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Abstract 

Understanding protoplast technology as a tool for to enhance biocontrol 

 

by 

Jessica A. Yardley 

 

Biocontrol of plant pathogens is an integral part of modern pest and disease management. Issues of 

pesticide residues/resistance and a drive towards sustainability within crop protection systems have 

created an opportunity for sustainable alternatives to synthetic agro-chemicals. One approach within 

integrated pest management programmes is the use of biocontrol agents, such as fungi. The 

development of novel biocontrol strains using protoplast technology provides the opportunity to re-

combine or introduce desired features, in particular fungicide tolerance, without the need for sexual 

reproduction. This present study employed protoplast regeneration to produce novel Trichoderma 

strains with attributes such as pesticide tolerance for the control of the bacterium causing kiwifruit 

canker, Pseudomonas syringae pv. actinidae (Psa). To achieve this, leading Trichoderma strains were 

selected from within current research programmes targeted at kiwifruit health. Using protoplast 

regeneration, numerous strains were produced that were tolerant separately to copper sulphate and 

Chief® (a.i. carbendazim). Further bioactivity trials showed that biocontrol potential of the protoplast 

progeny was not reduced as a consequence of this strain enhancement. However, despite the use of 

fungal protoplast technology for strain improvement very little is known of the underlying genetic 

changes responsible for the modified phenotypes. The overall hypothesis was that cytosine 

methylation may be responsible for the phenotypic plasticity that was observed in these protoplast 

progeny, with this study being the first to examine the consequences of protoplast regeneration 

through a multi-layered, integrative ‘omics approach. The differential cytosine mapping through whole 

genome bisulphite sequencing showed sparse differential methylation between a protoplast 

regenerant (copper tolerant FCC237/R5 T. sp. “atroviride B”) and its parent (FCC237 T. sp. “atroviride 

B”). This cytosine methylation did not appear to modulate corresponding gene expression levels to 

differentially methylated associated genes, as it had been reported in other fungal species. The 

transcriptome analysis indicated differential gene expression between the parent and regenerant in 

both sub-lethal levels of copper sulphate (1 mM) (88 DEGs) and also in the control PDB (281 DEGs). 

The changes in DEGs profiles, especially regarding proteins involved in oxidative stress, secondary 
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metabolites and transporters could suggest that the regenerant may induce a general stress response 

as opposed to a specific pathway for copper tolerance that has arisen as a putative result of protoplast 

regeneration. Other epigenetic factors, including histone and chromatin modifications and RNA 

interference, are likely to play an important in both regulating gene expression states and the 

phenotypic plasticity observed in the protoplast regenerant. Although other epigenetic modifications 

have not been tested here, they would be expected to be present due to the interconnectedness of 

the epigenome and further elucidation is required. This work has contributed to a better 

understanding of the basic genetic events that occur during protoplasting in Trichoderma, which may 

allow for greater advances in not only strain enhancement, but also in genetic modification 

experiments, in both Trichoderma but other filamentous fungi.     

Keywords: Trichoderma, Trichoderma sp. “atroviride B”, biological control, protoplast technology, 

protoplast regeneration, cytosine methylation, whole genome bisulphate sequencing, transcriptomics. 
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Chapter 1 

Introduction 

1.1 Biological control  

Biological control (biocontrol) of plant pathogens is an integral part of modern pest and disease 

management. Issues of pesticide residues, development of pesticide resistant organisms and the drive 

towards sustainability within traditional crop protection systems have created an opportunity for 

beneficial/sustainable options and alternatives. The use of chemicals in traditional farming systems 

has increased dramatically over the last 70 years (Pradhan et al., 2015; Woo et al., 2014), raising serious 

environmental concerns that have prompted governing bodies to implement legislation to either ban 

or decrease the dependence on pesticides in agriculture (Clarke et al., 2011; Woo et al., 2014). This 

has forced farmers to use other approaches such as implementing integrated pest management (IPM) 

programmes that use lower pesticide inputs as a necessity rather than by choice. One approach within 

these IPM programmes is the use of biocontrol agents as an alternative to synthetic agro-chemicals 

(Woo et al., 2014). Biocontrol is the application of a living organism (predator, insect pathogen, 

antagonist or competitor) or products derived or extracted from a living organism to control harmful 

microorganisms or pests that cause plant disease, including host resistance (constitutive and elicited) 

(Wilson, 1997). The main purpose of biocontrol of plant diseases is to reduce the disease damage 

threshold below an economically significant level (Sumeet and Mukerji, 2000).  Plant disease biocontrol 

agents are traditionally fungi and bacteria and can be both foliar and rhizosphere competent (Sumeet 

and Mukerji, 2000; Sundh and Goettel, 2013; Woo et al., 2014). Currently, these beneficial 

microorganisms are increasingly being used as an effective tool within IPM programmes (Hyakumachi 

et al., 2014).    

1.2 The genus Trichoderma 

Trichoderma species are primarily asexual, free-living saprophytic fungi present in the soil, roots, and 

leaves of plants in nearly all ecosystems (Harman et al., 2004b; Samuels, 1996; Woo et al., 2014). They 

have been found to comprise as much as 3% of the total fungal populations in forests and 1.5% of the 

total fungal population in other soils (Tripathi et al., 2010). This genus includes more than 200 species 

(Atanasova et al., 2013), of which many tend to be opportunistic plant endophytes. This close 

relationship that Trichoderma forms with plants can promote growth and activate induced systemic 

resistance to pests. In addition, they can parasitise plant pathogens and produce bioactive secondary 

metabolites and enzymes (Harman, 2006). These characteristics make Trichoderma invaluable in 



 2 

various industries such as: agriculture, biotechnology, paper and pulp treatment and also for use in 

bioremediation (Harman et al., 2004a; Harman et al., 2012). 

1.3 Trichoderma as biocontrol agents 

The biocontrol ability of Trichoderma species against plant pathogens have been extensively studied 

over the past 80 years. They have long been recognised as potential biocontrol agents and for their 

ability to increase plant growth and development (Harman et al., 2004b). Various Trichoderma species 

are currently marketed as active ingredients of biopesticides, biofertilisers, growth enhancers and 

stimulants of natural resistance; together they represent the most common fungal biocontrol genera 

commercially available for the control of plant diseases (Sharma and Gothalwal, 2017; Woo et al., 

2014). 

Trichoderma have varying antagonistic properties based on the activation of multiple mechanisms. 

These modes of action include antibiosis, mycoparasitism, biofertilisation, inducing plant defence 

systems and competition with the pathogen for nutrients. These mechanisms are complex, and the 

biocontrol potential of Trichoderma spp. is often the result of different mechanisms acting 

synergistically to achieve disease control (Howell, 2003; Mendoza-Mendoza et al., 2017; Sharma et al., 

2014). These modes of action depend greatly on the individual strain along with external factors such 

as the antagonised pathogen, the (crop) plant and environmental conditions including nutrient 

availability, pH and temperature (Sharma and Gothalwal, 2017). The range of bioactivity of individual 

Trichoderma strains is comprehensive. For example, commercial products containing Trichoderma 

have been developed for Sclerotium cepivorum (McLean and Stewart, 2000), Botrytis cinerea (Card et 

al., 2009; De Meyer et al., 1998), Rhizoctonia solani (Sarrocco et al., 2009), Pythium (Howell, 2002), 

Fusarium oxysporum (Sivan and Chet, 1986), nematodes (Sharon et al., 2007) and wood-rot fungi 

(Monte, 2010). The majority of these products are fungicidal (65%), being used for biocontrol of root 

diseases caused by soil-borne pathogens (Woo et al., 2014).  

On a commercial production scale, the success of Trichoderma can be credited to the large volume of 

viable spores that can be produced rapidly and inexpensively on numerous substrates. These low-cost 

substrates include rice, wheat bran/peat and recycled materials from food manufacturing. This 

approach has enabled the production of Trichoderma worldwide without the need for expensive high-

tech fermentation methods making Trichoderma based products more accessible (Kumar and Ashraf, 

2017; Woo et al., 2014). In addition, Trichoderma spores can be incorporated into various formulations 

including pure spores, liquid culture, granules or as a seed treatment and be stored for months without 

losing efficacy. Between the production capability and the biocontrol potential, the number of 

Trichoderma containing products found on the international market has grown extensively (Woo et 

al., 2014).  
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Work within our research group has identified and commercialised a biocontrol product based on a 

combination of three Trichoderma strains (identified by Robert Hill and Christine Stark, Bio-Protection 

Research Centre, Lincoln University [BPRC]) called Kiwivax™ (Agrimm Technology, New Zealand). It has 

a limited label claim to reduce the symptoms of the canker-causing bacterium Pseudomonas syringae 

pv. actinidiae (Psa) and to increase the survivability of kiwifruit seedlings. 

1.4 Pseudomonas syringae pv. actinidiae 

Pseudomonas syringae pv. actinidiae (Psa) is a gram-negative bacterium that causes bacterial canker 

on a variety of kiwifruit species, including the economically important Actinidia chinensis (gold fleshed 

kiwifruit, cv. Hort16A) and A. deliciosa (green fleshed kiwifruit, cv. Hayward) (Scortichini et al., 2012; 

Vanneste, 2017). The symptoms of this disease include brown-black leaf spots with chlorotic halos, 

extensive twig die-back, blossom necrosis and bleeding cankers along the main trunk which produce 

red coloured exudates, eventually leading to vine decline and death (Scortichini et al., 2012; Vanneste, 

2017). 

 Psa in New Zealand 

In 2008, a virulent form of Psa was identified in Italy. It subsequently spread throughout other kiwifruit 

growing regions of the world eventually reaching New Zealand in November 2010. The disease 

symptoms were initially found on the cultivar ‘Hort16A’ in Te Puke, Bay of Plenty. Symptoms were 

soon found on the ‘Hayward’ cultivar, which overseas had been more tolerant than other cultivars, 

and spread beyond the primary region (Everett et al., 2011). As of May 2018, 2949 orchards had been 

identified with Psa and 92% of New Zealand’s kiwifruit hectares are on orchards identified with the 

disease (http://www.kvh.org.nz/maps_stats; last accessed 22.5.2018). The only kiwifruit growing 

region free from the disease is the South Island (Nelson/Takaka). Te Puke and Waihi are the most 

severely affected region with 100% of orchards confirmed as infected with Psa disease 

(http://www.kvh.org.nz/maps_stats; last accessed 22.5.2018). Despite a swift response from the 

kiwifruit industry, the Ministry of Primary Industries (MPI) and scientists to minimise the impacts, the 

financial impact of this Psa outbreak was severe (Vanneste, 2017). In 2012, a report by Lincoln 

University’s Agribusiness and Economics Research unit projected that Psa would cost the kiwifruit 

industry between NZ$310-410 million over the next five years (Greer and Saunders, 2012). However, 

by 2014 the cost of lost exports alone was estimated to be as high as NZ$930 million (Vanneste, 2017).  

 Control of Psa  

Research has focused on developing efficient strategies for understanding the epidemiology of the 

disease and controlling the economic loss to the kiwifruit industry. Potential chemical and biocontrol 

options, alongside strict orchard management practices and breeding resistant varieties are all being 
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used in this effort (Cameron and Sarojini, 2014). Currently chemical control of Psa in the field is highly 

dependent on the multiple sprayings of two main bactericides, copper compounds and streptomycin 

(Colombi et al., 2017), although resistance to both of these bactericides can occur (Colombi et al., 2017; 

Goto et al., 1994). Strains isolated from Japan throughout the 1980s had a single plasmid that 

contained both streptomycin and copper resistance genes (Nakajima and Tadaaki, 2002). This raises a 

very serious concern of bacterial resistance developing to the only current preventative measures. At 

the beginning of the New Zealand outbreak the single clone responsible was sensitive to copper and 

lacked genes encoding copper resistance (Colombi et al., 2017; McCann et al., 2013). However, in 2014 

copper resistant strains started to appear with a quarter of isolated strains showing resistance. These 

strains are able to grow in the laboratory in excess of 0.8 mM (~200 ppm) of copper sulphate. A recent 

study of seven copper resistant strains of Psa led to the identification of three new integrative 

conjugative elements (ICEs) and two large plasmids carrying genes encoding copper resistance 

(Colombi et al., 2017).  

Fortunately, the kiwifruit industry in New Zealand has recovered and is producing more kiwifruit than 

before the Psa outbreak. This is mainly due to the replacement of ‘Hort16A’ with another yellow-

fleshed cultivar A. chinensis var. chinensis ‘Zesy002’ (Gold3; which is marketed as Zespri® SunGold 

Kiwifruit). This new cultivar is less susceptible to Psa than ‘Hort16A’ (Vanneste, 2017). However, the 

industry still relies mostly on copper-based products to limit the impact of the disease. Although there 

has been no loss of control using copper products yet, new control options for Psa are still needed in 

case this does occur. One potential option is the integration of these current control approaches with 

biocontrol (IPM) at key growing times during the season. This strategy can reduce the use of these 

chemical control options and potentially prolong their effective lifespan. 

1.5 Protoplast technology  

In order to integrate Kiwivax™ into an IPM programme, it would be desirable if the Trichoderma strains 

were tolerant to chemical treatments such as copper and other fungicides routinely applied in kiwifruit 

orchards. One approach of enhancing Trichoderma is the use of protoplast technology (Hanson and 

Howell, 2002; Harman, 2000; Hassan et al., 2013; Hatvani et al., 2006).  

Protoplast technology is a powerful tool which provides a mechanism both to screen for rare genetic 

traits and recombine desired traits without the need for sexual reproduction (Hanson and Howell, 

2002; Harman and Stasz, 1991; Narayanasamy, 2013). This is particularly helpful as reproducing 

sexually is rarely seen in Trichoderma, especially in laboratory situations. Therefore other methods 

must be explored rather than sexual crossing. Protoplasts are cells where the cell wall has been 

removed so the cytoplasmic membrane is the outermost cell layer (Balasubramanian and 

Lalithakumari, 2008; Paszkowski et al., 1992; Rodriguez-Iglesias and Schmoll, 2015). Protoplasts are 
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able to readily adapt to environmental changes as well as being able to fuse, in turn recombining 

genetic material. The production of protoplasts is an effective technique which has been applied in 

both plant and fungal systems to enhance strains (Eeckhaut et al., 2013; Paszkowski et al., 1992; 

Savitha et al., 2010).  

There are two primary applications for protoplasting. The first one is the production of protoplast 

regenerants (one parent) which allows cell regeneration for screening and selection of naturally 

occurring rare genetic alterations (Braithwaite et al., 2013; Kandula et al., 2012; Paszkowski et al., 

1992). In the literature some researchers have described these progenies as arising from self-fusion 

(intra-strain). However, when only one parental strain is present, it is not possible to definitively state 

that the selected progeny was the result of any fusion event. For the purpose of this thesis reports of 

self- or intra-strain fusion will be referred to as regenerants. The second application for protoplasting 

is protoplast fusion (inter-strain fusion). This occurs between two parental strains and is when cell 

fusion and mixing of genetic material takes place (Balasubramanian and Lalithakumari, 2008; Harman 

et al., 1998). Since genetic mixing takes place, this technique can be used to combine desirable 

characteristics into one strain. This process of mixing genetic material can also occur in nature not only 

through sexual reproduction but via vegetative hyphal fusion or anastomosis in filamentous fungi 

(Daskalov et al., 2017). Additionally, producing novel strains via protoplast fusion is beneficial from a 

regulatory standpoint as they do not involve genetic engineering so there are no restrictions on using 

this technology within New Zealand and elsewhere around the world.  

 Protoplast regeneration as a tool   

Exposure of protoplasts to extreme conditions is a proven technique to select for regenerants with 

specific environmental tolerances (Paszkowski et al., 1992). Fungi grown from these regenerated 

protoplasts appear to be more vigorous and are readily able to adapt to stresses through an unknown 

mechanism/s. This technique has the ability to select for rare genetic traits and stimulate spontaneous 

mutations (Paszkowski et al., 1992) without the need for mutagenesis, or reset the cell’s gene 

expression program (Avivi et al., 2004). Within our research group, protoplast regeneration has been 

successfully used to develop T. sp. “atroviride B” variants that are tolerant to the fungicide Switch® 

(active ingredients cyprodinil and fludioxonil) and others that are more biologically active at cooler 

temperatures than the parental strain (Braithwaite et al., 2013; Kandula et al., 2012). Protoplast 

regeneration is therefore a very effective tool to screen and select for desired traits such as tolerance 

to chemical treatments within already successful biocontrol Trichoderma strains. 
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 Protoplast fusion as a tool  

Desirable characteristics can also be combined from two strains or species using protoplast fusion 

(Hanson and Howell, 2002; Mohamed and Haggag, 2010). Protoplast fusion has been shown to be a 

successful technique for the improvement of biocontrol Trichoderma strains. This was first shown in 

the 1980s, with T. reesi strains, where protoplast fusion resulted in new genetic progeny (Manczinger 

and Ferenczy, 1985). Since then it has been applied to numerous other Trichoderma and other 

filamentous fungi (Ahmed and Fatma, 2007; Couteaudier et al., 1996; Harman, 2000). The most 

commonly cited example is T. harzianum T-22 (Harman, 2000). This novel strain was produced using 

protoplast fusion from two T. harzianum strains in an attempt to obtain a strain that was highly 

rhizosphere competent with the ability to suppress spermosphere bacteria (Harman, 2000). Various 

other research groups have also achieved success in the fusion of protoplasts within the genus 

Trichoderma to enhance biological attributes. One such example is a fusant that was produced 

between T. koningii (good storage qualities, but poor biocontrol efficacy) and T. virens (good biocontrol 

activity against Rhizoctonia solani). This newly created fusant had significantly better biocontrol 

activity and an increase in storage potential for up to a year compared to their respective parents 

(Hanson and Howell, 2002). 

There are various applications of progeny resulting from fungal protoplast fusions, not just in 

Trichoderma species. These include genetic analyses where progeny from protoplast fusion have been 

used in gene mapping and complementation tests (Strom and Bushley, 2016), fermentation and 

enzyme production (Ahmed and Fatma, 2007; Dillon et al., 2008; Hassan, 2014; Ushijima et al., 1990), 

pharmaceutical production (Anné, 1982; Tahoun, 1993; Zhou et al., 2008), bioremediation (Patil et al., 

2015) and biocontrol. Protoplast fusion has also been used in the development of an effective 

biocontrol agent between two strains of Beauveria bassiana. This fusant exhibited greater virulence 

against their insect host (Couteaudier et al., 1996). In another study fusant strains of B. bassiana with 

enhanced thermotolerance were produced from fusing two strains (Kim et al., 2011). Another research 

group produced a fusant between the entomopathogenic fungi Lecanicillium muscarium and L. 

longisporum that had higher virulence than each parental strain and had an enhanced ability to 

withstand humidity extremes (Aiuchi et al., 2008). 

It is important to note that not all fusion events between different fungal species and strains are 

successful (Daskalov et al., 2017; Stasz et al., 1989). A potential outcome is the formation of unstable 

heterokaryons. Heterokaryosis is unique to fungi and refers to the presence of two or more genetically 

distant nuclei within the same cell (Strom and Bushley, 2016). Although there are many stable 

examples of heterokaryons across the fungal kingdom, there are numerous molecular mechanisms in 

place that regulate this cellular fusion and potential heterokaryon formation. The production of 
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unstable heterokaryons can lead to programmed cell death, with heterokaryon or vegetative 

incompatibility occurring commonly. This mechanism has been further hypothesised that it can act as 

a defence against mycoparasitism and genome exploitation from other fungi. This potentially occurs 

by inducing programmed cell death via incompatible alleles and other non-self recognition 

mechanisms (Daskalov et al., 2017).  

 Mechanisms behind protoplasting  

Protoplast regenerants 
Although both uses of protoplast technology (regeneration and fusion) are commonly used to produce 

improved fungal strains, little is known about the underlying genetic consequences of protoplasting. 

Even less is known about the processes underlying phenotypic change in regenerants with altered 

characteristics. The genetic basis for fungicide resistance (Switch®) within the regenerants produced 

by our group was explored (Johanna Steyaert, pers. comm.). Universally primed PCR (UP-PCR) and 

Amplified Fragment Length Polymorphism (AFLP) profiles were identical in the parent and Switch® 

resistant regenerant suggesting that the phenotypic changes were due to either subtle DNA 

arrangements or involved non-genomic changes. Five key genes that are known to be associated with 

Switch® resistance were sequenced revealing no change between parent and regenerant. However, 

Methylation Sensitive Amplified Polymorphism (MSAP) analysis detected multiple methylation 

changes which strongly suggests that methylation may play an important role in determining the 

phenotype plasticity of regenerants. 

Causes of changes in phenotype 
Phenotypic differences are typically induced in three main ways: changes of the DNA sequence, extra-

chromosomal DNA elements and by epigenetic modifications that can influence gene expression. 

These genomic and gene expression differences can lead to altered protein compositions or function 

in the cells which in turn causes phenotypic changes (Williams et al., 2007). For phenotypic alterations 

to be maintained over subsequent generations the changes need to be heritable. Major DNA 

differences between strains stem from events such as deletions, insertions, transposable elements, 

translocations, chromosomal polymorphisms, different gene copy number and different intron 

positions (Kistler and Miao, 1992). However, these large genomic differences normally would have 

been picked up via the DNA fingerprinting methods mentioned above suggesting a more subtle change 

may be more likely. Single nucleotide polymorphisms (SNPs) are responsible for most of the genetic 

variation between individuals. They can arise from spontaneous mutations and cause major 

phenotypic changes or remain silent (Lange et al., 2016a; Porciuncula et al., 2013). For example, 

Porciuncula et al. (2013) tested a hyper-cellulolytic mutant strain of T. reesei produced by UV-
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irradiation. A single SNP in the DNA-binding domain of cre1 (a carbon catabolite repressor gene) was 

found to solely be responsible for the increased cellulase production.  

Extra-chromosomal DNA elements are defined as changes that occur in non-chromosomal elements. 

Examples of extra-chromosomal changes in fungi are changes within the DNA resulting from 

mitochondrial genome, mycovirsuses and plasmids (Ghabrial et al., 2015; Kistler and Miao, 1992; Nuss 

and Koltin, 1990; Samac and Leong, 1989). Lange (2015) showed that there were single stranded RNA 

(ssRNA) bands detected in a strain of T. sp “atroviride B” (LU660). This is significant as viruses can 

induce hypovirulence in plant pathogenic fungi and also secrete different secondary metabolites 

(Ghabrial et al., 2015; Nuss, 2005), which could have an effect on phenotype. These mycoviruses are 

commonly found in endophytic fungi, with research postulating that there is potentially a mutualistic 

role within this already complex interaction (between the fungus and plant) (Ghabrial et al., 2015; 

Herrero et al., 2009). 

Finally, epigenetic modifications can also alter the phenotype of an organism. These are heritable 

alterations that are not due to changes in the DNA sequence. There are different types of modifications 

that can lead to epigenetic effects that include: DNA methylation, histone modifications and 

deacetylation and RNA-based mechanisms such as microRNAs and small RNAs (sRNAs) (Jaenisch and 

Bird, 2003; Martienssen and Colot, 2001). These can alter DNA accessibility and chromatin structure 

that in turn change patterns of gene expression, either causing gene activation or silencing 

(Martienssen and Colot, 2001). All of these modifications have the potential to alter the biology of a 

strain and, in this case, potentially the phenotype between a parent and the protoplast regenerant.     

Cytosine DNA methylation is thought to be a major contributor in epigenetic regulation as it can lead 

to other epigenetic modifications such as modified histones and chromatin structures. Cytosine 

methylation is a well-established epigenetic mark within eukaryotes that involves the addition of a 

methyl group to the C5 carbon residue (5mC) of cytosines by DNA methyltransferases (Krueger et al., 

2012). It plays a crucial role in numerous cellular processes including genome regulation and 

development, gene imprinting and transposon silencing (Feng et al., 2010; Zemach et al., 2010). 

Cytosine methylation is not present in all eukaryotes and higher methylation levels have been found 

in mammals and plants compared to lower (or non-detectable) levels in insects, yeast and fungi. A 

consensus view of DNA methylation in fungi was primarily as a genome maintenance mechanism that 

controls the genome stability against transposable elements and repeat sequences, chromatin 

condensation and regulation of non-coding RNAs (ncRNAs) (Li et al., 2017b; Zemach et al., 2010). 

However, it is becoming more common to see methylation in gene bodies in fungi than previously 

thought with numerous papers recently reporting this phenomenon (Jeon et al., 2015; Li et al., 2017b; 

Wang et al., 2015; Zemach et al., 2010). This is notable as previous studies showed methylation 
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primarily of intergenic regions which was thought to play a role in the maintenance of genome stability. 

Methylation found in genic regions can control gene transcription (Bird, 2002; Li et al., 2017b), 

theoretically having a more direct influence over the phenotype of an organism.  

 

Figure 1.1 The effect that cytosine DNA methylation or mutation may have on gene expression 
following the production of a protoplast regenerant. (A) Methylation in promoters can 
cause repression of gene expression. (B) Methylation of introns and exons is associated 
with alternative splicing, transcriptional elongation etc. (C) Other factors that could 
cause phenotypic plasticity include changes in DNA sequence (SNPs), 
extrachromosomal DNA elements or other epigenetic modifications.  

 

Protoplast fusants 
Researchers have examined the basis of the changes resulting from fusion where genome 

rearrangement was observed. However, the exact nature, mechanism and frequency of 

rearrangements occurring is unknown. Traditionally fungi have a variety of mechanisms whereby they 

undergo interspecific hybridisation; either by a partial or complete sexual cycle or via a parasexual 

process (Schardl and Craven, 2003). Fused protoplasts initially form heterokaryons and may progress 

partway or completely through the parasexual cycle, resulting in diploid or recombined haploid hybrids 

(Strom and Bushley, 2016). Genome reshuffling can occur with the acquisition and/or loss of multiple 

traits and is often documented through DNA profiling and fragmenting such as UP-PCR, Random 

Amplified Polymorphic DNA (RAPD) and Inter-simple Sequence Repeat PCR (ISSR-PCR) (Hassan et al., 

2011; Lakhani et al., 2016; Xu et al., 2012). Fungal fusants often exhibit faster growth than either of 

the two parental strains and have desirable characteristics of both parents (Strom and Bushley, 2016). 

For example, protoplast fusants were produced from T. koningii and T. viride resulting in a two-fold 

increase in enzyme activity of β-glucanase within the fusants compared to the parental strains (Hassan 

et al., 2013). Additionally, for this fusant the protein pattern of the extracellular cellulase enzymes was 

acquired through Sodium Dodecyl Sulphate Polyacrylamide Gel Electrophoresis (SDS-PAGE) that 

further revealed a new recombinant protein. It was hypothesised that the presence of this protein 
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resulted from a partial or incomplete genetic recombination during nuclear and cytoplasmic protoplast 

fusion (Hassan et al., 2013). 

However, there is much debate over genome recombination and to the extent and frequency this 

occurs with different studies suggesting different mechanisms. Harman et al. (1998) examined the 

mitochondrial and genomic RFLP and RAPD patterns of the parental strains and fusion progeny of two 

T. harzianum strains (T95 lys- ben+ and T12 his-). In only one case out of fifteen did the genomic RFLP 

or the RAPD pattern differ from one or the other parental strain. Moreover, in all progeny the 

mitochondrial genotype matched the same pattern of the nuclear genotype with similarities to a single 

parent opposed to a combination. These results posed a paradox as they suggested that classical 

parasexuality that includes recombination of large sections of the parental genome did not occur 

during protoplast fusion at detectable levels. Instead they proposed a mechanism called inter-strain 

gene transfer to explain these changes in phenotype (Harman and Hayes, 1993; Harman et al., 1998). 

They suggested that within inter-strain fusions many nuclei of the non-prevalent parent are degraded 

and that DNA fragments are produced. These very small fragments are subsequently inserted into the 

genome of the prevalent strain and give rise to novel genotypes. In addition, the unusual phenotype 

of many progeny strains might be explained by the insertion of sequences at sites that disrupt key 

genes or regulatory sequences. To test this hypothesis they used a dominant selectable marker that 

could be identified using Southern blot analyses with a transformed T. harzianum strain containing a 

gene for hygromycin B resistance (hygB). The progeny were screened and Southern blot analyses 

confirmed that hygB (from the non-prevalent parent) was incorporated into the genome. RFLP and 

RAPD analyses were performed on this strain and all gave the same genotype as the prevalent parent 

(Harman and Hayes, 1993; Harman et al., 1998). This mechanism is cited from a chapter within the 

book Trichoderma and Gliocaldium Volume 1: Basic biology, taxonomy and genetics (1998), with the 

original papers being reported as submitted in 1998. However, after an extensive literature search, 

these original papers were not found suggesting that they were never published, which raises some 

doubt regarding these hypotheses.  

As previously mentioned, fusion of protoplasts may result in a transitional heterokaryotic phase 

without nuclear fusion. Early research into protoplast fusion suggested that the recombination of the 

nuclei between two fused parental strains may be due to either heterokaryosis or karyogamy. Pe'er 

and Chet (1990) showed heterokaryotic colonies were produced by the fusion of two auxotrophic T. 

harzianum mutants. However, after several rounds of single spore selection the heterokaryotic 

colonies segregated into the two parental types. This indicated that nuclei from both parental strains 

were in a transitional heterokaryotic phase (Pe'er and Chet, 1990). Interestingly, protoplasts of 

Candida tropicalis were also shown to produce heterokaryons after a fusion event which were unstable 

and quickly reverted into their two respective nuclear components (Fournier et al., 1977). Genetic 
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instability of intra-specific and inter-specific fusants is a commonly reported problem (Anné, 1982; 

Stasz et al., 1989; Wang et al., 2010). Industrial strains of Penicillium chrysogenum, which can 

synthesise higher levels of penicillin due to alloploidy, often reverted back to wild-type antibiotic 

production levels due to chromosome loss over repeated rounds of sub-culturing (Künkel et al., 1992). 

It has been suggested that this instability is a natural progression of the parasexual cycle in which 

diploids formed from heterokaryons undergo haploidisation through gradual chromosome loss (Strom 

and Bushley, 2016). This genetic instability is noted in wild-type fungi even when undergoing sexual 

reproduction as offspring can have different sized chromosomes over numerous generations (Davière 

et al., 2001). This highlights how sporadic and potentially unstable fungal fusion can be, whether 

occurring naturally through anastomosis or in vivo via protoplast fusion.   

Although heterkaryosis is not strictly protoplast fusion some of the mechanisms behind the improved 

qualities of these stable fungal heterokaryons may still be of interest. Several genetic mechanisms have 

been proposed (Couteaudier et al., 1996; Strom and Bushley, 2016). It has been suggested that 

deleterious alleles in one genome are masked by dominant or complementary alleles in the second 

genome. Another possibility is that new gene interactions arise in heterokaryons due to distinct allele 

combinations. Finally, hybrids between these genotypically divergent parents may express novel 

combinations of genes or a greater diversity of transcripts. This would result in an increased variety of 

proteins that may confer a faster growth rate or increased production of secondary metabolites (Strom 

and Bushley, 2016). It was postulated that all of these mechanisms likely play a part in enhancing the 

phenotypes of these fungal heterokaryons.  

Another similar system involving combining of different chromosomes is that of plant and fungal 

polyploids. The resulting polyploids are often ecologically competitive. The improved qualities relative 

to parental strains are similar to fungal heterokaryons and are thought to arise from masking of 

deleterious alleles, fixed hybrid vigour and/or greater evolutionary plasticity resulting from the 

duplicated gene copies (Chen, 2007; Cox et al., 2014; Madlung, 2013; Yoo et al., 2013). One example 

is that of the asexual fungal grass-endophyte Epichloë that is a diploid hybrid between Epichloë typhina 

and Neotyphodium loli (Cox et al., 2014; Shoji et al., 2015). The exact mechanism of allopolyploidy that 

translates to phenotype is also unknown, but it is presumed to be similar to normal fungal mating 

where cells fuse to create a dikaryon (a cell containing two nuclei) followed by nuclear fusion. Cox et 

al. (2014) found that the transcriptional response involves both copies of most genes being retained 

with over half of the genes inheriting parental gene expression patterns. Additionally, in plants it has 

been shown that reprogramming of gene expression patterns in allopolyploids is due to chromatin 

modifications and RNA-mediated pathways. These alterations may cause changes in adaptive traits 

such as flowering-time variation, self-incompatibility and hybrid vigour (Chen, 2007). This shows that 

this hybridisation has an obvious large effect on both gene expression and phenotypic variation.  
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In summary, despite the long history and frequent usage of fungal protoplast technology for strain 

improvement very little is known of the underlying genetic changes which results in modified 

phenotypes. An understanding of the basic genetic events that occur during protoplasting in 

Trichoderma may allow for greater advances in the production of superior strains of not only 

Trichoderma but various other fungi of interest.  

1.6 Research aims and objectives  

The overall aims of this project were to i) produce better fungal biocontrol agents and ii) to develop 

an understanding of the process that led to these changes. Both protoplast regeneration and fusion 

strategies were used to produce desirable attributes such as pesticide tolerance and increased 

bioactivity against Psa to develop novel biocontrol agents. To achieve this leading Trichoderma 

candidates were selected from current BPRC research programmes targeted at kiwifruit health. To 

develop an understanding of the underlying molecular consequences of using protoplast technology 

the pesticide tolerant biocontrol agents were used as a model system to examine this issue. An ‘omics 

approach was used to characterise the chosen protoplast progeny based on the hypothesis from 

previous work within our lab group that cytosine methylation may be responsible for the phenotypic 

plasticity induced by protoplasting. 

Accordingly, Chapters 2-5 had the following research objectives: 

i) To develop and characterise protoplast regenerants and/or fusants which are either copper 

or fungicide tolerant.  

ii) To screen for increased bioactivity against Psa.  

iii) Explore the molecular consequences of either protoplast regeneration or fusion through an 

integrative ‘omics. 

The findings from these objectives will result in novel enhanced biocontrol agents against Psa for 

kiwifruit and will reveal fundamental insight into this poorly understood phenomenon of protoplast 

technology. 
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Chapter 2 

Induction of pesticide tolerance via protoplast technology and 

characterisation of the resulting progeny 

2.1 Introduction 

The biocontrol ability of Trichoderma strains to reduce plant pathogens has been extensively studied 

over the past 80 years, and many have been selected from naturally occurring populations for their 

ability as biocontrol agents. Others, however, have had their biocontrol ability enhanced through 

chemical or UV mutation. Tolerance of T. harzianum to benomyl was induced by ultraviolet irradiation 

and subsequent selection (Papavizas et al., 1982). There are numerous further examples of UV-

mutagenesis being used to produce Trichoderma mutants such as Hatvani et al. (2006) who used this 

method to produce two mutants resistant to carbendazim (T. harzianum) and tebuconazole (T. 

atroviride). An alternate method for strain enhancement is the use of protoplast technology. It has 

been shown to be a powerful tool for the improvement of filamentous fungi, not solely used for 

improving biocontrol potential but also in the biotechnology industry. The development of novel 

strains using this technology provides the opportunity to re-combine or select for desired features, 

such as fungicide tolerance, increased bioactivity or increased enzyme production, without the need 

for sexual reproduction. This is particularly helpful as the ability to reproduce sexually is rarely seen in 

many Trichoderma species in the laboratory, therefore other methods must be explored rather than 

sexual crossing. 

There are two primary strategies for the production of protoplasts for downstream work. The first is 

the production of protoplast regenerants (one parent) which allows for direct manipulation through 

cell regeneration for the screening and selection of naturally occurring rare genetic alterations. The 

second is protoplast fusion. This occurs between two parental strains and is when cells fuse, thereby 

allowing the mixing of genetic material takes (Balasubramanian and Lalithakumari, 2008; Harman et 

al., 1998). This technique can be used to combine desired characteristics into one strain. Both of these 

techniques have been used for strain improvement within Trichoderma and other filamentous fungi 

species. Protoplast regeneration has also been used to produce fungicide resistant and cold tolerant 

varieties of the biocontrol T. sp. “atroviride B” strain LU132 (Braithwaite et al., 2013; Kandula et al., 

2012). Protoplast fusion has been applied to numerous other Trichoderma and it has been shown that 

it is possible to combine desirable traits from various parental strains to improve biocontrol ability 

(Harman, 2000; Hatvani et al., 2006). This was shown as early as 1985, where the use of protoplast 

fusion of T. reesei strains resulted in new genetic recombinations that improved cellulose production 
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(Manczinger and Ferenczy, 1985). Further examples include T. harzianum (T-22), this novel strain was 

produced from protoplast fusion of two Trichoderma strains to obtain a strain that was highly 

rhizosphere competent with the ability to suppress various spermosphere bacteria (Harman, 2000). In 

addition protoplast fusion has been used to produce fusants for intraspecific, interspecific and even 

intergeneric crosses and also for the improvement of industrial strains, with traits such as increased 

chitinase production (Ahmed and Fatma, 2007; Patil et al., 2015; Prabavathy et al., 2006b). 

Work within our research group has identified a mix of Trichoderma strains able to reduce the 

symptoms of Psa. This aims of this chapter were to i) develop copper resistant strains as copper could 

be a major limitation in the field as it is extensively applied to Psa, and to ii) produce another variant 

tolerant to alternative pesticide used within kiwifruit orchards. Having two pesticide tolerant strains 

would allow for confirmation of a fusion event through the use of double pesticide amended media. 

The resulting protoplast progeny are to be further characterised in the later chapters which aims to 

explore the molecular consequences of using protoplast technology.   

2.2 Materials and methods 

 Fungal strain selection and identificaion 

Various Trichoderma strains that have shown in planta biological activity against Psa were chosen for 

this project. Strains were obtained from the Lincoln University Microbial Culture Collection (LUMCC, 

Bio-Protection Research Centre, Lincoln) and the Forestry Culture Collection (FCC, Bio-Protection 

Research Centre, Lincoln) and maintained on Potato Dextrose Agar (PDA) (Difco Laboratories Inc, USA) 

and as spore suspensions at 108 conidia/mL in 25% glycerol at -80°C (Table 2.1). 

To generate biomass for DNA extraction, 20 µL aliquots of the spore suspension stocks of the selected 

strains were inoculated into 30 mL of Potato Dextrose Broth (PDB) (Difco) in a 50 mL centrifuge tube 

(ThermoFisher, USA). Each tube was sealed, wrapped in foil and incubated at 23°C for 3 d. The 

mycelium was filtered through a double layer of Miracloth (Merck Millipore, Germany) and snap frozen 

in liquid nitrogen. Genomic DNA (gDNA) was extracted from the frozen mycelia using the Gentra 

Puregene TissueKit (Qiagen, Germany) according to the manufacturer’s instructions and 

recommendations for extraction of fungal DNA. All strains listed in Table 2.1 were identified by 

sequencing a standard Trichoderma identification marker, translation elongation factor 1α (tef1α), 

using primers and amplification conditions described in Braithwaite et al. (2017). 
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Table 2.1 Identification of Trichoderma strains selected for this study based on tef1α sequences. 

