
Nominal-scale Evolving Connectionist Systems

Michael J. Watts, Member, IEEE

Abstract— A method is presented for extending the Evolving
Connectionist System (ECoS) algorithm that allows it to explic-
itly represent and learn nominal-scale data without the need for
an orthogonal or binary encoding scheme. Rigorous evaluation
of the algorithm over benchmark data sets shows that it is able
to learn, generalise and adapt well to classification problems.
The algorithm is potentially useful for data mining tasks.

I. INTRODUCTION

Evolving Connectionist Systems (ECoS) [9], [10] are a
class of constructive artificial neural network (ANN) algo-
rithms that are capable of fast one-pass learning and are
resistant to catastrophic forgetting. They are thus well-suited
to applications where new data is becoming continuously
available, such as speech-recognition systems [7].

The original ECoS network was the Evolving Fuzzy Neu-
ral Network (EFuNN) [11] but other versions, including the
minimalist Simple Evolving Connectionist System (SECoS)
[15] have also been developed.

Many real-world problems involve nominal scale data.
Here, “nominal scale” refers to the nominal scale of Stevens’
Measurement Theory [13], where the magnitude of the
numbers have no meaning beyond their use as class labels.
Such numbers cannot, therefore, be used as input values to
ANN.

The usual approach in connectionist systems is to represent
nominal-scale variables orthogonally, where each possible
class of each variable is assigned its own input neuron. When
the variable is that class, the corresponding input is set to
unity, and all other inputs associated with that variable are
set to zero. Other approaches [4] use the probabilities of a
variable being a specific class as inputs, although it is unclear
how this scheme would deal with an open-ended data stream,
such the ECoS model was designed to deal with.

While the orthogonal representation scheme is successful,
there are several objections to this representation of multiple
classes:

1) Expansion of the dimensionality of the input space:
each class of each variable adds one dimension to the
input space. For even a small number of variables,
with a small number of classes each, this can quickly
increase the dimensionality of the data such that the
infamous “curse of dimensionality” becomes apparent.
Also, interpreting the importance of the contribution
of each of the input neurons becomes more difficult as
the number of inputs increases.

2) Independence of inputs: each input in an orthogo-
nal representation is independent of all other inputs.

National Centre for Advanced Bio-Protection Technologies, PO Box 84,
Lincoln University, Canterbury, New Zealand (phone: 64-3-325-3696; fax:
64-3-325-3864; email: wattsm2@lincoln.ac.nz).

However, each class of a particular variable is not
independent. If a variable is one class, it cannot be
another class. Orthogonal representation ignores this
restriction.

3) Changing the number of classes: as each class is
represented by an independent input neuron, it is not
possible to add additional classes to the input data at a
later time. It is desirable in some applications (such
as those where new data is becoming continuously
available, which was the motivation for the ECoS
design) that additional input classes be accommodated.
Orthogonal representation requires that additional input
neurons be added but an algorithm for doing so does
not yet exist for ECoS.

While some algorithms in computational intelligence, such
as crisp rule-based systems or decision trees, are able to
represent nominal-scale data explicitly, ANN cannot. It is
desirable for ANN to be able to learn this data, however,
especially if the ANN is being used for knowledge discovery
in a data mining application. The goal of this paper, then, is
to investigate the following two questions:

1) Is it possible to modify the ECoS algorithm so that
nominal scale data can be explicitly represented within
the structure of the networks?

2) If it is possible to do this, how well does the algorithm
perform?

The remainder of this paper describes the algorithm and
preliminary experimental investigations of a development
of the ECoS model that allows it to learn nominal-scale
data. This model is named the Nominal-scale Evolving
Connectionist System, or NECoS.

