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Abstract of a thesis submitted in partial fulfilment of the requirements for 

the Degree of Doctor of Philosophy. 

 

The Effect of a Catch Crop to Reduce Nitrate Leaching 
Loss Following Simulated Winter Forage Grazing 

 

by 

P.L. Carey 

The growing of high yielding forages for dairy winter grazing is a common pastoral farm 

management practice in the temperate regions of New Zealand.  The high stocking rates during 

winter forage grazing means that once the forage is grazed large volumes of urine are deposited.  

The aim of this research was to determine the effects of using a catch crop to sequester N following 

simulated winter forage grazing and to reduce nitrate leaching losses.  

Two lysimeter trials and one growth chamber experiment were conducted at Lincoln University to 

measure the effect of catch crops in reducing nitrate leaching loss from a Balmoral stony silt loam 

(NZ classification: Acidic Orthic Brown soil).  In year 1, a comparative lysimeter study was 

conducted between two potential catch crops, oats (Avena Sativa L.) and Italian (It.) ryegrass 

(Lolium multiflorum L.), that were sown at the recommended dates.  Urine labelled with 15N was 

applied at 350 and 700 kg N ha-1 in late June and the oats and It. ryegrass were sown 7 and 11 

weeks later, respectively.  The effect of the nitrification inhibitor, dicyandiamide (DCD), on reducing 

nitrate leaching after urine application was also investigated for each catch crop at the 350 kg N 

ha-1 rate only.  In year 2, another lysimeter study was conducted to determine the effect of the most 

effective catch crop in Experiment #1, oats, to capture N and reduce nitrate leaching from urine 

application at different times over winter (early June, early July and late July). This 2nd lysimeter 

experiment also determined the effects of increasing the interval between urine applications and 

sowing date of the oats (1-63 days after application).    

In year 1, only 3-4% of the urinary-N applied was captured by the catch crops (non-DCD) indicating 

that both were probably sown too late to make any significant impact on N uptake to reduce nitrate 
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leaching. However, the cool season activity of the oats increased evapotranspiration compared to 

the It. ryegrass, reducing drainage and thus nitrate leaching, by 22% and 25%, respectively, over 

the winter-spring period (Jun-Nov).  Application of DCD increased N uptake in the oats three-fold 

(~13% of N applied) and reduced nitrate leaching losses by over 60%.  

In year 2, nitrate leaching losses from a series of winter urine applications were reduced by around 

a third (~34%; range 19-49%) after the sowing of an oats catch crop compared to the fallow 

treatments.  Part of this success was likely due to a warmer and drier winter than normal but the 

size of the decrease suggests that there is significant potential to mitigate nitrate leaching in these 

low-cost winter feed systems whilst improving N-use efficiency and DM production.  Later sowings 

of oats leached up to 25% more nitrate than the earliest sowing with earlier sowing of the oats 

increasing N uptake over later sowings by up to a third.  Later winter urine applications had lower 

overall nitrate leaching losses (range 170-270 kg N ha-1).  Calculations for paddock N loss indicate 

a potential reduction in nitrate leaching overall of ~30% from 88 to 62 kg N ha-1.  

In year 3, a growth chamber experiment was established to investigate in more detail the main 

factors controlling oats development and N uptake using 15N-labelled urine. Two growth chambers 

set at 6C (mean winter) and 10C (mean spring), with two lighting levels (mid-winter, 5 MJ m2 day-

1 and early-spring, 10 MJ m2 day-1) each were set up to examine the soil temperature-by-light 

intensity interaction on oats development.  Sowing oats in the 10°C and 6°C chambers reduced 

nitrate leaching losses, on average, by around three-quarters and one-third, respectively.  Results 

indicated a strong interaction between temperature and light intensity at 10°C on oats development 

but no direct effect of light at 6°C.  Nitrogen uptake by the oats treatments in the 10°C chamber 

was almost complete after 45 days from sowing, with soil mineral-N concentrations reduced close 

to zero. However, indirectly, increased evaporative loss under the spring lighting and a slower rate 

of nitrification at 6°C meant drainage losses of nitrate were similar for both 6  and 10°C oats 

treatments, 90 days after urine application.  Where no oats were sown, nitrate leaching losses were 

large, particularly under the 10°C fallow treatments. 

This research programme has discovered that oats have considerable potential to reduce winter 

forage nitrate leaching losses but they need to be established early (sown within 3-4 weeks after 

urine application).  Cool soil temperatures are not an impediment to early establishment of oats. 
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Chapter 1 General Introduction 

 

“A concise overview of the main issues and problems around the anthropogenic effects from 

excess nitrate leaching within agricultural terrestrial systems and identification of gaps in the 

literature relating to methods to mitigate nitrate leaching loss in the New Zealand winter forage 

grazing system.” 
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Although the plant-available mineral nitrogen (N) comprises only 1% of total terrestrial N it is this 

form of N that presents the most threat to human and livestock health and to the wider environment, 

largely through losses from anthropogenic activities (Haynes 1986f; Cameron et al. 2013).  

Generally, fluxes of mineral-N entering or leaving a natural terrestrial ecosystem are small 

compared to those cycling within the vegetation such that the N-cycle remains relatively closed. 

This contrasts, however, with the open nature of agricultural systems where there is considerable 

disturbance through product removal and from N losses associated with runoff, leaching and 

gaseous emissions. The N fluxes in agricultural systems, consequently, may be several orders of 

magnitude greater and the potential for losses to affect sensitive environments and/or contaminate 

essential ecosystem services is considerably heightened. The World Health Organisation 

recommends that nitrate (NO3-N) concentrations, in drinking water, do not exceed 11.3 mg N L-1 to 

protect human health (WHO 2011) but elevated N concentrations in freshwater can also have 

detrimental effects on aquatic life and/or cause excessive aquatic plant growth and algal blooms, 

leading to eutrophication (Jenkinson 2001; Di & Cameron 2002a; Monaghan et al. 2007a; Smith & 

Schindler 2009; Cameron et al. 2013).   

With human population exceeding 6 billion and currently consuming ~25 million tonnes of protein 

nitrogen annually there is considerable pressure to increase farm productivity with demand 

projected to exceed 45 million tonnes by 2050 (Jenkinson 2001).  Intensifying farm production, 

however, increases reliance on imported fertilisers, particularly N, placing pressure on farm 

management to increase N-use efficiency and reduce N losses.  Animal grazing systems may have 

a greater risk of N leaching loss than arable systems due to the imposition of discrete zones of high 

N concentration from deposited excreta (e.g. urine patches) (Di & Cameron 2002a; Selbie et al. 

2015).  Developing mitigation strategies and technologies to improve N cycle efficiency in soils are 

needed to minimise environmental damage and ultimately improve the productivity and 

sustainability of New Zealand agriculture, and grazing systems in particular (Monaghan et al. 

2007a). 

Animal grazing systems using winter forage grazing (WFG) can heighten the potential for nutrient 

loss as gaseous and leaching losses of N increase disproportionately because of high stocking 

rates and increasing fertiliser-N use (Monaghan et al. 2007a).  The use of wintering forages to build 
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pregnant cow body score is a common farm management practice but leaching losses of nitrogen 

from such systems has been less well known till recently.  Monaghan et al. (2007b) identified that 

the wintering component of dairy systems can represent as much as 60% of the farm’s annual N 

leaching but from typically less than 15% of the grazing platform area.  One means of reducing this 

N loss could be the use of a ‘catch crop’ sown following grazing.  However, there is insufficient 

knowledge about whether plant establishment and growth can occur early enough to reduce nitrate 

leaching at a time of generally low plant activity and N uptake.  

The use of the nitrification inhibitor dicyandiamide (DCD) to reduce NO3--N leaching losses from 

urine spots has been well documented e.g. (Di & Cameron 2002b; Di & Cameron 2005; Di & 

Cameron 2007; Monaghan et al. 2009; Selbie et al. 2015) but winter forage grazing systems 

represent a new challenge to reduce N losses from an intense event that occurs over the peak 

drainage period.  Using catch crops plus the use of a nitrification inhibitor could be an effective 

combination to prevent N leaching loss and improve N use efficiency.   

The main objectives of this research programme will be to determine the effectiveness of using 

catch crops following winter forage grazing to reduce nitrate leaching loss and to examine the 

interaction between urine application, drainage and timing of catch crop establishment. A second 

aim will be to determine the effects of using a nitrification inhibitor in addition to catch crops to 

reduce nitrate leaching 
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Chapter 2 Literature Review 

 

“A review of established and current scientific literature that informs and explicates the principal 

issues and concerns around anthropogenic effects on N fluxes, cycling and losses within 

agricultural terrestrial systems and specifically the potential for catch crops to mitigate nitrate 

leaching loss in the New Zealand winter forage grazing system.” 
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2.1 Introduction 

Nitrogen (N) is one of the more ubiquitous elements in nature and its compounds are found in great 

quantities in all of earth’s major spheres: lithosphere, atmosphere, hydrosphere and biosphere.  As 

an elementary constituent of all amino acids, protein, enzymes, nucleic acids, chlorophyll and 

growth hormones, N is essential for the maintenance of life.  Making up between 1-6% of a plant’s 

dry-matter, N is often a limiting nutrient for plant growth (McLaren & Cameron 1990a) and its use 

in New Zealand, especially as industrially-produced fertiliser, has increased substantially over the 

last 20 years (IFA 2011).   

Literature on the functions of nitrogen in the environment is so voluminous that it would not be 

possible to summarise all this content here so this literature review will primarily focus on the current 

knowledge of N use in the pastoral grazing system, description of the major N pathways, the factors 

that influence and mitigate N loss, and agricultural practice that can help to mitigate agronomic and 

environmental N losses.   

2.2 The Nitrogen Cycle 

2.2.1 Global distribution 

The bulk of the earth’s N (98%) is held in rocks and minerals of the crust and upper mantle 

(lithosphere) whilst the remainder is mostly found (~1.9%) in gaseous (mainly N2) form within the 

atmosphere with a smaller amount (0.01%) present as dissolved N within the hydrosphere (earth 

water cycle) (Haynes 1986f).  However, N held in the earth’s crust contributes relatively little to the 

N cycle and mainly through volcanic emissions and crust out-gassing.  Of the N in the atmosphere, 

more than 99% is the very stable N2 molecule with significant, but very much minor, amounts of 

other N gases.  Thus, in comparison with the N contained in the lithosphere and atmosphere, the 

total amount of N held in the biosphere is very small (~0.01%) and of this ~70% is held in seawater. 

For both oceans and land, most of this N is in organic forms (50% and 73%, respectively) with only 

around 1% of N in the terrestrial environment existing in mineral forms (Haynes 1986f). 
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2.2.2 Elements 

Despite a very low overall proportion of N within the terrestrial environment there is great mobility 

between the elements that form the nitrogen cycle.  This mobility is created by many processes 

and factors that control N availability and where N can accumulate in soil, exceeding microbial 

immobilisation, then plant growth can occur and life within the biosphere sustained.  Nitrogen is 

frequently a key limiting factor for growth because soil-N contents are typically only 0.1-1% N with 

around 94% of this held in soil organic matter (SOM). Of this, only around 1% of N is available to 

plants and microorganisms, mainly as ammonium and nitrate ions (Rosswall 1976).  In natural 

systems the amounts of N fixed from the atmosphere and received in precipitation are 

approximately equalled by that lost in denitrification and leaching so a quasi-equilibrium is formed 

(Foth & Ellis 1997).  Furthermore, these amounts are generally very small compared to that cycled 

internally within the ecosystem.  However, when natural systems are disturbed, as with cultivation 

in agriculture, then losses can be substantial through vegetation removal and soil disturbance, 

resulting in a decrease in soil-N. Whilst this can be reversed through re-establishment of vegetation, 

for an agricultural system to be sustainable and not severely N limited requires losses through crop 

and product removal to be balanced by external inputs to maintain a quasi-equilibrium state.   

2.2.3 Cycling processes in pastoral agriculture 

Movement of N within the N cycle and specifically in pastoral agriculture is controlled by a series of 

addition, loss and transformation processes (Figure 2.2-1). Additions of N to the biosphere are from 

three main categories; wet and dry deposition (and transformation) of ammonia and nitrogen oxide 

gases (collectively referred to as NOx), biological N fixation and industrially-produced N fertiliser.  

Losses of N mainly occur through ammonia volatilisation, di-nitrogen (N2) and nitrous oxide (N2O) 

evolution via denitrification, leaching of mineral-N (mainly nitrate) and soluble organic-N in 

grasslands (Murphy et al. 2000), and from soil erosion (Gregg 2012).   

The N fluxes passing through these processes are considerably enhanced in modern agriculture 

because of the removal of products containing large amounts of N and the need to replace these 

through biological fixation and/or fertiliser-N inputs to sustain the system.  However, as the system 

is intensified and N inputs are increased, nitrogen-use efficiency (NUE) decreases and 
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opportunities for N losses rise.  Indeed, fertiliser recovery under cropping is only about ~50% on 

average (Krupnik et al. 2004) and N losses under pastoral grazing systems similar (Ledgard et al. 

1999).  With increases in N turnover rates, the importance of the nitrification process in the 

agricultural paradigm becomes more critical. 

Figure 2.2-1. The nitrogen cycle: Inputs, transformations and outputs (Cameron 1992). 

The major inputs, outputs and transformations of N in the soil system influence the amount of N 

that is available for plants and transferred into the wider environment.  The mineral-N in soil solution 

becomes the central pool from which the major pathways are drawn from, or contribute to, and can 

be summarised in the mineral N balance equation below (2.2-1) to represent the amount of mineral-

N present in the soil (Cameron et al. 2013): 

𝑁 = 𝑁𝑝 + 𝑁𝑏 + 𝑁𝑓 + 𝑁𝑢 + 𝑁𝑚 − 𝑁𝑝𝑙 − 𝑁𝑔 − 𝑁𝑖 − 𝑁𝑙 − 𝑁𝑒 

2.2-1
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Where: p is precipitation and dry deposition, b is biological fixation, f is fertiliser, u is urine and dung 

returns to the soil, m is mineralisation, pl is plant uptake, g is gaseous loss, i is immobilisation, l is 

leaching loss and e is erosion and surface runoff.   

2.3 Soil Nitrogen Processes 

2.3.1 Soil N transfers 

With around 95% of N in soils held in organic forms, release of N for plant uptake depends on a 

range of processes critical for N cycling and long-term ecosystem survival.  Internal transfers of N 

within the soil-plant system rely on plant uptake of N and its return as organic detritus, via plant 

senescence, and deposition of animal excreta.  The detritus is broken down by the combined 

actions of the decomposer community consisting of fungi, bacteria, protozoa and invertebrate 

species.  Established soil organic matter is a mix of cellular and humic materials that vary in stability 

but the most stable fractions may have half-lives of hundreds, if not thousands of years (Rosswall 

1976; Haynes 1986f).  At any one time, the amount of N held in mineral forms and microbial 

organisms is only ~1-2% of the total N pool with much of this largely derived from fresh organic 

matter inputs, particulates and soil biomass (Rosswall 1976). These may only amount to 10% of 

total soil-N, but their half-lives are relatively short (0.5-1.5 years) and consequently, supply the bulk 

of mineral-N. The larger stabilised SOM fraction (~35%) may supply around a third of mineral-N 

but old SOM (~50%) is relatively resistant to breakdown and contributes little to the mineral-N pool 

(Foth & Ellis 1997).   

2.3.2 Soil-N accumulation and decomposition 

In developing ecosystems, the initial substrate for plant establishment may be very harsh and 

unproductive so under those conditions the only major source of N is from biological fixation via 

free-living and symbiotic organisms that colonise the site.  Once conditions allow their 

establishment, N-fixing plants can follow and soil-N accumulates more rapidly, although this may 

still require many hundreds, if not thousands, of years.  Other non-N fixing plants eventually 

establish, and soil N approaches an equilibrium that is determined largely by the soil forming factors 

(climate, biota, relief, parent material and time) (Jenny 1961).  Once this quasi-equilibrium is formed 
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(it does not remain static forever), plant species and their growth are generally limited by N 

availability because transfers of N in and out of the system, in comparison with the internal cycling 

of N, are small (Rosswall 1976).   

To achieve this internal cycling relies on three inter-related decomposition processes: leaching, 

comminution and catabolism (Haynes 1986f).  Leaching removes the more soluble N detritus 

components by physical action of water soon after deposition although this generally stops once 

the organic matter becomes incorporated into the soil.  Comminution involves the physical 

reduction of the particle size of detritus, usually by the feeding activity of decomposer animals, 

increasing its surface area and importantly, making it more susceptible to microbial colonisation 

and attack.  Catabolism comprises a series of enzyme-mediated reactions that release energy, 

transforming complex organic molecules to more simple ones.  The enzymes are released by fungi 

and saprotrophic bacteria as well as those in the digestive systems of protozoa and feeding 

invertebrates.  Some of these products will be inorganic, others might be intermediates that enter 

the metabolic pool of decomposer organisms and are resynthesized into more complex molecules 

whilst others may be incorporated into non-cellular organic matter (e.g. humus).   

2.3.3 Soil N pools  

Decomposition performs two important functions within ecosystems: 1) mineralisation of nutrient 

elements and 2) formation of SOM (Haynes 1986f).  Soils might typically contain between 2500 

and 7500 kg N ha-1 within the top 15 cm depth, corresponding to 0.1 to 0.6% of the biosphere’s 

total N (Cameron 1992).  The soil-N contained can be assigned to three main pools (Figure 2.3-1): 

(i) mineral N in soil solution (ammonium; nitrate and nitrite), (ii) ammonium ions held by clay 

minerals, and (iii) organic compounds in plant material, soil organisms, and soil humus (McLaren 

& Cameron 1990a).  As discussed earlier, N held in organic compounds is mostly unavailable to 

plants directly so plant N uptake relies on transformations of organic material through 

decomposition and mineralisation to release ammonium.  Although plants can take up ammonium 

it is usually nitrified to nitrate relatively quickly and thus, the bulk of N uptake is generally as nitrate 

(Haynes 1986c).   
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Figure 2.3-1. Soil-N breakdown and approximate fraction size (McLaren & Cameron 1990a). 

2.3.4 Mineralisation and immobilisation 

Mineralisation-immobilisation are two inextricably linked aspects of the final step in the catabolism 

decomposition process; namely the metabolising of simple organic-N compounds to ammonium 

(ammonification) and the release of energy for anabolic activity to build microbial cells and their 

components.  Because the latter activity requires the products of mineralisation, namely inorganic-

N (NH4+ or NO3-) and/or the simple organic-N molecule precursors, a proportion of mineralised N 

is always immobilised due to micro-organism demands and therefore, plant N uptake depends on 

mineralisation exceeding immobilisation.  Both these processes occur simultaneously (Cameron 

1992) and net mineralisation relies on a sufficient concentration of N present in the decomposing 

material (~3% of DM) and a low C:N ratio. Generally, if the latter is less than 25:1, net mineralisation 

occurs whilst for a ratio greater than 25:1, net immobilisation occurs (Haynes 1986d; McLaren & 

Cameron 1990a).  Because net mineralisation rates are affected by a range of soil-N processes 

and effects, it can be difficult to extrapolate the likely net rate or outcome from one site or set of 

circumstances to another.  Indeed, over the short-term, net immobilisation may be as likely to occur
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as net mineralisation because the soil is heterogeneous by nature and zones of high and low 

nutrient status exist together, strongly affecting the intensity of N cycling.   

This process of continuous transfer between mineralisation and assimilation of N by the soil 

microbial biomass (SMB) and immobilisation and release back into the mineral pool is referred to 

as “Mineralisation-Immobilisation-Turnover” (MIT) (Jansson & Persson 1982).  It assumes that the 

bulk of immobilised-N occurs from the mineral-N pool, specifically as ammonium although nitrate 

can be assimilated in the presence of a readily-available C source (Recous et al. 1988).  However, 

some direct immobilisation of small molecular weight organic-N compounds, such as amino acids, 

also occurs at the microsite scale (“direct hypothesis”) where the excess in SMB requirement is 

released as ammonium (Drury et al. 1991; Iyyemperumal et al. 2007).  The 

mineralisation/immobilisation processes are not mutually exclusive and can run concurrently, 

emphasizing the heterogeneity of soils and microbial biomass (Iyyemperumal et al. 2007).  More 

recent models that aim to calculate N mineralisation and the likely N available for a crop now allow 

for both processes to run in parallel (Manzoni et al. 2008).  

Nitrogen mineralisation rates are affected by a range of soil factors notably soil temperature, soil 

moisture and soil texture (Haynes 1986d; Andersen & Jensen 2001; Dessureault-Rompré et al. 

2011), the forms, amounts and quality of C and N (Barrett & Burke 2000; Bengtsson et al. 2003; 

Schütt et al. 2014), cultivation (Silgram & Shepherd 1999), land-use intensity (Stempfhuber et al. 

2014), microbial factors (Hamer et al. 2008), and contaminants such as heavy metals (HM) (Dai et 

al. 2004).  Generally rates increase with optimal soil moisture (~field capacity) and in warmer soils 

whilst HM content is negatively correlated with N mineralisation (Haynes 1986b; Sauvé et al. 1999). 

Soil pH seems less influential on organic-N decomposition and N mineralisation rates (Aciego Pietri 

& Brookes 2008) but more critical to nitrification rates (Haynes 1986b).   

2.3.5 Nitrification 

Nitrification is the biological oxidation of ammonium (NH4+) to nitrate (NO3-) and is driven in the soil 

by the activity of autotrophic bacteria that derive their energy solely from these oxidation reactions.  

The oxidation occurs in two steps: ammonium (NH4+) is converted to nitrite (NO2-) (2.2-1), and NO2- 
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is further oxidised to NO3- (2.3-2).  The second step of the reaction is generally rapid and nitrite 

seldom accumulates in soil. 

2𝑁𝐻4
+ + 3𝑂2  → 2𝑁𝑂2 + 2𝐻2𝑂 + 4𝐻+ + 𝑒𝑛𝑒𝑟𝑔𝑦 

2.3-1 

2𝑁𝑂2
− + 𝑂2  → 2𝑁𝑂3 + 𝑒𝑛𝑒𝑟𝑔𝑦 

2.3-2 

Up to five genera of autotrophs are known to be able to oxidise NH4+ to NO2-: Nitrosomonas, 

Nitrosospira, Nitrosococcus, Nitrosolobus and Nitrosovirio but only one genus, Nitrobacter, is 

known to oxidise NO2- to NO3-.  Generally, Nitrosomonas and Nitrosospira are the most commonly 

represented in agricultural soils but Nitrosomonas is the more dominant in manured agricultural 

land (Haynes 1986b).  As only one genus of autotrophs is involved in the second oxidative process, 

the conversion of nitrite-to-nitrate is generally more strongly influenced by external factors such as 

moisture, soil pH and temperature. The more diverse heterotrophic biomass responsible for the 

oxidation of ammonium is less influenced and able to cope with a wider range of soil conditions 

(Haynes 1986b).  Recent soil and molecular biology research and phylogenic analysis has shown 

that in many New Zealand dairy pasture soils the dominant ammonia oxidising bacteria are 

Nitrosospira species, rather than the Nitrosomonas species (Di et al. 2009b). 

As can be seen in equations 2.3-1 and 2.3-2, two moles of hydrogen ions are produced for every 

mole of ammonium ions converted to nitrate. However, if the ammonium ion is sourced from the 

mineralisation of SOM then a proton is consumed in the ammonification process and the net effect 

is one proton produced per molecule of nitrate produced.  Uptake of nitrate by plants tends to 

counteract this effect, as for every NO3- ion taken up by the roots a hydroxide (OH-) or bicarbonate 

(HCO3-) ion is released.  Where nitrate accumulates and downwards movement through drainage 

occurs, then there is usually an associated loss of cations (Ca2+, Mg2+, K+ and Na+) as 

accompanying counter-ions.  Thus, nitrification and nitrate leaching can have a net acidifying effect 

on soil and can be a major cause of declining soil pH and base cation saturation (Haynes 1986b).   
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2.3.6 Factors affecting nitrification 

Rates of nitrification are sensitive to several factors, notably soil moisture content, pH, temperature 

and soil nutrient status; consequently, there are optimal ranges for most of these.  Maximum rates 

of ammonium oxidation occur when soil moisture content is around ‘field capacity’ (i.e. ~-10 kPa 

soil matric potential) (Haynes 1986b) and generally decline when approaching saturation or beyond 

permanent wilting point (-1500 kPa; Figure 2.3-2) (Malhi & McGill 1982; Monaghan & Barraclough 

1992).  This is primarily because increasing soil wetness is associated with decreasing oxygen 

availability from reduced aeration and slowing gas diffusion.  Conversely, increased aeration 

increases soil nitrification rates, especially in arable soils where cultivation exposes SOM to 

oxidative attack (Haynes 1986b).   

Many studies have shown optimal soil pH for nitrifying bacteria lies generally between 4.5 and 7.5 

(Table 2.3-1) where the inhibitory effects of Al toxicity are least (Haynes 1986b; Aciego Pietri & 

Brookes 2008).  Many soil processes produce surpluses of H+ ions and have net acidification 

effects on soils (Thomas & Hargrove 1984), including nitrification; consequently, there is a feedback 

effect on nitrification rates as soil pH and fertility decreases.   Similarly, the optimal soil temperature 

range for nitrifying bacteria lies between 20C and 30C (Figure 2.3-2) (Malhi & McGill 1982; 

Haynes 1986b).  Nitrification may still occur at soil temperatures below 5 C but the rates may be 

considerably slower, especially for more recalcitrant SOM (Sims 1986; Andersen & Jensen 2001).  

In situations where the supply of surplus ammonium is low, then most products of the mineralisation 

cycle may be assimilated as amino acids, rather than ammonium ions.  This can lead to a 

nitrification inhibition effect because of low nitrifier population numbers present (Haynes 1986b).  

Conversely, large concentrations of ammonium can inhibit Nitrobacter activity through a toxicity 

effect of ammonia at high pH and/or an increase in soil salinity with increasing rates of ammonium 

addition (Monaghan & Barraclough 1992).  Similarly, increasing soil heavy metal concentrations, 

whether from industrial contamination or from long accumulations of sewage sludge etc., can also 

affect Nitrobacter activity and inhibit nitrification (Haynes 1986b; Sauvé et al. 1999).  The sensitivity 

of nitrifiers to HMs varies considerably (Figure 2.3-3) but generally Nitrobacter are affected more 

that ammonia oxidisers (i.e. Nitrospira) and potentially an accumulation of NO2- could occur. 

However, many variables such as clay sorption, SOM complexation and soil pH can affect soil 
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solution HM concentrations whilst bacterial adaptation to HM concentrations will also affect 

nitrification rates (Haynes 1986b).   

Table 2.3-1.  Net NH4+-N, NO3--N and net total inorganic N (NH4+-N + NO3-N) concentrations 

in 2M KCl soil extracts from an arable Hoosfield soil acidity gradient strip incubated for 50 days 

with L (+)-arginine (Aciego Pietri & Brookes 2008). 

 

Figure 2.3-2. Effect of soil temperature and matric potential (soil moisture content) on soil 

nitrification rates of added ammonium (Haynes 1986b). 
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Differences in soil type have also been shown to affect nitrification rates (Monaghan & Barraclough 

1997; Decau et al. 2003) although some of these differences may relate to soil conditions created 

by differences in moisture regime, texture or management (Monaghan & Barraclough 1995).  For 

example, banding of ammonium or urea fertilisers can create high local concentrations of ammonia 

that inhibit Nitrobacter bacteria whilst soil environments with very low inputs of ammonium may 

have few nitrifying organisms present and/or have other nutrient deficiencies that inhibit nitrification 

(Haynes 1986b). The latter situation, however, is unlikely to occur in most agricultural soils.  

Autotrophic bacteria involved in nitrification processes are some of the most sensitive soil micro-

organisms to soil-applied agrochemicals (e.g. fumigants, insecticides, herbicides, fungicides), 

especially fumigants due to their potent nitrification inhibiting effects. However, at normal 

application rates, insecticides, herbicides and fungicides are unlikely to majorly effect nitrification 

(Goring & Laskowski 1982). 

Figure 2.3-3. Relationship between increasing DTPA-extractable heavy metals and 

percentage inhibition of nitrate production in a silt loam (Haynes 1986b). 
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2.4 Nitrogen Losses from Soils 

2.4.1 Ammonia volatilisation 

Agricultural sector emissions of ammonia represent a major nitrogen loss in the New Zealand 

pastoral system with a number of associated downside effects via soil acidification and 

eutrophication of aquatic systems (Saggar et al. 2004a).  Ammonia volatilisation is commonly used 

to refer to the process by which gaseous NH3 is emitted from the soil surface to the atmosphere 

and is a complex process involving physical, chemical and biological factors.  A supply of free 

ammonia (i.e. NH3 (g) + NH3 (aq)) near the soil surface is a prerequisite to gaseous loss and is 

favoured by high pH via the reaction between ammonium and hydroxide ions (2.4-1). 

𝑁𝐻4
+ + 𝑂𝐻− ⇄ 𝑁𝐻3 ↑ +𝐻2𝑂 

2.4-1 

Major ammonium sources include animal urine and faeces, farm effluent, organic residues and 

native SOM but also ammonium (NH4+)-incorporated fertilisers (e.g. NH4NO3, NH4Cl, (NH4)2SO4, 

and (NH4)2HPO4,) and urea ((NH2)2CO).  Urea (fertiliser or urine) undergoes hydrolysis readily in 

soils (2.4-2), catalysed by the enzyme urease to form ammonium carbonate (NH4)2CO3: 

(𝑁𝐻2)2𝐶𝑂 + 2𝐻2𝑂 → (𝑁𝐻4)2𝐶𝑂3 

2.4-2 

The hydrolysis reaction in soil is often rapid and zero order (Vlek & Carter 1983), with half-lives of 

urine-urea measured commonly in hours. Sherlock and Goh (1984) calculated half-lives for urea in 

urine of 3.0 and 4.7 hours for summer and autumn in New Zealand, respectively, the higher value 

attributable to lower soil temperatures.  The release of ammonium ions after hydrolysis allows 

interaction with those on the cation exchange complex, resulting in electrostatic binding to soil 

colloids and equilibrium reactions with NH4+ ions in soil solution.  The cation exchange capacity 

(CEC) of the soil buffers to some extent, this increase, and any associated rise in soil pH. 

Consequently, high cation exchange capacity (CEC) soils (e.g. clay loam) tend to have lower NH4+ 

solution concentrations than soils with a low CEC soil (e.g. sandy loam).   
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Soil pH has a significant influence on ammonia volatilisation and soils with naturally high pH (>7; 

e.g. calcareous soils) are capable of losing significant amounts of ammonia gas (Bishop & Manning 

2011). However, neutral or acid soils can also lose significant amounts via the reaction shown in 

equation 2.4-3 due to the sharp increase in pH from the reaction of the carbonate ion with water.  

Localised zones of high pH (>8) form close to the site of hydrolysis and these favour production of 

ammonia gas (Figure 2.4-1) and thus, increased volatilisation (Sherlock & Goh 1984; Black et al. 

1987; Sherlock et al. 1995; Sommer et al. 2004).  Indeed, Black et al. (1985b) found there was a 

strong positive relationship between volatilisation and maximum surface pH achieved by the 

fertiliser used.  With the onset of nitrification processes, soil pH eventually decreases, reducing the 

volatilisation rate. 

(𝑁𝐻4)2𝐶𝑂3+𝐻2𝑂 ⇄  2𝑁𝐻4
+ + 𝐻𝐶𝑂3

− + 𝑂𝐻− ⇄  𝑁𝐻4
+ + 𝑁𝐻3 ↑ +𝐻2𝑂 + 𝐶𝑂2 

2.4-3 

 

Figure 2.4-1. Ammonia volatilisation loss and soil pH around a broadcast urea granule 

(McLaren & Cameron 1990a). 

The conversion of NH4+ to NH3 regulates the potential loss of NH3 to the atmosphere through the 

various equilibria involved in the transfer of ammonium held on the exchange complex through soil
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 solution, release into the soil atmosphere, and diffusion away from the soil surface.  Generally, the 

higher the concentration of ammonium in soil solution, the greater the potential ammonia emission 

rate.  Rising air and soil temperature, windspeed, soil moisture (rapid hydrolysis), roughness 

(increased turbulence), and porosity (gas diffusion rate) are all environmental and soil factors 

shown to increase ammonia volatilisation rates (Vlek & Carter 1983; Black et al. 1987; Sommer & 

Olesen 1991; Sherlock et al. 1995; Sommer et al. 2004).  Conversely, mitigation methods to reduce 

ammonia losses include transporting urea to depth via rainfall or irrigation soon after fertiliser 

application (Sherlock & Goh 1984), incorporation below the surface (Sommer et al. 2004), and the 

use of urease inhibitors such as N-(n-butyl) thiophosphoric triamide (NBPT) to coat urea granules 

(Watson et al. 1994).  The latter has been shown to reduce NH3 volatilisation by up to 95%.  

Although dry soils slow the initial hydrolysis of solid urea fertilisers over the short-term, losses over 

the long-term may be similar if the NH4+ ions remain largely on or near the soil surface (Sherlock 

et al. 1995).  

Volatilisation losses from N fertilisers or animal excreta applied to soils can vary widely depending 

on the amount, form, concentration and degree of incorporation.  Bishop and Manning (2011) 

recently summarised published results on urea fertiliser volatilisation losses for NZ, the most 

commonly used N fertiliser, for both pastoral and arable cropping.  Mean N volatilisation losses for 

acid soils were 20±10% for grasslands (15-500 kg N ha-1 applied) and 14±7% (46-200 kg N ha-1 

applied) for arable cropping. These are comparable with losses reported in New Zealand of typically 

5-15% of the N applied where urea application rates are <50 kg N ha-1 (Black et al. 1985b; Haynes 

& Williams 1993; Di & Cameron 2004b).  Volatilisation losses from dung deposited whilst grazing 

are regarded as less significant than those from urine due to the fewer applications and smaller 

area covered by dung, their slower decomposition and the majority of N occurring in less 

mineralisable forms (Haynes & Williams 1993).  Where excreta storage is required (common in 

European systems), volatilisation losses of the ammoniacal-N present can be significant (19-100%) 

(Sommer & Olesen 1991) but these same wastes applied to pastures can also incur large losses, 

although this is very dependent on the waste type and ammoniacal-N present (Bolan et al. 2004).  

In the pastoral system the grazing animal is estimated to return up to 85-90% of the ingested N in 

urine and dung (Cameron et al. 2013).  Of this amount, it has been observed that sheep and dairy 
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cattle excrete 70–75% and 60–65% of N in urine, respectively, when grazing N-rich grass/legume 

pastures (Oenema et al. 1998).  Whilst the majority of the N present in both dung and urine is in 

organic forms, typically 70% of the N in urine is present as easily hydrolysable urea and the rate of 

N application may be as high as 1000 kg N ha-1 in a urine spot (Oenema et al. 1998; Di & Cameron 

2002a).  Ammonia volatilization losses from urine, consequently, can range from 2-46% and 

commonly 15-25% of the N present, with losses typically greatest in the first few weeks after 

application (Haynes & Williams 1993).  Losses are favoured under hot, dry summer conditions but 

minimised under cooler, moist winter conditions (Haynes & Williams 1993; Di et al. 2002).  Sherlock 

and Goh (1984) reported losses of 22-25% over summer/autumn in New Zealand but only 12% in 

winter, whilst Di et al. (2002) found volatilisation losses from an autumn urine application of only 

2% of total-N.  Total volatilisation losses for pastoral grazing systems in New Zealand have been 

shown to range from 15-68 kg N ha-1 for intensive dairying systems (Ledgard et al. 1999) and 

around ~13 kg N ha-1 for hill country sheep pastures (Haynes & Williams 1993). 

2.4.2 Gaseous N2 and NOx emissions 

A characteristic of intensively managed pastoral grazing systems is a surplus of N once plants, 

micro-organisms and soils can no longer assimilate or retain the excess N.  This surplus is lost via 

two main ways, by nitrate leaching and through gaseous N emissions.  Nitrogen gas emissions as 

ammonia (section 2.4.1), dinitrogen (N2), nitric oxide (NO) and nitrous oxide (N2O) gases can all 

represent a significant loss of N from the soil/plant system but emissions of N2O particularly 

represent a major contributor to climate change due to N2O’s large radiative-forcing potential.  This 

potential means that N2O has about 300-times the warming potential of carbon dioxide (CO2).  

About half of New Zealand’s agricultural greenhouse gas (GHG) inventory is from agriculture 

(Figure 2.4-2) and is dominated (~90%) by emissions of N2O and methane (Ministry for the 

Environment 2013a).  Nitrous oxide makes up about 16% (on a CO2-equivalent basis) of New 

Zealand’s greenhouse gas emissions (Saggar et al. 2002) consequently, efforts to reduce this 

contribution have dominated New Zealand’s efforts in GHG-soils research (Bolan et al. 2004; 

Saggar et al. 2004a; Cameron et al. 2013; Saggar et al. 2013).  
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Figure 2.4-2. New Zealand's greenhouse gas emissions (by sector, in million tonnes of CO2 

equivalent) in 2011 (Ministry for the Environment 2013b). 

Emission processes 

Gaseous nitrogenous emissions are produced by three groups of organisms: dissimilatory 

denitrifying bacteria (i.e. the products are not assimilated), non-denitrifying fermentative bacteria 

and fungi, and autotrophic nitrifying bacteria (Haynes & Sherlock 1986).  In anaerobic conditions, 

denitrifying bacteria are thought to be the most important organisms contributing to gaseous N 

losses (Payne 1981; Firestone 1982) but in oxidative environments nitrifying bacteria may be the 

biggest source of nitrogenous gas loss and an equal contributor to total N2O loss (Carter 2007).  

Whilst the process of nitrification has already been discussed, the mechanism described in 

equation 2.4-3 can be expanded (equation 2.4-4) to show that the NH4+-oxidising bacteria 

Nitrosomonas, Nitrosospira and Nitrosolobus have the capacity to produce N2O from NH4+ or 

hydroxylamine (an intermediate in the oxidation of NH4+ to NO2-) under most conditions (Haynes & 

Sherlock 1986).  It is also thought that N2O is evolved from a second intermediate compound, 
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nitroxyl (HNO), dismutating under low O2 concentrations, or from the nitrate reductase enzyme 

using NO2- as the terminal electron acceptor instead of O2 when the latter is in low concentrations 

during metabolic processes (Schmidt 1982; Haynes & Sherlock 1986).  Nitric oxide (NO) may be 

evolved in this step and preferred, as the O2 concentration in the medium decreases (Lipschultz et 

al. 1981).   

Denitrification is a major biologically-mediated process in agricultural soils, occurring mostly in 

poorly drained soils where both low O2 availability and low redox conditions (<320 mV) are present.  

Essentially the last step in the N cycle, where fixed N is returned to the atmospheric pool of N2, 

biological denitrification (2.4-4) is defined as the dissimilatory reduction of NO3- or NO2- by 

essentially anaerobic bacteria producing molecular N2 or oxides of N when O2 is limiting (Payne 

1981).  These respiratory denitrifiers gain energy by coupling N-oxide reduction to electron 

transport phosphorylation (i.e. ATP generation) and are present in nearly all soils (Payne 1981).  

The main genera capable of denitrification comprise mainly facultative anaerobes (i.e. normally 

aerobic but can switch to anaerobic respiration or fermentation if O2 is absent) and include 

Pseudomonas, Bacillus, Alculigenes and Flavobacterium genera (Payne 1981; Firestone 1982).   

2.4-4 

Denitrification as shown in 2.4-4 (adapted from Saggar et al. (2004a)) is mediated by a series of 

enzymes that requires a supply of free electrons at each stage for complete reduction to N2 (+5→0).  

The supply of these electrons in soil environments is usually soil organic matter and can be 

described in the following stoichiometric equation (2.4-5): 

5(𝐶𝐻2𝑂) + 4𝑁𝑂3
− + 4𝐻+  → 2𝑁2 + 5𝐶𝑂2 + 7𝐻2𝑂 

2.4-5
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Many soil bacteria seem capable of denitrification or at least partial denitrification (i.e. they can 

mediate at least one step in the process) but exhibit a variety of reduction pathways and differing 

end-products, some producing N2 only while others produce a mixture of N2O and N2. 

Consequently, varying ratios of N2O/N2 are produced depending on soil conditions, the organisms 

involved and the substrate used (Bolan et al. 2004) although the relative proportion of N2O/N2 

evolved during denitrification generally increases as the soil becomes more aerobic (Firestone 

1982).  Nitric oxide (NO) can also be emitted in the denitrification process (2.4-4) but the amounts 

are generally low compared to the quantities of N2O that can be emitted under field conditions and 

before it can be converted to N2 (Cameron et al. 2013).   

Dissimilatory reduction of nitrate to ammonium (DNRA) is also recognised as another part of the 

denitrification process that occurs after the dissimilatory reduction step of nitrate to nitrite (i.e. NO3- 

→ NO2- → NH4+) but the diversity of enzymes and organisms that can carry out this process means 

that the process is less well characterised than for respiratory denitrification (Tiejde 1988).  

Generally, however, it is a less favourable process due to less ATP production and thus, less 

important in discussing losses from pastoral grazing systems.   

A range of other contributing processes can also be implicated in gaseous N emissions. 

Chemodenitrification is a term commonly used to describe various chemical reactions of NO2- ions 

within soils that result in emission of a variety of nitrogenous gases (e.g. N2, NO, NO2 and N2O) but 

aren’t biological in origin.  These reactions only occur where there is a build-up of nitrite and thus, 

don’t normally occur in well-aerated, unfertilised soil environments where the rate of NO2- → NO3- 

conversion is faster than the NH4+ → NO2- step.  However, if conditions produce high localised 

concentrations of NH4+ ions and high pH from, for example, the banding of ammonium-producing 

fertilisers or within urine patches, then activity of the oxidiser Nitrobacter can be inhibited leading 

to high concentrations of nitrite.  In the periphery between the acid soil environment and the 

localised nitrite concentration, the nitrite ion may be unstable and gaseous N emissions may occur 

as a result (Haynes & Sherlock 1986).  Fungal denitrification may also be implicated in gaseous N 

loss.  Most fungal-denitrifying activity reduces only NO2- → N2O but some fungi can reduce both 

NO2- and NO3- (Shoun & Tanimoto 1991).  In wet soils, the anaerobic oxidation of NH4+ directly to 

N2O or N2, called ‘anammox’, has been identified as another possible process for gaseous N loss 
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although the fungi responsible and the anammox reaction have not been identified together 

(Hayatsu et al. 2008).  Its importance in temperate pastoral systems, therefore, may be slight. 

