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Abstract

Tree mortality is a fundamental process governing forest dynamics, but understanding tree mortality patterns is challenging
because large, long-term datasets are required. Describing size-specific mortality patterns can be especially difficult, due to
few trees in larger size classes. We used permanent plot data from Nothofagus solandri var. cliffortioides (mountain beech)
forest on the eastern slopes of the Southern Alps, New Zealand, where the fates of trees on 250 plots of 0.04 ha were
followed, to examine: (1) patterns of size-specific mortality over three consecutive periods spanning 30 years, each
characterised by different disturbance, and (2) the strength and direction of neighbourhood crowding effects on size-
specific mortality rates. We found that the size-specific mortality function was U-shaped over the 30-year period as well as
within two shorter periods characterised by small-scale pinhole beetle and windthrow disturbance. During a third period,
characterised by earthquake disturbance, tree mortality was less size dependent. Small trees (,20 cm in diameter) were
more likely to die, in all three periods, if surrounded by a high basal area of larger neighbours, suggesting that size-
asymmetric competition for light was a major cause of mortality. In contrast, large trees ($20 cm in diameter) were more
likely to die in the first period if they had few neighbours, indicating that positive crowding effects were sometimes
important for survival of large trees. Overall our results suggest that temporal variability in size-specific mortality patterns,
and positive interactions between large trees, may sometimes need to be incorporated into models of forest dynamics.
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Introduction

Size-specific mortality rates of trees have a fundamental

influence on the structure [1–3] and composition [4,5] of forests,

influence geographical range limits [6], determine forest carbon

storage capacity [7], and can be sensitive to climatic change [8,9].

A U-shaped size-specific tree mortality pattern is sometimes

observed when measurements are made over large areas or long

time frames [10–12]. Such a pattern is thought to be largely a

consequence of asymmetric competition for light causing relatively

high mortality of small trees and exogenous disturbance often

causing relatively high mortality of large trees, while trees of

intermediate size are less affected by either process [4,13].

A wide range of abiotic and biotic factors can cause tree

mortality and includes both random and deterministic events (e.g.

[14–16]). Some factors may weaken trees while other’s directly

cause tree mortality [17]. Competition for light among neighbours

has long been considered a key factor controlling tree death,

particularly for small trees in a population [18]. Light competition

is strongly size-asymmetric because light is directionally supplied

from above and pre-empted by larger individuals, in contrast to

competition for below-ground resources, which is usually assumed

to be size-symmetric [19]. Shaded plants often have relatively slow

growth and are more likely to die (e.g. [5,20–23]). Because size-

asymmetric competition is less important for taller trees, which are

on average less shaded by neighbours, mortality rates should

progressively decline with tree size if size-asymmetric competition

is the dominant cause of tree mortality [24].

Exogenous disturbance is also a major cause of tree mortality

[25], but its size dependence is hard to quantify because the many

types of disturbance differ in their impacts. Strong windstorms

commonly cause greater mortality among larger or taller trees

[26–28], so windstorm damage is predicted to generate an

upwardly rising tail leading to a U-shaped size-specific mortality

curve. Indeed, for large trees, competition may be such an

unimportant cause of mortality, relative to disturbance, that the

loss of competing neighbouring canopy trees may even increase

mortality of remaining trees because of increased susceptibility to

disturbance (e.g. [29,30]). Such a shift in the effects of

neighbourhood crowding with increasing tree size, from compet-

itive (i.e. negative neighbourhood crowding effects) to positive

neighbourhood crowding effects, would be expected if a later life

stage was particularly susceptible to certain stress [31,32] or

disturbance mechanisms [33].

A challenge for our study is to understand reasons for variability

observed in the shape of size-specific mortality patterns (e.g.
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[34,35]). One explanation for such variability is that over small

spatial or temporal scales, either competition or disturbance may

have a dominant influence on forest structure and dynamics

[4,10]. In addition, not all disturbances are size-discriminative and

infrequent disturbance events such as landslides, hurricanes,

tornados, volcanic eruption and earthquakes may kill trees across

all size-classes (e.g. [36]). Depending on the nature of disturbance,

size-specific mortality curves could change dramatically in form,

from U-shaped to essentially size invariant, yet few studies have

explored how the form of these curves, and the mechanisms

behind them, change over time in the presence of different

disturbance events (e.g. [37]).

