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Abstract

Stable isotope as indicators of nitrate attenuation across landscapes

by 

Naomi S. Wells

Mitigating the cascade of environmental damage caused by the movement of excess reactive 

nitrogen (N) from land to sea is currently limited by difficulties in precisely and accurately measuring N 

fluxes due to variable rates of attenuation (denitrification) during transport. This thesis develops the use of 

the natural abundance isotopic composition of nitrate (δ15N and δ18O of NO3
-) to integrate the spatial-

temporal variability inherent to denitrification, creating an empirical framework for evaluating attenuation 

during land to water NO3
- transfers. This technique is based on the knowledge that denitrifiers kinetically 

discriminate against 'heavy' forms of both N and oxygen (O), creating a parallel enrichment in isotopes of 

both species as the reaction progresses. This discrimination can be quantitatively related to NO3
- attenuation 

by isotopic enrichment factors (εdenit). However, while these principles are understood, use of NO3
- isotopes to

quantify denitrification fluxes in non-marine environments has been limited by, 1) poor understanding of εdenit

variability, and, 2) difficulty in distinguishing the extent of mixing of isotopically distinct sources from the 

imprint of denitrification. Through a combination of critical literature analysis, mathematical modelling, 

mesocosm to field scale experiments, and empirical studies on two river systems over distance and time, 

these short comings are parametrised and a template for future NO3
- isotope based attenuation measurements 

outlined. 

Published εdenit values (n =169) are collated in the literature analysis presented in Chapter 2. By 

evaluating these values in the context of known controllers on the denitrification process, it is found that the 

magnitude of εdenit, for both δ15N and δ18O, is controlled by, 1) biology, 2) mode of transport through the 

denitrifying zone (diffusion v. advection), and, 3) nitrification (spatial-temporal distance between 

nitrification and denitrification). Based on the outcomes of this synthesis, the impact of the three factors 

identified as controlling εdenit are quantified in the context of freshwater systems by combining simple 

mathematical modelling and lab incubation studies (comparison of natural variation in biological versus 

physical expression). Biologically-defined εdenit, measured in sediments collected from four sites along a 

temperate stream and from three tropical submerged paddy fields, varied from -3‰ to -28‰ depending on 
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the site’s antecedent carbon content. Following diffusive transport to aerobic surface water, εdenit was found to

become more homogeneous, but also lower, with the strength of the effect controlled primarily by diffusive 

distance and the rate of denitrification in the sediments. I conclude that, given the variability in fractionation 

dynamics at all levels, applying a range of εdenit from -2‰ to -10‰ provides more accurate measurements of 

attenuation than attempting to establish a site-specific value. Applying this understanding of denitrification's 

fractionation dynamics, four field studies were conducted to measure denitrification/ NO3
- attenuation across 

diverse terrestrial → freshwater systems. 

The development of NO3
- isotopic signatures (i.e., the impact of nitrification, biological N fixation, 

and ammonia volatilisation on the isotopic 'imprint' of denitrification) were evaluated within two key 

agricultural regions: New Zealand grazed pastures (Chapter 4) and Philippine lowland submerged rice 

production (Chapter 5). By measuring the isotopic composition of soil ammonium, NO3
- and volatilised 

ammonia following the bovine urine deposition, it was determined that the isotopic composition of NO3
- 

leached from grazed pastures is defined by the balance between nitrification and denitrification, not ammonia

volatilisation. Consequently, NO3
- created within pasture systems was predicted to range from +10‰ (δ15N) 

and -0.9‰ (δ18O) for non-fertilised fields (N limited) to -3‰ (δ15N) and +2‰ (δ18O) for grazed fertilised 

fields (N saturated). Denitrification was also the dominant determinant of NO3
- signatures in the Philippine 

rice paddy. Using a site-specific εdenit for the paddy, N inputs versus attenuation were able to be calculated, 

revealing that >50% of available N in the top 10 cm of soil was denitrified during land preparation, and 

>80% of available N by two weeks post-transplanting. Intriguingly, this denitrification was driven by rapid 

NO3
- production via nitrification of newly mineralised N during land preparation activities.

Building on the relevant range of εdenit established in Chapters 2 and 3, as well as the soil-zone 

confirmation that denitrification was the primary determinant of NO3
- isotopic composition, two long-term 

longitudinal river studies were conducted to assess attenuation during transport. In Chapter 6, impact and 

recovery dynamics in an urban stream were assessed over six months along a longitudinal impact gradient 

using measurements of NO3
- dual isotopes, biological populations, and stream chemistry. Within 10 days of 

the catastrophic Christchurch earthquake, dissolved oxygen in the lowest reaches was <1 mg l -1, in-stream 

denitrification accelerated (attenuating 40-80% of sewage N), microbial biofilm communities changed, and 

several benthic invertebrate taxa disappeared. To test the strength of this method for tackling the diffuse, 

chronic N loading of streams in agricultural regions, two years of longitudinal measurements of NO3
- 

isotopes were collected. Attenuation was negatively correlated with NO3
- concentration, and was highly 

dependent on rainfall: 93% of calculated attenuation (20 kg NO3
--N ha-1 y-1) occurred within 48 h of rainfall. 

The results of these studies demonstrate the power of intense measurements of NO3
- stable isotope 

for distinguishing temporal and spatial trends in NO3
- loss pathways, and potentially allow for improved 

catchment-scale management of agricultural intensification. Overall this work now provides a more cohesive

understanding for expanding the use of NO3
- isotopes measurements to generate accurate understandings of 

the controls on N losses. This information is becoming increasingly important to predict ecosystem response 
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to future changes, such the increasing agricultural intensity needed to meet global food demand, which is 

occurring synergistically with unpredictable global climate change. 

Keywords: Nitrate, denitrification, nitrogen cascade, attenuation, grazed pastures, paddy soil, stable 

isotopes, biogeochemistry, nitrogen discharge, Rayleigh fractionation, diffusion
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Chapter 1

Introduction
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Between 1900 and 1990 human activities have doubled the annual mass of nitrogen (N) 

entering the earth system, posing a threat to both the environment and sustainable food production 

(Gruber and Galloway 2008). This increase in N inputs is driven by the need to increase food 

production in order to meet the demands of the growing world population: although dinitrogen gas 

(N2) makes up 78% of the atmosphere, it is unavailable to most organisms and thus biological 

production in most ecosystems is limited by N availability (Ju et al. 2009, Vitousek et al. 2009). 

Agricultural intensification has increased the release of available N into the biosphere through 

enhanced biological N2 fixation (BNF) and the creation of synthetic N fertilisers via the Haber-Bosch 

process (as summarised in Table 1.1). 

However, while N fertilizers have significantly increased global food production (Vitousek et 

al. 2009), the proportion of added N incorporated into crops has not improved and fertilisers are often 

applied well in excess of plant demand (Galloway et al. 2003, Dobermann and Cassman 2005, 

Vitousek et al. 2009). As a result, only 10% of N added to land for food production (including mineral 

fertilizers, animal waste, urea-based fertilizers, and biological N fixation (BNF)) ends up in the food 

itself. The remaining excess N is moved through the environment, creating a ‘cascade’ of 

environmental degradation as the multiple forms of N make it possible for each molecule to negatively

impact a variety of systems along multiple pathways (Galloway et al. 2003).
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Table 1.1 Global sources and sinks of reactive N, with estimated sizes of fluxes in Tg N y-1 for present day 
(~1995- ~2005) (anthropogenic) and pre-industrial times (natural baseline). While in the pre-
industrial era BNF was the primary pathway for available N creation (~89% of available N 
creation per annum), today BNF accounts for only ~46% of total N inputs to land. Nitrogen 
turnover in the terrestrial sphere has been further accelerated by increases in livestock production 
(Galloway et al. 2003), with livestock excreta accounting for as much as 24% of the excess N 
entering the environment in some catchments (e.g., Green et al. 2004). Synthetic N fertilisers 
account for the majority of new N entering the environment and ~20% of N total inputs on an 
annual basis (Erisman et al. 2008, Gruber and Galloway 2008).  Tabulated inputs and outputs in 
the figure and table are based on data from Galloway et al. (2003), Gruber and Galloway (2008), 
Naqvi et al. (2008), and Schlesinger (2009). Error estimates are on the order of ±30%. 

Anthropogenic Natural baseline

Tg N y-1 Tg N y-1

Inputs

Land Industrial N2 fixation 125 -

BNF 35 110

Atmospheric
deposition

105 40

Oceans BNF - 140

Atmospheric
deposition

40 10

Total 280 300

Outputs (attenuation)

Land

Denitrification

108 19

Rivers 50 30

Oceans - 244

Total 158 293

Nitrogen transport through the environment occurs in gaseous and dissolved forms: N enters 

surface and ground water predominantly in the highly mobile form of nitrate (NO3
-), where it can alter 

the ecosystem biogeochemical balance, before eventually flowing into marine environments, 

potentially creating anoxic zones and toxic algal blooms that degrade fish stocks (Galloway et al. 

2003, Green et al. 2004, Bernal et al. 2012). At present ~40% of the estuaries in North America are 

now classified as eutrophic, and regions within the Gulf of Mexico and Baltic Sea are considered 

‘dead’ due to seasonal anoxia (complete loss of oxygen (O2)) driven by excess nutrient loading 

(Seitzinger 2008). Nitrate can also enter groundwater systems contaminating key freshwater resources 

(as discussed by Gruber and Galloway (2008) and references therein). Atmospheric N transfers come 

from the volatilisation of livestock excreta into gaseous ammonia (NH3) as well as fossil fuel 

combustion (Table 1.1). These gases can be transported long distances, causing acidification and over-

fertilization of ‘downwind’ areas (Bouwman et al. 1997, Law 2013). In order to mitigate the, “…

severe damage to the environmental services at local, regional, and global scales...” (Galloway et al. 

2008) caused by excess reactive N loading, improved fertilization techniques must be implemented 

and primary N loss pathways controlled (Ju et al. 2009).

Denitrification, the microbial process that completes the N cycling by reducing reactive N 

back to inert N2, is the primary pathway through which reactive N is permanently removed from the 
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environment: it is hypothesized that the ~25% discrepancy between N inputs to freshwater and N 

exported to coastal environments is due almost entirely to denitrification – driven attenuation during 

transport. Yet the proportion of N inputs exported from land to the sea can vary dramatically between 

catchments from 0 to 80% (Howarth et al. 1996, Howarth et al. 2012) due to a complex array of 

proximal and distal controls on the rate and occurrence of denitrification (summarised in Fig. 1.1). The

complexity of the N cycle and difficulties inherent in accurately quantifying denitrification have 

limited our ability to fully ‘close the gap’ on global sources and sinks of N. The ~50 Tg N y-1 

unaccounted for globally (Schlesinger 2009), make creating and implementing effective management 

strategies difficult (Bernal et al. 2012). 

Figure 1.1 The immediate (proximal) controls on denitrification (conversion of NO3
- to N2O and N2) 

by microbes, fungi, and archaea, as well as the factors affecting denitrifier community 
composition (distal). (Modified from Wallenstein et al. (2006))

Building on the growing use of the stable isotopes of N and oxygen (O) to identify N 

processes and sources, I hypothesise that NO3
- dual isotopes can be used to construct an 'attenuation 

index'. While multiple stable isotopes of N and O occur naturally, their relative abundances are 

determined by local biological and chemical processes. The fractionation of NO3
- isotopes during 

denitrification can be clearly related to changes in net concentration at the theoretical level using a 

Rayleigh model of kinetic fractionation (Eq. 1.1). 

(1.1)
R
R0

= ( C
C 0)

1/(αdenit−1)

where the relationship between the change in the ratio of heavy to light isotopes (R/R0) for a given 

change in substrate concentration (C/C0) is defined by the reaction's fractionation factor (α). The 

degree of discrimination within the reaction for light isotopes can potentially be used to quantify net 
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NO3
- removal rates from a given system based on measured changes in its isotopic composition over 

time and/or distance (Eq. 1.2) (Ostrom et al. 2002). 

(1.2) Attenuation = 1−e(R−R 0)/α denit

However, the implementation of such a stable-isotope based index for NO3
- attenuation to natural 

systems has been severely limited by uncertainty in establishing precise fractionation factors for 

denitrification. By untangling N and O fractionation dynamics across scales and denitrifying zones, 

this research addresses these limitations and broadens the scope of use for NO3
- isotopes to be viable 

indicators of catchment and field scale N attenuation. 

1.1 Research objectives and thesis structure

In order to achieve the broad objective of quantitatively linked to the magnitude of 

attenuation/ denitrification NO3
- isotopic composition across landscapes and scales, this thesis explores

two fundamental questions, 

1. What controls the magnitude (and variations in magnitude) of the relationship between NO3
- 

concentration and isotopic composition (εdenit)? 
2. When, where, and how should this relationship be used to quantify denitrification? 

These questions are answered through a combination of literature analysis, mathematical modelling, 

mesocosm to whole-field scale manipulative experiments, and empirical measurements of rivers over 

length and time. The first chapter lays the foundation for the thesis through a meta-analysis of the 

literature, which re-integrates isotopic fractionation associated with NO3
- production and reduction 

into the spatial-temporal gradient of denitrification across landscapes. The subsequent five chapters 

present findings from experimental work, each in the format of a prepared journal article. These five 

chapters move from diffusion-limited, microscale denitrification zones to N export measurements at 

the catchment scale (advection-transport dominated environments), the foundation of which will be 

laid out in Chapter 2. The relevant methodology and analytical methods (including equations) are 

presented independently in each of the five chapters, as are the chapter -specific acknowledgements, 

such that each section can be appreciated as a complete work. The final chapter synthesises the 

findings laid out in the previous sections and presents a template from which future work using NO3
- 

stable isotopes in the natural environment can be based. 
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Chapter 2

Expression of denitrification's intrinsic biochemical isotope

fractionation measured in nitrate across terrestrial, freshwater,

and marine environments: a synthesis

Sections of this chapter will be submitted for publication. Wells, N.S., T.J. Clough, S.E. Johnson-

Beebout, W.T. Baisden. In prep. Environmental expression of denitrification's intrinsic biochemical 

isotope fractionation measured in nitrate: do 'site specific' enrichment factors exist? Biogeochemistry 

(Synthesis and Emerging Ideas)

8



2.1 Abstract

Variations in the natural isotopic abundance of nitrate (δ15N and δ18O of NO3
-) have been 

proposed as a means of integrating the spatial-temporal variability of denitrification in order to 

accurately and precisely quantify NO3
- attenuation across landscapes. This technique is based on the 

knowledge that denitrifiers kinetically discriminate against 'heavy' forms of both nitrogen and oxygen, 

creating a parallel enrichment in the isotopes of both species that can be quantitatively related to NO3
- 

attenuation using isotopic enrichment factors (εdenit). Yet application of this method is currently limited 

by the fact that, despite the >160 εdenit values reported since the 1960s, the controls on its variations at 

both at the biochemical level and in the natural environment (e.g., at the catchment scale) are not 

understood. Systematic differences also exist in how NO3
- isotope dynamics vary with denitrification 

activity between microbial culture, marine, and freshwater studies. By collating all published εdenit 

values, I found that the distance and mode of NO3
- transport to the denitrifying zone controlled the 

magnitude of εdenit for both δ15N and δ18O, enabling the construction of a global-scale framework of 

isotope effects. Contrary to expectations, there was no universal relationship between denitrification 

rates and fractionation strength. This synthesis provides key information for directing on-going efforts 

to use NO3
- dual isotopes to identify sources and sinks, and highlights critical gaps in the 

understanding of nitrogen isotope cycling. 

Keywords: denitrification, stable isotopes, nitrogen cascade, δ15N- δ18O- NO3
- 
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Introduction

Although the productivity of agricultural systems often depend on nitrogen (N) additions, only

10% of the ~376 Tg N y-1 added to land for food production is consumed, posing a significant threat to

environmental sustainability (Gruber and Galloway 2008, Schlesinger 2009). Excess N migrates 

through the environment (primarily as nitrate (NO3
-)), creating a cascade of environmental 

degradation, including eutrophication of waterways and the production of the greenhouse gas nitrous 

oxide (N2O), as its transported from land to the sea (Galloway et al. 2003). However, difficulty in 

determining NO3
- sources and sinks across scales, especially for denitrification (heterotrophic 

reduction of NO3
- to N2O and dinitrogen (N2)), the only permanent N removal pathway of global-scale 

significance (Groffman et al. 2009), means that ~50 Tg N y-1 are currently unaccounted globally 

(Schlesinger 2009).   

Denitrification attenuates reactive N (converts it back to inert N2) under anaerobic conditions, 

given available carbon (C) as an energy source. It is hypothesized that denitrification accounts for 

~75% of N inputs to freshwater that don't reach the sea (Galloway et al. 2003). Yet the percentage of N

inputs exported ranges from 0 to 80% between catchments, presumably reflecting divergent 

denitrification rates during transit (Howarth et al. 1996, Howarth et al. 2012). The rate and magnitude 

of denitrification are dependent on an array of physical and chemical conditions, both at the micro 

scale (defining the immediate environment of the microbes) and the biome scale (regulating 

development of denitrifying communities) (Wallenstein et al. 2006). However, the unreliable 

estimations of N attenuation caused by its variability can create a dramatic misrepresentation of N 

inputs (Boyer et al. 2002, Bernal et al. 2012). Without an understanding of when, where, and to what 

extent N attenuation occurs, assessments of the quantity of N entering and leaving a given system are 

inherently flawed, and N management schemes severely limited.

The isotopic composition of NO3
- (15N/14N and/or 18O/16O, reported in δ values in ‰ with 

respect to international standards) has been identified as a potentially precise and accurate means of 

measuring denitrification rates in-situ. Nitrate isotopes are viable indicators of both the sources and 

sinks of reactive N as, while they exist in finite amounts (globally 99.6337‰ of N is 14N and 0.3663‰

is 15N (Junk and Svec 1958); and 99.759‰ of O is 16O, 0.037‰ 17O, and 0.024‰ 18O (Cook and Lauer 

1968)), biogeochemical processing distributes them unequally across landscapes (Fig. 2.1). This is 

caused by kinetic fractionation (α) as, in a given reaction, heavy isotopes will have a slower reaction 

rate (k2) than light isotopes (k1) (Eq. 2.1) (Kendall and Caldwell 1998).  

(2.1)  αk=k 1/k 2

For example, atmospherically produced NO3
- (from Haber-Bosch fertilisers or deposition) can be 

distinguished from microbially-cycled NO3
- by its distinct δ18O (~ +40‰) and δ15N (~0‰) 

composition. However, once atmospherically derived N is microbially transformed its isotope 
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signature is modified and becomes indistinguishable from the typical 'soil-N' range (Fig. 2.1) (Curtis et

al. 2011). 

Figure 2.1 Isotopic composition of global NO3
- pools, plotted as δ18O- versus δ15N (ranges from Xue et al. (2009), 

Nestler et al.  (2011), and Kendall (1998)), where denitrification (dashed lines) causes parallel 
enrichment at a 1:2 (Kendall 1998) or 1:1 (Sigman et al. 2001, Granger et al. 2008) ratio. 

Recent methodological advances by Silva et al. (2000), Sigman et al. (2001), and McIlvin & 

Altabet (2005) increased the measurement precision of δ15N- δ18O- NO3
- analyses and reduced sample 

volume requirements and preparation time, catalysing a dramatic increase in the use of NO3
- dual 

isotopes (Fig. 2.2). 

Figure 2.2 Publications using the natural 
abundance isotopic composition of 
NO3

- (either δ15N-NO3
-, or both 

δ15N- and δ18O- NO3
-) by year, as of 

Jan-2013. Numbers are 
approximations of total research 
papers published per year based on
citations on ISI Web of Science of 
Sigman et al. (1997) (adaptation of 
diffusion method to natural 
abundance level precision), Silva et 
al. (2000) (silver nitrate method, 
which allowed dual isotope 
measurement), Sigman et al. (2001) 
(denitrifier method for 
simultaneous dual isotope 
measurements), and McIlvin and 
Altabet (2005) (cadmium-azide 

            chemical method for simultaneous 
            dual isotope measurements), plus 
            anecdotal accounting of 
            publications prior to these methods.
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The abundance of NO3
- isotope data must now be considered within the theoretical framework of its 

sources and sinks across landscapes: three recent reviews focused on the growing use of NO3
- isotope 

signatures to apportion N source contributions, a key issue for freshwater quality monitoring (Xue et 

al. 2009, Curtis et al. 2011, Nestler et al. 2011). These reviews described the clear ‘added value’ of 

incorporating NO3
- isotopic measurements into groundwater and surface water monitoring schemes 

(Widory et al. 2013), but concluded that poor understanding of the factors controlling kinetic 

fractionation of NO3
- isotopes, particularly during attenuation, create fundamental uncertainties in 

source apportionments. In contrast, marine scientists have focused on using NO3
- isotopes to identify 

and quantify N transformations (Altabet et al. 1999, Sigman et al. 2009). However, lack of 

communication between the two research communities has created systematic differences in the 

handling of isotope kinetics. 

Acknowledging that the use of NO3
- isotopes as integrators of N cycling (and thus the ability 

to distinguish N sources in complex environments) is limited by poor understanding of the controls on 

isotopic fractionation during denitrification, the objective of this review is to create a cross-

disciplinary framework for the isotope effects of denitrification. This framework is established by 

synthesising information from 129 publications that measured the impact of denitrification on δ15N-

NO3
- and/or δ18O-NO3

- composition. The review is divided into two sections: part one evaluates 

denitrifier- driven fractionation (at the biochemical level and as expressed in the environment) based 

on factors that control the occurrence and rate of denitrification, and part two develops a global 

framework that relates variations in the degree of fractionation to environmental conditions and 

contexts.  

2.2 Fractionation of NO3
- isotopes

During denitrification the residual NO3
- pool is fractionated as it is reduced to NO2

-, causing 

progressive and parallel enrichment of the residual both N and O in the residual NO3
- pool (Fig. 2.1). 

From the Rayleigh equation (Eq. 2.2): 

(2.2)   
R
R0

= (C
C 0

)
1/(α denit−1)

the isotope abundance in the residual (or product) pool (R) relative to the original pool (R0) can be 

quantitatively related to the corresponding change in substrate concentration (C/C0), assuming that the 

degree of isotopic discrimination (αdenit) remains constant, and the product pool is continuously 

removed (as described in Kendall and Caldwell (1998)). As the reaction progresses, the residual 

substrate becomes increasingly enriched in heavy isotopes until its concentration reaches zero, at 

which point the isotopic composition of the product is equivalent to that of the initial substrate (Fig. 

2.3a). The modified Rayleigh equations (written in delta notation) by Mariotti et al. (1981) provide the
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most convenient method of relating the isotopic composition of δ15N-NO3
- and δ18O-NO3

- to the 

changing size of the NO3
- pool during denitrification (Eq. 2.3). 

(2.3)    

δ15 N x = δ15 N 0+εdenit×ln( f
1− f )

δ18O x = δ18 O0+εdenit×ln( f
1− f )

The enrichment factor for denitrification (εdenit ≈ (αdenit-1)×1000)) is used to calculate the fraction of the 

substrate pool remaining (f = Cx/C0) based on the corresponding changes in its isotope composition (δx 

- δ0). Accordingly, the more negative the value of εdenit, the greater the magnitude of fractionation, and 

the closer εdenit is to 0 the lower its effect (Fig. 2.3b). The relative strength of εdenit for N (15εdenit) and O 

(18εdenit) ranges from 0.5 to 1.0, meaning δ18O-NO3
- and δ15N-NO3

- become enriched in parallel during 

denitrification (Fig. 2.1). 

Figure 2.3 Rayleigh fractionation of NO3
- during denitrification, where the isotope ratio of the residual 

substrate (R, solid lines) becomes increasingly 'heavy' as the reaction progresses (i.e., concentration
of substrate remaining (C) relative to the initial substrate concentration (C0) approaches nil) and 
the isotopic composition of the cumulative product approaches the initial composition of the 
substrate (R0) (reproduced with permission from Hogberg (1997)) (a); as per the modified Rayleigh
equation of Mariotti et al. (1981), the changes in the isotopic composition (either δ18O-NO3

- or δ15N-
NO3

-) plotted versus the natural log of the proportion of substrate remaining (ln(C/C0) define εdenit 
(b).

Given that δ0 and C0 are known (see Fig. 2.4 for summary of the processes affecting δ0), 

increasingly 'heavy' NO3
- as substrate concentration declines over time and/or distance indicates that 

these losses are caused by denitrification, as per Eq. 2.2.  This relationship has been used to distinguish

N lost to denitrification v. non-attenuating loss processes (e.g., dilution, plant uptake) in estuaries 

(Wankel et al. 2006), open oceans (Lehmann et al. 2007), aquifers (Aravena and Robertson 1998), 

riparian zones (Cey et al. 1999), lakes (Lehmann et al. 2003), and streams (Barnes et al. 2008, Pellerin 

13



et al. 2009). Failure to find a relationship between NO3
- concentration and δ15N-NO3

- has been used to 

rule out the presence of significant denitrification (Wassenaar 1995, Feast et al. 1998, Savard et al. 

2007). 

Figure 2.4 Schematic representation of isotope effects during production (nitrification) and reduction 
(denitrification) of NO3

-. During nitrification O from O2 (atmospheric δ18O-O2 = ~23.5‰ (Kroopnick 
and Craig 1972) (εO2) (Bender 1990) is incorporated during oxidation of NH3 to hydroxylamine 
(NH2OH) and then O from H2O during subsequent oxidation of NH2OH to NO2

- (Andersson and 
Hooper 1983, Kumar et al. 1983). During ammonia oxidation O undergoes kinetic fractionation (18εAMO)
(Casciotti et al. 2010). Once formed, NO2

- and the adjacent H2O can exchange O atoms, with an 
associated equilibrium isotope effect  (εaq,o) (Casciotti and McIlvin 2007). Incorporation of the second O
from H2O is also a fractionating process (εH2O(2)) (Buchwald and Casciotti 2010), and the oxidation step 
from NO2

- to NO3
- (εNXR) causes inverse kinetic fractionation (Buchwald and Casciotti 2010). The δ15N 

of organic N is determined by mycorrhizal interactions and BNF (δ15N-N2 = 0‰, fractionation (εBNF) = 
~0 (Brandes and Devol 2002). This pool is then mineralised into NH4

+ with negligible fractionation 
(εmineralisation) (Kendall 1998). Ammonia (NH3) is in equilibrium with NH4

+ in aqueous solution and the 
isotope balance between these two pools is dictated by an equilibrium isotope effect (εeq,NH)), but this 
pool can also be affected by kinetic fractionation from physical volatilisation of NH3 to its gaseous form 
(εav). The isotope effect during oxidation to NO2

- (εAMO) creates a ‘lighter’ product pool (Mariotti et al. 
1981, Shearer and Kohl 1988, Casciotti et al. 2003). The final step, oxidation to NO3

-, is thought to incur
an inverse isotope effect on N (εNXR) (i.e., the δ15N-NO3

- produced from incomplete NO2
- oxidation would

be ‘heavier’ than that of the reactant) (Casciotti 2009). During denitrification, O and N of residual NO3
-

pool are enriched in parallel during reduction to N2O (15,18εdenit) (Granger et al. 2008). During 
subsequent reduction of N2O to N2 the residual N will become more positive and the O more negative 
(15,18εN2O) (Toyoda et al. 2005). Two intermediate steps of denitrification (NO2

- to NO) are not shown here
as they are environmentally unstable, not rate limiting steps of the process (Zumft 1997), and little is 
known about their impact on isotope composition (Bryan et al. 1983). (Negative ε values indicate 
preferential use of light isotopes, meaning the produced pool will be lighter than the residual) 

As δ18O-NO3
- measurements become routine, a linear relationship between variations in δ15N-

NO3
- and δ18O-NO3

- can also be used to fingerprint denitrification (Fig. 2.1). This relationship was 

used to identify hot-spots of denitrification in, e.g., the hydrologically complex Changijiang River 

(China) (Li et al. 2010), the Platte River aquifer (USA) (Bohlke et al. 2007), and upwelling 

groundwater in Italy (Petitta et al. 2009). These examples highlight the potential to use NO3
- isotopes 

to identify denitrification, but to convert these established relationships between NO3
- concentrations 

and isotopic composition to quantitative attenuation rates requires a functional understanding of 15εdenit 

and 18εdenit.  
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Since the first published 15εdenit value of -20‰ was measured for denitrification by a single-

strain culture (Wellman et al. 1968), environmental inconsistencies in εdenit have emerged. Variations 

are reported at both the cellular (e.g., Blackmer and Bremner 1977) and field level (e.g., Cline and 

Kaplan 1975), as well as in the relative strengths of 15εdenit v. 18εdenit (Casciotti et al. 2002, Lehmann et 

al. 2003, Burns et al. 2009). In the subsequent sections current knowledge of both the biochemical 

fractionation created by denitrifying microbes under controlled conditions ('intrinsic' fractionation) 

and the isotope effects associated with denitrification observed under field conditions ('effective' 

fractionation) are assessed in relationship to denitrification rates (kdenit). Data was collected from 124 

studies, providing 65 original values for intrinsic εdenit and 129 original values for effective εdenit (see 

Appendix A for values and search details).

2.2.1 Biochemically-driven isotope fractionation (intrinsic) 

Intrinsic εdenit is imparted at the molecular level during the unidirectional enzymatic reduction 

of NO3
- to NO2

- (Granger et al. 2008), with strain-specific differences emerging from the relative rates 

of NO3
- efflux v. uptake prior to bond breakage (Bryan et al. 1983, Shearer and Kohl 1988, Kritee et al.

2012). The 10 studies that measured εdenit for pure microbial strains (total of 11 different strains) show 

that, even under ideal denitrifying conditions (non-limiting C, anaerobic, warm), intrinsic 15εdenit can 

vary from -5‰ to -31‰ (Fig. 2.5).  Despite the range of analytical techniques and incubation set-ups 

used in the reviewed studies, intra-strain variation was lower than inter-strain (p<0.05) (e.g., Barford 

et al. (1999), Granger et al. (2008), and Kritee et al. (2012) all reported εdenit values for Paracoccus 

denitrificans from -24‰ to -31‰ with a ~1:1 ratio between δ18O and δ15N). However, new evidence 

from pure culture studies has revealed that the degree of preference for light isotopes by a given strain 

is also affected by the environmental factors, particularly oxygen concentration ([O2]) and C. 

Specifically, Kritee et al. (2012) found that the magnitude of fractionation by three different denitrifier 

strains decreased in response to increasing environmental stress (e.g., variations in [O2] and C), 

concluding that the higher NO3
- efflux across the cell wall led to 'complete' expression of the strain-

specific fractionation by NO3
- reductase enzymes outside of the cell under optimal conditions. 
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Figure 2.5  Reported isotopic enrichment factors (εdenit) for 15N and 18O of NO3
- during denitrification by pure 

cultures of different bacteria (15εdenit: n = 69; 18εdenit: n = 23) (see Appendix A for complete details and 
references). All culture were maintained under anaerobic ([O2]<4 mg l-1) conditions during the 
experiments unless otherwise indicated

Aquatic denitrification typically occurs when dissolved [O2] is <4 mg l-1, at which point NO3
- 

becomes an energetically viable electron donor and denitrifying enzymes are activated (Rivett et al. 

2008). However, this limitation on denitrification is not always obvious, as microscale variations in O2

availability mean that denitrification can go forward in anaerobic microsites within systems classified 

as too oxic for the process to occur (e.g., Muller et al. 2004) and some denitrifier strains are also 

facultatively aerobic (Wallenstein et al. 2006). Surveying the published εdenit values from pure culture 

studies revealed that aerobically produced εdenit is routinely smaller than anaerobically produced εdenit 

(Fig. 2.5), although the ratio of 18εdenit to 15εdenit is not affected. Kritee et al. (2012) hypothesised that the 

down regulation of NO3
- availability caused by [O2] ≥4 mg l-1 decreases the magnitude of isotopic 

discrimination by denitrifiers. Denitrification in anaerobic versus aerobic conditions may cause a 

~10‰ shift in εdenit, representing roughly one third of the variation reported between strains (~30‰) 

(Fig. 2.5). More studies are needed to test the hypothesis that [O2] impacts the fundamental efflux of 

NO3
- isotopes across cell walls (Appendix A)). 

Denitrification rates (kdenit) are stoichiometrically limited by either NO3
- or C availability, and 

tend to increase with rising temperatures. Contradicting the findings that environmental stress 

decreases εdenit expression, kinetic isotope fractionation often decreases in magnitude as reaction rates 

increase (e.g., during reduction of N2O to N2 (Vieten et al. 2007), reduction of NO2
- to N2O (Bryan et 

al. 1983), and oxidation of NH3 (Yun et al. 2011)). The first studies to test the relationship between 

kdenit and εdenit  concluded that increasing kdenit decreased the magnitude of εdenit based on measurements 
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following manipulations in temperatures and C supply in anaerobically incubated soils (Mariotti et al. 

1981, Mariotti et al. 1982). More recent studies of aquifer sediments amended with varying rates of C 

and N confirmed the inverse relationship between εdenit and kdenit (Bates and Spalding 1998, Korom et 

al. 2012) This association could reveal a physical-chemical, rather than biological, control over isotope

fractionation, as increasing temperatures (energy) decrease the strength of discrimination in, for 

instance, precipitation of H2O (Bullen and Kendall 1998).  

However, further in-vitro studies reveal that the relationship between kdenit and εdenit cannot be 

fully explained by simple reaction kinetics. Some of this complexity comes from differences in C 

quality (i.e., energy required to access C), an increasingly recognised regulator of kdenit (Barnes et al. 

2012). Two recent culture studies found that εdenit strength decreased as the complexity of the available 

C increased. Wunderlich et al. (2012) measured a 4-6‰ decrease in the magnitude of εdenit when 

complex (toluene), rather than simple (acetate), C was added to cultures; and Kritee et al. (2012) 

measured a ~3‰ decrease in εdenit for three different denitrifier strains when the C source was shifted 

from acetate to casein. Yet the response to changing C quality and kdenit and εdenit is not consistent across

denitrifier strains and/or studies: Knoller et al. (2011) observed no change in εdenit when changing C 

sources induced a six-fold increase in kdenit, while Granger et al. (2008) and Wunderlich et al. (2012) 

found that changing the C quality drove strong shifts in εdenit but not kdenit. Over 50% of the εdenit values 

reported for C-amended systems (n = 41) were generated using simple, readily biologically available 

C forms (acetate, ethanol, and glucose), but show no consistency in εdenit with respect to either C 

availability or form. Carbon availability may be the key driver of kdenit (Taylor and Townsend 2010), 

but there is currently no conclusive evidence showing that it exerts similar control over the degree of 

isotopic discrimination during denitrification. 

2.2.2 Relating intrinsic fractionation to field measurements 

While intra-strain consistency of εdenit supports the hypothesis that intrinsic εdenit for a given 

location is defined by the local denitrifier population, field-scale implications of this finding cannot be 

fully understood until the distribution and function of microbial communities are better understood 

(e.g., Standing et al. 2007). Yet despite strong evidence for 'strain specific' εdenit values, the mean 15εdenit 

reported for anaerobic incubations of C and N amended soils and sediments (presumably containing 

diverse denitrifier populations) were indistinguishable from those of pure-culture studies, with a mean 

±SD 15εdenit of -17.5 ±8‰ (Table 2.1). Nor did a precise relationship between 18εdenit and 15εdenit emerge 

from this data set: while the majority of culture studies report consistent 1:1 ratios of δ18O:δ15N 

(Granger et al. 2008, Kritee et al. 2012, Wunderlich et al. 2012), some denitrifiers seem to produce 1:2

fractionation ratios regardless of environmental conditions (Knoller et al. 2011) (Table 2.1). However, 

the finding that both freshwater and marine denitrifiers can become enriched according to a 1:1 ratio 

during denitrification, and that [O2] do not alter this relationship, provides compelling evidence that 

the differences in the ratio cited in freshwater (~1:2) v. marine (~1:1) studies is unlikely to be driven 

by population differences. 
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Culture studies have established that, 1) εdenit can vary strongly between denitrifier strains, and,

2) the expression of εdenit can be environmentally regulated. Overall, in-vitro studies have found [O2] to

be the most consistent and powerful regulator intrinsic εdenit. However, the interaction between these 

factors at the field level is unresolved, and variations in 18εdenit v. 15εdenit ratios unexplained. 

Table 2.1 Means (±SD) of comparable parameters reported in studies of isotopic fractionation during 
denitrification conducted under controlled/ laboratory conditions (intrinsic) (n = 59) versus 
empirical field measurements (effective) (n = 128). Temperature refers to laboratory temperature, 
reported water temperature for groundwater and marine systems, or mean annual air temperature 
for above-ground field studies; proportion anaerobic is the ratio of εdenit measurements made under 
anaerobic conditions versus under aerobic conditions. Significant difference is based on 1-way 
ANOVA. 

Controlled conditions
Intrinsic 

Field measurements
Effective 

Temperature (ºC) 20.4 ±8*** 12.3 ±6

Proportion anaerobic 0.940*** 0.705

15εdenit (‰) -17.8 ±10** -12.2 ±10

18εdenit (‰) -14.0 ±6* -8.16 ±7

δ18O:δ15N 0.802 ±0.2 0.711 ±0.2

***Significantly greater (at significance of p<0.001)
**Significantly greater (at significance of p<0.001)
*Significantly greater (at significance of p<0.001) 

2.2.3 Isotope effects of denitrification at the field-scale (effective fractionation)

Corroborating the finding of Kritee et al. (2012) that sub-optimal denitrifying conditions 

decreases discrimination against heavy isotopes, the mean εdenit obtained from field measurements were

~5‰ lower (for both 15εdenit and 
18εdenit) than those collected under relatively stress-free laboratory 

conditions (Table 2.1). The difference between 'laboratory' and 'field' datasets is particularly 

remarkable given the wide range of conditions (time scales, geographic locations, hydrology, spatial 

scales, analytical methods, etc.) under which these εdenit values were determined (Fig. 2.6). However, 

the mean 
18εdenit:15εdenit ratio of 0.71 ±0.2 did not differ from culture and mesocosms experiments, to 

empirical measurements in rivers, lakes, groundwater, and oceans (Table 2.1).  
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Figure 2.6 Reported 15εdenit values from 129 empirical field measurements of NO3
- isotopic fractionation 

during denitrification (representing 95 published journal articles). Unfilled circles indicate 15εdenit 
values based on measurements outside of the presumed denitrifying zone (e.g., oxic surface water in
a river) and filled circles indicate 15εdenit values calculated based on measurements within the 
denitrifying zone (e.g., anoxic marine sediments). (See Appendix A for values and references.) 

Comparisons of field v. laboratory measurements must consider the possibility that the isotope

effects observed in the field may not be entirely the result of denitrification. Evidence for relevant N 

transformations via anaerobic oxidation of ammonium (NH4
+) (anammox), nitrifier-denitrification, co-

denitrification, dissimilatory reduction of NO3
- to NH4

+ (DNRA), and abiotic NO3
- removal has been 

found in a variety of environments (Burgin and Hamilton 2007, Thamdrup 2012) (Table 2.2). 

However, the paucity of information on when, where, and to what extent these processes occur, 

combined with a lack of direct isotope fractionation measurements (Table 2.2), makes assessing the 

impact of these processes on NO3
- isotopic composition impossible. Furthermore, hypothesising 

isotope effects for anammox, nitrifier-denitrification, and co-denitrification is not straightforward as 

all three use NO2
-, rather than NO3

-, as an electron acceptor, meaning any effect on the NO3
- pool 

would be integrated into the multiple fractionation factors associated with NO2
- oxidation (as 

summarised in Fig. 2.4). 
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Table 2.2 Summary of alternative NO3
- loss processes in terms of the organisms responsible for their occurrence, 

their reactants and products (with the species whose fractionation is relevant to NO3
- isotopic 

composition in bold), in what environments they've been found to occur, and their associated 
enrichment factors for N, and for O relative to N (question marks indicate data not available). 
Footnotes are used to list selected references.

Organism Process Reaction  Occurrence
N isotope

effects
δ18O v. δ15N 

Anammox 
bacteria8 

Anammox
NH4

+ + NO2
- → N2 + 2H2O

permanent
DIN removal

Anaerobic 
environments: 
marine,1,2 freshwater 

sediments,3 wetlands,4 

paddy soils,5 
groundwater25 

? (may enrich
residual δ15N-

NH4
+)25 

?

Denitrifiers, 
or abiotic (?)6

Co-
denitrification

               NO3
- → N2O → N2

NO2
- 

                     N2 or N2O
amino-N

Soil6,7 

? ?

Nitrifiers9 Nitrifier-
denitrification

NH3 → NH2OH → NO2
- → N2O → N2

Soil10
? ?

n/a 
Abiotic 
denitrification

NO3
- → NO2

- → N2O → N2

         Fe2+

Anaerobic, with Fe(II) 
available: soil,11 
groundwater, and 

freshwater sediments12 

-6.8 – -32‰13, 14,

15 0.36-0.8615 

Denitrifiers 
with the nrf 

gene16 
DNRA NO3

- → NO2
- → NH4

+

DIN recycling

Anaerobic: coastal 
marine sediments,17 

soil,18,19 freshwater 

sediments20,21 

? 
? (may suppress N

fractionation

relative to O)22

Eukaryotes 
and 
prokaryotes 

Assimilation NO3
- → NO2

- → N-org
Ubiquitous under 
aerobic conditions 0 to -4‰23, 24, 22 1.023,24

1(Lam et al. 2009), 2(Dalsgaard et al. 2012), 3(Zhu et al. 2013), 4(Erler et al. 2008), 5(Zhu et al. 2011), 6(Spott and Stange 
2011), 7(Spott et al. 2011), 8(Thamdrup 2012), 9(Wrage et al. 2001), 10(Kool et al. 2010), 11(Matocha et al. 2012), 12(Sun et al. 
2009), 13(Torrento et al. 2010), 14(Torrento et al. 2011), 15(Wankel, unpubl.), 16(An and Gardner 2002), 17(Gardner and 
McCarthy 2009), 18(Inselsbacher et al. 2010), 19(Rutting et al. 2011), 20(Nizzoli et al. 2010), 21(Revsbech et al. 2006), 
22(Dhondt et al. 2003), 23(Granger et al. 2004), 24(Karsh et al. 2012) 25(Clark et al. 2008)

Biological assimilation of NO3
- has also been suggested as a potentially interference when 

linking isotopic composition to denitrification fluxes in the field (e.g., Karsh et al. 2012). As 

assimilated N is eventually broken back down to NH4
+ (ammonified), re-entering the inorganic N pool,

distinguishing between assimilation and denitrification (which permanently removes reactive N from 

the biosphere) is necessary to accurately trace N flows (Galloway et al. 2003). Laboratory studies 

show that assimilation produces low levels of fractionation of the residual NO3
- pool (ε of between 0 

and -4‰) at a 1:1 ratio of δ18O:δ15N enrichment (Table 2.2). On this basis, a shift in the δ18O:δ15N ratio 

from 1:1 to 1:2 is frequently used as evidence for a shift from assimilation (1:1) to denitrification (1:2)

of NO3
- (Battaglin et al. 2001, Cohen et al. 2012). However, as the biochemical basis for denitrifiers to

fractionate δ18O and δ15N at ratios from 1:1 to 1:2 is now clearly established, there is no scientific basis

for using δ18O:δ15N enrichment ratios as evidence for or against the occurrence of assimilation. 

Moreover, the fact that assimilation is not a permanent NO3
- removal pathway (Galloway et al. 2003) 

must also be considered in terms of how the fractionation it creates would be expressed in the 

environment, if at all. Essentially, because assimilation and mineralisation, with variable fractionation 
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factors (Robinson et al. 1998) (Table 2.2), occur continuously and simultaneously, with rates 

dependent on season, species, etc., and could affect both NH4
+ and NO3

- pools (Kaye and Hart 1997, 

Waser et al. 1998), the 'net isotope effect' of assimilation on the NO3
- pool of a given environment 

should be even lower than the intrinsic ε values found under ideal conditions (i.e., approaching 0‰). 