In recent years, research identifying the genes in microorganisms that encode specific 

denitrification enzymes has enabled greater differentiation between denitrifier communities and 

their relative contribution to N2O production (Saggar et al. 2013).  The relative importance of both 

nitrification and denitrification to gaseous-N emissions, and N2O in particular, will depend on the 

system and the soil condition but experimental evidence shows that in NZ pastoral systems where 

the main inputs of N are from urine, and water filled pore space is less than 60% of maximum, then 

nitrification contributes little to gaseous-N emissions and the primary source is denitrification 

(Saggar et al. 2002).  In summary, denitrification requires four main requirements to proceed: 

1. A readily-available carbon supply 

2. The presence of soil microorganisms possessing the necessary metabolic capacity 

3. Anaerobic conditions and/or a reduced O2 supply, and 

4. A supply of N oxides (usually nitrate) to act as terminal electron acceptors.   

Factors affecting denitrification 

Environmental factors that affect denitrification can be divided into two types: proximal regulators - 

those that affect denitrification rates almost immediately, leading to instantaneous changes in 

denitrification rates; and distal regulators – those that affect denitrification rates over wider scales 

of distance and time as influenced by land management and soil factors (Saggar et al. 2013).  

Proximal regulators include nitrate supply, carbon availability, O2 concentration and temperature 

whilst distal regulators include plant growth, soil texture, soil pH, water availability and land 

management practice (i.e. grazing and/or cultivation practice).  The myriad of compounding factors 

means it is difficult to predict the effect of a combination on N2O/N2 ratios and denitrification rates 

but, generally, complete denitrification will be promoted where there is high soil water content, 

neutral-to-slightly basic soil pH, high soil temperature, low rates of O2 diffusion and a presence of 

labile C (Saggar et al. 2013).  
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Range of gaseous N losses 

Reported gaseous N losses for both N2O and N2 in temperate grassland vary widely due to the 

range of inputs, land management, climatic zones, soil moisture and soil physical conditions that 

impact upon emissions (Table 2.4-1).  This also means gaseous N loss can vary greatly within a 

single field (Velthof et al. 1996), potentially requiring many measurements to achieve the accuracy 

and precision to confidently up-scale values to farm and regional level.  Generally, higher rates of 

denitrification are associated with grazed and fertilised pastures with temporal changes often 

related to soil moisture and temperature variables (Bolan et al. 2004).  Total N losses through 

denitrification in unfertilised dairy-grazed pastures in New Zealand were found to be ~5 kg N ha-1 

on an annual basis (Ledgard et al. 1999; Luo et al. 2000) but the addition of up to 400 kg urea-N 

ha-1 increased denitrification to 19 kg N ha-1 (Ruz-Jerez et al. 1994) and 25 kg N ha-1 (Ledgard et 

al. 1999) (about 5 and 6%, respectively, of the N applied).  Saggar et al. (2002; 2004b) reported 

N2O losses of 1.8 and 1.6 kg N2O-N ha-1 for well and poorly drained ungrazed pastures, 

respectively, and 9.7 and 11.7 kg N2O-N ha-1, respectively, for the same pastures when grazed. 

These emissions represented on average 2.0 and 2.5% of the applied excretal and fertiliser N in 

these two soils, respectively, and were attributed mainly to denitrification.  Gaseous losses of N2O 

from the nitrification process can also occur under urine patches, and where soil moisture content 

is intermediate (~45% WFPS), N2O losses from both nitrification and denitrification may be similar 

(Carter 2007).  Losses, however, usually represent a considerably lower overall proportion of total 

nitrification (<0.5%) (Koops et al. 1997; Carter 2007) and under temperature pastures in New 

Zealand, the greatest losses seem to originate mainly from denitrification (Saggar et al. 2002). 
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Table 2.4-1.  A range of studies measuring N2O and total denitrification losses in temperate grasslands. Adapted from Saggar et al. (2009) and (2013). 

Location Soil texture N treatments 
(kg N ha-1 applied) Method Denitrification (kg N ha-1d-1) 

mean (min-max) 

Denitrification - % of 
total-N input 

mean (min-max) 
Reference 

N2O only       
Germany Sandy silt loam CAN (120: 4x 30)  - 0.3 (Anger et al. 2003) 
New Zealand Stony silt loam Cow urine (1000)  - 2.2 (Di & Cameron 2003) 
New Zealand Stony silt loam Cow urine (1000)  - 1.9 (Di & Cameron 2006) 
New Zealand Silt loam Cow urine (1000)  - 3.1 (Di & Cameron 2006) 
New Zealand Silt loam Cow urine (1000)  - 2.0 (Di et al. 2007) 
New Zealand Sandy loam Cow urine (1000)  - 0.8 (Di et al. 2007) 
New Zealand Sandy loam Cow urine (1000)  - 0.6 (Di et al. 2007) 
New Zealand Clay Synthetic urine (1000)  - 1.9 (Clough et al. 1998) 
UK heavy clay loam Cow urine (700 spring)  - 0.0 (Allen et al. 1996) 
UK heavy clay loam Cow urine (700 autumn)  - 1.5 (Allen et al. 1996) 
Total       
Denmark Loamy sand U, ammonium soln. (529) Soil core 0.014 - (Carter 2007) 
Germany Loam AN, PS, CS (450) Chamber 0.003 (0.001-0.008) 0.32 (0.1-0.7) (Schwarz et al. 1994) 
New Zealand Silt loam U (500) N balance 1.414 (0.863-1.974) 27.0 (16.4-37.3) (Clough et al. 1995) 
New Zealand Silt loam Natural rainfall Soil core 0.02 (0.003-0.247) - (Luo et al. 2000) 
New Zealand Fine sandy loam U (500) Soil core 0.014 (0.005-0.031) 3.61 (2.6-4.8) (Ruz-Jerez et al. 1994) 
New Zealand Silt loam KN (200) Sieved soil 1.48 (0.80-2.33) 24.7 (20.0-32.0) (Zaman et al. 2008) 
New Zealand Silt loam U, KN (400) Soil core 0.0145 (0.0009-0.03) 0.59 (0.39-0.84) (Zaman & Nguyen 2010) 
New Zealand Fine sandy loam U, DE (1000 & 400) N balance - 9.6 (5.3-13.9) (Di et al. 2002) 

Netherlands Sand, loam, peat KN (40, 80) Soil core 1.41 (0.03-3.6) - (de Klein & Van Logtestijn 
1996) 

Netherlands Heavy clay CS, KN (33-264) Soil core 0.276 20 (van der Salm et al. 2007) 
UK Clay, clay loam CAN, U (100, 200, 300) Soil core 0.07 (0.004-0.216) 11.4 (3.3-26.3) (Jordan 1989) 
USA Unknown U (510) Soil core 0.0008 (0.00025-0.0015) 0.002 (0.006-0.002) (Frank & Groffman 1998) 
UK Loam over clay AN (250, 500) Chamber 0.038 (0.004-0.08) 5.1 (4.4-5.8) (Ryden et al. 1984) 

Fertiliser type: AN- ammonium nitrate, AS- ammonium sulphate, CAN- calcium ammonium nitrate, CS- cattle slurry, DE- dairy effluent, KN- potassium nitrate, PS- pig slurry, U- urea/urine. 
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2.4.3 Nitrate Leaching 

Although surpluses of N in natural ecosystems are seldom large and external N transfers relatively 

slight, this is often not the case in highly productive soils.  As the intensity of land-use increases it 

is inevitable that a rise in fertiliser application and N particularly, will lead to a heightened potential 

for nitrate losses.  Whilst this is an agronomic and economic loss, it is the wider threat to the 

environment and human health that is of most concern (Wild & Cameron 1980; OECD 1982; Di & 

Cameron 2002a).  Excess nitrate in water supplies can present a risk to human new-borns through 

the condition methaemoglobinaemia and is also linked to cancer and heart disease (Cameron et 

al. 2013).  An increasing number of tested groundwater sites in New Zealand now show elevated 

nitrate concentrations (Figure 2.4-3) with a number of these worsening in recent years (Figure 

2.4-4) (Ministry for the Environment 2010).  Increasing nitrate in the environment is a leading cause 

of anthropogenic eutrophication (Smith & Schindler 2009) with nitrate from pastoral agriculture 

blamed as a leading contributor to decreasing water quality over the last 10-15 years in New 

Zealand rivers, lakes and groundwater (Hamill 2006; Daughney & Randall 2009; Ballantine et al. 

2010).   

Often fertiliser use is based on what is agronomically beneficial. However, N use efficiency (NUE) 

decreases with increasing application rates and the excess N in the system can present a harmful 

output to the environment (Havlin 2004).  These surpluses of N under grazed grassland, from a 

combination of fertiliser-N, animal excreta, legume activity and cultivation, can be large and nitrate 

can build up well in excess of plant demand (Ledgard et al. 1999; Di & Cameron 2002a).   

When N and moisture conditions in the soil exceed pasture requirements, leaching losses of N may 

occur via soil drainage, mainly as nitrate since the negatively charged ion (NO3-) is not retained in 

most soils.  Nitrate leaching losses can be exacerbated by combinations of circumstances that 

produce both large nitrate concentrations and excessive drainage.  For example, large N fertiliser 

applications on free-draining light-textured soils can produce a high potential for nitrate leaching 

losses whilst small N applications on high water retention soils will tend to have a lower loss 

potential.  Using appropriate fertiliser rates and timing application with plant development will 
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minimise leaching losses.  Similarly, optimal irrigation rates, timed to occur with plant requirements 

as opposed to excessive and/or ill-timed irrigation, can also reduce N leaching losses. 

 

Figure 2.4-3. Median nitrate-N levels for the period 1995 to 2008 for 914 groundwater sites 

in New Zealand (Ministry for the Environment 2010). 

Appropriate use of N fertilisers and skilfully managed farms means high fertiliser-N use efficiency 

can be obtained (Vibart et al. 2012) but N loss from animal excreta, and urine patches in particular, 

will always prove problematic due to their deposition in excess of plant demand.  As discussed in 

section 2.4.1, approximately 85-90% of N ingested by the grazing animal is returned to the soil-

pasture system of which ~70% is passed out in the urine; with over 70% present as urea (Saggar 

et al. 2013).  Under a urine spot an effective dairy cattle urine-N application rate may be as high as 

1000 kg N ha-1 and, consequently, the potential for leaching losses below the root zone is large 

(Haynes & Williams 1993; Di & Cameron 2002a).  There is considerable data on nitrate leaching 

losses under grazed pastures both in New Zealand and overseas and generally losses appear to 

-N 
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increase with the intensity of the management system and the N loading from urine deposition (Di 

& Cameron 2002a). 

 

Figure 2.4-4. Regional changes in nitrate-N levels in groundwater 1995-2008 (Ministry for 

the Environment 2010). 

 

Table 2.4-2.  Measured nitrate leaching losses under grazed pastures (Di & Cameron 

2002a). 

N applied (kg N ha-1 Soil texture Grazing 
system 

Drainage 
(mm) 

Leaching loss 
(kg N ha-1y-1) Reference 

0 Clay loam Cattle 300 30 (Monaghan et al. 2005) 
Urea 100 Clay loam Cattle 300 34 (Monaghan et al. 2005) 
Urea 200 Clay loam Cattle 300 46 (Monaghan et al. 2005) 
Urea 400 Clay loam Cattle 300 56 (Monaghan et al. 2005) 
Dairy shed effluent Sandy loam Dairy cows 350 47 (Silva et al. 1999) 
Urea 200 Sandy loam Dairy cows 350 54 (Silva et al. 1999) 
Urea 225 Silt loam Dairy cows 200 57 (Ledgard et al. 1996) 
Urea 360 Silt loam Dairy cows 200 110 (Ledgard et al. 1996) 
NH4NO3 200 Clay Beef cattle 300-500 39 (Scholefield et al. 1993) 
NH4NO3 400 Clay Beef cattle 300-500 134 (Scholefield et al. 1993) 
NH4NO3 420 Loam Beef cattle 330 162 (Ryden et al. 1984) 
NH4NO3 450 Loam-clay Beef cattle 170-240 11-48 (Ryden et al. 1984) 
None Sandy loam Sheep 220-270 6-7 (Ruz-Jerez et al. 1995) 
Urea 400 Sandy loam Sheep 220-270 11-41 (Ruz-Jerez et al. 1995) 
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The nature of New Zealand’s agriculture and its almost totally outdoor-based pastoral livestock 

system means it is difficult to significantly change the scale of these N losses under current farm 

management practices.  Therefore, the challenge is to find mitigating technologies or management 

systems that can reduce leaching losses and/or recycle the N deposited in these areas back into 

the grazing system more efficiently, whilst improving productivity. 

2.4.4 Solute transport mechanisms 

Given steady-state water conditions in the soil and no interaction between solute and soil, 

movement of the nitrate ion can be described by a combination of three main mechanisms: 

convection, diffusion and hydrodynamic dispersion (McLaren & Cameron 1990b; Hillel 1998a).   

Convection transport 

Any initial discussion of the mechanisms of solute movement in soils first needs to consider 

convection alone. Convection or mass flow of water (sometimes called Darcian flow) carries with it 

a convective flux of solutes Jc, proportional to their concentration c; (2.4-6); (Hillel 1998a): 

𝐽𝑐 = 𝑞𝑐 =  −𝑐 (𝐾 
𝑑𝐻

𝑑𝑥
) 

2.4-6 

where q = -K (dH/dx) is Darcy’s law that describes the steady state flux q of water for saturated 

flow in porous media over hydraulic gradient dH/dx (for a fixed hydraulic head H over distance x).  

The proportionality factor K, otherwise known as the soil’s hydraulic conductivity, describes the 

ability of the soil to transport the liquid and thus is related to the soil’s pore space distribution and 

continuity.  The distance travelled by solute per unit time depends on the average pore water 

velocity, U, described below (2.4-7): 

𝑈 =
𝑞

𝜃
 

2.4-7 

where q is as described above, and θ is the volumetric water content.  Convection transport implies 

uniform displacement of the band of solute (Figure 2.4-5a).  
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Diffusive transport 

In actuality, the band of nitrate transported by the convection process is subject to separate 

diffusion and dispersion processes that cause it to spread out (Figure 2.4-5b).  Diffusion processes 

commonly occur in gas and liquid phases because of random thermal motion from repeated 

collisions and deflections between molecules.  In solute transport, there is a net tendency to even 

out the spatial distribution of a solute along a concentration gradient (i.e. from a zone of high solute 

concentration to one of low) so that the solute is evenly distributed within the liquid medium.  This 

process can be described by Fick’s law below (2.4-8). 

𝐽𝑐 =  −𝐷𝑜

𝑑𝑐

𝑑𝑥
 

2.4-8 

where Jc is the rate of diffusion, Do is the diffusion coefficient of solute in the soil and depends on 

the soil moisture content, and dc/dx is the solute concentration gradient.  As the soil dries, the 

ability of the solute to diffuse throughout the liquid phase decreases and pathway tortuosity 

increases.  Consequently, the diffusion coefficient in soil Ds, is related to Do, Fick’s law coefficient, 

the volumetric water content 𝜃, and the empirical tortuosity factor ξ, through Ds= Do𝜃ξ.  

Dispersive transport 

Hydrodynamic dispersion describes the mechanical mixing of a solute in the soil liquid phase where 

the same conditions exist as in diffusive transport but the movement of the liquid itself through the 

soil pores creates the solute mixing effect analogous to diffusion.  This occurs because of the range 

of velocities of moving water, within and between soil pores of difference sizes.  Within a pore, the 

liquid at the centre will tend to move faster than that at the edges where friction and other forces 

create a drag on the liquid, thus, solute held at the centre will tend to travel further than that at the 

edges.  Similarly, the range of velocities between pores is related to the 4th power of the radius 

such that the flux q, increases by a factor of 16 for every doubling of the pore radius.  

Mathematically, hydrodynamic dispersion can be described in an analogous manner to diffusion 

except that a dispersion coefficient Dh, is used instead of a diffusion coefficient. Because of the 
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similarity of effect, if not mechanism, the two are combined together into a single term called the 

diffusion-dispersion coefficient Dsh, represented by equation 2.4-9 (Hillel 1998a): 

𝐷𝑠ℎ(𝜃, 𝑈) =  𝐷𝑠(𝜃) + 𝐷ℎ(𝑈) 

2.4-9 

where Dsh is a function of both the fractional water volume, θ, and the average pore water velocity, 

U. 

Combined convective-diffusive-dispersive transport 

Considering all three processes discussed thus far in the transport of solutes, the mass flow 

(convection) is combined with molecular diffusion and hydrodynamic dispersion equations to create 

a combined solute flux equation (2.4-11).  This equation takes account of the solute flux for each 

of the three components and since in practice the diffusion and dispersive phenomena cannot be 

separated, the equation (2.4-10) is usually written in the form (Hillel 1998a): 

𝐽 =  θ𝓋c − 𝐷𝑠ℎ(𝜃, 𝑈)
𝑑𝑐

𝑑𝑥
 

2.4-10 

where J is the total solute mass transported across unit cross-sectional area of soil per unit time, 

Dsh is the lumped diffusion-dispersion coefficient (a function of volumetric wetness 𝜃 and average 

pore-water velocity, U), 𝓋 is pore water velocity, c is the solute concentration, and dc/dx is the 

solute gradient (Hillel 1998a).  Most parameters in the above equation however, can only be defined 

in macroscopic terms as gross spatial averages and is only an approximation of the process it’s 

intended to represent.  With transient-state processes where fluxes and concentrations can change 

in space and time, the conservation or continuity principle is invoked, which for combined 

convection-diffusion-dispersive transport (2.4-11) can be written as (Hillel 1998a):  

𝜕(𝑐𝜃)

𝜕𝑡
=  −

𝜕𝐽

𝜕𝑥
 

2.4-11 
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For steady-state water flow (but not necessarily steady-state solute movement), , U and Dsh are 

taken as constant and equations 2.4-10 & 2.4-11 are combined and simplified to a Convective-

Dispersive-Equation (CDE) equation (2.4-12) (Hillel 1998a): 

𝜕𝑐

𝜕𝑡
=  𝐷𝑠ℎ

𝜕2𝑐

𝜕𝑥2
− 𝑈

𝜕𝑐

𝜕𝑥
 

2.4-12 

Classically, solute transport in porous media described using the above equation can be 

exemplified in Figure 2.4-5b but as alluded to in the previous paragraph this assumes there are no 

other mechanisms operating that affect gains, losses or transport of solute.  This is obviously untrue 

for many solutes, including nitrate, where a number of soil-driven processes occur that can affect 

solute concentration and transport, but due to their complexity and transient nature, are difficult to 

describe mathematically.  Often a sink-source (S) term is added to the CDE to sum the possible 

solute sinks, sources and storage changes but the total effect on nitrate leaching processes is 

invariably difficult to calculate accurately as the processes are often spasmodic and/or temporal 

(Hillel 1998a).  

Soil charge characteristics 

There are two main charge effects in soils that affect nitrate transport, exclusion and sorption. In 

exclusion, the process is driven by the net negatively-charged soil surfaces that dominate most 

temperate soils, repelling the negatively-charged nitrate ion towards the faster moving centre of the 

soil pore.  This reduces the effective pore volume of the soil and thus the nitrate ions travel faster 

than that predicted by convection theory, as shown in Figure 2.4-5c.  Sorption on the other hand 

occurs in soils with significant anion exchange capacities, such as in some tropical and/or 

allophanic soils, where non-specific adsorption of nitrate ions retards their leaching, increasing the 

effective pore volume beyond that predicted by convection theory (Figure 2.4-5d) (Haynes 1986e). 

Macropore leaching 

Soil structure is invariably affected by natural and man-made management processes.  Thus, it is 

not one homogenous range of soil pores but has cracks, earthworm burrows, old root channels and 

fissures that may form a contiguous network that can conduct water under saturated conditions 
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(Kanchanasut et al. 1978; Scotter & Kanchanasut 1981; Kanchanasut & Scotter 1982; Francis & 

Fraser 1998; Nuutinen et al. 1998). Under unsaturated flow, these pores may be largely air-filled 

but under heavy rainfall will conduct water to depth more quickly if open to the surface.  In these 

conditions, there are two main effects on nitrate leaching, if the infiltrating water has a high 

concentration of nitrate, then macropore flow will lead to extensive leaching at a faster rate than 

predicted by the CDE (Figure 2.4-5e). Conversely, nitrate sitting within soil micropores will be 

largely bypassed by the bulk of flowing water and a slower than predicted rate of leaching will occur 

(Figure 2.4-5e). 

Figure 2.4-5. Schematic representation of solute (nitrate) transport processes in soils:  

a) convective transport, b) convection-diffusion-dispersion, c) anion exclusion, d) anion 

adsorption, and e) macropore bypass and macropore leaching. Adapted from Cameron and 

Haynes (1986) and McLaren and Cameron (1990b) 

2.4.5 Factors affecting nitrate leaching 

Season and climate 

The greatest potential for nitrate leaching losses occurs with a build-up of nitrate within the soil 

profile and an excess of soil water. Consequently, the greatest nitrate leaching losses usually occur 

during the late autumn, winter and early spring months when plant growth is slow and uptake of 

nitrate is low, and soil drainage is occurring due to a surplus of rainfall over plant evapotranspirative 

demand.  Timing of rainfall and plant N demand, therefore, is critical to the size of losses from N 

fertiliser and/or urine application.  For instance, Di et al. (1999) compared N leaching losses from 
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autumn-applied N fertiliser (NH4Cl) to that applied in spring and found that these ranged between 

15-19% in autumn but 8-11% in spring.  Similarly, Decau et al. (2003) found that timing of urine 

application to pastures between autumn and spring had a significant effect on urinary-15N recovery 

in drainage, with an order of magnitude greater loss in leachate collected after the autumn 

application (0.7% vs 16.7%, respectively).   

Higher residual soil nitrate left after a crop has been harvested or from the ploughing-in of pasture 

prior to sowing of a crop in autumn can lead to significant nitrate leaching losses (Cameron & Wild 

1984; Adams & Pattinson 1985; McLenaghen et al. 1996).  Urine deposited over a summer-dry 

period may also lead to increased nitrate leaching losses due to low pasture growth and a lack of 

N uptake.  This N can leach over the succeeding winter (Scholefield et al. 1993; Shepherd et al. 

2011; Snow et al. 2011) and indeed losses can be considerably higher than from an irrigated 

system on the same soil-type (Burgess 2003).  Similarly, optimally-applied N fertiliser and irrigation 

can reduce N leaching losses by more efficient plant uptake of N (Hahne et al. 1977).  Excess 

irrigation, however, has also been implicated in increased nitrate loss (Haynes 1986e).   

Seasonal effects on soil temperatures can also influence nitrification as when ammonium is not 

limiting, and nitrite is not accumulating, rates can be shown to be largely zero-order and increase 

linearly with temperature (Figure 2.4-6)  (Flowers & O'Callaghan 1983; Macduff & White 1985).  

This is more likely in grassland topsoils where the Nitrosomonas and Nitrobacter populations are 

near maximal and consequently the nitrification rate for urea-N in urine, for example, can be largely 

predicted based on prevailing soil temperatures under moist conditions (Macduff & White 1985).  If 

soil temperatures remain low (~5°C) the nitrification rate in a urine patch is likely to be slowed, and 

the nitrate leaching potential less, than in warmer conditions where nitrate will tend to accumulate 

until the pool of ammonium is largely exhausted. 

Generally, there is a relationship between the timing and size of rainfall events and nitrate leached 

where the latter increases in direct response to increased drainage, especially under fallow 

conditions after cropping or pasture renewal (Scholefield et al. 1993; Francis 1995).  The source of 

N in many cases is from residual nitrate after harvesting or from grazing and/or mineralisation of 

organic-N and low N uptake over the winter period (Francis 1995; Drury et al. 2014).  Nitrogen 

fertiliser can also incur large nitrate losses if rainfall occurs soon after application (Haynes 1986e).  
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Many factors therefore can influence nitrate leaching, depending on soil condition, the climate 

pattern and prevailing land management. 

Figure 2.4-6. Nitrification rates vs. soil temperature for a Dunkeswicke soil after addition of 

either 50 or 250 mg N kg-1 soil as ammonium sulphate or pig slurry. Adapted from McDuff and 

White (1985). 

Soil properties 

Soil texture and structure have an important influence on nitrate leaching, with sandy, coarse 

textured soils generally having higher hydraulic conductivities than finer-textured silt or clay soils 

(McLaren & Cameron 1990b).  Slower water movement in clay soils can create conditions that 

promote higher rates of denitrification (Saggar et al. 2013) and hence, fewer nitrate ions are 

available for leaching.  Di et al. (2009a) showed that nitrate leaching from urine application to three 

soils of different textures under the similar leaching regimes was about 25% less for the finer, silt-

dominated soil compared with the coarser-textured soils, with the difference attributed to 

denitrification in the silt-dominated soil.  

Differences in leaching rates can be substantial due to hydraulic conductivities varying by several 

orders of magnitude between sandy and clay-textured soils (Lin et al. 2001).  However, 

macropores, cracks and fissures can affect actual nitrate loss through the by-pass and preferential 

leaching mechanisms described in section 2.4.4.  For example, Silva et al. (2000) showed

 increased N leaching from macropore flow of urine under field-saturated flow conditions in a NZ 

pastoral soil.  Similarly, agricultural drainage systems can increase nitrate leaching in heavy soils 

through a combination of shortened flow paths and improved aeration that decreases denitrification 

and increases N mineralisation (Scholefield et al. 1993). 

A considerable quantity of nitrogen emanating from pastoral and cropping soils can be attributed 

to mineralisation and nitrification of SOM rather than from fertiliser application.  Cropping soils in 

particular can leach large quantities of nitrate if cultivated and/or left fallow over winter (Dowdell & 

Webster 1984; Adams & Pattinson 1985; Francis et al. 1998) with N fertiliser potentially only a small 

part of total N losses (Dowdell & Webster 1984; Adams & Pattinson 1985).  However, research has 
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also shown that N fertiliser can also act as a “primer” for increased SOM mineralisation and not just 

as part of normal immobilization-mineralisation turnover (Haynes 1986d). 

2.5 Nitrogen leaching within the pastoral grazing system 

2.5.1 Landuse effects 

Whilst essentially the same N processes occur in agricultural systems as those in the natural world, 

the magnitude of the N fluxes involved tend to increase as the system becomes more reliant on 

increased N inputs to improve production, such as in intensive pastoral grazing systems (Ledgard 

et al. 1999; Jarvis & Ledgard 2002; Bolan et al. 2004).  Such systems amplify the N transfer fluxes 

of herbage consumption, excreta return and animal product removal, and in turn increase 

opportunities for N losses.  Extensive grasslands usually have quite low nitrate leaching losses due 

to rapid plant uptake and immobilisation of N that keep soil solution nitrate concentrations low 

(Woodmansee et al. 1981).  The lower stocking density of extensive systems means urine patches 

are more spatially distant and leaching losses considerably lower over a unit area (Soussana & 

Lemaire 2013).  Similarly, pastures that are cut for silage or hay also tend to experience low 

leaching losses because grass and pasture plants are usually very efficient at capturing N from 

applied fertiliser, or N fixed by pasture legumes such as clover and cycled back into the soil pool 

(Cameron et al. 2013).  Di et al. (1998b), in a fertiliser and dairy-shed effluent (DSE) lysimeter 

study, found that pasture removed approx. 300-400 kg N ha-1 after 400 kg N ha-1 of either 

amendment was applied in two split applications.  Matching N application with plant demand is 

important if nitrate leaching losses are to be avoided or kept to a minimum.  For instance, in a 

similar study Di et al. (1998a) found that splitting an application of 200-400 kg N ha-1 as either urea 

or DSE into four, rather than two, applications made a significant reduction in nitrate leaching 

losses, from 13-49 kg N ha-1 to 6-17 kg N ha-1.   

The potential scale and factors affecting nitrate leaching losses were discussed in section 2.4.5 but 

essentially where N is applied in excess of plant demand and/or at times of low pasture growth, 

and significant drainage can occur, then nitrate leaching losses can be large.  Such conditions exist 

on farms where a grazing cow, on average, may deposit the equivalent of 700-1200 kg N ha-1 

(Haynes & Williams 1993; Di & Cameron 2002a; Selbie et al. 2015) within a patch of around 0.4 
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m2 (Moir et al. 2011).  With a ruminant animal producing, on average, 8-12 urinations per day 

(Haynes & Williams 1993; Selbie et al. 2015), 20-30% of the paddock surface could be covered by 

these concentrated urine patch areas annually, depending on stocking rate (Moir et al. 2011). The 

largest proportion of the applied urine-N will be nitrified to nitrate although some N loss will occur 

via volatilisation (Sherlock & Goh 1984; Ledgard et al. 1999) and from gaseous N loss during the 

nitrification process itself (Colbourn 1992; Carter 2007).  Given that plant uptake of N from a urine 

patch is usually <600 kg N ha-1y-1 (Moir et al. 2006; Moir et al. 2011), a large pool of nitrate remains 

for potential leaching unless soil conditions promote denitrification (Fraser et al. 1994; Clough et 

al. 1998; Di et al. 2002; Carter 2007) or immobilisation.  These losses might be typically 80-120 kg 

N ha-1y-1 under the urine patch itself (Silva 1999; Di & Cameron 2004b) but of course the whole 

paddock surface is not covered by a urine patch and is effectively ‘diluted’ by the inter-urine areas.  

Thus, the whole paddock leaching loss can be calculated by a simple proportional coverage 

equation (2.5-1):  

𝑵𝑳 =  (𝑵𝑳𝟏 ×  𝑷𝟏) + (𝑵𝑳𝟐 ×  𝑷𝟐) 

2.5-1 

where NL = the annual average nitrate (NO3--N) leaching loss for a grazed field, NL1 and NL2 are 

the leaching losses from urine and inter-urine areas, respectively, and P1 and P2 are proportional 

factors representing the relative coverage of urine and inter-urine areas, respectively.   

Using this equation Silva et al. (1999) calculated the overall nitrate leaching loss was 33 kg N ha-1 

for an irrigated Canterbury Templeton soil although the under-patch leaching loss was 124 kg N 

ha-1.  However, the addition of N fertiliser increased this loss to between 36-60 kg N ha-1 depending 

on fertiliser-N rate.  Similarly, Ledgard at al. (1999) found that mean leaching losses for a Waikato 

dairy pasture over three years were 40 kg N ha-1y-1 (range 20-74) but fertiliser at 200 and 400 kg 

N ha-1y-1 increased these to 80 (range 59-101) and 150 kg N ha-1y-1 (range 100-204), respectively.  

Monaghan et al. (2005) found nitrate leaching losses under cattle grazing in Southland increased 

with an increase in N fertiliser use, averaging 30, 34, 46 and 56 kg N ha-1y-1 when 0, 100, 200 and 

400 kg N ha-1 of N fertiliser was applied annually, respectively.  The relationship between nitrate 

leaching losses and increasing N fertiliser use, stocking rate, and urine-N losses, although subject 

to a range of climatic and soil conditions, clearly increases with total-N input (Figure 2.5-1). 
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Figure 2.5-1. Relationship between annual N inputs and nitrate-N leaching losses from 

grassland (C=clover; G= grass) (Cameron et al. 2013). 

Management of grasslands also includes periodic pasture renewal and/or cropping rotations where 

mineralisation of the N contained in SOM can result in high soil inorganic-N concentrations.  This 

introduces a window of vulnerability where, if this N is not taken up in a subsequent crop or the 

land is left fallow, large nitrate leaching losses can occur (Cameron et al. 2013). 
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Francis et al. (1992) reported average nitrate leaching losses of 60 kg N ha-1 when a 3-year 

leguminous pasture was cultivated and left fallow for increasing periods (5, 40 and-78 kg N ha-1 for 

March, May and July, respectively).  Where the land is left to fallow after a crop is harvested or 

grazed, the sowing of a cover crop as early as possible is desirable to prevent residual soil-N from 

mineralising and being leached in the subsequent winter period (McLenaghen et al. 1996; Francis 

et al. 1998; Thorup-Kristensen et al. 2003).   

2.5.2 Irrigation and fertiliser efficiency 

Irrigation, as discussed previously, can improve the efficiency of N use and reduce nitrate leaching 

losses by increasing plant-N uptake (Hahne et al. 1977; Burgess 2003). However, the timing and 

intensity of irrigation can be important factors in preventing leaching, especially in stony soils.  For 

instance, Silva et al. (2000) found that recently applied cow urine was at significant risk of leaching 

(as urea and ammonium) when saturated flow was occurring through the larger soil pores.  Close 

et al. (1986) found nitrate leaching losses under flood irrigation of 7-70 kg N ha-1 on a stony soil, in 

part caused by significant saturated flow.  The use of drainage systems can also exacerbate N 

leaching losses due to the creation of preferential flow paths that carry solutes more quickly from 

slow-draining soils (Monaghan et al. 2007b).  The application of dairy shed effluents that are often 

rich in N and usually irrigated onto the paddock can also find their way through these drainage 

systems, especially if applied in excess to wet soils (McDowell et al. 2011).  Thus, excess irrigation 

can be a significant factor that increases N leaching losses where the rate of application and/or the 

total quantity of water is more than can be held in the soil pores.  

Nitrogen fertiliser efficiency can range widely due to the many plant, soil and climatic factors that 

affect utilisation, some of which have already been discussed.  Overall, N recoveries in crops of 

30-70% are typical (Goh & Haynes 1986).  Indeed, Chien et al. (2009) found in over 800 cereal 

experiments that N utilisation averaged only just over half (51%).  Recoveries under grazing, 

however, are often even lower and considerable research has been undertaken to increase 

efficiency, especially regarding animal products leaving the farm.  In cropping, if N fertiliser is 

applied at rates that match crop demand then little mineral-N is left in the soil at harvest to leach 

(Jenkinson 2001).  However, on intensively grazed pastures where high N rates are combined with 
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high stocking rates, then leaching losses can be considerable (50-200 kg N ha-1y-1) (Ledgard et al. 

1996).   

2.5.3 Farm dairy effluents and manures 

Under intensive dairying significant amounts of nutrients, N especially, are contained in Farm Dairy 

Effluents (FDE) but with the advent of herd shelters and winter stand-off pads, increasing amounts 

of nutrients are also retained in organic materials from these systems (Longhurst et al. 2006; Luo 

et al. 2006).  Such management systems can generate large quantities of organic materials that 

need to be applied to the land later.  Much of the N retained in these materials can be mineralised 

in the soil and released for pasture uptake but the rate can be difficult to predict due to their variable 

composition (Vanderholm 1985).  Rapid mineralisation can potentially result in N leaching if there 

is an excess over pasture uptake (Cameron et al. 1996) but the judicious use of such materials can 

benefit soil condition and fertility and are a valuable adjunct to soil-N supply and the general 

recycling of nutrients (Wang et al. 2004).  Determining N leaching losses from the land application 

of such materials is difficult and will depend on several factors:  

1. The amount of N present and proportion in mineral and readily-mineralisable forms 

2. The timing of application and effect of soil temperature 

3. The soil moisture content and amount of rainfall received soon after application, and  

4. The N application rate relative to plant-N uptake (Chambers et al. 2000). 

Modelling nutrient availability from FDE and other composts can help avoid over-application by 

providing calculators that aid in ensuring adequate N nutrition without excessive nitrate leaching 

(Wheeler et al. 2012). 

2.5.4 Methods to reduce N losses 

The need to reduce all sources of nitrate leaching losses has led to the development of technologies 

and farm management strategies to increase N use efficiency. These methods can be briefly 

summarised as follows: 

1. Applying the correct amount of N fertiliser to match plant demand to reduce excessive N 

inputs; 
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2. Accurate application of N fertiliser and the use of split applications (i.e. little and often); 

3. Maintaining an active plant cover over the drainage period (e.g. a cover crop in any 

arable phase); 

4. Early sowing of crops to ensure sufficient growth and less bare ground; 

5. Use of a nitrification inhibitor to slow down the rate of nitrification under urine patches, 

fertilisers and manures, reducing the pool of nitrate available for leaching; 

6. Renewing pasture swards frequently to maximise plant N uptake and cultivating soil in spring 

rather than autumn to reduce N losses from mineralisation of SOM; 

7. Maximising plant N uptake, for example, by applying optimal rates of irrigation to increase 

plant growth or controlling pasture pests and diseases; and 

8. Application of animal wastes and slurries at times when the risk of leaching is low, and at 

rates and times that match plant N demand (Cameron et al. 2013). 

9. Reduced urinary-N returns in autumn 

Many of these methods have already been discussed and it is not intended to review all in depth 

but it is apparent that there are a significant number of research opportunities and gaps to be 

investigated.  The use of cover crops after harvesting or grazing a crop is an area where there is 

little current research, especially in winter forage grazing, and there are few established strategies 

to reduce nitrate leaching losses.  The subsequent focus of this review is now to concentrate on 

the use of cover crops and nitrification inhibitors (3-5) as management tools to reduce nitrate 

leaching. 

2.6 Nitrogen capture using cover crops 

2.6.1 Introduction 

The use of cover or catch crops is a technique whose origins can be found in green-manuring 

practices at the beginning of settled agriculture and records in China show it has been in use for 

over 3000 years (Allison 1973).  Where green leguminous material was incorporated, there was a 

benefit to the production of a subsequent crop although the basis of that benefit was largely 

unknown. Pound et al. (1999) in their review of the use and relevance of catch crops in agricultural 

systems concluded that catch crops became highly important for maintaining production in many 



 

 Page 42  
  

communities as their farming systems moved from extensive to more intensive practices but used 

few external inputs.  Organic farming systems still largely operate under the same principles but 

pressures on externally-based input agricultural systems to reduce nutrient loss, particularly mobile 

nutrients such as nitrate, has renewed interest in catch or cover crops to help deal with imposed 

environmental or production constraints (Thorup-Kristensen et al. 2003).  This has exposed large 

knowledge gaps in whether catch crops have a part to play in strategies to reduce nutrient losses 

under some intensive farm management systems, especially those involving winter forage 

cropping.    

In temperate climates, once the summer’s crop has been harvested, the winters are generally too 

cold for most crops to grow and under these conditions the soil can be left with no vegetative cover 

over the winter period.  With winter the time of greatest soil drainage, considerable quantities of 

nutrients can potentially be leached out of the root zone. During the autumn period, sufficient light 

and heat may remain to allow some plant growth but usually not enough to provide a commercial 

crop.  The reason for sowing a green manure or catch crop is somewhat different in each case.  In 

green manuring the goal is to incorporate a young green crop, usually a legume that decomposes 

sufficiently quickly over the spring and mineralise the N contained for uptake by the subsequently 

sown crop.  Whilst a part of this N may be sourced from residual mineral soil-N from the previous 

crop and mineralisation of organic residues, a sizable proportion may be fixed-N.  Sowing a catch 

crop is aimed more at retaining nutrients and/or improving or preserving soil condition (e.g. improve 

SOM or prevent erosion), usually in situations where a considerable proportion of the N requirement 

for the previous crop was imported.  Thus, by definition, a catch or cover crop is a non-commercial 

crop intended mainly to capture available-N, thereby limiting the potential loss of nitrate (and 

accompanying cations) in drainage (Thorup-Kristensen et al. 2003).   

2.6.2 Catch crops in winter forage grazing 

The growing of winter forage is a common practice in the South Island of NZ where, for example, 

of the 250,000 ha of winter forage brassicas grown nationally, 75% (185,000 ha) is grown in the 

South Island (Statistics New Zealand 2012a).  With South Island dairy cattle numbers having 

increased by more than 50% in the period 2007-12 (Statistics New Zealand 2007, 2012b), the 
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demand for winter forage has increased.  It is difficult to accurately determine how much of that 

grown is used directly by the South Island dairy industry, given that a significant proportion is grown 

off-farm on dairy support land, but it is likely to be more than 50%.  The main forage crops grown 

are kale (Brassica oleracea L.) and fodder beet (Beta vulgaris L.), which are grazed over the winter 

to achieve body condition score targets for pregnant, non-lactating dairy cows prior to the start of 

calving in early spring (Judson et al. 2010).  These are normally sown in the previous spring 

(~November), and grazed for 8-12 weeks from late May/early June (Edwards et al. 2014b), after 

which the cropped area remains fallow until the next crop is sown in late spring (2-3 months later). 

There is considerable risk of large nitrate leaching losses from the large volumes of urine deposited 

during grazing over the winter (Beare et al. 2006; Monaghan et al. 2007b). 

Although almost any crop, grown satisfactorily, can be used as a green manure or catch crop, in 

practice the selection is dictated by the intention and situation and hence, more limited.  Plant 

species selection affects almost every aspect of catch cropping so in terms of N capture there are 

several factors that need to be considered: 

1. Speed of establishment, growth rate and rooting depth 

2. Cold tolerance 

3. Is the crop to be harvested, incorporated or grazed? 

4. Nitrogen fixing capacity - legume or non-legume? 

5. Quality of the catch crop material – as forage or a harvested crop, mineralisation potential, 

C/N ratio etc. (Thorup-Kristensen et al. 2003). 

Points 1-3 are of more interest as they constitute a considerable knowledge gap in whether catch 

crops can help control nitrate leaching in temperate forage grazing systems, post-winter grazing.  

In Canterbury, soil temperatures (0-10 cm) over winter months average 5-8°C (NIWA 2016); to fulfil 

the first two criteria, the sown catch crop must therefore be capable of germinating and growing 

sufficiently to take up N in this temperature range.  This effectively restricts selection to winter 

cereals such as wheat and oats whose roots remain active over this period (Thorup-Kristensen et 

al. 2003; Thorup-Kristensen et al. 2009) and where sufficient dry-matter might be grown by late 

spring to graze or harvest for silage. Points 4 & 5 are generally less important in the winter forage 

grazing situation as the main intention is to sequester N rather than provide than a source of 
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mineralisable N for a following crop and the early harvesting means the quality of the material is 

generally high. 

