POPULATION DYNAMICS AND PEST ASSESSMENT STUDIES OF GRASS GRUB (COSTELYTRA ZEALANDICA (WHITE), MELOLONTHINAE) IN THE NORTH ISLAND OF

NEW ZEALAND

APPENDICES

Profiles of the different soil types found on the Takapau research area.

A1

Appendix 4-2 Particulars of the improved and unimproved Takapeu life table plots in terms of, soil fertility,

	Soil tes	st values ⁺	Pasture production (Kg/ha)				
	Improved	Unimproved	Improved	Unimproved			
рH	6.0	6.1	Summer 1,598	1,110			
Ca	12.5	12.5	Autumn 2,926	1,336			
K	7.0	6.5	Winter 628	260			
P	3.0	8.0	Spring 5,378	3,646			
·			Total 10,530	6,346			

pasture productivity and botanical composition*

Botanical composition of pasture (%)

	Lolium perenne	Other grasses	Clovers	Broad leaved weeds and litter
Summer Improved	18.57 <u>+</u> 4.72	36.83 ± 4.57	37 . 17 <u>+</u> 1.89	7.50 <u>+</u> 1.34
Unimproved	9.17 <u>+</u> 1.54	44.83 ± 3.94	19.67 <u>+</u> 4.70	26.33 <u>+</u> 4.84
Autumn Improved	42.05 <u>+</u> 8.27	18.01 <u>+</u> 1.05	27.5 <u>+</u> 16.51	7.52 <u>+</u> 7.50
Unimproved	14.61 <u>+</u> 6.35	52.00 <u>+</u> 5.27	18.05 <u>+</u> 3.01	16.0 <u>+</u> 14.0
Winter Improved	37.01 <u>+</u> 5.21	56.09 <u>+</u> 5.40	6.01 <u>+</u> 1.02	1.0 ± 7.0
Unimproved	34.62 <u>+</u> 13.41	60.0 <u>+</u> 9.17	2.07 <u>+</u> 0.24	4.0 ± 4.0
Spring Improved	28.75 <u>+</u> 2.53	46.75 ± 3.41	22.25 <u>+</u> 2.66	2.13 <u>+</u> 0.77
Unimproved	26.01 <u>+</u> 5.05	47.02 <u>+</u> 4.71	18.75 <u>+</u> 3.05	8.25 <u>+</u> 2.26

* Assessed by herbage dissection

+ Methods and units as per Mountier <u>et al</u>(1966)

Design of sampler used in population

studies of C. zealandica

The components of the sampler are shown in A, B and C of Appendix 4-4 Basically, the sampler consists of two parts, the hammer and the corer (A, Appendix 4-4). The hammer consists of a 5 cm diameter pipe weighted at the top and flanged at the striking end. Located at the weighted end are two well braced handles equipped with rubber grips to minimise shock. The weight of the hammers used varied depending on the soil type and the season. In the winter when soils were moist lighter hammers (12 kg) were adequate, while in the summer the use of heavier hammers (16.5 kg) was necessary.

The corer consists of the hammer guide and the barrel (B, Appendix 4-4). The hammer guide is a 3.75 cm diameter 1.0 m long tube attached to the top of the corer. The function of this tube which fits inside the hammer is to direct the stroke of the hammer on to the upper part of the barrel.

The point of attachment of the guide is shown in C, Appendix 4-4. The guide tube screws into a socket which, in turn, is held by four bolts extending upward through a plate attached to the fixed half of the corer. The socket hinge pin on which the hinge articulates and guide handle are all separate components which can be removed to dismantle the corer and allow access to parts requiring replacement or repair.

The barrel is split longitudinally and consists of a hinged and fixed half (B, Appendix 4-4). The hinged half of the corer is cut back on an angle above the hinge which allows it to open, at the cutting head, from the fixed side. Internally the cutting edge has a diameter which is 3.0 mm smaller than the barrel. Because of this stepped cutting edge, the sample is retained loosely within the barrel which enables it to be released easily and quickly. Externally the cutting head tapers towards the cutting edge.

The corer is constructed of mild steel, and the barrel is case hardened. Apart from the guide tube the complete corer after construction is re-tempered, and the barrel is polished both internally and externally to reduce soil adhesion.

Design of hammer (upper, A) and corer (lower, A) used for sampling <u>C. zealandica</u> populations: (B) construction of corer barrel (C) attachment of the hammer guide to the corer barrel. £4.

Statistical parameters of frequency distributions of C. zealandica

recorded from the improved Takapau life table plot

DAMAGED STRATA										
()	Sh - us	17 -			Skew	ness	Kurto	<u>sis</u>		
Generation	Stage	no. samples	<u>3</u> 2	ž	<u>G1</u>	<u>SD</u>	<u>62</u>	SD		
68/69	Eggs	500	33.701	1.588	4.352	0.109	20.771	0,218		
	3rd M*	400	1.968	0.677	2.497	0.122	6.237	0.243		
	3rd A**	364	2.240	0.829	2,428	0.127	7.316	0.255		
	Р	400	1.717	0.585	3.313	0.122	15.124	0.243		
	В		Sp	ade spit	sample un	it used				
69/70	Eggs	545	232•723	8.418	2.919	0.104	11.188	0,208		
	lst	535	33.501	4•745	1.708	0.105	3.155	0,210		
	2nd	420	12.414	2.914	1.425	0.119	1.601	0.237		
	3rd M	445	3.337	1.748	0.986	0.115	0.246	0.230		
	3rd A	400	1.959	1.015	2.226	0.122	7.666	0.243		
	P	401	1.571	0.845	2.269	0.121	8.618	0.243		
	В	400	1.195	0.665	2.185	0.122	5.611	0.243		

* 3rd M = Third instar May

** 3rd A = Third instar August

No. = number of samples \underline{s}^2 = variance Skewness (<u>G1</u>) see Snedecor and Cochran (1959) Kurtosis (<u>G2</u>) see Snedecor and Cochran (1959) <u>SD</u> = Standard deviation

 $\overline{\mathbf{x}}$ = mean

Appendix 5-1 cont.

			DAMAGED	STRATA	·····			
		No			Skew	mess	Kurt	<u>osis</u>
Generation	Stage	samples	<u>.</u>	ž	<u>61</u>	<u>SD</u>	<u>ç2</u>	<u>SD</u>
70/71	Eggs	603	144.691	4.963	3.170	0.099	11,365	0.198
	2nd	406	11.902	2.689	1.447	0.121	1.475	0.241
	3rd M	395	2.902	1.615	1.121	0.122	1.125	0.244
	3rd A	350	1.954	1.011	2,226	0.130	6.903	0.260
·	P	350	1.396	0.751	2.021	0.130	4.601	0.260
	В	350	0.737	0.480	2.287	0.130	6.277	0.260
71 /7 2	Eggs	601	36.243	1.865	5.257	0.099	39.450	0.199
	2nd	500	5.204	1.160	2.900	0.109	10.413	0.218
	3rd M	517	0.728	0,419	2.419	0.107	6.305	0.214
	3rd A	500	0.341	0.230	3.174	0.109	11.908	0.218
	Р	500	0.233	0.164	3.287	0.109	11.333	0.218
• •	В	501	0.188	0.133	3.792	0.109	16.122	0.217
72/73	Eggs	600	15.854	0.878	5•987	0.099	42,442	0.199

Appendiz 5-1 cont.

[UNI	DAMACED STRAT	'A			
	•				Sker	mess	Kurt	osis
Generation		No.	<u>3</u> 2	۲. ج	<u>C1</u>	SD	<u>G2</u>	SD
69/70	Eggs 1st 2nd 3rd M 3rd A P B	255 260 160 255 200 200 200	36.231 7.021 2.177 2.056 0.436 0.378 0.378	1.450 0.965 0.583 0.850 0.160 0.135 0.955	5.813 4.470 3.923 1.991 5.093 5.532 4.322	0.152 0.151 0.181 0.152 0.171 6.171	38.299 23.871 21.434 3.830 27.976 33.132	0.303 0.300 0.360 0.303 0.342 0.342
7 0/71	Eggs 2nd 3rd M 3rd A P B	200 94 200 50 50 50	12.116 0.627 0.572 1.152 0.107 0.039	0.535 0.265 0.255 0.520 0.120 0.040	4.103 7.553 3.463 4.313 2.522 2.411 4.841	0.171 0.248 0.171 0.336 0.336 0.336 0.336	18.214 59.492 12.146 23.001 6.946 4.675 22.585	0.342 0.492 0.342 0.661 0.661 0.661
71/72	Eggs 2nd 3rd M 3rd A P B	180 100 83 100 100 99	3.300 0.972 0.106 0.143 0.323 0.068	0.261 0.240 0.060 0.090 0.200 0.200	7.430 4.853 5.573 4.386 3.028 5.744	0.181 0.241 0.264 0.241 0.241 0.241	57.573 24.607 30.954 18.987 8.936 35.578	0.360 0.478 0.522 0.478 0.478 0.480
72/73	Eggs	200	4.250	4,250	0.275	0.171	65.713	0•342

Statistical parameters of frequency distributions of <u>C. zealandica</u>

			DAM	AGED STRA	TA	·····		
		×-			Skew	ness	Kurto	sis
Generation	Stage	ио. samples	2 <u>.s</u>	ž	<u>61</u>	<u>SD</u>	<u>62</u>	<u>SD</u>
68/69	Eggs	500	34.303	1,838	3.960	0.109	17.782	0.218
	3rd M	400	3.230	1.150	2.033	0.122	4.575	0.243
	3rd A	400	2.090	1.010	1.823	0,122	4.094	0.243
	Р	400	2.142	0.972	2.144	0.122	5.564	0.243
	В		Spa	de split	sample un	it used		
69/70	Eggs	5 50	190.646	8.303	2.592	0.104	8.404	0.207
	lst	550	30.467	5.850	1.663	0.104	4.770	0.207
	2nd	400	14.062	4.797	0.796	0.122	0.417	0.243
	3rd M	410	5.121	2.787	0.781	0.120	0.290	0.240
	3rd A	500	2.439	1.256	1.385	0.109	1.805	0.218
	P	500	2•373	1.158	2,001	0.109	5.458	0.218
	B	500	1.889	0,890	2.462	0.109	9.849	0.218

recorded from the unimproved Takapau life table plot

- No. = Number of samples \underline{s}^2 = Variance
- <u>x</u> = mean

Skewness (<u>G1</u>) see Snedecor and Cochran (1959) Kurtosis (<u>G2</u>) see Snedecor and Cochran (1959) <u>SD</u> = standard deviation

Appendix 5-2 cont.

	DAMAGED STRATA										
		-			Skew	mess	Kurto	sis			
Generation	Stage	No. samples	<u>s</u> 2	ž	<u>61</u>	<u>SD</u>	<u>G2</u>	<u>SD</u>			
70/71	Eggs	598	130.524	4.525	4.087	0.099	24.001	0.199			
	2nd	500	16.226	3.060	1.394	0.109	4.121	0.218			
	3rd M	498	2.222	1.196	1.547	0.109	2•372	0.218			
	3rd A	400	1.595	0.967	1.643	0.122	3.095	0.243			
	P	400	1.069	0.652	1.978	0.122	4.531	0.243			
	в	427	0.816	0.454	3.943	0,118	29•933	0.235			
71/72	Eggs	610	21.492	1.221	4.992	0.098	28.320	0.197			
	2nd	500	2.362	0.738	3.651	0,109	22.414	0,218			
	3rd M	500	0.775	0.488	2.184	0.109	5.083	0.218			
	3rd A	50 0	0.483	0.348	2.563	0.109	8.645	0,218			
	P	500	0.436	0.250	3.824	0,109	20.392	0,218			
	В	500	0.277	0,222	2.582	0.109	6.867	0.218			
72/73	Ezgs	600	34•547	1.691	4.304	0.099	20.674	0.199			
			UNDAMAG	ED STRATA	Ł						
69/70	Eggs	250	62.593	2.616	4.613	0.154	24.681	0.306			
	lst	250	18.059	2.316	4.895	0.154	41.005	0.306			
	2nd	200	4.672	1.395	2.214	0,171	6.837	0.342			
	3rd M	300	3.420	1.470	1.666	0.140	3.132	0,280			

Appendix 5-3 Tests for the adequacy of fit of the negative binomial (NB) for counts of C. zealandica

recorded from the improved life table plot at Takapau

		·	SINGLE S	AMPLE UNI	TS – 3	DAMAGED STR	ATA			
Stage	Ā	2	<u>k</u>	<u>x</u> 2	df	Ĩ	SET	<u>u</u>	SEU	x/k
1968-69 Eggs	1.59	33.70	0.0310	67.24	7	- 550.40	4928.88	- 49.07*	27 .7 5	51.22
3rd (May) 0.68	1.96	0.2571	9.67	7	- 2.62	3.70	- 0.49*	0.30	2.64
3rd (Aug) 0.83	2.24	0.3720	13.65	8	- 1.78	3.22	- 0.44*	0.29	2.23
Pupae	0.59	1.71	0.2414	7.30	7	- 0.96	2.86	- 0.29*	0.24	2.42
1969-70 Eggs	8.41	233.78	0.2052	63.98	29	-2329-93	6987.35	-120-84*	40.12	40,90
2nd	2.91	12.41	0.6700	21.49	13	- 31.46	27.49	- 3,17*	1.56	4.34
3rd (Mav) 1.74	3.33	1.4796	21.12	- 9	- 3.43*	1,89	- 0.48*	0.28	1.17
3rd (Aug) 1.01	1.95	1.1022	10.63	7	0.45	0.85	0.01*	0.14	0.92
Pupae	0.84	1.57	0.9526	3.53	7	0.17	0.68	- 0.02*	0.11	0.88
Beetles	0.66	1,19	0.7979	1.96	Ġ	- 0.27	0.51	- 0.02*	0.09	0.83
1970-71 Eggs	4.95	143.72	0.0722	105.52	12	-2801.59	16903.77	-201.05*	71.60	68.50
2nd	2.68	11.90	0,5490	31.11	13	- 34.44	33,29	- 3,95*	1.68	4.90
3rd (May) 1.61	2.90	1.6251	13.05	8	- 2.02*	1.47	- 0.32*	0.24	0.99
3rd (Aug) 1.01	1.95	1.2149	2.35	7	0.43	0.79	0,10*	0.14	0.83
Pupae	0.75	1.39	0.8109	2.14	Ś	- 0.49	0.70	- 0.05*	0.11	0,92
Beetles	0.48	10.73	0.8704	1.18	5	- 0.09	0.24	- 0.007*	0.04	0.55
1971-72 Eggs	1.86	36.24	0.0523	42.92	13	- 230.76	2021.07	→ 32,04*	16-13	35.64
2nd	1.16	5.20	0.2788	11.69	ĩi	- 7.26	11.92	- 0.78*	0.67	4.16
3rd (May) 0.42	0.72	0.4660	4.13	5	- 0.30	0.35	- 0.07*	0-06	0.90
3rd (Aug	0.23	0.34	0.4572	1.10	4	- 0.04	0.10	- 0.004*	0.02	0.50
Pupae	0.16	0.23	0.3044	3.26	4	- 0.06	0.09	- 0.018*	0.01	0.53
Beetles	0.13	0.18	0.2892	1.27	4	- 0.03	0.06	- 0.007*	0.01	0.45
1972 -7 3 Eggs	0.87	15.85	0.0291	15.43	7	- 180.35	904.48	- 11.46*	8.47	29.90
x = mean				<u>x</u> ² -	$\frac{x^2}{x}$ = chisquare test				C of <u>T</u>	
$\underline{s}^2 = \text{variance}$				df =	df = degrees of freedom in x2			\underline{U} = test of NB		
<u>k</u> = dispersion		<u>T</u> =	= test	of NB		SEU = SE	of U			

(* signified appropriate test of NB for $\overline{x}/\underline{k}$)

Appendix 5-3 cont Tests for the adequacy of fit of the negative binomial (NB) for counts of <u>C. zealandica</u>

recorded from the improved life table plot at Takapau

			SINC	LE SAMP	LE UN	ITS - UNDAMA	ED STRATA			
Stage	ž	2 <u>3</u>	<u>k</u>	<u>x</u> 2	<u>df</u>	T	SET	<u>u</u>	SEU	<u>x/k</u>
1969-70 Eggs 2nd 3rd (May) 3rd (Aug) Pupae Beetles	1.45 0.58 0.85 0.16 0.13 0.08	36.23 2.17 2.05 0.43 0.37 0.10	0.0379 0.1718 0.4554 0.0706 0.0535 0.2444	9.44 5.86 5.84 0.82 0.83 1.17	656333	-520.31 - 1.68 - 2.08 - 0.50 - 0.48 - 0.02	3233.58 8.45 2.82 1.66 1.88 C.05	-20.71* - 0.39* - 0.38* - 0.09* - 0.10* - 0.006*	24.09 0.56 0.29 0.15 0.15 0.011	38,26 3,38 1,87 2,27 2,43 0,33
1970-71 Eggs 2nd 3rd (May) 3rd (Aug) Pupae Beetles	0.53 0.27 0.25 0.70 0.12 0.04	12.11 0.62 0.57 1.59 0.10 0.03	0.0103 0.1424 0.2128 0.3236 8.1200 3.2253	1.05 1.20 0.73 2.33 0.48 0.06	2 3 4 3 2 2	-223.05 - 0.67 - 0.16 - 1.02 - 0.0055 - 0.0022	4603.36 2.19 0.64 3.45 0.0174 0.0041	-16.11* - 0.13* c.01* - 0.20* - 0.014* - 0.0013*	25.61 0.22 0.09 0.39 0.0057 0.0013	51.46 1.90 1.17 2.16 0.015 0.012
1971-72 Eggs 2nd 3rd (May) 3rd (Aug) Pupae Beetles	0.26 0.24 0.06 0.09 0.20 0.05	3.30 0.97 0.10 0.14 0.32 0.06	0.0059 0.0461 0.0411 0.0905 0.2165 0.1072	0.93 0.91 0.54 0.73 2.72 0.18	2 2 2 2 3 2	- 36.31 - 2.39 - 0.08 - 0.08 - 0.18 - 0.01	2254.25 17.55 0.64 0.36 0.50 0.08	- 8.44* - 0.52* - 0.04* - 0.04* - 0.06* - 0.06*	14.69 0.81 0.08 0.05 0.08 0.08 0.02	44.07 5.21 1.46 0.99 0.92 0.47
1972-73 Eggs	0.27	4.25	0.0050	0.93	2	- 58.12	3709.72	-10.97*	19.69	54.00