Strain Trichoderma species Origin  GenBank 
LU297 Trichoderma trixiae Roots of a grape, Auckland KJ871256 
LU668 Trichoderma sp. “atroviride B”1 Soil, unknown location, New 

Zealand 
KJ871103 

LU753 Trichoderma sp. novel LU753 Soil under grass, Lincoln 
University  

KJ871147 

FCC207 Trichoderma hamatum Roots of Hort16A, Te Puke  KJ871162 
FCC237 Trichoderma sp. “atroviride B” 1 Roots of N3, Te Puke KJ871103 
FCC261 Trichoderma harzianum sensu stricto Cane of Hayward, Te Puke KJ871171 
FCC270 Trichoderma sp. novel FCC270 Leaves from Hayward, Te 

Puke 
N/A 

FCC273 Trichoderma sp. “atroviride B” 1 Flower from Hayward, Te 
Puke 

KJ871103 

FCC456 Trichoderma sp. “atroviride B” 1 Cane of Hayward, Te Puke KJ871103 
1 Trichoderma sp. “atroviride B” is a newly described Trichoderma species closely related to T. atroviride, but 
found predominantly in the southern hemisphere (Braithwaite et al., 2017).  
 

 Pre-screening for naturally occurring sensitivity to pesticides  

A variety of chemicals were tested on the selected Trichoderma strains to determine what would be 

suitable to use as unique selection markers for confirmation of a fusion event. Copper was selected as 

it is currently used as a bactericide against Psa in kiwifruit orchards (Cameron and Sarojini, 2014), 

alongside the fungicide Flint® (active ingredient [a.i.] 500 g/kg trifloxystrobin) (Bayer, Germany) and 

the fungicide Chief® (a.i. 500 g/L carbendazim) (Adama Agricultural Solutions, Israel) which are both 

used on kiwifruit against Sclerotinia sclerotiorum.  

To determine the absolute kill point, being the lowest concentration of pesticide where no mycelial 

growth could be observed, all strains were exposed to differing amounts of copper II sulphate 

(CuSO4.5H2O) and Flint®. Copper sulphate was selected over commercially available copper products 

(such as Nordox 75 WG™ [Nordox, Norway] or Kocide® Opti™ [DuPont, USA]) as it releases a known 

amount of Cu++ ions in solution, the active ingredient against bacteria and fungi. Commercial 

formulations need time, moisture and acidity for the copper to degrade and release the Cu++ ions. 

Therefore, traditional methods such as incorporation into agar are not suitable for commercially 

available copper products. Balasubramanian and Lalithakumari (2008) previously used copper sulphate 

as an alternative and successfully produced protoplasts using this source of copper.  

Trichoderma conidia (2 µL aliquot) from the -80°C stock of all the strains listed in Table 2.1 were 

inoculated centrally onto PDA and incubated for 3 d at 23°C in the dark. After 3 d, a mycelial disk (0.7 

cm) was cut from the colony margin and placed centrally onto the amended PDA in 90 mm Petri dishes 

prepared as follows: PDA was prepared with nanopure water and sterilised in a pressure cooker (All 
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American pressure cooker model no. 921, USA). All amendments (chemical fungicides or copper 

sulphate) were dissolved in nanopure water, filter sterilised and added to the prepared PDA at the 

following rates: copper sulphate at 2.5 mM, 2 mM, 1 mM and 0.5 mM and Flint® at 10 µg/mL, 1 µg/mL, 

0.1 µg/mL and 0.01 µg/mL. Strains were plated to non-amended PDA for comparison. Three plates 

were inoculated per treatment. The plates were incubated at 23°C in the dark for 7 d. The experiment 

was repeated twice. 

Due to the Trichoderma strains showing high tolerance to the trifloxystrobin fungicide Flint®, another 

fungicide also used in kiwifruit orchards, Chief®, was chosen as the secondary selective marker to 

confirm a fusion event had occurred. Conidial suspensions were used from this point onwards instead 

of mycelial agar plugs as they provide more consistent and reliable growth on pesticide amended agar 

compared to mycelial plugs. The mycelial plugs can provide additional nutrients and potentially false 

positive growth. Furthermore, instead of using PDA as the selection agar, recovery medium (RM) (yeast 

extract 0.5 g/L, 0.8 M sucrose, 15 g agar/L, cooled to 45°C) was used, as this is the agar the protoplasts 

are plated onto to recover their cell walls. The RM was amended at the following rates based on the 

previous experiment: copper at 4 mM, 3 mM, 2 mM and 1 mM and Chief® at 10 µg/mL, 1 µg/mL, 0.1 

µg/mL and 0.01 µg/mL. A 2 µL aliquot of the respective conidial suspensions (at 1x 108 conidia/mL) 

were inoculated centrally onto the amended media. Three plates were inoculated per treatment. The 

plates were incubated at 23°C in the dark for 7 d. The experiment was repeated twice.  

 Preparation of protoplasts and optimisation  

2.2.3.1 Production of protoplasts- Method 1    
The isolation of protoplasts was based on a method described by Prabavathy et al. (2006a) and 

modified by Janaki Kandula (pers. comm.). Conidia were generated as follows: 10 µL of the conidial 

suspension (1 x 108/mL) was mixed with 100 µL sterile distilled water (SDW) and spread over a PDA 

plate. Plates were incubated at 23°C under a 12/12 h light/dark cycle for 7 d. Conidia were harvested 

by flooding the plates with 5 mL SDW, scrapped into suspension using a bent glass rod and were filtered 

through a sterile double layer of Miracloth to remove mycelial fragments. The conidial concentration 

was adjusted and added to 100 mL of Glucose Yeast Extract Casein broth for a final concentration of 1 

X 105 conidia/mL (GYEC broth; Glucose 15 g/L, Yeast Extract 3 g/L, Bacto tryptone 5 g/L) in a 250 mL 

flask and incubated on a rotary shaker (Orbitron, Infors HT, Switzerland) (120 rpm) at 23°C under 12/12 

h light/dark cycle, for a predetermined amount of time from the optimisation step (section 2.2.3.5). 

The freshly germinated conidia were collected on Miracloth and washed with SDW, followed by two 

washes with an osmotic stabiliser (OM buffer; 1.2 M MgSO4.7H2O, 10 mM Na2HPO4, pH 5.8).  The 

mycelium was incubated in 1% Glucanex (Novozymes®, Denmark), prepared in OM buffer, on an orbital 
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shaker (120 rpm) at 25°C for 4 h. The lysis of mycelia and the release of the protoplasts were monitored 

at 30 min intervals under a microscope.  

Protoplasts released from the mycelium-enzyme mixture were filtered through Miracloth. An overlay 

of 2 mL ST buffer (0.6 M Sorbitol, 100 mM Tris–HCl, pH 8.0) was added to every 5 mL of protoplasts 

obtained and the solution separated at 3000 xg for 5 min. This produced a white foggy layer of pure 

protoplasts which was collected from the interphase between the two buffers and then pelleted at 

3000 xg for 5 min. The supernatant was discarded and the pellet purified by washing twice in STC 

buffer (1.2 M Sorbitol, 10 mM CaCl2, 10 mM Tris–HCl, pH 7.5) and centrifuged after each addition. The 

pellet was re-suspended in STC buffer and diluted to 106/mL. 

2.2.3.2 Production of protoplasts- Method 2 
Based upon advice from other members of our lab group, another protoplast isolation method was 

trialled as it was thought to produce a higher number of protoplasts. The isolation of protoplasts was 

based on a method described by Gruber et al. (1990) using a cellophane disk, modified by Lawry (2016). 

Conidia were harvested from 7 d Trichoderma cultures as described in section 2.2.3.1. A 100 µL aliquot 

of conidia was plated onto the centre of a large (150 mm x 150 mm) petri plate containing PDA with a 

piece of sterile cellophane (Bio-Rad, Cat No. 1650963, USA) placed upon the agar and spread over the 

surface. Plates were incubated (22°C; 12/12 h light/dark cycle) for 15 h, the cellophane was removed 

and immersed in 10 mL of an enzymatic solution consisting of 48 mg cellulase (Sigma-Aldrich, USA) and 

0.1 g Glucanex in mannitol osmoticum (50 mM CaCl2, 0.7 M mannitol, 50 mM MES, pH 5.5). The 

digestion mix was incubated for 4 h at 25°C with shaking at 150 rpm. Protoplasts were recovered by 

filtration through Miracloth, followed by a second filtration through a sterile 40 µm nylon mesh 

supported in a Swinnex holder. The protoplast suspension was centrifuged at 4000 xg for 10 min. The 

supernatant was discarded and the pellet was re-suspended in 500 µL of mannitol osmoticum.  

2.2.3.3 Regeneration of protoplasts  
One mL of the protoplast solution (1 x 106 protoplasts/mL) was mixed with 5 mL RM, which was cooled 

to 45°C, and poured as an overlay onto amended media at the absolute kill point values from section 

2.2.2 (4 mM copper sulphate and 1 µg/mL Chief® respectively). Plates were incubated in the dark at 

23°C for 10 d. Regenerants were selected on the basis of their growth on the amended media. 

2.2.3.4 Purification of protoplast regenerants  
Selected regenerants were purified to ensure strains were homokaryons by three rounds of single 

spore isolation. The conidia were generated in the absence of selection, then germinated in the 

presence of selection on PDA. These purified selected regenerants were tested for phenotypic stability 

by repeated sub-culturing on non-amended PDA. The cultures were grown until they reached the edge 

of the plate and then a mycelial plug transferred to a fresh PDA plate. This process was repeated seven 
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times and after the seventh sub-culture, a mycelial plug was transferred to media containing the 

selection to ensure the selection tolerance was still present.  

2.2.3.5 Optimisation of protocol for each strain  
For both methods, the optimal conditions for generating protoplasts for each strain were determined. 

The length of incubation time required for germlings to form was tested. For Method 1, 7 d conidia 

from all the strains in Table 2.1 were inoculated in the GYEC broth and samples taken at 14, 16, 18, 20, 

22 and 24 h, diluted and examined under the microscope for germination of the conidia. For Method 

2, 7 d conidia were inoculated on the cellophane disks for 12, 14, 15 and 16 h. The length of enzymatic 

digestion time for the first method was also determined: the mycelium was placed in a flask with 35 

mL OM buffer/Glucanex and incubated on an orbital shaker (120 rpm) for either i) 2 h; ii) 4 h; or iii) 2 

h at room temperature, then placed in the cold room (4°C) overnight and placed again on the shaker 

for a further 2 h the following day.  

 Production of protoplast fusants 

Fusion of the protoplast regenerants was based on a method described by Stasz et al. (1988) modified 

by Janaki Kandula (pers. comm.). Forty percent polyethylene glycol solution (PEG, molecular weight 

3350) (Sigma-Aldrich) solution containing 50 mM Tris-HCl (pH 7.5) and 50 mM CaCl2 was used as the 

fusogen. An aliquot of equal portions of two selected protoplast regenerants (1 x 106/mL) was 

centrifuged at 2500 xg for 10 min and the supernatant removed. The pellet was resuspended in 1 mL 

40% PEG solution and incubated at 30°C for 30 min. The mixture was added directly to RM (cooled to 

45°C) and plated as an overlay on double amended RM (4 mM copper sulphate and 1 µg/mL Chief®). 

Plates without any additives were inoculated with protoplasts (1 x 102/mL) to establish the protoplast 

regeneration rate in the absence of pesticides and on single pesticide amended plates. Plates were 

incubated in the dark at 22°C for 10 d. Fusants were selected based on their survivability and purified 

to eliminate heterokaryons as described in section 2.2.3.4. 

 Interactive toxicity effects of pesticides in agar  

The results from 2.2.4 suggested a potential interactive toxicity effect of the pesticides in agar 

(between the copper sulphate and the carbendazim of Chief®). To test this hypothesis, sub-lethal 

amounts of copper sulphate (1 mM) and Chief® (0.01 µg/mL) were added to PDA and RM. A 2 µL aliquot 

of the respective Trichoderma parental strains conidial suspension (108 conidia/mL) was inoculated 

centrally onto the double amended pesticide plates. The plates were incubated at 23°C under a 12/12 

h light/dark cycle for 10 d. They were scored for the ability to grow on the amended media. This 

experiment was repeated twice. This experiment was also repeated with the pure chemical 
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carbendazim (Sigma-Aldrich), opposed to the commercial product, at the same rate of active 

ingredient.  

 Phenotypic characterisation- growth rate and conidiation  

2.2.6.1 Experimental setup  
Two regenerants, one tolerant to copper (T. sp. “atroviride B” FCC237/R5) and one tolerant to 

carbendazim (Chief®) (T. hamatum FCC207/R9) respectively, were chosen for further phenotypic 

characterisation as they were the most morphologically similar to their respective parents and genome 

resources for these species are publically available.  

Radial mycelial growth rates and conidiation rates of the chosen regenerants (and their parental 

strains) were determined on PDA and malt extract agar (MEA; Difco). Agar plates were inoculated 

centrally with a 2 µL conidial suspension (108 conidia/mL) and plates were then incubated in the dark 

at 23°C for 4 d, with radial growth measured daily. Positions of the colony margins were marked on 

the reverse of the plates every 24 h until the colony reached the edge of the plate. The morphology of 

the colonies was also recorded. Conidial yield was determined by mixing 10 µL of the conidial 

suspension (1 x 108/mL) with 100 µL SDW and spreading evenly across the surface of a PDA plate. 

Plates were incubated at 23°C under a 12/12 h light/dark cycle for 14 d, with conidial measurements 

taken on days 3, 5, 7, 10 and 14. Ten plates per treatment were included. Conidia were harvested by 

flooding the plates with 5 mL of SDW and the conidia were scrapped into suspension and filtered 

through a double layer of Miracloth. The suspensions were diluted 102-fold and 103-fold with water 

and counted using a haemocytometer, the results were expressed as conidia/plate. The experiment 

was repeated once. 

The germination percentage was determined as follows: each aliquot of conidia was serially diluted to 

5 X 105 conidia/mL with SDW and then 500 µl aliquots were transferred to fresh 1.7 mL centrifuge 

tubes and 500 µL of PDB added. Samples were kept on ice until they were attached to the rotating 

wheel in a hybridisation oven (Stuart, John Morris Scientific Ltd., Australia) and slowly rotated (7 rpm) 

at 23°C. After 16 h, all samples were placed on ice, checked for germination and those not germinating 

were placed back into the incubator until germinated. The time taken for good germination (~80%) 

was noted. Germination was recorded for 100 conidia from four samples per tube on days 3, 5, 7, 10 

and 14.  

2.2.6.2 Statistical analysis  
The growth rate, conidiation quantity and germination were analysed using Analysis of Variance 

(ANOVA) within GenStat 16 (VSN International Ltd.). The Least Significant Differences of Means (LSD) 

at a significance level of 5% (p<0.05) were determined for each experiment and Multiple Comparisons 
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of the treatments of each experiment were carried out using Fisher’s Unprotected LSD algorithm (using 

p<0.05).  

 Basic molecular characterisation 

2.2.7.1 UP-PCR profiles (Universally Primed-PCR) 
UP-PCR is a PCR fingerprinting technique similar to the randomly amplified polymorphic DNA (RAPD) 

method (Bulat et al., 1998). This technique can amplify DNA without previous knowledge of the 

organisms DNA sequence and generate multiple banding profiles following gel electrophoresis. These 

primers are short, random sequences known to be highly repetitive in fungi, which allows for a strain 

specific “fingerprint” to be created (Lubeck et al., 1996) to see if any large scale genetic changes are 

present between different strains.  

Genomic DNA was extracted from all of the selected strains listed in Table 2.1 and the respective 

regenerants produced from each parent as described in section 2.1. Single primer amplifications were 

performed using 11 UP-PCR primers (Table 2.2) and PCR conditions as described in Lubeck et al. (1996) 

except that the denaturation temperature of 95°C was used instead of 94°C. PCR products for each 

primer were separated in a 2% agarose gel electrophoresis in borate/NaOH buffer (0.4 g NaOH, 3.09 g 

Boric acid per litre of H2O, adjusted to pH 8.5 with 1 M Boric acid or 5 M NaOH). Each gel was run at 

200 v for 1 h. The entire experiment was repeated once. 

Table 2.2 UP-PCR primers and their respective annealing temperatures (Lubeck et al., 1996). 

Primer Sequence 5’-3’ Annealing temperature (°C) 
Fok1 GGATGACCCACCTCCTAC 52 
AS4 TGTGGGCGCTCGACAC 50 
L21 GGATCCGAGGGTGGCGGTTCT 55 
0.3-1 CGAGAACGACGGTTCT 50 
AA2M2 GAGCGACCCAGAGCGG 50 
3-2 TAAGGGCGGTGCCAGT 50 
L15 GAGGGTGGCGGTTCT 52 
AS15 GGCTAAGCGGTCGTTAC 52 
AS15/inv CATTGCTGGCGAATCGG 52 
L15/AS19 GAGGGTGGCGGCTAG 52 
L45 GTAAAACGACGGCCAGT 51 
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2.3 Results 

 Fungal identification  

Trichoderma strains were identified based on their tef1α sequences and their relationship to 

previously identified Trichoderma species within a phylogenetic tree generated by MAFFT (version 

7.309) (Katoh and Standley, 2016). Trichoderma tef1α sequences (approximately 500 sequences) were 

obtained from within our research group.  

 Pre-screening for naturally occurring sensitivity to pesticides  

The sensitivity to the selected pesticides were determined for all strains. Growth of the colonies in the 

presence of the pesticides on RM was observed after 5-7 d. 

2.3.2.1 Copper sulphate (CuSO4.5H2O) 
The Trichoderma strains had slightly varying absolute kill points against copper. They ranged from 2 

mM to 4 mM (Table 2.3). The concentration used for the conidial suspensions was the amount of 

copper that was added to amended pesticide media for protoplast regeneration/fusion. Figure 2.1 is 

an example of the inhibitory effects of copper against a selected Trichoderma strain (FCC237 [T. sp. 

“atroviride B”]). The concentration used for the amended plates for the selection of protoplast was 4 

mM CuSO4.5H2O.    

2.3.2.2 Flint® (500 g/kg trifloxystrobin) 
The selected Trichoderma strains showed high tolerance to the trifloxystrobin fungicide, Flint® across 

all concentrations that were tested. Therefore, another fungicide (Chief®) was chosen for the second 

selective marker for the protoplast fusion experiments.  

2.3.2.3 Chief® (500 g/L carbendazim)  
All nine of the Trichoderma strains had the same absolute kill point of 1 µg/mL for the fungicide Chief® 

(Table 2.3). As above, this concentration for conidial suspensions was used in the amended pesticide 

media for the selection and screening of the protoplasts (Table 2.3). 
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Figure 2.1 Inhibitory effect on growth of Trichoderma sp. “atroviride B” (FCC237) on varying 
concentrations of copper sulphate (CuSO4.5H2O) amended recovery media agar after 7 
d growth.  
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Table 2.3 Absolute kill points for the Trichoderma strains against copper sulphate (CuSO4.5H2O) 
and Chief® (500 g/L carbendazim) for both mycelial plugs and conidial suspensions on 
recovery medium.  

Strain Trichoderma species 
Copper 

(mycelial plug) 
Copper 

(conidia) 
Chief® 

(mycelial plug) 
Chief® 

(conidia) 
LU297 T. trixiae 4 mM 4 mM 1 µg/mL 1 µg/mL 
LU668 T. sp. “atroviride B” 3 mM 4 mM 1 µg/mL 1 µg/mL 
LU753 T. sp. novel LU753 2 mM 4 mM 1 µg/mL 1 µg/mL 
FCC207 T. hamatum 2 mM 3 mM 1 µg/mL 1 µg/mL 
FCC237 T. sp. “atroviride B”  4 mM 4 mM 1 µg/mL 1 µg/mL 
FCC261 T. harzianum sensu 

stricto 
2 mM 4 mM 1 µg/mL 1 µg/mL 

FCC270 T. sp. novel FCC270 3 mM 4 mM 1 µg/mL 1 µg/mL 
FCC273 T. sp. “atroviride B”  4 mM 4 mM 1 µg/mL 1 µg/mL 
FCC456 T. sp. “atroviride B”  4 mM 4 mM 1 µg/mL 1 µg/mL 

 

 Preparation of protoplasts and optimisation  

The optimal conditions for generating protoplasts from each strain were determined in a series of pilot 

experiments which determined the length of incubation time required for germlings to form and the 

length of time that the mycelium was left in the enzymatic lysing buffer for the digestion step. It varied 

between each strain, with the incubation time required for the germlings to form being the more 

important step out of the two. The different osmotic stabilisers also had an effect on the protoplast 

yield (Table 2.4) with the mannitol osmoticum/cellophane method producing a higher yield of 

protoplasts suitable for downstream applications. 

Protoplast regenerants separately tolerant to copper (eleven) and Chief® (nine) at the absolute kill 

point values were produced from the selected Trichoderma strains. Figure 2.2 shows a selection of the 

protoplast regenerants that were produced. There were differences in the numbers of protoplasts 

produced for each. The recovery rates varied from 0.09% to 1% on copper and 0.1% to 0.7% on Chief® 

(Table 2.5). In contrast, exposing non-protoplast (parent) conidia to amended agar plates only yielded 

a colony recovery rate of 0.00041% for copper and the colonies either grew abnormally or did not 

sporulate, and no colonies appeared on the Chief® amended plates. Mycelium was also exposed to the 

amended agar plates and did not grow on both pesticides (data not shown). 
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Figure 2.2 A selection of protolast regenerants that were produced tolerant to copper sulphate 
(CuSO4.5H2O). The tolerance is shown on 3 mM of copper sulphate compared to their 
respective parental strain.  
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Table 2.4 Effect of different osmotic stabilisers and methodologies on yield of protoplasts for a 
selection of Trichoderma strains (both parent [WT] and regenerants). 

Strain Trichoderma species 
Protoplast yield/mL 

OM buffer1 Mannitol osmoticum2 
LU753 (WT) T. novel sp. LU753 4.87 x 108 3.22 x 109 

FCC207 (WT) T. hamatum 7.54 x 107 8.19 x 109 

FCC237 (WT) T. sp. “atroviride B” 8.19 x 108 8.21 x 109 

FCC273 (WT) T. sp. “atroviride B” 4.0 x 108 1.63 x 109 

FCC456 (WT) T. sp. “atroviride B” 6.68 x 108 7.12 x 108 

FCC456/R3 (Cu)3 T. sp. “atroviride B” 5.1 x 107 3.98 x 108 

FCC273/R13 (Cu) 3 T. sp. “atroviride B” 4.97 x 108 6.34 x 108 

FCC207/R9 (Chief®)4 T. hamatum 8.2 x 107 1.2 x 108 

FCC237/R5 (Cu) 3 T. sp. “atroviride B” 9.15 x 107 4.15 x 108 

LU753/R19 (Chief®)4 T. novel sp. LU753 6.0 x 108 5.87 x 108 

LU297/R2 (Chief®)4 T. sp. “atroviride B” 4.32 x 107 7.26 x 107 

1 based on the protoplast isolation method 1 (section 2.2.3.1) 
2 based on the protoplast isolation method 2 (section 2.2.3.2) 
3 regenerant tolerant to copper 
4 regenerant tolerant to Chief® 
 
 

Table 2.5 Rate of protoplast regeneration from selected Trichoderma strains on pesticide 
amended media: copper sulphate (CuSO4.5H2O) and Chief® (500 g/L carbendazim). 

Strain  Trichoderma species 
Rate of regeneration on 

copper 
Rate of regeneration 

on Chief® 
LU297 T. trixiae 0.41% 0.1% 
LU668 T. sp. “atroviride B” 0.75% 0.68% 
LU753 T. sp. novel LU753 0.17% 0.74% 
FCC207 T. hamatum 1% 0.7% 
FCC237 T. sp. “atroviride B” 0.09% 0.25% 
FCC261 T. harzianum sensu stricto 0.24% 0.3% 
FCC270 T. sp. novel FCC270 0.45% 0.41% 
FCC273 T. sp. “atroviride B” 0.36% 0.12% 
FCC456 T. sp. “atroviride B” 0.72% 0.35% 

 

 Production of protoplast fusants 

After multiple protoplast fusion rounds, no stable fusants could be produced. The rate of putative 

fusants being produced between the various regenerants varied between 0.0002% and 0.009% which 

is significantly lower than previous reports. This rate of fusion was based on colonies appearing on the 

double amended media (copper and carbendazim). Any fusants produced lost their stability on the 
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double amended media after three rounds of single spore selection suggesting that they were unstable 

heterokaryons and that no nuclear fusion had occurred.  

Based upon the low fusant rate, it was hypothesised that there may have been an interactive toxicity 

effect of having both copper and carbendazim present in the agar medium. Using sub-lethal 

concentrations of copper and Chief®, it was demonstrated that the combination in agar was toxic to 

both the parental strains and the regenerants that were produced. They were able to tolerate these 

pesticide concentrations as a single pesticide amendment (data not shown) but not together. 

 Phenotypic characterisation- growth rate, conidiation quantity and conidial 
germination   

Comparisons were done to assess the extent of phenotypic differences between the selected parent 

and regenerant strains. Across both regenerants, there were no statistically significant differences in 

growth rate compared with the parental strain (Table 2.6 and Table 2.7). For the conidia parameters, 

only the strain selected for the ‘omics characterisation was selected (T. sp. “atroviride B” FCC237/R5). 

Again there were no significant differences in either conidial quantity or germination rates between 

the parent and regenerant (Table 2.8 and Table 2.9). In the beginning of the conidial germination 

experiment there was a significant difference between the two strains, with the regenerant showing a 

higher level of conidial germination (p<0.05). However, this only occurred in the first two days of 

measurements (d 3 and d 5) and the increase in germination percentage did not correlate with the 

amount of conidia that was produced or the growth rate. 

Table 2.6 Average growth rate (mm/d) of Trichoderma sp. “atroviride B” FCC237 (parent) and 
Trichoderma sp. “atroviride B” FCC237/R5 (copper tolerant regenerant) on either PDA 
or MEA. 

Experiment  
number 

Medium 
Strain (mm/d) 

LSD 
FCC237 FCC237/R5 

1 PDA 18.08 18.14 0.37 
2 PDA 17.23 17.48 0.39 
3 MEA 17.32 17.51 0.5 
4 MEA 17.55 17.7 0.51 
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Table 2.7 Average growth rate (mm/d) of Trichoderma hamatum FCC207 (parent) and 
Trichoderma hamatum FCC207/R9 (carbendazim tolerant regenerant) on either PDA or 
MEA. 

Experiment 
number 

Medium 
Strain (mm/d) 

LSD 
FCC207 FCC207/R9 

1 PDA 18.25 18.4 0.35 
2 PDA 18.11 18.27 0.32 
3 MEA 17.99 18.06 0.28 

4 MEA 17.84 17.96 0.32 

Table 2.8 Conidia quantity (measured as conidia/mL) of Trichoderma sp. “atroviride B” FCC237 
(parent) and Trichoderma sp. “atroviride B” FCC237/R5 (copper tolerant regenerant). 
There was no statistical difference and the data represents the average of two 
experiments. 

Strain 
Day 

3 5 7 10 14 

FCC237 2.38 x 104 5.48 x 106 8.21 x 108 2.11 x 109 3.45 x 109 

FCC237/R5 3.55 x 104 6.1 x 106 7.99 x 108 3.61 x 109 3.87 x 109 

 

Table 2.9 Conidia germination percentage of Trichoderma sp. “atroviride B” FCC237 (parent) and 
Trichoderma sp. “atroviride B” FCC237/R5 (copper tolerant regenerant). 

Experiment 
number 

Strain  
Day 

3 5 7 10 14 

1 
FCC237 69.3* 77.4* 91.3 87.9 95.4 

FCC237/R5 77.6* 82.1* 94.5 93.6 95.1 
LSD:  5.77 4.14 5.77 7.34 3.57 

2 
FCC237 67.1* 78.4 92.8 92.5 94.6 
FCC237/R5 80.3* 80.4 93.1 94 94.3 

LSD:   6.87 5.79 4.55 3.65 3.45 
* represents significantly different values (p<0.05) between the two strains on that particular day/experiment 
(as indicated). 
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 Basic molecular characterisation: UP-PCR profiles (Universally Primed-PCR) 

From the 11 UP-PCR primers that were trialled (Table 2.2), the L15/AS19 primer amplified a PCR 

product from all of the original strains and respective regenerants. The other primers would only 

amplify some strains, making them unsuitable as a tool to compare between the strains. The results 

from the UP-PCR using primer L15/AS19 showed that there was no large-scale genomic differences 

between any of the parental strains and their respective regenerants (Figure 2.3). 

 

 

 

 

  

 

 

 

 

 

 

 

 

Figure 2.3 UP-PCR, using primer L15/AS19, of selected Trichoderma parental strains (P) and the 
respective regenerants (R) separated on a 2% agarose gel electrophoresis in 
borate/NaOH. (1) LU297 T. trixiae, (2) LU297/R2 T. trixiae, (3) LU668 T. sp. “atroviride 
B”, (4) LU668/R T. sp. “atroviride B”, (5) LU753 T. sp. novel LU753, (6) LU753/R19 T. sp. 
novel LU753, (7) FCC207 T. hamatum, (8) FCC207/R9 T. hamatum, (9) FCC237 T. sp. 
“atroviride B”, (10) FCC237/R5 T. sp. “atroviride B”, (11) negative control (12) FCC261 T. 
harzianum, (13) FCC261/R16 T. harzianum, (14) FCC270 T. sp. novel FCC270, (15) 
FCC270/R7 T. sp. novel FCC270, (16) FCC273 T. sp. “atroviride B”  (17) FCC273/R13 T. sp. 
“atroviride B” (18) FCC456 T. sp. “atroviride B”, (19) FCC456/R3 T. sp. “atroviride B”. P= 
parent, R=regenerant. 
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2.4 Discussion  

Protoplast regeneration is an effective tool that can be used for strain improvement. This can lead to 

strains with improved characteristics more suited to the incorporation into an IPM programme. In this 

study, various strains of Trichoderma that showed bioactivity potential against Psa in kiwifruit orchards 

were used to produce protoplast regenerants that were tolerant to pesticides used in these orchards. 

The use of protoplast fusion (both intra-strain and inter-strain) is a common technique used to enhance 

biocontrol agents, however it has been have found that regenerating protoplasts on selective media 

enables selection for rare genetic variants at a rate that far exceeds that within the parental 

population. This highlights the potential for the usage of protoplast regeneration in place of traditional 

mutant forming methods such as UV or chemical mutagenesis.   

Previously some researchers have described such progeny as arising from self-fusion (intra-strain). 

However, when only one parental strain is present, it is not possible to definitively state that the 

selected progenies were the result of any fusion event. Previous studies where protoplast technologies 

have been used to select or modify varying Trichoderma strains have not always offered proof of these 

changes at a molecular level. Prabavathy et al. (2006a) reported that regenerated protoplasts from a 

single T. reesei strain were mixed with the PEG solution (for self-fusion) and pairs of protoplasts were 

subsequently observed. They then stated the nuclei of the pairing protoplasts had fused together from 

having observed the two cells near to one another (Prabavathy et al., 2006a). Another study used intra-

strain fusion to develop progeny from a single strain of T. harzianum to enhance the level of production 

of chitinase and the antagonistic potential against Rhizoctonia solani. Fifteen of these progeny were 

selected for further testing, and both the chitinase and antagonistic activity against pathogens had 

substantially increased (Prabavathy et al., 2006b). The authors postulated that this was the result of 

self-fusion, however no evidence of self-fusion was provided for this strain so the exact mechanism 

has not yet been identified. However, Sharma et al. (2016) showed that there were novel fragments 

between the progeny in the RAPD profiles of self-fused T. harzianum fusants. This highlights the 

importance of some form of molecular characterisation to prove that intra-strain fusion has occurred.  

After multiple protoplast fusion rounds, a stable fusant was unable to be produced. The putative fusion 

rate between the various regenerants varied between 0.0002% and 0.009% which is significantly lower 

than previously reported. For example, previous fusion rates with our research group on other 

Trichoderma strains were ~0.036% (unpublished data) and other studies have reported a fusion rate 

of up to 6.2% between T. harzianum and T. viride (Balasubramanian and Lalithakumari, 2008). 

Furthermore, any fusants produced lost their stability on the double amended media after three 

rounds of single spore selection. Previous studies producing protoplast fusants have encountered 

similar problems, in which some protoplast progeny form as the result of heterokaryosis or temporary 
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cytoplasmic fusion formation and lose their selection through successive cycles of mitotic division 

during mycelial growth (Hassan et al., 2011; Stasz et al., 1988; Stasz and Harman, 1990). Fungi are well 

known for having unstable genomes and even fungi undergoing purely asexual reproduction can 

produce offspring with different sized chromosomes over a few generations (Davière et al., 2001; 

Strom and Bushley, 2016). Genetic instability of intraspecific and interspecific hybrids formed through 

protoplast fusion is a commonly reported problem (Anné, 1982; Stasz and Harman, 1990; Wang et al., 

2010). 

Additionally stable heterokaryon formation can be rare due to the issues of heterokaryon or vegetative 

incompatibility, which is responsible for preventing the formation of these stable heterokaryons 

through expression of heterokaryon incompatibility genes (het) (Daskalov et al., 2017; Strom and 

Bushley, 2016). If two incompatible nuclei occupy the same cell, the expression of these het genes 

leads to the eventual death of the heterokaryotic cell. Hassan et al. (2011) also reported loss of double 

pesticide fungicide tolerance after successive subculturing in Trichoderma fusants. They determined 

the genetic stability of their double fungicide tolerant strains by their ability to maintain tolerance to 

both fungicides after subculturing three times in the absence of fungicide. Five out of the seven fusants 

they produced retained the double pesticide tolerance. This raises a notable difference in the 

production of fusants from other studies compared to this present one, that the parental strains used 

were either wild type fungi or mutants that were produced via UV-mutagenesis, not tolerant 

regenerated protoplasts. The unknown mechanism behind the phenotypic plasticity and remodelling 

that is observed from protoplast regeneration may be responsible for the incompatibility that was seen 

in the attempt to fuse these strains. 

Due to the problems that were encountered with the low rate of fusion, it was postulated that there 

may be a potential interactive toxicity effect of the double amended pesticide media (between copper 

sulphate and the carbendazim of Chief®) on the strains tested. This was confirmed by the inability of 

parental strains to grow on combined media with sub-lethal amounts of the pesticides. The same result 

was obtained when pure carbendazim (rather than the commercial fungicide) was used. This is in 

contrast to a strain of T. longibrachiatum that was fused by Lalithakumari et al. (1996) which was found 

to be tolerant to 200 mmol/L copper sulphate and 10 µmol/L carbendazim. They used protoplast fusion 

to combine a T. harzianum strain that had a high biocontrol potential and the highly tolerant T. 

longibrachiatum that was mentioned above (Lalithakumari et al., 1996).  

The results from this study raise some interesting questions with regards to the interactive effect of 

chemicals in nature, due to the fact that chemicals almost never occur in nature as a single solution, 

but as complex mixtures or part of a spray programme (Komárek et al., 2010; Kungolos et al., 2009). 

For kiwifruit alone, according to the 2018/2019 New Zealand NovaChem Agrichemical Manual 
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(https://www.novachem.co.nz/; last accessed 23.4.18) over 98 pesticide and herbicides are 

recommended for the protection of kiwifruit from pests (including fungi, bacteria and insects) and 

weeds. Numerous studies have shown that some interactions between pesticides influence both their 

behaviour in the soil and their toxicity (Kungolos et al., 2009; Schuster and Schroeder, 1990; Tsiridis et 

al., 2006; Zhang et al., 2003). Zhang et al. (2003) showed that the IC50 toxicity level (half minimal 

inhibitory concentration of a substance) of three agrochemicals that they tested (acetochlor, 

methamidophos and copper) under combinations were much lower that the individual IC50 values 

against overall indigenous microorganism populations in soil. Moreover, different toxicological tests 

on various bacterial species have shown that common environmental concentrations of copper based 

fungicides can pose a risk for other non-target organisms (Kungolos et al., 2009). Combining these 

chemicals may result in unexpected toxicity towards soil microbes, in particular beneficial ones.  

Further studies within our lab group are underway investigating the impact of intensive spraying 

regimes on the microbial communities within kiwifruit orchards, focusing particularly on Trichoderma 

populations. Soil was collected from seven sites around the Nelson and Bay of Plenty kiwifruit growing 

regions and the copper levels within these soils were tested (Christine Stark, pers. comm.). While at 

elevated levels (over 500 ppm) copper can become toxic most of the tested orchards had copper levels 

around 100 ppm. In contrast, the base level of selection for protoplasting (being also the cessation 

level of growth of the parents) was approximately 1000 ppm (4 mM). Although the level of copper 

toxicity may not be an issue for soil fungal communities currently, the regenerants that are copper 

tolerant could be used alongside copper sprays in an IPM programme within the same time frame 

when the levels are temporarily high during copper application unlike Kiwivax™ which cannot be used 

within three days of applying foliar coppers.  

The production and isolation of protoplasts is a crucial step in strain enhancement of Trichoderma and 

other filamentous fungi that do not have an obvious sexual stage. The results presented here show 

that a significant increase in protoplast recovery is possible with the optimisation of each strain. 

Numerous studies have shown the importance of optimisation for the formation and regeneration of 

protoplasts, each with different recommendations. Tschen and Li (1994) highlighted the significance 

between species with differences in both the isolation of protoplasts and the regeneration frequency 

from two Trichoderma (T. koningii and T. harzianum) varying greatly. This most likely is dependent on 

the structural properties of the fungal cell wall as this can vary between species. They looked at eight 

different factors affecting protoplast formation: lytic enzymes, concentration of Novozym 234, culture 

age, concentration of mycelium, temperature used for lytic digestion, pH, osmotic stabiliser and 

incubation time in osmotic stabiliser and consequently gave a general recommendation that they 

suggested for all Trichoderma strains. This current study has found the isolation of protoplasts to be 

highly strain specific, with previous work within our group showing substantial differences in the 
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resistance of various strains to protoplasting techniques. Of four T. sp. “atroviride B” strains, the 

number of protoplasts that were produced varied from 5.1 x 107 protoplasts/mL to 8.19 x 109 

protoplasts/mL and the methodology needed to be slightly modified for each strain. Strain-specificity 

has also been observed for T. viride and T. harzianum, with research having shown different 

optimisation methods varyingly greatly for the same species. For example, the release in protoplasts 

from different culture ages for the same species (between studies) varied. For T. viride, the optimal 

time for mycelial formation is between 14-18 h, and for T. harzianum that same figure varies from 16-

24 h (Balasubramanian and Lalithakumari, 2008; Mrinalini and Lalithakumari, 1998). Together these 

results highlight that significant optimisation of protoplast methodology for each strain is essential.  

