. 
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Loss started earlier, and cumulative loss as a proportion of total root growth, tended to be 

greater for roots-grown in the elevated CO2 treatment. By the end of the study, 10% in the 

ambient and 16% in the elevated treatment of all fine roots had disappeared (p>O.l). At 0.3 m, 

17% of roots grown in the ambient treatment and 24% in the elevated treatment of the fine 

roots had disappeared after 2 years, although the difference was not significant (p>O.l). 

Table 3-2 Values for the parameter ap from Equation 1 for Pinus radiataroot growth for 
each of the two years after planting; Data shown are means of three measurements for trees 
growing at ambient and elevated CO2 concentration with standard errors shown in parentheses. 

ap (km m·3
) 

Year 1 Year 2 

Depth Ambient Elevated Ambient Elevated 

0.1 2.12 (0.02) 2.22 (1.04) 5.910.51) 6.74 (0.83) 

0.3 1.44 (0.49) 2.83 (1.11) 1.08 (0.55) 2.86 (1.18) 

0.5 0.06 (0.01) 1.11 (0.89) 0.42 (0.07) 0.75 (0.32) 

Roots loss, at a depth of 0.3 m, first occurred in late summer 1996, nearly 6 months before 

roots in the ambient CO2 treatment began to disappear, and 4 months before the first loss 

occurred at a depth of 0.1 m. The first root growth, in the first year, also occurred at a depth of 

0.3m. 

The exponential model of root loss in relation to time from Equation 5 accounted for 

between 74 and 99% of the variability at 0.1 m, and between 86 and 96% at 0.3 m. Mean values 

(± standard error) for the parameter kl for the ambient CO2 treatment were 0.021 ± 0.004 at 

0.1 m and 0.022 ± 0.003 at 0.3 m, and for the elevated CO2 treatment were 0.010 ± 0.004 at 0.1 

and 0.024 ± 0.008 at 0.3 m. There were no significant difference in the value of the parameters 

(al and kl) between treatment or depths (p>O.l). 

Relative rates of root growth and loss 

While there were trends in the timing and magnitude of maximum Rp between treatments 

(Figure 3-6a-c) the variability was large and the differences were not significant (p>O.I). The 

timing ofthe initial increase in Rp at different depths tended to vary between the treatments in 

the first year, but the increase.inRp occurred within a period of 2 weeks in November for all 

depths during the second year. In the first year, maximum Rp (3 x 10.3 d· l
) at 0.3 m occurred in 

September in the elevated CO2 treatment, two months earlier than the maximum in the ambient 
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treatment (1.4 x 10-3 d-'). At the same depth, the maximum rates in the second year were 

1 x 10-3 d-' for the ambient and 3.3 x 10-3 d-' for the elevated treatment. These values occurred 

in February for both treatments, much later than the maximum rates in the first year. 
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Figure 3-6 Relative rates of increase of root growth (Rp) at depths of (a) 0.1 m, (b} 0.3 m (c) 
0.5 m and relative rates of root loss,R, at depths of (d) 0.1 m and (e) 0.3 m. The data shown are 
means for three replicates. 
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In the second year, at a depth of 0.1 m, maximum Rp was greater by 33% for the ambient and 

73% forthe elevated·treatment;than-for·the first year. The maximum rate occurred one month 

later for roots in the elevated treatment than for roots in the ambient treatment, although the 

differences were not significant (p>O.l). In contrast, at 0.3 m, maximum Rp in the elevated CO2 

treatment was similar for both years, while Rp in the ambient CO2 treatment was consistently 

lower in the second year. 

Between November and December of the second year, R, at a depth of 0.3 m was 

significantly (p<0;05) greater for trees in the elevated CO2 treatment, than for those growing in 

the ambient treatment (Figure 3-6e). The highest values of R, occurred in late summer. No 

differences between the treatments were observed at depths of 0.1 m (Fig. 3-6d) or 0.5 m, 

where root losses were small. 
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Figure 3-7 Fractional survivorship for two cohorts of fine roots in the first year after 
planting for Pinus radiata trees grown at ambient (0) and elevated (e) CO2 concentration. 
Data shown are for roots grown (a) before (cohort 1) and (b) after (cohort 2) mid-summer 
and each point is the mean ± standard error for three replicates. 

Fine root longevity 

At a depth of 0.3 m in the first year, roots in the two cohorts (those that had first appeared 

between July and December and those that had appeared between January and March) tended to 

disappear more rapidly for trees growing at elevated CO2 concentration than for the ambient 
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treatment (Figure 3-7). At the end of the study, for the first cohort, the percentage of roots 

(mean ± standard error) surviving did not differ between the ambient treatment (86 ± 7%) and 

the elevated CO2 treatment (67 ± 10%). For the second cohort, however, survivorship was 

significantly (p>O.OI) less in the elevated treatment (38 ± 8%) than the ambient CO2 treatment 

(82 ± 4%). 

Between December and March the survivorship of fine roots for trees growing at elevated 

CO2 concentration was significantly less (p<0.05) than for trees in the ambient treatment 

(Table 3-3). Furthermore, roots first observed after mid-summer of the first year disappeared 

more rapidly between December and March, in both the ambient (p<O.l) and the elevated 

(p<O.Ol) treatments, than those first observed before mid-summer. Estimated half-lives for 

roots in the first cohort were 2446 d for the ambient and 474 d for the elevated CO2 treatment. 

For the second cohort of roots, half-lives decreased to 951 d for the ambient and 333 d for the 

elevated treatment. 

Table 3-3 Rates of loss of two cohorts of fine roots of Pinus radiata trees growing at ambient 
and elevated CO2 concentration in the first year after the trees were planted. Cohort 1 was 
comprised of roots grown before mid-summer and cohort 2 was those grown after mid-summer. 
Mean slopes (n=3) are presented for four periods after roots in cohort 1 were observed with 
standard errors given in parentheses and p is the probability of significance between the 
treatments. 

Rate of loss (d-' x 104) 

Ambient Elevated p 

Cohort 1 

Dec - Mar 0 6.30 (3.38) ns 

Apr - Jul 5.23 (5.23) 2.95 (2.95) ns 

Aug - Nov 2.32 (1.40) 0.51 (0.51) ns 

Dec - Mar 1.91 (1.91) 20.51 (3.54) 0.009 

Cohort 2 

Apr - Jul 3.06 (3.06) 11.77 (11.95) ns 

Aug - Nov 2.56 (2.56) 1.32 (1.32) ns 

Dec - Mar 10.40 (2.81) 34.58 (12.64) 0.036 
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Vertical distribution of roots 

Changes in the vertical distribution of roots in relation to time are shown in Figure 3-8. Values 

for the parameter kz tended to increase with time, and az increased in the ambient CO2 

treatment, but decreased towards the end of the study for trees growing at elevated CO2 

concentration (Table 3-4). By the end of the study, there tended to be relatively more fine roots 

at depths of 0.3 and 0.5 m for the elevated CO2 treatment than for trees in the ambient 

treatment, although the difference was not significant (p>O.l). 
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Figure 3-8 Vertical distribution of Lv for Pinus radiata fine roots grown at ambient (0) and 
elevated (e) CO2 concentration at (a) March 1995, (b) November 1995, (c) January 1996 and 
(d) March 1996. Measurements were made at depths of 0.1, 0.3 and 0.5 m. The data have been 
normalised with respect to the sum of the average Lv at the three depths, and means ± standard 
errors for three replicates are shown. The exponential model in Equation 5 was fitted to the data 
from the ambient (solid lines) and elevated (dashed lines) treatments. 

Discussion 

Data from this study indicate that more carbon was allocated to the fine roots of trees growing 

at elevated CO2 concentration. Two years after planting cumulative root growth was 36% 

greater for trees at elevated CO2 than at ambient CO2 (Figure 3-2), however there was large 

variability and the difference was not significant. In a study with Populus x euramericana 

growing at high and low nitrogen availability over a 158 day period, cumulative root growth 

increased by approximately 41 and 69% in the elevated CO2, high and low nitrogen treatments 

(Pregitzer et al. 1995). Similar results have been found from other work using minirhizotrons 
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with Populus grandidentata (Zak et al. 1993; Curtis et al. 1994b). In a two year study with 

-Pinus-ponderosa, cumulative root growth was consistently greater by 35 to 40% for trees 

growing at elevated CO2 concentration (Tingey et al. 1995; 1996). 

Table 3-4 Values of parameters for the exponential model of root distribution with depth, 
from Equation 5 at four times during the two year period. The model was fitted to root data at 
0.1, 0.3 and 0.5 m depths. Mean values for three trees grown at ambient and elevated CO2 

concentration are shown with standard errors given in parentheses and p is the probability of 
significance between the treatments. 

az kz 

Date Ambient Elevated pI Ambient Elevated pI 

Mar 1995 0.88 (0.23) 0.69 (0.35) 0.51 3.58 (1.19) 0.54 (0.34) 0.51 

Nov 1995 1046 (0.63) 1.13 (0.77) 0.28 5.96 (2.62) 3.83 (1.55) 0.28 

Jan 1996 1.38 (0.26) 0.88 (0.26) 0.28 6.10 (1.14) 3.56 (1.35) 0.28 

Mar 1996 1.40 (0.28) 0.87 (0.18) 0.28 6.26(1.17) 3.61 (0.93) 0.28 

IMann-Whitney U test. 

Stem and root growth occurred throughout the year, but slowed during the winter 

(Figures 3-2 and 3-3). The importance of soil temperature in regulating root growth (Bowen 

1991) was confirmed by the success of the model (Equation 4) in explaining the seasonal 

changes in Pt. Theempiricai model provides a simple way of predicting seasonal changes in the 

rate of root growth when tree growth is not limited by water and nutrients. 

After planting, the first roots appeared at a depth of 0.3 m in early spring in the elevated CO2 

treatment and late spring in the ambient CO2 treatment (Thomas et al. 1996). The first roots to 

appear on the minirhizotrons at all depths were for trees grown at elevated C02concentration. 

The early root growth at 0.3 m was less adequately explained by the model, but this probably 

resulted from the early, rapid initial root growth in the winter at low soil temperatures 

(Figures 3-1, 3-2 and 3-6) that may have occurred only during the establishment phase. 

Consistent with these findings, the relative root growth rate early in the growth season with 

Populus grandidentata was higher for trees growing at elevated CO2 concentration (Curtis et al. 

1994b). Earlier root growth at elevated CO2 concentration was also observed for Picea 

sitchensis(Murray- et al. 1996). The explanation proposed was that earlier autumnal bud set· 

allowed relatively more carbon to be allocated to the roots as the shoot sink was reduced. 
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However, in contrast, Tingey et al. (1996) showed that there were no differences in the timing 

of root growth in Pinus ponderosa over two years. 

Much less attention has been directed to measuring Lt as an individual component for 

cohorts of roots. Prior to loss, almost all roots turned very dark brown or black. This 

colouration has been used for some other tree species as an indicator of root senescence 

(Hendrick & Pregitzer 1992). However, dark colouration of Pinus radiata roots was not a good 

indicator of root senescence as new growth was sometimes observed from these roots. We 

. identified root disappearance directly· and found that the rate of root loss was greater in the 

elevated CO2 treatment (Figure 3-5) largely as a result of reduced root longevity (Table 3-3). 

Root half-lives from trees at elevated CO2 decreased to 35% of the value for roots growing in 

the ambient treatment in the second year. Therefore, measurements of net root growth, when 

turnover had occurred, would underestimate cumulative root growth. Furthennore, 

measurements of net root growth would fail to show any differences of carbon allocation 

between the CO2 treatments. 

First root disappearance occurred largely during the second year and started earlier in the 

elevated CO2 treatment. Root loss occurred at the same time, or slightly later than the increase 

in root growth. Maximum rates of root loss tended to occur later than maximum rates of root 

growth. Similar differences in the timing between maximum root growth and loss have been 

observed for other species, including Pinus ponderosa (Tingey et al. 1996) and Betula 

payrifera (Berntson & Bazzaz 1997). In our study, most of the root loss occurred at the 

shallower depths of 0.1 and 0.3 m (Figure 3-5). Root loss at 0.5 m was low and occurred 

towards the end of the study. Root loss did not occur at 0.9 m, which is likely to be attributable 

to the soil hydrology at this depth. However the pattern of loss with increasing depth is still 

consistent with those observed for a temperate deciduous forest (Hendrick & Pregitzer 1996b). 

