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Abstract

This paper addresses “ecosystem health”, a concept recently popularised as the way forward in evaluating nature. The
concept is often defined in vague expressions and is being seen more as a broad societal aspiration rather than a specific
performance measure of ecosystem management. As such, the paper aims to demystify ecosystem health, that is, to
demarcate an accurate and feasible characterisation of the concept. To achieve this aim an examination of the various
viewpoints of nature is undertaken. Models of ecosystem health, such as the notions of naturalness, genetic fitness, climax,
diversity, stability and keystone species are each considered and subsequently deemed inappropriate, especially when
viewing ecosystems as “complex self-organising systems”. Complex self-organising systems are non-linear dynamic
systems that have multiple steady states and have emergent and chaotic properties. One model that captures this self-
organisation process is Holling’s adaptive cycle. However, when investigating this model it was concluded that there is no
means to determining which phase within a system state, or state within a system is ecologically “better”. Therefore,
ecosystem health cannot be considered in a positive manner established by scientific objectivity. Rather, the concept must
be determined in a normative fashion through it is suggested the elicitation of subjective societal values, so to define an
optimal management strategy. But, implementing such a strategy is difficult because the changing nature and
unpredictability of complex self-organising systems means we cannot focus on “locking-in” ecosystems (or preferences),
instead it is argued we must forever adapt to changing ecological conditions.
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1.0 Introduction

Ecosystem health, a concept first generally enunciated by the pioneering ecologist Aldo Leopold in 1939 as a
means to elucidating the condition of ecosystems, is today being hailed as the way forward in evaluating
nature and its management for conservation and resource use purposes. This interest in the concept of
ecosystem health has been brought about, in part, because the management of ecosystems captures a broader,
all-encompassing perspective of nature (Angermeier & Karr, 1994), which is likely to take advantage of
associated gains in economies of scale and efficiency (Simberloff, 1997). Moreover, the popularity of
ecosystem health also stems from an easy comprehension of the concept, as it fundamentally draws on the
expressions developed in human health and makes that seemingly effortless and intuitive step to integrate
these notions with ecological theory (Rapport, 1989; Costanza, 1992). Thus, one might say that ecosystem
health effectively applies the human health metaphor to ecosystems (Schaeffer et al., 1988). But, what makes
the concept of ecosystem health so appealing is that while it focuses on ecosystems as its unit of measurement,
and thus can encapsulate an ecocentric perspective, it not only draws upon human health as an analogy, but
also encompasses human (societal) health as well. Indeed, even though well removed and hidden from many
actors of society, a healthy ecosystem in economic terms provides the necessary “factors of production”
needed for human health and basic life-support required for development (Folke, 1999). Consequently, at the
root of ecosystem health, is the ideals of co-evolutionary development (Norgaard, 1984; 1994); that is, the
conditions necessary to sustain the capacity of an ecosystem are very much dependent on society, and yet in
turn, society is dependant on these very ecosystems for their own health and development (Costanza, 1992;
Odum, 1993; Ferraro & Simpson, 2002).



Nonetheless, despite the popularity of the term ecosystem health, the concept still remains poorly understood
which has resulted in it being defined, at best, utilising rather vague expressions (O’Laughlin et al., 1994). In
contrast, while human health has a wide body of reference data on the so-called “standard human” (Schaeffer
et al., 1988), advocates of ecosystem health have much less agreement in demarcating a benchmark or apt
endpoint. However, difficulty in demarcating ecosystem health in precise language is not surprising. The
inherently intricate nature of ecosystems coupled with certain philosophical misgivings, such as, whether
anyone has ever seen an ecosystem, and is health a relevant expression when applied to a system, have
plagued progress towards a suitable working definition (Calow, 1992; Costanza, 1992; Callicott, 1995; Meyer,
1997; Kapustka & Landis, 1998; Rapport et al., 1998; Callicott et al., 1999; Karr, 1999). What is more, the
literature is besieged with confusion as to whether ecosystem health and ecosystem integrity are one and the
same thing or not (e.g. Karr, 1996). Thus, with these reservations, simply seeking to achieve a “healthy
ecosystem” provides no more direction to the ecosystem manager, than seeking a “strong economy” does for
the economist (Reid, 1994).

These difficulties in defining ecosystem health have unfortunately stalled the complete endorsement of the
concept (Steedman, 1994; Scrimgeour & Wicklum, 1996; De Leo & Levin, 1997; Gaudet et al., 1997; Lancaster,
2000). As such, the importance of ecosystem health has been marginalised, whereby it is being portrayed
more and more as a broad societal aspiration than a specific measure of ecosystem management. Thus, if
ecosystem health is to be used as a means to examine the performance of ecosystems, then coherent, clear and
quantifiable definitions must be crafted so that the concept can be delineated operational. That aim is what
this paper endeavours to achieve, that is to say, to demystify ecosystem health, to demarcate an accurate and
feasible characterisation of what a healthy ecosystem is deemed to be. In other words, what we are attempting
is to delineate the appropriate performance criteria for determining the “success” of ecosystem management.
In order to achieve this aim an exhaustive examination of the various viewpoints of nature is undertaken.

2.0 The arcadian naturalness model

One viewpoint of the nature of ecosystems is the arcadian school, which promotes the characterisation of
ecosystems through notions of natural aesthetics and ethics towards species (Worster, 1979). Consequently,
this school of thought proposes that the health of an ecosystem is determined by its degree of natural integrity
(Schaeffer et al., 1988; Anderson, 1991; Angermeier & Karr, 1994; Wicklum & Davies, 1995). A high degree of
natural integrity is considered an ecosystem which displays considerable “naturalness”, that is succinctly, an
ecosystem that is unimpaired from human action and on all accounts would be considered pristine (Karr &
Chu, 1999). Consequently, this so-called naturalness model of ecosystem health implicitly infers that
ecosystems that are unaltered by human activity are “healthier” than human-altered systems and that
ecosystem health can be described solely through the maintenance of a natural assemblage of species.

There are a number of examples of the naturalness model that have been proposed or utilised for the
evaluation of ecosystem health. One, pioneering example is that given by Leopold (1941) who claimed that
“wilderness” should be considered the best “base-datum of normality”. Another more developed framework
is the Index of Biological Integrity (IBI) (Karr, 1981; Karr ef al., 1986). This simple index develops a scale of
health, whereby an ecosystem, which is the product of evolutionary processes in the absence of modern
human activity, is considered the index’s optimum. More recently, Stephens et al. (2002) developed a
sophisticated framework to evaluate health of ecosystems by formally integrating naturalness, described as
natural character, with a priority setting function reflecting the significance of the ecosystem for nature
heritage and conservation purposes (see Equation 1).



NH payoff = ZZSO%

Equation 1: Nature heritage framework (Source: Adapted from Stephens et al., 2002).
Where NH is the nature heritage index of ecosystem i
ANCi is the change in natural character of ecosystem i after ecosystem management
Priority setting function: DIS: is the distinctiveness of the ecosystem i
IMP: is the importance of ecosystem i
SIZE: is the size of ecosystem i
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Importantly, though rarely stated explicitly in the literature, the premise of the naturalness model is the
ideology of environmental therapeutic nihilism, in that “nature knows best” and is subsequently “good” in
itself (Commoner, 1971). As such, the naturalness model enshrines a dichotomy between humans and nature,
a metaphysical separation between the
ideology rejects that society is “in charge” of nature. The implications of this premise is that while systems
altered by humans, may be desirable for strictly utilitarian reasons, they cannot provide a truly objective
ecocentric point of reference for assessing ecosystem health (Angermeier & Karr, 1994).
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‘vices” of humans from the “virtues” of nature. Therefore, this

The exact objective point of reference presumed by the naturalness model has nonetheless been questioned,
not least because the very act of delineating what is the natural state of an ecosystem must be concluded as an
implicit subjective preference (Lele & Norgaard, 1996). For example, in the case of New Zealand (or
Australia), is naturalness calculated from the time of initial human arrival or at the time of European arrival?
The selection as to which of these two reference points is the most appropriate according to the naturalness
model is ultimately a subjective value judgement (Wassenaar & Ferreira, 2002). Indeed, even if a pre-human
or a pre-European state could be universally agreed upon as a definition of what naturalness really is, there
still remains the problem that in either case, our understanding of what pre-European ecosystems let alone a
pre-human ecosystems once looked like is poorly known (Caughley, 1989; Pimm, 1991). As such, most
attempts to implement the naturalness model are based on the earliest recorded form, which is for all intent
and purposes well after European colonisation (Hannon, 1992), and even then most ecosystems can only be
characterised by some components of macro-vegetation (McGlone, 1983; 1989).

For argument sake let us suppose that sufficient information could be gathered necessary to recreate the
composition of an historic ecosystem. We are still however left with a number of issues that inhibit the
practicality of the naturalness model. Not least of these difficulties, is that the concept of naturalness signifies
the modelling of an ecosystem from a “snapshot” perspective, which neglects changes from “natural”
perturbations that undoubtedly occur. Furthermore, utilising a naturalness reference point characterises an
ecosystem as a eternally static system, whereby all human perturbations and other stresses outside a natural
range represent a decrease in health is similarly not accounting for the fact that ecosystems evolve over time.
Thus, because ecosystems are dynamic systems, even if the species are not extinct, ecosystem managers in
practice would never be able to attain the “correct” assembly of species for any reasonable length of time.

A further deficiency with the naturalness model is that it only can define an ecosystem as a biotic structural
assemblage of species, which seemingly ignores the functionality of an ecosystem in favour of aesthetic
appearance alone (Ehrlich & Ehrlich, 1992; Thompson, 2000). Ecosystem functionality however, is important
because it models and encapsulates the nature of an ecosystem truly as a system, consisting of networks,
connections, mechanisms, flows and fluxes (Odum, 1969; O’Neill et al., 1986). Interestingly, some researchers
suggest that the monitoring of ecosystem structure and composition will adequately encapsulate ecosystem
functioning because functional components will most probably be maintained if the structural assembly is
adequately preserved (Ferriera & Towns, 2001). To date, however, this assumption has no conclusive
empirical evidence in which to support its claims.