Despite the frequent use of protoplast technology for strain enhancement in both the biotechnology 

industry and for biocontrol agents, very little is known of the underlying genetic consequences and the 

potential effects downstream. Further research is needed to understand the full extent of these 

changes. The phenotypic plasticity and remodelling that is induced in the production of protoplasts is 

beneficial for potential strain enhancement as seen in this study. One possible explanation for the 

protoplast-induced phenotypic plasticity is methylation as previously mentioned. The UP-PCR patterns 

were identical between both the parental strains and the respective progeny suggesting no major DNA 

rearrangements had occurred. Previous work within our group on other protoplast progeny using 

Methylation-Sensitive-AFLPs (MSAP) analysis detected remodelling of the methylation profile, 

suggesting that gene expression through methylation changes could be the cause of the enhanced 

phenotypic plasticity observed in the regenerant variants produced. Further chapters within this thesis 

attempt to characterise the influence of methylation changes in protoplast-induced phenotypic 

plasticity.  

2.5 Conclusion  

These results show that the use of protoplast regeneration is a very effective tool to screen and select 

for rare desirable traits within an already successful biocontrol agent, with protoplast progeny tolerant 

to current control pesticides being effectively achieved. This has the potential to lead to the 

incorporation of these biocontrol agents into a commercial IPM programme. Additionally, these results 

using protoplast regeneration for strain improvement also raise the important question of what is the 

source of this variation during regeneration in the absence of fusion?  
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Chapter 3 

Bioactivity of selected Trichoderma sp. “atroviride B” parental and 

protoplast regenerant strains against Pseudomonas syringae pv. 

actinidae  

3.1 Introduction  

Pseudomonas syringae pv. actinidae (Psa) is a gram negative bacterium that causes bacterial canker 

on a variety of kiwifruit species, including the economically important Actinidia chinensis (gold fleshed 

kiwifruit, cv. Hort16A) and A. deliciosa (green fleshed kiwifruit, cv. Hayward) (Scortichini et al., 2012; 

Vanneste, 2017). The symptoms of this disease include brown-black leaf spots with chlorotic halos, 

extensive twig die-back, blossom necrosis and bleeding cankers along the main trunk which produce 

red coloured exudates, eventually leading to vine decline and death (Scortichini et al., 2012; Vanneste, 

2017).  

Since the outbreak of the disease in New Zealand in November 2010, research has focused on 

developing efficient strategies for minimising both the spread of the pathogen and the economic loss 

to the kiwifruit industry and growers. Potential chemical and biocontrol options, alongside strict 

orchard management practices and breeding resistant varieties, are all being used in this effort 

(Cameron and Sarojini, 2014). Currently, chemical control of Psa in the field is highly dependent on the 

multiple spraying of two main bactericides: copper compounds and streptomycin (Vanneste, 2017). 

However resistance to both copper compounds and streptomycin can occur within this bacterium 

(Goto et al., 1994; Nakajima and Tadaaki, 2002). In 2014, Psa strains within New Zealand that were 

resistant to copper sulphate began to appear (Colombi et al., 2017). At the beginning of the New 

Zealand outbreak, the single strain responsible for the outbreak was sensitive to copper. However a 

recent study has shown that within a sample of isolates, taken in 2015 and 2016, a quarter were now 

copper resistant (Colombi et al., 2017). Alongside the bactericide resistance that is emerging, the 

primary strategy of streptomycin and copper compounds could potentially present further issues with 

phytotoxicity and residues in fruit (Cameron and Sarojini, 2014). One potential option is the integration 

of these traditional approaches with biocontrol at crucial growing times during the season. 

The biocontrol ability of Trichoderma species against plant pathogens has been extensively studied 

over the past 80 years. They have long been recognised as potential biocontrol agents and for their 

ability to increase plant growth and development (Harman et al., 2004a) and for the control of a wide 
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range of plant pathogens such as Botrytis (Card et al., 2009), Sclerotium (McLean and Stewart, 2000), 

Rhizoctonia (Sarrocco et al., 2009) and Pythium (Monte, 2010).  

Protoplast technology has been used to screen and select desirable traits from various parental strains 

to improve biocontrol ability within Trichoderma strains as well as other filamentous fungi (Braithwaite 

et al., 2013; Harman, 2000; Kandula et al., 2012). Based on the proven success of Trichoderma being 

used as a biocontrol agent, work within our group has identified a combination of Trichoderma strains 

that are active against Psa (Kiwivax™ (Agrimm Technology, New Zealand)). Building on this, pesticide 

tolerant variants of these same Psa active Trichoderma strains were able to be produced via protoplast 

regeneration which would be ready to be integrated into an IPM programme. However, the exact 

mechanism by which these modifications are induced is unknown and other changes not tested may 

have occurred. Therefore it is imperative to assess the biocontrol potential of these protoplast progeny 

to ensure there has been no reduction. This chapter aimed to test a selection of the protoplast 

regenerants that were produced in Chapter 2, to ensure the bioactivity against Psa has not been lost.  

3.2 Materials and Methods  

In planta bioactivity of the protoplast progeny  
An in-house bioassay developed by Christine Stark and Robert Hill (Bio-Protection Research Centre, 

Lincoln) was used for this experiment (Hill et al., 2015), with modifications being made to the disease 

scoring methodology (Trials 2-3) after reviewing the data from Trial 1. Furthermore the statistical 

analysis from previous work was also changed. 

 Trial 1 (June- August 2016) 

3.2.1.1 Trichoderma inoculum preparation  
To generate Trichoderma inoculum for the bioactivity bioassay, three PDA plates per strain (see Table 

3.1 for strains used) were inoculated separately with a 2 µL conidial suspension, spread over the plate 

with 100 µL sterile distilled water (SDW) and incubated at 23°C under a 12/12 h light/dark cycle for 10 

d. Conidia were harvested by flooding the plates with 5 mL of SDW and the conidia were scrapped into 

suspension and filtered through a double layer of Miracloth. The conidial concentration was 

determined by haemocytometer counts and each Trichoderma treatment adjusted to a final 

concentration of 1 x 106 spores/mL for inoculation of the kiwifruit seedlings.  
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Table 3.1 Selected Trichoderma strains used as treatments over the three Psa bioactivity trials. 
Species listed in the table as follows: LU753: Trichoderma sp. novel LU753, FCC207: 
Trichoderma hamatum, FCC237, FCC456: Trichoderma sp. “atroviride B”. /R# indicates 
regenerant.  

Trial 1 
(June- August 2016) 

Trial 2 
(March- July 2017) 

Trial 3 
(April- August 2017) 

D13 (LU753 + FCC207) FCC237 FCC237 
FCC237  FCC237 + FCC207 FCC237 + FCC207 
FCC237 + FCC207 FCC237/R5 FCC237/R5 
FCC237/R5 FCC237/R5 + FCC207 FCC237/R5 + FCC207 
FCC237/R5 + FCC207 FCC456 FCC456 
FCC456 FCC456 + FCC207 FCC456 + FCC207 
FCC207/R2 FCC456/R4 FCC456/R4 
Kiwivax™ FCC456/R4 + FCC207 FCC456/R4 + FCC207 
Positive control FCC207 FCC207 
Negative control  FCC207/R2 FCC207/R2 
 Kiwivax™ Kiwivax™ 
 Positive control Positive control 
 Negative control  Negative control  

 

3.2.1.2 Kiwifruit seedlings  
Very young seedlings of A. deliciosa (green fleshed kiwifruit, cv. Hayward) (provided from Plant and 

Food Research, Motueka) (approximately 2 true leaf stage) were transplanted into Lincoln University 

special seed raising mix (50:50 peat: sterilised pumice, 200 g Osmocote extract mini (3-4 months) 16-

3/5-9-1, 400 g Dolomite lime, 100 g Hydroflo) into four cell seed raising trays. The following day 

seedlings were treated with Trichoderma (including Kiwivax™) by pipetting 5 mL of the conidial 

suspension (containing 106 conidia/mL) around the stem base. This inoculation density had been 

chosen based on pot trials with Pinus radiata seedlings (Stark et al., 2018). Additionally this 

concentration has led to consistent results of disease reduction over the approximately 26 bioassay 

trials that Christine Stark has performed. Kiwivax™ is a commercialised biocontrol product based on a 

combination of three Trichoderma strains (developed by Robert Hill and Christine Stark, Bio-Protection 

Research Centre) that has a limited label claim to reduce Psa symptoms on kiwifruit. It is applied as 

root drench through springtime and post-harvest; has been re-isolated from treated kiwifruit vine 

roots at least 3-4 months after application. Control plants (with no Trichoderma treatment) were 

treated with 5 mL of SDW. The experiment was organised into a randomised block design to help 

reduce variability by strain treatment, with 10 replicates per treatment, each represented in 10 blocks 

(for treatment strains see Table 3.1). The plants were watered lightly and covered with a plastic sheet 

in the glasshouse (Nursery Greenhouse Centre, Lincoln University). The seedling raising trays were 

placed on heating pads and kept at 18-20°C, with 16 h of light. The average daily temperature 

fluctuated between 15.5 and 22.1°C, with an average temperature of 17.3°C. The seedlings were grown 
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in the glasshouse and moved into the Biotron (a PC2 plant growth containment facility, Lincoln 

University https://bioprotection.org.nz/Facilities/?sti=1) after approximately 10 weeks. The four cell 

seedling trays were also cut into individual seedling cells for the remainder of the experiment.  

3.2.1.3 Psa inoculum preparation and inoculation of the kiwifruit  
The Psa strain (Pseudomonas syringae pv. atinidiae strain 10627) was supplied by Plant and Food 

Research (Te Puke) and was stored at -80°C in 15% glycerol. This strain was used for all trials in this 

study. This strain belongs to the Psa biovar 3 (haplotype NZ-V; Psa-V) and is known to be pathogenic 

in potted kiwifruit seedling trials. Psa was plated onto Nutrient Sucrose Agar (NSA) (10 g sucrose, 10 g 

bacterial peptone, 14 g agar per L) and incubated at 25°C in complete darkness for 48 h. The colonies 

of Psa were harvested by flooding the plates with 10 mL of SDW and were scrapping into suspension 

with a sterile loop. The suspension was transferred into a sterile universal and the bacterial 

concentration was determined spectrophometrically (Genesys 10S UV-Vis, Thermo Scientific). 

Concentrations were adjusted to 6.1 x 108 CFU/mL with SDW (optical density at 600 nm=0.47 is 

equivalent; Tony Reglinski, pers. comm.) then diluted to the inoculation rate of 1 x 107 CFU/mL with 

SDW. In addition, dilution plates from the final concentration were plated on NSA and incubated at 

25°C in complete darkness. After 3 d, the plates were counted to confirm the inoculum concentration 

(CFU/mL) (data not shown). 

All kiwifruit plants (apart from the negative control group) were challenged with Psa via stem stab 

inoculation in a climate controlled growth room in the Biotron (18°C day/15°C night, 65% RH, 16 h 

photoperiod). The age that the kiwifruit seedlings were inoculated is based on the development of the 

seedlings. They need to have around four nodes as Psa is inoculated between the second and third 

node on the seedling. A sterile wooden toothpick was dipped into a 2 mL microcentrifuge tube 

containing the Psa inoculum and was angled at 45° in relation to the seedling stem between the nodes. 

The toothpick was pushed in just enough to penetrate the stem. The negative control group was 

inoculated with sterile water. Each large plastic container (82 L) held seven individual seedling tray 

cells that were standing on a petri dish lid to prevent cross contamination within the plastic containers. 

The same randomised block design was carried over from the greenhouse. Plants were watered as 

required and grown for four weeks in the Biotron.   

3.2.1.4 Disease assessment  
The disease development was assessed after four weeks based on a scoring system developed from 

Hill et al. (2015) and Hoyte et al. (2013). The symptoms/parameters that were assessed were: plant 

height (mm), stem lesion size (mm), stem lesion score (a severity scale of 0-3), petiole collapse, petiole 

blackening, stem tip death, stem collapse and death, with the different symptoms having different 

weighting to combine for a final disease severity score that was between 0 and 6 (Table 3.2). 
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Table 3.2 Disease scoring assessment for Psa symptoms on kiwifruit seedlings after four weeks 
growth post inoculation with Psa used in Trial 1. 

Weight (%)1 Parameter Scoring Description 
N/A Plant height  Measured in mm  N/A 
N/A Stem lesion 

length  
Measured in mm Length of stem lesion wound measured in 

mm  
40 Stem lesion 

length % 
Length of the 
lesion/height of 
the plant 

Represented as a percentage of the length of 
the lesion/height of the plant  

30 Stem lesion 
score 

Subjective score  (0) Lesion only, water soaking only; (1) lesion 
black/stem blackening starting; (2) severe 
blackening of most of the stem; (3) black 
stem all around and dry 

N/A Leaf wilt Yes/no Recorded but too variable on its own to 
include in weighting system  

40 Petiole collapse 
or blackening 

Subjective score 
(blackening only 
to severe) 

None, some, all petioles collapsed; petiole 
blackening starting at base; petioles clearly 
black; leaf drop/black veins/severe wilting 

40 Leaf spots Yes/no Yes/no (only if clearly caused by Psa; usually 
comes with ooze from leaves) 

15 Ooze Yes/no N/A 
80 Fungal growth 

on bacterial 
exudates 

Yes/no Secondary symptom; if yes: point of no 
return for the plant even if lack of other 
symptoms   

50 Stem tip death Yes/no Yes/no 
100 Total collapse Yes/no Yes/no 
100 Death Yes/no Yes/no 
N/A= not applicable  
1 weight expressed as a percentage (out of 100%), i.e. if a plant had both petiole blackening (40% weighting) and 
total collapse (100% weighting) it would be automatically scored as 100%. 
 

3.2.1.5 Statistical analysis  
The five main parameters (height [mm], stem lesion length [mm], stem lesion percentage [length of 

the lesion/height of the plant], stem lesion score and the disease severity score) were analysed using 

Analysis of Variance (ANOVA) within GenStat 16. Contrasts corresponding to questions of interest were 

specified and included in the ANOVA. The Least Significant Difference of Means (LSD) at a significance 

level of 5% (p<0.05) were determined for each parameter. Additionally, for this trial 18 plants that 

were dead or had stem collapse (both symptoms of full blown disease; automatic disease severity 

score of 6), the lesion length was not assessed and these data were estimated as “missing values” in 

the ANOVA. 
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 Trial 2 (March- July 2017) 

In the following two bioassays, sterile A. chinensis (gold fleshed kiwifruit, cv. Hort16A) tissue culture 

plantlets were used (Multiflora Laboratories Limited, Auckland) due a lack of kiwifruit seedlings 

available from Plant and Food Research. Although Hort16A is more susceptible to this biovar of Psa 

than Hayward in field situations, studies have shown that there is very little difference in the 

susceptibility to infection of young leaves of comparable age (Tyson et al., 2015), making the difference 

in cultivar used here still comparable.      

3.2.2.1 Trichoderma inoculum preparation  
The Trichoderma inoculum was prepared as described above (section 3.2.1.1) with the strains listed in 

Table 3.1 for Trial 2. Treatment D13 (LU753 and FCC207) was dropped due to space constraints.  

3.2.2.2 Kiwifruit seedlings  
Very young tissue culture plantlets of A. chinensis (Hort16A) (Multiflora Laboratories Limited, 

Auckland) (approximately one true leaf stage) were transplanted into Lincoln University special seed 

raising mix into four cell seed raising trays. The following day seedlings were treated with Trichoderma 

(including Kiwivax™) by pipetting 5 mL of the conidial suspension (containing 1 x 106 conidia/mL) 

around the stem base. Control plants (with no Trichoderma treatment) were treated with 5 mL of SDW. 

The experiment was organised into a randomised block design to help reduce variability, with two 

extra blocks to use in case of seedling death. This was expected as the tissue culture plantlets are less 

robust than the seedlings used in Trial 1. There were 10 replicates used per treatment, each 

represented in 12 blocks (10 for the trial with the additional 2 blocks). The plants were watered lightly 

and covered with a plastic sheet in the glasshouse. The seedling raising trays were placed on heating 

pads and kept at 18-20°C, with 16 h of light. The average daily temperature fluctuated between 10.3 

and 30.3°C, with an average temperature of 17.6°C. The seedlings were grown in the glasshouse and 

moved into the Biotron after approximately 12 weeks, when they had four nodes. The plants chosen 

were selected from all 12 blocks based on the height of the kiwifruit seedlings to maintain as much 

homogeneity as possible in the plant size and growth stage. If a seedling was chosen from the extra 

two blocks, this seedling replaced the plant from the original block, so the main randomised block 

design with the orginal ten blocks could be continued into the Biotron.  

3.2.2.3 Psa inoculum preparation and inoculation of the kiwifruit  
The Psa inoculum preparation and inoculation of the kiwifruit seedlings was as described above (see 

section 3.2.1.3).  
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3.2.2.4 Disease assessment  
The disease development was assessed after four weeks. After analysing the results from the first trial, 

the scoring system was changed to help maintain consistency with the reporting of the disease 

symptoms and the weighting was also removed. Some of the symptoms that contributed to the final 

disease score were not solely disease symptoms of Psa which could skew the final score. The 

symptoms/parameters that were assessed were: plant height (mm), stem lesion size (mm), stem lesion 

percentage and an updated disease scored that ranged from 0-6 (Table 3.3) (see Figure 3.1 for a more 

detailed explanation of the disease score scale). 

Table 3.3 Updated disease scoring assessment for Psa symptoms on kiwifruit seedlings after four 
weeks growth post inoculation with Psa used for trials 2 and 3.  

Parameter Scoring Description 
Plant height  Measured in mm  N/A 
Stem lesion 
length  

Measured in mm Length of stem lesion wound measured in mm  

Stem lesion % Length of the 
lesion/height of the 
plant 

Represented as a percentage of the length of the 
lesion/height of the plant  

Disease score  Subjective score  
(0-6) 

(0) No symptoms or discolouration, just base water 
soaking wound only; (1) light discolouration around 
wound; (2) darker discolouration around wound/stem 
blackening starting; (3) further discolouration around 
the wound, beginning to constrict around wound; (4) 
completely constricted, brown; (5) disease has moved 
systemically (past the stem and into the leaves); (6) 
death/girdled (collapsed entirely) 

N/A= not applicable 

3.2.2.5 Statistical analysis  
The four main parameters (height [mm], stem lesion length [mm], stem lesion percentage [length of 

the lesion/height of the plant] and the disease severity score) were analysed using ANOVA within 

GenStat 16. Various contrasts were specified and included in the ANOVA and the LSD at a significance 

level of 5% (p<0.05) was determined for each parameter. 
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Figure 3.1 Updated disease scoring assessment of Psa on Hort16A kiwifruit seedlings after four 
weeks growth post inoculation with Psa. (A) 0-no symptoms or discolouration; (B) 1-
light discolouration around wound; (C) 2-darker discolouration around wound/stem 
blackening starting; (D) 3-further discolouration around the wound, beginning to 
constrict around wound; (E) 4-completely constricted, brown; (F) 5-disease has moved 
systemically (past the stem and into the leaves); (G) 6-death/girdled (collapsed 
entirely).  

 

 Trial 3 (April- August 2017) 

Trial 3 was set up as an exact repeat as Trial 2 (see section 3.2.2 for details) with the same treatments 

(Table 3.1). During this experiment, the average daily temperature fluctuated between 10.3 and 

25.6°C, with an average temperature of 17.1°C in the glasshouse. With the only difference in set up 

being there were no extra lights or heating pads for the kiwifruit in the glasshouse due to space 

confinements, which led the kiwifruit seedlings to be in the glasshouse for an additional two weeks to 

ensure size homogeneity of the seedlings. However, even with the additional two weeks the seedlings 

were smaller than the previous two trials which was visible in the heights recorded. The Psa inoculum 

preparation, inoculation of the kiwifruit, disease assessment and statistical analysis were as described 

above. 
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3.3 Results  

For all three trials, the raw measurements, statistics and tables can be viewed in Appendix A. 

 Trial 1  

For Trial 1, the assessment of the biocontrol potential of the protoplast progeny showed three main 

results (Table 3.4). Firstly, the strains selected for ‘omic’s analysis (Chapter 4 and 5- FCC237 and 

FCC237/R5) showed no significant difference in any of the five parameters that were assessed meaning 

that the biocontrol ability of this strain was not reduced due to protoplasting. Furthermore, the most 

noticeable positive effect was the addition of FCC207 to both FCC237 and FCC237/R5. Interestingly, 

when FCC207 was used in combination with the above strains for three of the parameters (the stem 

lesion percentage, the stem lesion score and the disease severity score), there was a significant 

reduction in the severity of the scored Psa symptoms (all three parameters p<0.05). Due to this 

observed reduction it was decided that for the remaining trials, the treatment list would be changed 

to include FCC207 to be used in combination with the original treatments.  

Additionally, the high scoring of the negative control in the disease severity score (2.02) was a point of 

concern. This scoring was likely due to the weighting and combination of the different parameters that 

were used which included: petiole collapse or blackening, leaf spots, ooze, fungal growth, stem tip 

death, stem death, stem lesion length and stem lesion score (see section 3.2.1.4/Table 3.2 for the 

percentages for the weighting). It was decided that some of the parameters that were being measured 

may not be solely restricted to the symptoms of Psa but more so due to abiotic factors such as water, 

soil type or nutrient quantity. Comparing the disease score parameter to a more quantitative one 

related solely to the inoculation such as the stem lesion length made this trend more apparent. The 

stem lesion length comes from the point of the stem stab inoculation with Psa and the distance from 

the wound that the blackening has spread, or the respective stem stab inoculation with water that was 

the case for the negative control. The negative control had a very low score (3 mm) exclusively from 

the stress that the stem stab inoculation method caused as opposed to the average of the other nine 

treatments that had been inoculated with Psa (32.2 mm). 

Due to this observation from Trial 1, it was decided to change the scoring method to be more 

quantitative and to follow the spread of the disease within the plant. It is important to note that there 

is no pathogenicity assay and respective scoring that reflects the whole range of pathogenic 

capabilities of Psa, as the progression of the disease appears differently depending on the age of the 

plants and the inoculation method (Vanneste, 2017). 



  

Table 3.4 Disease parameter scores of Hayward kiwifruit seedlings after four weeks post inoculation with Psa for Trial 1. 

 

Treatment  
Height 
(mm) 

Stem lesion 
length  (mm) 

Stem lesion % 
(% of height) 

Stem lesion 
score 

Disease 
score (1-6) 

1 D131 109.3 ± 30.0 34.6 ± 21.7 30.9 ± 15.9 2.13 ± 0.37 4.73 ± 1.30 

2 FCC237  76.3 ± 36.8 30.0 ±  20.7 35.8 ± 22.7 2.65 ± 0.78 4.75 ± 1.19 

3 FCC237 + FCC207 91.0 ± 33.7 24.7 ± 17.7 30.2 ± 24.8 2.05 ± 0.35 3.93 ± 1.26 

4 FCC237/R5 88.6 ± 39.3 32.7 ± 19.1 32.7 ± 15.2 2.65 ± 0.34 4.81 ± 0.87 

5 FCC237/R5 + FCC207 109.7 ± 29.3 36.0 ± 35.5 32.4 ± 25.3 1.57 ± 0.41 3.73 ± 1.22 

6 FCC456 94.4 ± 31.8 20.3 ± 11.5 21.2 ± 10.9 1.70 ± 0.72 3.31 ± 1.39 

7 FCC207/2 85.4 ± 33.1  47.1 ± 44.8 45.4 ± 31.5 2.65 ± 0.41 5.40 ± 1.18 

8 KiwivaxÔ 92.0 ± 44.2 35.9 ± 27.2 32.7 ± 19.6 2.80 ± 0.58 4.87 ± 1.05 

9 Positive control 96.9 ± 26.1 29.4 ± 16.0 32.2 ± 16.3 2.36 ± 0.18 4.18 ± 1.11 

10 Negative control  108.0 ± 31.0 3.0 ± 3.5 3.8 ± 5.6 0.05 ± 0.15 2.02 ± 1.25 

       

 

LSD (5%) 

P Value 

27.1 

0.234 

19.7 

0.007 

16.2 

0.001 

0.39 

<0.001 

1.14 

<0.001 

            

Significance of contrasts            

       
All Trichodermas vs not inoculated (trts 1-8 vs 9) ns ns ns ns ns 

Kiwivax vs all other Trichodermas (trt 8 vs 1-7) ns ns ns ns ns 

Kiwivax vs FCC237 progeny  (trt 8 vs 4, 5) ns ns ns ns ns 

       
2 x 2 factorial main effects (m.e.) & interaction for trts nos 2-5     
237 vs 237/R5 (parent vs progeny m.e.) ns ns ns ns ns 

      4
2

 



  

      

Main effect of adding FCC207 ns ns * * * 

Interaction (parent x FCC207) ns ns ns ns ns 
1D13 is a combination between LU753 and FCC207  
* p<0.05 
** p<0.01   

4
3
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  Trial 2 

For Trial 2, the majority of the points of significant difference were between the parents and progeny, 

with the protoplast regenerants performing better in all of these cases relating to the disease scoring 

(Table 3.5). There were five main effects where this effect was apparent: i) all parents vs all progeny 

main effect, ii) FCC237 vs FCC237/R5 main effect, iii) FCC456 vs FCC456/R4 main effect, iv) the 2x2x2 

factorial main effect (all three parents vs three progeny including the addition of FCC207) and v) the 

3x2 factorial main effect (all three parents vs three progeny excluding the addition of FCC207 used in 

combination).  The only contrast that went against the general trend was the disease score in the 3x2 

factorial between the interaction of the parent/progeny with FCC456 and FCC207. However this was 

due to the high disease score in the FCC207 regenerant when that was in contrast with FCC456. These 

results show that again within this bioassay there was no reduction in activity of the protoplast 

regenerants due to protoplasting. Interestingly, within this bioassay, the positive (Psa inoculated) 

control seedlings were significantly taller compared to any of the Trichoderma treated seedlings but 

they also had the highest stem lesion length as well. FCC207 did not have the same beneficial effect 

over any of the parameters when used in combination as it did in Trial 1. One reason for this could be 

the difference in cultivar between Trial 1 and Trial 2. Kiwivax™ performed substantially better this trial, 

suggesting that an incorrect application may have occurred in Trial 1 or another factor that could have 

impeded its performance.     

 



 

Table 3.5 Disease parameter scores of Hort 16a kiwifruit seedlings after four weeks post inoculation with Psa for Trial 2. 

Treatment  Height (mm) 
Stem lesion 
length (mm) 

Stem lesion %      
(% of height) 

Disease score     
(0-6) 

1 FCC237 118.1 ± 21.8 63.4 ± 25.7 55.45 ± 24.7 2.81 ± 0.97 
2 FCC237 + FCC207 101.5 ± 18.2 62.5 ± 19.6 63.2 ± 22.1 2.90 ± 0.73 
3 FCC237/R5  105.0 ± 23.4 30.5 ± 25.7 33.9 ± 33.8 2.00 ± 0.94 
4 FCC237/R5 +FCC207 106.0 ± 14.3 34.0 ± 12.2 33.2 ± 12.1 2.40 ± 0.51 
5 FCC456 96.0 ± 25.0 64.0 ± 22.3 68.1 ± 22.1 3.40 ± 1.50 
6 FCC456 + FCC207 123.5 ± 61.0 52.5 ± 40.2 43.8 ± 31.4  2.20 ± 1.13 
7 FCC456/R4  129.0 ± 36.7 53.2 ± 31.2 42.8 ± 21.9 2.13 ± 1.05 
8 FCC456/R4 +FCC207 131.0 ± 44.8 53.0 ± 31.6 41.4 ± 23.3 2.10 ± 0.99 
9 FCC207 119.0 ± 34.4 48.5 ± 28.1 50.0 ± 37.6 3.00 ± 1.88 
10 FCC207/R2 117.4 ± 24.9 37.3 ± 27.3 32.1 ± 20.6 3.25 ± 1.39 
11 Kiwivax 124.5 ± 60.8 39.5 ± 52.2 28.0 ± 27.8 2.10 ± 0.87 
12 Positive control 147.0 ± 66.9 75.1 ± 58.1 49.0 ± 23.5 2.70 ± 1.41 
13 Negative control  102.0 ± 27.4 1.5 ± 2.4 1.9 ± 3.2 0.10 ± 0.31 

      
 LSD (5%) 33.5 27.9 37.7 1.01 
 P value 0.157 <0.001 0.09 <0.001 

      
Significance of contrasts         

      
All Trichodermas vs not inoculated (trts 1-11 vs 12) * * ns ns 
All parents vs all progeny (trts 1, 2, 5, 6, 9 vs 3, 4, 7, 8, 10) ns ** ** * 
Effect of 207 overall (trts 2, 4, 6, 8, 9 vs 1, 3, 5, 7, 12) ns ns ns ns 
Kiwivax vs all other Trichodermas (trt 11 vs 1-10) ns ns ns ns 
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2 x 2 factorial main effects (m.e.) & interaction for trts nos 1-4 
237 vs 237/R5 (parent vs progeny m.e.) ns ** * ns 
Main effect of adding 207  ns ns ns ns 
Interaction (parent/progeny x 207) ns ns ns ns 

      
2 x 2 factorial main effects (m.e.) & interaction for trts nos 5-8     
456 vs 456/R4 (parent vs progeny m.e.) ns ns * ns 
Main effect of adding 207 ns ns ns ns 
Interaction (parent/progeny x 207) ns ns ns ns 

      
2 x 2 x 2 factorial main effects (m.e) & interaction for trts 1-8     
Parent vs progeny m.e. ns * ** ** 
Main effect of adding 207 ns ns ns ns 
237 vs 456 m.e. ns ns ns ns 
Interaction (parent/progeny x 207) ns ns ns ns 
Interaction (parent/progeny x 237/456) ns ns ns ns 
Interaction (207 x 237/456) ns ns ns ns 
Interaction (parent/progeny x 207 x 237/456) ns ns ns ns 

      
3 x 2 factorial main effects (m.e.) & interactions for trts 1, 3, 5, 7, 9, 10    
Parent vs progeny m.e. ns * * * 
237 vs (av. of 456, 207) m.e. ns ns ns ns 
456 vs 207 m.e. ns ns ns ns 
Interaction (parent/progeny x (237 vs av. of 456, 207) ns ns ns ns 
Interaction (parent/progeny x (456 vs 207)  ns ns ns * 

* p<0.05 
** p<0.01   
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 Trial 3 

The final trial had the same overall trend, with no significant reduction in the bioactivity of protoplast 

regenerants compared to their respective parental strains (as shown in Table 3.6). Unsurprisingly this 

trial had the lowest overall kiwifruit seedling heights of all three trials, mainly due to the set up in the 

nursery with no overhead lighting or heat pads because of the space confinements at the time. Here, 

the effect on growth seen from the various treatments was the most significant between the three 

trials. In particular, the contrasts focusing on all i) Trichodermas vs not inoculated, ii) all parents vs all 

progeny and iii) the effect of FCC207 overall were all significant (p<0.05). Furthermore, compared to 

the other two trials (see Table 3.4 and 3.5), the positive control height was very low, suggesting that 

in times of stress (with limited lighting, heat and disease pressure) Trichoderma mostly has a growth 

promoting effect on the kiwifruit seedlings. The negative control was not as low as the positive control, 

however, the measurement is taken at the end of the trial so it did not have the additional disease 

pressure (biotic stress) that the positive control did. Additionally, FCC237/R5 performed significantly 

better than the parent (FCC237) in the 2x2 factorial main effect in both stem lesion length and stem 

lesion percentage (p<0.05). The use of FCC207 in combination with the treatments also showed a 

positive impact on the two 2x2 factorials overall in relation to height, stem lesion length and stem 

lesion percentage respectively.  

 



 

Table 3.6 Disease parameter scores of Hort 16a kiwifruit seedlings after four weeks post inoculation with Psa for Trial 3. 

Treatment Height (mm) Stem lesion 
length (mm) 

Stem lesion %      
(% of height) 

Disease score     
(0-6) 

1 FCC237 66.8 ± 15.0 59.2 ±  29.6 91.5 ± 44.1 2.56 ± 1.13 
2 FCC237 + FCC207 65.6 ± 14.5 34.5 ± 14.6 53.4 ± 19.1 3.02 ± 1.22 
3 FCC237/R5  66.5 ± 22.24 36.0 ± 22.1 58.4 ± 42.7 2.00 ± 0.94 
4 FCC237/R5 +FCC207 65.5 ± 17.2 31.0 ± 20.2 47.3 ± 25.3 2.40 ± 0.51 
5 FCC456 56.0 ± 18.4 38.0 ± 16.5 67.7 ± 19.4 2.80 ± 0.91 
6 FCC456 + FCC207 61.5 ± 18.6 42.0 ± 18.6 73.5 ± 44.8 2.20 ± 0.63 
7 FCC456/R4  62.7 ± 17.5 37.0 ± 11.0 60.4 ± 10.3 2.79 ± 0.88 
8 FCC456/R4 +FCC207 86.5 ± 21.8 50.0 ± 29.1 57.6 ± 27.6 2.20 ± 1.03 
9 FCC207 71.5 ± 16.5 34.5 ± 16.1 47.3 ± 16.1 2.80 ± 0.63 
10 FCC207/R2 78.4 ± 22.9 41.1 ± 18.1 54.1 ± 20.9 2.78 ± 1.03 
11 Kiwivax 66.0 ± 19.0 29.8 ± 16.7 43.7 ± 20.7 2.12 ± 1.05 
12 Positive control 55.4 ± 14.2 29.8 ± 16.7 52.3 ± 22.9 2.46 ± 1.13  
13 Negative control  67.5 ± 16.2 3.0 ± 4.2 4.8 ± 7.0 0.20 ± 0.42 

      
 LSD (5%) 15.9 16.7 24.7 0.84 
 P value 0.008 <0.001 <0.001 <0.001 

      
Significance of contrasts         

      
All Trichodermas vs not inoculated (trts 1-11 vs 12) * ns ns ns 
All parents vs all progeny (trts 1, 2, 5, 6, 9 vs 3, 4, 7, 8, 10) * ns * ns 
Effect of 207 overall (trts 2, 4, 6, 8, 9 vs 1, 3, 5, 7, 12) * ns ns ns 
Kiwivax vs all other Trichodermas (trt 11 vs 1-10) ns ns ns ns 
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2 x 2 factorial main effects (m.e.) & interaction for trts nos 1-4     
237 vs 237/R5 (parent vs progeny m.e.) ns * * ns 
Main effect of adding 207  ns * ** ns 
Interaction (parent/progeny x 207) ns ns ns ns 

      
2 x 2 factorial main effects (m.e.) & interaction for trts nos 5-8     

456 vs 456/R4 (parent vs progeny m.e.) ** ns ns ns 
Main effect of adding 207 * ns ns * 
Interaction (parent/progeny x 207) ns ns ns ns 

      
2 x 2 x 2 factorial main effects (m.e) & interaction for trts 1-8     

Parent vs progeny m.e. ns ns * ns 
Main effect of adding 207 ns ns ns ns 
237 vs 456 m.e. ns ns ns ns 
Interaction (parent/progeny x 207) ns ns ns ns 
Interaction (parent/progeny x 237/456) * * ns ns 
Interaction (207 x 237/456) ns * * * 
Interaction (parent/progeny x 207 x 237/456) ns ns ns ns 

      
3 x 2 factorial main effects (m.e.) & interactions for trts 1, 3, 5, 7, 9, 10    

Parent vs progeny m.e. ns ns ns ns 
237 vs (av. of 456, 207) m.e. ns ns * * 
456 vs 207 m.e. ** ns ns ns 
Interaction (parent/progeny x (237 vs av. of 456, 207)) ns * * ns 
Interaction (parent/progeny x (456 vs 207)) ns ns ns ns 

* p<0.05 
** p<0.01   
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 Combined Trials 2 and 3 

When the results were combined from Trials 2 and 3, the main trend that was seen was the individual 

parent versus progeny main effects within each of the different factorial contrasts that were set up 

over the disease score and stem lesion percentage (as well as occasionally the stem lesion length), with 

all cases the progeny outperforming the parents (Table 3.7). Although the effect of adding FCC207 was 

not as prominent in Trial 2 and 3 compared to the first trial, when the results were pooled, the effect 

of using FCC207 in combination was positively significant for reducing the disease score parameter for 

FCC456 in particular. Finally, Kiwivax™ lessened the disease score as well as the stem lesion percentage 

compared to all of the other Trichoderma treatments.   

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 



 

Table 3.7 Combined disease parameter scores of Hort 16a kiwifruit seedlings after four weeks post inoculation with Psa for trials 2 and 3. 