(* signified appropriate test of NB for x/k)

Tests for the adequacy of fit of the negative binomial (NB) for counts of C. zealandica

recorded from the unimproved life table plot at Takapau

(* signifies appropriate test of NB for \bar{x}/k)

			+SIN	GLE SAMP	le un	ITS - DAMAGEI	D STRATA			
Stage	ž	2 <u>\$</u>	<u>k</u>	<u>x</u> 2	đĩ	<u>.T</u>	SET	U	SEU	x/x
1968-69 Eggs 3rd (May) 3rd (Aug) Pupae	1.84 1.15 1.01 0.97	34.30 3.23 2.09 2.14	0.0442 0.5115 0.7797 0.7887	48.00 9.47 10.73 4.32	10 9 7 7	- 455.07 - 3.20 - 1.09 - 0.62	3196•49 3•94 1•39 1•25	- 43.86* - 0.50* - 0.23* - 0.03*	22.01 0.36 0.19 0.17	41.63 2.25 1.30 1.23
1969 -70 Eggs 2nd 3rd (May) 3rd (Aug) Pupae Beetles	8.30 4.79 2.78 1.25 1.15 0.89	190.66 14.06 5.12 2.43 2.37 1.88	0.2697 1.9572 2.7592 1.0562 1.1038 0.7856	38.22 27.68 14.63 12.54 5.56 5.86	31 16 10 8 7	-1776.69 - 26.70* - 4.70* - 1.79 - 0.08* - 0.22	3530.38 15.93 2.63 1.32 1.02 0.91	- 73.26* - 2.43# - 0.48# - 0.31* 0.00* - 0.01*	32.87 1.72 0.49 0.19 0.16 0.13	30.78 2.43 1.01 1.18 1.04 1.13
1970-71 Eggs 2nd 3rd (May) 3rd (Aug) Pupae Beetles	4.52 3.06 1.19 0.96 0.65 0.45	130.08 16.22 2.22 1.59 1.06 0.81	0.0737 0.5655 1.2740 1.3810 0.9238 0.6902	85.96 11.71 5.41 4.18 3.92 7.00	18 16 8 6 6	-1315.29 - 32.78 - 0.94* - 0.38* - 0.26 0.27	12247,90 37.70 0.91 0.57 0.40 0.26	-152.02* - 2.82* - 0.10* - 0.05* - 0.044* 0.06*	57.88 1.82 0.15 0.11 0.07 0.05	61.33 5.23 0.93 0.70 0.70 0.65
1971-72 Eggs 2nd 3rd (May) 3rd (Aug) Pupae Beetles	1.22 0.74 0.49 0.35 0.25 0.22	21.49 2.36 0.77 0.48 0.43 0.27	0.0379 0.2946 0.7537 0.8927 0.3356 0.7697	22.02 9.18 3.81 5.85 3.02 1.52	10 8 5 5 5 4	$\begin{array}{r} - 239.97 \\ 0.42 \\ - 0.21 \\ - 0.004 \\ 0.009 \\ - 0.04 \end{array}$	1256.68 3.17 0.25 0.10 0.185 C.05	- 19.07* - 0.22* - 0.03* 0.0002* 0.0001* - 0.0087*	11.04 0.26 0.05 0.02 0.032 0.013	32.19 2.51 0.65 0.39 0.74 0.29
1972–73 Eggs	1.69	34.54	0.0361 SING	40.04 Le sampli	10 E UNIT	506.91 TS - UNDAMAGE	3730.01	- 46.20*	22,91	46.81
1969 -70 Eggs 2nd 3rd (May)	2.62 1.39 1.47	62 . 59 4.67 3.42	0.0984 0.4361 0.9751	7.95 14.97 7.48	10 8 8	- 675.44 - 4.59 - 2.06	1857.78 12.53 2.80	- 9.52* - 1.18* - 0.26*	19.64 0.88 0.35	26.63 3.19 1.51

+ Notations defined in Appendix 5-3

Tests for the adequacy of fit of the negative binomial (NB) for counts of C. zealandica

recorded from the improved lifetable plot at Takapau in 1969-70 season

	SINGLE SAMPLE UNITS - DAMAGED STRATA										
Stage	ž	2 <u>\$</u>	k	<u>x</u> 2	df	Ĩ	SET	<u></u>	SEU	x/ <u>k</u>	
Eggs 2nd instar 3rd instar (Nay) 3rd instar (Aug) Pupae Beetles	8.41 2.91 1.74 1.01 0.84 0.66	233.78 12.41 3.33 1.95 1.57 1.19	0.2052 0.6700 1.4796 1.1022 0.9526 0.7979	63.98 21.49 21.12 10.63 3.53 1.96	29 13 9 7 7 6	-2329.93 - 31.46* - 3.43* 0.45* 0.17* - 0.27*	6987.35 27.49 1.89 0.65 0.68 0.51	-120.84* - 3.17* - 0.48* - 0.01* - 0.02* - 0.02*	49.12 1.56 0.28 0.14 0.11 0.09	40.97 4.34 1.17 0.92 0.88 0.83	
TWO SAMPLE UNITS POOLED DAMAGED STRATA											
Eggs 2nd instar 3rd instar (May) 3rd instar (Aug) Pupae Beetles	16.29 9.59 5.57 2.03 2.31 1.78	2351.48 29.3 10.34 3.15 4.67 3.76	0.5658 4.0889 5.7183 3.6990 2.2859 1.7492	44.96 25.24 12.46 3.22 3.00 5.02	30 19 13 8 9 9	-4803.7* - 67.3* - 12.88* 0.0561* - 0.33* 1.52*	6870.52 46.08 8.22 1.41 2.75 2.14	-133.93 - 2.81 - 0.67 0.0108 0.01 0.17	71.93 8.97 2.34 0.34 0.48 0.35	28.85 2.34 0.97 0.55 1.01 1.02	
].		THREE S	AMPLE UNIT	S POOLEI	D DAMAGED STRATA	· ·				
Eggs 2nd instar 3rd instar (May) 3rd instar (Aug) Pupae Beetles	24.95 14.35 8.36 3.77 3.46 2.67	559.25 53.06 15.41 7.53 7.47 5.10	0.9189 4.8106 10.0841 3.4540 3.0656 3.0247	32.31 20.62 7.83 5.02 5.07 4.99	28 21 14 11 11 8	-8192.18* - 143.12* - 5.31* - 5.47* 1.27* 0.03*	10418.46 128.59 14.77 6.38 6.04 3.39	-143.11 - 4.12 0.13 - 0.35 0.83 0.07	131.06 33.87 8.08 1.26 1.12 0.68	27.15 2.98 0.83 1.09 1.13 0.88	
X = mean	- 4			<u>x</u> ² =	= chise	quare test		SET	= SE of	<u>T</u>	
$\frac{2}{\underline{s}} = \text{variance}$				d <u>f</u> e	degre	es of freedom in	x ²	Ū	≂ test (of NB	
<u>k</u> = dispersion parameter of NB \underline{T} = test of NB \underline{SEU} = SE of \underline{U}									<u>u</u> .		

(* signifies appropriate test of NB for \bar{x}/k)

Appendix 5-6 Skewness and kurtosis of the frequency distributions of independently pooled sample units taken over

			SKEWNESS			KURTOSIS	
Stage		l unit	2 units Pooled	3 units Pooled	l unit	2 units Pooled	3 units Pooled
Eggs	Lo w	** 3.17 ± 0.109	** 1.88 ± 0.154	** 1.34 ± 0.188	** 9.09 ± 0.218	** 2.06 ± 0.307	NS 0.33 ± 0.375
	Med	** 1.78 ± 0.100	** 0.77 ± 0.140	NS 0.30 ± 0.172	** 2.00 ± 0.199	**-0.83 ± 0.279	**-1.36 ± 0.341
	High	** 1.02 ± 0.105	NS 0.01 ± 0.148	NS-0.10 ± 0.181	NS 0.14 ± 0.209	**-0.90 ± 0.294	NS-0.53 ± 0.359
lst	Low Med High	** 2.00 <u>+</u> 0.099 * 1.22 <u>+</u> 0.107 NS-0.28 <u>+</u> 0.104	not calculated	not calculated	** 2.95 ± 0.198 NS 0.25 ± 0.214 NS-0.37 ± 0.201	not calculated	not calculated
2nd	Low	** 1.33 <u>+</u> 0.109	** 0.55 ± 0.154	NS-0.10 <u>+</u> 0.178	** 0.66 ± 0.218	**-0.81 ± 0.307	**-1.01 ± 0.355
	Ked	** 0.33 <u>+</u> 0.121	NS-0.30 ± 0.171	**-0.69 <u>+</u> 0.209	**-1.18 ± 0.242	NS-0.58 ± 0.340	NS 0.66 ± 0.414
	High	**=0.54 <u>+</u> 0.122	**-0.61 ± 0.172	NS-0.18 <u>+</u> 0.202	NS-0.26 ± 0.243	* 0.84 ± 0.342	NS 0.00 ± 0.401
3rd (May)	Low	** 1.09 ± 0.109	NS 0.28 ± 0.154	NS-0.09 <u>+</u> 0.188	NS-0.35 ± 0.218	**-1.15 ± 0.307	**-1.01 <u>+</u> 0.375
	Ned	**-0.07 ± 0.123	**-0.54 ± 0.173	**-0.97 <u>+</u> 0.212	**-1.35 ± 0.245	NS-0.33 ± 0.345	NS 0.77 <u>+</u> 0.420
	High	**-0.56 ± 0.121	**-0.93 ± 0.170	NS 0.30 <u>+</u> 0.208	**-0.54 ± 0.240	** 1.39 ± 0.338	NS-0.38 <u>+</u> 0.413
3rd (Aug)	Low	** 1.41 ± 0.109	** 0.72 ± 0.154	** 0.56 <u>+</u> 0.188	** 0.61 ± 0.218	* -0.63 <u>+</u> 0.307	NS-0.45 ± 0.375
	Med	** 0.46 ± 0.122	NS-0.03 ± 0.172	NS-0.03 <u>+</u> 0.210	**-1.05 ± 0.243	NS-0.67 <u>+</u> 0.342	NS-0.44 ± 0.417
	High	** 0.35 ± 0.109	NS 0.08 ± 0.154	NS 0.08 <u>+</u> 0.183	**-1.26 ± 0.218	* -0.60 <u>+</u> 0.307	NS-0.25 ± 0.375
Pupae	Low	** 1.94 ± 0.109	* -0.36 <u>+</u> 0.154	** 0.61 <u>+</u> 0.188	** 2.21 ± 0.218	NS-0.54 ± 0.307	**-1.16 <u>+</u> 0.375
	Med	** 0.47 ± 0.122	* -0.36 <u>+</u> 0.172	NS-0.40 <u>∻</u> 0.210	**-1.38 ± 0.243	* -1.11 ± 0.342	NS-0.12 <u>+</u> 0.417
	High	NS 0.18 ± 0.109	**-0.58 <u>+</u> 0.154	**-0.62 <u>+</u> 0.188	**-1.44 ± 0.218	NS-0.56 ± 0.307	NS 0.38 <u>+</u> 0.375
Beetles	Lov	** 1.74 <u>+</u> 0.109	** 0.80 ± 0.154	NS 0.26 ± 0.188	** 1.11 ± 0.218	**-1.31 ± 0.307	**-1.85 ± 0.375
	Med	** 0.58 <u>+</u> 0.122	NS-0.31 ± 0.172	**-0.94 ± 0.210	**-1.54 ± 0.243	**-1.72 ± 0.342	NS-0.54 ± 0.417
	High	** 0.33 <u>+</u> 0.109	**-0.71 ± 0.154	**-1.40 ± 0.188	**-1.72 ± 0.218	**-1.19 ± 0.307	* 0.96 ± 0.375

different developmental stages of C. zealandica and transformed using Taylor's power law.

NS = not significant

* and ** = P>.05 and P>.01 respectively

	2. *	•	and	undamaged	strata in eac	h subplot.			· ·	
			IMPROVE	D PLOT			UNIMPROVED	PLOT		
Stage	E 1968 - B 1969	E 1969-3	rd M 1970	3rd A 19	70-2nd 1970	E 1968 - B 1969	E 1969-3	rd M 1970	3rd & 19	70-2nd 1973
Sub- plots		Damaged	Undamaged	Damaged	Undamaged		Damaged	Undamaged	Damaged	Undamaged
. 1		0.066	0.040	0.063			0.054	0.047	0.05	
2		0.066	0.040	0.063			0.008	0.083	0.05	
3		0.091	0.024	0.063			0.055	0.046	0.05	
4		0.081	0.031	0.063		. •	0.046	0.053	0.05	
5	មិ	0.030	0.062	0.063		98	0.064	°0.039	0.05	
6	dane	0.033	0.061	0.063		dams	0.094	0.016	0.05	
7	uo	0.044	0.053	0.063		l on	0.090	0.017	0.05	
8	fled	0.083	0.029	0.063		lfiec	0.039	0.059	0,05	
9	rati	0.089	0.026	0.063		rati	0.022	0.072	0.05	
10	3	0.009	0.075	0.017	0.177	ot st	0.054	0.047	0,05	
11	Nc	o	0.081	0	0.243	M	0.008	0.083	0.05	
12		0.019	0.069	0.016	0.180		0.011	0.080	0.05	
13		0.035	0.059	0.063			0.035	0.061	0.05	
14		0.050	0.050	0.063	•		0.049	0.051	0.05	
15		0.055	0.047	0.063			0.047	0.052	0.05	
16		0.070	0.037	0.063			0.058	0.043	0.05	
17		0.078	0.032	0.063			0.080	0.027	0.05	
18		0.070	0.037	0.063			0.078	0.028	0.05	
19		0.027	0.064	0.022	0.153		0.078	0.028	0.05	
20	1	0	0.081	0	0.243	·	0.032	0.064	0.05	
Propor plot	rtion of the in each stratum	0.383	0.617	0.794	0.206		0.438	0.562	1.00	0.00

Appendix 5-7 Proportion of the Takapau life table plots in each stratum and the proportion of the damaged

Appendix 5-7 cont. Proportion o

Proportion of the Rukuhia and Smith's life table plots in each stratum and the proportion of

the damaged and undamaged strata in each subplot.

		RUKUHI	A PLOT			SMITH'S	PLOT
Stage	3rd A 1969 - P 1969	E 1969 -	3rd M 1970	3rd A 19	70 - 2nd 1973	E 1970 -	2nd 1971
Sub Plots		Danaged	Undamaged	Damaged	Undamaged	Damaged	Undamaged
1		0.033	0.078	0.05		0.	0.050
2		0.075	0	0.05	•	0.004	0.046
3		0.073	0.007	0.05	а. —	0.011	0.039
4		0.027	0.051	0.05	· 1	0.003	0 .047
5		0.033	0.089	0.05		0.003	0 .047
6		0.027	0.078	0.05		0.003	0 .047
7	6)	0.020	0.089	0.05	х	0.008	0.042
8	Sina g	0.062	0.100	0.05		0.006	0 •044
9	d A	0.040	0.030	0.05		0.007	0.043
10	led o	0.058	0.067	0.05		0	0 .050
11	atif:	0.080	0	0.05		0.002	0 .048
12	a t t	0.058	0.037	0.05		0.015	0.035
13	Not	0.062	0.037	0.05		0.010	0.040
14		0.080	0	0.05		0.004	0.046
15		0.058	0,030	0.05		0.002	0 .048
16		0.053	0.037	0.05	. ·	0.002	0 •048
17		0.027	0.045	0.05	*	0.001	0.049
18		0.027	0.039	0.05		0.003	0 •047
19		0.053	0.089	0.05		0.003	0 •047
20		0.055	0.045	0.05		0.004	0.046
Propert in eac	ion of the plot h stratum	0.627	0.373	1.00	0.00	0.091	0.909
E = E 3rd A	gg 2nd = Second = Third instar larvae i	l instar larv n August	rae 3rd P	l M = Third = Pupae	l izstar larvee B = Bee	in May etles	

.

