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Abstract

Quantitative methods for pest risk assessment combine sound statistical tools with sound

ecological theory to convert scienti�cally relevant data into decision-relevant information.

This thesis investigated a quantitative method for pest risk assessment called pest pro�le

analysis (PPA). PPA is a new methodology that is based on the premise that the risk of

invasion by crop pests into new areas can be predicted by analysing regional insect pest

assemblages (also known as pest pro�les). Regional pest assemblages comprise the presence

or absence of recognised pest species in each region of the world. The analysis involves

clustering these regions based on similarities between their pest pro�les. PPA assumes

that co-occurrence of pest species in a region is the outcome of a non-random structured

process driven by biotic and abiotic characteristics of the region. The most commonly

used clustering technique for grouping regional pest assemblages is a self-organizing map

(SOM), which is an arti�cial neural network algorithm. Two other clustering methods that

have also been used for PPA are hierarchical clustering (HC) and k-means. The main aim

of this thesis was to perform a thorough validation test of the PPA approach. To do so, I

�rst analysed the sensitivity of SOM PPA to changes in the number of species used as input

data. The results showed that SOM PPA outputs (weight values that are interpreted as risk

indices) were quite sensitive to changes in the input data. However, when the risk indices

were transformed into ranked lists of species, the ranks were signi�cantly less sensitive

and hence potentially more useful for pest risk assessment. I assessed the validity of the

groups (clusters) of regions obtained from a SOM PPA by applying an external validation

measure, the ζ diversity metric. The ζ metric was used to quantify similarities between

pest pro�les within clusters. The results showed it can be used for assessing the uncertainty

associated with PPA outputs. I also conducted a temporal study of distributional changes

of crop pests worldwide to measure the degree of biotic homogenization that had occurred
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in the regional pest pro�les over 10 years. The major �ndings were that homogenization is

certainly occurring, but it is in an inceptive stage and pest assemblages still remain strongly

regionalized. I made a detailed comparison between the SOM, HC and k-means clustering

methods to identify the one that produced the most accurate predictions. Unexpectedly,

HC performed best. This appears to contradict the main hypothesis behind clustering

world's regions according to their pest pro�les because the expectations were that since

SOM and k-means create a higher number of highly similar clusters, they would provide

better predictions. The results of this research showed that PPA can help to prioritise

risks of invasion by insect pests. It provided a new measure of uncertainty to improve

communication of model results to decision makers. The results highlighted the urgent

need for research to identify the determinants of insect pest species' distributions around

the globe, and to implement that knowledge into PPA and biosecurity decision making.
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Chapter 1

General introduction

1.1 Biological invasions and Biosecurity

The book `The ecology of invasions of animals and plants' by Charles S. Elton in 1958

is considered to have set the basis of the Invasion Biology �eld. It described the global

distributions of seven invasive species and analysed, for the �rst time, the relationships

between the species' populations and the habitat patterns that were disrupted by them

(Arnold B . Erickson, 1960).

Since then, invasive species have been considered by many sub-disciplines in ecol-

ogy, biology and biogeography and, due to this multidisciplinarity (Hulme, 2011), they

have also been the source of extensive debate. There have been two main groups of inva-

sion biologists divided by the taxa they study; those concerned with animal invasions and

those concerned with plant invasions (Blackburn et al., 2011). Each of those groups has

adopted di�erent invasion model frameworks, resulting in controversy about the adequate-

ness of the terminology and the limits of the concepts and de�nitions. Basically, animal

ecologists traditionally have followed Williamson's invasion framework (see (Williamson,

1989; Williamson & Fitter, 1996; Williamson, 2006)) while plant ecologists have followed

Richardson's classi�cations (Richardson et al., 2000, 2011). E�ort has recently been made

(Blackburn et al., 2011) to bring together the animal and plant invasions ecology tradi-

tions to create a general invasion ecology framework. Another notable dispute in invasion

biology has concerned the political and ethical standpoints towards the invasive species

problematic (see Warren (2007) for a critique of the language and practice in the �eld,

then Richardson, D.M., Py²ek, P., Simberlo�, D., Rejmánek, M., Mader (2008) for the

response and then Warren (2008) for the counter-response).

In this thesis I adopt the terminology of Blackburn's (2011) proposal for an uni�ed
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framework for biological invasions and de�ne an alien species as a non native species

that has been transported beyond the limits of its native range by human mediated dispersal.

The arrival of an alien species can result in di�erent degrees of colonization. One widely

accepted system to characterize the potential colonization success is the naturalization-

invasion framework (Py²ek et al., 2004; Richardson & Py²ek, 2012) that excludes previous

binary de�nitions of invasiveness. Instead, each alien species is placed somewhere along a

continuum from casual invader to successful invader depending on the invasion stage (or

barriers) that they have overcome. Nevertheless, it is also informative to de�ne degrees of

invasiveness according to colonization success. (See Table 1.1.)

Table 1.1: De�nitions of the levels of invasiveness used in this thesis. Adapted from Blackburn et al.
(2011)

Level of invasiveness De�nition

Casual Alien species transported out of its native range
either in captivity or quarantine. When released into
the novel environment it is incapable of surviving
for a signi�cant period.

Naturalized/Established Alien species with individuals surviving in the wild in
the location where they were introduced, either
reproducing or not. A wild population might be sustained.

Invasive Alien species with self-sustaining populations at multiple sites
in the wild, with individuals spreading
signi�cantly from the original point of introduction.

Many ecological factors have been shown to in�uence the success of alien invasions

(Williamson, 2006). They have been summarized in Pimentel et al. (2005) as: 1) lack of

natural enemies in the new habitat, 2) development of new host or parasite associations

3) presence or absence of other predators 4) degree of disturbance of the newly colonized

habitat, and 5) degree of adaptability of the species. Much attention has also been paid

to invasion consequences or impacts. An invasive species is likely to cause some impact

that will alter the established order of the invaded ecosystem (Vitousek et al., 1996), and

potentially stimulate some physical and structural changes in those ecosystems where it is

introduced (Mack et al., 2000; Simberlo�, 2011).

Invasive species may or may not be considered pests, which depends on the level

of impact they cause. It seems that there are no particular traits that can describe a

species as a pest; `each pest is a pest for its own reasons' (Williamson & Fitter, 1996).
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According to the International Union for Conservation of Nature (IUCN), a species is a

pest if it causes either other species to decline or the structure and function of natural

and productive ecosystems to be altered, resulting in economic impacts and/or decreases

in biodiversity (IUCN/SSC, 2000; Worner, 1991). Therefore, in this thesis I follow IUCN

criteria and de�ne a pest as an invasive species that can either cause economic damage or

a decrease in biodiversity in the environment where it has been introduced.

Evaluating ecological impacts is complex and subject to strong biases (see Blackburn

et al. (2014) for one of the latest and more comprehensive developed frameworks for impact

classi�cation). Consequently, the true ecological impact of a pest remains rather imprecise

(Roques, 2012; Vilà, 2013). In contrast, economic impacts have often been more precisely

quanti�ed. Even though most estimates are approximate and are often underestimates

(Pimentel et al., 2001; Bradshaw et al., 2016), they need to be taken very seriously. In the

United States, introduced species are estimated to cause up to USD$120 billion per year of

environmental damage and loss of production (Pimentel et al., 2005). An example of how

extraordinarily costly one single species can be, is the red imported �re ant (Solenopsis

invicta), which is native to South America and has become widespread in southern USA

and Caribean (CABI, 2007). Pimentel's (2005) report approximates the damage caused

by this ant as USD$1 billion per year in the US. For New Zealand, the overall economic

damage due to invasive species was estimated in NZD$2 billion per annum in Barlow &

Goldson (2002) and Clout (2002). More recently, the total economic cost of pests to New

Zealand including the downstream economic impacts from pest-related output losses has

been calculated as NZD$2.128 billion, or 1.20% of New Zealand's gross domestic product

(Giera et al., 2009). Analogously, in Europe, the estimate for invasive species impact is

of USD$13 billion per year, but this �gure is probably an underestimate, as potential

economic and environmental impacts are unknown for almost 90% of the alien species in

Europe (Hulme, 2009). Ultimately, the economic impacts of invasive species are especially

expensive for developing economies (Vitousek et al., 1996), which are disproportionally

vulnerable to invasions by agricultural pests (Paini et al., 2016).
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1.1.1 Biosecurity: Policies, Agencies and Pest Risk Analysis

Modern societies depend on productive economies which rely on trade, market access and

tourism. Together, global movements of people and goods facilitate the spread of pest

species. Human assisted dispersal of pest species occurs through the direct imports and

exports of commodities, and also as pests hitch-hiking in containers, other conveyances,

and even on humans themselves. Regardless of entry pathway, the arrival of a pest causes

a change to the recipient nation's economic well-being, due to both its arrival and to the

e�orts taken to mitigate its impact (Perrings et al., 2005; Warziniack et al., 2013).

Most trading nations have recognized the invasive species problem and have estab-

lished regulated trade procedures to mitigate it. The United Nations' Food and Agri-

culture Organization (FAO) and the World Trade Organization (WTO) have produced

several worldwide agreements and standards, such as the International Plant Protection

Convention (IPPC). The IPPC is an international agreement on plant health, currently

with 180 adhering countries, which aims to protect cultivated and wild plants by prevent-

ing the introduction and spread of plant pests. To support the IPPC, there are currently

nine regional plant protection organizations (RPPOs) around the world. Some of these

are the European and Mediterranean Plant Protection Organization (EPPO), the Inter-

African Phytosanitary Council and the North American Plant Protection Organization

(NAPPO) (all are listed in https://www.ippc.int/en/partners/regional-plant-protection-

organizations/). Some countries also have their own national plant protection organisa-

tions (NPPOs). Examples are New Zealand's biosecurity agency regulators within the New

Zealand Ministry for Primary Industries and Australia Biosecurity within the Australian

Department of Agriculture, Fisheries and Forestry. Those two agencies are commonly

used as an example of what would be desirable elsewhere, mainly due to their rigorous

management of phytosanitary risks from international trade (Bacon et al., 2012).

The term `biosecurity' refers to a coordinated approach, generally led by a particular

governmental authority or network of authorities, to understand and manage natural and

human-caused threats to a range of biological resources (Quinlan et al., 2015). The main

aim of biosecurity authorities is to make informed decisions based on trade-o�s between

preventing species invasions while sustaining or facilitating trade levels and tourism. To

do so, agency managers have to make important choices. Given the large number of items
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that cross the border each day (in New Zealand that number is estimated at 170,000 a

day (Silcock & Guy, 2013)) biosecurity programs cannot target all alien species. Instead,

border controls, policies and quarantine procedures have to be e�ciently prioritised and

implemented.

To help achieve such e�ciencies, the IPPC published the International Standards

for Phytosanitary measures (ISPMs), which are part of the FAO global programme of

policy and technical assistance in plant quarantine. This programme makes available to

FAO members and other interested parties, standards, guidelines and recommendations

to achieve international harmonization of phytosanitary measures. Some interesting tools

provided by the ISPMs are the general Phytosanitary principles for the protection of plants

and the application of phytonsanitary measures in international trade (ISPM 01) (Interna-

tional Plant Protection Convention (IPPC), 2006a), the Framework for pest risk analysis

(ISPM 02) International Plant Protection Convention (IPPC) (2007) and the pest risk anal-

ysis for quarantine pests (ISPM 11) (International Plant Protection Convention (IPPC),

2004). All the ISPMs were republished in 2016 and are publicly available at the FAOs

website (https://www.ippc.int/en/core-activities/standards-setting/ispms/).

1.1.1.1 Pest Risk Analysis

Pest risk analysis (PRA) is divided into three stages: initialization, assessment of the risk,

and management. During initialization, the pests and pathways that require PRA are

identi�ed. Then, pest risk assessment determines the status of each species as a pest,

its associated entry pathways, and characterizes its likelihood of entry, establishment,

spread and economic importance. The third stage; pest risk management, involves the

development, evaluation, comparison and selection of strategies for reducing risk. The

geographical area to which a PRA applies is usually a country, but can also be an area

within a country, or a more extensive area covering all or parts of several countries.

Pest risk analysts conduct PRA. They investigate the presence of the pest in di�er-

ent places on the biosecurity continuum, including pre-border, at-border and post-border.

They have to seek answers to questions of where the pest is currently present, where could

it get into the future, what are its possible entry pathways and the time it might take to

spread (Low-Choy, 2015). Therefore, risk analysts gather a lot of complex and uncertain
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data from global databases (see McGeoch et al. (2012) for a review of uncertainty present

in invasive species listings) and interpret it, within restricted time frames, to extract the

information needed for decision making. PRA are science-based evaluations that usually

involve reviewing and interpreting articles and databases but not scienti�c experimenta-

tion. Usually risk analysts draw on scienti�c literature to make inferences regarding the

components of the overall risk(McLeod, 2015). Many quantitative and qualitative tools

have potential to assist pest risk analysts with this complex process.

While academic research has focused on re�ning quantitative predictive models for

risk assessment (some examples are (Liu et al., 2011; Singh et al., 2015; Wattenbach et al.,

2006)), policy improvements have centred upon better elicitation of expert knowledge based

on risk-scoring methods (Leung et al., 2012). Qualitative methods generally consist of

subjective statements (often verbal classi�cations) regarding elements contributing to risk

before providing a conclusion on the overall risk (McLeod, 2015). However, expert-based

risk assessment is known to be highly biased by the experts morals, beliefs and by their self-

perceived objectivity (Burgman, 2005). On the other hand, quantitative methods aim to

obtain numerical estimations of the risk, using deductive statistical approaches. However,

quantitative models for PRA are often perceived as too complex and uncertain by pest

risk analysts and can also be biased by subjective knowledge when data for risk factors

are unavailable or uncertain (McLeod, 2015). Both quantitative and qualitative PRAs

and their combinations can be improved, although it is unrealistic to expect a completely

automatated quantitative method that makes expert input redundant and can be used

under any circumstance for any pest (Sutherst & Bourne, 2008; Sutherst, 2014).

1.1.1.2 Quantitative approaches to PRA

At what scale biosecurity research should focus remains di�cult to decide (McNeely et al.,

2001; Hulme, 2003) since the understanding of what scale ecological processes such as inva-

sion, spread and species production (speciation) actually happen is still limited (Ricklefs,

2004; Lewinsohn et al., 2005; Lawton & Gaston, 1989). However, in a globalized world

where humans have removed major biogeographic barriers to species disperal, the methods

developed to aid PRA need to have a global scope. Similarly to the global perspective re-
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quired in invasion biology (Lewinsohn et al., 2005; Chown, 2015), there is a biogeographic

approach to pest risk assessment.

In general terms, quantitative biogeographical approaches to pest risk assessment

(also known as `pest risk mapping' (Venette et al., 2010)) aim to prioritize geographic

domains suitable for the establishment of pest species (insects, weeds or diseases). Pest risk

mapping produces models, lists and maps that can help answer questions of what species

are of concern, where these species occur, how they may spread if they were introduced and

what their potential impacts might be. These models, maps and tools should have strong

fundamental ecological and geographical foundations. Some reviews of biogeographical

approaches to pest risk assessment can be found in Sutherst (2014) and Leung et al.

(2012), along with model comparisons in Sutherst & Bourne (2008) and also a list of the

identi�ed �aws and directions for improvement in Venette et al. (2010).

In this thesis I am interested in the subset of the quantitative biogeographical ap-

proaches to pest risk assessment, speci�cally the creation of lists of pest prioritization

based on the study of global invasive pest assemblages.

1.2 Global invasive assemblages analyses

An assemblage of species is the group of species occupying a particular site. In the con-

text of agricultural plant protection, the species of interest are crop pests, either insects,

weeds or other pests and pathogens such as fungi, virus and bacteria. Therefore, the pest

assemblage of a region is the group of pest species that co-occur in that region.

1.2.1 Pest pro�le analysis (PPA)

The study of pest assemblages to inform biosecurity decisions commenced with the pub-

lication of Worner & Gevrey (2006) and Gevrey et al. (2006). In these two papers, the

available data on global insect pest assemblages was used to infer the risk of establishment

of a list of approximately 800 insect pest species in a region of interest, which was New

Zealand. While Worner & Gevrey (2006) focused on providing a list of species ranked by

their potential threat to New Zealand, Gevrey et al. (2006) presented the methodology in

a generalizable form and suggested its potential application to other regions of interest,
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and potentially to other taxa. The authors used the terminology `pest pro�le' of a region

as an exact synonym of `pest assemblage' of a region, and it has been since then used in-

terchangeably across all related literature (Table of terminology and synonyms in Chapter

2, section 2.1).

The rationale behind pest pro�le analysis is that a pest assemblage implicitly con-

tains information about a region's biotic and abiotic conditions. Biotic conditions that can

in�uence the composition of the assemblage inlcude, for example, the agricultural crops

grown in the region and in�uential abiotic conditions include the region's climatic charac-

teristics (Eyre et al., 2012). Other regional characteristics that could in�uence assemblages

include the tectonic activity, historical trade paths (Ricklefs, 2004), structure and quantity

of trade, and the biosecurity measures applied. It is assumed that regions with similar

pest pro�les will also have similar biotic and abiotic characteristics that allow the species

to establish. Therefore, comparing pest assemblages between regions can provide insights

about which regions may exchange species with high probabilities of establishment.

Worner & Gevrey (2006) and Gevrey et al. (2006) analysed pest assemblages using

a clustering method known as self-organizing map (SOM) (Kohonen, 1982, 1990). Section

1.2.2.1 contains a more detailed introduction to the SOM algorithm. The SOM method is

especially useful for clustering highly dimensional data and has been be applied to many

�elds of scienti�c research (see Oja et al. (2003) for a detailed review of applications),

such as �nance (Deboeck & Kohonen, 1998), genomics (Törönen et al., 1999), natural

language processing (Honkela, 1997) and numerous areas of ecological sciences (Chon,

2011) where it has successfully described environmental or species spaces by clustering

sets of environmental variables.

In this thesis I will refer to the approach of clustering pest pro�les as a method for

inferring risk of invasion as pest pro�le analysis (PPA). PPA has been used by many

studies since Worner & Gevrey (2006) and (Gevrey et al., 2006). Paini et al. (2010a)

used PPA to raise the alarm about biosecurity risks from internal trade within the US,

and Paini et al. (2011), tested the PPA approach on fungal pathogens for �rst time, using

arti�cially simulated data.Watts & Worner (2012) studied assemblages of bacterial crop

diseases and Vänninen et al. (2011) used PPA for updating a list of alien invertebrate pest

species in Finland. More recently, Singh et al. (2013) extended the application of PPA to
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plant parasitic nematodes, and Singh et al. (2015) incorporated the PPA approach into a

quantitative PRA method called pest screening and targeting (PeST). Broader extensions

were also made by Morin et al. (2013) who applied PPA for the �rst time to studying and

prioritizing of weeds and by Eschen et al. (2014) who applied it to assemblages of bacteria

and nematode pests.

1.2.2 Methodological approaches to PPA

Clustering is the process through which the data is divided into meaningful groups and

it is usually one of the �rst steps in analysing data (Davies & Bouldin, 1979). The aim

of clustering is partitioning the data into groups such that the observations in a cluster

(group) are more similar to each other than observations in di�erent clusters (Mangiameli

et al., 1996). In cluster analyses, there are no prede�ned classi�cations and the clustering

algorithm has the task to divide the data into natural groups. Algorithms that perform

clustering are called unsupervised learning algorithms.

1.2.2.1 Introduction to Self-Organizing maps

A self-organizing map (SOM) is an algorithm that belongs to the family of arti�cial neural

networks. It is an information-processing paradigm inspired by the functioning of verte-

brate brains (Kohonen, 2013). A SOM neural network is composed of two layers of neurons:

the input layer and the output layer. Let the data be organized in a matrix where the rows

are the input patterns (observations) and the columns are the input neurons (variables).

The output layer is represented by a rectangular grid with m ∗ n neurons (also called cells

or units) laid in a hexagonal lattice which have meaningful neighbourhood relationship. A

SOM organizes information spatially, mapping similar input patterns onto adjacent output

neurons. The SOM algorithm can convert complex, non-linear statistical relationships be-

tween high-dimensional data items into simple geometric relationships to be visualised in a

low-dimensional display (Kohonen, 1982, 2001), thus performing both vector quantization

and vector projection. A SOM projects the vectors in the input space onto the output

space while attempting preserve the topological relationships observed in the input space.

The SOM is trained iteratively through a large number of epochs. An epoch is the

processing of all the input patterns once, thus each input pattern will be processed as many
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times as the number of epochs. Each neuron of the input layer, has as many weights as the

input patterns, and can thus be regarded as a vector in the same space as the patterns.

Output neurons are initialized randomly (are given a set of coordinates (weights) in

the multidimensional output space) and then they are trained. When the SOM is trained to

an input pattern, the distance between that speci�c pattern and every neuron in the output

space is calculated. Then the closest neuron in terms of distance (Euclidean distance) is

de�ned as the winning neuron, and the pattern is mapped onto that winning neuron. As a

consequence, the neuron moves toward the input pattern position in order to improve its

representation and this movement is translated into a change in its coordinates (weights).