Treatment  Height (mm) Stem lesion 
length (mm) 

Stem lesion %      
(% of height) 

Disease score     
(0-6) 

1 FCC237 92.4 ± 36.3 61.3 ± 3.0 75.2 ± 23.1 2.68 ± 0.20 
2 FCC237 + FCC207 83.5 ± 25.4 48.5 ± 19.8 58.3 ± 6.9 2.96 ± 0.10 
3 FCC237/R5  85.8 ± 27.2 33.2 ± 3.9 46.1 ± 17.3 2.00 ± 0.00 
4 FCC237/R5 +FCC207 85.8 ± 28.6  32.5 ± 2.1 40.2 ±  10.0 2.40 ± 0.00 
5 FCC456 76.0 ± 28.3 51.0 ± 18.4 67.9 ± 0.3 3.10 ± 0.40 
6 FCC456 + FCC207 89.3 ± 39.4 47.2 ± 7.4 78.0 ± 6.3 2.20 ± 0.00 
7 FCC456/R4  95.8 ± 46.9 45.4 ± 11.5 51.6 ± 12.4 2.46 ± 0.50 
8 FCC456/R4 +FCC207 108.8 ± 31.5 51.5 ± 2.1 49.5 ± 11.5 2.15 ± 0.10 
9 FCC207 95.2 ± 33.6 41.5 ± 9.9 48.6 ± 1.9 2.90 ± 0.10 
10 FCC207/R2 97.9 ± 27.6 39.2 ± 2.7 41.1 ± 18.4 3.02 ± 0.30 
11 Kiwivax 95.2 ± 41.4  34.6 ± 6.9 35.9 ± 11.1 2.11 ± 0.00 
12 Positive control 101.2 ± 64.77 52.4 ± 32.1 50.6 ± 2.3 2.58 ± 0.17 
13 Negative control  84.5 ± 17.3 2.2 ± 1.1 3.4 ± 2.1 0.15 ± 0.10 

      
 LSD (5%) 26.0 22.5 21.1 0.48 
 P value 0.499 0.012 <0.001 <0.001 

      
Significance of contrasts         

      
All Trichodermas vs not inoculated (trts 1-11 vs 12) ns ns ns ns 
All parents vs all progeny (trts 1, 2, 5, 6, 9 vs 3, 4, 7, 8, 10) ns ns ** ** 
Effect of 207 overall (trts 2, 4, 6, 8, 9 vs 1, 3, 5, 7, 12) ns ns ns ns 
Kiwivax vs all other Trichodermas (trt 11 vs 1-10) ns ns * * 
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2 x 2 factorial main effects (m.e.) & interaction for trts nos 1-4    

237 vs 237/R5 (parent vs progeny m.e.) ns * ** ** 
Main effect of adding 207  ns ns ns ns 
Interaction (parent/progeny x 207) ns ns ns ns 

      
2 x 2 factorial main effects (m.e.) & interaction for trts nos 5-8     

456 vs 456/R4 (parent vs progeny m.e.) * ns ** * 
Main effect of adding 207 ns ns ns ** 
Interaction (parent/progeny x 207) ns ns ns ns 

      
2 x 2 x 2 factorial main effects (m.e) & interaction for trts 1-8     

Parent vs progeny m.e. ns * ** ** 
Main effect of adding 207 ns ns ns ** 
237 vs 456 m.e. ns ns ns ns 
Interaction (parent/progeny x 207) ns ns ns * 
Interaction (parent/progeny x 237/456) ns ns ns ns 
Interaction (207 x 237/456) ns ns ns ** 
Interaction (parent/progeny x 207 x 237/456) ns ns ns ns 

      
3 x 2 factorial main effects (m.e.) & interactions for trts 1, 3, 5, 7, 9, 10    

Parent vs progeny m.e. ns ns ns ** 
237 vs (av. of 456, 207) m.e. ns ns ns * 
456 vs 207 m.e. ns ns * ns 
Interaction (parent/progeny x (237 vs av. of 456, 207)) ns ns ns * 
Interaction (parent/progeny x (456 vs 207)) ns ns ns * 

* p<0.05 
** p<0.01    
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3.4 Discussion 

Overall, the results from the three trials showed that there was no reduction in the bioactivity of these 

protoplast progeny, with the regenerants regularly outperforming their respective parental strains. 

Although there was a bias in the selection of the protoplast progeny with the pesticide amended plates 

(i.e. not selecting for bioactivity), the selected strains do not appear to have lost their biocontrol 

abilities. Both protoplast regeneration and protoplast fusion are regularly used to enhance the 

biocontrol potential of various Trichoderma and other filamentous fungi strains. This technology has 

been used to improve rhizosphere competency (Sivan and Harman, 1991), produce pesticide-

polyresistance (Hatvani et al., 2006), enhanced antagonistic potential over Rhizoctonia, Fusarium and 

other pathogens (Lalithakumari et al., 1996) and numerous other biocontrol applications (see Chapter 

1 and 2 for further examples regarding the use of protoplast technology for strain improvement in 

Trichoderma and other fungi). The ability to enhance desired traits, however, is not guaranteed as an 

outcome from producing protoplast progeny. Migheli et al. (1995) produced protoplast progeny from 

T. harzianum and an unknown strain of Trichoderma. These fusant progeny showed a high degree of 

variability in both their biocontrol and mycoparasitic ability, moreover, the fusants were generally less 

active than their parental strains against Botrytis, Sclerotinia and Pythium.  

Another trend observed during these trials was the reduction in the disease-related parameters with 

the addition of FCC207 (T. hamatum) to the selected strains, particularly in Trial 1 and in the combined 

data from Trials 2 and 3. It appears that using the selected Trichoderma strains in combination has 

resulted in synergy. This ability for strains to enhance the biocontrol capabilities of one another has 

been documented in numerous studies. Using multiple strains of biocontrol agents has been suggested 

as a method of reducing the variability while increasing the reliability of biocontrol provided they have 

different requirements (Guetsky et al., 2001). Trichoderma have different modes of action that include: 

antibiosis, mycoparasitism, inducing host resistance and competition with the pathogen (Harman et 

al., 2004a; Harman, 2006; Sharma et al., 2014). Research suggests that some Trichoderma biocontrol 

strains have multiple modes of action against their target organism (Sharma et al., 2014). FCC207 may 

have differing modes of action to the selected other strains which potentially caused the reduction in 

the disease parameters. Hill et al. (2015) elaborated on this further suggesting that there is no single 

approach that is likely to provide complete control of Psa, with biocontrol organisms needing to be 

used in combination or as part of a comprehensive IPM strategy to combat this disease. Kiwivax™ is a 

combination of three different Trichoderma strains that may have different modes of action resulting 

in its biocontrol potential against Psa. The exact mode of action of the Kiwivax™ strains is unknown, 

and this is beyond the scope of this project, however, sites treated with Kiwivax™ have shown an 

increase in microbial diversity (Stark et al., 2018). 
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Furthermore, the results from Trial 3 show the beneficial effect that Trichoderma can have on plants 

against abiotic stress. The height of the kiwifruit seedlings that were inoculated with Trichoderma were 

significantly higher than the non-Trichoderma inoculated control in Trial 3. It is well documented that 

certain Trichoderma species have positive effects on plant growth and enhance resistance to both 

biotic and abiotic stresses (Brotman et al., 2013; Harman, 2000; Hermosa et al., 2012; Nicolás et al., 

2014). The results were similar to those reported by Mastouri et al. (2010) in which they examined the 

effects of seed treatment with T. harzaianum strain T-22 on germination of seeds exposed to both 

biotic (seed and seedling disease caused by Pythium ultimum) and abiotic stresses (osmotic, salinity 

and temperature stress). They showed that if the seedlings were not under any of the above stresses, 

the Trichoderma strain had little effect on seedling performance. However, under the conditions 

tested, treated seed performed significantly better. In Trials 1 and 2 this did not occur, but with limited 

lighting and heat combined with disease pressure, these biotic and abiotic factors caused a positive 

growth response in the Trichoderma treated samples. This demonstrates that the Trichoderma 

enhances tolerance to a wide range of stresses (Mastouri et al., 2010).  

However, growth promotion is not a universal trait for all Trichoderma species and strains. Research 

by Nieto-Jacobo et al. (2017) tested various strains for growth effects in Arabidopsis and observed 

varying degrees of success. The growth effects observed ranged from an increase in plant biomass, a 

decrease in plant biomass to no effect at all, which is similar to previous work reported by Lee et al. 

(2016). Additionally, Nieto-Jacobo et al. attributed this variability in plant growth enhancing potential 

as the result of environmental parameters rather than the choice of the plant host. This highlights the 

importance of further research into the environmental control of potential biocontrol strains, again as 

seen with the differences in plant growth under the abiotic stresses.  

Building on this biocontrol/growth promotion variability seen within Trichoderma strains and species, 

differences have also been observed within different trial Trichoderma combinations for Psa on 

kiwifruit seedlings. Different combinations of Trichoderma, when developing Kiwivax™ performed 

better with certain cultivar seedlings, with the combination that led to Kiwivax™ continuously 

performed better on the Hort16A cultivar (Hill et al., 2015). They further highlighted the potential that 

each Trichoderma strain-Actinidia cultivar combination may make use of a different specific 

mechanism to protect the plant itself.  

One final point of note is the lack of overall significance in the bioactivity scores compared to the Psa 

positive control. However, as previously mentioned, Kiwivax™ does have a limited label claim within 

the Agricultural Compounds and Veterinary Medicines (ACVM) register through the Ministry for 

Primary Industries (MPI) based solely on seedling assays because there is no field efficacy data 

available yet. Over the 26 Biotron trials used for registration, Kiwivax™ performed consistently better 
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than the Psa positive control. Anecdotally, growers, packhouse and nursery managers who have used 

Kiwivax™ have responded positively (Christine Stark, pers. comm.). As mentioned above, it does 

increase Trichoderma numbers in kiwifruit orchard soils for up to six months after application (Stark et 

al., 2018). There are numerous limiting factors of this trial design that may be the cause this lack of 

significance in protection against Psa. One potential is that the mode of action is not expressed in the 

window of this trials time frame. Additionally, dealing with the pathogen in containment is an artificial 

situation and its developmental behaviour would be different from the stem stab inoculation used 

here. Christine Stark did try a different inoculation method of Psa via the leaf but did not find the 

bioactivity scores varied. For example, for Kiwivax™ the disease score (based on the initial scoring 

methodology [Table 3.2]) was 3.0 ± 0.85 (n=10), compared to the Psa positive control of 3.3 ± 1.37 

(n=22). Moreover, the Biotron compared to the field are contrasting environments. The space of a pot 

is limited, which leads to nutrient and space competition for both the plant and microorganism. These 

factors, among numerous others in this artificial environment influences the plant growth and the 

developmental stage, as well as the diversity of soil microorganisms compared to a field situation (Stark 

et al., 2018). However, the disease scoring system for the bioassay was improved upon over the course 

of this study with the negative control score reducing, thereby becoming more quantitative.  

3.5 Conclusion  

Due to the change in phenotype of the protoplast regenerants that were produced, the biocontrol 

potential of these regenerants were assessed to ensure there was no reduction. Across the three trials, 

there was no decrease in the biocontrol potential with the progeny regularly out performing their 

respective parental strains. Furthermore, these trials have shown two beneficial characteristics of 

Trichoderma that have been previously reported, these being the synergistic potential of Trichoderma 

when used in combination and the growth promoting effect that Trichoderma can have on plants 

against abiotic stress. 
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Chapter 4 

Genome-wide analysis of cytosine methylation between a 

Trichoderma sp. “atroviride B” parental and protoplast regenerant 

strains 

4.1 Introduction 

DNA methylation is a common and stable epigenetic modification of DNA found in most eukaryotes.  

It plays a crucial role in numerous cellular processes including, but not limited to, genome regulation 

and development, gene transcription and transposon silencing (Bird, 2002; Feng et al., 2010; Zemach 

et al., 2010). The most commonly studied mechanism is that of 5-methylcytosine methylation, which 

involves the addition of a methyl group to the C5 carbon residue (5mC) of cytosines, typically by DNA 

methyltransferases (Krueger et al., 2012). Cytosine DNA methylation is found in three different 

sequence contexts: CG (or CpG =C- phosphate-G), CHG or CHH (in which H corresponds to A, T or C). 

The sequencing context, such as CpG, refers to methylation occurring on cytosines followed by guanine 

residues (Jang et al., 2017).  

Cytosine methylation is widespread across the kingdoms. However, its patterns and roles vary 

significantly between the taxa. It occurs at high levels in mammals and plants compared to insects and 

fungi, where it is very low or non-existent. Even further, between these groups, methylation differs in 

genomic distribution, sequence specificity and heritability (Martienssen and Colot, 2001). Plants, 

invertebrates and fungi have been shown to have a ‘mosiac’ pattern of methylation because only 

specific genomic elements are targeted such as repetitive DNA and actively transcribed sequences. 

Cytosine methylation also commonly occurs in all three sequencing contexts within these groups. 

However, within mammals, methylation is found almost exclusively at CpG dinucleotides throughout 

entire genome (~70-80% of CpG nucleotides) which is typically involved in gene silencing, with non-

CpG methylation being observed in the developmental process such as within embryonic stem cells 

(Bird, 2002; Schübeler, 2015).  

Cytosine methylation patterns in eukaryotes are established by de novo and maintenance DNA 

methyltransferases (DNMTases) (Feng et al., 2010). Briefly, DNMTases catalyse the transfer of a methyl 

group to the strand of DNA. These de novo DNMTases induce methylation, then the methylation is 

maintained through cell division via other DNMTases, which acts on hemi-methylated DNA (where one 

strand is methylated) that is produced through cell division to ensure the methylation is present on 

the daughter strand of DNA. The number of DNMTases vary between mammals, plants and fungi (Feng 
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et al., 2010). Interestingly in plants, DNA methylation is maintained by three different pathways, that 

depend on the sequence context of the methylation (CpG, CHG or CHH) as methylation differs strand 

wise in replication between the different sequence contexts (Bewick et al., 2016; Law and Jacobsen, 

2010). The methylation mechanisms of DNMTases in certain fungi, such as Neurospora crassa, 

Magnoporthe oryzae and Metarhizium robertsii have been well studied (Jeon et al., 2015; Kouzminova 

and Selker, 2001; Wang et al., 2017). Although the DNMT1 family of DNMTases have been found in 

these genomes, no DNMT3 homologues have been found in any fungi so far. Ascomycete fungi possess 

DNMT-related DNA methyltransferase, DIM-2, which methylates transposable elements and repeat 

sequences in a way that are dependent on methylation of lysine 9 of histone H31 (Kouzminova and 

Selker, 2001; Rountree and Selker, 2010). In these fungi, DIM-2 is responsible for all known cytosine 

methylation events and repeat-induced point (RIP) defective (RID) is responsible for the methylation 

specificity throughout the genome, which implies that there must an interaction between these two 

proteins for DNA methylation to occur (Jeon et al., 2015; Selker et al., 2003; Wang et al., 2017). As 

expected, within the Trichoderma atroviride v2.0 genome 

(https://genome.jgi.doe.gov/Triat2/Triat2.home.html), most of the proteins known to be involved in 

RIP and DNA methylation in Neurospora crassa were found, including rid-1 (TA_310388), dim-2 

(TA_36027; DNA methyltranserase), dim-5 (TA_131894; H3K9 methyltranserase), dim-7 (TA_233240), 

dim-8 (TA_146031), dim-9 (TA_282963) and hpo (300583; HP1). This was identical for other 

Trichodermas such as T. reesei and T. virens (Kubicek et al., 2011; Li et al., 2018; Li et al., 2017a). 

In fungi in particular, recent methylome studies have shown that DNA methylation varies significantly, 

which suggests that cytosine methylation may be involved in different mechanisms within this group 

(Jeon et al., 2015; Kim et al., 2018; Li et al., 2017b; Liu et al., 2012; Selker et al., 2003; Wang et al., 

2015; Zemach et al., 2010). These studies show that DNA methylation of fungal genomes range, 

typically between 0.07% -1.5%, for both CpG and non-CpG methylation, suggesting that fungal cytosine 

methylation levels are low compared with other eukaryotes, or even negligible in the case of 

Aspergillus flavus (Liu et al., 2012). In black truffle, cytosine methylation is very high, between 10-30% 

of cytosine residues being methylated, however, this is very unusual and most likely due to the high 

proportion of repetitive sequences and large genome size of this fungus (Montanini et al., 2014). 

Traditionally, a consensus view of cytosine methylation in fungi was as a stable genome defence 

mechanism against transposable elements (TE) and repeat sequences, with active genes being 

unmethylated, and this pattern is seen in numerous fungi over different families such as N. crassa 

(Rountree and Selker, 2010), Tuber melanosporum (Montanini et al., 2014), Phycomyces blakesleanus, 

Corpirnopsis cinerea, Laccaria bicolor and Postia placenta (Zemach et al., 2010). However, methylation 

is found more commonly in gene bodies than previously thought, suggesting the role of cytosine 

methylation is not strictly conserved. Numerous papers have reported that DNA methylation is found 
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not only in the promoter regions of genes, transposable elements and repeat sequences but also in 

the transcribed regions of genes, which suggests that cytosine methylation may have a prominent role 

in the regulation of gene expression as well (Jeon et al., 2015). This poses a paradox in which cytosine 

methylation may have the dual and opposing ability to both repress transcription and also occur in the 

body of active genes in the same species of fungi (Zemach et al., 2010).   

The function of cytosine methylation in genes is not well understood and gene body methylation has 

different effects on the transcript abundance of genes depending on the species. For example, in 

Cordyceps militaris, hypermethylated genes were found to be downregulated (Wang et al., 2015), 

whereas in M. robertsii (and in contrast to most other eukaryotes) transcription tended to be enhanced 

in genes with moderate promoter methylation, while gene expression was decreased in genes with 

high or low promoter methylation (Li et al., 2017b). Interestingly, this pattern of moderate or partial 

methylation showing an increase in transcript abundance within gene bodies is also shared with the 

diatom, Phaeodactylum tricornutum (Veluchamy et al., 2013). Additionally, within these gene bodies, 

methylation tends to occur in the exons (and be correlated to an increase in RNA levels), whereas 

introns tend to be unmethylated. This suggests that gene body DNA methylation may be directed by 

spliced mRNA (Maor et al., 2015; Zemach et al., 2010). 

As previously mentioned, the genetic basis for fungicide resistance within the protoplast regenerants 

that were produced by our group was explored (Johanna Steyaert, pers. comm.). The UP-PCR and AFLP 

profiles were identical, which suggests that no major DNA rearrangements had occurred. Additional 

sequencing of key genes known to be associated with this fungicide’s resistance revealed no change 

between the parent and regenerant. However, MSAP analysis detected multiple methylation changes 

which strongly suggest that methylation may play an important role in determining the phenotype of 

the protoplast regenerants. In the present study, UP-PCR profiles of the protoplast regenerants that 

were produced in Chapter 2 showed no major DNA rearrangements, which suggests another 

mechanism, such as methylation may be influencing the tolerance to copper.  

Methylation within Trichoderma has only been observed using simple methods such as MSAP analysis 

(Lange, 2015), so it is unknown what role methylation has in Trichoderma, or even at what level it 

occurs. It is important to note that MSAP can only detect methylation at CpG sites, which most likely 

only represents a fraction of the total 5mCs in the genome. Furthermore Trichoderma species typically 

have low levels of transposable elements within the genome (only 0.49% in T. atroviride (Kubicek et 

al., 2011)), suggesting that it is unlikely to be involved as a genome defence mechanism compared to 

N. crassa and Uncinocarpus reesii where silent repeated loci are heavily methylated with little 

methylation elsewhere (Selker et al., 2003; Zemach et al., 2010).    
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It is well documented that changes in methylation help contribute as a stress adaptation to 

environmental changes in plants (Verhoeven et al., 2010; Yong-Villalobos et al., 2015). Some papers 

suggest that epigenetic regulation in plants could contribute to novel traits related to plant stress 

adaptation by the controlled generation and exploitation of transposon-induced genetic diversity, 

which could be used to broaden plant phenotypic and genetic variation (Chen, 2007). It has also been 

observed that major genomic events, such as hybridisation, and also environmental stresses can 

trigger cytosine methylation in plants and in particular, stress-induced methylation changes may be 

targeted to stress-related genes (Verhoeven et al., 2010). Within rice, CHG hypomethylation has been 

reported in plants treated with heavy metal compared to control plants, and that this CHG 

hypomethylation was heritable through the germlines, which resulted in enhanced tolerance for both 

the parental plant and subsequent generations (Ou et al., 2012). In fungi, biotic and abiotic stressors 

have been shown to induce epigenetic changes.  The causal agent of chestnut blight, Cryphonectria 

parasitica, showed changes in its cytosine methylation pattern (which was determined both via MSAP 

analysis and whole genome bisulphite sequencing) after a mycovirus infection (Kim et al., 2018; 

Nuskern et al., 2017). The infection increased the number and diversity of methylated, 

hemimethylated (when only one of two strands is methylated) and total MSAP markers found in the 

infected fungal isolates compared to the virus-free controls (Nuskern et al., 2017). Additionally, cold 

treatment of the edible mushroom Pleurotus eryngii induced an increase in methylation (Hua et al., 

2017).  

Recent studies have further shown the influence of DNA methylation with morphology changes in fungi 

(Kim et al., 2018; Wang et al., 2017). Kim et al. (2018) showed that a mutation in the signalling pathway 

component (mitogen-activated protein kinase kinase kinase [MAPKKK]), in C. parasitica resulted in 

sporadic occurrences of sectors alongside hypomethylation compared to wild-type. This mitrogen-

activitated protein kinase (MAPK) is manipulated by the presence of the mycovirus (Cryphonectria 

Hypovirus 1) as mentioned above. Additionally, Wang et al. (2017) produced mutants for two 

DNMTases (MrRID and MrDIM-2) in M. robertsii which resulted in a significant decrease in cytosine 

methylation (between 8-71% of sites remained depending on the specific mutant) compared to the 

wild type. This methylation decrease resulted in changes in the development, stress tolerance and 

virulence of M. robertsii (Wang et al., 2017). This pattern of changes of colony morphology, radial 

growth and sporulation has also been reported in a mutant with a deletion in the DIM-2 gene in M. 

oryzae (Jeon et al., 2015). This combination of both phenotypic consequences and heritability of 

cytosine methylation suggests that it could play a large role in adaptation, when changes in DNA 

sequence may not be as obvious (Verhoeven et al., 2010). A similar mechanism could also be involved 

in protoplast regeneration in fungi, as protoplasts are readily adapt to external stress factors. 
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As the exact mechanism that induces these phenotypic modifications remains unknown, it is essential 

to understand these underlying genetic events, not only for the mechanisms involved but also that to 

ensure that other, non-target changes have not occurred. The research in this chapter aimed to 

characterise these changes by exploring the methylome of a parental strain and the chosen regenerant 

via whole genome bisulphite sequencing (WGBS). WGBS provides the highest precision mapping of the 

methylome and measuring the state of cytosine methylation (Dolzhenko and Smith, 2014). Briefly, 

sodium bisulphite converts unmethylated cytosines to uracils (which after PCR are converted then to 

thymines) while leaving methylated cytosines unconverted. This chemical treatment of the DNA 

effectively turns an epigenetic difference into a genetic difference, therefore enabling cytosine 

methylation detection and analysis. By mapping bisulphite-treated DNA back to the reference genome, 

it is then possible to determine the methylation state of individual cytosines. 

4.2 Materials and methods 

 Fungal strain management and DNA extraction 

The two fungal strains used in this part of the study were the protoplast regenerant tolerant to copper 

(T. sp. “atroviride B” FCC237/R5) and its respective parental strain (T. sp. “atroviride B” FCC237) as 

selected in Chapter 2. This regenerant strain was chosen as it was the most morphologically similar to 

its parent and a very similar genome of T. atroviride was available and annotated on JGI. This was in 

contrast to others such as T. hamatum which although being morphologically similar, at the time of 

sequencing the genome was only available in scaffolds. Additionally, before gDNA extraction, conidia 

of the chosen regenerant was taken from the -80°C and sub-cultured onto a 4 mM CuSO4.5H2O to 

ensure the copper tolerance of the stored conidia remained.   

In other fungal methylome papers, 3 d mycelium was shown to have the highest number of 5mCs 

among the different tissue types (Jeon et al., 2015), therefore this time point and tissue type was used 

for the gDNA in this study. Additionally because the phenotypic changes (hypothesised to be induced 

by methylation) appeared to be stable and heritable over numerous generations, plain PDB was chosen 

for the growing medium and not amended with copper. Biomass was generated for gDNA extraction 

from 3 d old mycelium as described in Chapter 2 (2.1) in PDB using the Gentra® Puregene™ Tissue Kit 

(Qiagen). Three biological replicates for the regenerant and the parent respectively were used for the 

WGBS. For each replicate, three 50 mL Nunc tubes were used to ensure there was enough mycelial 

mass, and then combined per replicate. The DNA was further purified using a modification of the 

DNeasy® Plant Mini Kit (Qiagen), starting at step 2: 250 µL DNA of the sample was combined with 150 

µL AP1 buffer and 4 µL RNase A stock solution (100 mg/mL), and continued from step 3 as per 

manufacturer’s instructions. The DNA quality was checked by gel electrophoresis. DNA concentration 
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was measured on a NanoDrop™ machine (NanoDrop Technologies Inc, USA) and also on a Quibit™ 3.0 

Fluorometer (ThermoFisher Scientific) as per manufacturer’s instructions.  

  WGBS library construction and sequencing   

The bisulphite conversion of the gDNA was performed by New Zealand Genomics Limited (NZGL), 

Dunedin, New Zealand using a EZ DNA Methylation-Gold kit (Zymo Research, USA), followed by the 

library preparation using TruSeq DNA Methylation Kit (Illumina®, USA). The bisulphite treated libraries 

were sequenced at the Otago Genomics Facility, University of Otago, Dunedin, New Zealand, using the 

Illumina HiSeq 2500 sequencing system (Illumina®). The samples were sequenced on a single 

sequencing lane with 125 paired-end reads being generated for the respective samples.  

 WGBS analysis 

The Next Generation Sequencing (NGS) data was analysed by identifying differentially methylated 

cytosines between the two strains by two bioinformaticians using different methods. The following 

methods and subsequent results will be split into their respective sections according to the approach 

of the different bioinformaticians, whose main difference can be summarised by searching for the 

differentially methylated regions (DMRs) or differentially methylated cytosines (DMCs).  

4.2.3.1 Read quality control  

For both sets of data analysis, the same read quality control was performed by Peter Stockwell (Otago 

University). The raw paired-end reads were trimmed and quality checked by using cleanadapters v1.22 

software (Chatterjee et al., 2012) with default parameters. This program scans the reads and identifies 

any sections which show 75% of higher matching with any adapter sequences (Chatterjee et al., 2012).    

4.2.3.2 Differentially methylated region (DMR) analysis (Peter Stockwell)  

The WGBS data was analysed by Peter Stockwell, bioinformatician at the Department of Biochemistry, 

Otago University, Dunedin, New Zealand. The following methods description is a summary based on 

his report with additional detail added (Appendices B.1). Anything in italics is verbatim from his report.   

4.2.3.2.1 Mapping of WGBS reads  

Reads from the WGBS of parental and regenerant strains were mapped against the Trichoderma 

atroviride IMI206040 genome v2.0 assembly downloaded from JGI (Genome build v2.0, May 2010, 

Joint Genome Institute, http://genome.jgi.doe.gov/Triat2/Triat2.home.html). Mapping was 

performed using Bismark (Krueger and Andrews, 2011) using both bowtie1 and bowtie2 and also with 

BSMAP (Xi and Li, 2009), with the mapping being confined to the first of the paired end reads (forward 

reads) for both programs. The BSMAP mapping was chosen to continue with as it gave consistently 

higher mapping percentages.  
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The two aligner programs work in different ways. Bismark, which is a Perl application, works alongside 

Bowtie fragment aligner (Langmead et al., 2009), this allows both the aligning of short DNA sequences 

reads to large genomes and determines the methylation state of each cytosine position in the read 

(being either in a CpG, CHG or CHH context) calling in a single step. The output contains genomic and 

read sequences for each match from which methylated cytosines can be visualised and explored 

further (Chatterjee et al., 2012). It uses a three-letter aligning approach, where by all Cs in the 

reference genome and both sequenced reads are converted to Ts prior to mapping, and mapping is 

performed using a seed and extend approach (Kunde-Ramamoorthy et al., 2014). Conversely, BSMAP 

(Bisulfite Sequence MAPping program) is a C++ application. It employs a wild card approach, this allows 

either Cs or Ts in the reads to map to Cs in the reference genome. One of the main processing 

differences between these two approaches, is that wild card algorithms can tolerate more mismatches 

than the three-letter approach (Kunde-Ramamoorthy et al., 2014). 

4.2.3.2.2 Differential methylation analysis using DMAP 

Differential Methylation Analysis Package (DMAP) (Stockwell et al., 2014) is a fragment-based 

approach for investigating cytosine methylation patterns (looking at a 1000 bp window of the WGBS 

data) and produces associated statistics and the proportion of methylation for each of these windows. 

The different components of this package can filter, and process aligned bisulphite sequenced data to 

generate reference methylomes. This pipeline directly imports output from any bisulphite aligner (e.g. 

Bismark or BSMAP) in Sequence Alignment/Map (SAM) format and identifies differential methylation, 

based on two additional programs, diffmeth and identgeneloc. As the data consisted of three replicates 

each of the parental and regenerant samples, ANOVA was run between the different samples. This 

allows for the determination of the significance of these potential methylation differences between 

the groups in relation to the variation within each replicate in these groups. Based on those results, 

significantly differentially methylated regions were filtered out, based on the low probability regions. 

Rather than just looking at CpG methylation, the script was changed to detect all three types of 

methylation (CpG, CHG, CHH).  

4.2.3.2.3 Finding proximal genes 

The low probability differentially methylated output from above was run with the DMAP program 

identgeneloc, which associates each of the differentially methylated regions (DMRs) to the nearest 

gene by comparing the genomic coordinates of the start and end of the DMR and gives relative 

distances from the transcription start site with an annotation file in the GenBank format (Stockwell et 

al., 2014). Identgeneloc also considers the sense of the gene (5’ or 3’) and relates the DMRs with 

respect to the upstream region of the gene. From the JGI protein ID’s provided, the respective proteins 

were searched for manually on the JGI site (T. atroviride v2.0) and blasted using NCBI blastp for 
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conserved domains and similar protein alignments. A spreadsheet was generated that listed the contig, 

DMR, average parent and average regenerant methylation percentage, significance, proximal gene 

start and end as well as the protein ID from JGI.  

4.2.3.3.4 Potential functional consequences of DNA methylation  

To assess more generally a potential function of these DMRs, the proximal genes were functionally 

categorised into gene ontology (GO) terms. These JGI protein ID’s from above were entered into two 

protein family domain databases, InterPro (Finn et al., 2016) and Pfam (Finn et al., 2015) to obtain a 

list of predicted protein domains and a list of GO ID’s from the respective protein domains. It is 

important to note that it is only a predicted function as the majority of the genes are uncharacterised. 

Additionally these proximal genes were also annotated with the KOG (EuKaryotic Orthologous Groups) 

database (Tatusov et al., 2003) from the JGI website, which aids in the identification and phyletic 

classification of the orthologous proteins.  

4.2.3.3 Differentially methylation cytosine (DMC) analysis (Darrell Lizamore)  

The WGBS data was additionally analysed by Darrell Lizamore, Department of Wine, Food and 

Molecular Bio-Sciences, Lincoln University, Lincoln, New Zealand. The low amount of variability found 

in the DMR approach suggested that this may not be an appropriate method, as it was designed to 

analysis larger genomes such as the human genome, so a new method was sought. The following 

methods description is a summary based on Darrell’s report with additional detail added (Appendices 

B.2). Anything in italics is verbatim from his report.   

4.2.3.3.1 Mapping of WGBS reads 

The resulting trimmed reads were aligned to the T. atroviride IMI206040 genome v2.0 assembly. 

Mapping was performed using BS-Seeker2 (Guo et al., 2013), which gave approximately 65% mapping 

efficiency using both pair-end reads (opposed to just the forward read in the previous method). The 

methylation ratios were also called with BS-Seeker2. BS-Seeker2 is a Python application, that is a 

bisulphite sequencing alignment tool that performs genome indexing, read alignment (via BAM, SAM 

or BS-Seeker format) and DNA methylation calling for each cytosine (Guo et al., 2013). BS-Seeker2, 

yields similar mapping results to those of Bismark, but it provides more detailed information post 

processing (Kunde-Ramamoorthy et al., 2014). BS-Seeker 2 also employs a three-letter approach, as 

does BSMAP. 

4.2.3.3.2 Differential methylation analysis using methylKit and filtering out SNPs 

The differentially methylated cytosine (DMC) sites were detected using a R package, methylKit (Akalin 

et al., 2012), which uses a single 5mC approach. Upon further investigation, an overlapping filter was 

included as there was variation between replicates within each strain. As the client of this 
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bioinformatics approach, I was worried that this could be as a result of incomplete bisulphite 

conversion. This incomplete conversion could lead to an increase in false positives, both with non-

conversion and thymidine-to-cytosine sequencing errors. Other researchers investigating the 

methylome of the silkworm, Bombyx mori (Dazao) (Xiang et al., 2010) and Aspergillus flavus (Liu et al., 

2012), which both had negligible rates of methylation, have used this approach when they were unsure 

of their low methylation levels, only to discover their methylation was, in fact, the result of false 

positives. For the silkworm, only 11.3% (65 of the initial 574 5mCs) were validated as actual 5mCs. As 

NZGL didn’t include a positive control, such as unmethylated DNA for the bisulphite conversion, it was 

very important to include this step. After discussion of this issue with the bioinformatician (Darrell 

Lizamore), a script was written to ignore the 5mCs that were only present in one replicate of each 

treatment/strain.  

However, after visualising the methylation differences on IGV v2.3.91 (Robinson et al., 2011; 

Thorvaldsdóttir et al., 2013) between IMI206040, LU132 (an unannotated T. sp. “atroviride B” strain) 

and the bisulphite treated sequences of the parent and regenerant strain, the majority of the assumed 

methylation points were actually SNPs between T. sp. “atroviride B” and T. atroviride. A variety of 

programs were employed to eliminate these SNPs from the DMC list including BS-Snper (Gao et al., 

2015) and Biscuit (BISulfite-seq Comprehensive Utilisation and Integration Toolkit (Zhou, 2016)). Both 

of these programs had issues with the dependencies and were unable to be used. However, CGmap 

tools (Guo et al., 2017) was able to map as it used asymmetrical scoring to ensure that genomic 

sequence with T/A before bisulphite conversion did not match with C/G in the probe sequence; 

therefore it can discern SNPs from 5mCs. A spreadsheet was generated that listed the contig, 

methylation type, 5mC position, average parent and average regenerant methylation percentage and 

the significance of the 5mC.  

4.2.3.3.3 Finding proximal genes  

The resulting significantly different 5mC sites (CpG, CHG and CHH methylation) were joined with the 

respective gene features file (for T. atroviride v2.0). These files were opened within both Geneious 

(v10.2.4) (Kearse et al., 2012) and IGV; the individual DMCs (that were either 1 kb upstream of the 

gene or found within the gene body) were manually associated with the proximal genes. The DMCs 

were further grouped into patterns within gene regions: upstream (1 kb of gene body), gene body 

including introns and UTR (untranslated regions), downstream (1 kb of gene body) and intergenic 

regions (both upstream and downstream [1 kb each] of gene body was deleted).   

4.2.3.3.4 Potential functional consequences of DNA methylation  

To assess more generally a potential function of these DMCs in the genes of interest (defined as genes 

with a DMC located in their gene bodies or within 1 kb upstream), the methylated genes were 
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functionally categorised into gene ontology (GO) terms. These JGI protein ID’s from above were 

entered into two protein family domain databases, InterPro (Finn et al., 2016) and Pfam (Finn et al., 

2015) to obtain a list of predicted protein domains and a list of GO IDs from the respective protein 

domains. These lists were condensed through REVIGO (Supek et al., 2011), which summarises long lists 

of GO by removing redundant terms. It is important to note that it is only a predicted function as the 

majority of the genes are uncharacterised. These GO ID’s were further separated into all DMCs, 

hypermethylated DMCs in the parent and hypermethylated DMCs in the regenerant. The DMCs that 

had associated genes with them were also annotated with the KOG (EuKaryotic Orthologous Groups) 

database (Tatusov et al., 2003) from the JGI website, which aids in the identification and phyletic 

classification of the orthologous proteins. 

4.3 Results 

 Differentially methylated regions 

4.3.1.1 Global mapping of differentially methylated regions 

The mapping efficiency varied from bismark/bt1 ~40% to bsmap ~68% compared to the reference 

genome of T. atroviride IMI206040; therefore BSMAP was chosen to proceed with.  There were a total 

of 33 DMRs identified following the analysis throughout the genome. From this, five of these DMRs 

were found to hypermethylated in the parent strain compared to 28 being hypermethylated in the 

regenerant (Table 4.1). This suggests that there are higher levels of (differential) cytosine methylation 

occurring in the regenerant, possibly due to the protoplasting process, with methylation being gained 

in these situations. However, the cytosine methylation percentages over the 1000 bp window were 

very low ranging from 0.64% to 2.24%, with the differences between the parent and regenerant 

ranging only from 0.05% to 0.57%. A total of 24 genes/proteins were annotated with either the 

InterPro or Pfam databases; 15 were assigned with at least one GO term. Four of these were assigned 

in the biological process category, one was assigned in the cellular component category, and ten were 

assigned to the molecular function category.   
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Table 4.1 Differentially methylated regions (DMRs) between the parent and regenerant strains through DMAP analysis completed by Peter Stockwell. 
Difference in methylation is from the [av. par meth – av. reg meth]. A blank space in the GO ID or KOG class and function category means there is no 
assigned class or ID. 