There have been few studies on the effects of elevated CO2 concentration on root longevity 

and these have led to conflicting results for different species and growing conditions. Pregitzer 

et al. (1995) found that root longevity in Populus was only reduced at elevated CO2 

concentration when grown in a low nitrogen availability treatment. In contrast, longevity was 

increased at elevated CO2 in a two-year study with Pinus ponderosa (Tingey et al. 1997), and in 

an oak-palmetto scrub system (Day.et al. 1996). However, no difference in longevity was found 

for Betula papyrifera or Acer rubrum (Berntson & Bazzaz 1996a). 

Fine root longevity may vary with season (Eissenstat & Yanai 1997) and with root function 

(Fitter 1996). In our study, seasonal differences in longevity were more pronounced at elevated 

CO2 concentration. Roots grown in spring and early summer were more likely to survive than 

those grown after mid-summer (Figures 3-7a and 3-7b). Support for differences in the 

functional role of these cohorts of roots is suggested by the observation that the first roots to be 

recorded were often coarser than 1mm in diameter (Thomas et al. 1996). Similarly, for Pinus 
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ponderosa, mean fine root diameter decreased from 1.2 to 0.7 mm during a period of 12 months 

as the- numberofroots increased (Tingey et al. 1995). 

Our estimates of the half-lives for roots grown at elevated CO2 concentration of 474 d and 

333 d for the two cohorts are greater than other estimates for a range of other woody and 

non-woody species (Eissenstat & Yanai 1997). It is probable that the estimates of half-lives for 

root cohorts in the ambient CO2 treatment were over-estimated because of the non-linear nature 

of cohort survivorship with time. Root survivorship for Cohort 2 was much lower in the 

elevated than the ambient G02 treatment because ora rapid increase in the rate of root loss 

from mid-summer (Figure 3-7). Hendrick and Pregitzer (1992) estimated a half-life of 304 d for 

Acer saccharum roots grown in spring, and Fitter et ai. (1996) estimated half-lives of 268 and 

162 d for cohorts of Populus x euramericana grown at ambient and elevated CO2 concentration 

at low nitrogen availability from data published by Pregitzer et al. (1995). At high nitrogen 

availability, the half-lives were even shorter at 116 d in the ambient and 107 d in the elevated 

CO2 treatment. 

The processes regulating root longevity are poorly understood. Most models assume that 

roots have an indeterminate life-span and that senescence is dependent on environmental 

conditions (Bloomfield et al. 1996), including nutrient availability (Pregitzer et ai. 1993), soil 

temperature (Hendrick & Pregitzer 1993); soil aeration (Reid & Petrie 1991) herbivory 

(Santantonio & Santantonio 1987) and mycorrhizal association (Harley & Smith 1983). 

However, Marshall & Waring (1985) proposed that longevity is determined largely by the 

initial starch concentration of roots, and that senescence occurs once the carbon source is 

exhausted. In our study, both treatments were well supplied with nutrients and water, soil 

temperature and aeration were similar for all chambers,mycorrhizaewere present and there 

was no indication of herbivory. The most likely explanation for the high values for half-life is 

that the trees were young and the roots were newly exploiting the soil profile. Root longevity 

might be expected to decrease as the root system becomes progressively larger because of 

decreased hydraulic conductance and increased maintenance costs. Shorter fine root half-lives 

and increased turnover in the elevated CO2 treatment may be a response to increased carbon 

allocation to the root system, because of higher rates of photosynthesis in the foliage (Hogan et 

al. 1996). Investing increased carbon in new fine roots which are more effective at obtaining 

nutrients may be more efficient than maintaining older roots. 

Because of the large spatial variability in root distribution and limitations on the number of 

minirhizotrons from which images can be analysed, it is not uncommon in studies of this nature 

for the differences between treatments to lack statistical significance. The horizontal placement 

of the minirhizotron tubes was chosen to maximise the number of roots recorded at each depth. 

By increasing the volume of soil sampled, apparent temporal variability is decreased, thus 
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increasing the sensitivity of the techniques to distinguish differences with depth and between 

treatments (Reid & Bowden 1995). 

Greatest fine root proliferation occurred at shallow soil depths (0.1 and 0.3 m), but tended to 

decrease exponentially with depth after two years (Figure 3-8). This type of distribution is 

similar to other studies of Pinus radiata (Nambiar 1983; Santantonio & Santantonio 1987; 

Whitehead et al. 1994). There tended to be relatively more roots grown at the elevated CO2 

treatment at 0.3 and 0.5 m allowing greater acquisition of nutrients and water for increased 

--productivity (Prioret at. 1994b). Vertical root distribution responses for elevated CO2 

treatments have been observed for Quercus scrubland (Day et al; 1996) and Gossypium 

hirsutum (Rogers et at. 1992; Prior et at. 1994a). Root distribution patterns may also have 

important implications for soil carbon sequestration. The turnover time for soil organic matter 

increases with depth with a considerable global pool of organic carbon deeper than 1 m, and 

with over one-third of soil organic carbon between 0 and 2 m found below 1 m (Batjes & 

Sombroek 1997). Significant deep carbon turnover (15% on an annual to decadal timescale) has 

been measured for some tropical ecosystems (Nepstad et at. 1994). Trees in temperate 

coniferous forests tend to be deep rooting (Canadell et al. 1996a) and, compared to other forest 

ecosystems, relatively more roots are found deeper in the soil profile (Jackson et at. 1996). 

One possible explanation for increases in root growth and loss, and relative changes to root 

distribution may be that tree growth is accelerated at elevated CO2 concentration, indirectly 

increasing below-ground carbon allocation (Gebauer et al. 1996). If this is the case, then an 

increase in the rate of ontogeny will result in trees reaching maturity and senescence earlier. 

This could potentially lead to an increase in soil carbon as a result of faster tree growth cycles 

but this would be highly-dependent on the rate of carbon loss from the soil. 

Conclusions 

Over a period of two years of growth, with non-limiting nutrient and water conditions, 

cumulative root growth tended to be greater at elevated CO2 concentration, indicating that 

earbon allocation below-ground was increased. Root longevity decreased for the roots growing 

at elevated CO2 concentration, suggesting that root turnover would also be increased. More 

roots grown at elevated CO2 concentration tended to occur deeper in the profile. Greater carbon 

allocation and a relatively deeper distribution of roots indicate the potential for increasing 

carbon input to the soil by young Pinusradiata trees. Increased below-ground carbon allocation 

may be a size-dependent effect related to enhanced tree growth at elevated CO2. This is likely 

to result in reduced harvesting cycles for plantation crops and may lead to increases in soil 

carbon sequestration. 
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There is a need for longer studies to determine whether enhanced root growth and turnover 

would be maintained and further studies areTequired to determine the mechanisms of positive 

and negative feedbacks resulting from increased soil carbon availability (van Veen et at. 1991; 

Berntson & Bazzaz 1996b), particularly in conditions of sub-optimal water and nutrient supply. 
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CHAPTER 4 
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Abstract 
Increased below-ground carbon allocation by trees at elevated CO2 concentration may alter soil carbon 

cycling. Seasonal estimates of soil surface carbon flux were made to determine whether carbon losses 

from trees growing at elevated CO2 concentration were higher than at ambient CO2 concentration, and 

whether this was related to increased fine root production 

Monthly soil surface carbon flux density (j) measurements were made on plots with trees growing at 

ambient (350) and elevated (650 !lmol mor') atmospheric CO2 concentration in large open-top chambers. 

Before the trees were planted both the soil carbon concentration (0.1 %) and/(O.OI g m-2 h-' at 15°C) were 

low. A model that described the radial pattern of/with distance from the tree stems was used to estimate 

the annual carbon flux (F) and annual average /from the tree plots. Seasonal fine root production was 

measured from minirhizotrons. Radial root distribution measurements were compared with radial 

measurements off A one-dimensional gas diffusion model was used to estimate / at the stem from soil 

CO2 concentrations at four depths. 

For the second year of growth, estimated F was 13% higher at elevated CO2 concentration (1895 g i') 

than at ambient CO2 concentration (l671 gil). Higher !atelevated CO2 concentration was largely 

explained by the increased fine root production. There were strong positive relationships between/and 

root production and/and stem production. Both/and root length density declined exponentially with 

distance from the stem, and had similar length scales. Diurnal changes in/were largely explained by 

changes of soil temperature at a depth of 0.05 m. 

Ignoring the change of/with increasing distance from tree stems could result in underestimates of soil 

surface carbon fluxes, especially in young stands when roots are poorly distributed. 

Keywords: Pinus radiata, elevated CO2 concentration, soil CO2 flux, fine roots 

§ Prepared for Plant and Soil. 
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Introduction 

In temperate forests it has been estimated that between 25 and 65 % of net primary production 

is allocated to fine roots (Landsberg & Waring 1997). Between 28 and 70% of carbon returned 

to the atmosphere from the soil surface is from autotrophic root respiration for maintenance and 

growth (Raich & Schlesinger 1992; Ryan et al. 1996). The balance of this carbon efflux to the 

atmosphere is from heterotrophic respiration, either through the symbiotic relationship of 

mycorrhizae to the tree or as microbial respiration. This soil surface CO2 efflux (j), sometimes 

described as soil respiration, has been shown to be positively related to root biomass (Haynes & 

Gower 1995; Ryan et al. 1996) and mycorrhizal associations (Rygiewicz & Andersen 1994; 

Vose et al. 1997). It may also be regulated by soil temperature and water (Gordon et al. 1987), 

and nutrient availability (Ryan et al. 1996; Zogg et al. 1996). 

·In a number of tree species, increased below-ground carbon allocation has been observed at 

elevated atmospheric CO2 concentrations (Ceulemans & Mousseau 1994; Eamus & Jarvis 

1989), although there is still considerable uncertainty about the effects of potential increases of 

carbon in the soil system, its component carbon pools and the fluxes between them (Canadell et 

al. 1996; van Veen et al. 1991). In the long-term carbon could potentially accumulate in the soil 

as a result of enhanced carbon allocation below-ground (Tate & Ross 1997). However, there is 

evidence that the rate of turnover of the soil carbon pools may also increase in some ecosystems 

(Fitter et al. 1996; Hungate et al. 1997; Korner & Arnone 1992). 

In order to predict ecosystem responses to elevated CO2 concentration it is important to 

determine the plant-soil carbon fluxes (Curtis et al. 1994a). Fine root production is the main 

carbon flux into the soil and is often stimulated at elevated CO2 concentration (Berntson & 

Bazzaz 1997;-Pregitzer et al.1995; Tingeyet al. 1997). If fine root growth is stimulated at 

elevated CO2 concentration, then root (and mycorrhizal) respiration losses may also be 

expected to be higher. Recently, several studies have shown that/increases at elevated CO2 

concentrations for tree species (Johnson et al. 1994; Pajari 1995; Thomas et al. 1996; Vose et 

al. 1997). However, there are few studies that have investigated both seasonal patterns of root 

growth and/at elevated CO2 concentrations. 

Seasonal estimates of/are often made using measurements from soil surface chamber 

systems. But/may also be determined using soil CO2 concentration measurements and models 

of CO2 gas diffusion (De Jong & Schappert 1972). Measurements of/have been related to fine 

root distribution patterns and activity (Ben-Asher et al. 1994a; Ben-Asher et al. 1994b). 

Minirhizotroncamera systems (Upchurch & Ritchie 1983) enable non-destructive 

measurements of seasonal·fine root production. By combining these techniques the seasonal 

contribution of roots to / may be elucidated. 
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This study was undertaken as part of a larger, long-term project to estimate the carbon 

balance of trees growing at elevated CO2 concentration-. Pinus radiata D; Don trees are growing 

in large open-top chambers at a site near Christchurch, New Zealand. In a previous study we 

reported that Pinus radiata root production was enhanced at elevated CO2 concentration 

(Thomas et at. 1997). The first objective of this study was to determine whether the estimated 

annual carbon efflux from plots (F) with Pinus radiata trees growing at elevated CO2 

concentration was higher than from plots with trees growing at ambient CO2 concentration. Soil 

-chamber measurements off and estimates off calculated using a CO2 gas diffusion model 

(Cook et al. 1997) were used to model the pattemof radialfwith distance from the tree stems 

and estimate F. The second objective was to investigate the effect of seasonal fine root and 

stem production on seasonalfat ambient and elevated CO2 concentrations. 