Given the lack of scientific evidence in support of the notion that an ecosystem’s structural assemblage begets
its function, most restoration efforts of ecosystems have opted to avoid the attainment of a “natural”
assemblage of species. Instead, because functionality may well be more significant to the health of an
ecosystem, restoration programmes have often adopted functionality as the sole measure of ecosystem health.
Accordingly, restoration is then considered a “success” when ecological functioning is restored to “natural”
levels (Hobbs & Norton, 1996). Such a means to evaluating ecosystem functioning has been developed, in
which the measures utilise a number of vital ecosystem parameters of functionality (e.g. nutrient cycling and
retention) (e.g. Swanson et al., 1993; Caraher & Knapp, 1995; Walker & Boyer, 1995) (see Figure 1).
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Figure 1: An example of ecosystem health evaluated based on the vital ecosystem parameters of

ecosystem functioning. This approach determines the health of the ecosystem by comparing the

present state of the parameter of ecosystem functioning with its delineated relative range of natural
variability (Source: Caraher & Knapp, 1995; Hobbs & Norton, 1996).

Where3i¢ is the present state of the parameter of ecosystem functioning

is the relative range of natural variability of the ecosystem

However, while this ecosystem parameter approach may be considered useful, it can be criticised for two
reasons. First, it is well known that ecosystem functions, such as nutrient retention are extraordinarily
difficult to quantify (Burley, 1988; Noss, 1990; Nunes et al., 2003). Secondly, the restoration of ecosystem
functioning is often best achieved through the addition of non-native species (Aronson et al., 1993; Lockwood
& Pimm, 2001). That is, non-native species substitutions are possible, which replicate the functioning of a
natural ecosystem. The implications of this finding would seem to be that there is no scientific basis for
“natural” pristine systems to be considered healthier than other human-modified ecosystem states and that
the maintenance of structure and function of an ecosystem are indeed quite distinct projects. Recently, Loucks
(2000) has attempted to integrate structure and function together so as to measure ecosystem health according
to the naturalness model (see Figure 2).
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Figure 2: The continuum of functional integrity against natural (structural) integrity
(Source: Loucks, 2000).



Despite, the measure of ecosystem health developed by Loucks (2000), one still feels uneasy about the merits
of the naturalness model, given that non-native species can improve seemingly the health of the system.
However, regardless of this contradiction the greatest difficulty with the naturalness model is that
paradoxically we end up finding that nature must be actively managed and restored if it is to remain fit for
native species, despite the insistence of the naturalness model that requires the separation of humans from
nature (Swanson, 1995; Callicott, 1998). Accordingly, if we assume that it is right when it tends to disturb the
biotic assembly only at natural spatial and temporal scales, and it is wrong when it tends otherwise, it would
suggest then that intensive restoration projects are impermissible insofar as they would disturb ecosystems
beyond natural perturbation scales (Callicott, 1996). It would seem illogical that intuitions about the positive
value of ecosystem restoration result in objecting to the naturalness model (Fairbrother, 1998). After all, “how
can anything be restored by human agency the essence of which is to be independent of human agency?”
(Attfield, 1994; p. 45).

It seems that the conception of naturalness is a misnomer. It is incorrect to assume as with the naturalness
model that humans are “apart from” and not “part of” nature. Since Charles Darwin and his classic writings
“The Origin of Species” (1857) and “The Descent of Man” (1871), we have established that humans are
nothing more or less than a primate with some exceptional talents. We, as a society cannot afford the illusion
that maintains that humans are separate from nature, as it denies the fundamental reality that humans
through the intervention of development now effect to some degree all accessible ecosystems on this planet
(Vitousek et al., 1997). Thus, it is paramount that when managing ecosystems that we acknowledge that
anthropogenic changes of ecosystems are as “natural” as any other. We must come to terms with the fact that
we as a society are intimately interconnected with nature, and that socio-economic systems are embedded in
ecosystems (Kay & Regier, 2000; Limburg et al., 2002).

3.0 Imperialism, reductionism and systems theory

The shortcomings of the arcadian school and its naturalness model as a viewpoint of nature, leaves us with
the other predominant school of thought that of imperialism, which is a viewpoint of nature based above all
on logic and scientific analysis (Worcester, 1979). As such, the resource and functional aspects of ecosystems
are prioritised, well above ethical or aesthetic considerations. However, within the imperial school of thought,
an intellectual divide has separated scholars’ view of nature, which at its extremes could be considered
reductionistic, while at the other holistic. The reductionistic view, which is the cornerstone of conventional
scientific thinking, considers that nature can be completely described through its presumed micro-
foundations and the collection of its component parts. On the other hand, those of a more “holistic”
persuasion insist that the essence of nature itself is best described by investigating the whole utilising the
theories of systems thinking.

Needless to say, reductionists have looked to find the fundamental “building blocks” of nature. Thus, with
the scientific discovery of genes, cells and molecules, life scientists, have been won over that reductionism
through molecular science represent the best means of determining the underlying truths of nature. But, by
embracing molecular science, modern biology has all but lost any true identification with the science of the
whole. Moreover, the incorporation of Mendelian genetics with Darwinian theories of evolution, has led
biologists to infer that every point in space is realisable as an organism, species and ultimately an ecosystem,
as long as the localised environmental conditions favour its expression. In other words, any kind of biological
and ecological form is seemingly possible, within certain basic mechanical limits. As such, when these so-
called neo-Darwinists wish to speak of a healthy ecosystem, what they mean is that the conception of
ecosystem health should be one based prominently on genetic diversity (or distinctiveness), as it is this which
dictates the processes of natural selection, that blind, cumulative and non-directional force of nature, to
continue, and thus ensures prolonged evolutionary potential. That is, genetic diversity ensures that



organisms, species and ecosystems can maintain their “biological fitness” and therefore usefulness for
survival in their current and future environments.

Despite the optimism of biologists, the presumptions of neo-Darwinism theories of evolution leaves little
explanation for the actual generation of highly complex ecological and biological forms found in nature. In
the neo-Darwinian view, species and ecosystems are just products of adaptation somehow brought together
through random genetic mutations. Thus, neo-Darwinian theories seem to have trouble providing a
convincing explanation of why “higher” species ever emerged when bacteria, a simple organism, has a high
degree of biological “fitness” (Davies, 1987). Extraordinarily, even Darwin was concerned with the extensive
ecological and biological form that many “higher” species have. For example, in Origin of Species (1857; p.
172) Darwin wrote: “To suppose that the eye with all its inimitable contrivances for adjusting the focus to
different distances, for admitting different amounts of light and for the correction of spherical and chromatic
aberration, could have been formed by natural selection, seems, I freely admit, absurd in the highest degree
possible”. Moreover, with neo-Darwinism causality is neither mechanical nor deterministic, because of the
role of random genetic mutations. Thus, neo-Darwinism seems to leave out any probable explanation for the
intentional ecosystem development and behaviour observed in nature.

The inability of neo-Darwinism and natural selection to explain appropriately the development and
behaviour of complex biological and ecological forms found in nature, has propelled the systems perspective
forward, which above all claims that it is impossible to understand the nature of ecosystems by only
investigating its component parts (Simberloff, 1997). The reductionistic approaches to science, to which many
scientists adhere, do not seem to be met with ecosystems (Costanza, 1993). Indeed, ecologists and other
system theorists contend that a system is not characterised by weak, linear interactions between component
parts, but instead by strong, usually non-linear interactions between all of its parts (Costanza, 1992; Kay &
Regier, 2000). This means that is it impossible to simply sum scale behaviour to arrive at large scale results
(von Bertalanffy, 1968; Rastetter ef al., 1992). Thus, dynamic systems are considered fundamentally irreducible
and indivisible units (Wolfgram, 1984; Bohm et al., 1997). In view of that, system analysts attempt to reveal
properties of ecosystems by studying the systems as a whole. It is thought that by adopting a systems
perspective of the whole, certain properties become apparent and other behaviours are made detectable that
otherwise would be “invisible” by processes of reductionism (Ulanowicz, 1986). Clearly then, what we need is
“to see the forest, not the trees” (Jorgensen, 1997; p. 7).

3.1 The succession-to-climax model

One systems perspective developed in ecology is the “process-functionalist” approach (Allen & Hoekstra,
1992), which treats ecosystems, that is, organisms, species and their physical environments as “integral bio-
geo-chemical energetic systems” (Lotka, 1925). Thus, the process-functionalist approach propounds that the
units of selection in ecosystems are cycles of energy and material flow that have different auto-catalytic
properties (Odum, 1969; Depew & Weber, 1996). Given this perspective of the underlying mechanisms of
ecosystems, Lotka (1925) formulated the “maximum power principle”. In essence, this principle argues that
organisms tend to be selected by these energetic systems (ecosystems) when they are more efficient in their
energy utilisation, and species are favoured, if they enter into cooperative interactions with other species,
allowing the ecosystem as a whole to maximise the through flow of “useful” energy. Consequently, with the
appropriate selection of organisms and species, the whole system is likely to increase its energy flows and
material cycle rates (metabolism) through the system, which it is argued will increase total system biomass
and the overall health of the ecosystem.

The behaviour and development of an ecosystem of this process-functionalist approach has been modelled

according to the theory of ecological succession, a theory which ultimately leads to a stable climax phase
(Odum, 1969). Accordingly, the aptly named succession-to-climax model presupposes that a highly ordered
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successional sequence of biotic communities dominated by small fast growing species referred to as r-
strategists, dynamically converge in a linear manner towards a sustained and often predictable climax
assemblage of K-strategist species, species that are large but slow growing (Clements, 1916; Tansley, 1920;
Odum, 1969). Interestingly, the notion of a mechanical Newtonian-like development towards a stable
equilibrium purported in the succession-to-climax model is analogous to theories and axioms found in much
of neoclassical economic theory (Kamien & Schwartz, 1991; Varian, 1992; Holling & Sanderson, 1996).
Certainly, both make the assumption of relatively steady growth, with stabilising forces providing an
“invisible hand” that guides the system along a trajectory to maintain productivity and towards a sustained
single steady state or equilibrium. Hence, in presuming the existence of a single stable equilibrium point, the
climax phase, the succession-to-climax model presumes implicitly the property of global stability (see Figure
3).