Contig 
DMR 

Protein ID1 
Av. 
par 

meth  

Av. 
reg 

meth 

Difference 
in 

methylation  
GO ID KOG class and function Putative function  

Start End  

contig_10 82001 83000 TA_55004 0.72 1.03 -0.31 
Integral component of 
membrane  

 Glycogen synthase  

contig_12 455001 456000 TA_314109 1.28 1.79 -0.051 RNA binding  

Information storage 
and processing/RNA 

processing and 
modification  

mRNA cleavage and 

polyadenylation factor I complex, 
subunit RNA15 

contig_13 850001 851000 TA_52932 1.04 0.92 0.12 Metabolic process  
Metabolism/secondary 
metabolites, transports 

and catabolism 

Candidate NRPS-like enzyme 

contig_14 507001 508000 TA_181620 0.73 1.3 -0.57   WD40 repeat-like protein 

contig_15 164001 165000 TA_93057 1.64 2.09 -0.45   FOG: Low-complexity 

contig_15 988001 989000 TA_181695 1.3 1.58 -0.28   SMC-N superfamily 

contig_17 814001 815000 TA_156368 1.02 1.5 -0.48 
Transcription, DNA-

templated  
 Fungal transcription factor 

regulatory middle homology region 

contig_17 190001 191000 TA_213474 1.05 1.24 -0.19   
Bin/Amphiphysin/Rvs (BAR) 

domains- fungal Snf1p interacting 
proteins 

contig_19 120001 121000 TA_173237 1.08 1.36 -0.28 Chromatin remodelling 

Information Storage 
and Processing/ 

chromatin structure 
and dynamics  

SWF-SNF chromatin remodelling 

complex, Snf5 subunit 
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contig_20 661001 662000 TA_238588 1.11 1.01 0.1 

ATPase activity, coupled 

to transmembrane 
movement of substances 

Metabolism/secondary 

metabolites, transports 
and catabolism 

Multi drug resistance protein 
(MRP) 

contig_21 36001 37000 TA_46319 0.83 1.22 -0.39 Catalytic activity 
Cellular Processes and 
Signalling/defense 

mechanisms 

Flavonon reductase/cinnamoyl-CoA 

reductast 

contig_21 71001 72000 TA_263302 0.64 0.98 -0.34   Fatty acid hydroxylase superfamily 

contig_22 1552001 1553000 TA_256549 1.28 1.79 -0.51 Oxidoreductase activity 
General function 

prediction only  

Aldo/keto reductase, related to 

diketogulonate reductase 

contig_22 193001 194000 TA_218126 1.2 1.37 -0.17   Cytochrome domain of fungal 

cellobiose dehydrogenases 

contig_23 249001 250000 TA_88971 1.06 1.57 -0.51   No conserved domains 

contig_23 908001 909000 TA_317939 0.79 0.88 -0.09   No conserved domains 

contig_23 1218001 1219000 TA_318025 1.77 1.31 0.46   Chromosomal replication initiation 

protein 

contig_24 2221001 2222000 TA_39146 1.31 1.69 -0.38 Oxidoreductase activity 

Metabolism/secondary 

metabolites, transports 
and catabolism 

Iron/ascorbate family 
oxidoreductases 

contig_25 2403001 2404000 TA_319665 0.98 1.26 -0.28   No conserved domains 

contig_25 1285001 1286000 TA_87116 1.28 1.51 -0.23   No conserved domains 

contig_26 1787001 1788000 TA_310473 0.9 1.46 -0.56 
Glycerol-3-phosphate 
transmembrane 

transporter activity 

 Chromosomal replication initiation 

protein 

contig_26 2587001 2588000 TA_301051 0.87 1.1 -0.23   No conserved domains 

contig_26 2981001 2982000 TA_247582 1.03 1.22 -0.19 GTP binding 
General function 
prediction only  

GTPase involved in cell partitioning 
and DNA repair 

contig_26 3470001 3471000 TA_179060 0.73 0.85 -0.12   No conserved domains 

contig_26 3755001 3756000 TA_226045 0.96 1.08 -0.12 Metal ion binding 
General function 
prediction only  

Putative methyl transferase, based 
on outlier plant homologues. OR 

PHD-finger 
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contig_27 2150001 2151000 TA_295125 1 1.51 -0.51 Monooxygenase activity 

Metabolism/secondary 

metabolites, transports 
and catabolism 

Cytochrome P450 
CYP3/CYP5/CYP6/CYP9 subfamilies 

contig_27 4365001 4366000 TA_126941 1.33 1.76 -0.43   Mitochondrial carrier protein 

contig_27 1278001 1279000 TA_130541 0.94 1.2 -0.26   Spliceosomal protein 
FBP22/Splicing factor PRP40 

contig_27 2700001 2701000 TA_180523 1.09 1.32 -0.23   No conserved domains 

contig_27 3181001 3182000 TA_228302 1.25 1.2 0.05 
Transmembrane 
transport 

Metabolism/energy 

production and 
conversion 

Mitochondrial 

tricarboxylate/dicarboxylate carrier 
proteins 

contig_28 601001 602000 TA_302544 1.69 2.24 -0.55 Oxidoreductase activity  
General function 
prediction only 

NAD (P)- dependent 
dehydrogenase 

contig_28 833001 834000 TA_268651 1.53 1.01 0.52   Domain of unknown function 

contig_29 426001 427000 TA_288239 0.68 1.01 -0.33   No conserved domains 

1 Origin of the protein ID numbers are from Trichoderma atroviride v2.0 https://genome.jgi.doe.gov/pages/search-for-genes.jsf?organism=Triat2 
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 Differentially methylated cytosines  

4.3.2.1 Global mapping of differential cytosine methylation  

In total, between 24,578,536 and 31,301,618 reads were generated for the respective parent and 

regenerant samples after removing the adapter contaminants, unknown and low-quality reads. A total 

of 13 million cytosine’s were mapped with BSseeker2, equating to a unique mapping efficiency of 65% 

compared to the reference genome of T. atroviride IMI206040 v.20. Although this mapping efficiency 

is on the lower side, namely because the strains sequenced were T. sp “atroviride B” opposed to T. 

atroviride which is the reference genome, it is still within what other papers have published. For 

example, the methylome of Magnaporthe oryze (Jeon et al., 2015) had a mapping efficiency for one of 

their samples at 62.75%, with their average being 72.65%. Additionally bisulphite sequencing does 

reduce the complexity of the genome and reduces the ability of mapping programs to align the 

sequences onto the reference genome. The alignment can only be as good as the reference genome 

(Yaish et al., 2018). As there are differences between T. atroviride and T. sp. “atroviride B”, the gaps 

and undetermined regions do negatively affect the mapping efficiency. There were 35,000 regions that 

could not be uniquely mapped compared the reference genome, ~2,700 had a greater length than 100 

bp, but none were over 1 kb. Despite having a lower mapping efficiency the genome coverage was 

high with over 12 million cytosines had above 10x coverage.  

After applying the overlapping filter on the dataset, approximately 760,000 of 2.8 million reads 

remained (Table 4.2), which shows that most 5mCs were only found in one sample. This suggests that 

this may have been to bisulphite conversion inefficiencies since most 5mCs have <1% methylation. The 

DMCs were analysed using methylKit, with better clustering of replicates by treatment (after the 

overlapping filter was put in place, see Figure 4.1 and 4.2). A Principal Component Analysis (PCA) plots 

and Hierarchical Cluster Analysis were identical for CHG and CHH methylation as well (data not shown). 

The resulting 5mCs were filtered for significantly different methylation among treatments (p<0.001).  

Table 4.2 Summary of 5mC sites mapped. 

 CpG CHG CHH Total 

Sites mapped 3,064,618 2,710,741 7,226,297 13,001,696 
Sites mapped >10x 2,874,174 2,707,972 6.619,754 12,201,900 
5mCs (pass replicate overlap 
filtering1) 

762,854 1,143,115 1,694,184 3,520,153 

Sig. diff 5mCs (p<0.01) 111 53 166 330 
Sig. diff hypermethylated 5mCs in 
parent (p<0.01) 

58 39 73 170 

Sig. diff hypermethylated 5mCs in 
regenerant (p<0.01) 

53 14 93 160 

1 at least one 5mC in at least two replicates of at least one condition  
H=A, T or C 
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Figure 4.1 Principal component analysis (PCA) between the parental (red) and regenerant (blue) 

strains after differential methylation analysis using methylKit. (A) CpG methylation with 

no overlap filtering. (B) CpG methylation with overlap filter (at least one mC in at least 

two replicates of the treatment). Figure produced by Darrell Lizamore. 

 

Figure 4.2 Hierarchical cluster analysis between the parental (red) and regenerant (blue) strains 

after differential methylation analysis using methylKit. (A) CpG methylation with no 

overlap filtering. (B) CpG methylation with overlap filter (at least one 5mC in at least 

two replicates of the treatment). Figure produced by Darrell Lizamore.  

 
There were no significant differences in the percentage or densities of 5mCs of genomic cytosines 

between the parent and regenerant (Figure 4.4), but there were subtle variations in the distribution of 

differential 5mCs across the genome. Additionally, after filtering for SNPs the number of significantly 

different 5mCs among the two treatments decreased from 556 to 330 (data not shown). Both strains 

methylation patterns over the different sequence contexts were almost identical (Figures 4.4 and 4.5), 

A B 
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with no clustering of methylation sites in one that are absent from the other. More methylation was 

found in the parent in the CHG context than the regenerant, while the regenerant had higher levels of 

CHH methylation (Table 4.2). 

In addition to having a very low occurrence (330) of significantly differentiated methylation sites across 

the genome the methylation percentage for each DMC was very low, which was similar to the DMR 

analysis. Almost all DMCs had less than 10% methylation (Figure 4.3). The average methylation levels 

in the parent in these DMCs was 5.69% (with the highest individual 5mC level being 39.45%), and in 

the regenerant it was 7.06% (with the highest individual 5mC level being 60.44%). This is in contrast 

with other methylation results from other eukaryotes such as plants and mammals, where the scale of 

methylation tends to be spread from 0 to 100% (Figure 4.3B). Another trend was within the DMCs that 

had a methylation difference greater than 25% (18 DMCs in total), the majority were found to be 

hypermethylated in the regenerant compared to the parent (fifteen vs three). Additionally, in sixteen 

of these sites, the methylation that occurred was in the CHH context, compared to CpG and CHG (one 

and one respectively) (Table 4.3). 

 

Figure 4.3 Histogram of the percentage of methylation per base generated from methylKit. The X 

axis shows percent methylation for each individual CpG. The numbers on the bars in A 

denote the percentage of CpGs contained in each bar. The Y axis is the frequency that 

this methylation occurs. (A) CpG methylation distribution of parent1_forward. (B) A 

more typical methylation pattern from other species- CpG methylation distribution in 

zebrafish brain- ranging from 0-100% (4.3B histogram modified from Chatterjee et al. 

(2013)). 
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Figure 4.4 Density of 5mCs in and around all genes over the genome. (A) CpG, (B) CHG, (C) CHH. 

Blue= parental strain, red=regenerant strain. Figure produced by Darrell Lizamore. 
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Figure 4.5 Variation of methylation differences of the significantly different methylated cytosines 

(DMCs) based on the methylKit analysis between the three cytosine methylation 

contexts. Y axis: [parent average methylation] – [regenerant average methylation]. X 

axis is the individual DMCs. (A) CpG, (B) CHG, (C) CHH.  



 

Table 4.3 Differentially methylated cytosines (DMRs) between the parent and regenerant strains, through methylKit analysis completed by Darrell Lizamore, 
with more than 25% differential methylation. Difference in methylation is from the [parental methylation –  regenerant methylation]. A full list can 
be seen in Table B.1 (Appendices B.3). 

Contig 
Methylation 
type 

 mC 
position   

parMean regMean  
methDiff 
(parMean-
regMean)1 

Position 
(intron, exon 
etc)2 

Protein ID 
(JGI)3 

Putative function  

contig_15 mCHH_s 848,390  3.92 41.16 -37.24  TA_133724 Pyridoxal kinase 
contig_18 mCHH_s 669,329  0 36.64 -36.64  TA_53493 No putative conserved domains 
contig_27 mCHH_s 4,286,465  0 35.79 -35.79 UTR TA_302213 Nucleoside phosphatase 

contig_24 mCHH_s 2,189,499  3.703 39.277 -35.574 UTR TA_151377 NMT1/THI5 like domian containing protein 

contig_27 mCHH_s 4,584,856  19.87 52.15 -32.28  TA_287340 
Multidrug resistance-associated 
protein/mitoxantrone resistance protein, ABC 
superfamily 

contig_20 mCHH_s 311,271  0 31.83 -31.83  TA_193414 Triglyceride lipase-cholesterol esterase 
contig_22 mCHH_s 1,092,071  37.89 6.34 31.55 Intron TA_317515 No putative conserved domains 

contig_18 mCHH_s 176,261  0 31.3 -31.3  TA_93906 
Predicted transporter (major facilitator 
superfamily) 

contig_27 mCHH_s 277,841  37.13 7.85 29.28  TA_294677 Cell cycle control protein (crooked neck)  
contig_20 mCHH_s 153,794  2.56 31.62 -29.06 120 bp up TA_298543 Predicted membrane protein 

contig_20 mCHH_s 513,507  0 28.78 -28.78 668 bp down TA_255946 
Transcription factor MEIS1 and related HOX 
domain proteins 

contig_26 mCHH_s 889,625  25.08 51.84 -26.76 503 bp up TA_224476 No putative conserved domains 

contig_26 mCHH_s 3,415,713  0 26.73 -26.73  TA_225852 
Large-conductance mecahnosensitive channel, 
MscL 

contig_27 mCHH_s 2,288,364  0 26.67 -26.67 443 bp down TA_227718 GTP-binding protein DRG1 (ODN superfamily) 
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contig_18 mCHH_s 176,246  0 26.65 -26.65  TA_93906 
Predicted transporter (major facilitator 
superfamily) 

contig_20 mCHG_s 144,316  32.28 6.18 26.1 459 bp up TA_52415 
Predicted transporter (major facilitator 
superfamily) 

contig_21 mCpG_s 261,952  0 25.82 -25.82 534 bp down TA_81632 Zinc-binding oxidoreductase 
contig_13 mCHH_s 341,554  0 25 -25 316 bp up  TA_164398 Predicted telomere binding protein 

1 The methylation difference is the difference from the [parental methylation mean] - [regenerant methylation mean] at the individual 5mC. Any number that is a negative implies 
hypermethylation in the regenerant 
2 The position is where 5mC lies in relation to a gene. A blank space means it is within the exons of the genes. - means that is it was not within 1 kb of a gene body either upstream 
or downstream. 
3 Origin of the protein ID numbers are from Trichoderma atroviride v2.0 https://genome.jgi.doe.gov/pages/search-for-genes.jsf?organism=Triat2 
H=A, T or C 
UTR= untranslated regions 

 

75 



 76 

4.3.2.2 Cytosine methylation patterns in gene regions  
To understand the very low level of differential DNA methylation found between the two strains, the 

methylation profiles of intragenic regions (including coding sequences and introns) and intergenic 

regions were further analysed. Of the total of 330 DMCs that were identified, 212 were located in gene 

bodies, with 39 DMCs were concentrated in 1 kb regions upstream of genes, 40 DMCs downstream 

and the rest in intergenic regions (Table 4.4). There were 170 hypermethylated DMCs in the parent 

and 160 hypermethylated DMCs in the regenerant which occurred in different regions, which suggests 

that cytosine methylation may occur at specific sites between the two strains. 

Five of the individual 5mCs were within overlapping or overprinting genes and therefore had two genes 

associated with them (Appendices B.3). The five individual 5mCs are: contig 24: 1,840,368, contig 25: 

929,609, contig 25: 1,428,802, contig 25: 2,397,592 and contig 26: 3,760,038. However, this did not 

change the number of 5mCs, there were still 330 individual 5mCs.  

Table 4.4 The distribution of DMCs in the parent versus regenerant across the genic regions. 

 Total Upstream1 Gene body2 Downstream3 Intergenic regions4 
Total  330 39 212 40 39 

Hyper Par 170 23 103 19 25 

Hyper Reg 160 16 109 21 14 
1 Upstream 1 kb of gene body 
2 Gene body including introns and untranslated regions (UTRs) 
3 Downstream 1 kb of gene body 
4 Both upstream and downstream (1 kb each) of gene body was deleted 

 
Upon further analysis, twelve genes had more than one DMC located within their proximity: nine in 

the coding regions (exons), one in the downstream region, one in the untranslated region and one in 

the upstream region. The majority of these had a higher level of methylation in the regenerant (10 out 

of 12). Table 4.5 contains the protein names (if known), functional description based on KOG class, 

average differential methylation percentage (across the different DMCs in the gene), number of DMCs 

found within the gene and the position of the DMC in relation to the gene. 

The genes that had the highest methylation differences averaged across the DMCs were typically 

hypermethylated in the regenerant opposed to the parent. Additionally, these differences in 

methylation were higher than the average over all DMCs of 9.8% between the parent and regenerant. 

This suggests that these genes, in particular, may be the most likely to have a functional consequence 

due to both having multiple DMCs and also a higher level of methylation occurring. Furthermore, the 

DMCs hypermethylated in the regenerant appear to be involved more so with transport; this could be 

how the regenerant can be more tolerant to copper compared to the parental strain. The two genes 

that had multiple DMCs in the parent were both involved in the transcription process. There were an 
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additional three genes (TA_161835 [uncharacterised protein], TA_243551 [RNA helicase BPR2, DEAD-

box superfamily] and TA_256374 [aldehyde dehydrogenase]) that had a significantly DMC in both the 

parent and regenerant respectively.  

4.3.2.3     Potential functional consequences of cytosine methylation  
To investigate the potential functional consequences of cytosine methylation, the methylated genes 

(defined as genes with a DMC located in their gene bodies [intron, exon or UTR] or within 1 kb 

upstream) were functionally categorised into GO ID’s. The results showed that the differentially 

methylated genes could be categorised into three main GO domains: biological processes (128), 

cellular components (14) and molecular function (62) (Appendices B.3). Among these three GO groups 

above, the greatest amount of differentially hypermethylated genes were located in the sub-

categories of: i) lipid metabolism; ii) vesicle-mediated transport, iii) DNA metabolism and iv) response 

to stress for the parental strain. For the regenerant they were: i) intein-mediated protein splicing, ii) 

microtubule-based movement, iii) vesicle-mediated transport and iv) response to stress. The results of 

this GO functional annotation indicate that genes of multiple biological processes may be subjected to 

DNA methylation regulation.  

The DMC associated genes were annotated further with the KOG database. The resulting annotations 

grouped the genes (169) into three functional categories: cellular processing and signalling (58; 34.3%); 

information storage and processing (38; 22.4%); and metabolism (49; 28.9%), and the others into 

poorly characterised genes (24; 4.2%) (Appendices B.3). The remaining genes (87) did not have a KOG 

classification associated with them. The groupings were similar in parent and regenerant, with two 

exceptions. The first being the regenerant did not have any hypermethylated DMC associated genes 

that fell into the following five categories: i) cell wall/ membrane/ envelope biogenesis; ii) defence 

mechanisms; iii) inorganic ion transport and metabolism; iv) nuclear structure or v) replication, 

recombination and repair. Secondly, the regenerant had more DMCs associated genes in the 

intracellular, trafficking, secretion and vesicular transport group (cellular processing and signalling) 

with 12 (16.4% of all hypermethylated regenerant DMCs associated genes) compared to only 7 in the 

parent (9%). This could be of interest as these DMC associated genes within this group can be involved 

in directing movements of proteins in a cell, from one side of a membrane to another, suggesting that 

there may be a higher frequency of protein transport occurring in either the parent or the regenerant. 

Additionally, the parent had more DMCs associated genes assigned to the KOG functional class of 

transcription (parent: 12 [14.1%], regenerant: 7 [9%]). 

 

 



 

Table 4.5 Genes with multiple differentially methylated cyotsines (DMCs) between the parent and regenerant strains following methylKit analysis. 

Protein ID1 Putative function  
Av. differential 
methylation across the 
DMCs2 

Number 
of DMCs DMC position 

TA_50107 Polyadenylate-binding protein (RRM superfamily) 19.95% R 4 Exon 
TA_50845 Predicted transporter 3.98% R 2 Exon 

TA_52775 Vesicle coat complex COPII, subunit SEC23 13.98% R 2 Exon 

TA_93906 Predicted transporter 28.9% R 2 Exon 

TA_149621 Vesicle coat complex COPI, gamma subunit 13.61% R 4 Exon 

TA_163678 RNA-binding Ran Zn-finger protein 20.4% R 2 416 and 420 bp 
downstream 

TA_229437 Hypothetical polyketide synthase 8.23% R 2 Exon 

TA_249414 Phospholipase C, phosphatidylinositol-specific, X region  19.9% R 2 Exon 

TA_281461 FOG: RRM domain protein 4.7% R 3 Exon 

TA_297464 Putative G protein coupled receptors (PTH11-type) 11.2% R 2 UTR 

TA_127707 Chromodomain-helicase DNA-binding protein 12.06% P 2 192 and 195 bp 
upstream 

TA_137221 Transcription factor TCF20 6.9% P 2 Exon 
1 Origin of the protein ID numbers are from https://genome.jgi.doe.gov/pages/search-for-genes.jsf?organism=Triat2 
2 P= represts hypermethylation in the parental strain, R= represents hypermethylation in the regenerant strain  
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 SNP analysis 

There were numerous SNPs that appeared between the respective parent and regenerant compared 

to the T. atroviride v2.0 genome from using the cgmaptools SNP calling. There were 2633 SNPs in the 

parent and 3251 SNPs in the regenerant, again compared to the T. atroviride reference genome. There 

were only 587 SNPs that were similar between these two strains when they were analysed for 

duplicates. This suggests that there may be a large occurrence of SNPs between the two strains. 

However, this is unlikely as the SNP analysis was performed on the WGBS data. The RNA-seq SNP 

analysis will be used to confirm if these are true SNPs or an artefact from using the three bases from 

the WGBS data. Calling SNPs from WGBS is complicated and will be discussed in the following chapter.  

 Comparison between the two different methods for calling differential 
cytosine methylation 

To explore the similarities between the two methods of looking for DMRs versus DMCs, the two lists 

that were generated were combined, and any duplicated protein IDs were noted. However, only three 

proximal genes were found in both: TA_ 126941 (mitochondrial carrier protein), TA_256549 

(alcohol/keto reductase) and TA_319665 (hypothetical protein). In two of these genes, the 

hypermethylation is reversed between the two analysis types. For example in TA_126941, in the DMR 

analysis, the parent and regenerant proportions were 1.33% and 1.76% respectively. However, the 

DMC had 0% methylation in the parent and 3.44% in the regenerant. This also occurred in TA_256549 

(DMR- 1.28% parent, 1.79% regenerant and DMC- 5.66% parent, 0% regenerant). None of the genes 

with the clusters of DMCs as mentioned in Table 4.5 were included in these three genes listed here.   

4.4 Discussion 

This work describes the first genome-wide cytosine methylation map at a single-base resolution with 

deep bisulphite sequencing of a Trichoderma species. Furthermore, it describes the methylation 

differences between protoplast regenerant and its parental strain from any organism. Overall there 

were no large-scale significant differences in either the global patterning or density of cytosine 

methylation between the parental strain and regenerant. However, several observations seen in both 

analyses types suggest that the regenerant may subtly differ from the parental strain, potentially being 

the cause of the phenotypic changes. 

Within the DMR analysis, the regenerant was hypermethylated (higher level of methylation) in 28 out 

of the 33 regions, compared to the parent having only five hypermethylated differential regions. The 

function of these DMRs both in the parent or regenerant appear to be randomly distributed among 

the different contigs and within different functional groups (via GO ID’s and KOG classes). A similar 

trend was seen within the DMC analysis. With the 18 individual mCs sites that had the highest level of 
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differential methylation (being greater than 25% in this dataset), 15 were found to be hypermethylated 

in the regenerant compared to only three in the parent, and they were found primarily in the CHH 

context. Additionally, within the genes that contained multiple individual DMCs, the majority of these 

were found to be hypermethylated in the regenerant compared to the parent (ten vs two).  These 

trends of differential methylation observed highlight the importance of exploring the functional 

consequences through RNA sequencing, as the effect of intragenic methylation varies greatly between 

fungal species. This will be explored in the following chapter (Chapter 5).  

 Differential methylation levels are low in Trichoderma between the parent 
and regenerant 

A point of note, from both analyses, is that the cytosine methylation proportion found in these 

differentially methylated sites or regions are very low, averaging around 1.2% in the DMRs and within 

the individual DMCs, the methylation level was only at 6.8% per individual 5mC. These observations 

call into question the actual role of DNA methylation within these strains and the biological significance 

of this change if it does not modulate gene expression. The level of methylation within mammals and 

plants tends to be a lot higher, therefore the change in gene expression can be correlated to the 

cytosine methylation differences (as seen in Figure 4.3B). In A. flavus, the individual 5mCs levels were 

very low, with only a small fraction of them being above 5%, and few being greater than 15%. Once an 

overlapping strategy was applied to the results, it showed that DNA methylation was negligible (Liu et 

al., 2012). Very few of the fungal methylome studies published state, however, the proportion of DNA 

methylation levels. For the methylome of M. oryzae, Jeon et al. (2015) showed the methylation level 

as a proportion of the amount of 5mCs compared to the number of reads with non-5mC, but not the 

proportion of methylation at the individual 5mC sites. The average methylation proportion was around 

28% (Jeon et al., 2015).  In M. robertsii, to identify a DMR, a sliding 200-bp window was used, with a 

threshold of >1.5-fold change in methylation levels were considered to call a DMR. However, again 

they do not state the methylation proportion of each 5mC site. The authors provide information about 

the read numbers of 5mCs in the region compared to read numbers of total cytosines in the region (Li 

et al., 2017b). However, in both of these papers, their bisulphite sequencing was validated by BS-PCR 

(bisulphite PCR), but not through multiple replicates as seen in this project, which suggests that the 

individual 5mCs had a higher proportion of methylation than what has occurred here.   

 Differential methylation occurs mainly in gene bodies 

These methylomes presented here show that the majority of the DMCs lie within genes and 1 kb 

upstream of the gene body between the two strains (251 out of 330 [75%]), with the number within 

genes and exons themselves are 211 (63%) and 187 (56%) respectively. Although this data is looking 

at the differential methylation that is occurring, it confirms the conservation of gene body methylation 
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between eukaryotes (Veluchamy et al., 2013; Zemach et al., 2010). This is interesting from a functional 

point of view as cytosine methylation has been observed to be enriched in the body of highly 

transcribed genes in some fungal species, which again will be confirmed in the following chapter by 

RNA sequencing.  

Briefly, studies have shown that fungal DNA methylation displays considerable variation across species, 

both in genome-wide methylation patterns and the mechanisms of function and role of methylation 

(Li et al., 2017b; Zemach et al., 2010). In M. oryzae (Jeon et al., 2015), as well as Uncinocarpus reesii 

(Zemach et al., 2010), methylation occurring upstream or downstream of the gene has a negative 

effect on the abundance, whereas gene body methylation has a positive effect (Jeon et al., 2015). In C. 

militaris, the majority of the DMRs were found within the intergenic regions (from a total of DMRs, 

141, out of 225, were in the intergenic regions) (Wang et al., 2015). This suggests that the methylation 

within C. militaris in the intergenic regions is responsible for maintenance of genome stability/genome 

defence. Furthermore, Wang et al. (2015) did not find a correlation between DNA methylation and 

gene expression. The role of DNA methylation within M. robertsii varies even further, with 108 out of 

the 132 DMRs identified being found within a region 2 kb upstream of a gene or within gene bodies. 

Within M. robertsii, moderate methylation of the promoter and the protein coding region tended to 

be upregulated (defined as methylation between 33-66%), whereas genes with high or low 

methylation (<33% or >66%) within these regions were downregulated (Wang et al., 2017).  

As mentioned above, the function of gene body methylation is still not entirely known, but it has been 

suggested that that intragenic cytosine methylation may be directed by spliced mRNA (Maor et al., 

2015). The frequency of methylation occurring in the exons compared to introns observed here, and 

also in other fungi such as U. reesii (Zemach et al., 2010), further support this hypothesis, as in some 

fungi an increase in DNA methylation also leads to transcript abundance. Alternative splicing allows 

for the increased transcriptome and proteome diversity by producing more mRNA products from a 

single gene (Maor et al., 2015), leading to increased phenotypic diversity (Wang et al., 2016). It has 

been shown that in other eukaryotes, such as humans, honey bees, Arabidopsis and rice, that there 

was an increase in methylation in the exons compared to the flanking introns. This notably caused an 

effect on the splicing of alternative exons and a loss of methylated CpG sites linked with change in the 

proportion of alternative splicing (Wang et al., 2016). 

However, this is not the case in all fungi. In the yeast, Candida albicans, Mishra et al. (2011) showed 

that only six out of the 150 methylation-associated genes contained introns. The methylation they 

detected did not mark the intron-exon boundaries, therefore would not regulate alternative splicing 

in C. albicans. The majority of their DNA methylation was observed within coding regions which upon 

further investigation, Mishra et al. (2011) found that the methylation detected was associated with 
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transcriptional repression of the linked gene. This is in contrast to the data presented here from 

Trichoderma, as out of the DMCs within gene bodies and the proximal genes to the DMRs, only 34 and 

four did not contain any introns. Additionally, there was not an increase the number of single exon 

genes that were associated with the DMCs or DMR in either the parent or regenerant.  

 Functional annotation of differentially methylated associated genes 

The functional annotation of differentially methylated associated genes, through both GO and KEGG 

classifications further revealed that there were no major changes in groups of the hypermethylated 

genes between the parental strain and the regenerant. It was hypothesised that the regenerant or 

parent, depending on the function of intragenic methylation, may have more differentially methylated 

associated genes related to transport, in particular, copper ion transport genes, to explain the 

tolerance to copper. The GO groups that had the highest frequency of DMC associated genes were 

very similar between the two, which consisted of lipid metabolism, vesicle-mediated transport, 

response to stress and microtubule-based movement. Within the KOG classification, the regenerant 

had more DMC associated genes in the intracellular, trafficking, secretion and vesicular transport 

group (cellular processing and signalling) with twelve genes compared to only seven in the parent. This 

could be of interest as these DMC associated genes within this group can be involved in directing 

movements of proteins in a cell, from one side of a membrane to another, suggesting that there may 

be a higher frequency of protein transport occurring in either the parent or the regenerant. However, 

it is important to note that the lack of known genes within this data is not evidence of the absence of 

DNA methylation for this particular function between the protoplast regenerant and its parent.  

 Differences between the two analysis types (DMR vs DMC) 

The two differential methylation analyses, DMCs (methylKit) and DMRs (DMAP), showed contrasting 

differences in the calling of differential methylation. One would expect a higher number of DMCs 

compared to DMRs because each DMR could contain several differentially 5mCs. However, in this 

dataset, there were only three methylation-associated genes that were shared between the two, and 

none of the genes that had multiple DMCs were included on that list. This does raise a concern as 

typically performing different analyses on the same dataset gives similar results. Stockwell et al. (2014) 

upon publishing DMAP, compared the differential methylation between DMAP, methylKit (version 

0.5.7) and BiSeq (version 1.2.4), another differentially methylated region program, between a test 

dataset on the human chromosome 1 for both a control and diseased sample. They found that DMAP 

produced 367 DMRs, methylKit 937 DMCs and BiSeq 402 DMRs respectively. Overall 157 sites were 

found to be shared between the three different programs. In particular, when looking at the individual 

methylation coordinates, 318 of the 935 DMCs (found within methylKit) overlapped with the CpGs 

contained in the DMRs that DMAP produced in its output (Stockwell et al., 2014).  
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There are opposing thoughts on the different analyses type. Stockwell et al. (2014) suggest that the 

investigation of a large number of CpG sites greatly enhances the false discovery rate. This is as 

variation at single sites is greater than that of a contig of sites because the relatively lower coverage 

per site increases the sampling variation (Ehrlich and Lacey, 2013). However, a DMC approach is 

considered more useful when a smaller number of 5mC sites are analysed (Stockwell et al., 2014). 

Further, if a small region is variable (differentially methylated) between individuals the use of a 1000 

bp or longer window might dilute this variation (Ehrlich and Lacey, 2013). Therefore methylation might 

be not be detected if a large window size is used. It is important to note that the WGBS analysis 

workflow that was used for detecting fungal methylation in the parent and regenerant, in the DMAP 

context is primarily designed for mammalian methylation, which is heavy in CpG and rarely in non-CpG 

context (~3%). This is different to fungal methylation where 5mC sites are found in all sequencing 

contexts that vary slightly in preference (CpG, CHG or CHH) between species. Here the DMC data 

showed there was a preference for non-CpG methylation. Furthermore, Trichoderma has a much 

smaller genome (~36.1 Mb) compared to other higher eukaryotes so subtler differences may have 

been missed when using the 1000 bp window.  

Additionally Darrell Lizamore used both paired-end reads for the methylKit analysis, whereas Peter 

Stockwell only used the forward-read for DMAP. Paired-end sequencing is known to reduce the error 

rate and enhance the sensitivity of both read mapping and methylation level estimation, especially in 

repetitive regions (Tsuji and Weng, 2015). Although Trichoderma tend to have a low number of 

repetitive regions (Kubicek et al., 2011), the extra sensitivity for low differential methylation would be 

crucial, as fungi in general tend to have low levels of global methylation (0.07-1.5% (Zemach et al., 

2010)). This shows how variable different analyses methods can be, as all analyses are composed of 

many steps, which includes: adapter removal, read quality trimming, read mapping, post-alignment 

filtering, sample heterogeneity assessment and identification of differentially methylated regions 

between two conditions. Tsuji and Weng (2015) showed over 192 different combinations between 

three pre-processing (read quality trimming), five mapping and two post-processing (post-alignment 

read filtering) methods. 

 Limitations of this methylome data 

It is important to note that 5mC DNA methylation is only one level of multi-layered epigenetic 

regulation that also includes other forms of DNA modification, histone modifications, chromatin 

structure and modification and non-coding RNAs (Aramayo and Selker, 2013; Jamieson et al., 2018; 

Mondo et al., 2017; Strauss and Reyes-Dominguez, 2011). These other forms of modifications could be 

responsible for the changes seen here in phenotype, despite the lack of any large scale genome 

recombination. Additional forms of DNA methylation include 5-hydroxymethylcytosine (5hmC) and 
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N6-methyladenine (6mA), which WGBS does not measure. WGBS cannot distinguish between 5mC and 

5hmC DNA methylation. 5hmC is an intermediate in active demethylation, which results from oxidation 

of 5mC, as well as being a potential stable epigenetic mark (Erdmann et al., 2015). 5hmC is commonly 

seen in mammalian cells, however it is rarely studied or observed in fungi. Zhang et al. (2014) found 

three homologues from Coprinopsis cinerea of the Ten-Eleven translocation dioxygenases proteins 

(TET1, 2 and 3), which are responsible for the oxidation of 5mC into 5hmC in mammalian cells. Other 

fungi, such as M. robertsii, C. militaris and Ustilago maydis, and plants lack genes encoding these TET 

proteins suggesting some fungi could use other mechanisms to remove 5mC marks (Li et al., 2017b; 

Wang et al., 2015; Wu and Zhang, 2010; Yaish et al., 2018). This is further supported by the overall 

changes in 5mC sites seen in these aforementioned fungal methylomes were not simply due to the 

loss of methylation in pre-existing 5mC sites, but rather a dynamic process in which loss of methylation 

occurred with the gain of methylation in other sites. This raises the potential that here, along with 

other fungi, that the mechanism of both de novo and reverse methylation may use another mechanism 

then what has been observed in other organisms.  

A lesser studied modification of DNA involves adding a methyl group to base 6 of adenine (6mA) and 

has been recently reported in the earliest branches of the fungal kingdom. Using single-molecular real-

time (SMRT) sequencing from PacBio, Mondo et al. (2017) analysed 16 genomes from across the fungal 

phylogeny for the presence of both 5mC and 6mA modifications. They showed very high levels of 6mA 

in these early-diverging fungi, where up to 2.8% of all adenines were methylated. 6mA has been shown 

to play a crucial role in both gene and transposon regulation, and in these early groups of fungi, this 

modification was associated with expressed genes. Interestingly, the presence of 5mC and 6mA 

seemed to be inversely correlated, with 5mC being found in repetitive regions of the genome and 6mA 

adenine being clustered in dense methylated adenine clusters (MACs) at gene promoters. Greer et al. 

(2015) identified 6mA in the nematode Caenorhabditis elegans, which was assumed that DNA 

methylation was absent due to lack of detectable 5mC, as well as homologs of the cytosine DNA 

methyltransferases. 6mA was found to be spread over the genome between promoters, exons, intron, 

transcriptional termination sites (TTS), and intergenic regions. Another methylation that has been 

reported, that of the fourth position of the pyrimidine ring in cytosines (4mC). In prokaryotes, 4mC and 

6mA are primarily used for distinguishing self from invasive DNA (Iyer et al., 2011). SMRT sequencing 

can detect modified bases directly and can further distinguish between these different types of 

methylation including 5mC, 5hmC and 6mA (Flusberg et al., 2010). The ability to detect 5hmC, among 

these other DNA methylation types would have allowed a more complete picture of the potential 

effect that methylation and/or the removal of DNA methylation may have on phenotype and 

alterations that protoplasting may have.  
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There are additional limitations of this study compared to other methylome studies, notably with the 

lack of validation of the bisulphite data. The first limitation is the lack of bisulphite PCR validation of 

the WGBS data. A number of DNA fragments are normally selected for experimental validation to 

confirm the results of the bisulphite sequencing. Typically, a high percentage of the originally identified 

5mCs are validated (between 95-97%). However, due to the lack of both DMRs and DMCs between the 

parent and regenerant, combined with the low level of methylation, this traditional bisulphite 

sequencing validation would be ineffective on this data. The low level of methylation occurring at the 

individual 5mCs within this dataset would make this particularly difficult (Appendices B.3), i.e. if the 

methylation percentage was only at 15% across the ten plus reads seen in the WGBS at a single 5mC, 

the chances would be very low that bisulphite PCR and subsequent sequencing would pick up the 5mC. 

However, compared to other WGBS data sets that tend only to have one replicate of each different 

strain/condition, this experimental data set had three replicates per strain which would help to 

decrease the false 5mC rate.  

Some studies also use 5-azacytidine (5-AC), which is a methyltransferase inhibitor, as a confirmation 

of DNA methylation as it reduces the methylation level in genomic DNA (Lin et al., 2013; Mishra et al., 

2011). However, this methylome data between the parent and regenerant does not show significant 

hyper- or hypomethylation in one strain, making it redundant to use 5-AC as a method to confirm the 

potential effect of methylation on the phenotype. 5-AC also affects gene expression and chromosome 

structure as it can disturb fungal development, and is also used for studying secondary metabolites in 

fungi. This means potentially that any change in phenotype seen may not be directly correlated to the 

methylation levels seen. In A. flavus, 5-AC (at 1mM) can induce a “fluffy” phenotype and prevent 

aflatoxin production (Lin et al., 2013). This is despite A. flavus lacking detectable methylation (Liu et 

al., 2012), so it is unlikely that the role of 5-AC plays in A. flavus is as a DNA methylation suppressor, 

but more as an inhibitor of the genes involved in the aflatoxin biosynthetic pathway cluster. 5-AC can 

regulate histones, alter chromatin structure or induce DNA mutation as well (Lin et al., 2013). Lange et 

al. (2016b) further showed when 5-AC was applied to two sister strains of T. sp. “atroviride B” at a rate 

of 1 x 10-4 M 5-AC it affected the phenotype. This was both by reducing the growth rate and also causing 

a change in the colony morphology pattern to one dissimilar to both non-treated plates. Lange et al. 

(2016b) hypothesised that cytosine methylation may be the cause of the differences observed in the 

biocontrol abilities of the strains, however a conclusion was not reached.  

4.5 Conclusion  

The results of this chapter provide an overview of the methylation dynamics for the potential 

differences between a protoplast regenerant and its parent. It further represents the first WGBS study, 

to the best of my knowledge, on a Trichoderma species. In this work, ~1.1% of the T. sp. “atroviride B” 
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genome is methylated which falls into the range of other reported methylomes for fungi, typically 

range from 0.07%-1.5%. Although there were no significant variations in the methylation patterns or 

densities between the parent and regenerant, several interesting trends were observed, which showed 

hypermethylation subtly occurring in the regenerant. Furthermore, as mentioned above, the absence 

of known/assumed genes in this data set is not evidence of the absence of the potential effect that 

methylation has resulting from the protoplast process. As the function of intragenic methylation varies 

greatly between different fungal species, further work is needed to show the functional consequences 

of the methylation through RNA sequencing, which will be covered in the next chapter.  
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Chapter 5 

The impact of cytosine methylation on the transcriptional activity of 

a Trichoderma sp. “atroviride B” parental and protoplast regenerant 

strains  

5.1 Introduction  

The use of protoplast regeneration for strain improvement allows for the screening and selection of 

specific phenotypes in fungal species, such as fungicide tolerance, which makes it a valuable tool for 

integration of these biological products into an IPM programme. Despite the frequent use of this 

technology, the underlying mechanisms of what causes this phenotypic plasticity remains unknown. 