Materials and Methods 

Site description 

Measurements were made for four Pinus radiata D. Don trees grown at ambient 

(350 /lmol mor l
) and four at elevated (650 /lmol morl

) CO2 concentrations, each in identical 

large open-top chambers at Christchurch, New Zealand (latitude 43° 32' S, longitude 

172° 42' E, 9 m elevation above sea level). Each chamber was 4.7 m in diameter and 4.3 m 

high. Air at ambient or elevated CO2 concentration was supplied by large fans to chambers at 

approximately two to three air exchanges per minute. The design of the carbon dioxide 

enrichment system and the performance of the open-top chambers have been described by 

Whitehead et at. (1995). Clonal propagation from a single bud from a four-year old tree using 

tissue culture at ambient or elevated CO2 concentration provided trees of genetically identical 

material (Davies eta!' 1992). The trees were planted in the open-top chambers in April 1994 

(autumn). The roots were inoculated with mycorrhizae by including litter from an adjacent 

forest plantation with the roots. 

The mean annual temperature at the site was 12.2 °C, with a mean daily range of 3.5 0c. 
Mean annual rainfall was 612 mm. Air temperature was measured at half-hourly intervals at 

1.5 m above the soil surface, and soil temperatures were measured hourly at 0.1, 0.3 and 0.5 m 

(Thomas et at. 1997). The soil was a Kairaki dune sand, which is a recently stabilised, weakly 

developed, rapidly, freely draining (New Zealand Soil Bureau 1974), also described as 

ustipsamments sandy mixed mesic (Soil Survey Staff 1990). When the trees were planted, 

concentrations of soil carbon (0.11 %) and nitrogen (0.01 %) were low and all surface organic 
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material had been removed before the chambers were installed at the site. The depth of the 

water-table-was monitored weekly 500 mfrom the site, at a similar elevation. Soil water was 

maintained at near field capacity by applying irrigation each night. This was checked by daily 

measurements of calibrated electrical resistance soil water potential sensors (model Watermark, 

Irrometer Co. Inc., Riverside, CA) 

Nutrients were applied to the soil surface to maintain non-limiting conditions. In September 

1994, a balanced fertiliser (Osmacote Plus, Grace Sierra International, Heerlen, The 

Netherlands) -supplyied nitrogen at a rate of 7.5 g m-2 
/ . This was increased to a rate equivalent 

to 15 g m-2 y"' in December 1994 at3 monthly intervals. From October 1995 the equivalent 

amount of nitrogen added was increased to 60 g m-2 y"' applied at monthly intervals. Stem basal 

diameter at 0.01 m above the soil surface was measured at approximately monthly intervals 

from August 1994. 

Seasonal root measurements 

-Before the trees were planted, rigid plastic sheets radiating from the centre of each chamber 

were inserted to a depth of 1.2 m. This isolated the root systems of study trees from others -

growing in the chamber to one-sixth of the total soil surface area within each chamber. Acrylic 

minirhizotron tubes were installed horizontally beneath the trees at 0.1, 0.3, and 0.5 m depths 

by the method described by Thomas et al. (1996). Each tube was 1.8 m long with an external 

diameter of 38 mm and internal diameter of 34 mm. Two parallel lines were etched 20 mm 

apart along the outer surface of the tubes and, perpendicular to these, lines were etched at 

20 mm intervals. These lines provided references for fine root locations along the tube. Fine 

root« 1 mmdiameter) production was measured bi-weekly for two years after planting by 

counting roots from images captured from the minirhizotrons using the technique and camera 

system described by Thomas et al.( 1996). Images taken at 20 m intervals along the tube were 

analysed using the RooTracker (Duke University, Durham, NC, USA) software package. 

Cumulative fine root pmduction(P,) was defined as the sum of roots produced at the 0.1,0.3 

and 0.5 m depths between times t and t + 1. A linear relationship between the number of roots, 

root length and rootlength density (Lv) has been established (Thomas et al. 1996). 
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Seasonal soil surface carbonjlux density and soil CO2 concentration 

To distinguish between measurements and modelled estimates off, the measurements are 

defined asfo, and the modelled estimates defined asfm. All values offo andfm are COrC flux 

density, i.e. the carbon flux density. 

Measurements of fa were made every 4 weeks using a portable soil respiration system placed 

on-the soil surface. Seasonal measurements were made between 12 weeks and two years after 

the trees were planted; The soil respiration system consisted of a-chamber (0.10 m diameter and 

0.15 m tall) inserted 10 mm into the soil which was coupled to a portable infrared gas analyser 

(models SRC-l and EGM-l, respectively, PP Systems, Hitchins, Herts, UK) in a closed circuit. 

The system was described originally by Parkinson (1981) and extensively tested recently by 

Jensen eta!' (1996). Eight measurements were made in each open-top chamber at an 

approximate distance of 0.35 m from the tree stem. Soil temperature (1) was measured at the 

same time using the thermistor probe with the soil respiration system. Diurnal measurements of 

f, were made during the summer before the trees were planted (December 1994); the following 

-- summer (February 1995); and in January 1996. To investigate the effect-of soil temperature (1) 

onfo, 15 minute averages of thermocouples attached to a datalogger via a mUltiplexer 

(Campbell Scientific Inc., Logan, UT) were measured at: 0.01, 0.02, 0.05, 0.1, 0.2 and 0.3 m 

when diurnal measurements of fa were made. 

For seasonal comparison, fa data were normalised to a common temperature of T = 15°C 

(JoIS) using the Arrhenius-type model of Lloyd & Taylor (1994): 

f. = A -308_56/(288.15-227.13) 
015 e 

(1) 

(2) 

where, A is a data set-dependent parameter, Eo is a constant (308.56 OK) analogous to activation 

energy, T is soil temperature (OK) and To is a base temperature (227.13 OK). A was determined by 

fitting the model to fa measurements made at the soil temperature (1) for each date (Equation 1). 

The normalised value of fol5 was then predicted by inserting T = 15°C into the model, using the 

value of A calculated for each date (Equation 2). This common temperature of 15 °C was chosen 

as it approximated the average soil temperature at a depth of 0.05 m for the periods when fo 

measurements were made. 

Soil CO2 concentrations, sampled directly beneath the stem of each tree, were measured 

between May 1994 and April 1996, at the same time as the measurements of fo. Perforated, 

stainless steel tubes (0.30 m long by 14 mm internal diameter) connected to fine stainless steel 

tubing, terminated at the soil surface with a gas-tight syringe tap, were installed at depths of 0.1, 

0.2, 0.3 and 0.5 m before the trees were planted. A 10 ml soil air sample was extracted for 

measurements from each depth using a plastic syringe. The CO2 concentration of the sample was 
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detennined within 24 h using a gas chromatograph (model 8610, SRI Instruments, Torrance, CA, 

USA). 

Modelled soil suiface carbon flux density 

Soil COrC gas concentrations were used in a steady-state, one-dimensional model of CO2 gas 

diffusion-(Cooket al. 1997, see Appendix).to estimate fm at the tree stem by : 

-E I(T-T.) 2 

CCz)=C+
Qe

" °L[1_(1_z/L)"+2] 
o D(n + 1)(n +2) 

(3) 

where, C is the COrC concentration of the gas in the gas-filled pore space, z is depth, Co is the 

soil surface atmosphere concentration of CO2, D is the diffusion coefficient of CO2 in air, Q is the 

surface soil respiration rate, L is the depth to which respiration occurs, n is a dimensionless 

. attenuation coefficient that describes the shape of respiration rate profile with soil depth, 

indicating how respiration is concentrated near the soil surface. Equation 3 may be differentiated 

. with respect to depth to give: 

(4) 

The values of Q, L and n obtained by fitting Equation 3 to the CO2 concentration profiles are used 

in Equation 4 to detenninefm. 

Radial changes in soil suiface carbon flux density with distance from tree stems 

At the end of the study, measurements of fo were made with the centre of the soil respiration 

chamber placed at 0.15,0.35,0.55 and 0.75 m from the stems of four trees in March and April 

1996, two years after the trees were planted. Duplicate measurements were made in the four 

cardinal directions at each radial distance from the stem (r). At the same time, soil CO2 

concentrations were measured so thatfm could be estimated, i.e.fat r = 0 m. The relationship 

betweenfwith r was described using an exponential equation (Cooket al. 1997) of the form: 

f = / e- rlR + ye -E"I(T-T,,) 

where / is the CO2 flux density due to the roots at r = 0 m, R is a length scale and yis a 

component of the carbon flux density not accounted for by the shape of the root distribution, 

which has been described as the background carbon flux density (Cook et al. 1997). 

(5) 
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Radial changes of root length density with distance from tree stems 

Root length density (Lv, mm mm'3) was calculated using a linear relationship established 

between the number of root intersections (nr) observed from the surface of the minirhizotrons 

and Lv measured from soil cores taken adjacent to minirhizotrons (Thomas et al. 1997). Root 

intersections were counted for each 0.1 m increment along the tube (from 0 to 1.7 m). The 

relationship was Lv = 1.05 .10'3 nr (r2 = 0.79). 

The relationship between Lv-distribution and r was described using an exponential equation 

(Cook et al. 1997) of the form: 

L = L . e- rlR 
v v (6) 

where Lv', is the root length density at r = 0 m. 

Estimation of carbon flux 

Seasonal carbon flux was estimated from the four-weekly fo measurements and ~stimates offm. For 

four-weekly periods, daily surface carbon fluxes were estimated by substituting daily average T 

into Equations 1 and 4. The model parameters (A, Q, Land n) were determined by fitting the 

four-weekly measurements of fluxes and T. The effects of using hourly average or daily average 

soil temperatures onlo daily totals were compared for 7 days (winter and summer) during the 

course of the study. Estimates of the average carbon flux from the plot (1) and the total carbon 

flux from the plot (F) were made using the relationships described by Cook et al. (1997): 

_ 2/ [1- e-x (x + 1)] -E I(T-T) 
f= +ye" " 

x 2 

where, x = rlR, and 

(7) 

(8) 

Estimations of f and F were made using the value of R derived from Lv data (Equation 6) 

which was assumed to approximate R fromfo data (Equation 5). The value of r was 0.95 m, the 

radial extent of the plot, and y was assumed to be a constant proportion offat r = 0 m. Estimates 

were made from November 1994; this was when roots were observed on all minirhizotrons at 

0.3 m for both CO2 treatments. Similarly to the seasonalfo measurements andfm estimates, R was 

calculated for four-weekly intervals. 
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Statistical analysis 

Seasonal differences between!o measurements of the two treatments were tested using repeated 

measures analysis of variance. Data were normalised by log transformation and independent 

t-tests were used to compare treatments for individual dates. Where errors are reported they are 

the standard error of the sample means. 

Results 

Relationship between soil temperature and soil sUlface carbonflux density 

Daily average soil temperature was 14.2 °C and 12.6 °C at 0.1 m, in the first and second year 

after the tree~ "~re planted, respectively. At a depth of 0.1 m, maximum hourly average 

temperatures occurred in mid-summer (December): 35.7 °C, in the first year. As the tree 

canopy expanded and shaded the soil this declined to 28.5 °C in the second year at a depth,of 

0.1 m. The minimum hourly temperature was 1.6 °C occurring in June of the first year and 

1.2 °C in August of the second year. The greatest range of diurnal temperatures occurred at the 

soil surface, which reduced as soil depth increased (Figure 4-1). While seasonal soil 

temperatures were not continually monitored at depths less than 0.1 m, measurements made 

four-weekly atthe same time as/o, were observed up to 37.5 °Cat the soil surface. 

Changes in diurnal measurements info were best correlated with the changes of soil 

temperature at 0.05 mdepth (Figure 4-2), using Equation L There were large differences in the 

diurnal/o between the measurements made in four chambers in January 1995 

(/015 = 0.029 ± 0.002 g m'2 h- I
) and February 1996 ifol5 = 0.128 ± 0.06 g m-2 h- I

). For these two 

periods, between 18 to 93% of the variability of four chambers could be explained by temperature 

at 0.05 m. There were no differences in responses between the CO2 treatments. Before the trees 

were planted (December 1994)/0 was low ifol5 = 0.012 g m-2 h'l) and the response to soil 

temperature was more variable (r2 = 0.04 and 0.61). 
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Figure 4-1 Measurements of soil temperature at depths of (a) 0.02, (b) 0.05, (c) 0.08, (d) 0.1, 
(e) 0.2 and (0 0.3 m for a 24 h period in December 1994. 