(a) Xt= Xt-1 (b)
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Figure 3: (a) Graphical representation in discrete time of a dynamic linear model, as used in the
succession-to-climax model to describe the development and behaviour of an ecosystem. (b) So-
called ball-and-cup diagram (see DeAngelis & Waterhouse, 1987) illustrating that with a linear
model, the system (ball) converges towards a single equilibrium x1 (also the climax phase) no matter
where the starting point.

We know however, that ecological disturbances will inevitably occur, and these perturbations prevent the
development of an ecosystem attaining its steady state. However, the succession-to-climax model presumes
that a disturbance will only take an ecosystem back to a previous successional phase, whereby the
development towards the climax phase continues to persist predictably again after the disturbance. Thus,
according to the model an ecosystem will always develop towards its climax phase regardless of how far it is
displaced from this phase after a disturbance event. As such, the health of an ecosystem according to the
succession-to-climax model can be modelled as if it were a homeostatic system, because homeostasis assumes
fundamentally that ecosystems exhibit a unique equilibrium, which can self-perpetuate generation after
generation by negative feedback (Odum, 1969; Oechel et al., 1994; Kay & Regier, 2000). Importantly, a
homeostatic system has intuitive appeal when defined in terms of ecosystem health as it interprets health in a
similar manner to the health of humans, in that optimal ecosystem health can simply be defined as a system
absent of “disease”, whereby “disease” is considered a disturbance to the system (Schaeffer et al., 1988;
Anderson, 1991). Hence, for an ecosystem to retain its health the ecosystem “attempts” to eliminate the
disease and return to its “preferred” healthy “state”, the climax phase, which is absence of “disease”.

From a scientific perspective, the optimal health of the system found at the climax phase can be explained by
two variables: potential and connectedness. The potential of the system represents the accumulated biomass

7



or ecological capital developed through successional dynamics, and is therefore greatest at the climax phase
(Carpenter et al., 1999). The connectedness of the system determines the strength of internal connections
between species that mediate and regulate the influences between internal processes and the external
environment. In other words, connectedness underpins the degree of internal control that a system can exert
over external variability (Ulanowicz, 1986; Holling & Gunderson, 2002), which again is at its greatest levels at
the climax phase. Thus, it is not surprising that the climax phase is most likely to be made up predominantly
of K-strategist species, which are species that have smaller specific metabolic rates compared to r-strategists
species, which are typically found in the earlier successional phases of ecosystem development. Accordingly,
one might postulate that these climax species seem to have been selected as they utilise energy more
efficiently and thus, require less maintenance. One might then conclude that the K-strategist species are
“better” adapted than are r-strategist species. Thus, as theorised the changes in the successional communities
are made in an effort to improve the whole system’s adaptation to utilise resources more effectively.
Interestingly, Hannon (1992; 1999) taking the climax phase of ecosystem development as the definitive goal
function of an ecosystem, has proposed a means to measuring ecosystem health termed gross ecosystem
product (GEP), which is based directly on the familiar measure of economic flows gross domestic product
(GDP). These explanations of ecosystem health in the succession-to-climax model are illustrated in Figure 4.
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Figure 4: A stylised diagram representing a hypothetical depiction of ecosystem development
according to the succession-to-climax model. Boxes A, B and C indicate successional phases, which
develop in a linear manner towards box D, the climax phase.

In spite of the theoretical eloquence and clarity of the succession-to-climax model in portraying the process-
functionalist approach, it has been severely criticised as being too narrow in scope, rigid and simplistic, and
unable to account for and explain the scientific findings of variability in successional pathways, the constant
dynamic changes in community composition and the non-equilibrium states observed with ecosystems
(Hunter et al., 1988). After all, the development pathway or trajectory to a climax phase is likely to require a
much longer time horizon than the “natural” frequency of disturbance events (Kimmins, 1996). Moreover, we
know that when interactions between species in an ecosystem are explicitly modelled, their behaviour is non-
linear, which will not produce a linear system. Indeed, it is well known that even simple non-linear difference
equations of single species models may produce bizarre, extremely non-linear dynamics (Gleick, 1987). Thus,
it seems that the succession-to-climax model is flawed, not only because a complete ecological recovery of an
ecosystem to a climax phase that maintains itself again and again can never be realised (Jorgensen, 1997), but
because the non-linearity between species is almost certainly not going to lead to a linear system of the whole.
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Consequently, the likelihood of ecosystems developing in a linear manner, whereby the system reaches a
deterministic and predictable single steady state with homeostatic properties is highly questionable (Holling,
1986; Botkin, 1990; Kay, 1993; Schneider & Kay, 1994; Pahl-Wostl, 1995; Kay et al., 1997; Kay & Regier, 2000).

It seems that ecosystems are best-described as “soft” systems. As such, assumptions whereby stability is
presumed and change is explained away should in fact be altered whereby a model of ecosystem behaviour
and development should implicitly assume change and explain stability (van der Leeuw, 2000). In other
words, life is not in a stable equilibrium, but is dynamic and constantly changing, and as such, change cannot
be thought of as an “error term”, or anomaly, but rather as law. It seems the definition of ecosystem health
and the subsequent management of ecosystems must acknowledge that ecosystems are dynamic and ever-
changing entities. Therefore, a model of ecosystem development should incorporate the system’s need to meet
the challenge of changing factors, and not attempt to model the eternal “struggle” to return to exactly the
same ecological community. For this reason, determining the development and behaviour of ecosystems
appropriately requires that models are based on non-linear dynamics (Budiansky, 1995; Kay & Regier, 2000).

3.2 Non-linear dynamics, multiple equilibria and resilience

The non-linear nature of ecosystem development implies that multiple equilibria exist, rather than a single
equilibrium, as determined in the linear succession-to-climax model (see Figure 5). Accordingly, given that
non-linear models have multiple equilibria, ecosystem states are only locally stable, and not globally stable as
assumed in a linear model. Importantly, this phenomenon of multiple equilibria is not just a mathematical
artefact, as the presence of multiple ecosystem states and transitions among these states has been observed
empirically in a range of ecosystems. These include transitions from grass-dominated to woody-dominated
semi-arid ecosystems in Zimbabwe (Walker et al., 1981) and Australia (Walker et al., 1997).

Xt =xt1
x
N A 4 (b)
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450
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Figure 5: (a) Graphical representation in discrete time of a dynamic non-linear model. The system has
multiple equlibria demarked as x1 and xs, while x2 is an unstable state. (b) Ball-and-cup diagram of
the same non-linear model. The cup represents a particular state of the system and the ball
represents the current position of the system within the state.

In order to model the a non-linear dynamic system maintaining a particular system state despite
perturbations, the concept of resilience was introduced formally by Holling (1973), who described the
resilience of an ecosystem appropriately as “ecological resilience”. Thus, ecological resilience is diametrically
related to notions of local stability and elasticity of the system state (Ludwig et al., 1997). However, while
ecological resilience is related to stability, Holling (1973; 1986) warns not to mistake ecological resilience for
stability per se, as stability is relevant when an ecosystem’s state is close to its equilibrium, while ecological
resilience is most relevant when investigating non-linear conditions far from its steady state. Thus, ecological
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resilience is effectively about the pressure-stress-response capability of the system state, that is, the magnitude
of disturbance a particular state can absorb without transitioning to an alternative system state (Holling, 1973;
1986; Holling et al., 1995).

While the definition of ecological resilience seems fairly clear, an alternative definition of resilience has also
been proposed (Pimm, 1984). This form of resilience, described here as “economic resilience” propounds that
resilience can be measured by the speed of return of a system to its steady state following a disturbance event
(Pimm, 1984; O'Neill et al., 1986; Tilman & Downing, 1994; Ives, 1995; Neubert & Caswell, 1997). Thus, while
ecological resilience defines resilience as the maintenance of existence of functioning, economic resilience
defines resilience as the maintenance of efficiency of functioning (Costanza, 1992). Figure 6 depicts the
concepts of ecological and economic resilience.
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Figure 6: (a) Stability profile illustrating ecological resilience. Importantly, the width of the system
state “cup” dictates the magnitude of ecological resilience. (b) Stability profile illustrating economic
resilience. Depressions in the landscape with flatter slopes have less economic resilience than areas
that have steeper slopes (Source: Gunderson et al., 2002).

Economic resilience implicitly assumes that the system will always attempt to reach a steady state and the
ecosystem response will be approximately proportional to the perturbation. This is of course unlikely to be so,
given the non-linear nature of ecosystems. Thus, the use of economic resilience can only be justified in states
where ecosystem behaviour is functioning near its steady state, and not far-from-equilibrium states. As such,
economic resilience may be useful for investigating systems that operate in a linear fashion, or at least where a
linear approximation is sufficiently valid (Pimm, 1991). Indeed, it could be argued that even where multiple
equilibria are shown to exist, a linear approximation might be acceptable by way of argument that
expectations and norms make the other equilibria unlikely. Furthermore, given that there is unlikely to be a
general solution for non-linear relationships, many analysts have been content to investigate only the local
stability of a particular state within a non-linear system. However, in ecosystem development, the critical
feature is stability far from any equilibrium because it is in these areas that a system may make a transition
into an alternative system state. Hence, only ecological resilience can be considered satisfactory.