The extent of this movement is controlled by a parameter usually referred to as learning

rate.

In order to preserve the topology of the input patterns in the output space, it is

essential to correct both the position of the wining neuron and also the position of its

neighbouring neurons. Thus, the network is progressively organized (unfolded) with certain

parts of the input space being represented by certain subsets of neighbouring neurons. The

�rst part of the training phase is the coarse training or unfolding, where the neurons of

the output space are spread out and pulled towards a general area of the multidimensional

space, thus de�ning its general shape. The second is the �ne tuning phase, where the

SOM matches the neurons as far as possible to the input patterns, thus decreasing the

quantitization error.

If a SOM has been successfully trained, then patterns that are close in the input

space will be mapped to neurons that are close (or the same) in the output space. This

quality is called topology preserving.

At the end of the learning process, there will be a di�erence between an input pattern

and the neuron it is mapped to. This di�erence is called the quantization error and it is

used as a measure of how well the neurons represent the input patterns. Another metric to

evaluate the performance of the SOM algorithm is the topological error, which measures

the average number of times the nearest and the second nearest neurons of an observations

in the input space do not correspond to adjacent neurons in the output space (Kiviluoto,

1996). The higher the topological error, the poorer representation of the input layer onto

the output layer.
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is an unsupervised learning algorithm �rst described in MacQueen (1967) that produces

crisp clusters through a partitional clustering procedure. Partitional clustering attempts

to directly decompose the data into a set of unrelated clusters by attempting to determine

an integer number of partitions that optimise a certain criterion function (Halkidi et al.,

2001). The procedure follows a simple and easy way to classify a given data set through

a certain number of clusters (assume k clusters) �xed a priori. The main idea is to de�ne

k centroids, one for each cluster. K-means clustering aims to partition n observations

into k clusters in which each observation belongs to the cluster with the nearest mean,

serving as a prototype of the cluster. The cluster centroids are initialized by placing them

as far as possible from each other. Then, each input pattern is associated to its nearest

centroid. When all the input patterns have been associated, the �rst step is completed

and an early grouping is done. At this point k new centroids are recalculated. After these

k new centroids are obtained, a new binding has to be done between the same data set

points and the nearest new centroid, as a result the k centroids change their location step

by step until no more changes occur.

The algorithm proceeds (Adapted from Watts & Worner (2009)):

1. Select k seeds as initial centroids. These can be vectors that are generated randomly,

or vectors that are selected from the data set being clustered.

2. Calculate the distance from each cluster centroid to each seed.

3. Assign each observation to the nearest cluster.

4. Calculate new cluster centroids, where each new centroid is the mean of all vectors in

that cluster.

5. Repeat steps 2 to 4 until a stopping condition is reached.

A key assumption of k-means is that the algorithm expects the data clusters to be

spherical and of same size, so that the assignment to the nearest cluster center is the

correct assignment.

1.2.2.3 Introduction to Hierarchical clustering methods

In a more recent study (2014), Eschen et al. used hierarchical clustering to �nd similarities

in their regional pest pro�les. Unlike k-means, hierarchical clustering proceeds successively
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by either merging smaller clusters into larger ones, or by splitting larger clusters. The result

of the algorithm is a tree of clusters, called dendrogram, which shows how the clusters are

related. By cutting the dendrogram at a desired level, a clustering of the data items into

disjoint groups is obtained (Halkidi et al., 2001).

There are many variations of hierarchical clustering algorithms, and they can be

roughly divided into:

Agglomerative. These step-wise algorithms merge results from the previous step by merg-

ing the two closest clusters into one.

Divisive. These step-wise algorithms split results from the previous step by splitting a

cluster into two.

1.3 Global invasive assemblage diversity

Community ecology studies the diversity, abundance and composition of species in commu-

nities. Traditionally it focused on the processes that determine the species composition of

local communities but eventually recognised that the composition and diversity of species,

even at a local scale, depended fundamentally on the composition and diversity of the

regional pool of species (Vellend, 2010). The species pool is a concept rooted in island bio-

geography and refers to all the species that are able to disperse to a focal site, regardless

of their ability to tolerate the site's environmental conditions (Cornell & Harrison, 2014).

The environmental �lter is the relationship between a species and the environment, which

acts as a selective force by ruling out species that are unable to tolerate particular environ-

mental conditions. Species that are able to survive at a site may have certain phenotypic

traits that re�ect their environmental tolerance, and these traits may be shared among

other species in the community. Consequently, species at a site exhibit phenotypic con-

vergence in key ecological dimensions compared to a null expectation based on randomly

sampling species from the larger species pool (Kraft et al., 2014).

A very general theory of community dynamics is that species either disperse from a

regional pool to a particular community, or are created through the evolutionary process

of speciation. The relative abundances of these species in the community is determined

by deterministic �tness di�erences between individuals of di�erent species (selection), ran-
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dom changes in species abundances (drift) and ongoing dispersal (Vellend, 2010). Thus,

community assembly is in�uenced by processes operating at a wide range of spatiotem-

poral scales, and local communities are assumed to re�ect the cumulative e�ects of these

processes (HilleRisLambers et al., 2012).

1.3.1 Diversity of herbivore insect assemblages

The global compositional variation of non-native regional insect assemblages has been

shown to di�er from the global compositional variation of native insect assemblages by

Liebhold et al. (2016), who also noted that the invasive species compositions di�er from

what would be expected from island biogiography predictions (Liebhold et al., 2016; Burns,

2015). This suggests strong e�ects of human mediated dispersal and entry pathways.

For insect crop pests, the history of invasions is intimately linked to the history of

agriculture. Crop pest regional assemblages are strongly correlated with the distribution

of their host plants (Bebber et al., 2014a), which in turn may also be related to the climate

suitability of the region (Bacon et al., 2014; Baker et al., 2005).

Agricultural landscapes are highly disturbed. As Pimentel et al. (2005) noted, 90%

of the food consumed by humans is being provided by only �fteen plant species. Conse-

quently, agricultural landscapes across the world are very homogenized and environmental

and ecological di�erences between cultivated regions in di�erent parts of the world have

been greatly reduced. When a crop pest is introduced to a new and remote area, the

expected mismatch between its phenotypic characteristics and the local ecological condi-

tions expected to act as an environmental �lter, have been greatly attenuated (Guillemaud

et al., 2011).

But the phenomenon of homogenization has not only occurred among crops. Re-

cently, some wide-scale studies on community composition for insect (Chown, 2015; Ku-

ussaari et al., 2010; Vellend et al., 2007) and other crop pests (Bebber et al., 2014a) have

shown how the composition of crop pest assemblages around the world are homogenizing

too (Bebber et al., 2014b).
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1.3.2 Biotic Homogenization of crop pest assemblages

Biotic homogenization (Vitousek et al., 1996; McKinney & Lockwood, 1999; Lockwood

& McKinney, 2001) is the phenomena through which the ongoing arrival of non-native

species and the habitat disturbance caused by agricultural human practices (Vellend, 2010)

increases the spatial and temporal similarity in the taxonomic composition of global biota.

The immediate consequence of biotic homogenization is global loss of biodiversity.

Olden & Po� (2003) noted empirical studies of biotic homogeneity were increasing,

but there were knowledge gaps in its theoretical aspects, thus they drafted a �rst conceptual

model that comprised 14 theoretical ecological scenarios and mechanisms through which

species invasions and extinctions led to di�erent trajectories of biotic homogenization.

Olden (2006) emphasized the lack of studies that examined and quanti�ed the homoge-

nization process for communities at multiple spatial and temporal scales. Many studies

have found evidence of biotic homogenization and its links to agriculture for local commu-

nitites, sometimes to the larger extents of countries or regions. For example, Vellend et al.

(2007) found homogenization patterns in forest plant communities in North America and

Europe due to agricultural land use and (Kuussaari et al., 2010) reported a decrease in

diversity of butter�ies in intensively cultivated landscapes with simpli�ed land structure.

However, Olden & Po� (2003) also reported some studies that questioned the existence of

biotic homogenization. An example was Marchetti et al. (2006) on community composi-

tion of freshwater �sh communities in California which reported biotic di�erentiation, or

an increase in community diversity after the introduction of exotic species.

To our knowledge, two studies have measured biotic homogenization at a global

extent. Bebber et al.(2014a) studied the distributional changes of 424 crop pests and

pathogens over the years 2000 to 2014, and McKinney (2004) studied the plant inventories

of 20 localities in the United States to measure whether exotic plants increased the simi-

larity of those localities. Both Bebber et al. (2014a) and McKinney (2004) concluded that

when considering exotic species only, their data showed signs of biotic homogenization.

Usually, biotic homogeneity is quanti�ed either by comparing community composi-

tion measured by a particular similarity index over time or by comparing distances between

communities in species space using clustering or ordination (Olden & Po�, 2003; Rahel,

1990). Comparing species assemblages using a similarity index is equivalent to calculating
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their compositional β diversity.

1.3.2.1 Measures of diversity

Beta diversity encompasses a variety of indices and concepts that re�ect di�erent compo-

nents of between-sites species variability, or species turnover along environmental, spatial

or temporal gradient (Whittaker, 1972; Vellend, 2001). There is a huge variety of indices

that measure species richness at a spatial level, most of which represent slightly di�er-

ent natural phenomena (Tuomisto, 2010), therefore it is important to clearly de�ne for

any particular study the expression used to calculate alpha, beta and gamma diversity

(Anderson et al., 2011).

In this thesis we refer to β diversity as species compositional variation between sites,

α diversity as the number of di�erent species occurring at one site, and γ diversity as the

number of di�erent species in the regional species pool (Whittaker, 1972), (Figure 1.2).

Figure 1.2: Conceptual plot of the α, β and γ diversities for three sites

Two problems associated with β diversity metrics are that community pairwise sim-

ilarity indices assume site independence, and they can only compare two sites at a time.
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Thus, when such metrics are used to compare larger groups, they are calculated by averag-

ing the pairwise metrics across sites. To circumvent these issues, Hui & McGeoch (2014)

proposed the zeta diversity (ζ) metric. Zeta diversity (ζ) is a measure of compositional

β diversity de�ned as the number of species shared between any i number of sites or as-

semblages. Zeta is a simple similarity measurement that reconciles existing descriptors of

species incidence and spatial turnover (Hui & McGeoch, 2014) and overcomes the main crit-

icisms posed against the pairwise similarity measures such as Jaccard, Sorensen (Sørensen,

1948) and Shannon (Shannon, 1948). The ζ metric is una�ected by site-dependence, and

enables more than two sites to be compared at once. This multi-site comparison feature

allows di�erent orders (numbers of features compared at at time) of ζ to describe di�erent

levels of similarity that can be very useful to understand the relationship between groups.

In this thesis I use the metric ζ as the standard measure of α and β diversity.

1.4 Uncertainty in Ecological Modelling

1.4.1 Model based decision frameworks

Ecological modelling has two primary objectives. The �rst is to better understand nature,

and the second is to use this improved understanding to help decision making. One dif-

�culty of applying modelling to decision making is dealing with uncertainty. Uncertainty

in modelling comes from several sources as described in the most important uncertainty

taxonomies and reviews. Walker et al. (2003) de�ned a full framework and conceptual

basis to integrate the concept of uncertainty arising from scienti�c modelling into decision-

making processes. A policy is de�ned as `a set of actions taken by an administration to

control the system, to help solve problems within it or caused by it, or to obtain bene�ts

from it (...) Policies are intended to help achieve goals'. In the context of biosecurity,

the same rationale applies. Goals like controlling and monitoring invasive species, are

strongly controlled by agencies and governmental institutions, and, are the responsability

of policy-makers, who sometimes ask for help and advice from applied scientists. Walker

et al. (2003) synthesised the policy-making process in the following multi-stage iterative

process. Uncertainty is incorporated during all the stages of the process to come up with

the so called uncertainty matrix. This matrix is a tool for the analysts to identify and char-
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Reference from literature Types of uncertainty considered

(United States Environmental
Protection Agency, 1997)

Scenario uncertainty, parameter uncertainty,
model uncertainty

(Morgan & Henrion, 1990), (Hof-
stetter, 1998)

Statistical variation, subjective judgement,
linguistic imprecision, intherent randomness
disagreement, approximation

(Funtowicz & Ravetz, 1990) Data uncertainty, model uncertainty, com-
pleteness uncertainty

(Bedfort & Cooke, 2001) Aleatory uncertainty, epistemic uncertainty,
parameter uncertainty, data uncertainty,
model uncertainty, ambiguity, volitional un-
certainty

(Huijbregts et al., 2001) Parameter uncertainty, model uncertainty, un-
certainty due to choices, spatial variabil-
ity, temporal variability, variability between
sources and objects

(Bevington & Robinson, 2002) Systematic errors, random errors
(Regan et al., 2002) Epistemic uncertainty, linguistic uncertainty
(Walker et al., 2003) Location: context uncertainty, model uncer-

tainty, level uncertainty
(Maier et al., 2008) Data uncertainty, model uncertainty, human

uncertainty

Table 1.2: Uncertainty typologies from the literature - 1990 to 2008(Modi�ed from Ascough et al. (2008))

acterize the potential uncertainty in model-based decision processes, and it can be used to

assess uncertainty in the same fashion as sensitivity (Matott et al., 2009). Drawing from

Walker et al. (2003) 's framework, Wattenbach et al. (2006) developed a speci�c decision

making process framework applied to ecosystem models.

Clearly, one of the biggest challenges in assessing uncertainty in any kind of ecolog-

ical or environmental modelling is homogenizing the terms and concepts (Uusitalo et al.,

2015a; Aggarwal, 2009). Di�erent taxonomies of uncertainty have been framed by di�er-

ent authors, and the confusion is great. The work published by Ascough et al. (2008)

brought together most of the research regarding uncertainty in environmental decision-

making processes and summarized all these di�erent de�nitions in a comprehensive table

(Table 1.2).

The principal idea that emerged from the Ascough et al. (2008) review is that Rea-

gan's (2002) taxonomy of uncertainty could be summarized into the two main groups of

reducible and irreducible uncertainty types. Uncertainty that is reducible or epistemic

includes: knowledge uncertainty, which comprises process understanding, and model un-

certainty; linguistic uncertainty, which arises from the vagueness or ambiguity of de�nitions
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and wordings; and decision uncertainty which is very important and is frequently under-

estimated by the policy assessors. There are also categories of uncertainty that are not

reducible and arise from sources that we have no control of. It can also be called random

or stochastic uncertainty and is related to the chaotic and unpredictable quality of natural

and social processes.

1.4.2 Reducing versus showing uncertainty

Two strategies can be adopted when dealing with uncertainty from a modelling point of

view: reducing uncertainty whenever possible and showing uncertainty whenever it is ir-

reducible. For implementing both strategies and for reducing uncertainty, they are highly

case speci�c. A detailed review of methods for assessing uncertainty in predictive methods

can be found in Lustig (2016). For showing irreducible uncertainty, a standard framework

has been prepared in the form of an ISO document (Joint Committee for Guides in Metrol-

ogy (JCGM), 2008) in which clear guidelines are given on how to express magnitudes and

measurements that contain aleatory uncertainty.

1.5 Research questions and objectives of this thesis

There is a need for quantitative approaches to help the decision making process in the

context of pest risk analyses. In this introductory chapter I presented the current state

of existing models for pest pro�le analysis, and the conceptual ecological principles and

theories behind the study of regional pest assemblages. I also reviewed current approaches

to incorporating uncertainty in modelling to assist decision-making. However, some of

these areas need further study, development and validation.

1.5.1 Validation and methodological improvements for PPA

Since the �rst applications of SOM in ecology, several studies have been instrumental for

illustrating their robustness and validity (Chon et al., 1996; Lek & Guégan, 1999; Giraudel

& Lek, 2001). Also, Paini et al. (2010b) demonstrated that SOM PPA is a tool insensitive to

data errors up to 20%. However, all clustering techniques have methodological problems

related to their data assumptions. The main issues across clustering methodologies are
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choosing the number of clusters (Mirkin, 2013) and validating the clustering results (Halkidi

et al., 2001).

To validate clustering results, they would ideally be compared to reality, but often

the required information is either unavailable or insu�cient to both train and validate the

models. A common solution is to validate using arti�cially created, error-free data (Zurell

et al., 2010). For SOM PPA this sort of validation was carried by Paini et al. (2011)

by simulating a virtual world with several invasibility parameters for its regions, and the

comparing the SOM PPA rankings to those of the �nal invasions of the species. However,

it is necessary to test the performance of the method against real observed values. Thus,

we propose to carry out a model validation for SOM PPA using real occurrence data and

compare the predictions of the model to the observed real values.

The SOM algorithm has advantages compared with the other main classi�cation

techniques of k-means and hierarchical clustering (HC) that make it particularly useful

for analysing ecological data. Its biggest asset is the ability to capture non-linear rela-

tionships. Non-linear relationships between observations and variables will often occur in

highly dimensional datasets which means some variables will be irrelevant or redundant,

and present outlier observations (Mangiameli et al., 1996; Park et al., 2003) However, it

is uncertain if SOMs are always the best clustering method for ecological data. Watts &

Worner (2009) compared the SOM PPA to k-means algorithm and it seemed k-means per-

formed better, both computationally and quantitatively. Other research studies have used

other clustering algorithms such as hierarchical clustering (Eschen et al., 2014) to perform

PPA. It is my aim to understand which of these three clustering methods performs better

with data such as global pest pro�les.

Besides problems relevant to all clustering methods, some speci�c issues of SOMs

have been identi�ed by recent work. They can be summarized as: 1) when global prevalence

of a species is small, the SOM PPA apparently is not very accurate at generating good

rankings for the species (Singh et al., 2013) 2) regions with pest pro�les comprising fewer

than eight species are signi�cantly more unstable or di�cult to predict (Paini et al., 2011)

3) the analysis can be a�ected by sampling artefacts; and 4) direct comparison of risk

levels between di�erent databases may not be possible (Worner et al. unpublished).

Finally, SOM PPA is an applied modelling methodology that currently lacks any
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measure of `goodness' or uncertainty, and it would bene�t from a measure of uncertainty

to better communicate its results to its intended end user, the risk assessor.

1.5.2 Study of the compositional diversity of regional pest assemblages

The PPA methodology is based on fundamental ecological principles such as the assemblage

composition and the drivers behind community assembly. The main ecological hypothesis

behind PPA is that two regions with similar pest pro�les share environmental and historical

conditions that enable them able to support similar assemblage of pest species. Therefore,

identifying similar regions may help to identify regions that are most likely to succesfully

exchange pest species in the future, which would assist pest risk assessment.

This hypothesis is based on robust community ecology principles, but remains em-

pirically untested. In this research I explored the composition of global pests assemblages

in terms of composition and diversity and describe their changes over time. By quantifying

their levels of biotic homogenization in this way, I aim to better describe the ecological

assembly mechanisms on which the PPA hypothesis is based.

1.5.3 Speci�c objectives

Objective 1: To perform a sensitivity analysis of SOM PPA in order to clarify the issues

that other authors have found when using the method.

Objective 2: To validate the SOM PPA outputs by explaining results of the clustering

process through the lens of community assembly.

Objective 3: To compare the performance of di�erent clustering methods for PPA and

�nd which method performs best according to the nature of the data.

Objective 4: To test the validity of inferring risks of invasion from clustering of pest

pro�les.

Objective 5: To measure levels of biotic homogenization among global crop pest pro�les.
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1.6 Thesis structure

1.6.1 Chapter 2: Sensitivity analyses of SOM PPA

Chapter 2 examines how variation between datasets in�uences the ouptuts of SOM PPA.

The validity of using SOM weights and SOM ranks (model outputs) is tested by applying

SOM PPA to 341 datasets and assessing the variability of its outputs.

1.6.2 Chapter 3: Cluster validity and uncertainty assessment of SOM

PPA

Chapter 3 explores the value of incorporating an extra step in the SOM PPA method which

consists of calculating a cluster validation metric (ζ diversity) that assesses the goodness

of cluster of the SOM PPA results. It also proposes the zeta diversity metric as a measure

of uncertainty communication for SOM PPA.

1.6.3 Chapter 4: Calculating the degree of Biotic Homogenization for

PPA

Chapter 4 analyses the degree of homogenization among global insect pest pro�les. The

analysis compares the degree of similarity between regional pest pro�les in two di�erent

years and uses ζ diversity as a new measure of quanti�cation of biotic homogenization.

1.6.4 Chapter 5: The informative power of clustering pest pro�les:

Comparison of methods

Chapter 5 evaluates the PPA predictive power and a comparison of clustering methods.

Three di�erent clustering approaches (SOM, k-means and hierarchical clustering) are ap-

plied to a global dataset of pest occurrences in the year 2006 and then validated with an

equivalent dataset that documents the same pests' distributions observed in year 2014.

1.6.5 Chapter 6: General discussion

Chapter 6 discusses all results reported in the thesis, their theoretical and practical impli-

cations and their contribution to addressing the research topics outlined in the objectives.