Soil CO2 concentration 

- Soil CO2 concentrations for all soil depths to 05 mwere consistently higher for chambers with 

trees grown at elevated CO2 concentration than those at ambient CO2 concentration 

(Figure 4-3a-d). CO2 concentration always increased with depth from 0.1 to 0.5 m for both 

treatments. There were large seasonal differences in measurements, with an overall trend of 

increasing concentration as P t and root biomass increased. Highest concentrations were measured 

in March and April 1995 (Autumn). The maximum CO2 concentration sampled at 0.5 m was 

2.3 % in April 1995 (in an elevated CO2 concentration chamber). In May and July, soon after the 

trees were planted, the CO2 concentration was approximately linear with increasing depth 

(Figure 4-4). Greatest changes in the CO2 concentration profile in the soil tended to occur at the 

shallowest depths sampled (Figure 4-4), consistent with the largest proportion of fine roots 

(Thomas et al. 1997). 
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Figure 4-2 The relationship between soil surface carbon flux density and soil temperature at 
0.05 m, measured: (i) before the trees were planted (December 1994, e); (ii) in the summer of 
the first year of growth (January 1995, D) and (iii) the late-summer of the second year of 
growth (February 1996, .6.). The lines fitted are an Arrhenius-type function (Equation 1). Data 
are means of four measurements ±standard error. 

Seasonal changes of soil suiface carbon flux density 

There were seasonal changes of fo, after the removal of the effect of seasonal temperature at 

0.05 m depth, by normalising to 15°C (Figure 4-5). Underlying these fluctuations was a trend of 

increasingfo as stem and root production increased over the two year period. In the first year fo 

andfm at elevated CO2 concentration were consistently greater than at ambient CO2 

concentration. The consequence of this was the divergence of cumulativefo (Figure 4-6a). 

However, from mid-winter (July of the second year) fo tended to be similar for both CO2 

treatments (Figure 4-5). The average rate of increase of cumulativefo was slightly greater at 

elevated CO2 concentration than at ambient CO2 concentration in the second year, but much less 

. than the first year (Figure 4-6a). Apartfromfo measurements made in December 1994, there were 

no significant differences between the two treatments (p < 0.05). 
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Figure 4-3 Soil CO2 concentrations (% by volume) measured beneath Pinus radiata tree stems 
at depths of (a) 0.1, (b) 0.2, (c) 0.3 and (d) 0.5 m. Trees were grown at ambient (0) and 

. elevated (e) CO2 concentrations. Data are means of four measurements ± standard error. 
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Figure 4-4 Seasonal soil CO2 concentration profiles with depth beneath the stem of Pinus radiata trees for two years after the trees were planted. Trees were 
grown at ambient (0) and elevated (e) CO2 concentrations. Data are means of four measurements ± standard error. 
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Figure 4-5 Seasonal changes in soil surface COrC efflux measured at a distance of 0.35 m 
from the tree stems (O,e) and modelled at the stem (r = 0 m, 0, .). Fluxes have been . 
normalised to a soil temperature of 15 0C. The trees were grown at ambient (open symbols) and 
elevated (closed symbols) CO2 concentration. Data are means of four measurements ± standard 
error. 

There was a strong positive, approximately linear, relationship between stem basal diameter 

and cumulativeio for the measurement period between August 1994 and April 1996 

(Figure 4-6b);Similarly there was a strong positive relationship between PI and cumulativeio 

(Figure 4-6c) which over the two year period was approximately linear, but for each year 

displayed a regular seasonal oscillation. There were no significant differences between the 

treatments, with high variability of PI andio. 
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Figure 4-6 Cumulative/o measured at a distance of 0.35 m from Pinus radiata tree stems from August 1994 to April 1996 in relation to (a) time at ambient (A) 
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concentration. Data are means of four measurements. 
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Figure 4-7 Changes info and Lv with distance (r) from Pinus radiata tree stems measured 
late-March and early-April 1996 (autumn), two years after planting. The values offo (e) are 
data pooled from five plots. For each plot, paired measurements offo were measured along 
transects for the four cardinal directions at r = 0.15,0.35,0.55 and 0.75 m. Data were 
normalised by dividing each measurement by the sum of measurements for each transect and 
are presented as the means (40 measurements) ± standard error for each distance. The 
relationship betweenfand r was:f= 0.27e-4·44r + 0.19 (r2 = 0.99). Lv, is data measured from 
minirhizotrons at 0.3 m beneath four trees growing at ambient CO2 (0) and four trees growing 
at elevated CO2 concentration (A) at 0.1 m increments from the stem. Data were normalised by 
dividing the observed number of roots per 0.1 m increment by the total from each tube and are 
presented as means of four measurements ± standard error for each treatment. The relationship 
between Lv and r, data pooled between treatments, was: Lv = 0.48e-8.80r (r2 = 0.89). Significant 
differences (p<O.OOl) info are denoted by change in letter. 

Radial changes of soil swface flux density with distance from tree stems 

At the end of the study fo was decreasing exponentially with increasing r (Figure 4-7). Data were 

pooled from both treatments from the four open-top chambers sampled. Comparison of 

normalised data for both treatments indicated there was no significant difference in the 

relationship betweenfo and r. When the data were pooled across the treatments the relationship 

wasf = 0.27e-4
.
44r + 0.19, (r2 = 0.99). Comparison of data using paired t-tests at r = 0.15, 0.35, 0.55 
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and 0.75 m indicated thatfo was significantly different (p < 0.001) between these distances, except 

- between 0.55 and 0.75 m (Figure4-7). Using this same relationship for both treatments, y 

accounted for 58 % offat r = 0.15 m, and 94 % at 0.75 m, after two years of growth. Includingfm 

(Le.fat r = 0 m, estimated from Equation 4) and normalising the data in the same manner, then 

f= 0.2ge,S.64r + 0.12, (r2 = 0.99). The ratio ofytof, when r = 0 m, was 0.29 ± 0.025. This ratio 

was assumed for the following calculations. 

Lv, measured at the same time as the radial fluxes, likewise declined with increasing distance 

from the stem (Figure 4-7). There was no significant difference between the ambient and elevated 

CO2 treatments so the data were pooled and normalised giving the relationship 

Lv = 0.48e,s.sor (r2 = 0.89). 
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Figure 4-8 Seasonal change in the horizontal distribution of roots at 0.3 m measured using 
minirhizotrons. For each date, data were normalised by dividing the number of roots observed 
in each 0.1 m minirhizotron length increment by the sum of the total number of roots along the 
tube. Trees were grown at ambient (0) and elevated (e) CO2 concentrations. Data are means 
of four measurements ± standard error. 

Lv increased with increasing tree basal area and as the root system expanded laterally (Thomas 

et at. 1997). Between November 1994 (spring) and March 1996 (autumn) the proportion of root 

length beneath the stem had declined 35 and 33 %, for trees grown at ambient and elevated CO2 

respectively (Figure 4-8). There were no significant treatment differences in the parameters Lv' 

and R, (Equation 5). For the estimates of carbon fluxes (Equations 6 and 7) the value of R was 

calculated from data pooled across treatments (Table 4-1). 
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Table 4-J . Seasonal changes of parameters for exponentially dediningfine root distribution 
with distance from the stems of Pinus radiata trees, where Lv' is the fine root length density at 
r = 0 m and R is the length scale (Equation 5). Parameters (means ± standard error) were 
estimated from the number of fine root roots per 0.1 m increment from the tree stem on 
rninirhizotrons installed horizontally at 0.3 m depth. Data were normalised by dividing the 
number of fine roots per 0.1 m increment by the total for the length of the minirhizotron and 
have been pooled across ambient and elevated CO2 treatments (n = 8). 

Date Lv' R(m) r2 

November 1994 0.73 (0.02) 0.07 (0.01) 0.99 

January 1995 0.57 (0.05) 0.08 (0.02) 0.94 

March 1995 0.60 (0.04) 0.08 (0.01) 0.96 

May 1995 0.59 (0.04) 0.08 (0.01) 0.97 

July 1995 0.60 (0.03) 0.08 (0.01) 0.98 

September 1995 0.57 (0.03) 0.09 (0.01) 0.98 

November 1995 0.51 (0.03) 0.11 (0.02) 0.96 

January 1996 0.44 (0.05) 0.12 (0.03) 0.88 

March 1996 0.42 (0.05) 0.14 (0.03) 0.87 

Estimation of carbon flux from the soil-tree plots 

It was assumed that as the values of R for bothf(0.116 m) and Lv (0.114 m) were very similar 

after two years of growth then R estimated from Lv data would reasonably approximate the value 

ofRfromfdata. For the second-year after the trees were planted, the mean annual total F 

estimated to have been released at elevated CO2 (1895 ± 290 g it) was 13% greater than at 

ambient CO2 concentration (1671 ± 277 g y-t) (Figure 4-9). 1 was estimated to be 589 ± 98 

and 668 ± 102 g m-2 it, for the ambient and elevated treatments respectively. Total annual flux 

density estimates fromfo measurements made at r = 0.35 m for the same period, were 

approximately 23% greater: 745 ± 110 and 809± 50 g m,2 i' ,for the ambient and elevated 

plots respectively (Figure 4-6a). In the first year of tree growth the difference was greater, 

between July 1994 and April 1995 there had been approximately 29% more carbon lost from 

the elevated CO2 plots at r = 0.35 m (Figure 4-6a). These differences between treatments were 

not significant. 
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Figure 4-9 Cumulative soil surface carbon flux from plots (F) with Pinus radiata trees 
growing at ambient (A) and elevated CO2 concentration (E). Data are means of four 
measurements. 

Discussion 

Estimated F was greater at elevated CO2 concentration than at ambient CO2 concentration. In the 

first year there was approximately 23% more carbon efflux from soil with trees growing at 

elevated than at ambient CO2 concentration. In the second year this difference was reduced 

(Table 4-2). However, despite the carbon fluxes at the soil surface being consistently greater at 

elevated CO2 there were no significant differences between treatments in both years. A similar 

decline in the rates of fine root production between the two years was observed by Thomas et ai. 

(1997). 

Table 4-2 Changes of measured 10 at r = 0.35 m, F and PI between the first and second years 
after trees were planted. Enhancements were not statistically significant (p>O.I). 

10 (r = 0.35 m) 

F (or I) 

Enhancement at elevated CO2 concentration (%) 

Year J (July to March) 

30 

23 

41 

Year 2 (April to March) 

9 

13 

33 
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The larger decrease in the ratio oflo to F between the first and second year at elevated CO2 

concentration may be partly attributed to the reducing proportion of fine root biomass at 

r = 0.35 m (see Figure 4-8 and Thomas et al. 1996). Throughout the study there was a higher 

concentration of fine roots close to the tree stem, but as the tree basal area increased more roots 

were observed further from the tree stems in the horizontal and vertical directions, thus allowing 

greater exploitation of the soil volume (Figure 4-8 and Table 4-1). This was largely a response to 

above-ground demand for nutrients and water. After two years, the estimatedfo, measured at 

r = 0.35-m, was higher than the-plot averages by 21 % for the ambient treatment and by 26% in the 

elevated treatment. As the root systems expanded radially then the position of the average plot 

flux density would have also increased radially from the stem. 

There are few reported soil surface carbon flux density data for tree-soil systems at elevated 

CO2. concentration. In a 3 year study of Pinus ponderosa growing in open-top chambers, fluxes 

were an average of 35 % greater at elevated than ambient CO2 concentration (Vose et al. 1997). 

They estimated the carbon flux during the growing season to be 235 g m-2 for the ambient 

treatment and 319 g m-2 for the elevated treatment based on measurements made over three 

periods. In another study,1o increased by 22 to 102% in open-top chambers with Pinus sylvestris 

saplings growing at elevated CO2 concentration compared with trees growing in chambers at 

ambient CO2 (Pajari 1995). 

Our estimates are comparable withfmeasurements for fertilised 31-year-old Pinus resinosa 

(red pine) ranging between 451 and 696 g m-2 i l (Haynes & Gower 1995) and for 9-year-old 

Pinus elliottii (slash pine) of 820 g m-2 y-I (Ewel et al. 1987). In both these studies, estimates were 

from soda-lime static chamber measurements which were then adjusted to measurements made 

using dynamic chamber systems with portable gas analysers. Our estimates are much greater than 

the 371 g C m-2 i l for a mixed hardwood forest based on soda lime measurements (Bowden et al. 

1993). Studies have shown that estimates made from dynamic chamber measurements should be 

more accurate than those made from static chamber - alkali absorption measurements which often 

underestimatefparticularly when the flux rates are high (Cropper et al. 1985; Haynes & Gower 

1995; Jensen et al. 1996). 