3.3 The diversity-stability model

An implication of multiple equilibria in ecosystem state space is that no longer can we expect ecosystems to
maintain global stability. Thus, it might be considered prudent to keep ecosystems in a stable state and to
avoid “flips” into less stable ecosystem states. Hence, one can argue that the health of an ecosystem is
reflected by its stability (or ecological resilience) (Batabyal, 1998; Ferriera & Towns, 2001). Needless to say,
research for half century has focused on the long held belief that connectance (number of connections) of an
ecosystem begets the stability of that ecosystem. That is, it has long been presumed by ecologists that the
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greater the species diversity (a proxy measure for connectedness) present in a system, the more stable the
system network is likely to be and the more likely the various ecosystem functions will be maintained (Folke
et al.,, 1996). This diversity-stability hypothesis is the most legitimate ecological argument for preserving
diversity within ecosystems. Importantly, in focusing on diversity, this hypothesis is grounded in the
“population-community” approach to ecology, which focuses on organisms and species, and thus views
ecosystems as “networks of interacting populations” (O’Neill et al., 1986; Allen & Hoekstra, 1992). However,
the diversity-stability hypothesis, has been one of the most controversial and ongoing debates in ecology,
whereby the relationship has been validated and rejected on numerous occasions.

Pioneering research investigating the diversity-stability hypothesis by MacArthur (1955) seemed to affirm
that ecological communities that were highly connected are more stable than simpler ones. MacArthur (1955)
suggested that there was a direct correlation between the logarithm of the number of food links in a food web
and the degree of stability. Elton (1958) added further weight to the argument when it was pointed out that
the apparent extreme stability of tropical rain forests may well be because these systems are the archetypal
diverse and connected ecosystem. The observed positive relationship between connectance and stability,
however, initially came under attack on mathematical grounds from May (1973) and later by Goodman
(1975). May (1973), in his study of randomly assembled model food webs, found exactly the opposite: “too
rich a web connectance... leads to instability”. This was reasoned, because as the number of species increases,
the probability increases that one of them will be associated with a real positive eigen value, which will hence
act towards an unstable mode of oscillation within the system. May (1973) reconciles his arguments with the
undisputed data of more oscillatory behaviour in simpler boreal ecosystems than in more species diverse
tropical ones by arguing that the causation is reversed. Following the mathematical account for connectance
leading to instability, came empirical evidence of the phenomena by Weiderholm (1980), who observed that
increased phosphorus loading gives decreased diversity, but very stable systems.

While, it might seem that diversity and connectance decrease stability, Pimm (1991) found in computer
simulations, ecosystems with few species were easy to invade and destabilise. Indeed, ecological communities
of up to twelve species were easily entered by intruding and destabilising species. This conclusion was soon
supported with empirical evidence by Baskin (1994; p.203), who concluded from his findings that the “biggest
gains in stability, for example come with the first ten species in a system; beyond ten, additional species did
not seem to add much stability, perhaps because the essential functional niches had already been filled”.
Interestingly, Baskin (1994) further noted that similar conclusions can be made for productivity, in that “more
diverse systems are more productive — at least up to a point”. Despite, these conclusions of the role of
connectivity and diversity recently, Loreau (1999) posited that diversity is able to buffer temporal variance,
and Rozdilsky and Stone (2001), in strictly competitive systems found increased diversity can lead to
increased stability. Thus, again one is left with much ambiguity about what determines a stable system.

It seems from this ecological research that one is left to conclude that ecosystem stability is a very complex
concept and it is likely that there is no simple relationship in which to model it. However, MacArthur (1972)
suggests that stable systems have in fact intermediate levels of connectance. This credible proposition (as we
will confirm later) was also taken up by O’Neill et al. (1986) who concluded that, because a system can become
unstable either by being over or underconnected, the addition of a new component can have an effect
opposite to what might be intuitively expected. Thus, an increase in diversity can stabilise the system, either
by adding connected parts to an underconnected system, or removing connected parts to an overconnected
system. Thus, the stability of ecosystems in its widest ecological sense might be best considered a
multidimensional relationship. This diversity-stability relationship may be formulated as follows: if the
system can offer a better survival (i.e. increasing stability in relation to the changing forces functions by
decreasing the diversity), the system will not hesitate to react accordingly. Thus, the more diverse an
ecosystem, does not give the best answer to stability and survival (Olmsted, 1988). Diversity is a two-edged
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sword, and despite its ease of measurement, diversity indices such as the Shannon-Weaver index should not
be considered a prime de facto measure for ecosystem health.

But, despite MacArthur’s and O’Neill’s conclusions and the difficulties of diversity and stability as measures
of ecosystem health there still remains the significant difficulty that much of the empirical evidence
examining the diversity-stability hypothesis investigated population networks close to equilibrium and not
states far-from-equlibrium. Indeed, the role of diversity over a much broader range of variations and the
relationship between diversity and ecological resilience has only recently been addressed, and while likely to
provide a similar relationship, this is yet to be sufficiently proven (Levin, 1995; Perrings et al., 1995; Peterson et
al., 1998, Gunderson et al., 2002). However, when attempting to unravel an ecological relationship for
resilience, some observers consider Walker’s (1992) driver species hypothesis credible. This hypothesis
proposes that species can be divided into two groups, “driver” species and “passenger” species. Driver
species are effectively “keystone species” (Paine, 1969) in that they control the resilience of the system, while
the passenger species do little to maintain the system in a particular state. Thus, the basic premise of driver
species hypothesis is that some species have unusual qualities in that they have much stronger non-linear
interactions with the overall behaviour of the ecosystem network compared to the weaker interactions found
with other species. However, despite the ease of measurement for ecosystem health (i.e. health simply
measured by the abundance of driver or keystone species in the system state), there is little anecdotal
evidence in the scientific literature to support the such a hypothesis (Mills et al., 1993; Bond, 2001, Wassenaar
& Ferreira, 2002).

Most empirical evidence seems to suggest that patterns present in ecosystems are for the most part entirely
independent of the species the ecosystem contains (Naemm et al., 1994; Holling et al., 1995; Lockwood &
Pimm, 2001). In fact, ecosystem functioning can normally be preserved even as the component species
normally considered responsible for that particular function are lost, as other species readily fill the vacated
niche (Tracy & Brussard, 1994). Similarly, studies of various ecosystems have also shown that the population
dynamics of individual species are more sensitive to stress and perturbations within ecosystems than are
ecosystem processes (Schindler, 1990; Vitousek, 1990). These findings then beg the question of how important
any species are in an ecosystem. In theory, we could experimentally delete species one at a time, measure the
ecosystem impacts on resilience and function, and generate a frequency distribution of species importance,
relative to abundance. Despite this seemingly insurmountable challenge, some ecologists have tried to do just
that, but the research remains inadequate as only a fraction of the species in an ecological community have
been deleted (Berlow et al., 1999). An additional problem is that the importance of a species might change in
different places or at different times (Power et al., 1996). So, a species that may be highly valuable ecologically
in one place and at one time may or may not be important ecologically in another place or at another time.

It seems that we remain uncertain as what is the underlying relationship to deciphering ecological resilience.
Despite this difficulty, Costanza (1992; p.7) proposed that, a system state should be considered healthy “if it is
stable and therefore sustainable; that is, if it is able to maintain its metabolic vigour, its internal organisation,
structure and autonomy and is resilient to perturbations and stresses over a time and space frame relevant to
the system”. In effect, Costanza suggests that to model ecosystem health we must integrate measures of
function, structure and stability, which he did by formulating a straightforward though ad hoc multiplicative
index of ecosystem health by incorporating potential, connectedness and ecological resilience variables
together (see Equation 2).
max FHI = Cx PxR
Equation 2: An index of ecosystem health (Source: Adapted from Costanza, 1992; Mageau et al., 1995).

Where EHI is the ecosystem health index

C is the connectedness of the ecosystem

P is the potential of the ecosystem

R is the ecological resilience of the ecosystem
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Regardless, of Costanza’s efforts to develop a suitable ecosystem health index, it is apparent that the various
models representing both the “process-functionalist” and “population-community” approaches are
insufficient and have considerable reductionistic tendencies that fail to capture the dynamics of non-linear
systems and explore under the mist of ecosystem “complexity”. However, recently a general theory of non-
linear systems first conceptualised by von Bertalanffy (1968) has emerged from outside the scientific field of
ecology, which seems to have finally unveiled the development and behaviour of ecosystems into just a few
fundamental principles.

4.0 Self-organisation, emergence and thermodynamics

The new theory of development and behaviour of dynamic non-linear systems is at its core based on the
principle of self-organisation. That is, dynamic non-linear systems, such as ecosystems tend to lead to a
process of lower to higher levels of organisation, while being kept within limits (Schuster & Sigmund, 1980).
Thus, self-organisation is a process that leads to the emergence of higher formed network structures (Figure §).
The nexus of this self-organising process is an “attractor”, whereby attractor comes from the state space
description of the behaviour of the ecosystem. Thus, a state within a system behaves as if it were “attracted”
toward a domain. The dynamics of a self-organising system are largely a function of internal causality and as
such the system is dominated by non-Newtonian positive and negative feedback loops. These feedback loops
allow the system to maintain itself about an attractor despite changes in the external environment, because the
feedback loops of the system tend to maintain the system’s present state. Therefore, the environment may
change substantially, without the system exhibiting major change. It is this capacity to organise and maintain
itself about an attractor that is the fundamental hallmark of a self-organising system. As such, a self-
organising system implies a goal-like function (similar in character to the climax phase in the succession-to-
climax model), whereby internal causal mechanisms direct the ecosystem towards the state attractor.

o O O O o O
o o O O (O

Local interactions

Positive &
negative feedback

g:g g:g g:g Global properties

Figure 8: The diagram illustrates the process of self-organisation leading to emergence, where
emergence is developed from an initial group of localised interacting agents, which leads to the
formation of a higher network structure with global properties (Source: Schuster & Sigmund, 1980).