Given both the consistency of the fingerprint δ18O:δ15N fractionation ratio between laboratory 

and field studies and the lack of information on 'novel' NO3
- removal pathways and their isotope 

effects, it is prudent to continue assessing NO3
- dual isotopes in terms of a nitrification - denitrification

continuum. Additionally, the hypothesis that δ15N at the global scale reflects the degree of 

denitrification (Houlton and Bai 2009, Bai et al. 2012) illustrates the minor net effect of fractionation 

during assimilation versus during denitrification. Assuming that denitrification is the primary N 

removal pathway, the variation in εdenit observed at the field scale could result from: 1) O2 availability, 

2) denitrifier community structure, and/or 3) the environmental variables regulating the availability of 

NO3
- to denitrifiers.  

Looking first at [O2], the most consistent controller of intrinsic NO3
- isotope fractionation, the 

reviewed literature yielded relatively low εdenit values for aerobic waters (particularly rivers) (mean of 

-7.2‰ for all reported field values, (p<0.01)). At the other end of the spectrum, εdenit measured in 

marine oxygen minimum zones (OMZs) were consistently larger (-24‰ p<0.01) than the mean (Fig. 

2.6). The consistency of low εdenit values in aerobic conditions make it plausible that some of the 

systemic differences in the magnitude of εdenit between freshwater and marine environments is created 

by O2 down-regulating NO3
- availability, and thus dampening the biochemical preference for light 

isotopes (Kritee et al. 2012). However, the fact that 1:2 ratios of δ18O:δ15N fractionation were more 

frequently reported in aerobic freshwater environments (e.g., Burns et al. 2009) than in relatively low 

[O2] marine and groundwater systems cannot be explained by such a biochemical change, as in-vitro 

studies unanimously found 18εdenit and 15εdenit to be equally impacted by increasing [O2].

Despite strong evidence for εdenit differing between denitrifier strains, the possibility that 

strain-specific εdenit could combine to create unique 'community effects' for a given location has not 

been studied. Currently there is only indirect evidence: Chien et al. (1977) found that field cultivation 

history (now known to influence denitrifier community composition (Lo 2010, Tang et al. 2010)) 

caused a 10‰ difference in 15εdenit in saturated, non-C limited, soil cores; and Korom et al. (2005, 

2012) measured a 13‰ difference in 15εdenit between two hydrologically similar aquifers in different 

parts of the United States. While similar responses in denitrification rates to N loading have been 

observed across biomes (Mulholland et al. 2008), the narrow climate range in which εdenit values have 

been measured (~60% from temperate agricultural regions) means that the possible interactions 

resulting from varying microbial populations and kdenit on effective fractionation have not been fully 

explored. Measurements of εdenit from 'extreme' climate locations, from a tropical Thai river (~27°C) 

(Miyajima et al. 2009) to a Mongolian wetland (~ -2.5°C) (Itoh et al. 2011) did not deviate from the 
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mean for field studies (Table 2.1). However, given the bias of the dataset, evidence against a 

biogeographic effect on denitrifier dynamics is not conclusive (Hall et al. 2011). 

Local climate could also have a more direct (and measurable) impact on denitrification and 

εdenit, as increasing temperature can increase kdenit, potentially decreasing εdenit, as discussed previously. 

There is anecdotal evidence for this effect in the collated εdenit dataset from field studies: larger 

fractionation of NO3
--N in the Northern Pacific (Altabet et al. 1999, Lehmann et al. 2007) relative to in

the Arabian Sea (Naqvi et al. 1998, Naqvi et al. 2006) was attributed to the warmer waters (and thus 

faster N turnover rates) at the latter location. However, such a temperature effect was not consistent 

between, or even within, studies. For instance, seasonal, temperature-driven, variations in kdenit coupled

with constant εdenit were found in a major river in China (Chen et al. 2009) and karst springs in Florida 

(Cohen et al. 2012). Moreover, the relatively cooler temperatures generally found in field studies 

versus lab studies does not translate into increased εdenit magnitude (Table 2.1).

The role of C and N loading in driving kdenit (Seitzinger et al. 2006, Trimmer et al. 2012) could 

also contribute to observed differences in effective εdenit. However, field-based evidence showing 

substrate (C and/or N) concentration effects on kdenit and εdenit is contradictory. Relatively low 15εdenit 

values (-4‰ to -9‰) measured in aquifers by Mariotti et al. (1988), Smith et al. (1991), and Spalding 

et al. (1993) were attributed to fast kdenit induced by high N and C loading. Conversely, Singleton et al. 

(2007) hypothesised that extremely large fractionation (15εdenit = -57‰) in an effluent contaminated 

aquifer was due to high N and C loading (and thus kdenit), while Vogel et al. (1981) ascribed large 15εdenit 

(-30‰) in a DOC-depleted aquifer below the Kalahari Desert to ‘very slow’ denitrification. 

Unfortunately, comparisons of isotope dynamics between nutrient-loaded and nutrient-limited regions 

are limited by the fact that the vast majority of stable isotope -based denitrification studies are 

undertaken in highly impacted systems (e.g., agricultural lands) (Appendix A). 

The experimental finding that poor C quality can decrease εdenit is also observed in field 

measurements. For instance, the magnitude of 15εdenit, as well as kdenit, increased following labile C 

additions in multiple groundwater sites with and without C additions (Tsushima et al. 2002, Kellman 

and Hillaire-Marcel 2003, Kellman 2004, Tsushima et al. 2006). However, a biochemical response to 

changing C quality cannot fully explain the difference from ~ -4‰ to ~ -30‰ found for 15εdenit by 

Kellman and colleagues versus by Tsushima and colleagues.  

Although differences in kdenit are often used to explain inter-site differences in effective εdenit, 

there is little empirical evidence to support this argument, lending credence to recent laboratory studies

demonstrating the complexity of this relationship (Kritee et al. 2012). These discrepancies over the 

role of C and kdenit in controlling the measured isotope effects for denitrification tie back to the many 

unknowns in how C regulates N cycling (Trimmer et al. 2012), highlighting the need for a more 

holistic approach to understanding the field-scale controls on εdenit before NO3
- isotopes can become an 

effective tool for disentangling N sources and sinks. Indeed, given the complexity of factors that can 
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impact εdenit, it seems unlikely that a single environmental factor will be found to explain all of the 

variation in denitrification's isotopic fingerprint. 

2.3 A global framework for assessing εdenit dynamics 

Given these poorly understood variations reported in εdenit across scales, many studies opt to 

use literature-reported, rather than site-specific, εdenit values as a basis for isotope-based attenuation 

calculations. For instance, Panno et al. (2006) used values of -15.9‰ and -8‰ for 15εdenit and 18εdenit, 

respectively, to calculate that NO3
- attenuation in the upper Mississippi River varied from 0-55% 

between sampling dates, and Bartoli et al. (2012) used a 15εdenit value of -20‰ to calculate that 20% of 

catchment's NO3
- was attenuated within riparian and hyporheic zones. However, there is no 

environmental or biological rationale to select these εdenit values. In the previous examples, Panno et al.

(2006) used the εdenit value found by Bottcher et al. (1990) for denitrification in an unconfined aquifer, 

and Bartoli et al. (2012) used the εdenit range generated by Mariotti et al. (1981) for anaerobic soils and 

early culture experiments as reviewed by Kendall (1998). To increase the accuracy and precision of 

NO3
- stable isotope -based assessments of denitrification, I propose a unifying framework for selecting

an appropriate site-specific range of 18εdenit and 15εdenit based on the global denitrification model of 

Seitzinger et al. (2006) (Fig. 2.7). 

Figure 2.7  The spatial-temporal distribution of enrichment factors (εdenit) for δ15N-NO3
- and/or δ18O-NO3

- during 
denitrification based on 112 published empirical field measurements (from 79 publications). The 
number of unique εdenit measurements per environment are indicated as n =x and the number of 
publications that generated these numbers is in bold. Environments are grouped as per Seitzinger et al. 
(2006), wherein ‘space’ and ‘time’ as indicators of the distance between NO3

- production (nitrification) 
and consumption (denitrification) and the means of transport is defined as either diffusion-limited 
(rectangles with solid lines), temporally-limited (rectangles with dashed lines), or advective (ovals). (See
Appendix A for details).
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The different zones of denitrification are delineated according to, 1) whether NO3
- was 

transported to the denitrification zone by diffusion (passive) or advection (active), and, 2) the distance 

between the source and sinks of NO3
- (i.e., distance between nitrification (or deposition) zone and 

denitrification zone). Accordingly, the values of εdenit reported from field studies were categorised as 

being from environments where denitrification was limited by diffusion (A), periodic suboxia (B), or 

advection (C), and then binned based on the estimated distance and time between NO3
- production and 

reduction (Fig. 2.7). Distances from the source to the denitrification zone were classified as either: (1) 

mm to cm, (2) cm to m, (3) m to km, or (4) km to 100 km, and estimated based on reported sources of 

NO3
-, catchment size, and size of the denitrifying/ anaerobic area. Time of transport was defined as, (1)

seconds to minutes, (2) minutes to hours, (3) hours to months, or, (4) months to centuries. Distance 

and time were estimated from reported flow rates, residence times, and/or catchment size. As this 

spatial-temporal framework hinges on the role of diffusion and the degree of coupling between 

nitrification-denitrification in controlling denitrification, integrating NO3
- isotope data into this is 

validated by evaluating the reported effects of, 1) transport mode (diffusive v. advective), and, 2) 

mixing (fractionation during nitrification with that of denitrification, different sources) on δ15N-NO3
- 

and δ18O-NO3
-. 

2.3.1 Transportation 

Diffusion is the primary mode of NO3
- transport between aerobic flowing water, where 

measurements are typically taken, and the denitrifying zones in the anaerobic sediments (Lehmann et 

al. 2003, Sebilo et al. 2003). Solutes can be fractionated during diffusion as light isotopes are moved 

more easily than heavy isotopes (Abe and Hunkeler 2006, Aeppli et al. 2009). Direct evidence of 

diffusion impacting δ15N-NO3
-, and decreasing the expression of εdenit, was found by Tsushima et al. 

(2006), who established a direct relationship between the balance of advective v. diffusive transport 

and the magnitude of εdenit in aquifer sediments. Accordingly, the effect of diffusion on NO3
- moving 

from highly reducing marine sediments to the water column has been used to explain the discrepancy 

between the heavy (~ +30‰) δ15N-NO3
- measured within anaerobic sediments v. light δ15N-NO3

- (~ 

+5‰) found in the water column, leading to an estimation of εdenit for marine sediments of ~0‰ 

(Brandes and Devol 1997, Lehmann et al. 2005, Sigman et al. 2009). 

Across the reviewed literature, εdenit values from aerobic environments (i.e., outside of the 

denitrifying zone) were lower (-5.64 ±5‰ (n = 38) for 15εdenit  and -5.51 ±6‰ for 18εdenit (n = 23)) 

relative to anaerobic environments (i.e., within the denitrifying zone) (-14.9 ±10‰ for 15εdenit (n = 91) 

and -9.97 ±7‰ for 18εdenit) (p<0.001 and p<0.05, respectively) (Fig. 2.6). The few studies of NO3
- 

isotopes performed in aerobic soils also found consistently low εdenit values (Fig. 2.6), confirming a 

diffusive limitation on the expression of intrinsic εdenit (Kawanishi et al. 1993, 1996). However, it 

should be emphasised that diffusion limits the expression of intrinsic εdenit, but should not negate any 

site-specificity of isotope dynamics (e.g., Ruehl et al. 2007). 
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2.3.2 Mixing 

Distortion of fractionation factors and isotopic source signatures (R0) by process mixing is 

well recognised in the literature (Xue et al. 2009, Nestler et al. 2011), with Green et al. (2010) noting 

that, ‘‘physical mixing tends to create the appearance of lower reaction rates and fractionation 

parameters when measured at larger scales and longer flow paths.’’ For instance, Schmidt et al. (2012) 

found that heterogeneous mixing of different sources within a shallow aquifer broke the relationship 

between NO3
- attenuation and δ15N-NO3

-. The ambiguity created by co-occurring N transformation 

pathways is exemplified by the finding of Farrell et al. (1996) that only 60% of the variation in δ15N-

NO3
- leached from arid soils was explained by decreasing NO3

- concentrations (i.e., denitrification was

not the only process influencing NO3
- concentration and/or δ15N-NO3

-).

Coupling between nitrification and denitrification is recognised as the limiting factor for 

denitrification, as denitrification in anaerobic zones cannot progress until aerobically produced NO3
- is

transported to them (Seitzinger et al. 2006). The spatial and temporal separation between NO3
-  

production and reduction, ranging from µm to 100 kms and from seconds to centuries (Fig. 2.7), can 

also modify the isotope effects associated with denitrification. Nitrification of NH3 to NO2
- and NO3

- 

creates a δ15N-NO3
- pool significantly lighter than that of the original organic-N, unless the entire NH3 

pool is nitrified, although, again, the degree of fractionation incurred during the reaction is known to 

vary at the cellular and field scale (Casciotti et al. 2003, Yun et al. 2011).

When there is a strong spatial and/or temporal separation between nitrification and 

denitrification, as might be expected in the surface water of large rivers where the majority of 

denitrification occurs in hyporheic and riparian zones (e.g., Zarnetske et al. 2012), the NO3
- isotopic 

composition is influenced by fractionation from both of the reactions. This effect is illustrated using a 

simple two-pool mixing dynamics (Kendall 1998) (Eq. 2.4):

(2.4) Rnet =
Rnit×C nit+Rdenit×C denit

C net

where the isotopic composition of the measured NO3
- pool (Rnet) is calculated based on the 

composition of the nitrified NO3
- (Rnit) and that of the residual denitrified pool (Rdenit), weighted by 

their respective NO3
- concentrations (Cnit v. Cdenit) relative to the total (Cnet).

At the other end of the spectrum, when nitrification and denitrification are co-occurring (as 

may happen within soil microsites or across steep redox gradients), the apparent isotope effect for 

denitrification (both N and O) is further convoluted since NO3
- removal by denitrifiers (C0 - Cdenit) is 

obscured by production of NO3
- by nitrifiers (Cnit), regardless of the fractionation associated with 

nitrification (Eq. 2.5): 
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(2.5)
Rnet

R0

=(C net

C0
)

1 /(αdenit−1)

where Rnet and Cnet are defined as Eq. 2.6:

(2.6)
Rnet=

Rnit×Cnit+Rdenit×C denit

Cnet

C net=C nit+Cdenit

This set of equations shows that coupling of these processes can cause 15εdenit to increase relative to 
18εdenit, as δ15N-NO3

- is dependent on the flux of both nitrification and denitrification, whereas δ18O-

NO3
- from nitrification will have a roughly constant composition (Fig. 2.4). This relationship could 

explain previously discussed differences reported for fractionation during attenuation in OMZs 

(spatially and temporally distant from nitrified source) versus aerobic soils and surface waters 

(nitrification separated by mm or seconds from denitrification).

The mixing of N-fractionating processes led Barnes and Raymond (2010) to hypothesise that 

δ18O-NO3
- is a more accurate indicator of N cycling than δ15N-NO3

-(Barnes and Raymond 2010). 

However, Eq. 2.4 – 2.6 emphasise that mixing of nitrification and denitrification can mask the 

relationship between isotopes and substrate concentration that would be clear if only one process was 

at play. Understanding N transformations, and their associated effects on δ15N and δ18O, is thus a 

fundamental prerequisite for understanding the relationship between denitrification rates (kdenit) (as 

they control substrate availability (Seitzinger et al. 2006)) and NO3
- isotopic signature prior to 

denitrification (R0). 

2.3.3 Framework outcomes 

Distribution of the reviewed εdenit values into a spatial-temporal framework for denitrification 

as proposed by Seitzinger et al. (2006) (Fig. 2.7) reveals distinct trends in εdenit (Fig. 2.8). I therefore 

propose that the wide range of εdenit values expressed within and across landscapes can be explained by

the distance between sources and sinks, once the dominant transport mechanism is identified.
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Figure 2.8  The spatial-temporal distribution of published enrichment factors based on empirical field 
measurements for, (a) N (15εdenit), and, (b) O (18εdenit) isotopes of NO3

- during denitrification (‘effective 
fractionation’), as well as the relative ratio of δ18O-NO3

- to δ15N-NO3
- (c). Values are grouped by 

transportation mechanism: diffusion across an O2 gradient (A), temporal separation based on periodic 
anoxia (B), or advective transport from distal sources through a consumption zone (C). The ‘x’ and ‘y’ 
axes plot space versus time for transportation of NO3

- from production (nitrification) to consumption 
(denitrification), as per Seitzinger et al. (2006), and the means of transport is defined as either 
diffusion-limited (rectangles, solid lines), temporally-limited (rectangles, dashed lines), or advective 
(ovals). Statistical data on right are F values from 2-way ANOVA, where significance is indicated as 
*(p<0.05), **(p<0.01, and ***(p<0.001). (See Appendix A for values and references) 

27



(A) Diffusion – From the reviewed literature, denitrification within diffusion-limited denitrification 

zones was calculated to have a mean ±SD 15εdenit of -4.82 ±4‰, (lower (p<0.05) than measured in 

advection-limited zones) with no variation over transport distance. These results assist in explaining 

the findings of Ruehl et al. (2007) that 18εdenit and 15εdenit increased up to -20‰ in a California stream 

under high discharge rates (i.e., advective movement of water into the stream) and then decreased to 

between -1.6 and -9‰ under baseflow (diffusion-limited transport of NO3
- from the sediments to the 

surface water), accompanied by a shift in δ18O:δ15N ratios from 1:1 (high flow) to 1:2 (baseflow). 

However, a more detailed understanding of the spatial-temporal variation is limited by the fact that 

there are currently only nine published studies that have measured εdenit in zones defined by diffusive 

transport of NO3
-. Of these, only two involved transport distances at a scale greater than mm-sec (e.g., 

Alkhatib et al. (2012) measured denitrification of sinking particulate N in Gulf of Lawrence 

sediments). More rigorous examination of the fractionation effect of diffusion on NO3
-, both in and out

of denitrifying zones, is needed in order to better constrain effective εdenit values for submerged 

sediments and soil microsites, especially as the only attempt to measure diffusive fractionation under 

abiotic conditions found no effect (Semaoune et al. 2012). 

(B) Periodic suboxia – There is still very little information about isotope fractionation in environments

with strong temporal separation between sources and sinks of NO3
- (n =6) (Fig. 2.7). Available data for

locations with periodic denitrification indicates that εdenit is larger than at a similar space×time ranking 

in advection-dominated zones (C), although, due to the small sample size, these differences were not 

significant (Fig. 2.8). The distance and/or time between suboxic periods could regulate the magnitude 

of εdenit. For instance, Sigman et al. (2003) measured an effective 15εdenit of -5‰ in the waters of the 

seasonally-hypoxic Santa Barbara Basin, significantly lower than their calculated intrinsic 15εdenit of 

-20‰. There is also evidence to indicate that using NO3
- dual isotopes to calculate N fluxes during and

following acute events (e.g., seasonal shifts in [O2] of coastal waters or flooding dried soils) is 

particularly effective due to, 1) the known δ0 (i.e., nitrification completed prior to denitrification 

commenced), and, 2) the clear relationship between NO3
- isotopes and composition while 

denitrification is dominating the N pool (e.g., Wells et al. 2013). I hypothesize that periodic NO3
- sinks

will have isotope effects similar to the intrinsic εdenit for the local denitrifying populations, as diffusion 

should not influence δ15N- δ18O- NO3
- and the distance/ time between nitrification and denitrification 

would minimise convolution of these two processes. This contrasts with diffusion-limited systems, 

where transport dampens and homogenises isotope effects.

(C) Advection – Denitrification zones dominated by advective solute transport can be treated as 'pipes':

NO3
- produced in a given zone is transported to a denitrifying zone and is gradually consumed as it 

passes through (i.e., Eq. 2.2). This scenario also describes laboratory incubation type studies, where 

NO3
- is produced distally and then added in totality to an anaerobic system. The strong positive 
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correlation found between measured εdenit and estimated travel distances (Fig. 2.8) indicates that the 

‘suppression’ of intrinsic εdenit values reported in shallow groundwater (Mariotti et al. 1988, Heffernan 

et al. 2012), hyporheic zones (Devito et al. 2000, Kellman and Hillaire-Marcel 2003), and rivers 

(Ruehl et al. 2007, Osaka et al. 2010, Wexler et al. 2011) could be a product of tightly coupled 

nitrification and denitrification, whereas increasing distance of advective transport between source and

sink allow high magnitude intrinsic εdenit values to be more fully expressed.

Moreover, different degrees of mixing between nitrification and denitrification within 

advection-dominated denitrification zones could explain the assigning of δ18O:δ15N fractionation ratios

of 1:1 for deepwater marine environments and 1:2 for shallow freshwater and soil environments. I 

found that reported δ18O:δ15N ratios decreased with decreasing distance between source and sink, from

a mean of 1 within OMZs to ~ 0.6 at metre scale transport distances (Fig. 2.8c). Similar shifts in 

δ18O:δ15N ratios were used by Wankel et al. (2009) to constrain the importance of nitrification within 

California's Elkhorn Slough. However, potentially due to the paucity of 18εdenit data, this trend was not 

significant.

2.4 Key outcomes

The clear spatio-temporal distribution of εdenit values across landscapes reveals the importance 

of 'macro-scale' variables in determining the effective magnitude of fractionation during denitrification

at the field scale. These trends through doubt on the relevant of variations in intrinsic fractionation to 

field studies, particularly given our presently limited understanding of the role of microbial 

community structure and function. Thus I suggest that more research focus on constraining 

interactions between environmental factors (particularly hydrology) and εdenit. 

2.4.1 Future considerations

Oxygen strongly influences both intrinsic and effective fractionation (the latter a product of 

diffusive fractionation), and the consistent decreases in 18εdenit and 15εdenit caused by changing [O2] 

constrain a narrow range of relatively low enrichment factors relevant for aerobic environments. The 

lack of consistency in the relationship between the rate and fractionation strength of denitrification 

(kdenit and εdenit) across the reviewed literature is an important consideration when interpreting new NO3
-

isotopic datasets. This finding emphasises the importance of the hydrologic environment, rather than 

biochemistry, in determining the expressed isotope effect. Yet within this variability εdenit could be 

aligned to the spatial-temporal framework underpinning denitrification, confirming the validity of 

relationship between δ15N-NO3
-, δ18O- NO3

-, and NO3
- attenuation across scale and disciplines. In this 

context, several key research gaps emerged:

• There is a need to resolve discrepancies in δ18O-NO3
- dynamics, particularly with regards to 

δ18O:δ15N fractionation ratios. 
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• Intrinsic variations in εdenit must to be reconciled with 'effective' field-scale variations. Are 

effective fractionation factors driven by microbial community structure and/or function? 

Answering this question also necessitates filling in some of the gaps in the environmental 

distribution of field studies, particularly with respect to getting data from low-N environments.

• Measurements are needed of the impact of NO3
- diffusion into and out of denitrifying zones on

the expression of εdenit, particularly in dynamic environments such as streams, where the 

distance and degree of diffusive transportation can vary widely over distance and time 

(Christensen et al. 1990). 

• Field studies designed to disentangle nitrification and denitrification, enabling quantification 

of how their interactions impact measured 18εdenit and 15εdenit, are required. 

Building on the spatial-temporal framework developed through this review in order to address these 

identified knowledge gaps, the subsequent five chapters present original findings on NO3
- isotope 

dynamics during denitrification from across the identified denitrification zones, 

• Micro-scale experiments and modelling of diffusive versus intrinsic fractionation in soils and 

sediments (Chapter 3); 

• Meso-scale measurements of the impact of mixing N-fractionating processes on NO3
- isotopes 

under diffusion and spatial limitations on denitrification in pasture soils (Chapter 4); 

• Field-scale empirical measurements of NO3
- isotope dynamics in submerged (diffusion-

limited) and wetting-drying (period-limited) paddy soils (Chapter 5); 

• Nitrate removal and fractionation in a river as it transitioned from advection-limited to 

diffusion-limited denitrification (Chapter 6); and

• Catchment-scale NO3
- removal with seasonal and climate driven variation in advection versus 

diffusion limitations on denitrification (Chapter 7). 
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Plate 1 Clockwise from top: the mesocosm incubation set-up for measuring denitrification and εdenit in paddy 
soils; Boggy Creek Ditch (site BC) in Doylston, Canterbury; ditch at the Lincoln University Dairy 
Farm (LUDF) where NO3

- isotopes in sediments and surface water were measured in the winter of 
2009, when these photos were taken.
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Chapter 3

Environmental controls on nitrate isotopes fractionation during

denitrification in stream sediments and submerged soils, and its

expression across the anaerobic-aerobic interface

Sections of this chapter will be submitted for publication. Wells, N.S., T.J. Clough, S.E. Johnson-

Beebout, W.T. Baisden. In prep. Environmental expression of denitrification's intrinsic biochemical 

isotope fractionation measured in nitrate: do 'site specific' enrichment factors exist? Biogeochemistry 

(Synthesis and Emerging Ideas)
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3.1 Abstract

Precise and accurate tracers of nitrate (NO3
-) transformations in freshwater systems are needed

to successfully mitigate the threat it poses to water quality. Measurements of NO3
- isotopes (δ15N and 

δ18O) could provide an integrative measure of N losses, as their composition reflects biogeochemical 

processing.  However, quantitative use of δ15N and δ18O to measure NO3
- attenuation (denitrification) 

is currently limited by a poor understanding of the factors controlling the strength of fractionation 

during denitrification (εdenit), and the extent to which site-specific intrinsic εdenit is expressed in in 

aerobic surface waters (εeff). Combining mathematical modelling with experimental results from field 

and lab studies, I lay out a practical framework for defining an appropriate εdenit range for freshwater 

sites based on three layers of NO3
- processing: 1) biological denitrification, 2) diffusive transport of 

NO3
- through the denitrifying zone, and, 3) mixing with NO3

- produced from nitrification. 

Biologically-defined εdenit, measured in sediments from four sites along a temperate stream and from 

three tropical submerged paddy fields, varied with antecedent carbon content from -3‰ to -28‰. 

Following diffusive transport to aerobic surface water, εdenit normalised around low εeff values: the 

measured εdenit range (-17 ±15‰) is predicted to decrease to -2 ±4‰ following diffusion from the 

anaerobic sediment zone to the aerobic surface water. Mixing with nitrification likewise caused εeff to 

vary, depending on the relative rate of incoming NO3
- from nitrification and removal of NO3

- by 

denitrification. Inherent variability in fractionation at all three levels assessed leads to the suggestion 

that it is more accurate to apply a set range of εdenit values for assessing attenuation in a given 

environment than to attempt to ascertain a unique value for a given catchment. 

Keywords: stable isotopes, denitrification, nitrate, fractionation, diffusion, sediment-surface water 

interface
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3.2 Introduction

Human activities have doubled the annual inputs of reactive nitrogen (N) to land, causing a 

cascade of environmental degradation as excess N is transported from land to the sea (e.g., 

eutrophication of water ways and emissions of the greenhouse gas nitrous oxide (N2O)) (Galloway et 

al. 2008). Denitrification, the step-wise reduction of highly mobile nitrate (NO3
-) to N2O and 

dinitrogen (N2), is the primary pathway for attenuating (permanently removing) reactive N and 

curtailing the N cascade (Galloway et al. 2003). At the global scale, 30% of N entering rivers is 

estimated to be denitrified during transport (Mulholland and Webster 2010), yet the extreme spatial 

and temporal variability of denitrification rates (kdenit) makes accurately quantifying attenuation fluxes, 

and thus N balances, within catchments inherently difficult (Seitzinger et al. 2006, Groffman et al. 

2009). 

The natural abundance isotopic composition of NO3
- (δ15N and δ18O) is recognised as a 

potential means of integrating N attenuation over time or distance as denitrifying microbes 

preferentially utilise ‘light’ isotopes (Groffman et al. 2006). The natural abundance composition of 

δ18O-NO3
- and δ15N-NO3

- in the residual NO3
- pool can thus be used to calculate the proportion NO3

- 

attenuated according to a Rayleigh fractionation process (Eq. 3.1): 

(3.1)
R
R0

= (C
C0

)
1 /(α denit−1)

where the ratio of heavy to light isotopes (R) at a given point divided by the original isotopic 

composition of the pool (R0) is directly related to the difference between the measured substrate 

concentration (C) and the original substrate concentration (C0) by the degree of preference for light 

isotopes during denitrification (fractionation factor: αdenit, referred to in the text in terms of εdenit, where 

εdenit = (αdenit -1)×1000)) (Kendall and Caldwell 1998). If εdenit is known, the rate of NO3
- attenuation (1-

C/C0) could be calculated from measured δ15N and δ18O values (Ostrom et al. 2002). Currently, the 

large range of reported values, and poor understanding of what causes this range, limit the wide-scale 

use of isotopic methods to measure N attenuation (Fig. 3.1). 
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Figure 3.1 The value of εeff (expression of εdenit outside of the denitrifying zone in oxygenated stream water) 
depends on both site-specific intrinsic εdenit conferred during denitrification (S1), the physical (diffusive 
v. advection) transport of NO3

- from the denitrifying zone to the measurement zone (S2), and the 
mixing of the NO3

- residual from denitrifcation (determined by kdenit, the denitrification rate) with the 
NO3

- pool created by nitrification (determined by the nitrification rate, knit, and the isotopic 
composition defined by the δ15N of the initial reduced N pool (δ0) and the enrichment factor for 
nitrification (εnit) (S3).

Isotopic fractionation occurs at the molecular level ('intrinsic') as NO3
- is transported across 

the cell wall of the denitrifier (Kritee et al. 2012), where fractionation of N (15εdenit) and O (18εdenit) 

ranges from -5‰ (low) to -25‰ (high) between denitrifier strains (Granger et al. 2008),  and typically 

occurs at a ~1:1 ratio for δ18O v. δ15N. While this range of biologically-driven N fractionation is 

believed to result from variations in microbial metabolism (Kritee et al. 2012), the extent that these 

ranges are expressed in freshwater environments is unclear, particularly given how little is known 

about the environmental distribution and function of microbial populations (Standing et al. 2007). 

Indeed, while no differences in εdenit have been observed between freshwater and marine denitrifiers 

(Granger et al. 2008, Wunderlich et al. 2012), empirical measurements of isotope effects (εeff, effective 

fractionation) in surface waters (e.g., rivers and lakes) consistently yield relatively low enrichment 

values with δ18O:δ15N enrichment ratios closer to 1:2 than the expected 1:1 (Chapter 2). 

In aerobic surface waters, εdenit can be distorted by the diffusive transport that moves NO3
- 

between the anaerobic denitrifying zones in the sediments and the aerobic waters where samples are 

typically collected (Christensen et al. 1990, Hondzo et al. 2005, Higashino et al. 2008) (Fig. 3.1). 

Diffusion is mass-dependent, meaning that light isotopes are moved faster than heavy isotopes, 

causing solute pools to become increasingly depleted in heavy isotopes over transport distance (Abe 

and Hunkeler 2006, Richter et al. 2006, LaBolle et al. 2008). Diffusive NO3
- movement from 

anaerobic sediments to the water column was therefore hypothesised to drive observed discrepancies 
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in εdenit measured within sediment porewater versus the water column by Brandes and Devol (1997, 

2002) (ocean), Lehmann et al. (2003) (lake), and Sebilo et al. (2003) (river). 

The aerobic-anaerobic gradient across the sediment-surface water interface also creates a zone

for mixing residual NO3
- from the denitrifying zone with NO3

- created by nitrification (autotrophic 

oxidation of ammonia (NH3) to NO3
-) in the aerobic zone (Zarnetske et al. 2012) (Fig. 3.1). As O is 

consumed during nitrification, and denitrification is limited by both NO3
- availability and the presence 

of O2, nitrification (NO3
- production) and denitrification (NO3

- attenuation) are often tightly coupled in 

freshwater environments (Seitzinger et al. 2006). During nitrification, δ15N-NO3
- is isotopically light 

with respect to the residual δ15N-NH3 (as per Eq. 3.1), while δ18O-NO3
- is defined by the incorporated 

O2-O and H2O-O (Casciotti et al. 2003, Buchwald et al. 2012). Therefore, mixing of 'nitrified' and 

'denitrified' NO3
- pools could mask the isotopic fractionation incurred during denitrification (e.g., 

Wankel et al. 2009). 

By constraining εeff for NO3
- attenuation in key freshwater systems, this study aims to 

understand the discrepancy between εdenit and εeff based on three scenarios: 1) site-specificity of εdenit 

(intrinsic variations, based on Rayleigh fractionation) (S1), 2) diffusive transport dampening the 

expression of biological fractionation in oxic zones (S2), and, 3) mixing between nitrification and 

denitrification in the measurement zone (S3). Site-specificity of εdenit (S1) was determined via 

incubation of substrates collected from disparate locations, and the theoretical impact of S2 and S3 on 

these values was evaluated through models, and empirical measurements of δ15N- δ18O- NO3
- in stream

porewaters v. surface waters. 

3.3 Materials and Methods

3.3.1 Model overview

Based on the assumptions of Rayleigh fractionation (continuous reaction with a continuous 

fractionation effect and finite substrate pool), reaction kinetics of denitrification are used to establish 

intrinsic fractionation for S1. The corresponding range of εeff was then calculated by overlaying this 

intrinsic framework with either mass-dependent isotopic fractionation from diffusive transport (S2) or 

the mixing effects of variable rates of nitrification (S3) using a range of reasonable input parameters 

(Table 2). In order to minimise assumptions, all of these calculations are based on changes in total 

isotopic abundance (R), rather than δ notation (‰).

Scenario 1 (intrinsic εdenit) 

Under ideal conditions, intrinsic αdenit determines the relative abundance of ‘heavy’ isotopes 

(Rb) based on a 1st order kdenit and NO3
- pool size (C) (Eq. 3.2): 

(3.2) dC
dx

=−k denit C
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and, dRb

dx
=−αdenit k denit C

where the boundary conditions for both equations are defined by the initial isotopic composition (R0) 

and concentration (C0) of NO3
- when x =0. 

Scenario 2 (diffusion-limited fractionation)

Using Fick’s Law, this model builds an isotopic dimension into the diffusion-based 

understanding of denitrification rates in sediments presented by Christensen et al. (1990), which 

defines kdenit and NO3
- fluxes into and out of the denitrifying zone based on the depth of O2 penetration 

(z) (Eq. 3.3). 

(3.3) 0 = Ds
∂2C
∂ z2 −w

∂ C
∂ z

−F

where NO3
- (as concentration, C) is transported vertically (over z) to and from the denitrifying zone 

(defined as an infinitely thin reactive layer, F, where denitrification occurs as per Eq 2) via diffusion 

(Christensen et al., 1990; House, 2003; O'Connor and Hondzo, 2008). Availability of C for diffusion or

consumption is controlled by physical advection (w) (cm s-1). The diffusion term (Ds) is dependent on 

molecular diffusivity (Dm) of NO3
- (1.33 x10-5 cm2 s-1), temperature, and sediment porosity (Φ) 

(Boudreau, 1997). When the upper boundary layer at z = 0 is open, meaning substrate fluxes into the 

surface water in accordance with steady state demands, which is in turn controlled by downstream 

flow (w over x). Therefore, the NO3
- concentration in the surface water reflects both the degree of 

denitrifcation and the effect of transport (w, Ds), and the flux across z = 0 can be solved as the first 

derivative of Fick’s Law (Eq. 3.4).

(3.4)
Ds kdenit Cw

D s+k denit L
= −w

∂ Cw

∂ x

Accordingly, the isotopic composition at z =0 reflects fractionation resulting from denitrification (αdenit)

and diffusive transport (αD); αD is defined by Eq. 3.5.

(3.5) α D = √m(mb+M )

mb(m+M )

where the square root of the relative masses of the heavy (mb) and light (m) forms of NO3
- (i.e., 

15N16O3
-, 14N18O3

-) diffused in water (M  = mass of H2O) define the diffusive fractionation factor (αD) 
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(Richter et al. 2006, LaBolle et al. 2008). Using αD and αdenit, the isotopic composition of NO3
- (R) at 

depth z is calculated based on rates of consumption (kdenit) and transport (Ds) (Eq. 3.6).  

(3.6) R =
C0

b
(Ds+k denit L)(α D Ds+αdenit k denit ( L−z ))

C0(Ds+k denit ( L−z ))(αD Ds+αdenit k denit L)
 

The complete derivation of this equation is available in Appendix B. 

Scenario 3 (mixing) 

Nitrification (Cnit and Rnit) and denitrification (Cdenit and Rdenit) were treated as two isolated 

pools that react separately, and then continuously mix over time/distance to form Rnet (Eq. 3.7): 

(3.7) Rnet =
Rnit×C nit+Rdenit×C denit

C net

where Cdenit and Rdenit are defined by Eq. 3.2; Cnit is determined by the rate of oxidation of NH3 by 

nitrifiers (knit), and Rnit is the N isotopic composition of the nitrified NO3
- (based on the Rayleigh 

equation for NH3 oxidation from Casciotti et al. (2003)) (Fig. 3.1). 

3.3.2 Incubation experiments

Substrates were collected from two locations: sediments from Harts Creek, a shallow spring-

fed, gaining stream in the Canterbury plains region of New Zealand (43°46’S, 172°16’E), and 

submerged paddy soils from the International Rice Research Institute experimental farm (IRRI) in the 

Philippines (14º1’N, 121º15’E). Locations were selected to provide a snapshot of global (cross-biome)

v. local (km) scale variation in freshwater εdenit. Within Harts Creek, multiple sites were sampled to 

span variations in water depth, temperature, and organic matter content, factors known to influence 

kdenit (Garcia-Ruiz et al. 1998, Alexander et al. 2000) and denitrifier activity and abundance (Findlay 

2010, Findlay et al. 2011). Sites within IRRI were selected based on changes in land-use / cultivation 

history, known to control kdenit and denitrifier community dynamics in submerged soils (Buresh et al. 

2008, Bannert et al. 2011, Ahn et al. 2012). 

Sample collection

In Harts Creek, streambed sediments were collected from four reaches at increasing distance 

from the source spring: 1.69 km (A), 3.69 km (B), 7.75 km (C), and, near the river mouth, 9.61 km 

(D). Prior to sediment collection, dissolved oxygen (DO) and water temperature were measured in-situ

at each reach using a portable hand-held meter (550A YSI, Yellow Springs, OH). Stream depth was 

measured using a metre stick at upstream sites (A and B) and installed gauges at downstream sites (C 

and D). Harts Creek climate conditions were evaluated using data from the Leeston Harts Creek 

52



climate station (43°46’1.99”S, 172°16’57.79”E) (<1 km from site A) (CliFlo: NIWA’s Climate 

Database Online (http://cliflo.niwa.co.nz). Data retrieved 06-Jun-2011.) 

Paddy soils were collected from three fields with different cultivation histories and clay 

contents (which reflects cultivation intensity (Kogel-Knabner et al. 2010)) at IRRI: E (two irrigated 

rice crops a year for >20 years, 61% clay), F (zero to two irrigated rice crops a year for ~10 years, 

33% clay), and G (uncultivated soil within 500 m of E). Floodwater depth and soil temperature were 

recorded prior to sampling. Climate data was obtained from the on-farm climate station and soil 

characteristics from survey data (W. Lorenzo and R.J. Buresh, unpubl.). 

At each location, 20 sediment samples (10 cm depth x 5 cm diameter) were collected 

(locations determined using a pre-prepared randomised grid) and bulked together to ensure that 

samples were representative of each site (Bissett et al. 2010). Samples were stored on ice until 

returned to the lab (<2 h), whereupon they were sieved through a 0.5 mm mesh to remove larger 

particles and soil fauna. Sub-samples (~50 g) from each location were stored at 4ºC until chemical 

analyses (water-holding capacity (WHC), total organic carbon (TOC), pH, and total C and N).   

Intrinsic εdenit incubations

Streambed sediments were incubated in 30 ml amber glass bottles (Alcom) sealed with Teflon-

lined rubber septa. Three replicate incubations were made for each sampling time x treatment, plus an 

additional control. Each bottle was filled with 25 ml of sediment slurry (100% WHC), which were 

kept continuously mixed (i.e., no diffusive limitation to denitrification) using a rotary shaker table. For

each paddy soil, the equivalent of 200 g dry weight was added to a 2 l mesocosm Pyrex jar and 

brought up to 1 kg with deionised H2O (volume selected to ensure that the substrate surface area did 

not change significantly over time with sub-sampling), sealed, and then kept continuously mixed using

a magnetic stirrer. Two replicate mesocosms were set-up for substrate from each site, each fitted with 

two platinum electrodes and one hydrogen probe for redox measurements (using an Ag/AgCl 

reference electrode), which were corrected based on hydrogen probe readings (simultaneously used to 

measure soil pH) (as per Johnson-Beebout et al. (2009)). 

All incubations were continuously flushed with N2 or He gas, and outflows from the 

incubations were bubbled through air-tight 12 ml Exetainer® filled with 10 ml of deionised water to 

ensure no air backflow. After 48 h of pre-incubation, C (as glucose; 1mM) and NO3
- (25 mg N l-1 as 

KNO3) were added to treatment incubations to ensure that the initial denitrification period was not 

substrate limited. Slurries were collected +1, 3, 6, 12, 24, and 36 h after substrate additions. For the 

Harts Creek sediments, sampling was destructive, consisting of opening mesocosms within an air-free 

bag (purged with He), where the slurries were transferred into a sterile 50 ml centrifuge tube for 

extraction. For paddy soils, three 50 ml sub-samples were collected from each mesocosm using a 

sterile syringe. These slurries were immediately injected into acid-washed centrifuge tubes. Once 

sediments and soils were in the centrifuge tubes, deionised water was added at a 5:1 w/w ratio and 

samples were centrifuged at 3500 rpm for 20 min, and supernatents pumped through GF/F (Whatman) 
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filter paper to remove particulates. Air temperature was measured continuously, and paddy slurry 

redox potential and pH were recorded at each sampling interval. 

Layered incubations (εeff)

Site C sediments were also used in incubations testing the impact of diffusion and nitrification 

on εeff. The sediments were placed in sterile 30 ml plastic vials (2.5 cm diameter x 6.0 cm height) and 

then brought to 100% WHC, and then overlain with either 0 cm (L0), 2 cm (L1) or 4 cm (L2) of acid-

washed quartz sand plus an additional 6 ml of deionised water. Treatments were replicated four times 

(including one control without added N or C) for each sampling interval. After 48 h, NO3
- (25 mg N l-1 

as KNO3) and C (1 mM glucose) were slowly injected into the base of the sediment layer using a 1 ml 

syringe fitted with a 23 g (0.337 mm) needle. Incubations were destructively sampled 4, 8, 24, 48, and 

96 h after substrate additions: surface water (SW) was removed using a 15 ml sterile syringe, sediment

porewater (PW) extracted as in previous incubations, and both SW and PW samples passed through 

GF/F filter paper (Whatman). 

Vertical profiles (500 μm depth intervals) of O2 and N2O concentrations in the sediments, 

sand, and water, were measured following the procedure of Elberling et al. (2010). Briefly, O2 was 

determined using a miniaturised Clark-type O2 micro-sensor (OX10, Unisense, Science Park, DK-

8000 Aarhus, Denmark) equipped with an internal reference and a guard cathode (linearity was 

confirmed by recording the output current (pA) in water sparged with N2, air and pure O2). Standard 

micro-sensors were used to measure N2O concentrations and substrate diffusivity (Elberling et al. 

(2010) and references therein).  