The strong seasonal temperature effect was evident for measurements of bothfo and soil CO2 

concentrations (Figures4"6a and 4-3). This can be related to the strong influence that soil 

temperature has on the fine root production of these trees (Thomas et al. 1997), and seasonal 

increases in the carbon fluxes were closely related to the increase in root production and biomass 

(Figure 4-6c). Fine root and stem production continued throughout the year but rates were lowest 

over the winter period (Thomas et al. 1997). In addition, the flux measurements could also be 

shown to increase approximately linearly with stem production (Figure 4-6b) which also 

continued throughout the year with lowest rates of increase over the winter. We found that the use 

of an Arrhenius-type model (Lloyd & Taylor 1994) was appropriate to predict the soil surface 



64 

carbon flux density; Changes info were largely explained by changes in temperature at a depth of 

0.05 m. Most methods of estimating the seasonal/from plots with trees do nottake account of the 

effect of changing temperature, and often assume thatfo measurements, often made over a 

relatively short period, are representative of the seasonal average. 

While soil temperature explained the seasonal variability for most of the study period,f and C 

were high in the autumn (March and April) of both growing seasons. This was noted by Thomas 

et ai. (1996) for the first year and may be a result of increased root sink activity. However, this 

was not-reflected by an increase in fine root--production-(Thomasetai. 1997). Another explanation 

may be related to the increased sink strength of the mycorrhizal symbiont. It has been 

demonstrated that ectomycorrhizal fungi are a large photosynthate sink (SOderstrom & Read 

1987) and that they may increase photosynthetic rates (Dosskey et al. 1990; Rousseau & Reid 

1990). We hypothesise that some of the autumn increase in carbon fluxes was related to an 

increased mycorrhizal demand for carbon for the late-summer - autumn growth of fungal 

mycelium and epigeous fruiting bodies (Smith & Read 1997). Large initial soil CO2 

concentrations and fluxes in the first winter (June and July 1994; Figures 4-3 and 4-5) were 

possibly related to increased below-ground carbon allocation and use related to an establishment 

stage of rapid root growth after the trees were planted. The first root growth was observed at 0.3 m 

in July at elevated CO2 concentration (Thomas et al. 1996). The addition of a carbon (and 

nutrient) source of forest floor litter, to encourage the mycorrhizal infection of roots, may have 

stimulated growth of the microbial biomass in a soil system that was previously carbon limited. 

Soil CO2 concentrations were consistently higher at all the depths measured in the elevated 

CO2 plots, this is consistent with greater root length density. Invariably, the soil CO2 

concentrations increased with depth. At a depth of 0.5 m concentrations were up to 35 times 

greater than above the surface concentrations in the elevated treatment. The maximum 

concentrations would have occurred deeper than 0.5 m. Root respiration and rhizodeposition 

would have occurred to 1.4 - 1.5 m, the depth to which fine roots were observed (Thomas et ai. 

1997). Reported maximum soil CO2 concentrations range between 0.04 and 13% (Amundson & 

Davidson 1990). Seasonal changes in the depth to which soil respiration occurs and relative 

surface activity (i.e. model parameters Land n) are also consistent with changes in root activity 

(see Cook et ai. 1997). 

Both/o and Lv declined exponentially with distance from the tree stem. The very similar 

distribution patterns (i.e. similar values of R) indicate that root and rhizosphere respiration were a 

significant contribution to! Similar findings have been reported by Ben-Asher et ai. (1994a) for 

Prunus amygdaius (almond). They also used a regression model to estimate the depth of the root 

zone. As there was a significant decline in/with increasing distance from the stem it was 

appropriate that a model that described the distribution of /0 should be used to estimate both / 

and F.Low Lv and/o at a distance of 0.8 m from the tree stems (Figure 4-7) suggests that the 
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contribution of fine roots to / towards the outer limits of the plot was low. It also indicates that 

the use of the approximate plot radius of 0.95 m for estimates of F and J was reasonable. 

The radial decline in/with distance from the tree stems indicates the importance of the 

chamber measurement position for the estimation off Our measurements were made at a fixed 

radial distance (0.35 m) from the tree stems. In the second year this would have overestimated J 
by approximately 23%. The trees in this study were grown in a soil with low soil carbon 

concentrations and there was no litter layer. In most forest ecosystems there would be 

considerably more soil organic carbon and surface litter, which would result in a greater 

contribution of microbial respiration from the decomposition of this carbon source. A likely 

consequence of this will be that the relationship between the radial fine root distribution of the 

trees and/would not be as strong as found in this study. However, since significantly higher rates 

of/were observed close to the tree stems, where there was the greatest concentration of fine roots, 

then this should be considered when developing sampling procedures to estimate the soil surface 

carbon fluxes from plots with individual trees, or from forest floors. 

Conclusions 

There was increased carbon lost from the soil surface in the plots with trees growing at elevated 

CO2 concentration. This was closely related to increased root production and biomass. However, it 

remains uncertain whether the rate of carbon loss per unit of fine root length or mass was greater 

at elevated CO2.Soiitemperatureexplained most of the seasonal variation in surface carbon loss. 

However, high carbon losses in autumn, less well explained, may be the consequence of increased 

mycorrhizal sink strength. Methods of seasonal estimation of carbon efflux from the soil surface 

should consider the effect of changing soil temperature. 

Carbon loss significantly decreased with increasing distance from the tree stem. This was 

related to the pattern of fine root distribution; as the fine roots were the main source of carbon for 

f This has important implications for using measurements of/to estimate the carbon flux from 

plots with tree root systems, especially in young stands with low initial soil organic matter,which 

is likely to limit microbial respiration. 
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CHAPTERS 

SYNTHESIS AND DISCUSSION 

Studies of tree growth at elevated CO2 concentrations have shown that biomass is likely to be 

increased and that more carbon will be allocated below-ground (Ceulemans & Mousseau 1994). 

However, there are relatively few studies that have investigated the below-ground carbon fluxes· 

for trees growing at elevated CO2 concentration. In this thesis; the two major below-ground 

carbon fluxes were investigated for Pinus radiata trees over a relatively long time period 

(two-years) compared with other reported studies. 

Most of the below-ground carbon is allocated to fine roots. Carbon may then be lost from 

fine roots by several processes including respiration (root and mycorrhizal), turnover and 

exudation.-Measurements made of COz-carbonefflux at the soil surface (f)are the sum of root 

and mycorrhizal respiration, and microbial respiration. The main source of carbon in the latter 

case is the fine root system. In most ecosystems above-ground litter deposition and the 

decomposition of soil carbon from organic pools with long-residence times are also sources of 

microbial carbon (Landsberg & Gower 1997). However, in this study, the site was selected so 

that the soil carbon content was very low (0.1 %), therefore only likely to have a minimal effect 

on carbon efflux estimates (Figure 4-2). Also, there was no above-ground litter addition from 

the young trees during the study period. Therefore, reasonable estimates of/could be made. 

Pinus radiata above-ground and below-ground production was increased at elevated CO2 

concentration. Stem basal areas were greater at elevated CO2 concentration, from the end of the 

first year of growth; these trees had been significantly smaller when they were planted than 

. those that had been grown at ambient CO2 concentration (Chapter 3). Below-ground carbon 

allocation to fine roots (Chapters 2 and 3) and also the total carbon efflux from the tree-soil 

system (Chapters 2 and 4) was always greater. The relative enhancements after two years were 

similar at elevated CO2 concentration: stem basal area was 13 % greater; total root production 

was 36% greater; and, estimated carbon efflux, based on measurements lfo) at 0.35 m distance 

from each tree, was 29 % greater at elevated CO2 concentration than at ambient CO2 

concentration. 

However, there were seasonal differences in the carbon fluxes between trees growing at the 

two CO2 concentrations. There was earlier, rapid root growth in the first year for the trees 

growing at elevated CO2 concentration (Figure 2-4 and Figures 3-2 and 3-6), the rate of stem 

growth was much greater (Figure 3-3) and soil surface carbon efflux was also much greater in 

the first year (Table 4-2). These rates of increase were not maintained in the second year. 

However, the absolute rates of stem production, fine root production and soil surface carbon 
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efflux remained greater. By the beginning of the second year there was no apparent difference 

. in the timing of rootllroduction·betweewthe two treatment~. --- ..... . 

The reduction in growth rates suggests that-acclimation of growth- at the elevated CO2 

concentration may be occurring, although, after two years, rates were still greater at elevated 

CO2 concentration. Similar changes in growth rates were observed for Pinus taeda for a four 

year period (Tissue et al. 1997). If acclimation does occur it is unlikely that the absolute 

production gained during the early years of growth will be lost. In terms of commercial tree 

production cycles may be reduced as trees come·tomaturity·earlieratelevated CO2 

concentration. 

This is one of the few studies of trees growing at elevated CO2 concentration that has 

investigated the effects on fine root turnover. Fine root longevity was significantly reduced at 

elevated CO2 concentration. This may have important implications if the rates of turnover are 

maintained, potentially leading to increased soil carbon. Ho~ever, this will also be dependent 

on the nature of any environmental feedback that-may result from additional carbon inputs. 

It is apparent from this investigation that more than one growth season is rpI111ired for 

studies of tree growth at elevated CO2 concentration. Particularly for young Pinus radiata trees 

growing in a well-watered and nutrient-unlimited system which had fine root life-spans greater 

than most other tree species that have been recorded, and root loss only occurred after 1 year. 

Similarly, Berntson & Bazzaz (1996a; 1997) only observed significant decreases of Betula 

papyrijera fine root longevity after the first year of growth. For another coniferous species 

(Pinus ponderosa), root longevity was increased at elevated CO2 concentration, however, total 

root loss was still greater as the fine root biomass was larger (Tinge)' et al. 1997). Similar 

species-dependent responses have also been observed for other plants (Fitter eta/; 1996). 

Therefore, longer-term investigations, or studies during later growth stages, are required to 

determine whether tree fine root turnover rates will remain greater or whether acclimation 

occurs after some period. There are practical difficulties associated with studies of large trees. 

There are major physical and cost considerations of exposing trees to elevated CO2 

concentrations. However, long-term exposure of older trees to elevated CO2 concentrations 

from naturally occurring CO2 springs (Hattenschwiler et al. 1997) may also offer ·opportunities 

for investigation of below-ground carbon processes for-those tree-soil systems. 

While the findings of this investigation will be important for determining and modelling the 

whole-tree carbon balances for young Pinus radiata tree responses at elevated CO2 under 

favourable conditions, further information is required for longer-term or larger-scale 

predictions. The responses of ecosystems at elevated CO2 are less certain due to the complex 

nature of soil-plant interactions and the level of understanding of key mechanisms that regulate 

carbon allocation. For ex:ample, there is only limited understanding of the mechanisms that 

determine the amount-of carbon allocated to tree parts (Landsberg & Waring 1997), the control 



68 

of root life-span (Eissenstat & Yanai 1997), and the nature of feedbacks at elevated CO2 

concentration (Berntson & Bazzaz 1996b). Allocation patterns change as trees age (Gower et 

ai. 1996; Ryan et al. 1997). It has been shown that nitrogen has a major effect on tree allocation 

(Beets & Whitehead 1996) and fine root turnover (Keyes & Grier 1981; Axelsson & Axelsson 

1986). However, the direction of below-ground feedbacks at elevated CO2 concentration is 

difficult to predict because of the often complex interactions between the soil carbon and 

nitrogen cycles. Perhaps it is not surprising that, to date, most carbon balance models have 

tended to inadequately treat the soil as a black box (Norby 1997). Evidently, greater effort is 

required to understand below-ground processes before ecosystem responses may be reliably 

modelled. 

Perhaps the greatest reason for having such a limited understanding of below-ground carbon 

processes, especially compared with above-ground processes, is the difficulty of making 

measurements of the carbon pools and fluxes. However, recent technological development and 

improvements in measurement techniques should increase our ability to understand these 

processes; for in<;tance, the minirhizotron system which has been recommended to study the 

carbon dynamics related to fine roots in elevated CO2 concentration studies (Curtis et al. 

1 994a). 

In this study, the minirhizotron system proved to be an effective measurement tool. In terms 

of the seasonal carbon allocation, patterns of fine root production were clearly shown, carbon 

loss from the root system was indicated by fine root loss, and the rate of root turnover indicated 

by root longevity. The horizontal installation of minirhizotrons increased the number of roots 

sampled at each depth making it easier to discriminate and show differences in growth patterns 

between the depths. It was also an effective means of showing the horizontal distribution of 

roots in relation to the tree stems. The characteristic shape of this distribution was then used to 

estimate the total carbon flux from the tree-soil system (Chapter 4). By using measurements at 

each depth, it was also possible to predict the vertical distribution of roots using an appropriate 

model for this tree-soil system. 

A criticism of the minirhizotron technique has been the difficulty of estimating biomass 

from observations (e.g. Majdi et ai. 1992). In this study, measurements of roots immediately 

adjacent to minirhizotron tubes were used to estimate root length density (Lv) and root carbon 

density using relationships established between minirhizotrons and the bulk soil (Figure 2-2). 