This paper examines how size-specific mortality is affected by

neighbourhood crowding and different types of disturbance, using

a Bayesian framework to model individual tree mortality. We work

with data collected over 30 years from tagged individuals on

permanently marked plots within a single-species, mixed-aged

forest. Our analyses allow us to evaluate how mortality varied in

relation to risk factors for individual trees, in contrast to earlier

characterizations of stand-level mortality rates [3]. Nothofagus

solandri var. cliffortioides (Hook. f.) Poole (mountain beech) grows

naturally on the eastern side of New Zealand’s Southern Alps and

forms monospecific stands over most of its range. It is a relatively

light demanding species [38] so individuals growing with taller

neighbours tend to have relatively slow growth rates [39]. The

predominant disturbance agent within our forest varied over the

study period. Snow and windstorms induced a pinhole beetle

outbreak over the first 9 years, which mainly caused death of large

trees [40,41]. The forest was relatively stable over a second, 10-

year period, when mortality chiefly resulted from small-scale

windthrow and there was no evidence of major landscape-scale

disturbance events. A third period was characterised by an

earthquake that caused widespread tree mortality through

landslides [36]. We model mortality processes in each of these

three periods to unravel the ways in which disturbance and

neighbourhood crowding affect size-specific mortality functions.

We hypothesised that U-shaped size-specific mortality patterns

would be most apparent over long time intervals, which we

addressed by examining mortality patterns over the entire 30-year

period, and comparing this to patterns over each of the three

periods characterised by different disturbance regimes. Specifical-

ly, we predicted that a U-shaped size-specific mortality pattern

would be most evident where disturbances primarily impacted

large trees (during the first and second periods) and less apparent

in the third period where landslide disturbance tended to be size-

indiscriminative [36]. By analysing individual-tree mortality over

these three periods, with different disturbances, we attempted to

evaluate the role of ‘regular’ versus ‘irregular’ drivers of size-

specific mortality (e.g. [42]). We also hypothesised a shift from

negative neighbourhood crowding effects (competitive) for small

trees to positive neighbourhood crowding effects for large trees

(particularly for the first two periods).

Materials and Methods

Study area and data collection
The 200-km2 study area (43u109S, 171u359E) centred on the

Craigieburn Range, South Island, New Zealand, is mountainous

with peaks over 2000 m in elevation and valley bottoms down to

600 m elevation. Nothofagus solandri var. cliffortioides is the dominant

forest tree in this area, often forming monospecific stands, and

living as long as 360 years but typically surviving ,200 years [38].

We utilised plots sampling 9000 ha of forest that included stands

up to the natural treeline at c. 1400 m elevation.

The underlying bedrock is formed of highly shattered, strongly

indurated and intensely folded and faulted Triassic–Jurassic

greywacke sandstones and mudstones [43]. These layers contain

structural weaknesses and are prone to rock-avalanches triggered

by earthquakes [44]. The soils are strongly leached, acidic and

infertile (e.g. [45,46]). At 914 m elevation on the eastern side of the

study area, mean annual temperature is 8.0uC, dropping to 3.8uC
at 1550 m elevation [47]. Mean annual precipitation on the

eastern side of the study area is 1447 mm at 914 m elevation,

rising to at least 1586 mm at 1550 m elevation [47]. An east–west

rainfall gradient is present with the highest mean annual

precipitation of 2500 mm occurring along the western edge of

the study area [48].

Between 1970 and 1973, 250 permanently marked plots

20620 m (0.04 ha) in size were established in mountain beech

forest in the study area. Plots were located at 200-m intervals along

transects, the origins of which were located randomly along

watercourses, until alpine grassland was reached. Each plot was

subdivided into 16 subplots of 565 m, within which the diameter

at breast height (D; 135 cm above ground level) of all trees $3 cm

D were recorded (see [49]). In 1974, plots were remeasured and all

trees uniquely tagged at measurement height. Subsequent

remeasurements identified dead tagged trees during the austral

summers starting in 1976, 1978, 1980, 1983, 1985, 1987, 1993,

1999 and 2004.

We utilise data from all measurements to characterise the forest

disturbance history, but restrict our tree mortality analyses to the

1974, 1983, 1993 and 2004 plot measurements. Mean basal

area declined from 51.560.85 m2 ha21 in 1974, to 46.46

0.98 m2 ha21 in 1983, due to a decade-long pinhole beetle

outbreak (Platypus spp. and associated fungal pathogens) starting in

1970 and associated with woody debris created by unusually heavy

snowfall and windstorms in 1968 and 1973; as well as ongoing

windthrow (Fig. 1; [40,41]). Overall mean basal area did not

change during the 1983 and 1993 periods (Fig. 1), suggesting the

forest was relatively stable and unaffected by major disturbance

events, although windthrow and other causes of small-scale

disturbance were observed [40]. An earthquake in 1994, with an

epicentre 10 km north-west of the study area (Arthur’s Pass

earthquake, Mw 6.7), caused substantial damage to the forests,

with mean basal area declining from 47.661.01 m2 ha21 in 1993

to 45.061.09 m2 ha21 by 2004 (Fig. 1). In a sub-catchment closest

to the epicentre, containing 28 plots, earthquake-induced tree

mortality was 2465%, mostly as a result of widespread landslides

[36]. Based on this information, we selected three periods with

which to contrast size-dependent mortality (Fig. 1): two periods of

forest decline (1974–1983 and 1993–2004) and one period of

relative stability (1983–1993).