3.3.3 Field sampling 

Surface water and sediment samples were collected in winter 2009 from two ditches in 

Canterbury, New Zealand: adjacent to the Lincoln University Dairy Farm (LUDF) and Boggy Creek in

the Lake Ellesmere catchment (BC). Four sites (~15 m apart over ditch length) were sampled in from 

the thalwag of each location. Sampling consisted of collecting 1 l of water in acetylene bottles from ~ 

4 cm below the water surface (SW) and from 4 cm above the sediments (DW) using a reaching pole. 

Headspace air was immediately removed and samples were stored on ice until return to the lab. 

Porewater (PW) was collected from the underlying sediments: three cores (10 cm depth x 5 cm 

diameter) were collected, sealed in polythene bags, and kept on ice for <2 h. Cores were extruded and 

bulked upon return to the lab, and porewater samples obtained by centrifuging and filtration (as per 

method for incubation slurries). 

3.3.4 Chemical and isotopic analyses 

Following filtration, NO3
- concentrations were measured in all samples using an ELIT 8021 

ion selective electrode (detection limit: 0.01 µg l-1) (www.nico2000.net). Approximately 10% of 

samples were re-analysed on a suppressed ion exchange chromatograph (Dionex DX-120 Ion 
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Chromatograph with an AS-50 Autosampler and an IonPac AG9-SC column) (Lincoln University, NZ)

to ensure that there was no matrix interference to the ISE. Dissolved organic carbon (DOC) content 

was analysed on a Shimadzu TOC-5000A total organic C analyser fitted with an ASI-5000A auto 

sampler and total N and C via combustion on an Elementar EA-TCD (Lincoln University, NZ) 

(precision of ±0.04).

Nitrate isotopes (δ15N and δ18O) were measured on two representative filtrates at each 

sampling interval (i.e., with NO3
--N concentrations within ±1 SD). Samples were prepared using the 

Cd-azide method described by McIlvin and Altabet (2005) and analysed on a SerCon Europa 20/20 

IRMS (Lincoln University, NZ). Results were calibrated using international standards USGS-32, 

USGS-34, IAEA-N3, giving an analytical range of -25‰ to +25‰ for δ18O-NO3
- and -4‰ to +178‰ 

for δ15N-NO3
- and internally-calibrated using KNO3 and KNO2 standards. Based on variations in 

international standards between runs, method accuracy was calculated as 0.8‰ for δ18O- NO3
- and 

0.6‰ for δ15N- NO3
-.

3.3.5 Quantitative analysis 

Numerical solutions for theoretical R values for S1, S2 and S3 were generated iteratively for 

each unique combination of input parameters in Table 3.1 (see Appendix B for model details) 

(Mathematica ver. 7.0.2). The generated R values were then converted to δ notation and used to 

calculate εeff as per the simplified Rayleigh equations of Mariotti et al. (1981) (Eq. 3.8): 

(3.8)

δ15 N x = δ15 N 0 + 15 ε × ln( f
1− f )

δ18O x = δ18 O0 + 18 ε × ln( f
1− f )

where 15ε and 18ε (either εdenit (S1 solutions, intrinsic incubations) or εeff (S2 and S3 solutions, layered 

incubations, field samples) are equivalent to the linear slope between the natural log of the NO3
- 

concentration relative to initial (f =C/C0) and the equivalent change in isotopic enrichment (δ-δ0). The 

slope, fit, and significance of regressions were determined using SPSS (ver.20).  
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Table 3.1 Input parameters for numerical solutions to isotope fractionation models S1 (ideal), S2 (diffusion-
limited) and S3 (mixing). Ranges are based on experimental findings from this study, as well as those of
Garcia-Ruiz et al. (1998) and Buresh et al. (2008) for kdenit, Christensen et al. (1990) and House (2003) 
for L, Granger et al. (2008) for εdenit, and Casciotti et al. (2003) for εnit. Values for 18εD and 15εD were 
calculated as per Eq. 3.5. (Isotope values are reported in δ‰ with respect to AIR for N and VSMOW 
for O).

Variable Value

δ15N-NO3
-
0 0‰                                             (S1,S2,S3) 

δ18O-NO3
-
0 0‰                                                                      (S1,S2,S3)

C0 (NO3
-) 1 mg                                           (S1,S2,S3)   

C0 (NH4
+) 1 mg                                                     (S3)

kdenit

5.0x10-5 – 2.0x10-3 µg NO3
- cm-2 s-1       (S2)

1.0x10-3 µg NO3
- cm-2 s-1                (S1,S3)

knit 2.5x10-4 – 2.0x10-3 µg NO3
- cm-2 s-1    (S3)

Ds 3.0x10-4 – 1.4x10-3 cm2 s-1                   (S2)

L 0.01 – 1.0 cm                                       (S2)

15εdenit

-2 – -31‰                                        (S1,S2)

-17‰                                                    (S3)  

18εdenit

-2 – -31‰                                        (S1,S2)

-17‰                                                    (S3)  

15εnit +20‰                                                   (S3)

18εnit  0‰                                                      (S3)

Mixed models were used to assess differences between river sediments and paddy soils over 

time, with time and location as Type III factors (differences between effects were defined via the Least

Significant Difference method) (SPSS ver.20). As dictated by experimental designs, time was treated 

as a repeated measure in only in paddy soil incubations. Differences between locations, sites, and 

treatments were tested using 1-way ANOVA (Tukey post-hoc). Pearson's correlation was used to 

establish relationships between chemistry, climate variables, and isotopes.  Microsensor data for 

diffusion limitation incubations was converted into concentration profiles and fluxes using 

SensorTrace PRO® software and the PROFILE® model, which integrates concentration profiles to 

extrapolate fluxes and consumption rates, as described by Berg et al. (1998). Differences between 

LUDF and BC field samples were tested using a nested two-way ANOVA (with Sidak post-hoc), and 

paired t-tests to determine relationships within variables over depth. All results are reported as mean 

±SD, unless otherwise noted, and significance is defined as p<0.05.
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3.4 Results

3.4.1 Intrinsic fractionation (S1) 

Despite the contrasting climates between IRRI and Harts Creek, there were no significant 

differences in denitrification dynamics or fractionation sediments between the locations (Table 3.2). 

Although there was no relationship between TOC and kdenit, substrate C/N was negatively correlated 

with kdenit (r = -0.972, p<0.001) (Table 3.2). In paddy soils, site G was less reducing (Eh = +65, 

compared to E (-221) and F (-158)) during the incubation period (Table 3.2).

Table 3.2 Summary of physiochemical differences between sediments collected from different reaches along 
Harts Creek, a spring-fed stream (Canterbury, New Zealand) and from rice paddies with different 
cultivation history (International Rice Research Institute, Laguna, Philippines) (unique letters indicate 
significant differences (p<0.05)). 

Air T Rain pH TOC C/N DO kdenit

ºC mm mg C kg-1 mg O2 l-1 mg N m-2 d-1

New
Zealand

streambed
10 600

A 41.1 ±11b 11.8c 7.42 ±0.2a 34.7b

B 8.78 ±2a 11.9c 8.56 ±0.1b 37.8b

C 707 ±40f 9.11 ±0.1c 11.4a

D 305 ±18e 12.4d 9.13 ±0.1c 44.8b

Redox 
mV

Philippine
rice paddy

25 2500

E 7.32a 130 ±3d 10.4b -221 ±20a 222c

F 7.30a 79.2 ±3c 9.00a -158 ±10b 597d

G 8.19a 46.5 ±10b,c 64.5 ±21c 274c

The ratio of δ18O-NO3
- to δ15N-NO3

- in all seven sediments over the incubation period was 0.67

(p<0.001, r2 = 0.92). Deviation from a 1:1 ratio was driven by C and G: the δ18O:δ15N ratio was 0.80 (r2

= 0.96, p<0.001) for only A, B, D, E, and F, versus 0.50 (r2 = 0.95, p<0.001) for C and G (Fig. 3.2). 

The isotopic composition of NO3
- in the control incubations for the substrates that produced 1:2 

enrichment ratios was +3.94‰ (δ18O) and -3.58‰ (δ15N), lighter (δ18O: p<0.001; δ15N: p<0.01) than 

the values of +48.8‰ (δ18O) and +30.4‰ (δ15N) in controls for A, B, D, E, and F. 

Enrichment factors (15εdenit and 18εdenit) varied by site (Fig. 3.2), as did kdenit (Table 3.2).  

However, both the highest (-28‰ at C) and lowest (-3‰ at B) 15εdenit values occurred in Harts Creek 

sediments (Fig. 3.2). Although the 15εdenit range was narrower in paddy soils (from -10‰ in E to -13‰ 

in F), variations in 15εdenit, 18εdenit, and kdenit between the three IRRI sites were significant (Table 3.2, Fig. 

3.2). Overall, the range of 18εdenit was narrower than that of 15εdenit, going from -17‰ (site D) to -3‰ 

(site B). Variations in 15εdenit between sites were controlled by sediment TOC content prior to glucose 

additions (Fig. 3.3) ( r2 = 0.82, p<0.001).   
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Figure 3.2 Isotope enrichment factors for (a) δ15N-NO3
- and (b) δ18O-NO3

- for denitrification in anaerobically 
incubated river sediments (A-D) (collected from four reaches along a spring-fed stream in Canterbury, 
New Zealand) and rice paddy soils (E-G) (collected from fields with different cultivation history at the 
International Rice Research Institute’s experimental farm, Laguna, Philippines) following NO3

- and C 
additions. Slopes of these lines define enrichment factors for δ15N (15εdenit) and δ18O (18εdenit), which are 
listed along with the ratio of δ18O v. δ15N enrichment, for each substrate (letters indicate significant 
difference at p<0.05).

Figure 3.3 Antecedent TOC content for four sediments and three paddy soils versus the strength of isotopic 
fractionation during denitrification (15εdenit) measured following glucose and KNO3 additions under 
anaerobic conditions. Sediments were collected from four reaches along a spring-fed New Zealand 
stream and paddy soils from fields with varying cultivation histories in the Philippines. Symbols 
represent the mean (±SE) for each site, fitted to a 2nd order regression curve (y = -7.5 - 0.05x + 3.0-5x2) 
(solid line) with 95% confidence intervals (dashed lines).
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3.4.2 Effective fractionation (S2, S3) 

Numerical solutions and model constraints 

For all calculated diffusion-limited εeff (S2), change in δ15N and δ18O occurred linearly with 

respect to ln(f) (where f is equivalent to the concentration of NO3
- at point x relative to initial NO3

- 

concentration). As downstream flow velocity (w) controls the substrate supply to the sediments (Eq. 

3.4), increasing w decreased εeff while simultaneously limiting the rate of NO3
- consumption (data not 

shown). However, this effect was relatively small compared to that of other parameters (i.e., doubling 

w decreases εeff by only 0.02%). 

Simultaneously increasing L and kdenit decreased the magnitude of 15εeff and 18εeff (Fig. 3.4). Due

to the greater mass (larger αD) of O relative to N, the magnitude of impact was greater for 18εeff than 
15εeff (Fig. 3.4, Table 3.3). The ratio of δ18O:δ15N decreased from the initial 1:1 under diffusion limited 

conditions (Table 3.3). The greater the diffusive limitation (i.e., the longer L and the steeper the 

diffusive gradient caused by faster rates of kdenit), the lower this ratio became, until eventually δ18O 

became ‘lighter’ as NO3
- concentration decreased, reflecting the 18αD rather than 18εdenit, creating an 

inverse relationship with δ15N, which reflected 15εdenit for longer (Table 3.3). The impact of diffusion (as

measured via L, kdenit) on εeff was dependent on the initial εdenit (-2 to -31‰), causing the range of εeff to 

decrease to as little as ±1‰ the more diffusion impacted the system (Table 3.3). Increasing Ds from 

3.0x10-4 cm2 s-1 (~ fine sediment) to 1.4x10-3 cm2 s-1 (~sand) delayed the impact, but did not alter the 

magnitude, of these changes in εeff with respect to εdenit, kdenit, and L (data not shown). 

Figure 3.4 Calculated effective (εeff) fractionation of δ15N-NO3
- (a) and δ18O-NO3

- (b) as influenced by diffusive 
transport of residual NO3

- over distances (L) and varying rates of denitrification (kdenit) less the value of 
εdenit prior to diffusion (either -2‰, -17‰, or -31‰) (input variables as per Table 3.1). Values of 0 (red) 
indicate no change from εdenit to εeff, and large values (30) indicate that εeff is much less negative than 
εdenit.
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Table 3.3 Calculated effective enrichment factors for δ18O-NO3
- (18εeff) and δ15N-NO3

- (15εeff), as well as the ratio 
between the two, based on increasing distances of diffusive transport to/ from the denitrification zone 
(L), for denitrification rates (kdenit) from 5x10-5 (slow), to 1x10-3 (mid), to 2x10-3 (fast) µg NO3

- cm-2 s-1. All
values are expressed as mean ±SD (n = 3 for each combination).

  Conditions 18εeff 
(‰ v. VSMOW)

15εeff 
(‰ v. AIR)

δ18O:δ15N
kdenit L 

Slow

0 mm -16.7 ±15 -16.7±15 1.0

0.01 mm -15.7 ±13 -15.6 ±13 1.0 ±0.01

1.0 mm -13.2 ±12 -12.9 ±12 0.92 ±0.1

Mid

0 mm -16.7 ±15 -16.7±15 1.0

0.01 mm -11.5 ±10 -11.0 ±10 0.80 ±0.3

1.0 mm -2.11 ±4 -0.554 ±4 1.8 ±2

Fast

0 mm -16.7 ±15 -16.7±15 1.0

0.01 mm -8.77 ±8 -7.97 ±8 0.36 ±1

1.0 mm -0.648 ±1 1.03 ±1 2.4 ±1

In S3, mixing NO3
- from a nitrification pool (either on-going or a constant/ non-reacting) with 

a residual denitrification pool caused a non-linear relationship to develop between ln(f), δ18O-NO3
-, 

and δ15N-NO3
- over x (time or distance) (Fig. 3.5a). Both the strength and slope of the intrinsic linear 

relationship between δ18O-NO3
-, and δ15N-NO3

- from denitrification also decreased as a result of 

mixing. This relationship was controlled by the rate of knit relative to kdenit: the slope of the change in 

δ18O v. the change in δ15N increased from 0.42 (r2 = 0.37, p<0.01,) when knit equalled 0.25kdenit to 0.56 

(r2 = 0.56, p<0.01) when knit equalled 2kdenit (Fig. 3.5b), but stayed at 1:1 (r2 = 1, p<0.001) when the 

nitrification source was constant (i.e., knit = 0) (Fig. 3.5b).  

Similarly, the faster knit, the larger the magnitude of 15εeff (which actually became positive when

knit >kdenit) (Fig. 3.5). The slope between δ15N-NO3
- and ln(f) stayed highly significant and strong (r2 

>0.98) for scenarios where knit and kdenit were co-occurring, while δ18O-NO3
- became relatively 

decoupled from NO3
- concentrations (fit of δ18O based Rayleigh diagrams ranged from 0.30 (knit = 

0.25kdenit) to 0.90 (knit = 1.5kdenit) (Fig. 3.5). This breakdown in the δ18O:δ15N relationship occurred at 

the point over x at which the concentration of NO3
- began to increase as inputs from nitrification >> 

outputs from denitrification. There was no relationship between NO3
- concentration and isotopic 

composition when mixing with a constant, rather than accumulating/fractionating, NO3
- pool (Fig. 

3.5). 
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Figure 3.5 Change in δ15N-NO3
- over x (time or distance) relative to its initial composition (a), and the 

composition of δ18O-NO3
- v. δ15N-NO3

- (b), as NO3
- produced from nitrification mixes with residual 

NO3
- from incomplete denitrification for varying rates of nitrification relative to denitrification (knit 

and kdenit, respectively), producing unique effective enrichment factors for both δ18O (18εeff) and δ15N 
(15εeff) for each. 

Layered incubations

The diffusivity of the sediments and sand used were 4.8x10-4 cm s-1 and 1.1x10-3 cm s-1, 

respectively. The vertical distance between anaerobic (~0 µmol O2 l-1) and O2 saturated (300 µmol O2 l-

1) zones (L) was 4 mm in treatment L0, 6 mm in L1, and 10 mm in L2 (Fig. 3.6a). There were no 

significant differences in net N2O fluxes (production less reduction) between treatments, and steady-

state N2O concentration profiles showed the largest N2O production between 30 mm and 45 mm depth 

(Fig. 3.6a).  There was likewise no treatment effect on total (PW+SW) NO3
- concentrations between 

treatments or over time. However, dynamics of NO3
- in SW varied over time with diffusive layer 

thickness (p<0.01), with concentrations peaking 4 to 8 h after substrate additions in L0 and L1 and 96 h

after additions in L2. 
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Figure 3.6 Concentrations of O2 (lines + symbols) and flux of N2O (rectangles) over depth in layered sediment 
incubations, from surface water (0 mm) through sediments (a). Sediments (collected from Harts 
Creek, Canterbury, New Zealand) were overlain with either 0 mm (L0), 4 mm (L1), or 8 mm (L2) of 
quartz sand, plus ~4 cm of water. The change in composition of δ15N-NO3

- in the surface water (b) 
and sediment porewater (c) was plotted versus the natural log of the change in NO3

- concentration 
(f = NO3

--N/NO3
--N0) to calculate 15εdenit (tabulated on left).

There was a positive linear relationship between δ18O-NO3
- and δ15N-NO3

- (δ18Opw and δ15Npw, 

respectively) in PW (x = 0.718, r2 = 0.718, p<0.001). The relationship between the two isotopes in SW

was linear (x = 0.262, r2 = 0.37, p<0.05), but not as strong or as consistent as in PW. The δ18O and δ15N

values in PW are positively correlated with, but not equal to, δ18O and δ15N in SW (δ18O: r = 0.625, 

p<0.01; δ15N: r = 0.794, p<0.001). All treatments had a 15εdenit value of -32‰ in PW, while 15εdenit in SW

varied from -20‰ (L0) to -10‰ (L2) (Fig. 3.6). However, the difference between 15εdenit in SW v. PW 

was only significant in treatment L2. 

Interestingly, when the value of ln(f) for the whole incubation (PW + SW) was < -2 (90% 

NO3
--N attenuated), δ18O and δ15N (concentration-weighted means for PW + SW) became less 

enriched relative to the previous measurement point (Fig. 3.7). These shifts in isotopic enrichment 

moved the δ18O and δ15N in treatments closer to that in controls (+9.19‰ for δ15N and +5.20‰ for 

δ18O over time) (Fig. 3.7a), and caused 15εeff to shift from -28‰ (r2 = 0.95) to -7.9‰ (r2 = 0.18) and 
18εeff from -14‰ (r2 = 0.78) to ~nil after 96 h (Fig. 3.7b). 
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Figure 3.7 Change in δ18O-NO3
- and δ15N-NO3

- in the sediment porewater of layered incubations over time 
following KNO3 additions (symbols) or left as controls (horizontal lines) (a) and plotted v. the 
natural log of the change in substrate concentration (f = NO3-N/NO3-N0) based on total NO3

- 
concentrations per incubator (surface water + porewater), which yields a slope for δ15N (15εeff) of -28
(r2 = 0.95) if the final sampling date is excluded, and a slope of -7.9 (r2 = 0.18) if it is not (b). 
Symbols represent the mean (±SE) from sediments overlain by either 0, 4, or 8 mm of quartz sand, 
plus ~4 cm of water (n = 3 per treatment per time). 

Surface water v. porewater in streams

Sediments from BC had lower TOC and %C (loss on ignition) than those from LUDF (138 ±9 

versus 267 ±8 µg TOC g-1 (p<0.001) and 10.5 ±3 versus 4.41 ±1 %C (w/w) (p<0.05), respectively). All

locations and sites had a mean water column depth of 18 cm, water temperature of 3.92 ±1 ºC, DO 

(SW and DW) of 12.8 ±0.4 mg O2 l-1, and porewater DO of <1 mg O2 l-1. There were no significant 

differences in NO3
- concentration or isotopic composition between SW and DW, but both had less 

enriched N and O relative to PW (p<0.05) (Fig. 3.8). The ratio of change in δ18O to δ15N over depth 

was 0.96 (r2 = 0.69) in BC and 0.23 (r2 = 0.50) in LUDF. Nitrate concentrations in SW decreased over 

distance by 0.02 mg NO3
--N l-1 in LUDF and by 0.2 mg NO3

--N l-1 in BC (p<0.05), while NO3
- 

concentrations and isotopic compositions in PW did not vary over distance. Nitrate isotopes in SW and

DW at both sites became enriched over stream length (p<0.001) at a δ18O to δ15N ratio of 1.2:1 (r2 = 

0.8, p<0.01).  The relationship between changing concentration and isotopic composition in SW+DW 

over distance was used to calculate 15εeff of -200‰ (LUDF) and -9‰ (BC), as per Eq. 3.8 (Fig. 3.8). 
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Figure 3.8 The concentration and isotopic composition of NO3
- over depth (with the sediment-surface water 

interface as 0), from samples taken at 4 cm below the water's surface, 4 cm above the sediments, and 
from porewater (0-10 cm depth) based on means (±SE) of samples collected from four sites along along 
two irrigation ditches in Canterbury, New Zealand (LUDF and BC) (a). Variations in δ15N-NO3

- and 
NO3

- concentration in the surface water over distance yielded εeff values of -200‰ (r2 = 0.98) -9‰ (r2 = 
0.85) for LUDF and BC, respectively (b).   

3.5 Discussion

3.5.1 Intrinsic variation

The ratio of δ18O:δ15N during denitrification in anaerobic sediments / soils was not consistently

1:1. This ratio was lowest in the highly C enriched soils and sediments, where it was ~1:2. While 1:2 

δ18O:δ15N enrichment ratios have been found in pure culture studies by Knoller et al. (2011) and in a 

freshwater sediment incubation by Sebilo et al. (2003), the mechanism controlling the shift between 

1:1 and 1:2 is not understood. However, the range from 1:1 to 1:2 for δ18O:δ15N enrichment ratios 

found here for freshwater sediments and soils reveals that 1:2 is not a universal product of freshwater 

denitrification, as was previously hypothesised (e.g., Burns et al. 2009, Ostrom et al. 2002).

Despite the uniform C, N, and O2 availability within the incubations, 15εdenit ranged from -3‰ 

to -28‰, spanning the published range for in-vitro studies (Chapter 2). This range did not separate 

between 'tropical' and 'temperate' locations, but was instead driven by differences at the km scale. 

While this is the first study to explicitly measure spatial variations in εdenit, the site-specificity of 15εdenit 

is supported by the findings of Chien et al. (1977), who found that field cultivation history (now 

known to influence microbial community composition (Wang et al. 2009, Tang et al. 2010)) drove a 

10‰ shift in soil εdenit values. 
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The influence of antecedent C availability, rather than kdenit, on εdenit supports the hypothesis 

that the site-specificity of intrinsic fractionation reflects fundamental differences in denitrifier 

populations, as C availability is known to control denitrifier community composition (Wallenstein et 

al. 2006). Pintar et al. (2008) also recorded significant differences between εdenit in C rich surface soil 

v. C depleted subsoil following incubation with excess glucose-C and NO3
-. However, unlike previous 

studies that linked faster kdenit induced by increased C availability to decreasing isotopic discrimination,

and thus decreasing εdenit (e.g., Mariotti et al. 1982, Pintar et al. 2008), here the relationship between C 

and εdenit was independent of kdenit. The fact that antecedent C, rather than kdenit or glucose-C, dictated 

the strength of εdenit supports the hypothesis that variation at the field scale is dictated by differences in 

denitrifier populations. This is further corroborated by the known ~20‰ variation in εdenit between 

denitrifier strains (Granger et al. 2008) and evidence for site-to-site variation of denitrifier populations 

independent of environmental/ chemical variables (e.g., Singh et al. 2011, Liu et al. 2009).

In light of these findings, further research into the relationship between εdenit, kdenit, and 

denitrifier composition may resolve questions of microbial structure v. function (i.e., 'who' is doing 

'what'). The wide range of εdenit values found to occur in natural sediments collected even within a few 

km to m of each-other, supports the diversity of expression produced by pure denitrifier cultures 

(Granger et al. 2008, Knoller et al. 2011, Kritee et al. 2012) and supports the supposition that 

environmental, rather than microbial, factors determine the relatively narrow range of 15εeff measured 

in rivers and streams, as well as the commonly cited 1:2 enrichment ratio (Chapter 2). The potential 

expression of the measured εdenit values in surface waters were evaluated by inputing a range of -2 to 

-30‰ εdenit into S2 and S3 calculations. 

3.5.2 Diffusive limitation

The developed model confirms that diffusive transport of NO3
- through denitrifying zones and 

into the aerobic surface water, where measurements are typically collected, could account for the low 

εeff values typically found in rivers (Chapter 2). As O is relatively more impacted by diffusion than N 

(Eq. 3.5), meaning that, under diffusion-limited conditions, 18εeff would be lower than 15εeff. Thus αD 

could account for the consistent reporting of δ18O:δ15N enrichment ratios of ~0.5 in aerobic freshwater 

environments (e.g., Burns et al. 2009, Barnes and Raymond 2010). 

The differences in εeff measured in the surface water v. porewater of incubations with varying 

L distances confirmed the impact of diffusion across the sediment-water interface on εdenit expression. 

Increasing L (i.e., deeper penetration of O2 into the benthic (Christensen et al. 1990)), and finer 

sediments, also decreased δ18O:δ15N ratio, a fact that adds nuance to the finding of Sebilo et al. (2003) 

that εeff strength decreased when sediments were incubated under stagnant, rather than continuously 

mixed, conditions. As indicated with the model, both εeff and δ18O:δ15N in the 'layered' incubations 

were proportional to εdenit.
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The S2 equations reveal a synergistic relationship between increasing kdenit and L that can 

completely ‘mask’ denitrification's isotopic signature (i.e., under the most extreme diffusive limitation 

calculated, the relationship between δ18O:δ15N reflects αD rather than αdenit, and there is no relationship 

between δ18O, δ15N, and NO3
- concentration). However, such complete masking would only occur in 

environments with rapid kdenit rates and long L, which are unlikely to co-occur in freshwater systems, 

where increasing L is caused by greater O2 penetration, which in turn inhibits denitrification (Berg et 

al., 1998; House, 2003). Even though rapid sedimentary kdenit have been reported in response to organic

matter additions in O2-saturated water columns (Baxter et al. 2012), it is unlikely that such conditions 

could continue for an appreciable length of time in uncontrolled settings, as high organic inputs would 

drive rapid consumption of O2 (House 2003, Glud et al. 2007), directly linking increasing kdenit to 

decreasing L. 

This example highlights the difficulties inherit to up-scaling these interactions between εdenit 

and diffusion to the catchment scale: both L and kdenit (identified here as the primary drivers of εeff in 

diffusion limited systems) vary dramatically over time and space with changes in hydrology and 

streambed biogeochemistry (Cook et al. 2006, Marzadri et al. 2012, Zarnetske et al. 2012). For 

instance, changes from wet to dry season flows can change the balance of advective v. diffusive water 

movement (O'Connor and Hondzo 2008), redox conditions of the streambed (Christensen et al. 1990, 

Berg et al. 1998), and kdenit (Mulholland et al. 2009). However, under the basis that εdenit is unlikely to 

be completely masked by diffusion, these findings provide a functional framework for identifying the 

appropriate εeff range for a given location based on the kdenit capacity of the benthos (e.g., OM content, 

NO3
- concentrations, water column DO (Rissanen et al. 2011, Johnson et al. 2012)) and diffusive v. 

advective transport (e.g., losing v. gaining streams (Ruehl et al. 2007), water residence time (Zarnetske

et al. 2012), water column DO (House 2003), sediment porosity (Cook et al. 2006, Marzadri et al. 

2012)). Considering the high degree of εdenit variability found in sediments within the same stream, it 

seems that, rather than prohibiting the application of NO3
- isotope based attenuation assessments, 

diffusion-limited environments may actually produce more uniform εeff than if they directly reflected 

highly variable εdenit. 

3.5.3 Nitrification

Mixing denitrification's residual NO3
- pool with a growing NO3

- pool (active nitrification) v. a 

constant NO3
- pool (nitrification distal) reveal key differences in theoretical εeff: NO3

- from a distal 

source (i.e., mixing of denitrified NO3
- with a constant pool of NO3

-) decreased/ masked 15εeff and 18εeff, 

but maintained the intrinsic δ18O:δ15N enrichment ratio, whereas the co-occurrence of nitrification and 

denitrification increased the magnitude of 15εeff and dampened the δ18O:δ15N ratio. Based on S3 

calculations, the relative rate of nitrification to denitrification could determine 15εeff and 18εeff measured 

in surface water. Specifically, the 1:2 ratio of δ18O:δ15N commonly found in freshwater systems could 

be a result of widespread NO3
- production and reduction in hyporheic and riparian zones (a contrasted 
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to marine environments, where production of NO3
- can centuries and 100 km distal to its reduction 

(denitrification)) (Seitzinger et al. 2006). 

This role of nitrification in dictating εeff was evident in the ‘layered’ incubations, where an 

isotopic nitrification signature only became obvious once the NO3
- concentration dropped below 10% 

of the original (Fig. 3.7), which was also the modelled ‘inflection points’ in δ15N-NO3
- enrichment 

(Fig. 3.5). According to the theoretical S3 solutions, co-occurring nitrification and denitrification could

also explain the fact that NO3
- isotopic composition in the layered incubations moved towards controls

values. The output S3 also emphases that, while increasing isotope enrichment with decreasing ln(f) 

should always indicate the occurrence of denitrification, a lack of relationship between these two 

factors does not prove the absence of denitrification, but instead only that denitrification is not the 

dominant determinant of NO3
- pool size.  

3.5.4 Implications and field application

The advantage of basing attenuation calculations on this set range, as opposed to in-situ 

measurements, is highlighted by the 15εeff value of -200‰ measured in LUDF. Based on S2 and S3 

outcomes, this value is hypothesised to reflect a continuous mixing between the residual denitrified 

NO3- pool and an influxing NO3
- pool from nitrification over stream length. This scenario is supported

by the fact that δ15N-NO3
- enrichment during downstream transport did not correspond with changes in

water column NO3
- concentrations. Using an 15εeff range of -2 to -10‰ to LUDF and BC yielded 

estimates of NO3
- attenuation over distance of 0.99 ±0.01 and 0.58 ±0.01, respectively (where 

attenuation is defined as 1-f (Eq. 3.8) (Ostrom et al. 2002)). In contrast, if the empirically measured 
15εeff of -200‰ was used attenuation in LUDF was calculated to be only 0.39%. Using 15εeff based on 

empirical surface water concentrations v. isotopic compositions would result in a dramatic 

underestimation of net attenuation. These case studies also emphasise the value that NO3
- isotope 

measurements can bring to water quality monitoring: mixing nitrification and denitrification at LUDF 

meant that the concentration of NO3
- varied minimally over the studied reach, which, without isotopic 

information, would lead to the erroneous conclusion that total N lost from the system was minimal. 

The conducted field study highlights the necessity of accounting for intrinsic variation, 

diffusive transport, and source mixing in order to accurately use NO3
- isotopes to describe 

biogeochemical cycling in a surface water ecosystem. However, neither of the two εeff scenarios 

(diffusion and mixing) discussed here satisfactorily explain why 18εdenit is often cited as the ‘more 

reliable’ variable for identifying and quantifying denitrification (e.g., Barnes and Raymond 2010). 

Indeed, tight coupling between nitrification and denitrification actually decreases the strength of the 

relationship between δ18O composition and NO3
- concentration, while a strong diffusive limitation 

inhibits expression of 18εdenit more than that of 15εdenit. My measurements of εdenit in sediments and soils 

found 18εdenit to be less variable than 15εdenit, leading to the hypothesis that the perceived reliability of 

δ18O over δ15N as a process indicator could actually reflect an intrinsic, biologically driven factors. The
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framework described in this paper provides a practical tool for evaluating an appropriate range of εdenit 

to use for evaluating NO3
- attenuation in a given freshwater environment. 

3.6 Conclusions

The ~20‰ variation in 15εdenit found between sediments collected from different reaches along 

the same 20 km stream is of particular interest, given that a single, unique εdenit values is often used to 

explain whole-system NO3
- dynamics (e.g., Sebilo et al. 2003). Our findings suggest that assigning a 

precise value of εdenit to environments such as streams, where the NO3
- in the surface water represents 

an integrated εdenit × f for each reach, could result in a misrepresentation of N cycling. Conversely, 

variation between relatively similar submerged paddy fields highlights the necessity of establishing a 

site-specific εdenit even in such hydrologically homogeneous settings. Given the above illustration of the

environmental variability of both εdenit and εeff, the application of a precise εeff value to a highly 

heterogeneous system could mask variance, decreasing the precision of the resultant calculations. 

Under the basis that εdenit is unlikely to be completely masked by diffusion, these findings 

provide a functional framework for identifying the appropriate εeff range for a given location based on 

the kdenit capacity of the benthos (e.g., organic matter content, NO3
- concentrations, water column DO 

(Rissanen et al. 2011, Johnson et al. 2012) and diffusive v. advective transport (e.g., losing v. gaining 

streams (Ruehl et al. 2007), water residence time (Zarnetske et al. 2012), water column DO (House 

2003), sediment porosity (Cook et al. 2006, Marzadri et al. 2012)). Considering the high degree of εdenit

variability found in sediments within the same stream, it seems that, rather than prohibiting the 

application of NO3
-  isotope based attenuation assessments, diffusion-limited environments may 

actually produce more uniform εeff than if they directly reflected highly variable εdenit. The measured 

broad range of intrinsic fractionation, combined with a variable yet, yet homogenising, effect from 

diffusive transport, it is proposed that an εeff range of -2‰ to -10‰ can be confidently applied to 

aerobic surface water isotopic measurements in order to assess attenuation fluxes (as per Eq. 3.1 and 

Eq. 3.8).
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Plate 2 Top to bottom: urine patches, evident by darker and thicker grass, covering a pasture in the Wairarapa 
region photographed in April (autumn) 2011; chamber set-up at Lincoln University for capturing ammonia 
gas following urine and urea applications (August 2012).
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Chapter 4

Isofluxes of reduced and oxidised nitrogen forms following

application of urea fertiliser and bovine urine to pasture soil 

A version of this chapter will be submitted for publication. Wells, N.S., W.T. Baisden, T.J. Clough. In 

prep. Isofluxes of reduced and oxidised nitrogen forms following application of urea fertiliser and 

bovine urine to pasture soil. Agriculture, Ecosystems & the Environment.
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4.1 Abstract

Precise indicators of when and where reactive nitrogen is 'leaking' from grazed pasture 

ecosystems are needed in order to mitigate the threat that intensifying production poses to water 

quality. Acknowledging this need, the natural abundance isotopic composition of multiple inorganic N 

species (soil ammonium, nitrate, and nitrate, plus ammonia gas) were assessed for 17 days following 

deposition of bovine urine and urea fertilisers in order to quantify the importance of ammonia 

volatilisation on the δ15N and δ18O composition of NO3
- leached from pastures. While net NH3 

volatilisation ranged from 5 to 40% of N inputs between treatments and had an associated isotopic 

enrichment factor of +35 ±5‰, the composition of residual δ15N-NH4
+ did not differ significantly 

between treatments. This homogenisation is hypothesised to reflect mineralisation-immobilisation 

induced by urine deposition. As a results, the δ15N-NO3
- composition across all treatments was 

primarily defined by nitrification of the reduced N sources, making it significantly lighter than the 

range typically ascribed to excreta N. However, the accumulation of nitrite up to 6 µg NO2
--N g-1 soil 

in pasture receiving 600 kg N ha-1 was related to consistent δ18O-NO3
- enrichment (+4‰). Based on the

measured isofluxes for ammonia volatilisation, NO3
- created within pasture systems was predicted to 

range from +10‰ (δ15N) and -0.9‰ (δ18O) for non-fertilised fields to -3‰ (δ15N) and +2‰ (δ18O) for 

grazed fertilised fields. Using an enrichment factor for denitrification calculated based on changes in 

NO3
- concentration and isotopic composition following heavy rainfall at the end of the monitoring 

period, the impact of denitrification on the soil inorganic N pool was found to have a greater impact on

whole-field δ15N than ammonia volatilisation. These findings emphasise the importance of accounting 

for soil N immobilisation-mineralisation dynamics in soil zone N isofluxes, while laying a nitrification

-denitrification baseline for identifying pasture NO3
- sources in waterways. 

Keywords: nitrate, grazed pastures, ammonia volatilisation, denitrification, nitrification
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4.2 Introduction

A century of intensifying agricultural production has dramatically accelerated global nitrogen 

(N) turnover, with excess N inputs to farm lands cascading through the environment and jeopardising 

the ecosystem services of waterways and soils (Galloway et al. 2003). Pastoral livestock production 

has been identified as a particularly 'leaky' system, with nitrate (NO3
-) leaching into the surrounding 

waterways (Di and Cameron 2002), release of ammonia (NH3) gas, and production of the greenhouse 

gas nitrous oxide (N2O) (Smith et al. 2008), combining to create a long-term decline in soil-N stocks 

(Stevenson et al. 2010). Moreover, as N inputs to pastures from fertilisers (typically urea) and animal 

excreta (of which urine contributes the majority of N) (Romera et al. 2012) increased with 

intensification of livestock production, N use efficiency (the proportion of inputs that ends up in food) 

has declined: from ~60% (low intensity) to as little as 8% (highly intensity) (Powell et al. 2010). In 

New Zealand, where grazed pastures account for 45% of land use (Stevenson et al. 2010) and 

declining water quality has been linked to intensifying dairy production (McDowell et al. 2011), the 

need for precise and accurate measurements of NO3
- sources and sinks is particularly acute. However, 

the multiple biological and chemical pathways that transform N between seven redox states, combined

with the diffuse nature of NO3
- pollution, make assessing when are where N is 'leaked' from 

agroecosystems difficult (Groffman et al. 2009).

Once urea (from either fertiliser or urine) is deposited onto soil it hydrolyses to ammonium 

(NH4
+) and HCO3

-, increasing soil pH and pushing the equilibrium between NH4
+ and ammonia (NH3) 

towards NH3 (Sherlock and Goh 1985, Clay et al. 1990). As a result, anywhere from 0 to 60% of N can

be physically volatilised away from the soil as gaseous NH3 over the two weeks following urea 

deposition (Cameron et al. 2013). Over the next ~20 days the residual soil NH3 pool is oxidised to 

nitrite (NO2
-) and then NO3

- by nitrifying microbes (Clough et al. 2009). Nitrate in soil can then be 

taken up by plants, immobilised, leached, or biologically reduced to N2O and dinitrogen (N2) gasses 

(attenuated) (Fig. 4.1). The rates of these processes can vary widely between fields and over time, 

making it difficult to accurately quantify when and where N losses are occurring using traditional 

means, and thus to develop more effective N management strategies. 
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Figure 4.1 Multiple, often co-occurring processes affect N turnover and isotopic composition in pasture systems: 
(1) Once urea (from fertiliser or urine) comes into contact with the soil, urea-N forms are immediately 
and completely hydrolysed to NH4

+ with no apparent isotopic fractionation (ε ~0‰); (2) NH4
+ exists in 

equilibrium with NH3, which will further equilibrate into aqueous and gaseous forms (the latter of 
which can be volatilised out of the soil zone), wherein the balance between the three pools is determined
by soil pH, equilibrium fractionation (εeq) of N pool causes 'light' N to be preferentially volatilised 
(Sherlock and Goh 1985, Heaton 1986); (3) under aerobic conditions residual soil NH3 is nitrified to 
NO2

-, which causes kinetic fractionation (εk) of N (Casciotti et al. 2003), while O is incorporated from 
soil H2O and O2 (Casciotti et al. 2010); (4) NO2

- is further oxidised to NO3
- in the second step of 

nitrification, causing inverse kinetic fractionation of N (i.e., residual pool gets lighter as the reaction 
progresses) (Casciotti 2009) and O, in addition to incorporating another O from adjacent H2O 
(Buchwald et al. 2012); (5) under anaerobic conditions, NO3

- can be denitrified to N2O and N2, which 
causes parallel kinetic fractionation of both N and O (Granger et al. 2008); (6) new evidence suggests 
that NO2

- can be directly reduced to N2O and/or N2 via co-denitrification (Spott et al. 2011) and 
nitrifier-denitrification (Kool et al. 2010), neither of which have known fractionation factors; (7) plants 
roots compete with these microbes to assimilate NO3

- and NH4
+ (Kaye and Hart 1997), both with 

minimal isotopes effects (Cernusak et al. 2009); (8) microbial immobilisation of inorganic N will 
reincorporate it into the large soil organic N (SON) pool; (9) SON can be mineralised back into the 
organic pool with minimal kinetic fractionation of N (and causing the O isotopes to be effectively 
'reset') (Mengis et al. 2001, Mobius 2013); (10) any NO3

- that is not taken up by plants, immobilised or 
attenuated to N gasses can be leached into the groundwater with no associated fractionation to N or O. 

The stable isotopes of NO3
- (δ15N and δ18O) potentially provide a means of quantifying the 

contribution of pasture sources across scales, based on the fact that both isotopes are modified by, and 

thus reflect, their environmental origin (Kendall 1998, Xue et al. 2009, Nestler et al. 2011). The 

theoretical 'pasture' N isotopic signature is believed to be the product of NH3 volatilisation, during 

which lighter isotopes are preferentially removed and the residual δ15N-NH3 pool becomes 

increasingly heavy (Heaton 1986, Hristov et al. 2011). This fractionation is the result of the different 

zero-point energies of the isotopically substituted molecules creating an unequal equilibrium 

distribution of heavy v. light isotopes.

The Rayleigh equation directly relates changes in substrate concentration (C/C0) to changes in 

isotopic enrichment (R/R0) based on the kinetic fractionation factor (α, εk = (α-1) × 1000)) for the 

reaction (Eq. 4.1). 
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(4.1)
R
R0

= (C
C 0

)
α−1

Notably, while the residual pool becomes increasingly enriched as light isotopes are progressively 

removed, the composition of the product will be equivalent to that of the original substrate once the 

reaction is complete. Given that NH3 volatilisation is known to both be strongly fractionating and 

cannot go to completion due to the constraints of soil pH, it is generally assumed that NO3- created 

from animal N sources will have δ15N values >10‰ (Heaton 1986). However, δ15N values for NO3
- 

derived from animal excreta have since been reported to range from +5‰ to +35‰ (coupled with 

δ18O-NO3
- values of -5‰ to + 5‰) (Xue et al. 2009). Some of this range may reflect post-deposition 

biological N cycling, rather than variations within the physical volatilisation process. Specifically, 

light isotopes are more readily processed during nitrification and denitrification due to the difference 

in reaction rates between heavy versus light isotopes for both processes. Incomplete turnover of NH3 

to NO3
-, or of NO3

- to N2, could thus convolute the expression of the isotope effect of volatilisation 

within the leached NO3
- pool. 

Whereas previous studies of the impact of NH3 volatilisation on residual δ15N pools have 

either not directly measured volatilisation (i.e., urea was assumed to volatilise and cause fractionation)

(e.g., Minet et al. 2012), or have assumed causality between volatilisation rates and increasingly heavy

plant and/or soil total N pools without constraining other processes (e.g., Frank et al. 2004, Kriszan et 

al. 2009), this study measures the size and isotopic composition of the three main inorganic N pools 

(volatilised NH3, soil NH4
+, and soil NO3

-). This enabled a mass-balance type approach to be used to 

assess the relative importance of multiple transformations on the isotopic composition of the soil N 

pool (Fig. 4.1) with the aim to, 1) assess the effect of N transformations (NH3 volatilisation, 

nitrification, denitrification) on the isotopic composition of soil NH4
+ and NO3

-, and, 2) up-scale this 

information in order to constrain the isotopic signature of NO3
- from pastoral agriculture. 