It also provides concluding remarks and recommendations for future research.
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Chapter 2

Self-organizing maps for analysing pest pro�les: Sen-

sitivity analysis of weights and ranks

Notes

This chapter is published as:

Roigé, M., Parry, M., Phillips, C., Worner, S.P (2016). Self-organizing maps for analysing

pest pro�les: Sensitivity analysis of weights and ranks, Ecological Modelling, 342, 113-122.

Abstract

Self organizing maps for pest pro�le analysis (SOM PPA) is a quantitative �ltering tool

aimed to assist pest risk analysis. The main SOM PPA outputs used by risk analysts

are species weights and species ranks. We investigated the sensitivity of SOM PPA to

changes in input data. Variations in SOM PPA species weights and ranks were examined

by creating datasets of di�erent sizes and running numerous SOM PPA analyses. The

results showed that species ranks are much less in�uenced by variations in dataset size

than species weights. The results showed SOM PPA should be suitable for studying small

datasets restricted to only a few species. Also, the results indicated that minor data pre-

processing is needed before analyses, which has the dual bene�ts of reducing analysis time

and modeller-induced bias.

Keywords

Self-organizing maps, pest pro�le analysis, clustering, prioritisation, invasive pest assem-

blages
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2.1 Introduction

Over recent decades there has been considerable research on biological invasions and their

impacts (Barlow & Goldson, 2002; Blackburn et al., 2014; Hulme, 2003; McGeoch et al.,

2006). Such interest has caused invasion ecology to become a multidisciplinary �eld, bring-

ing together fundamental ecology, conservation, environmental management, border con-

trol and biosecurity (Kolar & Lodge, 2001; Perrings et al., 2005; Vitousek, 1990). Despite

its diversity, there is consensus about the need to develop proactive invasion prevention

strategies rather than reactive pest management programs.

An important tool for preventing invasions is pest risk analysis, which draws together

several sub-disciplines of quantitative and qualitative science. In most developed countries,

biosecurity and quarantine agencies use pest risk analysis to help make decisions about

which species and entry pathways to regulate (EPPO, 2004; International Plant Protection

Convention (IPPC), 2006b; Leung et al., 2012).

Self-Organizing Maps for Pest Pro�le Analysis (SOM PPA) is a quantitative method

intended to assist pest risk analysis, which was �rst described by Worner and Gevrey

(2006). A pest pro�le is the assemblage of insect pest species in a region, and a SOM is

an arti�cial neural network algorithm that performs unsupervised classi�cation (Kohonen,

1982). In SOM PPA, pest pro�les for all geopolitical regions of the world are collected

and their similarity is analysed. Regional pro�les clustered together are assumed to share

similar biotic and abiotic conditions that have allowed their respective species assemblages

to become established. The output of SOM PPA is a list of species ranked according to the

level of the risk they present to the region under consideration. A species that is present

in many of the regions which cluster with the target region but is absent for the target

region, could establish in the target region if introduced. The level of risk is indicated by

SOM species weights, which are explained below.

Due to the algorithmic nature of SOM, the validity of its output depends on the

quality of the input data. Species occurrence databases that contain records at a global

scale inevitably include errors, which may invalidate the SOM PPA. Previous research

has investigated the sensitivity of the method to certain data problems: �rst, Paini et al.

(2010a) measured the method's sensitivity to data errors (presences recorded as absences

and vice versa) and demonstrated that SOM PPA is insensitive to errors in the data up
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to 20%. Paini et al. (2010b) showed the predictive value of SOM PPA when applied to a

simulated dataset.

Nevertheless, issues about using SOM PPA remain (Worner et al., 2013). SOM

PPA uses weights as a proxy for species risk of establishment, but directly comparing

SOM weights for the same species between studies is invalid because weight values change

whenever di�erent input data are used. This variability casts doubt upon the capability of

SOM species weights to be used as indicators of species establishment risk. Weights change

because they are m-dimensional coordinates in the m-dimensional space (where m is the

number of species) created by the SOM algorithm. Thus, when input datasets contain

di�erent species, the m-dimensional spaces and coordinates will also di�er, and the same

species will receive di�erent weights for the same target region. An alternative is to use

species' relative ranks to generate the output risk lists (Paini et al., 2010b). However, it

remains uncertain if relative ranks generally show more stability between input datasets

than species weights.

An example can help explain the weights variability problem. In Worner and Gevrey

(2006), the highest ranked species (rank 1) was Planococcus citri, which received a SOM

weight of 0.93. The second ranked species (rank 2) was Icera purchase which had weight

0.92. When the analysis was run with updated data from 2014 (unpublished data), the

global distributions of some species had changed, and Planococcus citri obtained a weight

of 0.82 and Icera purchase obtained 0.71. Nevertheless, their ranks remained �rst and

second.

Another issue is how regions with few species, and species that are present in very

few countries, impact SOM PPA results. In the simulated data test of Paini et al. (2011),

SOM PPA had di�culty distinguishing species that could establish in regions with few

species from those which could not. Thus, they suggested that species-poor regional pest

pro�les should be excluded from the analysis. Similarly, Singh et al. (2013) found that

species which were present in few regions had signi�cantly lower weights than widespread

species, which suggested that weight (and rank) could be correlated with species' worldwide

prevalence. This, however, is controversial since Watts & Worner (2009) showed otherwise.

A third issue is that species occurrence datasets are highly dimensional, which puts

SOM PPA at risk of the `curse of dimensionality' (Breiman, 2001). Each new species in
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the input dataset represents a new dimension for the algorithm to account for, but also

provides more information for the algorithm to learn from. Thus, there may be trade-o�s

between number of species and the accuracy of SOM weights and ranks. Knight et al.

(2011) tentatively explored the e�ects of data dimensionality (number of species) on SOM

PPA results and obtained contradictory results.

The overall aim of our study was to investigate the sensitivity of the SOM PPA

outputs to changes in input data. Speci�c objectives were to assess: the relationship

between weight variability and number of species in the dataset, the relative stability of

weights and ranks, and the relationship between weight, rank and global species prevalence.

We created datasets of di�erent dimensionality and studied changes in weights and ranks

of each species.

2.2 Methods

2.2.1 Terminology

SOM PPA terminology is sometimes confusing. In table 2.1 we aggregated model nomen-

clature used across the di�erent studies cited in this paper, and chose one name for each

feature.

2.2.2 The self-organizing map algorithm

A SOM is an arti�cial neural network �rst described by Kohonen in (1982). It is a machine

learning algorithm suitable for analysing non-linear highly dimensional data that converts

relationships amongst a set of variables to two dimensional maps of clusters. It consists

of two layers of neurons. The input neurons are the variables in the input matrix. When

the sample units (rows) are presented to the algorithm, SOM captures the similarities

between them through a machine learning process, and places similar sample units close

together on an output map (Kohonen, 2013). The output map is also composed of neurons

(output neurons). The number of neurons of the output map is smaller than in the input

matrix because multiple individuals are mapped onto fewer number of output neurons,

which creates clusters.
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Table 2.1: SOM PPA terminology

Uni�ed SOM PPA nomenclature
Name Short description Other names
Input matrix Matrix of regions and species to classify Input layer, ocur-

rence matrix, pest
pro�les matrix, in-
put dataset

Pest pro�le Each row of the input matrix that de-
�nes the presence/absence of all the
pests in a region

Input neuron, re-
gional pro�le, re-
gional pest pro�le,
input vector

Output map Two dimensional representation of
SOM classi�cation results composed of
n output neurons

Output layer, SOM
map

Output neuron Smaller constituent unit of output map Neuron, cluster,
unit, cell

Weight vector Vector of coordinates for each pest pro-
�le in the output neuron to which is
classi�ed

Weights

Species Weight Each component of the weight vector
that corresponds to each species of the
input matrix

SOM index, species
risk, risk of estab-
lishment, risk index

Species Rank High (1) to low order of species weights
for a target region

Rank

2.2.3 The SOM PPA

In SOM PPA, rows of the occurrence matrix are regional pest pro�les. In the �nal output

map classi�cation, two pest pro�les mapped to nearby neurons are more similar than two

pest pro�les allocated to neurons that are far apart. Input and output neurons are linked

through a parameter called the weight vector.

Weights describe the position in the output map of each of the regional pro�les of

the input matrix. They are coordinates of each pest pro�le in m-dimensional output space

where m is the number of species of the input matrix (Gevrey et al., 2006).

Ecologically, weights are interpreted as the degree of association between a species

and a particular regional pro�le. Thus, the higher the weight for a species, the more closely

associated the species is with that regional pro�le, and consequently, with all the regional

pro�les clustered nearby. When modelling binary presence/absence data, weights range

between 0 and 1.

Figure 2.1 outlines the SOM PPA process. The �rst step is to identify the neuron

to which the target region has been allocated. Then the weight vector for that neuron is
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datasetA 𝐵𝑎𝑝𝑝𝑙𝑒𝑠 𝐵𝑏𝑎𝑛𝑎𝑛𝑎𝑠 𝐵𝑐𝑜𝑡𝑡𝑜𝑛 𝐵𝑔𝑟𝑎𝑝𝑒𝑠 𝐵𝑚𝑎𝑖𝑧𝑒 𝐵𝑚𝑎𝑛𝑔𝑜 𝐵𝑝𝑜𝑡𝑎𝑡𝑜 𝐵𝑟𝑖𝑐𝑒 𝐵𝑡𝑜𝑚𝑎𝑡𝑜 𝐵𝑤ℎ𝑒𝑎𝑡

datasets 𝐵𝑖;𝑖=𝑐𝑟𝑜𝑝

460x 873
(regions x species)

460 x 35 460 x 33 460 x 34 460 x 46 460 x 60 460 x 30 460 x 35 460 x 52 460 x 36 460 x 38

460 x 10 460 x 10 460 x 10 460 x 10 460 x 10 460 x 10 460 x 10 460 x 10 460 x 10 460 x 10

460 x 20 460 x 20 460 x 20 460 x 20 460 x 20 460 x 20 460 x 20 460 x 20 460 x 20 460 x 20

460 x 30 460 x 30 460 x 30 460 x 30 460 x 30 460 x 30 460 x 30 460 x 30 460 x 30 460 x 30

𝐵𝑖10
(110 datasets)

𝐵𝑖20
(110 datasets)

𝐵𝑖30
(110 datasets)

Figure 2.2: Details of datasets preparation and nomenclature

We named these crop restricted matrices datasetsBi, where i = crop (Figure 2.2).

The species present in each data set varied according to whether they were associated with

the crop and associations were determined using the information in PQR. The range in

the number of species in datasets datasetsBi was from 33 to 60 species. Finally, for each

crop-restricted matrix, we created 33 species restricted matrices through random sampling.

Thus, for every datasetBi we created 11 datasetBi10, 11 datasetBi20 and 11 datasetBi30,

where 10, 20 and 30 are the number of species in each, j. The result was a total of 341

datasets (dataset A + 10 datasetsBi + 10 ∗ 33 datasetsBij ). All data subsets contained

460 regions.
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2.2.5 Weights sensitivity

To investigate the sensitivity of species weights and ranks to data dimensionality, we ran a

complete SOM PPA for each of the 341 datasets for one target region (New Zealand) and

created a ranked list of species from each run. The SOM initialization parameters were: 108

output neurons as given by the formula c = 5
√

(n) (Vesanto & Alhoniemi, 2000) where c is

number of output neurons and n is number of training samples; Gaussian neighbourhood

distribution; linear initialization to ensure proper unfolding; and batch training mode as

opposed to sequential training. The software used was SOM Toolbox (Vesanto et al., 2000)

for Matlab R2013b (Mathworks, 2013).

We recorded the weight obtained for each species across the 341 SOM PPA. Since

not all species occurred in all datasets, we selected 199 species out of the 873 that were

each present in 10 or more of the 341 datasets. Because the datasets were created using

random sampling, these 199 species comprised an unbiased sample of the total 873. To

examine variability of species weights, we calculated descriptive statistics for the 199 species

and conducted a graphical exploratory analyses for each. We used R (R Foundation for

Statistical Computing, 2014) for statistical tests and data handling.

2.2.5.1 Weights variability

Univariant descriptive statistics were calculated to summarize the central tendency and

the variability a of the weight values for each of the 199 species. Boxplots of weights were

generated for each species.

2.2.5.2 Weights sensitivity to dataset size

We used the package lme4 (Bates et al., 2015) to perform a linear mixed e�ects analysis

of the relationship between weight and size of the dataset (number of species). We con-

sidered dataset size (number of species) as a �xed e�ect and species as a random e�ect.

We obtained the p-values by likelihood ratio tests of the full model (with e�ect) against

the model without e�ect (Bolker et al., 2008). We chose linear relationships to model

weight variability and weight sensitivity to dataset size because it was suggested by visual

inspection of the weights distributions.
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2.2.6 Ranks sensitivity

To evaluate the sensitivity of species ranks to changes in dataset size we analysed their

average rank R∗ and assessed its variability by computing some dispersion metrics such as

their standard deviations and coe�cients of variation.

2.2.7 Relationship between weight and species prevalence

We de�ned prevalence as the number of regions where a species was present. We graphically

explored the relationship between prevalence and weight value for a single target region,

and performed a linear regression to model the relationship. We expected to �nd that

species with higher worldwide prevalence would generally have higher weights (Singh et al.,

2013).

2.3 Results

2.3.1 Weights sensitivity

2.3.1.1 Species weight variability between crop-restricted datasets containing

di�erent number of species

Across all species and crops, the mean weight was 0.137 and the median was of 0.024,

which indicated a right skewed distribution (see histogram of weight values in A.1). Weight

standard deviation was inadequate for measuring variability because it had a parabolic re-

lationship with the mean (Figure A.3). This was unsurprising since weights are constrained

between 0 and 1, thus their SD is less near the limits of their range values than in the

middle.

To investigate the weight variation within species, we natural log transformed the

weights and calculated the coe�cient of variation (CV) for each species (�gure A.4)(Nakagawa

et al., 2015). CV is the ratio of the standard deviation to the mean, thus is unitless. Mean

CV across all species was 0.68, which indicated that, on average, weights varied 68% rel-

ative to their mean value. Within species, CV varied notably (see �gures A.5 and A.6).

Due to this within species variability, we used species as a random e�ect for modelling the

relationship between weight and the number of species in the crop-restricted datasets.
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2.3.1.2 Species weights sensitivity to datasets of di�erent sizes

The linear mixed e�ects analysis of the relationship between weight and number of species

showed weight was in�uenced by dataset size (χ2 = 4.08, p-value = 0.0432), with each

additional species increasing it by 0.00002. The intra-species variability of the e�ect was

of 0.2 SD. Species with low average weights showed less variation between datasets of

di�erent sizes than species with high average weights.

2.3.2 Ranks sensitivity

2.3.2.1 Species rank variability between crop-restricted datasets containing

di�ering number of species

Many species occurred in few datasets, which made measurements of variation between

ranks for these species uninformative. Thus, a subset of 674 species that had less than 10

appearances each across the 341 datasets (in other words less than 10 ranks) were excluded

from the analysis. We studied average rank R∗ variability for the remaining 199 species

that occurred in ten or more datasets (as for weights).

Ranks for a given species usually varied between datasets. Average ranks were nor-

mally distributed (Shapiro-Wilk normality test: W= 0.9745, p-value < 0.0001, �gure A.7),

ranged from 24.88 to 869.40 and had a mean of 460.

As for weights, CV was used to measure variation in average rank because SD had

a parabolic relationship with the mean (�gure A.8 cf. �gure A.3). Of 199 species, 91 had

CV < 10%, 168 had CV < 20%, and only two species had CV > 50% (A.9).

Ranks were clearly less variable than weights, with lower CV. Figure 2.3 shows how

their respective CV density functions di�er.

2.3.3 Species prevalence

We de�ned species prevalence as the number of regions a species occurred in. Some species

plots suggested that species with widespread distributions (e.g. the most widespread pest,

Aphis gossypii which occurred in 250 regions) tended to have higher weights. This was

consistent with some previous studies (Singh et al., 2013). However, a plot of prevalence
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Figure 2.3: Comparison of CV density distribution for ranks and for weights

against weight exhibited no relationship, even after applying logarithmic transformations

to the data (Figure A.10). Linear regression also showed no signi�cant relationship (F-

statistic 0.1893 on 1 and 871 DF, p-value=0.6636). This indicated that species ranked

highly for the target region (New Zealand) were not necessarily those with the largest

geographical distributions.

2.4 Discussion

The main aim of this study was to investigate the sensitivity of SOM PPA species weights

and ranks to changes in input data. We challenged SOM PPA by creating many di�erent

datasets, conducting 341 SOM PPA, and quantitatively investigating how species weights

and ranks changed with them. Creating numerous datasets and randomly assigning species

to datasets rigorously tested the stability of species weights and ranks when input data

varied. As expected, species' weights and ranks both varied, but weights were much more

variable than ranks.
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2.4.1 Weights vs ranks sensitivity

For the same subset of 199 species, weights had a mean CV of 68% while ranks had a

mean CV of 12% (�gure 2.3). Due to high variability of weights, we recommend the use

of ranks rather than weights in SOM PPA. Another problem using weight as a measure

of invasion risk arises from its right skewed distribution, which means few species have

high weights and many have low weights. If an analyst naively chose a value of weight to

use as a threshold for separating high and low risk species, it would be easy to choose a

threshold weight that was too high, meaning many potentially high risk species would be

overlooked. This problem is less likely to arise if ranks are used because they are more

normally distributed.

2.4.2 Regions with full zero pro�les

When working with presence/absence data it is often di�cult to identify outliers. A

common practice in SOM PPA literature (Worner & Gevrey, 2006; Gevrey et al., 2006;

Paini et al., 2010b, 2011) is to exclude from analysis those regional pro�les that have

few species present (usually less than 5) to avoid distorting SOM multidimensional space.

This assumes that species-poor regions are under sampled regions and their species records

are unreliable. However, we retained regions with no species present in our analysis for

the following reasons. Species-poor regions will not always be undersampled and many

zeros will be true absences. Thus, they are as meaningful as ones, and excluding true

absences can bias SOM results at least as much as including false absences. Even though

they are coded as ones and zeros they are a categorical variable, therefore, excluding one

category from the analyses has the potential to seriously bias the results (Millar et al.,

2011). Moreover, our study aimed to test the sensitivity of SOM PPA to variation in input

data, and including regions with no species assisted this testing.

2.4.3 Dataset dimensionality

Our results showed that the sensitivity of weights to the dataset size is species dependant.

Although we expected that smaller datasets would yield di�erent potentially lower weights,

values of the weight increased only by 0.00002 for each additional species. Thus there will
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be negligible di�erence between results from data sets that vary in size by tens of species,

or possibly several hundreds.

Our observation that dimensionality has a weak in�uence on species weights indicates

that SOM PPA could be used to study theme restricted matrices such as the crop-restricted

datasets used in our analysis. Some other possible examples include datasets restricted by

region and taxon. The use of restricted matrices was suggested in Vänninen et al. (2011)

both for assessing potential to cultivate crops in new regions and for screening `thematic'

lists of potential invaders. We suggest SOM PPA could also be used to assess risks from

species associated with particular commodities. It is common practice in the international

regulatory framework to initiate a pest risk analyses based on a proposal either to begin

importing a new commodity into a recipient region, or to begin accepting a previously

imported commodity from a new donor region. This requires analysts to gather data on

species associated with the commodity in the donor region and study them further.

SOM PPA is a quantitative tool for analysing complex data, but by no means consi-

tutes a complete pest risk analysis. By creating crop-restricted datasets we have simulated

a realistic scenario and tested how SOM PPA would perform over a range of di�erent sized

datasets. We chose the 10 most common worldwide crops as recommended by Knight

et al. (2011) but the results are transferable to other potential dataset restrictions. We

have shown how, overall, species ranks are in general stable metrics, and species weights

are not related to dataset size. Additionally, real data was used instead of simulated data

because the latter approach had already been used by Paini et al. in (2011). Our results

showed that ranked list of species are more suitable for commodity based risk analyses,

due to the stability of the ranks.

2.4.4 Species Prevalence

We found no evidence that species weight is related to species prevalence. Many studies

using SOM PPA have stated or implied that widespread species are often highly ranked

in the �nal list (Knight et al., 2011; Singh et al., 2013; Worner et al., 2013) and there

was uncertainty about whether prevalence could in�uence SOM PPA results. However,

Watts & Worner (2009) showed in their studies how prevalence and rank are unrelated,

and our results con�rmed this. The conclusion is robust because our results, and those of
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Watts and Worner (2009), were obtained from large sample sizes and numerous SOM PPA

replications.

The implications of this �nding for SOM PPA are important. Gevrey et al. (2006)

recommended removing species with low prevalence from input matrices to avoid biasing

SOM classi�cations. However, we argue this is unnecessary because the rank a species

will obtain for the target region is unrelated to its prevalence. This means less data pre-

processing and less modeller-induced bias arising from subjective decisions about preva-

lence levels to use as thresholds for exclusion. Our results also indicate that SOM PPA

can be reliably used to rank pests with restricted distributions.