Total number of sample units taken from the undamaged and damaged strata of the Takapau life table plots

	INPROVED PLOT				UNIMPROVED PLOT				
Generation	Stage	No. sample:	Damaged	Undamaged	Generation	Stage	No. samples	Damaged	Undamaged
1968–69	Eggs 1st instar 2nd instar 3rd instar (3rd instar (Pupae Eeetles	500 May) 400 Aug) 406 400 *100	not stratified on damage		1968–69	Eggs 1st instar 2nd instar 3rd instar (Ma 3rd instar (Au Pupae *Beetles	500 - - g) 400 400 100	not stratified on damage	
196 9-70	Eggs 1st instar 2nd instar 3rd instar (3rd instar (Pupae Beetles	800 795 600 May) 700 Aug) 600 600 600	500 535 420 445 400 400 400	300 260 180 255 200 200 200	1969 –70	Eggs lst instar 2nd instar 3rd instar (Ma 3rd instar (Au Pupae Beetles	800 800 600 y) 710 g) 500 500 500	550 550 400 410 500 500 500	250 250 200 300 - -
1970–71	Eggs 1st instar 2nd instar 3rd instar (3rd instar (Pupae Beetles	783 500 May) 595 Aug) 400 400 400	583 not sample 406 395 350 350 350	200 a 200 50 50 50	197 0-7 1	Eggs 1st instar 2nd instar 3rd instar (Ma 3rd instar (Au Pupae Beetles	598 500 y) 498 g) 400 400 427	598 500 498 400 400 427	a - - -
1971-72	Eggs lst instar 2nd instar 3rd instar (3rd instar (Pupae Beetles	781 597 600 Aug) 600 500 600	601 not sample 497 500 500 500 500 501	a 100 100 100 100 99	1971-72	Eggs 1st instar 2nd instar 3rd instar (Ma 3rd instar (Au Pupae Beetles	608 500 g) 500 500 500	608 500 500 500 500 500	a - - - -
17/2-15	2nd instar	600	500	100	1912-13	2nd instar	500	500	-

* sampling unit 15² cm spade spit

	Rukuhi	a Plots	_				Smiths Plots		
Generation	Stage	No. samples	Damaged	Undamaged	Generatio	n Stage	No. samples	Damaged	Undamaged
1968-69	3rd instar (Aug)	400	not sti on da	atified	1970 -71	Eggs	454	54	400
	Pupae	200		Ū.		2nd instar 3rd instar (Me	434 Ay) 160	78 10	350 150
1969–70	Eggs 2nd instar 3rd instar (May) 3rd instar (Aug) Pupae	800 600 600 500 400	600 400 400 500 400	200 200 200		7			
1970 -7 1	Eggs Pupae	430 360	430 360	-		•			

Appendix 5-8 cont. Total number of sample units taken from the undamaged and damaged strata of the Rukuhia life table plot and Smiths plots

Statistical Notation

A list of notations and formulae used in the ensuring discussion on stratified sampling are listed below. Without exception the formulae have been taken from Cochran (1963) or derived from formulae given by Cochran.

In stratified sampling the population of N units is first divided into subpopulations <u>N1</u>, <u>N2...M</u>. The sample sizes within each stratum are <u>n1</u>, <u>n2...ml</u>, respectively.

In the following the suffix \underline{h} denotes the stratum and 1 the unit within the stratum.

<u>Nh</u>	to	tal number of sample units
<u>nh</u>	to	tal number of units in the sample
<u>xhi</u>	va	lue obtained in the i th unit
		<u>Nh</u>
<u>Wh</u>	=	stratum weight
		N
		nh
$\underline{\mathbf{fh}}$	Ħ	sampling fraction
		Nh
Ŧh	=	nh <u>xhi</u> sample mean of h stratum
<u></u>		1#1 nh

Statistics calculated from stratified sampling are denoted by the suffix st.

$$\frac{\underline{X} \text{ st}}{\underline{X} \text{ st}} = \begin{cases} \underline{Wh} \ \underline{xh} \end{cases} \text{ sample mean} \\ \frac{\underline{Vst} \overline{x}}{\underline{x}} = \begin{cases} \underline{Wh}^2 \ \underline{sh}^2 \end{cases} \begin{cases} \underline{Wh} \ \underline{sh}^2 \end{cases} \text{ variance of sample mean} \\ \underline{nh} \qquad \underline{N} \end{cases}$$

Where the sampling fraction is negligible in all strata the right hand portion of the equation for $\underline{Vst\bar{z}}$ can be deleted giving,

$$\underline{Vst\bar{x}} = \sum_{n=1}^{\infty} \frac{\underline{Wh}^2 \underline{sh}^2}{\underline{wh}^2}$$

.

<u>nh</u>

-

SX

<u>Vst $\overline{\mathbf{x}}$ </u> standard error of the mean

In the cases where samples are proportionately allocated the sampling fraction

is the same for each stratum. The mean is calculated as for sample random and the

variance:

$$V_{st} = \sum Wh sh^2$$

If sampling is proportional and the strata variance homogeneous (\underline{Sw}^2) .

 $V_{stx} = \frac{Sw^2}{n}$ variance of the mean <u>n</u>

An unbiased estimate of the variance of the mean for simple random sampling

(Vran x) where sampling was stratified is calculated by:

$$\frac{\underline{N} - \underline{n}}{\underline{NN}} = \frac{\underbrace{N} - \underline{n}}{\underline{NN}} \left[\underbrace{\underbrace{\sum \underline{W} \underline{h} \underline{sh}^2}_{\underline{N}\underline{h}} - \underbrace{\frac{\underline{W} \underline{h} \underline{sh}^2}{\underline{h}^2}}_{\underline{N}\underline{h}} + \underbrace{\sum \underline{W} \underline{h} (\overline{x} \underline{h}^2) - (\underbrace{\sum W} \underline{h} \overline{x} \underline{h})^2}_{\underline{N}\underline{h}} \right]$$

It should be noted that in the text and the appendices that follow, the terms \underline{Vran} and \underline{Vst} are used to denote the variance of simple random sampling and stratified sampling rather than the respective variances of the mean.

Estimate of the sample size for optimal allocation of sample units to each stratum, where \underline{n} is a fixed sample size, is given by:

$$\underline{nh^{i}} = \underline{n} \frac{(Whsh)}{Whsh}$$

Estimate of the number of samples for a 10% relative standard error with

optimum allocation

$$\underline{nh} = \frac{\underline{Whsh} \cdot \sum \underline{Whsh}}{(0.1 \ \overline{x})^2}$$

Appendix 5-10 Variance components of the damaged and undamaged strata of the Takapau

Variance	components	t t	Inimproved		Improved			
·		1969-70	1970-71	1971-72	196 9-70	197071	1971 7 2	
Eggs Damaged	Between subplots	5.39 **	0.19	0.34	9•79 **	0.95	0.46	
	Within subplots	187.48	130.29	21.23	240.92	138.25	35.81	
	- <u>x</u>	8.30	4.52	1.22	8.42	4.96	1.86	
	* <u>Wh</u>	0.44	1.00	1.00	0.38	0.80	0.79	
Undamaged	Between subplots	-1.66			1.91	0.39	-0.02	
	Within subplots	63.44	All class	ified	34.50	11.80	3.32	
	ž	2.61	as camag	ea	1.45	0.53	0.26	
	<u>Wh</u>	0.56		÷.	0.61	0.20	0.21	
First insta Damaged	<u>r</u> Between subplots	2.12			4.35	,		
	Within subplots	28.79	Not sampl	ed	30.95	Not sampled	L	
	x	5.85			4.74			
	Wh	0.44			0.38			
Undamaged	Between subplots	2.86			0.84			
	Within subplots	15.34	Nct sampl	ed	6.60	Not sampled	L	
	x	2.32			0.96			
	<u>Wh</u>	0.56			*0.62			

life table study plots

* Wh = stratum weight, \overline{x} = stratum mean

Tests of the level of significance * = P>.05

** = P>.01

Appendix 5-10 cont.

Va	riance components		Unimproved		Improved			
		196 9- 70	1970-71	1971-72	196 9-7 0	1970 -7 1	1971 -7 2	
Third inst Damaged	tar (Aug) Between subplots	0.27	0.09	0.05	-0,01	0.08	0.00	
	Within subplots	2.18	1.50	2.45	1.96	1.93	0.34	
	<u>x</u>	1.25	0.97	0.35	1.01	1.01	0.23	
	<u>Wh</u>	1.00	1.00	1.00	0.79	0.79	0.79	
Undamaged	Between subplots				0.00	0.06	0.02	
	Within subplots				0.43	0.18	0.13	
	x				0.16	0.52	0.09	
	Wh				0.21	0.20	0.20	
	· · · · · · · · · · · · · · · · · · ·					<u></u>		
Pupae					·		Ч. Т	
Damaged	Between subplots	0.11	0.01	0.01	0.02	0.03	0.00	
	Within subplots	2.26	1.06	0.42	1.55	1.38	0.23	
·	<u>x</u>	1.16	0.65	0.25	0.84	0.75	0.16	
	Wh	1.00	1.00	1.00	0.79	0.79	0.79	
Undamaged	Between subplots				0.02	0.01	0.02	
	Within subplots				0.36	0,10	0.30	
	x				0.13	0.12	0,20	
	<u>Yh</u>				0.21	0.21	0.20	

Appendix5-10 cont.

Vari	ance components	υ	nimproved		Improved			
		1969-70	1970-71	1971 -7 2	1969-70	1970-71	1971–72	
Second inst Damaged	Second instar Damaged Between subplots		2.54 **	0.14 **	1.15 **	0.19	0.11	
	Within subplots	12.66	13.81	1.76	11.54	11.72	5.14	
	x	4•79	3.06	0.74	2.91	2.69	1.16	
	Wh	0.44	1.00	1.00	0.38	0.79	0•79	
Undamaged	Between subplots	0.39			0.30	-0.01	0.01	
	Within subplots	4.29			2.12	0.63	0.06	
	ž	1.39			0.58	0.26	0.24	
	<u>Vh</u>	0.56		•	0.62	0.20	0.20	
	(m.)				· · · · · · · · · · · · · · · · · · · ·	 		
Damaged	r (May) Between subplots	0.44 **	0.13 **	0.05 **	0.07	0.03	0.01	
	Within subplots	4.71	2.11	0•72	3.19	2,88	0.72	
	x	2.78	1.20	0.49	1.74	1.61	0.42	
	Wh	0.44	1.00	1.00	0.38	0.79	0.79	
Undamaged	Between subplots	0.52			0.47	0.02	0.00	
	Within subplots	2•93			2.01	0.56	0.10	
	x	1.47			0.85	0.25	0.06	
	<u>Wh</u>	0.56			0. 62	0.20	0.21	

Appendix 5 - 10 cont.

Variance com		Unimproved		Improved			
		1969 - 70	1970-71	1971 - 72	1969-70	1970-71	1971 - 72
<u>Beetles</u> Damaged Between s	ubplots	0.07	0.01	0.01	0.03	0.01	0.00
Within su	bplots	1.82	0.59	0.26	1.16	0.69	0.18
x		0.89	0.45	0.22	0.66	0.48	0.13
<u>Wh</u>		1.00	1.00	1.00	0.79	0.79	0.79
Undamaged Between s	ubplots				0.01	0.00	0.00
Within su	bplots			, J	0.10	0.04	0.07
X					0.08	0.04	0.05
<u>Vh</u>				•	0.21	0.21	0.21

.

1969-1970 generation

Geostrata of damaged area

<u>nh</u>	<u>sh</u> 2	<u>Wh</u>	<u>Whsh</u>	Whsh ²	Whsh ² /nh	Wh ² sh ² /nh	<u>Whxh</u>	$\frac{Wh(\bar{x}h^2)}{Wh(\bar{x}h^2)}$
20	12.0421	0.0665	0.2310	0.8017	0.0400	0.0026	0.1731	0.4500
30	9.0160	0.0665	0.1999	0.6003	0.0200	0.0013	0.1642	0.4051
35	7.0806	0.0913	0.2431	0.6470	0.0184	0.0016	0.2297	0.5777
30	15.4310	0.0809	0.3178	1.2486	0.0416	0.0033	0,2832	0.9912
15	4.9809	0.0300	0.067 0	0.1495	0.0099	0.0002	0.0560	0.1046
15	13.6666	0.0326	0.1206	0.4460	0.0297	0.0009	0.0761	0.1776
20	13.6736	0.0443	0.1641	0.6069	0.030 <u>3</u>	0.0013	0.1731	0.6751
30	15.0758	0.0835	0.3244	1.2596	0.0419	0.0035	0.2840	0.9658
30	23.2138	0.0887	0.4277	2,0808	0.0686	0.0060	0.5681	3.6362
5	0.2000	0.0091	0.0040	0.0018	0.0003	0.0000	0.0018	0.0003
10	17.1111	0.0195	0.0810	0.3350	0.0335	0.0006	0.0391	0.0783
15	28.5523	0.0352	0.1883	1.0054	0.0670	0.0023	0.1715	0.8348
20	6.8315	0.0496	0.1296	0.3389	0.0169	0.0008	0.1537	0.4767
30	4.7868	0.0548	0.1199	0.2624	0.0131	0.0007	0.1069	0.2084
30	9.9724	0.0704	0.2226	0.7030	0.0234	0.0016	0.1691	0.4060
30	2.5988	0.0783	0.1262	0.2035	0.0067	0.0005	0.1227	0.1922
30	10.6678	0.0704	0.2302	0.7520	0.0250	0.0017 .	0.1715	0.4174
15	10.6952	0.0274	0.0896	0.2932	0.0195	0.0005	0.0676	0.1668
£ 400		1.0000	3.2878	11.7173	0.5068	0.0303	3.0122	10.7650

* For definition see Appendix 5-9

Geostrata	of	undamaged	area	
 	_			 _

ਸ਼ੁੱਸ	<u>sh</u> ²	<u>Vh</u>	<u>Whsh</u>	Whsh ²	Whsh ² /nh	₩ <u>h²sh</u> ² / <u>nh</u>	Whith	$(\underline{\mathbb{W}h}(\underline{\overline{x}h}^2)$
5	3.2000	0.0397	0,0710	0.1270	0.0254	0.0010	0.0476	0.0571
5	3.8000	0.0397	0.0774	0.1508	0.0301	0.0011	0.0555	0.0778
5	0.3000	0.0243	0.0133	0.0072	0.0014	0.0000	0.0097	0.0038
5	4.7000	0.0307	0.0667	0.1447	0.0289	0.0008	0.0369	0.0443
15	2.5523	0.0623	0.0996	0.1592	0.0106	0.0006	0.0707	0.0801
15	2.9809	0.0607	0.1049	0.1811	0.0120	0.0007	0.0688	0.0780
10	0.0000	0.0534	0.0000	0.0000	0.0000	0.000	0.0000	0.000
5	5.3000	0.0291	0.0671	0.1546	0.0309	0.0009	0.0466	0.0746
5	1.8000	0.0259	0.0347	0.0466	0.0093	0.0002	0.0155	0.0093
15	9.4952	0.0753	0.2322	0.7156	0.0477	0.0035	0.0703	0.0656
20	0.0499	0.0810	0.0181	0,0040	0.0002	0.000	0.0040	0.0002
15	1.0666	0.0688	0.0711	0.0734	0.0048	0.0003	0.0183	0.0048
10	0.1000	0.0591	0.0137	0.0059	0.0005	0.0000	0.0059	0.0005
10	0.4888	0.0502	0.0351	0.0245	0.0024	0.0001	0.0301	0.0180
10	10.4000	0.0470	0.1515	0.4888	0.0488	0.0022	0.1316	0.3684
5	9.8000	0.0372	0.1166	0.3653	0.0730	0.0027	0.0969	0.2519
5	3.0000	0.0324	0.0561	0.0972	0.0194	0.0006	0.0324	0.0324
5	0.000	0.0372	0.000	0.0000	0.0000	0.0000	0.0000	0.0000
15	2.6000	0.0640	0.1032	0.1664	0.0110	0.0007	0.0512	0.0409
20	0.0499	0.0810	0.0181	0.0040	0.0002	0.000	0.0040	0.0002
\$ 200		1.0000	1.3561	2.9172	0.3574	0.0161	0.7967	1.2089

Statistics of stratified sampling for damage - geostratification

Damaged stratum

nh	<u>sh</u> 2	<u>Wh</u>	<u>Whsh</u>	<u>Whsh²</u>	Whsh ² /nh	Wh ² sh ² /nh	<u>Yhāh</u>	Wh(xh ²)
20	.12.0421	0.0255	0.0884	0.3070	0.0153	0,0003	0.0663	0.1723
30	9.0160	0.0255	0.0765	0.2299	0.0076	0.0001	0.0629	0.1551
35	7.0806	0.0350	0.0931	0.2478	0.0070	0.0002	0.0880	0.2212
30	15.4310	0.0309	0.1217	0.4782	0.0159	0.0004	0.1084	0.3796
15	4.9809	0.0115	0.0256	0.0572	0.0038	0.0000	0.0214	0.0400
15	13.6666	0.0124	0.0462	0.1703	0.0113	0.0001	0.0291	0.0680
20	13.6736	0.0170	0.0628	0.2324	0.0116	0.0001	0.0663	0.2585
30	15.0758	0.0320	0.1242	0.4824	0.0160	0.0005	0.1088	0.3699
30	23.2138	0.0340	0.1638	0.7892	0. 0263	0,0008	0.2176	1.3926
5	0.2000	0.0034	0.0015	0.0006	0.0001	0.0000	0.0006	0.0001
10	17.1111	0.0074	0.0310	0,1283	0. 0128	0.0000	0.0149	0 •0299
15	28.5523	0.0134	0.0721	0.3854	0.0256	0.0003	0.0656	0.3197
20	6.8315	0.0190	0.0496	0.1298	0.0064	0.0001	0.0589	0.1825
20	4.7868	0.0210	0.0459	0.1005	0.0050	0.0001	0.0409	0.0798
30	9.9724	0.0270	0.0852	0.2692	0.0089	0.0002	0.0648	0.1555
30	2.5988	0.0300	0.0483	0.0779	0.0025	0.0000	0.0470	0.0736
30	10.6678	0.0270	0.0881	0.2880	0.0096	0.0002 ,	0.0657	0.1598
15	10.6952	0.0105	0.0343	0.1123	0.0074	0.000	0.0259	0.0638
\$ 400		0.3829	1.2592	4.4876	0.1941	0.0044	1.1536	4.1229

