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Abstract 

ABCB1 gene in Aporrectodea caliginosa 

- A potential ecotoxicological tool 

 

by 

Giuliana De Ranieri Bernardi 

 

Earthworms are exposed to a variety of agrochemicals due to strict export requirements and 

maintenance of high productivity. Aporrectodea caliginosa (grey earthworm) is the most abundant 

species in New Zealand pastures. In biological systems, the first-line defence mechanism against 

accumulation of toxicants within cells is mediated by drug efflux transporters of the ATP Binding 

Cassette (ABC) transporter family. This study describes the discovery of a partial sequence 

homologous to  ABCB1 gene that encodes the efflux transporter P-glycoprotein (P-gp). The regulation 

of ABCB1 gene expression has been associated with exposure to polluted environments in aquatic 

organisms. The expression of the ABCB1 gene in annelids is a potential candidate as a molecular 

biomarker for soil pollution monitoring. The lack of A. caliginosa ABCB1 genetic information or any 

other Lumbricidae family member has been a significant drawback. 

The novel sequence was identified by using a combined approach of degenerate PCR and sequence 

retrieval from the draft Lumbricus rubellus genome LUMBRIBASE. The novel translated sequence of 

134 amino acids (encoding 10.7% of exogenic sequence) has high amino acid sequence identity to P-

gp (>78%) in vertebrate and invertebrate species and possesses some of the classical domains of P-

gp. A real-time quantitative PCR (RT-qPCR) was developed to measure ABCB1 gene transcription. In 

the process of PCR optimisation, another partial gene sequence, homologous to β-actin gene was 

identified in A. caliginosa and used as the reference gene for the normalisation of samples. 

Preliminary analyses in RT-qPCR were performed with earthworms exposed to modulators 

(rifampicin, cyclosporin A, Ivermectin™) on ABCB1 gene and P-gp expression used in mammals. Fold-

changes in the ABCB1 transcriptional levels were measured by the comparison between exposed and 

non-exposed earthworms. The P-gp activity was measured by a biochemical assay using a specific P-

gp substrate (fluorescent dye Rhodamine B) and two P-gp inhibitors (verapamil and cyclosporin A). 

Rifampicin induced the ABCB1 expression in A. caliginosa. However, it did not increase P-gp activity. 
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This observation suggests the involvement of post-transcriptional mechanisms to produce the 

functional P-gp.  Ivermectin™ also increased ABCB1 expression in A. caliginosa,  showing that this 

drug may have the same effect on ABCB1 expression observed in studies with nematodes and 

mammals. In contrast, cyclosporin A did not increase ABCB1 gene expression, suggesting that P-gp 

inhibition alone does not lead to overexpression of ABCB1 to compensate for the inactive P-gps.  

The presence of an ABCB1 gene homologue in A. caliginosa and its expression in response to known 

modulators supported the hypothesis that P-gp is present in A. caliginosa. Moreover, the P-gp 

activity in A. caliginosa was demonstrated in the results of the biochemical assay. The results of this 

research provide baseline data in A. caliginosa ABCB1 and P-gp expression, and may assist in the 

advancement of ABC transporter research in earthworms and development of a monitoring system 

in toxicological risk assessments.  

 

Keywords: ABCB1 gene, P-glycoprotein, Aporrectodea caliginosa, earthworm, biomarker, 

LUMBRIBASE, Real time quantitative PCR, rifampicin, cyclosporin A, verapamil, IvermectinTM, 

rhodamine B.  
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Chapter 1 

Introduction 

1.1 P-glycoprotein and ABCB1 gene 

In biological systems, the first line of defence against toxicants is mediated by transmembrane 

transporter proteins which pump out a variety of endogenous substances and xenobiotics (foreign 

chemicals) across the cell membranes in an energy-dependent manner (Szakács et al., 2008). The 

exposure to high levels of anthropogenic pollutants and natural toxins can induce the overexpression of 

these transporters known as the multixenobiotic resistance (MXR) system (Bard, 2000; Higgins, 1992; 

Kurelec et al., 2000). The most well characterised transporter in the MXR system is the P-glycoprotein (P-

gp) which belongs to the superfamily of ATP-dependent transmembrane transporters, the ATP Binding 

Cassette (ABC) proteins (Szakács et al., 2008). In mammals, P-gp is expressed and distributed in various 

organs and tissues and transports a wide variety of substrates (Zaja et al., 2008). P-glycoprotein is 

encoded by the gene ABCB1 (Buss & Callaghan, 2008). The expression of either P-gp protein or the 

ABCB1 gene in aquatic organisms has been used as a biomarker to detect aquatic pollution (Ame et al., 

2009; He et al., 2011; Luedeking & Koehler, 2002). 

1.2 Earthworms 

Earthworms have been used as bioindicators of soil pollution (Eijsackers, 2004; Reinecke & Reinecke, 

2004). The popularity of earthworms as sentinels is because of their natural activities of burrowing and 

ingestion of large amounts of soil, which continuously expose the earthworm to bioavailable 

contaminants via both its digestive tract and the outer membrane (Sanchez-Hernadez, 2006). In New 

Zealand, the most prevalent earthworm found in pastures is Aporrectodea caliginosa (Fraser et al., 

1996). However, little is known about the presence and activity of P-gp in these soil organisms. P-

glycoprotein has been identified in fungi, bacteria, plants, invertebrates and other mammals (Szakács et 

al., 2008) and to date, not yet in earthworms. 