There was relatively large variability in the distribution of fine roots recorded beneath the trees, 

at both CO2 concentrations (Figure 2-3 and Figure 4-7). Therefore, it would seem appropriate 

that Lv measurements from the bulk soil are made close to the position of the roots observed on 

minirhizotrons. This is likely to be even more important for a species such as Pinus radiata that 

has inherently low Lv (Nambiar 1983). As soil moisture and fertility were controlled and the 

soit was uniformly packed around the minirhizotron tubes prior to tree planting, then a 
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reasonable relationship between the minirhizotron observations and soil measurements was 

established. 

The nature of the Forest Ecosystems Project, involving the field investigation of responses 

of rapidly growing trees for several years at approximately twice the ambient CO2 

concentration, meant that there were certain practical limitations. A consequence of this was 

the limited number of trees growing in open-top chambers that could be studied, four in each of 

the CO2 concentration treatments. A number of steps were taken to reduce the variability of 

responses notrelated to the two treatments. To remove genetic variability between trees, clonal 

propagation techniques were used to produce trees of genetically identical material (Davies et 

at. 1992). Minirhizotrons and gas sampling chambers were installed prior to the trees being 

planted, eliminating installation disturbance effects on the root systems. The soil was carefully 

and uniformly re-packed. As the soil was a sand without structure, re-packing had not changed 

its physical properties. The selection of the site for its low initial carbon content has already 

been noted. Non-destructive measurements were made, firstly because of the need to study 

seasonal changes but also because of the low number of study trees, which would out-live th~ 

life of this particular study. Regular addition of a balanced fertiliser also removed the influen~e 

of soil fertility (predominantly nitrogen availability) which may affect plant responses at 

elevated CO2 (Stulen & den Hertog 1993) to treatment effects. 

There were large seasonal responses of fine root production and soil surface carbon efflux 

and soil temperature was the main seasonal environmental variable that accounted for these 

responses. Maintaining soil moisture at approximately constant values by irrigation during the 

study eliminated the potential for water-limiting responses of both root production and loss, and·· 

soil respiration. This allowed the use of temperature-based models to aid interpretation of the 

seasonal fine root (Chapter 3) and soil surface carbon efflux (Chapter 4) measurements. Not all 

the seasonal effects could be attributed to temperature. Initial early, rapid root growth at 

elevated CO2 (Figure 2-4 and Figure 3-6) was hypothesised to be an ontogenetic response 

related to a greater supply of carbohydrate from source leaves, while the high late summer and 

autumnfwas possibly a function of increased sink strength and may have been partly related to 

mycorrhizal growth. 

While the use.of horizontal minirhizotrons to measure the seasonal and depth responses of 

fine roots is likely to have been more successful than using angled or vertical tubes there was 

still considerable within treatment variability. Large spatial variability is a common problem in 

root studies. Calculations of the required number of minirhizotrons to give accurate estimates of 

root length are often unrealistic (e.g. Steele et at. 1997). The low number of treatment replicates 

and high within treatment variability meant that treatment differences in absolute fine root 

production or loss were not significant. However, the minirhizotron technique was clearly a 

powerfultool for determining the effect of the CO2 concentrations on root longevity (Chapter 
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3). The data were also able to show a shift in the vertical distribution of fine roots after 2 years 

(Chapter 3). 

Based on the results from this thesis, and from studies that have been cited, there is clearly a 

need for much more extensive investigation of components of the below-ground carbon balance 

and the mechanisms that control the fluxes between them. It is necessary to distinguish 

between, and estimate, the individual below-ground carbon fluxes and pools. For example, root 

and heterotrophic (mycorrhizal and microbial) respiration need to be separated, and this will 

require new or improved techniques. The importance of root exudation should be quantified. It 

is assumed to be small,- but has been found to -be greater at elevated CO2 (e.g. Norby et ai. 

1987). The development of carbon isotopic composition methods (e.g. Paterson et al. 1996) 

may help distinguish between sources of below-ground respiration. A better understanding of 

the nature of feedback processes is required, particularly the effects of resource availability, 

especially nitrogen which is known to have a significant impact on carbon allocation and 

cycling (e.g. root and above-ground litter decomposition). 
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APPENDIX 

A MODEL OF ONE·DIMENSIONAL STEADY·STATE CARBON DIOXIDE 

DIFFUSION FROM SOIL' 

F.J. Cookt, S.M. Thomas\ F.M. Kelliher3 and D. Whitehead3 

ICSIRO Land and Water, Pye Laboratory, GPO Box 1666, Canberra ACT 2601, Australia 
2Lincoln University, Department of Soil Science, PO Box 84, Lincoln, New Zealand 
3Manaaki Whenua - Landcare Research, PO Box 69, Lincoln, New Zealand 

Abstract 

An analytical model is developed for one-dimensional, steady-state diffusion of carbon dioxide (C02) from 

soil with vertical decrease of the source term described by a power function and a constant diffusion 

coefficient. The surface flux density of CO2 from the soil (fm) is derived from integration of the source term 

with depth. The model was tested using two years of monthly measurements of the soil CO2 concentration 

profile in a sand containing a Pinus radiata D. Don tree. Modelled surface flux density (fm) at the base of the 

tree was consistently greater than surface flux density (fo) measured 0.35 m away with an average ratio offm 

to!o of 2.5 (R2 = 0.83). This was explained by decreasing root length density (4) with radial distance from 

the tree stem. An exponential function for decrease of 4 and the surface flux density of CO2 with increasing 

radial distance from the tree stem and an analytical expression of the total CO2 flux from the soil around a 

growing tree root system were derived. Length scales for both the decrease in root length density and CO2 

flux with radial distance were similar. An expression to estimate the radial distance from the tree stem that 

gives an average plot value of CO2 surface flux density was also derived. 

Keywords Roots, carbon dioxide flux, diffusion, soil respiration. 

• Accepted for Ecological Modelling 
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1. Introduction 

The soil as a source or sink in the carbon budget is important for many reasons, including the 

contemporary spectre of possible feedback effects on global climate (Raich and Schlesinger, 

1992; Kirschbaum, 1995). The need to quantify soil fluxes in global carbon budgets, and an aim 

to further understand the regulation of soil fluxes by environmental variables (e.g., by soil water; 

Orchard and Cook, 1983; Cook et at., 1984), has led to the development of models. One type of 

model is phenomenological, and is empirically based on statistical analyses of environmental and 

flux measurements for modal soils (e.g., Howard and Howard, 1993). Other models are based on 

the processes involved that may include the concurrent transport of water and heat (Simunek and 

Suarez, 1993; Suarez and Simunek, 1993; Jensen et ai., 1996). Phenomenological models may 

sometimes provide better predictions of fluxes, but they are limited in their application to a range 

of sites. Process-based models may be deployed across all sites and, as in this study, they can also 

be used diagnostically to elucidate different regulating variables. 

The transport of gases into or out of soil is mainly by diffusion (Glinski and Stepniewski, 1985) 

in response to a sink or source within the soil. For CO2 diffusion out of unsaturated soil, the 

source is the respiration of micro-organisms and plant roots, collectively known as the soil 

respiration. The environmental factors that control this production of CO2 and the processes by 

which the gas moves through soil are reviewed by Amundson and Davidson (1990). The source 

strength or respiration rate usually varies with depth and a power function has often been used to 

describe it mathematically (Romell, 1922 (cited in Glinski and Stepniewski, 1985); Wesseling, 

1962). Combining this vertical function with a solution of the diffusion equation gives a one­

dimensional, steady-state model of soil gas transport. A purpose of this paper is to propose an 

alternative form of the power function. A model is then tested using a set of field data where air 

and soil CO2 concentrations at four depths, and the surface CO2 flux density (fo), were measured 

contemporaneously. The measurements were made on a monthly basis over a two year period in 

an irrigated sand at a site where a Pinus radiata D. Don tree was planted at the start. This allowed 

us to quantify the effects of a growing root system on spatial and temporal variation inj". In 

discussing these results, analytical theory is developed for the scaling of small chamber j" 

measurements up to CO2 flux from field plots containing trees and for estimating the location of 

the plot's average value of surface CO2 flux density. 
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2. Material and Methods 

2.1 Soil CO2 Diffusion Model 

The steady-state transport of CO2 out of soil can be described by the one-dimensional diffusion 

equation: 

d(DdC / dz) 

dz 
=-q (1) 

where D is the diffus-ion coefficient of C02 in the gas-filled pore space (m2 s-'),z is depth (m), Cis 

the concentration of the gas in the gas-filled pore space (kg m-3
) and q(z) (kg m-3 s-') is the source 

term that may be equated with the soil respiration rate. In order to solve eqn (1), the respiration 

rate as a function of depth must be defined, and this has often been done with a function of the 

form: 

(2) 

where Q is the surface soil respiration rate (kg m-3 s-'), L is the depth to which respiration occurs 

(m) and k is a dimensionless attenuation coefficient. Generally, in a soil with growing plants, L 

may be interpreted as the depth of respiring roots, while k determines the shape of the respiration 

rate profile with soil depth. This function was first used for soil gas transport by Romell, 1922 

(cited in Glinski and Stepniewski, 1985) with k = 1 and later by Wesseling (1962) for CO2 

transport with k = 0.25. 

Alternatively, we propose a similar function for q(z): 

(3) 

where n is a coefficient analogous to k, gT is the relationship between soil respiration and 

temperature and go is the relationship between soil respiration and water content (6, m3 m--'). The 

relationship between soil respiration rate and temperature (gT) used was that derived by Lloyd and 

Taylor (1994) which is based on kinetic theory and is: 

(4) 

where Eo is a constant (308.6 OK) analogous to activation energy, T is temperature (OK) and To is a 

base temperature (227.1 OK).). The additional effect of 6 on respiration rate (Orchard and Cook, 

1983; Cook et al., 1984; Linn and Doran, 1984) was not taken into account in this study because 
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the soil was maintained at constant 8 by regular irrigation, but it could be incorporated into the 

-model. When eqn (3) is substituted into eqn(1) the resulting equation can be subject to the· 

following boundary conditions: 

z=O C=C q=Qg , 0' T 

dC 
Z =L D-=O q=O , dz ' 

and solved for C to give: 

Q g T L2 [( )"+2 ] 
CCz) = Co + ( )( ) 1- 1- z/ L D n+l n+2 

where Co is the soil surface atmosphere concentration of CO2• In eqn (6) Q now incorporates a 

constant value of go. as the effect of soil water content variation on q has not been included and 

assumes that D ~" :nvariant with depth. If D is not constant with depth, but may be considered 

invariant over some incremental depth, using eqns (3) and (5), eqn (1) may still be solved in a 

piece-wise manner following Cook (1995). 

The value of D is a function of both temperature (1), water content and soil porosity (P). The 

temperature (OK), dependency was estimated following De Jong and Schappert (1972) and the 

relationship with water content and soil porosity (m3 m-3
) from Sallam et al. (1984) to give: 

( e)3.' 
DC e) = D" P - 2 

P 

where Da is the diffusion coefficient for CO2 in air (m2 s-') at 273 oK. 

For a constant D, eqn (6) may be differentiated with respect to depth and evaluated at z = a to 

give an expression for the CO2 flux density from the soil to the atmosphere (fm) as: 

(5) 

(6) 

(7) 

(8) 

It is also apparent that!,,, is dependent on T. The soil temperature at a depth of 0.05 m, measured 

at the time gas samples were extracted (Thomas et al., 1996) was used in eqns (4) and (7) to 

determine gT and D respectively. This value of gT, the ambient CO2 concentration in the chamber 

(Co), and the measured soil CO2 concentration profile were then fitted to eqn (6) using the 

SIMPLEX algorithm (Careci and Cacheris, 1984). The values of the parameters Q, Land n 

derived from the fitting process were then inserted into eqn (8) along with the value of gT in order 
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to estimatefm. These modelled values of surface CO2 flux density ((",) were compared with­

measured values of surface flux density (fn)madeatO.35m from the base of the tree. 

2.2 Measurements 

Measurements were made at a flat site at Bromley, Christchurch, New Zealand (43° 32' S, 

172°42' E, 9 m above sea level; Thomas et al. 1996). Average annual air temperature is 12.2 °C, 

with a range of average daily temperature from 2.8 to 21.4 °C, and average annual rainfall is 620 

mm. 