2.6.3 Cool season cereal development in New Zealand 

A number of yield models for cool season forage oats developments have been reported previously 

in New Zealand (Taylor & Hughes 1979; Hughes et al. 1984) where prediction of yield is correlated 

with a combination of heat units and solar radiation (Taylor & Hughes 1979).  These invariably 

produce a range of yield curves that differ by sowing date and region due to differences in soil 

temperature and radiation data.  Consequently, Hughes et al. (1984) used the familiar degree-days 

as a means to relate yield in the early development stages across a range of regions and sowing 

dates and to predict overall yields.  

 

Figure 2.6-1. Representative cool season forage oats yield development yield curve after 

Hughes et al. (1984). 

Essentially there are three parts to the forage oats model developed by Hughes (1984) and 

represented in Figure 2.6-1; the first, measured in degree days, covers the period when the crop 

emergences after sowing but essentially the yield is zero. In the second part, yield builds 
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proportionally with degree days (i.e. aggregated daily average temperature) and is largely 

controlled by soil temperature until coverage is sufficient to intercept a large proportion of the 

available solar radiation.  In the final phase, the model switches from one where yield is proportional 

to temperature to one controlled by the received photosynthetically-active radiation component. 

2.6.4 Catch crop N uptake and mineral-N depletion 

The primary requisite for any catch crop is to take up N from the soil thereby reducing nitrate in 

drainage waters.  Although catch crops can increase the recycling of N within the cropping system 

and therefore, increase N-use efficiency, results for N uptake can vary considerably, and by more 

than an order of magnitude (~10-200 kg N ha-1) (Thorup-Kristensen 1994; Francis et al. 1995; 

Richards et al. 1996).  Underlying such variation is the fact that catch crops are usually sown in 

conditions that aren’t optimal for growing and consequently, N uptake is often limited by a lack of 

growth.  This variation in N uptake can be attributed to three main factors: 

1. Variable catch crop growth and potential to take up N under the prevailing climatic conditions. 

2. Variable catch crop root growth and contact with available soil-N. 

3. Spatially variable amounts of available-N in the soil (Thorup-Kristensen et al. 2003). 

 

Figure 2.6-2. Mean two-year catch crop capture of  N at high or low N availability for two 

experiments at adjacent sites (Thorup-Kristensen et al. 2003). 
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A catch crop well supplied with N can produce 1000 kg DM ha-1 in two weeks of active growth, 

taking up 3-4 kg N/day (3-4% N content) (Vos & van der Putten 1997). Thus, a few weeks’ active 

growth could theoretically take up all the available-N within a soil profile.  In reality catch crop growth 

and N content is often much lower than this due to a lack of available-N (McLenaghen et al. 1996; 

Vos & van der Putten 1997).  Indeed, the lack of available-N can be more limiting than insufficient 

N uptake capacity and in trials where fertiliser N is applied, or where a legume catch crop has been 

used in preference to a non-legume (Figure 2.6-2), there is generally a greater DM response (Vyn 

et al. 2000; Thorup-Kristensen et al. 2003).  Obviously where catch crops receive too short a 

growing season their ability to deplete soil inorganic-N is reduced.  For example, Vos and Van der 

Putten (1997) found a strong relationship between day of autumn planting and DM and N uptake 

accumulation in winter rye (Figure 2.6-3).   

 

Figure 2.6-3. Dry matter and nitrogen accumulation for three winter rye field trials sown at 

approximately 235 (S1 —), 256 (S2 – –) and 272 (S3 •••) days (autumn). Expt. 1- □, Expt. 2- ○ and 

Expt. 3-  (Vos & van der Putten 1997). 

2.6.5 Root growth and development 

To deplete the soil of available-N, a catch crop must develop a root system to enable N uptake.  

Since nitrate is a highly mobile ion it is not necessary to have a high root density to enable effective 

soil-N depletion and, accordingly, studies that have attempted to show a correlation with root length 

density have often proved inconclusive (Robinson et al. 1994; Vos et al. 1998; Malcolm et al. 2014).  

A combination of plant activity with deep rooting architecture has proved a better predictor of N 

uptake and consequently, a better correlated (negative) relationship with nitrate leaching.  Thorup-

Kristenson (2001) found that soil-N depletion by catch crop species was highly correlated to their 

rooting depth but only weakly with root intensity.  Popay and Crush (2010) and Crush et al. (2005), 

however, found for a given rooting depth, those grass species with more finely divided root systems 

and larger surface area-to-weight ratios generally had significantly higher nitrate interception rates 

and greater N uptake.  However, applying these latter, largely lab-based studies to field soils with 

their more complicated water and solute transport effects, and predicting the interaction of rooting 
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depth, architecture, activity and all the genetic species factors that might influence N uptake, can 

be more problematic.  For instance, Malcolm et al. (2014) has recently found that a winter-active 

Italian. (It.) ryegrass/white clover combination (It. ryegrass WC) leached 24-54% less nitrate-N over 

two consecutive winters than perennial ryegrass/white clover (P. ryegrass WC), tall fescue/white 

clover (T. fescue WC), or perennial ryegrass/It. ryegrass/white clover/red clover/chicory/plantain 

mixed pasture (Diverse) (Figure 2.6-4).  Despite the considerably greater root mass in the 0-40 cm 

depth of the P. ryegrass WC and T. fescue WC pasture species compositions (Figure 2.6-5), the 

important factor for greater N uptake over the winter drainage period was the higher plant winter 

activity (plant growth/root metabolic activity) of the It. ryegrass, rather than specific root architecture 

(e.g. deep roots of the T. fescue). 
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Figure 2.6-4. Total nitrate-N leaching losses leached in 2010-11 (a) and 2011-12 (b) for a 

range of pasture species after autumn urine application of 1000 kg N ha-1 (Malcolm et al. 2014). 

 

Figure 2.6-5. Average root density for a range of pasture species in 2010-11 (a) and 2011-12 

(b) after autumn urine application of 1000 kg N ha-1 (Malcolm et al. 2014). 
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Nevertheless, for significant N uptake to occur it will require plant roots near the nitrate ions and 

thus, the rate and depth of root establishment is important if the crop or pasture is still in a 

development phase.  Although rooting depth is controlled by several factors, the actual species and 

duration of growth are probably the two more important and the most controllable in terms of farm 

practice.  Thorup-Kristensen (2001) calculated that 1000 degree-days after sowing, a crucifer catch 

crop would typically root to a depth of 1.5 m, winter rye and oats to 0.9-1.0 m, but only 0.6 m for 

ryegrass (Figure 2.6-6) although the crucifer crop allocated a smaller proportion of its biomass to 

its root system than grasses or rye (Lainé et al. 1993).  Similarly, Herrera et al. (2010) found that 

nitrate leaching from different catch crops planted after spring wheat was not related to the static 

characteristics of the root system but inversely related to early root growth, where the brassica crop 

generally outperformed phacelia and sunflower crops (Table 2.6 1).     

 

Figure 2.6-6. Root development of catch crops showing different rates of rooting depth 

development with cumulative temperature (Thorup-Kristensen et al. 2003). 

The ability of crops to take up N also differs between species and particularly between non-

leguminous dicots, such as the crucifer species (e.g. kale, forage rape), and cereal monocots (e.g. 

rye, oats).  Crucifer crops potentially have higher nitrate uptake potentials than cereals and grasses 
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(Lainé et al. 1993) and appear to be less sensitive to low temperatures than monocots (Laine et al. 

1994).  However, this is dependent to some extent on duration of crop establishment.  Thorup-

Kristensen (2001) found that although crucifers had larger potential rooting depths than oats or rye  

at 1000 degree-days, it took 600 degree-days to reach the same root depths as those of the cereals 

(Figure 2.6-6).  This was attributed to the greater seed size and sowing rates of cereals (100-200 

kg ha-1) that give them a head start compared with smaller-seeded crucifers or fine grasses (5-10 

kg ha-1). The latter will require a 20-fold increase in weight before they would surpass the biomass 

a cereal crop has at the outset of sowing. 

Table 2.6-1.  Mean rooting depth at harvest and their parameters of change over time for 

three catch crops as influenced by year and level of N supply (Herrera et al. 2010). 

 

In Canterbury, NZ, Francis (1995) found that the effectiveness of a cover crop in preventing nitrate 

leaching depended on early planting and/or a delay in major rainfall events to enable sufficient time 

for crop development and significant uptake of soil-N. The sowing of oats did not significantly 

reduce leaching losses in 1991 as the major leaching events occurred in early winter (June), before 

the oats developed sufficiently to take up the bulk of the soil NO3--N. Conversely, in the following 

year (1992) when major drainage events occurred mainly in September, leaching losses were 

reduced by ~60% by the presence of an oat cover crop.  McLenaghen et al. (1996) found 
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Canterbury autumn-sown cover crops were effective in preventing nitrate leaching after ploughing-

in of a 2-year pasture, particularly those crops that had high surface coverage.  Losses ranged in 

the order: fallow > bean > lupin > mustard > ryecorn > ryegrass, from 33 to 2.5 kg N ha-1 and were 

better correlated when root yields were included with plant shoot yields (R2 improved from 0.465 to 

0.627).   

2.6.6 Modelling N leaching losses 

Modelling the effects of catch crops on nitrate leaching losses is problematic because of the many 

variables involved e.g. climatic zones, time of sowing, crop type, soil temperature etc.  

Nevertheless, agricultural systems models can be used to simulate cover crop performance and 

impact on nitrate losses over a variety of locations, soils, management practices, and climate 

scenarios.  They can also be used to identify research needs and to estimate the potential impacts 

of soil, air and water quality across a wider geographic area.  For instance, Meisinger et al. (1991) 

using the Erosion Productivity Impact Calculator (EPIC) model (Williams et al. 1984), assessed the 

effect of winter cover crops by running simulations for 10 representative US sites, including two in 

the Corn Belt (Ames, IA; Jackson, IL). For these two sites, a barley winter cover crop following corn 

was predicted to reduce nitrate-N leaching by 66% for a sandy soil and by 70% for a clay-loam soil.  

Similarly, Malone et al. (2007), using a modified Agricultural Production Systems Simulator Model 

(APSIM), was able to predict that using a wheat cover crop would reduce nitrate leaching by 38% 

(341 vs. 537 kg N ha-1) under 41-years of corn-soybean rotations and 150 kg N ha-1 applied to corn.  

However, in high nitrate loss situations the same authors found there remained a reasonably high 

degree of variability (~30%) (Malone et al. 2007). 

Teixeira et al. (2016) recently calibrated and applied a biophysical model to isolate the impact 

of potential drivers of variability in the effectiveness of catch crops to reduce nitrate leaching in 

the Canterbury Plains of NZ. A sensitivity analysis of simulated results showed that sowing dates 

were the main contributor to total variability, followed by weather, factor interactions and soil 

WHC. The analysis showed that, compared to fallow treatments, winter cover crops reduced 

N leaching by an average (±95% CI) of 17 ± 8.2 kg N ha−1. This represented a median N 

leaching reduction of ∼50% with a wide interquartile range (6–75%). 
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Figure 2.6-7. Simulated distribution of nitrate leaching (90 cm depth) for fallow and winter 

cover crops sown at different dates on two Canterbury soils with contrasting water-holding 

capacities (WHC 80 and 160 mm m-1) in response to 30 years of historical data. (Teixeira et al. 

2016) 

2.6.7 Winter forage cropping in dairy farm systems and nitrate leaching 

A common goal for many New Zealand dairy systems is to have a fodder crop component in the 

winter diet of dairy cows, particularly in the South Island, so body condition can be regained after 

lactation ceases.  Typically, cows are dried off at a body condition score (BCS) of 4.0-4.5 and then, 

ideally, built up again over the winter months to 5.0-5.5 to maximise milk production and 

reproduction potential in the following lactation (Judson & Edwards 2008; Houlbrooke et al. 2009a).  

Kale (Brassica olercaea) is a popular winter forage that lends itself to such usage because it is able 

to produce a large quantity of high quality DM per unit area and retain this over the winter (Brown 

et al. 2007).  Sown in October/November, yields of 15-20 tonnes of DM ha-1, 150-220 days after 

sowing, are not unusual and the forage is generally grazed only once (Brown et al. 2007; Judson 

& Edwards 2008).  Because of the large quantities available, high stocking densities (10 m2/cow 

on kale vs. 35-120 m2/cow on pasture) are required to ensure high utilisation at a time when soil 

moisture levels are at, or close to, field capacity. The high water intakes contained in the crops

 means that there are frequent cow urinations, around nine to twelve daily (Jenkinson et al. 2014). 

Unsurprisingly, the potential for drainage and N leaching losses over this period are high.   

The initial potential for nitrate leaching from a urine patch is determined by both the volume and N 

concentration of the urination event.  Li et al. (2012) modelled pastoral N leaching loss on two major 

New Zealand soil types, varying both volume and N concentration, showing that N leaching loss 

increased logarithmically with an increase in urine volume but exponentially with an increase in N 

concentration.  Recent research by Jenkinson et al. (2014) suggests that average urinary-N 

concentrations from cows feeding on winter forage might be less than 3 g N/L and thus, is only half 

of average pastoral urinary-N concentrations.  This effectively reduces N loading under the urine 

patch to ~300 kg N ha-1 but high stocking rates during grazing means overall urine volume and 
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coverage might be large (with the complication of urine patch overlap). This might occur quite 

frequently under winter forage grazing but there is little by way of predictive modelling for describing 

these effects on nitrate leaching (Li et al. 2012).  

Many soil and management factors can interact with, and thus affect, nitrate leaching from winter 

forage grazing. For instance, many stony soils in Canterbury are expressly used for winter forage 

production because they provide some resistance to pugging but also because kale is drought 

tolerant and can be grown without irrigation, albeit for lower yields (<10 T ha-1) (Stewart et al. 2014). 

However, these same soils have characteristically low water holding capacity and high drainage 

volumes over the autumn-winter-spring period and, consequently, nitrate losses post-winter 

grazing, are potentially large (Malcolm et al. 2015). Conversely, on soils of finer texture, an outcome 

of high stocking rates is the significant soil physical damage that may occur from surface treading 

(pugging) (Houlbrooke et al. 2009a) (Figure 2.6-8). This may reduce nitrate leaching losses through 

impeded drainage and increased denitrification losses (Van der Weerden & Styles 2012) but at the 

expense of increased runoff losses of P and sediment and reduced soil productivity (McDowell et 

al. 2003; Houlbrooke et al. 2009b). 

  



 

 Page 54  
  

 

Figure 2.6-8. Differences in (a) macroporosity (b) and bulk density values at 0–50 mm depth 

between pre- and post-grazing of a winter forage crop. Error bars represent LSD values (P =0.05) 

(Houlbrooke et al. 2009a). 

Monaghan et al. (2007b) have identified that the dairy wintering forage component of dairy systems 

could represent as much as 60% of the farm’s annual N leaching but from typically, less than 15% 

of the grazing platform (Figure 2.6-9).  Water quality was shown to be degraded by comparison 

with less intensively farmed catchments, especially regarding N, P and faecal coliforms.  Monaghan 

et al. (2013) attributed the greater N losses from the wintering part of these systems to (i) the 

relatively large amounts of mineral N remaining in the soil in late autumn following pasture 

cultivation and forage crop establishment the preceding spring and (ii) the deposition of much 

excretal N onto the grazed forage crop during winter when plant uptake is correspondingly low.  

There is, therefore, a need for mitigation strategies and policies to reduce N emissions from farms 

using winter forage grazing systems.  Mitigation measures might take the form of low-emission 

wintering systems, such as confined feedpad operations, but there are added costs with harvesting 

winter forages and soil physical damage from mechanical harvesting may be as severe as animal 

trampling.  Another option identified and considered more cost-effective was the use of a 

nitrification inhibitor to delay nitrification sufficiently long enough for uptake by a catch crop. 

 

Figure 2.6-9. Relative area occupied and predicted contribution to stream N load of the 

different modelled land uses within the Bog Burn catchment, Southland (Monaghan et al. 2007a). 

Shepherd et al. (2012) and Monaghan et al. (2013) have both recently investigated the use of 

nitrification inhibitors after winter grazing of brassica and beet crops and reported large N leaching 

losses from field trials after urinary-N deposition. Losses from experimental plots averaged ~150 

(Taupo) and ~85 kg N ha-1 (Southland), respectively, with the application of the nitrification inhibitor 

DCD differing in its effectiveness in each study.  In the Taupo trial, when DCD was applied as 

directed, within two days after urine application and then 6 weeks later, it was found to reduce soil 

NO3--N concentrations from a mean of 26 down to 17 mg N/L and N leaching losses by 20-27% 

(Table 2.6-2). In the Southland trial where DCD was only applied once, and up to 12 days after 
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urine deposition, it was considerably less effective and did not significantly reduce nitrate leaching 

losses.   

The lack of any published data on the use of catch crops in winter forage grazing means a 

considerable knowledge gap exists about what mitigation strategies might best combat high nitrate 

leaching losses after grazing. Given that the benefits of a catch crop are optimised with early sowing 

and rapid establishment over the winter-early spring period, a number of research questions need 

to be answered. These questions are:  
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1. What crops are likely to be the most responsive over the drainage season to offer the best 

chance for significant N uptake? 

2. How dependent is this response to soil temperatures and timing of urine deposition? 

3. Could this be practically achieved in the field? 

Table 2.6-2.  Summary of N leaching losses (kg N ha-1) post-grazing of the forage crops and 

pasture treatments in the study reported by Shepherd et al. (2012). 

 

2.7 Nitrification inhibitors 

2.7.1 Action modes 

Nitrification rates can be affected by a number of factors (section 2.3.6) but there are a range of 

chemicals and conditions where nitrification can be directly supressed in soils. There are two basic 

modes of action associated with nitrification inhibition: (1) non-specific biological inhibitors and (2) 

chemically-based specific inhibitors.  Non-specific factors inhibit nitrification by creating soil 

environments unfavourable to nitrifying organisms, through growth of competing micro-organisms, 

disruption of membranes and cell ultra-structure, interference with the reductive assimilation of 

carbon dioxide, respiration, or other metabolic activities common to other autotrophic micro-

organisms.  A range of compounds are known to inhibit nitrification including phenol, acetone, 

sulphides, sulfones, sulfoxides, dithiol, mercapto derivatives, azides, urethanes, guanidine, and 

some amino acids such as cysteine, methionine, and histidine (Hauck 1980).  Specific inhibitors 

are generally chemicals that inhibit the activity of the autotrophic NH4+ oxidisers, Nitrosomonas, 

Nitrosospira and Nitrosolobus but ideally not nitrite oxidation (to prevent a toxic build-up of nitrite). 

They do so by a single action, or combination of actions, to bind enzymes, hemeproteins and/or 

chelate metals (such as Cu), that are involved in the oxidative process, or affect uncouplers of 

oxidative phosphorylation or electron transfer, or act in trapping free radicals (Hauck 1980).  A 

range of chemicals can act as both specific and non-specific inhibitors but non-specific inhibitors  
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 may affect other unrelated soil biological processes or interfere in nitrite oxidation; most research 

has therefore concentrated on the action and effect of specific inhibitors.   

2.7.2 Effect of nitrification inhibitors on plants and soil-N processes 

The major use of nitrification inhibitors, until relatively recently, has generally been in cropping 

where research on inhibitors such as nitrapyrin (2-chloro-6-trichloromethyl pyridine) have shown 

increases in crop N responses, particularly in high rainfall areas or years, or for autumn or spring 

sown crops (Haynes 1986a; Rodgers 1986).  For instance, Swezey and Turner (1962) found 

nitrapyrin, at 1% of fertiliser-N content, significantly increased crop response for urea and aqueous 

ammonia application (Figure 2.7-1).  The use of nitrapyrin has also been shown to decrease nitrate 

leaching.  Owens (1987) found that the 6-yr annual average NO3- losses from lysimeters growing 

a corn crop and fertilised with nitrapyrin-coated urea and untreated urea were 117 and 160 kg N 

ha-1, respectively.  Similarly, Ronaghi et al. (1993) conducted a corn study investigating the effect 

of nitrapyrin on NO3- leaching from pots containing a sandy clay loam soil. . Nitrogen fertiliser in 

(NH4)2SO4 form was added at 5 different rates (0, 50, 100, 200, and 400 kg ha-1 of N) and three 

rates  of nitrapyrin (0, 2.36 and 4.72 L ha-1) were used, with two leaching rates (0 and 25 mm per 

week over field capacity in two 500 ml increments at 3 and 6 weeks after planting). Average results 

across all five N application rates showed that the proportion of NO3- leached was reduced by 

approximately 60% when nitrapyrin was applied at 4.72 L ha-1 (Figure 2.7-2). 

The effectiveness of such nitrification inhibitors, however, has been found to be subject to 

modification by many factors.  For instance, the activity of nitrapyrin is reduced by adsorption onto 

SOM, chemical hydrolysis and volatilisation whilst the various genera and strains of nitrifiers differ 

in their sensitivity to such chemicals (Haynes 1986a).  Sahrawat (1980) reviewed a number of 

cropping trials using nitrapyrin and found growth responses and effects on nitrate leaching varied 

considerably from none to significant depending on fertiliser type, soil conditions and temperature. 
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Figure 2.7-1. Cotton yield for urea and aqueous ammonia fertiliser treated with 0, 0.5 and 

1% nitrapyrin. An uncommon letter within a column series denotes a significant difference at 5% 

level. Adapted from Swezey and Turner (1962).  

Figure 2.7-2. Recovery of applied N fertiliser (averaged over all rates) in leachates, 

roots/soil, denitrification gas and plant uptake for untreated and nitrapyrin-treated soil after 

leaching with 1 pore volume of water. An uncommon letter between recovery fractions denotes 

a significant difference at 5% level. Adapted from Ronaghi and Soltanpour (1993).
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Research in NZ using the nitrification inhibitor dicyandiamide (DCD) has demonstrated that treating 

effluent with DCD could reduce N leaching, albeit at large concentrations due to a high degradation 

potential at temperatures over 16C (Williamson et al. 1996).  In a subsequent lysimeter study, 

Williamson et al. (1998) measured nitrate leaching from a high total effluent loading of 1100 kg N 

ha-1 over seven months (fortnightly application) was reduced by 18% after applying DCD in May, 

130 days after starting the effluent application. However, direct leaching losses of nitrate from 

applied N fertiliser and/or farm dairy effluent are usually comparatively small relative to that leached 

from animal urine patches (Cameron et al. 1999; Ledgard et al. 1999; Silva et al. 1999; Di & 

Cameron 2002a; Cameron & Di 2004).  It is the surplus of N in urine patches, when oxidised to 

nitrate, that is most likely to leach once the onset of soil drainage occurs over the NZ autumn-

winter-spring period.  Soil profiles at this time are generally at, or near, water-holding capacity 

(WHC) so the leaching potential is particularly high as excessive soil water drains from the rooting 

zone.  Similarly, the potential for nitrous oxide emissions is also enhanced due to the simultaneous 

presence of high NO3- concentrations and reduced air-filled pore space leading to conditions where 

denitrification can occur (section 2.4.2).  In intensively grazed pasture systems the adoption of 

nitrate leaching and nitrous oxide mitigation technologies requires a focus on reducing losses from 

the highly N concentrated urine patch areas. Consequently, this is where most recent research in 

NZ on the use of nitrification inhibitors in intensive pastoral grazing has been targeted e.g. (Di & 

Cameron 2002b; Di & Cameron 2003, 2004b, 2005; Monaghan et al. 2009; de Klein et al. 2011; de 

Klein & Monaghan 2011; Monaghan et al. 2013).  

2.7.3 Dicyandiamide 

In recent years, one of the most examined specific inhibitors has been dicyandiamide (DCD, Figure 

2.7-3), a dimeric form of cyanamide, created from calcium cyanamide (CaCN2) that is manufactured 

from atmospheric nitrogen and calcium carbide (CaC2) (Slangen & Kerkhoff 1984).  The compound 

is completely biodegradable in soil (Williamson et al. 1996) and is transformed, mainly by micro-

organisms, through several intermediaries by the addition of water and decarboxylation to 

guanylurea and guanidine and, finally, urea. The latter is quickly degraded by the enzyme urease 

so the end products of DCD degradation are CO2, NH3, and H2O (Amberger 1989). 
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Figure 2.7-3. Diagrammatic representation of the dicyandiamide (DCD) molecule. 

Dicyandiamide acts by occupying the site at which NH4+ ions are converted into NO2- ions, on an 

enzyme called ammonia monooxygenase contained within the Nitrospira and Nitrosomonas 

europaea bacteria (Figure 2.7-4). Specifically, the inhibition of Nitrosomonas is mediated by the 

reaction of the C≡N group of DCD with the sulfhydryl or heavy metal groups of the bacteria’s 

respiratory enzymes (Amberger 1989).  

 

Figure 2.7-4. Depiction of DCD’s action on the enzyme ammonia monooxygenase (Christie 

& Roberts 2004).
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Research into DCD use in intensive grazed pastures has enabled the application of DCD on its 

own (i.e. without fertiliser) to be used to inhibit nitrification in animal urine patches.  Dicyandiamide 

diffuses into the urine patch area, interrupting the ammonium oxidative process, the first stage of 

nitrification (Figure 2.7-5).  One of the main benefits of DCD used in this way is the increase in the 

efficiency of the N cycle and reduced environmental impacts of dairy farming in particular, and 

consequently, increased pasture production (Cameron & Di 2004; Moir et al. 2007; Carey et al. 

2012; Monaghan et al. 2013).  Conserving the N supply already present in soil generally means 

lower N losses from the soil by leaching and gaseous emission (Di & Cameron 2002b; Di & 

Cameron 2004a, 2005, 2006). 

 

Figure 2.7-5. Depiction of DCD inhibitor activity slowing ammonium oxidation in the 

nitrification process (Christie & Roberts 2004). 

2.7.4 Effect of DCD on soil processes and pasture production 

Two main effects occur with the application of DCD to urine-affected soil, NH4
+-N concentrations 

remain higher for longer, whilst NO3
- -N concentrations increase more slowly than in a urine-affected 

soil without DCD (Di & Cameron 2004c).  The effects of DCD on reducing nitrate leaching and 

nitrous oxide emissions have been shown to be substantial in perennial ryegrass/white clover 

pastures, the main plant species used in NZ intensive pastoral systems.  However, the magnitude 

of this effect has been shown to vary depending on soil, climatic and application conditions (Di et 
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al. 2007; de Klein et al. 2011; Di & Cameron 2012; Carlson et al. 2013).  Application of DCD to 

dairy pastures has been shown to reduce average annual NO3- leaching losses on a range of soils, 

58-72% on a Canterbury Templeton sandy loam (Figure 2.7-6), 45-83% (av. 63%) on a Canterbury 

Lismore stony silt loam, 56-71% on a West Coast Hari Hari recent silt loam, and 44-67% on a 

Southland Mataura recent sandy loam (Di & Cameron 2002b, 2007; Di et al. 2009a).  In a national 

series of nitrous oxide mitigation research (NOMR) trials in South Otago, Canterbury, Manawatu 

and Waikato regions, mean reductions in nitrate leaching from DCD treatments on autumn-applied 

urine were reported from 9-68% for a range of soil types and climatic conditions (Table 2.7-1). 

Figure 2.7-6. Effect of the nitrification inhibitor DCD on the total amounts of NO3--N leached 

from urea/urine-treated lysimeters containing a Canterbury Templeton sandy loam. Vertical bars 

indicate SEM (Di & Cameron 2004b). 

Nitrous oxide emissions from urine patches in intensive dairying have also been shown to be 

significantly reduced after DCD application and in many cases by more than 50% (Di & Cameron 

2003, 2006; Ball et al. 2012; Gillingham et al. 2012; Baral et al. 2014; de Klein et al. 2014) (Figure 

2.7-7).  In the series of national NOMR trials, mean reductions in N2O emission factors (EF) from 

DCD treatments ranged from 51-68% for autumn-applied urine (Table 2.7-1).  The build-up in soil 

nitrate concentrations under a urine patch, and the wet conditions that can prevail over the autumn-

winter-spring period, encourages denitrification and high N2O loss but DCD application has been 

found to reduce these, especially in the first few months after urine application (Ball et al. 2012; de 
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Klein et al. 2014).  Although many factors affect N2O loss, including soil temperature and DCD 

degradation rates (Kelliher et al. 2008), the ability of DCD to substantially reduce these under the 

field-saturated conditions that prevail over this period is potentially an important tool for control of 

GHG emissions (Ball 2013; Saggar et al. 2013). 

Table 2.7-1.  Mean and range of nitrate leaching and nitrous oxide emission factor (EF) 
reductions for DCD treatments applied to urine patches over autumn (April/May) compared to 
control (no-DCD) treatments for the NOMR national series of trials (2009-12). Data from de Klein 
et al. (2014), Cameron et al. (2014), Kim et al. (2014) and Ledgard et al. (2014).  

 NOMR trial region 
 Otago Canterbury Manawatu Waikato 

Reduction due to DCD % 

Nitrate leaching 
9 a 49 22 b 58 

(8-11) (48-69) (-) (48-68) 

Nitrous oxide EF 
52 66 68 51 

(33-70) (41-82) (54-78) (19-77) 
a low overall nitrate leaching (<15 kg N ha-1); b 2011 data only;  

Pasture production has been shown to increase under DCD use, especially on urine-treated areas 

(Di & Cameron 2002b; Di & Cameron 2004b; Moir et al. 2007; Sprosen et al. 2009), with increases 

in annual pasture yield reported from 15-36% (Figure 2.7-8).  Further work by Moir et al. (2007) 

suggested that DCD use not only increased production on the urine-treated areas but also the inter-

urine areas (Figure 2.7-9) between patches suggesting DCD application improves the efficiency of 

nutrient cycling in the non-urine patch areas too.  However, other researchers have found variable 

responses to DCD use in a recent national series of small plot trials ranging from nil to significant 

(Cameron et al. 2014; de Klein et al. 2014; Kim et al. 2014; Ledgard et al. 2014).  Recent reported 

field measurements on DCD-treated dairy pastures from farms around the country have suggested 

that the DCD effect on pasture yield is significant (Figure 2.7-10) and is probably because of more 

efficient N cycling within the pasture (Carey et al. 2012).  Moir et al. (2007) has also suggested that 

DCD use can reduce high NO3- levels in pastures (Figure 2.7-11), a known problem for grazing 

animals, especially in spring or after dry periods (Vermunt & Visser 1987).  
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Figure 2.7-7. Effect of DCD on nitrous oxide emissions from two Canterbury soils treated 

with urine and/or urea in May (a -Lismore), August (b -Lismore) and May (c -Templeton) (Di & 

Cameron 2006). 
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Figure 2.7-8. Total annual N offtake (a) and pasture yield (b) for lysimeters treated with 

urea/urine only or urea/urine plus a single (May) or a double (May and August) DCD (eco-n) 

application containing a Templeton sandy loam soil (Di & Cameron 2004b). 

 

Figure 2.7-9. Average annual DM yields (2002/3-2004/5) for urine and inter-urine areas (a) 

and estimated cumulative pasture growth curves for non-treated and DCD-treated pastures 

using regression of field data (b) (Moir et al. 2007).  
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Figure 2.7-10. Mean percentage increase in DM yield responses for DCD-treated pastures for 

spring-only, full year and both (mean of spring and full year trials) for North Island, South Island 

and New Zealand (overall means) (Carey et al. 2012). 

 

Figure 2.7-11. Pasture NO3--N levels on all treatments on 4 August 2005, three months after 

last grazing and treatment application (Moir et al. 2007). 
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2.7.5 Factors affecting DCD effectiveness 

The stability of DCD is an important factor in maintaining  the nitrification inhibitory effect, with 

temperature an important arbiter of degradation rates (Kelliher et al. 2008).  Temperature-

dependent degradation of DCD has been shown for bacterial isolates under culture conditions,  

with optimal rates around 25C (Hauser & Haselwandter 1990). Indeed, Di and Cameron (2004c) 

found that the half-life (t½) of DCD was reduced from 111-116 days at 8C to 18-25 days at 20C 

(Figure 2.7-12).  Although maximum leaching potential usually coincides with the coolest time of 

the year when soil temperatures are less than 10C, urinary-N applied over the autumn period is 

still at considerable chance of leaching due to the soil being warm enough to allow rapid nitrification 

unless DCD has been applied recently.  Kelliher et al. (2014) recently reported first-order 

relationships for DCD degradation for a range of soil temperatures at one field grazing site. Half-

lives decreased with increasing temperature where, for example, t½ for values at 8°C and 16°C 

were 39 ±6 and 25 ±3 days (±95% confidence limit), respectively.  A comparison of two sites 

separated by 1000 km found t½ differed significantly for the same temperature and was attributed 

to differences in microbial activity between the sites.   Part of the reason might lay in the explanation 

that DCD degradation is not solely mediated by one type of microbial organism and that syntrophy 

or cross-feeding between different bacteria consortia influence degradation rates (Schwarzer et al. 

1998).  Because soils differ in these respects it is important to apply sufficient DCD to maintain an 

inhibition effect long enough to cover the main part of the leaching season. Di and Cameron (2005) 

found for a Canterbury grazed pasture that 10 kg a.i. ha-1 provided a satisfactory nitrification 

inhibitory effect but 5 kg AI ha-1 was far less effective (Figure 2.7-13). In practice, the rate of 

nitrification and magnitude of the inhibitory effect is generally much lower under high soil 

temperatures than low (Figure 2.7-14), and requires application rates of 10 kg AI ha-1 applied twice 

over the autumn-winter-spring period to achieve a sufficient effect (Di & Cameron 2005).  Other 

factors also influence degradation rates.  Rodgers et al. (1985), for example, found that DCD 

persistence was greater in acid than in near-neutral soils presumably influenced by differences in 

microbial activity. Soil organic matter has also been implicated in DCD effectiveness, with 

degradation rates increasing with increasing SOM and explained by way of increased sorption and 

subsequent microbial degradation (Slangen & Kerkhoff 1984; Kelliher et al. 2008). 
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Figure 2.7-12. Effect of soil temperature on DCD degradation rates at 8C (a) and 20C (b) 

over time for two different DCD application rates (7.5 and 10 kg a.i. ha-1) (Di & Cameron 2004c). 

Figure 2.7-13. Effect of DCD rate (0, 5 and 10 kg AI ha-1) on total nitrate leached from a urine-

treated pasture (Di & Cameron 2005). 
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Figure 2.7-14. Effect of soil temperature at 8C (a) and 20C (b) on soil ammonium and nitrate 

concentrations over time for two different DCD application rates (7.5 and 10 kg a.i. ha-1) (Di & 

Cameron 2004c). 

2.7.6 Future of nitrification inhibitors in NZ agriculture 

Whilst the benefits of nitrification inhibitors, and DCD in particular, as a means to reduce nitrate 

leaching have been demonstrated, their use in NZ agriculture has been complicated because DCD 

sales have been voluntarily suspended after trace amounts of DCD were detected in NZ milk 

powder (Cronshaw 2013; Ministry of Primary Industries 2013).  Although only trace amounts were 

found and no food safety issues are associated with DCD ingestion, a decision was made to 

suspend its use because no internationally-agreed standard exists for DCD presence in milk and 

thus there is no recognised acceptable maximum residue limit.  Until DCD is registered on the 

CODEX Alimentarius standard for food, its use remains suspended.  However, if/when DCD is 

registered on the CODEX, there will be a need for its effectiveness in reducing nitrate leaching 

losses from winter forage grazing systems to be accurately quantified.  

At present, there is conflicting data from the small number of published studies on the effectiveness 

of DCD to reduce nitrate leaching losses under winter forage grazing and this represents a 

considerable knowledge gap that remains to be quantified over the smaller, and larger, scale.  
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2.8 Summary 

A review of the literature shows that nitrate leaching losses in dairy wintering systems using winter 

forage grazing are potentially large and could potentially represent almost half of a farm’s total N 

leaching loss from a small fraction of the farm’s total grazing area (Monaghan et al. 2007a).  

Strategies to combat these losses could include planting a catch crop to capture a significant 

fraction of the N applied in urine and excreta before it can be leached and/or using   a nitrification 

inhibitor to reduce nitrate leaching losses.  However, efforts to reduce these losses using DCD-

based nitrification inhibitors have been stopped because of the voluntary withdrawal of DCD from 

the market due to traces being found in milk products.  Planting catch crops over the winter may 

prove problematic, with too little growth to prevent significant nitrate leaching; currently there is a 

paucity of data on their potential effectiveness under the various scenarios, however.   

The main conclusions drawn from this literature review are:  

•  Although it is hypothesised that catch crops could reduce N losses from winter forage 

grazing systems, there is no published data available for the effectiveness of catch crops 

sown post-winter forage grazing to reduce nitrate leaching losses. 

• There are very few published papers reporting the use of DCD to reduce nitrate leaching 

from winter forage grazing systems in NZ; the few published data shows conflicting results 

on the effectiveness of DCD. 

• There is no published data quantifying the effect of DCD in conjunction with a winter-sown 

catch crop to reduce nitrate leaching losses from winter forage grazing systems. 

• Although drainage soon after urine application will contribute to increased N leaching 

losses, there is relatively limited understanding and little published data on the sensitivity 

of drainage pattern, soil temperature and urine application (both volume and loading) to 

catch crop sowing date (i.e. speed of catch crop establishment), especially as it relates to 

South Island dairy wintering systems. 
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The main objectives of this PhD research programme will therefore be: 

1. To quantify nitrate leaching losses from a simulated winter forage grazing system and to 

determine the effect of sowing a catch crop and/or applying a nitrification inhibitor (DCD)  

• Hypothesis 1: Nitrogen leaching losses from single and double urine applications 

to a stony, free-draining Balmoral soil after winter forage grazing are additive. 

• Hypothesis 2: Sowing of a winter/spring catch crop and/or applying DCD after 

winter forage grazing will have separate and additive effects on reducing nitrate 

leaching losses. 

2. To quantify the main effect and interaction effect of date-of-urine-application and date of 

catch crop sowing on N leaching losses. 

• Hypothesis 3: Early establishment of a catch crop following winter forage grazing reduces 

nitrate leaching losses. 

3. To achieve a better understanding of the effects of soil temperature, drainage, light intensity 

and catch crop establishment on nitrate leaching losses from winter forage grazing systems 

and the chief processes involved.  

• Hypothesis 4: Timing of urine application, catch crop establishment and 

interactions with soil temperature and light intensity following winter forage grazing will 

be critical factors influencing nitrate leaching losses. 

This PhD study will primarily focus on discovering new knowledge and understanding of the above 

whilst providing insight into the mechanisms and importance of factors in minimising nitrate 

leaching from winter forage crops. 
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Chapter 3 General Materials and Methods 

 

“A summary of soil descriptive data, field techniques, trial implementation and analysis methods 

used to conduct the field lysimeter experiments.” 
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3.1 Introduction 

Three experiments were conducted in total; two field lysimeter experiments (2013-14 -year 1; 2014-

15 -year 2) and one repacked soil column experiment in a temperature, humidity and light-

controlled growth cabinet facility (2015-16) at Lincoln University (Field Research Centre).  Each 

experiment received a single initial application of urine, except in year 1 when two treatments 

received a second application a week after the first. The soil for all lysimeter experiments was 

collected in situ from the Ashley Dene research station, near Springston, Canterbury (43 39’ 2” S, 

172 19’ 45” E) (Appendices A & B) . Soil descriptions, properties and classification are discussed 

in section 3.3.  Details of materials and methods specific to each experiment are provided in the 

relevant chapter. 

3.2 Lysimeter collection 

The collection and installation of the lysimeters used in experiments 1 and 2 occurred during the 

summers of 2012-13 (early January) and 2013-14 (early February), respectively.  Collection was 

carried out essentially following the method of Cameron et al. (1992) where a single lysimeter unit 

comprised a cylindrical steel casing (0.5 m diameter and 0.7 m deep) with an internal cutting ring, 

a base plate and four steel bars to secure the base plate.  

A field site was identified and fenced off from stock grazing approximately three months before 

lysimeter collection.  The site was an established pasture, consisting of a mixture of perennial 

ryegrass (Lolium perenne L., cultivar Prospect) and white clover (Trifolium repens L., cultivar Kopu 

11). Using a digger, a trench was dug on either side of the sampling area and the pasture where 

the lysimeters were to be taken from, was cut to ground level using hand clippers.  The lysimeter 

collection procedure involved placing the hollow lysimeter casing on the pasture/soil surface with 

the internal cutting ring on the bottom edge.  A small trench was dug around the casing to expose 

a 100-mm depth of soil (Plate 3.3-1) and then the casing was gradually pushed down around the 

exposed soil column to minimise soil structural disturbance within the casing. This step was 

repeated, with any stones protruding from the side of the monolith removed as required, until the 

surface of the soil was within 25 mm of the top of the casing (Plate 3.3-1). The internal cutting ring 

within the casing created a 5-mm gap between the side of the casing and the soil monolith.  
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Liquefied (50C) petroleum jelly was injected into the gap until it reached the top of the casing. On 

cooling, the petroleum jelly prevented edge flow between the soil monolith and the side of the 

casing. At a depth of 700 mm, a hydraulically-assisted cutting plate was used to separate the soil 

column from the subsoil. Each lysimeter was uplifted and inverted and c. 50 mm of soil and gravel 

removed from the base and replaced with a layer of coarse gravel before attaching a drainage base 

plate to collect leachate (Plate 3.3-2). The installation of a gravel layer at the base of each lysimeter 

reproduced a situation common to the Canterbury Plains where soils often overlie coarse gravels. 

The gravel layer also allowed a free drainage system to be used in the lysimeter study, as matric 

potential in this layer was assumed to be zero (Clothier et al. 1977).  

After collection, the lysimeters were lifted onto a specially designed trailer with air-bag suspension 

to minimise soil disturbance and transported to a field trench lysimeter facility located at the Field 

Research Centre, Lincoln University, 20 km south of Christchurch (43 38’ 52” S; 172 28’ 7” E).  A 

10-mm drainage tube was connected to the base of each lysimeter prior to installation that then 

drained into a sealed 10 L collection can. The top of each lysimeter was positioned flush with the 

surface of the soil surrounding it to ensure that the lysimeters were exposed to the same 

environmental conditions as the rest of the field (Plate 3.3-2).  