Overall size-specific mortality pattern
To describe the way in which mortality varied with tree

diameter, D, we started by fitting a model to the dataset for the

entire 1974–2004 period. We first grouped trees into size-class

bins, with each bin containing an equal number of trees. The

annual mortality rate, m, for each bin was calculated and a

function fitted to the binned data to describe the overall size-

specific mortality pattern:

m~azbD ecD ð1Þ

where a, b and c are parameters. This functional form is highly

flexible, allowing any initial decrease in mortality with increasing

D for the smaller trees to be steeper than any increase in mortality

Size-Specific Tree Mortality
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with increasing D for larger trees [11]. This analysis revealed a U-

shaped relationship between tree diameter and mortality, with a

minimum mortality at a diameter of c. 20 cm (Fig. 2). On that

basis we divided trees into small (3 cm$D,20 cm) and large

(D$20 cm) classes (see also [2]) for fitting individual-based

mortality models to test hypotheses regarding neighbourhood

crowding effects for small v. large trees.

Individual-based mortality models
The conventional approach to modelling tree mortality is to

use logistic regression in a generalized linear modelling

framework, where the survival probability of each tree is

modelled as a linear combination of explanatory variables, such

as tree diameter and competition indices [50,51]. The response

variable is a vector indicating whether or not a tree has died and

the survival probability, S, of the ith tree, in the jth plot, over a

census period of t years, can be expressed as a function of annual

survival rate, s:

Sij(t)~(sij)
t, ð2Þ

where s is usually formulated using a logit link function to map

the probability of survival S, which has range [0, 1], onto the

numerical range (2‘, ‘ ), and k is a linear combination of

explanatory variables that could affect tree survival:

log
sij

1{sij

� �
~kij: ð3Þ

Here, we build on this approach using a Bayesian framework to

fit our models, in order to accommodate two complications

arising from our dataset: first, we were interested in estimating

the annual mortality rates of trees where the census intervals were

not equal for the three periods (9, 10 and 11 years), and second,

our sampling design is hierarchical (trees were sampled within

plots). Assuming a constant annual probability of survival for

each tree through a census period of length t, then the survival

probability for tree i, in plot j, expressed as a function of its

annual mortality rate, mij, is:

Sij(t)~(1{mij)
t: ð4Þ

Using the logit link function, the survival probability of the ith

tree in the jth plot is:

Sij(t)~ 1{ 1zexp({kij)
� �{1

� �t

: ð5Þ

Our sampling design was nested because trees were measured in

plots, so each tree is unlikely to represent an independent

observation with regard to its probability of mortality. We dealt

with this likely non-independence by including a random effect

parameter, a, which took a unique value for each plot modelled as

being drawn from a normal distribution with variance estimated

from the data:

kij~b
0
Xizaj: ð6Þ

We also initially considered models without this random plot

effect, but found that the plot effect improved model fit sufficiently

to justify its inclusion.

Having split the dataset into the small- and large-tree subsets,

we proceeded to model the influence of neighbours on mortality

using two neighbourhood crowding indices. The ‘size-symmetric’

model related mij to the initial basal area of all neighbours within a

15615 m square centred on the 565 m subplot within which a

tree was recorded (BAij in m2 plot21), while the ‘size-asymmetric’

model related mij to the initial basal area of larger-diameter

neighbours within a 15615 m square centred on the 565 m

square within which a tree was recorded (BALij in m2 plot21).

Using a subset of the data (750 random trees for which height was

also measured) there was a strong positive relationship between D

and individual height (Spearman’s Rank Correlation 0.63,

P,0.001) indicating that large-diameter trees are often tall trees,

supporting the use of BAL as a proxy for potential shading effect

on neighbours (e.g. [34,52,53]). In order to calculate these indices

Figure 1. Basal area trend over the study period. Mean (6 SEM)
tree basal area (m2 ha21) for study-area mountain beech forest from
permanent plot measurements between 1970 and 2004. Dashed lines
indicate the plot measurements used in this study to construct
individual-based mortality models.
doi:10.1371/journal.pone.0026670.g001

Figure 2. Size-specific mortality pattern over the 30-year study
period, 1974–2004. Points represent the observed annual mortality
rates, in size-class bins, plotted against the mean diameter (D) of stems
in that size class. There were initially 19 515 trees alive in 1974, of which
9111 had died by 2004. Size-class bins each contained 1000 individuals,
except for the largest size-class bin which contained 515 individuals.
The line was fitted using the function: m = a+bD ecD, where a = 0.0680,
b = 20.000752 and c = 20.00484.
doi:10.1371/journal.pone.0026670.g002
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of crowding, only those trees growing in the central four 565 m

subplots of each permanent 20620 m plot could be used. For each

census period, crowding indices were calculated using the census

data from the beginning of the period (e.g. 1974 data were used for

the 1974–1983 period).