II. NECOS ARCHITECTURE

NECoS is a three neuron-layer constructive artificial neural
network that grows parts of its structure in response to
training data. The first layer is the input layer, where each
neuron corresponds to a single input variable. Each input
neuron has a set of “signal counters” associated with it, with
there being one counter for each of the classes associated
with that particular variable. Whenever an input vector is
propagated through the input layer, the signal counters for
each neuron are updated, with the signal counter for the class
observed at each neuron being incremented.

The second neuron layer is the evolving layer. This is the
layer that grows (that is, has neurons added to it) during
training. The input and evolving layer are fully connected.
The weights of the connections from the input layer to
the evolving layer represent class labels. That is, rather
than having continuous weights attached to them, as is the

0-7803-9490-9/06/$20.00/©2006 IEEE

2006 International Joint Conference on Neural Networks
Sheraton Vancouver Wall Centre Hotel, Vancouver, BC, Canada
July 16-21, 2006

2055

case with conventional ANN and other ECoS networks, the
numbers attached to these connections in NECoS are solely
class labels. The activation of the evolving layer neurons is
based on the similarity of the current input vector I to the
incoming connection weight vector. Any nominal-scale sim-
ilarity measure can be used, although the output is expected
to be in the range [0, 1], where unity means a complete match
and zero a complete mismatch. The similarity measure used
in the experiments presented in this paper is the similarity
coefficient, which is calculated according to Equation 1.

S =
nm

ni

(1)

where:
nm is the number of elements of the input and weight vector
that match, and
ni is the size of the input vector (number of input neurons).

Of the neurons in the evolving layer, only the winning
(most highly activated) neuron is allowed to propagate its
activation to the following neuron layer.

The third and final layer of neurons is the output layer.
Again, the evolving layer and output layer are fully con-
nected. The connections from the evolving layer to the
output layer are weighted with floating point numbers. The
activation of the output layer neurons is calculated by a
simple multiply and sum operation over the evolving layer
neuron activations and the evolving to output layer connec-
tion weights.

This architecture is shown in Figure 1. This particular
NECoS network deals with three input variables, one output
variable, and has two neurons in the evolving layer. The
values of the signal counters are shown next to each input
neuron: this shows that the first input variable has three
classes associated with it, the second has two and the third
four.

Fig. 1. Architecture of NECoS

In structure and function, the NECoS network is quite
similar to the Grow and Learn (GAL) network [1]. However,
GAL was restricted to learning binary input classes, and
there was no learning in the connections. NECoS, on the
other hand, learns both by adding neurons and by modifying
connection weights, as described in the following section.

III. NECOS LEARNING

The learning algorithm for NECoS networks is based heav-
ily upon the standard ECoS algorithm. The only difference
between the two is the manner in which learning is affected
in the input to evolving layer of connections. The overall
learning algorithm is described below.

• Propagate the input vector I through the network.
• Find the most highly activated (winning) neuron j and

its activation Aj .
• IF Aj is less than the sensitivity threshold Sthr

– Add a neuron.
• ELSE

– Evaluate the errors between the calculated output
vector Oc and the desired output vector Od.
∗ IF the absolute error over the output is greater

than the error threshold Ethr

· Add a neuron.
– ELSE

∗ Update the connections to the winning evolving
layer neuron.

• Repeat for each training vector.
When a neuron is added, its incoming connection weight

vector is set to the input vector I, and its outgoing weight
vector is set to the desired output vector Od.

In the standard ECoS algorithm, the amount the incoming
weight vector moves closer to I is determined by the learning
rate one parameter (η1), where a higher η1 corresponds to a
greater change. It is desirable to maintain this semantic in
the NECoS training algorithm. Whereas the standard ECoS
learning algorithm alters the weights in the input to evolving
layer so that the neuron is spatially closer to I, in NECoS this
would not make sense, because nominal scale weights do not
describe a position is space. Instead, the learning algorithm is
based on the concept of making the incoming weight vector
more similar to I by changing some of the connection labels
to match the labels in I, where the degree to which the
incoming weight vector is changed is determined by η1. This
is achieved by the following algorithm:

• Find each connection Wi,j that does not match the cor-
responding element c of Ii, that is, find the mismatching
incoming connections of j. Let nm be the number of
mismatched connections, m be the set of mismatched
connections, and Ic be the set of mismatched input
vector class labels.