Finally, the fact that prevalence is not related to the weight value or the rank for our

speci�c target region does not mean that widespread species will not obtain higher ranks

across all target regions. Widespread species will often be generalist feeders with potential

to establish in any region where one or more hosts are present (Lewinsohn et al., 2005).

2.5 Conclusions and Future work

The sensitivity analysis of SOM PPA over 341 crop restricted datasets has clearly shown

how SOM ranks are stable metrics that respond consistently to a series of extreme changes

to the input datasets. Also, we highlight the possibility of using SOM PPA for themed

restricted datasets, such as crop-restricted, that may be very useful for certain types of

risk assessment or host-based risk assessment.

As a consequence of this research, we can provide new guidelines for SOM PPA; it is

not necessary to delete species with low prevalence nor to control for data dimensionality.

Thus, future SOM PPA users can employ small themed and restricted datasets of only few

species to run the pest pro�le analyses, thereby reducing the amount of modeller-introduced

bias in the approach.

However some questions remain. While this study has investigated the stability of

the weights and ranks, it has not determined the validity of weights and ranks as measures

of establishment likelihood. While other studies have discussed this issue, more research in

this direction is required. A further improvement of the method would be to incorporate

an uncertainty or con�dence measure in the output, for example a cluster validity metric.
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Additionally, this study used a single target region for comparability purposes among

all datasets, but could be reproduced for any other target regions as a form of validation.

That would help to increase our understanding of the issue encountered by Paini et al.

(2011) where pest pro�les with few species were hard to classify.

Finally, given the variability of weights is higher than ranks, we recommend using

a ranked list of species as an output. Also, a ranked list of species gives a better idea

of prioritization while a list of species with a weight value between 0 and 1 can be easily

mistaken for a probability. Finally, we have shown the skewed weight value renders the

numerical weight uninformative.
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Chapter 3

Cluster validity and uncertainty assessment for self

organizing map pest pro�le analysis
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Abstract

1- Pest Risk Assessment (PRA) comprises a set of quantitative and qualitative tools to

protect productive ecosystems from the impacts of unwanted biological invasions. 2- Self-

organizing maps for Pest Pro�le Analysis (SOM PPA) is a methodological approach aimed
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to support PRA. It is based on cluster analysis and extracts information out of current

distributions of insect crop pests worldwide, allowing the analyst to generate a list of

potential risk species for a target region. 3- SOM PPA currently lacks of a measure of

performance able to provide a level of con�dence for its outputs. 4- In this study we inves-

tigate ζ diversity as an ecologically meaningful and generalizable metric of similarity. The

application of ζ allowed us to quantify and thus reveal di�erent levels of similarity across

pest pro�les. 5- The use of ζ diversity applied to the SOM PPA provides an informative

measure of uncertainty for the output of SOM PPA, thus adding major improvements to

the methodology while only marginally increasing its complexity.

Keywords

Self organizing maps, Pest pro�le analysis, Zeta diversity, Uncertainty, Cluster validity,

Pest Risk Assessment

3.1 Introduction

Economic globalization and increasing trade present numerous challenges to both natural

and productive environments. Along with climate change and loss of biodiversity, bio-

logical invasions have gained increasing attention because of their impact on social (Díaz

et al., 2006), natural (Walther et al., 2009; Hulme, 2009; Perrings et al., 2005; Vilà, 2013;

Vitousek, 1990) and productive ecosystems (Mack et al., 2000; Simberlo�, 2011; Horan &

Lupi, 2010). There are nine regional organizations under the umbrella of the International

Plant Protection Organization (IPPO) which have the responsibility to implement trade

standards to help protect global agriculture. In 2006, United Nations Food and Agricul-

ture Organization (FAO) issued a set of recommendations and regulations that serve as a

global standard for assessing potential invasive threats, called International Guidelines for

pest risk analysis (PRA) (International Plant Protection Convention (IPPC), 2006b).

The initiation stage of a pest risk assessment consists of identifying potential pests.

For that, risk assessors prioritize time and resources creating lists of species according to

the risk of pest entry, establishment, spread and impact (Worner & Gevrey, 2006; Worner

et al., 2013; Venette et al., 2010; Leung et al., 2012). Worner and Gevrey (2006) �rst
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described self-organizing maps (SOM) for pest pro�le analyses (referred to here as a SOM

PPA) as a quantitative tool aimed to assist the initiation stage of a PRA by producing

a list of species ranked according to risk values that indicate the potential threat they

present to the region under consideration. Brie�y, a regional pest pro�le is the information

for a region about the presence or absence of global insect crop pests and a SOM is an

arti�cial neural network used to analyse and cluster high dimensional data (Kohonen, 1982)

that has been successfully applied to ecological sciences across many scales (Chon, 2011).

In SOM PPA, regional pest assemblages are clustered to identify potential pest donor

and recipient regions. Clearly the processes of introduction and establishment, as well as

the abundance and spread of invasive insects are intricate parts of population dynamics

(invasion performance) driven by propagule pressure, the allee e�ect, stochasticiy, and

intraspeci�c competition, but we are far from having a mechanistic understanding of how

all these e�ects work, let alone how they interact (Leung et al., 2012; HilleRisLambers

et al., 2012). Especially for invasive species, abiotic factors, historical processes (Lewinsohn

et al., 2005), trade and agricultural production have a great e�ect on the composition of

the assemblage (Worner, 2002; Worner & Gevrey, 2006). This application of SOM to pest

pro�le analysis is based on the assumption that all these complex interactions of biotic and

abiotic factors are integrated into a region's resulting pest assemblage (Worner & Gevrey,

2006; Gevrey et al., 2006). A regional pest assemblage is formed by the co-occurrence of

insect crop pests and indicates suitable environmental conditions, the presence of suitable

hosts (Bebber et al., 2014a) and a particular invasion history of the region (Worner et al.,

2013). It follows that two regions with similar assemblages are likely to be donors or

recipients of species from each other. A species present in a region with a very similar

pest pro�le to the target region, is highly likely to be able to establish in the target region

given the chance to do so (Worner & Gevrey, 2006), therefore, assemblage similarity has

been used as a proxy for establishment risk (Worner & Gevrey, 2006; Gevrey et al., 2006;

Watts & Worner, 2009; Paini et al., 2010a, 2011; Morin et al., 2013; Singh et al., 2013).

Since the risk values generated by SOM PPA are in�uenced by the individual cluster

where the target region is allocated, good clustering is fundamental to obtain meaningful

and interpretable risk lists. When performing cluster analysis, validity refers to the process

of evaluation of the resulting clusters (Halkidi et al., 2001). For a SOM, there are two
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measures of goodness. They are the quantization error (Qe) and the topological error

(Te) (Kohonen, 1990; Vesanto & Alhoniemi, 2000; Vesanto et al., 2000; Uriarte & Martín,

2006). These two metrics are useful to describe the overall performance of the algorithm

on the dataset, but they do not provide any speci�c validity measure for each cluster.

Furthermore, out of the many applications of SOM PPA, none has assessed cluster validity

of the results (Worner & Gevrey, 2006; Gevrey et al., 2006; Paini et al., 2010a, 2011; Watts

& Worner, 2011, 2009; Singh et al., 2013, 2015; Morin et al., 2013). In Paini et al. (2010b),

they calculated the `percentage similarity in insect assemblage' only between the target

region (Australia) and the other regions clustered with it. Even though this approach

is informative, some sort of validity measure needs to be computed for every cluster, to

assess their relative performance. Therefore, SOM PPA would bene�t from containing an

integrated cluster validity assessment to support the reliability of its outputs.

In addition to the need for a cluster validity measure SOM PPA requires some form

of uncertainty assessment. Quantitative tools are subject to a certain degree of uncertainty

(Maier et al., 2008), which can be reducible or irreducible (Regan et al., 2002; Ascough

et al., 2008). Irreducible uncertainty in environmental modelling should be acknowledged,

quanti�ed and communicated (Walker et al., 2003; Wattenbach et al., 2006). However,

SOM PPA outputs do not incorporate any form of uncertainty communication.

Here, because of its ecological relevance and simplicity, we propose zeta ζ diversity

(Hui & McGeoch, 2014) as both a potential cluster validity measure for SOM PPA and

the use of this cluster validity assessment as a means of communicating the uncertainty

associated with the analysis. In a biological community, diversity can be measured by total

richness or gamma (γ) (Whittaker, 1972), which is the total number of species. Gamma

diversity can, in turn, be partitioned into alpha (α), which is the number of species in each

site or local species richness, and beta (β) which refers to either to a compositional species

variability or to species turnover along an environmental, spatial or temporal gradient

(Whittaker, 1972; Vellend, 2001; Anderson et al., 2011; Jost et al., 2011; Tuomisto, 2010).

We use ζ, de�ned as the number of species shared between any i sites, as a measure

of compositional diversity because it is a simple and direct measurement that reconciles

existing descriptors of species incidence and spatial turnover (Hui & McGeoch, 2014).

Our primary objective in this paper is to improve the current SOM PPAmethodology
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by incorporating a cluster validity measure. A secondary objective is to show how the

cluster validity measure can also serve as an estimate of output uncertainty.

We exemplify this by applying a SOM PPA analysis to a global occurrence dataset

and then evaluating the results using ζ as a measure of compositional similarity. With

the aim of harmonizing terms and concepts in uncertainty communication (Uusitalo et al.,

2015b), we propose the use of the cluster validity assessment provided by ζ as a strategy

for communicating the uncertainty associated with the output of SOM PPA.

3.2 Methods

3.2.1 Data

Data used in this study were originally extracted byWorner and Gevrey (Worner & Gevrey,

2006; Gevrey et al., 2006) from the Crop Protection Compendium (CPC) (CABI, 2007) and

organized in a matrix of 452 sites (rows or regions) and 873 species (columns) referred to,

in this study, as the global pest occurrence matrix. This matrix contained all geographical

distributions of phytophagous insect pests considered of relevance for global crop protection

by the plant protection organizations which comprise the CPC consortium. Presences

were coded as 1 and absences were coded as 0. The geographic areas represented in the

Compendium consisted of countries, regions or states of countries, all of di�erent size. In a

few cases, large countries appeared more than once in the matrix, both as a whole and also

divided into their states. As expected, smaller regions contained, in general, fewer species

than larger regions, following a classical species area relationship (SAR) (He & Legendre,

1996).

3.2.2 Self-organizing maps for Pest Pro�le Analysis: SOM PPA

The use of self-organizing maps for pest pro�le analyisis (SOM PPA) (Worner & Gevrey,

2006; Gevrey et al., 2006) can be broken down into two steps (Figure 3.1).

First, the SOM algorithm performs a process of ordination, vector quantization

and vector projection of the regional pest pro�les (rows) of the global occurrence matrix.

Through a machine learning process which involves two layers of an arti�cial neural network

(Kohonen, 2001, 2013), the SOM algorithm, 1) captures the similarity relationships within
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the regional pro�les of the global occurrence matrix (input layer), 2) distributes them in a

multidimensional space according to their similarity (vector quantization), and 3) projects

them onto the SOM output map (output layer) where the regional pro�les are classi�ed

in such a way that their similarity to one another is maximized (vector projection). In

other words, the SOM algorithm converts the highly dimensional pest occurrence matrix

(each species equals one dimension) into a two dimensional map of clusters (ordination).

Regional pest pro�les close together in the output map are more similar than those far

apart. The output map is arranged in neurons, sometimes referred to as cells, and since

the number of neurons is less than the number of regional pest pro�les in the input matrix,

multiple regional pro�les are mapped onto a smaller number of output neurons, creating

clusters of regions.

Let n be the number of species in the occurrence matrix. Each neuron of the map has

a coordinates `weights vector' of length n which de�nes its position in the n-dimensional

space created by the algorithm. Since each species is a dimension, each component of

the weight vector reveals the strength of association between a neuron (and the regional

pro�les clustered in it) and each species, thus representing the importance of the species in

the classi�cation process. Ecologically, the weight vector component is interpreted as the

strength of association between the regional assemblage and the particular species (Gevrey

et al., 2006; Paini et al., 2010b), and because occurrence data are binary, weight values are

constrained between 0 and 1.

The second step in SOM PPA is to create a species risk list for the region of interest.

Once the SOM algorithm has clustered the regional pro�les, the neuron to which the target

region is allocated is identi�ed and the weights vector of that neuron is extracted. Species

are then ranked according to their respective weight vector component, thus creating the

risk list.

Since the weight value ranges between 0 and 1, species with weights closer to 1 are

assumed to be more strongly associated with the pest assemblage of the target region.

Therefore a species with high weight value that is absent from the target region is assumed

to be likely to establish if they ever have the chance to do so, that is, if a pathway exists

and there is a viable propagule size. (Worner & Gevrey, 2006; Gevrey et al., 2006; Watts

& Worner, 2009, 2011; Paini et al., 2010b,a, 2011; Singh et al., 2013; Morin et al., 2013).
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species among three pro�les and so on, until ζi, the average number of shared species by

all i regional pro�les. Therefore the value of ζ monotonically declines with i, and the form

of its decline (zeta decline) is considered to be ecologically meaningful (Hui & McGeoch,

2014). For our case study we computed the values of γ, α and ζi and interpreted their

implications in the context of SOM PPA. To perform these analyses we used the packages

zetadiv (Latombe et al., 2015) and vegan (Oksanen et al., 2016) in R (R Foundation for

Statistical Computing, 2014).

3.2.4 Case study: Assessing SOM PPA cluster validity using ζ diversity

We ran a SOM PPA for the pest occurrence matrix. We built a map of 12 x 9 neurons in

a hexagonal lattice. We used 'batch' training for the algorithm, a gaussian neighborhood

relationship, 5000 iterations as training length and obtained a quantization error of 5.85

and a topological error of 0.01 (Vesanto et al., 2000; Vesanto & Alhoniemi, 2000). The SOM

analysis was performed using Matlab (Mathworks, 2013) and the package SOM Toolbox

(Vesanto et al., 2000).

Once the SOM output map was created, we considered each neuron of the map as

one study and systematically computed all its diversity components (see minimal working

example in B.2). Gamma γ was the total number of species present in all the regions

clustered in a neuron. Alpha was calculated as the individual species richness measures

for each one of the regional assemblages in a neuron, and �nally we computed ζ1 to ζi, as

the average number of species present in i number of assemblages or regional pro�les in a

neuron.

3.2.4.1 Using normalized ζ as a clustering validity measure

Since ζ describes the number of shared species between i pro�les, its value is highly depen-

dent on the region's total species richness. Given that the objective was to use ζ as a value

to compare cluster validity amongst neurons and richness can vary substantially across

neurons, we computed its normalized version, ζi/ζ1, which can be simply interpreted as

the proportion of species in common between i regional pro�les.
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3.2.4.2 Other similarity metrics

To justify the choice of ζ over other diversity measures, we compared it to a classic measure

of β diversity, Sorensen's index (Sørensen, 1948). We computed Sorensen's index using the

function vegdist() of the R package vegan (Oksanen et al., 2016), which provided Sorensen's

dissimilarity, which we then inverted to obtain Sorensen's similarity, (Sorensen similarity

= 1- Sorensen's dissimilarity).

3.2.4.3 Using normalized ζ as an uncertainty measure

To use ζ as an estimate of output uncertainty, we classi�ed the neurons in the SOM

output map according to their ζ values. We looked at three di�erent ζ scenarios per

neuron. We expected to di�erentiate neurons with low pairwise similarity ζ2, neurons with

good pairwise similarity ζ2 but not good groupwise similarity ζ3−5, and neurons with high

pairwise similarity and high groupwise similarity.

3.3 Results

3.3.1 General overview of world regions on the SOM output map

The SOM algorithm produced a widely spread classi�cation of the 452 regions across the

output map. Figure 3.2a shows the location of some representative world regions. The

USA and its states were located at the bottom right corner, in neurons 48, 60, 72, 84,

96, 108, 107, 95, 103, along with Canada in neuron 106. On the right edge, a long list

of European and other Mediterranean regions (Algeria, Morocco, Turkey) were located in

neurons 104 and 102. A cluster of Middle Eastern countries was located nearby, in neuron

in neuron 101. Noticeably, seven of the world's most populated assemblages: Australia,

China, India, Japan, Indonesia and Thailand (along with many other Indian provinces, and

south-east Asian regions) were allocated together on the top right of the map (neurons 98

and 97). African sub-Saharian regions, (including South Africa) were mapped onto the

top edge (neurons 37, 49 and 38). The upper left corner (1, 2, 3, 13) contained Central

and South American regions, along with some Caribbean islands. The bottom left corner

comprised a large number of regions for which there was not a clear grouping. The most

prominent characteristic amongst this last group was probably the number of small islands
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3.3.2 Case study: Assessing SOM PPA cluster validity using ζ diversity

Values of ζ1 revealed the areas of the SOM output map with, on average, richer regional

pro�les (Figure 3.2b). These were the top (1, 15, 25, 37, 49, 61, 73, 85, 97) and right

edge (97 to 108) neurons. The distribution of ζ1 across the SOM output map showed a

clear gradient of species richness. The bottom left area of the SOM map grouped together

regions with low species counts while the top right grouped regions with high species

counts. However, low species counts did not imply low values of ζ2−5. The plot of ζ1

showed a clear diagonal gradient that was not found in plots ζ2−5 (Figure 3.2).

We normalized ζ to account for the e�ect of richness (ζi/ζ1). Normalized ζ2 (Figure

3.2 c) was high across the map except in the bottom left corner where a high number of

small islands were clustered. Richness was not high either for neurons 80 and 92, which

comprised the regions of Georgia, Russia, Serbia and Montenegro, Ukraine and former

Yugoslavia. The remaining neurons showed a ζ2 value higher than 0.4, which meant pairs

of regions clustered in these neurons shared, on average, 40% of their species. Neurons 105

(Finland and Norway), 107 (States of the USA) and 102 (Mediterranian European regions)

showed very high ζ2 levels, with approximately 70% of pairwise shared species.

The more interesting �nding was that for some neurons, similarity remained high

with increasing ζ orders (Figure 3.2 d,e,f) while for some neurons, relative similarity de-

creased for orders ζ3−5. For example, neurons 49 (Sub-Saharian African regions), 77 (New

Zealand and Southern Australian regions), 101 and 102 (Middle-East and Mediterranean

regions) 104 (European regions) and 83, 95, 107, 84, 96 (United States) are neurons that

obtained high ζ2 values and maintained high values for ζ3−5. In contrast, neurons 85, 97,

86 and 98 showed very high similarity according to ζ2 but this relative similarity faded

with higher orders of ζ. This last group of neurons are precisely the ones that contain the

highest species richness regions (Australia, China, India, Japan, Indonesia Thailand and

several Indian provinces).

It is also important to note that neurons with low normalized ζi values were mostly

grouped in the bottom left corner: neurons 10, 11, 12, 24, 36, 33, 80 and 92, grouped in the

same area of the map where we found extremely low α values. For example, neuron 12 had

a very low total richness γ12 = 162, lower than the average γ̄ = 172.1, especially considering

it had the highest number of regions allocated, i12 = 38. Such a large number of regions
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containing such a a small number of species suggested that neuron 12 was populated by

regional pro�les with very low species counts. This was con�rmed by looking at the ζ1

plot, where neuron 12 had one of the lowest values (in blue). Neurons 10, 11, 24 and 36,

which all neighboured neuron 12, had a small number of regions allocated, but still low

values of ζ1. These observations suggest that SOM algorithm allocated the `odd' pro�les,

or the regional pro�les that had no common patterns with the rest, into the bottom left

corner of the map. Similarly, neurons 80 and 92 (Georgia, Russia, Serbia and Montenegro,

Ukraine and Former Yugoslavia) even though they were not allocated to the bottom left

corner, also shared the characteristic of having very low species counts. The same applies

for neuron 33 (Crete and Arunchal Pradesh), where average species richness (ζ1) was quite

low.

3.3.2.1 Other similarity metrics: Sorensen similarity index

The Sorensen similarity index (1-Sorensen) and Zeta2 (ζ2) were con�rmed to be equivalent

measures (Figure in B.3). Values for both indices were identical up to the fourth signi�cant

�gure except for cells 94, 87, 88 an 93, for which, because of lack of su�cient number of

regional assemblages, one of the two indices could not be computed.

3.3.3 Using normalized ζ as an output uncertainty measure for SOM

PPA

We showed how using ζ allowed us to di�erentiate neurons from one another. Figure 3.3

summarizes these �ndings. Some neurons showed questionable clustering (low ζ2), whilst

others showed reliable clustering (neurons which maintained high values along higher ζ

orders). Some other neurons showed high initial similarity (high ζ2) that faded with higher

orders. Undoubtedly, ζ provided crucial information about the clustering goodness in the

SOM output map.

Consequently, we propose to incorporate ζ into the SOM PPA approach by using

three levels of assemblage similarity that emerged from the study of ζi (Figure 3.3). Case

1) If the neuron where the target region is allocated has a very low relative ζ2 value
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3.4 Discussion

3.4.1 Assessing SOM PPA cluster validity using ζ diversity

Numerous scienti�c approaches have been developed and adopted to conduct Pest Risk

Assessment. Yet, in a comprehensive review of over 300 quantitative methodologies ap-

plied to risk assessment, Leung et al. (2012) found that quantitative risk assessments are

underused in policy, because of their data requirements and their lack of generalizability

(McGeoch et al., 2016). In fact, data requirements for SOM PPA are readily accessible.