Undamaged Stratum

nh	<u>sh</u> ²	<u>¥h</u>	<u>Whsh</u>	Whsh ²	Whsh ² /nh	Wh ² sh ² /nh	<u>Whxh</u>	$Wh(\bar{x}h^2)$
5	3.2000	0.0245	0.0438	0.0784	0.0156	0.0003	0.0294	0.0352
5	3.8000	0.0245	0.0477	0.0931	0.0186	0.0004	0.0343	0.0480
5	0.3000	0.0150	0.0082	0.0045	0.0009	0.0000	0.0000	0,0024
5	4.7000	0.0190	0.0411	0.0893	0.0178	0.0003	0.0228	0.0273
15	2.5523	0.0384	0.0615	0,0982	0.0065	0.0002	0.0436	0.0494
15	2,9809	0.0375	0.0647	0.1117	0.0074	0.0002	0.0425	0.0481
10	0.0000	0.0330	0.0000	0.0000	0.0000	0.0000	0.0000	0.000
5	5.3000	0,0179	0.0414	0.0953	0.0190	0.0003	0.028 7	0,0460
5	1.8000	0.0159	0.0214	0.0287	0.0057	0.0000	0.0095	0.0057
15	9.4952	0.0465	0.1432	0.4415	0.0294	0.0013	0.0434	0.0405
20	0.0499	0.0500	0.0111	0.0025	0.0001	0.0000	0.0025	0.0001
15	1.0666	0.0425	0.0438	0.0453	0.0030	0.0001	0.0113	0.0000
10	0.1000	0.0365	0.0115	0 .0 036	0.0003	0.0000	0.0036	0.0003
10	0.4888	0.0310	0.0216	0.0151	0.0015	0.0000	0.0186	0.0111
10	10.4000	0.0290	0.0935	0,3016	0.0301	0.0008	0.0812	0.2273
5	9.8000	0.0230	0.0720	0.2254	0.0450	0.0010	0.0598	0.1554
5	3.0000	0.0199	0.0346	0.0599	0.0119	0.0002	0.0199	0.0199
5	0.0000	0.0230	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
15	2.6000	0.0395	0.0635	0.1027	0.0068	0.0002	0.0316	0.0252
20	0.0499	0.0500	0,0111	0.0025	0.0001	0.0000	0.0025	0.0001
Z 200		0.6170	0.8367	1.7999	0.2205	0.0061	0.4916	0•7459
E.E. 600		1.0000	2.0959	6.2875	0.4146	0.0105	1.6486	4.3688

Appendix 5-11(c)

		Danage	d Stratu	10	បៈ	ndamaged St	ratum		Random	variance	estimates
Subplot	<u>nh</u>	<u>xh</u>	<u>Wh</u>	<u>sh</u> ²	<u>nh</u>	<u>īh</u>	Wh	<u>sin</u> 2	$+ \frac{\mathrm{sh}^2}{(\underline{\mathrm{Vran}})}$	Wh sh	<u>Wh²sh²/nh</u>
1	20	2.6000	0.51	12.0421	5	1.2000	0.49	3.2000	7.888	0,140	0.00079
2	30	2.4666	0.51	9.0160	5	1.4000	0.49	3.8000	6.479	0.127	0.00046
3	35	2.5142	0.70	7.0806	5	0.4000	0.30	0,3000	5•930	0.122	0.00037
4	30	3.5000	0.62	15.4310	5	1.2000	0.38	4.7000	12.256	0.175	0.00088
5	15	1.8666	0.23	4.9809	15	1.1333	0.77	2.5523	3.117	0.088	0.00026
6	15	2•3333	0.25	13.66666	15	1.1333	0.75	2.9809	5•714	0,119	0.00047
7	20	3.9000	0.34	13.6736	10	0.000	0.66	0.0000	7.908	0.141	0.00066
8	30	3.4000	0.64	15.0758	5	1.6000	0.36	5.3000	11.943	0.172	0.00085
9	30	6.4000	0.68	23.2138	5	0.6000	0.32	1.8000	23.434	0.242	0.00167
10	5	0.2000	0.07	0.2000	15	0.9333	0.93	9•4952	8.835	0.148	0.00110
11	C	-	0.0	-	20	0.0500	1.00	0.0499	0.050	0.011	0.00001
12	10	2.0000	0.15	17.1111	15	0.2666	0.85	1.0666	3.6291	0.095	0.00036
13	15	4.8566	0.27	28.5523	10	0.1000	0.73	0.1000	11.883	0.172	0,00119
14	20 [·]	3.1000	0.38	6.8315	10	0.6000	0.62	0.4888	4.279	0.103	0.00036
15	20	1.9500	0.42	4.7868	10	2.8000	0.58	10.4000	7.907	0.140	0.00066
16	30	2.4000	0.54	9.9724	5	2.6000	0.46	9.8000	9•333	0.153	0.00067
17	30	1.5666	0.60	2•5988	5	1.0000	°0 . 40	3.0000	2.671	0.081	0.00020
18	30	2.4333	0.54	10,6678	5	0.0000	0.46	0.0000	7,143	0.134	0.00051
19	15	2.4666	0,21	10.6952	15	0.8000	0•79	2.6000	4.613	0.107	0.00038
20	0	-	0.0	-	_20	0.0500	1.00	0.0499	0_050	0.011	0.00001
	400				200				145.068	2.485	0.01136

Random variance estimates for each subplot and estimates of the variance of the mean assuming geostratification

+ Estimate of random variance for subplot 1 is given in appendix 11 (d)

Appendix 5-11(a)

Estimate of random variance for subplot 1

	Whsh ²	Whsh ² /nh	Wh ² sh ² /nh	$\underline{Wh}(\overline{x}h^2)$	Whyh
Damage d	6.1415	0.3071	0.1566	3.4476	1.3260
Undamaged	1.5680	0.3136	0.1537	0.7056	0.5880
	7.7095	0.6207	0.3103	4.1532	1.9140
	Vran (subplo	$(t_1) = \underbrace{\mathbb{E} \operatorname{\underline{Whsh}}^2}_{1}$	$\mathfrak{L}^{\mathrm{Wh}^2} \mathrm{sh}^2 + \mathfrak{L}^{\mathrm{Wh}^2} \mathrm{sh}^2 /$	$\frac{1}{2} + \left(\frac{1}{2} + \left(\frac{1}{2} + \frac{1}{2}\right)\right) - \frac{1}{2}$	(<u>{</u> <u>wh</u> <u>x</u> <u>h</u>) ²
		= 7,888	,		

.

Appendix 5-11(e)

1

- I. Variance estimates
 - 1 Estimates of the variance of mean assuming damage stratification.

Since sample allocation to geo-strate in the damaged and undamaged areas was made for this particular sampling proportionately in batches of five samples, in the strictest sense samples cannot be considered to be proportionally allocated. In these studies it is unlikely that this will markedly alter the results. To assess the efficiency of damage stratification in estimating variance, estimates of random variances for each stratum were required. From the bottom of appendices 11(2) and 11(b) the following statistics are given for the damaged and undamaged areas.

A 31

	$\sum Whsh^2$	<u>\$Whsh²/nh</u>	$\sum \frac{Wh^2 sh^2}{/nh}$	2 Whith	$\int \underline{Wh}(\overline{zh}^2)$
Damaged	11.7173	0.5068	0.0303	3.0122	10.7650
Undanaged	2.9172	0.3574	0.0161	0 . 796 7	1,2089
Random varianc	e (<u>Vran</u>) ={	$\sum \frac{Whsh}{2} - \sum \frac{Whsh}{2}^2$	+ \$ <u>Wh²sh²/nh</u>	$+$ $\sum \frac{Wh(xh^2)}{Wh(xh^2)}$ -	(\$ <u>Which</u>) ²
Damaged <u>Vran</u>	#	12.9325			
Undamaged Vran	_ =	3.1501			

From the random variances calculated for the damaged and undamaged strata.

Strata	ър	xh	sin ²	Va	Whsh ²	Whsh	Whsh ² /nh	Wh ² sh ² /nh	Vh(xh ²)	({ <u>UnEn</u>) ²
Damaged	400	3.01	12.9325	0.384	4.9661	1.3809	0,01242	c .00476	1. 1558	3-4790
Undamaged	200	0,80	3.1501	0.616	1.9404	1.0933	0.00971	0.0059 7	0.4928	0.3942
\$	600			1.000	6.9065	2.4742	0.03454	0.01073	1.6486	3+8732
Estimate of	damage	stratif	ication var	iance of	the mean f	rom above	e f			
$\frac{V_{st}}{X} = \frac{1}{2} (d) =$	$\sum \frac{Wh^2 sh}{nh}$	2 = 0.01	073	%	$SE = (\sqrt{.0})$	1073/1.648)	• 100 =	6.28%		
	<u></u>									
2 Estima	te of s	imple ra	ndom varian	ice of the	mean from	V <u>ran</u> of da	maged undama	ged strata 5	-11(e).	
$\underline{\text{Vran}} \ \overline{\mathbf{x}} = \mathbf{\hat{x}}$	$\frac{1}{nh}$ · (<u>whsh</u> ²	$- \sum \underline{Whsh}^2 / \underline{r}$	<u>h</u> + \$ <u>Wh</u>	$\frac{2}{\mathrm{sh}^2}/\mathrm{nh} + \xi$	$\underline{Wh} (\underline{\overline{x} h}^2)$	$- ((\underline{wh \ \overline{x} \ h})^2)$	i		
V <u>ran</u> <u>z</u> =0.0	1339 7			\$	SE (V.0	13397/1.648	3.• 100 = '	7.02%		
3 Estime	te of d	anage -	geostratifi	ed (d ~ g)	variance o	f mean from	1 appendix 5-	11 (a)		· ,
Vst x (d-g	$= \int \frac{Wh^2}{nh}$	sh ²	= 0 .0104 9	9 %	$\underline{SE} = (\sqrt{.0})$	105/1.648)	. 100 = (6.21%		
4 Estima	te of g	eostrati	fied varian	ce of mea	n as per ap	ppendix 5-11	(c) and (d)			
<u>Vst x</u> (g)	= $\sum_{nh}^{Wh^2 sh}$	1 ²	= ⁰ .01131	. %	$SE = (\sqrt{.0})$	1131/1.648)	• 100 = 0	6•45%	¥	

A32.

Comparison of efficiencies of different patterns of sampling assuming proportional allocation between stratum II Relative efficiency (<u>RE</u>) = $\left(\frac{V \operatorname{ran} \overline{x} - V \operatorname{st} \overline{x}}{V \operatorname{ran} \overline{x}}\right)^{\circ}$ 100 From variances of the mean estimated above RE Vst(d) . 19.90% = 24.98% RE Vst (d-g) = RE Vst (g) 15.57% 3 III Number of samples (ns) required for a relative level of precision 10% SE assuming proportional and optimal allocation $\frac{\text{Vran} \,\overline{x} \, .n}{(0.1 \, \overline{x})^2}$ ns = 0.013397×600 $(0.1 \times 1.648)^2$ 297 1 Simple random æ = number of samples which Vran x is estimated n Stratified on damage 2 (a) proportional allocation (pa) Wh 파 $\frac{ns}{(0.1 \times 1.648)^2} = \frac{1}{2}$ 236 0.384 91 Damage 0.616 Undamage 145 236

A33

(b)	Optimal alloca	ation (op.a.)			<u> </u>				
	Number of sam	ples (<u>nh</u> ') ree	quired from e	ach stratum f	or a relative <u>Whsh</u>	level of pre	cision of ±	10% S.E.	
	nh' =	Whsh × SWhsh		Damage	1.3809	126			
		$(0.1 \overline{\underline{x}})^2$		Undamage	1.0933	100			
					2•4742	226			
	Whsh and \$Vh;	sh were calcul	lated above w	ith Vst I (d)	calculations	1			
3	Damage - geost	tratification							
	Proportional a	allocation and	l optimal alle	ocation calcu	lated from st	atistics of d	amege - geosi	tratification	given
	previously in a	appendix 5-11(s)				G- B		0
	Strata	<u>nh</u> ' for p.a.	nh for op.a.	Strata	<u>na</u> ' for p.e.	<u>nh</u> for op.a.	Strata	nh' for p.a.	<u>nh</u> ' for op.a.
<u></u>	1	6	7	14	5	5	27	4	2
	2	6	6	15	6	6	28	11	11
	3	8	7	16	7	7	29	12	1
	4	7	9	17	6	6	30	9	3
	5	3	2	18	2	2	31	8	1
	6	3	3	19	6	3	32	7	2
	7	. 4	5	20	6	4	33	7	7
	8	7	10	21	3	1	34	5	5.
	9	8	13	22	4	3	35	4	3
	10	, 1	0	23	9	5,	36	5	0
	11	2	2	24	9	5	3 7	9	5
	12	3	3	25	8	o	38	12	1
	13	4	· 4	26	4	3	.{	230	162

A34.

4	Geostratificati	on								
	Proportional al	location and	l optimal allo	cation calcu	ulated from st	atistics of g	eostratifica	ation given in	appendix	5-11(c
	Strata	<u>nh</u> ' for p.a.	<u>nh</u> ' for op.a.	Streta	<u>nh</u> ' for p.a.	<u>nh</u> ' for op.a.	Strata	<u>nh</u> ' for p.2.	<u>nh</u> ' fo op.a.	r
	1	13	13	8	13	16	15	13	16	
	2	13	12	. 9	13	22	16	13	14	
	3	13	11	10	13	14	17	13	7	
	4	13	16	11	13	1 -	18	13	15	
	5	13	8	12	13	9	19	13	10	
	6	13	11	13	13	16	20	13	1	
	7	13	13	14	13	9		£ 260	234	
ĪV	Sunnary					•				
		Var	iance of mean	s Effi	ciency of Var:	iance estimate	es Numb leve	er of samples 1 of precision	; for a re m <u>+</u> 10% S	.E.
	Vran I	0.0	13397				V <u>ren</u>	L	p.a. 297	op.a.
	<u>Vst z (d</u>)	0.0	10732	R	<u>E Vst x (d</u>)	19.90%	Vst	<u>(d</u>)	236	226
	Vst I (d-g)	0.0	10499	<u>R</u>	<u>E Vst x (d-g</u>)	21.62%	<u>Vst</u>	<u>(d-e</u>)	230	162
	<u>Vst x (g</u>)	0.0	11311	R	<u>E Vst ī (g</u>)		Vst	(g)	260	234

A35.
Statistics of the damaged and

undamaged strata

		,	IMPROVEI	LIFE TAB				
Generation	Stage	DAM	+ <u>Wh</u> UNDAM	DAM <u>s</u>	<mark>h</mark> ² UNDAM	DAM	<u>ch</u> UNDAM	<u>Whx</u>
1969-70	Eggs	0.38	0.62	268,410	32.340	8.474	1.142	4.24
	lst	0.38	0.62	35.3 02	7.654	4.991	1.091	2.59
	2nd	0.38	0.62	12.933	3.150	3.010	0.800	1.64
	3rd (May)	0.38	0.62	3.264	2.093	1.753	0.851	1.19
	3rd (Aug)	0.79	0.21	1.903	0.399	1.008	0.153	0.83
	Pupae	0.79	0.21	1.639	0.341	0.856	0.119	0.70
	Beetles	0.79	0.21	1,175	0.101	0.644	0.079	0.53
1970-71	Eggs	0.79	0.21	142.490	10 . 510	4.894	0.492	3.98
	2nd	0.79	0.21	11,911	0.391	2.722	0.158	2.19
	3rd (May)	0.79	0.21	2.932	0,515	1.592	0.252	1.32
	3rd (Aug)	0.79	0.21	2.013	0.224	1.014	0.401	0.87
	Pupae	0.79	0.21	1.414	0.107	0.755	0.118	0.62
	Beetles	0.79	0.21	0.721	0.044	0.475	0.045	· 0.39
1971 - 72	Eggs	0.79	0.21	36.183	3.440	1.912	0.274	1.57
	2nd	0.79	0.21	5.081	0.062	1.159	0.047	0.93
	3rd (May)	0.79	0.21	0.705	0.085	0.422	0.047	0.34
	3rd (Aug)	0.79	0.21	0.343	0.141	0.230	0.089	0:20
• .	Pupae	0.79	0.21	0.234	0.324	0.164	0.200	0.17
	Beetles	0.79	0.21	0.190	0.069	0,135	0.051	0.12
1972-73	Eggs	0.79	0.21	16.145	4.302	0.888	0.278	0.76
			UNIMPROVE	D LIFE TA	BLE			
1969-70	Eans	0.44	0.56	101 221	58.522	8 254	2.461	4.00
1)0/ 10	lst	0.44	0.56	30-626	16.395	5,880	2.230	3,83
	2nd	0.44	0.56	13,890	5.110	4.775	1.408	2,88
	3rd (May)	0.44	0.56	5.059	3.307	2.133	1.433	1.73
						<u></u>		
		i	RUKUHIA	LIFE TABL	E			
1969 -70	Eggs	0.63	0.37	36.570	8.479	3.061	1.140	2.340
	2nd	0.63	0.37	0.396	0.161	0.256	0.134	0,211
	3rd (May)	0,63	0.37	0.084	0.032	0.060	0.032	0.050
<u></u>			SMITH	I'S PLOT				
1070-71	Faat	0 003	0.000	044 00	0 0001	11 00	600 A	1
17/0-/1	eggs 2nd	0.091	0.909	11.94	0.0501	2.73	0.021	1.046 0.258
			-	-	-			-

+ See appendix 5-9 for statistical notation

ċ.