To examine the potential for collinearity amongst explanatory

variables, we calculated Variance Inflation Factors (VIF) for each

possible combination of variables [54]. A conservative approach is

to only fit combinations of variables that have VIFs,3 [54]. Our

asymmetric (i.e. BAL) and symmetric (i.e. BA) neighbourhood

crowding indices strongly covaried and typically resulted in

VIF.3, so we did not include both indices in the same model.

For other combinations of variables VIF was always ,1.5, well

below the level at which collinearity between variables is likely to

be problematic [54].

Separate individual-based mortality analyses were conducted

for the three census periods (1974–1983, 1983–1993, and 1993–

2004) for small and large trees. Sample sizes ranged from 2876

to 3746 for small trees, and 1168 to 1257 for large trees. We first

compared support for size-symmetric (BA) and size-asymmetric

(BAL) models (both models included D as a main effect), for

small and large trees to determine which of the crowding indices

was more strongly associated with individual tree mortality (see

next section for method of comparing model support). Second,

for the best supported model we then included an interaction

between D and the relevant neighbourhood crowding index

(either BA or BAL) to develop a full individual-based mortality

model. Finally, we used these models to assess the effect of

explanatory variables and interactions. The sign of estimated

parameter values for the two crowding indices indicated

whether neighbourhood effects were competitive (i.e. positive

parameter values) or positive (i.e. negative parameter values).

Our full model containing the size-symmetric neighbourhood

crowding index was:

kij~b0zb1lnDizb2BAizb3lnDiBAizaj, ð7Þ

while the full model containing the size-asymmetric neighbour-

hood crowding index was:

kij~b4zb5lnDizb6BALizb7lnDiBALizaj: ð8Þ

Model fitting and comparison of alternative models
The first step in fitting our Bayesian models was to define, for

each model, the likelihood function. During each census period

there were j = 1 to K plots, with each plot having i = 1 to Nj trees

alive at the first census. At the end of each census period, tree i in

plot j was assigned a value of 1 if it died in that census period

(dij = 1) or zero if it remained alive (dij = 0). Given the probability

that tree i in plot j survived to time t is Sij(t), and the probability

that it died in the same period is 12Sij(t), the likelihood function

for our sample of trees is:

L~ P
K

j~1
P
Nj

i~1
1{Sij tð Þ
� 	dji Sij tð Þ

1{dij

� �" #
: ð9Þ

We estimated the parameters in our models using this likelihood

function in a Bayesian model framework using OpenBugs v2.10 [55]

called from the BRugs package from R v. 2.7.0 [56]. These

methods were chosen because they allow for simple and efficient

estimation of parameters and their confidence intervals, and

allowing uncertainty in parameter estimates to be directly

propagated into predictions. To improve model convergence

and computation time, the explanatory variables were standard-

ised by subtracting their mean and dividing by two standard

deviations (e.g., [57]; see Table S2).

The next step in fitting our Bayesian models was to give all

parameters starting values and a prior distribution [57]. In our

case these were non-informative, to allow the data to drive

parameter estimation. The fixed-effect parameters were assigned

normal prior distributions with mean 0 and standard deviation

100. The variance term for the plot random effect was given a

broad uniform prior on the standard deviation [57].

To run the models we performed three MCMC (Markov Chain

Monte Carlo) simulations with different starting values, to provide

confidence in the model results. For all runs of the models, a burn-

in phase of 100 000 iterations was identified as suitable through

visual examination of the chain traces, to ensure each model had

converged. We continued each MCMC run for a further 100 000

iterations and used the last 50 000 iterations of all three runs (i.e. a

sample of 150 000 in total) to obtain posterior distributions for

each parameter. From these we derived mean values and 95%

credible intervals. For each model, we checked convergence for

each parameter using the potential scale reduction factor R̂R (at

convergence R̂R = 1; [57]).

Finally, we used the Deviance Information Criterion (DIC) to

compare the relative fit of the size-symmetric and size-asymmetric

models. DIC balances model fit with complexity, and is given by

D̂D+2pD, where D̂D is a point estimate of the deviance at the

posterior mean of the parameters, and pD is the ‘effective number

of parameters’ [57,58]. Models with lower DIC values indicate a

better fit to the data, where differences $5 are regarded as

substantial evidence, and differences $10 are regarded as very

strong evidence, in favour of the model with the lowest DIC.