The results from the previous chapter from the whole genome bisulphite sequencing (WGBS) analysis 

suggest that one reason for the observed phenotypic modifications could be due to cytosine 

methylation. Cytosine methylation between fungal species is found in the promoter region, 

transposable elements, repeat sequences and in the transcribed regions of genes, which suggests that 

it may have a prominent role in the regulation of gene expression (Jeon et al., 2015; Kim et al., 2018). 

These varying patterns and roles of differential methylation highlights the important of exploring the 

functional consequences of cytosine methylation through RNA-sequencing (RNA-seq). RNA-seq has 

previously been used in methylation studies to validate the functional or biological significance of this 

modification (Jeon et al., 2015; Wang et al., 2015; Yaish et al., 2018).  

As discussed in the previous chapter, the function of cytosine methylation in genes has differing effects 

on the transcript abundance of genes depending on the species. For example, in Cordyceps militaris, 

hypermethylated genes were found to be downregulated (Wang et al., 2015), whereas in Metarhizium 

robertsii (and in contrast to most other eukaryotes) transcription tended to be enhanced in genes with 

moderate promoter methylation, while gene expression was decreased in genes with high or low 

promoter methylation (Wang et al., 2017). In Magnaporthe oryzae (Jeon et al., 2015), as well as 

Uncinocarpus reesii (Zemach et al., 2010), methylation occurring upstream or downstream of the gene 

had a negative effect on the transcript abundance, whereas gene body methylation had a positive 

effect.  

In addition to linking the cytosine methylation data, the use of RNA-seq can also be used to investigate 

differentially expressed genes potentially caused by other regulatory factors that may also be a 

consequence of the protoplast process. This study has only investigated this one area (cytosine 

methylation) of the multi-layered epigenetic regulatory system that may cause this phenotypic 
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plasticity in lieu of large scale genomic differences. However, other epigenetic factors such as histone 

modifications and various RNA-mediated processes have all been reported to regulate gene expression 

(Gibney and Nolan, 2010; Holoch and Moazed, 2015; Jaenisch and Bird, 2003; Soyer et al., 2014). This 

would enable a closer look at any potential off-target consequences from the use of protoplast 

technology. This possibility has been raised from the use of PEG-mediated protoplast transformations 

in fungi. Scala et al. (2017) found significant phenotypic diversity in mutants they generated using this 

method and postulated this may have resulted from protoplasting. It is crucial to investigate if cytosine 

methylation, or some other regulatory mechanism, may induce changes in gene activity resulting from 

the process of protoplast regeneration. 

In this chapter, the effect of the differential cytosine methylation observed between the two 

Trichoderma sp. “atroviride B” strains (parent FCC237 and regenerant FCC237/R5) on transcript activity 

was investigated. In particular, the objective was to ascertain the response of the parental and 

regenerant strains to both PDB amended with a sub-lethal level of copper and a non-amended control 

(plain PDB). This was accomplished in a RNA-seq experiment to determine the genes that were 

differentially expressed in these two T. sp. “atroviride B” strains. In the previous chapter, results 

indicated that although there were no significant differences in differential methylation with both 

forms of analyse. There were, however, some subtle occurrences of hypermethylation in the 

regenerant. Based on the varying effect that (intragenic) cytosine methylation has on different fungal 

species, or indeed even between plants and mammals, functional characterisation of these changes 

was needed to elucidate the effects that it may have. 

5.2 Materials and methods 

 Fungal growth for RNA extraction and RNA extraction 

Biomass was generated for RNA extraction from 3 d mycelium as described in Chapter 2 (section 2.2.1). 

Three biological replicates, respectively, for each treatment for the regenerant (T. sp. “atroviride B” 

FCC237/R5) and parent (T. sp. “atroviride B” FCC237), were used for the RNA-seq. The two conditions 

were either PDB amended with a sub-lethal level (1 mM) of copper sulphate (CuSO4.5H2O) or non-

amended PDB (control). For each replicate, six 50 mL Nunc tubes were used to ensure there was 

enough mycelial mass, and then combined per replicate. The number of tubes had to be increased 

compared to the mycelium generated for the WGBS as in 1 mM of copper sulphate the parental strain 

had restricted growth. Total RNA was extracted using the RNeasy Plant Mini Kit (Qiagen) as per the 

manufacturer’s instructions, except RLC buffer was used rather than RTC due to potential of high 

quantities of secondary metabolites being found in the mycelia of filamentous fungi and that 700 µL 

of RLC buffer was used instead of 450 µL. The RNA was then treated with TURBO™ DNase 

(ThermoFisher). The RNA quality was assessed by gel electrophoresis (2% agarose in TAE; 110 V and 
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500 mA for 50 min) and by electrophoretic analysis via RNA 600 Nano Chip using the 2100 Bioanalyzer 

(Agilent Technologies) to obtain an RNA integrity number (RIN). DNA contamination and total RNA 

concentration was measured with the Quibit™ 3.0 Fluorometer high sensitivity RNA assay, as per 

manufacturer’s instructions.  

 RNA-seq library construction and sequencing  

The cDNA libraries preparation was performed by Novogene Co., Ltd (Hong Kong) using a NEBNext® 

Ultra™ RNA Library Prep kit (New England Biolabs, USA) and sequenced by Novogene Co., Ltd, using 

the Illumina® HiSeq 2500 sequencing system. The samples were sequenced on a single sequencing lane 

with 150 paired-end reads being generated for the respective samples.  

One of the replicates for the parental strain in control (plain PDB) (par_p3) did not pass quality control 

upon arrival to Novogene as it had an unexplained low concentration. This meant that only eleven 

samples were sequenced; three replicates for three of the treatments (parent copper amended PDB, 

regenerant control PDB, regenerant copper amended PDB), and only two for parent control PDB. 

 RNA-seq analysis 

The NGS data was analysed by bioinformaticians at Novogene Co., Ltd (Hong Kong). The following 

methods description is a summary based on their report with additional detail (for original report, see 

Appendices C.1). Anything in italics is verbatim from their report. 

 

Figure 5.1 A simplified diagrammatic outline of the workflow used in this transcriptomic analysis 
without a reference sequence by Novogene. Fastq files are the Illumina sequencing 
output file. Functional analysis used a variety of programs including Diamond, KAAS, 
NCBI blast among others (see section 5.2.4.3 for full list of the seven databases). 
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 Analysis of Read Data  

5.2.4.1 Quality control  

Fastq output files were analysed with CASAVA v1.8 software to confirm sequence quality. Briefly, the 

raw reads were filtered to remove reads containing adapters or reads of low quality. Reads of low 

quality are defined as: when uncertain nucleotides constitute more than 10% of either read (N > 10%) 

or when low quality nucleotides (base quality less than 20) constitute more than 50% of the read. The 

error rate (based on the Phred score) and GC content distribution were also analysed.   

5.2.4.2 Transcriptome assembly  

Clean reads were de novo assembled by Trinity (Grabherr et al., 2011) to get an assembly 

transcriptome. The workflow consisted of Inchworm, Chrysalis and Butterfly. Inchworm constructed a 

k-mer dictionary from all sequenced reads (k=25) and then selected the most frequent seeded k-mer in 

the dictionary and extended the seed in each direction to form a contig assembly. Chrysalis then 

clustered minimally overlapping Inchworm contigs into sets of connected components, and constructed 

a complete de Bruijn graph for each component. Each component defined a collection of Inchworm 

contigs that are likely to be derived from alternative splice forms or closely relation paralogs. Butterfly 

then reconstructed plausible, full-length transcripts by reconciling the individual de Bruijn graphs 

generated by Chrysalis with the original reads and paired ends. It reconstructed distinct transcripts for 

splice isoforms and paralogous genes, and resolved ambiguities stemming from errors or from 

sequences >k bases long that are shared between transcripts. Corset v1.05 (-m 10) (Davidson and 

Oshlack, 2014) then performed hierarchical clustering to remove any redundancies. After this, the 

longest transcript of each cluster was selected as unigenes.  

5.2.4.3 Gene functional annotation  

The expressed genes were analysed for matches to known proteins. The seven databases applied by 

Novogene (Table 5.1) were: Nr (NCBI non-redundant protein sequences), Nt (NCBI nucleotide 

sequences), Pfam (protein family), KOG (EuKaryotic Orthologous Groups, which are based on NCBI’s 

gene orthologous relationships), Swiss-Prot (a manually annotated and reviewed protein sequence 

database), KEGG (Kyoto Encyclopedia of Genes and Genomes, which is a database resource for 

understanding high-level functions and utilities of the biological system) and GO (Gene Ontology, 

functional annotations of gene products). Any unannotated DEGs were also manually searched in 

InterPro protein family database (Finn et al., 2016) and had their sequence blasted into the gene 

models from Trichoderma atroviride v2.0 genome (https://genome.jgi.doe.gov/pages/search-for-

genes.jsf?organism=Triat2) on JGI. 
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Table 5.1 Databases used by Novogene Ltd for the gene functional annotation analysis. 

Database Software Version Parameter 

Nr, KOG, Swiss-Prot Diamond (Buchfink 
et al., 2015) v0.8.22 

NR, Swiss-Prot: e-
value=1e-5; KOG: e-
value 1e-3 

KEGG annotation KAAS (Moriya et al., 
2007) r140224 e-value= 1e-10 

Nt annotation NCBI blast (Altschul 
et al., 1997) v2.2.28+ e-value= 1e-5 

Pfam annotation Hmmscan (Finn et 
al., 2015) HMMER 3 e-value= 0.01 

GO annotation blast2go (Götz et al., 
2008) b2g4pipe_v2.5 e-value=1.0E-6 

 

5.2.4.4 Single nucleotide polymorphisms (SNPs)  

To ensure that single nucleotide polymorphisms (SNPs) were not responsible for the phenotypic 

variation seen between the parent and regenerant, SNP locations were examined in the RNA 

sequencing data. Samtools and Picard were used initially to sort the reads according to genome 

coordinates, followed by screening out repeated reads. GATK3 (Van der Auwera et al., 2013) was then 

used to carry out SNP calling. After the initial list was produced, the SNPs needed to be validated 

empirically. The SNPs had to i) be represented by at least eight reads, ii) occur at a position covered by 

at least eight reads in every other sequenced strain, iii) not have missing data in the reference strain 

and iv) differ from the reference strain. Additionally, they had to be present in all of the replicates of 

one treatment and none in the others conditions or treatments. SNP validation is needed as most SNPs 

will not validate as they occur within microsatellites or homopolymer runs and are therefore 

unreliable. Others are miscalled insertions, deletions or simple missequencings. As always, it is 

important to note that strict SNP calling thresholds mean that not all SNPs will have been identified 

here. Absence of a SNP is not proof of absence.  

5.2.4.5 Differential expression analysis  

RSEM (Li and Dewey, 2011) was used to map reads back to the reference transcriptome and quantify 

the expression level. The de novo transcriptome filtered by Corset was used as the reference 

transcriptome. To calculate the gene expression level, RSEM analysed the mapping reads of Bowtie and 

gathered the read count per gene for each sample. The program converted the read counts into a FPKM 

(fragments per kilobase of transcript sequence per millions of base pairs sequenced) value. Novogene 

used a threshold of FPKM>0.3 to denote if a gene is expressed. The FPKM value is a very common 
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method of estimating gene expressing levels, as it takes into account the effects of both sequencing 

depth and gene length when counting the fragments.  

The read count value that was obtained from the gene expression analysis was used as the input to do 

the differential expression analysis. DESeq (Anders and Huber, 2010) was used to do the analysis and 

is based on the negative binomial distribution. To identify significant differentially expressed genes 

(DEGs), a log2 transformation was applied to the fold change (group1/group2- which is all cases in this 

chapter was the regenerant/the parent). A higher log2 fold change correlated to larger difference in 

expression level. The level of significant differences can be detected by the p value. To eliminate 

biological variation, the threshold was set at p<0.05. In order to analyse the biological function of the 

high confidence DEGs provided by Novogene, the data from the transcriptomic comparisons’ were 

divided into multiple gene sets of either upregulated or downregulated DEGs.  

5.3 Results  

 Data quality control, transcript assembly and RNA-seq QC 

The number of transcripts produced by both Trinity/Corset and Unigene were very similar, with only 

thirteen transcripts differing between the two (number of total: transcripts- 25464, unigene- 25451; 

mean length: transcripts- 1672, unigene- 1673; N50: transcripts- 2513, unigene- 2514 N90: transcripts- 

766, unigene- 766). The Unigene assembly was used for any additional analysis as it consists of the 

longest transcript of each gene. There is a higher level of unigenes as there can be numerous unigenes 

for a single gene spreading across the exons. These unigenes can include alternative splicing and alleles 

which accounts for the differences in transcripts.  

The sample correlation between the replicates was calculated using the Pearson correlation 

coefficient. The closer the correlation coefficient is to 1, the greater the similarity of the samples. The 

square of the Pearson correlation coefficient should be larger than 0.92, however in some replicates, 

that was not the case. The lowest coefficient was 0.907 between one of the replicates for the 

regenerant in the control conditions. 
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Figure 5.2 The R2 of the Peason correlation coefficient of the samples for RNA-seq. R2 is the square 
of the Pearson coefficient. Figure produced by Novogene.  

  Differential gene expression and gene ontology analysis 

From the comparisons of the read count values from the gene expression analysis, a list of significant 

(p<0.05; minimum log2 fold change) DEGs obtained for the respective treatment comparisons were 

made. Again, to identify significant DEGs, a log2 transformation was applied to the fold change 

(group1/group2- which is all cases in the analysis was the regenerant/the parent). For the purpose of 

this study, the comparisons between reg_cu vs par_cu (copper amended PDB) and reg_p vs par_p 

(control- plain PDB) were looked at in more detail (see sections 5.3.2.2 and 5.3.2.3 below). For this 

study, tables listing only known (annotated) transcripts were produced. These tables contain all 

significant DEGs (high to low confidence, to the 5% level) for upregulated and downregulated 

transcripts of the regenerant relative to the parent. To reiterate, the comparisons of the transcript 

levels solely in response to copper were not the focus of this study, but rather the differences (if any) 

in gene expression in the same condition as a result of protoplast regeneration. Figure 5.3 shows an 

overview of the significantly DEGs through volcano plots, which are used to infer the overall 

distribution of the DEGs. Figure 5.4 shows the cluster analysis of DEGs. In this hierarchical clustering, 

areas of different colours denote different genes, and genes within each cluster may have similar 

functions. There are varying trends of DEGs spread across the different groups.    
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Figure 5.3 Volcano plots of the differentially expressed genes between the four different 
comparisons. (A) Regenerant versus parent in plain PDB (control), (B) regenerant versus 
parent in copper amended PDB, (C) parent in plain PDB (control) versus copper 
amended PDB, (D) regenerant in plain PDB (control) versus copper amended PDB. 
Volcano plots show the log2(fold change) vs the log10(padj), points with more fold 
change and higher log10(padj) are more reliable. Log counts are the log of the read 
counts mapping to each gene. Log2(fold change) indicates the log of the change in 
expression of the regenerant compared to the parent. The log2(fold change) [x-axis] 
represents the gene expression change of the different transcripts. The -log10(padj) [y-
axis] is the p-value after normalisation. The greater the -log10(padj) is, the more 
significant the difference is. The significant differential up regulated genes were 
represented by red dots, the green dots represented the significant differential down 
regulated genes and the blue dots were no difference. Figure produced by Novogene.  
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Figure 5.4 Hierarchical cluster analysis of differentially expressed genes. The overall result of the 
FPKM (fragments per kilobase of transcript sequence per millions of base pairs 
sequenced) cluster analysis, clustered using the log10 (FPKM+1) value. Red denotes 
upregulated genes ad blue denotes downregulated genes. The colour range from red to 
blue represents the log10 (FPKM+1) value from large to small. Figure produced by 
Novogene.  
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5.3.2.1 Effects of differential methylation on transcription levels  

To elucidate the relationship between cytosine methylation and gene expression, the differentially 

methylated associated genes (from both analysis methods from Chapter 4 [section 4.2.3]) were 

compared with both up and downregulated genes respectively over two different conditions. The two 

conditions were sub-lethal levels of copper sulphate in PDB (1 mM) and plain PBD (control). No 

differentially methylated regions (DMRs) (section 4.3.1, Table 4.1) contained any DEGs compared to 

both the copper amended broth and the control broth. In the sub-lethal level of copper, two 

upregulated genes (in relation to the regenerant) were found among the 218 differentially methylated 

cytosine (DMC)-associated genes, with both DMCs being hypermethylated (increase in cytosine 

methylation) in the parent. In the control (plain PDB), four upregulated and three downregulated 

genes were found, with a mix of parental or regenerant hypermethylation occurring. However, the 

majority of these differentially expressed DMC-associated genes had very low methylation occurring, 

and no trend occurring in any one treatment were found among these nine differentially expressed 

genes. Therefore, it is difficult to generate a clear idea about the effect of cytosine methylation on 

gene expression using the available set of data from this study. This dataset does suggest there is no 

correlation between the two.  

It is important to note that TA_79893 shows up both in the control upregulated dataset and the control 

downregulated dataset. This is due to two separate transcript clusters being associated with this 

protein ID from the numerous blast datasets. For the control upregulated transcripts, it is associated 

with cluster-6987.11652 (read counts regenerant: 146.22, parent: 0) and for the control 

downregulated transcripts, cluster-6987.11653 (read counts regenerant: 62.83, parent: 223.81). The 

cluster number above is the equivalent transcript produced from Unigene that Novogene used to 

identify each transcript. The DMC was found within the gene body at a very low percentage (6.04% 

hypermethylated in the regenerant).   

 

 



 

Table 5.2 Differentially expressed and differentially methylated cytosine’s (DMCs)-associated genes in the parent and regenerant strains of Trichoderma sp. 
“atroviride B” in sub-lethal levels of copper sulphate (1 mM) amended PBD and the control (plain PDB).  

Protein ID1 Putative function  DMC location  
Differential 

methylation %2 
Log2 fold change3 Padj 

Copper upregulated      

TA_322377 
von Willebrand factor and related coagulation 

proteins 
Gene body  5.77% P 0.50697 0.019892 

TA_161203 
Hypothetical protein with similarity to Trs120 of 

the transport protein particle (TRAPP) complex 
67 bp upstream 4.89% P 0.78031 0.034597 

Control upregulated     

TA_79893 SWR1-complex protein 4 Gene body  6.04% R Inf 9.53E-14 

TA_93282 No putative conserved domains 749 bp upstream 7.42% P Inf 0.046134 

TA_217932 Domain of unknown function (DUF4112) 258 bp downstream 5.35% P 1.0224 6.07E-05 

TA_149409 Magnesium transporters: CorA family 719 bp downstream 2.90% P 0.68332 0.028009 

Control downregulated     

TA_79893 SWR1-complex protein 4 Gene body  6.04% R -1.8326 0.0037759 

TA_174054 TAP-like protein (ABC transporter) Gene body  19.61% P -0.60408 0.0075989 

TA_219478 Fasciclin-like (FAS1) domain  Gene body  8.05% R -1.1869 0.049724 

1 Origin of the protein ID numbers are from Trichoderma atroviride v2.0 https://genome.jgi.doe.gov/pages/search-for-genes.jsf?organism=Triat2 
2 P represents hypermethylation in the parental strain, R represents hypermethylation in the regenerant strain 
3 Log2 fold change is the log fold change in the regenerant as compared to the parent. For the proteins with “Inf” in this column, there was no transcript activity in the one of the 

strains, meaning the log change is indefinite. Note for the log2 fold change values that are shown as a negative value it reads as ‘how downregulated is the regenerant compared to 

the parent‘ i.e. for protein ID TA_174054 the regenerant has –0.6 expression compared to the parent. 

 

9
7
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5.3.2.2 Differential transcript activity between parent and regenerant in sub-lethal levels 
of copper sulphate (1 mM) 

The list of DEGs obtained between the parent and regenerant in the sub-lethal levels of copper 

sulphate consisted of 88 transcripts. Of these, 55 were upregulated in the regenerant (62.5%) 

compared to the parent and 33 (37.5%) transcripts were downregulated in the regenerant, again, 

compared to the parent. From the putatively ‘upregulated’ set, three transcripts were unable to be 

annotated, six transcripts contained no putative conserved domains, and 46 transcripts were encoding 

conserved proteins. In all conditions, for the transcripts that were unable to be annotated from 

Novogene, the sequences were manually blasted against the T. atroviride IMI206040 genome in JGI 

from using megablast in Geneious (v10.2.4). From the putatively ‘downregulated’ set, two transcripts 

were unable to be annotated, five transcripts contained no putative conserved domains, and the 

remaining 26 transcripts contained conserved proteins. Table 5.3 lists known and upregulated gene 

transcripts, Table 5.4 lists known and downregulated gene transcripts. Descriptions of suggested 

associated putative gene function are included (column 2 of each table) for the comparison. 

Interestingly, among these, ten (seven upregulated and three downregulated) transcripts were 

differentially expressed in both the comparisons (copper and control). These DEGs were of particular 

interest as they were in both conditions with the same activity, suggesting that they may be a direct 

consequence of protoplasting. Additionally, the read counts from the DEGs can be found in Appendices 

C.1. 

Table 5.3 Significantly upregulated genes in the regenerant strain compared to the parent of 
Trichoderma sp. “atroviride B” in sub-lethal levels of copper sulphate (1 mM) amended 
PDB. Bold entries are also present in the upregulated control dataset. 

Protein ID1  Putative function  
Log2 fold 
change2 

padj 

Transcription/DNA metabolism    

TA_321361 
mRNA splicing factor ATP-dependent RNA 
helicase 

2.5006 0.010684 

TA_295745 Fungal specific transcription factor domain 2.0931 0.038081 
TA_46772 DEAD/DEAH box helicase 1.1919 0.0044385 

TA_91311 
Fibrillarin and related nucleolar RNA-binding 
protein 

1.0002 1.12E-05 

TA_90402 
Transcriptional activator FOSB/c-Fos and 
related bZIP transcription factors 

0.74641 0.038081 

TA_296913 
Protein involved in sister chromatid separation 
and/or segregation 

0.60637 0.021046 

TA_309419 
KEKE-like motif-containing transcription 
regulator (Rlr1)/suppressor of sin4 

0.43241 0.044552 

Secondary metabolites   
TA_150983 Acyl-CoA synthetase (related to CoA ligase) 2.6325 0.0087134 
TA_295408 Nitronate monooxygenase 2.4581 0.021432 



 99 

TA_182330 Methyltransferase type 11 1.3328 0.047138 
TA_54816 Short chain dehydrogenase  0.83263 0.020454 

TA_318290 
Non-ribosomal peptide synthetase/ 
ferrichrome synthetase 

0.72358 0.027223 

TA_233820 Amidases 0.71028 0.0063435 

TA_297716 
Uridine 5'- monophosphate synthase/orotate 
phosphoribosyltransferase 

0.56853 0.027386 

TA_50326 Coezyme A transferase 0.54868 0.0165 
TA_221418 NADH: flavin oxidoreductase 0.54345 9.40E-05 
TA_299967 Cys 3 (cystathionine gamma-lyase) 0.53506 0.0010037 
TA_38111 Indoleamine 2,3-dioxygenase 0.5259 0.035047 

TA_43598 
Cytochrome P450 CYP4/CYP19/CYP26 
subfamilies 

0.45709 0.019962 

TA_297703 Putative aminotransferase 0.44115 0.029221 
Transporters    

TA_131476 
Predicted transporter (major facilitator 
superfamily) 

Inf 1.86E-07 

TA_316915 Vacuolar protein sorting-associated protein Inf 0.031151 
TA_262794 OPT oligopeptide transporter protein Inf 0.031151 

TA_152585 
Half-sized multidrug resistance protein, ABC 
superfamily 

1.4504 0.010197 

TA_201457 
Predicted transporter (major facilitator 
superfamily) 

0.79177 0.031151 

TA_161203 
Hypothetical protein with similarity to Trs120 
of the targeting complex (TRAPP) complex 

0.78031 0.034597 

TA_131960 
Hypothetical ferrioxamine B transporter, 
major facilitator superfamily  

0.6316 0.00060089 

Stress response/protectors    
TA_315943 PB1 domian (found within NoxR) Inf 0.012893 
TA_53983 FOG: Zn-finger (similarity with Rpn4) 0.83404 4.16E-06 
TA_80276 Rogdi leucine zipper containing protein  0.75467 0.0003426 
TA_83501 FK506 suppressor Sfk1 0.66783 0.00014656 
TA_203336 Molecular chaperone (DnaJ superfamily) 0.64609 9.40E-05 
TA_39628 Glycerol kinase  0.64087 4.59E-06 
TA_299551 Mannitol dehydrogenase C-terminal domain 0.39793 0.035047 
Others     
TA_248609 Glycoside hydrolase family 3 protein Inf 0.00043822 
TA_82772 Glycoside hydrolase family 36 protein Inf 0.0165 
TA_87599 Condensation domain Inf 0.038081 
TA_316153 P-loop NTPase domain superfamily 4.0308 1.70E-05 

TA_284709 
Uncharacterised conserved protein similar to 
ATP/GTP-binding protein 

3.0802 2.88E-05 

TA_47188 WD40 repeat 0.84521 0.021318 
TA_173538 Cyclin 0.70703 0.01456 

TA_155595 
Pal1  cell morphology domain containing 
protein 

0.64552 0.033901 

TA_236267 SYLF domain containg protein (DUF500) 0.6183 0.0073444 
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TA_90885 Nucleolar GTPase/ATPase p130 0.46423 0.010684 
TA_302072 C-type lectin 0.36676 0.046663 

1 Origin of the protein ID numbers are from Trichoderma atroviride v2.0 
https://genome.jgi.doe.gov/pages/search-for-genes.jsf?organism=Triat2 
2 Log2 fold change is the log fold change in the regenerant as compared to the parent. For the proteins with Inf in 
this column, there was no transcript activity in the parent, meaning the log change is indefinite. 
 
 
 

Table 5.4 Significantly downregulated genes in the regenerant strain compared to the parent of 
Trichoderma sp. “atroviride B” in sub-lethal levels of copper sulphate (1 mM) amended 
PDB. Bold entries are also present in the downregulated control dataset. 

Protein ID1  Putative function 
Log2 
fold 
change2 

padj 

Stress response/protectors   

TA_152868 Hypothetical histidine kinase HHK6 -Inf 0.0204 
TA_161047 Copper chaperone for superoxide dismutase -0.5747 0.00252 
TA_146625 Stress-response A/B barrel domain -0.574 0.02222 

TA_298587 Cytochrome c oxidase assembly protein 
PET191 -0.4988 0.00525 

Ribosome biogenesis/translation    

TA_297753 40S ribosomal protein S10 -0.6579 2.10E-06 
TA_298008 60S ribosomal protein L28 -0.626 0.00024 
TA_259578 60S ribosomal protein L38 -0.6051 0.02911 
TA_298659 60S acidic ribosomal protein P2 -0.6016 0.01289 
TA_148397 40S ribosomal protein S13 -0.5243 0.001 
TA_300838 40S ribosomal protein S28 -0.4932 0.00084 

TA_260382 Ubiquitin-like/40S ribosomal S30 protein 
fusion -0.4778 0.00634 

TA_254353 40S ribosomal protein S29 -0.4661 0.00252 
TA_302500 60S ribosomal protein L31 -0.4561 0.00252 
TA_257160 60S ribosomal protein L44 -0.3973 0.04251 
Transcription/DNA metabolism    

TA_11002 SNF2 family N-terminal domain -Inf 0.00034 

TA_161417 Sirtuin 5 and related class III sirtuins (SIR2 
family) -Inf 1.86E-07 

TA_295745 Fungal specific transcription factor domain -3.2903 0.02045 
TA_297966 Histone H4 -0.4588 0.00888 
Other    

TA_231508 Myosin class II heavy chain -Inf 9.21E-11 
TA_214230 Glycoside hydrolase family 79 protein -Inf 0.00025 
TA_133870 Glycoside hydrolase family 18 protein  -Inf 0.04454 
TA_161270 Myosin class II heavy chain -2.8261 0.02739 
TA_161159 Glycoside hydrolase family 3 protein -2.802 0.02143 
TA_299415 YjeF-related domain containing protein -1.7982 0.00625 

TA_159580 Predicted small secreted cysteine-rich 
protein (killer toxin)  -0.5681 0.03115 
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TA_131179 Acyl-CoA acyltransferase -0.5635 0.03115 
1 Origin of the protein ID numbers are from Trichoderma atroviride v2.0 
https://genome.jgi.doe.gov/pages/search-for- genes.jsf?organism=Triat2 
2 Log2 fold change is the log fold change in the regenerant as compared to the parent. For the proteins with -Inf 
in this column, there was no transcript activity in the regenerant, meaning the log change is indefinite. Note for 
the log2 fold change values that are shown as a negative value it reads as ‘how downregulated is the regenerant 
compared to the parent’ i.e. for protein ID TA_295745 the regenerant has –3.2903 expression compared to the 
parent. 
 

5.3.2.3 Differential transcript activity between parent and regenerant in the control (plain 
PDB) 

The list of DEGs obtained between the parent and regenerant in the control (plain PDB) consisted of 

281 transcripts. Of these, 128 were upregulated in the regenerant (45.5%) compared to the parent and 

153 (54.5%) transcripts were down regulated in the regenerant again, compared to the parent. From 

the putatively ‘upregulated’ set, four transcripts were unable to be annotated, 14 transcripts contained 

no putative conserved domains, and 111 transcripts contained conserved proteins. From the putatively 

‘downregulated’ set, 23 transcripts were unable to be annotated, 14 transcripts contained no putative 

conserved domains, and 136 transcripts contained conserved proteins. Table 5.5 lists the top 50 known 

and upregulated gene transcripts and Table 5.6 lists the top 50 known and downregulated gene 

transcripts. Descriptions of suggested associated putative gene function are included (column 2 of each 

table) for the comparison. The full lists are available in Appendices C.2 and C.3, which includes the non-

annotated transcripts and transcripts with no putative conserved domains. Additionally, the read 

counts from the DEGs can be found in Appendices C.1. 

Table 5.5 Top 50 most upregulated genes of the regenerant strain compared to the parent of 
Trichoderma sp. “atroviride B” in the control (plain PDB). Bold entries are also present 
in the upregulated sub-lethal levels of copper sulphate dataset. 

Protein ID1  Putative function  Log2 fold 
change2 padj 

Transcription/DNA metabolism   

TA_79893 SWR1-complex protein 4 Inf 9.53E-14 

TA_245214 
Structural maintenance of chromosome protein 4 
(chromosome condensation complex Condensin, 
subunit C) 

Inf 1.69E-09 

TA_175873 Protein involved in sister chromatid separation 
and/or segregation / WLM domain  Inf 1.22E-08 

TA_299841 Transcription factor TCF20 Inf 4.47E-05 
TA_12417 Fungal specific transcription factor domain Inf 0.002077 
TA_204552 DNA polymerase theta/eta, DEAD-box superfamily Inf 0.0097 

TA_286297 Predicted histone tail methylase containing SET 
domain Inf 0.038263 

TA_321361 mRNA splicing factor ATP-dependent RNA 
helicase 3.9453 0.000187 

TA_318116 DEAH-box RNA helicase 2.0016 0.002362 
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TA_53890 Splicing coactivator SRm160/300, subunit SRm300 1.5191 0.046859 
TA_224741 GATA-4/5/6 transcription factors 1.3289 0.001682 
TA_219144 tRNA(Ile)-lysidine synthase  1.2505 0.003888 
Secondary metabolites   

TA_214849 Phospholipase D Inf 8.78E-06 
TA_138092 FAD dependent oxidoreductase 2.2593 1.65E-05 
TA_294099 Predicted AdoMet-dependent methyltransferase 2.2923 0.002566 

TA_318290 Non-ribosomal peptide synthetase/ ferrichrome 
synthetase 2.0007 6.52E-05 

TA_161189 Ferric reductase NAD binding domain//FAD-
binding domain 1.3873 0.026052 

TA_37736 Flavin-containing monooxygenase 1.3414 1.04E-10 
TA_273644 Acyl transferase domain 1.2648 0.026858 

TA_41287 Conserved hypothetical protein similar to 
ferric/cupric reductases 1.1167 0.003095 

TA_43598 Cytochrome P450 CYP4/CYP19/CYP26 subfamilies 1.1439 0.001019 
Transporters    

TA_320809 
Metal ion transporter CorA-like divalent cation 
transporter superfamily (Mg2+ and Co2+ 
transporter) 

Inf 0.048047 

TA_80187 Carbohydrate-binding module family 1 5.0182 1.58E-07 

TA_39549 Predicted transporter (major facilitator 
superfamily)- siderophore 1.1863 0.007024 

TA_131960 Hypothetical ferrioxamine B transporter, major 
facilitator superfamily  1.2787 0.00015 

TA_82465 High-affinity iron permease-like protein  1.6349 0.00477 
TA_172844 C2H2 Zn-finger protein 1.3295 0.040437 

TA_219088 Predicted transporter (major facilitator 
superfamily)- siderophore 1.2888 6.55E-07 

TA_149087 Permease of the major facilitator superfamily  1.2591 0.000363 
Stress response/protectors    

TA_39628 Glycerol kinase  1.4545 0.001413 
TA_80276 Rogdi leucine zipper containing protein  1.3195 0.000837 
TA_39628 Glycerol kinase  1.5705 0.000162 
Others     

TA_298699 M6 family metalloprotease domain-containing 
protein  Inf 0.000478 

TA_88959 Nucleolar GTPase/ATPase p130 Inf 0.002103 
TA_287118 Protease, Ulp1 family Inf 0.002659 
TA_280742 FOG: Zn-finger Inf 0.014732 
TA_280830 Kinesin light chain Inf 0.016108 
TA_80465 C-type lectin Inf 0.017361 

TA_282906 Predicted starch-binding protein containing an 
ankyrin repeat 2.6707 0.022994 

TA_322497 Predicted alpha/beta hydrolase BEM46 2.6315 4.11E-10 
TA_301990 Homeobox protein 2.449 5.02E-06 
TA_220486 Ankyrin repeat 2.3069 0.034465 

TA_164711 
Translocon-associated protein, gamma subunit 
(TRAP-gamma)/ Sec61 translocon 
complex//integral component of endoplasmic 

1.6953 0.005698 



 103 

reticulum membrane/ no putative conserved 
domains 

TA_41134 Predicted Rho GTPase-activating protein 1.6466 0.001071 

TA_286000 

Multifunctional pyrimidine synthesis protein CAD 
(includes carbamoyl-phophate synthetase, 
aspartate transcarbamylase, and glutamine 
amidotransferase) 

1.5228 1.65E-05 

TA_131025 Putative ankyrin repeat protein  1.415 0.000985 
TA_147452 Putative C-14 sterol reductase 1.2864 0.001066 
TA_302363 FOG: Zn-finger 1.2031 4.47E-07 
TA_255242 SAM-dependent methyltransferases 1.2443 8.32E-06 
TA_152707 Long chain fatty acid CoA ligase 1.1312 0.047573 

1 Origin of the protein ID numbers are from Trichoderma atroviride v2.0 
https://genome.jgi.doe.gov/pages/search-for- genes.jsf?organism=Triat2 
2 Log2 fold change is the log fold change in the regenerant as compared to the parent. For the proteins with Inf in 
this column, there was no transcript activity in the parent, meaning the log change is indefinite. 
 

Table 5.6 Top 50 most downregulated genes of the regenerant strain compared to the parent of 
Trichoderma sp. “atroviride B” in the control (plain PDB). Bold entries are also present 
in the downregulated sub-lethal levels of copper sulphate dataset. 