3.3 Soil 

3.3.1 Classification 

The soil used in the lysimeter experiments was a Balmoral stony silt loam, classified as an Acidic 

Orthic Brown soil in the NZ classification system (Hewitt 1993).  These soils sit in the high terraces 

of the Canterbury Plains and are derived from greywacke alluvium built up from the remnants of 

huge alluvial gravel fans deposited around 20,000 years ago, after the last Otiran Glaciation. The 

key properties of this stony silt loam are its friable nature with stones present throughout the profile, 

free-draining nature and unlimited aeration in the root zone (Plate 3.3-3).  Historically dedicated to 

dryland farming for sheep meat and wool, they are droughty without irrigation but the 

implementation of irrigation schemes has enabled increased diversification into dairying and dairy 

support (Molloy 1988). 
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Plate 3.3-1. Positioning, collection and removal of lysimeters from the field site. From top left, 

clockwise: A) positioning and digging down of lysimeters into Balmoral soil pasture site; 

lysimeter case fully down, B) annular gap filled with vaseline and prior to insertion of cutting 

plate, C) insertion of cutting plate below casing using hydraulic ram; D) tractor removal of soil 

monolith.  

A B 

C D 
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Plate 3.3-2. From top-left clockwise; A) inversion of lysimeter in preparation of installation of 

gravel drainage base, B) lysimeters installed in field trench with transplanted kale, C) pugging 

of lysimeter surface with steel hoof post-kale removal, D) application of urine after treading.  

 

 

A B 

C D 
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Plate 3.3-3.  Profile of Balmoral soil 

Location: Ashley Dene research station, Springston, Canterbury. 

(43 38’ 41” S, 172 20’ 33” E). 

Soil Group:  Acidic Orthic Brown Soil (Cutler 1968; Hewitt 1993) 

Classification: Dystrudepts Inceptisol (Soil Survey Staff 2014) 

Table 3.3-1.  Soil profile description of Balmoral soil (Webb & 

Bennett 1986). 

Horizon Depth 
(cm) Description 

Ap 0-18 
Very dark greyish brown (10YR 3/2); stony silt loam; 
friable; weakly developed fine nut and granular 
structure; many fine roots; 10% stones. 

Bw 18-34 
Dark yellowish brown (10YR 4/4); very stony silty 
loam; friable; weakly developed very fine nut 
structure; many fine roots; many casts; 40% stones. 

Bw2 34-56 Yellow-brown, nutty/crumb, stony, fine sandy loam, 
friable. 

Cu 56-70 Dark greyish brown to olive brown (2.5 Y4/3); very 
stony sand; loose few fine roots; 50% stones. 

C 70-90 Gravels with pale yellow-brown silt/sand matrix. 
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3.3.2 Physical and chemical properties 

Soil bulk density was calculated from samples collected during the deconstruction procedure of the 

lysimeters used in experiment 1 (section 4.2.6).  From 0-40 cm, 10 cm increments were sequentially 

exposed and removed into bins where the stones were separated from the finer soil fraction (< 5 

mm). Sub-samples of the soil fraction were air-dried for soil moisture content (30°C) and remaining 

stone above 2 mm sieved out. The 40-60 cm soil fraction was analysed as a single layer. Soil bulk 

density (SBD) was calculated using equation 3.3-1:  

𝑆𝑜𝑖𝑙 𝑏𝑢𝑙𝑘 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 (𝑃𝑏) =
(𝑀𝑠 + 𝑀𝑠𝑡)

𝑉𝑖
 

3.3-1 

where Pb is the dry bulk density (g cm-3), Ms is the weight of dry soil (105°C), Mst is the weight of 

stone and Vi is the volume of the depth increment. 

Total soil porosity for each depth, and the mean for each lysimeter (0-60 cm), was calculated as 

follows (3.3-2): 

𝑇𝑜𝑡𝑎𝑙 𝑠𝑜𝑖𝑙 𝑝𝑜𝑟𝑜𝑠𝑖𝑡𝑦 (𝐹) = ∑ 𝑛

𝑁

𝑛=1

 (1 −
𝑃𝑏

𝑃𝑑
) 

3.3-2 

where F is total soil porosity (cm cm-3), n is the number of depth increments (40-60 cm = 2n), Pb is 

dry bulk density (g cm-3) and Pd is particle density nominally assumed as 2.65 g cm-3, mid-point in 

the range (2.6-2.7 g cm-3) commonly found in mineral soils (Hillel 1998b). 
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Table 3.3-2.  Mean Balmoral soil bulk density, porosity, stone volume and soil 

texture. 

Soil depth 
(mm) 

Soil bulk density 
(g cm-3) 

Porosity 
(% v/v) 

Stone vol. 
(% v/v) 

1 Soil texture 

0-10 1.10 58 11 stony ZL 

10-20 1.54 42 30 stony ZL 

20-30 1.88 29 51 stony SL 

30-40 2.02 24 54 stony S 

40-60 1.93 27 51 gravelly S 

Mean 1.73 35 39  

  1 ZL -silt loam; SL -sandy loam; S –sand 

 

Table 3.3-3.  Key soil fertility and physical properties (0-7.5 cm) of 

Balmoral stony silt loam (fine earth fraction <2 mm ie. excluding stones). 

Analysis Mean value (Units) 

pH 5.9 

Olsen-P 24 (mg P L-1) 

ASC1 42 (%) 

Exch-K+ 0.9 (cmolc kg-1 soil) 

Exch-Ca2+ 7.8 (cmolc kg-1 soil) 

Exch-Mg2+ 0.7 (cmolc kg-1 soil) 

Exch-Na+ 0.1 (cmolc kg-1 soil) 

CEC2 17 (cmolc kg-1 soil) 

Total BS% 57 (%) 

Volume weight 0.9 (g ml-1) 

Sulphate-S 10 (mg kg-1) 

Extractable Org-S 2.0 (mg kg-1) 

TBK3 3.8 (cmol kg-1 soil) 

Organic matter 72 (g kg-1) 

Total-C% 4.5 (%) 

Total-N% 0.41 (%) 

C/N ratio 11.0 
1 Anion storage capacity; 2 Cation exchange capacity; 3 Reserve-K analysis. 
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3.4 Experimental treatments 

3.4.1 Field experiment structure 

Two field lysimeter experiments were conducted over the winters of 2013 (year 1) and 2014 (year 

2) comprising of 32 and 48 lysimeters, respectively, with established kale plants in place. In year 

1, there were a total of eight treatments consisting of two plant types (i.e. catch crops): Italian (It.) 

ryegrass (Lolium multiflorum L.) and oats (Avena sativa L.); three rates of urine application (control, 

350 and 700 kg N ha-1) and two dicyandiamide (DCD) treatments (0 and 20 kg N ha-1).  The second 

rate (700 kg N ha-1) of urine application was spit over two application dates, the first on June 26, 

the second 7 days later, on July 3. This was intended to simulate a double application of urine that 

might occur during “break feeding” of the cows. The DCD treatment was applied only to the 350 kg 

N ha-1 rate of urine application for both catch crops. (Table 3.4-1). 

Table 3.4-1  Field lysimeter treatments, catch crops and dates for urine and DCD application in 

year 1 (2013; table A), and urine application and sowing day in year 2 (2014; table B). 

A: Year 1 

Treatment 
ID Crop Urine rate 

(kg N ha-1) 
DCD rate 

(kg a.i.ha-1) 

IR: Control 

Italian 
ryegrass 

0 - 

IR: U350 350 0 

IR: U700 700 - 

IR: U350+DCD 350 20 

OT: Control 

Oats 

0 - 

OT: U350 350 0 

OT: U700 700 - 

OT: U350+DCD 350 20 
Urine/DCD 
rates  Application dates 

U350  Jun 26 - 

U700 (2x 350) Jun 26 Jul 3 

DCD  Jun 27 - 

B: Year 2 

Treatment 
ID (oats) 

Urine 
date 

Sowing 
day 

E: fallow 

Early 
(Jun 6) 

 

E: day 1 1 

E: day 21 21 

E: day 42 42 

E: day 63 63 

M: fallow 

Mid 
(Jul 6) 

 

M: day 1 1 

M: day 21 21 

M: day 42 42 

L: fallow 
Late 

(Jul 25) 

 

L: day 1 1 

L: day 21 21 
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In both years, each treatment was replicated four-times, and in blocks of four-to-eight, within the 

field lysimeter trench facility (Appendix C).  Although lysimeters were randomly assigned within the 

trench, treatments were not in a randomised block design due to difficulties this would present in 

management although separation distances between lysimeters were generally small.   

3.4.2 Urine collection 

Fresh cow urine was collected, by hand, from a Friesen/Jersey cross herd, grazing winter kale on 

the Lincoln University Dairy farm. Collection was at afternoon milking with the urine bulked and 

mixed, prior to total-N analysis (Elementar Vario-Max CN elemental total carbon and nitrogen 

analyser, Elementar GmbH, Hanau, Germany), and then stored at 4°C for 1-2 days before 

application. Urine-N concentration was diluted with deionised water from 4.0 g N/L and 5.6 g N/L 

in years 1 and 2, respectively, to 3.5 g N/L, to obtain values that were more representative of those 

reported for urinary-N concentrations for winter forage grazing cows (Edwards et al. 2014a).  Urine 

was applied at a rate of 2 L per lysimeter for an approximate depth of 10 mm. 

 

Plate 3.4-1.  Urine collection in milking yard for lysimeter application. 
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Urine application involved pouring 2 L of the urine from a height of about 500 mm directly to the 

surface of the lysimeter (equivalent depth of 10 mm at 350 kg N ha-1).  Control treatments received 

2 L of deionised water but containing the same quantity of 15N as applied in the urine treatments 

(equivalent to 32 kg N ha-1).  For the 700 kg N ha-1 treatments in year 1, a second 2 L of similarly 

15N-labelled urine was applied one week later to provide an additional 350 kg N ha-1.   

3.4.3 Fertiliser application 

Prior to lysimeter collection in 2012, the site received 3 T ha-1 of lime in October 2011 and 200 kg 

ha-1 of 15% potassic superphosphate in August, 2012.  After transplanting of the kale in January, 

2013, 50 kg N ha-1 of urea was applied in two applications (2x 25 kg N ha-1), in February and April, 

2013, to help plant establishment (Table 3.4-2).  Basal fertiliser application was similar in year 2 

although due to the shorter duration of the trial, there were no further applications once it began. 

Table 3.4-2.  Basal lime and fertiliser applications to year 1 and 2 trials. 

Year 1 

Fertiliser Rate Nutrients Date 

Lime 3 T ha-1 kg ha-1 18/10/2011 

15% potash super 200 kg ha-1 

P 15 

30/8/2012 K 18 

S 15 

Urea 110 kg ha-1 
N 25 20/2/2013 

N 25 2/4/2013 

30% potash super 100 kg ha-1 

P 6 

23/9/2013 K 15 

S 8 

Di-ammonium 
phosphate 200 kg ha-1 

N 36 
6/12/2013 

P 40 

Year 2 

15% potash super 200 kg ha-1 

P 15 

12/2/2014 K 18 

S 15 

Urea 110 kg ha-1 N 50 27/3/2014 
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3.5 Climate data 

Local rainfall, air and soil temperature data were collected using the climate station at the Lincoln 

University research dairy farm (Plate 3.5-1).  Rainfall was measured using a Hydrological Services 

(Sydney, Australia) model TB3 tipping bucket collector while solar radiation was measured with a 

CMP3-L Pyranometer by Campbell Scientific. Ground (at 10 cm depth) and air temperature were 

determined by 107 Campbell Scientific probes that incorporate a Fenwal Electronics UUT51J1 

Thermistor. Data was stored on a Campbell Scientific datalogger and sent telemetrically.  Other 

climate and rainfall data were collected from the NIWA Broadfields meteorological station, 2 km 

from the trial site.  Historical data for Lincoln was downloaded from the CliFlo NIWA national climate 

database (NIWA 2016) and means aggregated over a 35-year period from 1980-2014. 

 

Plate 3.5-1. Lincoln University dairy research farm climate station. 

3.6 Rainfall and irrigation simulation system 

The rainfall and irrigation simulation system (RISS) was used to best simulate actual rainfall and 

irrigation events, particularly in terms of application frequency, intensity and rate. The system is 

designed to generate sufficient drainage water during the winter/spring period to achieve a 

complete nitrate breakthrough curve and does this by setting daily average rainfall and 

evapotranspiration data to the 75th percentile, as defined by the base setting period (1975-1999).  
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The system operates on predefined daily climate parameters derived from data collected by the 

NIWA Broadfields weather station. The system was calibrated to apply water in 0.5 mm bursts to 

avoid saturated flow. The system is described in full in Appendix D. 

3.7 Statistical analysis 

Statistical analysis was done using both balanced and unbalanced (non-orthogonal comparisons) 

analysis of variance (ANOVA) within the Genstat 9.2 statistical package (Lawes Agricultural Trust 

2007).  Further details on specific statistical methods used are given in each chapter. Unless 

otherwise stated, a least significant difference (LSD) value of 95% confidence (0.05) is displayed 

as a bar on figures and quoted in tables.  

  



 

 Page 85  
  

 

 

 

 

Chapter 4 Nitrogen Balance of Applied Urine 

 

 

‘A field lysimeter experiment to investigate the pathways and endpoints of applied urinary-N 

post-winter forage grazing’. 
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4.1 Introduction 

Increased nitrate levels in drinking water are undesirable, with implications for both human health 

(WHO 2011) and the environment from excessive aquatic plant growth and eutrophication within 

water bodies (Smith & Schindler 2009; Ministry for the Environment 2010).  Agriculture is a major 

non-point source contributor of nitrogen, and intensive animal grazing systems in particular have 

been implicated in declining water quality (Jarvis 2000; Ledgard 2001; Erikson et al. 2010; Cameron 

et al. 2013; Burkitt 2014).  Mitigating nitrate leaching losses in intensive agriculture requires 

technologies that increase N efficiency whilst improving environmental outcomes and ultimately, 

improving agricultural sustainability (Di & Cameron 2002a).  

Forage crops such as kale (Brassica oleracea L.) are commonly grazed over the winter in New 

Zealand, and particularly in the South Island. Dairy farmers use winter forage crops to achieve body 

condition score targets for pregnant, non-lactating dairy cows prior to the start of calving in early 

spring (Judson et al. 2010).  These forage crops are normally sown in the previous spring, reaching 

yields of 10–16 t DM ha-1 by winter (Brown et al. 2007) and are grazed for 8-10 weeks from early 

June.  After grazing, the cropped area remains fallow until the next crop is sown in late spring (2-3 

months later). Although these are effective low-cost systems that provide large quantities of feed 

at a time of the year when the growth of pasture, the most common feed for dairy cows, is limited 

by cold temperatures, they can lead to large nitrate leaching losses.  Mitigation options to reduce 

N loss from intensively-grazed pastures in New Zealand have been reviewed by Cameron et al. 

(2013), Ledgard et al. (1999) and Monaghan et al. (2007a) but winter forage grazing presents a 

new challenge. The high stocking rates during grazing mean large volumes of urine are deposited 

onto bare soil with no opportunity for plant uptake of N, at a time of year when drainage rates are 

typically high, creating a high potential for nitrate leaching.  There is also the potential for multiple 

urine applications on the same area because of the intensity of stock, per unit area of land. 

Whilst a fast-growing catch crop has been reported as a useful mitigation strategy for reducing 

nitrate leaching loss in cereal cropping systems (McLenaghen et al., 1996; Francis et al., 1998; 

Shepherd, 1999; Di & Cameron, 2002), there is no information on the effect of using a catch crop 

to reduce nitrate leaching from winter forage grazing systems.  With several recent New Zealand 

winter forage grazing studies reporting nitrate leaching losses ranging from 52-173 kg N ha-1 
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(Shepherd et al., 2012; Smith et al., 2012; Monaghan et al., 2013; Malcolm et al., 2015) there is 

recognition that these need to be reduced if these open grazing systems are to continue.  There 

are however, several difficulties that could beset the use of a catch crop to reduce nitrate leaching.  

Firstly, planting a catch crop in winter means germination and growth might be too slow to make 

any significant impact on N losses before the main part of the drainage season has passed.  

Second, the lag phase between the finish of winter grazing and soil physical conditions being 

suitable for sowing a crop may also limit its effectiveness.  Selection of a suitable catch crop, 

therefore, relies on a plant species that is both winter-active and able to withstand less than ideal 

soil physical conditions.  Additionally, the catch crop should be able to deal with the uneven 

distribution of urinary-N to the soil from no coverage to potentially multiple urine applications 

resulting from the high stocking rates.  The selection of potential catch crops is, therefore, limited 

to winter-active annual grass species like Italian ryegrass (Lolium multiflorum L.) or forage cereals 

like oats (Avena sativa L.).  Recent research by Malcolm et al. (2014) examining the use of differing 

pasture species to reduce nitrate leaching found It. ryegrass was particularly effective, reducing 

nitrate in drainage by 24-54% from an autumn (mid-May) urine application.  Although there is little 

current research on the use of forage cereals post-winter forage grazing, oats has been used 

successfully in Canterbury as a catch crop in cropping sequences although the oats was sown in 

autumn (Francis et al. 1998).  Oats also has other advantages due to its ability to tolerate low 

temperatures in seedling and tillering stages whilst resisting frost better than other forage cereals 

such as wheat and barley (Zwer 2004). 

Mitigation technologies to reduce nitrate leaching might also include the use of a nitrification 

inhibitor such as dicyandiamide (DCD). Nitrification inhibitors could extend the period between urine 

application and maximal soil nitrate concentrations, thus enabling greater N uptake from the 

developing crop in the intervening period.  However, whilst its effectiveness in reducing nitrate 

leaching in pastoral situations has been amply demonstrated (Di & Cameron 2002b; Di & Cameron 

2003, 2004a, b; Di & Cameron 2004c; Di et al. 2007; Monaghan et al. 2009; Sprosen et al. 2009; 

Cameron et al. 2014), its use in winter forage grazing is more equivocal.  Shepherd et al. (2012) 

found that application of DCD one day after winter forage grazing in a Waikato field trial reduced 
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nitrate leaching losses by 20-27% but conversely, Smith et al. (2012) found it less effective and not 

significant in a Southland field trial, where DCD was applied 1-12 days after grazing. 

Ascertaining the fate of a significant N input to an agricultural system means measuring both the 

mass balance of N within the system, and the changes that occur to each mass component, in 

response to climatic, soil and plant growth factors (Allison 1966).  Urine application represents a 

major perturbation of the cropping/pastoral system and using a labelling tool such as 15N is 

essential to differentiate between the different N pathways (Clough et al. 2001).  Differences in the 

15N isotopic ratios can help determine the immediate, medium and long-term effects of urine-N 

application on each component (i.e. soil, gas or water) and these have been important in deriving 

the relative importance of each N pathway in both pastoral and catch crop studies (Martinez & 

Guiraud 1990; Di et al. 2002).  

This experiment tested three hypotheses: 

1. That oats are a more effective catch crop than an It. ryegrass catch crop to reduce nitrate 

leaching losses in post-winter forage grazing systems, 

2. That nitrogen leaching losses from single and double urine applications post-winter forage 

grazing will be additive, and 

3. That using a nitrification inhibitor (DCD) in conjunction with a catch crop will reduce nitrate 

leaching losses and increase N uptake from winter forage grazing compared with a non-DCD 

treated catch crop (control). 

Consequently, there were three main objectives for this experiment: 

1. Compare the performance of two winter-active plant species to capture N from a simulated 

winter forage grazing (single and double urine applications) and quantify differences in nitrate 

leaching loss,  

2. Obtain a nitrogen balance of 15N-labelled urine to ascertain the pathways of urinary-N transfer 

and loss after sowing a catch crop post-winter forage grazing, and  

3. Measure the effect of a single DCD application on the above and its effect in reducing nitrate 

leaching loss. 
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4.2 Methodology 

4.2.1 Lysimeter preparation 

Soil type and properties, collection, preparation and installation of the lysimeters in the field trench 

lysimeter facility located at the Field Research Centre, Lincoln University has already been outlined 

in Chapter 3.  Once the lysimeters had been installed, the pasture was sprayed out with glyphosate 

herbicide and kale transplanted into the lightly worked surface of each lysimeter a month later (mid-

December).  Wind cloth was put up around each lysimeter and the plants irrigated to aid 

establishment.  Lysimeters received sufficient natural rainfall prior to the trial starting to maintain 

soil moisture at field capacity for all treatments.   

June to November constituted the winter-spring drainage period with a rain irrigation simulation 

system (RISS) supplementing natural rainfall.  After the first urine application (June 25), the 

supplementary rainfall was randomly generated, through a series of irrigation events, to meet the 

daily target levels necessary to reach the 75th percentile of local rainfall records (c. 670 mm versus 

annual mean of 600 mm; NIWA Broadfield weather station data 1975-1999; ).  This simulated, for 

the winter-spring period, a realistic "wet" year and avoided the risk of a drier-than-average winter 

significantly affecting drainage results. (Di & Cameron 2002b)..  Around October 31, RISS moved 

to summer irrigation mode with water applied at 15 mm every three days to meet evaporative 

demand.  A detailed description of the RISS protocol and its operation is given in Appendix D.   

Water applications were made to the lysimeters as either simulated rain or irrigation through an 

automated sprinkler system (Plate 4.2-1). These were applied by Tee Jet FL-5VC spray nozzles 

mounted directly over the top of each of the lysimeters.  During drier periods of the year (approx. 

October-March), the lysimeters were irrigated at regulated rates and time intervals to replace 

moisture lost through evapotranspiration and to prevent soil moisture deficiency. The system was 

primarily controlled by historical and daily climate data, driven by a CR 1000 Campbell Scientific 

data logger (Utah, USA).  Aluminium gas rings were fitted to the top of each lysimeter and sealed 

with a heavy-duty silicone rubber sealant to ensure an airtight fit and enable gas measurements of 

nitrous oxide (N2O) and di-nitrogen (N2) gas.  These measurements are discussed in greater detail 

in the following sections.  



 

 Page 90  
  

 

Plate 4.2-1.  Irrigation tee-jets and gas rings (A and B) shown in place on lysimeters and 

kale (C) shortly before cutting and urine application. 

4.2.2 Treatments 

Treatments for experiment 1 consisted of two catch crops (oats or It. ryegrass) x 3 rates of urine-N 

application (control, 350 & 700 kg N ha-1) x 4 replicates (24 lysimeters) in an orthogonal design 

(Table 4.2-1). Urine at the 700 kg N ha-1 rate was split over two applications, 7 days apart. In 

addition to the main experiment, an additional test was set up to compare two rates of DCD 

application (0 & 20 kg DCD ha-1) applied to the lower urine-N treatment only (350 kg N ha-1), across 

both crop types (8 lysimeters per crop type).  

An isotopic 15N label was added to the urine by addition of 98% 15N-urea and 15N-glycine in a 9:1 

ratio, respectively, as used by Fraser (1992). This ratio was used to approximate the 20-30% of the 

N fraction in urine that is present in organic but readily mineralisable N compounds such as hippuric 

acid (conjugate of glycine and benzoic acid), creatine, allantoin, free amino and uric acids. These 

constitute the major non-urea compounds present in cattle urine with the majority readily 

hydrolysed and broken down to ammonium/ammonia in soil over days or weeks (Bristow et al. 

A C 

B 
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1992).  The addition of the 98% 15N-urea/glycine solution to the collected urine raised its 15N 

enrichment to approximately 9 atom %.  

The DCD nitrification inhibitor was applied once (20 kg DCD ha-1) to the It. ryegrass (IR) and oats 

350 kg N ha-1 treatments (IR:U350+DCD & OT:U350+DCD) one day after urine application (June 

27).  Application was as a DCD solution, surface applied by an air-assisted sprayer at a rate of 40 

ml per lysimeter. 

The catch crops were sown per current recommended practice and the ability to prepare a suitable 

seedbed. For the larger oats seeds, this meant an ability to sow in mid-August but for much smaller 

It. ryegrass seeds, it was four weeks later in mid-September (Table 4.2-2).  The oats (Milton cultivar; 

120 kg ha-1) and It. ryegrass (Moata cultivar; 25 kg ha-1) were both hand sown after a light hand 

working of the soil surface to prepare a level seedbed.  Problems were experienced in sowing and 

establishing the It. ryegrass control and DCD treatments for the It. ryegrass lysimeters for reasons 

that were not entirely clear, meaning the seed was required to be sown again three weeks later 

around October 7.  Results from these treatments are discussed in this context. 

Table 4.2-1. Treatment ID (It. ryegrass-IR; oats-OT) and urine/DCD application rates for field 

experiment 1. 

Trial 1 

Treatment 
ID Crop Urine rate 

(kg N ha-1) 
DCD rate 

(kg AI ha-1) 

IR: Control 

Italian 
ryegrass 

0 - 

IR: U350 350 0 

IR: U700 700 - 

IR: U350+DCD 350 20 

OT: Control 

Oats 

0 - 

OT: U350 350 0 

OT: U700 700 - 

OT: U350+DCD 350 20 
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Table 4.2-2. Major tasks and dates for field lysimeter experiment 1. 

2013-14 
Task Date 

Lysimeters installed 15 Jan 

Kale transplanted 15 Feb 

Kale cut 14 Jun 

Surface trampled 15 Jun 

1st urine application 26 Jun 

Volatilisation expt. started 26 Jun 

DCD applied 27 Jun 

1st leachate collection 27 Jun 

2nd urine application 3 Jul 

Volatilisation expt. finished 1 Aug 

Oats sown 18 Aug 

It. ryegrass sown 16 Sep 

It. ryegrass re-sown 7 Oct 

Oats harvested 22 Nov 

1st ryegrass harvest 1 Dec 

Kale sown & fertiliser applied 6 Dec 

Kale harvested 30 May 

Lysimeters deconstructed 31 May 

 

4.2.3 Ammonia volatilisation 

Ammonia volatilisation losses following urine application were measured using soil blocks collected 

from the field site at Ashley Dene research station.  The soil blocks (23 cm diameter x 7 cm deep) 

were carefully transferred intact to the field measurement site at Lincoln University (Plate 4.2-2).  

These soil blocks were inserted into bare soil and the same rates of urinary-N (350 and 700 kg N 

ha-1) applied as used in the lysimeter experiment, with the latter rate split between two equal 

applications, 7 days apart.  Each treatment was replicated 3-times and the gas enclosures were 

then sealed with clear perspex covers. Three additional enclosures did not receive urine and were 

used as controls. Ambient air was continuously drawn through each enclosure at 0.41 L s-1 (approx. 

17 air changes min-1).  The flow from each gas enclosure was partitioned such that 10% passed 

through an acid trap containing 50 ml of 0.05 M H2S04 whilst the remaining flow was vented (Plate 

4.2-3). Solution from each acid trap was changed daily with any evaporative loss replaced prior to 

collection (Black et al. 1985a). The solutions were stored in 50 ml plastic bottles and frozen until 
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the ammonium content of the solutions could be determined by flow injection analysis (FIA) by 

Analytical Services at Lincoln University.  Volatilisation rates were determined over the monitoring 

period (~1 month) until rates approached background levels.  More details of the method are 

provided in Appendix C.  

 

Plate 4.2-2.  Diagrammatic representation of enclosure used for volatilisation 

measurements of ammonia from applied urine. 

 

Total volatilisation losses were calculated (4.2-1) as follows: 

𝑉𝑜𝑙𝑎𝑡𝑁𝐻3
= ∑

𝐴𝑚𝑁 × 𝐶𝐹

𝑆𝐴 × 𝐴𝐹%
 

4.2-1 

where: 𝑉𝑜𝑙𝑎𝑡𝑁𝐻3
 = the sum of the daily volatilisation N loss (kg N ha-1), AmN = the ammonium 

(NH4+) concentration in the trap solution (mg N L-1), CF = conversion factor (5 x10-8) for mg N L-1 

to kg N  (x10-6) x total volume (L) of solution (0.05), SA = surface area of enclosure (m2) and AF% 

= the fraction (10%) of airflow passed through the solution. 
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Plate 4.2-3. Volatilisation experiment showing A) collection room, B) field enclosures in place 

and C) collection system. 

4.2.4 Nitrous oxide measurements 

Collection and measurement of N2O emissions was carried out using a steady state chamber 

method (Denmead 1979) involving an estimate of the hourly flux of N2O using gas samples taken 

during a period of chamber enclosure over the soil surface (Hutchinson & Mosier 1981), followed 

by analysis using gas chromatography (GC) .  A number of recommendations have been made for 

a standard chamber methodology and these were adopted in the procedure used (Rochette 2011).  

The apparatus consisted of a chamber placed over the surface of each lysimeter, fitted into an 

aluminium ring attached to the upper part of the lysimeter with heavy duty silicone rubber to provide 

a gas tight fit. Water poured into the gas ring trough provided an air tight seal for the period of 

enclosure (40 minutes per sampling) (Figure 4.2-1). The chamber was 100 mm in height, 500 mm 

in diameter and the sides were constructed using 0.4 mm galvanised steel rolled in a circular shape 

to fit into the gas ring and the top sealed with a polystyrene foam cover (25 mm thick) with heavy 

duty silicone rubber that was both light to handle and insulated the sealed volume from exterior 

temperature change.  The chamber dimensions allowed sufficient headspace volume for N2O 

A 

B 

C 
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accumulation over the duration of the enclosure period and sufficient height for catch crop growth. 

The distance to the soil surface (x) between the inside of the top cover and the soil surface was 

averaged over 30 readings for each lysimeter to enable calculation of an internal volume for each 

lysimeter when the cover was in place.  A rubber septum was inserted into one of two holes in the 

top of each chamber which provided a seal against the outside atmosphere and a port through 

which N2O samples could be taken from the chamber.  The other hole provided a lidded port that 

equalised pressure initially between the internal and external atmospheres prior to measurements 

commencing (Plate 4.2-4).   

Measurement of N2O emissions was carried out the day following urine application and thereafter, 

twice a week, for approximately 6 months (28 June 2013-24 Jan 2014) till N2O emissions were 

negligible.  On each sampling day, measurements were carried out between 11 am and 3 pm.  

Temperature was monitored and measured over the period using an extra enclosure with a 

thermometer probe fitted.  After chamber placement, the first sample was taken immediately (t0, 

time equals zero minutes), followed by another after 20 minutes (t20) and after 40 minutes (t40).  

A gas chamber was sampled each minute, in order, beginning at lysimeter one for the first 16 

lysimeters. The second sequence of 16 lysimeters (17-32) was usually done simultaneously.  

Chambers were sampled by inserting a hypodermic needle attached to a 50-mL plastic syringe 

through the rubber septum into the chamber headspace. Twenty mL of headspace air was then 

primed twice in the syringe before 20 mL was extracted using the syringe and transferred to a pre-

evacuated 7 mL septum-sealed glass exetainer (Labco Ltd, UK) The exetainer was over-

pressurised to prevent any leakage in of ambient air into the vial. Samples were analysed within 

seven days to reduce potential leakage or contamination.  
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Figure 4.2-1. Lysimeter schematic showing gas ring with water seal, and headspace 

enclosure and gas sampling equipment in place. 

Nitrous oxide concentration was analysed using a gas chromatograph (GC) (Model 8610C, SRI 

Instruments, California) with an automated Gilson GX-271 auto sampler (Gilson Inc., Michigan, 

USA) coupled to an electron capture detector (ECD). The radioactive 63Ni source sealed inside the 

detector emits beta particles (electrons) that collide and ionise the make-up gas (10% methane in 

argon) and carrier gas (nitrogen) molecules. Detection limit for N2O is 0.07 ppm with a quantification 

range up to 1000 ppm v/v. The results were expressed as a chromatogram (Simplepeak software, 

version 4.32, SRI Instruments, California) where areas under the peaks were measured against a 

calibration curve of N2O concentration from 0.2-10 ppm v/v (Figure 4.2-2) (Mosier & Mack 1980). 

 

x 
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Plate 4.2-4. Enclosure in place over lysimeter and gas ring with syringe and evacutainer. 

 

Figure 4.2-2. Sample chromatogram for N2O detection and measurement. 
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The increase in N2O accumulation in the chamber during sampling was approximately linear for 

the concentration range encountered. Accordingly, a linear regression calculation was used to 

estimate the N2O flux (4.2-2): 

𝑁2𝑂 𝑓𝑙𝑢𝑥 =  
[(𝐶1 − 𝐶0) + (𝐶2 − 𝐶1)] × 𝑉 × 𝑃 × 𝐶𝐹 × 𝑀𝑊𝑁

[(𝑇1 − 𝑇0) + (𝑇2 − 𝑇1)] × 𝑅 × 𝑇 × 𝑆𝐴
 

4.2-2 

where: 

N2O flux = hourly N2O emission (N2O-N m-2 h-1),  

C0, C1, C2 = N2O concentration at times T0, T1, T2, respectively (L/L), 

T0, T1, T2 = measurement times at 0, 0.33 and 0.67 hours, respectively, 

V = enclosure headspace volume (L), P = atmospheric pressure (nominally assumed at 1 atm.), 

CF = conversion factor (10-4) for L to L (L/106) N2O and dm2 to m2 (dm2 x102), 

MWN = molecular weight of N in N2O (28.0 g mol-1),  

R = the universal gas constant (0.0821 L atm. mol-1 K-1), 

T = temperature (K) at midday-to-2 pm for each measurement time, and SA = surface area (m2). 

Daily emissions were then calculated using the hourly flux, assuming it represented the average 

hourly flux of the day (de Klein et al. 2003). Cumulative N2O emissions were calculated by 

integrating the calculated daily N2O fluxes and linearly interpolating between each subsequent 

measurement for each lysimeter to calculate weekly and total N2O emissions over the sampling 

period.   

Emission factors (EF3) for each treatment were calculated using the following equation (4.2-3) (de 

Klein et al. 2003): 

𝐸𝐹3 =  
𝑁2𝑂𝑈𝑟𝑖𝑛𝑒 − 𝑁2𝑂𝐶𝑜𝑛𝑡𝑟𝑜𝑙

𝑈𝑟𝑖𝑛𝑒 − 𝑁𝑎𝑝𝑝𝑙𝑖𝑒𝑑
× 100 

4.2-3
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where: EF3 = N2O emitted as % of urine-N applied, N2OUrine = nitrous oxide emitted from the urine 

treatment or patch (kg N ha-1), N2Ocontrol = nitrous oxide emitted from the control or non-urine area 

(kg N ha-1), and Urine-Napplied = the amount of N applied in the urine (kg N ha-1). 

4.2.5 Nitrogen leaching 

Drainage water was collected from the lysimeters after every major rainfall event or when there 

was more than 0.5 L in the drainage collectors. A 50-ml sample was collected from each lysimeter 

for chemical analysis and frozen at -18°C until required.  Accumulation was approximately linear 

except where there was intervening rainfall in which case the time interval between simulated 

rainfall or irrigation applications using the RISS protocol was extended to remain on track with the 

climate accumulation line.  Drainage and N leaching loss was considered over two periods; winter-

spring (Jun 26 - Nov 30) and “annual” (Jun 26 – May 31).  The first took in the main Canterbury 

drainage season and the latter, the duration of the study up to soil deconstruction.   

Drainage water samples were analysed by flow injection analysis (FIA) for NH4+-N and NO3--N by 

Analytical Services at Lincoln University, Canterbury (Gal et al. 2004). From the analyses, 

ammonium and nitrate leaching losses from each lysimeter treatment were determined. A detailed 

explanation of the procedure for ammonium and nitrate analysis is outlined in Appendix C.  Nitrogen 

leaching losses were calculated using the following equation (4.2-4): 

𝑁𝑑𝑟𝑛 = ∑
𝑁𝑐𝑜𝑛𝑐 × 𝑉𝑜𝑙 × 𝐶𝐹

𝑆𝐴
 

4.2-4 

where: Ndrn = total nitrogen leaching loss (kg N ha-1) over the drainage period, Nconc = leachate 

nitrogen concentration (mg N L-1), vol = litres collected (L), CF = conversion factor (x10-2) for mg N 

to kg N (x 10-6) and m2 to ha (x 104) and SA = surface area of the lysimeter (m2).  
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Plate 4.2-5. Stages of soil deconstruction from clockwise top left; A) removal of base plate, B) 

lysimeter installed on stand, C) exposure of first 10 cm increment, D) second subsoil increment 

and attached winches, E) exposure of final 20 cm increment. 

  

A 

B 

C 

D 

E 
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4.2.6 Lysimeter harvests, kale establishment and deconstruction 

Pasture on the It. ryegrass lysimeters was harvested at regular intervals, from Dec 1 till May 30 

whilst the oats were harvested once only in mid-November (Nov 22).  The oats treatment lysimeters 

were sprayed with glyphosate to kill any remaining oats activity and then the surface of each was 

lightly reworked to prepare a seed bed for the sowing of the second kale crop (Regal cultivar; 4 kg 

ha-1).  An application of DAP at 200 kg ha-1 was applied (36 kg N ha-1) at sowing to help establish 

the plants (Table 4.2-2).  Kale that was grown after the oats harvest was cut on May 30 just prior 

to deconstruction of the lysimeters.  All harvest material was place in a fan-forced oven and dried 

at 60°C.  This material was stored until ground for analysis using a Retsch (Hann, Germany) 

cyclonic mill (<0.5 mm mesh).  

After the end of the experiment in May 2014, the lysimeters were uplifted and a process of 

deconstruction of the soil within the lysimeters was begun on 31 May to sample soil, plant roots 

and tops to complete the 15N balance study.  The lysimeters were inverted again using the hydraulic 

lift on a tractor, the drainage base and gravel layer removed before a base plate that fitted 

completely within the lysimeter and with positions for legs was fitted and held in position by two 

cross-sectional steel bars. The lysimeter was then returned to its original position and transferred 

to the Field Research Centre where it was placed on a frame and the bars removed. A winch was 

attached to each side of the lysimeter and the frame, and then tightened progressively to force the 

casing down the side of the soil monolith in 10 cm increments to 40 cm, with the final increment, 

from 40-60 cm, collected as a single increment (Plate 4.2-5).   

Soil and root mass samples were extracted and stored at 4°C for up to two weeks prior to further 

cleaning of the roots, drying and grinding (plant) or pulverising (soil) for analysis of total-N and 15N 

content.  Soil mineral-N was extracted using 2 M KCL as outlined in Blakemore et al. (1987). The 

exact process for the removing, weighing, drying and recording of plant, soil and stone weights is 

described in Appendix C. 

4.2.7 15N balance measurements 

Recovery of the N from the 15N-labelled urine was measured in four major components: N in 

drainage water, gaseous N emissions (NH3/N2O/N2), plant N uptake (tops and roots) and soil 
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immobilised-N (organic and inorganic N).  The total mass (m) of N recovery can be represented by 

the following equation (4.2-5): 

𝑁15  𝑟𝑒𝑐𝑜𝑣𝑒𝑟𝑦 =  ∑ 𝐺𝑎𝑠𝑒𝑜𝑢𝑠 𝑁15
𝑚 + 𝐷𝑟𝑎𝑖𝑛 𝑁15

𝑚
+ 𝑁15  𝑢𝑝𝑡𝑎𝑘𝑒𝑚 + 𝑆𝑜𝑖𝑙 𝑁15

𝑚 

4.2-5 

where: Gaseous N is the mass of N recovered as volatilised ammonia (NH3), emitted dinitrogen 

(N2) and nitrous oxide (N2O), Drain 15N is the 15N mass leached in drainage water (ammonium, 

nitrate and organic-N), 15N uptake is the 15N mass held in plant harvests and retained vegetation 

and roots, and soil 15N is the 15N mass still retained or immobilised in the bulk soil. The percentage 

recovery of the 15N applied in urine for the four mass components was calculated as follows (4.2-6): 

𝑁15 % 𝑟𝑒𝑐𝑜𝑣𝑒𝑟𝑦 = ∑
𝐺𝑎𝑠 𝑁𝑚 +15 𝐷𝑟𝑎𝑖𝑛 𝑁𝑚 + 𝑁 𝑢𝑝𝑡𝑎𝑘𝑒𝑚 + 𝑆𝑜𝑖𝑙 𝑁𝑚

151515

𝑁15  𝑎𝑝𝑝𝑙𝑖𝑒𝑑
 × 100 

4.2-6 

where: 15N% recovery is the proportion of 15N recovered in the four major components (gaseous, 

liquid, plant and soil forms) from the applied 15N-labelled urine. All other terms are the same as 

those in equation 4.2-5. 

The 15N content of nitrous oxide (15N2O) and di-nitrogen was determined by taking an additional 

gas sample (12 ml exetainer vial), 2 hours after placing the enclosure over the gas ring and once 

all the T2 (40 min.) N2O samples had been taken. These samples were taken in the same manner 

as described in section 4.2.4.  The samples were analysed using a PDZ Europa 20-22 continuous 

flow isotope ratio mass spectrometer (Sercon Ltd., Cheshire, UK) enabling measurement of stable 

isotopes of gases at both enriched and natural abundance levels.  Gas samples were prepared 

using a TGII trace gas system using cryo-trapping and focusing to isolate the N2O/N2 species.  

Concentrations of 15N%-N2O were interpolated between weeks and this allowed calculation of the 

proportion of N2O derived from the applied urine for the unmeasured as well as measured collection 

of 15N%-N2O.  Total 15N%-N2O evolved between the twice weekly samplings was derived from 

summation of the estimated daily totals over the sampling period of 136 days (when N2O levels 
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had declined to negligible levels) and calculated using the formula from Cabrera and Kissel (1989) 

to produce the following equation (4.2-7): 

𝑁2𝑂 − 𝑁𝑇𝑜𝑡
15  = ∑   

( 𝑁𝑎 − 𝑁𝑏)%
15

%
15 × 𝑁2𝑂𝑓𝑙𝑢𝑥  × 𝐶𝐹

𝑁𝑐 −%
15 𝑁𝑏%

15  

4.2-7 

where: 𝑁2𝑂 − 𝑁𝑇𝑜𝑡
15  = the total nitrous oxide loss derived from the applied 15N-enriched urine over 

the sampling period (kg N2O-N ha-1), 𝑁𝑎%
15  is the daily average atom% 15N abundance of nitrous 

oxide, 𝑁𝑏%
15  is the atom% 15N natural abundance of nitrous oxide (0.3663%), N2Oflux is the hourly 

nitrous oxide emission (mg N-N2O h-1m-2) (from equation 4.2-7), CF is the conversion factor (0.24) 

to convert units for mg N2O-N m2 h-1 to kg N2O-N ha-1 day-1, and 𝑁𝑐%
15  is the 15N-enriched content 

(%) of the applied urine or water (controls). 