SOM PPA is able to extract valuable information using only a global occurrence matrix

as an input. Data can be incomplete, for many reasons that range from under sampling

(?McGeoch et al., 2012; McNeely et al., 2001) to trade interests and lack of transparency

of trading nations. In any case, we need to acknowledge data as a limitation of any kind of

modelling (Venette et al., 2010). Regarding generalizability, clustering regional pest pro-

�les, or by extension, invasive species pro�les, was described by Worner & Gevrey (2006),

and since then, a number of studies have used the approach, and broadly applied it to other

taxa like fungi (Paini et al., 2011), weeds (Morin et al., 2013) or bacteria and nematodes

(Eschen et al., 2014), using SOM as well as other clustering approaches such as k-means

and hierarchical clustering. For an extended discussion about the validity of using pest

assemblage similarity to infer potential of establishment see the review by Worner et al.

(2013).

In this study we emphasize the generalisability of the SOM PPA approach and of

the signi�cant improvements to it that we have proposed here. By taking account of the

number of shared species between i regional assemblages, zeta (ζ2) described the similarity

between groups of pest assemblages as equivalent (as shown by Hui & McGeoch 2014)

matched that of another commonly used measure, Sorensen index (Sørensen, 1948) (Figure

in B.3). More importantly, higher orders of ζ provided additional insights about similarity

and composition that pairwise measures cannot provide. Using ζ as a measure that provides

three di�erent levels or degrees of similarity substantially improved the interpretation of

SOM PPA, and at the same time is applicable to many other clustering approaches or

diversity studies.

Moreover, ζ, unlike other pairwise similarity measures, does not require assumptions
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about site and species independence (Hui & McGeoch, 2014). A potential limitation of

the use of ζ is its dependence on species richness (Hui & McGeoch, 2014), but this can be

simply overcome by using normalized ζ,(ζi/ζ1), which makes the similarity of two sets of

sites fully comparable.

3.4.2 Using normalized ζ as an uncertainty measure

The goal of communicating uncertainty in an environmental modelling context is to min-

imize the possibility of making an incorrect decision about a potentially adverse outcome

(Matott et al., 2009). In terms of SOM PPA, making the wrong decision consists in fail-

ing to choose the appropriate species to initiate a PRA, potentially wasting time and

resources. In SOM PPA, as in any real-world application of a method, the end user needs

to have some con�dence measure to base their decisions on, therefore, uncertainty has to

be acknowledged quanti�ed and communicated (Wattenbach et al., 2006; Ascough et al.,

2008).

Reducible uncertainty in environmental or ecological modelling can be decreased

through better practices such as increasing data accuracy (see McGeoch et al. (2012) for

doing this with invasive species lists), using computational approaches like bootstraping,

sensitivity analysis of the model parameters (Matott et al., 2009) or Monte Carlo simula-

tions (Ascough et al., 2008). However, actively reducing uncertainty is not easy since its

sources are not simple to identify. In the context of SOM PPA, there are many factors

that will a�ect degree of con�dence we can have in the outputs. SOM PPA uncertainty

is the degree to which similarity across regions in a neuron is high, and remains high,

across zeta orders. In other words a SOM PPA output list with low uncertainty is one

where the neuron which allocates the target region has high average number of shared

species across pairs of regions and declines slowly with increasing numbers of regions in

the comparison. We have shown that groups of regions with very low species counts, or

with very rare species obtained very low ζ values. We could assume that for these regions

data inadequacy in the form of incomplete species is a major uncertainty source. However,

there are regions which are very rich in species that also have low values of ζ3−5, suggesting

these assemblages are only super�cially similar. Thus, the source of uncertainty for these

neurons could be the self-organizing map algorithm itself. Cluster analysis is signi�cantly
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a�ected by uncertainty because di�erent attributes may have di�erent uncertainty levels

(Aggarwal, 2009). Future research performing sensitivity analysis of the SOM algorithm

is recommended in order to quantify model uncertainty. Other than that, given the com-

plexity and sometimes impossibility of reducing the uncertainty, the use of ζ to categorize

it into three levels and communicate it is a major improvement.

To conclude, incorporating a measure of uncertainty based on ζ diversity helps ad-

vance the reliability of SOM PPA as a technique, even though it marginally increases its

complexity (Figure 3.3). It is important to note that the measure is case-speci�c and

therefore it is not possible to prede�ne thresholds of ζ to characterize what to consider

goodness of clustering. More important is the relative ζ values per neuron, in other words,

how similar are the assemblages clustered in one neuron compared with similarity of those

clustered in another neuron. Despite the extra e�ort required, we believe adding an un-

certainty measure improves the methodology. This is especially so because using three

categories alongside the risk list communicates uncertainty in a simple, informative and

meaningful way, which is needed in environmental modelling (Venette et al., 2010), pest

risk assessment (Leung et al., 2012) or by extension, any applied science aimed at support-

ing the decision making process (Walker et al., 2003; Wattenbach et al., 2006).
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Chapter 4

Biotic homogenization of global assemblages of insect

crop pests
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Abstract

Aim: Biotic homogenization is a major consequence arising from habitat fragmentation

and biological invasions, yet its magnitude remains unknown due to the lack of studies

that measure this process at a global scale and over di�erent extents. In this study, we

quantify the level of biotic homogenization for insect crop pests worldwide and its advance

over a period of 12 years (2003-2014). We also propose a general method for quantifying

biotic homogenization at di�erent study extents
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Location: Global

Time Period: 2003 to 2014

Major taxa studied: Herbivorous insect crop pests

Methods: We characterized β diversity for 423 of the world's regional pest assemblages

comprising the presence and absence of 711 species at two di�erent times (2003 and 2014)

using the ζ diversity metric. We then calculated the homogenization rate by comparing

the ζ values from 2003 to ζ 2014 over ten di�erent study extents

Results: We showed a general spread of global insect crop pests where the records of

occurrence increased from 36,107 in 2003 to 41,110 in 2014. Most of the 423 regions (82%)

studied also showed an increase in species richness. Beta diversity decreased in general,

although at di�erent rates for di�erent study extents.

Main conclusions: There has been a global increase in crop pest species richness paired

with a decrease in β diversity, therefore, there is, for the studied taxa, a clear pattern of bi-

otic homogenization. Additionally, our results show that homogenization rate is correlated

to the number of assemblages compared at a time. In other words, measures of homog-

enization are dependent on the study extent, such that pair-wise measures of β diversity

may underestimate the true homogenization rate.

Keywords

biotic homogenization, beta diversity, zeta diversity, pest assemblages, insects

4.1 Introduction

Biological invasions and habitat destruction are widely accepted as the main drivers of

biodiversity loss (Mack et al., 2000; McGeoch et al., 2010). Ongoing translocations of non-

native species through human assisted dispersal increases their potential to establish in

new communities throughout the world. An expected consequence of these translocations is

increasing similarity in the taxonomic composition of the global biota. This phenomenon is

referred to as global biotic homogenization (Vitousek et al., 1996; McKinney & Lockwood,

1999; Lockwood & McKinney, 2001; Olden & Po�, 2003).
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The �rst conceptual framework for studying biotic homogenization was provided

by Olden & Po� (2003). It described fourteen di�erent theoretical ecological scenarios

where the number of wining (invaders) and losing (extinct) species de�ned di�erent ho-

mogenization outcomes. Olden (2006) reviewed and summarized existing studies of biotic

homogenization. The author identi�ed knowledge gaps and emphasized the lack of clear

empirical evidence for homogenization, arguing that claims about its magnitude and im-

pacts on biodiversity remained undefended. Olden et al. (2016) warned about bias in such

studies towards certain taxa and pointed out that insects were the least investigated taxon.

Olden et al. (2016) also reported some contrasting studies of biotic di�erentiation. For ex-

ample, Marchetti et al. (2006) investigated the community composition of freshwater �sh

in California and recorded an increase in community diversity following non-native species

introductions. Similarly, Vellend et al. (2013) concluded after a meta-analyses of species

diversity studies at small scales, that there were no changes in local communities species

richness despite a clear global species diversity decrease.

The consequences of increasing biotic similarity remain unknown. Olden et al. (2004)

argued that it is unclear whether biotic homogenization will promote higher levels of new

species creation or will limit species diversity by diminishing the geographic isolates needed

for speciation. Therefore, to understand the magnitude, causes and e�ects of biotic ho-

mogenization, Olden et al. (2004) and others (Gonzalez et al., 2016) called for studies that

quantify homogenization at a global extent across di�erent taxa.

To test for biotic homogenization, it is necessary to obtain species distribution data

over space and time at a global extent. Researchers of agriculture and forestry have com-

piled such data on herbivore community composition on economically important hosts

(Lewinsohn et al., 2005). Perhaps the most comprehensive database of occurrences of

agricultural pest species is the CABI Crop Protection Compendium (CPC) (Bebber et al.,

2014a; CABI, 2007). The Compedium was recently used to extract the global distribu-

tions of plant pests and diseases to model and predict future invasions using ordination

approaches (Worner & Gevrey, 2006; Gevrey et al., 2006; Watts & Worner, 2009; Paini

et al., 2010a). Bebber et al. (2014b) also used it to investigate the economic and physical

determinants of the global distributions of crop pest and pathogens. Following that study,

Bebber (2015) studied the potential range-expanding e�ects of global warming on their
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distributions. Bebber et al. (2014a) concluded that biotic homogenization was occurring

rapidly among the plant pests and diseases recorded in the CPC. However, their conclusion

was based on distributional changes of 424 crop pests and pathogens over the period 2000

to 2011, which is a rather small subset of the available recorded species in the CPC. Also,

they reported results for both pests and pathogens jointly and did not speci�cally quantify

the degree of biotic homogenization for insects pests alone.

Usually, biotic homogeneity is quanti�ed either by comparing assemblage compo-

sition measured by a particular similarity index over time, or by comparing distances

between assemblages or communities in species space using clustering or ordination tech-

niques (Olden & Po�, 2003; Rahel, 1990). Comparing species assemblages using a similarity

index is equivalent to calculating their compositional β diversity. Beta diversity encom-

passes a variety of indices and concepts that re�ect di�erent components of between-sites

species variability, or species turnover along environmental, spatial or temporal gradients

(Whittaker, 1972; Vellend, 2001). Two well known problems associated with β diversity

metrics are that community pairwise similarity indices assume site independence and that

they are limited to the comparison of two sites at a time. When pairwise similarity indices

are used to compare more than two assemblages, communities or sites, they are calculated

by averaging the pairwaise metrics across sites. To circumvent these issues, Hui & Mc-

Geoch (2014) proposed the zeta diversity (ζ) metric, which is a measure of compositional

β diversity de�ned as the number of species shared between any i sites or assemblages.

Zeta is a simple similarity measurement that reconciles existing descriptors of species inci-

dence and spatial turnover (Hui & McGeoch, 2014) and overcomes the main criticisms of

the pairwise similarity measures such as Jaccard, Sorensen (Sørensen, 1948) and Shannon

diversity metric (Shannon, 1948).

Zeta is una�ected by site-dependence, and allows more than two sites to be simul-

taneously compared. Multi-site comparisons allow di�erent orders of ζ (the number of

features compared at one time) to describe di�erent levels of similarity which is useful for

understanding relationships within groups. For example, ζ was recently used to validate

results from a cluster analysis, and revealed di�erent grades of group similarity than other

pairwise measures could not (Roige et al., 2016). In this study, we use ζ orders to provide

di�erent homogenization values for di�erent study extents, which is particularly relevant
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since spatial and temporal extent have signi�cant e�ects on reported measures of biotic

homogenization (Olden et al., 2016).

Our primary objectives in this paper are: First, to empirically test the hypothesis

of biotic homogenization for agricultural insect pest assemblages, describe their diversity

components at regional and global scales, and quantify their changes over the time 2003

to 2014. Second, to evaluate ζ diversity as a measure of assemblage composition and the

ratio ζ2014 to ζ2003 as a generalizable measure of homogenization advance.

4.2 Methods

4.2.1 Data

The 2003 global insect pest occurrence matrix used in this study was originally compiled by

Worner & Gevrey (2006) and Gevrey et al. (2006) from the Crop Protection Compendium

(CPC) (CABI, 2007). It was arranged in 459 rows (regions) and 844 columns (species).

An equivalent matrix of the same size was extracted from the CPC in 2014 with updated

records for the same species, and is referred to as the 2014 global pest occurrence matrix. To

re�ect changes in CPC nomenclature during 2003-2014 and ensure proper comparison, we

�ltered both matrices so that they contained identical species and regions. This created two

matrices of 423 regions and 711 species that summarized the geographical distributions of

phytophagous insect pests considered relevant to global crop protection by CABI. Presences

were coded as 1 and absences were coded as 0. Geographic areas summarized in CPC

consisted of countries, regions or states of countries, all of di�erent sizes.

4.2.2 Using ζ diversity metric as a measure of α, γ and β diversities

In a study with i regional assemblages, gamma diversity (γ) is the total species counts

across the i regions, alpha diversity (α) is the local species richness (Whittaker, 1972) or

number of species in each of the i regions, and zeta ζ is the average number of species

shared by i regions (Hui & McGeoch, 2014), which can be pairs or larger groups.

Zeta can be calculated for any i. The number of regions i de�nes the order of ζ. For

instance, ζ1 is the average number of shared species across all the regions considered in a

study (average species richness, conceptually equivalent to ᾱ), ζ2 is the average number of
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shared species between two regions (equivalent to pairwise β diversity measures), ζ3 is the

average number of shared species between three regions and so on, until ζi, which de�nes

the average number of shared species between all i regions.

To quantify local α diversity we computed 423 di�erent values representing the

number of species present in each region. In each matrix,γ diversity totalled 711. We

measured β diversity by calculating ζ for the 2003 and 2014 occurrence matrices, from ζ1

to ζ10 (higher orders of ζ were not reported because 0 was reached within �rst 10 orders).

To assess their signi�cance, we compared all metrics (ζ1−10) to those generated from ran-

domized occurrence matrices comprising the same number of presences and absences as in

the 2003 and 2014 occurrence matrices respectively. Details on how the random matrices

and their ζ values were generated are given in C.3.

4.2.3 Zeta diversity as a quanti�cation of biotic homogenization

To test for biotic homogenization Olden & Po� (2003) suggested quantifying the advance

of species distributions over time. In this study we use ζ to describe the change in the

distributions of regional insect crop pest assemblages during an eleven year interval. We

computed ζ1−10 for the 2003 and 2014 global pest occurrence matrices and compared their

raw and normalized values (normalized ζi = ζi/ζ1).

We computed the ratio (ζ2014/ζrandom2014)/(ζ20061−10/ζrandom2006) and interpreted it

as the homogenization rate of advance. The homogenization ratio indicates, for each order

of ζ, how much the proportion of shared species between i regions changed from 2003 to

2014. Normalized ζ1 explains the proportion of shared species between i regions, thus nor-

malized ζ1 is always 1. Higher orders of the normalized ζi ratio show how the proportion

of species shared between i regions increased between 2003 and 2014. We used R (R Foun-

dation for Statistical Computing, 2014) to compute α, γ, ζ and the homogenization ratio,

speci�cally the package 'zetadiv' (Latombe et al., 2015). Details and code for computating

ζ are in C.1.
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4.3 Results

4.3.1 Diversity components of regional insect pest assemblages

4.3.1.1 Global species richness: γ diversity

The analysis showed an increase in γ diversity over time. In 2003 there were 36,107 records

of presence for the 711 species across 423 regions. In 2014 the number of presences for the

same 711 species had increased to 41,110.

4.3.1.2 Local species richness: α diversity calculated by ζ1

Most (82%) of the regions had more species in 2014 than in 2003. Eighteen regions experi-

enced increases of more than 100% and average species richness per region (ᾱ2006) increased

from 85.36 species in 2003 to 97.18 in 2014 (ᾱ2014). Sixteen regions (4%) had fewer species

in 2014 than in 2003 and 23 (5.4%) regions showed no change between years. In 2003, the

most species-rich region was USA with 381 species. In 2014, it was India with 322 species,

while the species counts for USA decreased by 80 to 301. The 16 regions where species

richness declined included the ten most species-rich regions, which lost 10-20% of their

species. The remaining six regions had low species richness in 2003, thus a decrease of one

or two species represented a high percentage loss. The most dramatic declines in species

richness were observed in Caroline Islands (98.4%), Rodriguez Islands (72,7%) and Nusa

Tenggara (43.5%) but again, those were not the norm. Figure 4.1 shows the percentage

change from α2003 to α2014 for each region. There were 489 records of 236 species that

changed from present in 2003 to absent in 2014.

4.3.1.3 Beta diversity, explained by ζ

Beta diversity decreased from 2003 to 2014 because the values of ζ1−10 for the 2014 oc-

currence matrix were higher than those for the 2003 matrix. This means the number of

species shared by i regions in 2014 was higher than in 2003, thus diversity among the

regional assemblages was reduced (Table 4.1). The changes in the values of ζ di�ered from

those observed in the random datasets. Randomly generated datasets showed log-linear

decreases in ζ with increasing orders, as opposed to the real data, that showed a structured

decrease in ζ with increasing orders (Figure C.1).
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The value of ζ1 (Table 4.1) corresponds to the average number of species per region,

or average α diversity. The average number of species shared between any two regions (ζ2)

was 17.49 in 2003 and increased to 21.81 in 2014. In proportional terms, it increased from

20,49% of shared species to 22.45%. The proportion of species shared between any three

assemblages (normalized ζ3) increased from 6.04% to 7.07%. Higher orders of ζ followed

the same trend.

Table 4.1: Columns 1 and 2 show ζ values for the 2003 and 2014 pest occurrence matrices, units are species
counts. Columns 3 and 4 show the average percent shared species between i assemblages, where
i is the order of ζ.

ζ 2003 ζ 2014 Normalized ζ 2003 Normalized ζ 2014
ζ1 85.36 97.19 - -
ζ2 17.49 21.81 20.49 22.45
ζ3 5.15 6.87 6.04 7.07
ζ4 1.93 2.79 2.26 2.87
ζ5 0.80 1.27 0.94 1.31
ζ6 0.36 0.65 0.42 0.67
ζ7 0.17 0.35 0.20 0.36
ζ8 0.09 0.19 0.10 0.20
ζ9 0.04 0.11 0.05 0.12
ζ10 0.02 0.07 0.03 0.07

4.3.2 Homogenization ratio

In 2003, two randomly chosen regional assemblages worldwide shared an average 20.49% of

their species, and in 2014 this increased to 22.45%. These �gures gave an homogenization

ratio of 1.10 (Figure 4.2), which provides a measure of the advance of biotic homogeniza-

tion. Higher orders of zeta, ζ3−10, showed this increase also occurred at larger study extents

comprising more regions. For example, for groups of three regions the homogenization ra-

tio increased 1.18 times from 2003 to 2014, and for groups of 10 regions it increased by

2.67 times. In summary, the proportions of species shared by i regions were always higher

in 2014 than in 2003 (i.e,. homogenization ratios were always > 1) and increased as more

regions were included (Figure 4.2).

4.4 Discussion

Despite being one of the largest taxonomic groups of the animal world, arthropods re-

main understudied with respect to both invasion biology (Bacon et al., 2014) and biotic
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homogenization (Olden et al., 2016). Moreover, their impacts on human activity, although

already enormous, are likely often underestimated (Bradshaw et al., 2016). Herbivorous

insect crop pests are critically important due to their devastating e�ects on agricultural

ecosystem services, and the threats they pose to endemic ecosystems (Díaz et al., 2006;

Hulme, 2009; Perrings et al., 2005; Vilà, 2013; Horan & Lupi, 2010). We investigated

regional assemblages of these pests and provided the �rst numerical estimates of their

homogenization rate.

We showed changes in insect crop pest species distributions between 2003 and 2014

conformed to the hypothesis of biotic homogenization. Beta diversity decreased globally

while local richness generally increased. In particular, local species richness, α diversity,

increased for 384 regions, the average α diversity also increased, and globally, the number

of new records for the 711 species also increased. Exceptions involved sixteen regions that

had fewer species in 2014 than 2003, which probably arose from CPC data corrections.

These comprised only 489 records (0.16%) of the 300,753 analysed. We did not manually

check those records because of the large amount of time that task would require. Also,

given the tiny proportion these records represent, adjusting them would either have only

marginally increased, or left unchanged, the homogenization estimates.