4.3 Materials and Methods

4.3.1 Experimental set-up and design

The experiment was run at Lincoln University, Canterbury, New Zealand (E172°20.031', 

S43°39.375'), where mean annual precipitation and air temperature are 650 mm and 12ºC, 

respectively. The soil was a Templeton silt loam (Typic Immature Pallic Soil, New Zealand 

classification, C =3.4%, N =0.3%; 18% clay, 49% silt, 33% sand) (see Orwin et al. (2010) for more 

details). The study area was planted with rye grass (Lolium perene), which was trimmed to 4 cm 

height 48 h before the start of the experiment. 

In August 2011 (winter) in-situ chambers (diameter: 0.23 m) were set up in a randomised 

design (five replicates per treatment), with soils receiving either: 600 kg N ha-1 of bovine urine (high), 
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80 kg N ha-1 of bovine urine (low), or 80 kg N ha-1 of urea fertiliser (Sigma Aldrich), or no N 

(controls). Eight litres of liquid were added to each chamber, with the difference made up in deionised 

water, when necessary (e.g., controls received 8 l deionised water). Urine addition rates were selected 

to span the range of reported N contents and deposition rates, which can vary significantly between 

herds due to diet (Oenema et al. 1997, Cheng et al. 2011). The urea fertiliser rate, chosen to enable 

direct comparison with the low urine treatment, falls within the typical range applied to New Zealand 

pastures (Cameron et al. 2013). Chambers were installed two-weeks prior to treatment application to 

minimise disturbance effects. 

Fifty litres of urine were collected Jul-2012 from ~100 individual Fresian cows, grazed on 

kale (Brassica oleracea) and silver beet (Beta vulgaris), at the Lincoln University Ashley Dene 

experimental farm in Canterbury, New Zealand. Urine was immediately homogenised in two sealed 25

L drums and then stored for 12 h at 4ºC. The C and N content of the urine was 2.9 g N l-1 and 7.9 g C l-

1 (measured on eight replicate subsamples via combustion (Elementar EA-TCD, Lincoln University, 

NZ) (precision of ±0.04)). The δ15N composition of urea fertiliser was 0.67‰ and that of urine 

was1.6‰ (analysis described in Section 4.3.4). Urine was frozen at -20ºC until use. 

4.3.2 Ammonia gas collection 

The chamber set-up and gas collection follows the design of Black et al. (1987). Briefly, 

perspex lids were clamped onto chambers following treatment additions (creating a ~3 m3 headspace) 

and air was continuously pumped through each chamber (headspace completely replaced every ~1 

min) and flushed through individual acid traps containing 50 ml 0.5M H2SO4. Continuous flow 

ensured that any potential diurnal variations in NH3(g) fluxes(Sherlock and Goh 1985) were integrated 

into the measurement (Sherlock and Goh 1985). Sampling, during which acid from traps was removed

for analysis and traps re-filled, was timed to to ensure capture of peak NH3(g) fluxes (Laubach et al. 

2013): every 24 h over the first nine days, and then every 48 h over the last seven days.

In order to calculate NH3(g) fluxes over time, air flow rates into and out of each of the 20 traps 

were measured immediately prior to sample collection using manual flow metres to enable. The exact 

volume of acid collected from each trap was measured using a graduated cylinder to account for any 

evaporation, and then transferred to a 100 ml opaque Acetylene bottle for storage. Samples were 

stored in the dark at room temperature until analysis for NH3-N concentration and isotopic 

composition (methods as described in the subsequent section).   

4.3.3 Soil sampling and analyses

Soil samples were collected from each chamber 2, 5, 9, 15, and 17 days after treatment 

applications using individual corers (4 cm diameter x 10 cm height). Cores were extruded in the field 

and separated into two sections (0-2 cm and 2-10 cm), which were then sealed into polythene bags. 

Following extrusion, corers were reinserted into the soil and covered aluminium foil to minimise 

disturbance to the remaining sod. Upon return to the lab, plant biomass was separated from soil 
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samples, and the latter immediately extracted with 2M KCl (35 ml for 7 g dry soil) for inorganic N 

analyses. Extraction consisted of shaking the KCl-soil slurries in an end-over-end shaker for 30 min, 

centrifuging at 3500 rpm for 10 min, and then passing them through Whatman #1 filter paper 

(Blakemore et al. 1987). Filtrates were stored at 4ºC for <24 h, and then at -20ºC until isotopic 

analysis. Additional soil subsamples were weighed and dried at 105ºC for gravimetric moisture 

content (θg) quantification, or extracted with deionised water (1:10 ratio of soil (dry weight) to water) 

for total dissolved C (TOC) and pH analysis (Blakemore et al. 1987). To measure soil temperature a 

mercury thermometer was inserted into the soil to ~4 cm depth during sample collection. 

Filtrates were analysed for NO3
-, NO2

-, and NH4
+ concentrations within 24 h of extractions. 

Nitrate and NO2
- concentrations were measured in 2M KCl soil extracts on an Alpkem FS3000 twin 

channel Flow Injection Analyser. Concentrations of NH4
+ in the 2M KCl soil extracts and NH3 trapped 

in 0.5M H2SO4 were measured using the salicylate method (Kempers and Zweers 1986), with 

absorbance read at 650 nm on a DU-730 UV-vis spectrophotometer. (Note: NH4
+ measured in 2M KCl 

soil extracts includes both NH3(aq) and NH4
+ (which are in equilibrium within the soil, Fig. 1) making it 

appropriate to treat this pool as the starting product for both nitrification and NH3 volatilisation 

(Dobermann et al. 1994)) The TOC extracts were analysed on a Shimadzu TOC-5000A total organic C

analyser fitted with an ASI-5000A auto sampler in water extracts from soils collected on days 1, 9 and 

15. Soil pH was determined using a SevenEasy pH metre (Mettler Toledo). 

4.3.4 Isotope measurements

The δ15N composition of the treatment inputs (urine and urea) were determined by pipetting 

two replicate 5 μl aliquots into tin capsules filled with Chromosorb W (Supelco, Bellefonte, PA) 

(Cheng et al. 2011). These samples were analysed via combustion on a PDZ Eupropa 20-20 mass 

spectrometer (Lincoln University, New Zealand). 

Ammonium isotopes (δ15N-NH4
+) were measured in two representative 2M KCl soil extracts 

per treatment per sampling date using the diffusion method (Stark and Hart 1996): MgO was used to 

increase the pH to ~12, and NH3 diffused onto GF/C (Whatman) filter paper acidified with 2.5M 

KHSO4 over seven days in an enclosed headspace. In order to minimise ambient NH3 contamination, 

glassware was acid washed and then combusted at 400ºC for 6 h and all work conducted in a fume 

hood. To measure δ15N-NH3(g) in the 0.5M H2SO4 acid traps,  jars were shaken for ~2 h after MgO 

additions to prevent the hot reaction temperatures from causing it to solidify, and diffusions were 

continued for an additional seven days. All filter papers were analysed via combustion on a Europa 

Hydra mass spectrometer (coupled to a Carlo Erba NC 2500) (Otago University, New Zealand). 

Method precision and accuracy was established by running triplicates of two δ15N-(NH4)2SO4 

international standards (IAEA-N2 and USGS-25) plus solution blanks with each sample batch, and 

was calculated as ±0.9‰ for δ15N.  
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Nitrate isotopes (δ18O and δ15N) in the 2M KCl extracts were measured using the cadmium-

azide method (McIlvin and Altabet 2005): NO3
- was reduced to NO2

- using spongy cadmium buffered 

with MgO, and then reacted with azide to form N2O. The same method, less the cadmium reduction 

step, was used to measure δ18O and δ15N of NO2
- for six samples collected on days 15 and 17 from the 

high urine treatment. The δ15N and δ18O of the produced N2O were analysed on a GVI Isoprime mass 

spectrometer (National Isotope Centre, GNS Science, New Zealand). Method precision was ±0.15‰ 

for N and ±0.22‰ for O. International standards for NO3
- (IAEA, USGS-34) and NO2

- (MAA1, 

MAA2), internal KNO3 and KNO2 standards, and blanks (made up with 2M KCl) were prepared with 

each sample batch in order to ensure method precision. 

4.3.5 Statistical analyses and determination of fractionation factors 

Changes in N species concentration and isotopic composition over time were analysed using a 

linear mixed model with individual chambers treated as repeated measures and treatments and 

sampling dates as fixed factors. Correlations between continuous variables were measured using 

Pearson's correlation (SPSS ver.20). Causal relationships between changing substrate concentrations 

and isotopic enrichment were quantified using linear regression, which were evaluated for goodness of

fit (r2) and significance (SigmaPlot ver.12, SPSS ver.20). These relationships were used to establish 

enrichment factors based on the simplified Rayleigh fractionation equations for denitrification, as 

described in discussion section (Mariotti et al. 1981). The isotopic enrichment factor for NH3 

volatilisation (εAV) was calculated based on the δ15N composition of the captured NH3 (RA) versus the 

composition of the residual soil NH4
+ pool (RB) (Eq. 4.2)

(4.2)  ε AV ={(RA : RB)−1}×1000

where εAV is the result of the equilibrium between the two species, and the larger the fractionation 

effect, the further ε is from 0 (Hogberg 1997). Within the text all values are reported as mean ±SD 

(unless otherwise noted), and significance defined as p<0.05. 

4.4 Results

4.4.1 Overview of soil conditions

Soil moisture content was 25% (θg) over the first nine soil sampling days, but increased to 

30% following rainfall on days 15 through 17. Over this period the mean soil temperature was 10 

±1°C. Soil TOC concentrations were greatest throughout the experiment in the high urine treatment 

(306 ±30 µg C g-1, versus 149 ±40 µg C g-1 soil in the other treatments and controls) (p<0.05). Soil pH 

varied between treatments over time, and was consistently elevated in the high urine treatment (6.2 

±1) than in the low urine, urea, or control (5.7 ±0.5) (p<0.05). In high urine treatments both pH and 
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TOC concentration reached a maximum on day 9, with values of 7.35 ±1 and 540 ±400 µg C g-1 soil, 

respectively. 

4.4.2 Ammonia volatilisation

Volatilisation rates varied with treatments over time (p<0.01), as did cumulative NH3(g) losses 

(p<0.001) (Fig. 4.2a). The highest proportion of applied N was volatilised from the low urine 

treatment, where a total of 48% of the urine-N was volatilised over the 17 days, in contrast to the 25% 

volatilised from the high urine treatment and 4% from the urea fertiliser treatment (treatment x time: 

p<0.05). The δ15N was lightest on NH3(g) volatilised from the urea treatment (mean over time: -35.6 

±2‰), compared to mean compositions of -21.7 ±2‰ and -27.2 ±2‰ δ15N-NH3(g) volatilised from 

high and low urine treatments, respectively (p<0.001) (Fig. 4.2b). Across all treatments, δ15N-NH3(g) 

was positively correlated with the daily NH3(g) flux (r = 0.36, p<0.01), and the NH3(g) flux was 

positively correlated with the soil NH4
+ concentration (r = 0.76, p<0.001) and negatively with soil 

NO3
- (r = -0.21, p<0.05). 

Figure 4.2 Daily NH3 volatilisation rates (a) and isotopic composition (b) following additions of either urea 
fertiliser (80 kg N ha-1) or bovine urine (600 kg N ha-1 or 80 kg N ha-1) to a pasture soil, and baseline
NH3 volatilisation rates from controls (which received no N inputs). The cumulative NH3 volatilised 
(kg NH3-N ha-1) over the 17 day monitoring period and the εAV calculated from the δ15N composition
of volatilised NH3 relative to residual δ15N-NH4

+ in the top 2 cm of soil (Eq. 4.2) are also noted. 
(Symbols and error bars represent mean ±SD, n = 4 for concentrations, n = 2 for isotopes).
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4.4.3 Soil inorganic N

Soil NH4
+ increased to a maximum on day 2 in all treatments, then decreased over the 

following days. The degree of change varied with treatment (treatment x time: p<0.001), but stayed 

relatively constant in the control (Fig. 4.3a,b). Within all treatments (including the control), NH4
+ 

concentrations were lower at 0-2 cm than at 2-10 cm depth (p<0.001) (Fig. 4.3a,b). Decreases in NH4
+ 

concentrations over time correlated with increasing NO3
- concentrations (r = -0.20, p<0.01) (Fig. 4.3). 

Soil NO2
- concentrations increased over time in all treatments up to 1.60 ±0.5 µg NO2

--N g-1 soil by 

days 15 and 17 (Fig. 4.3c,d). Soils in the high urine treatment accumulated the most NO2
- (mean of 

2.02 ±0.2 µg NO2
--N g-1 soil over the sampling period) and had a maximum concentration of ~8 µg 

NO2
--N g-1 soil on day 15 (p<0.001) (Fig. 4.3c,d). There was no significant accumulation of NO2

- in 

the control. Nitrate concentrations, which did not vary significantly with depth, were consistently 

higher (p<0.001) in the urea and low urine treatments than in the high urine treatment. Day 17, when 

there were no significant differences between treatments, was the exception to this trend (Fig. 4.3e,f). 

Nitrate accumulated over the first 15 days in all treatments, although this accumulation was somewhat 

delayed in the high urine treatment. Control soil NO3
- concentrations did not change significantly over 

these 15 days (Fig. 4.3e,f). However, NO3
- concentrations decreased in all soils (by 54.2 ±2% in all N 

amended soils and by 45% in controls) between the day 15 rainfall and the final sampling on day 17 

(Fig. 4.3e,f). 

Figure 4.3  Dissolved inorganic N concentrations (NH4
+ (a, b), NO2

- (c,d), and NO3
- (e,f)) over time in pasture soils 

at 0-2 cm and 2-10 cm depths following additions of either urea (80 kg N ha-1) or bovine urine (80 kg N 
ha-1 or 600 kg N ha-1), or left as controls. Symbols and error bars represent mean ±SD (n = 4).
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4.4.4 Soil inorganic N isotopes 

In contrast to the ~1‰ value for δ15N of the applied urine and urea, soil δ15N-NH4
+ across all 

treatments and depths was 10.2 ±1‰ within two days of N additions. By the final sampling on day 17,

δ15N-NH4
+ within all treatments was 16.3 ±2‰ (p<0.05) (Fig. 4.4b), while the δ15N of the control NH4

+

pool did not deviate from a mean of 10 ±4‰ over depth or time. 

Figure 4.4 Partitioning of δ15N-NHx between the atmosphere (as NH3(g)) (a) and soil (as NH4
+) (b) following 

application of either 80 kg N ha-1 urea fertiliser, 600 kg N ha-1 bovine urine, or 80 kg N ha-1 bovine 
urine. In (a), the δ15N composition of the total volatilised NH3 pool was calculated based on flux-
weighted daily measurements to reflect. In (b) symbols represent concentration-weighted mean of the 
δ15N-NH4

+ measured in 2M KCl extracts of soils from 0-2 and 2-10 cm depth concentration-weighted 
mean (±SD), as compared to lines representing the expected soil δ15N-NH4

+ composition based on the 
δ15N isoflux for NH3 volatilisation from each treatment shown in (a).    

The δ15N of NO3
- in the control was 10.2 ±3‰ over time and depth, higher than in any of the 

treatments, while δ15N-NO3
- was lowest in the urea fertiliser treatment, with a mean of -0.884 ±3‰ 

(Fig. 4.5b). The δ15N-NO3
- composition at both 0-2 cm and 2-10 cm depths varied with treatments over

time (p<0.01). Across all three treatments and depths, δ15N-NO3
- was lowest on day 9 (-5.50 ±7‰) and

highest on day 17 (10.7 ±3‰). In contrast, δ18O-NO3
- increased over time in all treatments from 0.059 

±0.3‰ on day 5 to 4.76  ±2‰ on day 17 (p<0.05). As with δ15N-NO3
-, δ18O-NO3

- was most enriched 

(p<0.001) on the last day of sampling in both depths (Fig. 4.5). Nitrate δ18O in the high urine treatment

had a concentration-weighted mean composition of 4.60 ±1‰ over depth and time, higher (p<0.001) 

than in the controls, low urine, or urea fertiliser treatments (Fig. 4.5b). Nitrite δ15N (measured in the 

high urine treatment on days 15 and 17) was negatively correlated with NO2
- concentration (r = -1, 

p<0.05), but not with δ15N-NO3
- or NO3

- concentration (Fig. 6). While δ15N-NO2
- was consistently 

isotopically depleted relative to δ15N-NO3
- (p<0.001), the difference between the two decreased 

between days 15 and 17. 
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Figure 4.5 Changes in δ18O (a) and δ15N (b) composition of soil NO3
- over the 17 days following additions of 

either 80 kg N ha-1 urea fertiliser, 600 kg N ha-1, bovine urine, 80 kg N ha-1 bovine urine, or a 
commensurate volume of DI H2O (control). Following heavy rain on days 15-17, conditions shifted 
to favour denitrification (shaded area). Values represent the concentration-weighted mean of 
samples from 0-2 and 2-10 cm depth, ±SE (n =2 per depth). 

Figure 4.6 Soil δ15N-NO2
-and δ15N-NO3

- composition with respect to NO2
- concentration measured 15 and 17 

days after 600 kg N ha-1 of bovine urine was applied to the pasture. The arrow represents the slope 
of the linear regression between [NO2

--N] and δ15N-NO2
-: y = 29 – 6.3x (r2 = 0.54, p<0.05), and the 

dotted lines sketch the difference in 15N enrichment between δ15N-NO3
- and δ15N-NO2

- within a 
given sample.
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4.5 Discussion

Soil inorganic N dynamics are consistent with the finding that nitrification is complete within 

~2 weeks of urine application (Laubach et al. 2013), and NH3 volatilisation rates from the different 

treatments bracket the reported range for pasture systems (Cameron et al. 2013). From this basis, 

changes in the isotopic composition of the measured reduced (NH3, NH4
+) and oxidised (NO3

-, NO2
-) 

inorganic N pools can be confidently used to represent typical patterns within pasture soils. 

4.5.1 Reduced N 

The calculated mean εAV for all treatments and sampling dates was +35 ±0.4‰, with the 

strength of fractionation increasing from +30‰ to +52‰ over time as volatilisation rates  decreased 

(p<0.01) (Fig. 4.2a). These εAV values fall within the range established based on patterns of δ15N-NH3 in

rainfall (Hogberg 1997, Jia and Chen 2010), and is roughly equivalent to the value of +35‰ reported 

in the only previous study to measure δ15N-NH3(g) fluxes at the soil-atmosphere interface (Frank et al. 

2004). Accordingly, the initial enrichment of the soil δ15N-NH4
+ pool can be attributed to volatilisation 

-induced fractionation (Fig. 4.4).

The N isoflux for volatilisation was calculated from the cumulative NH3 loss times its 

measured δ15N value on discrete sampling dates (Fig. 4.4a). These flux values were then used to 

calculate the theoretical impact of NH3 volatilisation on the residual isotopic composition of the 

residual NH4
+ pool for each treatment over time (Fig. 4.4b). Based on these calculations, the predicted 

δ15N composition of the NH4
+ soil pool in the low urine treatment after 17 days would be ~30‰ if NH3

volatilisation was the only process affecting NH4
+ pool size and isotopic composition, significantly 

higher than what the measured value of 14‰. On the opposite end, δ15N-NH4
+ pools in the high urine 

and fertiliser treatments were more enriched than was expected based on their respective volatilisation 

rates (Fig. 4.4). 

These findings indicate that, in urine-treated soils, was N recycled through the SON pool, 

muting the effect of volatilisation, and that NH3 volatilisation was not the primary N fractionating 

process in the urea fertilised soils. The rapidly mineralisation (ammonification) and immobilisation 

that is known to occur within urine patches (Decau et al. 2004, McFarland et al. 2010, Schrama et al. 

2013) may explain the under-expression of volatilisation's isotope effects found in the low urine 

treatment (i.e., urine deposition stimulated mineralisation of organic N that diluted the heavy residual 

NH3 pool). Based on the measured accumulation of NO3
- over time in all soils, it seems probable that 

δ15N-NH4
+ enrichment over time was also influenced by incomplete nitrification. Specifically, the fact 

that ~80% of non-volatilised NH3 was converted to NO3
- in the low urine and urea treatments, and 

~60% in the high urine treatment by day 15 would also add to the 'heavy' δ15N-NH4
+ pool as light 

isotopes are preferentially oxidised (Casciotti et al. 2003). 

The co-occurrence of equilibrium fractionation from NH3 volatilisation and kinetic 

fractionation from nitrification made their individual roles in driving the enrichment of the δ15N-NH4
+ 
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composition difficult to distinguish. However, the importance of nitrification in controlling inorganic 

N isotopic composition is emphasised by the fact that there was no quantifiable relationship between 

either the flux or cumulative proportion of NH3 volatilisation and δ15N-NO3
- either within or between 

treatments (i.e., nitrification limited NO3
- production, and thus controlled its δ15N). Overall, this data 

set reveals that dynamic N cycling within urine patches (or following concentrated urea fertiliser 

applications) can homogenise the residual δ15N-NH4
+ pool, and that this pool therefore does not always

reflect the magnitude of NH3 volatilisation. 

4.5.2 Oxidised N 

Nitrification

Nitrate isotopic composition over the first ~9 days following urine and urea applications 

clearly reflects the imprint of nitrification: δ15N-NO3
- values decreased over time as NO3

- accumulated.

Over this period the δ18O-NO3
- remained relatively constant, as expected for nitrification-induced 

mixing of atmospheric δ18O-O2 and δ18O from local H2O (as discussed in Buchwald et al. (2012)) (Fig. 

4.1).  While the relatively slow nitrification rates caused by winter conditions (wet and cold soil) could

minimising the evidence for NH3 volatilisation carried over to the NO3
- pool by increasing the 

expression of nitrification-induced fractionation, the similarity in the δ15N-NH4
+ composition across 

the treatments (from which from 5 and 48% of N inputs were volatilised, and for which nitrification 

rates were comparable) makes this seem unlikely. Specifically, on day 15, when ~80% of the non-

volatilised NH4
+ in both the low urine and the urea fertiliser treatments had been nitrified, meaning the 

~40% difference in volatilisation rates between the should be expected in the NO3
- isotopes, the δ15N-

NO3
- composition actually became more similar across the treatments (Fig. 4.5).

While previous studies relied on NH3 volatilisation altering δ15N to identify effluent-derived 

NO3
- (e.g., Choi et al. 2011), in the current study the most consistent treatment difference was 

unexpectedly found in δ18O-NO3
- composition. As denitrification would cause parallel enrichment of 

both NO3
- isotopes, rather than just δ18O (Xue et al. 2009), this process could not be used to explain the

relatively heavy δ18O-NO3
- values in the high urine treatments. Based on the accumulation of NO2

- in 

these soils, it is hypothesised that d18O-NO3
- is instead the product of the decoupling of NH3 oxidation

and NO2
- oxidation (Fig. 4.1) in high urine treatments. Nitrite accumulation is a well-documented 

occurrence in N-rich urine patches (e.g., Clough et al. 2009) believed to result from NH3 toxicity to 

NO2
- oxidising bacteria (Chung et al. 2005, Uemura et al. 2011) and/or the delayed recovery from the 

shock caused by pH changes and salt additions of NO2
- oxidisers relative to NH3 oxidisers (Orwin et 

al. 2010, Bertram et al. 2012, Venterea et al. 2012). Longer residence times for NO2
- could influence 

δ18O-NO3
- by increasing the opportunity for O exchange between NO2

- and H2O (wherein equilibrium 

fractionation preferentially leaves heavy O with NO2
-). The observed delay in NO2

- oxidation could 

also increase the expression of the inverse fractionation of both N and O isotopes from NO2
- oxidation 

(Buchwald and Casciotti 2013), an effect which is further supported by the decreasing difference 

between δ15N-NO3
- and δ15N-NO2

- as the concentration of NO2
- relative to NO3

- declined (Fig. 4.5). The
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possibility that NO2
- attenuation processes such as nitrifier-denitrification (Wrage et al. 2001) or co-

denitrification (Spott et al. 2011), hypothesised to play a role in soil N cycling following urea N 

additions due to positive correlations between NO2
- concentrations and N2O emissions (Oenema et al. 

1997), could create the unique δ18O-NO3
- composition in the high urine treatment must also be 

acknowledge. However, the severely information on these processes and their isotope effects (Chapter 

2) make it difficult to arrive at a concrete explanation for these δ18O-NO3
- values difficult.(Venterea et 

al. 2012)Future efforts need to focus on identifying and quantifying the fractionation dynamics of the 

NO2
- transformation pathways in order to fully understand the measured differences between N 

application rates and sources within complex pasture systems. Specifically, the processes driving the 

unique relationship found between NO2
- accumulation and elevated δ18O-NO3

- should be further 

explored in order to determine the prevalence of this relationship in NO3
- produced under soil affected 

by high NH3 loadings. 

The data here emphasises that the NO3
- leached from pasture systems will only reflect the 

isotopic fingerprint of NH3 volatilisation if, 1) mineralisation – immobilisation do not homogenise 

δ15N of the reaction substrate, 2) nitrification occurs only after NH3 volatilisation stops, and, 2) 

nitrification of the NH3 pool is complete prior to leaching. These findings add functional depth to 

previous observations that soil zone nitrification – denitrification and active immobilisation-

mineralisation can rapidly homogeneous isotopically- distinct N pools (Mengis et al. 2001, Billy et al. 

2010, Minet et al. 2012).

Denitrification

The decrease in NO3
- concentrations combined with the parallel enrichment of δ15N-NO3

- and 

δ18O-NO3
- between days 15 and 17, when heavy rainfall saturated the soil, provided unambiguous 

evidence of denitrification in all treatments and the control. A switch to denitrification as the dominant

N process is further supported by the rapid loss of NO2
- and increase in δ15N-NO2

- in the high urine 

treatment soil.  Based on these relationships, it is useful to use data from these two sampling dates to 

estimate the effective enrichment factor for denitrification (εdenit) in this setting. Thus εdenit was 

calculated using the modified Rayleigh equation of Mariotti et al. (1981) (Eq. 4.3): 

(4.3)  
δ15 N x = δ15 N 0+εdenit×ln( f

1− f )
δ18O x = δ18 O0+εdenit×ln( f

1− f )
which directly relates the composition of δ15N and δ18O at point x (day 17) to that prior to significant 

modification by denitrification (δ0) (day 15) using εdenit and the natural log of the relative NO3
- 

concentration between the two dates (f). By plotting ln(f) versus the changes in NO3
- isotopes, εdenit was

measured to be -12.4‰ for δ15N-NO3
- (r2 = 0.84, p<0.01) and -4.54‰ for δ18O-NO3

- (r2 = 0.72, 

p<0.01). 
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The 0.25 enrichment ratio of δ18O to δ15N during this period is lower than the 0.5 to 1.0 range 

typically associated with denitrification (Xue et al. 2009), most likely indicating that some level of 

nitrification continued to occur even post rainfall-induced saturation, which would distort the 

denitrification signal, causing enrichment of δ15N to increase relative to that of δ18O per unit of 

substrate attenuation (Chapter 3). The mean εdenit reported for aerobic soils under 'natural' conditions 

(i.e., no C or N additions) is ~ -4‰, placing the value of -12.4‰ measured here for N enrichment 

closer to the range reported for anaerobic soil incubations with simple C additions (Chapter 2). 

Regardless of how close these calculated εdenit values may be to the biochemically fractionation of the 

site's denitrifiers, this quantification of how attenuation affects NO3
- isotopic composition provides 

fundamental information needed in order to fully parametrise the relative impact of the two main N 

loss pathways (NH3 volatilisation and denitrification) on pasture ecosystems. 

4.5.3 Calculating whole-pasture isotopic signatures

The concurrent effects of nitrification and NH3 volatilisation on the isotopic signature of the 

produced NO3
- was evaluated over depth and time using an isotope mass balance compiled from 

measured NO3
- concentrations and isotopic composition over time. A whole-field NO3

- isotopic 

signature was calculated by applying an isotope mixing model (Kendall 1998) (Eq. 4.4) to the pasture 

N leaching model for determining total N losses from Cameron et al. (2013) (Eq.4. 5). 

(4.4)  
δnet=

{(δurine N urine Purine)+(δ field N field P field )}

N net

(4.5) N net=(N urine Purine )+(N field P field )

where the total N exported from a pasture (Nnet) is the sum of N from urine deposition (Nurine) and N 

from the non-urine affected soil (Nfield), which contains N from soil organic N and/or fertilisers. 

Combining this framework with the spatial distribution of urine patches per grazing and per-annum 

described by Moir et al. (2011) and the isotope data generated in this study, the NO3
- produced in urea 

fertilised and non-fertilised pastures with and without grazing animals were calculated (Fig. 4.7). 
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Figure 4.7 The calculated δ18O (a) and δ15N (b) composition of the whole-pasture NO3
- pool over time following 

high (600 kg N ha-1) and low (80 kg N ha-1) of urine deposition, as compared with NO3
- isotopic 

composition in fertilised (grey rectangle spans mean ±1 SD) v. non-fertilised fields (cross hatched 
rectangle spans mean ±1 SD) without grazing (urine deposition). All values were calculated based on 
the isotope mass balance (concentration × δ) and reported spatial distribution of urine patches (Moir et
al. 2011).

Within this framework, the theoretical versus measured influence of the primary fractionating 

N loss pathways (NH3 volatilisation and denitrification) on soil δ15N- δ18O- NO3
- were calculated 

(Table 4.1). Nitrate δ15N were based either on measured values at the 'end' of nitrification (maximum 

NO3
- accumulation) or the δ15N-NO3

- value calculated based on 100% nitrification of the treatment's 

NH4
+ pool. Nitrification produced δ18O-NO3

- in this experiment would theoretically have fairly 

negative values (from -4.1‰ (if δ18O-H2O were -1‰, as calculated based on 1:1 mixing of δ18O-O2 

(+23.5‰) and δ18O-NO2
-) to -13‰), based on reported local δ18O-H2O of -8‰ (Blackstock 2011). The 

uncertainty in these calculations stems from potential variations in the degree of O exchange (and 

associated equilibrium fractionation) between O-NO2
- and adjacent O-H2O, plus the degree of kinetic 

fractionation of O-NO2
- during the oxidisation step to NO3

- (Buchwald and Casciotti 2010, Fang et al. 

2012). 
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Table 4.1 The calculated isotopic composition of NO3
- (δ15N and δ18O) of NO3

- exported from grazed pastures on a
whole-field basis, using NO3

- concentrations to weight means of δ15N-NO3
- and δ18O-NO3

- in the top 10 
cm. Fields were considered as either non-fertilised (control plots, receiving no N inputs) or fertilised 
(urea fertiliser at a rate of 80 kg N ha-1) with or without grazing/ urine additions (either low, 80 kg N ha-

1 per urination; or high, 600 kg N ha-1 per urination); or on calculated δ15N- δ18O- NO3
- from complete 

nitrification of non-volatilised NH3 occurring without denitrification ('ideal'). Isotope values are 
reported in δ‰, with respect to AIR for N and VSMOW for O.

N sourcesa
Calculated (100% nitrification) Measured

R0 (no denitrification)b 50% denitrificationc R0 (no denitrification)d 50% denitrificatione

urea urine δ15N-NO3
- δ18O-NO3

- δ15N-NO3
- δ18O-NO3

- δ15N-NO3
- δ18O-NO3

- δ15N-NO3
- δ18O-NO3

-

Un-fertilised
nil +10.6 (3) -0.090 (2) +16.2 (6) +5.78 (5) +10.6 (3) -0.090 (2) +19.2 (3) +13.5 (2)

high +8.25 (9) -5.11 (5) +14.1 (3) +0.761 (5) +5.59 (9) +1.98 (2) +14.2 (9) +5.13 (2)

low +13.8 (3) -6.29 (5) +19.7 (9) -0.419 (2) +4.34 (3) +0.290 (1) +12.9 (3) +3.44 (1)

Fertilised
nil +0.413

-10.3 (5)

+6.30 (3)

-4.43 (8)

-4.98 (7) -0.759 (3) +3.62 (4) +2.89 (0.8)

high +1.86 +7.73 (2) -3.84 (1) +0.454 (2) +4.75 (6) +3.60 (2)

low +5.51 +11.4 (2) -3.38 (3) -0.317 (1) +5.22 (3) +2.83 (0.3

 a Whole pasture mean for one grazing, based on measured distribution, volume, and occurrence of urine patches
in Moir et al. (2011), as per Eq. 4.4 and Eq. 4.5
b Calculated using % ammonia volatilisation and εAV for each treatment, assuming 100% of the non-volatilised N
retained the δ15N of urea (~1‰) and equilibrium fractionation of NH3-N (Eq. 4.2, Fig. 4.1) for δ15N-NO3

-; and 
using equation of Fang et al. (2012) for δ18O-NO3

- from nitrification: δ18ONO3=1/3δ18OO2 + 2/3δ18OH2O + 1/3(18εk,O2 
+ 18εk,H2O,1 + 18εkH2O,2 (see text for complete explanation) 
c From mean ±SD of εdenit measured experimentally (-8.5 ±6‰), which covers range of reported values for 
terrestrial denitrification (Chapter 2)
d Based on samples collected 15 days post N application, at maximum NO3

--N concentration and prior to 
intensive leaching
e Based on samples collected 17 days post N application, following leaching in which ~50% of NO3

--N was lost 
from the top 10 cm of soil 

Outcomes

As urine patches only accounts for 3-5% of pasture area (Moir et al. 2011), the clearest 

difference in terms of δ15N-NO3
- composition is found between the fertilised and non-fertilised fields 

(Fig. 4.7). If nitrification is assumed to go to completion urine inputs at any concentration to either 

'fertilised' or 'non-fertilised' fields causes either a relative increases (in fertilised fields) or decreases (in

non-fertilised fields) of δ15N-NO3
- (Table 4.1). This slight effect of urine patches on whole-field δ15N-

NO3
- driven by their higher rates of NH3 volatilisation, demonstrates that NH3 volatilisation can play a 

role in creating the frequently cited 'heavy' δ15N signatures in grazed pastures. The high δ18O-NO3
- 

values measured within the high urine treatments also had an impact on the calculated whole-field 

NO3
- (with or without fertiliser additions) that could not be satisfactorily explained by nitrification 

(Table 4.1), emphasising the need for continuing research into NO2
- dynamics within urine patches. 

The stark differences between δ15N-NO3
- in fertilised versus non-fertilised pastures emphasises

that systems receiving high N inputs, which lead to a de-coupling of nitrification and denitrification, 

can drive the 'pasture-N' signature created within the soil zone towards 'light' values. This reveals a 

rarely considered mechanism for distinguishing agricultural N inputs from background soil N: excess 

N inputs to pastures create an isotopically 'light' NO3
- pool due to the ongoing nitrification of NH3, 

regardless of the proportion which volatilised at the soil surface (corroborating the assumptions in 

93



Chapter 7). In addition, the homogenisation of the residual δ15N-NH4
+ pool noted here following urine 

deposition further limits the possibility of εAV being expressed within a pasture NO3
- pool (Table 4.1).  

These results indicate that the incorporation of 'heavy' δ15N into plant and soil biomass 

following, e.g., slurry applications (Kriszan et al. 2009) could be driven equally by increasing 

denitrification within urine patches (e.g., Clough et al. 2009) and NH3 volatilisation, as both caused 

changed δ15N of the residual pool by ~ +10‰. Therefore the source of whole-system 15N enrichment 

would depend on the relative uptake of NH4
+ versus NO3

- (Schimel and Bennett 2004), and the 

magnitude of this enrichment would depend on, 1) NH3 volatilisation enriching the δ15N-NH4
+ pool, 2) 

the relative rate of nitrification partitioning light isotopes into the NO3
- pool, and, 3) the timing NO3

- 

removal via leaching (non-fractionating) versus via denitrification (causing enrichment of both NO3
- 

isotopes). The balance of these processes under winter conditions, when biological nitrification and 

denitrification are most retarded and NO3
- leaching is maximised (Decau et al. 2004), would then 

create a seasonal 'light' δ15N-NO3
- pool reflecting the nitrification limitation. Drier and warmer soils in 

the summer would increase nitrification rate, resulting in the slightly heavier δ15N-NO3
- composition 

predicted for ideal conditions in Table 4.1. 

4.6 Conclusion 

By measuring changes in the isotopic composition of inorganic N species following urine and 

urea deposition I was able to precisely identify the causes of enrichment and depletion of the N 

different pools. Although δ15N-NH4
+ of surface soils increased during the most intense volatilisation 

period, this effect was ultimately indistinguishable from fractionation incurred during incomplete 

nitrification, and the δ15N of neither NH4
+ nor NO3

- correlated to the proportion of N volatilised. My 

results necessitate a re-evaluation of the δ15N- δ18O- NO3
- values typically ascribed to 'animal excreta' 

(Xue et al. 2009) within the context of soil cycling: at the whole-field scale, I found δ15N-NO3
- 

reflected the balance between nitrification and denitrification, with increasingly 'light' values the 

greater the disconnect between creation and attenuation, while δ18O-NO3
- composition was 

consistently heavier in soils with the highest urine-N inputs. In light of the homogenised response of 

δ15N-NH4
+ and δ15N-NO3

- to extremely different rates of NH3 volatilisation, future research should 

focus on quantifying the effect of SON turnover of the natural abundance composition of specific N 

compounds.   
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Plate 3 Clockwise from top: rice crop in long-term fallowing experiment photographed in September 2010 
(following the studied dry season fallow); fallow treatment ‘R’ (natural wetting and drying with rainfall), 
with and without straw removal; fallow treatment ‘D’ (constant drying, covered with tarp overnight and 
during rainfall; fallow treatment ‘F’ (kept continuously flooded, note cyanobacteria mat formed in bottom 
right of photograph).
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Chapter 5

Nitrate dual isotopes reveal the impact of the intercrop period on

accumulation versus attenuation of soil nitrogen in a tropical

lowland rice system

A version of this chapter was submitted for publication in January 2014. Wells, N.S., T.J. Clough, S.E. 

Johnson-Beebout, R.J. Buresh. In review. Land preparation controls the soil inorganic nitrogen balance

(accumulation v. attenuation) in a tropical lowland rice system. Nutrient Cycling in Agroecosystems
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5.1 Abstract

Sustainable production of lowland rice (Oryza sativa L.) hinges on minimising undesirable 

soil nitrogen (N) losses via nitrate (NO3
-) leaching and denitrification. Thus effective paddy 

management is limited by the lack of information on the N transformations during the intercrop period

(fallow and land preparation) that control indigenous N availability for the subsequent crop. In order to

redress this knowledge gap, changes in NO3
- isotopic composition (δ15N and δ18O) in soil and water 

were measured from harvest through fallow, land preparation, and crop establishment in a long-term 

field trial. During the intercrop period, plots were maintained either completely flooded, completely 

dried, or alternated between wet-dry with rainfall, with a split-plot treatment of ± crop residue 

incorporation and no N additions. Nitrogen accumulation during the fallow (20 kg NH4
+-N ha-1 in 

flooded treatments v. 10 kg NO3
--N ha-1 in aerobic treatments) did not influence N availability for the 

subsequent crop. Nitrate isotope fractionation patterns indicated that denitrification drove this 

homogenisation: during land preparation ~50% of available N in the soil (top 10 cm) was denitrified, 

and by two weeks after seedling transplanting this increased to >80% of available N, regardless of 

fallow management. The 17 days between fallow and crop growth controlled not only N attenuation (3

to 7 kg NO3
--N ha-1 denitrified), but also N inputs (3 to 14 kg NO3

--N ha-1 from nitrification), meaning 

denitrification was dependent on soil nitrification rates. While incorporation of crop residues delayed 

the timing of N attenuation, they ultimately did not impact indigenous N supply. By measuring NO3
- 

isotopic composition over depth and time, this study provides unique in situ measurements of the 

pivotal role of land preparation in determining paddy soil indigenous N supply.

 

Keywords: paddy soils, indigenous nitrogen, nitrate isotopes, denitrification, fallow management 
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Terminology Floodwater refers to the ~6 cm of irrigation+rainwater overlaying submerged paddy 

soil, the oxic layer is at the top 2 cm of soil, defined by the depth to which atmospheric O2 will diffuse;

the plough layer represents bulk soil between the oxic and the plough pan (10 – 20 cm depth), defined 

as the depth at which NO3
- is consumed; the hardpan is the impermeable layer underlying the paddy 

(~50 cm depth). The intercrop period occurs between the two annual rice crops (crop growth) and 

consists of a fallow (no crops or management activities) and land preparation (including re-flooding, 

harrowing, hydrotilling prior to seedling transplanting). 

5.2 Introduction

Over 95% of rice (Oryza sativa L.), the staple food for the majority of the global population, is

cultivated under submerged conditions in paddy soils (Buresh et al. 2008). The poor natural 

production, and rapid losses, of plant-available nitrogen (N) under submerged conditions have resulted

in a reliance on costly N fertiliser inputs in order to obtain good crop yields (Buresh and Witt 2008). 

However, chronic inefficiencies in fertiliser use (Cassman and Buresh, Witt) incur further 

environmental costs as excess N additions contaminate adjacent waters (Bouman et al. 2002, Xiong et 

al. 2010) or are lost to the atmosphere in gaseous forms, including the greenhouse gas nitrous oxide 

(N2O) (Cai et al. 1997, Zhang et al. 2011). In order to minimise these undesirable N losses while 

maximising crop yields, research has focused on fertiliser management (timing, quantity, and location 

of N application) (Cassman et al. 1998, Cassman et al. 2003, Dobermann and Cassman 2005). 

However, advances in conserving paddy soil N stocks are limited by a poor understanding of 

fluctuations its 'baseline' sources and sinks within the paddy environment, particularly during the 

intercrop period (fallow and land-preparation) (e.g., Akiyama et al. 2005).

The oscillating aerobic and anaerobic conditions inherent to lowland rice cultivation are 

considered the primary biogeochemical drivers for N cycling, and major determinants of paddy soil 

indigenous N supply (Buresh et al. 1993, George et al. 1993, Cai et al. 1997). Indigenous soil N supply

is the soil N available to crops pre-fertilisation (Nindigenous), defined here as the net difference between N

inputs (Ninput) and losses (Nout) (Eq. 5.1):

(5.1)  

N indigenous = N input−N out

N input = N miner+N BNF

N out = N denit+N leach

where N inputs (Ninput) come from mineralised soil organic material (Nminer) and/or biological fixation 

of atmospheric N2 (BNF) and N losses (Nout) are denitrification (permanent removal, or attenuation, of 

nitrate (NO3
-) via its step-wise heterotrophic conversion to N2O and dinitrogen (N2) (using carbon (C) 

as an electron donor)) (Ndenit) and leaching (Nleach). 
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The highly anaerobic conditions that form beneath paddy floodwater inhibit the mineralisation

of organic N into biologically available forms (predominantly ammonium (NH4
+ and nitrate (NO3

-)) 

(Bird et al. 2001, Bird et al. 2002). Nitrogen mineralisation rates also depend on the frequency and 

duration of wetting-drying cycles (Schimel and Bennett 2004, Borken and Matzner 2009, Austin and 

Strauss 2011), and can change synergistically with management of crop residues (Witt et al. 2000, 

Bird et al. 2002, Bierke et al. 2008). Due to the oxygen (O2) limitation in paddy soils, nitrification 

(autotrophic oxidation of ammonia (NH3) to nitrate (NO3
-)) is generally the limiting step to NO3

- 

accumulation, and thus N losses, from these systems, as NO3
- is the most mobile form of N (Henckel 

and Conrad 1998). Anaerobic, submerged paddy soils maximise Nout due to the rapid denitrification of 

any NO3
- that forms (generally in the thin oxidised surface soil or in root rhizophere) (DeDatta 1995, 

Buresh et al. 2008). If NO3
- is not denitrified or taken up by the plants, it can be leached into the 

groundwater (Bouman et al. 2007). 

Thus management of submerged v. dry soil periods drives both Ninput and Nout in paddy 

systems: in lowland tropical rice cultivation fields are typically flooded two weeks prior to 

transplanting rice seedlings, submerged with ~6 cm of water throughout the growing period, left to 

‘dry down’ two weeks prior to harvest, and then left fallow for one to two months before the next crop.