At this point, it is important to acknowledge that some academics may feel somewhat uncomfortable about
the principles of self-organisation and emergence, because such notions may be likened to “vitalism”, the now
defunct idea that a Platonic-like “life force” is what inhabits life and nature, and which directs an ecosystem
along some trajectory. However, it is important to re-enforce that self-organisation is process developed
internally within the system, and is not the product of an “external engine” as vitalists would contend.
Emergent properties arise from local interactions among system components, and in turn they influence the
local interactions. All evolving ecosystems possess emergent properties and appear to behave like much-like
super-organisms (Kay & Regier, 2000). But this super-organic behaviour is the result of a continuing two-way
feedback between local interactions and global properties. It is not the outcome of some “mystical” global
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property determining the local interactions of system components, nor is it solely the cumulative result of
local interactions in the system that can be explained by reductionistic analysis. It truly is the system as a
whole being an integrated, dynamic structure involving two-way interaction between all levels. Importantly,
it is these notions of self-organisation and emergence that seem to explain ecological and biological form
unexplained by the processes of natural selection alone. Accordingly, Levin (1999) postulates that the
combination of self-organisation and natural selection seen to be the appropriate perspective to view
evolution.

At the core of ecosystems as self-organising systems is the thermodynamic conceptualisation that such
systems are dissipative systems (Prigogine, 1980). A dissipative system is one which is subject to the second
law of thermodynamics. That is, according to the second law, energy with a high amount of information and
organisation always dissipates in a materially closed system. Thus, while the quantity of energy is always
conserved as implied in the first law of thermodynamics, the quality as implied in the second law does not,
which means that all energy transformations will involve energy of higher quality being degraded to energy
of lower quality.

It initially seems that the second law of thermodynamics would lead us to rather pessimistic conclusions of
decay and degradation. However, we also know that decay towards thermodynamic equilibrium is it seems
in stark contrast to the development of ecosystems, which seem to exhibit the propensity towards ever more
higher structures with emergent global properties. But, one is left wondering how do ecosystems have this
ability to build up and maintain increasingly complex structures, when the components of a system have an
inherent predisposition towards disorder, decay and degradation? It would appear there is a paradox of life;
that is, the emergence of complex structures in the face of the second law of thermodynamics.

This contradiction was resolved by Schrodinger (1944), who fittingly pointed out that whereas the second law
describes isolated or closed systems; all ecosystems have to be described as open systems, which exchange
energy with surrounding systems and their environment. Thus, an ecosystem is not strictly a system, but
rather a system of systems. That is, there is a hierarchical nature of systems, whereby each system is nested
within a system and is made up of systems (Allen & Starr, 1982). Accordingly, because an ecosystem is an
open system it can maintain a non-equilibrium state and avoid thermodynamic equilibrium by importing
high quality energy from other surrounding systems and its external environment, whilst exporting low
quality energy. This exchange of entropy (i.e. a measure of energy disorder, whereby high quality energy has
low entropy) by the ecosystem allows the ecosystem’s total entropy to decrease, while inevitably increasing
the entropy in the surrounding system’s environment. To that end, Schrodinger (1944; p.75) surmised these
findings by expressing that “life feeds on low entropy”.

In view of Schrodinger’s findings, it can be understood that self-organising dissipative processes emerge
within open systems whenever a sufficient throughflow of high quality energy is available to support them.
The details of these dissipative processes depend on the materials available to operate them, the energy and
information present to catalyse the processes, and the surrounding environment. The interplay of these
factors defines the context for the set of processes which may emerge (Jorgensen, 1997; Kay & Regier, 2000).
Once a dissipative process emerges the open system has a high propensity to move away from
thermodynamic equilibrium, and when the system does move it will reach a critical distance from
equilibrium, whereby the open system responds with the spontaneous emergence of new organised
behaviour that uses the throughflow of high quality energy to manifest and organise itself as a complex
ecological structure. These structures provide a new context, nested within which new processes can emerge,
which in turn beget new structures. And with more high quality energy obtained by the system, an ecosystem
ultimately emerges. Thus, an ecosystem according to this new perspective of dynamic non-linear systems can
be described as a nested constellation of self-organising dissipative processes and structures organised about

14



a particular set of sources of high quality energy, materials and information, embedded in the environment
(Kay & Regier, 2000).

Once ecosystem structure is established, ecosystem growth is provided by high quality energy being stored in
the formation of ordered structures of biomass. In thermodynamic terminology, this growth builds up further
organisation and structure, and continues to allow the system to move against the gradient imparted by the
second law of thermodynamics. Importantly, it seems that if the system is offered more than one pathway to
move away from equilibrium, the organisation yielding the most growth or stored high quality energy will be
selected (Jorgensen, 1997). However, for ecosystems and its species to continue to grow they must adapt and
specialise to their surrounding environment, which is achieved by storing more information into the system.
This process of diversification, adaptation and specialisation in turn increases the emergent structure, while
allowing the system to be more efficient at utilising the system’s resources so as to be more effective at
building more structure and more “fitted” to the prevailing environmental conditions, which thus further
enhances the dissipating capability of the ecosystem. (This transformation towards greater diversification and
specialisation in nature can be explained in much the same way as Adam Smith’s (1776) famous pin-making
example, whereby tasks are sub-divided so as to increase returns to production). Importantly, this
development towards increasing structure, through diversification, adaptation and specialisation almost
seems to be a natural law of self-organising systems, akin to the second law of thermodynamics, though
unlike the second law, this law acts in the reverse direction to energy degradation (Jorgensen, 1997; Kay &
Regier, 2000; Puu, 2000).

A mature ecosystem is then with the increase in adaptation and specialisation of its species to its
environment, a very complex highly interconnected structure. Moreover, it contains a very high concentration
of biomass and contains much information in a wide variety of species. However, at this mature stage, most
of the high quality energy captured by the ecosystem goes into maintaining its structure and only a very small
amount into further growth. The growth of biomass finally stops when one of the essential building blocks for
growth becomes scarce (Jorgensen, 1997). It seems that “all aspects of life are ultimately governed by the
scarcity of resources” (Hirschleifer, 1982; p. 52). (Interestingly, one might then speculate that the development
of human cognition has evolved so as to utilise resources more efficiently). Thus, in conclusion ecosystem
development proceeds in a way that: one, captures resources (high quality energy and material); two, makes
more effective use of resources; three, builds more structure; and four, enhances survivability (Schneider &
Kay, 1994; Kay & Regier, 2000).

4.1 The emergy, exergy and ascendancy models

In an effort to gain some consensus on an operational measure and characterisation of ecosystem health, while
acknowledging ecosystems as complex self-organising systems there it would seem is a need to make an
assumption of how we perceive an ecosystem conducts itself as if it has an internal “objective function”. One
thermodynamic objective function proposed is that ecosystems organise themselves to maximise the
degradation of the available work in incoming energy (Kay, 1991). This goal of ecosystems has been captured
by the notion of emergy (Odum, 1996), which expresses the amount of energy it costs to build an ecosystem
and is measured utilising energy flows, much like Hannon’s (1992; 1999) novel GEP measure. An alternative
thermodynamic objective function is that ecosystems attempt to maximise their storage of energy. This goal
function can be measured by the notion of exergy, which is a measure of the amount of high quality energy
(or information) stored in an ecosystem structure. The biological and ecological meaning of this objective can
be related to Darwin’s “survival of the fittest”, that is, survival means growth, which is equal to increased
high quality energy of the system relative to the environment (Jorgensen, 1997). The organisation that is able
to produce the highest exergy under prevailing conditions will be selected.
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Clearly, then the difference between the emergy and exergy models, is that while the former focuses on how
much energy it costs to create the ecosystem structure, the latter considers to account for the ability of the
ecosystem to do work. Importantly, the same ecosystem can have quite different emergy and exergy values,
because for example, some environments will require a greater amount of energy to produce similar
structures of biomass. Jorgensen (1997) suggests that exergy is a more appropriate objective function of
ecosystem development because while maximum degradation of energy is a consequence of the development
of ecosystems from the early to the mature state, it is not necessarily an appropriate objective function for
mature ecosystems, as ecosystems cannot degrade more energy than that corresponding to the incoming solar
radiation. Interestingly, exergy as a measure of ecosystem health is similar to the “entropy theory of value”
conceived by thermodynamic scientist and economist Georgescu-Roegen (1971), where value is considered in
part determined by the level of entropy for that object investigated. However, like Georgescu-Roegen,
Jorgensen (1997) warns that while exergy capture and storage is a fundamental “objective” of ecosystem
development it does not suggest that other factors should be neglected in demarcating ecosystem health. This
sentiment is wise as while a measure of exergy has sound theoretical grounding, it is not only extraordinarily
difficult to quantify and measure, it neglects both emergent network properties associated with dynamic non-
linear systems and the need to incorporate a variable for determining the resilience properties of the system.

A network perspective of non-equilibrium systems has also been established in the traditions of the diversity-
stability model, which does capture emergent network properties through modelling ecosystem behaviour by
information and network theories. One promising though again somewhat impractical measure of these
theories is the “ascendancy” index (Ulanowicz, 1980; 1986; Wulff et al., 1989). The ascendancy index and
measures like it go several steps beyond species diversity indices used in ecology, because they estimate not
only how many different species there are in a system but, more importantly, how those species are organised
collectively in the ecosystem. Thus, a rise in the index of ascendancy represents an increase in system size and
organisation, which translates a measure of growth and development, and thus survival. However, network
approaches, such as the ascendancy index are almost entirely used to investigate systems near steady state.
One can conclude that to truly represent and model the principles of self-organisation and emergent global
structures, both thermodynamic (energetic) and network measures of ecosystem health (i.e. ascendancy and
exergy) must be integrated, as in fact they are complementary perspectives and measures on how an
ecosystem develops and behaves (Nielsen & Ulanowicz, 2000). But, the development of this pluralistic
viewpoint of so-called “thermodynamic networks” requires more research in hierarchy theory and as such is
still very much in its infancy (Jorgensen, 1997; Kay et al., 2001).