4.4.1 Biotic homogenization scenarios

Previous studies stressed the need to quantify biotic homogenization in terms of its mag-

nitude, spatial extent and also to describe how it covaries with other diversity components

(Olden, 2006). Theory about biotic homogenization predicts that the arrival of a new

species in a new community will �rst increase the number of species, augmenting both α

and β diversities in the community (Olden, 2006). Then there will be a transient time

during which community dynamics (extinctions of resident species through competitive

interaction) shapes the form of the assemblages generally resulting in an increased local

α diversity (communities will tend to have higher number of species) at the expense of a

decreased global beta diversity, the same set of invaders will be globally successful, thus

community composition will be more similar across the world (McKinney, 2004; Rosen-

zweig, 2001; Lewinsohn et al., 2005).
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Olden et al. (2004), described a set of fourteen theoretical ecological scenarios where

the number of winning (invaders) and losing (extinct) species de�ned di�erent homoge-

nization outcomes. The insect crop pest assemblages considered in this study are anthro-

pogenically created groupings in which extinctions are rare (Pimentel et al., 2001). Thus,

we expected changes in species distributions between 2003 and 2014 would conform to

one of the two scenarios simulated in Olden & Po� (2003) that involved species invasions

without extinctions of local species. In scenario one, a single species invaded di�erent

communities, which in their simulations always led to biotic homogenization. In scenario

two, di�erent species invaded di�erent communities, and two di�erent outcomes were pos-

sible depending on the number of species and the number of communities they invaded

at one time. If numerous species simultaneously invaded many communities, then those

communities would become more homogeneous. In contrast, if numerous species invaded

relatively few communities, then those communities would become less homogeneous. Our

results were clearly indicative of homogenization whereby many non-native species each

invaded numerous regions, which created greater community homogeneity throughout the

world, thus causing β diversity to decrease. Therefore, the insect crop pest invasions case

belong to Olden & Po� (2003) scenario two in which the number of simultaneous establish-

ments (which leads to homogenization) compensates the number of new species invading a

single assemblage or region (which leads to di�erentiation). The high number of simulta-

neous establishments is consistent with the bridgehead e�ect, commonly observed among

crop pest invasions (Guillemaud et al., 2011). That is, in their invasion routes, crop pest

species establish intermediate successful invasive populations (bridgehead populations) in

secondary regions from where they can disperse into additional regions, thus multiplying

their potential routes of dispersal and increasing the probability they will arrive in several

new regions at similar times.

4.4.2 Homogenization ratio and study extent

Beta diversity measured by ζ2−10 showed a signi�cant decrease and the di�erent homoge-

nization ratios for di�erent ζ orders showed that the more regions we compared at a time,

the higher the homogenization advance.
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Two other studies have measured biotic homogenization for invasive species at a

global extent (Bebber et al., 2014a; McKinney, 2004). Bebber et al.'s (2014a) tempo-

ral (2000-2014) study of biotic homogenization comprised 424 species of crop pests and

pathogens and used Shannon's diversity index to measure assemblage similarity. McKin-

ney (2004) used Jaccard similarity index to measure the pairwise similarity of 20 localities

which lead to 190 pairwise site comparisons of plant species. Both Bebber et al. (2014a)

and McKinney (2004) concluded that when considering exotic species only, their data

showed signs of biotic homogenization. In this study we have augmented the extent of

their studies, comparing 711 species across 423 sites. We also applied a multi-site similar-

ity metric that allowed us to show how homogenization ratio advanced at di�erent study

extents, when considering di�erent numbers of assemblages (or regions).

Olden (2006) questioned whether calculating a mean pairwise change in community

similarity was a valid measure of biotic homogenization. We argue that pairwise similarity

metrics such as Jaccard, Sorensen and Shannon indices describe only one dimension of

homogenization. We propose that ζ can encapsulate more dimensions and can di�erentiate

almost continuously what happens at di�erent study extents. Furthermore, we exempli�ed

how ζ can quantify the advance of biotic homogenization, which is a major advantage over

traditional pairwise β diversity measures. Our analyses suggested that traditional beta

diversity computations may underestimate biotic homogenization by only accounting for

two sites at a time.

That is a key result that could allow biodiversity studies to quantify biodiversity

across spatial extents. There is much controversy about how biodiversity estimates at

local scales may be underestimates of real biodiversity changes at global scales (Loreau,

2002; Gonzalez et al., 2016). In this study, ζ explored the changes in diversity between

di�erent number of assemblages, although those were not over a spatial gradient. We

suggest that ζ orders can be useful for future research at characterizing diversity changes

over the local-global continuum.

Our results were only meaningful up to ζ10, because the value of zeta reached zero

at higher orders. But if the 2003 regional assemblages had had more shared species, then ζ

would be informative at higher orders, theoretically up to where i equals the total number of

regions. The present study is, to our knowledge, the �rst quantitative demonstration of how
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biotic homogenization is in�uenced by the study extent when measured with assemblage

similarity metrics.

4.5 Conclusions

1- Global biotic homogenization is occurring amongst assemblages of invasive insect crop

pests, and its rate can be estimated using ratios of normalized ζ diversity measured at

di�erent times.

2- Our results are consistent with the species invasion-only scenarios of Olden & Po� (2003)

because local α increases while there is a decline in global β diversity.

3- Biotic homogenization rates increase with study extent (number of regions studied),

which is a fact overlooked by classic pair-wise similarity measures.
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4.6 Figures

Figure 4.1: Percentage increase of α for all the regions considered in the CABI CPC database from 2003
to 2014. Warmer colors indicate percentage decreases in α, yellow indicates no change in α
and colder colors indicate percentage increases in α.
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Figure 4.2: Plot of homogenization ratios calculated as a ratio of normalized ζ values for 2014 to nor-
malized ζ values for 2003
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Chapter 5

Comparison of clustering methods for pest pro�le

analysis

Keywords

clustering method, SOM, Hierarchical clustering, k-means, pest pro�le analysis, compari-

son

5.1 Introduction

Pest Pro�le Analysis (PPA) is a quantitative approach which aims to assist pest risk an-

alysts' decisions about prioritising management of invasive pest species. PPA was �rst

described by Worner & Gevrey (2006) and is based in the study of regional insect pest

assemblages. In PPA, world regions are compared according to similarities in the composi-

tion of their pest species (pest pro�le). Regions with comparable pest pro�les are assumed

to share similar biotic and abiotic characteristics (thus enabling their comparable suites of

pests to become established). Therefore, localities with similar pest pro�les are assumed

to be high risk of exchanging pests with one another in the future.

Cluster analysis is the formal study of methods for discovering natural groupings or

patterns in data (Jain, 2010). The �rst use of clustering methods applied to PPA was in

Worner & Gevrey (2006); Gevrey et al. (2006) who used self organizing maps (SOM) to

cluster 459 world regions according to similarities between their crop pest pro�les. After

clustering the regions, SOM weights were used to infer strength of association between each

species and each region's pest pro�le, and interpreted as a proxy for risk of establishment.

A detailed explanation of how the SOM weights were used can be found in Roigé et al.
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(2016). Other clustering methods have been explored for use in PPA. For example, Worner

and Gevrey (2006) conducted a hierarchical cluster (HC) analysis comprising single and

complete linkage clustering using the Jaccard coe�cient and Euclidean distance as simi-

larity metrics on their original (2006) data, but they reported that the HC analyses failed

to organize the data and the results could not be interpreted.

Later, Watts & Worner (2009) compared SOM to the k-means clustering method

for estimating establishment risks. Because there is no equivalent to SOM weights in k-

means algorithm, Watts & Worner (2009) estimated the risk of invasion by computing the

relative frequency of occurrence of each pest species in each cluster. After the comparison,

the authors concluded that while both algorithms were able to produce meaningful clusters,

k-means seemed to perform better in terms of goodness of cluster (measured by Shannon's

entropy index) and was more e�cient in terms of running time.

A third application of clustering for PPA was carried in Eschen et al. (2014), who

analysed the distributions of around 1000 invertebrate pests and pathogens of woody hosts

in 344 global regions using the European Union as a target region. They applied Ward's

method of hierarchical clustering. To generate risk indices, Eschen et al. (2014) used Watts

& Worner (2009) approach of calculating the relative frequency of a species in a certain

cluster. Eschen et al. (2014) did not compare HC to SOM, but called for future research

to do so.

SOM, k-means and HC are unsupervised learning techniques for clustering, and as

such, they all present methodological problems related to their assumptions about cluster

shape (Jain et al., 1999; Kovács et al., 2005). The main issues are choosing the number of

clusters (Mirkin, 2013) and evaluating the results (Halkidi et al., 2001). It is di�cult to

evaluate clustering results because the characteristics that separate a `good' from a `bad'

cluster di�er depending on the research question. Thus, assessing a clustering procedure's

output, is highly subjective (Jain et al., 1999). In general, there are three ways to validate

cluster results; internal, external and relative (Jain et al., 1999). To evaluate the ability

of any method to discover patterns in data, ideally the results are compared to reality

(external validation). Often, however, the required information is unavailable or there are

insu�cient data to both train and validate the models. A common solution to circum-

venting lack of validation data is to validate using arti�cial, error-free data (Zurell et al.,
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2010).

Paini et al. (2011) were the �rst to use arti�cial data to validate SOM results for

PPA and showed an average 97% predictive power of SOM. K-means and HC have not yet

been validated for application PPA, and none of the three approaches have been validated

using external data. More general studies have compared the performance of k-means,

SOM and HC (Waller et al., 1998; Astel et al., 2007; Mangiameli et al., 1996; Mingoti

& Lima, 2006; Bação et al., 2005) but the results were often contradictory. The overall

conclusion from these studies was that is always preferable to test the algorithms with the

data they are going to be applied to.

Regarding choice of number of clusters, Gonzalez et al. (2010) conducted a sensitivity

analysis of SOM which showed the results were highly sensitive to the size or number of

output neurons (equivalent to clusters) used in the analysis. K-means is similarly sensitive

to the initial k seeds (which then become the clusters) (Jain, 2010), and similarly, in HC,

the level at which the tree (dendrogram) is cut determines the number of clusters and

whether they are meaningful (Zaki & Meira, 2013).

Our main objective in this study was to assess which of the three clustering methods

performs best for pest pro�le analysis (PPA). We used SOM, k-means and HC in an a

posteriori multiple technique analysis of global crop pest distribution data from CABI

CPC 2003 (CABI, 2007). We assessed the predictive power of the three cluster analyses

by comparing their predictions (the risk indices of pest establishment) to the real observed

data recorded in 2014. We used a combination of metrics for evaluating predictive power,

with a focus on answering questions that pest risk analysts would be interested in.

5.2 Methods

5.2.1 Data

We used the data originally extracted by Worner and Gevrey (Worner & Gevrey, 2006;

Gevrey et al., 2006) from Crop Protection Compendium International (CPC) (CABI,

2007), organized in a matrix of 459 regions (rows) and 844 species (columns), and re-

ferred to as 2003 dataset. Presences were coded as 1 and absences were coded as 0. The

geographic areas represented consisted of countries, or regions, provinces or states within
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countries, all of di�erent sizes. In a few cases, large countries appeared more than once

in the matrix; as a whole and also divided into their states. To externally evaluate the

methods' predictive power, we extracted more recent data (2014) for the same species and

regions (henceford referred to as 2014 dataset). To ensure that 2003 and 2014 data sets

were fully comparable, we deleted any species that only appeared in one of the two data

sets (this occurred, mostly due to changes in taxonomic classi�cations). Our �nal sets of

test and observed data comprised records for 711 species and 423 regions.

5.2.2 Test design

We replicated the procedures carried in Worner & Gevrey (2006), Watts & Worner (2009)

and Eschen et al. (2014) (explained in section 5.2.3) with the purpose of realistically

comparing the three existing approaches that had been used across PPA literature (Worner

& Gevrey, 2006; Gevrey et al., 2006; Watts &Worner, 2009; Paini et al., 2010a, 2011; Morin

et al., 2013; Singh et al., 2013; Eschen et al., 2014).

For each clustering method, we used an optimization rule to choose the number of

clusters. For the SOM method, we applied the heuristic used in Worner & Gevrey (2006),

nc = 5
√

(c), as recommended by Vesanto et al. (1999). For k-means, we chose the number

of clusters that maximized the value of the Krzanowski-Lai index (Krzanowski & Lai,

1988), as recommended in Walesiak (2016), and for HC we followed Eschen et al. (2014)

and chose the number of clusters that had the minimum Davies Bouldin index (Davies &

Bouldin, 1979).

Finally a control test was also conducted which involved calculating the relative

frequencies (rf) of all species in the 2003 data and using these frequencies as risk indices

to make predictions for presence/absence of the species in 2014, without applying any

clustering method. Details on the speci�cations of all the algorithms and the control are

given in Table 5.1. After obtaining the risk indices for each classi�er, they were scaled

using the formula ((x-mean)/range)), so that their distributions would all range between

0 and 1.
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Table 5.1: Summary table of tested methods and their speci�cations

Number
of clusters

(nc)
Formula to choose nc Risk index calculation

Control 1 relative frequences
SOM 99 nc = 5

√
(c) SOM weights

k-means 97 highest Krzanowski-Lai relative frequencies
HC 4 �rst minimum Davies Bouldin relative frequencies

5.2.3 Clustering methods

5.2.3.1 Self-organizing maps

Kohonen (1982) described the self-organizing maps (SOM) algorithm as a tool to perform

ordination vector quantization and classi�cation. The SOM neural network is composed

of two layers of elements or neurons: the input layer and the output layer. The input layer

comprises the elements to be classi�ed, and the output layer is represented by a map of a

rectangular grid with m x n neurons (also called cells) laid in a hexagonal lattice (Worner

& Gevrey, 2006). Sample vectors from the input data are presented to the algorithm,

which evaluates their distance to the output neurons and chooses the best matching unit

(BMU). The BMU is the closest output neuron in terms of Euclidean distance. At each

iteration, the coordinates of the output neurons and their neighbour neurons are updated

according to their BMU. The algorithm ends after a predetermined number of iterations.

At the end of the iterations, each sample vector from the input layer is assigned to a neuron

of the output layer. Since the number of output neurons is smaller than the number of

sample vectors, more than one sample vector is assigned to the same output neuron, thus

creating clusters. Each sample in the input layer is linked to the neurons in the output

layer through a coordinates vector called a weight. SOMs can convert complex, non-linear

statistical relationships between high-dimensional data into simple geometric distances that

can be visualized on a low-dimensional display while preserving the original topological

relationships. Therefore, distances between the original data and distances between the

data items after they are mapped onto the output grid, are consistent. Preserving metric

and topological relationships is a unique advantage of SOM over some other clustering

methods (Kohonen, 1990). Based in the original algorithm, Vesanto et al. (1999) built a

software implementation of SOM algorithm for Matlab, called the SOM Toolbox. There
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are two packages that implement self-organzing maps in R, they are the package `kohonen'

and the package `som', but both have fewer optionalities than SOM Toolbox.

5.2.3.2 Self organizing maps for analysis of pest pro�les

Worner & Gevrey (2006) used data comprising 844 phytophagous insect pests for 459

geographical areas for pest pro�le analysis. Data pre-processing included deleting those

species that occurred in less than 2% of the regions. The number of clusters (or neurons

in the self-organizing map) was 108 and it was chosen using the formula c = 5
√
n where

c is the number of training samples (sample vectors). The SOM was trained using a

batch algorithm, and linear initialization. After the SOM ordination, each neuron of the

output layer (or each cluster) corresponded to a virtual vector of weights, with weights

comprising values in the interval [0,1]. Each weight can be interpreted as a risk index

or degree of association of each species with the sites in each cluster. To perform the

SOM analysis, (Worner & Gevrey, 2006) used the SOM Toolbox (Vesanto et al., 1999) for

Matlab (Mathworks, 2013).

In our study we replicated the original Worner & Gevrey (2006) parameters for the

SOM. We also used the formula c = 5
√
n to calculate the number of neurons but obtained

99 clusters instead of 108 because our data was smaller (711 species). SOM was trained

using the batch algorithm and linear initialization and we also used the SOM weights

obtained after ordination as risk indices for each species. We used SOM Toolbox (Vesanto

et al., 1999) for Matlab (Mathworks, 2013).

5.2.3.3 K-means

The k-means algorithm is a partitional algorithm which starts with the user de�ning k

and �nds a partition such that the squared error between the mean of a cluster and its

points is minimized (Jain, 2010). K are the initial seeds (or centroids, or cluster centres)

that will each become a cluster and it is the most critical choice of all k-means parameters.

There are a number of heuristics to choose k, and they are usually based on running the

algorithm with di�erent values of k and choosing the one that minimizes a given criterion

(Tibshirani et al., 2001).
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K-means works by comparing the sample vectors (units to be clustered) with each

seed by computing the Euclidean distance between the vector and the seed, and then

assigning the sample vector to the closest cluster seed. At each iteration the seeds are

recalculated by averaging the vectors that have been assigned to it. The procedure is

repeated until a stopping condition is met. The stopping condition is usually when changes

in the seed between iterations are either close to zero or meet a threshold value (Johnson

& Wichern, 2007).

5.2.3.4 K-means for analysis of pest pro�les

Watts & Worner (2009) directly compared SOM and k-means classi�cations using the

same data as Worner & Gevrey (2006). Once the clusters were generated with the k-

means algorithm, risk values were computed by calculating the relative frequency of the

species in the cluster and assigning that relative frequency to every region of the cluster.

Watts & Worner (2009) chose the same number of clusters as in Worner & Gevrey (2006)

which did not follow any heuristic, and was applied solely for comparing the two methods.

Therefore, to choose the optimal number of clusters, we ran a simulation for all

possible number of clusters from k = 2 to k = 423 (number of regions) and chose the k

that obtained the highest value of the Krzanowski-Lai index, using the function clusterSim

of the package `clusterSim' (Walesiak, 2016). When k-means is applied to binary data it is

recommended to normalize the data beforehand (Legendre & Gallagher, 2001), thus, data

were normalized according to the formula of unitization ((x-mean)/range).

5.2.3.5 Hierarchical clustering

Hierarchical clustering methods group the data by successive merging (agglomerative) or

dividing (divisive) the sample units. The result is a dendogram or tree diagram where

the branches represent clusters (Johnson & Wichern, 2007). The clusters in the hierarchy

range from �ne-grained to coarse-grained. At the lowest level of the tree, each point is its

own cluster and in the highest level of the tree, all points are one cluster (Zaki & Meira,

2013). The height of the dendrogram chosen to cut the tree determines the number of

resulting clusters.
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Computing an agglomerative hierarchical clustering follows this process: Initially,

there are as many clusters as units, and a matrix of pairwise distances between clusters is

calculated. Clusters with low pairwise distances are merged, then the distance matrix is

calculated again, and the closest clusters are merged once more. The process is repeated

until all the sample units re grouped in one cluster. Divisive hierarchical clustering works

in the same way but in an opposite direction, from one cluster to as many clusters as units.

There are many algorithms that perform hierarchical clustering, and most of them

are variants of the single-link, complete-link and minimum variance methods (Jain et al.,

1999).

5.2.3.6 Hierarchical clustering for analysis of pest pro�les

In Eschen et al. (2014) the authors used hierarchical clustering with Ward linkage (which is

a type of minimum variance hierarchical clustering algorithms (Ward, 1963)) and reported

that the other linkage methods did not produce clusters that could be interpreted. To

choose the number of clusters, they used the Davies-Bouldin index (Davies & Bouldin,

1979). More speci�cally, they calculated the index and plotted it against the number of

clusters, subsequently choosing the �rst minimum in the resulting curve as the optimal

degree of cluster separation. Following their same procedure, we used the Ward linkage

method of hierarchical clustering and plotted the results against each Davies-Bouldin index.

In Eschen et al. (2014), to generate the risk values for each species and region, the authors

calculated for each cluster the relative abundance of every species, and assigned it to all

the regions in the cluster as a proxy for the establishment risk of that particular species

to all those particular regions. Thus, the more times a species was present in the regions

in the cluster, the higher risk this species represented for the remaining of regions of the

cluster. We replicated the Eschen et al. (2014) same procedure to calculate establishment

risk indices.

5.2.4 Evaluation methods

5.2.4.1 Confusion matrix and derived metrics

In binary classi�cation problems, given the model predictions and the true observations,

there are four possible outcomes that can be expressed in a confusion matrix (Table 5.2).
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Translated into PPA terminology, a species that was predicted as likely to establish (ob-

tained a high risk index) that did become established, it is a true presence (top left in

Table 5.2). A species that was predicted as unlikely to establish (obtained a low risk index)

that did become established, it is a false absence (top right in Table 5.2). A species that

was predicted as likely to establish that did not become established is a false presence,

and a species that was predicted as unlikely to establish and did not become established,

is a true absence.

Table 5.2: Confusion matrix

prediction
present absent

reality
present

True presences
TP

False absences
FA

absent
False presences

FP
True absences

TA

Two commonly used performance measures are the false absence rate and the true

presence rate. The true presence rate is also known as sensitivity and it is a widespread

performance measure that quanti�es both the ability of the model to detect true presences

and avoid false absences (Fielding & Bell, 1997). Sensitivity, in the context of PPA, is the

model's ability to correctly predict species that did become established.

Equivalent measures can be derived from the top row of the confusion matrix, which

are the true absence rate and the false absence rate (Table 5.2, top row). They are the

proportions of correctly and incorrectly predicted absences of all real absences. The true

absence rate is also called speci�city (Fielding & Bell, 1997) and quanti�es the model's

ability to correctly detect the species that did not become established.