During low rainfall fallow periods the top 10-20 cm of the paddy soil dries out (Ringrose-Voase et al. 

2000), increasing O2 penetration and altering redox potential. Accordingly, mineralisation and 

nitrification rates are maximised during the fallow (Buresh et al. 1989). Oxygen concentrations ≥4 mg 

l-1 inhibit denitrification (Rivett et al. 2008), meaning that NO3
- can accumulate between the harvest of 

one crop and the planting of the next. Additionally, reincorporation of crop residues can either 

conserve N losses by returning organic N to the soil, or cause net immobilisation of dissolved 

inorganic N (DIN), depending primarily on the residue's C/N ratio (Rasche and Cadisch 2013).

Despite recognition of the importance of these wetting-drying cycles on paddy soil N cycling 

during the growing season (Buresh et al. 1993; Dong et al. 2012; Berger et al. 2013), the impact of the 

dramatic dry-down, re-flooding and turbation during the intercrop period is rarely assessed. 

Exceptions include George et al. (1993) and Becker et al. (2007), both of whom found that, regardless 

of the quantity of DIN initially present, NO3
- concentrations were ‘virtually negligible’ within weeks 

of re-flooding. However, information is still needed on the relative importance of denitrification versus

leaching to net N losses and how management can control the timing and rate of these pathways. 

Additionally, relying on DIN concentration data to assess paddy soil nutrient dynamics can lead to an 

underestimation of Ninput due to the tight spatial and temporal coupling between nitrification and 

denitrification in paddy soils (Buresh et al. 2008).

To address these research gaps, this study identified and quantified nitrification and 

denitrification in paddy soils during the intercrop period by measuring changes in the natural 

abundance of NO3
- stable isotopes (15/14N and 18/16O). As ‘light’ isotopes of NO3

- are used preferentially 

during biological reactions, the change in isotope abundance over distance and/or time (R/R0) can be 
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quantitatively related to the change in substrate concentration (C/C0) based on the degree of isotopic 

preference for the given reaction (α, the fractionation factor) using the Rayleigh equation (Kendall 

1998) (Eq. 5.2). 

(5.2)
R
R0

= ( C
C 0)

1/(α−1)

 

During denitrification both δ18O-NO3
- and δ15N-NO3

- are enriched in parallel, meaning that 

ratios of δ18O:δ15N of 1:1 (Granger et al. 2008) or 1:2 (Kendall 1998) can be used to fingerprint 

attenuation. Nitrate stable isotopes have been effectively used to quantify N sources (e.g., N from 

mineralised organic matter and BNF from manure derived or fertiliser derived N) and sinks in marine 

(Sigman et al. 2003) and freshwater (Barnes and Raymond 2010) environments, as well as in aerobic 

soils (Koba et al. 1997). As δ15N and δ18O are minimally influenced by non-biological changes in DIN 

concentration (e.g., immobilisation, mineralisation (Möbius 2013)) and integrate microscale changes 

in concentration over time and space (e.g., Koba et al. 1997), the objective of this study was to use 

changes in their composition to quantify how water and residue management specifically affected the 

biological (nitrification and denitrification) controls on Ninputs and Nout during the intercrop period in a 

rice paddy system. 

5.3 Material & methods

5.3.1 Field site

The study was carried out in a long-term field trial (established in November 2003) at the 

International Rice Research Institute’s experimental farm in Los Baños, Laguna, Philippines (14º1’N, 

121º15’E). The climate is tropical (mean annual temperature of 25ºC), with most of the 1900 mm 

precipitation per year received July–February. The soil was an Aquandic Epiaquoll soil (62% clay and 

9% sand) (Bierke et al. 2008). During the fallow, water and crop residues were managed such that 

main plots were either: continuously flooded (F), continuously dried (D), or allowed to naturally 

alternate between wet and dry with rainfall (R). Treatments, replicated four times, were laid out in a 

randomised split-plot block design (Bierke et al. 2008). Split-plots (4.5 m x 4.7 m) had rice straw 

residues from the previous crop either removed after harvest (ns) or left standing during the fallow and

then incorporated into the soil during land preparation (s). Rain was excluded from D plots using 

tarpaulin tents (open at the ends to allow free airflow). Neither soil nor air temperatures changed 

significantly under rain-exclusion tents (R.J. Buresh, unpubl.). Due to the lack of precipitation during 

the fallow (April-June 2010), plots in treatment R were irrigated for ~4 h on day 20 to simulate a 

rainfall event. 

The fallow period lasted 33 days, and were followed by 17 days of land preparation, 

beginning with the re-flooding of all plots on day 33 and including the reincorporation of crop residues
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into s treatments (Fig. 5.1). On day 53 seedlings (variety NSIC Rc158) were transplanted into all 

treatments. During the growing season all plots were managed identically, including basal application 

of phosphorus, potassium, and zinc (40, 20, and 10 kg ha-1 of P, K, and Zn, respectively) and three 

splits of 60 kg urea-N ha-1. 

Figure 5.1  Schematic diagram showing treatment management, where treatments were kept either continuously 
flooded (F), continuously dried (D), or allowed to alternate wet-dry (R) during the fallow with split-
plots of ± crop residue incorporation; the inset depicts the stratification of where samples were 
collected from surface water, oxic soil (0-2 cm), plough layer soil (2-10 cm) and immediately above the 
hardpan (50 cm) (inset)

5.3.2 Sample collection

Samples were collected from plots' floodwater, oxic soil (0-2 cm), plough layer soil (2-10 cm),

and the hardpan (porewater at 40 cm depth) nine times over 70 days. Sampling was timed to land 

management: ns split-plots of treatments F, D, and R were sampled five times over the fallow (day 1 – 

32; fallow), thrice during land-preparation (day 34 – 51; land preparation), and once during the first 18

days of crop growth (day 52 – 70; crop) (Fig. 5.1). In the s split-plots, samples were collected on twice

during the fallow (days 1 and 32), once during land preparation (day 37), and once during crop growth

(day 70). Final samples (day 70) were collected immediately prior to the first urea fertiliser 

application. 
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5.3.3 Redox, pH, temperature 

Soil, redox potential, pH, and temperature were measured in-situ during sample collection. To 

measure redox, six platinum electrodes were permanently installed in each ns plot on day 1 (see 

Johnson-Beebout et al. (2009) for electrode details). Electrodes were removed for land preparation on 

day 33 and reinstalled following transplanting (day 52) (Fig. 5.1). Electrode placement corresponded 

to sampled soil depths at 2 and 10 cm depths, and a total of 12 electrodes were installed per treatment 

per depth. Measurements were taken between 11:00 and 14:00 h using an Ag/AgCl reference electrode

corrected based on hydrogen probe readings.  Soil pH was measured simultaneously on the same 

probe. A mercury thermometer was used to measure soil temperature at 10 cm depth in each plot. 

5.3.4 Soil sampling and measurements

During soil sampling, cores (10 cm length x 5 cm diameter) were collected from four 

randomly selected locations within each split-plot. Soil cores were separated into 0-2 cm (oxic) and 2-

10 cm (plough) sections, and bulked to create homogenised samples for each soil depth per split-plot. 

Bulked soils were sealed into polypropylene bags and kept on ice until they were returned to the 

laboratory for extractions. 

For soil NH4
+ measurements, 7 g (fresh weight) of soil was extracted with 35 ml of 1M KCl 

(shaken for 30 min on a rotary shaker, centrifuged for 15 min at 3500 rpm, and then passed through 

Whatman 42 filter paper). Nitrate was measured in water extractions: 7 g (fresh weight) soil was 

mixed with 35 ml deionised water for 1 h on a rotary shaker, centrifuged at 3500 rpm for 15 min, and 

then passed through Whatman 1 filter paper. All filtrates were stored in acid-washed plastic vials at 

-4ºC for ≤48 h prior to chemical analyses, with aliquots frozen at -20ºC until isotope analysis. Soil 

gravimetric moisture (θg) was determined on 10 g sub-samples after drying at 105°C for 48 h 

(Blakemore et al. 1987). Following drying, sub-samples of soils from days 32 and 70 were finely 

ground in a mechanical mixer for total N and C analysis.       

5.3.5 Water sampling and measurement

Soil porewater above the hardpan (Fig. 5.1) was collected using Rhizon soil solution samplers 

(RSSS) (Eijkelkamp Agrisearch Equipment, Giesbeek, Netherlands) installed at 40 cm depth in each 

of the 24 split-plots on day 1. Samplers were removed on day 32 for land preparation and then 

reinstalled after transplanting. Porewater was collected via suction using 50 ml single-use syringes, 

after which extraction volume was recorded and then injected into a 15 ml pre-evacuated glass vial 

fitted with a rubber stopper. Soil dryness prevented consistent collection of porewater in both aerobic 

treatments (D and R) during the fallow period. Additional porewater samples were collected from R 

plots (both s and ns) starting 4 h prior to the simulated rainfall event on day 20, and continuing for 36 

h at 2 – 6 h intervals.
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Floodwater samples were collected, and floodwater depth measured, from treatment F 

throughout the trial period, and from treatments D and R following re-submergence for land 

preparation on day 37. Irrigation water used to flood the plots for land preparation was sampled on day

37. All water samples were collected in 100 ml acid-washed Nalgene bottles, and immediately passed 

through Whatman GF/F filter paper upon return to the laboratory. Filtrates were stored (≤48 h) at 4ºC 

until chemical analysis and then frozen at -20ºC until isotope analysis.   

5.3.6 Chemical analysis

Nitrate concentrations were measured in soil porewater, floodwater, and water extracts of oxic 

and plough layer soils using an ELIT 8021 ion selective electrode (www.nico2000.net). Approximately

10% of samples were re-analysed on a Dionex suppressed ion exchange chromatograph (Lincoln 

University, NZ) to ensure that there was no matrix interference. Ammonium concentrations were 

determined in acidified porewater and floodwater samples (as per Dobermann et al. (1994)) and on 1M

KCl soil extracts. These samples were analysed using the salicylate method (Kempers and Zweers 

1986), with absorbance read at 650 nm on a DU-730 UV-vis spectrophotometer (International Rice 

Research Institute). Total N and C of soils collected on days 32 and 70 were measured via combustion 

on an EA-TCD (Analytical Services Laboratory, International Rice Research Institute) (precision of 

±0.04). 

Nitrate isotopes (15N/14N and 18O/16O) were measured using the cadmium reduction- azide 

reaction method (McIlvin and Altabet 2005). Each batch contained duplicates of three international 

standards (IAEA-N3, USGS-34, and USGS-32), two internal standards, and water blanks. The δ18O 

and δ15N of resultant N2O were measured on a Europa PDZ (SerCon) 20-20 IR-MS at Lincoln 

University (NZ), and the values of δ18O- δ15N- NO3
- were calculated based on calibration of the 

international standards. Method accuracy was calculated as 0.8‰ for δ18O- NO3
- and 0.6‰ for δ15N- 

NO3
-. Isotope results are reported in δ‰ (Eq. 5.3): 

(5.3)  δ ‰ =
(R sample−R standard )

Rstandard

×1000

where the isotope mass ratio of the sample (Rsample) is reported with respect to internationally 

recognised standards (Rstandard) (AIR for N and VSMOW for O).  

5.3.7 Data analysis

Differences between treatments over time were assessed using a mixed model with sampling 

date or phase (fallow, land preperation, crop) as repeated measures. Water management, residue 

management, and time variables were treated as fixed factors (Type III), with residue nested within 

water (as per the split-plot experimental design), using Least Significant Difference to analyse means 

(SPSS ver.20, New York, IBM Inc.). Changes in soil chemistry over vertical profiles (e.g., oxic versus 
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plough soils) were established via paired t-tests, and differences between treatments within a single 

phase or sampling date were established using a nested two-way ANOVA (Sidak post-hoc). 

Relationships between parameters were determined with Spearman rank-order correlation. Linear 

regression between variables was evaluated for goodness of fit (r2) and significance (SigmaPlot ver.12;

SPSS ver.20). All isotope calculations and mathematical manipulations were performed in 

Mathematica (ver. 7.0.1.; Wolfram Research). Significant results for all tests were defined as p<0.05, 

and values are reported as treatment mean ±SE unless otherwise noted. 

5.4 Results 

5.4.1 Soil chemistry 

Soil total N and C content did not change over soil depth or with fallow management. From 

the fallow end (day 32) to immediately prior to the first N fertiliser application (day 70) total soil N 

decreased (p<0.05) from 0.177 ±0.004% (by mass) to 0.143 ±0.01%. Total C decreased (p<0.05) from

1.90 ±0.04% to 1.57 ±0.1% over the same period, meaning soil C/N ratios remained constant at 11.5 

±0.1. 

Within the oxic and plough soil layers, moisture varied over time with water management 

(p<0.001; p<0.001). Soil in treatment F had consistently higher θg values than treatments R or D, even

following re-flooding and transplanting (Fig. 5.2d). Residue incorporation increased θg by an average 

of 8% over all sampling dates and water treatments (p<0.001). Plough layer soil had lower (p<0.001) 

redox potential than oxic layers over all treatments and sampling dates (37.0 ±9 v. 75.0 ±11 Eh, 

respectively).1 During the fallow, submerged soil in F treatments had lower redox potentials than the 

drying soils in the R and D treatments (p<0.01) (Fig. 5.2c). Re-flooding for land preparation caused 

the pH of the oxic soil layer to increase in both aerobic treatments: in D from 6.2 ±0.2 (fallow mean) 

to 7.4 ±0.1 and in R from 7.3 ±0.1 to 7.5 ±0.1. The pH in F treatments remained constant throughout 

the sampling period (7.1 ±0.1). By day 70, following land preparation and transplanting, soil pH in all 

treatments was ~7.0 and redox potential in the plough layer was 33.7 ±20 Eh (Fig. 5.2c). Soil 

temperatures were 35 ±4°C and did not exhibit any significant trends (data not shown).

1Redox potential could not be measured in treatment D on days 1 and 32 due to extreme soil dryness causing the
electrode to lose contact with the soil

110



Figure 5.2 Nitrate (a), redox potential (b), NH4
+ (c), and soil gravimetric water content (d) in the top 10 cm of 

paddy soil over time in fields maintained either continuously submerged (F), continuously dry (D) or 
with natural wetting-drying with rainfall (R) during the fallow period. Grayscale gradations indicate 
the phase of crop management, from fallow (white), to land prep (light) to crop growth (dark). Data 
points represent treatment mean ± SE (n = 4) 

5.4.2 Inorganic N (soil and water)

Concentrations of NO3
- and NH4

+ varied over time in depth partitions (floodwater, oxic, 

plough, and hardpan) (Table 5.1). Immediately following the harvest of the previous crop (day 1), 

NO3
- concentrations in the top 10 cm of soil (0-2 cm + 2-10 cm) in both aerobic treatments (D and R) 

increased relative to treatment F (Fig. 5.2a). By the end of the fallow period (day 32) DIN availability 

was lowest in treatment D (12.0 ±3 kg N ha-1) and highest in F (25.2 ±9 kg N ha-1). Residue treatments 

did not influence DIN concentration (Table 5.1).  

The highest concentrations of NO3
- in floodwater were measured in treatment F on the first 

day of the fallow (equivalent to ~0.127 ±0.004 kg NO3
--N ha-1). For all treatments, the lowest 

(p<0.001) NO3
- concentration occurred during land preparation (0.049 ±0.004 kg NO3

--N ha-1), which 

increased to 0.086 ±0.004 kg NO3
--N ha-1 after transplanting (Table 5.1). 

Nitrate and NH4
+ concentrations in the oxic soil layers were influenced by fallow management

of water and residues. Over time, NO3
- concentrations were highest during the fallow in treatments D 

and R with residues returned (s), while NH4
+ concentrations were highest in D+s treatments during 
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crop growth (Table 5.1). During land preparation intra-treatment concentrations of NO3
- and NH4

+ in 

the oxic layer became highly variable (Fig. 5.2). In the plough layer NH4
+ accumulation was influenced

by water management, and was highest in treatment D on day 70 (Table 5.1, Fig. 5.2c). Flooding 

aerobically fallowed plots (D and R) for land preparation increased the concentration of DIN in the 

plough layer from 7.3 ±0.5 µg N g-1 soil (day 32) to 20 ±2 µg N g-1 soil (day 37), with NH4
+ increasing 

from 4.0 ±0.4 to 13 ±1 µg NH4
+-N g-1 and NO3

- decreasing from 3.8 ±0.3 to 1.9 ±0.2 µg NO3
--N g-1 soil

(Fig. 5.2). In the total top 10 cm of soil of all treatment, only 3 kg NO3
--N ha-1 was left after land 

preparation, representing <20% of the NO3
- present on day 32.  

Table 5.1 Mixed model analysis of the importance of fallow management in controlling soil DIN variability over 
time (with the strength of the factor’s impact on the model as F (df) and significance as p<0.05). For 
water (W) treatments fields were kept fields were kept either continuously flooded, continuously dried, 
or allowed to wet-dry with rainfall over the fallow period (W) and then subdivided into two straw 
treatments (S) (crop residues either removed or returned to the soil) (n = 4 per split-plot per sampling 
date). Water treatments were assessed based on a total of 10 sampling dates (5 during fallow, 3 during 
land prep, and 1 during crop growth) and straw treatments were assessed based on 5 sampling dates (2 
during fallow, 1 during land prep, and 1 during crop growth)

Parameter Factors
Time Water Straw W x S T x W T x S T x W x S

Oxic

(0-2 cm)

NH4
+ 21.0 (9)*** 0.234 (2) 2.05 (1) 2.29 (2) 6.68 (16)*** 5.09 (3)** 4.40 (2)**

NO3
- 20.4 (9)*** 13.7 (2)*** 4.94 (1)* 11.2 (2)*** 7.39 (16)** 4.98 (3)* 5.15 (6)**

δ15N-NO3
- 34.2 (8)*** 0.790 (2) 2.50 (1) 0.293 (2) 1.61 (14) 0.938 (2) 0.107 (4)

δ18O-NO3
- 6.66 (8)* 2.31 (2) 1.99 (1) 1.76 (2) 1.47 (14) 1.56 (2) 0.935 (4)

Plough

(2-10 cm)

NH4
+ 13.9 (9)*** 2.84 (2) 1.19 (1) 0.614 (2) 5.44 (16)*** 1.05 (3) 0.807 (6)

NO3
- 12.3 (9)*** 0.244 (2) 1.52 (1) 0.148 (2) 2.32 (16) 0.513 (3) 0.840 (6)

δ15N-NO3
- 25.1 (8)*** 0.957 (2) 5.37 (1)* 0.953 (2) 1.10 (14) 0.777 (2) 0.496 (4)

δ18O-NO3
- 22.8 (8)** 1.32 (2) 3.29 (1) 1.78 (2) 1.03 (14) 1.67 (2) 1.49 (4)

Hardpan

(50 cm)

NO3
- 56.2 (6)*** 2.37 (2) 0.56 (1) 0.64 (2) 1.53 (5) 6.34 (2) 0.907 (1)

δ15N-NO3
- 1.44 (5)* 0.433 (2) 1.15 (1) 0.132 (2) 0.125 (4) 1.25 (1)

δ18O-NO3
- 3.54 (5) 1.93 (2) 1.35 (1) 1.73 (2) 0.321 (4) 3.86 (1)

***p<0.001
**p<0.01
*p<0.05 

Porewater NO3
- concentrations at the hardpan of treatments F and R had a mean value of 0.45 

±0.05 mg NO3
--N l-1 (~1.76 g N kg-1 soil) during the fallow. (Drying during the fallow made it 

impossible to collect porewater from treatment D on days 1 through 32 or from treatment R on day 

14.) Once land preparation commenced, NO3
- concentrations at the hardpan below treatments F, D and 

R decreased to a mean of 0.55 ±0.1 µg NO3
--N g-1 soil, and did not change significantly following 

transplanting (Table 5.1). Ammonium was not present in detectable concentrations at the hardpan on 

any date in any treatment. 
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5.4.3 Nitrate isotopes

Values of δ15N-NO3
- and δ18O-NO3

- were dynamic over time in the floodwater, oxic soil, 

plough soil, and porewater at the hardpan (Table 5.1). Variations in δ15N-NO3
- and δ18O-NO3

- were 

positively correlated with each other across all samples (r =0.385, p<0.01). Although δ15N-NO3
- was 

higher in treatments without residue incorporation (14.5 ±1‰) than those with (13.0 ±2‰) (p<0.05)), 

vertical (surface water v. oxic v. plough v. hardpan) and temporal variations in δ15N- δ18O- NO3
- were 

not influenced by residue or water management. Both NO3
- isotopes became more enriched in all 

treatments over all sampling dates (p<0.001), but the dynamics within each layer was distinct over 

time, as was the degree of change over depth. 

The isotopic composition of NO3
- in floodwater in treatment F was 9.75 ±4‰ for δ15N and 

4.80 ±5‰ for δ18O during the fallow, statistically similar to their composition in the adjacent oxic soil 

layer (Fig. 5.3). Following flooding during land preparation, floodwater enrichment in both NO3
- 

heavy isotopes increased (p<0.05) to 19.9 ±4‰ (δ15N) and 19.5 ±6‰ (δ18O), and did not change 

significantly following transplanting (or vary between treatments) (Table 5.1). The slope of the linear 

regression of δ18O-NO3
- v. δ15N-NO3

- in floodwater over time was 0.46 (r2 = 0.30, p<0.05,) (data not 

shown).

113



Figure 5.3 Composition of δ15N-NO3
- and δ18O-NO3

- in the oxic (a, b) and plough (d, e) layers of soil over time, and 
plotted verse each other (c, f). Measurements were taken during the fallow (white; days 1-32), land 
preparation (light grey; days 37-50) and crop growth (dark grey; day 70). During the fallow plots were 
maintained as either continuously flooded (F), continuously dried (D), or with natural wetting-drying 
(R). The solid lines in a, b, d, and e indicate the mean isotope composition for all treatments and 
sampling dates, which were: 2.82 ±6‰ (a), 0.231 ±7 (b), 14.0 ±10 (d), and 9.88 ±10 (e). Data is plotted as
treatment means (±SE) (n = 3).  

In the oxic soil layer δ15N-NO3
- and δ18O-NO3

- became slightly less enriched over time, 

declining from +5.64 ±1‰ (δ15N) and +3.24 ±1‰ (δ18O) during the fallow to +0.423 ±0.6‰ (δ15N) 

and -0.114 ±1‰ (δ18O) by day 70 (Fig. 5.3). Changes in δ15N-NO3
- did not co-vary with those in δ18O-

NO3
-  within this soil layer (Fig. 5.3c). Instead, δ15N-NO3

- values in the oxic soil depended on the 

relative concentration of NO3
- to NH4

+: the lower the NO3
--N to NH4

+-N ratios the less enriched the 

δ15N-NO3
- (Fig. 5.4). 
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Figure 5.4 A Rayleigh-type plot of δ15N-NO3
- versus the natural log of the concentration ratio of NO3

--N to 
NH4

+-N in the oxic soil layer over time and treatments (either continuously flooded (F), 
continuously dried (D), or allowed to naturally wet-dry (R) during the fallow). Error bars represent
±SE for treatment means per sampling date (n = 3). 

Within the plough layer δ18O-NO3
- co-varied with δ15N-NO3

- , yielding a slope of 0.82 for 

changes δ18O:δ15N over time and between replicates (Fig. 5.3f). Both O and N in the plough layer were

isotopically lightest during land preparation, when intra-plot variability was greatest (Fig. 5.3). The 

difference in enrichment of δ15N-NO3
- and δ18O-NO3

- between plough and oxic soil layers increased 

over time, with NO3
- in the plough layer heaviest relative to NO3

- in the oxic layer during crop growth 

(δ15N-NO3
-: p<0.001; δ18O-NO3

-: p<0.001). These changes in isotopic composition over soil depth 

occurred with a linear slope of 1.15 for δ18O v. δ15N (p<0.001, r2 = 0.95) (Fig. 5.5a). 
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The isotopic composition of NO3
- at the hardpan was 12.6 ±3‰ for δ15N and 12.7 ±4‰ for 

δ18O during the fallow (Fig. 5.5b). Enrichment of δ18O-NO3
-, but not δ15N-NO3

-, occurred during land 

preparation (Table 5.1, Fig. 5.5b), resulting in a weak relationship between the two isotopes over time 

and space, with an r2 = 0.17 (p<0.05) for the slope of δ18O v. δ15N (Fig. 5.5b). The exception to this 

trend was the samples collected from treatment R following the simulated rainfall event on day 20, as 

discussed below. 

Figure 5.5 The difference between δ15N-NO3
- and δ18O-NO3

-  in the plough soil layer (2-10 cm) and at the hardpan 
and that in the oxic soil layer (0-2 cm) (a and b, respectively). Samples were collected on nine sampling 
dates during the dry season fallow (sampled x5 over 30 days), land-preparation (sampled x3 over 19 
days), and cropping (sampled once 19 days post-transplanting, pre-fertilisation) from paddies that were
kept either continuously flooded (F), continuous dried (D), or allowed natural drying-rewetting with 
rainfall (R) during the fallow.

5.4.4 Site-specific εdenit

Nitrate concentrations at the hardpan reached a maximum between 10 and 18 h post-wetting 

(Fig. 5.6a). From 20 h onwards NO3
- concentrations decreased while becoming progressively enriched 

in both 18O and 15N (δ18O:δ15N linear relationship of ~1 (p<0.01, r2 = 0.6)) (Fig. 5.6). The inverse 

relationship between NO3
- concentrations and δ15N- δ18O- NO3

- enrichment after the 20 h ‘tipping 

point’ was used to calculate a site-specific enrichment factor for denitrification (εdenit; ε = (α-1)×1000) 

using the modified Rayleigh equation (Eq. 5.3) of Mariotti et al. (1981) (Eq. 5.4):
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(5.4)   

δ15 N x = δ15 N 0+ε×ln( f
1− f )

f =
C x

C 0

where the proportion of the maximum NO3
- concentration measured during peak leaching (20 h) (C0) 

remaining at the sampling point (Cx) was defined as f, and related to the co-occurring changes in δ15N 

enrichment (δ15Nx v. δ15N0) via εdenit. The same equation was also used to calculate εdenit based on δ18O-

NO3
-. From Eq. 5.4, εdenit for both δ15N-NO3

- and δ18O-NO3
- was calculated as -16‰ (r2 = 0.67 and 0.61,

respectively (p<0.01)) (Fig. 5.6c).

Figure 5.6 The concentration of NO3
- (a) and its isotopes (δ15N and δ18O) (b) in soil porewater measured above the 

hardpan (40 cm depth) in treatment R (wetting-drying, both with and without residue amendments) 
during a mid-fallow (day 20-21) simulated rainfall event. The relationship between NO3

- concentrations
and isotopic composition over this period were then used to calculate εdenit (c). 
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5.5 Discussion

5.5.1 Overview

Similar spatial and temporal trends in isotopic composition across all plots indicated that NO3
- 

production and reduction was controlled by the same processes, regardless of treatment. Thus the 

measured differences in DIN concentrations between treatments reflected differences in process rates. 

The changes in paddy soil chemistry over time and between treatments followed anticipated trends 

(e.g., Buresh et al. (1989) and Becker et al. (2007) also found that N oxides accumulated over aerobic 

fallows were lost from the soil within ~2 weeks of flooding), making the N balance calculated from 

the NO3
- isotope data broadly applicable. The strong redox gradient over depth (similar to that 

observed by others, e.g., Johnson-Beebout et al. 2009) indicates that denitrification should dominate 

below the 2 cm oxic layer. The lack of a significant relationship between δ15N-NO3
- and δ18O-NO3

- in 

the oxic soil layer likewise indicated that denitrification not the dominant impact on the surface NO3
- 

pool, while the ~1:1 enrichment ratio for δ15N:δ18O in the plough layer soil confirms that the NO3
- pool

below 2 cm depth was governed by denitrification. As only trace concentrations of DIN were 

measured in floodwater or at the hardpan, only the top 10 cm of the paddy soil were used to quantify 

N transformations. This simplification is supported by previous findings that, due to steep redox 

gradients, the top ~10 cm of paddy soil is the dominant N cycling zone (Buresh et al. 2008; Endo et al.

2012), and that fallow drying affects only the top 10-15 cm of soil (Ringrose-Voase et al. 2000). 

Building on the vertical trends observed across all treatments, a simple two-box model was 

constructed to quantify Ninput v. Nout (and thus indigenous N, as per Eq. 1) over time (Fig. 5.7), with the 

oxic soil layer (Box 1 in Fig. 5.7) as Ninput and the anaerobic plough soil (Box 2 in Fig. 5.7) as Nout.
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Figure 5.7 A two-box model describing N, and N isotope, cycling in paddy soils. The concentration of NH4
+ is 

determined by the mineralisation rate for disolved organic N (DON) and biologically fixed N (BNF) (or 
molar fraction of organic N mineralised, fminer), and the isotopic signature of this pool should directly 
reflect that of soil organic N (org N), given the associated N enrichment factor for mineralisation (εminer) 
of 0‰ (Hogberg 1997). Under anaerobic conditions (Box 2) NH4

+ can be immobilised back to organic N 
(no known fractionation factor). Ammonium in the oxic layer (Box 1) will be nitrified to NO3

-, meaning 
that the size of the NO3

- pool is a product of the nitrification rate (or, the molar fraction of NH4
+ 

oxidised to NO3
-, fnit) and that δ15N of NO3

- in the oxic layer reflects fnit and the enrichment factor of 
nitrification (+18‰, +26‰, +38‰ (Casciotti et al. 2003)). Once NO3

- moves into the anaerobic soil zone 
(Box 2) it is consumed by denitrifiers (fdenit = proportion of NO3

- from Box 1 remaining) and the isotopic
composition of both δ15N and δ18O of NO3

- in Box 2 reflect the enrichment factor for denitrification 
(εdenit, determined as -16‰ from experimental data). 

5.5.2 Nitrogen inputs

As δ15N-NO3
- composition in the oxic soil layer was primarily determined by ammonia 

oxidation (Fig. 5.4, 5.7), Ninput can be estimated by quantitatively relating the variations in δ15N-NO3
- 

over time to the fraction of substrate nitrified (fnit) as per Rayleigh fractionation (Eq. 5.5):

(5.5)  f nit = (RNO3

RSON
)

1 /α nit

in which the composition of δ15N-NO3
- at sampling time (RNO3) as compared to the original δ15N 

composition of soil organic N (RSON) is used to calculate the net conversion of NH4
+ to NO3

- (fnit) based

on the fractionation factor for nitrification (αnit). Here a range of εnit (εnit = (αnit-1)×1000) values from 

+14‰ to +38‰ (as reported by Casciotti et al. (2003)) were used as the variable DIN pool size caused

by on-going mineralisation and BNF made an empirical εnit measurement implausible (Hogberg 1997).

The δ15N composition of soil organic N was estimated to be 7.14 ±1‰ based on the mean δ15N-NO3
- 

composition across all depths and treatments on day 1, which falls within the +5‰ to +9‰ δ15N soil N

range expected for clay soils (Hobbie and Ouimette 2009). Given these assumptions, the proportion of 

the available N pool represented by the measured NO3
- concentration, and thus total Ninput within each 

plot over time, were calculated. The key outcomes of these calculations were that, 1) higher 

nitrification rates in D plots did not result in higher net accumulation of DIN during the fallow, 2) 
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nitrification in submerged soils, particularly when fallow, was significant, and, 3) land preparation 

'spiked' Ninput (Fig. 5.8a). 

Figure 5.8 The N balance in paddy soils kept either continuously flooded (F), continuously dried (D), or with 
wetting-drying (R) during the intercrop period. Nitrogen inputs (a) are represented as the mean 
(±SE) NH4

+ concentration in the oxic soil layer during fallow, land preparation, and cropping (bars)
as compared to the calculated turnover rate of reduced N to NO3

- via nitrification (fnit) (lines). 
Nitrogen losses are shown as the mean (±SE) change in NO3

- concentration between the oxic and 
plough soil layers during fallow, land preparation, and cropping (bars) as compared to attenuation 
rate (1-fdenit), which was calculated based on Rayleigh fractionation of NO3

- dual isotopes over 
depth. 

The measured fallow was particularly intense in terms of temperature and lack of moisture, 

making it more probable that low NO3
- accumulation rates over the fallow in treatment D were caused 

by low mineralisation rates rather than nitrification inhibition (as discussed by Stark and Firestone 

(1995)). The breakdown and mineralisation of soil organic matter decreases with increasing intensity 

of drying periods in wetting-drying cycles (Yao et al. 2011), meaning very little inorganic N was 

available for nitrifiers, which can in turn be inhibited due to moisture stress (Austin and Strauss 2011).

On the opposite end of the water stress spectrum, submerging paddy soils during the fallow is seen as 
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a way to maximise N storage by inhibiting nitrification (Bird et al. 2002; Linquist et al. 2006; Bierke 

et al. 2008). However, here the isotope data clearly shows that nitrification occurred in treatment F 

during the fallow, with fnit ranging from 0.12 (near the end of fallow) to 0.5 (at the beginning of the 

fallow) (Fig. 5.8a). Therefore the high DIN accumulation during the fallow in this treatment cannot be 

fully explained by differences in turnover rates, which were not consistently different between 

treatments, and is instead hypothesised to come from BNF by cyanobacteria. This hypothesis is 

supported by observed cyanobacterial mats in the floodwaters during this dry season fallow, and is in 

keeping with findings of George et al. (1993) that BNF can be a significant N source in plant-free 

submerged paddies. However, NO3
- dual isotope data could not be used to distinguish between 

mineralisation and BNF derived N due to the variability in εnit during NO3
- production (Buchwald et al.

2012). Despite this limitation, the similar nitrification rates recorded across treatments with different 

measured DIN pools highlights the importance of ‘new’ N inputs (as opposed to internal DIN cycling) 

in determining Ninput.    

Increased nitrification rates immediately following re-flooding, which could explain the 

measured shifts in soil pH (Kogel-Knabner et al. 2010), also supports reports of increasing ammonia 

oxidising bacterial abundance following both re-flooding and ploughing (Fujii et al. 2010; Kogel-

Knabner et al. 2010). The isotopically depleted δ18O-NO3
- measured following re-flooding (~ -15‰) 

contributes to mounting evidence that δ18O of NO3
- formed via nitrification will vary inversely with the

rate of formation (Fang et al. 2012) as the shifting balance between O exchange with the adjacent H2O 

and kinetic fractionation during O incorporation means that the faster nitrification occurs, the less O 

exchange occurs, and the more isotopically depleted the resultant δ18O-NO3
- is (Casciotti et al. 2010). 

This evidence for a 'hot moment' of NO3
- production during land preparation adds complexity to the 

conventional understanding of paddy field N dynamics (i.e., temporally isolated production (aerobic 

fallow) and reduction (anaerobic land preparation)). 

5.5.3 Nitrogen losses 

Attenuation of Ninputs within the treatments could then be calculated from the difference in 

δ18O-NO3
- and δ15N-NO3

- enrichment between Box 1 (oxic soil) and Box 2 (plough layer soil) (Fig. 

5.7) using a modified Rayleigh equation where the initial NO3
- pool size (fdenit = Nplough/Ninput) is defined 

as Ninput from Box 1 (Eq. 5.6): 

(5.6) 

Roxic

R plough

= ( f denit )
α denit−1

Attenuation = 1− f denit

where NO3
- isotopic composition in the plough layer (Rplough) relative to the oxic layer (Roxic) is related 

to the proportion of produced NO3
- (kg N ha-1) denitrified (fdenit) via the site-specific αdenit value 
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calculated following the simulated leaching event in treatment R during the fallow (Fig. 5.6). The εdenit 

of -16‰ calculated for this paddy soil falls within the range of -5‰ to -25‰ measured in pure 

cultures of denitrifiers (Granger et al. 2008) and the reported range of εdenit in soil (from -5‰ to -33‰ 

(Mariotti et al. 1981; Koba et al. 1997)). Interestingly, even under the high mean soil temperatures of 

35ºC (far higher than that in any other published field studies of NO3
- isotope dynamics) denitrifier – 

driven isotope fractionation does not deviate from the expected range, despite the fact that temperature

is a key regulator of denitrifier activity (Braker et al. 2010), and was previously found to alter 

denitrifier associated isotopic fractionation (Mariotti et al. 1982). 

The major assumption of this calculation is that denitrification is the primary driver of NO3
- 

fractionation and N attenuation. While the consistent ~1:1 ratio between δ18O-NO3
- and δ15N-NO3

- 

measured both within plough layer soil over time validates the dominance of denitrification in the 

plough layer, all calculations were performed using the mean of δ18O-NO3
- and δ15N-NO3

- enrichment 

in order to compensate for any other fractionating processes that could occur. It is notably that, in 

contrast to the consistent 1:1 δ18O:δ15N ratio across the redox gradient from oxic to plough layer soils, 

δ18O- δ15N- NO3
- in the floodwater (presumably a mixture of NO3

- diffused from oxic and plough 

depths) was enriched at a 1:2 ratio over time. This contrast provides further evidence that the 1:2 

enrichment ratios often attributed to denitrification in soils and freshwater environments (Kendall 

1998) is actually an artefact of spatially and/or temporally coupled nitrification-denitrification, as is 

becoming increasingly clear from marine research (Casciotti et al. 2013).

Model confidence is also increased by the lack of reported evidence for non-denitrification N 

removal processes in paddy soils. Briefly, abiotic NO3
- assimilation during iron (Fe(II)) reduction 

(Davidson et al. 2003) (which can create 1:2 enrichment of 18O v. δ15N) is not empirically proven to 

occur in soil (Canfield et al. 2010), dissimilatory reduction of NO3
- to NH4

+ (DNRA) (Rutting et al. 

2011) most likely only influences N isotopes, and is thought to ‘dampen’ their enrichment relative to 

that of δ18O-NO3
- (Dhondt et al. 2003). Based on this relationship, DNRA might explain the high ratio 

of δ18O:δ15N at the hardpan (Fig. 5.5), but there is minimal evidence for the process in paddy soils 

(Buresh and Patrick 1978; Buresh et al. 2008). Finally, attenuation via nitrifier-denitrification, in 

which nitrifying microbes reduce nitrite (NO2
-) directly to N2O+N2 without producing NO3

- (Kool et 

al. 2010), could not be accounted for using these measurements of NO3
- stable isotopes. However, this 

process is unlikely to go forward in such O2 depleted settings (Kool et al. 2010), and there is no 

evidence for it in paddy soils (Ishii et al. 2011). 

With no evidence for non-denitrification pathways influencing NO3
- isotopic composition Eq. 

5.6 could be confidently used to reveal attenuation dynamics in each treatment over time (Fig. 5.8b). 

Nitrate removal varied over time by management phase (fallow v. land prep v. crop) (p<0.001). The 

lowest attenuation rates for all treatments occurred during the fallow and the highest following 

transplanting, by which point 83.1 ±2% of NO3
- was attenuated across all treatments (Fig. 5.8b). 

Calculated attenuation rates were also used to estimate net Ndenit (Eq. 5.1) in each treatment over time 
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(Table 5.2). In contrast to previous assumptions (Santiago-Ventura et al. 1986), fallow management 

impacted the rate (e.g., occurred most rapidly in ns plots and slowest in s split-plots of D treatments), 

but not the quantity, of denitrification (Table 5.2). Differences in NO3
- concentrations over depth 

followed the opposite temporal trend to attenuation rates, with the greatest concentration differences 

between oxic and plough depths found in treatment R during the fallow (Fig. 5.8b). As the 

experimental fields were kept weed-free during the fallow (plant N uptake ~0), we conclude that NO3
- 

leaching (which causes no isotope fractionation) rather than denitrification accounted for the majority 

of DIN lost from aerobic treatments over the fallow. 

Table 5.2 Net attenuation of NO3
- from paddy soils kept either continuously flooded (F), continuously dried (D), 

or with wetting-drying (R), with or without reincorporation of rice residues (s v. ns, respectively). 
Results are reported in kg NO3

--N ha-1 in the top 10 cm of soil (±SE) based on stable isotope modelling 
of N inputs and outputs and measured NO3

- and NH4
+ soil concentrations during the 30 day fallow 

period, 19 days of active land preparation (including re-flooding, hydrotilling, and harrowing), and 11 
days after transplanting of the next season’s crop (but prior to the first N fertiliser application). Letters
indicate significant difference between treatments (p<0.05)

Treatment Modelled N losses
(kg N-NO3

- ha-1)1

Fallow Land prep. Crop

F
ns 2.17 (0.5)b 7.12 (1)c 2.23 (0.3)b

s 1.64 (0.4)b 1.93 (0.2)b 2.93 (0.7)b,c

D
ns 1.57 (0.5)b 6.34 (2)c,d 5.74 (0.5)d

s 1.28 (0.3)b 3.16 (1)b,c 8.59 (2)d

R
ns 3.83 (0.6)c 4.03 (1)c 2.19 (1)b

s 1.45 (0.7)a 0.53 (0.3)a 5.16 (2)c,d

1Soil bulk density = 1.4 

Although NO3
- leaching from paddy soils is assumed to be minimal (Bouman et al. 2002), 

evidence here for management-driven, acute NO3
- leaching is corroborated by recent reports of fallow 

period spikes in NO3
- concentrations in aquifers under lowland rice production (Jin et al. 2012). 

However, the lack of measurable denitrification in treatment F during the fallow was surprising given 

the highly reducing conditions measured in the plough layer soil and evidence for high N inputs (as 

discussed in the previous section). This lack of measurable NO3
- fractionation with depth may have 

been caused by the fact that, in the absence of active plant roots, the movement of NO3
- within the soil 

profiles was dominated by diffusion (Chen et al. 2007), which could ‘mask’ the isotope signature of 

denitrification (e.g., Sebilo et al. 2003, Chapter 2, Chapter 3). Additionally, the anomalous NO3
- 

isotope patterns measured at 40 cm depth in this study may indicate that the NO3
- leached from the 

plough zone is attenuated by a non-denitrifying process below the denitrifying zone, meaning that the 

rates calculated here represent the 'minimum' net attenuation.
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5.5.4 Implications

While water management did not impact indigenous N supply or N biogeochemistry, isotope 

modelling revealed that high fluxes of nitrification-produced NO3
- (enabled in treatment D by rapid 

increases in mineralisation) combined with increasing denitrification rates created a ‘hot moment’ of 

NO3
- loss during land preparation that resulted in the fairly homogeneous indigenous N availability 

observed across all treatments. The concurrent decreases in total C and N following land preparation 

corroborate the conclusion that net mineralisation of the organic matter (accumulated over the fallow) 

during active land turbation (Olk et al. 2006) creating a temporal asynchronicity between N 

availability and demand. This evidence that N losses during land preparation hinge on co-occurring 

nitrification and denitrification indicates that application of nitrification inhibitors prior to the growing

season could minimise the need for N fertilisers use, a finding that contrasts previous assessments that 

these amendments would not impact paddy N losses. 

Although residue incorporation did not change the net N balance over the measured period, it 

did delay N losses from land preparation (when the majority of N was lost from all ns plots) to the 

period following transplanting (Table 5.2). This short duration of the stabilising effect of organic 

amendments in submerged soils has been reported previously (George et al. 1993), and supports the 

finding of Bierke et al. (2008) that residue management during fallow has no long-term effect on soil 

N stores. Unlike Linquist et al. (2006), who linked residue incorporation in continuously flooded soils 

to increased N mineralisation and availability, in this experiment the highest grain yields occurred in 

fields kept continuously flooded without residue additions (R.J. Buresh, unpubl.). Indeed residue 

incorporation within the different water treatments consistently inhibited rice production: grain yields 

were on average decreased by 0.75 ±0.4 Mg ha-1 in s v ns split-plots (p<0.001). Any beneficial 

stabilisation of available N caused by residue incorporation did not occur over a timeframe that was 

useful to the rice plants, highlighting the importance of the timing of residue incorporation on its 

impact (Witt et al. 1998).  