Relationships between explanatory variables and
mortality

From the best-supported models for small and large trees,

over each census period, we used the sampled posterior

distribution for each parameter to examine relationships

between significant explanatory variables (e.g. D, BA, BAL)

and mortality rate. For example, for each value of BAL across

the range in our original dataset we sampled 20 000 times from

the parameter estimate posterior distributions of the appropriate

model, calculated the predicted mortality rate and graphed the

mean and 95% credible interval for each value of BAL. We used

a similar procedure to plot significant predicted mean

relationships between D and mortality rate, as well as predicted

mortality at low (5% quantile of values in our sample) and high

(95% quantile of values in our sample) levels of neighbourhood

crowding (using BAL for small trees and BA for large trees)

when significant.

Assessing model fit
We took several approaches to appraise the adequacy of the

final models. For small and large trees, over each census period,

the final models were used to estimate a mortality probability for

each tree, using the mean values of the posterior distribution of

each parameter estimate. Trees were grouped by mortality

probability and the proportion of individuals in each group that

died during each census period determined (e.g. [26,35]). In a

well-fitting model, the proportion of individuals in each probability

group that died will be roughly equal to the midpoint of the

Size-Specific Tree Mortality
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probability interval. To assess the discriminatory power of all

models we also calculated the AUC (area under the receiver

operating characteristic curve), using the ROCR Package in R

2.7.0 [59]. AUC values.0.8 indicate a model has excellent

discriminatory power and values.0.7 indicate good discriminato-

ry power [60].

Results

Overall mortality rates and size dependence
The overall mean annual mortality rates were 0.022, 0.019, and

0.018 through the 1974–1983, 1983–1993, and 1993–2004

periods respectively. The size-specific mortality function was U-

shaped over the 30-year study period with observed mortality rates

highest in the smallest sized trees (e.g. maximum rate c. 0.05 for

trees c. 3.5 cm D), least in intermediate sized trees (minimum rate

c. 0.01 for trees c. 20 cm D) and then steadily increased for the

largest trees (maximum rate c. 0.04; Fig. 2). Notably the decline in

mortality with increasing tree size for small trees was much steeper

than the increase in mortality with size for large stems. Similar

patterns were observed over the 1974–1983 and 1983–1993

periods, but not over the 1993–2004 period (Fig. 3).

For small trees, the estimated mean parameter values for D

were consistently negative (Fig. 4; Table S1) over all three periods,

indicating a decline in mortality with tree size (Fig. 3). We noted

an anomaly, however, where observed mortality rates (compared

with modelled rates) during the 1993–2004 period were much

lower for the very smallest trees (e.g. ,6 cm D; Fig. 3); further

analyses showed this pattern was driven by trees in stands with low

mean D (,6 cm).

For large trees, individual-based models reflected the variable

size-dependence of mortality we observed between periods (Fig. 3).

Over the 1974–1983 and 1983–1993 periods mortality increased

with tree size, as shown by the positive mean parameter estimates

for D (Fig. 4; Table S1). Over the 1993–2004 period, as we

hypothesised, mortality was size-independent – as the 95%

credible intervals for the mean parameter estimates for D

intersected zero (Fig. 4).

Effects of neighbourhood
For small trees, during all three periods, the size-asymmetric

model fitted the data better than the size-symmetric model, as

indicated by lower DIC values, with the difference between these

models .20 in each period (Table 1). The estimated mean

parameter values for the size-asymmetric terms were positive for

all periods (Fig. 4), implying higher rates of mortality among trees

with more large neighbours (higher BAL; Fig. 5a). This is

consistent with our hypothesis that crowding has negative (i.e.

competitive) neighbourhood effects and contributes to the death of

small trees. Negative values for an interaction term between D and

BAL in the full model for the 1983–1993 period of relative stability

(Fig. 4) indicated that the influence of BAL on mortality declined

with increasing D (Fig. 3).

For large trees, there was evidence that the size-symmetric

models fitted the data better than size-asymmetric models in the

1974–1983 and 1983–1993 periods (Table 1), whereas there were

few grounds to prefer either model in the 1993–2004 period (i.e.

DDIC = 2). Over the 1974–1983 period the mean parameter value

for the size-asymmetric term (BA) was significantly negative (Fig. 4)

implying higher rates of mortality among trees with lower

neighbouring basal area (Fig. 5b). For this period, the pattern is

consistent with our hypothesis that positive neighbourhood

crowding effects can be important for the survival of large trees.