There are a plethora of performance metrics that can be derived from the confusion

matrix, but they have one main problem and that is that they are threshold dependent.

That is, any method that generates scores ranging between 0 and 1 (as the PPA risk indices

do) needs a threshold value over which the method's predictions values are considered pres-

ences and below which are considered absences. This value of the threshold is dependent

on the distribution of the risk indices of each method, therefore it is not suitable to com-

pare di�erent methods by comparing their performance at a given value of the threshold.

As a consequence, many strategies have been developed to assess the overall performance
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of a model to be able to compare the prediction accuracy of di�erent models.

5.2.4.2 ROC evaluation

The receiver operating characteristics (ROC) is a technique to select classi�ers based on a

visualization of their performance (Fawcett, 2006). The ROC consists of a two-dimensional

plot of the results of the classi�cation model for a set of thresholds. The true positive rate,

or sensitivity, is plotted in the y-axis and the false positive rate, or speci�city (actually 1-

speci�city is plotted instead to obtain ordered results), is plotted on the x-axis. Thus, the

plot shows all the possible trade/o�s between bene�ts and costs of the model. A classi�er

model is optimal if it lies on the convex hull of the set of points in ROC space.

An interesting property of the ROC space is that ROC curves are insensitive to

changes in class distribution. If the proportion of present to absent species changes in

a data set, the ROC curves will not change. The explanation of this phenomena is in

the confusion matrix (Table 5.2). The class distribution or the proportion of absences to

presences, is the relationship of the top to the bottom row. Any performance metric that

uses values from both columns will be sensitive to class skews. Whereas ROC graphs, since

they are based upon true presence rate and false presence rate, each dimension is a strict

row ratio, thus do not depend on class distributions (Fawcett, 2006).

5.2.4.3 Overall performance metrics

The most well known performance metric to compare prediction models across a wide

range of science disciplines is the area under the curve (AUC) which is literally the area

comprised under the ROC curve of the model in the unit squared ROC space. The AUC

reports the probability that the model will rank a randomly chosen present species higher

than a randomly chosen absent species (Krzanowski & Hand, 2009) and is equivalent to

the Wilcoxon test of ranks (Fawcett, 2006). The AUC can also be de�ned as the mean

speci�city value assuming a uniform distribution for the sensitivity (Anagnostopoulos et al.,

2012).

However, it has been reported by many that the AUC as a metric has one important

�aw. That is, the AUC compares all the values of Sensitivity to Speci�city in a way that

assigns the same relative severity of misclassi�cation cost to wrongly classifying a presence
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(false presence or Type I error) than to wrongly classifying an absence (false absence or

Type II error) (Lobo et al., 2008; Hand, 2009; Anagnostopoulos et al., 2012; Hand &

Anagnostopoulos, 2014).

In terms of biosecurity, it is clearly more important to avoid predicting false absences

than it is to avoid predicting false presences. Species correctly predicted to have high

potential to establish may not have done so (false presences), either through chance, or

because e�ective border control measures had excluded them. Such false presences could

naively be considered as incorrect predictions, but may not be because with more time,

the predictions of high risk could prove true. Similarly, in areas such as medical diagnosis

of life threatening diseases, a false alarm (false presence) generally cost less than a missed

case (false absence) (Anagnostopoulos et al., 2012), however it is very di�cult to ask the

end user or the researcher to specify the real cost of one misclassi�cation over the other

(Hand & Anagnostopoulos, 2014) .

As a consequence, Hand (2009) developed a metric called H measure that is analogous

to AUC while explicitly accounts for di�erent misclassi�cation costs for di�erent errors

(Type I error and Type II error, which are also called commission and omission error in

Lobo et al. (2008)). Speci�cally, the H measure treats missclassi�cations of the smaller

class as more serious than those of the larger class (Hand & Anagnostopoulos, 2013), which

in biosecurity terms translates into penalizing the PPA methods much more for the false

absences they produce rather than for the false presences or true absences.

To perform the computation of the confusion matrix, ROC plots and H measure and

AUC we used the package `hmeasure' (Anagnostopoulos et al., 2012) for the statistical

software R (R Foundation for Statistical Computing, 2014).

5.3 Results

5.3.1 Distributions of risk indices per method

The risk indices generated after applying each clustering method are summarized in Table

5.3. All methods have continuous distributions of the risk indices, all of them having a

range from 0 to 1, and similar values of their mean, except the control method which has a

higher mean value (0.20). Figure 5.1 shows the distribution densities of the risk indices for
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each method and also for the 2014 observed data. The plot shows that all the distributions

of the risk indices generated present right side skewness, that is, a much bigger number of

zeros and close to zero values than close to one or one values. The 2014 observed data are

binary, thus it only comprises values one and zero.
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Figure 5.1: Kernel density plots of the risk indices for each method and for observed 2014 data (binary)

Table 5.3: Summary statistics of risk indices per method and for 2014 observed data. Observed 2014
data are binary

control HC SOM k-means observed 2014

min 0.004 0.00 0.00 0.000 0.000
median 0.142 0.049 0.015 0.000 0.000
mean 0.200 0.12 0.119 0.128 0.136
max 1 1 0.999 1 1
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5.3.2 Aggregate performance metrics

Figure 5.2 shows the ROC curve for each clustering method. HC presents a higher ROC

curve than all the others, control has the second highest curve, and SOM and k-means

have ROC curves that cross, which deems impossible to determine which one is better

(Hand, 2010).
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Figure 5.2: ROC space plots for all the methods. Speci�city values in Y axis and (1-Sensitivity) values
in the X axis

Both performance metrics in Table 5.4 rank the clustering methods in the same

order. HC is the clustering method with better performance, followed by control and

then k-means and SOM. However, the 3rd and 4th position is disputable because their

ROC curves cross. Column four shows the Minimum cost-Weighted Error Rate (`MWL')

which depicts the threshold values at which, compared to itself, each individual clustering

method performs better, accounting for the misclassi�cation cost implicit in the H measure

(Anagnostopoulos et al., 2012).
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Table 5.4: Aggregate (threshold-independent) performance metrics calculated for each method

H measure AUC MWL

control 0.17 0.73 0.16

HC 0.40 0.86 0.11

SOM 0.06 0.63 0.19

k-means 0.12 0.64 0.17

5.3.3 Results by clustering method

5.3.3.1 Control

The control method calculated the relative frequencies of all species in all regions in 2003,

and used those values as estimates of risk that the species pose to all the other regions

in 2014. This turned out to be a relatively good predictor of species presences in 2014

in terms of AUC (0.73, Table 5.4), and the second best predictor in terms of H measure

(0.17, Table 5.4). Also, the gap between control and HC is much larger than in terms

of H measure than in terms of AUC, suggesting that control might be good at handling

absences, that is, true absences and false presences, or in other words, speci�city. However,

when that factor is controlled for (using the H measure instead) its performance decreases,

suggesting that its sensitivity is not as good.

5.3.4 Hierarchical Clustering

Hierarchical clustering had the best overall performance. Its high AUC value, greater than

any other method, (0.86, Table 5.4) indicated that the model was good at discriminating

the true presences, true absences, false presences and false absences. The same superiority

was reported by the H metric. Moreover, the di�erence between the �rst and second

classi�ed methods in terms of H metric is notable. HC is the �rst with value 0.40 and the

next one is control with value 0.17.

5.3.4.1 SOM

The value of AUC of 0.63 for SOM is virtually equal at the value of AUC for k-means,

which is 0.64 (both in Table 5.4), but as shown in Figure 5.2 their ROC curves cross each
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other, therefore, one cannot be ranked superior to the other. Interestingly, SOM produced

a very low H measure, of 0.06. Since the H measure is an equivalent measure to AUC that

allocates more value to correctly classifying the smaller class (in our case the presences),

the big di�erence between SOM's H measure and SOM's AUC value seems to indicate that

SOM is not particularly good at detecting false absences (Type II or omission error) and

true presences, the two components of sensitivity. In other words, when speci�city and

sensitivity are considered equally important (AUC), SOM method obtains a 0.63, while its

performance drops to very low (0.06) when sensitivity is more important than speci�city

(H measure).

5.3.5 K-means

K-means obtained an AUC of 0.64 and a H measure of 0.12 (Table 5.4). Compared to its

closest rated method, SOM, k-means performed better in terms of H measure, but virtually

equal in terms of AUC. The drop between the value of its AUC and its H measure also

shows, as it was the case for the SOM, that when model's sensitivity is considered more

important than model speci�city, the model loses predictive power.

5.4 Map of the HC clusters

Figure 5.3 shows the spatial distribution of the clusters created by HC which yielded

the better results in terms of prediction power between 2003 and 2014. Pink cluster

(contains for example Alaska and Greenland) contains the countries or regions with very

low number of species (average number of species per region is 16.35). The other three

clusters, green (roughly Eurasian regions), blue (southern regions) and purple (United

States and Canada) have high and similar number average species per region in 2014

(128.60, 110.84, 109.33, respectively).

All the clusters increased their number of species from 2003 to 2014. Regions in

cluster 1 (pink) increased an average of 7 species, regions in cluster 2 (green)increased by

an average of 22 species, regions in cluster 3 (blue) an average of 9.75 species and regions

in cluster 4 (purple) increased an average of 13.14 species.
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Figure 5.3: Map of the 4 clusters obtained by HC

5.5 Discussion

We compared the performance of three methods for PPA with the aim of elucidating their

relative strengths and weaknesses and to identify which was most suitable for PPA. The

results indicate there are no simple answers. Although HC clearly performed better in

terms of both the performance measures used, there are certain factors that need to be

considered.

5.5.1 Issues encountered

First, it could be argued that the better performance of HC might not be attributable

to the model per se, but to the number of clusters. The results seem to show that high

number of clusters (SOM had 99 and k-means had 97) performed worse than a low number

of clusters (control had 1 cluster and HC had 4). Initially, this study was designed as a

comparison among three existing clustering models for PPA. Therefore, we intended to
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follow the original parametrizations (choice of number of clusters) that were deemed opti-

mal in the original papers (Worner & Gevrey, 2006; Gevrey et al., 2006; Watts & Worner,

2009; Eschen et al., 2014). However, after obtaining preliminary results for the perfor-

mance measures, we observed that di�erences in model performance could also be caused

by di�erent parametrizations and did not necessarily result from the choice of the model.

Therefore, we tentatively tested di�erent parametrizations of the three models, when pos-

sible. We tried increasing the number of clusters for HC, and decreasing it for SOM and

k-means for several di�erent number of clusters. However, it is unconsistent to compare

di�erent clustering algorithms using non optimal number of clusters, (for example, we did

not try a SOM analysis with only 4 clusters, since this would be wrong from the algorith-

mic point of view, SOM is known to perform well when the number of clusters is chosen

by the formula c = 5
√
n, and suboptimally otherwise) and the results seemed to indicate a

dependency of the performance on the cluster number. However, the exploration was not

rigorous and not by any means complete, thus, the results were inconclusive. Therefore, we

acknowledge the need to further extend this analysis towards a full sensitivity analysis of

how the parameter number of clusters changes the performance of the clustering methods

in terms of both AUC and H measure. This is a very interesting and needed investigation

that should be undertaken in the near future, since it opens interesting questions behind

the theoretical hypothesis of PPA.

5.5.2 Number of clusters and environmental �lter hypotheses

Our results seemed to indicate that methods with fewer clusters were better at predicting

the observed data. If that were true, it could potentially a�ect the current interpretation

of the theoretical hypothesis behind pest pro�le analyses (PPA).

The ecological hypothesis of environmental �ltering (Kraft et al., 2014) suggests that

geographical areas with similar pest pro�les share biotic and abiotic conditions that shaped

the composition of these pro�les. In PPA, the environmental �ltering hypothesis is used

to infer likelihood of pest species exchange between regions with similar composition of

pest species assemblages (Worner & Gevrey, 2006; Gevrey et al., 2006; Paini et al., 2010a,

2011; Morin et al., 2013; Singh et al., 2013; Roigé et al., 2016; Roige et al., 2016). It follows

that if we divide the 423 world regions into only 4 or 5 clusters (like HC does), the regions
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grouped together are going to be less similar to one another than if we divide the 423

into 99 or 100 groupings (like SOM and k-means do). We expected that high number of

clusters would group more similar regions, as found in Roige et al. (2016), where the cluster

similarity was assessed by an external similarity metric (ζ diversity) and was found to be

high for the majority of the resulting clusters. Highly similar clusters were expected to

lead to better predictions, however, results seemed to indicate the contrary, therefore it is

necessary to consider whether there might be a conceptual problem within the hypothesis.

One reason why four clusters might predict better than any larger number of clusters

could be environmental �ltering working at a global scale by de�ning four large biogeo-

graphic regions (see map in Figure 5.3). While it is unarguable that climatic suitability acts

as a driver of species distributions, broad-scale patterns in insect diversity are not evident

(Diniz-Filho et al., 2010). The local e�ects such as local habitats and microclimates and

insect-plants relationships have a major e�ect on insects global distributions (Diniz-Filho

et al., 2010). However, up-scaling processes known to act at local scales usually fail to

explain broadscale patterns of (insect) species distributions because of the complexity of

the processes, their interactions and emergent properties (Hortal et al., 2010). Henceforth,

there could be a climatic or anthropogenical driver behind the division of world's insect

pest assemblages in four groups, that is worth to further explore.

Another potential explanation could be that the global insect assemblages are still in

an inceptive state of homogenization. Chapter 4 investigated the state of general similarity

found in insect pest assemblages around the world and found that for the same data

investigated in this present study, regional insect pest assemblages are still very di�erent

(Roige et al., 2016; Bebber et al., 2014a). Also, as shown in Figure 5.1, the majority

of the regional pro�les are �lled with zeroes. It could be that bigger clusters allow for

much more room for species exchange between their regions (because they contain more

regions) and now, in this moment of time, are a better predictor than fewer smaller clusters.

Nevertheless, in a future moment in time when regional species assemblages will be more

similar to one another, we will potentially need �ner resolution to identify which countries

can act as donors and receivers, which translates into investigating �ner clusters, that is,

clusters that have fewer regions in them but much more similar to one another, as the ones

that SOM and k-means methodologies produce.
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Related to that, Eschen et al. (2014) noted that using relative frequencies as pre-

dictors instead than SOM weights does not provide an estimate of risk, thus one can

automatically assume a risk of zero for all the species that are not present in a cluster,

whereas SOM weights still give some risk value to some of the species outside of the cluster

of the target region. However, the relative frequency approach might be conceptually right.

If we assume that species pose a risk by being present in the regions that are similar to

the region of interest, species that are not present in any of the similar regions (regions in

the same cluster) do not present a risk (hence, their risk is zero). Furthermore, the results

presented in this research show that, in terms of predicting power, HC with 4 clusters and

using relative frequencies, and control with no cluster and using relative frequencies, are

better predictors than the SOM weights for 99 clusters or k-means relative frequencies for

97 clusters.

While we suggested some potential explanations regarding why fewer clusters could

lead to better predictions, we want to emphasize the need to further investigate this con-

troversial result that opens some very interesting questions.

5.5.3 Performance metrics

5.5.3.1 Comission and omission errors equal weights

Using a sole performance measure to judge three di�erent models would have been inade-

quate, mainly for two reasons. First, each clustering algorithm works di�erently and can

reach di�erent local optima as well as di�erent performance measures are more sensitive

towards certain type of errors. Second, performance measures should be carefully applied

taking into account what speci�c questions we are trying to answer. For example, there

has been controversy in the �eld of presence/absence modelling regarding the use of AUC-

ROC. One of the relevant remarks is that AUC weights omission and commission errors

equally (Lobo et al., 2008) but it has also been shown that in the case of true absences and

true presences (which is our case) the AUC, if correctly interpreted, can be informative

(Jiménez-Valverde, 2012). For an optimal use of the ROC-AUC technique, we followed the

recommendations in Pontius & Parmentier (2014) , which included not presenting AUC

as one standalone measure of performance, but provide it along with other insightful mea-
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sures, and also not presenting the AUC as a single value, but providing as well the plot of

each method in the ROC space.

When evaluating the performance of a method for PPA, we are interested in whether

the model is able to correctly predict the true presences with few or no false absences. False

presences and true absences are less useful for evaluating performance because they are

subject to the many stochasticities of species invasions. We discussed in the section 5.2.4

why false presences are not good indicators of model performance for PPA. True absences

are similarly less useful for performance evaluation in PPA because true absences provide

only weak support for predictions of low risk. A species predicted as low risk that did not

establish, maybe did not establish because it did not have a chance to do so, that is, never

had the chance to physically arrive to the target region, but might in the future establish, if

a new pathway is formed through, for example, a new commercial relationship between two

regions. Therefore, we are more interested in false absences, which demonstrate that model

predictions were incorrect, and true presences, which demonstrate that model predictions

were correct (top row of the confusion matrix, Table 5.2). Both performance metrics

used in this study are based in sensitivity and speci�city, and therefore, include in their

calculations the values of false absences and true presences and , in case of H metric, they

give them a higher weight in the computation of the metric. In other words, the H metric

weights the commission and omission errors di�erently, and considers more important the

discovery of the smaller class in the dataset, in our case, discovering (and failing to discover)

new presences (Hand, 2009; Anagnostopoulos et al., 2012).

5.5.4 Choosing the best method

A model has been validated when its prediction uncertainties are su�ciently small, and

that depends on the model objectives but also on other criteria which fall beyond scienti�c

or technical arguments (Usuno� et al., 1992). PPA can be de�ned as an extrapolation

prediction model (it does not extrapolate spatially like species distribution models do,

but temporally). PPA uses distributional species data and similarity information from

the data to infer future species distributions (areas where the species are susceptible to

establish). Prediction models that extrapolate are conceptually simple and require little

data (Sutherland, 2006) and that is a desirable attribute in terms of PPA. On the other
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hand, those models assume that the conditions do not change, and also that we are certain

about the drivers of the distributions in the �rst place (Sutherland, 2006).

The distinction of how model uncertainty originates from model input, model pa-

rameters and model structure is problematic (Refsgaard et al., 2007). In this study we

have experienced how entangled those uncertainties are for PPA. Uncertainty arose from

the chose of models (which clustering method to chose), from the parameters of the mod-

els (what number of clusters), from the data itself (how many errors were in the original

2003 and the observed 2014 validation data), from the choice of the performance measures

(which predictive characteristics of the model are better explained by the AUC or the H

measure). But most importantly, the conceptual uncertainty that arose from the realiza-

tion that maybe fewer bigger clusters were able to predict better than a higher number of

smaller clusters.

An experiment is deemed satisfactory for model discrimination if simulations with

the same data using all models are signi�cantly di�erent (Usuno� et al., 1992). In this study

we have provided di�erent results for at least one of the methods. In other words, HC has

been ranked as the best method by the performance metrics that we have used. However,

our results are less than conclusive. We have encountered new sources of variability such

as the number of clusters that need to be further studied before we can conclude anything

about the superiority of any method. The causes of the failure to conclude are that

our experimental designed did not initially account for the parameter uncertainty of each

method and also because this parameter uncertainty discovered possible conceptual errors

in the models design.

5.5.5 Implications for PPA

To judge which is the best model to cluster regional pest pro�les for PPA we must be

mindful of risk analysts' main applications. It is notable that all three clustering methods

are better than random. A risk assessor faced with the challenge of de�ning quarantine

measures and trade regulations and a large list of potentially hazardous species would likely

bene�t from relatively quick methods of �ltering species such as the clustering methods

presented in this study. Another interesting result is that control, which estimated how

geographically widespread a species is, is a good predictor of risk. This suggests that risk
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analysts under strong time pressure could obtain robust estimates of invasion risk using

the relative frequency of species presence in di�erent world regions.

5.5.6 Perspectives and future research

This study has clearly shown the need for further research. There are two main questions

that arise from this comparison. First question is; is there an e�ect of the number of

clusters on the prediction performance of the methods? And the second question is: is

there a �aw in the assumption behind PPA? It is accepted that conceptual uncertainty

seems to comprise a big source of prediction uncertainty (Refsgaard et al., 2007), that

means, sometimes the hypothesis behind our models are not exhaustive enough. In our

case, there is plenty of biological and ecological sense behind the hypothesis of assemblage

similarity and environmental �ltering, but maybe we are not looking at the right scale

(number of clusters) to identify the proper drivers. Future research is needed to design

a test for the hypothesis of the number of clusters. Ideally, a sensitivity analysis of the

parameter number of clusters should be conducted for all the methods, in order to conclude

whether it actually is a source of distortion in the predictions or, on the contrary, the

apparent relationship found in the present study is just spurious.

The second question opened by the results of this study is to investigate, for the

given clustering results for each method, which sort of `natural groupings' the clustering

methodologies have revealed. It would be very interesting to see, for example for the

4 resulting clusters of HC, what are the drivers behind and compare them to the three

potential explanations we gave earlier in this discussion.