5.6 Conclusions 

By overlaying NO3
- stable isotope data onto DIN concentration data over time and depth, the, 

“highly complex and heterogeneous” biogeochemical and physiochemical reactions triggered by re-

wetting and dynamic land turbation were disentangled, contributing to the growing body of knowledge

on the biogeochemical effects of soil re-wetting. We found that, for soils not receiving organic 

amendments, the majority of production and reduction of DIN occurred in the first few days of land 

preparation, particularly in soils dried over the intercrop period due to rapid mineralisation, 

nitrification, and denitrification as the soil was wetted and disturbed. Based on this quantification of 

the importance of activities during land preparation in limiting indigenous N, the clear next step in 
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creating more fertile, and thus sustainable, lowland rice production is to test the impact of modifying 

the land preparation regimen, rather than the fallow, on paddy soil N stocks.  
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Plate 4 Clockwise from top right: Heathcote River and adjacent structural damage at reach 10 in March 2011, 
days after the main earthquake; wastewater entering the river above reach 6 in the days following the 
February earthquake; Heathcote River at reach 7 hours after a significant aftershock in June 2011 
(note whitening of water and high water mark left on the bank by liquefaction of fine sediments).
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Chapter 6

Biogeochemistry and community ecology in a spring-fed urban

stream following a major earthquake 

A version of this chapter was published. Wells, N.S., T.J. Clough, L.M. Condron, W.T. Baisden, J.S. 

Harding, Y. Dong, G.D. Lewis, G. Lear. 2013. Biogeochemistry and community ecology in a spring-

fed urban stream following a major earthquake. Environmental Pollution 182:190-200
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6.1 Abstract

In February 2011 a major 6.3MW earthquake in Christchurch, New Zealand inundated urban 

waterways with sediment from liquefaction and triggered sewage spills. The impacts of, and recovery 

from, this natural disaster on the stream biogeochemistry and biology were assessed over six months 

along a longitudinal impact gradient in an urban river. The impact of liquefaction was masked, 

particularly in the lower reaches, by earthquake triggered sewage spills (~20,000 m3 sewage day-1 

entering the river for one month). Within 10 days of the earthquake dissolved oxygen in the lowest 

reaches was <1 mg l-1, in-stream denitrification accelerated (attenuating 40-80% of sewage nitrogen), 

microbial biofilm communities changed, and several benthic invertebrate taxa disappeared. Following 

sewage system repairs, the river recovered in a reverse cascade, and within six months there were no 

significant differences in water chemistry, nutrient cycling, or benthic biological communities between

severely and minimally impacted reaches. 

Keywords: stream biofilm; stable isotopes; sewage contamination; liquefaction; natural disaster 

recovery
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6.2 Introduction

On the 22nd of February 2011 a 6.3 magnitude (MW) earthquake hit the Canterbury region of 

New Zealand’s South Island (epicentre at 43°58’S, 172°68”E), leaving 185 people dead in the city of 

Christchurch (population ~370,000). Strong shaking (peak ground acceleration of >2.2g) brought 

~580,000 tonnes of silt and sand to the surface (liquefaction), damaging infrastructure and rupturing 

land surfaces (Christchurch City Council, pers. comm.; Segou and Kalkan, 2011 and references 

therein). The environmental degradation, particularly to surface waters, caused by such an earthquake 

impacts urban recovery and rebuild (e.g., Menoni, 2001; Halvorson and Hamilton 2010), yet the 

functional response of rivers to earthquakes has rarely been assessed. 

Earthquakes are known to influence hydrology, changing spring locations and river heights 

(Mohr et al., 2012), which could in turn influence aquatic biogeochemical cycles (Lohse et al., 2009). 

Liquefaction caused by abrupt hydrologic shifts (described in Muir-Wood and King (1993) and Wang 

and Manga (2010)), could result in further biogeochemical disruptions similar to those associated with

chronic sediment loading of waterways (Wood and Armitage, 1997), while also smothering streambed 

communities in the short-term. Additionally, in urban ecosystems prolonged contamination can occur 

due to leaks from pipes, septic tanks, pumping systems, and wastewater treatment facilities damaged 

by the earthquake. The excess nutrients discharged in these sewage spills affect in-stream 

biogeochemical cycling (Kaushal et al., 2011), resulting in the decay of benthic (Wright et al., 1995) 

and microbial (Wakelin et al., 2008) communities as rapid biological growth causes overconsumption 

of oxygen and eutrophication. 

From the ecological perspective, this type of abrupt, discrete ecosystem disturbance is 

recognised as an important driver of stream composition and function (Sousa, 1984). Resilience of 

fish, invertebrates, and algae to natural disturbances such as flooding (Boulton et al., 1992), debris 

flows (Lamberti et al., 1991), and hurricanes (Shiller et al., 2012) is frequently observed, yet has rarely

been linked with disturbance effects at fundamental trophic levels (i.e., microbial cycling of key 

nutrients). Furthermore, due presumably to their relatively infrequent occurrence, the impact of 

earthquake related disturbances on freshwater systems has never been rigorously quantified. 

In order to assess the magnitude and duration of the impact of the 22nd February 2011 

earthquake on local rivers, I integrated traditional indicators of stream health (water chemistry, 

Escherichia coli (E. coli) counts and benthic invertebrate metrics) with emerging isotopic and 

microbial techniques. I deployed these measures along a longitudinal impact gradient in the Heathcote 

River/ Ōpawaho (one of two major river systems with its catchment entirely within the city of 

Christchurch) for six months following the initial quake. I believe this to be the first comprehensive 

study of the interactions between earthquakes and urban surface water health.
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6.3 Materials and methods

6.3.1 Study site 

The Heathcote River/ Ōpawaho is a spring-fed 5th order urban river (mean discharge of 990 l s-

1) running from the western suburbs of Christchurch, New Zealand to the Heathcote-Avon Estuary/ 

Ihutai east of the city (Wilson, 1976); it has a total length of 62 km. Ten reaches were selected to cover

the range of earthquake impact (Fig. 6.1): minimally impacted upstream (S1 – S3, A); moderately 

impacted by liquefaction and sub-surface sewage leaks (S4 – S6); severely impacted by liquefaction 

and both sub-surface and direct discharge of untreated sewage (S7 – S10). Sites S1 through S10 were 

located along the main stem of the river while site A was an upstream tributary (draining residential 

and pasture land with minimal earthquake damage). Additional measurements were taken at sites ‘B’ 

and ‘C’ on 09-Mar-2011 (Fig. 6.1). Biological samples (biofilms and benthic invertebrates) were not 

collected from S10 as it was affected by salinity from the estuary, and thus communities could not be 

usefully compared to those upstream. Direct sewage influx occurred at S6, S9 and S10, with the 

duration of ‘spill’ decreasing from west to east as repairs were completed more rapidly in less 

damaged areas (New Zealand Civil Defence, 2011).

Sewage input was characterised from samples collected from an open discharge pipe upstream

of S6 on 09-Mar-2011. Liquefaction sediment was collected from Tai Tapu (15 km southwest of 

Christchurch) following the 04-Sep-2010 Greendale Fault earthquake (Fig. 6.1). This sediment was 

derived from the same ancient alluvial deposits as those under Christchurch, and thus chemically 

analogous to liquefaction deposits following the 22-Feb earthquake. To account for any seasonally 

driven variation, daily climate data (rainfall, air temperature, wind direction) was obtained from a 

continuous monitoring site at the Christchurch International Airport (CliFlo: NIWA’s Climate 

Database Online (http://cliflo.niwa.co.nz). Retrieved 10-Oct-2011). 
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Figure 6.1 The Canterbury region of New Zealand’s South Island (pictured on left) affected by the 22-Feb-
2011 6.3MW and 13-Jun-2011 6.1MW earthquakes along the Port Hills Fault (A). Within 
Christchurch city (starred on map A), the Heathcote River/ Ōpawaho study area (B) spanned an 
impact gradient from minimally affected headwaters in the west through severely affected reaches 
in the east (minimally, moderately, and severely affected zones indicated with shading). The River 
drains into the Avon-Heathcote Estuary/ Ituhai to the east, where the Bromley Sewage Treatment 
Plant (STP) is also located. Sampling reaches are labelled S1-S10, plus A, B, C, with S1 through S3 
and A minimally impacted by the earthquakes, S4 through S6 moderately impacted (liquefaction 
and some sewage), and S7 through S10 severely impacted (from both sewage and liquefaction). 

6.3.2  Surface water sampling

Sampling was synchronised with periods of likely acute change (i.e., following the 22-Feb-

2011 6.3MW earthquake and a significant 6.1MW aftershock on 13-Jun-2011). Samples were collected 

weekly for the first month, biweekly through Jun-2011 and monthly for Jul-2011 and Aug-2011. 

Additional samples were collected on 13-Jun-2011 (1st samples collected ~3-hrs after the 6.1MW 

quake), 14-Jun-2011, and 16-Jun-2011. 

At each site dissolved oxygen (DO) and water temperature were measured at 20 cm depth 

using a portable hand-held meter (550A YSI, Yellow Springs, OH). One litre of water was collected 

from the thalweg of the stream in an acetiline bottle (using a reaching pole to minimize sediment 

disturbance), headspace air removed, and stored on ice for <2 hr. Upon return to the laboratory, 5-ml 

of each sample were set aside for E.coli counts and the remainder was passed through GF/F 

(Whatman) filter paper and filtrate stored at -20ºC until chemical and isotopic analyses. 
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Concentrations of nitrate (NO3
-), chloride (Cl-), and bromide (Br-) were measured in filtered 

water samples on a Dionex suppressed ion exchange chromatograph. Chloride and Br- concentrations 

were included as their relative proportion to NO3
- can distinguish biological NO3

- uptake from dilution 

(e.g., Trisk et al., 1993). Dissolved organic carbon (DOC) content was measured on a Shimadzu TOC-

5000A total organic carbon analyser fitted with an ASI-5000A auto sampler. Ammonium (NH4
+) 

concentrations were measured on acidified samples (as per Dobermann et al., (1994)) using the 

salicylate method (Kempers and Zweers 1986) on an UVmini-1240 spectrophotometer (Shimadzu). E.

coli abundance was measured using Petrifilm E.coli count plates, as per manufacturer’s instructions 

(3M, USA).

Water samples from 09-Mar-2011, 13-Jun-2011, and 23-Aug-2011 were screened for a suite of

elements (Al, As, B, Ba, Ca, Cu Fe, K, Li, Mg, Mn, Na, P, S, Si, Sr, Zn) on an inductively coupled 

plasma optical emission spectrophotometer (Varian 720). Filtered water samples were introduced 

using an SP3 autosampler (concentrated with a Cetac U5000AT Ultrasonic Nebulizer) in aerosol form 

and light intensity measured in one simultaneous reading covering wavelengths 167–785 nm at 7 pm 

resolution.

6.3.3 Nitrate isotopes

Nitrate (N and O) and H2O (D and O) dual isotopes were measured in all surface water 

samples. All isotope results are reported in respect to internationally recognised standards (Eq. 6.1). 

(6.1) δ ‰ =
(Rsample−R standard )

R standard

×1000

For N-NO3
- the isotope mass ratio of the sample (Rsample) is reported with respect to AIR; the isotope 

mass ratios of O-NO3
-, D-H2O, and O-H2O are reported with respect to VSMOW.

Nitrate isotopes can be used to quantify nitrogen (N) sources (sewage-N is typically enriched 

in δ15N relative to soil-N sources) and sinks (δ15N and δ18O of NO3
- become progressively enriched 

during denitrification) (reviewed by Xue et al., 2009)). Denitrification (the anaerobic microbial 

reduction of reactive NO3
- to N2O and N2 gases using C as an electron donor) (as reviewed by 

Seitzinger et al., 2006; Groffman et al., 2009) was of particular interest as it would be favoured under 

the conditions created by effluent discharge. Water isotopes were measured to assess hydrologic 

changes and differentiate water sources (Reddy et al., 2011; Wassenaar et al., 2011)

Nitrogen and O isotopes of NO3
- were measured using the Cd reduction- azide reaction 

(McIlvin and Altabet, 2005). Each batch contained duplicates of three international standards (IAEA-

N3, USGS-34, and USGS-32), two internal standards, and water blanks. The δ18O and δ15N of resultant

N2O were measured at Lincoln University on a Europa PDZ (SerCon) 20-20 IR-MS. Method precision

was calculated as 0.8‰ for δ18O- NO3
- and 0.6‰ for δ15N- NO3

-.  
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Water isotopes were measured at the National Isotope Centre (GNS Science, Lower Hutt) or 

the University of California Davis Stable Isotope Lab. At the National Isotope Centre, samples were 

run in duplicate on a dual inlet IsoPrime mass spectrometer using the equilibration method at 25ºC for 

δ18O-H2O and continuous flow using injections to a Chrome HD for δD-H2O. Results were normalized

to two internal standards and analytical precision was 0.1‰ for δ18O and 1.0‰ for δD. At the 

University of California Davis samples were determined via laser spectroscopy (Los Gatos Research 

Instruments). Analytical precision was reported as 0.1‰ for δ18O and 0.5‰ for δD. 

6.3.4 Biofilms 

Recognising that biofilms microbial communities are both facilitators and indicators of stream

function (Lear et al., 2011), epilithic biofilms were collected from S2, S3, A, S4, S5, S6 and S9 (Fig. 

6.1) on 09-Mar-2011, 31-Mar-2011, 05-May-2011, 04-Jun-2011 and 05-Jul-2011 and used to 

complement process-level NO3
- stable isotope information. Sites S7 and S8 were not routinely 

monitored as they lacked the hard substrates required for the development of epilithic biofilms, or 

were entirely inundated with silt. Rocks (3 – 5) were collected from each reach and biofilm biomass 

recovered from the surface abrasion using a Speci-SpongeTM. Individual samples were sealed and 

stored at -20ºC until analysis, at which point the sponges were masticated and DNA extracted (as per 

Miller et al. 1999) and community structures characterised using ARISA (as per Lear et al., 2009). 

6.3.5 Benthic invertebrates

Benthic invertebrates were collected using a standard kick net (500 µm mesh) from S2, S3, A, 

S4, S5, S6, S7, S8 and S9 in Mar-2011, May-2011, and Sep-2011. The bed was disturbed at five 

locations (selected to represent a range of habitats) per reach. Samples were preserved in the field in 

70% ethanol, pooled to create a single composite sample at each reach (as per Stark et al., 2001), and 

transported to the laboratory, where community composition was determined by identifying to the 

lowest practicable taxonomic level (generally genus) using the keys of Winterbourn (1973) and 

Winterbourn et al. (2000). (Density data was not collected due to human health risks.) 

6.3.6 Statistics/ Quantitative methods

Differences between sites, impact groups, and over time were determined using a one-way 

ANOVA with a Sidak post-hoc test (SPSS ver.20). Relationships between parameters were determined 

as Pearson's correlations (SPSS ver.20). Linear regression between variables was evaluated for 

goodness of fit (r2) and significance (SigmaPlot ver.12, SPSS ver.20). Reaches were compared over 

time using two-way ANOVA (data was tested for normality and heterogeneity and transformed where 

appropriate) (SigmaPlot ver.11; Systat Software, 2008). Significant results for all tests were defined as 

p <0.05. Values are reported as means ±SD, unless otherwise indicated.
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Nitrate attenuation was calculated for dates with linear relationships between change in δ18O-

NO3
-, δ15N-NO3

- and distance using a modified Rayleigh kinetic fractionation model (Eq. 6.2) (Ostrom 

et al., 2002):  

(6.2) Attenuation = 1−e(δ−δ0)/ε denit

Upstream (S1, S2, A) values were taken as the unfractionated isotopic source signature (δ0) and 

compared to the enrichment downstream (δ). This equation was solved using enrichment factors (εdenit)

of -2‰ and -10‰ (reflecting the reported range for εdenit in surface water (-14.8‰ (Chen et al., 2009) 

to -1.5‰ (Sebilo et al., 2003)), and are comparable to the modelling range recommended by Barnes 

and Raymond (2010)). All attenuation calculations were based on the composition of δ18O-NO3
-, which

is thought to be less impacted by source mixing than δ15N-NO3
- (Barnes and Raymond, 2010), 

particularly in New Zealand where input of δ18O enriched atmospheric NO3
- is negligible (Parfitt et al.,

2006). The resultant attenuation rates were combined with stream flow (Environment Canterbury) and 

direct sewage discharge (Dewson and Stevenson, 2011) data to quantify sewage-N removal during 

downstream transport. 

For biofilm samples, Genemapper software (version 3.7; ABI Ltd., Melbourne, Australia) was 

used to assign a fragment length (in nucleotide base pairs) to ARISA peaks via comparison with a 

standard ladder (LIZ1200; ABI Ltd.). Data were then standardised as per Lear et al. (2009). To assess 

the extent of difference between bacterial community in the post-earthquake Heathcote River and 

those in other regional waterways, Heathcote River biofilms were run against biofilm samples 

collected from 51 different streams in the Canterbury Region in Feb/Mar-2010, including from S3 on 

the Heathcote River. (See Lewis et al. (2010) for more details). 

To test for differences in bacterial community structure among samples, ARISA data were 

analysed using permutational multivariate analysis of variance (PERMANOVA, Anderson 2002, 

McArdle and Anderson 2001) on the basis of the Bray Curtis similarity measure (a value of 0 indicates

no similarity and one of 100 indicates community equality). All tests were performed using type III 

sums of squares (as missing data points cause the data to unbalance) and 9999 permutations under the 

reduced model (Anderson and Gorley 2008). Multivariate patterns in biofilm community structure 

(based on the ARISA data), were tested using multidimensional scaling (MDS) and Bray Curtis 

similarity. All multivariate analyses were performed using the PRIMER v.6 computer program (Clarke

and Gorley 2006) with the additional add-on package PERMANOVA+ (Anderson and Gorley 2008). 

A range of metrics were calculated for benthic invertebrate communities in order to classify 

stream health over distance and time. Metrics included: total taxonomic richness, the number of 

pollution sensitive EPT taxa (Ephemeroptera, Plecoptera and Trichoptera or mayflies, stoneflies and 

caddis flies) and the Macroinvertebrate Community Index (MCI). The MCI is widely used as a water 

quality monitoring index in New Zealand, and is calculated by allocating pollution tolerance scores to 
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each individual taxa and then summing these scores for each site (see Stark (1993) and Stark (1998) 

for detailed explanation). 

6.4 Results

6.4.1 Hydrology

Although abrupt increases in river discharge were observed following the 22-Feb and 13-Jun 

quakes, these fluctuations were not statistically significant on the time scale relevant to this study. 

Variations in δD- H2O v. δ18O-H2O in Heathcote River had a slope of 7.62 (r2 =0.92, p<0.001), roughly

equivalent to the global meteoric water line (GMWL) (slope =8), with a mean δD-H2O of -55.8 ±3 ‰ 

and δ18O-H2O of -8.28 ±0.5 ‰ (Fig. 6.2). Both δD and δ18O decreased significantly over river 

distance, with respective slopes of -0.193 m-1 (r2 =0.037, p<0.05) and -0.222 m-1 (r2 =0.049, p<0.05). 

Outlier values were collected following extreme weather events: a storm from the south-west on 23-

Mar-2011 and one from the north-west on 06-Apr-2011. However, δ18O or δD of water collected 

during the high-flow event immediately following the 13-Jun 6.1MW quake were not significantly 

different in mean or slope. Water temperature did not vary significantly with either spatial or temporal 

proximity to the earthquakes (data not shown). Nor did proximity to the earthquakes change the 

elemental composition of river water: there were no significant changes in concentrations of Al, As, B,

Ba, Ca, Cu Fe, K, Li, Mg, Mn, Na, P, S, Si, Sr, or Zn between reaches or dates (13-Jun-2011, Mar-

2011, Aug-2011). Phosphorous (P) was elevated in severely impacted reaches in Mar-2011 (impact 

zone x time: F =15.5, p<0.001). Liquefaction sediments had very low concentrations of major 

nutrients (1.0 mg g-1 Olsen P, <10.0 mg g-1 total C, <4.0 mg g-1 total N), high base saturation (82%) 

and neutral pH (7.01).  
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Figure 6.2  Water isotopes (D-H2O v. δ18O-H2O, measured v. VSMOW) of surface water samples collected from
10 sites along the Heathcote River on 14 dates from 09-Mar-2011 through 28-Aug-2011. Values for 
municipal wastewater/ sewage collected on 09-Mar-2011 are also shown. Data is grouped by dates: 
09-Mar-2011 through 21-Apr-2011 versus 05-May-2011 through 23-Aug-2011, with 13-Jun-2011 
isolated (water collected ~3 h after 6.1MW earthquake).

6.4.2 Water chemistry

Sewage entering the Heathcote River on 09-Mar-2011 had significantly elevated 

concentrations of dissolved organic carbon (78.1 ±4 mg DOC l-1), ammonium (20.5 ±2 mg N-NH4
+ l-1),

total P (4.15 ±0.03 mg P l-1; impact group x time) and copper (0.004 ±0.0005 mg Cu l-1) relative to 

river water in minimally, moderately and severely impacted reaches. Nitrate isotopes of sewage 

(+2.2‰ of δ15N-NO3
-, +9‰ of δ18O-NO3

-) were not significantly different from upstream NO3
- or the 

reported soil-N range (Xue et al., 2009). 

Primary indicators of sewage contamination (E. coli, NH4
+, DOC) were elevated in severely 

impacted reaches relative to both upstream reaches from Mar-2011 through Jul-2011(impact zone x 

time: E.coli (F =12.5, p<0.001), NH4
+ (F =30.9, p<0.001), DOC (F =2.02, p<0.05)) (Fig. 6.3).
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Figure 6.3   Concentrations of E. coli (A), NH4
+ (B), DOC (C), and DO (D) in the Heathcote River across each of

the three identified impact zones (minimal (black circles), moderate (grey circles) and severe (grey 
triangles)) over a 6-month period following the 22-Feb-2011 Christchurch earthquake. Arrows 
point to the 6.1MW earthquake on 13-Jun-2011. Data are mean ± SE (n =4 for minimal, n =3 for 
moderate and severe).

Dissolved oxygen was significantly lower in severely impacted reaches relative to moderately 

impacted ones through Apr-2011 (p<0.01), with the lowest mean value of 2 mg O2 l-1 measured in 

severely impacted reaches on 09-Mar-2011. Concentrations of Cl- and Br- were significantly elevated 

in severely impacted reaches (p<0.01), while NO3
- was significantly depleted (p<0.05). In the six 

months following the 22-Feb earthquake anion concentrations in minimally impacted reaches did not 

change significantly, whereas in severely impacted reaches NO3
- increased significantly (p<0.05) over 

time and Cl- and Br- decreased (p<0.05). Both the DIN concentration (DIN = NH4
+-N + NO3

--N) and 

the ratio of NO3
- to Cl- were negatively correlated with stream distance (p<0.001, n =105). Flux of 

DIN out of the Heathcote River was 1.5 ±0.3 g N s-1, and did not change significantly over the six-

month monitoring period (Table 6.1). 
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Table 6.1    Nitrogen (N) export gives the flux of DIN (NH4
+-N + NO3

--N) measured at S10 as a proportion of 
gauged stream flow (l s-1). On the far left, days since the 22-Feb-2011 earthquake are demarcated, with 
a dashed line highlighting 13-Jun-2011 earthquake. Estimates of the direct sewage inflow into the 
Heathcote River (Dewson and Stevenson (2011), numbers prior to 08-Mar-2011 are approximate), 
reported in m3 day-1, and the calculated proportion of total daily stream discharge that sewage 
accounted for. Attenuation was calculated using a Rayleigh kinetic – based model for δ18O-NO3

- 
fractionation on sampling dates where in-situ continuous denitrification dominated the isotopic 
signature using enrichment factors (εdenit) of -2‰ and -10‰ for δ18O-NO3

- to provide possible range. 
These rates were then used to calculate net N removal in terms of total sewage loading in kg DIN day-1. 
From 05-May-2011 onward attenuation could not be calculated, as isotope data did not fit model 
assumptions. 

  

6.4.3 Nitrogen cycling

For 40-days following the 22-Feb earthquake, δ15N-NO3
- was enriched relative to a ‘natural’ 

soil-N range across all Heathcote River sites (Fig. 6.4). The ratio of δ18O-NO3
- to δ15N-NO3

- was 

positively correlated with DOC concentration in severely impacted reaches (p<0.05, n=12). By 21-

Apr-2011 the mean δ15N-NO3
- within all three impact groups had decreased to fall within the typical 

‘soil-N’/ recycled-N range (as defined by Xue et al., 2009) (Fig 6.4). Surface water δ15N- δ18O- NO3
- 

during winter months (Jun., Jul., and Aug.) was again enriched at a 1:1 ratio relative to soil-N (Fig. 

6.4). 
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Figure 6.4   Shifts in mean δ15N-NO3
- versus δ18O-NO3

- over time for each impact group (minimally impacted 
comprised of sites S1, S2, S3, A on far left, moderately impacted comprised of sites S4, S5, S6 in 
centre, and severely impacted comprised of sites S7, S9, S10 on far right). ‘A’ demarcates the value 
at initial sampling on 09-Mar-2011, ‘B’ sampling on 05-May-2011, and ‘C’ the final sampling on 28-
Aug-2011, 6-months after the initial earthquake. The box in the lower-left of each graph delineates 
the range of isotopic composition associated with soil-N derived NO3

- (Xue et al. 2009) and the 
dashed line draws the 1:1 δ15N- δ18O- NO3

- enrichment associated with denitrification (Granger et 
al. 2008). Isotope values are reported as mean ±SD for each impact zone (n =4 for minimal, n =3 for
moderate and severe)

Enrichment in δ15N-NO3
- and δ18O-NO3

- increased downstream (Fig. 6.5). This parallel 

enrichment increased linearly with river distance from Mar-2011 through the end of Apr-2011 (r2 =0.4,

p<0.01) (Fig. 6.5A). Significant linear relationships between δ18O and δ15N of surface water NO3
- were 

found for all dates except 13-Jun-2011 (Fig. 6.5), but the slope of this relationship decreased from 1.07

± 0.1 (r2 =0.62 to 0.98, p<0.001) (1st three samplings) to 0.66 ± 0.2 (r2 =0.33 to 0.53, p<0.001) (all 

subsequent dates). Although the change in δ15N-NO3
- v. change in δ18O-NO3

- over distance was 

consistent from Mar-2011 through Apr-2011, the actual δ15N and δ18O enrichment became significantly

depleted in heavy isotopes by 21-Apr-2011 (p<0.05) (Fig. 6.5A, Fig. 6.4). From May-2011 onward 

changes in NO3
- isotopes were no longer significantly correlated with river distance (Fig. 6.5B), 

despite a brief resurgence of sewage contamination following the 13-Jun aftershock (Table 6.1). 

Nitrate isotopes in surface water samples collected hours after this aftershock exhibited no significant 

relationship between δ18O- and δ15N- of NO3
- or enrichment of either isotope over distance (Fig. 6.5C).

Calculated DIN removal declined over time from 190 ±40 T DIN day-1 in Mar-2011 to 55 ±10 

T DIN day-1 in the end of Apr-2011 as sewage inputs decreased (Table 6.1). However, there were no 

clear temporal trends in N attenuation rates, in part due to uncertainty associated with εdenit (Table 6.1). 

From May-2011 onward, attenuation was not calculated as there was no significant relationship 

between δ18O-NO3
-, δ15N-NO3

-, and river distance (Fig. 6.5B), violating the assumption of continuous 

reaction in Eq. 6.2. 
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Figure 6.5  Change in δ15N-NO3
- versus change in δ18O-NO3

- (left) and change in δ15N-NO3
- and δ18O- NO3

-over 
distance (right) measured in surface water of the Heathcote River over the 6-months following the 22-
Feb-2011 Christchurch earthquake. Lines in left-hand figures indicate linear regression of δ15N-NO3

- v. 
δ18O-NO3

-. The data is separated by date into (A) period of whole-stream continuous processing directly
following the main earthquake, (B) re-equilibration with multiple source mixing and ex-situ and in-situ
processes contributing to the δ15N:δ18O relationship, and, (C) hours after the 13-Jun-2011 6.1MW 
aftershock, when there is no significant relationship between δ15N-NO3

- and δ18O-NO3
-, nor any clear 

spatial trends.
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6.4.4 Stream biota

Post-earthquake microbial communities detected in biofilms in the Heathcote River were 

significantly different from both those detected in the same section of river in 2010 (PERMANOVA, 

P<0.0001) and those measured in any other stream sampled within the region (Pairwise 

PERMANOVA, P<0.0001) (Fig. 6.6). Additionally, this community composition within each reach 

changed over the sampling period (Fig. 6.7). The magnitude of shifts was greater in downstream 

reaches: the average Bray-Curtis similarity between samples collected on either 09-Mar-2011 or 05-

Jul-2011 in S2, S3 and S4 was 40, 35 and 35, respectively, whereas in reaches S5, S6 and S9 the 

similarity was 27, 17 and 29, respectively. Pre-earthquake community composition was more similar 

to that in minimally impacted reaches than to that in severely impacted reaches (Fig. 6.7). However, 

the distances in ordination space between minimally impacted/ pre-earthquake reaches and severely 

impacted reaches decreased over time. Winter samples (Jul-2011) displayed a re-divergence from pre-

earthquake composition. 

Figure 6.6 Comparison of bacterial community profiles from biofilm sampled within the Heathcote River post
22-Feb-2011 earthquake, the Heathcote River in Feb-2010, and within a range of other streams 
sampled in the Canterbury region in February/March 2010 (Lewis et al. 2010). Plot is derived from
non-metric multi-dimensional scaling of ARISA traces using a Bray Curtis similarity measure, 2D 
stress, 0.27; 3D stress, 0.21. Between three and five rocks (pseudo-replicates) were sampled within 
each stream site.
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Figure 6.7 Temporal difference in bacterial community profiles from biofilms sampled within sections S2, S3, 
A, S4, S5, S6 and S9 of the Heathcote River. Plot is derived from non-metric multidimensional 
scaling of ARISA traces using a Bray Curtis similarity measure. Trajectories show variation in the 
bacterial communities in each section of the Heathcote River over time: (1) 09-Mar-2011; (2) 31-
Mar-2011; (3) 05-May-2011; (4) 04-Jun-2011; (5) 05-Jul-2011, and data collected from the 
Heathcote River (S3) in Feb-2010 (indicated with star). All data points are average data obtained 
from the analysis of three stream rocks for each stream section and date. 2D stress is 0.21.

Despite degradation of Heathcote River benthic invertebrate communities (mean taxonomic 

richness of 12 taxa, EPT number of 2 taxa, and MCI value of ~70), there was a marked post-

earthquake deterioration of downstream EPT communities (Fig. 6.8). The number of EPT taxa in 

moderately impacted reaches recovered to upstream levels by May-2011, and by Sep-2011 the 

severely impacted reaches had likewise recovered. Although taxonomic richness did not differ 

between reaches, there was a significant increase in the number of taxa from Mar-2011 to Sep-2011. 

Over this time the mean number of taxa in severely impacted reaches increased from 8 to 17. There 

were no changes in MCI, either over distance or over time. 
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Figure 6.8   Mean benthic invertebrate taxonomic richness, EPT richness and Macroinvertebrate Community 
Index values (mean ±SE) for minimally, moderately and severely impacted reaches along the 
Heathcote River. Results from the two-way ANOVA comparisons of metrics over distance (reaches),
time (months), and reaches x months (RxM). The dashed line (MCI = 60) is the indicator point for 
categorising water quality as ‘severely impacted’ (Stark 1998) ('*' indicates p <0.05).

6.5 Discussion

The 22-Feb-2011 Christchurch earthquake and associated destruction caused immediate 

damage to the Heathcote River ecosystem, particularly in the lower reaches of the river (corresponding

geographically to the most damaged parts of the city). By studying changes in key biological 

communities and their relationship to biogeochemical function I found sewage was the primary vector 

of earthquake-induced damage, and that recovery from this damage occurred in an inverse cascade, 

with surface water chemistry returning to baseline immediately after sewage discharge was curtailed, 

then in-stream biogeochemistry (N cycling and benthic microbial composition) resuming more typical 

function within another one to three weeks, and finally the re-establishment of benthic invertebrate 

communities in the most severely impacted reaches four months later.  
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The broad spatial patterns of sewage discharge were geographically congruent to the most 

extreme hydrologic earthquake effects, making it difficult to separate the impact of the two forces. So 

although anecdotal hydrologic disruptions were observed (e.g., river ‘whitening’ following both the 

22-Feb and 13-Jun earthquakes), any effect that they had on river function was masked by the 

overwhelming impact of the sewage being discharged. However, the consistent downstream pattern of 

H and O isotope ratios and water temperatures in the stream over the course of the study (showing no 

relationship to distance from either the 22-Feb or 13-Jun earthquakes) indicate that liquefaction did not

meaningfully alter hydrology relevant to community structure and biogeochemical function. 

Furthermore, both the water and sediments associated with earthquake-triggered liquefaction were 

chemically unremarkable and essentially biologically inert. Given that the region’s surface waters and 

shallow groundwater, the source of hydrologic disturbances following the earthquake (Cox et al., 

2012), share the same source (Stewart, 2012) the lack of chemical and isotopic indicators of 

earthquake hydrology in the Heathcote River was unsurprising. Thus the lack of clear indicators of 

lasting hydrologic change make it reasonable to interpret my results on the biogeochemical and 

biological community response to the 22-Feb earthquake entirely in the context of the sewage spills it 

triggered. 

The drastic changes to the macronutrient composition (DOC, NO3
-, NH4

+ and DO) of surface 

water in the Heathcote River clearly indicate the magnitude of sewage contamination. Changes were 

tightly coupled, both spatially and temporally, with earthquake damage, and surface water chemical 

composition across the entire river returned to typical urban stream levels once sewage inputs 

decreased. The lack of δ15N enrichment in sewage-NO3
- reflects the fact that the ‘heavy’ signature 

commonly associated with sewage-N is a product of the treatment process, when ammonia 

volatilisation preferentially removes ‘light’ N. Although a precise isotopic source signature for 

sewage-N could not be constrained, the dominance of this nutrient source in the river system was 

clearly identified as it drove in-situ denitrification, resulting in increasingly enriched δ15N and δ18O of 

NO3
- in the river. 

Nitrate fractionation by denitrifiers could be used to quantify in-stream N-attenuation, and 

thus sewage-N loading, over the first 40-days following the 22-Feb earthquake. Over this period δ18O-

NO3
- and δ15N-NO3

- were enriched in parallel as they moved downstream, fingerprinting denitrification

as the primary N fractionating process in the system. The overwhelming volume of sewage entering 

the river (~20% of upstream discharge and >10x baseline DIN discharge) provided a roughly 

homogenous N source. This assumption is further validated by the lack of variation in δ18O-H2O 

between NO3
- sources (sewage and river water), meaning NO3

- in either source would have formed 

from isotopically identical O-H2O and O-O2, creating homogenous δ18O-NO3
- (Kool et al. 2009). 

The calculated N attenuation (removing up to 80% of N entering the waterway) explains the 

consistency of the N flux out of the Heathcote River despite the extreme changes in sewage N loading.

Based on this high attenuation efficiency, the elevated DIN concentrations reported in the Avon-
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Heathcote Estuary at the mouth of the Heathcote River post-earthquake (Bolton-Ritchie 2012) must 

have resulted from either, 1) an additional sewage source downstream of the sampled reaches, or, 2) an

elevated N discharge from the Heathcote prior to commencement of sampling in Mar-2011. The latter 

indicates a delayed response of denitrifier communities to the sewage influx consistent with the lack of

significant changes to NO3
- isotope dynamics during the three days of re-elevated sewage discharge 

following the 13-Jun earthquake. A similarly delayed response followed the cessation of sewage 

discharge in Apr-2011, when δ15N- NO3
- returned to the soil-N range one week prior to the loss 

functional dominance of in-stream denitrification. These measurements constrain the response time of 

Heathcote River denitrifying communities to changes in N supply to ~7 days (3-15 days).  

The continuous enrichment of δ15N and δ18O of NO3
- as it was transported downstream ceased 

after 70 days, indicating that in-situ denitrification was no longer controlling the DIN pool. This 

assumption is supported by the loss of in-stream conditions favouring denitrification (high DOC and 

low DO) as sewage inputs decreased. The linear relationship between δ15N-NO3
- and δ18O-NO3

- 

persisted in winter months. However, this enrichment did not occur continuously down the river, and 

thus probably reflects a mixing of heterogeneously denitrified soil-N sources caused by the seasonal 

increase in rainfall accelerating leaching and denitrification of soil-N (Di and Cameron 2002). The 

hypothesis of winter leaching, rather than renewed sewage contamination, driving a seasonal isotopic 

enrichment of NO3
- in river water is supported by the parallel elevation in DOC concentrations in July 

and August (which occurred independently of an increase in E.coli numbers or depletion of DO). 

Interestingly, as river conditions became increasingly aerobic and the availability of electron 

donors (DOC) reverted back to more typical freshwater levels, the δ18O- δ15N- NO3
- enrichment ratio 

shifted from 1:1 (the ratio at which denitrifiers isolated from a range of environments will fractionate 

NO3
- under optimal laboratory conditions (Granger et al. 2008, Wunderlich et al. 2012)) to 1:2 (the 

value traditionally assigned to fractionation by denitrifiers in freshwater systems (Xue et al. 2009)). 

This shift indicates either a change in cellular-level fractionation as C become more limiting 

(Wunderlich et al. 2012) or that increasing oxygen availability in the surface water caused diffusive 

fractionation as denitrified NO3
- moved from the anaerobic sediments into the aerobic surface water 

(Lehmann et al. 2003). This unique empirical data set highlights the need to better quantify the 

controls on NO3
- fractionation across scales. 

The response of biofilm microbes to earthquake damage confirms their sensitivity to dramatic 

shifts in ecosystem function (Allison and Martiny 2008) and nutrient uptake (Hoellein et al. 2009). For

instance, reach S6, which consistently had the highest E.coli counts, also underwent the most extreme 

changes in microbial community composition. The temporal correlation between the changes in NO3
- 

isotope cycling and benthic biofilm microbial communities provides an intriguing possible link 

between composition and function, emphasising the potential insight that could come from novel 

combinations of these two indicators (e.g., Merbt et al. 2011) in order to resolve community function 

v. structure (e.g., Frossard et al. 2012). The ‘regression’ in Jun-2011 could indicate some of the 
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‘increased system variability’ sometimes found following a disturbance (Lamberti et al. 1991). 

However, in light of the continuous recovery of benthic invertebrates over the study period, it seems 

likely that the potential re-divergence of biofilm communities sampled in Jul-2011 is a result of 

seasonal change. During winter months the concentration of DOC in the surface water increased and 

the temperature decreased, both of which could cause a community shift (Battin 2000, de la Rua et al. 

2011). 

The recovery of benthic invertebrate populations lagged behind that of organisms at lower 

trophic levels: all seven genera of caddisflies found in minimally impacted reaches were still absent 

from severely impacted reaches in Sep-2011. However, all other metrics showed complete recovery 

within six months, placing the recovery of the Heathcote River at the rapid end of the spectrum of 

what has been observed in streams impacted by natural disasters, which span from months (Anderson 

1992, Snyder and Johnson 2006) to >10 years (Cover et al 2010, Mundahl and Hunt 2011). The 

relatively slow recovery of higher trophic levels is in keeping with previously observed stream 

recovery patterns (e.g., Lamberti et al. 1991, Mundahl and Hunt 2011). In this case, slower recovery of

benthic invertebrates reflects their reliance on the recovery of water chemistry and basal food 

resources as well as the time needed for re-colonisation of severely impacted reaches (Sousa 1984). 

6.6 Conclusions

In addition to enabling more accurate quantification of sewage-N attenuation, NO3
- isotope 

measures, when used in combination with other biological and chemical metrics, proved a clear 'added

value' as indicators of stream impact and recovery from an acute event. Although the hydrologic 

changes triggered by large earthquakes do not appear to cause significant disturbance to the biological 

communities in the receiving surface water, sewage spills triggered by earthquakes in urban zones do 

pose a significant risk to stream health. However, my finding that stream organisms, from microbes to 

macroinvertebrates, recovered within six months of the earthquake confirm that the city's decision to 

discharge effluent directly into the rivers will have no long-term environmental cost, supporting the 

use of such short-term dumping as an effective natural disaster mitigation strategy. More studies are 

needed to determine how stream health (urbanisation) prior to such a natural disaster dictates its 

resilience to acute change. It should be highlighted that E. coli values returned to background levels 

relatively quickly after sewage discharge ceased, meaning that relying on E. coli as the sole measure 

of ‘water health’, as most monitoring agencies do, would result in a misrepresentation of ecosystem 

recovery.

 In light of my findings, I reiterate Lindenmayer and colleagues’ (2010) call to focus resources

(both monetary and intellectual) on ensuring rapid scientific response to catastrophic events. As cities 

grow in area and density worldwide, the probability of major earthquakes occurring within an urban 

centre is likewise growing, as has been reflected in the recent spate of catastrophic urban earthquakes 

(e.g., 2003 Bam (Iran), 2009 L’Aquila (Italy) and 2010 Port-au-Prince (Haiti)). Thus the motivation to 

characterise the effect of these events on freshwater systems comes not only from scientific curiosity, 
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but also from acknowledgement of the human need for clean water. By identifying the impacts that 

earthquakes can have on surface water resources, recovery efforts can be more precisely focused to 

minimise long-term ecosystem degradation. These findings on the impact and recovery of multiple 

trophic levels in an urban stream following a catastrophic earthquake highlight the need for rapid and 

effective scientific study of these events.  
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Plate 5 Top to bottom: dairy herd grazing near irrigation line adjacent to reach ‘C’ in Harts Creek (Canterbury, 
New Zealand); Harts Creek as it nears its confluence with Lake Ellesmere (reach ‘D’). Both photographs 
taken in February (summer) 2012.
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Chapter 7

Nitrate stable isotopes reveal climate controls on nitrogen

attenuation and discharge in a stream draining intensive pastoral

agriculture (Canterbury, New Zealand)   

A version of this chapter will be submitted for publication. Wells, N.S., W.T. Baisden, T. Horton, T.J. 

Clough. In prep. Tracing the fate of nitrogen inputs into pastoral agroecosystems using nitrate 

isotopes. Biogeochemistry.
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7.1 Abstract

Precise indicators of when and where reactive nitrogen (N) is 'leaking' from grazed pasture 

ecosystems are needed in order to mitigate the threat that intensifying production poses to water 

quality. The natural abundance isotopic composition (δ15N and δ18O) is tipped as a potential means of 

improving N loss measurements based on the knowledge that changes in isotopic composition caused 

by denitrification can be quantitatively related to attenuation once the original isotopic composition of 

the source is known.  We demonstrate that NO3
- stable isotopes (δ15N and δ18O) can play an important 

role in elucidating spatial-temporal variations in the sources and sinks of NO3
- in a catchment 

dominated by pastoral livestock production. An agricultural stream (mean NO3
--N of 6 mg l-1) was 

sampled monthly over a two-year period for NO3
- isotopes along four reaches. In all but three months, 

NO3
- in the lowest reaches reflected nitrification of pasture nitrogen sources (urine and fertilisers, 

δ15N-NO3
- of ~0‰), indicating that catchment nitrogen inputs are in excess of its attenuation capacity. 

It was concluded that the nitrate (mean NO3
--N of 6 mg l-1 and δ15N-NO3

- of 0‰) at the stream mouth 

reflected nitrification of these pasture nitrogen sources, which became progressively enriched at a 

δ18O:δ15N ratio of ~0.6 in shallower upstream reaches. Using a Rayleigh model, monthly attenuation 

rates for the catchment could thus be calculated for 16 sampling dates. Nitrate discharged from the 

stream reflected from 10 to 90% of N lost from the catchment. Attenuation was negatively correlated 

with streamwater nitrate concentration, and highly responsive to rainfall: 93% of calculated 

attenuation (20 kg NO3
--N ha-1 y-1) occurred within 48 h of rainfall. These findings demonstrate the 

power of dense measurements of NO3
- stable isotope for distinguishing temporal and spatial trends in 

NO3
- loss pathways, allowing for improved catchment-scale management of agricultural 

intensification.  