Mean parameter estimates for BA were also negative in the 1983–

1993 and 1993–2004 periods (Fig. 4), although in neither case

were these significant. We proceeded to fit the full size-symmetric

model for all three periods but in no cases did this model receive

greater support than the simpler model (Table 1), and an

interaction term between BA and D was not significant for any

period (Fig. 4).

Assessing model fit
The discriminatory power of the models to correctly identify

living and dead trees, as measured by the AUC, ranged from good

(0.7.AUC,0.8) to high (AUC.0.8) [54] for all models (Table 1),

and in general the AUC value results were congruent with the best

supported models as measured by DIC (Table 1). A close

Figure 3. Temporal variation in size-specific mortality patterns. Size-specific mortality patterns for the three census periods, (A) 1974–1983,
(B) 1983–1993 and (C) 1993–2004; based on separate analyses for small (D,20 cm) and large (D$20 cm) trees. Solid lines show the significant
modelled relationships between mortality and D determined from a simulation drawing on the posterior distribution of parameter estimates. For
small trees (A–C), and large trees (A), the dashed and dotted lines show the significant relationships with neighbourhood crowding (i.e. basal area of
larger neighbours (BAL) for small trees, basal area of all neighbours (BA) for large trees), representing low (dashed) and high (dotted) neighbourhood
crowding (the 5% and 95% quantiles of BAL/BA for small and large trees) respectively.
doi:10.1371/journal.pone.0026670.g003
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correspondence between the observed proportion of trees that died

against predicted mortality probability was observed, but discrep-

ancies from the observed values did occur, typically as underes-

timates of mortality and especially when the predicted number of

trees in a probability category was low (see Figure S1). It is also

notable that the model describing large tree mortality in the 1993–

2004 period resulted in high discriminatory power for predicting

mortality despite the fact that none of the included variables were

significant (Table 1; Fig. 4). The distribution of fitted plot-level

effects, aj, had greater variance over this period, when compared

with the earlier periods (e.g. 1.9460.0 for 1993–2004 cf. 0.8660.0

for 1974–1983 and 0.7960.0 for 1983–1993), as a consequence of

the strongly clustered mortality that resulted from earthquake-

induced landslides.

Discussion

Size-specific mortality patterns and the influence of
disturbance

We found strong support for U-shaped size-specific mortality

functions in the mountain beech forest, particularly, as hypothe-

sised, over the longest time interval. Determining precise mortality

estimates for large trees can be problematic, as they often comprise

a small proportion of a tree population. Large tree mortality rates,

however, have a dominant influence on forest structure and have a

key influence on the results of predictive models of forest

dynamics. Our 30-year dataset for mountain beech, a relatively

light demanding structural dominant, was sufficient to characterise

a pattern of increasing mortality with size for larger trees. Large

trees, rather than small trees, may be more predisposed to the

range of small-scale disturbance factors that operate in these

forests. Windthrow, in particular, is a common feature in

mountain beech forests that influences large trees and was likely

to occur over our periods of both forest decline and stability [40].

Higher mortality rates in large trees may also be attributed to

declining vigour and senescence (e.g. [53]). Explanations for

declining vigour include hydraulic limitation (e.g. [61]), an

increasing ratio of sapwood volume to leaf area (e.g. [62]), and

immobilization of nutrients (e.g. [63]).

The U-shaped mortality pattern we observed over the 30-year

period broke down, as hypothesised, during the 1993–2004 period

characterised by earthquake disturbance (Fig. 3), which was less

Figure 4. Mean parameter estimates for full individual-based mortality models. Parameter estimates are shown for (A) small (D,20 cm)
and (B) large (D$20 cm) trees. Each group of three points, for each parameter, represents estimates for the 1974–1983 (black triangle), 1983–1993
(grey circle) and 1993–2004 (white square) census periods. Bars show the 95% credible interval for the parameter estimates. D = diameter (mm),
BAL = basal area of larger neighbours (m2 plot21), BA = basal area of all neighbours (m2 plot21).
doi:10.1371/journal.pone.0026670.g004

Table 1. Model selection statistics for alternative mortality
models.

Tree size and census
period Model DDIC AUC

Small trees (D,20 cm)

1974–1983 size-asymmetric model 0 0.791

size-symmetric model 56 0.784

full size-asymmetric model 21 0.793

1983–1993 size-asymmetric model 0 0.834

size-symmetric model 27 0.828

full size-asymmetric model 212 0.838

1993–2004 size-asymmetric model 0 0.836

size-symmetric model 26 0.832

full size-asymmetric model 1 0.836

Large trees (D$20 cm)