Calculations of the 15N enrichment in di-nitrogen gas (N2) were carried out using essentially the 

same equations as those for 15N-N2O determination but were more problematic due to the relatively 

small differences created by a high background of N2 concentration (i.e. N2 =~80% of atmospheric 

gases) and a relatively low initial 15N enrichment (~9%).  More comprehensive measurements of 

N2 denitrification losses would require increasing the 15N enrichment to ~40% (Clough et al. 2001) 

but the cost of doing so in this study was prohibitive.  Measurements were linearly interpolated 

between weeks and the rate of 15N2 evolved was also assumed to be linear (Clough et al. 2001). 

Total 15N-N2 was measured over 15 weeks and calculated using the following equation (4.2-8): 

𝑁2𝑇𝑜𝑡
15  = ∑   

𝑁2
% × ( 𝑁𝑎 − 𝑁𝑏)%

15
%

15 × 𝑉 × 𝑃 × 𝑀𝑊𝑁 × 𝐶𝐹

( 𝑁𝑐 −%
15 𝑁𝑏%

15 ) × 𝑅 × 𝑇 × 𝑆𝐴
 

4.2-8 

where:  

𝑁2𝑇𝑜𝑡
15  = total N loss over monitoring period as di-nitrogen gas derived from the 15N-enriched labelled 

urine (kg N ha-1), 

𝑁2
% = Percentage of air in enclosure present as di-nitrogen, 

𝑁𝑎%
15  = is the weekly average atom% 15N abundance of di-nitrogen,  
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𝑁𝑏%
15  = is the atom% 15N natural abundance of di-nitrogen (0.3663%), 

𝑁𝑐%
15  = is the atom% 15N abundance of the applied urine, 

V = enclosure headspace volume (L), 

P = atmospheric pressure (nominally assumed at 1 atmosphere), 

CF = conversion factor (7 x 10-4) for days to weeks (days x7) L to L (L/106) N2 and dm2 to m2 

(dm2 x102), 

MWN = molecular weight of N in N2 (28.0 g mol-1), 

R = universal gas constant (0.0821 L atm mol-1 K-1), 

T = temperature (K) at midday-to-2 pm for each measurement time, and  

SA = surface area (m2) of the lysimeter. 

Measurements of the 15N proportion of the ammonium and nitrate content of the leachates was 

undertaken using a selection of samples covering the breakthrough curve of concentration of both 

ions after FIA results were obtained.  The 15N present in the samples was concentrated on 7 mm 

glass fibre disks using the method described by Brooks et al. (1989) before combustion at 1000°C 

using a PDZ Europa 20-20 stable isotope mass spectrometer (Sercon Ltd., Cheshire, UK). Further 

details are outlined in Appendix C.  The 15N content in organic-N was determined in a selected 

range of drainage water samples after oxidation to nitrate using the method as described by 

Cabrera and Beare (1993).  The proportion of 15N present as NH4+ and NO3- in the leachate was 

interpolated between sampling points and N drainage losses calculated using the following 

equation (4.2-9): 

𝑁𝑇𝑜𝑡
15 =  ∑ 𝑁 ×  𝑁𝑑𝑟𝑛%

15  

4.2-9 

where: 𝑁𝑇𝑜𝑡
15  = The total-15N leaching loss as mineral-N, ammonium or nitrate summed over the 

drainage period, 𝑁%
15  is the actual or interpolated 15N fraction of the ammonium and/or nitrate ion 

concentration, and Ndrn is the N leaching loss for each drainage collection (equation 4.2-4). 
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4.2.8 Statistical analysis 

Statistical analysis of the data was conducted in two stages: crop-by-N-rate interactions between 

treatments was conducted using an orthogonal non-block ANOVA procedure in Genstat 9.0 (Lawes 

Agricultural Trust 2007),  whilst the testing of the effect of DCD on both crop types was done using 

a standard t-test. Residuals were tested for normalisation of data. 
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4.3 Results 

4.3.1 Climate data 

Average winter weekly soil and air temperatures were both about one degree warmer over 2013-

14 compared to the recent long-term means (2000-2016) (Figures 4.3-1 & 4.3-2; Table 4.3-1) whilst 

mean spring, summer and autumn weekly soil and air temperatures were only slightly above 

average (~0.3°C; Table 4.3-1). Weekly mean seasonal solar radiation and potential 

evapotranspiration (Penman) values for 2013-14 were, overall, similar to the 2000-16 means (Table 

4.3-1).  

Table 4.3-1. Winter (Jun-Aug), spring (Sep-Nov), summer (Dec-Feb) and autumn (Mar-May) soil 

and air temperatures, solar radiation and evapotranspiration mean values for 2013-14 compared 

with recent long-term (LT; 2000-16) means. 

Climate variable 
Winter Spring Summer Autumn 

2013-14 LT 2013-14 LT 2013-14 LT 2013-14 LT 

Soil temperature (C) 5.9 4.8 10.6 10.3 16.0 16.3 11.1 10.8 

Air temperature (C) 6.6 5.6 11.7 11.4 15.8 15.6 11.2 11.4 

Solar radiation (MJ ha-1) 5.8 5.8 17.1 17.5 22.3 21.6   9.3 10.1 

Evapotranspiration (mm) 0.8 0.8   3.0   3.2   4.7   4.5   1.6   1.9 
 

Daily rainfall and simulated rain/irrigation to the 75th percentile totalled 1374 mm over the study 

period (25 June, 2013 to May 30, 2014) with natural rainfall comprising 734 mm or 53% of the total 

(Figure 4.3-3).  In the main winter/spring period from June 25 to November 31, however, only 211 

mm or 38% of the 560-mm total fell as natural rain so the remainder was applied using the RISS 

protocol.  Total cumulative drainage at ~710 mm comprised half of the total rainfall for the period 

with more than 50% of this accumulated in the first five months to the end of spring. 
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Figure 4.3-1. Mean soil (A) and air (B) temperatures for 2013-14 

following treatment application (data points represent the weekly average) 

compared with 2000-16 means. 

 

Figure 4.3-2. Mean solar radiation (A) and evapotranspiration (B) 

(Penman) values for 2013-14 following treatment application (data points 

represent the weekly average) compared with 2000-16 means. 
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Figure 4.3-3. Daily rainfall, simulated rainfall/irrigation and cumulative rainfall and drainage 

for 2013-14 (from commencement of treatment application;(lysimeter experiment 1).  

4.3.2 Crop establishment 

Oats, despite its earlier sowing date in August, generally established well and plants initially thrived.  

However, signs of N deficiency started to show in Control, U350 and some U700 treatments by 

October (Plate 4.3-1A & B), and into November.  Oats U350+DCD treatments (Plate 4.3-1C) grew 

better and remained greener, for longer, than the U350-urine only treatment, before also starting 

to show signs of N deficiency by November. 

Although Italian ryegrass treatments established well in most lysimeters (Plate 4.3-1D) during 

September, there were problems with some lysimeters, requiring re-sowing, particularly the Control 

and U350+DCD treatments.  This seemed related to underlying compacted soil conditions brought 

about by the simulated treading and reduced DM production as well as N uptake (section 4.3.3). 

4.3.3 Winter-spring nitrogen leaching losses 

Nitrogen leaching losses were initially considered over the winter-spring period (26 June-30 

November) as this was considered the critical drainage interval for nitrate leaching.  Cumulative 
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drainage over this period was 22% less (P<0.001) for oats U350 & U700 treatments compared to 

It. ryegrass treatments (313 vs. 401 mm, respectively) (Table 4.3-2).  Drainage nitrate concentration 

for both the It. ryegrass and the oats 350 (U350) and 700 (U700) kg urine-N ha-1 treatments peaked 

at ~100 and ~150 mg N L-1, respectively, with the latter peak arriving later (~140 mm vs ~200 mm), 

(Figures 4.3-4 & 4.3-5).  Nitrate peaks for the control treatments (0 kg urine-N ha-1) generally 

remained below 10 mg N L-1. Ammonium concentrations in the leachate varied greatly between 

lysimeters but on average peaked at approximately ~25 and ~45 mg N L-1 for both It. ryegrass and 

oats U350 and U700 treatments, respectively, after ~50 and ~200 mm drainage, respectively 

(Figures 4.3-6 & 4.3-7).  Ammonium in the drainage of the U700 treatments persisted to the end of 

the winter-spring period.  Negligible ammonium was recovered in the drainage of the control 

treatments.  

 

Plate 4.3-1. Sample lysimeters showing oats (A- control, B- U350 and C- U350+DCD) and It. 

ryegrass (D- U350) treatments in November 2013. 

Sowing oats in the urinary-N treatments (350 and 700 kg N ha-1) significantly reduced total nitrate 

loss (P<0.01) and total-N leached (P<0.05) overall by 25% and 21%, respectively, compared to the 

equivalent It. ryegrass treatments (Table 4.3-2). This effectively reduced nitrate loss from 167 and 

B C 

D A 
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279 kg N ha-1 to 131 and 193 kg N ha-1 for the U350 and U700 treatments, respectively, the majority 

in the U700 treatments.  Nitrate and inorganic-N losses for both U700 over U350 treatments were 

about 55% (range 47-59%) and 72% (range 63-82%) greater overall, respectively. Nitrogen 

drainage losses for control treatments were also lower for oats but not significantly.  Approximately 

60% of the nitrate leaching loss (range 55-65%) to the end of the winter-spring period was directly 

attributable to the applied 15N-labelled urine with trends similar between treatments. Total-15N 

losses for the U350 treatments were not dissimilar between crops due to more 15N-ammonium 

being leached in the oats treatments for reasons unknown. Nevertheless, sowing oats was still 

more effective at reducing nitrate leaching than sowing It. ryegrass.  

Ammonium loss in drainage was not different between catch crops but increased significantly with 

urinary-N rate (P<0.001), leaching relatively large amounts at ~30 and ~80 kg N ha-1 for the U350 

and U700 treatments, respectively. This represented, on average, 9% (range 7–13%) of the total 

urinary-N applied for the U350 and U700 treatments, respectively. (P<0.001; Table 4.3-2).  Control 

treatments leached negligible ammonium.  The 15N-ammonium fraction made up more than three-

quarters of total ammonium loss (range 76-78%) and followed similar trends to nitrate losses. 

Table 4.3-2.  Total inorganic-N leaching (NO3--N, NH4+-N and total-N), drainage and 

inorganic-15N leaching losses for It. ryegrass and oats urine treatments (control, 350 and 700 kg 

N ha-1) to the end of the winter-spring drainage period.  

Treatment 
a Inorganic-N leached 

(kg N ha-1) 
Drainage 

(mm) 
Inorganic-15N leached 

(kg N ha-1) 

Crop  Urinary-N NO3--N NH4+-N Total-N Win/Spr NO3--15N NH4+-15N Total-15N 

Italian 
ryegrass 

Control   46 a   2 a   48 a 351 b     6 a   0 a     6 a 

350 167 bc 26 ab 192 b 369 b   93 b 19 b 112 b 

700 264 d 85 c 349 d 433 c 167 d 66 c 233 d 

Oats 

Control   11 a   0 a   11 a 321 ab     3 a   0 a     3 a 

350 131 b 41 b 172 b 332 ab   78 b 31 b 109 b 

700 193 c 81 c 280 c 295 a 126 c 68 c 194 c 
Crop ** ns * *** * ns ns 

Urinary-N *** *** *** ns *** *** *** 
Crop x urinary-N ns ns ns *** ns ns ns 

b LSD (5%) 52 28 62 41 32 24 43 
a Means followed by a letter in common are not significantly different according to Duncan’s multiple range test  

(P < 0.05), b LSD: least significant difference (P < 0.05) at crop x urine rate level.  
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Figure 4.3-4. Nitrate concentrations vs. cumulative drainage following the June/July urine 

applications (0, 350 & 700 kg N ha-1) to the It. ryegrass lysimeters. Time scale indicative only. 

 

Figure 4.3-5. Nitrate concentrations vs. cumulative drainage following the June/July urine 

applications (0, 350 & 700 kg N ha-1) to the oats lysimeters. Time scale approximate. 
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Figure 4.3-6. Ammonium concentrations vs. cumulative drainage following the June/July 

urine applications (0, 350 & 700 kg N ha-1) to the It. ryegrass lysimeters. Time scale approximate. 

 

Figure 4.3-7. Ammonium concentrations vs. cumulative drainage following the June/July 

urine applications (0, 350 & 700 kg N ha-1) to the oats lysimeters. Time scale approximate. 
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The application of DCD one day following urine application (350 kg N ha-1) reduced peak nitrate 

concentration for both crops by more than 50% (Figures 4.3-8 & 4.3-9) over the drainage period.  

DCD application had no effect on peak ammonium concentrations for either crop (Figures 4.3-10 

& 4.3-11).  Total nitrate leached over the winter-spring drainage period was significantly reduced 

for both crop DCD treatments (P<0.001) but especially for the oats (P<0.01) where there was a 

55% reduction (33% for It. ryegrass; Table 4.3-3 ). There was no significant difference between 

DCD treatments for ammonium leaching loss (~30% of total nitrate leached to the end of the winter-

spring drainage period) but there was a difference between breakthough curves with DCD 

application reducing peak ammonium concentrations but prolonging its presence in drainage 

(Figures 4.3-10 & 4.3-11).  Differences between crop (P<0.01) and DCD treatments (P<0.001) for 

total inorganic-N leaching losses between DCD treatments were similar as for nitrate (Table 4.3-

3). 

Approximately 45-55% of the total nitrate leaching loss for the DCD treatments was directly 

attributable to the 15N-labelled urine and 69-74% for ammonium loss (Table 4.3-3).  Drainage for 

each crop was not significantly different between DCD treatments although drainage overall was 

~21% lower for the oats treatments (P<0.01).  

Table 4.3-3.  Total inorganic-N leaching (NO3--N, NH4+-N and total-N), drainage and 
inorganic-15N leaching losses for It. ryegrass and oats DCD treatments (350 kg N ha-1; 0 or 20 kg 
DCD ha-1) to the end of the winter-spring drainage period. 

Treatment 
b Inorganic-N leached 

(kg N ha-1) 
Drainage 

(mm) 
Inorganic-15N leached 

(kg N ha-1) 

Crop  Inhibitor NO3--N NH4+-N Total-N Spring NO3--15N NH4+-15N Total-15N 

Italian 
ryegrass 

None 167 c 26 a 192 b 369 ab 93 c 19 a 112 b 

DCD 112 b 46 a 158 b 423 b 59 b 34 a 94 b 

Oats 
None 131 bc 41 a 172 b 332 a   78 bc 31 a 109 b 

DCD   50 a 32 a   82 a 296 a 23 a 22 a   45 a 

Crop ** ns ** ** * ns * 

Inhibitor *** ns *** ns *** ns ** 

Crop x Inhibitor ns ns ns ns ns ns * 
a LSD (5%) 41 26 41 71 27 23 33 

a LSD: least significant difference (P < 0.05) at crop x inhibitor level. b Means followed by a letter in common are 

not significantly different according to Duncan’s multiple range test (P < 0.05). 

   



 

 Page 114  
  

 

Figure 4.3-8. Nitrate concentrations vs. cumulative drainage following urine (U350) ±DCD 

application (0 & 20 kg DCD ha-1) to the It. ryegrass lysimeters. Time scale approximate. 

 

Figure 4.3-9. Nitrate concentrations vs. cumulative drainage following urine (U350) ±DCD 

application (0 & 20 kg DCD ha-1) to the oats lysimeters. Time scale approximate. 
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Figure 4.3-10. Ammonium concentrations vs. cumulative drainage following urine (U350) 

±DCD application (0 & 20 kg DCD ha-1) to the It. ryegrass lysimeters. Time scale approximate. 

 

Figure 4.3-11. Ammonium concentrations vs. cumulative drainage following urine (U350) 

±DCD applications (0 & 20 kg DCD ha-1) to the oats lysimeters. Time scale approximate. 
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4.3.4 Winter-spring dry-matter production and N uptake 

Dry-matter production and 15N uptake for the It. ryegrass and oats treatments to Dec. 2013 

increased with urinary-N rate (P<0.001) but the It. ryegrass treatments grew only half the DM, and 

with half the 15N uptake, of the oats U350 and U700 treatments by the same stage (Figure 4.3-12).   

 

Figure 4.3-12. Oats and It. ryegrass dry-matter production (A) and 15N uptake (B) to the end 

of the winter-spring period (Dec. 2013) after winter (Jun. 2013) application of 15N-labelled urine. 

However, even for the oats treatments, the proportion of 15N captured from the total 15N applied 

was small, 2-3%, increasing to 3-4% when the second kale crop was harvested at the end of the 

study, the same as the It. ryegrass treatments after all harvests (Table 4.3-5).  DCD application 

had a significant effect (P<0.001) on both oats DM production and 15N uptake, doubling and tripling 

(11% of the urinary-15N applied) each, respectively, compared with the standard U350 treatment.  
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This was not the case for the ryegrass control and DCD treatments where establishment problems 

after sowing meant lower growth, and a lower 15N recovery at the same stage.  

4.3.5 Annual nitrogen recovery 

Nitrogen recovery (not N balance) was calculated as the sum of the amount of N measured over 

the entire duration of the study (26 June 2013-30 May 2014) in drainage, gaseous-N emissions 

(NH3 & N2O) plant N uptake or remaining as soil mineral-N.  Total-N recovery ranged from ~90-550 

kg N ha-1 (control to U700 treatments; Figure 4.3-14) with nitrate loss being the single biggest 

component. The annual nitrate leaching loss in drainage water was not significantly different 

between catch crops, but at ~170 and ~260 kg N ha-1 for both 350 (U350) and 700 (U700) kg N ha-

1 urine rates, respectively, it represented 37-48% of the urinary-N applied (Table 4.3-4).  Control 

treatments had a relatively high 30-52 kg N ha-1 nitrate leaching loss over the annual period. Total 

inorganic-N leaching loss in drainage water, including ammonium, for both catch crops was ~200 

and ~350 kg N ha-1 for U350 and U700 treatments, respectively, which represented around 50% 

of the total N applied.  The fraction of nitrate-N and total inorganic-N (NO3- -N+NH4+-N) in drainage 

loss directly attributable to the applied urinary-15N ranged from 50-62% (Table 4.3-5).  Generally, 

15N-nitrate concentrations followed the main nitrate leaching breakthrough curve for both It. 

ryegrass and oats treatments (control, 350 and 700 kg N ha-1) but after ~300 mm of drainage the 

proportion of 15N decreased to less than half and continued to decrease thereafter (Figures 4.3-15 

& 4.3-16).  However, all treatments experienced a spike in nitrate concentration over the second 

half of the drainage curve that was mirrored in the 15N-nitrate fraction, before declining again in 

subsequent drainage. 

Volatilisation (P<0.01) and N2O (P<0.001) losses both increased linearly with urinary-N rate, with 

no difference in N2O loss between crops (Table 4.3-4).  Ammonia volatilisation losses on average 

were 1, 11 and 28 kg N ha-1 for control, U350 and U700 treatments, respectively, and mainly 

occurred in the first week after urine application (and essentially completed within two; Figure 

4.3-17).  Nitrous oxide losses totalled 1.6, 7.6 and 11.7 kg N ha-1 for control, U350 and U700 

treatments, respectively, but emission factors (EF3 range: 0.13-0.21) weren’t significantly different 

between treatments for either crop or urinary-N rate (Table 4.3-4).  Peak N2O emissions for U350 





  Page 119  
  

Table 4.3-4. Annual total inorganic-N leaching losses (NO3--N, NH4+-N and total-N), gaseous-N losses, N2O emission factors 

(EF3), dry-matter production and N contents for It. ryegrass and oats urine treatments (control, 350 and 700 kg N ha-1). 

Treatment 
b Inorganic-N leached 

(kg N ha-1) 
Gaseous-N loss 

(kg N ha-1) 
N2O 
(%) 

c Dry-matter 
(kg ha-1) 

N content 
(kg N ha-1) 

Crop  Urinary-N 
rate NO3--N NH4+-N Total-N NH3 N2O EF3 Tops Roots Tops Roots 

Italian 
ryegrass 

0 52 a   2 a 53 a 0 a 1.9 a - 1782 a 2574 b 34 b 31 b 

350 171 b 26 ab 197 b 11 b 6.4 b 1.3 a 4180 bc 3143 c 83 c 41 c 

700 274 c 85 c 359 c 28 c 12.0 d 1.5 ab 4995 c 2768 bc 100 c 40 c 

Oats 

0 30 a   0 a 30 a - 1.4 a - 1818 a 1705 a 16 a 18 a 

350 172 b 41 b 213 b - 8.7 c 2.1 b 3468 b 2103 ab 88 b 21 a 

700 251 c 86 c 337 c - 11.3 d 1.4 ab 4516 bc 2407 ab 98 b 23 a 

Crop ns ns ns - ns ns ns *** ns *** 

Urine rate *** *** *** ** *** ns *** ns *** ** 

Crop x urine rate ns ns ns - ns ns ns ns ns ns 
a LSD (5%) 49 28 61 10 2.4 0.7 1208 711 16 7 

a LSD: least significant difference (P < 0.05) at crop x urine rate level. b Means followed by a letter in common are not 

significantly different according to Duncan’s multiple range test (P < 0.05); c Oats treatments includes both oats and 

kale harvests. 
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Table 4.3-5.  Annual total inorganic-15N leaching loss (NO3--15N, NH4+-15N and total-15N), gaseous-15N loss, 15N content 

of dry-matter and soil-15N for It. ryegrass and oats urine treatments (control, 350 and 700 kg N ha-1). 

Treatment Inorganic-15N leached 
(kg N ha-1) 

Gaseous-15N loss 
(kg 15N ha-1) 

15N content 
(kg 15N ha-1) 

Soil-15N 
(kg 15N ha-1) 

Crop  Urinary-N 
rate NO3--N NH4+-N Total-N N2O N2 Tops c Roots d Total-N 

Italian 
ryegrass 

0 6 a   0 a 6 a 0.1 a 5 a  1 a 0.4 a 11 a 

350 94 b 19 ab 114 b 3.1 b 43 b 12 b 4.1 d 110 b 

700 171 c 66 c 237 c 6.7 c 56 c 25 c 6.3 e 137 c 

Oats 

0 3 a   0 a 3 a 0.1 a 5 a 11 b 0.2 a 12 a 

350 85 b 31 b 116 b 3.8 b 52 c 15 b 2.0 b 93 b 

700 142 c 68 c 210 c 5.6 c 65 c 30 c 3.0 c 158 c 

Crop ns ns ns ns ns ** ** ns 

Urine rate *** *** *** *** *** *** *** *** 

Crop x urine rate ns ns ns ns ns ns ns ns 
a LSD (5%) 29 24 40 1.3 12 8 0.9 23 

a LSD: least significant difference (P < 0.05) at crop x urine rate level. b Means followed by a letter in common are not 

significantly different according to Duncan’s multiple range test (P < 0.05); c Oats roots refers to subsequent kale crop; 

d Total-N includes organic and inorganic N. 
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Figure 4.3-14. Annual losses of nitrogen from applied urine recovered in plant dry-matter, 

gas products and leachate for all crop treatments. 

 

Figure 4.3-15. Nitrate concentration and 15N-fraction for It. ryegrass urine treatments (control, 

350 and 700 kg N ha-1) over the full year. Timeline indicative only. 
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Figure 4.3-16. Nitrate concentration and 15N-fraction for the oats urine treatments (control, 

350 and 700 kg N ha-1) over the full year. Timeline indicative only. 

Annual DM production increased with urinary-N rate (P<0.001; Table 4.3-4) but the quantities 

harvested for the U350 and U700 treatments were not large overall at 3500-5000 kg DM.  Nitrogen 

uptake between respective catch crop treatments (including the subsequent kale crop for the oats’ 

treatments) was similar overall (Figure 4.3-14) at ~40, ~85 and ~100 kg N ha-1 for control, U350 

and U700 treatments, respectively.  However, the proportion of N captured attributable to the 15N-

labelled urine was similar between crops at 3-4% of that applied (Table 4.3-5).  

The application of DCD reduced annual nitrate leaching losses overall for both catch-crops but 

especially for the oats where the total nitrate drainage loss was reduced by 45% compared with no 

DCD (Table 4.3-6).  The nitrate loss directly attributable to the 15N-labelled urine from the oats DCD 

treatment was lower still with a 59% reduction over the non-DCD treatment; but only 21% for the 

It. ryegrass DCD treatment ( Table 4.3-7).  Nitrate breakthough curves for the DCD treatments, and 
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4.3-18).  For the It. ryegrass DCD treatment, however, there was a slower build-up in nitrate 

concentrations, with an initial peak at ~270 mm drainage but a larger one at ~410 mm (Figure 

4.3-19).  The 15N-nitrate curve for the It. ryegrass DCD treatment largely remained around half that 

for the full nitrate-N curve. 

DCD application lowered N2O emissions on the oats U350 lysimeters, where it was approximately 

halved (Table 4.3-6), and where the loss directly attributable to the 15N fraction was only around 

25% of that applied ( Table 4.3-7).  However, this was not the case for the It. ryegrass U350+DCD 

treatments, where the seed had initially failed to flourish and there had been limited N uptake over 

the critical winter-spring drainage period.  For these treatments a higher proportion of N2O loss was 

directly attributable to the 15N-labelled urine with a second peak of N2O emission in November 2013 

that coincided with a peak in nitrate concentration at ~410 mm drainage compared with that for the 

non-DCD treatment at 140 mm (Figure 4.3-20).   

Emission factors (EF3) were significantly different (P<0.05) between oats DCD and non-DCD 

treatments (0.9% vs. 2.1%, respectively) but not between It. ryegrass DCD treatments.  DCD 

application to the oats U350 lysimeters more than doubled both DM production and N uptake but 

not on the It. ryegrass U350 treatments, with a subsequent effect on N uptake.  N uptake 

attributable to the 15N-labelled urine was even more pronounced for the oats DCD U350 treatment 

where it was almost three-times that of the non-DCD treatment ( Table 4.3-7).   
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Table 4.3-6.  Effect of DCD (350 kg N ha-1; 0 or 20 kg DCD ha-1) on the annual total inorganic-N leaching loss (NO3--N, NH4+-N 

and total-N), N2O loss, N2O emission factor (EF3), dry-matter production and N content for It. ryegrass and oats treatments. 

Treatment 
b Inorganic-N leached 

(kg N ha-1) 
N2O loss 

(kg N ha-1; %) 
Dry matter 

(kg ha-1) 
N content 
(kg N ha-1) 

Crop  Inhibitor NO3--N NH4+-N Total-N N2O c EF3 Tops d Roots e Tops Roots 

Italian 
ryegrass 

None 171 b  26 a 197 b 6.4 ab 1.3 ab 4180 b 3143 b 83 b 41 b 

DCD 138 ab 46 a 185 b 6.8 ab 1.4 ab 2259 a 3450 b 44 a 42 b 

Oats 
None 172 b 41 a 213 b 8.7 b 2.1 b 3468 ab 2103 a 37 a 22 a 

DCD   94 a 31 a 126 a 4.6 a 0.9 a 6857 c 2268 a 92 b 23 a 

Crop ns ns ns ns - *** *** ns *** 

Inhibitor *** ns *** ns * ns ns ns ns 

Crop x inhibitor ns ns * * * *** ns *** ns 
a LSD (5%) 45 26 45 2.9 0.8 1276 798 25 7 

a LSD: least significant difference (P < 0.05) at crop x urine rate level. b Means followed by a letter in common 

are not significantly different according to Duncan’s multiple range test (P < 0.05); c Emission factors are 

calculated from net difference after control subtracted; d Roots for oats treatments relates to subsequent kale 

crop at time of harvest; e Oats tops refers to actual harvest not subsequent kale crop. 
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 Table 4.3-7.  Effect of DCD (350 kg N ha-1; 0 or 20 kg DCD ha-1) on the annual total inorganic-15N leaching loss (NO3-

-15N, NH4+-15N and total-15N), gaseous-15N loss, 15N content of dry-matter and soil-15N for the It. ryegrass and oats treatments.  

Treatment 
b Inorganic-15N leached 

(kg N ha-1) 
Gaseous- 15N loss 

(kg N ha-1) 
15N content 
(kg N ha-1) 

Soil-15N 
(kg N ha-1) 

Crop  Inhibitor NO3--N NH4+-N Total-N N2O N2 Tops c Roots d Total-N 

Italian 
ryegrass 

None 94 b 19 a 113 b 3.1 bc 43 a 12 a 4.1 ab 110 b  

DCD 74 b 34 c 108 b 2.0 ab 53 a 9 a 5.7 c   69 a 

Oats 
None 85 b 31 a 116 b 3.8 c 47 a 15 a 2.0 a   93 ab 

DCD 35 a 22 c 57 a 1.0 a 52 a 41 b 2.7 a 102 b 

Crop * ns * ns ns *** *** ns 

Inhibitor ** ns * *** ns *** * ns 

Crop x inhibitor ns ns * ns ns *** ns * 
a LSD (5%) 29 23 35 1.2 10 7 1.4 32 

a LSD: least significant difference (P < 0.05) at crop x urine rate level. b Means followed by a letter in 

common are not significantly different according to Duncan’s multiple range test (P < 0.05); c Oats 

roots refers to subsequent kale crop; d Total-N includes organic and inorganic N. 
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Figure 4.3-17. Daily ammonia volatilisation losses from urine application to fallow soils at 

0, 350 and 700 kg N ha-1. 

 

Figure 4.3-18. Effect of DCD on nitrate concentrations and 15N-fraction for oats U350 urine 

treatments ±DCD (0 & 20 kg DCD ha-1) for the full year. Timeline indicative only. 
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Figure 4.3-19. Nitrate concentration and 15N-fraction for It. ryegrass urine treatments U350 

±DCD (0 & 20 kg DCD ha-1) over the full year. Timeline indicative only. 

 

Figure 4.3-20. Effect of DCD on daily N2O emission for It. ryegrass and oats urine ±DCD 

treatments (350 kg N ha-1; 0 & 20 kg DCD ha-1). Drainage axis approximate only. 
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4.3.6 15N balance 

Total 15N recovery ranged from ~67-91% with average recoveries for the oats slightly higher than 

the It. ryegrass treatments (79% vs 73%). Apart from the It. ryegrass control treatment, total 15N 

recoveries were higher at the lower urinary-N rate (Figure 4.3-21).  Approximately one-third of the 

labelled urinary-N in the 350 and 700 kg N ha-1 treatments was recovered in drainage, with the next 

largest component, soil, accounting for a further 30% (range 23-37%).  Doubling the urinary-N 

application rate from 350 to 700 kg N ha-1 increased nitrate- and inorganic-15N leaching losses by 

75% (range 68-81%) and 90% (range 81-108%), respectively. 

 

Figure 4.3-21. 15N recovery (% of applied) in drainage, soil, plant and gaseous-N fractions 
from applied urine or water. Standard errors for total 15N recovery shown. 

The soil-15N fraction decreased with increasing N application rate (~35%, ~33% and ~24%, on 

average, for control, U350 and U700 treatments, respectively).  Half-to-two-thirds of the 15N 

recovered in the soil component was, on average, located in the 0-10 cm soil depth with the 

remainder distributed down the profile (Figure 4.3-22).  Therefore, the 15N detected was mostly 

located within the organic material (because of immobilisation).  Soil mineral-N analysis for each 

depth increment revealed negligible quantities of N present (<1 kg N ha-1) as either NH4+ or NO3- 

at the time of lysimeter deconstruction.  Ammonium-15N in drainage water was a significant 
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proportion of the 15N recovered ranging from 6-10% of the total urinary-15N applied for both U350 

(±DCD) and U700 treatments (negligible NH4+-N was recovered in controls). 

DCD application reduced 15N-nitrate drainage losses for the oats compared to the non-DCD 

treatment by more than half (10% vs 22%, respectively).  It. ryegrass DCD treatments also leached 

less nitrate than the equivalent non-DCD treatment (17% vs 27%, respectively).  DCD application 

increased the proportion of N retained in the harvested oats (13% vs 4% of N applied, respectively) 

compared with the oats U350 non-DCD treatment but not for the It. ryegrass.  Generally, however, 

the fraction of 15N retained in harvested plant material for both catch-crop in the 350 and 700 kg N 

ha-1 treatments was small and comprised only 3-4% of the N applied (Figure 4.3-21).  15N recovery 

in roots was small at only 1-3% and made up almost entirely of the roots collected in the top 10 cm.  

Dinitrogen-15N loss comprised around 10-15% of the total-N applied but was only able to be 

measured in the first 3 months after urine application due to emissions falling below measurable 

levels.  Nitrous oxide loss, as a proportion of urinary-15N applied, was small (<1.0%).  The 

proportion of volatilisation loss as 15N-NH3 was estimated at 90% of the measured values (Lee et 

al. 2011).  

 

Figure 4.3-22. Soil 15N recovery by depth for all oats and It. ryegrass lysimeter treatments. 
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4.4 Discussion 

4.4.1 Drainage and nitrogen leaching 

Nitrogen leaching losses in drainage were considered over two periods, from the time of urine 

application (26 June) to the end of spring (30 Nov), termed the winter-spring drainage period, and 

from the time of urine application to lysimeter deconstruction, termed the annual nitrogen recovery 

period.  The critical leaching period for nitrogen loss is the winter-spring period because, while 

excess drainage might still occur post-spring, it is less likely given the water demands of a crop are 

starting to reach a peak by mid-December.  The annual nitrogen recovery period includes post-

spring drainage from natural rainfall but also any irrigation used to maintain soil moisture.  Drainage 

from irrigation was aided because 15 mm was applied in a single event on a 3-day return as 

opposed to a daily 5 mm irrigation event that might have been in better balance with daily demand.  

However, this was considered necessary as irrigation post-spring was done in part to obtain a 

complete nitrate breakthrough curve as well as providing plants with sufficient soil moisture.   

Sowing oats reduced nitrate leaching losses over the winter-spring drainage period by between 21-

27% (av. 25%) for urine 350 (U350) and 700 (U700) kg N ha-1 treatments compared with their 

comparative It. ryegrass treatments.  However, this was not due to differences in N uptake alone 

between the catch crops (<2% of urinary-N for both) but principally because of the smaller amount 

of drainage (~22% less) under the oats compared with the It. ryegrass over the winter-spring period 

(Table 4.3-2).  Oats have an ability to grow under cool, moist soil conditions and have a higher 

water use per unit DM than other cereals (Zwer 2004) meaning oats can establish in conditions 

where even winter-active ryegrass species might struggle. In doing so, they will use more soil water, 

especially over the latter part of the critical winter-spring drainage period.  However, why this 

resident nitrate was not taken up by the oats treatments’ lysimeters is unclear.  The main period of 

N uptake for cereals is in the tillering, stem elongation, booting, heading and grain filling phases 

(Wendling et al. 2016) so it seems unlikely that if this N was accessible, the oats would not have 

taken it up.  However, Carey et al. (2016) found that earlier sowing of oats, following urine 

application, did not actually increase N uptake appreciably over the later sowings (in a drier-than-

average winter) despite the former having up to 3-times as much DM. This obviously indicates 
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some N dilution within the plant but whether this is a plant physiology, N availability or an 

accessibility issue, is difficult to say. 

The small proportion and few differences in plant N uptake between catch crops underlined that 

the sowing of both catch crops 7-11 weeks after urine application was too late to reduce the soil 

mineral-N pool sufficiently before extensive nitrate leaching took place, especially under the 

monthly 75th percentile rainfall regime used.  Although the soil was trampled and compacted prior 

to urine application, drainage rates did not appear to appreciably slow and, indeed, the amount of 

ammonium recovered in drainage would also indicate that leaching was relatively rapid.  Although 

the soil was trampled and compacted prior to urine application, this did not appear to substantially 

slow drainage flow rates and indeed, the amount of ammonium recovered in drainage would also 

indicate that leaching was relatively rapid.  By the time the crops were sown, 100-200 mm of 

drainage had already been collected and the BTCs for both crops show nitrate concentrations by 

this stage were at, or nearing, maximums (Figures 4.3-4 & 4.3-5).  If a catch crop is to be effective 

in reducing soil mineral-N to reduce nitrate leaching then earlier establishment should be 

considered (Carey et al. 2016).  Some recent field research has shown this to be a practical 

proposition (Malcolm et al. 2016).   

Although It. ryegrass is known to be winter active and able to take up and utilise N at a time when 

an equivalent perennial ryegrass pasture would not (Malcolm et al. 2014), establishing a small seed 

ryegrass species on a heavily compacted soil post-winter forage grazing may be problematic at 

times (as occurred in this experiment).  Cereals like oats, with their larger seed size and sowing 

rates, are able to get a head start on smaller-seeded crucifers and grasses in establishing their root 

systems, especially in the early growth stages where roots can grow to 40-50 cm depth after only 

400 degree (C) days (Thorup-Kristensen 2001).  Although winter cereals are not necessarily better 

at taking up nitrate at low soil temperatures compared with, for example, winter rape (Laine et al. 

1994), their ability to translocate N to shoots and to the root system whilst remaining active probably 

assists in retaining some N against leaching during this period.  Indeed, dicot species like forage 

radish or winter rape, for example, are superior in terms of DM production and N uptake compared 

with winter cereals, but on average they require 600 degree days before their root systems reach 

the same level of development as cereals (Thorup-Kristensen 2001).  A key to catch-crop success 



 

 Page 132  
  

is the rate of root growth and, therefore, deeper rooting species like winter cereals have an 

immediate advantage (Thorup-Kristensen et al. 2003). Although from 600 degree days onwards 

other catch-crop species might have growth characteristics superior to cereals in terms of N uptake, 

the window to act as an effective catch crop post-winter forage grazing is small.  Consequently, the 

list of suitable catch crops that might germinate and establish an effective deep root system at an 

initial soil temperature range of ~5-6°C is small, and winter-active cereals like oats have, in theory, 

an advantage.   

4.4.2 Annual N losses 

Annually, the total N leaching loss was similar between catch crops at ~40, ~200 and ~350 kg N 

ha-1 for the control, U350 and U700 treatments, respectively, comprising around 50% of the N 

applied.  Nitrate comprised ~75-88% of the total-N leaching loss with ammonium leaching 

comprising the remainder (12-25%).  Frequent irrigation events after the end of the winter-spring 

period (end of November) largely leached any remaining nitrate present within the lysimeters but it 

differed significantly between catch crops. Breakthrough curves for the oats saw larger and 

repeated spikes in nitrate concentration in drainage immediately following the post-oats harvest 

period, but for the It. ryegrass there was only a single smaller peak in nitrate concentration before 

declining to baseline.  This suggests that while the oats did not take up any more N than the 

ryegrass, it could lower drainage sufficiently to retain the nitrate within the lysimeter, albeit to lose 

it in drainage again in the post-harvest period.  Consequently, nitrate losses for the It. ryegrass 

U350 and U700 treatments were largely completed by the end of the winter-spring period but for 

the oats a further 23-24% of the annual nitrate leached was captured in that subsequent period.  

Under a winter-forage/catch-crop system, the normal management plan would be to harvest the 

oats by early-to-mid November and immediately prepare a seed bed for another winter forage crop 

or new pasture.  This suggests that with careful management, much of this N could be captured by 

a following crop or pasture if excess drainage could be avoided.   

The relatively large proportion of ammonium recovered in drainage for both U350 and U700 

treatments (13-26% of total-N leached) was surprising but similar to the value of 25% reported by 

Malcolm et al. (2015) for a urine-N leaching study on the same Balmoral soil.  Reports of significant 
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ammonium leaching are rare but most N leaching studies are typically conducted under less-free 

draining and/or deeper soil profiles e.g. Fraser (1992) and Sprosen et al. (2009) and/or at more 

optimal times for nitrification and plant-N uptake (Di & Cameron 2002b).  The significant quantity of 

ammonium in drainage water can largely be attributed to a combination of preferential leaching and 

saturation of the soil’s cation exchange complex.  Cichota et al. (2016) has recently reported a 

study examining preferential leaching under a Canterbury stony Lismore soil under two levels of 

irrigation intensity and reported in both cases that the lower soil water fraction (ft) (boundary) 

involved in solute transport for a moist soil was ~0.35.  The instantaneous winter applications of 

urine (10 mm at a time) occurring on the U350 (1 application) and U700 (2 applications) lysimeters, 

a week apart, would not be dissimilar to an intense irrigation event. This means, given the Balmoral 

soil’s relatively high stone content (around 50% at 20-30 cm) and reduced pore water capacity, a 

greater potential for rapid solute transport.  Although the soil surface on each lysimeter was pugged 

by the artificial hoof prior to urine application, some preferential channels likely remained open for 

rapid transfer of the urine to occur.  It is also highly likely that with potassium concentrations in 

urine comparable with those for N (Williams et al. 1990), there was competition between K+ and 

NH4+ ions for the soil’s cation exchange sites, but these diminish rapidly with depth.  Once below 

the A horizon (>15 cm) there is a reduced presence of nitrifying bacteria and with soil temperatures 

remaining cool, ammonium concentrations might decline relatively slowly.  As shown in the 

drainage of the U700 treatments, once at depth, this ammonium can apparently persist for some 

time.   

The range of N2O emission factors (EF3 range 1.3-2.1%) for our treatments were relatively high 

compared to values of ~1% given by de Klein et al. (2003) but peak daily N2O emissions were 

similar to those reported by de Klein (2014) when the urinary-N rates were similar.  The high EF3 

values arise because of measurements directly from a urine patch involving a single or double urine 

application to an already compacted wet soil surface, with reduced aeration, minimal plant growth 

and a high water filled pore space (WFPS) (Ball et al. 2008).  Nitrate, under these soil conditions, 

is highly favoured to undergo denitrification (Bolan et al. 2004) and since these conditions are often 

prevalent in winter forage grazing, N2O emission factors will likely tend towards the higher end of 

the range (Ball et al. 2012). 
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The calculation of the proportion of denitrification contributed from di-nitrogen emissions was partly 

compromised by the difficulties in obtaining accurate values at low rates of emissions due to the 

relatively low 15N enrichment (~9%) of the labelled urine.  It is likely that further 15N2 loss continued 

after the first three months of measurement and the reported 15N2 loss of 8-12% is probably an 

underestimate.  Other New Zealand studies quantitatively reporting N2 loss directly or indirectly 

from pasture-applied 15N-labelled urine have suggested values from 23-37% (Clough et al. 2001; 

Di et al. 2002; Buckthought et al. 2015). 