Although it must be acknowledged the highly hypothetical character of the following

discussion, I proceed to explore some ideas regarding what could be the drivers behind the

four clusters shown in 5.3. The �rst considered argument considered was the climatic or

biogeographical driver. The map in Figure 5.3 shows rough broadscale climatic patterns

that seem to be consistent with Earth's biogeographic realms. Biogeographic realms are

divisions of Earth that account for the biogeographical patterns of biotic organisms, and

correspond to �oristc kingdoms or zoogeographic regions. The 4 clusters obtained by HC

mostly group Palearctic regions together in green cluster, Nearctic regions in purple cluster,

and then gathers together Oceania, Neotropic, Afrotropic, Indo-Malay and Australasia
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biogeographic realms in blue cluster (Olson et al., 2001). However, since the blue cluster

groups �ve biogeographic realms, we considered further potential drivers.

Another option is that the map is showing some anthropogenically in�uenced pat-

tern. We tentatively explored the possibility that the map was re�ecting the origin and

length of stay of the species, that is, assuming that most of the pest species recorded in

CABI CPC would have Palearctic origin (green cluster) then they would have been ex-

ported or migrated to Nearctic region (purple cluster) and are more recently arriving to

the third big cluster, the blue one that contains the southern world regions. However, it

could also be that the direction of the species movement was another. For example, that

is the purple cluster (Nearctic, or USA and Canada mostly) sending species to other two

clusters.

Again, any of these hypothesis are highly speculative and would indeed require of a

thorough investigation each.

However, the investigations of these hypothesis need to be preceded by a full sensi-

tivity analyses of the parameter number of clusters for each one of the clustering method-

ologies, that clari�es whether the resulting map of 4 clusters using HC is indeed a valid

result.

5.6 Conclusions and Future work

1- Comparing current clustering methods for PPA revealed interesting features of the

methods. Hierarchical clustering with few number of clusters showed the best predictive

power.

2- Predictive power seems to diminish with increasing number of clusters, which is

an intriguing result that warrants further investigation. Potential explanations have been

provided, but there is a need for a complete sensitivity analyses of the parameter number

of clusters for each method.

3- All three clustering methods investigated are suitable for PPA, and have potential

to provide useful �rst �lters for risk analysts. They might also identify some risk species

that could be overlooked using qualitative approaches based on expert-knowledge. How-

ever, knowledge of each models' limitations must be clearly communicated to risk analysts.

91



4- The species worldwide prevalence (relative frequency) seems to provide good pre-

dictive power of future establishments.
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Chapter 6

General Discussion

6.1 Preamble

Quantitative methods for pest risk assessment are a valuable tool to risk assessors and

biosecurity agencies worldwide (Jarrad et al., 2015). A plethora of quantitative approaches

have been described in recent years (reviewed by Leung et al. (2012)) and more are being

developed at the moment. Venette et al. (2010) suggested many priorities for further

development of quantitative methods for pest risk assessment. This thesis focused on one

of those methods; pest pro�le analysis (PPA).

Pest pro�le analysis is a young approach to pest risk prioritisation, �rst described in

Worner & Gevrey (2006). Several studies have subsequently applied it (Paini et al., 2010b,

2011; Morin et al., 2013; Singh et al., 2013, 2015; Qin et al., 2015; Paini et al., 2016), though

few studies have tested its validity. Worner et al. (2013) listed the studies that performed

model validation and sensitivity analyses of the PPA approach between 2006 and 2013.

They comprised: A sensitivity analyses of the SOM algorithm to the changes of status

from present to absent (Worner & Souquet, 2010); A comparison of SOM PPA predictions

based on 2007 data to observations made in 2011 (Suiter, 2011); and a validation using

simulated data, where SOM PPA was used to rank fungal species in a virtual simulated

world (Paini et al., 2011).

Worner et al. (2013) recommended that research in PPA continued particularly to

develop protocols for: Conducting comparable studies; detecting and removing outliers;

choosing the initial number of clusters; validating clusters; and reconciling information

obtained from di�erent clustering methods. However, these recommendations have not

yet been fully implemented. The research presented in this thesis is the �rst to address a

big number of Worner et al. (2013) recommendations such as thoroughly testing PPA for
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all target regions, comparing three clustering methods (Chapter 5), evaluating theoretical

assumptions of the model (Chapter 4), and making methodological improvements (Chapter

2, Chapter3).

In summary, this research has addressed each one of the objectives presented in the

Introduction by performing a sensitivity analysis of SOM PPA (Chapter 2), validating

SOM outputs by ecologically explaining clustering results (Chapter 3 and Chapter 4),

measuring the level of biotic homogenization among global crop pest pro�les (Chapter

4), comparing the performance of di�erent clustering methods for PPA (Chapter 5) and

assessing and discussing the validity of inferring risks of invasion from clustering results

(Chapter 5).

6.2 Methodological improvements

This thesis has addressed several of Venette et al.'s (Venette et al., 2010) high priority

recommendations for improving quantitative methods for pest risk assessment:

• A recommendation to provide greater documentation of model development

and assessment was addressed in Chapters 1-4 by unifying the terminology used

in previous research, creating a graphical representation to explain the steps that

comprise SOM PPA and by simplifying the data pre-preprocessing time by showing

that is not necessary to remove any regions from the analysis.

• A recommendation to improve models' representation of uncertainty was ad-

dressed in Chapter 3 by incorporating the ζ metric a measure of uncertainty for SOM

PPA outputs. Moreover, the evaluation of cluster validity and uncertainty assess-

ment using ζ metric can be transferred to the other two clustering techniques used

in PPA, k-means and HC.

• A recommendation to increase communication with decision makers on the

interpretation of model outputs was addressed in Chapter 2 by recommending

the use of a ranked list of species instead of SOM weights to communicate the model

outputs, and in Chapter 3 by suggesting the incorporation of ζ metric as a simple

visual depiction of uncertainty.
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6.3 Model validation

Validating a model involves showing that it meets certain performance requirements and

is, thus, suitable for its intended use (Rykiel, 1996). Validation attempts to de�ne the

degre of con�dence users should have in a model (Power, 1993). In general, models should

be accompanied by a sensitivity or uncertainty analysis showing how their theoretical

premises, the data, and uncertainties associated with the premisses and the data in�uence

models' outputs (Kirchner et al., 1996; Venette et al., 2010).

The concept of validation can be ambiguous and can be subject to di�ering inter-

pretations, thus, di�erent authors approached validation in di�erent ways. In this thesis,

di�erent types of validation tests have been conducted for PPA. This discussion will �rst

focus on `operational' which test how well models' outputs meet the standards required for

their purpose (Rykiel, 1996). I then discuss the `conceptual validity' of the PPA approach,

which is concerned with whether the theories and assumptions underlying the models are

correct or at least justi�able (Rykiel, 1996).

6.3.1 Operational validation tests

A comprehensive list of di�erent validation procedures can be found in Rykiel (1996), and

a several of them have been applied in this thesis. They are: 1) Comparing one model

to another (`comparative test'); 2) Showing that a model gives consistent results from the

same data and parameters (`internal model validity test'); 3) Assessing model outputs when

a parameter is set at an extreme value (`extreme conditions test'); 4) Making predictions

then comparing them with real observed data (`historical data validation test'); 5) Testing

for the model's ability to reproduce proper relationships between variables, regardless of

their quantitative values (`event validity test'). An internal model validity test, extreme

conditions test, sensitivity analysis and assessment of model validity for PPA were all

performed in Chapter 2 by changing the initial data input of the model to datasets with

very few species and recording the model results in those extreme conditions. The historical

data validation test was conducted in Chapter 5 for all the three clustering methods.

Sensitivity analysis is an important component of validation because it helps un-

derstand how the model responds to di�erent data or parameters. A sensitivity analysis

measures how a model's outputs change when one parameter value is varied. In Chapter
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2, the sensitivity of SOM PPA to the input data was found to be signi�cant. However, it

also showed that ranked lists of species are a more stable measure of invasion risk than

SOM weights for individual species. This means that ranks would be more comparable

between studies, whilst also easier to understand for a risk analyst.

Subsequent research (Chapter 5) suggested the sensitivity analysis conducted in

Chapter 2 might not have been comprehensive enough. It suggested that additional pa-

rameters such as the `number of clusters' should have been studied for the SOM, and

also for the HC and k-means clustering methods. This parameter was excluded from the

Chapter 2 sensitivity analysis because each clustering method has its own numerically

optimal strategy for de�ning it. However, Chapter 5 showed that the mathematically op-

timal choice for each algorithm might not be conceptually optimal for PPA. Rykiel (1996)

argued that frequently there is a disparity between the parameters the natural system is

sensitive to and the parameters the model is sensitive to. Chapter 5 suggests that PPA

is conceptually sensitive to the number of clusters, whereas the algorithms used to per-

form PPA have a di�erent mathematical sensitivity to the same parameter. In Chapter

3, an event validity test was applied to SOM PPA by showing that the resulting clusters

were ecologically meaningful. The ζ diversity metric was used to test the validity of the

regions clustered by the SOM, which helped to validate some clusters and discard others.

In Chapter 5, observed data was used to validate the predictions of each clustering model.

Chapter 5 was the �rst time the PPA method was validated using observed data for all

target regions, and it included not only SOM, but also HC and k-means.

6.3.2 Conceptual validation of ecological principles

The �elds of philosophy and ecology have both sustained extended discussions about dif-

ferent approaches to hypothesis testing. In general, scienti�c method follows a deductive

approach, exempli�ed and formalized in Platt (1964). That is, for a speci�c problem, po-

tential explanations are explicitly listed, experiments or tests are conducted and incorrect

hypotheses are systematically eliminated leaving fewer possibilities within which the truth

must lie (Quinn & Dunham, 1983; Platt, 1964). However, some authors have argued that

in community ecology this approach is often infeasible, because it deals with problems

at a systems level where interactions are complex, composite e�ects are common, true
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controls are rare, replicates are di�cult to obtain and experiments take too long (Hobbs

et al., 2006). Moreover, many causes can contribute to an observed pattern, which means

hypotheses may not be mutually exclusive. Thus, the model of `strong inference' formal-

ized by Platt (1964) is frequently inapplicable to community ecology questions. Instead,

Quinn & Dunham (1983) and Hobbs et al. (2006) advocate for a more inductive approach.

This involves identifying potential causes for a problem, evaluating the contributions of

each cause to the main problem, and cautiously generalizing these contributions to other

situations. This process of knowledge discovery is an inductive process called `learning by

accumulation of evidence' (Quinn & Dunham, 1983; Hobbs et al., 2006), and is contrary

to the deductive process of `falsifying wrong hypotheses' formalized by Platt (1964). How-

ever, Simberlo� (2010) argues that any natural event (not only in community ecology) is

likely to be caused by many actors, and this multiplicity of causes is a poor excuse for

using an inductive process. Therefore, Simberlo� (2010) and Marquet et al. (2014) advo-

cate the application of Platt's (1964) `strong inference' approach. They also suggest that

searching for con�rmatory evidence is always easier, and more seductive, than searching

for falsi�cation.

The PPA methodology is based on fundamental ecological principles of community

assembly. The main ecological hypothesis behind PPA is that two regions with similar pest

pro�les share a set of environmental and historical conditions that make them suitable for

the assembly of similar sets of pest species. Therefore, identifying similar regions can be

used to identify regions that are likely to share pest species in the future, thus, providing

predictive power to pest risk assessment.

This hypothesis can be divided into several less-inclusive hypotheses. The �rst is that

species assembly is a non-random process, or at least not entirely random, but in�uenced by

a set of underlying distributional mechanisms. The second is that identifying regions with

similar pest assemblages enables us to predict potential future establishments. The third

is that this predictive power arises from biotic and abiotic similarities between regions.

The alternative to hyphotesis one, that `assemblage composition is a random pro-

cess' has been investigated. Hubell (2001) described the neutral theory of biodiversity and

biogeography(NTB), which assumes all individuals of all species are competitively identical

and any trait variation between species has no in�uence on their abundance and specia-
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tion rates (Mcgill et al., 2006). An important implication of the NTB is that communities

are assembled by random stochastic processes. Thus it contradics 100 years of commu-

nity ecology theory, which explained species distributions by niche di�erentiation (Chave,

2004) whereby di�ering characteristics between species and their complex interactions drive

community composition.

Null model tests are interesting for studying community assembly (Gotelli & Graves,

1996). They are randomization models that hold some elements of ecological data constant

and allow others to stochastically vary, to create new assemblage patterns. These are

the patterns expected in the absence of a particular assemblage mechanism. The NTB

hypothesis can be tested by conducting null model tests of community composition datasets

(Gotelli & Mcgill, 2006). If a community signi�cantly di�ers from the null model, then

there is likely to be an underlying niche assembly process operating. The NTB hypothesis

was tested for regional pest assemblages via a null model analysis conducted by Watts

& Worner (2009). The PPA concept rests upon the assumption that insect crop pest

assemblages are a non-random collection of species. This thesis did not explicitly test

hypotheses relating to the NTB, but did �nd evidence of biotic homogenization (Chapter

4). This implies that pest assemblages are becoming more similar, thus, their assembly is

unlikely to be purely random.

The second hypothesis is that similarities between pest pro�les can be used to predict

future establishments. The alternative is that `pest pro�les have no predictive power',

which, Chapter 5 suggested is incorrect because using species assemblages to predict future

establishments provided better predictions than the control. What remains unclear is the

number of clusters that maximizes predictive power. Chapter 5 showed that fewer clusters

probably yield better predictive power than more clusters but reasons for this remain

unknown, and further investigation is needed.

The third hypothesis is that predictive power arises from biotic and abiotic similari-

ties between regions. PPA assumes that the predictive power of clustering invasive species

assemblages is related to the biotic and abiotic conditions that shape assemblage compo-

sition through the process of environmental �ltering. However, which abiotic and biotic

conditions are the important drivers of species assemblages' composition or presence in a

region, is often di�cult to determine for many species. The relative in�uence of abiotic
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and biotic conditions on species distribution is not a new question in community ecology.

Climatic suitability often plays an important role in de�ning species distributions (Roura-

Pascual et al., 2011; Eyre et al., 2012; Sutherst, 2014; Bebber et al., 2014a; Williamson,

2006). However, some species, particularly invasive species, can establish in new regions

with climates that di�er from those of their native distribution (Guisan & Edwards, 2002),

thus, we need to remain cautious when using only climatic suitability as a predictor. For

example, in Chapter 5 it was shown that the world biogeographical realms appear to be

an important variable in�uencing pest species distributions. Other important variables are

human modi�cation of habitats (Roura-Pascual et al., 2011) and, in the case of agricultural

plant pests, the presence of a host plant of the pest(Bebber et al., 2014b,a). On the other

hand, herbivorous pests have been shown to have host-shifts, mostly towards other hosts

phylogenetically related to the original ones (Lewinsohn et al., 2005), thus, the presence

or absence of the host should not be the only factor to take into account when explaining

insect pest species distributions. PPA, specially SOM PPA, creates meaningful groups of

regions. Chapter 3 showed that these groupings had biological meaning by assessing them

using the ζ metric but also showed how they appeared to account for many of the known

drivers of species distributions, which are; climate suitability, host availability, trade rela-

tionships between countries and geographical proximity (or spatial dependency). However,

whether those drivers are enough to explain pest species distributions, and whether the

predictive power of clustering pest assemblages lies in the ability of the PPA method to

re�ect those drivers remains unclear. Chapter 5 indicated that the best predictive power

was reached using a method, HC with 4 clusters, that roughly divided the world in four

groups of regions depicting biogeographical realms, compared with the SOM, which is able

to divide the world into around 90 groups of regions that do present big similarities. There-

fore, the predictive power of clustering pest pro�les seems to lie in broad scale similarity

patterns rather than in �ne-scale high similar groupings.

6.4 Final remarks

There was insu�cient time in this study to further explore why few large clusters yielded

better predictive power than numerous small clusters (Chapter 5). However, I encourage

further research to explain this. Future PPA research would bene�t both from improve-
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ments to the quality of the CABI CPC data, which are known to contain errors and

misclassi�cations, and from access to additional data sources. However, reliable global

data are di�cult to obtain and the process of data acquisition, validation and codi�cation

is very time consuming. Overall, this research has emphasized the usefulness of quan-

titative models in pest risk assessment, and has provided evidence that the investigated

quantitative methods are valid predictors of species distributions that can, indeed, convert

scienti�cally relevant data into decision relevant information.
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Appendix A

Supplement chapter 2

A.1 Weights variability

Histogram of the weight of 199 species over 341 datasets

Figure A.1: Histogram of weight values for 199 species
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Figure A.2: Boxplot of weight values for 199 species
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Figure A.3: Relationship between Mean and SD of weight values
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Figure A.4: Scatterplot of CV values for 199 species
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Figure A.5: Histogram of CV values
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Boxplots for the five species with highest average weights

Boxplots for the five species with lowest average weights

Figure A.6: Boxplots of the weight value for 5 top and 5 bottom average weights species. Mid-line
indicates median value and whiskers depict variability outside the upper and lower quartiles
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A.2 Ranks variability

Figure A.7: Values of the R∗ for the subset of 199 species
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Figure A.8: Relationship between mean and SD of the R∗ value
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Figure A.9: Histogram of the values of the coe�cient of variation of the average rank R∗ for the subset
of 199 species

I



A.3 Species prevalence

Figure A.10: Species prevalence plotted against species mean weight values. (log-log)

A.4 Related publication
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Appendix B

Supplement chapter 3

B.1 Species area relationship

We modelled the global occurence matrix species area relationship (SAR) �tting it into a

Gleason log linear model of the form

S = −14 + 9.98 ∗ log(area) (B.1)

where S is number of species and k is a �tted constant telling the number of species per

area unit (Figure B.1). (Dengler, 2009; Gleason, 1922)

Figure B.1: Species-Area relationship �tted into a log-linear Gleason model. (k = −14.86, P r(> |t| =
0.15; slope = 9.98, P r(> |t| = 2e− 16))
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B.2 Minimal working example of the computation of ζ

Each neuron of the SOM output map was considered one individual study. Let neuronA

be one sample neuron of the SOM output map, where region 1, region 2 and region 3 were

allocated by SOM PPA. The regional pest pro�les for these sample regions were composed

of 5 sample species (species 1 to 5). The computation of ζ for neuronA is as follows:

in s ta l l . packages ( ' z e tad iv ' )

l ibrary ( z e tad iv )

occurrencemat_neuron_A <− matrix (c ( 0 , 1 , 0 , 1 , 1 , 0 , 1 , 0 , 1 , 1 , 1 , 1 , 0 , 1 , 0 ) , nrow = 3 , ncol = 5 , byrow = TRUE, dimnames = l i s t (c ( ' r eg ion1 ' , ' r eg i on2 ' , ' r eg i on3 ' ) , c ( ' s p e c i e s 1 ' , ' s p e c i e s 2 ' , ' s p e c i e s 3 ' , ' s p e c i e s 4 ' , ' s p e c i e s 5 ' ) ) )

datfm_neuron_A <− as . data . frame ( occurrencemat_neuron_A)

ze ta s_Neuron_A <− Zeta . d e c l i n e ( datfm_neuron_A, orde r s = 1 : 3 )
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Sorensen similarity values 

Figure B.2: Sorensen values per neuron of the SOM output map

B.3 Richness

Highest α values
Region Richness

(α)
USA 439
India 403
China 392
Italy 307
Japan 306
Thailand 293
Australia 282
Indonesia 280
France 274
Spain 271

Table B.1: Regions with highest species richness (α)
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Appendix C

Supplement chapter 4

C.1 Computing ζ

in s ta l l . packages ( ' z e tad iv ' )

l ibrary ( z e tad iv )

d2003 = read . table ( "data2006 . txt " , header=TRUE)

d2014 = read . table ( "data2014 . txt " , header=TRUE)

zetas2003 <− Zeta . d e c l i n e ( d2003 )

zetas2014 <− Zeta . d e c l i n e ( d2014 )

Q



C.2 Signi�cance test for ζ values
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Figure C.1: ζ values computed from randomly generated assemblages (dots) and ζ values computed for
the observed data for each year (red lines). Y axes are in logarithmic scale.
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C.3 Generating random zeta values for 2014 and 2003 ma-

trices

d = read . table ( "data2003 . txt " , header=TRUE)

d2 = read . table ( "data2014 . txt " , header=TRUE)

nA = nrow(d) # number o f s i t e s

M = ncol (d) # number o f s p e c i e s

kmax = 10 # max order

theta = sum(d)/nA/M # average presence ra t e in 2014

theta2 = sum( d2 )/nA/M # average presence ra t e in 2006

zeta_ran = M∗ theta ^(1 :kmax) # random ze t a s 2014

zeta2_ran = M∗ theta2 ^(1 :kmax) # random ze t a s 2006

# Plo t o f z e t a s a ga in s t random ze t a s

par (mfrow=c ( 1 , 2 ) )

plot ( zeta2_ran , log="y" ,main="2006" , ylab=" zeta " )

l ines ( zeta2 , col="red " )

plot ( ze ta_ran , log="y" ,main="2014" , ylab=" zeta " )

l ines ( zeta , col="red " )
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C.4 Alphas
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Figure C.2: Values of α diversity in 2003 and in 2014
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