1974–1983 size-asymmetric model 4 0.878

size-symmetric model 0 0.865

full size-symmetric model 1 0.866

1983–1993 size-asymmetric model 4 0.863

size-symmetric model 0 0.866

full size-symmetric model 3 0.861

1993–2004 size-asymmetric model 0 0.909

size-symmetric model 2 0.907

full size-symmetric model 3 0.907

Models describe mortality processes for small (D,20 cm) and large (D$20 cm)
trees during three census periods. Models were fitted in a Bayesian framework
using MCMC (Markov chain Monte Carlo) simulations. DIC (Deviance
Information Criterion) was used to identify the best-fitting model [51], the
model with the lowest DIC having strongest support. DDIC is the difference in
DIC between the best-fitting ‘main effects’ model (either the size-symmetric or
size-asymmetric model) and the two other alternatives, with the best initial
model having DDIC = 0. Negative DDIC values for full models (which include
interactions) indicate that the incorporation of the interaction improved the
model. AUC provides a measure of overall accuracy of the model at all
probability thresholds [53].
doi:10.1371/journal.pone.0026670.t001
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size-discriminatory than the disturbances predominating during

other periods. Major landscape-scale disturbances can also lead to

structural changes in a forest that subsequently influence the form

of population-level size-specific mortality patterns. For example,

the anomaly we observed during the 1993–2004 period for small

trees, of very low mortality in the smallest size classes, appeared to

be driven by stands with low mean D (,6 cm). Stands dominated

by such small trees became more frequent in that period as a

consequence of a regeneration lag following the earlier Platypus

spp. outbreak. Because we sampled only those stems with diameter

$3 cm, it is likely that competition and self-thinning in such stands

caused high mortality of individuals below our tagging threshold.

Few studies adequately capture variation in size-specific mortality

patterns as a result of different landscape-scale disturbance agents.

Woods [27] found that a storm increased mortality rates of

intermediate to large trees in temperate old-growth hemlock–

hardwood forest. In tropical rainforest, mortality became less size-

dependent when a severe drought caused death of trees across all

size-classes [64]; however, in another study, drought resulted in

higher mortality rates among larger trees, while fire resulted in

high mortality rates among small trees [37]. Thus, our study

contributes to a view that, through time, disturbance can result in

different size-specific mortality functions. That the form of size-

specific mortality functions were idiosyncratic reflects that tree

mortality is a complex process [17,53], and depended on context,

is consistent with conclusions around other ecosystem properties

(e.g. [65]).

Effects of neighbourhood crowding
Our individual-level mortality models allowed us to show that

neighbourhood effects on mortality varied through time, a

pattern not previously exposed using simple stand-level ap-

proaches (e.g. as adopted by [3]). Our study also found that the

net effect of neighbours on mortality shifted from negative

crowding effects for small trees to positive or no crowding effects

for large trees. While a shift in neighbourhood effects with plant

size or life-stage is certainly not without precedent (e.g. [66]) our

study demonstrates that neighbours can sometimes have very

different effects on small- and large-tree performance. Small trees

are likely to have greater susceptibility to competition-driven

mortality (cf. large trees), as we know negative neighbourhood

crowding (asymmetric competition for light) was a key determi-

nant of growth rate in small Nothofagus solandri var. cliffortioides trees

[3]. However, small tree mortality is not always controlled by

competition from larger neighbours. Light competition is less

important for small trees of shade-tolerant species [21,67], while

certain types of disturbance (e.g., earthquakes) can drive mortality

patterns that are unrelated to neighbourhood crowding [36].

Small trees run a greater risk of being crushed and killed by

litterfall (e.g. falling stems and branches) from large neighbours

[68,69]. Larger trees, however, tend to be more susceptible to

disturbance. We expected that mortality of large trees would be

positively influenced by neighbours in periods dominated by

small-scale disturbance. The precise mechanisms behind positive

neighbourhood interactions sometimes being found for large

Nothofagus solandri var. cliffortioides trees remain speculative. We

interpret the important effect of neighbourhood crowding during

the 1974–1983 period as a direct reflection of the disturbance

processes that predominated during that period. For example,

Nothofagus stands with low basal area caused by previous

disturbances, such as snowfall damage, often harbour large

quantities of woody debris which serves as a breeding ground for

the disease-causing pinhole beetle [40]. These beetles are known

to increase mortality among residual trees, and this may be an

example of a positive disturbance interaction (sensu [33]). Pests

and pathogens are generally an important cause of ongoing tree

death [17,70], and their impacts can be related to climate

variation (e.g. [9]). Crowded stands may also provide supportive

or sheltering effects on large trees, which may lessen any impact

of disturbance agents such as wind (e.g. a facilitative effect). This

contrasts with some previous studies which have shown

facilitative effects to generally only benefit younger or smaller

plants (e.g. nurse plants facilitate survival of smaller seedlings in

semi-arid systems; [71]). While the overall size-specific mortality

pattern observed in the 1974–1983 and 1983–1993 periods were

remarkably similar, the different results with respect to neigh-

bourhood crowding suggest that various disturbance types

differed in the degree to which they caused contagion in tree

mortality. It was however unsurprising that positive neighbour-

hood crowding effects were not observed during the 1993–2004

period, because of the indiscriminatory nature of earthquake

induced mortality [36].