Overall, N uptake in oats and It. ryegrass treatments was similar but only increased by about 25% 

between U350 (24% of total) and U700 (14% of total) treatments.  This would appear to indicate a 

greater proportionate loss from the U700 treatments but this is not reflected in the plant 15N fraction 

which was a similarly-sized (3-4%), if considerably smaller, proportion for both crop U350 and U700 

treatments.  Thus, it is more likely that the larger non-labelled N fraction retained in the plant 

material is from subsequent SOM mineralisation and/or applied fertiliser, rather than from the urine 

application directly.  

4.4.3 Effect of DCD 

The application of the nitrification inhibitor, DCD, proved a successful strategy in reducing both 

NO3- leaching and N2O emissions.  In this experiment its use at 20 kg a.i. ha-1, 1 day after urine 

application, achieved a 3-fold increase in N uptake over the non-DCD treated oats crop, whilst 

reducing direct nitrate leaching loss by ~60%. The effectiveness of DCD in reducing nitrate leaching 

and N2O emissions from pastures has been well reported (Di & Cameron 2002b; Di & Cameron 

2003; Sprosen et al. 2009; Cameron et al. 2014) but its use under cropping, and particularly winter 

forage grazing, is more equivocal (Smith et al. 2012; Abalos et al. 2014).  DCD’s effectiveness in 

reducing both nitrate leaching loss and N2O emissions is enhanced the sooner it is applied after 

grazing (Monaghan et al. 2013), and goes someway to explain its ineffectiveness in a Southland 

winter forage grazing trial where it was applied up to twelve days after grazing.  However, as our 

results show, DCD merely postpones nitrification; if there is no crop or pasture to take up the N it 

will eventually be lost via leaching or denitrification.  Issues with establishing the It. ryegrass seed 

in some of the DCD (and control) lysimeters demonstrated this as, with little N uptake occurring in 
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the first 4-8 weeks after sowing, the effectiveness of the inhibitor declined and the ammonium 

eventually began to nitrify again. This manifested as a peak in nitrate concentration (~54 mg N L-1) 

at around 400 mm drainage.  Nevertheless, although soil type and drainage conditions will 

undoubtedly be factors in why DCD is effective in some situations and less so in others, DCD 

demonstrates useful potential in winter forage grazing situations.   

The reduction in N2O emissions from the application of DCD (~50%) was similar to the range of 

reductions reported by Di et al. (2007) (65-73%) and de Klein (2011) (61-70%) on pastures and 

demonstrates DCD’s potential effectiveness in reducing N2O emissions under winter forage 

grazing.  However, the postponed build-up in nitrate concentration in the ryegrass DCD treatment 

meant a noticeable second peak in N2O emissions was observed and N2O losses were, at the end, 

not noticeably different between ryegrass treatments.  

4.4.4 Fate of urinary-15N and 15N balance 

Total 15N recovery was as high as 90% (oats control) but generally, recoveries declined with 

increasing urinary-N rate to between 65-70% for the U700 treatments.  The lower recoveries 

probably stem from undetectable N2 denitrification losses below the level of 15N detection.  Given 

that soil and climatic conditions under winter forage grazing favour an accumulation of nitrate, then 

prolonged low-level denitrification loss is probably not surprising. The lower N recovery in the It. 

ryegrass control treatment probably stemmed from the poorer initial establishment producing a 

similar, albeit smaller, pool of nitrate subject to the same denitrification processes but at a greater 

enrichment level (98% 15N; 35 kg N ha-1).  If it is assumed the unaccounted 15N proportion is due 

to dinitrogen loss then the total denitrification loss under winter forage grazing, and as a proportion 

of urinary-N applied at 350-700 kg N ha-1, can probably be estimated at 30-35%.  This is similar to 

that reported by Fraser et al. (1994) (~28%) but high compared with the range of 15N recoveries 

published for other New Zealand studies where N2 loss was measured or implied by difference 

(Clough et al. 2001; Di et al. 2002; Buckthought et al. 2015).  However, soil temperatures (>9°C), 

WFPS, labile-C and nitrate supply conditions in this study were probably near optimal for 

denitrification in the A horizon by late August/early September (Haynes & Williams 1993; Di et al. 

2014).  
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Nitrate-15N leaching losses for U350 and U700 treatments were about 25% of the urinary-N applied 

but this was only 52-60% of the total nitrate leaching loss although doubling the urinary-N 

application rate had a largely additive effect on nitrate- and inorganic-15N drainage losses.  Di et al. 

(2002) and Fraser et al. (1994), who measured 15N-nitrate leaching losses under a urine patch in 

two pasture trials on the same deep Templeton silt-on-sandy loam, found 83% and 69% of nitrate 

leaching losses occurred from autumn- (May; 1000 kg N ha-1) and winter-applied (July; 500 kg N 

ha-1)15N-labelled urine applications, respectively.  The reason for a relatively lower percentage of 

15N recovered in drainage losses in this study is a little unclear but may be due to the history of the 

field site from which the lysimeters were taken.  The lysimeters were collected 6 months before the 

trial began and came out of established pasture but only modest drainage occurred prior to the 

trial’s start. It is possible some SOM mineralisation occurred over this period, diluting the NO3--15N 

pool. Indeed, the It. ryegrass control lysimeters (where establishment problems were encountered) 

had an annual nitrate loss of 52 kg NO3--N ha-1, but only a small proportion (<12%) of this was 

derived from the 15N-labelled pool i.e. there was a large background contribution. 

Ammonium-15N leaching constituted between 6-10% of the 15N loss for U350 (±DCD) and U700 

treatments of both catch crops, that in turn made up ~40% of the total N leaching loss.  These are 

high values from what has been reported previously in similar lysimeter studies.  Di and Cameron 

(2002b) in a 15N-labelled urine (1000 kg N ha-1) leaching experiment on a Lismore stony pasture 

soil reported negligible leaching of NH4+-N but this was a spring (November) application where 

nitrification was likely rapid.  The 15N proportion of ammonia loss from volatilisation was not 

measured directly but was assumed to be the majority (i.e. ~90%) of the 3% and 4% recorded for 

U350 and U700 treatments, respectively (Lee et al. 2011).  

The proportion of the 15N-labelled urine retained in the soil fraction was reasonably high 

(approximately 33% and 24% on average for U350 and U700 treatments, respectively, for both 

catch-crops) but similar to that reported by Di et al. (2002) and Fraser et al. (1994).  However, their 

studies were on pastures whereas soils in this study were essentially fallow at the time of urine 

application (apart from the harvested kale plant roots) and thus little of the urinary-N applied could 

be recycled in root or plant residues prior to the establishment of the crops.  In addition, the urinary-

N rates used in this study were considerably lower in this study and thus the absolute amount of N 
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retained from the application ranged between ~115-169 kg N ha-1 as opposed to the 200-250 kg N 

ha-1 cited in the other two studies.  This 15N fraction has presumably been retained by a mix of 

immobilisation, root uptake and ammonium fixation but as there is little other 15N recovery data for 

winter urine applications, let alone under winter forage grazing conditions, it is difficult to infer much.  

Indeed, comparisons can only be made with cropping where the N is usually applied as inorganic 

fertilisers, but these applications are normally in spring or autumn, not mid-winter. Nevertheless, 

Gardner and Drinkwater (2009) found in a meta-analysis of cropping 15N studies that soil accounted 

for ~29% of the 15N applied.  

By the end of the study there was relatively little 15N recovered in the roots of the remaining 

vegetation (~1%) and this is similar to Fraser et al. (1992), who found that live roots also only 

accounted for 1% of the 15N recovered.  The oats, having been harvested six months prior to soil 

deconstruction, meant whatever 15N was retained in the roots would have been recycled back into 

the soil with only a small proportion recovered in the subsequent kale crop.  The ryegrass 

treatments had five harvests over the growing season; thus, little 15N remained in the root mass by 

the time of lysimeter deconstruction. 

4.5 Conclusions 

The main conclusions from this experiment are: 

• The earlier sowing and establishment of an oats catch-crop reduced nitrate leaching losses 

over the winter-spring period by approximately 25% (P<0.01) compared to the later sowing 

of It. ryegrass (both sown at recommended dates) but this was mainly due to lower drainage 

(22% less, P<0.001) rather than from differences in N uptake between crops.   

‒ Catch crops were sown between 7 (oats) and 11 (It. ryegrass) weeks after urine 

application but this proved too late to reduce the soil mineral-N pool sufficiently to avoid 

substantial nitrate leaching. Annual N leaching losses were similar between catch crop 

treatments but only 3-4% of the urinary-N was recovered (as 15N) in either catch crop, 

indicating the lower initial nitrate loss for the oats’ treatments was due to nitrate being 

retained within the soil monolith because of the oats’ greater evapotranspiration loss 

and subsequent lower drainage. 
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‒ Nitrate leaching was reduced from 46, 167 and 279 kg N ha-1 to 11 (76% reduction), 

131 (22% reduction) and 193 (31% reduction) kg N ha-1 for control, 350 and 700 kg N 

ha-1 urine treatments under oats, respectively.  

‒ Annual nitrate leaching losses were considerably larger than winter-spring losses but 

not significantly different between catch crops indicating the lower initial nitrate loss for 

the oats’ treatments was due to nitrate being retained within the soil monolith rather 

than differences in N uptake per se. 

‒ Ammonium-N loss in drainage was significant, representing between 13-26% of the 

total N leached and indicates that rapid leaching during winter is a feature of the 

Balmoral soil. 

‒ The fraction of 15N in both nitrate and total N in drainage loss directly attributable to the 

15N-labelled urine was less than 60% at the end of the winter-spring period indicating 

that there was mineralisation of soil organic-N from the previous pasture.  

• The effect of doubling the rate of urinary-N application from 350 to 700 kg N ha-1, seven days 

apart, on winter-spring period nitrate and inorganic-N drainage losses was largely additive. 

‒ Doubling the urinary-N rate increased winter-spring nitrate and inorganic-N losses by 

55% and 72%, respectively.  

‒ Nitrate- and inorganic-15N leaching losses increased by 75% (range 68-81%) and 90% 

(range 81-108%), respectively. 

• The application of DCD one day after urine application reduced inorganic-N leaching losses 

in the oats and It. ryegrass catch-crops by 55% and 33%, respectively, and improved N 

efficiency by increasing N uptake in the oats 3-fold. 

• The 15N recovery from the labelled urine ranged from 90-65% with values declining with 

increasing urinary-N rate.   

‒ For the U350 and U700 treatments, approximately 23% of the 15N applied was 

recovered in drainage water from nitrate leaching whilst a further 6-10% was recovered 

in ammonium leaching. 

‒ A relatively high proportion (33%) of the 15N loss was attributed to denitrification.  
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‒ 15N retained in the soil and roots was approximately 25% and 1%, respectively, whilst 

3-4% was lost via volatilisation.  

Questions raised by the study 

This study has established that oats appears to have the potential to be a more effective catch crop 

in reducing nitrate leaching under winter forage grazing situations but not inorganic-N leaching. 

Several specific questions were raised regarding this study: 

• What is the sensitivity between winter urine application date and oats sowing date on nitrate 

leaching and N uptake? 

• What are the actual nitrate leaching losses under a fallow urine patch deposited when grazing 

winter forage crop?  
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Chapter 5  

Effect of Timing of Winter Urine Application and Sowing Date of 

an Oats Catch Crop on Nitrate Leaching Loss and N Uptake 

 

 

“A field lysimeter study examining the timing of winter urine application and sowing date on the 

effectiveness of an oats catch crop to capture nitrogen and reduce nitrate leaching.” 
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5.1 Introduction 

Sowing a catch crop in winter to mitigate N leaching from winter forage grazing is problematic given 

that urine deposition occurs at a time of year when plant growth is minimal.  Findings from the first-

year winter urine application experiment (Chapter 4) showed that although sowing oats (Avena 

sativa L.) reduced nitrate leaching compared with It. ryegrass (Lolium multiflorum L.), this reduction 

was mainly due to lower drainage losses, rather than urinary-N uptake.  Indeed, the actual 

proportion of the labelled urinary-N accounted for by both catch crops was similar but small (3-4%).  

In that experiment, urine was applied 1-2 months before sowing of either catch crop meaning 

nitrification had already largely occurred, and with drainage from rainfall (both natural and 

simulated) set to the local 75th percentile meant that, by mid-September, over 200 mm of drainage 

had already been collected on average.  This represented a nitrate leaching loss over the period 

of ~90-130 kg N ha-1, about half of the total annual nitrate leaching loss. Thus, this delay in sowing 

the catch crop meant that the opportunity to capture significant urinary-N had largely been lost by 

the time the plants emerged.   

Determining the timing of sowing a catch crop is of course dependent on whether it will grow under 

the prevailing temperatures and light levels and whether an adequate seed bed can be prepared 

in advance.  Usually the latter is not attempted until late winter but the window between urine 

deposition and sowing a catch crop needs to be as short as possible to maximise the possibility of 

increasing N uptake and reducing nitrate leaching losses.  Results from Chapter 4 suggested that 

oats was a better plant to sow (rather than Italian ryegrass) in winter and could be a viable catch 

crop for use after winter forage grazing. 

This chapter reports findings from a field-based lysimeter experiment designed to quantify the 

effectiveness of sowing oats as a catch crop to reduce nitrate leaching losses over a range of winter 

urine application dates and sowing times after simulated winter grazing of a kale crop. The 

experiment compared plant N uptake and nitrate leaching losses from a urine patch under several 

combinations of timing of urine deposition and the interval between urine deposition and sowing of 

the catch crop.   
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This study tested three hypotheses: 

1. Sowing oats as a catch crop after simulated winter forage grazing will reduce nitrate leaching 

losses compared with a bare fallow treatment,  

2. Nitrogen leaching will be greater from an early winter urine application compared to a later 

application, and 

3. Nitrogen uptake will increase, and nitrate leaching decrease, the sooner the oats catch crop 

is sown after winter forage grazing. 

Consequently, there were two main objectives for the experiment: 

1. Measure nitrate leaching losses under bare fallow and catch crop treatments over a complete 

Canterbury winter, and  

2. Quantify the interaction between date-of-urine-application with catch-crop sowing date (post-

winter forage grazing) on nitrate leaching losses. 

5.2 Materials and Methods 

5.2.1 Soil and lysimeter collection 

Many of the details of the soil and lysimeter collection have already been outlined in Chapters 3 

and 4 but are briefly presented here. The study was conducted using the same Balmoral stony silt 

loam soil (Typic Dystrudept, USDA) collected from Lincoln University’s Ashley Dene research 

station situated near Springston (NZGD2000: 43 38 42S 172 20 33E) on the Canterbury Plains of 

New Zealand. Soil texture in the first 15 cm of each lysimeter profile was silt loam, but the soil 

profile became increasingly stony below this with ~50% of the soil volume occupied by stone below 

a depth of 30 cm. Below 30 cm, the remaining volume not taken up by stone was increasingly 

interspersed with fine-to-coarse sands. The lysimeters were collected from established pasture 

consisting of a mixture of perennial ryegrass (Lolium perenne L., cultivar Grasslands Nui) and white 

clover (Trifolium repens L., cultivar Grasslands Huia).  Forty-eight monolith lysimeters, 50 cm in 

diameter and 70 cm deep, were collected from the site in February 2014 (late summer). Key soil 

chemical and physical properties are presented in Table 5.2-1. Lysimeter collection followed the 

procedure described by Cameron et al. (1992). Briefly, each lysimeter casing was placed upon the 
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soil surface and a small trench was dug around it to expose a 10-cm depth of soil. The lysimeter 

casing was progressively pushed down in several steps over the repeatedly exposed depth of the 

soil monolith until the soil inside the lysimeter casing was a few cm from the top.  An internal cutting 

ring in the casing created a 5-mm gap between the side of the casing and the soil monolith. The 

gap between the soil monolith and casing was filled with liquefied (50C) petroleum jelly. Once cool 

the petroleum jelly prevented edge flow of drainage water. At a depth of 70 cm, a hydraulically-

assisted cutting plate was used to separate the soil column from the subsoil. Each lysimeter was 

uplifted and inverted and c. 50 mm of soil removed from the base and replaced with a layer of 

coarse gravel before attaching a drainage base plate to collect leachate. The installation of a gravel 

layer at the base of each lysimeter reproduced a situation common to the Canterbury Plains where 

soils often overlie coarse gravels. The gravel layer also allowed a free drainage system to be used 

in the lysimeter study, as matric potential in this layer was assumed to be zero (Clothier et al. 1977). 

The lysimeters were moved to a purpose-built field trench facility at Lincoln University where the 

top of each lysimeter was flush with the surface of the soil surrounding it.  This ensured that the 

lysimeters were exposed to the same environmental conditions as the rest of the field. 

Table 5.2-1. Key soil fertility (0-7.5 cm) and physical properties of the Balmoral 

soil. 

Soil analysis Value Soil depth 
(cm) 

Soil bulk 
density 
(g cm-3) 

Stone 
volume 

(%) 

Soil 
porosity 

(%) 
Soil  

texture1 

pH 6.1 0-10 1.14 11 58 stony ZL 

Olsen-P 33 µg ml-1 10-20 1.57 30 42 stony ZL 

Exch-Ca 8.1 cmol+ kg-1 20-30 1.90 51 29 stony SL 

Exch-Mg 0.5 cmol+ kg-1 30-40 2.05 54 24 stony S  

Exch-K 0.4 cmol+ kg-1 40-60 1.96 51 27 gravelly S 

Exch-Na 0.2 cmol+ kg-1      

CEC 16 cmol kg-1      

Reserve-K 3.6 cmol kg-1      

Sulphate-S 4 µg g-1      

Organic-C 45 g kg-1      

Total-N 4.0 g kg-1      

Organic-S 5 µg g-1      

Base saturation 65%      
1ZL -silt loam; SL -sandy loam; S –sand  
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5.2.2 Treatments 

After the lysimeters had been installed, the pasture vegetation was sprayed out with herbicide, and 

the soil surface was lightly cultivated by hand a fortnight later.  Three, 3-month old forage kale 

(cultivar Regal) plants were transplanted into each lysimeter in early February, giving a plant 

population of ~16 plants m-2.  Basal nitrogen (equivalent to 40 kg N ha-1, supplied as urea), 

phosphorus (15.4 kg P ha-1; supplied as 15% potassic superphosphate), potassium (15 kg K ha-1) 

and sulphur (18.4 kg S ha-1) were applied after transplantation to help establish the plants.  The 

kale grew until winter when it was harvested to simulate grazing. Once the kale plants had been 

cut, the soil surface was trampled using a manually operated trampling device, designed to provide 

c. 200 kPa downward pressure, similar to that of the mechanical hoof described by Di et al. (2001). 

This simulated the impact of animal grazing on the soil surface under typical winter forage grazing 

conditions.   

Treatments were based on different combinations of the timing of winter urine application, and the 

interval between urine deposition and the sowing of the catch crop.  Three different urine application 

times spanning early- to mid-winter (early June, early July and late July) were chosen to represent 

the eight-week period over which winter forage grazing typically occurs in Canterbury.  Oats 

(cultivar Milton) catch crop treatments were sown on randomly selected lysimeters within 1-3 days 

after each urine application event, and then nominally at 21-day intervals (Table 5.2-2).  Sowing 

dates were reduced from four, for the first urine application (nominally 1, 21, 42 and 63 days), to 

two occasions (nominally 1 and 21 days), by the third urine application date so that the final sowing 

occurred at approximately the same time (mid-August) for each urine application date treatment. 

Each urine application treatment combination was replicated 4 times, including a control treatment 

that received urine but was left fallow; (Table 5.2-2). Problems with rodent damage to seeds and 

germinating seedlings caused the 2nd urine application (early July) 21-day sowing treatment 

combination to be abandoned and removed from the analysis.  

Urine was collected from non-lactating cows grazing on forage kale at the Ashley Dene research 

station and was applied to the lysimeters at a rate equivalent to 350 kg N ha-1.  This rate was based 

on the analysis of the total-N content of urine from winter kale-fed cows where the urinary-N loading 

is lower than urine from cows fed on pasture (Edwards et al. 2014a).  
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The urine was applied to each lysimeter in 2 L volumes, similar to the typical urination volumes of 

cows grazing on winter forage crops (Ravera et al. 2015).  The urine was analysed for total-N 

content immediately following collection and refrigerated overnight.  The urine was poured rapidly 

on to the surface of each lysimeter to simulate a urination event.  

Table 5.2-2  Urine application dates to lysimeters and post-application sowing dates of 

oats crops. Fallow treatments received urine only.  

Treatments 
Urine application date 

June 5 July 5 July 25 

Oat crop sowing dates 

Fallow Fallow Fallow 

1 day (Jun 6) - - 

22 days (Jun 27) 2 days (Jul 7) - 

43 days (Jul 18) a 25 days (Jul 21) 3 days (Jul 28) 

64 days (Aug 8) 44 days (Aug 11) 24 days (Aug 18) 
a Removed due to rodent damage. 

Prior to sowing the oats, the soil surface was lightly worked to a depth of 5 cm and the seed sown 

by hand at a rate equivalent to 130 kg ha-1 (2.5 g/lysimeter).  Lysimeters were left exposed to 

natural rainfall over the 2014 winter with no artificial watering through this period until the oats were 

harvested in late spring (November 3). Irrigation water was applied from November 7 to mid-

December to bridge the rainfall deficit until the breakthrough curves for each fallow treatment were 

essentially completed and an average annual amount of drainage produced. For a Canterbury well-

drained stony soil under irrigation, ~260 mm was considered representative and was based on 10 

years data from the Lincoln University dairy farm and drainage model estimates covering a range 

of soil textures, from extremely light to heavy (Lilburne et al. 2010).  Irrigation was automated to 

apply water in 0.5 mm increments over several hours to ensure leaching was largely conducted 

under unsaturated conditions.  The oats were all harvested on November 3 (2014). 

5.2.3 Measurements and data analysis 

Climate and rainfall data were collected from the Broadfields meteorological station 2 km from the 

trial site and compared with long-term means (1980-2014).  Leachate from each lysimeter was 

collected and the volume measured after every significant rainfall event and/or once a volume of 

more than 0.2 L was present. A sub-sample of leachate was frozen until it was analysed for nitrate 
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and ammonium (NH4+-N and NO3--N) concentrations by flow injection analysis (FIA) (Tecator, 

Sweden).  Analysis of leachates showed they contained little or no organic-N (<4% of total-N on 

average) and thus no data is reported.  After the oats were harvested they were dried in a fan-

forced oven at 60 C before weighing and ground to pass through a Retsch cyclonic mill (<0.5 mm 

mesh). A sub-sample was analysed and measured for plant N content using an Elementar Vario-

Max CN Elemental Analyser (Germany). 

Total NH4+-N and NO3--N leaching losses were calculated as the product of their concentration in 

the leachate and the volume of leachate. Average annual leaching losses were then calculated 

using values from the four replicates.  Statistical analysis was done using both balanced (sowing 

dates within an application) and unbalanced (across all application dates) non-randomized block 

ANOVA within the Genstat 9.2 statistical package (VSN International Ltd. 2005). Duncan’s multiple 

range test was used for comparisons between sowing days for individual urine application dates. 

Least significant differences (LSD) were calculated for multi-treatment comparisons. 

 

Plate 5.2-1.  Treaded lysimeter prior to urine application (A), post-application (B) and at 21 

days after sowing of oats in early winter (June), one day after urine application (C). 

  

A B 
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5.3 Results 

5.3.1 Climate and drainage 

Air and soil temperatures during June 2014 were higher than the long-term average, but only 

slightly so in July and close to the average thereafter (Figure 5.3-1).  Daily solar radiation and 

evapotranspiration rates were also both higher than average for the period from mid-June to early-

December (Figure 5.3-2).  Consequently, rainfall in spring was below the long-term average, 

especially in the period from August to October (Figure 5.3-1), and the amounts of drainage for the 

same period also low at 75, 42 and 19 mm for the early, mid and late urine applications, 

respectively.  More than half of the drainage for the early urine application was in the six-week 

period following application. A further ~200 mm drainage was collected in the simulated rainfall 

period after November 7, bringing the total drainage for each treatment closer to the district average 

by the end of spring (December 1) when it was realised that there was a significant drainage deficit. 

 

Figure 5.3-1. Mean Lincoln monthly rainfall and air and soil (10 cm) temperatures for the 

2014 winter-spring period, compared with long-term (LT) means (1980-2014). 
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Figure 5.3-2. Daily solar radiation and evapotranspiration (weekly average) at Lincoln over 

the 2014 winter and spring periods (Broadfields NIWA). 
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5.3.2 Nitrate leaching loss and crop N uptake 

Breakthrough curves of NO3--N concentrations for the fallow treatments of the early, mid and late 

urine application timing treatments peaked at around 230, 180 and 130 mg N L-1 respectively, 

declining below 30 mg N L-1 after 260 mm of drainage had been collected (Figure 5.3-3).  Nitrate 

comprised almost the entire amount of N leached, apart from a small amount of ammonium leached 

initially after the early urine application (<3% of total-N leached).  Nitrogen leaching losses for the 

annual drainage estimate were significantly different between urine application dates (P<0.001) at 

272, 224 and 172 kg N ha-1 for early, mid and late fallow treatments, respectively (Table 5.3-1).   

Table 5.3-1.  Inorganic-N leaching loss, % N leaching decrease (from respective fallow 
treatment), oats crop yield, N uptake, N content and drainage depth for each urine application 
and sowing date treatment. 

Treatment Inorganic-N leached 
(kg N ha-1) 

Catch crop 
(kg ha-1) 

N 
content 

Urine 
application 

Oats sowing 
day 

a Total % diff Dry 
matter 

N 
uptake N% 

Early 
June 5th 

Fallow 272 b 0 - - - 
1 160 a -41% 4062 a 80 a 2.0 a 

22 162 a -40% 3595 a 73 ab 2.0 a 
43 198 a -27% 2092 b 61 b 2.9 b 
64 198 a -27% 2024 b 65 ab 3.2 c 

Mid 
July 5th 

Fallow 224 b 0 - - - 
2 142 ab -37% 2735 a 60 a 2.2 a 

44 115 a -49% 2374 a 73 a 3.2 b 

Late 
July 25th 

Fallow 172 b 0 - - - 
3 117 a -32% 2268 a 72 a 3.2 a 

24 138 ab -19% 1922 a 65 a 3.4 a 
Urine ***  *** ns *** 

Sowing day ***  *** ns *** 
Urine x Sowing day ns  ** * ns 

b LSD (5%)  47  570 16 0.3 
a Means within one urine application date followed by a letter in common are not significantly different according to 

Duncan’s multiple range test (P < 0.05); b Least significant difference (average) from unbalanced ANOVA and applicable 

between individual means; * p<0.05, ** p<0.01, *** p<0.001. 

 

Sowing a catch crop reduced N concentrations in the leachate by 20-60% (Figure 5.3-3) compared 

with the fallow treatments. The catch crop significantly reduced (P<0.001) nitrate leaching loss by 

between 19-49% and by ~34% on average for all treatments over the drainage period (Table 5.3-

1).  When the catch crop was sown between 42 and 63 days after urine application in early winter, 

N losses were reduced on average by 30%.  In the early urine treatments, the nitrate leaching 
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losses generally increased with later sowing of the oats although differences between early and 

later sowing dates were not significant overall (Figure 5.3-4 & Table 5.3-1).   

 

Figure 5.3-3. Nitrate leaching breakthrough curves for fallow and catch crop treatments for 

A) early, B) mid and C) late urine applications (350 kg N ha-1). Crops were sown approximately 2, 

23, 44 or 64 days after urine application.  Standard error bars (±1 SE) shown. Annual regional 

average drainage indicated for an irrigated Balmoral soil (Lilburne et al. 2010).
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Figure 5.3-4. Total winter-spring drainage (A) and total nitrate leached (B) for urine-by-

sowing application dates. An uncommon letter indicates a significant difference (P<0.05) within 

a urine application date. Standard error bars (±1 SE) shown. 

For the early urine application, there was a statistically significant effect of the interval between 

urine deposition and sowing of the catch crop on total oats DM harvested (P<0.001), and on total 

plant N uptake by the oats (P<0.05; Table 5.3-1). In general, the sooner the oats were sown after 

the urine was applied, the greater the amount of DM harvested and N taken up by the crop. There 

was a strong inverse relationship between DM harvested and the N concentration of the DM (r2= 

0.71, Figure 5.3-5). Crops sown within the first 21 days or so of the early urine deposition event 

contained only 2% N in the DM, whereas crops sown 21 days after the late urine N event contained 

more than 3% N but grew less than half the total DM of the former treatments (Figure 5.3-5).  

Consequently, differences in catch crop N uptake were only significant between the day 1 and day 
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42 sowing dates for the early urine application and were similar overall (~70 kg N ha-1) between 

early, mid and late urine applications (Table 5.3-1).  Drainage volumes were generally least for the 

earliest oats sowing dates for each of the urine applications compared to the corresponding fallow 

treatment (all approximately 260 mm) and/or later sown treatments but it was difficult to compare 

as much of the drainage occurred after the oats were harvested and were affected by the 

regenerating oats. 

 

Figure 5.3-5. Relationship between oats dry matter production and N concentration in the 

catch crop (y= -1193x+5908; r2=0.72, P<0.001). 
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5.4 Discussion 

5.4.1 Nitrogen leaching and N uptake 

Sowing oats as a catch crop following urine application after simulated winter forage grazing 

reduced nitrate leaching losses by ~34% over all treatments compared with the fallow treatments 

(range 19-49%).  In the critical 42-63-days period after winter forage grazing, when soil conditions 

were more favourable to sowing a catch crop, N loss was reduced by ~30%.  Earlier sowing of the 

oats catch crop produced up to 25% less nitrate leaching than later sowings.  The overall reduction 

is similar to that reported by Francis et al. (1995) who found an average 30% reduction in N loss 

from autumn-sown green feed oats following ploughing-in of a 4-year old Canterbury ryegrass/white 

clover pasture.  

There was little ammonium leaching in this lysimeter experiment compared with the previous 

experiment in Chapter 4.  Several factors were different, however. Soil temperatures in June 2014 

were warmer than in 2013, and with lower than average rainfall, and no simulated rainfall, meant 

the ammonium-N had a longer resident period in the topsoil and probably nitrified before it could 

be leached into the subsoil.   

The breakthrough curves for each urine application show that most nitrate was leached from the 

lysimeter after the annual average drainage of ~260 mm (for an irrigated well-drained soil in 

Canterbury).  Nitrogen leaching losses as a proportion of the N applied were high overall (33-77%) 

but were probably exacerbated by the artificial drainage occurring in late-spring when warm, wet 

conditions likely enhanced soil organic matter mineralisation.  Although this doesn’t diminish the 

ability of the catch crop to reduce nitrate leaching losses, our experimental conditions produced 

significant drainage in a relatively short period and probably exaggerated the potential N losses.  

The oats sown soon after the early winter (June) urine application yielded about twice as much 

total DM at time of harvest as the later-sown treatments.  Nitrogen uptake of around 60-80 kg N ha-

1 covered all treatment combinations so despite a large difference in DM production, there was less 

effect on N uptake with significant N dilution occurring within the plants from the earlier sown oats.  

Low drainage over the period probably contributed to this reduced range as more rainfall, post-

winter forage grazing, over the mid-to-late winter period, would have increased nitrate leaching and 
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reduced N uptake for later sowing dates.  Francis (1995) found that an oats catch crop with a yield 

of about 3 tonnes ha-1 sown in autumn contained 80 kg N ha-1, similar to the maximum in our study.  

Normal practice, post-winter forage grazing, is to sow the land back into pasture or kale in the 

spring, but this may be up to three months after the final grazing, so the potential for large nitrate 

leaching losses from high soil mineral-N concentrations is considerable.  Currently, there is little 

field data on soil mineral N concentrations post-winter forage grazing in Canterbury but Francis 

(1995) found that where an autumn-sown leguminous cover crop had been lightly grazed over the 

winter, soil mineral-N concentrations (to 600 mm depth) were much higher in the spring compared 

to when a catch crop had been incorporated (62-164 kg N ha-1 vs. 19-44 kg N ha-1, respectively).  

The rapid rate of mineralisation of urinary-N over winter and early spring, in comparison with a 

green manure, means that winter forage grazing needs a strategy, such as a catch crop, to 

decrease soil mineral N concentrations to avoid large nitrate leaching losses.   

5.4.2 Timing of catch crop sowing 

The early planting of a catch crop like oats may mitigate N losses from winter forage grazing 

systems but it will depend on the prevailing climatic conditions, soil type, rainfall distribution and 

the speed of crop establishment.  For instance, Francis et al. (1998) found that sowing a range of 

catch crops in Canterbury in March achieved DM production of 1440-3100 kg ha-1 by the start of 

winter but sowing in April, one month later, resulted in very little yield.  This study enjoyed warmer 

than average air and soil temperatures for the oats sown in June so these established well initially, 

providing a good start for later growth when temperatures warmed again. There are differences, 

however, between using catch crops in arable mixed cropping sequences with their use in winter 

forage grazing systems.  For example, incorporation of pasture in autumn means a build-up in soil 

mineral-N at deeper depths (>400 mm) by spring compared to urine application, from winter forage 

grazing, where there is initially a high soil mineral-N concentration close to the surface.  

Currently, there is no published information available on the use of catch crops to capture N post-

winter forage grazing; most New Zealand studies report the use of crops in more conventional 

mixed cropping-pasture sequences. Comparison with catch crop studies conducted in other 

countries is not possible since the catch crop is generally sown after the harvesting of a summer 
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crop to capture residual soil N for the following spring-sown crop (Thorup-Kristensen et al. 2003). 

Forage grazing over winter is also uncommon overseas since harsher climatic conditions mean 

most dairy cattle are housed and fed inside (Hopkins 2008).   

Although N uptake from the soil is the primary benefit of sowing a catch crop, there is an indirect 

benefit on nitrate leaching of reduced drainage because there is increased evapotranspiration and 

water loss from the growing crop that exceeds surface soil evaporation alone.  However, Francis 

(1995) and Francis et al. (1998) found that drainage in catch crop treatments was only lower than 

the fallow (ploughed pasture) treatment when the crops were sown in early autumn, giving them 

time to establish. This indicates a strong dependence on climatic variables, and urine-N deposited 

in early winter is likely to be at more risk from leaching than in late winter/spring onwards, when 

conditions are more optimal for crop growth (Teixeira et al. 2016).  

5.4.3 Factors affecting nitrate leaching 

Despite low soil temperatures, the bulk of the urinary-N deposited directly to the soil surface during 

winter forage grazing will undergo rapid hydrolysis to ammonium within hours (Sherlock & Goh 

1984).  Although some bypass or macropore flow of the urine can occur, the soil surface often 

becomes pugged by stock trampling during winter forage grazing so there is less likelihood of 

macropore flow occurring prior to nitrification (Houlbrooke et al. 2009a). A proportion of ammonium 

will be lost by ammonia volatilisation but in winter this is likely to be only a minor fraction (~12%) 

(Sherlock & Goh 1984) and indeed in the first field experiment (chapter 4.2.3) only 3-4% of the 

urinary-N applied was volatilised.  Consequently, the bulk of urinary-N remains in soil solution or 

interacts with the soil cation exchange complex, awaiting nitrification (Haynes & Williams 1993); 

this process is slowed, if not halted, however, at low winter temperatures (<5C) (Flowers & Arnold 

1983; Cookson et al. 2002). Thus, it may take up to several months before peak soil nitrate 

concentrations are reached (Holland & During 1977).  Depending on the prevailing winter 

conditions there may still be a sufficient window for a cool-season active crop like oats to assimilate 

significant quantities of N before declining temperatures reduce growth further.  One effect of colder 

temperatures is to increase root N concentrations, especially in cereals and thus, early 

development of the catch crop root system is likely to be an important sink in storing some of the 
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deposited urinary-N and protecting it against leaching (Laine et al. 1994).  Indeed, a winter wheat 

trial sown in Canterbury after pasture incorporation in May retained 55% of its total-N content (51 

kg N ha-1) in its roots by time of sampling in October (Francis et al. 1995). 

The Balmoral soil used in the study is typical of land used for winter forage grazing in Canterbury, 

being mostly stony with rapid drainage (Cutler 1968).  Nitrate leaching loss in this study declined 

significantly with each progressively later urine application and this is largely attributed to the lack 

of rainfall after the early and late July applications, allowing the urinary-N to remain longer in the 

topsoil compared with the June application that was followed by significant rainfall.  In addition, the 

longer the urinary-N remains in the biologically-active topsoil the greater the opportunity for 

immobilisation and denitrification to occur. Denitrification losses in particular are enhanced under 

compacted soil conditions where the oxygen supply is reduced and a source of labile carbon and 

a high nitrate concentration co-exist (Bolan et al. 2004; Ball 2013; Saggar et al. 2013). Greater 

rainfall and drainage following the early-June urine application probably meant more urinary-N was 

leached below the biologically active topsoil, reducing the denitrification loss.  In a field trial 

measuring nitrate leaching losses after winter forage grazing in the Waikato region of New Zealand, 

Carlson et al. (2013) also reported lower losses from a late-July compared with an early-June urine 

application (26 and 119 kg N ha-1, respectively).  

5.4.4 Paddock N losses 

The relatively large nitrate leaching losses observed in this study relate to nitrate leaching directly 

under a urine patch (where the N loading is equivalent to 350 kg N ha-1) and are not representative 

of losses at a paddock scale.  Previous published (Malcolm et al. 2015) and unpublished work 

using this soil type in two similar lysimeter studies indicate N losses under a kale winter forage crop 

from non-urine affected areas are between ~30-40 kg N ha-1.  This will, of course, vary to some 

degree depending on the prior history of the paddock plus any contributions from residual fertiliser-

N and mineralisation of the previous pasture or crop.  The paddock scale loss will depend on the 

actual area occupied by urine patches, which is always likely to be a fraction of the total grazed 

area (Jenkinson et al. 2014).  Currently, data from the P21-funded research programme at Ashley 

Dene research station at Lincoln University indicates urine area coverage of ~30% for a kale crop; 
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if the average fallow nitrate leaching loss across all urine applications is 223 kg N ha-1, and 

background loss is 30 kg N ha-1, then a weighted average for the total potential nitrate leaching 

loss can be calculated using the following: 

(223 × 0.3) + (30 × 0.7) = 88 𝑘𝑔 𝑁 ℎ𝑎−1 

The average 21 or 42 days catch crop nitrate leaching values for all urine applications is ~138 kg 

N ha-1 so going through the same calculation: 

(138 × 0.3) + (30 × 0.7) = 62 𝑘𝑔 𝑁 ℎ𝑎−1 

This gives a reduction in nitrate leaching loss of ~30% when a catch crop of oats is sown.  However, 

these results are for one winter only and, given the high potential for large N leaching losses from 

winter forage grazing, and the range of farm, climatic and soil conditions, means there is clearly a 

need for further research on oats’ effectiveness as a catch crop.  One of the attractive advantages 

of the kale-oats catch crop system is the additional DM production from the oats which can be 

ensiled and used as low-N feed for cows in the following winter.  Edwards et al. (2014b) found DM 

production and N use efficiency increased by 40% and 29%, respectively, over kale alone, by 

inclusion of oats as a catch crop in the winter forage cropping system. Given that results indicate 

earlier sowing of the catch crop offers greater potential for its effectiveness in reducing nitrate 

leaching, issues remain around the practicality of doing so and its effectiveness in a wet year.   
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5.5 Conclusions 

The main conclusions drawn from this experiment are: 

• Nitrate leaching losses from a series of winter urine applications were reduced by around a 

third (~34%; range 19-49%) after the sowing of an oats catch crop compared to the fallow 

treatments. 

‒ This result was partly due to an initially warmer, and overall drier, winter than normal. 

‒ The size of the decrease, however, suggests that there is significant potential to 

mitigate nitrate leaching in most conditions in these low-cost winter feed systems whilst 

improving N-use efficiency and DM production. 

• Later sowings of oats leached up to 25% more nitrate than the earliest sowing.  

‒ Earlier sowing of the oats increased N uptake over later sowings by up to a third. 

• Later winter urine applications had lower overall nitrate leaching losses (range 170-270 kg N 

ha-1). 

• Calculations of paddock N loss indicate a potential reduction in nitrate leaching overall of 

~30%, from 88 to 62 kg N ha-1. 

From this study, the data could support the original three hypotheses. 

Questions raised by this study: 

Under the winter conditions experienced, there was a demonstrable ability of the oats catch crop 

to retain urinary-N against leaching.  However, considerable uncertainty remains about its 

effectiveness over a wider range of climatic and soil conditions.  Building on these results and that 

of the previous experiment requires greater understanding of how climatic conditions (leaving soil 

type aside) might affect N leaching.  This poses a series of questions: 

• How is the rate of urinary-N nitrification, and thus the potential for nitrate leaching, affected 

by differing soil temperatures and received light conditions? 

• How does soil temperature interact with received light on the oat crop response and ability 

to take up urinary-N? 

• What is the relative magnitude of the two main catch crop factors, N uptake and 
evapotranspiration, on N leaching?
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Chapter 6  

The Interactive Effects of Soil Temperature and Solar Radiation 

on Development of a Winter-Spring Sown Oats Catch-Crop 

 

“A controlled climate growth chamber study to investigate catch crop development and N uptake 

under winter and early spring conditions and its effect on nitrogen leaching 

from a single urine application”. 
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6.1 Introduction 

The loss of urinary-N via nitrate leaching from winter forage grazing is a major issue in maintaining 

these low cost, dairy winter-feed systems.  Field experiments have demonstrated a potential for 

cereal catch crops like oats to reduce nitrate leaching losses by up to 40% through winter 

establishment (Carey et al. 2016).  However, there is considerable uncertainty around the size of 

this reduction under a wider range of climatic and soil conditions.  Prolonged cool and wet 

conditions could hamper the preparation of a satisfactory seedbed for sowing the oats catch crop 

and/or reduce successful establishment.  Findings from Chapter 5 indicated that the earlier the crop 

is sown, the greater the potential reduction in nitrate leaching; but these findings were made during 

a warmer and drier winter than average.  A better understanding of the effect of growth factors is 

required to ensure that planting oats as a winter catch crop can make a significant reduction in 

nitrate leaching losses as well as improve N-use efficiency within the animal grazing system. 