Relative efficiencies (*RE) of estimating the variance and the level of

TAKAPAU IMPROVED PLOT										
			SAMPLING	DESICN						
Stratification		Random	Damag	e	Geost	rata	Damage - Geostrata			
Stage	X	% S.E.	RE	% S.E.	RE	% S.E.	RE	% S.E.		
1968 69 Egg	968-69 Egg 1.58 16.37		+N	A	2.07	16.20	NA			
3rd (May)	0.67	10.36	N	A	11.84	9.27	N	A I		
3rd (Aug)	0.63	10,48	N	A	18.98	9.44	N	A		
Pupa	0.58	11.21	N	A	0.72	11.48	N	A		
1969-70 Err	4.36	9,36	28,19	7.93	18,66	8_44	24.61	8,13		
1907 70 -66	2.61	6.35	26.27	5.45	25.43	5.48	32.96	5.20		
2nd	1.64	7.02	19,90	6.28	15.57	6.45	24.98	6.21		
3rd (May)	1.18	5.27	1.33	5.23	22.10	4.65	20.52	4.70		
3rd (Aug)	0.85	6.30	- 7.99	6.55	25.67	5.43	1.82	6.25		
Pupa	0.70	7.01	- 9.13	7.33	-13.82	7.48	-10.98	7.39		
Beetle	0.53	7.77	-11.82	8.22	7.52	8.06	- 1.43	7.83		
1970-71 Eee	4.15	9.37	- 3.28	9.52	- 7.03	9.69	- 7.32	9.70		
2nd	2.18	6.67	11,99	6.26	11.85	6.26	12.76	6.23		
3rd (May)	1.34	5.05	- 4.47	5.16	- 4.33	5.16	-13.57	5.38		
3rd (Aug)	0.87	7.82	18.8?	7.04	18.93	7.04	25.25	6.76		
Pupa	0.62	8.85	12.87	8.26	16.02	8,11	20,62	7.89		
Beetle	0.38	10.34	12.69	9.66	7.59	9.94	14.98	9•53		
1971 -7 2 Egg	1.57	12.42	- 8,98	12.97	- 2.82	12,59	- 7.45	12.78		
2nd	0.93	9.03	18.49	8,15	8.25	8,65	9.49	8.59		
3rd (May)	0.34	9.16	9.71	8.71	12.51	8,57	19.92	8.20		
3rd (Aug)	0.20	11.00	3.16	10.83	4.55	10.75	20.95	9.78		
Pupa	0.17	11.97	4.76	11.68	2.62	11.81	30.00	10,02		
Beetle	0.12	14.27	2.91	14.06	-15.64	15.35	27.27	12.17		
1972 - 73 Egg	0.76	17.20	- 4.12	17.55	5.64	16.71	- 3.61	17.51		

precision obtained, with different sampling designs

* <u>RE</u> = $(\underline{Vran}-\underline{Vst})/\underline{Vran}$.100 (see text)

+ NA = Not applicable - as plots in the early stage were not subdivided into damaged and undamaged strata and in the latter stages were classified as being completely damaged.

.

A37

Relative efficiencies (*RE) of estimating the variance and the level of

precision obtained with different sampling designs

TAKAPAU UNIMPROVED PLOT											
SAMPLING DESIGN											
Stratification Random Damage Geostrata Damage x Geostrata											
Stage	<u>x</u>	≯ S.E.	RE	% S.E.	RE	% S.E.	RE	% S.E.			
1968-69 Egg 3rd (May) 3rd (Aug) Pupa	1.80 1.15 1.01 0.97	14.35 7.81 7.16 7.52	Ni Ni Ni Ni	4 A A	0.30 12.21 8.52 10.88	14.33 7.32 6.84 7.10		NA NA NA			
1969-70 Egg lst 2nd 3rd (May) 3rd (Aug) Pupa Beetle	4.94 3.84 2.88 .94 1.28 1.10 0.86	8.00 4.68 4.85 3.96 5.44 6.17 6.96	9.80 31.00 24.74 0.63 NJ NJ	7•59 3•89 4•21 3•95 A	10.29 24.46 14.20 9.84 2.70 3.23 2.35	7•57 4•07 4•50 3•76 5•36 6•07 6•88	12.16 16.50 23.82 23.71	7.50 4.28 4.24 3.46 NA NA			
1970-71 Egg 2nd	4.53 3.10	10.26 5.82	N. NA	A A	- 2.68 11.46	10.40 5.48		NA NA			

.

A38.

Appendix 5-13 cont.

TAKAPAU UNIMPROVED PLOT										
SAMPLING DESIGN										
Stratification		Randoz	Damage	Geostra	ata Dar	age x Geostrata				
Stage	X	% S.E.	RE % S.E.	RE \$	S.E. RE	% S.E.				
1970-71 3rd (May) 3rd (Aug) Fupa	1.55 0.97 0.65	4.34 6.53 7.99	NA NA NA	2.46 5.85 1.35	4.29 6.34 7.93	na Na Na				
Beetle	0.43	8,71	NA	- 2.44	8.82	NA				
1971-72 Egg 2nd 3rd (May) 3rd (Aug) Pupa Beetle	1.26 0.74 0.49 0.34 0.25 0.22	15.21 8.31 7.98 8.99 11.82 10.61	NA NA NA NA NA NA	$ \begin{array}{c cccc} - & 8.03 & 1 \\ & 4.93 \\ - & 1.70 \\ & 7.24 \\ & 3.78 & 1 \\ & 7.40 & 1 \end{array} $	8.10 8.05 8.66 11.60	NA NA NA NA NA NA				
1972 -7 3 Egg	1.69	14.19	NA	- 4.16 1	15.02	NA				
			RUKUHIA PLOT							
			SAMPLING DESIGN							
1969-70 Egg 2nd 3rd (May)	2.34 0.21 0.05	8.88 10.83 20.69	31.74 7.34 4.45 10.58 5.61 20.10	24.97 9.86 1 3.74 2	7.70 31.7 0.28 22.6 20.30 8.4	6 7•34 3 9•52 11 19•80				
			SMITH'S PLOT							
			SAMPLING DESIGN							
1970–71 Egg 2nd	1.00 0.39	24.62 44.73	66.2 14.31 66.7 9.34	60.2 1 28.0 1	15.52 77.7 13.73 74.6	11.62 5 8.21				

.

A39.

The effect of different methods of stratifying on the number

of samples required to obtain an estimate of the mean

Stage	Plot	Stratification	No samples taken	ž	Variance	No samples proportionally allocated	No samples optimally allocated
Egg	Complete study plot	Simple random	486	1.05	32.49	2953	2953
		Damage strata	486	1.05	10.98	998	240
		Geo-strata	486	1.05	12.94	1176	1033
-		Damage — geo-strata	486	1.05	7.24	658	97
	Undamaged	Simple random	86	11.62	244.30	181	192
	stratum deleted	Geo-strata	86	11.62	197.30	146	113
Second	Complete	Simple random	434	0 •38	1.69	1139	1139
instar	study plot	Danage strata	434	0•38	0,56	379	118
		Geo-strata	434	0.38	1,21	820	328
		Damage - geo-strata	434	0•38	0,43	293	127
	Undamaged	Simple random	78	2•73	11.95	160	160
	Seratum defeced	Geo-strata	78	2•73	9.72	130	75

population of <u>C.</u> <u>zealandica</u> with a precison of $\pm 10\%$ S.E.

A40.

The total number of <u>C.</u> <u>zealandica</u> required <u>in</u> a given number

Stage			<u>+</u> 10%	S.E.			<u>+</u> 20% S.E.					
Ň	10	50	100	250	500	1000	10	50	100	250	50 0	1000
Eggs	5 692	4089	3501	2912	2493	2173	1059	757	637	539	464	402
lst instar	821	739	703	663	631	604	187	168	160	151	143	137
2nd instar	- 597	498	458	413	380	352	127	106	98	88	81	75
3rd instar (May)	232	217	210	203	196	19 1	55	51	50	48	46	45
3rd instar (Aug)	279	230	208	184	16 7	152	59	47	43	38	34	31
Pupae	259	258	222	184	15 9	138	67	48	42	34	30	26
Beetles	262	207	186	163	147	132	53	42	38	33	30	27

of samples to obtain a relative level of precision of $\pm 10\%$ S.E. and $\pm 20\%$ S.E.

Calculated from the relationship between log variance and log mean (Table 4-6) per Green (1970).

N = number of sample units

Technical apsects of photogrammetric methods used for recording and measuring grass grub damage in pasture.

<u>Materials and methods</u>. The cameras used for these studies were Canon FR QL
 mm single lens reflex which have a through the lens metering system, fitted with
 a 50 mm J2 Canon lens.

Individual paddocks or plots at Smiths and the Takapau Research Farm were photographed as near vertically as possible from the open door of a fixed wing aeroplane (Piper cub), flown along markers set at each end of the areas, from a height of 200 m.

One camera was loaded with colour film (high speed ektachrome EH135) with an ASA rating of 160, the other with false colour film (ektachrome infra red aero film 8443, 135) rated as ASA 125. The shutter speed setting used for both films was 1/250 sec. Ultra violet filters were used on both cameras and a "Wratten 12" gelatin filter was used with the false colour film.

The photographs were interpreted in the following way. The transparencies were projected through an 8.5 cm, f2.5 lens and reflected by a mirror at right angles through a glass topped table and projected on high quality bond paper. Damaged areas were detected visually and traced out in pencil. These were then cut out, weighed and related to the total weight of the paddock. The distance the mirror was set from the projector was dependent on the requirements of the interpreter. Usually this was set so that the image was enlarged approximately 20 times. Allowances were not made for distortion caused by the photograph being taken off vertical, although for critical or comparative work photographs not near-vertical were discarded.

2) <u>Results</u>. Photographs taken in the manner described are shown in Appendix 6-2, A and B. Areas of grass grub damage appear as yellow to brown patches against a green background of healthy green pasture (A, Appendix 6-2). On the infra red photograph (B, Appendix 6-2) soil and dead tissue are reproduced as cyan while green healthy tissue strongly reflects infra red and appears as magenta.

In rank pasture a large amount of dead tissue from naturally senescing foliage canopying healthy young tissue was indistinguishable from grass grub damage photographed in colour but was detectable when photographed in false colour. This situation is illustrated in the oblique ground shots of grass grub damaged hillsides (C and D, Appendix 6-2) in which damage appears as rank pasture in colour but completely dead pasture in infra red. By comparison, rank pasture in the foreground which shows as undamaged in false colour appears as a pale pink, indicating that the foliage at the base of the pasture was alive. Detection of damage in heavily grazed pastures was possible with false colour film but not successful with conventional colour film. With colour, unlike false colour, dead tissue and soil hues merged with the brown, yellow and green of short grazed pasture and were not clearly differentiated. The pattern of damage on the hill faces overlooking the road is indistinguishable in colour (E, Appendix 6-2) but detectable with infra red (F, Appendix 6-2)

Estimates of the percentages of plots damaged from the ground and aerial photography by false and colour film are given in Table 1.

Table 1

Percentage of plots damaged by <u>C. zealandica</u> measured from the ground and from aerial colour and infra red photographs

Plots	Ground	Colour	Infra red
A	4.20	4.66	4+30
В	5.03	5.20	4.91
C	3.44	3•75	3.33

Estimates of damage from ground measurement, colour and infra red photographs were very similar and did not vary by more than 12%. In view of the low levels of damage in each plot and the relatively insensitive method of measurement, the range in percentage differences between ground measurement and infra red was surprisingly low.

An overall comparison of differences between colour and infra red estimates from 26 sets of photographs showed that the mean difference of $0.94\% \pm 0.75$ in favour of colour was not significantly different from zero. A regression of colour on infra red gave a slope 1.108 ($r^2 = .871$) and a negative intercept not significantly different from the origin, suggesting that estimates of damage from both films were not influenced by the extent of damage.

The influences of pasture length, month and year were assessed from the ratio of colour/infra red (Table 2.)

Mean ratio of the proportion of study areas damaged assessed from conventional colour films and infra red colour transparencies.

<u>Month</u>		Pasture length	
	Short		Long
	(1 - 4 cm)		(4 - 8 cm)
April	1.048 <u>+</u> .049	· · · · · · · · · · · · · · · · · · ·	•968 <u>+</u> •041
	*(6)		(7)
May	•940 <u>+</u> •091		1.108 <u>+</u> .042
	(6)		(7)
Year	· · · · · · · · · · · · · · · · · · ·		
1970		•984 <u>+</u> •057	
		(13)	
1971		1 .01 <u>+</u> .034	
		(13)	

* No of plots or paddocks

Differences in the colour/infra red ratios between pasture length, time of year, and years were not significant. As damage became more widespread, however, it became more diffuse and ill defined, and increasingly more difficult and time consuming to interpret. Although this trend is also true with infra red, interpretation was easier and therefore quicker than with colour film and was less influenced by pasture height.

3) <u>Conclusion</u>. These studies showed that colour infra red film seems more versatile than colour film for detecting and measuring pasture damage. The ability of this film to differentiate between the merging hues of green, brown and yellow which are the dominant colours in vegetation, made interpretation easier since edge definition of damaged areas and healthy pasture was much more acute. Detection of grass grub damage in rank pasture where herbage is a mixture of living, senescing and dead plant tissue (C and D, Appendix 6-2) and in extremely grazed, short, brown coloured pasture (E and F, Appendix 6-2) is easier with infra red.

Ease of interpretation with colour compared with false colour is more dependent on pasture height and colour. With green, well grazed pasture in which rank and dry herbage is absent, the advantages of infra red film are less clear cut.

Under pasture conditions which are unfavourable for good definition of damaged pasture the characteristic circular pattern of grass grub damage aids in interpretation. This is well demonstrated in (F, Appendix 6-2) in which the outline of grass grub А44.

damage shows as a circular rather than an angular outline. For survey purposes, it is essential to inspect areas on the ground before photographic interpretation, as stock camps and areas spot sprayed with herbicides can be confused with grass grub damage.

Strategic use of filters to give a colour shift and enhance colour as outlined by Fritz (1967) may improve the results already obtained and is worthy of investigation.

Although relatively simple, compared with the methods for estimating insect damage outlined by Neyer, <u>et al</u> (1969) and Wallen, <u>et al</u> (1971), the tracing and weighing method for calculating the area of pasture damaged was remarkably accurate.

Appendix 6-2	Shows the ease with which grass grub damage in pasture can be
	detected under a wide range of conditions from colour infra
	red (B, D, F) compared with conventional colour (A, C, E).
	A and B Uniformly grazed flat land
	C and D Rank hill country pasture
	E and F Heavily grazed hill country

Appendix 7-1	Population	density	of (C.	zealandica	over	four	generations
				_				a

	1	.968-69			1969-70					1970-71			1	1971 -7 2		
	Dry No•2 /m2	±95%	Wet No.2 /m	±95%	Dry No•2	±95%	Wet Nc•2 /m ²	<u>+</u> 95%	Dry No. /m ²	<u>+</u> 95%	Wet No•2 /m ²	±95%	Dry No•2 /m ²	±95%	Wet No•2 /m ²	<u>+</u> 95%
Eggs	223	52	254	33	645	177	125	79	612	119	133	55	235	61	23	33
lst instar	-		-		392	64	52	39	-		- '		-		-	
2nd instar	· -		-		233	43	62	30	382	41	92	16	162	23	13 ·	6
3rd instar May	105	14	10	1	170	22	33	20	288	21	38	12	53	9	10	8
3rd instar Aug	94	19	19	20	140	17	26	11	132	18	27	16	27	6	12	9
Pupae	93	13	9	1	105	15	19	10	102	15	17	11	21	5	19	14
Beetles	80	10	12	1	82	7	9	5	61	11	11	7	20	5	4	6

in the wet and dry areas of the improved life table plot at Takapau,

- not sampled

A48.

Appendix 7-2 Relationship between the population trend index and May density of third instar <u>C</u>. <u>zealandica</u> larvae for the 1968-69, 1969-70, and 1970-71 (above) and 1971-72, 1972-73 (below) generations. (High stocked farmlet = H.S., low stocked farmlet = L.S., life table plots = L.T., and Smith's plots = S.P.).