Protein ID1  Putative function  Log2 fold 
change2 padj 

Transcription/DNA metabolism 
TA_219226 Serine carboxypeptidases -Inf 0.001047 
TA_13549 Fungal specific transcription factor domain  -Inf 0.002077 
TA_219427 Fungal specific transcription factor domain  -Inf 0.006891 
TA_286610 FOG: RNA recognition motif domain -Inf 0.037414 

TA_211641 
Nonsense-mediated mRNA decay 2 protein/ 
Similarity with Ras GTPase-activating protein 
domain  

-2.1705 7.75E-09 

TA_302640 Putative translation initiation inhibitor 
UK114/IBM1 -2.0784 1.04E-10 

TA_79893 SWR1-complex protein 4 -1.8326 0.003776 

TA_135674 Splicing factor U2AF, large subunit (RRM 
superfamily) -1.4599 0.001708 

Secondary metabolites  

TA_89308 Candidate salicylate hydroxylase -Inf 1.42E-07 
TA_302386 Acyl-CoA synthetase -Inf 0.001413 
TA_89308 Candidate salicylate hydroxylase -5.3314 0.00682 
TA_41602 CoA-transferase family III -5.092 4.43E-05 
TA_88456 Flavin-containing monooxygenase -2.068 9.02E-13 
TA_34073 Acyl-CoA acyltransferase -2.0637 0.008452 
TA_43297 Enoyl-CoA hydratase/isomerase -1.8952 0.000182 
TA_40409 Multicopper oxidase -1.8365 8.00E-10 

TA_293815 Cytochrome P450 CYP4/CYP19/CYP26 
subfamilies -1.6484 0.016188 

TA_82022 Transcription factor of the Forkhead/HNF3 
family -1.4069 0.000406 

TA_38182 Alcohol dehydrogenase, class V -1.3748 0.042587 
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Transporters   

TA_29546 Predicted transporter (major facilitator 
superfamily) -5.1572 0.018357 

TA_320809 
Metal ion transporter CorA-like divalent cation 
transporter superfamily (Mg2+ and Co2+ 
transporter) 

-4.0603 0.002077 

TA_82369 Monocarboxylate transporter/Major Facilitator 
Superfamily -2.8545 0.039864 

TA_281099 Predicted transporter (major facilitator 
superfamily) -2.3619 0.000257 

TA_154058 Major Facilitator Superfamily -1.6183 1.82E-06 

TA_281099 Predicted transporter (major facilitator 
superfamily) -1.5799 0.000155 

Stress response/protectors   

TA_84469 Catalase superfamily domain -2.7698 8.76E-10 
TA_298114 Flavonol reductase/cinnamoyl-CoA reductase -1.644 3.09E-06 
Other    

TA_287118 Protease, Ulp1 family -Inf 5.11E-15 
TA_142959 PHD Zn-finger protein  -Inf 0.000221 
TA_280830 Kinesin light chain -Inf 0.000309 
TA_219226 Serine carboxypeptidases -Inf 0.001047 
TA_302386 Acyl-CoA synthetase -Inf 0.001413 

TA_302591 Predicted metal-dependent hydrolase of the 
TIM-barrel fold/Amidohydrolase -5.8877 6.89E-10 

TA_158569 Methyltransferase domain -5.4205 0.004628 
TA_41510 Catechol dioxygenase N terminus -3.6724 7.73E-06 
TA_134980 Myosin class II heavy chain -3.6032 0.015621 
TA_299543 Fungal hydrophobin -2.8848 1.04E-10 
TA_299415 YjeF-related domain containing protein -2.6641 5.08E-05 
TA_131874 C2H2-type Zn-finger protein -2.4325 2.16E-05 
TA_40648 NAD(P)-binding domain superfamily -2.3034 0.041088 
TA_256937 NmrA-like family -2.1747 6.68E-05 
TA_156014 Hypothetical protein, simlar PTH11-type GPCR -2.1634 0.020054 
TA_80187 Carbohydrate-binding module family 1 -2.0351 0.000187 

TA_156579 Hypothetical protein, similar to PTH11-type 
GPCRs  -1.9229 0.02269 

TA_132261 NAD(P)-binding domain superfamily -1.8933 0.04767 
TA_258206 Fungal hydrophobin -1.8834 3.66E-37 
TA_317086 Methyltransferase domain containg protein -1.6533 0.037084 
TA_81501 Transmembrane amino acid transporter protein -1.5473 1.44E-06 
TA_302595 Alpha/beta hydrolase fold -1.504 0.021747 
TA_294009 AAA+- type ATPase -1.4336 0.000502 
TA_43454 Putative thioesterase superfamily protein  -1.3936 0.011484 

1 Origin of the protein ID numbers are from Trichoderma atroviride v2.0 
https://genome.jgi.doe.gov/pages/search-for- genes.jsf?organism=Triat2 
2 Log2 fold change is the log fold change in the regenerant as compared to the parent. For the proteins with Inf in 
this column, there were no transcript activity in the parent, meaning the log change is indefinite. Note for the 
log2FoldChange values that are shown as a negative value it reads as ‘how downregulated is the regenerant 
compared to the parent’ i.e. for protein ID TA_38182 the regenerant has –1.3748 expression compared to the 
parent. 
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 SNPs 

The SNPs were validated empirically. The number of total SNPs were 1349, with a total of 316 non-

synonymous SNPs and 162 synonymous SNPs. After the filtering with the criteria outlined in section 

5.2.4.4, none of the SNPs fit the criteria. Based on these results, the SNPs from the WGBS data were 

not investigated any further as if they were true SNPs they would have appeared in the RNA-seq data 

as that is more reliable. This unreliability is based on the programs that were being used to investigate 

the WGBS SNPs, which are still being developed. Furthermore, calling SNPs from WGBS is complicated 

due to two primary reasons. The first is as they use only the three bases (A,T and G, as the C’s are 

converted to T’s after the bisulphite treatment) to call the SNPs, meaning a true C/T SNP cannot be 

discerned from the C/T substitutions from the bisulphite treatment. Secondly, the reads from the two 

genomic strands are not complimentary at methylated loci (Gao et al., 2015). In order to truly validate 

the WGBS SNPs, more replicates would be needed. 

5.4 Discussion 

RNA sequencing was used to investigate whether the differential cytosine methylation observed 

between the parent and protoplast regenerant had a role in regulating transcriptional activity as has 

been reported in other fungal species. This current study showed that the correlations between the 

expression level and the changes in methylation are imperceptible. However, changes in transcription 

levels were detected between the parent and the regenerant in both conditions which suggests that 

there may be other regulatory factors in place that have an effect on gene expression, putatively 

resulting from the use of protoplast technology.  

  Effects of differential methylation on transcriptional levels 

Cytosine methylation is often associated with regulating gene expression in fungi. However, these 

alterations in gene expression levels are influenced by distribution of the 5mC, genotype, tissue, 

developmental stages and environmental conditions (Yaish et al., 2018), suggesting there are 

numerous layers involved with this association. Within this dataset, only nine DEGS were observed 

among the DMC-associated genes, and no association between cytosine methylation and gene 

expression was found. Therefore, a clear correlation between cytosine methylation and gene 

expression cannot be made. Although there were various proteins involved in intracellular trafficking 

and vesicular transport, which hypothetically could be responsible for the increased copper tolerance, 

the transcript abundance; the level of methylation (being either hypo- or hypermethylated) and even 

the context of methylation did not trend to in one direction.  

In numerous species of fungi, including Neurospora crassa and Magnaporthe oryzae (Jeon et al., 2015; 

Rountree and Selker, 2010), cytosine methylation has been reported in regulating transcriptional 



 106 

activity. However, this potential lack of correlation between transcription activity and changes in 

cytosine methylation has been documented between the different sexual stages in Cordyceps militaris 

(Wang et al., 2015) and also in the model plant caliph medic (Medicago truncatula) in response to 

salinity stress (Yaish et al., 2018). Gene expression analysis via RT-qPCR did not reveal a constant 

relationship between the level of cytosine methylation and the transcript abundance of genes that are 

known to be of importance for salinity tolerance (Yaish et al., 2018). This does however show two 

things. Firstly, it confirms previous research showing that although cytosine methylation has some 

common patterns and distribution among the genomes of different fungal species, its action 

significantly varies among these species. Within rice, cytosine methylation patterns and gene 

expression activity vary even among the different cultivars of the same species in response to an 

environmental stimulus (Garg et al., 2015) which shows how context dependent this relationship can 

be. Secondly, it is likely that other epigenetic regulatory mechanisms may be involved in the 

phenotypic plasticity resulting from the protoplast process and in this case, the expression level of 

certain genes in lieu of large scale genomic changes.   

Epigenetic mechanisms have been shown to be involved in genome maintenance and integrity but 

have been increasingly considered to be of importance for regulation of gene expression in various 

organisms and consequently phenotypic plasticity (Dubey and Jeon, 2017; Holoch and Moazed, 2015; 

Kronholm et al., 2016; Soyer et al., 2014; Torres-Martínez and Ruiz-Vázquez, 2017). These mechanisms 

include, but are not limited to, histone modifications (histone methylation and histone deacetylation) 

and RNA interference (RNAi). In N. crassa, different epigenetic mechanisms have varying effects on the 

phenotypic plasticity of the organism (Kronholm et al., 2016). They showed that, generally, the effects 

on plasticity were specific to certain environment conditions and the actual mechanism, which 

indicates that this epigenetic regulation of gene expression is context dependent.  

Further examples include RNAi, which is a conserved eukaryotic mechanism that uses small RNA 

molecules to suppress gene expression through sequence-specific messenger RNA degradation, 

translational repression or transcriptional inhibition (Torres-Martínez and Ruiz-Vázquez, 2017). In 

Mucor circinelloides phenotypic plasticity has been shown to be mediated by RNAi (Calo et al., 2014). 

The fungus can become resistant to the antifungal drug FK506 by spontaneously triggering RNAi-

mediated silencing of the drug’s target gene. This mechanism, however, provides unstable resistance 

as the ‘mutants’ revert back to the drug sensitive phenotype when the drug is no longer present in the 

media (Calo et al., 2014). MicroRNAs (miRNAs) have been shown to be present in Trichoderma reesei 

and further play a regulatory role in T. atroviride (Carreras-Villaseñor et al., 2013; Kang et al., 2013; 

Schmoll et al., 2016). Soyer et al. (2014) moreover showed that chromatin-based transcriptional 

regulation via histone H3 lysine 9 methylation (H3K9me3) acts on effector gene expression in 
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Leptosphaeria maculans. Two proteins, HP1 and DIM-5, modulate the expression which can lead to 

repression of the fungus during growth in axenic culture.  

These other epigenetic factors would have to be extensively tested to see if any of them have a role in 

the regulation of gene expression between these two strains, resulting from the use of protoplast 

technology. But as there are no large scale changes in the DNA fingerprint, as shown through UP-PCR 

comparison between the parent and regenerant, identification of the mechanism that is modulating 

these changes in gene expression remains elusive.  

Another possibility to explain these changes in phenotype plasticity, beyond epigenetic regulatory 

mechanisms, are the subtle changes to the genetic sequence itself such as single nucleotide 

polymorphisms (SNPs), small deletion/insertion polymorphisms (DIPs) and structural elements. 

Although SNPs were not observed in this dataset, interestingly, they have been linked to potential 

changes in phenotype originating in PEG-mediated protoplast transformations previously. Scala et al. 

(2017) showed that the large scale phenotypic diversity observed in mutants of Fusarium verticillioides 

(generated from a standard PEG-mediated transformation method) could be due to these changes in 

the genetic sequence. They found over 9000 SNPs and 79 DIPs between the mutant and the wild type 

parent suggesting these variations could be responsible for the changes in phenotype. They did not 

look, however, into the gene function and phenotypes of where these changes occurred. They further 

stated that additional studies are needed to determine which is the main driver of these genome 

perturbations, being either the transformation event, the presence of a selective agent (in this case 

hygomycin B) or the disruption cassette. In relation to this dataset from using protoplast technology 

for strain improvement and the transcriptional and methylation changes that have arisen, one would 

postulate that it could be the transformation event. The observations of these large off-target 

rearrangements throughout the genome in the F. verticillioides does raise concerns about the need to 

determine the genetic consequences of using protoplast technology, either for strain improvement or 

genetic manipulation experiments.  

It is important to note however, that the focus of this study was the differential methylation patterns 

between the parent and regenerant, and it did not focus on the overall methylation pattern or role in 

Trichoderma. At a genome wide, non-differential overview, cytosine methylation may regulate gene 

expression. The absence of a known correlation in this dataset is not evidence of the absence of the 

effect that DNA methylation has on gene expression or even the densities and quantity of cytosine 

methylation of this fungi. Additionally, one major limitation of this study was preforming the WGBS 

only in the control condition (plain PDB). The 5mC percentage is known to vary based on numerous 

factors (Jeon et al., 2015; Yaish et al., 2018). There may have been a more pronounced effect of 

methylation on gene expression activity if the WGBS was also completed in the sub-lethal levels of 
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copper sulphate as methylation is known to help contribute as a stress adaption to in environmental 

changes.   

  Biological function of differentially expressed genes 

Despite the lack of correlation between cytosine methylation and the differential gene expression 

activity, changes in the transcriptional levels were detected between the parent and the regenerant in 

both conditions. Within this dataset of DEGs there were a few proteins present that are associated 

with copper acquisition, utilisation and regulation that have been studied in other eukaryotes 

(Aghcheh and Kubicek, 2015; Fu et al., 2012; Fu et al., 2014; Fu et al., 2010; Smith et al., 2017). There 

were additionally a number of proteins that were involved in iron transport (siderophores) and 

oxidative stress that differed between the two.  

5.4.2.1 Copper acquisition, utilisation and regulation associated proteins 

Within this dataset of DEGs there were only a few proteins present associated with proteins that been 

studied in other eukaryotes known to be associated with copper acquisition, utilisation and regulation 

processes. Briefly, to maintain intracellular copper concentrations, copper is first reduced from Cu (II) 

to Cu (I) by cell surface metalloreducatases (Fre1 and Fre2) and transported across the plasma 

membrane into the cytoplasm by two dedicated high affinity membrane-associated copper specific 

transporters (Ctr1 and Ctr3) (Hassett and Kosman, 1995; Smith et al., 2017). Under low copper 

conditions, transcription of the transporters Ctr1 and Ctr3 is enriched, allowing for copper uptake. In 

high copper conditions, both Ctr1 and Ctr3 are downregulated to decrease copper uptake (De Freitas 

et al., 2003). There is an additional low affinity copper uptake system, the Fet4 transporter, which also 

is a transporter for iron and zinc (Hassett et al., 2000).  

Once copper is inside the cytoplasm, from the respective transporters, it is bound by copper 

chaperones that allow the delivery of copper to either cytoplasmic and mitochondrial enzymes for 

copper-dependent activation, or subcellular components for storage or loading into secretory copper-

dependent enzymes (Harrison et al., 2000; Smith et al., 2017). The copper is delivered to target 

organelles by copper chaperones which includes Atx1, Ccs and Cos17. These chaperones are regulated 

by free copper ions. However, if the level of copper increases above homeostasis (which is assumed in 

the sub-lethal levels of copper at 1 mM in this study), fungi can employ copper detoxification 

mechanisms such copper sequestration or efflux.  

There are numerous other important copper responsive-transcription factors which can activate 

copper acquisition, buffering or detoxification genes under the respective copper conditions. Under 

excess copper conditions, the transcription factor, Ace1, is activated to regulate the transcription of 

cellular copper-detoxifying genes, notably Cup1, Crs5 and SOD1 which protect cells by chelating copper 
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(Fu et al., 2012; Harrison et al., 2000). The Cup1 gene encodes a metallothionein (MT), which is involved 

in direct sequestering and prevention of copper toxicity. The Cup1 protein is capable of binding up to 

eight Cu+ ions. A second MT-like protein, Crs5, also detoxifies excess copper, but it is less effective 

than Cup1 in copper buffering. Finally, SOD1 (Cu-Zn superoxide dismutase [SOD]) is able to dually 

protect against oxidative stress, due to disproportionation of oxygen radicals and also acts as a copper-

buffering agent (Culotta et al., 1995; Gralla et al., 1991). Conversely in copper limiting conditions, 

another transcription factor, Mac1, is activated which induces the expression of high affinity copper 

transporters (Fre1 and Fre2) (Georgatsou et al., 1997). 

Naturally occurring copper tolerance is seen throughout the Trichoderma genera (Anand et al., 2006; 

Jovicic-Petrovic et al., 2014). Within these strains, the majority of the copper is present as a layer on 

the cell walls. The binding of copper on the cell surface immobilises the metal which makes it less 

available therefore reducing its toxicity which allows the organism to resume its normal growth 

patterns (Anand et al., 2006). Additionally, a strain of T. reesei that had high copper bioaccumulation 

resulting from Agrobacterium tumefaciens-mediated transformation (ATMT) showed that the Tad1 

protein (a novel adenine deaminase) was responsible for this homeostasis (Fu et al., 2014). They 

further showed that once copper concentration increased, a number of copper dependent proteins 

were also activated to help protect the cell. They included: (i) a ferroxidase like protein (Fet3) which is 

a multicopper oxidase responsible for the oxidation of Fe2+ to Fe3+ in yeast, (ii) a glutathione 

transferase, (iii) a c-type cytochrome, (iv) a protein homologous to Ccs1, a copper metallochaperone 

of SOD1 and (v) Tctr2, which encodes a Ctr2-like protein which may be associated with copper storage 

(Fu et al., 2014).   

Throughout the DEGs over both conditions, there were a few genes that were differentially expressed 

that were related to these processes, and only one in the presence of copper. One protein that was 

downregulated in the presence of copper was TA_161047 (Table 5.5). This protein encodes the copper 

chaperone, Ccs1 for superoxide dismutase, SOD1 within S. cerevisiae. SOD1 is activated in response to 

excess copper (>1 µM) (Gralla et al., 1991; Smith et al., 2017). As mentioned above, in addition to its 

role in protection against oxidative stress, SOD is also a copper-buffering agent (Culotta et al., 1995; 

Gralla et al., 1991). In the present study, the fact that it is upregulated in the parent strain suggests the 

copper excess is observed within this strain, yet not in the regenerant. The regenerant may have a 

higher threshold for copper than then parent, before copper response transcription factors are 

activated.  

Three other potential copper related DEGs that were interestingly downregulated in the regenerant 

strain in the control (plain PDB) were TA_300063 (heavy metal domain that is similar to Atx1, a 

metallochaperone of S. cerevisiae), TA_297568 and TA_239015 (both glutathione S-transferases). Atx1 
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transports copper to Ccc2, for the insertion of the multicopper ferroxidase Fet3, which required for 

high affinity iron uptake (Lin et al., 1997). Cells lacking Atx1 show reduced Ccc2 mediated activation of 

Fet3, and resulting in a corresponding iron deficiency. However, this is typically induced under 

conditions of low iron compared to low copper levels (Lin et al., 1997). Glutathione S-transferases have 

a significant role in detoxification and protecting from oxidative stress against copper in Aspergillus 

niger (Luna et al., 2015). Similar proteins were also found to be involved in copper homeostasis 

regulated by Tad1 in T. reesei. However, Fu et al. (2014) performed their transcript analysis in the 

presence of 1 mM of copper sulphate, whereas these were differentially expressed in the control.  

In lieu of proteins being involved in solely with copper acquisition and utilisation, there were a number 

of proteins differentially expressed that were involved in transport, stress response and DNA 

metabolism. This suggests another mechanism for the copper tolerance that the regenerant strain may 

use. 

5.4.2.2 Differentially expressed genes in copper and the control 

Secondary metabolites 

There were a number of proteins that are associated with secondary metabolites that were 

differentially regulated. Secondary metabolites are a broad group that includes hormones, toxins and 

bioactive compounds all which play an important role in the interactions of Trichoderma and other 

organisms such as bacteria, plants and other fungi. They are an important set of molecules that are 

important in attack, defensive, mating and potentially in the case of these regenerants communication 

and nutrient assimilation (Mukherjee et al., 2012; Schmoll et al., 2016). Among the major biosynthetic 

gene clusters of secondary metabolites are enzymes such as terpenoid synthases/cyclases, polyketide 

synthases (PKSs), nonribosomal peptide synthases (NRPSs) and accessory enzymes (Mukherjee et al., 

2012; Schmoll et al., 2016; Zeilinger et al., 2016). In both the copper and control DEGs list, an intriguing 

NRPS was upregulated in the regenerant. TA_318290 encoded a candidate NRPS, a putative 

ferrichrome synthetase and contains similar domains to Talaromyces marneffei sidC (Mukherjee et al., 

2012). This protein is involved in intracellular siderophore biosynthesis (Eisendle et al., 2006; Pasricha 

et al., 2016). Eisendle et al. (2006) reported that accumulation of the intracellular siderophore is 

regulated by intra- and extracellular iron availability as well as oxidative stress in A. nidulans. An 

increase in the number of secondary metabolites associated proteins within the regenerant in the 

presence of copper could suggest that the regenerant is more tolerant to stresses. This is as one 

response when filamentous fungi are challenged by different stresses is the production of secondary 

metabolites (Macheleidt et al., 2016). Their regulation however is incredibly complex and varies from 

global regulators, to signal transduction pathways such as the mitogen-activated protein kinase 

(MAPK) pathway and epigenetic controllers such as remodeling of chromatin structures. Additionally, 

these biosynthetic clusters of secondary metabolites can also include genes for transport and 
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transcription factors (Mukherjee et al., 2012; Zeilinger et al., 2016). Further investigation is needed to 

understand the regulation and function of these secondary metabolites within the regenerant.   

Transporters 

Fungi have numerous transporter families that assist in the uptake and efflux of nutrients and ions. 

These include the major facilitator super family (MFS) and the ATP-binding cassette (ABC) transporters, 

both of which are represented in the upregulated DEG list in the regenerant in copper. A number of 

these encoded transporters as part of the major facilitator super family (MFS). MFS transporters are a 

large group of transmembrane proteins involved in the transportation of antibiotics, sugars, amino 

acids, metal ions and various other molecules, namely for nutrient uptake (Chaudhary et al., 2016). 

ABC transporters are often linked to the secretion of secondary metabolites, resistance to toxic 

compounds and cell signaling (Schmoll et al., 2016). This increase in expression of transport proteins 

could imply a more pronounced response in the regenerant to both nutrient uptake and resistance to 

toxic compounds. However as they were prominent groups in the control DEG list within both the 

parent and regenerant, it is unclear the role that transporters do play, in particular regarding copper 

tolerance. This is as numerous ABC transporters were found to be upregulated in the parent strain in 

the control conditions. However, these ABC transporters have been shown to play an important role 

during cell-to-cell communication. Putatively in the presence of copper the transporters may be 

playing a different role compared to the control.  

Stress response/protectors 

There were a number of genes that were differentially expressed that had varying roles in stress 

tolerance, in particular with oxidative stress, ranging from NoxR (a key regulator of NADPH oxidases) 

to domains that are involved in oxidative resistance, such as SOD and glutathione S-transferases 

(GSTs). However, the regulation differs between the two strains, so further studies are needed to 

clarify the putative pathways involved.  

The regenerant had a higher level of activity in both conditions (copper and the control) of a protein 

contains a Rogdi leucine zipper domain (TA_80276). This domain is conserved within eukaryotic 

genomes and includes a region of 30 amino acids with leucine repeats every seven or eight residues 

and is known to have a regulatory role. Deletion mutants of FcRav2 (a gene containing this Rogdi 

leucine zipper domain) in Fusarium culmorum, showed significantly decreased growth compared with 

the parent strains when coping with multiple stresses (Spanu et al., 2018). The mutant further showed 

significant sensitivity to pH, oxidative and osmotic stresses and also a tebuconazole fungicide. This 

suggests a putative role of FcRav2 in stress resistance. As this protein is upregulated in the regenerant 

in both conditions, it could be inferred that the regenerant has a higher level of stress resistance than 

then regenerant. 
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The comparison of DEGs also indicated an indefinite upregulation in copper of a protein which contains 

a PB1 domain that is present within the Epichloë festucae NoxR protein (a key regulator of NADPH 

oxidase, NoxA) (TA_315943). ROS produced by NoxA has a critical role in regulating hyphal tip growth 

of the fungal endophyte in the host plant to maintain the mutualist symbiotic interaction through ROS 

production (Kayano et al., 2013; Scott et al., 2007). Within T. harzianum, overexpression and 

subsequent increased levels of nox1 (noxA) in transformants led to an increase in ROS production 

during confrontation with a pathogen (Montero-Barrientos et al., 2011). Furthermore, overexpression 

of NoxR in E. festucae increased hyphal branching in culture and reduced the localised production of 

ROS at the growing hyphal tips, suggesting that NoxR spatially regulates ROS production (Takemoto et 

al., 2006). However, the role of ROS can vary, as ROS molecules can act either as signal molecules or 

as free radicals causing cellular damage. The role is dependent on their concentration within the cell. 

It could be postulated that overexpression of this protein in the regenerant causes hyphal 

hyperbranching which could led to observed increased biomass compared to the parent in copper. 

As mentioned above the copper chaperone Ccs1 for SOD1 and two glutathione S-transferases, which 

are also associated with oxidative stress, not just in copper were differentially regulated. SOD1, in 

addition to buffering copper is also involved in protection against oxidative stress (Culotta et al., 1995; 

Gralla et al., 1991). The GST protein family is thought to function to protect against oxidative damage 

in cells by removing reactive molecules via conjugation with glutathione (GSH) (Licciardello et al., 

2014). The higher concentrations of GSTs are indicative of oxidative stress and are a transcriptional 

response to higher levels of ROS. A further superoxide dismutase (manganese dependent SOD, SOD2) 

was also downregulated in the regenerant in the control. Within Candida albicans, Li et al. (2015a) 

showed that in laboratory with excess copper, C. albicans expressed Sod1 (the Cu-requiring form of 

superoxide dismutase) but as Cu levels decline, the cells switched to an alternative manganese-

requiring Sod3.  

In the present study, a suite of genes associated with stress tolerance were differentially regulated. 

This change in profile of these oxidative stress associated proteins may therefore indicate a number of 

potential outcomes in how the two different strains are responding to the oxidative stress produced 

by the sub-lethal level of copper. The parent has higher activity in proteins that correspond to cellular 

defence against ROS, suggesting there may be a higher level of ROS in the parent. However, this 

requires further investigation into different time points, especially earlier in the interaction with 

copper, and also different concentration levels of the copper.   

Transcription factors/DNA metabolism 

Transcription factors are major regulatory proteins in fungal species and modulate gene expression 

control and in turn the function of the cell. Numerous differentially expressed genes over both 
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conditions were related to transcription factors or DNA metabolism. The mechanism vary between the 

different groups. Interestingly, two proteins (TA_11002- SNF2 family domain and TA_297966-histone 

H4) were upregulated in the parent that are related to chromatin remodeling factors. Conversely in 

the regenerant transcription factors that were upregulated included proteins such as TA_46772 

(DEAD/DEAH box helicase) and TA_321361 (mRNA splicing factor ATP-dependent RNA helicase) which 

are both involved in pre-mRNA splicing. The changes in functions of the transcription factors show 

further changes in regulation between the parent and regenerant.  

Ribosome biogenesis/translation 

Additionally in the downregulated copper DEGs list protein synthesis genes, particularly those 

encoding ribosomal proteins were represented at a high rate. Ten out of the 26 (annotated) 

downregulated genes contained 40S and 60S ribosomal proteins domains. Ribosomal proteins are no 

longer considered to be solely involved in ribosomal assembly and protein translation, but have 

additional roles in differentiation and are involved in various physiological and pathological roles (Zhou 

et al., 2015). Mendoza-Mendoza et al. (2015) identified 24 different ribosomal proteins that were 

expressed during germination of Trichoderma in a cDNA library. This library was constructed for the 

investigation of specific growth stage molecular marks in T. sp “atroviride B” strain (LU132). This 

suggests a stage-specific expression pattern within the ribosomal proteins that occur solely within 

germination, rather than in conidia, vegetative growth or conidiophores. Histone H4 (TA_297966), 

which is involved in chromatin structure and dynamics, was also present in both the germination cDNA 

library (Mendoza-Mendoza et al., 2015) and the copper downregulated set. Although the biomass 

generated for RNA was supposed to be in a vegetative stage, this grouping of DEGs that are involved 

in protein synthesis, suggest that the samples may have been a mix of different developmental stages 

in the presence of copper. 

5.4.2.3 Siderophore transporters and biosynthesis 

Another set of differentially expressed proteins were those involved with siderophore transport and 

biosynthesis. Microorganisms and plants have evolved specific mechanisms to chelate insoluble iron 

through the release of siderophores. They are low-molecular-mass, ferric-iron specific chelators which 

are excreted in most fungi in order to solubilise environmental iron (Eisendle et al., 2006; Haas, 2003; 

Heymann et al., 2002; Oide et al., 2006; Zeilinger et al., 2016). 

In both the copper and control DEGs list, two proteins (TA_131960 and TA_318290) in particular were 

both upregulated in the regenerant involved in siderophore biosynthesis and transport. TA_318290 

encoded a candidate NRPS, a putative ferrichrome synthetase. Additionally, TA_131960 encoded a 

hypothetical ferrioxamine B transporter (major facilitator super family). It shows similarity with Sit1 of 

Saccharomyces cerevisiae a transporter for ferrichrome-type siderophores (in particular ferrioxamine) 
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(Heymann et al., 2002). In the absence of iron, the transcription factor, Aft1p, activates genes encoding 

siderophore transporters such as Sit2 (Heymann et al., 2002). For both of these proteins, there were 

higher read counts in the copper compared to the control. However, the log2 fold change was greater 

in the control. There were a number of proteins that were involved with siderophore transport that 

were differentially regulated between the two groups. Including TA_41287 and TA_161189, that were 

upregulated in the control that contain domains that are similar to S. cerevisiae Fre2 and Fre3, cell 

surface metalloreducatases (Georgatsou et al., 1997). Fre2 is both a ferric and cupric reductases, 

whereas Fre3 is solely a ferric reductase. Between the regenerant and parent DEGs in the control 

dataset, there were three siderophore transporters present. Proteins TA_39549 and TA_219088, a 

siderophore transporter similar to mirB in A. nidulans, were both upregulated in the regenerant. 

Additionally, TA_86704 which also contains domains similar to the siderophore transporter mirB was 

downregulated in the regenerant. The increase in expression of these siderophore related proteins 

implies that there may be a greater iron deficiency occurring in the regenerant than the parental strain.  

Copper and iron are essential metals that are required for their catalytic and structural roles that they 

play within biomolecules. The fates of these two metals are closely related. Copper is required for iron 

homeostasis within fungi, plants and mammals and copper deficiency leads to iron deficiency as 

copper is used as chaperones for high affinity iron transport and can inhibit heme synthesis (De Freitas 

et al., 2003). Furthermore, excess of these metals is toxic, as they have the capacity to reinforce the 

production of ROS. The importance of siderophore synthesis and iron uptake systems in the resistance 

against oxidative stress have been reported in both fungi and bacteria (Li et al., 2015b; Vicente et al., 

2016). This relationship between oxidative stress and siderophore synthesis has been reported in 

Alternaria alternata (Chen et al., 2014) and also in A. nidulans (Eisendle et al., 2006). Inactivation of 

NPS6 (nonribosomal peptide synthetase 6) gene homologues led to increased sensitivity to oxidative 

stress in Cochliobolus heterostrophus (Lee et al., 2005) and to a variety of plant pathogenic fungi (Oide 

et al., 2006). Siderophore-mediated iron acquisition is required for resistance to ROS (Chen et al., 2014) 

in A. alternata. For NPS6 in A. alternata, transcript profiles revealed that siderophore biosynthesis is 

regulated by multiple transcription factors implicated in cellular resistance to ROS (Chen et al., 2014). 

Δnps6 mutant strains displayed increased sensitivity to H2O2 and other ROS-generating oxidants. When 

NPS6 is impaired, A. alternata is likely unable to obtain sufficient iron and displayed elevated sensitivity 

to oxidants at low-iron conditions. The accumulation of the NPS6 gene transcript and subsequent 

biosynthesis of siderophores are regulated by the membrane-bound NADPH oxidase (NOX), the redox 

responsive transcription factor (YAP1), and the mitogen-activated protein kinase (HOG1). Chen et al. 

(2014) postulated that the production of H2O2 by NOX may play a role in signaling and facilitating 

nuclear localisation of YAP1 and HOG1, which consequently activate the genes involved in siderophore 

biosynthesis for iron acquisition.  
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This study does need to be validated and explored further to explore the differing hypothesis of the 

cause of the tolerance of the regenerants to copper. Four genes that would be of interest are listed in 

Table 5.7.   

Table 5.7 List of differentially expressed genes for potential future validation from this RNA-seq 
dataset across both conditions (control and copper).   

Protein ID1 Putative function 
TA_321361 mRNA splicing factor ATP-dependent RNA helicase 
TA_258206 Fungal hydrophobin 
TA_318290 Non-ribosomal peptide synthetase/ferrichrome 

synthetaste 
TA_161047 Copper chaperone for superoxide dismutase (SOD1) 

1 Origin of the protein ID numbers are from Trichoderma atroviride v2.0 
https://genome.jgi.doe.gov/pages/search-for- genes.jsf?organism=Triat2 
 
Two of these genes (TA_321361 and TA_318290) were included as they were present in both 

conditions datasets and differentially regulated in the same strain over the conditions. For TA_321361 

(mRNA splicing factor ATP-dependent RNA helicase), it also had a high log2 fold change ratio of 2.50 in 

the presence of copper and 3.95 in the control. It was upregulated in both conditions, suggesting that 

the change in phenotype has led to this differential expression. TA_318290 putatively encodes a non-

ribosomal peptide synthetase (NRPS)/ferrichrome synthetaste. This upregulation of the regenerant 

across both conditions suggests that another pathway of stress tolerance may be responsible for the 

change in phenotype.  The role of NRPS’ during stress have been reported in some organisms, for 

example the inactivation of NSP6 led to an increase in sensitivity to oxidative stress C. heterostrophus 

(Lee et al., 2005). These two genes, as they were upregulated in both strains, suggest a permanent 

change in phenotype in the regenerant opposed only being differentiated in certain conditions. As 

there were only ten DEGs shared across the two conditions respectively by each strain, these genes 

warrant further investigation as the changes here appears to be as a result of the protoplasting 

process. 

TA_258206, a fungal hydrophobin (which was down regulated in the regenerant in the control dataset) 

was also included as it had a particularly high read count compared to the other DEGs. In the control 

dataset, the regenerant had  a read count of 7,037, whereas the parent had 25,950 (log2 fold change 

of -1.88). Fungal hydrophobins are generally found on the outer surface of conidia and hyphal walls, 

and may be involved in mediating contact and communication between the fungus and its 

environment (Whiteford and Spanu, 2001). Additionally, they have the ability to form a hydrophobic 

coating on surfaces of objects. Higher read counts of a differentially expressed gene are associated 

with higher levels of activity. The high read counts here suggest that this could be an important DEG 

for the parent in the control (plain PDB) dataset.    
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Finally, TA_161047 (copper chaperone for superoxide dismutase [SOD1]) has been shown to be 

important for protecting cells by chelating copper. SOD1 has been shown to be activated in response 

to excess copper (>1 µM), and is further able to protect against oxidative stress, due to 

disproportionation of oxygen radicals (Gralla et al., 1991; Smith et al., 2017). Being upregulated in the 

parent strain suggests the copper excess is observed within this strain, yet not in the regenerant. The 

regenerant may have a higher threshold for copper than then parent, before copper response 

transcription factors are activated. As this is the only DEG that has been directly linked to copper 

tolerance and acquisition, further investigation including transcription levels at higher copper amounts 

(above 1 µM) could help explain the phenotypic differences observed here. 

The combination of differentially expressed genes suggest a hypothesis that the regenerant may 

induce a general oxidative stress response for the copper, rather than the specific pathway for copper 

tolerance being activated. Exposing the regenerant to other stresses, including osmotic and oxidative, 

would allow this to be investigated in more detail. Additionally, further studies into the transport of 

iron in the regenerant and parent would also be of interest, as the relationship between siderophore 

synthesis and oxidative stress has been shown previously in other fungi.  

5.5 Conclusion  

RNA-seq was used to investigate if the observed differential cytosine methylation between the two 

strains had a role in regulating transcriptional activity as it has been reported in some other fungal 

species. This current study showed that the correlations between the differential expression level and 

the changes in methylation are imperceptible between the parental and regenerant strain. However, 

changes in transcription levels were detected between the parent and the regenerant in both sub-

lethal copper and also the plain PDB control, suggesting that there may be other regulatory factors in 

place that have an effect on gene expression resulting from protoplasting. The number of DEGs, in 

particular, within the control dataset is evidence that the act of removing the cell wall during 

protoplasting does have a non-specific effect on the transcription of the genome of this Trichoderma 

sp. “atroviride B” strain. The significance of this needs to be elucidated further, as it could have a large 

effect for the use of protoplast technology both in genetic manipulation experiments and for the use 

of stain improvement. Although this study requires further validation by means of reverse-

transcription quantitative PCR (RT-qPCR) experimentation to confirm differential gene expression, 

putatively it does show changes in gene expression that potentially could have resulted from the use 

of protoplast technology.    

As there was no correlation between cytosine methylation and the level of transcriptional activity, this 

data does call into question the biological significance of cytosine methylation in this context. There 

were changes in differentially methylated cytosines between the parent and regenerant, and cytosine 
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methylation has been shown in other fungal species to have a role in transcriptional regulation. 

Cytosine methylation takes energy and has specific proteins that are conserved between eukaryotic 

species that are involved with the process, however as it occurred at such low levels in this dataset, is 

it just a redundant mechanism? Understanding the role of cytosine methylation in a biologically 

significant context and exploring other epigenetic regulatory factors resulting from the use of 

protoplast technology does require further, intensive elucidation.  
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Chapter 6  

General discussion  

This study aimed to i) produce improved biocontrol agents with the use of protoplast technology and 

to ii) investigate the molecular mechanisms responsible for the phenotypic changes that were induced. 

Consequently, numerous protoplast regenerants were produced from bioactive Trichoderma strains 

selected from BPRC research programmes targeted at kiwifruit health for protection against the 

bacterium that causes kiwifruit canker, Pseudomonas syringae pv. actinidiae (Psa). These regenerants 

were screened and selected for pesticide tolerance to either copper sulphate or Chief® (a.i. 500 g/L 

carbendazim). Despite the use of fungal protoplast technology for strain improvement very little is 

known of the underlying genetic changes responsible for the modified phenotypes. An understanding 

of the basic genetic events that occur during protoplasting in Trichoderma may allow for greater 

advances in not only strain enhancement, but also in genetic modification experiments, not only in 

Trichoderma but other filamentous fungi.     

This study was the first to examine the consequences of protoplast regeneration through a multi-

layered, integrative ‘omics approach. This was accomplished by a number of approaches using a 

copper tolerant Trichoderma sp. “atroviride B” (FCC237/R5) as a model system to examine these 

molecular consequences. By i) producing protoplast regenerant strains and characterising the 

resultant regenerants including their bioactivity against Psa; by ii) examining the cytosine methylation 

profile of the parent and regenerant strains genome via WGBS as this methylation was hypothesised 

to be responsible for the phenotypic plasticity observed in the regenerants in lieu of large scale 

genome arrangements or recombination; and by iii) performing RNA-seq to examine the impact of 

cytosine methylation on the transcriptional activity of these strains.  

For the purpose of this study, protoplast regeneration and fusion was employed to enhance selected 

Trichoderma strains, notably to make them pesticide tolerant. This pesticide tolerance would 

potentially enable strains with improved characteristics to be more suited to incorporation into an IPM 

programme or function in the event of high levels of fungicide residues in soil. Protoplast regeneration 

in particular was shown to be an effective tool. In this study, various strains of Trichoderma that are 

currently being investigated for use against Psa in kiwifruit orchards were used to produce protoplast 

regenerants that were tolerant to pesticides used in these orchards: copper and Chief®. The use of 

protoplast fusion (both intra-strain and inter-strain) is a common technique used to enhance 

biocontrol agents, however it has been have found that by regenerating protoplasts on selection media 

allows for selection for rare genetic variants at a rate that far exceeds that within the parental 

population. This highlights the potential for the usage of protoplast regeneration in place of traditional 
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mutant forming methods such as UV or chemical mutagenesis. Additionally, the UP-PCR (universally 

primed PCR) patterns were identical between both the parent strains and the respective progeny 

suggesting no major DNA rearrangements had occurred. Others have postulated that it may be 

possible that the observed phenotypic variation may be further due to subtle changes in gene 

sequence Scala et al. (2017). However, previous work within our group on other protoplast progeny 

using MSAP analysis detected remodelling of the methylation profile, suggesting that gene expression 

through methylation changes could be the cause of the enhanced phenotypic plasticity observed in 

the regenerant variants produced.  

Due to the aforementioned changes in phenotype of the protoplast regenerants that were produced, 

the biocontrol potential of these strains were assessed to ensure there was no reduction. Across the 

three trials, there was no decrease in the biocontrol potential of the protoplast regenerants. Although 

there was a bias in the screening and selection of the protoplast progeny on the pesticide amended 

plates (i.e. was not selecting for bioactivity initially) the selected strains do not appear to have lost 

their biocontrol abilities in the Biotron seedling trials. The ability to enhance desired traits however, is 

not guaranteed as an outcome from producing protoplast progeny with numerous papers finding a 

high degree of variability in the progenies abilities (Migheli et al., 1995), which highlights the 

importance of further testing.   