Keywords: Nitrate, δ15N- δ18O- NO3
-, nitrogen attenuation, New Zealand, stable isotopes, 

denitrification
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7.2 Introduction

Increasing reactive nitrogen (N) inputs to agricultural systems have not been accompanied by 

a commensurate increase in crop N use efficiency (Dobermann and Cassman 2005), creating a cascade

of undesirable environmental outcomes as excess N is transferred from land to water. Excess reactive 

N applied to soils as fertilisers and livestock excreta can cause eutrophication of water bodies, 

declining quality of potable water, and emission of the greenhouse gas nitrous oxide (N2O) (Galloway 

et al. 2003). The need to manage agricultural N inputs in order to minimise losses is especially 

pertinent in New Zealand, where increasing nitrate (NO3
-) concentrations in waterways have been 

linked to enhanced N leaching from intensifying pastoral ecosystems (Hamill and McBride 2003, 

Parfitt et al. 2008, Matthaei et al. 2010). 

In order to successfully manage N loading from intensive agriculture, a more mechanistic 

understanding of how changing land-use and climate influence the proportional export of N from 

watersheds is needed (e.g., Kroeze et al. 2012). The major ‘missing’ sink for NO3
- during land-to-water

transfers is denitrification, the microbial step-wise reduction of reactive/ mobile NO3
- to N gasses 

(N2O, and ultimately inert dinitrogen (N2)). Denitrification is the dominant pathway through which N 

is attenuated (i.e., permanently removed from the ecosystem) (Galloway et al. 2003). Once NO3
- is 

available, denitrification only proceeds under anaerobic conditions and in the presence of a suitable 

electron donor such as carbon (C) (Seitzinger et al. 2006; Wallenstein et al. 2006). The factors 

controlling C, O2, and NO3
- availability (e.g., water saturation (Hefting et al. 2004), particle size 

(Findlay et al. 2011), land use (Barnes and Raymond 2010, Sudduth et al. 2013), climate (Mulholland 

et al. 2008), nutrient stoichiometry (Taylor and Townsend 2010), and C quality (Barnes et al. 2012) 

vary at micro to landscape scales, causing denitrification to occur in 'hot spots' and 'hot moments' of 

activity, rather than linearly over time and space. Furthermore, additions of 15N- enriched tracers to 

whole-streams found that in-stream denitrification efficiency decreases as N loading increases 

(Mulholland et al. 2008). This resultant complexity in the rates and occurrence of denitrification has 

made accurate measurements of NO3
- attenuation a challenge, bringing significant uncertainty to 

catchment- landscape scale assessments of N cycling (Galloway et al. 2003, Groffman et al. 2009). 

Kinetic fractionation of NO3
- isotopes (δ18O and δ15N) during denitrification provides a 

potential tool to integrate spatio-temporal variability in attenuation, and have been used successfully to

identify (e.g., Chen et al. 2009) and quantify (e.g., Ostrom et al. 2002, Cohen et al. 2012) the 

importance of denitrification in a range of ecosystems. The method quantifies denitrification fluxes 

(attenuation) using a closed-system Rayleigh kinetic type model (Nestler et al. 2011) (Eq. 7.1):

(7.1)
C
C 0

= ( R
R0)

1/(α denit−1 )
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which relates the enrichment of isotope pool and substrate (NO3
-) concentration measured at any point 

(R and C, respectively) to the original isotopic composition (R0) and concentration (C0) of the NO3
- 

pool using the fractionation factor for denitrification (αdenit). Thus, the δ15N δ18O of exported NO3
-  

could provide the needed precise and accurate measure of N attenuation, and N loading, needed to 

successfully manage the excess N from intensifying pastoral agriculture in New Zealand (where the 

lack of atmospheric N deposition means there are fewer potential sources to convolute this signal 

(Parfitt et al. 2006)). 

Since the 1980’s New Zealand agriculture has undergone rapid land-use conversion from low-

intensity sheep grazing to high-intensity dairy production (Parfitt et al. 2006). This shift is reflected in 

the increased use of N fertilisers (from 50 Gg nationally in 1980 to 350 Gg in 2005) with the average 

dairy farm applying 150 kg N ha-1 y-1 (typically as urea) (Parfitt et al. 2008). Land conversion entails 

higher stocking rates, increased N mineralisation and turnover from animal excreta (urine and 

manure), urea fertiliser application, and area cover of pasture legumes that biologically fix 

atmospheric N (BNF) (e.g., Lucerne (Medicago sativa L.), white clover (Trifolium repens L.)), 

combined with increased irrigation and subsequent physical nutrient leaching (McDowell et al. 2011a, 

McDowell et al. 2011b). Surface water quality monitoring schemes carried out since 1989 have 

documented an increase in N exports (in the form of NO3
-) from agricultural regions of New Zealand 

(e.g., Stevenson et al. 2010) and an overall decline in water quality (Alexander et al. 2002, Larned et 

al. 2004). Concern is growing over the cost of declining water quality, both in terms of ecosystem 

services and the maintenance of a ‘clean’ national environmental image, motivating new mitigation 

efforts. For example, the 2003 Dairying and Clean Streams Accord between monitoring agencies and 

dairy farmer cooperative groups focused on stock exclusion fencing around flowing waters and 

riparian re-planting in order to lower surface water N concentrations (Bewsell et al. 2007). 

Using the SCOPE-N model (Boyer et al. 2002), Parfitt et al. (2006) calculated that 40.5 kg N 

ha-1 are lost from New Zealand soils annually. Lacking functional data, the authors assumed a constant

rate of NO3
- attenuation during land-to-water transfers, designating losses as directly proportional to 

inputs. However, in North American watersheds 'proportional N export' (percent of N inputs 

discharged downstream v. denitrified during transport) was found to range from 7 – 80% over climate 

gradients (Schaefer and Alber 2007, Schaefer et al. 2009). 

In order to more accurately assess the impact of agriculture on water quality, I test the 

hypothesis that NO3
- dual isotopes can provide a means of both quantifying N attenuation, and thus its 

proportional export, from at-risk New Zealand pastoral catchments and identifying the spatial and 

temporal (weather and season) controls on these losses. 
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7.3 Materials and methods

7.3.1 Site description

Stream water was sampled monthly from four reaches along the length of Birdlings Brook/ 

Harts Creek (Waitatari) (subsequently referred to as Harts Creek) (mean discharge at mouth 1,500 m3 

s-1) on the South Island of New Zealand (Fig. 7.1). Harts Creek drains into Lake Ellesmere (Te 

Waihora), a large brackish lake with a ~256,000 ha catchment bounded by the Rakaia and Waimakariri

Rivers to the south and north, respectively, and the Canterbury foothills to the west (Gough and Ward 

1996). Regional land-use is dominated by agriculture (>80% of area), which has undergone rapid 

intensification in production: between 1992 and 2004 urea fertiliser use in Canterbury increased from 

10,000 tonnes to >90,000 tonnes and dairy cattle numbers increased six-fold to ~600,000 (Ford and 

Taylor 2006). Based on satellite images (accessed on GoogleEarth, 01/06/2012) the catchment area of 

Harts Creek was estimated to be 11,482 ha, with an elevation change from 100 to 0 m above sea level 

from west to east. Nitrate flux from Harts Creek into Lake Ellesmere increased from 1993 (beginning 

of monitoring) to 2012 (present) (Environment Canterbury, unpublished data), reflecting the national 

trend of increasing land-to-water nutrient loss (Parfitt et al. 2012) and contributing to the eutrophic 

state of the lake (in which >95% of excess nutrients enter via such spring-fed streams) (Department of 

Conservation 2005). In the 1980's extensive bank restoration was undertaken between reaches C and D

and a vegetated buffer strip (5 to 8 m in width) has been maintained since with the objective of 

decreasing nutrient inputs to the creek by maximising plant uptake and/or denitrification (Collins 

2011). 
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Figure 7.1 The study area is located in the Canterbury Central Plains (between the Rakaia and Waimakariri 
Rivers, and the Southern Alps), on New Zealand’s South Island. Samples were collected from 
Birdlings Brook/ Harts Creek (running from the town of Leeston (43°46’1.99”S, 172°16’57.79”E) to
Lake Ellesmere/ Te Waihora) (inset) from Feb-2010 through Jan-2012. The three main spring-fed 
tributaries enter Birdlings Brook/ Harts Creek between reaches B and C, and numerous ephemeral
drainage ditches intersect with the river along its length (dashed lines) (locations of ditches and 
tributaries based on satellite images accessed via GoogleEarth on 20-Jul-2012).

7.3.2 Sample collection

Four reaches along Harts Creek were sampled monthly from Feb-2010 through Jan-2012. 

Sampling location were spread across the ~10 km of stream length, from the spring-fed source (A) to 

~1 km above the confluence with Lake Ellesmere (D) (Fig. 7.1, inset). Surface water samples were 

collected from the thalweg of the stream using a reaching pole (to minimise sediment disturbance) 

holding a 500 ml sampling bottle. Four pseudo-replicates were collected from each reach at equal 

distances along a 100 m longitudinal transect, creating a nested sampling design of 16 total samples 

per month. Headspace air was removed by overfilling bottles and samples were stored on ice until 

return to the lab, where they were passed through Whatman GF/F filter paper and stored at -20°C until

analysis.

Dissolved oxygen and water temperature were measured in-situ at each reach using a portable 

hand-held meter (550A YSI, Yellow Springs, OH). Stream depth was measured at upstream sites (A 

and B) using a metre stick and at downstream sites (C and D) using stream depth gauges previously 

installed by the regional council (Environment Canterbury). Daily climate data (soil moisture, rainfall, 

air temperature, wind direction, and wind run) were obtained from the Leeston/ Harts Creek climate 

station (43°46’1.99”S, 172°16’57.79”E) (<1 km from site A) (CliFlo: NIWA’s Climate Database 

Online (http://cliflo.niwa.co.nz), data retrieved 06-Jun-2011, 11-Nov-2011, and 01-Feb-2012) (Fig. 
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7.2). Stream flow data was obtained from the Environment Canterbury gauging station at site D (water

depth measured every 15 min, depth and width gauged monthly) (Fig. 7.2). 

Figure 7.2 Mean NO3
- concentration in the surface water of all Harts Creek sites (solid line) ±1 SD (dashed 

lines) (a) (lines represent spline curves fitted to monthly data); and climate-driven hydrological 
conditions (soil moisture (dotted line), stream discharge (dashed line), and daily rainfall (solid line))
in the Harts Creek catchment (b) over the measurement period (Feb-2010 through Jan-2012). 
Shaded areas indicate winter months. (Climate data from the Leeston Harts Creek climate station, 
located <1 km from site A (CliFlo: NIWA’s Climate Database Online (http://cliflo.niwa.co.nz)).

7.3.3 Chemical analysis

Anion concentrations (NO3
-, Cl-, and Br-) were measured in filtered water samples on a Dionex

DX-120 Ion Chromatograph with an AS-50 Autosampler (IonPac AG9-SC column). Dissolved organic

carbon (DOC) content was analysed on a total organic carbon analyser (Shimadzu TOC-5000A) fitted 

with an ASI-5000A auto sampler. Ammonium (NH4
+) concentrations were measured using the 

salicylate method (Kempers and Zweers 1986) on acidified samples as per Dobermann et al. (1994), 

and the absorbance read at 650 nm on a UV-vis spectrophotometer (UVmini-1240, Shimadzu). 

All isotope results are reported in δ notation expressed in per mil (‰). For N-NO3
- the isotope 

mass ratio of the sample is reported with respect to AIR; for O-NO3
- and D- O- H2O the isotope mass 

ratios are reported with respect to VSMOW. Nitrate (N and O) isotopes were measured using the Cd 

reduction- azide reaction method described by McIlvin and Altabet (2005). Each batch of samples 
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contained duplicates of three international standards (IAEA-N3, USGS-34, and USGS-32), two 

internal standards (1 KNO3, 1 KNO2), and water blanks. The δ18O and δ15N values of the produced 

N2O were measured on a Europa PDZ (SerCon) 20-20 IR-MS at Lincoln University and the values of 

δ18O- and δ15N- NO3
- calculated based on linear calibration of the international standards. Method 

precision was 0.8‰ for δ18O- NO3
- and 0.6‰ for δ15N- NO3

-. 

Water isotopes (2/1H and 18/16O) were measured in 50 randomly selected samples at the 

University of Canterbury (NZ) Department of Geology. All results were reported in δ‰ with respect 

to VSMOW. Samples were analysed on a Picarro L1102-i liquid water isotope analyser with dry N2 

gas (3 psi) as the sample analysis atmosphere. Analytical precision was <0.15‰ (δ18O) and <0.5‰ 

(δD) for all samples (based on 5x replicate analysis of samples, with the first two discarded). All 

samples were normalised to the VSMOW scale based on replicate (20x) analysis of international 

standards (SMOW2 and SLAP certified reference materials). GISP was used as an internal standard 

demonstrating accuracy of better than 0.2‰ for δ18O and better than 1.0‰ for δD.

7.3.4 Quantitative analysis

Differences between variables, grouped by sampling date, site, model fit, and/or season, were 

determined based on a one-way ANOVA test (with Tukey’s post-hoc test for multiple groups) and 

interactions between these grouped variables with a two-way ANOVA (SPSS ver.20) (with repeated 

measures when over time, and date and location treated as fixed effects). In order to analyse 

precipitation patterns, samples were categorised as either being collected within 24 h of rainfall (1), 48

h of rainfall (2), or  >48 h after the most recent rainfall (3). Due to the limited number of sampling 

dates, these categories could not be further subdivided into seasons. Pearson correlation was used to 

determine relationships between individual variables over distance and time. Linear regression was 

determined using a least-squared approach and forward variable selection (p<0.05), with goodness of 

fit measured as r2 (SigmaPlot ver.12, SPSS ver.20). Significance for all tests was defined as p<0.05 

and all values in the text are reported as mean ± standard deviation, unless otherwise noted.  

7.3.4.1 Nitrate attenuation and fluxes 

The total NO3
- load of Harts Creek (Ntotal) was defined as the quantity of NO3

--N inputs into 

the catchment (Ninput) times the stream's flow rate (Q) (Eq. 7.2): 

(7.2) N total = N input×Q

where Ninput is defined as the measured NO3
- flux at site D (ND) with respect to the proportion of NO3

- 

attenuated during transport (attennet) (Eq. 7.3): 

(7.3) N input = N D+ (attennet×N D )
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Attenuation was calculated based on Rayleigh fractionation NO3
- isotopes (Eq. 7.4) (Ostrom et al. 

2002):  

(7.4)

Attenuation = 1− f =1−e
(δ−δ0
ε denit

)

attennet =∫
0

x
d [ Attenuation]

dx

 

where the proportion of attenuation at a given site (Attenuation) was calculated using a modified 

version of Eq. 7.1 (f = C/C0) based on the difference in the composition of δ18O and δ15N-NO3
- 

measured at a given site at a given time (δ) versus their original (pre-denitrification) composition (δ0), 

with respect to the enrichment factor for denitrification (εdenit, εdenit=1000×(αdenit-1)). The δ0 for Harts 

Creek was defined as the NO3
- isotopic composition at site D (as explained further in the discussion). 

Enrichment factors of -2‰ and -10‰ were used for all attenuation calculations, which were selected 

to span the reported range for denitrification measured in surface waters from -14.8‰ (Chen et al. 

2009) to -1.5‰ (Sebilo et al. 2003)). Net attenuation for the catchment (attennet) resulted from 

calculting Attenuation occurring at each location (x) downstream and integrating the area under the 

curve (Eq. 7.4). Using Eq. 7.4 to calculate attenuation assumes that, 1) there is constant mixing 

between ‘denitrified’ NO3
- from anoxic microsites and 'non-denitrified' NO3

- in oxic waters (as 

discussed by, e.g., Mariotti et al. (1988) and Green et al. (2010)), all of which originated from a single 

homogeneous and diffuse N source, meaning that, 2) all variation in δ18O-NO3
- and δ15N-NO3

- is 

assumed to be caused by denitrification. Assumption (2) was validated by testing the isotopic 

fingerprint of denitrification (i.e., for significant deviation in the ratio of δ18O-NO3
- to δ15N-NO3

- from 

the predicted 2:1 (Nestler et al. 2011) to 1:1 (Granger et al. 2008a) denitrification fractionation 

pattern). Since divergence from this relationship indicates mixing by heterogeneous sources or 

significant nitrification (Wankel et al. 2007), the standard deviation of attenuation calculated for the 

mean changes in both δ15N-NO3
- and δ18O-NO3

- reflects uncertainty in the given assumptions of a 

single source of fractionation and N in the system. 

7.4 Results

7.4.1 Stream water chemistry 

Isotope ratios of water ranged from -8.8‰ to -7.5‰ (mean of -8.66 ±0.2‰) for δ18O-H2O and 

from -78‰ to -51‰ (mean of -64.4 ±5‰) for δD-H2O. Water isotopic composition was relatively 

consistent over time (i.e., minimal response to climate factors) in downstream reaches (C and D), 

whereas δ18O- δD- H2O in reaches A and B became more negative in winter months (δD: F =3.0, 

p<0.05; δ18O: F =4.0, p<0.05) and varied from the mean (in either direction) in the 24 h following 

rainfall. Upstream reaches (A and B) had lower dissolved oxygen (DO), higher DOC, and higher NO3
- 
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concentrations relative to the downstream reaches (C and D) across all seasons (Table 7.1). Channel 

depth increased over distance from 0.29 ±0.02 m in A to 0.95 ±0.1 m in D. In the summer, water 

temperature decreased (p<0.01) over distance from 12ºC in reaches A and B to 10ºC in reaches C and 

D, whereas water temperature remained a constant 10ºC across all reaches during winter months 

(May-Sep) (Table 7.1). Mean summer and winter air temperatures over the sampling period were 13 

±4ºC and 7.5 ±4ºC,  respectively (data not shown). Winter months were characterised by higher 

(p<0.001) stream flow into Lake Ellesmere (1380 ±50 l s-1 in summer versus 1730 ±50 l s-1 in winter) 

and soil moisture (p<0.001) (Fig. 7.2). Concentrations of DOC were higher (p<0.001) in winter (3.22 

±0.2 mg C l-1) than in summer (2.29 ±0.2 mg C l-1) in all reaches (Table 7.1). Concentrations of NH4
+ 

were typically <0.1 mg NH4
+-N l-1 and did not vary significantly with season or stream distance (Table 

7.1). The ratio of Cl- to Br- in surface water (481 ±10) likewise did not change significantly over 

distance or time (data not shown). However, the NO3
--N:Cl- ratio increased with stream distance 

throughout the two-year sampling period (Fig. 7.3).

Table 7.1 Chemical composition (NH4
+, NO3

-, DO, DOC, and temperature) of surface water measured at 4 sites 
along Harts Creek (Canterbury, New Zealand), moving from source (A, 1.7 km) to mouth (D, 9.9 km). 
Means (±SE) for each site are presented for monthly samplings in winter (May-Sep) versus summer 
(Oct-Apr) collected Feb-2010- Jan-2012 (n = 4 per site per month). Superscript letters (a, b, c, d) denote
significant differences (p<0.05) between sites within a given season.

Winter Summer

DO*

mg O2 l-1

DOC^

mg C l-1

TH2O
¥

°C
NO3

-§

mg NO3
- N l-1

NH4
+

mg NH4
+N l-1

DO
mg O2 l-1

DOC
mg C l-1

TH2O

°C
NO3

-

mg NO3
- N l-1

NH4
+

mg NH4
+N l-1

A 7.81(0.3)a 8.42(0.7)a 10.8(0.2)a 6.26(0.3)a 0.11(0.8)a 7.42(0.2)a 5.32(0.3)a 14.2(0.3)a 6.97(0.4)a 0.045(0.01)a

B 8.58(0.2)b 5.00(0.3)b 10.8(0.2)a 6.09(0.2)a,b 0.032(0.04)a 8.56(0.01)b 3.19(0.2)b 13.4(0.2)b 7.27(0.3)a 0.052(0.02)a

C 9.02(0.2)b 2.24(0.2)c 11.0(0.1)a 5.56(0.2)a,b 0.024(.01)a 9.11(0.1)c 1.29(0.2)c 12.4(0.1)c 5.86(0.3)a,b 0.031(0.01)a

D 9.07(0.2)b 2.11(0.2)c 11.0(0.1)a 5.41(0.2)b 0.019(0.01)a 9.13(0.1)c 1.23(0.2)c 12.5(0.1)c 5.71(0.3)b 0.013(0.01)a

*season×site: p<0.001, F =17.2 
^season×site: p<0.001, F =53.2 
¥season×site: p<0.001, F = 16.4
§season×site: p<0.001, F = 5.00
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Figure 7.3 Mean NO3
- isotopic composition in Harts Creek over two winter-summer cycles (winter months 

shaded), as expressed through: a) NO3
-:Cl- ratio, b) δ18O-NO3

-, and, c) δ15N-NO3
-. Points represent 

the mean ±SE (n = 4) composition at four reaches (located at 1.7 km, 3.9 km, 7.7 km, and 9.9 km 
from the source spring) sampled monthly from Feb-2010 through Jan-2012. Over this period there 
were two significant effluent spills in the catchment: farm effluent in Oct-2010 (spill 1) and 
municipal sewage diversion following the 22-Feb-2011 Christchurch earthquake in Mar-2011 
samples (spill 2).

The concentration of NO3
- in the surface water was lower than the maximum acceptable value 

of 11.3 mg NO3
--N l-1 for New Zealand drinking water on all dates except for Mar-2011 (mean 

concentration of 12.0 ±0.3 mg NO3
--N l-1 over all reaches). The Mar-2011 peak correlates with 

sustained dumping of municipal sewage into the catchment following the 22-Feb-2011 Christchurch 

earthquake. Although NO3
- concentrations were lower (p<0.01) in winter than in summer months  

(5.81 ±1 mg NO3
--N l-1 versus 6.45 ±0.2 mg NO3

--N l-1 in summer), NO3
- discharge into Lake 

Ellesmere was greater (p<0.05) during the wetter and colder winter months than during the summer 

months, increasing from 7.66 ±0.5 g NO3
--N s-1 in the summer to 9.34 ±0.4 g NO3

--N s-1 in the winter 

(Fig. 7.2, Table 7.1). This discharge of NO3
- out of Harts Creek (NO3

- flux at D) was positively 

correlated with soil moisture (p<0.01, r = 0.46). Controlling for seasonal variation, NO3
- discharge 

increased (p<0.01) over time in the lowest reach (Fig. 7.3). In contrast, concentrations of DOC and Cl - 
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remained stable and monthly rainfall showed no significant trends (mean annual precipitation of 256 

mm) over the two year sampling period. 

7.4.2 Nitrate isotopes

Values of δ18O-NO3
- and δ15N-NO3

- in streamwater became less enriched in heavy isotopes 

over stream distance (A,B v. C,D) (p<0.01) (Fig. 7.3, Fig. 7.4). In Mar-2011, both δ18O-NO3
- and δ15N- 

NO3
- in the lowest reach were highly enriched compared to all other sampling dates and were not 

significantly different from δ15N- δ18O- NO3
- in the upper reaches. Both δ15N-NO3

- and δ18O-NO3
- 

correlated positively with NO3
- concentrations over all sampling dates  (p<0.001 and r = 0.28 and 0.24,

respectively), but not with the ratio of NO3
--N to Cl-. While the concentration ratio of NO3

--N to Cl- in 

streamwater remained constant at 0.34 ±0.1 over the sampling period (excluding Mar-2011), NO3
- 

isotopic composition (δ18O and δ15N) varied between months (Fig. 7.3). The spike in the NO3
--N:Cl- 

ratio in Mar-2011 (~0.80) corresponded with isotopic enrichment of both δ18O-NO3
- and δ15N-NO3

- 

(Fig. 7.3). Conversely, streamwater in Oct-2010 and Nov-2010, collected following an illegal 

discharge of dairy effluent into the catchment in mid Oct-2010 (Environment Canterbury, pers. 

comms.), had anomalously enriched δ18O-NO3
- and produced anomalously low NO3

--N:Cl- ratios (Fig. 

7.3). 

Figure 7.4 The monthly mean composition of surface water δ18O versus δ15N of NO3
- at each of the four sampled 

reaches in Harts Creek (Canterbury, New Zealand). Samples were collected from Feb-2010 through 
Jan-2012. Boxes represent ranges reported in literature for potential NO3

- sources: NO3
- fertilisers 

(from Haber-Bosch), soil N, and effluent (livestock manure and urine, human sewage) (Nestler et al. 
2011). Denitrification would result in a movement along a 1:1 (Granger et al. 2008a) or 1:2 (Nestler et 
al. 2011) enrichment line (solid lines). Error bars represent ±SE for each reach x month (n = 4).
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Despite these fluctuations, the isotopic composition of NO3
- (δ18O-NO3

- v. δ15N-NO3
-) fell 

predominantly within the range reported for ‘soil-N’ derived NO3
-, with deviation from this zone 

moving along a linear denitrification line (Fig. 7.4). Samples from Jun-2010 (following 230 mm 

rainfall over the previous 30 days (Fig. 7.2)), Oct-2010, Nov-2010, and Oct-2011 were the exception 

to this trend: the relatively enriched δ18O-NO3
- (~15‰ measured across the entire stream length on 

these dates) placed their composition closer to that of atmospherically derived fertiliser NO3
- (Fig. 

7.4). Variation in δ15N-NO3
- over stream distance linearly paralleled that of δ18O-NO3

- (r2 ≥ 0.5, 

p<0.05) in 16 out of the 22 months sampled. Slope of the δ18O:δ15N relationship did not vary 

significantly, with a mean value of 0.67 ±0.1 for sampling dates with r2 ≥ 0.50. Months when variation 

in δ15N explained <50% of the variation in δ18O of streamwater NO3
-, and thus Eq. 7.4 could not be 

applied (n = 6), had significantly higher concentrations of NO3
- (but not Cl-), lower concentrations 

DOC, lower stream flows, warmer water temperatures, lower cumulative rainfall over the previous 30 

days, and higher net rainfall over the previous 48 h (Table 7.2). Mean δ18O-NO3
- was more enriched in 

months that did not fit the Rayleigh model (Eq. 7.4), whereas there were no significant differences in 

mean δ15N-NO3
- between the two groups (Table 7.2).

Table 7.2 Conditions in Harts Creek (Canterbury, New Zealand) on days that fulfilled the requirements (n = 16) 
for application of a NO3

- stable isotope based attenuation model (linear relationship between 
enrichment in δ15N- and δ18O- of NO3

- over stream length) versus those that did not (n = 7). Values for 
rainfall are expressed as net precipitation over the 48 h prior to sampling, and % soil moisture is based 
on gravimetric water content (from the Leeston Harts Creek climate station, located <1 km from site A 
(CliFlo: NIWA’s Climate Database Online (http://cliflo.niwa.co.nz)). Samples were collected monthly 
from Feb-2010 through Jan-2012. Values are given as mean of 4 sites (x4 reps at each site, n = 16 per 
monthly sampling) ±standard error of the mean (SE) and significance was tested using 1-way ANOVA. 

Model

fit?

NO3
-

mg NO3
-N l-1

DO
mg O2 l-1

DOC
mg C l-1

Flow
l s-1

δ15N-NO3
-

‰ v. AIR
δ18O-NO3

-

‰ v. VSMOW
TH2O

°C
Soil

%moisture
Rain48h

mm

Yes
(n=16)

6.52(0.2)*** 8.50(0.1) 2.32(0.2) 1480(50) 3.69(0.4) 4.08(0.4) 12.7(.1)*** 20.7(0.6) 5.30(.4)***

No
(n=7)

5.80(0.2) 8.83(0.1)* 3.35(0.2)*** 1670(50)* 5.68(0.5)** 6.71(0.7)*** 11.3(0.1) 27.9(0.6)*** 0.98(0.2)

*Significantly greater, p< 0.05 
**Significantly greater, p<0.01 
***Significantly greater, p<0.001 
 

Variation in δ18O-NO3
- within each reach was correlated primarily with climate: stream flow (r

= 0.29, p<0.01), wind run (r = 0.31, p<0.001), air temperature (r = 0.15, p<0.01), and rainfall over the 

previous 30-days (r = 0.31, p<0.001) (Fig. 7.2, Fig. 7.3). In contrast, variations in δ15N-NO3
- within 

reaches were correlated with variations in stream water chemistry: concentration of NH4
+ (r = -0.13, 

p<0.05), and DO (r = 0.12, p<0.05). The δ15N enrichment of NO3
- in Harts Creek increased over the 

sampling period (site×time: F = 1.4, p<0.05), coinciding with the increase in the flux of NO3
- out of 

the stream. Variations in NO3
- in the surface water (including concentration, δ15N-NO3

-, δ18O-NO3
-, 

NO3
--N:Cl-, and NO3

- flux (g N s-1)) over stream distance were controlled by rainfall in the catchment 

over the 48 h prior to sample collection (rain×distance: F = 6.1, p<0.05 (δ18O-NO3
-); F = 2.1, p<0.05 

(δ15N-NO3
-); F = 2.8, p<0.01 (mg NO3

--N l-1)). Additionally, rainy versus clear days also differed with 
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regards to NH4
+ concentration (F = 7.8, p<0.01), DO (F = 5.9, p<0.05), stream flow (F = 39, p<0.001) 

and the Cl-:Br- ratio (F = 5.1, p<0.05). However, there was no quantifiable relationship between NO3
- 

isotopic composition and the quantity of rainfall (cumulative or daily). Seasonal variation (winter 

versus summer months) also appeared to influence NO3
- composition, with higher δ15N-NO3

- (F = 6.5, 

p<0.01) and δ18O-NO3
- (F = 6.9, p<0.001) and lower NO3

- fluxes (p<0.05) in the summer.

7.4.3 Nitrate attenuation

Monthly attennet rates were calculated for the 16 sampling dates that fitted the assumptions in 

Eq. 7.4 (i.e., had continuous, parallel enrichment of both NO3
- isotopes over stream length) (Fig. 7.5). 

Based on these calculations, NO3
- inputs into Harts Creek (Eq. 7.3) ranged from 6.3 ±1 g NO3

--N s-1 in 

Mar-2010 to 47 ±3 g NO3
--N s-1 in Oct-2011 (when εdenit = -2‰), equating to 1.8 and 4.0 -fold, 

respectively, the measured NO3
- discharge (Fig. 7.5). On a monthly basis, attenuation rates were 

negatively correlated with NO3
- concentrations (p<0.05, r = -0.49 (εdenit = -2‰) and r = -0.52 (εdenit = 

-10‰)) and positively correlated with rainfall over the 24 h preceding sampling (p<0.01, r = 0.56 (εdenit

= -2‰) and r = 0.57 (εdenit = -10‰)). Step-wise linear regression of Ntotal v. climate variables found soil

moisture (r2 = 0.28, p<0.01) to be the primary driving factor of variation, as compared to Ninput, where 

the quantity of rainfall over the previous 24 h (r2 = 0.58, p<0.01) was the controlling factor.
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Figure 7.5 The actual (measured) export of NO3
- from Harts Creek into Lake Ellesmere compared to the 

calculated range of NO3
- export rates that would occur if in-stream attenuation had not occurred 

(a). The range of monthly total N export rates (discharge + attenuation) for Harts Creek between 
Feb-2010 and Jan-2012 was calculated for sampling dates with wherein δ15N- δ18O- NO3

- measured 
at 16 sites along the stream length exhibited the fingerprint for denitrification. Calculations were 
based on the measured NO3

--N flux at site D and attennet (Eq. 7.4), which integrates site-by-site 
attenuation rates based on εdenit values of -2‰ and -10‰ over stream distance, as depicted in (b) for 
Apr-2011. (Error bars represent ±SD for attenuation calculated for δ15N-NO3

- and δ18O-NO3
-).

Grouping isotopic data by significant climate variables (precipitation grouping (as discussed 

in methods) and season (winter v. summer)) enabled calculation of attennet for each grouping, which 

was then extrapolated into an estimate of annual NO3
- export for the Harts Creek catchment (Fig. 7.6). 

Over the sampling period ~60% of the days had rainfall within the previous 48 h, yet, according to 

these calculations, these days accounted for 93% of Ntotal (discharge plus attenuation). Based on 
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precipitation groupings, total N export (discharge plus attenuation) from the catchment was from 25 kg

N ha-1 y-1 (εdenit = -2‰) to 2.2 kg N ha-1 y-1 (εdenit = -10‰). Seasonal groupings resulted in similar 

annual flux estimates (21 kg N ha-1 y-1 (εdenit = -2‰) to 4.6 kg N ha-1 y-1 (εdenit = -10‰), with 60% 

occurring during summer months (defined as 7 out of 12 months, or 58% of days per year). 

Figure 7.6 Nitrate attenuation rates in Harts Creek, based on enrichment factors of either -2‰ (a) or -10‰ (b), 
and mean NO3

- fluxes (c) over stream distance (from reaches A, B, C, D). Attenuation rates and NO3
- 

fluxes were calculated using mean (±SE) δ18O- NO3
-, [NO3

-], and flow values for rainfall (1) and 
seasonal (2) categories. For rainfall, sampling dates were categorised as either, 0 (no rain within 48 h of 
sampling, n = 9), 1 (rainfall within 24 h of sampling, n = 6), or, 2) (rainfall within 48 h (±24 h) of 
sampling, n = 8). Seasons were defined as summer (Oct-May, n =13) or winter (Jun-Sep, n = 10). 
Percentage values in figures (a) and (b) indicate cumulative attenuation over the stream length; 
attenuation rates in terms of flux (kg NO3

--N day-1), shown in (c), were calculated from (a) and (b) 
cumulative rates. 

7.5 Discussion

7.5.1 Nitrogen inputs

The δD and δ18O values for Harts Creek surface water indicate a consistent hydrologic source 

throughout the catchment, in keeping with recent findings that shallow groundwater in the region is 

dominated by a single source (Stewart 2012). Based on the strong variations measured in local 

precipitation, as compared to groundwater, H2O isotopes by Blackstock (2011), the slight climate-
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driven variations in δD- δ18O- H2O observed in the upstream reaches corroborate evidence from the 

water temperature data indicating that increased discharge downstream was due to increasing 

groundwater infiltration (i.e., precipitation had a greater relative impact on the shallow upstream 

reaches). The surface water Cl-:Br- ratios, which fell within the expected range for water carrying NO3
-

derived from livestock, provide additional evidence that the NO3
- in Harts Creek was derived from a 

relatively uniform agricultural source (Koh et al. 2010, Katz et al. 2011). 

Upstream values of δ15N-NO3
- and δ18O-NO3

- tended to follow a linear enrichment line from 

the 'δ0' isotopic composition in site D, confirming that variations in δ15N-NO3
- and δ18O-NO3

- over the 

stream length reflected differing degrees of denitrification of an isotopically homogeneous source. 

Although it seems counter-intuitive to use the most downstream site to calculate δ0, uniform catchment

hydrology and NO3
- sources indicate that residual ‘upstream’ δx is diluted by incoming, less denitrified,

NO3
- during downstream transport such that NO3

-
0>>>NO3

-
A,B by site D. The isotope ratios of NO3

- in 

the lowest reach fell within the expected range for nitrified N from BNF (δ15N=0‰) and/or urea 

fertilisers (δ15N of -0.4 (Minet et al. 2012) to +1.2‰ (Frank et al. 2004)). Previous measurements of 

NO3
- leached from pasture soils with BNF present reported δ15N-NO3

- between +0.3‰ to +5.1‰ 

(Oelmann et al. 2007, Rock et al. 2011), and from +0.4‰ to +6.6‰ from urea fertilised pastures 

(Minet et al. 2012). Since pasture soil zone studies have found that bovine urine, rather than fertilisers 

or BNF, is the dominant source of NO3
- leached from pastoral systems (e.g., Decau et al. 2004; 

Monaghan et al. 2005), the NO3
- isotope signature at site D cannot be taken as evidence for the 

dominance of a single input, but rather is assumed to reflect a mixed 'pasture-N' signal (as discussed 

by, e.g., Romera et al. 2012). Most importantly, the more negative isotope ratios of NO3
- downstream 

indicate that N inputs are overwhelming the system's attenuation capacity (i.e., denitrification is 

limited by C or O2, not NO3
-, and nitrification and denitrification are decoupled). 

However, anomalous δ18O-NO3
- values measured across the stream's length in Oct-2010, Nov-

2010, and Mar-2011 show that there were deviations from this constant 'pasture' NO3
- source. In Oct-

2010 and Nov-2010 δ18O-NO3
- values fell within the range of atmospherically-derived fertiliser N 

(Nestler et al. 2011). While NO3
- fertilisers are not commonly used in Canterbury (<10% (by mass) of 

applied fertiliser (A. Roberts, pers. comms.), the association between enriched δ18O-NO3
- and storm 

events does make it more likely that these values do indeed reflect an influx of atmospherically-

derived fertilisers. However, it should also be noted that all three of the dates that did not show a 

consistent 'pasture N' source were associated with known effluent spills: in Mar-2011 municipal 

effluent was being diverted directly into the Lake Ellesmere catchment following earthquake damage 

to city infrastructure (Chapter 6), and in Oct-2010 there was a spill of dairy effluent into the catchment

(Environment Canterbury, pers. comms.). In Mar-2011, the equally enriched δ15N-NO3
- and δ18O-NO3

- 

across stream distance following sewage discharge (Fig. 7.3) points to denitrification of the sewage-N 

during transport (as also found by, e.g., Anisfeld et al. 2007, Chapter 6). Given that agricultural soils 

(with temperatures >4ºC) have typically been found to 'reset' the δ18O signal from atmospheric 

fertilisers due to N cycling in the soil column (Mengis et al. 2001, Deutsch et al. 2005, Granger et al. 
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2008b), and that the low concentration of NO3
- (compared to Cl-) and high DOC in Oct-2010 and Nov-

2010 support the dominance of a nitrified effluent-N source, it is not possible to isolate which 

anthropogenic disturbance (effluent or fertilisation) caused the loss of the typical spatial NO3
- isotope 

patterns. While the direct mechanism cannot be conclusively proven, for the purposes of this study it is

sufficient to identify that there is a rationale for why these months deviated from the expected isotopic 

patterns, and thus should be excluded from monthly attenuation calculations. 

7.5.2 Spatial patterns to N losses

As NO3
- was transported from low dissolved oxygen, high DOC, shallow conditions near the 

spring-fed source through a 10-km reach of pastoral land towards the mouth (high water volume and 

oxygen saturation, ~0 DOC), δ15N- and δ18O- NO3
- became lighter. Previous longitudinal stream 

studies have likewise found denitrification activity to be concentrated in shallow headwaters, and to 

decrease as the depth-to-width ratio increased further downstream (Findlay et al. (2011) and references

therein). The higher density and connectivity of farm drains and ditches within the upper reaches of 

the stream, as compared to the lower reaches (Fig. 7.1), further corroborates this spatial denitrification 

pattern as the shallow waters, high DOC loads, and fine bottom sediments commonly found in 

agricultural drainage ditches can create hot-spots of NO3
- attenuation (Alexander et al. 2000, Herzon 

and Helenius 2008, Powell and Bouchard 2010). The spatial variation in attenuation rates indicates 

that the restored riparian zone/ bank replanting between reaches C and D is not significantly 

denitrifying the N inputs as they are received, and that further steps are need to optimise conditions for

attenuation (e.g., C additions). Overall, the spatial trends in δ15N- and δ18O- NO3
- effectively captured 

attenuation during transport to the stream water sampling locations through the soil, riparian, and/or 

hyporheic zones (dominant areas of denitrification (Seitzinger et al. 2006)), enabling the values to be 

used to estimate whole-catchment N losses. 

The exceptions to the spatial trend of decreasing attenuation downstream came from the 

sampling dates when anthropogenic activities (Oct-2010, Nov-2010, Mar-2011) and/or storms (Jun-

2010, Oct-2011) also resulted in relatively enriched δ18O-NO3
-. Without a consistent trend in NO3

- 

isotopic composition over distance, monthly attenuation rates could not be calculated. Theoretically 

there was either no significant NO3
- attenuation on these dates, or else the mixing of different signals 

(effluent & baseline soil N) masked the denitrification fractionation pattern. Cooler temperatures and 

faster flows (both associated with these 'anomalous' sampling dates) have previously been found to 

minimise attenuation at the catchment scale (Schaefer and Alber 2007, Schaefer et al. 2009)). Yet 

given the lack of seasonal trends in N dynamics for the watershed and the fact that temperatures in the 

region rarely dipped below the 12ºC ‘breakpoint’ for denitrification activity (Schaefer and Alber 

2007), it seems more likely that the spatial relationship observed on the other sampling dates was 

merely masked by source mixing (i.e., high inputs from fertilisers and/or effluent). Mixing could also 

have come from variable fluxes of minimally-denitrified NO3
- entering the main stem from the two 

major tributaries between reaches B and C following rainfall (Fig. 7.6). Vitally, while mixing of 
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isotopically distinct NO3
- sources is often seen to obscure the fractionation pattern of denitrification 

(making isotope-based quantification of attenuation unreliable), the data collected on 'anomalous' 

sampling dates from Harts Creek did contribute to attenuation calculations measured over greater time 

intervals, making it possible to assess temporal variations in NO3
- attenuation beyond the month-to-

month sampling framework.

7.5.3 Role of season and climate in regulating N losses 

Under baseline conditions (no storms or effluent spills) variation from the ‘soil N’ isotopic 

zone moved along a linear denitrification enrichment line with a slope of  ~0.6 (comparable to the 

expected ratio for fresh surface water systems (e.g., 0.5 reported by Burns et al. (2009) for streams in 

an agriculture region of the United States). Attenuation rates calculated for monthly data sets were 

highly variable (7 – 48% removal), in keeping with previous date-to-date rates calculated based on 

NO3
- isotopes in river surface water, e.g., tributaries of the Mississippi River, USA (10 – 40% (Panno 

et al. 2006)) and the Beijing River, China (10 – 48% (Chen et al. 2009)). In contrast to these previous 

works, the duration and frequency of sampling in the current study enabled climatic controls on 

monthly variations in N attenuation in Harts Creek to be quantified.

Direct evidence for the impact of rainfall on N dynamics found in this catchment supports 

previous evidence for the influence of precipitation on streamwater nutrient dynamics (Buda and 

DeWalle 2009, Goswami et al. 2009, Burt et al. 2010). In Harts Creek, NO3
- attenuation and inputs 

increased in response to rainfall that occurred within 24 to 48 h of sampling: the ratio of NO3
- 

attenuated v. discharged downstream decreased rapidly in response to local rainfall. This relationship 

further highlights that the NO3
- isotopes reflected denitrification during transport to the stream (as high

flow rates generally inhibit denitrification by decreasing the residence time of NO3
- in the water 

column (Alexander et al. 2009)). High attenuation and proportional N export following rainfall could 

have been caused by precipitation flushing partially denitrified NO3
- from the hyporheic zone into the 

surface water (Cirmo and McDonnell 1997), or overland flow rapidly exporting NO3
- (Monaghan et al.

2007). High DOC loads were measured during these rainfall-induced N transport periods, which could

further promote denitrification by providing a terminal electron donor to NO3
- reducers (Seitzinger et 

al. 2006). However, although the majority of rainfall in the study region fell during winter months, no 

seasonal effect of N response to precipitation could be detected as the sample size was not robust 

enough to have significant ‘season × precipitation' groupings. My findings highlight the regulatory 

role of daily weather variations on proportional N export, emphasising the importance of high 

frequency sampling in order to accurately quantify N losses, and thus inputs.