Population budgets for the Takapau life table study plots

-	-		Imj	proved plot	-			Improved plot				
					Paddock 1		· · · · · · · · · · · · · · · · · ·]		Paddock	2	
Stage	Month	Year	x /m2	Diseased larvae (%)	Sex Ratio (위)	Infert. (11)	Adjusted*	x /m2	Diseased larvae (%)	Sex Ratio (++)	Infert. (??)	Adjusted x₀2
Egg 3rd instar 3rd instar Pupae Beetle Egg 1st instar 2nd instar 3rd instar	D M A O N D J F M	1968 1969 1969 1969 1969 1969 1970 1970	213.83 115.85 96.43 79.51 60.21 522.16 358.63 253.85 157.36	1.5	•48	•133	50.11	240.46 51.14 59.05 63.47 56.83 553.68 284.07 151.54 134.88	0.0	•54	•133	53 • 2
3rd instar Pupae Beetle Egg	A O H N	1970 1970 1970 1970 1970	113.54 97.35 75.62 603.80	6.1	•45	● 024	66.42	95.35 68.03~ 48.27~ 417.53	2.5	•50	₅024	47.12
2nd instar 3rd instar 3rd instar Pupae Beetle Egg	F M L O N D	1971 1971 1971 1971 1971 1971	315.72 176.41 115.91 69.11 52.03 156.62	7•6	•33	•273	25.28	222.31 153.82 99.92 65.44 34.87 201.54	16.6	•45	•273	22.81
2nd instar 3rd instar 3rd instar Pupae Beetle Egg 2nd instar	P M O N M F	1972 1972 1972 1972 1972 1972 1972 1973	142.33 43.83 29.98 17.54 16.03 107.31 7.12	4.76	. 40	.105	11.47	87.36 39.27 20.41 16.73 8.39 80.47 26.53	30.0	₊4 2	.105	6.31

+ Proportion of female beetles which were infertile

.

* Corrected for proportion of female beetles

A49.

Population budgets for the Takapau / life table study plots

					Unimp	roved plot		Unic	proved plot			
					Paddock	1		·		Peddock	2	
Stage	Month	Year	x /m2	Diseased larvae (%)	Sex ratio (00)	Infert.+ (°°)	Adjusted x. 2	x /m2	Diseased larvae (%)	Ser Fatio (00)	Infert. (00)	Adjusted ⊼₀2
Egg 3rd instar 3rd instar Pupae Beetle Egg 1st instar 2nd instar	D M A C N D J F	1968 1969 1969 1969 1969 1969 1970 1970	260.30 151.59 139.27 124.88 108.56 725.02 523.91 372.20	3•5	•42	•133	79.27	183.39 131.87 109.64 105.35 90.45 491.90 421.93 337.51	4.5	.44	•133	69.01
3rd instar 3rd instar Pupae Beetle Egg	A O N N	1970 1970 1970 1970 1970	148.84 127.66 94.07 560.12	5.6	•48	•024	88.14	247.97 168.14 130.09 123.87 557.81	4.4	•46	•024	111,22
2nd instar 3rd instar 3rd instar Pupae Beetle Egg	F M A O N D	1971 1971 1971 1971 1971 1971 1971	441.01 216.53 116.48 67.03 41.96 145.97	12.6	•45	•273	27•45	323.74 164.63 122.02 70.72 50.46 164.89	15.0	•46	•273	33•74
2nd instar 3rd instar 3rd instar Pupae Beetle Egg 2nd instar	F M G N F	1972 1972 1972 1972 1972 1972 1972 1973	91.54 61.88 45.37 17.92 19.17 131.06 3.95	15.4	•46	.105	15.78	90.83 59.09 39.94 35.16 27.87 285.52 7.89	13.0	•45	.105	22.45

+ Proportion of female beetles which were infertile

* Corrected for proportion of female beetles

A50.

: 7-5 Estimates of sex ratics and percentage

age infertile

A51

female beetles of <u>C. zealandica</u> in the Takapau study plots

Generation	1959-70		1970-	1970-71		-72	1972-73	
	\$PDK.1	PDK.2	PDK.1	PDK.2	PDK.1	PDK.2	PDK.1	PDK.2
······································								
Unimproved plot								
Sex Ratio	0.42	0.44	0.48	0.46	0.45	0.46	0.46	0.45
(१ १)	(160)	(149)	(120)	(182)	(62)	(75)	(31)	(41)
⁺ Infertile	13	• 3%	2.4%		27.3	%	10.5%	
	(1:	20)	(84)		(29)		(36	5)
Improved plot								
Sex Ratio	0,48	0,54	0.45	0.50	0.33	0.45	0.40	0.42
(११)	(120)	(79)	(104)	(89)	(45)	(69)	(23)	(17)
⁺ Infertile	13.3%		2.	48	27.3%		10.5%	
	(1:	20)	(84	.)	(29)		(36)	

Footnote: data based on insectary studies

+ Pooled estimate of the unimproved and improved plots

() No of individuals observed

Paddock (each life table plot consisted of two paddocks)

Oviposition performance of beetles

from the Takapau improved life table plot

Generation	1969- 70	1970 - 71	1971 7 2	1972 -73
No. Femnles	62	41	14	19
No eggs				
+Mean eggs	25.05 <u>+</u> 1.10	43.85 ± 3.63	21.80 ± 3.40	31.88 ± 2.68
lst cluster	23.17 ± 1.05	22.65 ± 0.84	18.80 <u>+</u> 2.45	18 . 11 <u>+</u> 1.59
2nd cluster	8.15 <u>+</u> 1.00	10 .7 6 <u>+</u> 0.58	3.00 <u>+</u> 0.57	8•58 <u>+</u> 0•65
3rd cluster		7.57 <u>+</u> 0.42	6.00	6.00 <u>+</u> 1.51
4th cluster		6.04 <u>+</u> 0.78	•	1.00
5th cluster		4.33 ± 0.53		
6th cluster		3.66 <u>+</u> 1.35		
Ovipositions				
Mean cluster no.	1.24	3.66	1.80	2.06
% Laying				
0 clusters	12.90	2.44	28 . 57	10.53
l cluster	66.10	5.00	28•57	26,32
2 clusters	20.97	12.20	28.57	36.84
3 clusters		24.39	14.28	21.05
4 clusters		34.15		5•26
5 clusters		14.63		
6 clusters		7.32		
Longevity	22 .2 9 <u>+</u> 2.90	51.02 <u>+</u> 2.14	17 . 21 <u>+</u> 3.32	21.05 <u>+</u> 2.20

+ Mean per fertile female

Oviposition performance of beetles

from the Takapau unimproved life table plot

Generation	1959-70	1970-71	1971-72	1972-73
No. Females	59	42	15	19
No eggs				
+Mean eggs	18.49± 1.02	40.12 ± 2.44	22.91 ± 2.27	21.12 ± 2.58
lst cluster	17•37 <u>+</u> 0•95	21.34 <u>+</u> 1.10	17.63 <u>+</u> 1.85	16.64 <u>+</u> 1.70
2nd cluster	11.00 <u>+</u> 1.58	10.92 <u>+</u> 0.45	7 . 16 <u>+</u> 3 . 34	7.22 <u>+</u> 1.55
3rd cluster	2.00	7•55 ±0•57	4.00 <u>+</u> 1.00	5.5 ±0.50
4th cluster		6.00 <u>+</u> 0.63		
5th cluster		6.00 <u>+</u> 0.89		
6th cluster		3.66 <u>+</u> 0.91	•	
Ovipositions			·	
Mean cluster no	1.10	3.27	1.82	1.65
% Laying				
0 cluster	13.56	2.38	26,66	10.53
l cluster	77.96	11.90	26.66	42.10
2 clusters	6.78	21.43	33•34	36.84
3 clusters	1.69	16.67	13.33	10.53
4 clusters		30.95		
5 clusters		9.50		
6 clusters		7.14	•	
Longevity			·····	· · · ·
Mean no. days	22.08 <u>+</u> 2.60	42.50 <u>+</u> 2.76	18.07 <u>+</u> 2.25	22 . 15 <u>+</u> 2 . 06

+ Mean per fortile beetle

A53.

A mechanical trap designed to study the flight behaviour of *Costelytra zealandica**

BY W. M. KAIN AND R. CRABTREE

Ruakura Agricultural Research Centre, Ministry of Agriculture & Fisheries, Hamilton, New Zealand

(Received 19 September 1973)

Abstract

A rotary trap capable of sampling simultaneously at one location a range of heights has been developed to study the flight behaviour of *Costelytra zealandica* (White). The traps are designed so that entering beetles are swept back into a fluid-filled catching chamber and killed or prevented from mating. The trap may be controlled automatically and is cheap to construct.

INTRODUCTION

Mechanical traps for sampling airborne insects were first described by Williams & Milne in 1935. Since then they have been adapted for various purposes ranging from the study of attractants for scolytids in forest areas (Vite & Gara 1961) to more quantitative assessments of airborne fauna (Taylor 1962). Juliet (1963) reported trouble in sampling coleopterans, which tend to crawl out of the nets and escape while the trap is in motion.

The trap described below was designed especially for studies on *Costelytra zealandica* (White). Essentially the rotary trap consists of nets rotating in a horizontal plane around a central axis. This principle allows insects to be sampled independently of wind speed, since the increase in airflow over half a revolution is offset by the decrease in airflow over the other half.

DESIGN

The components of this trap may be described in three parts: the framework, the traps, and the drive assembly. These are shown in Figs 1A, 1B, and 1C respectively.

Framework (Figs 1A and 1C)

The purpose of the framework is to support the components of the drive assembly. Constructed from 3.75 cm by 6.25 cm by 1.5 mm slotted angle iron and mounted on a plywood base (A), it consists of two distinct structures: a square pyramid (B) and a rectangular frame (Fig. 1C). The pyramidal-shaped frame has a 75 cm square base,

is 90 cm high, with a 20 cm square top on which the upper bearing of the drive pole (L) is mounted. The rectangular frame, 30 cm high by 20 cm wide and 57.5 cm long, is fixed lengthwise to the plywood base and supports the gearbox (E) and lower drive bearing (M). Positioned diagonally across the base, it extends from one leg of the main frame to 3.75 cm past the centre point of the base.

Drive assembly (Fig. 1C)

The trap is driven either by a 2.5 horsepower four-stroke petrol engine running at 1530 r.p.m. or a small electric motor with a rating of 0.25 horsepower at 1425 r.p.m. Because of the voltage drop experienced over the length of cable used, this motor ran at 1378 r.p.m. The motors are seated on rubber mounts and are bolted through adjustment slots in the plywood base (A). Torque from the motor is transmitted from a 6.87 cm (7.5 cm)[†] diameter pulley (H) by a V-belt to a 35 cm (25 cm) diameter intake pulley (I) on a worm-drive reduction gearbox (E) with a ratio of 12:1 (16.5:1). From the 15 cm diameter outlet pulley (J) another V-belt drives a similar-sized pulley (K) fixed to the drive pole (L). This combination of pulleys and gearbox gives a reduction ratio from motor to drive pole of 61.2:1 (55.1:1).

The drive pole consists of 3.75 cm diameter exhaust tubing running in two ball-bearing races (C, M) and is supported on these bearings by collars clamped to the pole by grubscrews.

Each of the three traps (O) is supported on an arm (N) made from 1.8 cm square section hollow aluminium, which is rigid and light. The arms

^{*} Part of post-graduate studies carried out in conjunction with Lincoln College, Canterbury.

[†] Dimensions of the electrically driven version in brackets.

N.Z. Journal of Experimental Agriculture 1: 393-5

are attached to the drive pole at three heights above the base of the trap and are spaced at 120° angles to one another, to ensure that the trap is balanced when in motion. The horizontal distance from the pole to the centre of the trap is 1.8 m, giving a trap speed of 16.1 km per hour at 25 r.p.m.

To the proximal end of each arm is bolted a 36 cm length of angle iron. This not only minimises flexing when the trap is in motion by giving added support to the arms, but serves as a point of attachment through which the arms are secured to the drive pole. The upper arm, which is fixed at a height of 2.4 m above the ground, is bolted to a collar clamped to the top of the drive pole, and the middle arm is positioned 1.35 m above the base and is secured by a double U bolt clamp. The lower arm is mounted above the upper bearing and extends downward at an angle of 28° from horizontal to a height of 10 cm above the ground. From this point the terminal 25 cm section of the arm on which the trap sits is bent to be parallel with the base. Thirty-seven cm from the proximal end of the lower arm the slotted angle iron to which it is bolted is braced back to the drive pole by a horizontal strut. This modification of the arm and its point of attachment allows the lower trap to sweep 10 cm above the ground without obstruction from the framework.

Trap heights may be changed by altering the position of the arms on the drive pole. For our studies of *C. zealandica*, traps were set at 10 cm, 1.29 m, and 2.5 m.

Traps (Fig. 1B)

The traps are attached to the upper side of the arms by two long bolts extending through the arms, up either side of each trap, and through two 3 mm-thick hardboard slats 5 cm wide and 30 cm long. These are glued to the upper and lower surfaces of the traps 15 cm back from the leading edge.

The design of the traps is such that beetles entering are unable to crawl out or mate.

Although a few beetles do manage to cling to the netted upper surface of the trap, those which strike the netting usually fall and are swept back into the catching chamber. Those that do cannot escape while the trap is in motion, as they are unable to crawl across the perspex mouth and invariably find their way into the chamber. Perspex, 1.5 mm thick, is used in the construction of the traps, as preliminary work had shown that, like glass, it neither attracts nor repels flying beetles.

The traps are 57.5 cm in length with a mouth 22.5 cm square and 20 cm deep which leads

into a tapering rear section 37.5 cm long. Over the length of the rear section the outer edges of the floor converge from 22.5 cm to 7.5 cm, and the upper edges of the walls are cut back on such an angle that the wall height is reduced from 22.5 cm to 2.5 cm. The roof of this section is left open and is covered by fly netting (6.4 meshes per cm). Fitted lengthwise into the back of the trap is a V 7.5 cm wide, 5 cm long, and 2.5 cm high (R). The ends of the arms of the V are glued to the trap walls, which at this point are 2.5 cm high. The upper side of the V is covered by a triangular piece of perspex. Fly netting which covers the top side of the rear section is glued to the leading edge of this triangle. At the apex of the V a triangular tube leads into a catching chamber (S). The chamber is supported by an L-shaped bracket (T) and is held in position by an elastic band.

Insects entering the trap are swept to the back of the trap, into the V, and down the tube into the catching chamber. In flight studies it may be important that the physiological condition of the insect does not change from the time of capture to the clearing of the trap. Depending on requirements the chamber may be filled with water, which inhibits mating, but over a 10-h period does not impair their viability, or if live catches are not required, the chamber can be filled with a suitable killing fluid.

Performance

Traps of this design have performed very satisfactorily, and there is no suggestion that flying *C. zealandica* beetles avoid or are attracted to this type of trap. Visual observations have shown that movement or air currents caused by the revolving traps appear to have little effect on the beetles' flight paths. Similarly, the effect of sound and vibrations arising from a petrol motor did not seem to disturb the beetle flight.

The trap design has a number of desirable features. It enables the flight of *C. zealandica* to be studied at different heights in one position in the paddock. The use of perspex and the design of the traps overcome the problem met by Juliet (1963), as beetles are prevented from clinging to the nets and crawling out of the trap, and mating is prevented. The electrically driven version may be worked automatically with an off-on time switch. With the petrol-motor-powered trap a simple switch-off device may be installed by raising the fuel intake above the bottom of the petrol tank to prevent dirt from entering and blocking the fuel system and by inserting a sight glass graduated in running time in the side of the petrol tank. The arrangement and

395

Figs 1A, B, C-Construction and operational details of trap for sampling airborne insects.

number of traps may be varied by changing the position and number of arms. Trap speed may be altered by adjusting the governor on the petrol motor and by altering the length of the arms and/or pulley size.

The trap is extremely cheap to make. The electric version was constructed in part from a second-hand roller-wringer, agitator-type washing machine. This supplied a 0.25 horsepower motor and the wringer drive was used in the gear assembly, giving a total cost of materials of \$62.00. The cost of the petrol-driven version was \$112.00, which included the price of a new motor.

REFERENCES

- Juliet, J. A. 1963: A comparison of four types of traps used for catching flying insects. Canadian Journal of Zoology 41: 219-23.
- Taylor, L. R. 1962: The absolute efficiency of insect suction traps. Annals of Applied Biology 50: 405-21.
- Vite, J. P.; Gara, R. F. 1961: A field method for observation on olfactory responses of bark beetles (Scolytidae) to volatile materials. Contributions of the Boyce Thompson Institute 21: 175-82.
- Williams, C. B.; Milne, P. S. 1935: A mechanical insect trap. Bulletin of Entomological Research 26: 543-51.

"Pastures and Pasture Plants"

EDITOR R. H. M. LANGER

Students of pastures and pasture production in New Zealand have waited a long time for a comprehensive introductory textbook on the subject, and they will not be disappointed with this volume. The difficulty of dealing with a continually changing subject and of bringing forward a reasonably up-todate account of the information available has deterred would-be authors, but Professor Langer has overcome this by calling on a team of experts to contribute sections of the book with which they are most familiar. This no doubt has reduced the writing time of the original manuscript and has allowed recent information and research results to be included. Even so, the fact that the preface was completed 18 months before publication indicates how slow the mechanics of this process are these days. The result is that very few data later than 1970 have been included.

However, the volume is one that will be most appreciated by students, as it provides a sound basis for understanding the application of plant science. It should be extensively used wherever agriculture is being taught at secondary or tertiary levels. Farmers will also appreciate having a reference volume on pasture production and management to provide background information to articles that appear in farming journals and newspapers.

The effort which has been made to link up pasture production with pasture utilisation and livestock production is to be commended, as they are interdependent in New Zealand, where the former is only a means to an end, viz, a high yield of animal products.

There are advantages and disadvantages in having a number of contributors to a book of this nature. On the one hand, the information on any particular topic is likely to be complete and well documented. On the other, there is the difficulty of integrating the subject matter of the different writers and of developing a logical progression of the main theme. Professor Langer has successfully achieved the best of both worlds and has avoided the contradictory statements that could so easily occur in such a publication.