4.2 Order, chaos and complexity

The fundamental dynamics of non-linear systems has revealed that away from equilibrium the nature of these
systems are surprisingly rich and complex, whereby non-equilibrium conditions are a source of organisation
and therefore order. In general, a system near thermodynamic equilibrium, being stable, can accommodate
fluctuations from the mean state. When forced to move away from equilibrium by externally applied
gradients, a critical point may be reached where the fluctuations can no longer be accommodated and instead
are amplified to produce a new macroscopic order, described as “complexity”, the “edge of chaos”. The
process involves an instability being triggered by fluctuations that exceed some threshold, and the system
then reorganises itself to accommodate the instability. Thus, Schneider and Kay (1995; p.232) write:

Life emerges because thermodynamics mandates order from disorder whenever sufficient
thermodynamic gradients and environmental conditions exist. But, if life is to continue, the same
rules require that it be able to regenerate, that is create order from order. Life cannot exist without
both processes, order from disorder to generate life and order from order to ensure the continuance
of life.
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But, as expressed by Ulanowicz (1997) there is a “window of vitality” to this macroscopic order of complexity,
that is, there is a minimum and maximum level in between which self-organisation can occur and emergence
is maintained. Too much or too little of each of these opposing forces (i.e. internal and external forces) create
an imbalance which will upset the efficiency of the system. Thus, the point where the disorganising forces of
the environment and the organising forces of the ecosystem are balanced, an optimum operating point is
established (Kay, 1984; Kay, 1991). Indeed, if a far-from-equilibrium system such as a highly inter-connected
mature ecosystem becomes isolated, and severed from its energy sources, then it will decay towards
thermodynamic equilibrium by irreversible processes (Ulanowicz, 1997). Thus, there is a range within which
self-organisation and emergence occurs, and as such complex self-organising systems do not strive for a
maximum (as would implied in measuring emergy or exergy), but rather an optimum. Therefore, in
accordance with findings of diversity-stability relationship, ecosystem development should be modelled as if
it has an effective lower and upper limit.

To grasp this macro-state of complexity consider a set of species as components of an ecosystem. The specific
macro-state of the system will be determined by the degree of connections that bind the species of the system
together. Now presume that all possible states imaginable can be arranged along an axis. Effectively, this axis
(see Figure 9) defines state space (Kauffman, 1993), that is, state space is the set of all possible system states
that can be constructed from the given set of species available. At the ends of this axis, lie the two extremes:
the null set of states, or states of order, which have no or few connections; and the complete set, or states of
chaos, which have a high number of connections (or a complete set of connections). The adjacency structure of
state space then distinguishes all possible n-systems.

States of
States of complexity and the States of
order “edge of chaos” chaos

Minimum
Maximum —

Figure 9: The axis of state space. Importantly, only states within the “states of complexity” are able to
produce emergent self-organising systems.

Importantly, in states of order, coherence and stability of information is maximised, but experimental
arrangements of that structure are minimised. In chaotic states the opposite applies, such that it effects a
massive search of the possibilities within state space, but is unable to lock onto any that are “useful”.
Complexity and the states that lie within it, on the other hand, could be considered an inference of the effect
that a balance between stasis (states of order) and change (states of chaos) is the ultimate principle underlying
all time evolutionary and self-organising processes. Thus, while equilibrium is the expression of “balance” in
a linear “economic” world, complexity is the expression of “balance” in a dynamic non-linear “real” world
(Potts, 2000).

Importantly, when we consider the non-linear relationships that exist in ecosystems, we might well wonder
why chaotic states are not observed more often. The obvious answer is that nature attempts to avoid chaos, so
that it can continue to self-organise and evolve. Naturally then, the health of an ecosystem should be
determined above all by the ability an ecosystem has in maintaining its “integrity” for continued self-
organisation (Kay, 1991; Muller, 1998; Kay & Regier, 2000). Importantly, it is this definition of ecosystem
health that is sometimes referred to as “ecosystem integrity” and thus, fundamentally different conceptually
to ecosystem health (e.g. Karr, 1996). However, here we consider ecosystem integrity as simply another
interpretation of the ecosystem health concept.
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4.3 The adaptive cycle model

It was Holling (1986) who first developed a means to model specifically ecosystem development, with the
principles of emergence, complexity, evolution and the integrity of self-organisation being intuitively
incorporated. The representative model coined the adaptive cycle is structured by a sequence of four phases
that occur within a system state. The first two phases of the model are similar in conception to the predictable
and certain nature found with the succession-to-climax model. The first phase named the exploitation or -
phase begins with the ecosystem exploiting those ecosystem processes that are responsible for rapid
colonisation of disturbed ecosystems during which developmental r-strategist species capture easily
accessible resources. The second phase, described as the conservation phase occurs when the slow resource
accumulation builds and stores increasingly complex structures, whereby K-strategist species predominate,
hence this phase is also described as the K-phase of the cycle. Ecological capital consisting of biomass and
physical structure increases during the long periods of the slow dynamic sequence from exploitation to
conservation (r to K), while at the same time the system state becomes more and more tightly bound with
existing species. Thus, the ecosystem’s connectedness increases to a point, eventually becoming too rigid and
over-connected (Holling, 1986; 2001).

At a certain point, the tightly-bound accumulation of ecological capital becomes too fragile through the
ecosystem being “overconnected”. The actual change from the K-phase to the third phase, “release” or the Q-
phase is triggered by agents of disturbance. The disturbance suddenly releases the resources accumulated and
sequestered as ecological capital and the tight organisation is lost. Importantly, the Q-phase is sometimes
referred to as “creative destruction”, which is a term originated by the economist Schumpeter (1954; 1964), to
explain alterations in the economy between periods of renewal and periods more conducive with the
predictability modelled in economies following a strictly neo-classical trajectory (r to K). Finally, the process
of change resultant from the (Q-phase creates opportunity for the fourth phase, reorganisation (a-phase),
where released ecological capital is mobilised to become available for the next r-phase.

In contrast, to the r to K stage, the (Q to «a stage contains considerable uncertainty. At that stage, the previously
accumulated mutations and capital can become reassorted into novel combinations, some of which nucleate
new opportunity and where new species can evolve. Importantly, once the system reaches the a-phase, if the
system still retains sufficient amounts of its previous components it can reorganise to remain within the same
state as before. However, if the reorganisation process in the a-phase does not retain sufficient amounts of
previous components it may make a transition into an alternative system state x. Thus, it is as if two separate
“objectives” are functioning, not simultaneously but instead in sequence (Holling & Gunderson, 2002). The r
to K stage maximises production and accumulation; then the () to a stage maximises invention and
reassortment. Figure 10 illustrates a stylised representation of the four phases of the adaptive cycle illustrated
within the two dimensions, potential and connectedness.
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Figure 10: Stylised representation of Holling’s adaptive cycle illustrating the four phases of
ecosystem development (r, K, Q, &) and the dynamics between these phases. The arrows indicate the
speed of the development in the adaptive cycle, where short arrows indicate slow change and long
arrows indicate fast change. The above adaptive cycle diagram is plotted against two ecosystem
variables: 1. Y axis, is the potential of the system, which represents the ecological capital the system
accumulates as well as unexpressed random genetic mutations (ecosystem innovations); 2. X axis, is
the degree of connectedness (Source: Holling, 1986; Holling & Gunderson, 2002).

Fiqure 11 adds the third dimension, ecological resilience to the adaptive cycle. This orientation of the figure
illustrates to us that as the phases of the adaptive cycle develop; the ecological resilience of the system
expands and contracts. The conditions that occasionally foster novelty and experiment occur during periods
in the back loop of the cycle, when connectedness is low and resilience is high (that is, during the a-phase).
The low connectedness permits novel reassortments of elements that were previously tightly connected to
others in isolated sets of interactions. Interestingly, there is a hypothesis, as yet unproven, that the slow

variables (those with the largest inertia or r-to-K phase), rather than the fast variables, are responsible for the
resilience properties of an ecosystem (Holling & Gunderson, 2002).

potential

connectedness

rotation

reveals
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Figure 11: Ecological resilience is another dimension of the adaptive cycle and is added to the two
dimensional diagram shown in Figure 10 (Source: Holling & Gunderson, 2002).
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An important implication of the adaptive cycle model and the integrity of self-organisation in general, is that
because of nature’s cyclic and self-organising behaviour one cannot identify a goal function of ecosystem
development. Hence, there is no phase or specific assemblage of species within a system state that is
ecologically more important than another. As such, we cannot assume that certain species (e.g.
driver/keystone species, K-strategist species or mature species) within a particular system state are
ecologically better. Ecosystem health demarcated by the integrity of self-organisation and modelled by the
adaptive cycle model puts species in effect on an ecologically “equal” pedestal. However, this notion of
species equality should not be confused with the diversity-stability model, as the adaptive cycle model does
not propound that diverse systems are ecologically “better” either.

Thus, while an impoverished system state, which has its health eradicated through mismanagement, may
have low connectedness, low potential and low resilience (a position within a state referred to as a “poverty
trap”, though ironically such a system is unlikely to remain trapped for a long period, as the low resilience
means it is highly susceptible to state space transitions), a system with a high connectedness, high potential
and high resilience (see Costanza’s index of ecosystem health p.12) may be equally maladapted. Indeed, a
system with high connectedness, high potential and high resilience is effectively constrained within a
“frozen” or “locked” state, described by Holling and Gunderson (2002) as a “rigidity trap”, which not only
prevents the system state from self-organisation, but again suggests such a system within a state is intuitively
ecologically better, yet we know this is not the case. In fact, such a system if it ever came in to being would be
highly brittle, and would require substantial resources to keep it maintained. Indeed, forcing systems through
management to persist within existing structures may seem to avoid “problems” that occur with change.
However, the longer the system is “locked” into a particular community the greater its vulnerability and the
more “devastating” the collapse of the system state will be perceived to be. That is, interrupting the adaptive
cycle through intensive management not only interferes with the “normal” cycle of life, but also amplifies the
magnitude of change within a system so much that it may shift violently into an alternative system state
(Holling et al., 1995).