The soil is a recently stabilised, weakly-developed dune sand classed as a Typic Ustipsamments 

Sandy Mixed Mesic (Soil Survey Staff, 1990). Throughout the study, no water-table was 

recorded at the site within 1.2 m of the soil surface. The plot was within a large open-top chamber 

that was 4.7 m in diameter and 4.2 m in height. Ambient air was supplied to the chamber by a 

large fan, providing two air exchanges per minute. This was sufficient to maintain temperature 

and humidity within the chamber close to ambient conditions (Whitehead et al. 1995). The root 

system of one tree was isolated from other trees not being studied by digging and burying rigid 

plastic sheets 1.2 m deep into the soil to isolate a sector of the chamber. This gave an 

approximately triangular shaped plot with an area 2.9 m2
• When the plot was established in 

March 1994, all vegetation and surface organic matter was removed. The total carbon content of 

the soil was 1.1 mg g-l. 

In April 1994, a P. radiata tree was planted in the centre of the plot. The roots were inoculated 

with mycorrhizae by including a small quantity of litter from an adjacent forest in the planting 

hole. Irrigation was supplied each night or as required to maintain the sand near field capacity 

throughout the year. Soil water content was measured regularly using the time domain 

reflectometry method (model TRASE, Soil Moisture Equipment Corporation, Santa Barbara, CA, 

USA. 
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2.3 Modelledj (fm) 

The air (i.e., soil surface) and soi l CO2 concentration were measured at monthly intervals from 

July 1994 through April 1996. The soil measurements were made directly beneath the position of 

the tree centre at depths of 0.1 , 0.2,0.3 and 0.5 m (Fig. 1). To facilitate this, the plot's top 0.5 m 

of soil was removed prior to March 1994 and perforated stainless steel tubes (0.30 m long by 14 

mrn internal diameter) covered in nylon mesh were buried horizontally at each depth . Stainless 

steel tubing connected. the soil air sampler to the surface, terminated by a syringe tap preventing 

gas escape and enabling sample collection. The soil was carefully re-packed at the same bulk 

density. A 10 ml soil air sample was extracted for measurements from each depth using a plastic 

syringe. The CO2 concentration of the sample was determined within 24 h by gas chromatography 

(model 8610, SRI Instruments, Torrance, CA, USA) and was corrected using hourly average soil 

temperatures measured at 0.1 , 0.3 and 0.5 m using thermocouples and a datalogger (model CR-I 0, 

Campbell Scientific, Inc. Logan, UT, USA). 

CO2 flux density ~ O.35m C02 gas concentrations 
and temperature 

Figure 1. Schematic diagram of plot showing the placement of the gas samplers and flux density 

measurements in relation to the tree stem and soil surface. 
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2.4 Measured/ ifo) 

The soil surface CO2 flux density was measured monthly. Eight measurements were made in a 

circular pattern at a distance of 0.35 m from the tree stem. The measurement system consisted of 

a portable infrared gas analyser in a closed circuit (flow rate = ca. 0.5 I min-I) coupled to a 

chamber (0.10 m diameter and 0.15 m tall) that was inserted about 10 mrn into the soil (models 

EGM-l and SRC-l, respectively, PP Systems, Hitchins, Herts, UK). The system was described 

originally by Parkinson (1981) and extensively tested recently by Jensen eta!' (1996). The soil 

temperature at a depth of 0.05 m was measured contemporaneously. 

2.5 Radial/ and Lv 

A functional relation between/and radial distance from the tree stem (r) may be written: 

f=/ exp(-rl R)+ygT (9) 

where / is the CO2 flux density from the soil surface due to the roots at r = 0, R is a length scale 

(m) and ris the background soil CO2 surface flux density. The value of ris probably mainly 

microbial respiration but may also include maintenance root respiration (Ben-Asher et al., 1994a, 

b). The radial variation in/was determined by making duplicate measurements in the four 

cardinal directions at distances of (r =) 0.15, 0.35 (the standard measurement location), 0.55 and 

0.75 m from the tree stem. Soil CO2 concentrations were measured at the same time, so that/at r 

= 0 could be modelled. 

Fine root length density (Lv) of roots <1 mrn diameter of four trees growing in open top chambers 

was estimated at 0.3 m depth from acrylic minirhizotrons (length, 1.8 m), installed horizontally, 

directly beneath the trees. The minirhizotron methodology and calculation of Lv is described by 

Thomas et al. (1996). The radial distribution of Lv along the minirhizotron was estimated at the 

same time as the radial measurements of/. The relationship between Lv and r was determined 

from the relation: 

(10) 

where Lv' is the root length density at r = O. 
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3. Results and Discussion 

At the end of the two-year study, in March 1996, root length density (Lv, nun nun-3 x 102
) 

decreased exponentially with radial distance (r, m) from the tree stem (Lv(r) = 9.65 e-6
.
44r

, R2 = 
0.45, Fig. 2)(see also Thomas et ai., 1996). Measured soil CO2 flux density (expressed in terms of 

the mass of carbon) also decreased exponentially from the stem of the tree (Fig. 2). The 

temperature at the time the measurements were made was 14.1 0c, At r = 0 is shown the 

modelled value ofJ", = (l + ygT) based on the measurements of soil CO2 concentration. When 

this modelled data point is included the regression equation if = 7.4 e- IO
·
23r + 2.66) accounted for 

94% of the variation. When the modelled data point is excluded the regression parameters change 

to if= 3.6 e4
.
56r + 2.37) accounting for 99.8% of the variation. The proportionality between Lv and 

fo is manifest in the similarity of length scales 116.44 = 0.15 m for Lv and 1110.23 = 0.10 m or 

114.56 = 0.22 m for f A proportionality between CO2 flux and root length density was also found 

by Ben-Asher et ai. (l994a). The relationship betweenf and r (Fig. 2) explains the difference 

betweenfm from soil CO2 concentration measurements made at r = 0 andfo as measured by a 

chamber at r = 0.35 m (Fig. 7). Additionally, due to the radial decrease in Lv and possible radial 

gradient in soil CO2 concentration, there may have been a radial flux of CO2, which would nqt be 

explained by the one-dimensional nature of our model. However, the vertical gradient in CO2 

concentration will be much greater than the radial gradient, due to the low soil surface 

concentration caused by atmospheric mixing. Hence the one-dimensional model should provide 

an adequate description of the CO2 flux. Also, for the rapidly developing tree root system, there 

was a remarkably consistent difference between!" measured at r= 0.35 m and modelled!, .. at r = 0 

over the two year study. 

When n z 11k eqn (3) gave similar relationships as eqn (2) for normalised values of q/Q and z/L 

(Fig. 3). An explanation for why n z 11k can be found in appendix I where it is shown that in an 

integral sense n = 11k. The effect of increasing n (i.e., > 1) on the respiration rate was to 

concentrate therespirati.on closer to the soil surface. For forests,this corresponds with the 

concentration of roots near the soil surface (e.g., for Pinus radiata plantation forest, see 

Whitehead et al., 1994) and reflects the large contribution of roots to soil respiration (Ben-Asher 

et ai., 1994a,b; Johnson et ai., 1994; Haynes and Gower, 1995). 
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Figure 2. The relationship between root length density (Lv, mm mm-3 x 102
) (e bars are 

standard deviations) and r with a exponential curve (Lv = 4.87 e-9
.
30r

) (--) that accounted for 
99% of the variation. Also shown is the relationship between measured soil carbon dioxide (in 
terms of carbon) flux density (j,,, /lmol C m-2 

S-I) for irrigated Kairaki sand at distances (r. m) of 
0.15,0.35,0.55 and 0.75 m from the stem of a 2-year-old. 4 m Pinus radiata tree in March 
1996 (D). Eight replicate measurements were made in a circular pattern at each distance from 
the stem (bars are standard deviations). At r = 0 i:; shown the modelled value of!" based on the 
measurements of soil CO2 concentration at four depths as described in the text. A least-squares 
regression curve using both the modelled and measured data (f" = 7.4 e- IO

·
23r + 2.66) (--) and 

with only the measured data (j" = 3.6 e-4
.
56r + 2.37) (- - -) accounted for 94% and 99.8% of the 

variation respectively. The temperature when measurements were made was 14.1 °C. 
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Figure 3. Relationships between normalised values of soil respiration rate (qIQ) and depth (z/L) 
calculated using eqns (2) and (3) with the attenuation coefficients k and n set to 0.25,0.5, 1,2, 
3 and 4, respectively. 

At the beginning of field measurements, in winter 1994 and only 2 months after planting the 

- Pinus radiata tree in· the plot, the slope of the CO2 concentration profile with _depth in the soil was 

relatively constant (Fig. 4). The smooth shape and monotonic increase in of all measured profiles 

indicated that the soil was at steady state with respect to CO2 diffusion (Jury et at., 1991, p. 210) 

and that the model (eqn (6» should be appropriate for explaining the CO2 profiles. There was 

good agreement between measured and modelled concentration profiles. The sand contained very 

little organic matter prior to planting of the tree and the tree root system was small at planting. 

Yet the CO2 concentrations with depth at the start of the measurements July 1994 (Fig 4a) were -

greater than measurements made for many months after this time (Fig. 4b). We suggest this may 

be a result of soil and root disturbance at planting. It could also be related to the release of CO2 

from the microbial decomposition of organic carbon rich duff used to inoculate the roots with 

mycorrhizae at planting. Disregarding this initial point with time there was an increasing 

curvature of the CO2 profile near the surface during this study, corresponding with tree growth 

which was nearly 4 m tall by the autumn (April) of 1996 (Figs 4b, c, d) 
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Figure 4. Typical CO2 concentration profiles in a 2.9 m2 irrigated plot of Kairaki sand at 
Bromley, Christchurch, New Zealand on a) 6July 1994 (winter and soon after planting a single 
Pinus radiata seedling in the field plot), b) 18 January 1995 (summer), c) 21 March 1995 
(autumn) and d) 27 February 1996 (late summer and the two-year-old tree was nearly 4 m tall). 
Points (+) and curves (--) are measured and modelled values, respectively. The sand 

contained little organic matter prior to planting of the seedling. Note the high concentrations in 
a) which was the first measurement. 

The model was run with the parameter L constrained to values between 0.5 and 1.5 m. This is 

consistent with roots observed on minirhizotrons installed at 0.9 m from January 1995 (Thomas et 

al., 1997) and water-table depth which was on average 1.8 m (Thomas et at. 1997). The effect of 

the capillary fringe was approximately, 0.5 m in this soil and roots have not been observed deeper 

than 1.4 to 1.5 m (S.M. Thomas, unpublished data). The value ofL attained the minimumsalue 

(of 0.5 m) on two occasions throughout the two years, the maximum value (of 1.5 m) occurred 

eight times. The average was L = 1.0 ± 0.4 m (standard deviation)(Fig. 5a). There was a roughly 
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sinusoidal cycling of L with time that involved 3 - 4 months of L "" 1.5 followed by 1 - 2 months of 
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Figure 5. Courses of (a) the respiration with depth attenuation coefficient (n), (b) surface soil 
respiration rate (Q, kgC m-3 

S-I) and (c) the depth over which respiration occurred (L, m) 
between July 1994 and April 1996 in a 2.9 m2 irrigated plot of Kairaki sand containing a Pinus 
radiata tree planted in April 1994. Also shown is a linear regression of Q (ordinate) and days 
after July 1994 (slope = 1041 X 10-7

, offset = 3.93 x 10-6
) that accounted for 44% of the variation 

(-). 
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Values of n, indicating how respiration is concentrated near the soil surface, varied with time in a 

--rnannenoughlysimilar to L,but the range was between o and 10. The maximum value was 

obtained only once, and the average was closer to the range midpoint at 3.7 ± 3.0 (Fig. Sb). This 

meant that on average, 32% of modelled soil respiration was concentrated between the surface and 

a depth of z/L = 0.1 (S6 and 73% between z/L = 0 to 0.2 and 0 to 0.3, respectively). 

We interpret changes in and Land n to be strongly related to root activity. Increases in both 

-parameters to maxima in November and December in the first year of measurements are consistent 

with fine root relative growth rates which peaked in December and January at depths 0.3 and 

O.lm, respectively (Thomas et al. , 1997). From the mid-winter (July) to mid-summer 

(December), L increased from O.S m to 1.S m and this is consistent with an observed increase in 

rooting depth from 0.1 m at planting to 0.9 m (Thomas et aI., 1997). Similar responses of n were 

observed in the second year of root production, with L at a maximum during the period of greatest 

root production. Root relative growth rates increased from early November to maxima in 

December and January at a depth of 0.1 m (Thomas et al., 1997). 

A linear regression through the values of Q indicated that it increased by a factor of eight over 

the two years of measurement (slope = 1.41 x 10-7 (kg m-3 
S-I) dai l

, R2 = 0.44; Fig. Sc). This 

corresponded with expansion of the planted tree's root system (see Fig. 4 of Thomas et al., 1996). 