• For each mismatched connection mc find, from the input
neuron signal counters, the corresponding frequency fc

of the target category for that input.

2056

• Rank the mismatching connections mr in descending
order of fc.

• Calculate the number of connections to change nc =
dη1nm.

• For each of the top nc connections in mr, set Wi,j to
Ii

Thus, the mismatching connections are changed to equal
the most frequently occurring class labels, thereby making
the incoming weight vector more similar to the current input
vector.

The weights from neuron j to output o are modified
according to Equation 2.

Wj,o(t + 1) = Wj,o(t) + η2(Aj × Eo) (2)

where:
Wj,o(t) is the connection weight from j to output o at time
t

η2 is the learning rate two parameter for the evolving to
output layer connections
Aj is the activation of j

Eo is the signed error at o, as measured according to Equation
3.

Eo = Od − Ao (3)

where:
Od is the desired activation value of o

Ao is the actual activation of o.

IV. EXPERIMENTS

The purpose of the experiments described in this section
was to evaluate the performance of the NECoS algorithm,
and to compare it to that of its two immediate progenitors,
SECoS and EFuNN.

Each of the data sets used in these experiments were
sourced from the UCI Machine Learning Repository [8].

A. Lenses Database

The purpose of the first experiment was simply to see if
the NECoS algorithm works. The contact lenses database
was selected for this task, which deals with the problem
of deciding which type of contact lenses to fit to a patient.
The database consists of twenty-four examples, where each
example represents four input variables, corresponding to the
age, spectacle prescription, presence of astigmatism and tear
production rate of the patient. There are three, two, two
and two classes respectively. The output is three classes,
specifying hard, soft, or no contact lenses.

Due to the small size of the database, bootstrapping, or
resampling with replacement [5] was performed over the
data. A NECoS network was trained over each sample of the
data and its performance, in the form of overall percentage
correctly classified, Cohen’s Kappa statistic, and the number
of neurons added during training, were evaluated over the
sample. One thousand resamplings were performed and the
mean and standard deviation of the performance metrics
calculated. The training parameters used are presented in

Table I. For comparison, SECoS and EFuNN networks were
also trained and tested in the same manner. The results over
all three types of networks are presented in Table II.

TABLE I
TRAINING PARAMETERS FOR LENSES DATA.

Parameter Value
Sensitivity Threshold 0.5

Error Threshold 0.25
Learning Rate One (η1) 0.5
Learning Rate Two (η2) 0.5

TABLE II
ACCURACIES OVER LENSES DATA.

Percent Kappa Neurons
NECoS 88.78/7.65 0.80/0.14 12.62/1.70
SECoS 62.4/10.40 0.25/0.15 15.94/2.48
EFuNN 56.67/11.15 0.27/0.12 10.49/2.81

A two-tailed t-test (p = 0.001) showed that the perfor-
mance of NECoS is significantly better than that of both
SECoS and EFuNN. Also, NECoS had significantly fewer
evolving layer neurons than SECoS but significantly more
than EFuNN. These results show that the NECoS algorithm
is able to classify examples based on categorical input values,
in this case more accurately than either SECoS or EFuNN.

B. Servo Database

The servo data set is a simulation of a servo motor. The
data set has a total of 167 examples. There are four input
variables, with five, five, six and five classes, respectively.
The output is the time required for the servo to respond
to a commanded change in position. This is a function
approximation problem, and it was expected that NECoS
would not perform well on this type of problem. This is
because the activation of the evolving layer neurons, and
hence the activation of the output neurons, is based on the
degree of similarity between the current input vector and
the exemplar vectors as stored within the input to evolving
layer connection weights. Therefore, the number of discrete
values an evolving layer neuron can take is equal to the
number of input neurons. In contrast, a SECoS network using
orthogonal encoding of inputs can assume a larger number
of states due to the larger number of input variables used
and the use of continuous-valued connection weights in the
input-to-evolving layer of connections.