Although the scoring method was changed after the results from Trial 1 to ensure it was more 

quantitative and followed the spread of the disease within the plant, there is still room for 

improvement for this bioassay. However as mentioned previously, no pathogenicity assay and 

respective scoring that reflects the whole range of pathogenic capabilities of Psa as the progression of 

the disease appears differently depending on the age of the plants and inoculation method (Vanneste, 

2017). Further research into the mode of action of these selective bioactive Trichoderma strains would 

help to characterise the resulting changes from protoplasting. Some of the DEGs that were associated 

with oxidative stress resistance could help the Trichoderma regenerant in its interaction with the plant 

and pathogen respectively. The relationship between Trichoderma and plants is very complex. 

Nogueira-Lopez et al. (2018) showed the secreted proteins of T. virens under interaction with maize 

roots were mainly involved in cell wall hydrolysis, scavenging of reactive oxygen species and secondary 

metabolism. Numerous ROS and secondary metabolites associated genes were both found to be 

differentially expressed between the parent and regenerant across both conditions which could 

potentially aid in this interaction. However, without understanding of the interaction of the fungi with 

the host plant, the full potential may not be realised.  

Chapter 4 describes the first genome wide differential cytosine methylation mapping at a single base 

resolution with deep bisulphite sequencing of a Trichoderma species and additionally between a 
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protoplast regenerant and its parent. Although it showed sparse differential methylation between the 

two strains, the majority of this differential methylation did occur within genes bodies or within 1 kb 

upstream of the gene. The low levels of methylation at each individual 5mC (averaging only 6.8% per 

5mC) was unexpected compared to previous fungal methylomes. The only other paper that mentioned 

low individual 5mC levels in fungi was Liu et al. (2012) with Aspergillus flavus. Only a very small fraction 

of the 5mCs were higher than 5% and few were higher than 15% between their two replicates. These 

5mCs in turn were non-converted unmethylated cytosines opposed to true methylcytosines. Although 

the overlap filter was applied which ensured that each 5mC must be present in at least two of the 

replicates, the purpose of these low methylation levels still require further explanation. One other 

possibility is that de novo cytosine methylation may occur transiently during the different life stages of 

this fungus and respective time point and conditions of this bisulphite sequencing may not have 

detected this. The transient nature of methylation has been shown in other fungi including the reduced 

virulence of Botrytis cinerea in in vitro culture over a period of time (Breen et al., 2016). They suggested 

that virulence was a non-essential plastic character that was regulated by cytosine methylation.  

These observations call into question the actual role of cytosine methylation within these strains and 

the biological significance of this change as it did not modulate gene expression levels (from Chapter 

5) or appear to be involved in the copper tolerance abilities of the Trichoderma regenerant strain.  

There are a few limitations to note regarding the methylome and conclusions that can be drawn from 

this data set. Firstly, it is important to note that this methylation analysis only looked at differential 

methylation between the two strains. Focusing solely on the methylation levels in the parent alone 

would allow for baseline level of methylation to be observed in Trichoderma. Additionally functional 

analysis on the genes with the highest levels of methylation would allow for further clarification on the 

role of the differential methylation. In plants, it has been shown that there is an interplay between 

cytosine methylation, gene expression and small RNA abundances, particularly in the hypermethylated 

CHH context of cytosine methylation in stress inducing conditions (Garg et al., 2015; Yaish et al., 2018). 

This suggests a more complex regulatory interaction may be in place. This has been shown within 

Neurospora crassa, as different epigenetic mechanisms have been reported to affect phenotypic 

plasticity over several key physiological processes (Kronholm et al., 2016). Cytosine methylation, 

different histone methylation (at both H3K36 and H3K4), histone deactylation and RNA interference 

pathways were all shown to have different responses over the varying environmental conditions that 

were exposed to (Kronholm et al., 2016). One of these other forms of heritable epigenetic mechanisms 

could play a role in the phenotypic plasticity observed in the protoplast regenerant.    

Finally, WGBS cannot distinguish between 5mC, 5hmC (which is an intermediate in active 

demethylation, resulting from oxidation of 5mC), or 6mA (addition of a methyl group to base 6 of 

adenine), therefore sequencing via single-molecular real-time (SMRT) sequencing from PacBio would 
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allow for a more in-depth analysis of the sequencing. Future NGS studies on this T. sp. “atroviride B” 

regenerant stain would further benefit from an annotated genome of T. sp. “atroviride B”. The 

available T. atroviride IMI206040 genome from JGI that was used as the reference genome was a 

limiting factor in both of these ‘omics analyses. A comprehensive genome assembly and annotation of 

T. sp. “atroviride B”, a recently described sister species to T. atroviride s.s. (Braithwaite et al., 2017) 

would allow investigation into potential novel genomic arrangements or genes, and would have 

allowed a better comparison between the parent and regenerant. There is a potential that some 

differential cytosine methylation may have been missed with approximately 65% mapping efficiency 

being achieved, as the alignment is only as good as the reference genome.      

The effect of the differential cytosine methylation observed between the parental and regenerant 

strain on regulating transcript activity was further investigated. As intragenic cytosine methylation has 

a varying effect on different fungal species, functional characterisation of these changes was needed 

to elucidate the effects that it may have. However, there was no significant correlation between the 

differential expression level and the observed changes in methylation from Chapter 4. There were 

changes in transcription levels between the parent and regenerant in both sub-lethal levels of copper 

(88 DEGs) and also in the control of the plain PDB (281 DEGs). The changes in DEGs profiles, especially 

regarding proteins involved in oxidative stress, such as NoxR and SOD1, secondary metabolites and 

transporters could suggest that the regenerant may induce a general stress response as opposed to 

specific pathway for copper tolerance. The number of DEGs, in particular within the control dataset is 

evidence that the act of removing the cell wall during protoplasting does have an off-target effect on 

the transcription of the genome of this Trichoderma sp. “atroviride B” strain. The significance of this 

needs to be elucidated further, as it could have a large effect for the use of protoplast technology both 

in genetic manipulation and for the use of strain improvement. In other fungal methylomes that did 

not show a clear correlation between cytosine methylation levels and activity levels of genes of interest 

it has been suggested that cytosine methylation may be a fine-tuner rather than an on-off switch of 

transcriptional activity (Jeon et al., 2015). Other epigenetic factors, including histone and chromatin 

modifications, are likely to play an important in regulating gene expression states. Although other 

epigenetic modifications have not been tested here, they would be expected to be present due to the 

interconnectedness of the epigenome. Importantly, the absence of a known correlation in this dataset 

is not evidence of the absence of the effect that cytosine methylation may have on the gene expression 

in Trichoderma species. Again, this transcriptome was only performed in one time point and the 

expression levels of genes is a dynamic process. Performing the WGBS in sub-lethal levels of copper 

would allow for further investigation as methylation has been shown to be involved in stress 

conditions.  
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As previously stated in Chapter 5, the transcriptome study does requires further validation by means 

of RT-qPCR experimentation to confirm differential gene expression levels for the selected genes of 

interest. Possible genes of interest for further investigation in expression levels and functional analysis 

include those involved in oxidative stress response, ribosome biogenesis and transporters. Further 

elucidation about the potential relationship between the siderophore synthesis and oxidative stress in 

Trichoderma, as seen in other fungi and bacteria (Eisendle et al., 2006; Lee et al., 2005; Li et al., 2015b; 

Vicente et al., 2016), could help to explain alternative mechanisms for copper tolerance as observed 

in the regenerant.  

6.1 Future directions 

Overall, future work building on this thesis would be separated into two main categories. The first 

being to investigate other regulatory features responsible for the observed phenotypic plasticity, these 

as previously mentioned, could include changes in the DNA sequence (e.g. SNPs), extrachromosomal 

elements and other epigenetic factors. However, based on Scala et al.,’s work on Fusarium and the 

relative ease of investigation SNPs compared to other more complicated epigenetic methods such as 

ChIP analysis for histone modification and interactions, potential SNPs in the promoter regions of these 

DEGs could be responsible for the plasticity observed.   

Additionally the biological significance of cystosine DNA methylation also would be interesting to 

further investigate. This would include qRT-PCR on DNA methyltransferases (DNMTases) orthologues 

found within the T. atroviride genome and Pac-Bio re-sequencing on T. sp. “atroviride B”. Being able 

to investigate the transcriptional abundance of DNMTases such as Dim-2 which is responsible for 

maintenance and de novo methylation in other fungi, over different time periods or fungal growth 

stages, would allow a more precise view of this mechanism. Pac-Bio sequencing would further allow 

for re-mapping of methylation, not just 5mC but other kinds and also allow investigations into subtle 

changes in the DNA sequence. This would dually help to look at other regulatory features as well. 

Importantly this study has raised two main future discussion points. Firstly, these observations call into 

question the actual role of cytosine methylation alterations in modulating gene expression in 

Trichoderma species. However, precise identification of this role requires further intensive 

investigation, which may eventually aid in the understanding of the complexity of this epigenetic 

mechanism. This current study showed subtle changes in differential methylation patterns between 

the parent and regenerant strain, putatively due to protoplasting, but the correlation between the 

expression levels and these differentially methylated cytosines are imperceptible via this integrated 

analysis of WGBS and RNA-seq. Other whole genome methylation studies have shown differential 

methylation between two samples, yet a lack of correlation with gene expression levels (Wang et al., 

2015; Yaish et al., 2018).There are multiple, subtle changes in the differential methylation profiles 



 123 

between the two strains here, additionally T. atroviride has orthologues of DNA methyltransferase 

genes involved in DNA methylation. However understanding the biological significance of cytosine 

methylation in this example resulting from protoplast regeneration requires further clarification.    

Secondly, it also questions the potential implications about the underlying molecular mechanisms and 

off-target changes from the use of protoplast technology. Protoplast technology is used extensively in 

both strain improvement and genetic manipulation through PEG-mediated protoplast transformation, 

in both plant and fungal systems. Concerns have previously been stated about PEG-mediated 

protoplast transformations in other filamentous fungi such as Fusarium verticillioides (Scala et al., 

2017) and Aspergillus giganteus (Meyer et al., 2003). Meyer et al. (2003) compared different 

transformation methods and showed that Agrobacterium tumefaciens-mediated transformation 

(ATMT) produced the most stable, integrative transformants compared with PEG-mediated protoplast 

transformation, electroporation and biolistic transformation. Additionally, even from the initial usage 

of protoplast-based transformation in Mycosphaerella graminicola, concerns about the significant 

variations in successful protoplast generation were observed (Idnurm et al., 2017; Payne et al., 1998). 

Different hybridisation profiles between the four transformants that were produced indicated that 

DNA was inserted into different sites in the M. graminicola genome. Scala et al. (2017) suggested that 

transformation practices “commonly used in the reverse genetics of fungi, may potentially be 

responsible for unexpected, stochastic and henceforth off-target rearrangements throughout the 

genome” (p. 1). Based on the current results being inconclusive about the mechanism behind the 

phenotypic plasticity resulting from protoplasting and other author’s hesitations, I think caution should 

be used when employing protoplast technology without further research. These differences in gene 

expression particularly in the control (plain PDB) between the parent and regenerant (281 DEGs) show 

changes that should not be there. Even between the transcript activity of the each strain solely in 

response to copper, which was not the focus of this study, showed a difference between the parent 

and regenerant in the number of DEGS (parent: 1676 DEGs between copper and control, regenerant: 

481 DEGs between copper and control).  

To conclude, this study has demonstrated the fundamental importance for exploring and 

characterising the effects of protoplast regeneration and shows the need for further research into 

these mechanisms and elucidating any potential off target changes that may arise from the use of 

protoplast technology for both strain improvement and genetic manipulation. A variety of other 

epigenetic factors could be responsible for the phenotypic plasticity that has been observed, this 

hypothesis will need further testing.  
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Appendix A 

Access to Raw Data from Bioactivity Trials 

The raw data from Chapter 3’s bioactivity data of selected Trichoderma sp. "atroviride B" parental and 

regenerant strains for their biocontrol potential against Pseudomonas syringae pv. actinidiae has been 

made available on the open access database Figshare. To access please see: 

https://figshare.com/s/3249c3c0cac39bb417bc 

 

Appendix B 

Access to Methylation Reports and Data 

B.1 WGBS differentially methylated regions (Peter Stockwell)  

Peter Stockwell’s report on his DMAP run on Trichoderma atroviride mapping for Chapter 4 has been 

made available on the open access database Figshare. To access please see: 

https://figshare.com/s/375bd259de8cf97e99d0 

B.2 WGBS differentially methylated cytosines (Darrell Lizamore) 

Darrell Lizamore’s report on his analysis on the WGBS data for Chapter 4 has been made available on 

the open access database Figshare. To access please see: https://figshare.com/s/2c652fcd03d3cab1284d 

B.3 Full list of differentially methylated cytosines (DMCs) 

Table B.1 (Full list of the 330 differentially methylated cytosines [DMCs] between the parent and 

regenerant strains through methylKit analysis completed by Darrell Lizamore) has been available on 

the open access database Figshare. To access please see: https://figshare.com/s/6d86c8e256484b0f189f  

The table contains 335 methylation points opposed to 330 due to five of the individual 5mCs being 

within overlapping or overprinting genes. The five individual 5mCs are: contig 24: 1,840,368, contig 25: 

929,609, contig 25: 1,428,802, contig 25: 2,397,592 and contig 26: 3,760,038. These five 5mCs have 

two genes associated with them. 
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Appendix C 

Access to RNA-seq Reports and full DEGs lists 

C.1 Novogene RNA-seq report, QC data and read counts  

Novogene’s report on the bioinformatics analysis of the RNA-seq data for Chapter 5 has been made 

available on the open access database Figshare. To access please see: 

https://figshare.com/s/99efe1cdf3491a55ae8c  

Additionally, the original list from Novogene containing their annotations and read counts have also 

been made available on the open access database Figshare. To access please see: 

https://figshare.com/s/cbba40b0bd898e71a28c 

 

C.2 Complete list of all upregulated genes of the regenerant strain compared 
to the parent of Trichoderma sp. “atroviride B” in the control (plain PDB) 

Table C.1 All upregulated differentially expressed genes in the regenerant strain compared to 
the parent of Trichoderma sp. “atroviride B” in the control (plain PDB). Bold entries 
are also present in the upregulated sub-lethal levels of copper sulphate dataset. 

Protein ID1  Putative function  Log2 fold 
change2 padj 

TA_79893 SWR1-complex protein 4 Inf 9.53E-14 

TA_245214 
Structural maintenance of chromosome protein 4 
(chromosome condensation complex Condensin, 
subunit C) 

Inf 1.69E-09 

TA_175873  Protein involved in sister chromatid separation 
and/or segregation / WLM domain  Inf 1.22E-08 

TA_214849 Phospholipase D Inf 8.78E-06 
TA_299841 Transcription factor TCF20 Inf 4.47E-05 
N/a - Inf 7.20E-05 
N/a - Inf 9.26E-05 

TA_298699 M6 family metalloprotease domain-containing 
protein  Inf 0.00047803 

N/a - Inf 0.0014127 
TA_12417 Fungal specific transcription factor domain Inf 0.0020767 
TA_88959 Nucleolar GTPase/ATPase p130 Inf 0.0021029 
TA_287118 Protease, Ulp1 family Inf 0.0026591 
TA_204552 DNA polymerase theta/eta, DEAD-box superfamily Inf 0.0097003 
TA_280742 FOG: Zn-finger Inf 0.014732 
TA_280830 Kinesin light chain Inf 0.016108 
TA_80465 C-type lectin Inf 0.017361 
TA_311969 No putative conserved domains Inf 0.02269 
TA_297571 No putative conserved domains Inf 0.026728 
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TA_302783 No putative conserved domains Inf 0.038047 

TA_286297 Predicted histone tail methylase containing SET 
domain Inf 0.038263 

TA_93282 No putative conserved domains Inf 0.046134 

TA_320809 Metal ion transporter CorA-like divalent cation 
transporter superfamily (Mg2+ and Co2+ transporter) Inf 0.048047 

TA_80187 Carbohydrate-binding module family 1 5.0182 1.58E-07 
TA_321361 mRNA splicing factor ATP-dependent RNA helicase 3.9453 0.00018726 

TA_282906 Predicted starch-binding protein containing an 
ankyrin repeat 2.6707 0.022994 

TA_322497 Predicted alpha/beta hydrolase BEM46 2.6315 4.11E-10 
TA_301990 Homeobox protein 2.449 5.02E-06 
TA_220486 Ankyrin repeat 2.3069 0.034465 
TA_294099 Predicted AdoMet-dependent methyltransferase 2.2923 0.0025662 
TA_138092 FAD dependent oxidoreductase 2.2593 1.65E-05 
TA_318116 DEAH-box RNA helicase 2.0016 0.0023615 

TA_318290 Non-ribosomal peptide synthetase/ ferrichrome 
synthetase 2.0007 6.52E-05 

TA_164711 

Translocon-associated protein, gamma subunit 
(TRAP-gamma)/ Sec61 translocon complex//integral 
component of endoplasmic reticulum membrane/ 
no putative conserved domains 

1.6953 0.0056976 

TA_41134 Predicted Rho GTPase-activating protein 1.6466 0.0010714 
TA_82465 High-affinity iron permease-like protein  1.6349 0.0047698 
TA_39628 Glycerol kinase  1.5705 0.00016232 

TA_286000 
Multifunctional pyrimidine synthesis protein CAD 
(includes carbamoyl-phophate synthetase, aspartate 
transcarbamylase, and glutamine amidotransferase) 

1.5228 1.65E-05 

TA_53890 Splicing coactivator SRm160/300, subunit SRm300 1.5191 0.046859 
TA_39628 Glycerol kinase  1.4545 0.0014127 
TA_131025 Putative ankyrin repeat protein  1.415 0.00098516 

TA_161189 Ferric reductase NAD binding domain//FAD-binding 
domain 1.3873 0.026052 

TA_37736 Flavin-containing monooxygenase 1.3414 1.04E-10 
TA_172844 C2H2 Zn-finger protein 1.3295 0.040437 
TA_224741 GATA-4/5/6 transcription factors 1.3289 0.0016818 
TA_80276 Rogdi leucine zipper containing protein  1.3195 0.00083746 

TA_219088 Predicted transporter (major facilitator superfamily)- 
siderophore 1.2888 6.55E-07 

TA_147452 Putative C-14 sterol reductase 1.2864 0.0010661 

TA_131960 Hypothetical ferrioxamine B transporter, major 
facilitator superfamily  1.2787 0.00015048 

TA_273644 Acyl transferase domain 1.2648 0.026858 
TA_149087 Permease of the major facilitator superfamily  1.2591 0.00036279 
TA_219144 tRNA(Ile)-lysidine synthase  1.2505 0.0038876 
TA_255242 SAM-dependent methyltransferases 1.2443 8.32E-06 
TA_302363 FOG: Zn-finger 1.2031 4.47E-07 
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TA_39549 Predicted transporter (major facilitator superfamily)- 
siderophore 1.1863 0.007024 

TA_43598 Cytochrome P450 CYP4/CYP19/CYP26 subfamilies 1.1439 0.0010185 
TA_297186 No putative conserved domains 1.1334 0.022994 
TA_152707 Long chain fatty acid CoA ligase 1.1312 0.047573 
TA_136201 No putative conserved domains 1.1185 1.87E-08 

TA_41287 Conserved hypothetical protein similar to 
ferric/cupric reductases 1.1167 0.0030951 

TA_161084 Multidrug/pheromone exporter, ABC superfamily 1.116 0.0071073 
TA_79977 Glycerol-3-phosphate dehydrogenase 1.099 1.00E-10 
TA_216039 Arrestin domain-containing protein  1.0684 0.014717 
TA_302230 Dihydrodipicolinate synthetase family 1.0673 1.48E-06 
TA_77838 Thiamine pyrophosphate-requiring enzyme 1.0608 0.005967 
TA_44659 Hypothetical protein, similar to PTH11-type GPCRs 1.04 0.0084958 
TA_184804 Isoprenoid synthase domain 1.0392 0.00053167 
TA_53935 No putative conserved domains 1.0369 0.013187 
TA_228383 Putative flavoprotein monooxygenase 1.0351 0.0037077 
TA_321537 O-methyltransferase 1.0239 0.0010185 
TA_217932 Domain of unknown function (DUF4112) 1.0224 6.07E-05 
TA_322580 Fungal specific transcription factor domain 1.0165 0.047573 

TA_299986 Molecular chaperone (small heat-shock protein 
Hsp26/Hsp42) 1.0009 0.044117 

TA_32165 Galactonate dehydratase 0.98227 4.22E-07 
TA_152848 Predicted transporter (major facilitator superfamily) 0.95419 0.020226 
TA_33258 RNA polymerase II transcription mediator 0.93922 0.0075668 
TA_317673 Metallopeptidase 0.91303 1.81E-06 

TA_29973 Aromatic amino acid aminotransferase and related 
proteins 0.91142 4.94E-05 

TA_88379 Catalase-peroxidase  0.9068 0.0020157 
TA_85736 DUFF1774 domain-containing protein  0.89724 1.04E-05 
TA_156888 NADP/FAD dependent oxidoreductase 0.89309 0.0025662 
TA_82663 Proline oxidase 0.8571 0.00036144 
TA_151976 UDP-glucose 6-dehydrogenase  0.85005 0.0049098 
TA_300082 Succinyl-CoA synthetase, beta subunit 0.84579 0.0045315 
TA_256509 RNA polymerase II, large subunit 0.83548 0.026728 

TA_283039 N-acetylglucosaminyl phosphatidylinositol de-N-
acetylase 0.82288 0.00060344 

TA_130416 5-aminolevulinate synthase 0.81254 1.05E-05 
TA_152437 Choline kinase 0.79738 0.00029312 
TA_259021 CCAAT-binding factor, subunit B (HAP2) 0.79552 0.01752 
TA_39628 Glycerol kinase  0.78817 0.0054934 
TA_302229 Oxidoreductase family, NAD-binding Rossmann fold 0.78667 0.0014892 

TA_161626 Transcription factor MEIS1 and related HOX domain 
proteins 0.77501 0.00017525 

TA_302863 Alpha/beta hydrolase fold 0.76998 0.040444 
TA_259095 No putative conserved domains 0.76757 0.044366 
TA_303080 Acetyl-CoA acetyltransferase 0.76223 4.43E-05 
TA_290150 Tyrosyl-DNA phosphodiesterase 0.76147 0.01752 
TA_229715 RTK signaling protein MASK/UNC-44 0.76069 0.0014127 
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TA_154210 Hypothetical short chain dehydrogenase/reductase 0.75329 0.0026837 

TA_301285 3-isopropylmalate dehydratase (aconitase 
superfamily) 0.75011 0.00080695 

TA_298756 Amidases 0.73506 0.023275 
TA_201537 Squalene monooxygenase 0.73097 0.00033846 
TA_302946 No putative conserved domains 0.70803 0.00040602 

TA_255394 Molecular chaperone (small heat-shock protein 
Hsp26/Hsp42) 0.70591 0.00018703 

TA_301901 No putative conserved domains 0.69443 0.00043522 
TA_300080 No putative conserved domains 0.68541 0.00036144 
TA_149409 Magnesium transporters: CorA family 0.68332 0.028009 
TA_214839 Arrestin domain-containing protein  0.6793 0.0011673 
TA_317519 Na+/H+ antiporter 0.67109 0.010621 
TA_136201 No putative conserved domains 0.66864 0.001515 

TA_281797 Predicted esterase of the alpha-beta hydrolase 
superfamily 0.66297 0.016108 

TA_90885 Nucleolar GTPase/ATPase p130 0.66176 0.013422 

TA_151594 Putative ERG4/ERG24 ergosterol biosynthesis 
protein  0.66146 0.0044688 

TA_79473 Glycosyl hydrolases family 16 0.65333 0.0019907 
TA_151822 SPX domain  0.64599 0.0075549 
TA_88066 DNA directed RNA polymerase, 7 kDa subunit 0.64356 0.029705 
TA_300540 Serine/threonine protein kinase 0.59815 0.038159 
TA_302802 NADPH oxidase (similar to NoxA) 0.59408 0.03734 
TA_297700 Ribonucleotide reductase, alpha subunit 0.59258 0.025696 
TA_300107 Coproporphyrinogen III oxidase 0.57899 0.013195 
TA_141213 Glutamate synthase 0.57874 0.0060683 
TA_302057 RNA polymerase II subunit 9 0.57528 0.028785 
TA_301188 Candidate acyl-CoA desaturase 1 0.57528 0.029705 
TA_254651 Cytochrome P450, E-class, group IV 0.57291 0.0083381 
TA_154508 Ribonucleotide reductase, beta subunit 0.56312 0.044187 
TA_133007 Candidate norsolorinic acid reductase 0.54885 0.011484 
TA_130709 Hydroxymethylglutaryl-CoA synthase 0.54273 0.017361 
TA_301217 C-4 sterol methyl oxidase 0.53317 0.016573 

TA_298259 Monooxygenase involved in coenzyme Q 
(ubiquinone) biosynthesis 0.50478 0.043264 

N/a - 0.49294 0.033823 
1 Origin of the protein ID numbers are from Trichoderma atroviride v2.0 
https://genome.jgi.doe.gov/pages/search-for- genes.jsf?organism=Triat2 
2 Log2 fold change is the log fold change in the regenerant as compared to the parent. For the proteins with Inf in 
this column, there was no transcript activity in the parent, meaning the log change is indefinite. 
N/a= non-annotated transcript  
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C.3 Complete list of all downregulated genes of the regenerant strain 
compared to the parent of Trichoderma sp. “atroviride B” in the control 
(plain PDB) 

 
Table C.2 All downregulated differentially expressed genes in the regenerant strain compared 

to the parent of Trichoderma sp. “atroviride B” in the control (plain PDB). Bold 
entries are also present in the downregulated sub-lethal levels of copper sulphate 
dataset. 

 

Protein ID1  Putative function  Log2 fold 
change2 padj 

TA_287118 Protease, Ulp1 family -Inf 5.11E-15 
TA_89308 Candidate salicylate hydroxylase -Inf 1.42E-07 
TA_256565 No putative conserved domains -Inf 6.35E-07 
TA_142959 PHD Zn-finger protein  -Inf 0.00022081 
TA_280830 Kinesin light chain -Inf 0.00030867 
TA_320247 No putative conserved domains -Inf 0.00040602 
TA_219226 Serine carboxypeptidases -Inf 0.001047 
TA_302386 Acyl-CoA synthetase -Inf 0.0014127 
TA_13549 Fungal specific transcription factor domain  -Inf 0.0020767 
N/a - -Inf 0.0037759 
N/a - -Inf 0.0037759 
TA_219427 Fungal specific transcription factor domain  -Inf 0.0068914 
TA_310443 No putative conserved domains -Inf 0.019994 
N/a - -Inf 0.020346 
N/a - -Inf 0.031542 
TA_286610 FOG: RNA recognition motif domain -Inf 0.037414 
N/a - -Inf 0.041515 

TA_302591 Predicted metal-dependent hydrolase of 
the TIM-barrel fold/Amidohydrolase -5.8877 6.89E-10 

TA_278852 No putative conserved domains -5.8664 0.037414 
TA_158569 Methyltransferase domain -5.4205 0.0046283 
TA_89308 Candidate salicylate hydroxylase -5.3314 0.0068202 

TA_29546 Predicted transporter (major facilitator 
superfamily) -5.1572 0.018357 

TA_41602 CoA-transferase family III -5.092 4.43E-05 
N/a - -4.7619 0.01139 
N/a - -4.4849 0.048047 

TA_320809 
Metal ion transporter CorA-like divalent 
cation transporter superfamily (Mg2+ and 
Co2+ transporter) 

-4.0603 0.0020767 

N/a - -3.7949 0.0043478 
TA_41510 Catechol dioxygenase N terminus -3.6724 7.73E-06 
N/a - -3.6255 0.0006192 
TA_134980 Myosin class II heavy chain -3.6032 0.015621 
N/a - -3.5517 0.026469 
N/a - -3.4922 0.00018617 
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N/a - -3.2277 7.88E-08 
N/a - -3.1587 0.026858 
TA_26612 No putative conserved domains -3.139 0.028894 
N/a - -3.1104 1.29E-05 
N/a - -3.0483 6.06E-07 
N/a - -3.0108 8.67E-06 
N/a - -2.9047 0.00048292 
TA_299543 Fungal hydrophobin -2.8848 1.04E-10 
N/a - -2.8582 0.00011567 

TA_82369 Monocarboxylate transporter/Major 
Facilitator Superfamily -2.8545 0.039864 

N/a - -2.8182 0.046134 
TA_84469 Catalase superfamily domain -2.7698 8.76E-10 
TA_246657 No putative conserved domains -2.6837 0.00023974 
TA_299415 YjeF-related domain containing protein -2.6641 5.08E-05 
N/a - -2.6559 0.0071073 
TA_319293 No putative conserved domains -2.5737 9.07E-08 
N/a - -2.4997 0.0152 
N/a - -2.4733 0.016564 
TA_131874 C2H2-type Zn-finger protein -2.4325 2.16E-05 

TA_281099 Predicted transporter (major facilitator 
superfamily) -2.3619 0.00025705 

TA_40648 NAD(P)-binding domain superfamily -2.3034 0.041088 
TA_133343 No putative conserved domains -2.2446 0.00015672 
TA_298895 No putative conserved domains -2.2324 0.00031598 
TA_256937 NmrA-like family -2.1747 6.68E-05 

TA_211641 
Nonsense-mediated mRNA decay 2 
protein/ Similarity with Ras GTPase-
activating protein domain  

-2.1705 7.75E-09 

TA_156014 Hypothetical protein, simlar PTH11-type 
GPCR -2.1634 0.020054 

TA_302640 Putative translation initiation inhibitor 
UK114/IBM1 -2.0784 1.04E-10 

TA_88456 Flavin-containing monooxygenase -2.068 9.02E-13 
TA_34073 Acyl-CoA acyltransferase -2.0637 0.008452 
TA_80187 Carbohydrate-binding module family 1 -2.0351 0.00018703 

TA_156579 Hypothetical protein, similar to PTH11-type 
GPCRs  -1.9229 0.02269 

TA_43297 Enoyl-CoA hydratase/isomerase -1.8952 0.00018233 
TA_132261 NAD(P)-binding domain superfamily -1.8933 0.04767 
TA_258206 Fungal hydrophobin -1.8834 3.66E-37 
TA_40409 Multicopper oxidase -1.8365 8.00E-10 
TA_79893 SWR1-complex protein 4 -1.8326 0.0037759 

TA_317086 Methyltransferase domain containg 
protein -1.6533 0.037084 

TA_293815 Cytochrome P450 CYP4/CYP19/CYP26 
subfamilies -1.6484 0.016188 

TA_298114 Flavonol reductase/cinnamoyl-CoA 
reductase -1.644 3.09E-06 
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TA_294283 
Multidrug resistance-associated 
protein/mitoxantrone resistance protein, 
ABC superfamily 

-1.638 0.0060473 

TA_154058 Major Facilitator Superfamily -1.6183 1.82E-06 
TA_139480 No putative conserved domains -1.6115 2.37E-06 

TA_281099 Predicted transporter (major facilitator 
superfamily) -1.5799 0.00015511 

TA_81501 Transmembrane amino acid transporter 
protein -1.5473 1.44E-06 

TA_302595 Alpha/beta hydrolase fold -1.504 0.021747 

TA_135674 Splicing factor U2AF, large subunit (RRM 
superfamily) -1.4599 0.0017082 

TA_294009 AAA+- type ATPase -1.4336 0.00050159 

TA_82022 Transcription factor of the Forkhead/HNF3 
family -1.4069 0.00040602 

TA_43454 Putative thioesterase superfamily protein  -1.3936 0.011484 
TA_38182 Alcohol dehydrogenase, class V -1.3748 0.042587 
TA_299585 Kinase-like domain superfamily -1.3683 0.0015279 
TA_159395 Putative transcriptional regulator DJ-1 -1.3536 0.0020527 

TA_294283 
Multidrug resistance-associated 
protein/mitoxantrone resistance protein, 
ABC superfamily 

-1.3463 0.0030338 

TA_156579 Hypothetical protein, similar to PTH11-type 
GPCRs  -1.3403 0.00051645 

TA_316156 1-aminocyclopropane-1-carboxylate 
synthase -1.3362 0.014057 

TA_348134 Glycoside hydrolase family 18 protein 
(TAC2) -1.2649 0.0055398 

TA_38111 Indoleamine 2,3-dioxygenase -1.246 0.0065234 

TA_298879 Predicted transporter (major facilitator 
superfamily) -1.2447 0.025756 

TA_159580 Predicted small secreted cysteine-rich 
protein (killer toxin) -1.2217 0.040038 

TA_152486 Permease of the major facilitator 
superfamily -1.2182 0.016108 

TA_298879 Predicted transporter (major facilitator 
superfamily) -1.2085 9.71E-05 

TA_219478 Fasciclin-like (FAS1) domain  -1.1869 0.049724 
TA_293429 Protein of unknown function (DUF1479) -1.1832 4.63E-08 
TA_31787 Predicted exosome subunit -1.1232 4.64E-05 
TA_297166 Alcohol dehydrogenase, class V -1.1206 0.002671 
TA_299404 Amino acid transporters -1.1155 0.00088027 
TA_33989 Acyl-CoA acyltransferase -1.0975 0.017383 
TA_48521 Major Facilitator Superfamily -1.0962 5.96E-07 
TA_302820 Acyl transferase domain -1.0859 0.005024 
TA_87384 Arylacetamide deacetylase -1.0824 0.015049 
TA_256835 No putative conserved domains -1.0752 0.00036881 
TA_292554 L-kynyrenine hydrolase -1.0454 0.0025517 

TA_41568 Mitogen-activated protein kinase kinase 
(MAP2K) -0.99562 3.98E-08 
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TA_243287 Tetratricopeptide repeat protein domain  -0.98335 0.0010185 

TA_134048 B-block binding subunit of transcription 
factor C subunit 3 -0.97559 0.0058313 

TA_299189 Berberine and berberine like//FAD binding 
domain -0.97335 7.89E-09 

TA_46050 Acyl-CoA acyltransferase -0.96939 0.00048031 

TA_286000 

Multifunctional pyrimidine synthesis 
protein CAD (includes carbamoyl-phophate 
synthetase, aspartate transcarbamylase, 
and glutamine amidotransferase) 

-0.96836 0.00071174 

TA_301229 Predicted hydrolase related to 
dienelactone hydrolase -0.96473 0.00014218 

TA_300344 Glutathione-dependent formaldehyde-
activating enzyme -0.9539 0.033799 

TA_302080 
Tetrahydrofolate 
dehydrogenase/cyclohydrolase, catalytic 
domain 

-0.91164 0.0044772 

TA_288955 A/G-specific adenine DNA glycosylase -0.89775 0.012736 
TA_146625 Stress-response A/B barrel domain -0.89588 0.0017634 
TA_132911 Cytochrome P450 CYP2 subfamily -0.89014 0.039736 

TA_302717 Peroxisomal membrane protein MPV17 
and related proteins -0.88989 0.012172 

TA_297871 HD domain containing protein   -0.88953 0.0025172 
TA_298882 N-methyltransferase -0.88828 0.00098516 
TA_297568 Glutathione S-transferase -0.88132 0.0014312 
TA_239015 Predicted glutathione S-transferase -0.8768 0.0020157 

TA_299063 Flavonol reductase/cinnamoyl-CoA 
reductase -0.86619 0.0061739 

TA_280821 Growth factor receptor-bound proteins 
(GRB7, GRB10, GRB14) -0.86501 0.032286 

TA_298990 LisH motif-containing protein -0.86226 0.0020767 
TA_50385 No putative conserved domains -0.85397 0.0012414 
TA_297051 Predicted membrane protein -0.85321 0.0057311 
TA_242764 Activating signal cointegrator 1 -0.85099 0.003603 

TA_300299 Cytochrome P450 
CYP11/CYP12/CYP24/CPY27 subfamilies -0.8508 0.0033371 

TA_259945 Basic region leucine zipper transcription 
factor  -0.84564 0.013195 

N/a  -0.84334 0.001468 
TA_320431 HpcH/HpaI aldolase/citrate lyase family -0.84092 0.036796 
TA_299725 H+/oligopeptide symporter -0.83421 9.71E-05 
TA_302097 Protein of unknown function (DUF1348) -0.81747 0.0045315 

TA_88870 Multidrug resistance-associated protein, 
ABC superfamily -0.79319 0.048047 

TA_86704 Hypothetical siderophore iron transporter, 
major facilitator superfamily -0.77831 0.007527 

TA_184981 GPR1/FUN34/yaaH family -0.77605 0.00018726 

TA_302346 Glutathione-dependent formaldehyde-
activating enzyme -0.75819 0.026728 
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TA_214328 Permease of the major facilitator 
superfamily -0.74824 0.00041764 

TA_300455 MIOREX complex component 7 (Mrx7) -0.74749 0.02269 

TA_82820 Manganese superoxide dismutase (like 
SOD2) -0.71196 0.00017525 

TA_300063 Copper chaperone (similar to Atx1) -0.70219 0.015179 
TA_157299 NAD(P)-binding domain  -0.69826 0.038832 
TA_139373 Fungal specific transcription factor domain  -0.66321 0.0015223 
TA_299214 Homeobox-like domian superfamily -0.62427 0.025291 
TA_292963 H+/oligopeptide symporter -0.61001 0.026858 
TA_299224 No putative conserved domains -0.60486 0.00463 
TA_174054 TAP-like protein (ABC transporter) -0.60408 0.0075989 
TA_140468 Nucleolar GTPase -0.60079 0.0045209 

TA_301756 Histidine phosphatase superfamily (branch 
2) -0.59076 0.013362 

TA_220620 FOG: Ankyrin repeat  -0.58897 0.044366 
TA_298232 Nucleolar GTPase/ATPase p130 -0.57438 0.037777 
TA_182407 No putative conserved domains -0.5696 0.015049 
TA_297946 Aldehyde dehydrogenase -0.51273 0.032163 

1 Origin of the protein ID numbers are from Trichoderma atroviride v2.0 
https://genome.jgi.doe.gov/pages/search-for- genes.jsf?organism=Triat2 
2 Log2 fold change is the log fold change in the regenerant as compared to the parent. For the proteins with Inf in 
this column, there were no transcript activity in the parent, meaning the log change is indefinite. Note for the 
log2 fold change values that are shown as a negative value it reads as ‘how downregulated is the regenerant 
compared to the parent’ i.e. for protein ID TA_38182 the regenerant has –1.3748 expression compared to the 
parent. 
N/a= non-annotated transcript  
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