4.4 Catastrophes, bifurcations and uncertainty

We know that despite ecosystems being able to maintain their present system states that change in a system
state is inevitable. Indeed, beyond a critical threshold value, which is poised at the edge of chaos (Kauffman,
1993), the organisational capacity of a system is overwhelmed and the behaviour of the system becomes
highly unstable, whereby the system state inevitably leaves its present domain of self-organisation and
attraction. At this point the system may make a transition or “flip” from one attractor to another. Importantly,
these shifts are not a gradual, smooth and continuous passage between system states, but rather rapid,
catastrophic and step-wise (Perrings & Pearce, 1994). Indeed, the notion of self-organised criticality seems to
explain why some processes lead to a minor event, while at other times the same processes lead to major
catastrophes (Bak, 1996). To see this, an appealing analogy is that of a sand pile, representing if you will the
development of an ecosystem. Imagine that a thin stream of sand is being run onto a round plate. Obviously,
over time a sand pile steadily develops, soon reaching the edge of the plate. The initially low pile of sand soon
gets higher and higher, until suddenly more sand may trigger a small sand slide, and then say a big one, that
is too say the same magnitude of disturbance (another grain of sand) may lead to a response of all size ranges.
Thus, the sand pile, when it can take no additional sand before sand slides will continuously occur, represents
an ecosystem poised at this critical threshold.

The actual change to another basin of attraction, that is, a new state of an ecosystem, is most often modelled
by either catastrophe theory or bifurcation theory. Catastrophe theory was originally developed by the
mathematician Thom (1975) and explains state transitions in a way that a system trajectory along a smooth
surface will at certain points have combinations of impossibility, which correspond to “folds” in the surface
mapping. Thus, a system approaching one of these “folds” must make a jump, in so doing the system faces

20



what Thom identifies as a catastrophe. Nonetheless, despite the usefulness of catastrophe theory it has scope
limitations, and consequently bifurcation theory is considered the most applicable theory for modelling state
transitions. The general approach of bifurcation theory is to construct bifurcations, that is, critical points
whereby the trajectory of a system is divided into new possible pathways, so as to explain the state dynamics
of a system (see Figure 12). Generally, there will be successive bifurcations as the system moves further from
equilibrium, each associated with a distinct system configuration.

1 2

& Steady state

trajectory

Figure 12: A typical diagram illustrating bifurcation theory.
Where b1, b2 and bs represent bifurcation points

There is however, an element of irreducible uncertainty about what new trajectory (or state) after the
bifurcation will be selected prior to the actual selection occurring. This uncertainty intrinsically limits the
capacity to predict categorically how a situation will unfold, say after changes in the management of an
ecosystem (Costanza & Cornwell, 1992; Ludwig et al., 1993; Kay & Regier, 2000; Limburg et al., 2002). Thus,
while the “time evolution” of an ecosystem is governed by somewhat deterministic and predictable laws
between bifurcations (Levins, 1999), the behaviour at a bifurcation has elements of historical happenstance,
which is largely unpredictable and cannot be reduced to probabilistic estimates, no matter how much
information we have and how sophisticated our simulations might be. In other words, in the vicinity of a
bifurcation, fluctuations with a chance-like character play a dominant role in determining the future state of
the system. The reason for this chance-like character is because beyond a bifurcation a system may adopt
more than one new state. Thus, changes in the system cannot be tied categorically to any specific
environmental changes.

In consequence of bifurcation theory, it seems that the Laplacian aspiration to be able to quantitatively
predict, with certainty, how the future will unfold, is irreconcilable with modelling of complex self-organising
systems (Kay & Regier, 2000). What is certain, however, is that before the state attractor is ever reached, the
state conditions, determined by the external factors and the internal ecosystem components, will have
changed and a new attractor is then effective. And before this new state attractor can ever be reached, new
external and internal conditions will again emerge, and so the process goes on (Jorgensen, 1997).

5.0 The subjective social utility model

From the work presented hitherto on models of ecosystem health the following conclusions can be delineated.
First, the credibility of the naturalness model is dubious, as there are numerous philosophical and pragmatic
difficulties in implementing naturalness, not least because humans and therefore human action that alter
“natural” systems should in themselves be considered “natural”. Secondly, the conventional approach to the
scientific process that of reductionism, effectively propounds that ecosystem health can be determined by
genetic diversity, however, this approach wrongly assumes that nature and ecosystems are mechanistic,
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which can be easily broken down into its component parts. Thirdly, the classical systems approach of
succession-to-climax is also unconvincing as a model of ecosystem health, as it wrongly insinuates that
ecosystems develop in a linear manner towards a self-perpetuating single steady state, rather than assuming
the presence of multiple equilibria and non-linear dynamics. And fourthly, there is little empirical evidence
that supports the diversity-stability and keystone species hypotheses, thus, ascertaining health of an
ecosystem by its diversity or abundance of an exceptional species is unfounded. These conclusions
demonstrate that when demarcating ecosystem health we must avoid commonly held hypotheses like:
naturalness is “good”, diversity is “good”, extinction of species is “bad”, stability and resilience is “good”,
and change is inherently “bad”. Indeed, the most pervasive misappropriation when demarcating a concept
such as ecosystem health is the insertion of subjectivity and values under the supposed objective guise of
scientific research (Kapustka & Landis 1998; Lackey, 2001).

In addition, to relinquishing these habitual beliefs as to what is “good” ecologically, we must as concluded
previously accept that there is no ecologically “better” assemblage of species within a system state.
Furthermore, and even more critically we also must conclude that there is no ecologically “better” state within
an entire ecosystem. Moreover, we also can conclude that there is no reason to believe that evolution is
inherently “good” either. Indeed, the philosopher Moore (1903) like Kuhn (1962), have reasoned that there is
no evidence that nature necessarily evolves toward “good”. To be “better” does not necessarily mean to be
more evolved; to be more evolved does not necessarily mean to be “better”. Consequently, categorical
statements about an ecologically “good” state or community for a given system cannot be deduced from
“objective” scientific arguments. Science cannot resolve which community, state or basin of attraction is best.
A value-free desire for a strictly scientific demarcation of ecosystem health, which can be applied irrespective
of circumstances, cannot be satisfied at present (Regier, 1993; Kay & Regier, 2000). As such, if strictly scientific
demarcations of ecosystem health cannot be satisfied, then it would seem that the most appropriate means to
characterising the concept is through a set of criteria which reflect the subjective values of society. For that
reason, we must treat the health of an ecosystem not as a “positive” concept, but as a “normative” concept,
because ultimately society has to decide what state is considered “good” (Costanza, 1992; Sagoff, 1995).
Science can only provide information, so as to inform about the management tradeoffs each state may
represent.

Naturally, this logical though somewhat controversial conclusion may lead scientists to dismiss the concept of
ecosystem health altogether. In truth, many scientists believe that the utilisation of value-based definitions for
interpreting the phenomena of nature, while useful in general conversation may be hopelessly difficult to
quantify (Ryder, 1990; Lancaster, 2000). It would seem that some members of the scientific community remain
steadfast in preserving definitions of ecosystem health to those empirically “observed” in nature. While such
stands plague the progress of demarcating ecosystem health, it is understandable as a scientist’s learning
instils an unwillingness to tarnish analysis with subjective values, as this would serve only to dilute the
“objectivity” of science and potentially lead to nature being the grotesque result of human invention,
imagination and fantasy (Kapustka & Landis, 1998; Lackey, 2001). Indeed, scientists may dread that given that
most individuals of society prefer on the face of it industrialisation to “nature”, that nature as we conceive of
it may be reduced to “rubble”. But, as a society when making value-laden decisions in a free market and
democratic environment, we must accept the values of society whatever they maybe. Indeed, to suggest that
some of the societal satisfactions that nature brings are morally superior to others only reflects certain biases
(Callicott, 1992; 1998). We must as certain axioms of economic theory propound, treat all societal values and
preferences concerning resource use as morally equivalent and thus, decisions made concerning resource use
should be determined solely in a market environment (Randall, 1988).

Since we can and “must” actively manage nature to maintain and preserve it (Swanson, 1995), and since there
is no scientific basis for demarcating ecosystem health, the possibility of managing nature for objectives that
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benefit society directly come into thinking. Indeed, we can conclude that humans may not only co-exist with
healthy ecosystems, but that they may alter them so as to improve upon them (Regier, 1993). Even, Leopold
(1939b; p.294) an unfaltering conservationist all his life could envision these ideals when he prophetically
stated; “when land does well for its owner, and the owner does well by his land; when both end up better by
reason of their partnership, we have conservation. When one or the other grows poorer, we do not”.
Importantly, one can assume that Leopold is not suggesting that nature has actually been improved upon by
industrialisation in the past, but rather that societal values and preferences made within a utility framework
might actually improve upon nature as well as society in the future. One then can suppose that the economic
questions of supply and demand (and costs and benefits) are what truly matters. That is, “what kind of
ecological garden do we as a society want?” And, “what kind of ecological garden can we as a society get?”

In taking this economic approach we also know it is not the ecosystems as “things-in-themselves” that have
“end-value” to society, rather it is a multi-attribute bundle of various ecosystem goods and services (see Table
1) that ecosystems supply to society that have value (or more appropriately utility) to society (Lancaster, 1971;
Lockwood, 1996; Hoehn et al., 2003). Thus, when demarcating ecosystem health by the aggregation of utility,
it is important to grasp that this is not suggesting that managing an ecosystem is the same as managing a firm
producing a multiple array of products. Indeed, the producers of a firm almost certainly have much better
information of their products that they can satisfactorily produce. In contrast, we are likely to underestimate
the goods and services provided by ecosystems, because of the inherent uncertainty involved in ecosystem
development and behaviour (Hoehn et al., 2003). Moreover, while it might be argued that if it is some
ecological service the ecosystem performs that is considered important to society, then a “factory” (i.e. firm)
might suffice that can produce the same service as supplied by the ecosystem (that is, it might be possible
simply to substitute ecological capital for human-made capital) (Sagoff, 1995). But, this deduction neglects
that in order for an ecosystem to function they must be treated as a whole. In essence, any weighting and
aggregating of values into a social utility function must also reflect ecosystems in their entirety. As such, a
social utility function is useful only in distinguishing amongst states, but not ecological communities within a
state, as the integrity of the process of self-organisation and evolution within a state must be maintained.