For this experiment, the data set was randomly divided
into two sets: a training and testing data set, consisting of
80% of the examples, and a validation set, consisting of the
remaining 20%. For each run, two thirds of the examples in
the training and test set were randomly selected as training
data and the remaining third retained as testing data. A
NECoS network was trained, and its accuracy evaluated over
both the training and testing data sets. This was repeated one
thousand times for each set of parameters, and ten different
sets of parameters were investigated. At the end of the
ten thousand runs, the network with the best generalisation

2057

performance (that is, the network that performed the best over
the testing data) was identified and its performance over the
validation set determined. This methodology was based on
the procedures recommended by Flexer [6] and by Prechelt
[12]. For comparison purposes, the same methodology was
repeated with SECoS and EFuNN networks.

The parameter sets that yielded the best generalisation
accuracies are presented in Table III. The accuracies are
presented in Table IV, where both the Mean Squared Error
(MSE) and R2 metric are presented. The mean and standard
deviation of the performance measures are presented.

TABLE III
TRAINING PARAMETERS FOR SERVO DATA.

Parameter NECoS SECoS EFuNN
Sensitivity Threshold 0.7 0.7 0.75

Error Threshold 0.025 0.025 0.05
Learning Rate One (η1) 0.7 0.7 0.75
Learning Rate Two (η2) 0.7 0.7 0.75

TABLE IV
ACCURACIES OVER SERVO DATA.

Recall Set
Train Test Validation Neurons

NECoS R2 0.974/0.026 0.246/0.462 0.341 63.79/3.48
MSE 0.119/0.121 1.788/0.629 1.159

SECoS R2 0.997/0.003 0.378/0.326 0.498 65.18/3.40
MSE 0.012/0.011 1.770/0.590 0.053

EFuNN R2 0.987/0.017 0.520/0.223 0.182 74.52/4.03
MSE 0.054/0.072 1.985/0.741 3.092

As expected, the performance of NECoS was significantly
worse (two tailed t-test, p = 0.001) over the testing sets that
that of both SECoS and EFuNN. SECoS was significantly
more accurate than NECoS over both the training and testing
data sets and more accurate over the validation set than
EFuNN. NECoS was, however, significantly smaller than
both SECoS and EFuNN. None of the networks performed
particularly well over this data set.

C. Mushrooms Database

The mushrooms database has been previously used in the
testing of neural network rule extraction algorithms [2], [3]
and is also sometimes used as a benchmark for ANN learning
algorithms [16]. The problem is to classify mushrooms as
either edible or poisonous based on their attributes. There are
a total of 8124 examples, with there being twenty-two input
variables, describing such things as odor of the mushroom,
the mushrooms stalk and shape and the colour of the cap. The
number of classes per variable ranges from two to twelve.

The same procedure as described above for the servo prob-
lem was used again, with there being ten sets of parameters
investigated and one thousand resamplings done for each
parameter set, for NECoS, SECoS and EFuNN.

The parameter sets that yielded the best generalisation
accuracy for the three types of networks are listed in Table
V. The accuracies, as percentages correctly classified and
the Kappa statistic, are presented in Table VI. Again, the

mean and standard deviation of the performance measures
are presented.

TABLE V
TRAINING PARAMETERS FOR MUSHROOM DATA.

Parameter NECoS SECoS EFuNN
Sensitivity Threshold 0.1 0.8 0.5

Error Threshold 0.6 0.1 0.025
Learning Rate One (η1) 0.5 0.25 0.5
Learning Rate Two (η2) 0.5 0.25 0.5

TABLE VI
ACCURACIES OVER MUSHROOM DATA.