Previous mass-balance approaches used to identify N loss pathways are limited in scale by the

availability of N input data (typically only reported on the annual scale at the catchment or regional 

scale) (e.g., Boyer et al. 2002, Schaefer and Alber 2007, Parfitt et al. 2006). The annual N losses 

(discharge + attenuation) calculated for the Harts Creek catchment using NO3
- stable isotopes align 

with the 22 kg N ha-1 y-1 calculated to be lost from the Canterbury region (Parfitt et al. 2006). 
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Furthermore, by monitoring both temporal and spatial variations in NO3
- isotopes this study provides a

more nuanced understanding of not just how much, but also how and when, NO3
- is entering and 

exiting pastoral catchments. Quantifying this type of sensitivity of catchment N losses to rainfall is a 

fundamental piece of information for enabling accurate predictions of local responses to future climate

change – driven changes in rainfall patterns. 

7.6 Conclusions 

The template for calculating NO3
- attenuation developed here placed established isotope 

methods (e.g., Groffman et al. 2006; Nestler et al. 2011) into the framework of a catchment-scale 

effective NO3
- export model (Boyer et al. 2002, Schaefer et al. 2009).The contrast between my finding 

of highly variable NO3
- attenuation rates (over distance and time) and the relatively consistent NO3

- 

concentrations measured in Harts Creek reveals the impossibility in identifying when and where 

anthropogenic activities are changing effective N export based solely on changes in streamwater 

concentration (the typical monitoring measurement). Indeed, despite the low precision of attenuation 

measurements generated using the dual isotope method (due primarily to uncertainty in εdenit), the 

consistent spatial trends across the stream length should be used to inform future agricultural 

intensification in the catchment. Vitally, my data reveals that N inputs should be minimised in the 

downstream region of the catchment, where negligible attenuation rates mean that any increase in 

Ninputs will be directly reflected in greater NO3
- discharge into Lake Ellesmere. 

This multi-year longitudinal study of NO3
- isotope dynamics within a small agricultural 

catchment highlights the key components required to compile a functional and quantitative 

understanding of the sources and sinks of N in a pastoral ecosystem. I further emphasise that seasonal 

controls on denitrification need to be incorporated into modelling of watershed NO3
- exports, even 

when mean annual temperatures are relatively constant. These findings highlight the importance of 

sampling frequency in NO3
- isotope studies, and it is likely that increasing to weekly, daily, or hourly 

time scales would further clarify NO3
- stable isotope based attenuation calculations. The successful use

of NO3
- isotopes to tease apart the controls on attenuation v. discharge of NO3

- at the catchment scale, 

demonstrated here over a sustained period of time despite occasional variations in NO3
- sources, 

provides a viable tool to better understand the effects of anthropogenic changes (to land use and 

climate) on the fate of N in catchments. 
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Synthesis and conclusions
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8.1 Key findings

The work described in this thesis contributes to the understanding of NO3
- isotope dynamics in

soils and surface water, by, 1) untangling the biological and hydrological controls on εdenit, and, 2) 

showing that, by using prior site information to separate δ15N- δ18O- NO3
- data, Rayleigh-based 

fractionation models can be effectively used to constrain N attenuation across landscapes. The key 

trends that emerged over the course of this research for defining the fundamental isotope effects 

relevant to denitrification during land-to-water N transfers and then effectively applying these values 

to develop field → catchment scale NO3
- isotope based attenuation measurements are discussed below.

8.1.1 Defining εdenit (Objective #1)

A) Variability in fractionation is unavoidable in unconstrained systems. The mathematical modelling, 

incubation experiments, and preliminary stream sampling in Chapter 3 combine to confirm that 

assigning a precise value of εdenit to dynamics and heterogeneous environments such as streams could 

result in a misrepresentation of N cycling due to the mixing of NO3
- pools affected by different εdenit 

and oscillations in hydrologic controls on the expression of εdenit. Incubations of sediments and 

submerged soils revealed that biologically-driven variation in εdenit occurs at the metre-kilometre, not 

the biome or catchment, scale. So what does control εdenit? The literature synthesis in Chapter 2 

highlighted inconsistencies in previously reported links between εdenit, kdenit, and C, while incubations in

Chapter 3 found a strong relationship between C and εdenit, but not kdenit, potentially reflecting a 

structural, rather than functional, difference in denitrifier communities over space. Simultaneously, the

diffusion of NO3
- through the denitrification zone to the aerobic surface water, where measurements 

are generally taken, causes a convergence of εdenit around relatively low values. Field sampling along 

stream reaches over time emphasised that nutrient spiralling effects (i.e., nitrification and 

denitrification occurring simultaneously), coupled with typical diffuse NO3
- inputs, mean that basing 

Rayleigh-type attenuation measurements on empirically calculated εdenit could cause a dramatic 

underestimating of attenuation. In identifying an 'effective' εdenit range of -2 to -10‰ for measurements 

in aerobic systems, these findings pave the way for expanding the use of NO3
- isotopes as quantifiers 

of denitrification, and eliminate the perceived need to limit such quantifications to environments 

where decreasing NO3
- concentrations are coupled with isotopic enrichment.

However, environments where denitrification occurs in discrete periods over time (scenario B 

from Chapter 2) may be the exception to this rule. The contained hydrology of submerged rice paddies

(i.e., closer to the idealised 'closed systems' of a true Rayleigh fractionation relationship) is 

hypothesised to explain the equivalent εdenit values measured both empirically in the field and in soil 

mesocosms idealised for denitrification with added C, NO3
-, and no O2. Site-specific εdenit values can, 

and should, be calculated for more 'closed' denitrifying environments. But how universal are these 

trends? 
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B) The ratio of 18εdenit to 15εdenit varies from 0.5 to 1.0, shifting towards 1.0 as the strength of the 

reducing zone increases. Based on the literature synthesis in Chapter 2, it was hypothesised that the 

trend of decreasing enrichment ratios in aerobic environments was caused by mixing of nitrification 

and denitrification. While this still seems a viable explanation, my experimental results also suggest 

that variations in this relationship may result from a suite of biological drivers. Even in sediments and 

soils incubated under identical O2-depleted, C-enriched conditions, the δ18O:δ15N enrichment ratio 

varied from ~0.5 to ~1.0, with samples collected from more aerobic and C-rich environments tending 

towards the former. This rejects the hypothesis that pure denitrification created ubiquitous 1:1 

enrichment of the two isotope species (e.g., Kritee et al. 2012). Furthermore, the trends between C, O2,

and δ18O:δ15N are particularly interesting as the former two variables were also found to control 

biological εdenit. 

Scaling these results up to the field, the 0.25 relationship between δ18O-NO3
- and δ15N-NO3

- 

measured during denitrification in a pasture soil, hypothesised to be a bi-product of co-occurring 

nitrification, occurred in the most consistently O2- rich environment measured. In this light, the 0.25 

enrichment ratio in aerobic soils contributes to the overall trend, whether through external 

environmental effects or a fundamental difference in biological fractionation, of δ18O and δ15N 

fractionation becoming more similar the stronger the denitrifying zone (and vice-versa): highly 

reducing paddy soils had a consistent ~1:1 enrichment ratio, both in the field and in the lab, an abrupt 

shift between 1:1 and 1:2 was observed in the Heathcote River following the cessation of direct 

sewage dumping into the waterway (and thus increase in O2), while δ18O v. δ15N variations in surface 

water NO3
- in Harts Creek followed a ~0.6 line, in contrast to the enrichment ratios of between 0.5 and

1.0 calculated for anaerobic sediments collected from four sites along the stream. 

Do these trends reflect a functional effect on NO3
- processing, or result from a more distal 

forcing on communities? Additionally, the trends between C, O2, and δ18O:δ15N are particularly 

interesting as the former two variables were also found to control biological εdenit. Targeted research is 

needed into the impact of C on denitrifier communities, and of denitrifier communities on δ18O:δ15N 

ratios.  

8.1.2 Rayleigh fractionation of NO3
- isotopes can be used to constrain 

denitrification across diverse environments (Objective #2)

C) The isotopic fingerprint of denitrification is evident in all NO3
- pools once a high enough density of

measurements is obtained. Application of a stable-isotope based attenuation assessment is primarily 

limited by sampling density. On 4 out of 24 sampling dates source mixing, rather than denitrification, 

dominated the NO3
- isotopic signature in the surface water along the length of an agricultural, spring-

fed, stream (Chapter 7). However, by collating these seemingly 'anomalous' points with the entire two 

years worth of data collected from four locations within four reaches, they contributed both to the 

overall denitrification line of 0.6 δ18O v. δ15N and the calculations of climate-driven clustering of 

attenuation rates. Similarly, even with ~40% of the N pool removed via NH3 volatilisation and the high
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nitrification rates that followed urine application to an aerobic soil (Chapter 4), the composition of 

whole-field δ15N-NO3
- and δ18O-NO3

- within these systems reflected the imprint of denitrification. Up-

scaling these observations, I found that there was a clear, denitrification-driven, relationship between 

δ18O and δ15N (Pearson's correlation: r = 0.58, p<0.001) over all of the individual NO3
- isotope 

measurements collected from all field sites (n = 566): surface water and porewater of two ditches, 

aerobic soils following urine deposition, submerged paddy soils from fallow through crop 

transplanting, surface water of an agricultural stream, and surface water of an urban stream following 

an acute sewage influx event (Fig. 8.1a). It should be acknowledged that the consistency of the 

'denitrification' fingerprint across large spatial and temporal scales could be enabled by the fact that 

both main sampling locations (Canterbury, New Zealand and Luzon, Philippines) have very low rates 

of atmospheric N deposition and minimal use of NO3
- fertilisers. As the 'atmospheric' level δ18O-NO3

- 

values in Harts Creek were associated with difficulty in measuring denitrification rates for the specific 

sampling date, the relatively heavy δ18O from atmospheric sources noted in other locations (e.g., 

Anisfeld et al. 2007) may make it more difficult to tease out the denitrification signal, and should be 

critically evaluated. However, based on the Harts Creek data set in particular, I hypothesise that, with 

sufficient density of data, attenuation trends could be teased out of even the most impacted 

catchments.

Previous work by Houlton and Bai (Houlton and Bai 2009, Bai et al. 2012) indicated that, at a 

global scale, soil δ15N is controlled exclusively by denitrification, but the current study is the first clear

indication that this rule holds true for compound-specific N isotopes. With increasing density of data 

over time and/or space, NO3
- isotopes tended to plot along the linear space between δ18O and δ15N, and

by clumping data points (by, e.g., site, location, site×location) the significance and slope of this line 

invariably increased (Fig. 8.1b). But what does a global denitrification fingerprint on NO3
- isotopes 

mean for assessing attenuation at the catchment and field scales of most relevance for improving 

environmental management? With this foundation, the challenge then becomes translating these 

denitrification 'fingerprints' into quantitative measurements of N losses. The strength of the 

denitrification signature increases confidence in interpreting NO3
- isotopic results in terms of % 

attenuation, creating a scenario where, “The irregularity of environmental data does not detract from 

its utility but often provides the only really useful information.” (Ginevan and Splitstone 2004).
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Figure 8.1 Plotting δ15N-NO3
- v. δ18O-NO3

- for all empirical measurements made from: an aerobic pasture soil 
over 17 days following urine deposition, the surface water and porewater of two agriculture 
drainage ditches (ditches), surface water measured in 10 reaches along the length of an urban 
stream over a six month period following a catastrophic earthquake and effluent dumping, surface 
water measured monthly in four reaches along a spring-fed stream draining an intensive pastoral 
agricultural catchment, and from tropical rice paddy soil, floodwater, and poor water subjected to 
variable water and organic amendment management, which were sampled on 10 occasions over a 
70 day period. The slope of the linear line through all data is ~0.5, with dotted lines indicating 95% 
CI (r2 =0.34, p<0.001); sampling dates and locations (RP: Philippines; NZ: New Zealand) are 
indicated in parenthesis. Condensing the data into mean ±SD for each site (defined as treatments in
the two soil studies and reaches in the stream studies) moved the slope of the best fit linear 
regression closer to 0.72 (r2 = 0.38, p<0.001) (b). 

D) Separating isotope data based on complementary site information reveals 'hot spots' and 'hot 

moments' of denitrification. Whereas the identification of the isotopic fingerprint depends on data 

density, translating this data into estimates of attenuation depends on the ability to distinguish sources 

and processes (i.e., remove the 'noise' around the parallel ~1:1 δ18O:δ15N enrichment line). Rates of N 

attenuation could be calculated for differently managed paddy soils over time, effluent discharged into 

an urban stream, and a whole-catchment draining pastoral agriculture by separating collected δ18O- 

δ15N- NO3
- data, subsequently referred to as 'prior-information'. Within the rice paddies, soil redox 

potential was used to partition isotope data into a two-box model of N inputs (aerobic) and N 

attenuation (anaerobic), while δ18O- δ15N- NO3
- within the effluent contaminated river was 

contextualised based on information on effluent influxes, stream chemistry (particularly O2 and C) and

microbial biofilm populations. The importance of detailed prior-information is emphasised by the 

relative ease in quantifying attenuation of N from an acute sewage spill (Chapter 6) versus from 
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chronic, diffuse agricultural sources (Chapter 7). However, adapting the partitioning techniques 

developed to quantify fluxes within paddy soils (Chapter 5) and following acute pollution in the urban 

stream (Chapter 7) to separate streamwater NO3
- isotope data into 'source versus sink' (based on stream

depth, chemistry, and climate conditions) in conjunction with the εdenit information developed in the 

previously, enabled the identification and quantification of hot spots and hot moments of attenuation 

within this chronically loaded system. The ability to use dense measurements of NO3
- isotopes to 

calculate net attenuation rates comparable to those provided through labour- intensive nutrient 

balances confirmed the viability of using NO3
- isotopes as integrative measures of denitrification 

across scales and locations. Moreover, in all of the case studies here, overlaying NO3
- isotopes onto 

chemical data enabled identification of when and where attenuation happens, presenting a vital step-

forward for improving catchment-scale N management.

E) Practical considerations for method application. To answer the originally posed questions of when,

where, and how a stable isotope – based attenuation assessment should be deployed: by using 

independent site information to constrain sources and collecting a dense enough data set to reveal the 

trends beneath the 'noise', this methodology could be used anywhere. However, the analytical and 

sampling demands of constructing such a data set lead me to conclude that NO3- dual isotopes are 

optimanally used to provide additional information on N fluxes following specific events (e.g., sewage

spills) or to tackle targeted chronic problems (e.g., agricultural intensification), rather than as part of a 

broad monitoring scheme. 

8.2 Suggestions for future work

Looking between the conclusions described above, key areas for future research that have emerged 

from this thesis are: 

• Intersection of C availability (including quality), microbial population structure, 

denitrification rates, and εdenit, particularly 18εdenit v. 15εdenit 

• Reconcile variations in εdenit at the field-scale with measured strain-to-strain variations – do 

intrinsic or extrinsic factors create the observed 'site specificity' of NO3
- fractionation 

dynamics? 

• There is a need to resolve discrepancies in δ18O-NO3
- dynamics, particularly in regards to 

δ18O:δ15N fractionation ratios. In light of new information on the various fractionation 

processes impacting δ18O during nitrification, attention should especially be paid to how the 

presence of NO2
- removal processes such as anammox , co-denitrification, and nitrifier-

denitrification impact the isotopic composition of the adjacent NO3
-, and thus R0 for traditional

denitrification, and potentially εdenit. 
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• How much mixing is too much? The data here implies that, with sufficient sampling density 

and prior site information, NO3
- isotopes can be used to constrain attenuation fluxes in any 

environment. But what exactly defines 'sufficient density'? Is there a quantifiable relationship 

between sampling demands and hydrologic / biogeochemical complexity?

• The isotopic measurements in both the aerobic pasture soils and the submerged paddy soils 

revealed considerable inputs from soil-N following urine deposition and re-flooding/ tilling, 

respectively. As measurements of these compound-specific N compounds at the natural 

abundance level become increasingly viable for use in the soil-zone, the effect that the 

continuous turnover of the much larger organic pool will need to be considered.  

8.3 Final comments

As the price of NO3
- isotope analyses (both in terms of money and time) drops, the value of 

this methodology will become limited by interpretive power rather than finances. The previous six 

chapters reveal that, without sensible separation of data sets by known variables, NO3
- isotopes cannot 

be accurately used as measures of ecosystem function and/or denitrification. With the power of the 

isotopes only as good as the prior information for the site, the most potential 'added value' from this 

sort of functional measurement most likely comes from adding NO3
- isotope measurements to 

intensive study areas: this thesis lays out a solid starting point for any organisation interested in 

quantifying N losses from key catchments, or the impact of acute events on ecosystem function in 

freshwater or terrestrial sites.
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Meta-analysis of fractionation of nitrate isotopes during

denitrification 
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A.1 Methods
Studies producing unique enrichment factors for NO3

- isotopes (N (15εdenit) and/or O (18εdenit)) 

during denitrification were identified by searching titles and abstracts on ISI Web of Science using the 

search query, “enrichment OR fractionation” AND “denit* AND isotop*”. References were also taken 

from citations in Lund et al. (2000), Lehmann et al. (2003), and Kritee et al. (2012). All significantly 

different εdenit values within each publication (e.g., if εdenit varied with laboratory conditions, 

environmental conditions, between sites, etc.) were used. Enrichment factors were calculated for O in 

dual isotope studies that reported the fractionation ratio between O:N and 15εdenit, but not 18εdenit. 

Enrichment factors for 15εdenit were estimated for three studies (Kellman and Hillaire-Marcel 1998, 

Kellman and Hillaire-Marcel 2003, Kellman 2004) that supplied Rayleigh plots, attributed isotopic 

and concentration variation directly to denitrification, but did not include the value for the slope of the 

relationship between the two in their manuscripts. 

In addition to enrichment factors and O:N ratios (when applicable) each manuscript was also 

reviewed for: 1) mean ambient temperature (for laboratory studies this would be the T set for the 

experiment, for field experiments this was defined as either the mean annual air temperature at the site 

of data collection or the mean water temperature for marine studies); 2) method of NO3
- isotope 

analysis (categorised as either steam distillation, diffusion, silver nitrate, denitrifier, Cd-azide, or 

other); 3) calculation used to generate the εdenit value (e.g., Rayleigh, advection-diffusion, etc.); 4) 

wether measurements were based on NO3
- within the denitrifying zone or post-transport into, e.g., oxic

streamwater; 5) categorised as either ‘field’ or ‘lab’. All manipulative studies (i.e., wherein conditions 

for denitrification were controlled, substrates were added, etc.) were classified as ‘lab’ and all studies 

that based their calculations off values collected empirically in the environment were classified as 

‘field’. 

For lab studies additional information was collected for: 6) electron donor additions (identity 

and concentration); 7) oxygen concentration (if available); 8) substrate of experiment (culture 

(bacteria, fungi, archaea on a growth media), sediment (marine, aquifers, or rivers), or soil); and, for 

culture experiments, 9) origin of denitrifier strain (marine, freshwater, terrestrial). 

For the field studies additional classifications were made based on: 10) the sampling 

environment (marine oxygen minimum zones, coastal zones, and continental shelf; terrestrial soils, 

lakes, rivers and streams, wetlands, groundwater, and the surface-water groundwater interface 

(SWGW)); 11) dominant transport mechanism between source and sink, as per Seitzinger et al. (2006) 

(diffusion (A), temporal lag (B), or advection (C)); and, 12) estimated distance (mm to cm (1), cm to 

m (2), m to km (3), or km to 100 km (4)) and time (seconds to minutes (1), minutes to hours (2), hours

to months (3), or months to centuries (4)) between N source and sink (based on information on flow 

rates, residence times, catchment size, etc. provided within the publication). 
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A.2 Data tables 

TableA1 Enrichment factors (εdenit) calculated based on denitrification under controlled conditions (i.e., 
‘intrinsic’ fractionation).

Reference Medium
Analytical

method
Calculat

ion

15εdenit

δ‰

18εdenit

δ‰
δO:δN

Tempera
ture (ºC)

C added (type,
quantity)

Oxygen
conditions

Denitrifier
strain 

Barford et al.
(1999)

Culture Diffusion Rayleigh -28.6 - - 30 Acetate, 20 mM Anaerobic
Paracoccus
denitrificans

Bates et al.
(1998)

Sediment
(aquifer)

Steam
distillation

Rayleigh -6.1 - - 13
Ethanol, 200

mg l-1
Aerobic/
saturated

-

Bates and
Spalding (1998)

Sediment
(aquifer)

Steam
distillation

Rayleigh

-3.9 - -

11.5

Ethanol, 50 mg
l-1

Anaerobic/
saturated

-
-15.9 - -
-2.5 - - Ethanol, 100

mg l-1-13.5 - -

Blackmer and
Bremner (1977)

Soil
Steam

distillation
Rayleigh

-14 - -
30

Glucose, 0.75
mg g-1 soil

Anaerobic
(He)

-
-23 - -

Carroll et al.
(2009)

Sediment

NH4
+

removal +
sediment

combustion

Rayleigh -17.6 - - 23
Methanol, 0.75
mg g-1 sediment

Anaerobic
(He)

-

Chien et al.
(1977)

Soil Steam
distillation

Rayleigh
-19 - -

35
Glucose, 1%

(w/w)
Anaerobic -

Soil -6.5 - -

Delwiche and
Styen (1970)

Culture
Steam

distillation
Rayleigh -17.6 - - 23

Glucose, no rate
specified

Anaerobic
Pseudomonas
Denitricans

Dhondt et al.
(2003)

Sediment Cd-azide Rayleigh
-21.4 - - 10 Wheat straw, 10

g 450 g-1

sediment

Anaerobic
(He)

-
-24.9 - - 15

Granger et al.
(2008)

Culture Denitrifier Rayleigh

-17 -16 0.96

23 Casein, 0.2 g l-1

Anaerobic

Pseudomonas
stutzeri

-22 -21 0.96 Ochrobactrum sp

-24 -22 0.96
Paracoccus
denitrificans

-20 -20 0.96
Pseudomonas

chlororaphis f. sp.
aureofaciens

-15 -9 0.96 Aerobic
Rhodobacter
sphaeroides

Holl et al. (2011)
Aquacultur

e
Diffusion Rayleigh -6.3 - - 28 -

Aerobic
(DO=6)

-

Kellman (2004) Sediment
Silver
nitrate

Rayleigh -4.19 - - 23 -
Aerobic
(DO=7)

-

Knoller et al.
(2011)

Culture Denitrifier Rayleigh

-14.7 -5.97 0.41

23

Toluene, 20
mM

Anaerobic

Azoarcus sp.

-11 -6.2 0.56
Succinate, 20

mM
Azoarcus sp.

-15 -6 0.40
Succinate, 20

mM
Pseudomonas

pseudoalcaligenes

Korom et al.
(2005)

Sediment Diffusion Rayleigh -20.4 - - ?
No, but sulphate

as electron
donor

?
(submerged)

-

Korom et al.
(2012) Sediment

Silver
nitrate

Rayleigh

-4.86
- -

?

-
?

(submerged)

-

-9.34 - - - -

Kritee et al.
(2012)

Culture Denitrifier Rayleigh

-9.3 -8.65 0.93

23

Acetate,
glucose or

bactopeptone
+casein (lower

with more
complex C and
higher O),   2 g

l-1

0 or 4 µM
O2

Pseudomonas
chlororaphis

-22.3 -20.7 0.93
Pseudomonas
chlororaphis

-11 -10.2 0.93
Paracoccus
denitrificans

-31 -28.8 0.93
Paracoccus
denitrificans

-14.8 -13.7 0.93 Marinobacter sp.
-22.8 -21.2 0.93 Marinobacter sp.

Mariotti et al.
(1981)

Soil Diffusion Rayleigh
-29.4 - - 20

-
Anaerobic

(He)
-

-24.6 - - 30
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Mariotti et al.
(1982)

Soil Diffusion Rayleigh

-25.4 - - 10

-
Anaerobic

(He)
-

-31.2 - - 10
-13 - - 30

-24.5 - - 30

-11 - - 20
Glucose, 0.5 g

100 g-1 soil

Miyake and
Wada (1971) ¥ Culture ? ?

-14 - -
? ? ? Marine denitrifier

-21 - -
Olleros (1983)¥ Culture ? ? -30 -15 0.5 ? ? Anaerobic ?

Pintar et al.
(2008)

Soil

Evaporatio
n +

combustion
of salt

Rayleigh -7.6 - -
18

Glucose, 78.4
mg l-1 Anaerobic -

-34.9 - -

Robinson and
Conroy (1999)

Soil Diffusion Rayleigh -4 - - 23
No, soil C/N of

20
Aerobic -

Sebilo et al.
(2003)

Sediment
(river)

Diffusion Rayleigh
-18 - -

20
No (but with
nitrification
inhibitor)

Anaerobic
-

-3.6 - - Aerobic

Shearer and
Kohl (1988)

Culture
? Rayleigh

-10 - -
Succinate, 25

mM
Anaerobic

Pseudomonas
stutzeri

-20 - - 20
Pseudomonas

stutzeri
Sovik and

Morkved (2007)
Sediment Denitrifier Rayleigh -2.2 - - 17

Glucose, 16.7
mg l-1 Anaerobic -

-11.3 - - -

Torrento et al.
(2010)

Culture Denitrifier Rayleigh
-19 -13.5 0.88 ?

-
Anaerobic

-
-22 -15 0.85

Torrento et al.
(2011)

Sediment Denitrifier Rayleigh -26.3 -20.4 0.9 ?

Tsushima et al.
(2006)

Sediment
? Rayleigh -32.9 - -

20 - Anaerobic -
-34.1 - -

Warneke et al.
(2011a)* Bioreactor Cd-azide Rayleigh -19.4 - - 19.6

Woodchips
(176x5x1.5 m)

Anaerobic -

Wellman et al.
(1968)

Culture ? ? -20 - - ? ?
Anaerobic

(N2)

Pseudomonas
stutzeri

Wunderlich et
al. (2012)

Culture
Resin

exchange
Rayleigh

-22.1 -19.9 1

30

Acetate, 2 mM

Anaerobic

Thauera aromatica

-18.9 -15.9 1
Benzoate, 0.8

mM
Thauera aromatica

-18.1 -16.5 1
Toluene, 3 µL

50 l-1 Thauera aromatica

-23.5 -23.7 1 Acetate, 2 mM
Aromatoleum

aromaticum (strain
EbN1)

-17.3 -16.1 1
Toluene, 3 µL

50 l-1

Aromatoleum
aromaticum (strain

EbN1)
¥Values as reported in Lehmann et al. (2003)
*Information on T, C, and DO from Warneke et al. (2011b)
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TableA2 Enrichment factors (εdenit) for denitrification calculated based on empirical measurements 
of NO3

- and its isotopes under un-manipulated field conditions (i.e., ‘effective’ fractionation). 

Reference Location T (ºC) Environm
ent

Land use Analytical 
method

Calculation 15εdenit
18εdenit δ18O:δ

15N
Transport 

Type Time Distance

Albertin et 
al. (2012)

USA 20 GW Mixed Denitrifier Rayleigh -18 -9 0.59 C 3 3

Alkhatib et 
al. (2012)

Gulf of 
Lawrence

- Marine 
(coastal)

- Denitrifier Advection-
diffusion

-2 - - A 3 1
-6 - -

Altabet et 
al. (1999a)

Open 
ocean

- Marine 
(OMZ)

- Diffusion Rayleigh -30 - - C 4 4

Altabet et 
al. (1999b)

Open 
ocean

- Marine 
(OMZ)

- Diffusion Rayleigh -22.7 - - C 4 4

Aravena 
and 
Robertson 
(1998)

Canada 6 GW Urban Silver 
nitrate

Rayleigh -22.9 -11.5 0.5 C 3 4

Bohlke and 
Denver 
(1995)

USA 12.8 GW Ag Diffusion Rayleigh -10 - - C 3 3

Bottcher et 
al. (1990)

Germany 9.8 GW Ag Diffusion Rayleigh -15.9 -8 0.49 C 3 3

Brandes and
Devol 
(1997)

- - Marine 
(coastal)

- Diffusion Rayleigh 0 - - A 1 1

Brandes et 
al. (1998)

Open 
ocean

- Marine 
(OMZ)

- Diffusion Rayleigh -22 - - C 4 4
-25 - -
-28 - -

Brandes and
Devol 
(2002)

Ocean - Marine 
(shelf)

- Diffusion Rayleigh -1.5 - - A 1 1
-20 - - C 3 3

Burns et al. 
(2009)

USA 10 River Ag Denitrifier Rayleigh -4 -2 0.5 C 3 2
-4.66 -2.33 0.5

Chen and 
MacQuarrie
(2004)

Canada 7 SWGW Ag Silver 
nitrate 

Rayleigh -6.5 - - C 3 2

Chen et al. 
(2009)

China 22 River Ag Silver 
nitrate

Rayleigh -14.8 -8.5 0.52 C 3 2

Chen et al. 
(2006)

China 13 GW Ag Diffusion Rayleigh -7.5 - - C 3 3

Clement et 
al. (2003)

France 11 SWGW Ag Diffusion Rayleigh -8.38 - - C 2 2

Cline and 
Kaplan 
(1975)

Open 
ocean

7 Marine 
(OMZ)

- Steam 
distillation

Rayleigh -30 - - C 4 4
-40 - -

Cohen et al.
(2012)

USA 21 River Mixed Denitrifier Rayleigh -3.09 -3.09 0.97 C 3 2
-3.08 -3.08 1.04

Curie et al. 
(2009)

France 10.8 GW Ag Diffusion Rayleigh -2.9 - - C 3 2
River -3 - - C 2 2

Deutsch et 
al. (2005)

Germany - Soil Ag Silver 
nitrate

Rayleigh -5.9 -2 0.4 B 1 2

Devito et al.
(2000)

Canada 7 SWGW Ag Silver 
nitrate

Rayleigh -4.98 -2.5 0.56 C 2 2

Dhondt et 
al. (2003)

Belgium 8 SWGW - Cd-azide Rayleigh -6 - - C 2 2
-16.2 - -

Eguchi et al.
(2009)

Japan 15.6 SWGW Ag Diffusion Rayleigh -12 - - B 2 3

Erler and 
Eyre (2010)

Australia 19 Wetland Ag Diffusion Rayleigh -5.44 - - A 1 1

Fryar et al. 
(2000)

USA 18 GW Ag Cu, 
combustion

Rayleigh -3.6 - - B 2 3

Fustec et al.
(1991)

France 11 SWGW Ag Steam 
distillation

Rayleigh -5.2 - - C 2 2

Fukada et 
al. (2003)

Germany 7.8 SWGW Ag Silver 
nitrate 

Rayleigh -13.6 -9.8 0.76 C 3 3

Fukada et 
al. (2004) 

UK 9.8 GW Urban Silver 
nitrate 

Rayleigh -13.7 -6.9 0.5 C 3 3

Granger et 
al. (2011)

Ocean - Marine 
(shelf)

- Denitrifier Rayleigh -6.2 -6.2 1 A 1 1
2-box model -7.9 -7.9 1

Green et al. USA 13 GW Ag Denitrifier Rayleigh -5 -3.65 0.73 C 2 3
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(2008) -20 -14.6 0.73
Green et al. 
(2010)

USA - GW Ag Denitrifier Advection-
diffusion

-5 - - C 3 3
-16 - -

Griggs et al.
(2003)

USA 24 GW Urban Freeze-
drying+ 
combustion

Rayleigh -12.4 - - C 2 3

Grischek et 
al. (1998)

Germany 7.8 SWGW Urban Steam 
distillation

Rayleigh -14.6 - - C 2 2

Hatzinger 
(2009)

USA 13 GW Urban Denitrifier Rayleigh -8 -6.6 0.83 C 2 2

Heffernan et
al. (2012)

USA 20 GW Mixed Denitrifier Rayleigh -7.37 -7.37 0.99 C 2 3

Itoh et al. 
(2011)

Mongolia -2.4 SWGW Urban Denitrifier Rayleigh -6.7 -3.8 0.54 C 2 2

Kellman 
and 
Hillaire-
Marcel 
(1998)

Canada 6 River Ag Anion 
exchange

Rayleigh -9.97 - - C 3 2

Kellman 
and 
Hillaire-
Marcel 
(2003)

Canada 6 SWGW Ag Anion 
exchange

Rayleigh -2.18 - - C 3 2
-4 - -
-2.14 - -

Koba et al. 
(1997)

Japan 16 Soil Forest Diffusion Rayleigh -6 - - A 1 1
-5.6 - -

Koh et al. 
(2012)

Korea 16 GW Ag Denitrifier Rayleigh -8.06 -4.01 0.46 C 3 3

Lehmann et 
al. (2003)

Switzer-
land

13 Lake Mixed Denitrifier Rayleigh -11.2 -6.6 0.57 B 3 2
Advection-
diffusion

-20.7 -11 0.57

Lehmann et 
al. (2007)

Ocean 4 Marine 
(shelf)

- Denitrifier Rayleigh -5 - - A 1 1
-15 - -

Lund et al. 
(2000)

USA - Wetland Urban Molecular 
seive

-2.51 - - C 2 2

Mariotti et 
al. (1988)

France 8 GW Mixed Diffusion Rayleigh -4.7 - - C 3 3
-5 - -

McCallum 
et al. (2008)

Canada - GW Silver 
nitrate

Rayleigh -9.2 -6.9 1 C 3 3

McMahon 
and Bohlke 
(1996)

USA 10 SWGW Ag Diffusion Rayleigh -10 - - C 3 3
-20 - -

McMahon 
et al. (1999)

USA 10 GW Ag Cu 
sorption+ 
combustion

Rayleigh -20 - - C 3 4
-13 - -
-27 - -

McMahon 
et al. (2004)

USA 19 GW Ag Cu 
sorption+ 
combustion

Rayleigh -10 -8.5 0.85 C 3 4

-30 -25.5 0.85

Mengis et 
al. (1999)

Canada 5 GW Forest Silver 
nitrate 

Rayleigh -27.3 -18.3 0.67 C 3 2

Miyajima et
al. (2009)

Thailand 27 River Urban Denitrifier Rayleigh -16.3 -16.3 1 C 3 2
-6.3 -3.1 0.5

Naqvi et al. 
(1998)

Ocean 19 Marine 
(OMZ)

- Cu 
sorption+ 
combustion

Rayleigh -22 - - C 4 4
Advection-
diffusion 
model

-25 - -

Naqvi et al. 
(2006)

Ocean 19 Marine 
(coastal)

- Cu 
sorption+ 
combustion

Rayleigh -7.21 - - A 3 3
-7.7 - -

Nishikiori et
al. (2012)

Japan 14 River Ag Denitrifier Rayleigh -2.3 -2.3 1 C 3 2

Osaka et al. 
(2010)

Japan 13 GW Forest Denitrifier Rayleigh -1.1 -1.1 1 C 2 2

Otero et al. 
(2009)

Spain 13 GW Ag Denitrifier Rayleigh -4 -1.9 0.55 C 3 3
-15.5 -8.9 0.55

Prokopenko
et al. (2011)

Ocean - Marine 
(coastal)

- Denitrifier Rayleigh -20 -20 1 C 2 3

Reinhardt et
al. (2006)

Switzerla
nd

10 Wetland - Silver 
nitrate

Rayleigh 0 0 - A 1 1

Ruehl et al. 
(2007)

USA 14 River Ag Denitrifier Rayleigh -6 -1.6 0.5 C 3 2
-9 -9.7 1
-18.6 -18.5 1

204



Ryabenko et
al. (2012)

Ocean 5 Marine 
(OMZ)

- Cd-azide Rayleigh -11.4 - - C 4 4

Schwarz et 
al. (2011)

Ecuador 15 Soil Forest Silver 
nitrate 

Rayleigh -4.9 - - B 1 3
-2.6 - -

River -3.8 - - C 2 2
-3.9 - -
-1.5 - -

Sebilo et al. 
(2003)

France 12 River Mixed Diffusion Rayleigh -1.5 - - C 3 2

Sigman et 
al. (2003)

Ocean - Marine 
(coastal)

- Denitrifier Steady-state 
model

-25 -25 1 C 3 3
-1.5 -1.5 1 A 1 1

Rayleigh -5 -5 1 B 3 3
Sigman et 
al. (2005)

Ocean - Marine 
(coastal)

- Denitrifier Steady-state 
model

-25 -25 1 C 4 4

Singleton et
al. (2007)

USA 16 GW Ag Denitrifier Rayleigh -7 -3.5 0.47 C 3 3
-57 -28 0.6

Smith et al. 
(1991)

USA 8.9 GW Urban Diffusion Rayleigh -13.9 - - C 2 3

Sovik and 
Morkved 
(2008)

Norway 8 Wetland Ag Denitrifier Rayleigh -2.5 C 1 2
-5.9 2 2

Spalding et 
al. (1993)

USA 11 GW Ag Steam 
distillation

Rayleigh -7.7 - - C 2 3
-5.7 - -

Spalding 
and Parrott 
(1994)

USA 11 GW Ag Steam 
distillation

Rayleigh -9.6 - - C 2 3

Spoelstra et 
al. (2010)

Canada 5 Wetland Forest Silver 
nitrate

Rayleigh -9 -4.5 0.5 C 1 2
-30 -15 0.5 2 2

Sutka et al. 
(2004)

Ocean - Marine 
(OMZ)

- Steam 
distillation

Advection-
diffusion

-30 - - C 4 4
-35 - -

Tsushima et 
al. (2002)

Japan - GW Urban ? Rayleigh -17.9 - - C 3 3

Umezawa et
al. (2009)

Indonesia 27 GW Urban Denitrifier Rayleigh -3 -1.5 0.51 C 3 3

Vogel et al. 
(1981)

Namibia - GW - Combustio
n to N2

Rayleigh -30 - - C 3 4

Voss et al. 
(2001)

Ocean - Marine 
(OMZ)

- Diffusion Rayleigh -26.3 - - C 4 4
-27.3 - -

Advection-
diffusion

-22.5 - -
-37.5 - -

Voss et al. 
(2010)

Germany 5 Wetland Urban Diffusion Rayleigh 0 - - A 1 1

Well et al. 
(2012)

Germany 8.9 GW Ag Cd-azide Rayleigh -13.7 -7.3 0.66 C 3 3

Wexler et 
al. (2011)

UK 11 River Ag Denitrifier Rayleigh -11.1 -8.3 0.75 C 3 2

Wexler et 
al. (2012)

UK 11 River Ag Denitrifier Rayleigh -5.8 -2.4 0.41 C 1 2
-6 -3 0.49
-6.2 -3.4 0.5

Zhang et al. 
(2012)

Nether-
lands

4 GW Ag Silver 
nitrate

Rayleigh -10.9 -9.1 1 C 3 3
-2 -2 1
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Appendix B

Modelling the impact of diffusion and mixing on the expression of

the isotopic enrichment caused by denitrification 
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B.1 Derivation of equation to define diffusion-impacted R

By using Fick’s Law, this model builds an isotopic dimension into the diffusion-based 

understanding of denitrification rates in sediments presented by Christensen et al. (1990), which 

defines kdenit and NO3
- fluxes into and out of the denitrifying zone based on the depth of O2 penetration 

(z) (Eq. B.1). 

(B.1) 0=Ds
∂2C
∂ z 2 −w

∂ C
∂ z

−F

where NO3
- (as concentration, C) is transported vertically (over z) to and from the denitrifying zone 

(defined as an infinitely thin reactive layer, F, where denitrification occurs as per S1) via diffusion 

(Christensen et al., 1990; House, 2003; O'Connor and Hondzo, 2008). Availability of C for diffusion or

consumption is controlled by physical advection (w) (cm s-1). The diffusion term (Ds) is dependent on 

molecular diffusivity (Dm) of NO3
- (1.33 x10-5 cm2 s-1), temperature, and sediment porosity (Φ), as 

defined by Eq. B.2 (Boudreau, 1997). 

(B.2) D s=
Dm

(1.0−ln ϕ)

Denitrification (F) is assumed to occur in isolation from transport terms over z, allowing Eq. B.1 to be 

simplified to:    

(B.3) D
∂2 C
∂ z2 =0

boundary conditions  ∂ C
∂ x

=−k denit C

where the initial boundary condition describes 1st order reaction kinetics (S1).  At steady state, 

consumption at L (penetration depth z of O2 across the sediment-water interface, Fig. 3.1) is in 

equilibrium with diffusive transport of NO3
- (C) across the aerobic-anaerobic boundary layer (z=0) 

(Eq. B.4):  

(B.4) D
∂

2 C
∂ z2 =−k denit C z=L
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boundary conditions C z=0=−w
dC
dx

where the upper boundary layer at z=0 is open, meaning substrate fluxes into the surface water in 

accordance with steady state demands, which is in turn controlled by downstream flow (w over x). 

Therefore, the NO3
- concentration in the surface water reflects both the degree of denitrifcation and the

effect of transport (w, Ds), and the flux across z=0 can be solved as the first derivative of Fick’s Law 

(Eq. B.5).

(B.5)  
Ds ∙ k denit ∙ C w

D s+k denit ∙ L
=−w

∂ Cw

∂ x

Accordingly, the isotopic composition at z=0 reflects fractionation during from denitrification (αdenit) 

and transport (αD); αD is defined by Eq. B.6.

(B.6) α D=√ m(mb
+M )

mb
(m+M )

where the square root of the relative masses of the heavy (mb) and light (m) forms of NO3
- (i.e., 

15N16O3
-, 14N18O3

-) diffused in water (M= mass of H2O) define the diffusive fractionation factor (αD) 

(LaBolle et al., 2008; Richter et al., 2006). Using αD and αdenit, the isotopic composition of NO3
- (R) at 

depth z is calculated based on rates of consumption (kdenit) and transport (Ds) (Eq. B.7).  

(B.7) R=
C0

b ∙(D s+k denit L)∙(αD Ds+αdenit k denit ( L−z ))

C 0 ∙(D s+k denit ( L−z )) ∙(αD D s+αdenit k denit L)
 

The time required to establish the steady-state conditions assumed in the previous equations (t) is 

described in Eq. B.8, 

(B.8)  t=
L2 (1−ln ⁡[ϕ2 ])

4Ds
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where the time to stead state (t) following a disturbance is determined by L squared and the sediment 

porosity (Φ) relative to its diffusivity (Ds) (Boudreau 1997).

B.2 Codes for S2 numerical results

The following formulae were used to generate numerical solutions for 'R' for various values of

L, kdenit, εdenit, Ds, and w (e.g., Fig. 3.1), which were then used to solve for εeff per the Rayleigh solutions

developed by Mariotti et al. (1981).  
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Figure B.1 Output of dynamic model to describe how diffusive transport of NO3
- over vertical distance (z) in the 

sediment porewater (a) and NO3
- in the oxic surface water (b) over distance/ time (x) affects the net 

concentration of NO3
- (blue line), δ15N-NO3

- (‰ v AIR) (red line), and δ18O-NO3
- (‰ v VSMOW) (yellow

line), when sediment diffusivity (Diffusivity, in cm s-1), diffusive distance (L, in cm), denitrification rate 
(kdenit, in µg N cm-2 s-1), and fractionation factors for δ15N-NO3

- (15εdenit, measured as α) and δ18O-NO3
- 

(18εdenit, measured as α) are varied
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B.3 Codes for S3 numerical results
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O u t [ 3 3 ] =

SWNO3
-

1

kni t

0.00425

eni t

49
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P r i n t e d  b y  M a t h e m a t i c a  f o r  S t u d e n t s

Figure B.2 Output of dynamic model to describe how mixing of NO3
- produced from nitrification and residual 

from denitrification mix to determine the net concentration of NO3
- (top), δ15N-NO3

- (‰ v AIR) 
(middle), and δ18O-NO3

- (‰ v VSMOW) (bottom), when the total concentration of NO3
- produced via 

nitrification (SW NO3
-), the rate of nitrification (knit), and the fractionation factor for δ15N during 

nitrification (εnit) are varied   
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