The balance of space allotted to each subject has also required careful control to avoid over- or underemphasis of a particular section. No two people would agree exactly on this matter, and the resultant product is a reflection of the individuality of the editor and his contributors. But there will be very few who will disagree violently with the result in this case.

Students will find the wide use of tables, which are largely adapted from research papers, helpful in illustrating statements in the text. Figures, mainly in the form of graphs and diagrams, are used profusely in preference to photographic material and should be very useful. A very full list of references is provided at the end of all chapters except one. Students who want to study any particular topic more fully will find these lists will save them time and unnecessary reading.

There is certain to be a widespread demand for this book, and before long a second edition may be required, when the authors will be able to correct the minor typographical errors which unfortunately are scattered through the pages. In addition, Chapter 8, which deals with livestock production from pasture, would be improved if a reference list were included. The next edition could also provide an opportunity for the further development of topics such as seed quality which are not dealt with very fully in the present volume.

— G.S.R.

"Pastures and Pasture Plants", Ed. R. H. M. Langer. A. H. and A. W. Reed, Wellington. \$8.50 (limp); \$10.95 (board).

Anatomical ... condition of female C. zealandica beetles

<u> </u>	<u></u>	· · ·	<u> </u>	Not laid		Lai	.d
Tear	Weeks from beg. of flight	Total	Total	Mated	Fed	Total	Fed
1969	1	84	20	20	0	64	23
	2	145	18	18	9	127	93
	3	19	8	8	. 8	11	11
	4	25	7	7	7	18	6
	5	3	1	0	0	2	1,
19 70	1	5	5	4	. 0	0	0
	2	62	9	8	0	53	25
	3	249	6	5	0	243	, 83
	4	33	0	0	0	33	7
	5	50	0	0	0	50	16
	6	6	0	0	0	6	6
1971	1	45	5	4	ο	39	23
	2	58	12	12	8	46	46
	3	43	3	3	2	45	45
	4	15	0	0	0	15	14
	5	6	0	0	0	6	3
			1				

caught in flight at Takapau over three seasons*

* 1972 not included as few female beetles caught

A56.

ppendix	7-10
---------	------

Tests of density dependence in mortality recorded over different

Age Interval	Nc. Obs.	Slope (b) b <u>+</u> 95%	Intercept (a) a <u>+</u> 95%
Eggs - 2nd instar	16	-0.596 0.806	2.576 0.244
2nd - 3rd instar (May)	12	-0.021 0.324	0.306 0.080
2nd - 3rd instar (Aug)	12	-0.060 0.502	0.636 0.124
3rd (May) - 3rd (Aug)	16	0.0003 0.145	0.152 0.037
3rd (Aug) - Pupae	16	0.028 0.223	0.070 0.058
Pupae - Beetles	16	0.057 0.240	0.137 0. 066
Eggs - Beetles	16	0.347 0.533	-0.449 0.125

age intervals at the Takapau life table plots. *

+ In these tests grass grubs within each of the two paddocks within each life table plot were treated as independent populations

Appendix 7-11 The numbers $(/m^2)$ of potentially predacious invertebrate species

and	diseased	larvae	recorded	from	the	Takapau	study	plots.	
-----	----------	--------	----------	------	-----	---------	-------	--------	--

	UNIMPROVED LIFETABLE									IMPR	OVED LIFE	TABLE	•	
	Predators							Diseases Predators					Diseases.	
Development stage of grass grub	Asilidae	Carabidae	<u>Tlateridae</u>	Staphylindae	Myriopoda	Bacterial	Fungus	<u>Asilidae</u>	Carabidae	Elateridae	Staphylindae	Myriopoda	Bacterial	Fungue
1968-69 Eggs 3 m 3 A		0•75	1.17 0.93 0.93	0.31 0.62		0,25				2.71	0.31		1.24	
P B 1969-70 Eggs 1st 2nd 3 m 3 A P	0.15	0.15 0.30 0.41 0.50	1.23 2.40 2.85 0.82 0.68 1.75	2.60 2.55 2.66 0.85 1.00		0.31 0.30 4.50 5.33 6.12 1.25	0.30 0.41		0.82 0.20	1.71 0.41 0.41	3.12 1.71 3.28 0.36 0.41	0.82 0.36	0.60 1.55 0.82 6.16 1.02 0.82	2.46 0.30 0.20 0.20
B 1970-71 Eggs 2nd 3m 3 A	0.21 2.25 0.25	0.25 0.21 1.25 0.25	0.25 1.05 2.00	1.05 2.25	0.63 0.25	1.25 0.75 6.75	0.25 0.63 0.75 0.25	0.16 7.25	0•32 0•75	0.20 2.21 1.00	2.50	0.25 0.40	1.43 1.00 3.20 0.62	0.16 1.00 0.20
P B 1971-72 Eggs 2nd 3 m 3 A P	0.20 1.25	0.20 0.25	0.31 0.29 2.60 2.25 0.25 0.25	0.60 0.75 -	0.20	2.02 0.50 0.50	0.40	0.32 0.20	6.76	0.31 3.95 0.41 0.41 0.61	0.82 2.46	0.61	1.24 0.16 0.20 0.20	0.31 1.55 0.64 0.20
B 1972-73 Eggs 2nd	0,20	1.02 1.75	5.52 1.00	3•28 0•25	0.61	0.20 0.25	0.41	0.30	1.30	2.85 0.41	2 .2 5 0.20	0.75	0•45	0.30

A58.

Effect of density on the survival of first instar

Treatment	Density per pot	No. pots.	No./Density	No. surviving 14 days	Mean survival /pot 14 days	% survival 14 days
Soil	5	6	30	6	1.0	20.0
(without food)	. 10	6	60	10	1.7	16.7
	15	6	90	9	1.5	10.0
	20	6	120	16	2.7	13.3
	25	6	150	5	0.8	3•3
	30	6	180	16	2.7	9.0
Barley	5	10	50	23	2.3	46.0
(with food)	10	10	100	30	3.0	30.0
	15	10	150	36	3.6	24.0
	20	10	200	36	3.6	18.0
	25	10	250	30	3.0	12.0
	30	10	300	36	3.6	12.0

A59.

larvae of <u>C</u>. <u>zealandica</u> in the presence and absence of food

13 Effect of density on the survival of second instar larvae

Treatment	Density per pot	No. pots	No./ density	No. surviving 14 days	Kean survival 14 days	% survival 14 days	No. surviving 28 days	Nean survival 28 days	% survival 28 days
Soil	2	16	32	24	1.5	75.0	12	0.75	37•5
food)	5	10	50	33	3•3	66.0	10	1.00	20.0
	. 8	8	64	37	4.6	57.8	6	0.75	9.4
	10	6	60	42	7.0	70.0	6	1.00	10.0
	15	6	90	41	6.8	45.6	6	1.00	6.7
	20	6	120	43	7•2	35.8	5	0.83	4.2
Barley									
(with food)	2	16	32	28	1.75	87.5	25	1.56	78.1
	5	10	50	39	3.9	78.0	26	2.6	52.0
	8	8	64	43	5.4	67.2	20	2.5	31.3
	10	6	60	39	6.5	65.0	14	2.3	23.3
	15	6	90	48	8.0	53•3	8	1.3	8.9
	20	6	120	71	11.8	59.2	18	3.0	15.0
}									

of <u>C.</u> <u>zealandica</u> in the presence and absence of food.

Effect of density on the survival of third instar

Treatment	Density per pot	No. pots	No./ density	No. surviving 7 days	Mean survival 7 days	% survival 7 days	No. surviving 14 days	Mean survival 14 days	% survival 14 days
Soil (without	ì	32	32	27	C.84	84.5	26	0.81	81.3
1000)	2	16	32	28	1.75	87.5	28	1.75	87.5
	5	10	50	39	3.9	78.0	32	3.2	64.0
	8	8	64	41	5.1	64.1	35	4.4	54•7
	10	6	60	38	6.3	63.3	26	4.3	. 43.3
	12	6	7 2	40	6.7	55.6	27	4.5	37.5
	15	6	90	38	6.3	42.2	10	1.7	11.1
	20	6	120	35	5.8	2 9.2	9	1.5	7.5
Barley								0.60	(a =
(With food)		32	32	29	0.91	90.0	20	0.03	02.5
	2	16	32	22	1.4	63.8	15	0.94	46•9
	5	10	50	35	3.5	70.0	24	2.4	48.0
	8	8	64	49	6.1	76.6	31	3•9	48.4
	10	6	60	45	7.5	75.0	24	4.0	40.0
	12	6	7 2	48	8.0	66.7	37	6.3	51.8
	15	6	90	73	12.2	81.1	54	9.0	60.0
	20	6	120	88	14.7	73.8	63	10.5	52•5

larvae of C. zealandica in the presence and absence of food

ج.

as per Wightman (unpub.)

Appendix 7-16 Spring rainfall and spring mortality

 Rainfall (mm)
 Mortality (%) 3rd Aug-Beetles

 1968-69
 91.7
 37.8

 1969-70
 106.2
 40.5

 1970-71
 299.0
 75.9

 1971-72
 159.3
 59.0

of <u>C. zealandica</u> at Takapau

* Diseased larvae have been deleted in estimates of mortality

Appendix 7-17 Soil moisture profiles in the top 15 cm in

wet and dry summers (February) at Takapau and Rukuhia

· - · ·	ТАКА	PAU	RUKUHIA		
Depth cm	Wet	Dry	Vet	Dry	
0-5	24.4 <u>+</u> 2.68	5.3 <u>+</u> 0.41	36.0 <u>+</u> 1.27	8.3 ± 0.65	
5-10	28.7 <u>+</u> 3.12	8.9 <u>+</u> 1.26	37•0 <u>+</u> 3•20	6.4 <u>+</u> 0.64	
10-15	29 • 3 <u>+</u> 2 • 20	9 .0 <u>+</u> 1.26	41.9 + 1.80	5•2 <u>+</u> 0•38	

A64.

Appendix 7-18 Effect of temperature on the larval stages of

Stage lst Instar		2nd Instar		3rd Instar				
Temp (C ^o)	% Mortality *Corrected	Probit	Temp (C ^O)	% Mortality *Corrected	Probit	Temp (C ⁰)	% Mortality *Corrected	Probit
21.0	27.1		23.9	8,33		23.9	26.0	
28.9	32.2 7.1	3.532	31.95	20.00 12.0	3.825	31.7	30.8 6.5	3•486
30.0	40.6 18.5	4.103	32.20	28.50 21.0	4.194	31,95	47.1 28.5	4.432
31.1	50.0 31.4	4.515	32.50	74.50 72.5	5.598	32.20	49.0 31.1	4.507
31.7	75•0 6 5•7	5.404	32.80	83.25 81.9	5.874	32.50	68.3 57.2	5.181
32.2	84.4 78.6	5.793	33.05	91.0 90.0	6.282	32.80	82.7 76.6	5.726
32.6	84.4 78.6	5.793	33•3	97.5 97.5	6.960	33.05	89.4 85.7	6.067
			33.9	100 100.0	8.719			

<u>C. zealandica</u>. following four, four-hour periods of exposure

* Corrected for mortality in the control(run at 21°C).

Variances and covariances among the components of log population index,

age interval	log Ss	log Sa	log Sw	log Ssp	log <u>f</u>	* <u>r</u> ²
log <u>Ss</u>	21.35	-22.36	-1.77	-12.26	-19.70	0.0210
log Sa		20.3	5•59	21.96	- 4.00	0.0209
log Sm			3.42	9.07	- 2,80	0.2100
log Ssp				45•53	6,88	0.7410
log <u>f</u>				• • •	29.3	0.1297

based on eggs, expressed as a percentage of the total variance

$*r^2$ = coefficient of determination

A66.

Appendix 7-20 Variances and covariances among the components of log population index,

(drought year omitted)							
age interval	log Ss	log Sa	log Sw	log Ssp	log <u>f</u>	* _2^2	
log Ss	6.99	-5.15	-1.99	2.37	-6.47	0.0026	
log Sa		6.93	2.63	18.37	9.46	0.5536	
log Sr			1.73	6.83	2.25	0.2552	
log <u>Ssp</u>				41.55	1.90	0.7638	
log <u>f</u>				. •	12.48	0.2069	

A67

based on second instar larvae, expressed as a percentage of the total variance.

*r² = coefficient of determination

Variances and covariances among the components of log population index,

age interval	log Ss	log Sa	log <u>Sw</u>	log Ssp	log <u>f</u>	* <u>r</u> ²
log <u>Ss</u>	103.42	7.34	- 4.54	- 9.62	-29.98	0.6990
log Sa		5.03	1.38	5•37	- 1.00	0.2649
log Sw			0,85	2.25	- 0.60	0.0000
log Ssp				11.28	1.69	0.1094
log <u>f</u>					7.26	0.0821

based on second instar larvae, expressed as a percentage of the total variance

 $*r^2 = coefficient of determination$

Variances and covariances among the components of log population index,

age interval *<u>r</u>2 log Ss log Sa log Sw log Ssp log <u>f</u> log Ss 11.59 -12.14 0.1472 -10.99 -13.39 -12.70 11.02 8.64 20.96 0.4202 log Sa 3.50 log Sr 5.77 19.03 9.45 0.6157 34.74 **0.8**620 log <u>Ssp</u> 13.32 log f 11.18 0.2878

based on third instar larvae in May, expressed as a percentage of the total variance

 $*r^2$ = coefficient of determination
Appendix 7-23 Variances and covariances among the components of log population index based on third instar larvae, in August, expressed as a percentage of the total variance.

age interval	log <u>Ss</u>	log Sa	log Sw	log Ssp	log <u>f</u>	* <u>r</u> ²
log <u>S</u> s	15.80	-16.54	-1.31	-18.26	-17.44	0.0762
log <u>Sa</u>		15.02	4.14	28 .57	4.77	0.4327
log <u>S</u> w	·		2•53	3.92	-2.01	0.0948
log <u>Ssp</u>				47.34	18.15	0.8533
log <u>f</u>				· · · · · · · · · · · · · · · · · · ·	15.24	0. 1895

*r² = coefficient of determination

Estimates of population levels of <u>C.</u> zealandica at Takapau

using different density dependent and density independent relationships

				Basi	c assum	ptions			
i		A	В					C	
Year	Stage	Actual	Specific density dependent		*			Mean density dependent relationship for	moist
			relationships, and relationships					summers, mean slope of autumn-winter con	bat mortality
			betweeen survival, and soil moisture					with intercepts set from pasture product	ion data and
			in summer and rainfall in winter.	* MSP	* MSP	+ASP	+ASP	relationship between survival and soil r	oisture in
				** MF	++AF	**MF	++AF	summer and rainfall in winter.	
1969	Eggs	573		573	573	573	573		573
	Moist summer: assessment		log <u>y</u> = 0.130 log <u>x</u> + 2.115					$\log y = 0.142 \log x + 2.121$	
	of combat mortality								
1970	2nd instar	279		297	297	297	297		327
	assessment of combat mortality		log y = 0.148 log x + 1.792					$\log \chi = \log x - (1.149(\log x - 2.102))$	
1970	3rd instar (August)	131		141	144	144	144		110
	assessment of density		% mortality = 23.42+					<pre>% mortality = 23.42+</pre>	
	independent mortality based	а. С	1.82 x rainfall cm					1.82 x rainfall cm	
	on rainfall		rainfall = 10.62 cm					rainfall = 10.62 cm	
1970	Bectles	79		83	83	83	83		63
			Sex prop. 0.44 [‡]					Sex prop. 0.44 [°]	
			Mean fecundity / ¥ B			•		Mean fecundity / ² B	
			15.8 eggs					15.8 eggs	

* MSP = mean sex prop. 0.44 \$

** MF = mean fecundity / ² beetle meaned over 3 years 15.8

+ ASP = actual sex prop., 1970; 0.47 \$: 1971; 0.42 \$: 1972; 0.44 \$.

++ AF = actual fecundity / ⁹ beetle. 1970; 13.5: 1971; 12.5: 1972; 21.6.

A71

Appendix 7-24 contd.

 Estimates of population levels of C. zealandica at Takapau

using different density dependent and density independent relationships.

Year					Basic as	sumption	15		
	Stage	.A Actual	B	MSP	MSP	ASP	ASP	C	
-			···· · · · ·	MF	AF	MF	AF		
1970	Eggs	535		577	494	616	528		438
	Moist summer: assessment	· · ·	$\log \chi = 0.154 \log x + 2.127$		·			$\log y = 0.142 \log x + 2.121$	
	of combat mortality								
1971	2nd instar	326		125	348	360	352		313
	Assessment of combat mortality		log <u>y</u> = _0.567 log <u>x</u> + 3.544					$\log y = \log x - (1.149(\log x - 2.260))$	
1971	3rd instar (August)	114		125	127	124	126		168
	assessment of density		<pre>% mortality = 23.42 +</pre>					<pre>% mortality = 23.42+</pre>	
	independent mortality based		1.82 x rainfall cm					1.82 x rainfall cm	
	on rainfall	{	rainfall = 29.9 cm					rainfall = 29.9 cm	
1971	Beetles	28		28	28	27	28		37
			Sex prop. 0.44 [°]					Sex prop. 0.44 ²	
			Mean fecundity / 4 B					Mean fecundity / ² B	
			15.8 eggs					15.8 eggs	

A72.

Appendix 7-24 contd.