Recall Set
Train Test Validation Neurons

NECoS % 99.76/0.15 99.74/0.18 99.63 44.3/3.34
κ 0.995/0.003 0.995/0.004 0.993

SECoS % 99.48/0.28 99.45/0.32 100.0 22.13/1.36
κ 0.990/0.006 0.989/0.006 1.0

EFuNN % 100.0/0.0 100.0/0.0 100 795.09/16.91
κ 1.0/0.0 1.0/0.0 1.0

While the accuracies of EFuNN were significantly greater
(two tailed t-test, p = 0.001) than SECoS and NECoS, and
the accuracies of SECoS significantly greater than NECoS,
the performance of both SECoS and NECoS was very close
to that of EFuNN. The difference in accuracy between
EFuNN and NECoS over the testing sets, for example,
was less than 0.3%. Significantly, EFuNN achieved this
performance at the cost of complexity, with there being
more than eighteen times as many neurons added to EFuNN
during training as there were to NECoS. When the added
complexity of the EFuNN architecture is considered, the
EFuNN networks had, on average, thirty-seven times as many
connection as NECoS. While the accuracy of NECoS was not
quite as good as the performance reported in some of the
literature (both [3] and [16] report accuracies of 100%, as
was achieved by EFuNN), these results do show that NECoS
was able to both learn the training data and generalise to
the testing data. One matter of concern was the size of
the NECoS networks compared to the size of the SECoS
networks - on average, NECoS had twice as many neurons in
its evolving layer as SECoS, although far fewer than EFuNN.

D. Adaptation of NECoS

A central principle of the ECoS paradigm is the ability to
adapt to new data [9] without catastrophic forgetting. This
final experiment was intended to investigate the adaptive
ability of NECoS.

The experiments were carried out over the mushroom data
set (Subsection IV-C), with the same parameters as listed
there. Whereas the training data in the previous experiment
was presented to NECoS in one single training session, in
this experiment the training data was split into two equal-
sized sets, labelled Train A and Train B. A NECoS network
was firstly trained over Train A, and its performance over
Train A and B, and the testing set evaluated. The network
was then further trained on Train B and its performance

2058

again evaluated. Of particular interest was how well it
adapted to the new training data, and how much (if at all)
it forgot Train A. As the purpose of this experiment is to
test adaptation, the accuracies over the validation data set
were not assessed. Neither was a comparison with SECoS
and EFuNN carried out: previous work [15] has already
demonstrated that SECoS and EFuNN can readily adapt to
new data without catastrophic forgetting.

The results are presented in Table VII, where it can be
seen that not only was NECoS able to adapt to the new
data, but it did so without forgetting of the old data. In
fact, the accuracies over data set Train A were significantly
higher after further training on the Train B set, as were the
accuracies over the testing data set. These results clearly
show that NECoS is capable of additional learning without
catastrophic forgetting.

TABLE VII
NECOS ADAPTATION ACCURACIES OVER MUSHROOM DATA.

Recall Set
Train Set Train A Train B Test Neurons
A % 99.63/0.24 99.56/0.27 99.56/0.27 37.25/2.95

κ 0.993/0.004 0.991/0.005 0.991/0.005
B % 99.76/0.18 99.79/0.15 99.75/0.17 44.41/3.33

κ 0.995/0.004 0.996/0.003 0.995/0.003

V. CONCLUSIONS AND FUTURE WORK

Two questions were posed in the Introduction to this paper.
Firstly, can nominal scale data be explicitly represented in
an ECoS network? The answer to this question is that it is
possible to construct an ECoS network that deals explicitly
with and learns nominal scale data. The second question was
how well does the algorithm work? The preliminary exper-
imental results show that the algorithm is able to perform
well over classification problems but does not perform well
over the function approximation problem that it was tested
on.