Figure 5. Predicted mortality against neighbourhood crowding variables. Predicted effect of (A) basal area of larger neighbours (BAL,
m2 ha21) on mortality for small (D,20 cm) trees, and (B) basal area (BA, m2 ha21) on mortality for large (D$20 cm) trees over the 1974–1983 census
period. The solid line shows predicted relationships as determined from simulations drawing on the posterior distribution of parameter estimates.
Dashed lines show the 95% credible intervals of the relationship.
doi:10.1371/journal.pone.0026670.g005
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Conclusion
Determining tree mortality and turnover rates in forests is

essential to understand pest and pathogen impacts (e.g. [72]), the

effects of climatic change on forests [8] and for developing

simulation models of forest dynamics [73]. In addition, simulation

models appear very sensitive to the form of the mortality function

employed (e.g. SORTIE [74]). Our results support a view that

these models may need to include variation in mortality functions

through time to adequately represent dynamic forest systems.
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Figure S1 Goodness of fit of the full individual-based
models. Goodness of fit graphs (see Table 1) for small

(D,20 cm) and large (D$20 cm) trees, for each of three census

periods: 1974–1983, 1983–1993 and 1993–2004. Points represent

the observed proportion of trees that died as a function of

predicted mortality probability, and numbers above points

indicate the number of observations in each probability class.

Diagonal lines represent a 1:1 relationship between observed and

predicted mortality.

(TIF)

Table S1 Parameter estimates for full individual-based models.

Mean (6SD) lower 95% and upper 95% of posterior distribution

of sampled parameter estimates for individual-based mortality

models for small (D,20 cm) and large (D$20 cm) trees. Note that

input variables were centred and standardised before inclusion in

individual-based models (see Table S2b for mean values for each

variable).
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Table S2 Mean (6SD) of each variable in the raw data, across

three census periods, for small (D,20 cm) and large (D$20 cm)

trees.

(DOCX)

Acknowledgments

We particularly thank John Wardle for his foresight in establishing the plot

network and Kevin Platt, Larry Burrows and many others who collected,

checked and archived the data. We thank Christof Bigler, Jan Wunder and

two anonymous reviewers for comments on the manuscript.

Author Contributions

Conceived and designed the experiments: JMH RBA DAC RPD.

Performed the experiments: JMH. Analyzed the data: JMH. Wrote the

paper: JMH RBA DAC RPD.

References

1. Harper JL (1977) Population biology of plants. London: Academic Press. 892 p.

2. Muller-Landau HC, Condit RS, Chave J, Thomas SC, Bohlman SA, et al.

(2006) Testing metabolic ecology theory for allometric scaling of tree size,

growth and mortality in tropical forests. Ecol Lett 9: 575–588.

3. Coomes DA, Allen RB (2007) Mortality and tree-size distributions in natural

mixed-age forests. J Ecol 95: 27–40.

4. Harcombe PA (1987) Tree life tables. Bioscience 37: 557–568.

5. Kobe RK, Pacala SW, Silander JA, Canham CD (1995) Juvenile tree

survivorship as a component of shade tolerance. Ecol Appl 5: 517–532.

6. Purves DW (2009) The demography of range boundaries versus range cores in

eastern US tree species. Proc R Soc London Ser B 276: 1477–84.

7. Purves DW, Pacala SW (2008) Predictive models of forest dynamics. Science

320: 1452–1453.

8. van Mantgem PJ, Stephenson NL, Byrne JC, Daniels LD, Franklin JF, et al.

(2009) Widespread increase of tree mortality rates in the Western United States.

Science 323: 521–524.

9. Allen CD, Macalady AK, Chenchouni H, Bachelet D, McDowell N, et al. (2010)

A global overview of drought and heat-induced tree mortality reveals emerging

climate change risks for forests. For Ecol Manage 259: 660–684.

10. Goff FG, West D (1975) Canopy-understory interaction effects on forest

population structure. For Sci 21: 98–108.

11. Lines E, Coomes DA, Purves DW (2010) Influences of forest structure, climate

and species composition on tree mortality across the Eastern US. PloS ONE 5:

1–12.

12. Lorimer CG, Dahir SE, Nordheim EV (2001) Tree mortality rates and longevity

in mature and old-growth hemlock–hardwood forests. J Ecol 89: 960–971.

13. Vieilledent G, Courbaud B, Kunstler G, Dhôte J, Clark JS (2009) Biases in the
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