Estimates of population levels of C. zealandica at Takapau

Basic assumptions Year В MSP. ASP MSP ASP А С MF AF MF AF Stage Actual 1971 Eggs 195 154 178 146 257 175 Dry summer: assessment of . % mortality = 142.41-% mortality = 142.41density independent mortality 6.264 x % moisture 6.264 x % moisture based on soil moisture % moisture = 16% % moisture = 16% 2nd instar 1972 103 113 89 103 84 149 Assessment of combat mortality $\log y = \log x - (1.149(\log x^2 1.550))$ $\log y = 0.0282 \log x + 1.595$ 3rd instar (August) 1972 34 34 35 35 35 29 Assessment of density % mortality = 23.42+ % mortality = 23.42+ independent mortality based 1.82 x rainfall cm 1.82 x rainfall cm on rainfall rainfall = 15.93 cm rainfal1 = 15.93 cm 1972 Beetles 14 17 17 17 17 14 Sex prop. 0.44² Sex prop. 0.44² Mean fecundity / ² B Mean fecundity / 9 B 15.8 eggs 15.8 eggs 117 159 151 118 161 1972 Eggs 97 % mortality = 142.41-Dry summer assessment of % mortality = 142.41-6.264 x % moisture 6.264 x % moisture density independent mortality % moisture = 9% based on soil moisture % moisture = 9% 16 22 1973 2nd instar 11 16 22 14

using different density dependent and density independent relationships.

A73

Regressions of the square root of the mean number (m^2) of

second instar larvae in February on percentage occurrence 'recorded in

Year	No	*r_	Slope <u>+</u> 95%	Intercept <u>+</u> 95%
1969			Not sampled	
1970 .	9	0.8691	0.202 0.103 A a	4.320 1.677 ABC abc
1971	9	0.9276	0.183 0.066 A a	7.398 1.128 AB a
1972	9	0.9573	0.251 0.068 A a	2.402 0.754 ВС ъ
19 7 3	9	0.9767	0.248 0.053 A a	1.368 0.471 C c
Overall	36	0.9662	0.250 0.020	2.230 0.495

groups of subplots within the Takapau life table plots.

Appendix 8-2 Regressions of the square root of the mean number (m^2) of second

instar larvae in March on percentage occurrence recorded in paddocks within the

.

Takapau farming Systems trial

Year	No	* <u>r</u>	Slope <u>+</u> 95%	Intercept <u>+</u> 95%
1968			Not sampled	
1969	26	0.9308	0.273 0.045 A a	4.717 0.794 Aa
1970	42	0.9697	0.262 0.022 A a	1.541 0.524 Bb
1971	19	0.9607	0.215 0.032 AB b	2.619 0.883 BC be
1972	16	0.9663	0.176 0.027 въ	3.269 0.615 BC c
1973	14	0.9303	0.156 0.039 въ	3.552 0.569 BC c
Overall	117	0.9090	0.234 0.020	2.956 0.479

 $\frac{r}{r}$ = correlation coefficient

Regressions of the square root of the mean number (m^2) of

third instar larvae in May on percentage occurrence recorded in

Year	No	£*	Slope <u>+</u> 9	5%	In	tercept :	£ 95%
1969	9	0.9815	0.207 0.036	Aa	2•757	0.389	Aa
1970	9	0.9693	0.168 0.038	A a	3.110	0.416	AB b
19 71	9	0.9682	0.163 0.038	Aa	3.315	0.600	ВЪ
1972	9	0.9497	0.174 0.051	Aa	2.423	0.690	Вb
Overall	36	0.9594	0.171 0.013	·	3.073	0.258	

groups of subplots within the Takapau life table plots

Appendix 8-4 Regressions of the square root of the mean number $\binom{2}{m}$ of third

instar larvae in May on percentage occurrence recorded in paddocks within the

Takapau farzing systems trial

Year	No	£*	Sle	ope <u>+</u> 959	6	In	tercept :	<u>+</u> 95%
1968	27	0.9316	0.207	0.033	AB ab	3.184	0.487	Aa
1969	32	0.9743	0.236	0.020	A a	2.192	0.391	Aa
1970	35	0.9750	0.189	0.015	Вb	1.835	0.311	ВЪ
1971	- 36	0.9762	0.178	0.014	BC b	2.360	0.377	ВЪ
1972	15	0.9161	0.143	0.037	Сс	3.138	0.615	Вb
Overal1	145	0.9313	0.182	0.012		2.929	0.258	
* Life table and farming	181 system	0.9363	0,180	0.010		2.961	0.216	

* pooled data from the life table plots and farming systems trial

correlation coefficient

Photory 0-) . Welleggroup of hereentrade argrane noneder ru und an and heraenande	Appendix 8-5	Regressions o	of	percentage	visible	damage	in	May	on	the	percentage
---	--------------	---------------	----	------------	---------	--------	----	-----	----	-----	------------

Tear	No	++ <u>F</u>	Slo	pe <u>+</u> 95%	6	Inte	ercept <u>+</u>	95%
1968			Not sa	mpled				
1969	18	0.9154	0.904	0.211	Aa	-1.044	3.546	Aa
1970	8	0.6536	0.554	0.640	ВЪ	-3•353	7.330	Aa
1971	7	0.9377	0.437	0,186	ВЪ	1.298	6.636	A a
Overall*	40	0.7512	0.545	0.157		6.918		

occurrence in March recorded in paddocks within the Takapau farming system trial

when the stress of the strength and the second stress of the second	centage
--	---------

Tear	No	++ <u>r</u>	Quadratic component	S.E.	Linear component	S.E.	Intercept	S.E.
1968	19	0.9132	0.00523	<u>+</u> 0.00482	0.3949	<u>+</u> 0.0797	2,5513	<u>+</u> 1.3160
1969	17	0.9268	0.01649	<u>+</u> 0.01498	-0.5051	<u>+</u> 0.1221	20.5243	<u>+</u> 1.5884
1970	11	0.9106	0.00533	<u>+</u> 0.00516	0.1471	<u>+</u> 0.0780	1.0262	<u>+</u> 2.1067
1971	10	0.9362	0.00175	<u>+</u> 0.00350	0.3944	<u>+</u> 0.0745	0.7138	<u>+</u> 1•9879
1968 & 69	36	0.9323	0.00100	<u>+</u> 0.00302	0.1443	<u>+0.0542 A a</u>	5.1241	<u>+</u> 1.0038 A a
1970 & 7 1+	25	0.9271	0.00291	<u>+</u> 0.00219	0.3048	<u>+</u> 0.0437 ВЪ	1.1733	<u>+</u> 1.1314 B b
Overall+	61	0.8544	0.00106	<u>+</u> 0.00269	0.6111	<u>+</u> 0.0553	-0.6210	<u>+</u> 1.2071

occurrence in May recorded in paddocks within the Takapau farming system trial

* Included are four observations from 1972 and three from 1973

+ Included are four observations from 1972

++ correlation coefficient

root of the mean number of second instar larvae (m^2) in March recorded in paddocks

Tear	No	** <u>r</u>	Slope <u>+</u> 95%	Intercept <u>+</u> 95%
1969	18	0.9431	3.129 0.585 A a	-13.822 2.929 A a
1970	8	0.6012	2.130 2.828 A.a.	- 8.389 7.739 Въ
1971	7	0.9249	2.057 0.973 Bb	- 5.391 7.261 AB b
All years*	40	0.8589	2.267 0.439	- 2.565 2.903

within the Takapau farming Systems trial

ppendix	8	-8
---------	---	----

Regressions of the percentage visible damage in May on the mean number of third instar larvae (m^2) in May recorded in paddocks within

the Takapau farming systems trial

Year	No	** <u>r</u>	Slope <u>+</u> 95%	Intercept <u>+</u> 95%
1968	23	0,9413	0.195 0.032 A	a - 0.586 2.121 A a
1969	17	0.8776	0.18 3 0. 055 A	a 0.448 4.370 A a
19 70	11	0.9403	9.171 0.047 A	a 0.000 3.939 A a
19 71	10	0.9496	0.175 0.047 A	a 0.133 3.894 Aa
All years+	65	0.9462	0.184 0.016	- 0.277 1.473

* Included are four observations for 1972 and three for 1973

+ Included are four observations for 1972

* * r = correlation coefficient

A77.

Regressions of log second instar larvae in March in generation P(n + 1)

on generation P(n)

Tear	No	+ + <u>x</u>	Slope <u>*</u> 95%	Intercept ± 95%
1969-1970	18	0.6772	C.470 0.270 A a	1.432 0.053 Aa
1970-1971	12	0.8920	0.387 0.138 A.a	1.673 0.069 A a
Overall*	35	0.8700	0.629 0.126	1.068 0.060

Appendix 8-10 Regressions of log third instar larvae in March in generation P(n + 1)

on generation P(n)

Tear	No	++ <u>r</u>	Slo	ope ± 95%	ю	Inte	ercept <u>+</u>	95%
1968-1969	17	0.8022	0.533	0,218	AB ab	1.272	0.057	Вb
1969-1970	15	0.8379	0.465	0.182	Aa	1.271	0.047	Aa
1970-1971	20	0.8301	0.493	0.164	ВЪ	1,284	0.069	Вb
Overall+	55	0.\$348	0.547	0.099		1.174	0.035	

* Included are two observations from 1971-72 and 3 observations from 1972-73

Included are three observations from 1971-72 +

++ r = correlation coefficient

A78.

*Class Interval	1970	19 7 1	Increase 1970-71	1972	Increase 197172
0	10	2	2	1	1
1	10	3	6	1	2
2	3	4	12	٥	0
3	5	7	3	0	4
4	1	2	2	0	2
5	0	4	. 0	0	4
6	0	· 1	2	- 2	3.
7	1.	- 2	2	1	6
8		. 3	0	3	1
9		0	0	5	1
10		1	1	4	2
11		1		3	2
12				1	1
13				1	0
14				3	0
15				้า	0
16				1	0
17				0	1
18				2	
19				0	
20				0	
21 .				1	

Appendix 8-11 Frequency distributions of individual areas

of visible pasture damage and their

rate of appearance

* No. of areas of visible damage/subplot

Tests of adequacy of the negative binomial model for describing the frequency distributions of individual areas of visible pasture damage and their rate of appearance.

	1970	1971	Increase 1970-71	19 7 2	Increase 1971 -7 2
No. classes	8	12	11 -	22	18
Mean	1.40	4.16	2.77	10.57	6.33
۶.	2.01	4.11	4.19	8,80	5.57
<u>x</u> ²	1.71	3.93	10.99	4.67	1.07
df	4	6	6	6	5
Ţ	-0.37	-9.68	2.43	-61.73	-10.58
Set	3.02	15.56	6.20	34.59	29.50

 $\mathbf{k} \in \mathbf{k}$ = parameter of dispersion for a negative binomial

df = degrees of freedom

 \underline{x}^2 = chi-squared rest

T = test of negative binomial

Set = - SE of \underline{T}

Appendix 8-13 Calculations involved in simulating the growth of pasture damage caused by <u>C</u>. <u>zealandica</u> larvae in successive years.

Given

1) Number of individual areas of damage :

six, of the following areas; 0.79, 4.91, 7.07, 1.77, 0.20 and 3.14 m^2

2) Relationship for predicting the number of eruptions per ha in year (yr.+1) from x the $\frac{1}{2}$ area

damaged in yr.

$$y = 135.6x - 2.072x^2/(x + 0.8)$$

3) Expansion of an individual area of damage in metres is given by

y = (3.942 / x) + 1.6

where \underline{x} is the % area damaged in \underline{yr} .

% damage (D) in year <u>yr</u> <u>D(yr</u>)	No. of Eruptions /ha	Components of <u>D</u> (yr+1) /ha	No. of Eruptions /ha	Components of <u>D(yr</u> +2)	No. of Eruptions /ha	Components of <u>D</u> (yr+3)
0.1788	25	0.5226 0.3650	70	1.0726 1.5695 1.0220	105	1.9527 3.4967 4.3946 1.5330
\$0.1788		\$0.8876		\$3.6641		£11.3770

A81

Appendix 8-14 Results of simulation studies using the models given in the next text for predicting

· · · · · · · · · · · · · · · · · · ·		% damage in year	(Y <u>r</u> + 1)	
⊀ damage in year	Quadratic curve	Using relationships involving rate of appearance and growth of visible damage +	Using relationships involving population density *	Using relationships involving % occurrence **
2%	. 6.0	7.2	9.6	7.2
5%	13.6	13.6	16.4	13.2
10%	25.2	24.0	24.6	22.0
15%	35.6	31.6	30.4	29.6
20%	44.4	42.4	35.6	35.6
25%	52.0	50.0	40.0	40.0
30%	57.2	56.0	44.0	44.4
40%	64.0	65.2	52.0	52.4

the area of pasture damage from one year (Yr) to the next (Yr + 1)

+ Model A

* Model B

** Model C

Herbage production (DM kg/ha) of different strata based on pasture

		197	0			197	1			197	2	
Strata+	Undam	Previous	Newly	LSD (5%)	Undam	Previous	Newly	LSD (5%)	Undam	Previous	Newly	LSD (5%)
Month	· .											
Jan					1107	1025	878	236	1375	954	1287	473
Feb					1100	7 55	477	261	305	13	-153	292
March					759	239	240	149	406	344	111	152
April			Der		851	395	191	117	833	710	222	152
May		-	d me s		504	333	133	170	-417	281	227	85
June		-	Not		445	483	95	250	304	345	208	115
July					894	472	229	268	353	261	25 7	75
August				i	1042	722	382	178	813	642	305	163
Sept.				:	1425	1287	1208	209	120 7	1231	965	178
Oct.					1695	1781	1564	253	1364	1257	928	183
Nov.	1975	1424	1843	26 0	1519	1383	1206	244	1112	1409	1085	208
Dec.	1812	1155	1663	328	1461	1291	1448	234	348	516	3 7 6	102

damage caused by <u>C. zealandica</u> larvae.

+ Undam = areas which are not damaged

Previous = areas which have been damaged by previous generations

Newly

= areas in which damage has been caused by the current generation

LSD = least significant difference

A84-

Appendix 8-17 Analyses of variance of monthly herbage production harvested from pasture

		1971			19 7 2	
Source of variation	df ⁺	MSOS	F test	df	MSOS	F test
Between months	11	8,798,573	* *	11	6,076,280	**
Between strata	2	6,137,755	* *	2	2,614,311	* *
Strata x months	22	4,518,046	* *	22	3,754,965	* *
Between samples	432	67,203		432	59087	

stratified on the damage of <u>C. zealandica</u> larvae.

Appendix 8-18 Analyses of variance of seasonal herbage production harvested from pasture

stratified on the damage of <u>C. zealandica</u> larvae

Source of variation	df	MSOS	F test	df	MSOS	F test
Between seasons	3	851,28663	* *	3	52,556,037	* *
Between strata	2	19,904,946	* *	2	7,717,476	* *
Strata x seasons	6	33,006,453	* *	6	20,029,283	* *
Between samples	144	778,030		144	384,779	

+ df = degrees of freedom

* MSOS = mean sum of squares

.

Appendix 8-19 Plant species found in the study plots at Takapau.

Common Names	Botanical Names
Grasses	
Perennial ryegrass	Lolium perenne
Cocksfoot	Dactylis glomerata
Crested dogstall	Cynosurus cristatus
Goose grass	Bromus mollis
Poa trivialis	<u>Poa trivialis</u>
Chewings fescue	<u>Festuca</u> rubra
Poa annua	Poa annua
Sweet vernal	Anthoxanthum odoratum
Timothy	Phleum pratense
Barley grass	Hordeum murinum
Yorkshire fog	Holcus lanatus
Browntop	<u>Agrostis tenuis</u>
Clovers	
White clover	Trifolium repens
Subterranean clover	Trifolium subterraneum
Red clover	Trifolium pratense
Suckling clover	Trifolium dubium
Broadleaved weeds	· ·
Annual mouse-eared chickweed	Cerastium glomeratum
Chickweed	<u>Stellaria media</u>
Dandelion	Taraxacum officinale
Catsoar	<u>Hypochaeris</u> radicata
Juncus spp.	Juncus spp.
Tarrow	<u>Achillea</u> millefolium
Scotch thistle	<u>Cirsium vulgare</u>
Hawkesbeard	<u>Crepis capillaris</u>

Appendix 8-20 Analysis of variance of the botanical composition of herbage harvested from

<u>1971-1972</u>		Ryegrass		Other grasses		Clovers		Broadleaved weeds and litter	
Source of variation	**8f	+msos	F test	MSOS	F test	MSOS	F test	MSOS	F test
Between seasons	3	254 7. 09	* *	6259.46	* *	2124.88	* *	7366 .7 4	4 ¥ .
Between strata	2	4143.14	* *	2095-82	* *	4195.00	* *	7120.38	* *
Strata x seasons	6	426.98	NS	805.93	* '	536.16	* *	560.71	NS
Between samples	333	271.80		288.28	· ·	170.64		325.14	
<u>1972–1973</u>					•				
Between seasons	+* 1	346.93	NS	969.25	* *	2463.59	* *	9858.46	**
Between strata	2	1139.86	* *	77.98	NS	262.32	NS	2028,86	* *
Strata x seasons	2	2341.06	* *	34.11	NS	15.30	NS	3001.58	**
Between samples	66	204.19		91.44		139 •77		97.17	

pasture stratified on the damage of C. zealandica larvae.

+ MSOS = mean sum of squares

+* summer and autumn only

** df = degrees of freedom