Goods & services Ecosystem functions Examples
Genetic resources  Sources of unique and ever-evolving genetic Genes for pathogen resistance, technology for breeding
information
Other raw That portion of gross primary production extractable = The production of timber, fuel, and fodder
materials as raw materials
Climate regulation =~ Regulation of global temperature and precipitation ~Greenhouse gas regulation, DMS production affecting
at global or local levels cloud formation
Gas regulation Regulation of atmospheric chemical composition The carbon dioxide-oxygen balance and ozone levels for
UVB protection
Water regulation Regulation of hydrological flows Provisioning of water for industrial processes or
transportation
Pollination Movement of floral gametes Provisioning of pollinators for the reproduction of plant
populations
Biological control ~ Trophic-dynamic regulations of populations Predator control of prey species
Regulation of Ecosystems can change the abundance of human Cholera and abundance of mosquitoes can be altered
human diseases pathogens
Waste treatment Recovery of mobile nutrients and removal or Waste treatment, pollution control, detoxification
breakdown of excess nutrients and compounds
Recreation Providing opportunities for recreational activities Eco-tourism, hunting and other recreational activities
Heritage Providing opportunities for non-commercial uses Historical, aesthetic and educational values

Table 1: The bundle of value-laden goods and services (attributes) provided by ecosystems that
society might value (Source: Constanza et al., 1997; p.254; Curtis, 2004; p. 164).
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In spite of the apparent ease with which a social utility function might demarcate ecosystem health, for many
economists the idea of a social utility function is in itself problematical. Indeed, it is well-known in social
welfare theory that it is unworkable to obtain a “true” social preference as outlined in Arrow’s (1951)
Impossibility Theorem. However, this obstacle can be overcome if one considers the concept of utility defined
by marginal classical economists as opposed to utility defined by present-day neoclassical economists (Cooter
& Rappoport, 1984). In particular, the classical economist Pareto (1897) distinguished between “utility” and
“ophelimity”, whereby utility was considered directly comparable across individuals in a cardinal sense and
thus “objective”, whilst ophelimity refers to ordinal preferences that are therefore entirely subjective and as
such are not comparable amongst individuals. To illustrate the contrast between these value forms, Pareto
(1896) suggested that bad-tasting medicine has utility for sick people, but not ophelimity. Thus, the difference
between utility and ophelimity is the difference between being socially “useful” and individually “desired”.
As such, at the level of individual for socially useful things is construed as being those things conducive to
human health. Accordingly, those goods and services that fall clearly into the category, can include the
bundle of attributes provided by ecosystems would then constitute the components of cardinal utility and not
the ordinally derived ophelimity.

A simple theoretical framework with a high level of abstraction of the social utility model is developed. The
framework begins by assuming that society wants to maximise its “utility” (and therefore ecosystem health)
from ecosystem management subject to certain budgetary constraints. That is, the ecosystem manager wants
to maximise utility for society per dollar spent of public funds. Now suppose we were to consider n
ecosystem goods and services according to those outlined in Table 1, which are then measured as scores xi, for
i=1,...n. Accordingly, each ecosystem in its present state (or phase) would represent a Lancasterian bundle of
performance scores, and thus each ecosystem state j could be represented as a vector of values ajj fori=1,...m.
Society would then, by acquiring a collection of quantities gj of the ecosystems, obtain a combined
representation of the performance dimensions. Suppose there are in all m different potential ecosystems,
which present a collection or portfolio of ecosystems from which society can derive utility from. Accordingly,
given budgetary constraints it will sometimes be optimal to disinvest in one ecosystem and invest into
another, “that is, it will be socially optimal to engage in conversions between assets to equilibriate returns...”
(Swanson, 1994; p.805). Thus, if we put this all formally, the overall performance of the collection or portfolio
of ecosystems would first be written according to Equation 3:

Jj=m
X, = E a,dq,i=1..n
j=1

Equation 3: Performance of the collection of ecosystems.

Now suppose that utility for each system state is known and that society wishes to maximise utility according
to the following social utility function in Equation 4 subject to Equation 3 and Equation 5:

@
max I U(x,,.x,,t)e ""ot=W
t=0
Equation 4: Social utility function.
Where W is the present value of future flows of utility

Jj=n
2.r4,=C
J=1
Equation 5: Budgetary constraint.

Where pjdenote the prices rendered for ecosystem management
C denotes a given fixed budget allocated by society to ecosystem management.
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If we now had prices for the xi variables we could go ahead with analysis, doing things such as evaluating
different portfolios and choosing among them. The xi variables would be included in the social utility
functions and so establish demand for various ecosystems.

5.1 Change, foresight and adaptation

Marshall (1949; p.xii) once stated that “the Mecca of the economist lies in economic biology rather than in
economic dynamics... But biological conceptions are more complex than those of mechanics”. These words
remain prophetic, as while we have defined a simplistic theoretical description of an optimal ecosystem
management strategy through maximising social utility, we have only found the most desirable and efficient
states of a portfolio of ecosystems at a point in time. However, as we are now well aware fluctuations and
change within and between system states are inevitable, which in turn, will alter society’s supply of
ecosystem goods and services (utility). Thus, with complex self-organising systems that “change”, one should
not be focusing on efficiency at a point in time, but rather efficiency at future points in time. In other words,
“change” cannot be modelled appropriately by being ecologically well-adapted to the conditions of the given
environment and by means of optimal resource allocation, instead, “change” is best modelled as the ability
the system has in adapting to possible changes in the environment (Potts, 2000). However, despite these
problems with fluctuations, fluctuations within a state, which reflect “boom” (r to K) and “bust” (K to Q)
patterns in the adaptive cycle maybe intuitively smoothed. This is reasoned because informed humans
through the use of foresight, anticipation and intentionality may be able to reduce the “boom” and “bust”
nature of the adaptive cycle, by transmitting future scarcities into current prices (Solow, 1973).

Nonetheless, fluctuations resulting in state transitions must be considered differently, in that no matter how
well informed and far-sighted an ecosystem manager might be there is no means to predicting which state
configuration might eventuate after a catastrophic event. Nevertheless, as an ecosystem moves further away
from the neighbourhood of its stable equilibrium, the relevant value concepts of importance shift from
focusing on further utility generation to one of utility maximisation and uncertainty, because (presumably)
the K-phase provides the most utility to society, but has the least ecological resilience (Ludwig et al., 2002).
Importantly, the uncertainty of a desired system state can be determined or modelled in one sense or another,
by the state’s ecological resilience. That is, resilience R acts in much the same way as a probabilistic function
does when determining expected utility and thus, R; is the ecological resilience for the present system state j
expressed as a probability, while 1 — R; is the probability of a state transition of j.

Accordingly, it has been argued that a means to ensuring that a desirable state (or phase) is maintained is to
enhance the ecological resilience of the system state, while decreasing the resilience of less desirable states
(Walker et al., 2002). However, this approach to ecosystem health is problematic for two reasons. First,
because altering resilience will affect the ability of the system to properly self-organise and may lead to
unwanted “lock-in”. And secondly, because we must not assume that societal values and preferences are
fixed and given, but also can change (at quite possibly a faster rate of change) as well. In other words, a
desirable state with “enhanced” resilience at time  may become decidedly undesirable soon after at time #+1.
Yet, not only is it difficult to destabilise the once desired system into an alternative more desirable state, but
there can be no assurances that this now desired state will then eventuate. As a result, the management of
system states by altering their resilience for state change or adhering to a risk-averse “safe minimum
standard” is not seen as effective.

It seems given the limitations imposed by complex self-organising systems, management strategies for
ecosystems must focus on maintaining the capacity to adapt to ever-changing ecological conditions (Reid,
1994). That is, we must truly accept chance and not relegate such phenomena through some grossly simplified
“error term” (Mirowski, 1989). As such, we must accept the fact that the more we adapt ourselves to a given
environment, the less we are suited to changed circumstances. And the more we prepare for all possible
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contingences, the less we have devoted ourselves to the present environment. Accordingly, how should we as
a society decide the balance between the known present and the set of all possible and imaginary states and
futures, when the future states remain uncertain? This is one of the fundamental problems that make up the
foundations of economics (Potts, 2000). One strategy that seems to fit this problem is adaptive management,
which is based in the ideologies of co-evolutionary development (Holling, 1978, Gunderson et al., 1995). In
adaptive management, differences between how the future actually unfolds and how it was envisioned are
seen as opportunities for learning. Thus, the aim of adaptive management is to address the inherent
uncertainty found in ecosystem development and behaviour by achieving management objectives while
simultaneously gaining knowledge and continually updating societal values (Walters, 1986). In other words,
the only appropriate means to proceed in an environment that is so uncertain is not to predict what the future
holds, or to resist future system changes, but to experiment and to react to changes as they become apparent
(Lempert et al., 1996). This is the same way nature itself achieves “balance”, that is, through maintaining and
self-organising itself in states of complexity.

6.0 Conclusion

It might have been thought that ecosystem health, an ecological concept could be demarcated by ecological
means, but this seems not to be so. By demystifying ecosystem health it was concluded that the concept is
fundamentally “normative” and can be determined by economic means alone. But, while the concept may be
best modelled by an economic paradigm through a social utility function, it must be done so in a way that
also captures the intrinsic ever-changing dynamics that are quintessential to a complex, self-organising
system.
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