Given that soil type is a fixed variable in the context of farm management, and free-draining soils 

are preferred for growing and feeding of winter forage crops, then climate becomes the chief source 

of annual variability in determining the growth of the oats catch crop.  The rate of growth is dictated 

by two main factors, soil temperature and intercepted solar radiation. If either is too low, then growth 

may not progress quickly enough for the oats to take up sufficient N to significantly reduce nitrate 

leaching.  Findings from chapter 5 (experiment 2) suggested that eary sowing of oats after 

simulated winter forage grazing was advantageous in increasing N uptake over later sowings. 

However, part of this increase could have been due to the higher than average air and soil 

temperatures and greater sunlight hours experienced over the early winter period.  Experiment 1 

(Chapter 4) also suggested that the sowing and quick establishment of oats helped reduce drainage 

and, consequently, nitrate leaching. Determining the sensitivity of the development of the oats catch 

crop to winter light and soil temperatures is crucial to understanding how likely the crop is to reduce 

nitrate leaching from winter urine deposition i.e. how will nitrate leaching losses differ between a 

cooler and cloudier winter, as opposed to one that is warmer and sunnier?   

The deposition of urine to the surface of a soil usually results in rapid hydrolysis of urea and related 

organic-N compounds to ammonium, whereupon the ammonium is typically nitrified under 

temperate conditions to nitrate over a 2-4 week period (Di & Cameron 2004c).  However, the 
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ammonia oxidation to nitrite step is often rate limited and is enzymatically-mediated by ammonia 

oxidizing bacteria (AOB) and ammonia oxidizing archaea (AOA).  In pasture and cropping soils 

most of this activity is undertaken by AOB rather than AOA (Di et al. 2009b; Ouyang et al. 2016).  

Animal deposition of urine during winter grazing occurs at a time when plant N uptake is usually 

minimal but at low soil temperatures AOB activity is reduced and, consequently, the nitrification 

rate is slowed.   

This chapter reports a growth chamber experiment where nitrate leaching was measured after 

application of 15N-labelled urine onto repacked tubes of a free-draining Balmoral soil where half the 

tubes were sown with oats (the remainder left fallow).  Under controlled conditions of water, light 

and temperature, the experiment was designed to measure the effect of oats development and 

AOB activity on nitrate leaching losses.   

The study tested the following hypotheses: 

1. Nitrate leaching losses from a single urine application to fallow soil will be the same at 6ºC 

(winter temperature regime) as at 10ºC (spring temperature regime). 

2. Nitrate leaching losses from a tube receiving a single urine application and sown with oats, 

will be greater at 6°C, that at 10°C, due to lower N uptake. 

3. Nitrate leaching losses from a tube receiving a single urine application, and sown with oats, 

will be greater under low solar radiation (mid-winter regime) than under high solar radiation 

(mid-spring), due to lower N uptake.  

The study therefore had the following objectives: 

1. Measure nitrate leaching and N uptake from a single application of dairy cow urine to soil 

under simulated winter and spring soil temperature regimes for a period of three months, 

comparing treatments sown either with oats or left fallow. 

2. Measure the effects and interactions of soil temperature and solar radiation on AOB activity 

and oats development. 
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6.2 Materials and Methods 

6.2.1 Soil and tube preparation 

The Balmoral stony silt loam soil (Acidic Orthic Brown soil; NZCS) used in the experiment was 

collected from the same location on Lincoln University’s Ashley Dene research station, situated 

near Springston (NZGD2000: 43 38 42S 172 20 33E), as the soil monoliths used in the field studies.  

Soil texture ranged from silt loam to the first 15 cm depth but increasingly became stony, sandy 

and/or gravelly by 30 cm depth with up to ~50% of the soil volume occupied by stone. The soil was 

initially under established pasture consisting of a mixture of perennial ryegrass (Lolium perenne L., 

cultivar Grasslands Nui) and white clover (Trifolium repens L., cultivar Grasslands Huia).  Key soil 

chemical and physical properties are presented in Table 6.2-1. The soil was collected from two 

depths, the A horizon, comprising the top 15 cm of the profile, and from the C horizon, the soil 

material at or below 50 cm.  The soil was air-dried and sieved through a 5-mm sieve for the A 

horizon material, and through a 15-mm sieve for the C horizon material, to remove the largest 

stones. 

Table 6.2-1. Key soil fertility (0-7.5 cm) and physical properties of the Balmoral 

soil. 

Soil analysis Value Soil depth 
(cm) 

Soil bulk 
density 
(g cm-3) 

Stone 
volume 

(%) 

Soil 
porosity 

(%) 
Soil  

texture1 

pH 6.1 0-10 1.14 11 58 stony ZL 

Olsen-P 33 µg ml-1 10-20 1.57 30 42 stony ZL 

Exch-Ca 8.1 cmol+ kg-1 20-30 1.90 51 29 stony SL 

Exch-Mg 0.5 cmol+ kg-1 30-40 2.05 54 24 stony S  

Exch-K 0.4 cmol+ kg-1 40-60 1.96 51 27 gravelly S 

Exch-Na 0.2 cmol+ kg-1      

CEC 16 cmol kg-1      

Reserve-K 3.6 cmol kg-1      

Sulphate-S 4 µg g-1      

Organic-C 45 g kg-1      

Total-N 4.0 g kg-1      

Organic-S 5 µg g-1      

Base saturation 65%      
1ZL -silt loam; SL -sandy loam; S –sand 
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A series of 50 cm long plastic tubes were prepared from 50 mm internal diameter Marley electrical 

conduit.  Each was sealed at the bottom by a Marley end cap that was drilled and tapped to receive 

a 10-mm screw-in plastic nipple (Irrigation Express, Tauranga).  The screw fitting, once in place, 

was milled to ensure that it was slightly below the level of the drilled hole in the base of the end 

cap.  A 5-cm glass-fibre filter paper was placed in the base of each end cap before it was tapped 

securely on to the bottom of each tube. Wooden racks were prepared from 18 mm construction 

plywood to hold 32 tubes that sat on a lower shelf that was recessed and drilled to both hold the 

irrigation fitting and to allow the nipple to protrude into a 50-mm polythene collection bottle below 

(Figure 6.2-1).   

 

Figure 6.2-1. Profile and cross-section of racks showing tubes and bottles in position. 

To approximate the Balmoral soil profile, each tube was repacked initially with 20 cm of material 

from the C horizon, comprising ~50% stone to a bulk density of 1.9 g cm-3, whilst the upper 30 cm 

was repacked with the A horizon soil at a bulk density of 1.1 g cm-3.  The soil was tapped down 

progressively in a series of increments to ensure even packing.  Once the tubes had all been 

repacked they were rewetted to field capacity and placed in an incubator at either 6°C or 10°C to 

equilibrate for three months prior to installation in the growth chambers.  Approximately one pore 

volume of reverse osmosis-treated water (~500 ml) was flushed through each tube to remove any 

free nitrate prior to the study beginning.  
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6.2.2 Temperature and lighting treatments 

The experiment was conducted in two Conviron Model BDW40 (Winnipeg, Canada) growth 

chambers, equipped with a CMP6050 controller with an Ethernet linked central management 

computer that can maintain air temperature from -10°C to 40°C and lighting levels from 500-1000 

m m-2 s-1 (photosynthetic photon flux density).  The chamber uses ceramic metal halide bulbs 

within a cooled light canopy with glass barrier to prevent heat interference from the light fittings.  

The chambers also have active CO2, relative humidity (>10°C) and air management control. 

 

 Plate 6.2-1. Conviron growth chambers at Lincoln University where the experiment was 

conducted. 

Temperature and lighting treatments were based on Lincoln mid-to-late winter (July-August) and 

early spring (September) average values of air and soil temperatures, solar radiation and relative 

humidity over the last 15 years recorded from the NIWA Broadfields meteorological station (5 km 

from Lincoln University).  

Conversion of daily solar radiation to photosynthetic photon flux density (PPFD) was based on the 

following equation: 
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PPFD =  MDSR × Time ×  CF 

6.2-1 

where: PPFD = Photosynthetic photon flux density or moles of photons per unit area per second 

(m m-2 s-1), MDSR = mean daily solar radiation in megajoules per unit area per day (MJ m-2 day-

1), Time = the number of seconds in a day to convert MJ m-2 day-1 to watts per unit area (W m-2), 

and CF = Conversion factor that converts megajoules (MJ) to joules (x106) and relates the 

proportion of the total radiation spectrum available to the plant for photosynthesis (plant available 

radiation or PAR; 400-700 nm, value ~2.1).  

 

Plate 6.2-2. Racks of soil tubes, shaded and open, shown in place in a growth chamber prior to 

urine application. 

Due to the inability to maintain the soil tubes at mean winter and spring soil temperatures and still 

allow for the diurnal fluctuation of daily air temperatures, the growth chambers were set 

approximately at the mean soil temperatures (10 cm) for the winter and early spring months; 

nominally 6 C and 10 C, respectively.  Solar radiation levels were set at 5 and 10 MJ m-2 day-1 to 

represent mid-winter and early spring light levels, respectively, and was achieved through chamber 
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lighting being set at the higher value with one half of the tubes shielded using 2 mm2 shade-cloth 

netting over a wire frame that approximately halved the received light levels (Plate 6.2-2).  Non-

shaded racks were bordered by a clear plastic “fence” to minimise any airflow differences between 

racks. Light levels were controlled by the light meter reading within the chamber and confirmed with 

a handheld LiCor 250A light meter with a LI-190SA quantum (PAR) sensor (Nebraska, USA) to 

ensure consistent lighting over the tubes.  

Table 6.2-2. Average Lincoln winter/spring monthly air and soil temperatures, daily radiation and 

relative humidity (NIWA 2016). 

Month 
Av. Daily air 
temperature 

(C) 

Av. Daily soil 
temperature 

(C) 

Av. Daily radiation 
(MJ m-2 day-1) 

Relative 
humidity 

(%) 

June 5.3 4.8 4.5 86 

July 4.6 4.0 5.3 86 

August 7.2 5.8 8.3 84 

September 10.0 7.8 12.7 76 

October 11.1 10.0 17.9 76 

November 13.5 13.6 22.4 73 

 

There were eight experimental treatments consisting of a 2x2x2 factorial of soil temperature (2 

levels; 6 or 10°C) by solar radiation (2 levels; 5 or 10 MJ m-2 day-1) by crop (2 levels; oats or 

fallow) factors (Table 6.2-3).   

Urine was collected from a mixed Friesian-Jersey herd one day prior to application and analysed 

overnight for total-N content as outlined in section 3.4.2.  The urine was then adjusted for 

concentration to 3.5 g N L-1 using purified water and labelled with 15N-urea and 15N-glycine in a 

10:1 ratio as per the method described in section 4.2.2.  Final 15N concentration was ~8.5% of the 

total-N present.  
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Table 6.2-3. Treatment ID and list of crop, soil temperature and solar radiation treatments. 

No. Treatment Crop Temperature 
(C) 

Daily radiation 
(MJ m-2 day-1) 

PPFD1 

(m m-2 s-1) 

1 6°C-low light Oats 6 5 286 

2 6°C-high light Oats 6 10 578 

3 10°C-low light Oats 10 5 286 

4 10°C-high light Oats 10 10 578 

5 6°C-low light Fallow 6 5 286 

6 6°C-high light Fallow 6 10 578 

7 10°C-low light Fallow 10 5 286 

8 10°C-high light Fallow 10 10 578 
1 Photosynthetic photon flux density 

6.2.3 Experimental protocol 

The 15N-labelled urine was applied the day after collection at a rate of 69 mg N per tube ( 350 kg 

N ha-1) in a volume equivalent to a 10-mm depth (20 ml).  The tubes were watered 3-times weekly 

(Mon, Wed and Fri) to provide the average monthly rainfall rate (~59 mm per month) equating to a 

total weekly depth of 13.5 mm.  Fourteen days after urine application, two oats seeds were sown 

per tube in every second row of eight tubes to a depth of 1 cm and covered lightly.  The adjacent 

row was left fallow.  A decision was made to increase the rate of watering, at the time the oats 

seeds were sown, to the 75th percentile for Lincoln for the winter months (86 mm), a 50% increase 

in the original depth applied (19.5 mm week1).  Each day’s watering was split into four even 

increments over eight hours and applied by variable volume pipette.  Leachate was collected 

weekly and frozen at -18°C until required for analysis.  

Tubes were sequentially deconstructed starting from 30 days after sowing and thereafter at 

approximate 15-day intervals, out to 75 days.  Vegetative material was removed from the tops of 

those tubes planted with oats, air-dried at 60°C overnight, and weighed.  Tubes were then inverted 

and the bottom cap removed with the upper 30 cm extruded out of the tube using a large wooden 

dowel of the same internal diameter.  The soil core was then gently pried apart to extract the bulk 

of the roots intact and set aside for later washing.  The soil core, once the main root stem had been 

removed, was left largely intact and partitioned by ruler and knife into 3 segments, 0-10, 10-20 and 

20-30 cm. Each segment was inspected and any remaining roots removed and added to those 
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removed earlier, before mixing and bagging.  Fallow treatments were extruded in the same way. 

All soil segments were then weighed.  Roots were washed using a high-pressure water spray head 

through a 2-mm sieve to wash the remaining soil out and allow removal of extraneous material 

(Plate 6.2-3). The roots were then placed in a 70-ml container, covered with water and refrigerated 

at 4°C for later analysis.   

6.2.4 Leachate, soil and plant analysis 

Leachate samples were analysed by flow injection analysis (FIA) to determine the NH4+-N and NO3-

-N concentration (Gal et al. 2004). Nitrogen leaching losses were calculated using the following 

equation (6.2-2): 

𝑁𝑑𝑟𝑛 = ∑(𝑁𝑐𝑜𝑛𝑐 × 𝑉𝑜𝑙) × 𝐶𝐹

𝑛

𝑖=1

 

6.2-2 

where: Ndrn = the sum of the cumulative nitrogen leaching loss (mg N) for n weeks, Nconc = leachate 

nitrogen concentration (µg N ml-1), Vol = millilitres collected (ml), CF = conversion factor (x10-3) to 

convert µg N to mg N 

Measurements of the 15N proportion of the ammonium and nitrate content of the leachates was 

undertaken by concentrating the 15N/14N on 7 mm glass fibre disks using the method described by 

Brooks et al. (1989) before combustion at 1000°C using a PDZ Europa 20-20 stable isotope mass 

spectrometer (Sercon Ltd., Cheshire, UK). Further details are outlined in Appendix C.  

Mineral-N analysis was conducted on all soil samples following the method as outlined by 

Blakemore et al. (1987) but using 1 M KCL for the extraction instead of 2 M (exact method is 

described in Appendix C).  Samples were centrifuged after shaking for 1 hour and filtered through 

a medium fast filter paper (Whatman 1 or equivalent) before freezing at -18°C until required for 

analysis by FIA. The gravimetric moisture content of each soil sample was calculated by drying 10 

g of moist soil overnight at 105°C whilst another portion was dried at 40°C and pulverised to 

determine the N and 15N contents using a Rocklabs mill (Dunedin, NZ).   
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Plate 6.2-3. Stages in tube deconstruction; A) oats (6°C-60 days) prior to harvest, B) soil after 

initial extrusion from tube, C) separation of roots from soil prior to splitting into depth increments 

and D) after root washing (6°C-60 days). 

Total root length, average root diameter, total surface area and total root volume were measured 

by computer scanning the root samples in water trays positioned in an Epson scanner (400 dpi, 

with a transmitted light unit, EPSON EXPRESSION 10000XL 3.49), creating grey scale images 

that were digitised and analysed by the computer software WinRHIZO (Reg V2009c; Regent 

Instruments Inc., Quebec City, Canada) (Himmelbauer et al. 2004).  After digital analysis, the root 

samples were dried at 60°C, and those from the final harvest were weighed and ground for analysis. 

Soil and plant samples were submitted for total-N and 15N analysis by combusting at 1000°C in an 

oxygen atmosphere in an automated Dumas-style elemental analyser which was linked to a 20-20 

stable isotope ratio mass spectrometer (Sercon Ltd, Crewe, CWI6ZA, UK).  Methods are more fully 

outlined in Appendix C. 

  

A B 

D C 
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6.2.5 Quantification of ammonia oxidising bacteria (AOB) abundance 

AOB abundance was quantified using a real time quantitative polymerase chain reaction (qPCR) 

procedure to copy and amplify the amoA gene. Total soil DNA was extracted from 0.25 g of moist 

soil using MoBio PowersoilTM DNA isolation kits (MoBio Laboratories, Geneworks, South Australia) 

per the manufacturer’s instructions. Concentration and quality of the extracted DNA were estimated 

using a Quant-iTTM dsDNA BR assay kit on a Qubit fluorometer (Life Technologies, Auckland, NZ) 

and NanoDrop ND-1000 spectrophotometer (Nanodrop Technologies, Montchanin, USA) using the 

primer pair amoA1F-mod and amoARI-Mod to amplify particular regions of the bacterial amoA gene 

that were then measured for fluorescence intensity (Hornek et al. 2006). Results were expressed 

as million copies g-1 of dry soil. A fuller description of the method is presented in Appendix C. 

6.2.6 Recovery of the urinary 15N-labelled fraction 

The recovery of the 15N proportion in the applied urine was summed from that recovered in 

leachate, soil (mineral-N and total-N) and plant fractions. No gas measurements for N2O or N2 were 

made.  The 15N analysis of the leachates was confined to samples taken from the tube replicates 

that continued through the experiment to the last harvest (32 tubes; 4 replicates per treatment), 

and then only every second batch, meaning the 15N fraction of the samples of the batches between 

was interpolated.  The 15N fraction of the soil from each core sampling (four in total) was determined 

for the top 30 cm only, except in the last deconstruction when the fine earth fraction (<2 mm) from 

the bottom 20 cm was also sieved, retained and dried for analysis. Top and root DM samples for 

each harvest were analysed for 15N except harvest 1 (insufficient sample) for the 6°C treatments.   

The recovery of the 15N in the labelled urine was calculated using the formula provided by Cabrera 

and Kissel (1989) where the recovery is expressed as a percentage of the total 15N in the initial 

application using the following equation (6.2-3): 

𝑁%𝑅𝑒𝑐
15  =

𝑁𝑠 × ( 𝑁𝑎 − 𝑁𝑏) × 100%
15

%
15

𝑁𝑢𝑟𝑖𝑛𝑒 × ( 𝑁𝑐 −%
15 𝑁𝑏%

15 )
 

6.2-3 

where: 𝑁%𝑅𝑒𝑐
15 = the percentage of 15N and consequently, the total-N recovered from that applied in 

the urine, 𝑁𝑠 = milligrams of N in the leachate, plant or soil sample, 𝑁𝑢𝑟𝑖𝑛𝑒 = milligrams of N in the 
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applied urine, 𝑁𝑎%
15  is the atom % 15N abundance in the plant or soil material, 𝑁𝑐%

15  = atom % 15N 

abundance in the urine, and 𝑁𝑏%
15  = the natural abundance of atom % 15N in untreated soil or plants 

grown in untreated soil. 

6.2.7 Statistical analysis 

The experimental treatments were an orthogonal design but the practical requirements of the 

experiment meant that the fallow and oats treatments were alternated between rows (Plate 6.2-4).  

Racks were rotated regularly within the chamber as a means of minimising the effect of any 

temperature or lighting variation with the selection of replicates for each deconstruction event done 

randomly within the rows so each row decreased by two with each sampling.  Data was analysed 

as a completely randomised design using the General ANOVA function within the Genstat 9.0 

statistical package (Lawes Agricultural Trust 2007).  Modelling of data was done using the 

generalised mixed linear (GLM) model procedure within Genstat. 

 

Plate 6.2-4. Rack showing alternating crop row treatments. 
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6.3 Results 

6.3.1 Drainage 

A maximum depth of 121 mm drainage was collected from the low-light fallow treatments of both 

chambers by the end of the experiment, with the oats treatments producing considerably less (crop 

effect; P<0.001, Table 6.3-1).  By 30 days after sowing, drainage had started to decrease in the 

10°C oats treatments compared with the fallow treatments (temp x crop 30 days; P<0.05) so that 

by 45 days, no further drainage was collected.  By the experiment’s end, drainage totals from the 

10°C chamber oats treatments were only about a third of that for the fallow treatments (temp x crop 

75 days; P<0.001, Table 6.3-1).  Similarly, oats treatments in the 6°C chamber by the 60-day mark 

were also producing significantly less drainage although this continued through to the end of the 

experiment (Figure 6.3-1, Table 6.3-1).  Drainage from the high-light treatments in both chambers 

was between 16-35% lower than from the low light treatments (P<0.001). 

Table 6.3-1. Total inorganic-N drainage loss, drainage depth, nitrate-15N and 15N-fraction of total 

nitrate drainage loss for all treatments after 75 days. 

Treatment Inorganic-N leached 
(mg N) 

Drainage 
(mm) 

Nitrate-15N leached 
(mg N, %) 

Temp Light Crop a NO3
- -N NH4

+-N Total-N Depth NO3
- -15N b 15N/N 

6°C 
Low 

Fallow 31.6 c 0.06 ab  31.7 c 117 e 8.7 b 27 cd 
Oats 22.2 b 0.06 ab 22.2 b   88 c 2.4 a 11 ab 

High 
Fallow 17.0 b 0.31 c 17.3 b   86 c 3.0 a 18 bc 
Oats 9.3 a 0.10 b   9.4 a   56 b 0.8 a   8 ab 

10°C 
Low 

Fallow 64.6 d 0.04 ab 64.7 d 121 e 23.0 c 36 d 
Oats 12.3 b 0.04 ab 12.4 ab   44 ab 0.1 a   1 a 

High 
Fallow 38.1 c 0.03 a 38.2 c 102 d 8.3 b 20 bc 
Oats 11.0 a 0.03 a 11.1 ab   37 a 0.4 a   3 a 

Temp *** *** *** *** *** ns 
Crop *** *** *** *** *** *** 
Light *** ** *** *** *** ** 

Temp x crop *** ns *** *** *** ** 
Temp x light ns *** ns ** * ns 
Crop x light *** *** *** ns *** ** 

Temp x crop x light ns ** *** ns *** ns 
c LSD (5%) 6.5 0.06 6.6 11 3.0 9 

a Means within a column followed by a letter in common are not significantly different according to Duncan’s multiple range 

test (P < 0.05); b 15N fraction of total nitrate loss; c Least significant difference at temp x crop x light level. 
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6.3.2 Nitrogen leaching 

The overwhelming bulk (>99%) of the mineral-N recovered in drainage was as nitrate with only 

trace amounts of ammonium recovered (Table 6.3-1).  Nitrate leaching losses from the fallow 

treatments of the 10°C chamber were about twice (P<0.001) those from the 6°C chamber (Figure 

6.3-1), with an average of ~51 mg N collected after 75 days (Table 6.3-1). Sowing oats in the 10°C 

and 6°C chambers reduced nitrate leaching losses, on average, by around three-quarters and one-

third, respectively (P<0.001; Table 6.3-1) so that final nitrate leaching losses from the oats 

treatments of the 6°C and 10°C chambers were similar, ranging from 9-22 and 11-12 mg NO3
- -N, 

respectively (Table 6.3-1).  The higher lighting treatment in both chambers decreased nitrate 

leaching loss overall (P<0.001) for both cropping treatments although not significantly for the 10°C 

oats treatment, possibly due to drainage finishing so quickly by 45 days. 

Much of the initial nitrate collected did not actually originate from the urinary-N as the 15N-labelled 

fraction was only detected after ~45 days when the first traces were detected in the fallow 

treatments of both growth chambers.  This increased, however, so 15N-nitrate made up to 36% of 

the total nitrate loss from the fallow treatments by 75 days (Figure 6.3-1).  However, for the oats 

treatments in both chambers, the 15N fraction comprised a much smaller proportion, especially at 

10°C, where it only made up between 1-11% of the total nitrate collected. This meant most of the 

nitrate collected from the 10°C oats treatments originated from soil nitrogen sources rather than 

from the 15N-labelled urine (Table 6.3-1).  Nitrate-15N concentrations in drainage water remained 

low for all treatments till around 45-50 mm drainage whereupon concentrations for both 10°C and 

6°C fallow low light treatments increased rapidly, reaching 175-285 mg NO3
- -N L-1 after 120 mm 

drainage (Figure 6.3-2 The lack of further drainage, however, meant no treatment breakthrough 

curves were completed. 
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Figure 6.3-1. Total nitrate content in leachate (total and 15N-nitrate fraction) and drainage 

depths for 30, 45, 60 and 75 days following sowing of oats at 6 °(A) and 10°C (B) and at mid-

winter (low) or mid-spring (high) solar radiation levels. Standard error bars shown (±1 SE). 
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Figure 6.3-2. Nitrate-15N concentration versus cumulative drainage over 90 days for fallow 

and oats treatments at 6° (A) and 10°C (B) and at mid-winter (low) or mid-spring (high) solar 

radiation levels. Standard error bars shown (±1 SE). 
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6.3.3 Soil mineral-N and AOB population abundance 

By the time of the first core sampling (30 days after sowing of the oats), the overwhelming bulk of 

the soil mineral-N was present was as nitrate (>90%) with the amounts declining in all treatments 

by 75 days (Figure 6.3-3).  The total amount of soil mineral-N present at 30 days as ammonium 

was small (~4 mg N per core), declining further over the following 45 days (< 2 mg N per core) 

(Figure 6.3-4).  The total amount of nitrate present for both 6 and 10°C treatments at 30 days was 

similar but its distribution was different, with more nitrate present in the lower depths for the 10°C 

chamber compared with the 6°C chamber (temp x depth; P<0.001) indicating a greater movement 

of nitrate after 45 days leaching (15+30 days after sowing).  Peak nitrate content in the lowest depth 

(20-30 cm) of the fallow treatment in the 6°C chamber occurred at 60 days after sowing but it was 

45 days for the equivalent 10°C treatment.  Oats significantly reduced soil nitrate content in the 

10°C chamber compared with fallow treatments by 45 days after sowing (P<0.001) and by 60 days 

in the 6°C chamber (P<0.01).  By 60 days after sowing, nitrate all but disappeared in the 10°C crop 

treatments, and all together by 75 days. However, for the 10°C fallow treatments, 15-40% of the 

nitrate present in the top 30 cm at 30 days, remained at 75 days (Figure 6.3-3).  Similar trends 

between the crop treatments occurred in the 6°C chamber although the rate of decrease in soil 

nitrate was not as rapid after 75 days.  

There were many interactions in nitrate content and distribution through the profile (i.e. depth) 

between crop treatments, temperature and lighting levels.  More intense lighting significantly 

changed the distribution of nitrate within the column (light x depth; P<0.01), with more present in 

the upper depths of the high-light treatments compared to the low-light treatments after 30 days for 

both 6C and 10C fallow treatments, and for the 6C oats treatments. For the 10C oats 

treatments, the crop-by-depth effect (P<0.01) was more important.  By 60 days after sowing, light-

by-depth (P<0.001), crop-by-depth (P<0.01) and crop-by-light (P<0.05) effects were all significant 

for soil nitrate in 6C and 10C fallow and crop 6°C treatments (Figure 6.3-3).  In the 10C chamber, 

both crop-by-depth (P<0.001) and light-by-depth (P<0.05) effects were evident after 45 days from 

sowing but the removal of nitrate from the crop treatments after 60 days by either uptake or leaching 

meant both these interactions diminished in significance (Figure 6.3-3). 
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Figure 6.3-3. Soil nitrate-N content per tube (to 30 cm) for deconstructed crop treatments 

(none, oats) held at 6 (A) and 10C (B) and at mid-winter (low) or mid-spring (high) solar radiation 

levels after 30, 45, 60 and 75 days. Standard error bars shown (±1 SE). 
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Figure 6.3-4. Soil ammonium content (to 30 cm) for deconstructed crop treatments (none, 

oats) held at 6 (A) and 10C (B) and at mid-winter (low) or mid-spring (high) solar radiation levels 

after 30, 45, 60 and 75 days. Standard error bars shown (±1 SE). 
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15N-nitrate loss were similar for soil nitrate generally, meaning statistical differences for main factors 

and interactions were also similar.  

The effect of light intensity on soil 15N-nitrate concentrations was similar to that for nitrate generally, 

particularly as an interaction with depth in the fallow treatments of both 6 ° and 10°C chambers. 

However, this effect manifested earlier (from 30 days; Figure 6.3-5) than for nitrate generally.  More 

15N-nitrate was recovered after 30 days in the upper 10 cm of the 6°C high light treatments whereas 

for the 10°C treatments, more 15N-nitrate was recovered lower down the tube profile (temp-by-

depth; P<0.001), particularly in the fallow treatments as further leaching occurred (Figure 6.3-5).  

In the period from 30-75 days after sowing, differences in the depth distribution of 15N-nitrate 

between 10°C fallow and oats treatments diminished as the effect of N uptake and/or leaching 

became more significant and lighting intensity less important; in the 6°C chamber, these effects 

persisted and the main and multiple factor interactions of crop, light and depth (P<0.05-0.001) 

continued to 75 days.  

AOB population abundance values at each deconstruction event were highest in the 0-10 cm layer 

of each treatment where the urine was initially applied (P<0.001) (Figure 6.3-6).  AOB abundance 

numbers for both fallow and oats treatments started to decline after 30 days in the crop treatments 

of the 10C chamber but peaked in the 6°C chamber  at ~45 days, particularly in the high light 

and/or crop treatments (temp-by-crop-by-light interaction P<0.05), before starting to decline after 

60 days.  By 75 days, AOB abundance had declined significantly in all treatments of both chambers 

although those in the 6°C chamber continued to remain higher overall (P<0.01). 

There were significant interactions (P<0.05-0.01) between temperature, crop, light and depth, 

particularly for the 10°C treatments where differences were greatest and linked to N uptake and/or 

N leaching as values and differences declined over time.  Crop treatments lowered AOB abundance 

significantly from fallow treatments after 30 days, particularly for the 10°C chamber but conversely 

AOB abundance was greatest for the 10°C fallow treatments. AOB numbers for fallow and oats 

6°C treatments were generally intermediate (temp-by-crop; P<0.001) but followed similar trends 

over time (Figure 6.3-6).   
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Figure 6.3-5. Soil 15N-nitrate content (to 30 cm) for deconstructed crop treatments (none, 

oats) held at 6 (A) and 10C (B) and at mid-winter (low) or mid-spring (high) solar radiation levels 

after 30, 45, 60 and 75 days. Standard error bars shown (±1 SE). 
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Figure 6.3-6. Soil AOB (amoA gene) abundance (to 30 cm) for deconstructed crop 

treatments (none, oats) held at 6 (A) and 10C (B) and at mid-winter (low) or mid-spring (high) 

solar radiation levels after 30, 45, 60 and 75 days. Standard error bars shown (±1 SE). 

6.3.4 Soil moisture content 

Soil moisture content varied between treatments due to the evapotranspirative demand of the oats, 

despite watering at the 75th percentile of Lincoln winter rainfall inputs.  By 45 days after sowing 

there were noticeable differences in soil moisture content between crop (P<0.001) and light 

0 50 100 150 200 250

None

Oats

None

Oats

None

Oats

None

Oats

None

Oats

None

Oats

None

Oats

None

Oats

Lo
w

H
ig

h
Lo

w
H

ig
h

Lo
w

H
ig

h
Lo

w
H

ig
h

30
45

60
75

D
ay

s 
si

nc
e 

cr
op

 s
ow

n

A

0-10 cm

10-20 cm

20-30 cm

0 50 100 150 200 250

B

AOB amoA gene abundance (million copies g-1 soil) 



 

 Page 182  
  

(P<0.01) treatments, especially for the 10°C chamber where there was also a significant crop-by-

light interaction (P<0.05). By 75 days, these drying effects were large and soils taken from the 

deconstruction of the 10°C oats treatments had gravimetric moisture contents as low as 6%, 

compared to 26-28% in the fallow treatments (Figure 6.3-7). Similar effects were also noticeable 

between crop and light treatments, in the 6°C chamber by 75 days after sowing, albeit over a 

smaller range of soil moisture content. 

 

Figure 6.3-7. Soil moisture content for deconstructed crop treatments (none, oats) held at 

6 and 10C, and at mid-winter (low) or mid-spring (high) solar radiation levels, after 75 days. 

Standard error bars shown (±1 SE). 
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6.3.5 Dry-matter production, N and 15N content 

Oats germination occurred first in the 10°C chamber about 10 days after sowing, whilst germination 

in the 6 C chamber began 13 days later.  As expected, growth was more rapid in the 10°C chamber 

with production for both tops and roots an order of magnitude greater at 10°C than at 6°C to 60 

days.  Oats DM production of both tops and roots increased exponentially against degree days 

(sum of daily average chamber temperature exceeding 0°C) for both 6°C and 10°C chambers 

(Figure 6.3-8).  Although those plants under low light grew taller than their full light counterparts 

(Plate 6.3-1), the total stem DM harvested was very similar (Figure 6.3-8a).  However, root DM 

production in the 10°C chamber was consistently greater (P>0.001) for the high light over low-light 

treatment at each deconstruction day, by ~33% (Plate 6.3-2) but there was no difference between 

6°C light treatments (Figure 6.3-8b).  Overall, however, total DM production (roots and stems) was 

similar between light treatments for respective chambers (Table 6.3-2). 

 

Plate 6.3-1.  Oats top growth after 60 days for high and low light treatments at 10°C. 

Low light High light 
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Figure 6.3-8. Dry-matter production (log10 y scale) for oats tops (a) and roots (b) 75 days 

after sowing.  Oats treatments were at two temperatures, 6 or 10C, and two solar radiation 

levels, mid-winter (low) or mid-spring (high). Standard error bars shown (±1 SE). 
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Plate 6.3-2. Digital scans showing typical root development after 75 days for 10°C mid-spring (A) 

and mid-winter (B), and 6°C mid-spring (C) and mid-winter (D) light treatments. 
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Figure 6.3-9. Root lengths (a) surface areas (b) and volumes (c) for oats vs. degree growing 

days at two temperatures, 6 or 10C, and two solar radiation levels, mid-winter (low) or mid-

spring (high). Standard error bars shown (±1 SE). (note log10 y scale). 
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Similar relationships to those for root DM were also shown for root length, surface area and volume 

(Figure 6.3-9a-c) although these tended to deviate from an exponential response by 75 days after 

sowing.  Root length, surface area and volume were greater for the high light treatment for the 10°C 

chamber from 45 days (P<0.05-0.001, respectively) and although differences in root length 

appeared to vary, they remained significantly greater for both root volume (P<0.01) and surface 

area (P<0.01) for the high light treatments after 75 days (21% and 35% greater, respectively).  

There were no significant differences between the 6°C light treatments for root length, surface area 

or volume. 

Despite an order of magnitude difference in DM production between chambers for both roots and 

stems throughout the experiment (Table 6.3-2), there was only a 2-4-fold difference in N content.  

This was due to the higher N content in both roots and stems of the 6°C chamber oats treatments 

and a “dilution” of the N content by the greater DM of the 10°C treatments.  A similar pattern was 

repeated in 15N content (Table 6.3-2) that made up about two-thirds of the total-N present although 

the proportion was a little less overall in the 10°C treatments (~60%) than for the 6°C treatments 

(~67%) (Figure 6.3-10 & Table 6.3-2).   

As with DM yields, total-N and 15N content (roots and stems) did not significantly differ between 

light treatments by the end of the experiment (75 days after sowing) but there were considerable 

differences between the stem and root components for the 10°C chamber from start to finish. More 

N and 15N was stored in the roots of high light treatments from 30-75 days but this was 

compensated by less N present in stems of the same treatments by the experiment’s end (Figure 

6.3-10).  Most of this additional N was due to the greater DM root weights rather than differences 

in N% (Table 6.3-2). Generally, the 15N/N ratio was similar between treatments for roots, stems and 

totals at ~64% (range 54-70%). 

A summing of 15N recoveries in leachate, KCl-extractable soil nitrate (0-30 cm) and plant material 

showed that recovery of urine-N at 30 days was around ~38% and not significantly different 

between treatments. However, by 75-days, recoveries were greater overall for oats 10°C chamber 

treatments although generally the 15N recovery did not exceed 50% (Table 6.3-3). Recoveries did 

not include any measurements of denitrification loss, soil organic-N or mineral-N resident in the 

gravel layer (30-50 cm). 
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Figure 6.3-10. Total N uptake (14N and 15N) in oats’ stems and roots from 30, 45, 60 and 75 

days after sowing, for two temperatures, 6 or 10C, and two solar radiation levels, mid-winter 

(low) or mid-spring (high). Standard error bars shown (±1 SE). 
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Table 6.3-2.  Dry-matter yields, total-N and 15N uptake and N concentration (%) per tube of oats stem and roots after 30, 45, 60 and 75 days from sowing. 

 Treatment N content (mg N) 15N uptake (mg N) N% Dry-matter (g) 

Component Temp Light 30 d 45 d 60 d 75 d 30 d 45 d 60 d 75 d 30 d 45 d 60 d 75 d 30 d 45 d 60 d 75 d 

Roots 
6°C 

Low 0.6 1.9 2.1 4.9 0.4 1.3 1.4 3.3 3.6 3.6 2.4 2.8 0.02 0.05 0.09 0.17 
High 0.8 1.5 2.2 5.6 0.5 1.0 1.4 3.7 3.8 3.8 2.6 3.1 0.02 0.04 0.09 0.18 

10°C 
Low 0.6 5.5 10.4 16.3 0.3 2.9 5.2 8.9 1.3 2.7 1.5 1.2 0.05 0.21 0.71 1.34 
High 1.4 9.2 10.8 20.6 0.9 5.1 5.9 11.2 2.1 2.7 1.3 1.2 0.06 0.34 0.83 1.79 

Temp ns *** *** *** ns *** *** *** ** *** *** *** *** *** *** *** 
Light ns ** ns * ns *** ns * ns ns ns ns * ** ns *** 

Temp x light ns *** ns ns ns *** ns ns ns ns ns * ns *** ns *** 
a LSD (5%) 1.1 1.2 1.3 3.0 0.8 0.6 0.8 1.9 1.6 0.5 0.3 0.2 0.01 0.05 0.09 0.16 

Stems 
6°C 

Low 1.3 4.1 8.5 15.9 0.9 2.6 5.8 11.2 5.4 5.4 5.8 5.1 0.03 0.08 0.15 0.31 
High 2.0 4.3 9.4 15.0 1.3 2.8 6.5 10.5 5.5 5.5 5.7 5.4 0.04 0.08 0.17 0.28 

10°C 
Low 6.4 26.5 43.6 43.8 4.2 16.0 24.0 25.8 5.6 5.4 3.0 1.4 0.12 0.49 1.47 3.07 
High 6.9 25.3 33.2 36.3 4.8 16.4 20.0 20.9 5.1 4.6 2.2 1.3 0.14 0.55 1.51 2.85 

Temp *** *** *** *** *** *** *** *** ns ** *** *** *** *** *** *** 
Light ns ns *** * * ns ns * ns ** ** ns ns ns ns ns 

Temp x light ns ns *** ns ns ns * ns ** *** ** * ns ns ns ns 
a LSD (5%) 1.1 6.4 3.1 5.2 0.7 3.5 2.5 3.5 0.3 0.3 0.3 0.3 0.02 0.12 0.15 0.45 

Total 
6°C 

Low 2.0 6.0 10.6 20.8 1.3 4.0 7.2 14.5 - - - - 0.04 0.13 0.23 0.49 
High 2.8 5.8 11.6 20.7 1.8 3.7 7.9 14.2 - - - - 0.06 0.12 0.25 0.46 

10°C 
Low 7.0 32.0 54.0 60.1 4.5 19.3 29.2 34.7 - - - - 0.16 0.69 2.18 4.41 
High 8.2 34.5 44.1 56.9 5.7 21.5 25.9 32.0 - - - - 0.20 0.89 2.34 4.64 

Temp *** *** *** *** *** *** *** ***     *** *** *** *** 
Light ns ns ** ns ns *** ns *     * ns ns ns 

Temp x light ns ns *** ns ns *** ns ns     ns ns ns ns 
a LSD (5%) 2.1 7.4 3.8 7.7 1.4 0.6 3.0 1.9     0.03 0.16 0.23 0.45 

a Least significant differences at temp x light level (5% level); b insufficient sample present.  
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Table 6.3-3. 15N contents in drainage, KCl-extractable nitrate-N and plant material, 30, 45, 60 and 75 days after sowing of oats (45, 60, 75 and 90 days after 

15N-labelled urine application). 