Several avenues of future research may be pursued. Firstly,
investigation of similarity measures more sophisticated than
the simple similarity coefficient used here is a relatively
simple task with the potential to yield improved performance
of the NECoS algorithm. Investigating the removal of the
“winner takes all” constraint on the activation of the evolving
layer neurons is also desirable, as this may allow NECoS
networks to achieve better performance over function
approximation problems: by allowing multiple neurons to
contribute, a smoother approximation of continuous outputs
can be achieved.

Development of an algorithm for automatically adding
input classes during training is also a possibility. Finally,
an algorithm for extracting the knowledge captured by the
NECoS, in the form of either crisp rules or decision trees,
is also being developed. This will allow NECoS to be used
for knowledge discovery and data mining.

REFERENCES

[1] Alpaydin, E. GAL: Networks that grow when they learn and shrink
when they forget. International journal of pattern recognition and
Artificial Intelligence, 8(1):391-414. 1994.

[2] Duch, W., Adamczak, R. and Krzysztof, G. Extraction of Logical Rules
from Neural Networks. Neural Processing Letters. 7:211-219. 1998.

[3] Duch, W., Adamczak, R., Grabczewski, K. and Jankowski, N. Neural
methods of knowledge extraction. Control and Cybernetics 29(40.
2000

[4] Duch, W., Grudzinski, K. and Stawski, G. Symbolic features in neural
networks. 5th Conference on Neural Networks and Soft Computing,
Zakopane, June 2000, pp 180-185.

[5] Efron, B., and Tibshirani, R.J. An introduction to the bootstrap.
Monographs on Statistics and Applied Probability, No. 57. Chapman
and Hall, London. 1993.

[6] Flexer, A. Statistical Evaluation of Neural Network Experiments: Min-
imum Requirements and Current Practice. In: Trappl, R., Cybernetics
and Systems ’96, Proceedings of the 13th European Meeting on
Cybernetics and Systems Research. Austrian Society for Cybernetic
Studies, 1005-1008. 1996.

[7] Ghobakhlou, A. and Watts, M. and Kasabov, N. Adaptive Speech
Recognition with Evolving Connectionist Systems. Information Sci-
ences, 156:71-83. 2003.

[8] Hettich, S., Blake, C.L. and Merz, C.J. UCI
Repository of machine learning databases.
http://www.ics.uci.edu/∼mlearn/MLRepository.html. University
of California, Irvine, Dept. of Information and Computer Sciences.
1998.

[9] Kasabov, N. The ECOS framework and the ECO learning method for
evolving connectionist systems. Journal of Advanced Computational
Intelligence, 2(6) 195-202. 1998.

[10] Kasabov, N. Evolving Connectionist Systems : Methods and Ap-
plications in Bioinformatics, Brain Study and Intelligent Machines.
Springer Verlag, 2002.

[11] Kasabov, N., Evolving Fuzzy Neural Networks - Algorithms, Applica-
tions and Biological Motivation, in Methodologies for the Conception,
Design and Application of Soft Computing, Takeshi Yamakawa and
Gen Matsumoto, editors, World Scientific 271-274. 1998.

[12] Prechelt, L. A Quantitative Study of Experimental Evaluations of
Neural Network Learning Algorithms: Current Research Practice.
Neural Networks 9(3) 457-462. 1996.

[13] Stevens, S. S. On the theory of scales of measurement. Science, 103,
677-680. 1946.

[14] Watts, M.J. Fuzzy rule extraction from simple evolving connection-
ist systems. International Journal of Computational Intelligence and
Applications. 4(3) 1-10. 2004.

[15] Watts, M.J. and Kasabov, N. Simple evolving connectionist systems
and experiments on isolated phoneme recognition. In Proceedings
of the the First IEEE Conference on Combinations of Evolutionary
Computation and Neural Networks, San Antonio, May 2000, 232-239.
2000.

[16] Wilson, D.R. and Martinez, T.R. The general inefficiency of batch
training for gradient descent learning. Neural Networks, 2003.

2059