An explanation for the relatively high initial value of Q (July 1994) is given above. Superimposed 

on the two-year trend of increasing Q was a sinusoidal variation of an amplitude that increased 

with time. Since the temperature effect had been removed withgr this variation is related to root 

and the soil micmbial processes. -The increase in Q may be related to increased root growth in 

spring through to autumn (Thomas et aI., 1997) and the availability of rhizosphere carbon for 

heterotrophic respiration. Lower root growth rates were found in winter (Thomas et aI., 1997). 

Root turnover was low in the first year increasing in spring of the second year concurrently with 

root production. 

Combining L, nand Q, 1,,, calculated from the soil CO2 profiles followed Q, but with a seasonal 

-variation (due togr) superimposed on the increase with-time. The value off,,, increased by a factor 

of 2.S over the two years. It was not possible to conduct a corresponding measurement off at the 

same location because of the tree's stem. However, there was an excellent correspondence 

between measuredf" andf,,, throughout the two years after tree planting when values were 

normalised with respect to the first date of comparison (Fig. 6). However,f,,, was consistently a 

factor of 2Sgreater than the measured values (R2 = 0.83)(Fig. 7). 
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Figure 7. The relationship between mean measured and modelled CO2 flux density 
(Ilmol C m-2 

S-I) for irrigated Kairaki sand over two years after planting a Pinus radiata 
seedling that obtained a height of nearly 4 m. The eight measurements were made in a circular 

- pattern at a distance of 0.35 m from the tree stem (bars are standard errors), while modelled 
values were based on soil carbon dioxide concentrations directly beneath the stem. The linear 
regression through the origin had a slope of 0.39 and it accounted for 83 % of the variation. 
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From eqn{9) and the exponential relationbetweenfand r in Fig. 2; we find that R = 0.22 or 

0.1 m depending on whether the modelled value of fis used to determine R. This result has 

implications for the sampling of and estimation of the soil CO2 fluxes from plots of trees in 

carbon budget studies. The total flux of CO2 (F) out of a plot containing a tree can be found by 

integrating eqn (9) with respect to r: 

(11) 

where x = rlR is a dimensionless radius. Further, the average soil CO2 flux density (f ) from the 

plot is simply F-divided plot area (nr): 

(12) 

For a tree root system extended to x = 3, we can use eqn (12) to quantify 1 = 0.18/ + ygT. 

Moreover, the radius at whichf = f (r) can be found by equating eqns (9) and (12) and solving 

for r to give: 

- 1 { [1 -e -x (x + I)]} r = -R n 2 2 
X 

(13) 

Again letting x = 3, eqn (10) indicates that r = L7R. The value oLR was either 0.22 or 0.1 m 

depending on whether the modelled value was used in determining it. The corresponding 

values of rare 0.17 or 0.37 m in our study. The location of the fmeasurements at r = 0.35 m 

were either too far away from the stem of the tree to give the average flux, or approximately the 

correct distance. Examination of Fig. 2 indicates that the difference between the flux at 0.17 m 

and 0.35 m is not large. Calculation of the f values calculated from the in, and gT values and 

the values of Rand ydetermined in Fig. 2 are shown in Fig. 8 and compared with measured 
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values at r = 0.35 m. Both estimates of f are close to the measured value f, for dates after 

21/3/95~ Priorto this date except for the first point the values are overestimated. This is due to 

the value of ybeing too large. This is clearly shown by the fact that the estimated values of f 

are greater than!.,. This indicates that an increase in yoccurred at some time between August 

1994 and March 1995. This increase occurred just prior to 21/3/95 and corresponds with the 

period of root growth at depths of 01 am 0.3 m (Thomas et at., 1997) This suggests that the 

increase in 'ywas due to either an increase in the maintenance respiration of the roots or a 

stimulation of the microbial respiration associated with the growth of roots. Consequently, 

althoughJo was less than/n .. it was a reasonable approximation of the average value of CO2 flux 

density from our tree plot for the period from March 1995 to April 1996. 

3.0 

.- 2.5 T'" 
I en 

C}I 
2.0 E 

0 
0 1.5 
E 
~ 1.0 -'+-

0.5 
, 

""' .... ' ............ - ...... ..,.. , 
0 
~ 
0') 

'S 
"""') 

~ ~ ~ ~ ~ ~ LO LO LO LO LO LO LO LO LO LO <0 <0 CD 
0') 0') 0') 0') 0') 0') 0') 0') 0') 0') 

0') 0') LO 0') 0') 0') 0') 0') 0') 0') 

Cl Cl a. > () .c L... 
L... ~ 

0') a. () () .0 L... 

t5 c:: c:: t5 c:: 
:J :J Q) 0 Q) CO Q) CO 

~~ ::J :J Q) Q) Q) CO Q) CO 
« « (J) 0 Z 0 """') LL. ~ """') """) (J) 0 0 0 """) LL. ~ 

CD ('I') 0 t-- t-- ~ 0 CO ~ T'" C\J 0') t-- ~ C\J CO LO 0 T'" t-- 0') 
0 0 ('I') C\J C\J C\J C\J T'" T'" C\J T'" 0 0 0 T'" T'" 0 C\I ('I') C\J C\I 

Figure 8. Comparison of the measured (+- -+), modelled (~), and average flux densities 
(R = 0.22 m 0--0, R = 0.1 m 0--0). 

CD 
0') 
L... 

a. « 
t--
T'" 



97 

Acknowledgments 

This work was supported by the CSIRO Land and Water Care programme and a Manaaki Whenua 

- Landcare Research Hayward Fellowship to the senior author. F.M. Kelliher and D. Whitehead 

thank the New Zealand Foundation for Research, Science and Technology for their continued 

support of our international collaborative research. S.M. Thomas was funded by a Lincoln 

University Doctoral Scholarship-and the New Zealand Forest-Research Institute. Funds for 

instrumentation used to measure root distribution were provided by a grant from the New Zealand 

Lottery Grants Board. We are grateful to I.N. Byers, R.I. Cresswell, I.E. Hunt, AC. Leckie, T.M. 

McSeveny, G.N.D. Rogers and N.P. Smith for technical support and I.R. Knight, W.S. Meyer and 

R Leuning for providing valuable comments on a draft of the manuscript. 

REFERENCES 

Amundson, R.G. and Davidson, E.A, 1990. Carbon dioxide and nitrogenous gases in the soil 

atmosphere. I. Geochem. Exploration, 38: 13-41. 

Ben-Asher, I., Cardon, G.E., Peters, D., Rolston, D.E., Biggar, I.W., Phene, C.I. and Ephrath, I.E., 

1994a. Determining root activity distribution by measuring surface carbon dioxide fluxes. Soil 

Sci. Soc. Am. I., 58: 926-930. 

Ben-Asher, I., Cardon, G.E., Peters, D., Rolston, D.E., Biggar, I.W., Phene, C.I. and Hutmacher, 

RB., 1994b. Determining almond root zone from surface carbon dioxide fluxes. Soil Sci. Soc. 

Am. 1., 58: 930-934. 

Careci, M.S. and Cacheris, W.P., 1984. Fitting curves to data. The simplex algorithm is the 

answer. Byte, 9: 340-362. 

Cook, F.I., 1995. One-dimensional oxygen diffusion into soil with exponential respiration: 

analytical and numerical solutions. Beo1. Modelling, 78: 277-283. 

Cook, F.I., Orchard, V.A. and Corderoy, D.M., 1984. Effects of lime and water content on soil 

respiration. N. Z. I. Agri. Res., 28: 517-523. 

De long, Eo and Schappert, H.1.V., 1972. Calculation of soil respiration and activity from CO2 



98 

profiles in the soil. Soil ScL, 113: 328-333. 

Glinski, J. and Stepniewski, W., 1985. Soil Aeration And Its Role For Plants. CRC Press, Boca 

Raton, 229pp. 

Haynes, B.E., and Gower, S.T., 1995. Belowground carbon allocation in unfertilised and fertilised 

red pine plantations in northern Wisconsin. Tree Physio., 15: 317-325. 

Howard, D.M., and Howard, P. J. A., 1993. Relationships between C02 evolution,moisture 

content and temperature for a range of soil types. Soil Bio. Biochem., 25: 1537-1546. 

Jensen, L.S., Mueller, T., Tate, KR, Ross, DJ., Magid, J. and Nielsen, N.E., 1996. Measuring 

soil surface CO2 flux as an index of soil respiration in situ: A comparison of two chamber 

methods. Soil Bio. Biochem, 10-11: 1297-1306. 

Johnson, D., Geisinger, D., Walker, R, Newman, J., Vose, J., Elliot, K and Ball, T., 1994. Soil 

pC02, soil respiration and root activity in CO2 -fumigated and nitrogen-fertilized ponderosa 

pine. Plant and Soil, 165: 129-138. 

Jury W.A, Gardner, W.R and Gardner, W.H., 1991. Soil Physics. J. Wiley, New York, 328pp. 

Kirschbaum, M.U., 1995. The temperature dependence of soil organic matter decomposition, and 

the effect of global warming on soil organicCstorage. Soil Bio. Biochem, 27: 753-760. 

Linn, D.M. and Doran, J.W., 1984. Effect of water-filled pore space on carbon dioxide and nitrous 

oxide production in tilled and nontilled soil. Soil Sci. Soc. Am. J., 48: 1267-1272. 

Lloyd, J., and Taylor, J.A., 1994. On the temperature dependence of soil respiration. Functional 

Ecology, 8: 315-323. 

Orchard, V.A. and Cook, F. J., 1983. Relationship between soil respiration and soil moisture. Soil 

Bio. Biochem, 15: 447-453. 

Parkinson, K J., 1981. An improved method for measuring soil respiration in the field. J. Applied 

Ecology, 18: 221-228 . 

.. Raich, J.W. and Schlesinger, W.H., 1992. The global carbon dioxide flux in soil respiration and its 



99 

relationship to vegetation and climate. Tellus, 44B: 81-99. 

Sallam, A., Jury, W.A. and Letey, J., 1984. Measurement of gas diffusion coefficient under 

relatively low air-filled porosity. Soil Sci. Soc. Am. J., 48: 3-6. 

Simunek, J. and Suarez, D.L., 1993. Modeling of carbon dioxide transport and production in soil 

1. Model Development. Water Resour. Res., 29: 487-497. 

Soil Survey Staff, 1990. Keys To Soil Taxonomy, 4th Edition. Virginia Polytechnic Institute and 

State University, Blacksburg, Virginia. 

Suarez, D.L. and Simunek, J., 1993. Modeling of carbon dioxide transport and production in soil 

2. Parameter selection, sensitivity analysis,and comparison of model predictions to field data. 

Water Resour. Res., 29: 499-513. 

Thomas, S.M., Whitehead, D., Adams, J.A., Reid, J.B., Sherlock, R.R. and Leckie, A.C., 1996. 

Seasonal root growth and soil surface carbon fluxes for one-year-old Pinus radiata trees 

growing at ambient and elevated carbon dioxide concentration. Tree Physiol., 16: 1015-1021. 

Thomas, S.M., Whitehead, D., Reid, J.B., Cook, F.I., Adams, J.A., and Leckie, A.c., 1997. 

Production, loss and vertical distribution of Pinus radiata fine roots growing at ambient and 

elevated CO2 concentration, Global Change Biology (Submitted). 

Whitehead, D., Kelliher, F.M, Lane, P.M, Pollock, D.S 1994. Seasonal partioning of evaporation 

between trees and undestorey in a widely spaced Pinus radiata stand. J. Applied Ecol., 31:528-

542. 

Whitehead, D., Hogan, K.P., Rogers, G.N.D., Byers, J.N., Hunt, J.E., McSeveny, T.M., Hollinger, 

D.Y., Dungan, R.I.; Earl, W.-B.and Bourke, M.P., 1995 Performance oflarge open-top 

chambers for long-term field investigations of tree response to elevated carbon dioxide 

concentration. J. Biogeography, 22: 307-313. 

Wesseling J., 1962. Some solutions of the steady state diffusion of carbon dioxide through soils. 

Netherlands J. Agric. Sci., 10: 109-117. 



100 

Appendix I 

For the functions: 

f(x) = (1-x)" 

and 

Integration with respect to x for the range x = 0 to x = I gives respectively: 

il I 
f(x)dx~ 

o n+I 

f~g(x) = 1+ 11 k 

Equating (A3) and (A4) results in n = 11k. 

(AI) 

(A2) 

(A3) 

(A4) 
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