Treatment Nitrate-15N leached (mg N) Soil 15N-nitrate (mg N) Plant-15N (mg N) Total-15N (% of applied) 

Temp Light Crop 30 d 45 d 60 d 75 d 30 d 45 d 60 d 75 d 30 d 45 d 60 d 75 d 30 d 45 d 60 d 75 d 

6°C 

Low 
Fallow 0.0 a 0.4 a  2.7 b 8.7 b 25.9 b 18.9 cd 11.4 c   8.1 d - - - - 38 a 28 a  20 b 24 ab 

Oats 0.1 a 0.4 a  1.9 ab 2.4 a 27.0 b 24.4 de 10.8 c   4.2 c 1.3 a 4.0 a 7.2 a 14.5 a 41 a 42 b 29 cd 31 bc 

High 
Fallow 0.0 a 0.2 a  1.8 ab 3.0 a 22.8 ab 13.7 bc 20.0 d 12.4 e - - - - 33 a 20 a 32 d 22 a 

Oats 0.0 a 0.1 a  0.7 a 0.8 a 25.2 b 21.9 de   9.3 bc   5.4 c 1.8 a 3.7 a 7.9 a 14.2 a 39 a 37 b 26 c 30 b 

10°C 

Low 
Fallow 0.1 a 1.5 b 10.3 c 23.0 c 26.8 b 26.1 de   6.2 b   2.0 b - - - - 39 a 40 b 24 bc 36 c 

Oats 0.1 a 0.1 a  0.1 a 0.1 a 19.7 a 10.8 ab   0.0 a   0.0 a 4.5 b 19.0 b 29.2 c 34.7 b 35 a 43 b 42 d 50 d 

High 
Fallow 0.1 a 0.5 a  2.8 b 8.3 b 26.8 b 27.3 e   7.6 b   8.6 d - - - - 39 a 40 b 15 a 24 ab 

Oats 0.3 a 0.4 a  0.4 a 0.4 a 20.9 ab   6.0 a   0.0 a   0.0 a 5.7 b 21.5 b 25.9 b 32.0 b 39 a 40 b 38 d 47 d 
Crop ns ** *** *** ns *** *** *** - - - - ns *** *** *** 

Temp ns ** *** *** ns ns *** *** *** *** *** *** ns *** ** *** 
Light ns ** *** *** ns ns ** *** * ns ns ns ns ns ns ** 

Crop x temp ns ** *** *** ** ns ns ns - - - - ns ** *** * 
Temp x light ns ns ** * ns *** * ns ns ns * ns ns ns *** *** 
Crop x light ns * *** *** ns ns *** *** - - - - ns ns * ns 

Crop x temp x light ns ** *** *** ns ns ** ns - - - - ns ns ns ns 
a LSD (5%) 0.3 0.4 1.8 3.0 5.8 6.0 2.9 1.8 1.4 3.9 3.0 5.1 8 8 5 6 

a LSD –least significant difference at 5% level of crop x temp x light; means within one urine application date followed by a letter in common are not significantly different according to 

Duncan’s multiple range test (P < 0.05). 
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6.4 Modelling oats N uptake 

Nitrogen uptake for both total-N and labelled 15N content for the oats was modelled using a 

generalised linear mixed (GLM) model (Figure 6.4-1). The model used degree days and drainage 

as the fixed variables to produce the following equations: 

𝑁15  𝑢𝑝𝑡𝑎𝑘𝑒 = 𝐷𝑒𝑔𝑟𝑒𝑒 𝑑𝑎𝑦𝑠 × 0.062 − 𝐷𝑟𝑎𝑖𝑛𝑎𝑔𝑒 × 0.064  

6.4-1 

𝑁 𝑢𝑝𝑡𝑎𝑘𝑒 = 𝐷𝑒𝑔𝑟𝑒𝑒 𝑑𝑎𝑦𝑠 × 0.11 − 𝐷𝑟𝑎𝑖𝑛𝑎𝑔𝑒 × 0.173  

6.4-2 

where: 15N uptake and N uptake are the total amount of N taken up from the 15N-labelled urine and 

soil-N, respectively (mg); degree days is the cumulative number of days multiplied by the average 

soil temperature (>0°C) and drainage is the cumulative depth of drainage (mm) after 30,45, 60 and 

75 days. 

 

Figure 6.4-1. Actual and fitted GLM model data for total plant N and 15N uptake from 30-75 

days after sowing. Fixed variable degree days (days x average soil temp;°C) and drainage (mm).  
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6.5 Discussion 

6.5.1 Drainage conditions 

Drainage and N leaching losses in this experiment were invariably influenced using repacked soils 

rather than intact soil monoliths.  Movement of nitrate down a soil profile occurs through a 

combination of solute transport processes, namely matric flow, preferential and bypass flow (see 

section 2.4.4).  However, in a repacked soil it is reasonable to assume most drainage occurs 

through matric flow as large continuous pores and channels are largely absent.  Although soil 

physical conditions for the experiment ensured free-drainage, the total drainage depth of ~120 mm 

for the fallow treatments was about 50% of water applied (~250 mm) whereas an average Lincoln 

winter would normally produce ~220 mm (~85%) drainage for a free-draining soil at field capacity 

(Lilburne et al. 2010). This difference is probably because air temperature conditions within the 

chambers were set to maintain soil temperatures, not air temperatures, and therefore more 

evaporation occurred from the soil surface than had been anticipated. Had the tubes been held 

under the conditions of a typical Lincoln winter diurnal air temperature environment, drainage would 

very likely have been greater.  Nevertheless, sufficient consistent drainage occurred to enable 

study of the scale and size of the main factors involved in retention of nitrate with respect to the 

growing of the catch crop. 

6.5.2 Effects of sowing oats on nitrate leaching 

Sowing of the oats, particularly in the 10°C chamber, had such a strong evaporative demand on 

soil moisture that by 60-days, drainage ceased from the oats treatments altogether despite water 

application equivalent to the 75th rainfall percentile for Lincoln.  The ability of oats to reduce 

drainage loss, even at a time when plant development appears slight, was also noted in 

experiments 1 and 2 (Chapter 4 and Chapter 5, respectively) and is undoubtedly due to the ability 

of the oat plants to remain active at low temperatures.  Compared to pastures, oats can convert 

solar radiation to vegetative growth more efficiently over cool periods provided enough thermal time 

has elapsed for the leaf area of oats to increase sufficiently to intercept it (Noble 1972).  With this 

achieved, oats can respond and grow quickly under Canterbury conditions as soil temperatures 

warm in response to the approaching spring (Martini et al. 2009). 



 

 Page 193  
  

The presence of a relatively large pool of nitrate within the repacked soil tubes, presumably derived 

from SOM mineralisation, meant that N leaching losses began immediately after the 

commencement of water application.  Nitrate leaching from the 15N-labelled urine was not detected 

until 60 days after application and then only in small amounts in the fallow treatments.  Despite the 

unintended presence of a large resident nitrate concentration in the soil, oats in the 10°C chamber 

started to reduce nitrate leaching loss compared with fallow treatments after only 30 days from 

sowing (45 days after urine application) with the effect initially greater for the high-light treatments.  

This is attributable to a combination of reduced drainage and rapid N uptake by the oat plants.  

Indeed, in the period from 30-45 days after sowing, N uptake in the 10°C oats’ roots and stems 

increased four-fold coinciding with an even more rapid growth in root length and mass, particularly 

in high-light treatments (Table 6.3-2).  This rapid uptake effectively accounted for virtually all the 

15N-labelled urinary-N leaving very little urinary-N to leach.  Consequently, oats sown early enough 

after urine application have the potential to capture N at the application rate used of 350 kg N ha-1.  

In contrast, when the soil is fallow, the potential for a large nitrate leaching loss is equally high due 

to the high AOB activity.   

A preliminary experiment conducted on 10 cm cores of the same soil incubated at 6°C and 10°C, 

respectively, found that complete nitrification of the applied urinary-N occurred by 42 days at 10°C 

but this did not occur till after 56 days at 6°C (Appendix F). Whilst these differences in nitrification 

rates might not appear large they are important windows in terms of nitrate leaching losses because 

they coincide with the 10°C 30-45-days rapid growth phase.  For a catch crop well supplied with N, 

more than 1000 kg DM ha-1 can be grown in a two week period of active growth and thus, at 3-4% 

N content, 30-40 kg ha-1 can be removed from the soil (Vos & van der Putten 1997).  In this 

experiment, growth rates in the 10°C chamber were up to 5-times that; consequently, N uptake in 

the period from 30-60 days after sowing was equivalent to ~220 kg N ha-1 of which ~120 kg N ha-1 

was from the 15N-labelled urine.  Whilst the growth of oats was undoubtedly slower in the 6°C 

chamber, nitrate leaching losses after 75 days and total 15N-nitrate losses were not that dissimilar 

to their 10°C counterparts, particularly at the higher light intensity.  This was surprising as it might 

have been expected that slower crop growth would leave the built-up nitrate at a greater risk of 

leaching.  Although more mineral-N did remain within the soil of the 6°C oats treatments by the end 



 

 Page 194  
  

of the experiment (90 days after urine application), this only amounted to ~10% of the 15N-labelled 

urine, and although some residual nitrate may also have resided in the bottom layer gravels, the 

sum of both wouldn’t account for such a large difference.  N uptake in the same 30-60 days period 

after sowing as for the 10°C treatments shows a modest uptake of only ~50 kg N ha-1 (~30 kg 15N 

ha-1).  The reduction in nitrate leaching in the 6°C oats treatments from 60 days after sowing is, 

therefore, probably attributable to several factors:  

1) AOB abundance numbers built up more slowly, and persisted for longer, in 6°C 

treatments than at 10°C, indicating a slower nitrification rate and build-up in nitrate-N 

concentrations, leaving less to leach over the early drainage period, 

2) Significantly higher N concentrations within the plant stems and roots by 60 days after 

sowing partially compensated for the reduced plant growth rates in the 6°C treatments, 

and  

3) Less drainage, especially at the higher light intensity. 

AOB abundance built and declined more slowly in the 6°C treatments indicating a slower rate of 

nitrification than for the 10°C treatments.  This may offer some confidence that the window to retain 

urinary-N is longer than thought.  Both Cookson et al. (2002) and Flowers and O’Callaghan (1983) 

found that nitrification rates for incubated clover material and ammonium sulphate-amended pig 

slurry at 4°C and 5°C, respectively, were approximately half those at 10°C whilst Di and Cameron 

(2004c) found that the half-life of NH4
+-N in a urine incubation experiment was 44 days at 8°C but 

half that at 20°C.  Although there is some evidence to suggest that the root systems of 

monocotyledons may be more sensitive to temperature in their N accumulation characteristics 

compared with, for example, crucifer species (Laine et al. 1994), the rapid development of 

cereal root systems means that they do have a capacity to absorb N.  However, at 6°C root 

systems may not develop fast enough in the first 60 days after urine application (45 days after 

sowing) to make a significant impact on N uptake. The last factor, lower drainage, may have 

partly been an artefact of reduced humidity control in the 6°C chamber increasing evaporative loss.  

Although this would reduce nitrate leaching loss more than might have occurred naturally, actual 

leaching losses of 15N-nitrate from the 6°C treatments, 90 days after urine application, were still 
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only 1-13% of the applied urinary-N so there is still a considerable margin to retain urinary-N against 

leaching.  

In conclusion, sowing oats at 6°C, despite its modest growth, was still an effective method to reduce 

nitrate leaching losses. Indeed, it is critical if oats are to be effective as a catch crop to establish 

them early, even while soil temperatures are cool, to take advantage of the rapid growth period that 

follows soil warming.  

6.5.3 Oats development – relationship with temperature and solar radiation 

Research in New Zealand from the 1970s and 80s investigated the yields and development of 

forage oats in several North and South Island regions (Taylor & Hughes 1979; Hughes et al. 1984).  

Traditionally, these crops have been sown in autumn but the patterns of development are relevant 

to winter-sown crops where the crop yield models, especially in the cooler southern regions, have 

several distinct development phases (discussed previously in section 2.6.3).  A yield model of oats’ 

development can be represented by a three-part progression.  The first, measured in degree days, 

covers the period when the crop emerges after sowing but essentially the yield is zero.  In the 

second part, yield builds proportionally with degree days (i.e. aggregated daily average 

temperature) and is largely controlled by soil temperature until coverage is sufficient to intercept a 

large proportion of the available solar radiation.  In the final phase the model switches from one 

where yield is proportional to temperature to one controlled by the received photosynthetically-

active radiation component (Figure 6.5-1) (Hughes et al. 1984). 

Results from this experiment can be broadly represented by the dashed box shown in Figure 6.5-1 

where the growth of the crop is largely temperature controlled but is transitioning, at least for the 

10°C chamber, to one controlled by intercepted light.  For example, at 6°C for 75 days, a period 

that would cover most of a Canterbury winter, degree-days are only approaching 450 and oats yield 

is not much past emergence so at this point intercepted radiation is not a major factor in its 

development.  At 10°C and 450 degree-days, however, canopy cover is sufficiently developed that 

the intercepted radiation is stimulating yield and is represented by the front part of the box.  In this 

experiment, whilst higher radiation did increase root DM, there was less of an effect on stem DM. 

This could be because of the more rapid depletion of nutrients, N particularly, and of moisture under 
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the high-light treatments, where DM gains were limited in the latter part of the yield curve over low 

light treatments.  This significantly affected stem N uptake although N uptake overall (roots+stems) 

was very similar between 10°C light treatments.  This is encouraging because it shows that low 

light treatments, typical of the levels found in mid-to-late winter, did not significantly hamper oats N 

uptake.  Given conditions less physically and nutritionally limiting, the N content in the stems of the 

10°C high-light oats may well have been higher. 

 

Figure 6.5-1. Representative cool season forage oats yield curve (after Hughes et al. (1984)). 

Box represents experimental period covering 6 ° and 10 ° C oats development. 

6.5.4 Modelling N uptake 

The GLM models used to predict N uptake for both total-N and 15N uptake were simple and based 

on only two variables, degree-days and drainage.  These were well correlated (R2>0.9) with actual 

N uptake data but given the controlled environment this is not surprising.  Field N uptake models 

based around catch crops are invariably more complicated as they are designed to deal with crop 

rotations and the residual soil mineral-N left over from the harvested crop and/or the mineralisation 
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of crop residues (Thorup-Kristensen et al. 2003).  Water balances must also be considered if there 

is no direct measurement of drainage.  In the growth chamber situation there is a defined pool size 

of N applied, and soil volume and drainage are easily measured.  Nevertheless, there is some 

opportunity to predict N uptake in a field catch crop and thereby, infer what N has been removed 

from the soil mineral-N pool. 

6.5.5 Relationship with field research reported in earlier chapters 

This highly controlled growth chamber experiment provided further insight into the field experiments 

and where these succeeded or failed to mitigate nitrate leaching.  N uptake in the oats and Italian 

ryegrass catch crops from the 15N-labelled urine in field experiment 1 (Chapter 4) was low, 

amounting to only ~4% of that applied.  The sowing of both in a soil with relatively low AWC, in the 

case of oats, seven weeks after urine application, and the Italian ryegrass, another four weeks 

later, failed to make an effective mitigation through N uptake.  Nevertheless, nitrate leaching was 

lower in the field oats treatments than the Italian ryegrass treatments due to lower drainage.  This 

was a fundamental, and possibly discounted part of mitigating nitrate leaching after winter forage 

grazing.  Even at 6°C, this experiment has shown that oats emergence can reduce nitrate leaching 

loss, despite low yields, simply through increased evapotranspiration.  Of course, soil temperatures 

go through minima around July and increase again into August, so maintaining soil temperatures 

at 6°C is somewhat artificial and it may be that the growth chamber conditions enhanced the 

reduction in drainage.  Nevertheless, sowing the oats during this period appears critical to its 

success as a catch crop. Once the crop has emerged and soil temperatures warm, the crop is well 

placed to capture resident soil mineral-N.  This was shown in the second field experiment (Chapter 

5) where the planting of oats as soon as one day after urine application was effective in capturing 

N and reducing nitrate leaching, albeit over a warmer, drier winter.   
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6.6 Conclusions 

Sowing oats in urine-treated tubes, in both 6° and 10°C chambers, proved highly effective in 

reducing nitrate leaching losses by around one-third and three-quarters, respectively.  The factors, 

however, controlling N uptake and subsequently, nitrate leaching, differed between the 10°C and 

6°C chambers.  Urine applied to fallow treatments in the 10°C chamber increased AOB abundance 

rapidly, with nitrification complete by 42 days, whilst slower rates were observed in the 6C fallow 

treatments, meaning less N was actually lost for the 6C fallow treatments after 90 days.  Oats 

treatments germinated and grew rapidly at 10°C, lowering nitrate leaching loss through N uptake 

and reduced drainage.  At 6°C, plant growth and N uptake rates were less than at 10°C but a slower 

increase in AOB abundance meant nitrification rates were also slower, reducing the rate of soil 

nitrate accumulation.  Decreases in AOB abundance were associated with falls in soil nitrate 

concentration due to leaching or N uptake and fell more slowly for the 6°C treatments.  By 75 days, 

N concentrations in the roots and stems of the 6°C oats treatments were much higher that at 10°C 

and this appeared to assist in reducing nitrate leaching loss from the 6°C crop treatments over the 

experimental period, despite much lower DM growth rates.  Although residual soil-N remained 

higher in the 6°C oats treatments by the end of the experiment (75 days after sowing), this point 

also coincides with a period of increasing soil temperature when oats undergoes a rapid 

development period, increasing N uptake.  

The main effect of lighting intensity on treatments, in both 6  and 10°C chambers, was on 

evaporative water loss where higher lighting intensity produced a smaller amount of drainage and 

consequently, reduced nitrate leaching loss.  This effect was especially evident in the oats 

treatments of both chambers where increased transpiration contributed to the decrease in drainage.  

The direct effect of higher lighting intensity on oats development was observed only in the 10°C 

chamber where it produced an increased rate of root development and root N uptake, resulting in 

soil mineral-N concentrations declining more rapidly in the 30-45 days period after sowing.   
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Chapter 7 General Discussion and Conclusions 

 

“A summary of the main conclusions from this research programme and judgement of the 

potential effectiveness of a winter-sown catch crop to limit nitrate leaching  

under winter forage grazing”. 
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7.1 General discussion 

7.1.1 Field lysimeter experiment 1 

Field lysimeter experiment 1 was designed to compare the relative performance of two potential 

catch crops, oats and Italian (It.) ryegrass, to capture 15N-labelled urine applied after a simulated 

winter forage grazing event. The three hypotheses associated with this experiment were: 

1. That oats are a more effective catch crop than an It. ryegrass catch crop to reduce nitrate 

leaching losses in post-winter forage grazing systems, 

2. That nitrogen leaching losses from single (350 kg N ha-1) and double (2x 350 kg N ha-1) urine 

applications post-winter forage grazing will be additive, and 

3. That using a nitrification inhibitor (DCD) in conjunction with a catch crop will reduce nitrate 

leaching losses and increase N uptake from winter forage grazing compared with a non-

DCD treated catch crop (control). 

Oats were sown in mid-August, 7 weeks after the first urine application and the It. ryegrass a further 

4 weeks later as per recommendation.  However, this was found to be too late and only 3-4% of 

the applied urinary-N was recovered in either crop. However, nitrate leaching losses were reduced 

under the oats crop by 25% over the winter-spring period compared with It. ryegrass.  This 

difference was almost entirely due to the smaller amount of drainage from the oats treatments.  

Hypothesis 1 -supported.  

A second application of urine a week later, at the same rate of 350 kg N ha-1, increased nitrate- 

and inorganic-15N leaching losses by 75% (range 68-81%) and 90% (range 81-108%), respectively. 

Hypothesis 2 –supported. 

DCD applied a day after urine application reduced nitrate leaching losses on oats and It. ryegrass 

lysimeter treatments by 55% and 33%, respectively, and increased N uptake in the oats crop 3-fold 

(from ~4% to ~13%). Hypothesis 3 -supported. 

7.1.2 Field lysimeter experiment 2 

Experiment 2 specifically investigated the effect of the timing of the sowing of oats following urine 

application (1 day after, then at 21-day intervals) for three sequential winter applications (early June 
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to mid-July) on nitrate leaching and N uptake. This experiment tested the following three 

hypotheses: 

1. Sowing oats as a catch crop after simulated winter forage grazing will reduce nitrate leaching 

losses compared with a fallow treatment,  

2. Nitrogen leaching loss will be greater from an early winter urine application compared to a 

later application date, and 

3. Nitrogen uptake will increase, and nitrate leaching decrease, the sooner the oats catch crop 

is sown after winter forage grazing. 

The main outcomes from this experiment were: 

• Nitrate leaching losses from a series of winter urine applications were reduced by around a 

third (~34%; range 19-49%) after the sowing of an oats catch crop compared to the fallow 

treatments. Hypothesis 1 -supported. 

• The later the winter urine application date, the lower the nitrate leaching loss under the urine 

patch (range 170-270 kg N ha-1). Hypothesis 2 -supported 

• Earlier sowing of oats increased N uptake and decreased N leaching loss compared to later 

sowings. Hypothesis 3 -supported 

7.1.3 Growth chamber experiment 3 

Experiment 3 investigated more closely the interaction between soil temperature (6  and 10°C) 

and light intensity (winter vs spring light conditions) on the development of the oats plants and how 

this might affect N uptake and nitrate leaching using climate-controlled growth chambers. A further 

three hypotheses were tested: 

1. Nitrate leaching losses from a single urine application to soil will be lower under oats 

compared to soil left fallow. 

2. Nitrate leaching losses from a single urine application to soil will be greater under a low 

temperature (6°C) regime compared with those under a high temperature (10°C) regime, due 

to lower N uptake by the oats crop.  
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3. Nitrate leaching losses from a single urine application to soil will be greater under a low solar 

radiation (mid-winter) regime compared with those receiving high solar radiation (mid-spring), 

due to lower N uptake by the oats crop.  

The main outcomes from experiment 3 were: 

• After 75 days, the nitrate leaching losses from the fallow treatments, particularly those at 

10°C, were large and up to 36% of the applied urinary-N.  Sowing oats at 10°C substantially 

reduced both drainage values and nitrate concentrations, reducing the nitrate leaching loss 

to between 1-11% of the applied urinary-N.  Hypothesis 1 –supported. 

• Nitrate leaching loss at 6°C was lower than at 10°C for fallow treatments and was probably 

attributable to a slower nitrification rate and more N left resident within the soil. Sowing oats 

at 6°C, despite an order of magnitude lower DM production, reduced nitrate leaching losses 

to similar values observed for oats at 10°C, after 90 days.  Hypothesis 2 –not supported. 

• Higher light intensity increased evapotranspiration losses, reducing the amount of drainage. 

For the oats’ treatments at 10°C, this also reduced the amount of drainage to less than a 

third of that in the fallow treatments.  Hypothesis 3 –supported. 

7.2 Final conclusions 

This research programme has discovered that the use of catch crops, particularly oats, after winter 

forage grazing can significantly reduce nitrate leaching losses and increase N use efficiency within 

the South Island winter feed grazing system.  Oats is a particularly useful catch crop because of its 

high cool season activity and vigorous growth habit that can maximise N uptake and reduce 

drainage under a Canterbury winter. 

Sowing oats was shown to have the potential to reduce paddock N leaching loss by around 30% 

on a free-draining Balmoral soil.  
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7.3 Suggestions for future research 

This study has highlighted several potential research areas for future investigation: 

• There is a paucity of data around using catch crops to reduce N leaching losses from winter 

forage grazing. Therefore it is essential to conduct more experiments on different soils over 

a wider range of climatic conditions to assess whether the potential to reduce nitrate 

leaching, as shown in the lysimeter studies, can be realised more widely.   

• There are several pragmatic issues around the sowing of the catch crop and how this might 

be done quickly and successfully given the large range of soil physical conditions that might 

be experienced in different regions on differing soil types. Some applied on-farm research 

is required here. 

• DCD use has been voluntarily suspended in New Zealand; however, the research shows 

that a nitrification inhibitor can create an opportunity to supress nitrification whilst soil 

conditions improve sufficiently to enable sowing of a catch crop. Given there is no actual 

grazing or growing vegetation occurring when the chemical would be applied, there appears 

no impediment to its use.  Initial investigative analysis suggests DCD applied in the post-

grazing period is not taken up in the subsequent catch crop.  A product that combines the 

oats’ seed with DCD carried in an outer matrix might prove successful should DCD be 

approved again. 

• One of the chief findings of this research programme was the reduction in drainage created 

by sowing the catch crop. In some regions irrigation is restricted over summer, therefore 

the water used by the oats crop might be essential for the subsequent crop. What are the 

strategies to capture urinary-N under those scenarios? 

• Although oats are investigated here, other crops may also be viable and barley has shown 

some initial promise.  Work around whether other cereals can offer similar or superior 

performance under the range of conditions experienced would be worth conducting. 
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B. Soils and farm map of Ashley Dene research area 

 

Figure B-1. Soil map of Ashley Dene research station and location of lysimeter collection site. 



 

 

 Page 206  
  

C. Field lysimeter treatments and placement (years 1 & 2) 

 

Figure E-1. Diagrammatic representation of lysimeters and treatments in the field trench in year 
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Figure E-2. Diagrammatic representation of lysimeters and treatments in the field trench in year 

2.  
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D. Rainfall & irrigation simulation system 

D.1 System design 

The irrigation programme used in experiment 1 (Chapter 4) was set up to best simulate actual 

rainfall and irrigation events, particularly in terms of application frequency, intensity and rate. It also 

endeavours to generate sufficient drainage water during the winter/spring period to achieve a 

complete nitrate breakthrough curve. The system operates on predefined daily climate parameters 

derived from data collected by the NIWA Broadfield weather station, Canterbury, New Zealand. 

Daily average rainfall and evapotranspiration data to the 75th percentile between 1975 and 1999 

are used as a basis for climate prediction, and around which the programme operates. The system 

was calibrated to apply water at a rate of 1000 ml per minute over the lysimeter area in 0.5 mm 

bursts (6 second burst). 

Key definitions 

Climate value: The daily seasonal requirement of water based upon previous climate data to 

the 75th percentile (rainfall and evapotranspiration) and leachate generation (Figure D.1; yellow 

line). 

Climate accumulation line:  The main reference line that is derived from accumulating daily 

climate values.   

Target line: A line that randomly tracks within plus or minus 20 mm of the climate accumulation line 

to create variability and randomness around a constant reference. NB: This only occurs under 

rainfall simulation mode. 

Tally: Accumulation of rainfall, simulated rain and irrigation. 

Application: Amount of water to be applied by the system (mm). 

D.2 Rainfall simulation mode (April to September) 

At midnight (0:00) each day, the programme determines new climate accumulation and target 

values. The new climate accumulation value is calculated by the addition of the previous day’s 
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climate accumulation value and the current climate value shown in Figure D-1. The new target is 

the addition of the climate value and previous target.  

When the tally is less than or equal to the target, a new target is created by a random number 

generator, within the defined boundaries of the climate line. This new target may be below or above 

the tally. If the new target is less than the tally, no water is applied, and the system repeats the first 

operation each day until the condition of positive application is created. If the new target is greater 

than the tally, then the difference between the target and tally will be applied as simulated rain. 

Figure D-2 illustrates the random nature of a) the target line around the climate accumulation line, 

and b) the event of simulated rain application. The concept of a randomly fluctuating target is to 

bring variability into the system which is a characteristic of an actual climate, and therefore no one 

season is replicated in the exact same way. The blue bars on the graph indicate randomly 

generated application amounts.     

The application of simulated rain is done so by a randomly generated ‘pulse pattern,’ otherwise 

known as ‘random intensity.’ The rate of intensity (mm hr-1) is weighted towards lower values, and 

the overall range of these possible values is weighted by the actual amount to be applied. Lower 

application amounts equal lower intensity range rates; higher application amounts equal higher 

possible range rates.   

D.3 Irrigation mode (October to March) 

The procedure for irrigation application is like that of the rainfall simulation methodology, however, 

the amount, frequency and intensity is defined by user-set variables. It uses the climate 

accumulation line as a reference point instead of the fluctuating target line and therefore application 

trends are more linear. This is set to simulate irrigation through a centre pivot. 

In this trial, the irrigation regime was comprised of applications every three days, with single 

applications of 15 mm at an intensity of 20 mm per hour. In the event of rain, the time interval 

between applications was extended to remain on track with the climate accumulation line. 

Figure D-3 illustrates actual data from the 2011/2012 trial during a proportion of time when the 

system was in ‘irrigation mode.’ Unlike Figure D.2 where there is variability around the target 
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amount and frequency, Figure D-3 illustrates the consistent pattern of applications when in 

‘irrigation mode,’ which are typical of irrigation practice, and more specifically that of a centre pivot. 

Also, note that the target line (dotted red line) tracks the exact same path of the climate 

accumulation line.    

D.4 Exceptions 

All applications halt for real rainfall events and defined environmental conditions (e.g. wind speed 

greater than 3 m sec-1). For rainfall simulation, the amount of real rainfall is deducted from the 

quantified application amount and added to the tally.  

Further, the daily climate values (Figure D-1; yellow line) are subject to real climate conditions, and 

can be adjusted for either wet or dry years to achieve complete breakthrough curves.  

 

Figure D-1.  Pictorial description of model controlling the automatic simulated rainfall and 

irrigation programme. 

 

2 2

3 3 3

4 4

5 5 5

4

2

0

200

400

600

800

1000

1200

1400

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar

W
a

te
r 

a
c
c
u

m
u

la
ti

o
n

 (
m

m
)

D
a

il
y

 w
a

te
r 

in
p

u
t/

o
u

tp
u

t 
(m

m
)

Daily Potential Evapotranspiration (Penman)

75th Percentile (Daily)

Daily Climate Values

Projected Climate Accumulation

Irrigation pSimulated rain period



 

 

 Page 211  
  

 
Figure D-2 Rainfall, simulated rain, tally, climate accumulation and target of the 2011/2012 

lysimeter trial under ‘rain simulation mode’ between July and September.  

 
Figure D-3 Rainfall, irrigation, tally, climate accumulation and target of the 2011/2012 lysimeter 

trial under ‘irrigation mode’ between November 2011 and January 2012.  
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E. Methods of analysis  

E.1 Leachate N content 

Ammonium and Nitrate 

Ammonium and nitrate-N concentrations in leachate samples were analysed by Flow Injection 

Analysis (FIA) (Gal et al. 2004). The analyser was a FOSS FIAstar 5000 triple channel analyser 

with SoFIA software version 1.30.  Ammonium-N was analysed using a gas-diffusion membrane 

and sodium hydroxide to diffuse ammonia gas into an indicator stream that monitors a proportional 

change from red to blue at 590 nm due to the concentration of ammonium ions. 

Nitrate-N was analysed by initial reduction of nitrate-N to nitrite-N using a cadmium reduction coil 

(OTCR – open tubular cadmium reactor). The nitrite-N was then reacted with sulphanilamide/NED 

to form an azo dye compound. The intensity of this compound is determined spectrophotomically 

at 540 nm. Adapted from FOSS Application Note AN 5206; FOSS Tecator AB, Hoganas, Sweden.    

15N-nitrogen  

Leachate samples containing 15N-labelled ammonium or nitrate (determined by FIA) were diffused 

following the procedures outlined in Brooks et al. (1989) in preparation for 15N analysis by a mass 

spectrometer. The volume of leachate sample diffused varied depending on ammonium or nitrate-

N concentration so that the total amount of N contained in 50 ml of solution was no more than 120 

g N (usually containing 5-50 g 15N-nitrogen).   

The method uses 120-140 mL disposable specimen containers to hold the sample, and 7-mm 

diameter disks of acidified GF/D glass fibre filter paper on stainless steel wire as the acid trap. 

Where the leachate contained significant amounts of ammonium the solution first received 

magnesium oxide (MgO) to create basic pH conditions and convert the NH4+ ions present to NH3 

gas, allowing diffusion of the gas onto the acid disk. The first step required sealing the containers 

and sitting for 6 days at room temperature without shaking.  The retrieval of nitrate required the 

addition of Devarda's alloy as the reductant to the MgO-treated solution to convert the NO3- to NH4+ 

and repeat the ammonia diffusion process.  Once the initial ammonium diffusion step was 

completed the wires were removed and new wires and disks installed, or if no ammonium was 
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present the first step was skipped and the MgO and Devarda’s alloy added together.  The 

containers sat for a further 6 days.  

15Nitrogen enrichment in diffused leachate samples was analysed by a mass spectrometer. The 

analyser was a continuous flow isotope mass spectrometer, enabling measurement of stable 

isotopes at both enriched and natural abundance levels. The instrument was manufactured by 

Sercon Ltd, Crewe, CWI6ZA, UK. Solid samples were initially combusted at 1000C in an oxygen 

atmosphere in an automated Dumas-style elemental analyser which was linked to a 20-20 stable 

isotope ratio mass spectrometer.  

E.2 Herbage  

Total nitrogen  

Total nitrogen contents of dry pasture samples and urine were analysed using an Elementar Vario-

Max CN Elemental Analyser (Elementar GmbH, Hanau, Germany). 

The sample was combusted at 900C in an oxygen atmosphere. The combustion process converts 

any elemental nitrogen into N2 and NOx. NOx is subsequently reduced to N2 so that all N present 

in the sample is in N2 form. These gases are then passed through a TC (thermal conductivity) cell 

to determine the total amount of N2.  

15Nitrogen  

Herbage samples were analysed for 15N content by mass spectrometer using the same solid 

sample combustion process outlined above. 

E.3 Volatilization 

Measuring N loss from volatilization was done by automating the monitoring of the airflow using a 

Campbell Scientific CR10x data logger with multiplexer and measuring the sampled air using 

Omega FLT 1000 (1.0-5.0 L/min) airflow sensors.  The non-sampled air is measured using Omega 

FLR1203 (10-50 L/Min) sensors.  Ambient air was continuously drawn through each enclosure at 

0.41 L s-1 (approx. 17 air changes min-').  The flow from each gas enclosure was partitioned such 

that ~10% passed through an acid trap containing 50 ml of 0.05 M H2S04 whilst the remaining flow 
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was vented.  Solution from each trap was changed daily with any evaporative loss replaced prior 

to collection (Black et al. 1985a). The solutions were stored in 50 ml plastic bottles and frozen until 

the ammonium content of the solutions could be determined by FIA by Analytical Services at 

Lincoln University as described in section E.1 

E.4 Lysimeter soil sampling and bulk density determination 

Measurement of soil bulk density and sampling of the lysimeters for experiment 1 was done by 

deconstructing the lysimeters as outlined in chapter 4. Once the first increment was exposed after 

winching down the lysimeter casing, the vaseline-coated soil on the outside was cut away into a 

tared bin, then weighed and discarded. The remaining soil was levelled down to the top of the 

lysimeter and removed into another tared bin.  Any pasture or kale root mass present was removed 

after being shaken to remove loose soil, bagged and stored in a cool store at 4C.  Soil in the bin 

was sorted and major stones removed and then soil and stone weighed separately.  The remaining 

soil was mixed and a 3-kg sample removed to a drying tray. A further moist sample of soil of about 

1 kg was removed and stored at 4C for soil mineral-N analysis. The soil on drying trays was placed 

in a forced air-dryer at 30°C and once air dry, the soils were weighed again and sieved to remove 

any stone greater than 5 mm. The stone fraction was then weighed and discarded whilst the 

remaining soil was stored until required for 15N analysis. 

Root mass was washed by hand with a forced jet wash on a 0.5 mm sieve and the recovered root 

material dried in an oven at 60°C until ground for analysis using the Retsch mill (<0.5 mm).  Dried 

soil was finely ground for 15N soil analysis using a Rocklabs ring mill pulveriser (Dunedin, NZ).  

From the weighed soil and stone fractions, the calculation of dry soil bulk density for each soil 

lysimeter layer was determined. 

E.5 Soil mineral-N analysis 

Soils from the deconstruction of the soil monoliths were extracted for soil mineral-N after 

approximately 2 weeks in storage using a 10 g moist sample and 50 ml 2M KCl as per the method 

outlined by Blakemore et al. (1987).  The filtrate was frozen until required for nitrate and ammonium 

analysis by FIA using the procedure in E.1.  
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E.6 Ammonia oxidising bacteria (AOB) abundance 

Bacterial and archaea amoA gene abundances were quantified using real-time quantitative PCR 

(qPCR). Total soil genomic DNA was extracted from 0.4 g soil (fresh weight) using MoBio Power-

soilTM DNA isolation kits (MoBio Laboratories, GeneWorks, South Australia, Australia) as per the 

manufacturer’s instructions. Concentration and quality of the extracted DNA were estimated using 

Quant-iT ™ dsDNA BR assay kit on a Qubit fluorometer (Life Technologies, Auckland, New 

Zealand) and NanoDrop® ND-1000 spectrophotometer (NanoDrop Technologies, Montchanin, 

USA). All DNA extractions were diluted 1:10 with nuclease-free DI water to reduce potential PCR 

inhibition. The PCR primer pair amoA1F and amoA2R (Rotthauwe et al. 1997), and the primer pair 

Arch-amoAF and Arch-amoAR (Francis et al. 2005) were used to amplify regions of the bacterial 

and archaea amoA genes, respectively (Table C.5-1).  A typical 16 µL reaction contained 8.0 µL of 

SYBR®Premix Ex TaqTM (TaKaRa, Norrie Biotech, Auckland, New Zealand), 0.4 µL of each primer 

(250 nM final concentration), 1.5 µL of template DNA and nuclease-free DI water to the final 

volume. All reactions were set up using the CAS-1200 Robotic liquid handling system (Corbett Life 

Science, BioStrategy, Auckland, New Zealand) and real-time qPCR analysis was performed on a 

Rotor-GeneTM 6000 real-time rotary analyser (Corbett Life Science, BioStrategy, Auckland, New 

Zealand). Fluorescence intensity was measured at the end of each extension step at 72°C. To 

confirm specificity of the reaction, a melting curve analysis was performed at the end of each run 

and melting peaks from the analysed samples were compared with the melting peaks of standards. 

The standards used in the qPCR analysis were prepared by cloning respective bacteria and 

archaea amoA gene amplicons into the pGEM-T Vector (Promega, In Vitro Technologies, 

Auckland, New Zealand) and subsequently transforming into JM109 High Efficiency Competent 

Cells (Promega, In Vitro Technologies, Auckland, New Zealand) per the manufacturer ’s 

recommendations. 

Plasmids were subsequently extracted from over-night cultures using PureLinkTM Quick Plasmid 

Miniprep Kit (Life Technologies, Auckland, New Zealand) and concentration and quality of the 

extracted plasmid DNA were estimated using Quant-iT ™ dsDNA BR assay kit on a Qubit 

fluorometer (Life Technologies, Auckland, New Zealand) and NanoDrop® ND-1000 

spectrophotometer (NanoDrop Technologies, Montchanin, USA). Standard curves used for each 
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gene quantification were generated using a series of 1:10 dilutions of plasmid DNA, giving a 

concentration range from 102 to 107 copies per ml.  Data analysis was carried out using Rotor-

GeneTM 6000 series software 1.7 (Corbett Life Science, BioStrategy, Auckland, New Zealand). 

Table C.5-1.  PCR primers used in qPCR analysis 

Target 
group 

Primer 
name Sequence (5’-3’) 

Length of 
amplicon 

(bp) 

Primer final 
concn. 

(nM) 
Thermal 
profile 

Amplification 
efficiency (%) 

Bacterial 
amoA 

amoA1F 5’-GGGGTTTCTAC 
TGGTGGT-3’ 

491 250 

94°C for 2 min 
x1 cycle 

95-102 
amoA2F 5’-CCCCTCKGSA 

AAGCCTTCTTC-3’ 

94°C for 20 s, 
57°C for 30 s, 
72°C for 30 s 

x40 cycles 
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F. Preliminary nitrification rate experiment 

F.1 Introduction 

The purpose of this experiment was to measure the nitrification rates of urinary-N applied to the 

Balmoral soil at the same temperatures (6°C and 10°C) as those used in the growth chamber 

experiment in Chapter 6.  This information would be used to assess when the maximum pool size 

of available nitrate had likely been reached in each chamber and therefore, the period when there 

was the greatest potential for nitrate leaching.  A number of authors have shown that soil nitrification 

rates from a range of applied readily-mineralisable N-containing substrates increase with 

increasing soil temperature but these tend to be soil and site specific (Flowers & O'Callaghan 1983; 

Cookson et al. 2002; Di & Cameron 2004c).  Consequently, the objective of this experiment was to 

measure nitrification rates under conditions like those in each growth chamber. 

F.2 Materials and methods 

The Balmoral soil used in the experiment was the same as the A horizon collected for the 

experiment used in Chapter 6, comprising the top 15 cm of the profile.  The soil was air-dried and 

sieved through a 5-mm sieve and repacked in 11 cm tubes (5.0 cm diameter) to a height of 10 cm 

as outlined in section 6.2.1.  Each tube was sealed with fine netting and maintained near field 

capacity.  Urine was applied at a rate of 350 kg N ha-1 (69 mg N tube-1) as per chapter 6.2.2 and 

the tubes held in two controlled temperature incubators (6  and 10°C) for 1, 7, 14, 28, 42 and 56 

days before sampling.  At each sampling date the soil was removed from the tube and mixed, with 

two duplicate samples taken for mineral-N (NH4
+-N and NO3

- -N), AOB abundance and moisture 

content analysis. Mineral-N and ammonia oxidising bacteria (AOB) numbers analysis was as 

outlined in sections 6.2.4 and 0. 

F.3 Results and discussion 

Results indicated that for the 10°C soils, mineralisation of the urine occurred within 24-hours, with 

soil ammonium content at a maximum one day later but decreasing by a third over the following 

seven days (Figure F-1A).  Ammonium derived from the 15N-labelled urine reached a similar content 

after 24 hours but the rate of decrease thereafter was considerably slower and was maintained in 
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the first 14 days before decreasing in the following period.  The bulk of the ammonium-N measured 

in both chambers was derived from the 15N-labelled urine but a greater proportion of ammonium-N 

in the 10°C soils was apparently derived from mineralisation of SOM (i.e. non-labelled 14N) than at 

6°C (Figure F-1A).  

Nitrification of the ammonium was slower at 6°C than at 10°C such that by 56 days after urine 

application there was no indication that nitrate content had peaked although with ammonium 

content having decreased considerably it was probably close to this point.  Conversely, for the 10°C 

soils, this point had already been met by 42 days.  This represented a 25% longer period of 

incubation at 6°C than at 10°C to reach and maintain similar maximums for nitrate content. 

 

Figure F-1. Soil mineral-N (A: NH4
+-N and NO3

- -N) concentrations and AOB abundance (B) for 

soils incubated at 6°C and 10°C, 1-56 days after urine application (350 kg N ha-1). 
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AOB abundance increased and decreased in accordance with the difference in nitrification rates 

with numbers still showing an increasing trend for the 6°C soils at 56 days but showing a decline 

after 42 days for the 10°C soils (Figure F-1B).  This is in line with expectations that AOB abundance 

reflects the rate of nitrification activity (Di et al. 2014). 

F.4 Conclusion 

The rate of nitrification of the applied urinary-N was shown to be slower at 6°C than at 10°C, taking 

~25% longer to reach similar maximums in soil nitrate content at the two temperatures.  This 

represented a difference of 14 days.  
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