1.3 Toxicological risk assessment in soil 

In New Zealand, there is intensive and extensive usage of agrochemicals in pastures and horticulture to 

maintain high productivity and to comply with strict export requirements for pest/pathogen-free 

products (Walker et al., 2004). The impact of agrochemical pollution on soil biota is not well known. P-gp 
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substrates include several chemicals routinely used in agricultural practice, including insecticides, 

fungicides, herbicides, antibiotics, alkaloids, immunosuppressants, hormones, and heavy metals (Buss & 

Callaghan, 2008; Luckenbach & Epel, 2005; Pivčević & Žaja, 2006; Szakács et al., 2008). 

P-gp is constitutively expressed in cells, however, it may be induced (or upregulated) on exposure to its 

substrates (Hennessy & Spiers, 2007). Also, P-gp substrates may increase or decrease ABCB1 gene 

transcript levels. The regulation of the ABCB1 gene in aquatic organisms has been associated with 

exposure to polluted environments and ABCB1 expression is now recognised as an appropriate 

biomarker to determine the hazardous effects of chemicals in contaminated marine habitats (Ivanina & 

Sokolova, 2008; Luedeking & Koehler, 2004; Zucchi et al., 2010). The response of P-gp in the 

earthworm’s defence against anthropogenic pollutants in soil may be understood by the measurement 

of ABCB1 transcriptional levels in A. caliginosa. Studies on the ABCB1 gene expression in earthworms 

have the potential to be used as an ecotoxicological tool for risk assessments exposed to pollutants 

including agrochemicals. 

1.4 Research aim and objectives 

1.4.1 Aim and context 

The main purpose of this research was to identify the ABCB1 gene in A. caliginosa and measure the 

ABCB1 gene expression and P-gp activity in response to known ABCB1 inducers and P-gp modulators 

reported in studies of other species (Cascorbi, 2006; Magnarin et al., 2004; Ménez et al., 2012; Schinkel 

& Jonker, 2003). The lack of ABCB1 genetic information from A. caliginosa or any other Lumbricidae 

family member was a significant drawback. The approach in the identification of ABCB1 in A. caliginosa 

was a combination of degenerate primers and sequence retrieval from the draft Lumbricus rubellus 

genome LUMBRIBASE to be used in PCR. Degenerate primers are a blend of primers with different 

combinations of nucleotides within its sequence, in an attempt to provide the correct primer sequence 

that will bind to the specific target sequence (Zheng et al., 2008a) and they are typically designed from 

multiple sequence alignments from a variety of species when the target sequence in an organism is not 

known (Dieffenbach et al., 1993). For the measurement of ABCB1 expression, a quantitative PCR was 

developed and optimised, and the P-gp activity was measured by a biochemical functional assay. 

The identification of the ABCB1 gene in A. caliginosa, and further analysis of ABCB1 gene expression and 

P-gp activity across earthworms exposed to different treatments would provide insights into the role of 

P-gp in detoxification and the variation in its response on exposure to different substrates. It is presumed 

that such approach could contribute greatly to ecotoxicological assessments of soil in future studies, as 
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has been the case with studies in aquatic organisms (Luedeking & Koehler, 2004; Shúilleabháin et al., 

2005; Smital & Kurelec, 1998b; Timofeyev et al., 2007). 

1.4.2 Objectives 

• To identify the ABCB1 gene in A. caliginosa by amplification of a partial sequence with 

degenerate PCR primers designed from the conserved areas of published ABCB1 gene sequences 

in other species available from public databases such as GenBank (www.ncbi.nlm.nih.gov/), and 

with primers designed from the draft of L. rubellus genome available at LUMBRIBASE 

(www.nematodes.org/). Lumbricus rubellus and A. caliginosa are members of the same 

Lumbricidae family (Chapter 3). 

• To use molecular methods such as rapid amplification of complementary DNA (cDNA) sequence 

ends (RACE) and cloning to identify as much of the ABCB1 gene (cDNA) sequence as possible 

(Chapter 3). 

• To develop and optimise a reverse transcriptase quantitative polymerase chain reaction (RT-

qPCR) to measure the ABCB1 expression in A. caliginosa (Chapter 4). 

• To expose earthworms to an ABCB1 inducer (the antibiotic Rifampicin), to a P-gp inhibitor 

[cyclosporin A (CyA)] and to a widely used agrochemical [IvermectinTM(IVM)], an anthelmintic 

drug to control gastrointestinal worms in cattle and sheep)1 and measure changes in ABCB1 gene 

expression levels of each treatment with RT-qPCR (Chapter 4). 

• To expose A. caliginosa to rifampicin, CyA, IVM, and to another P-gp inhibitor (verapamil), and 

measure the P-gp activity by a biochemical assay using a specific P-gp substrate, the fluorescent 

dye Rhodamine B (RB) (Chapter 5). 

 

 

 

 

                                                           
1
 Drug that expels parasitic worms from the body by either stunning or killing them. 
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1.4.3 Hypotheses 

• The ABCB1 gene has been found in many species, ranging from bacteria and plants to mammals 

(Hennessy & Spiers, 2007). It is hypothesized that ABCB1 is present in the earthworm A. 

caliginosa, based on the evidence of P-gp activity in the study of Brown et al ( 2008) with 

another earthworm species (Eisenia fetida). 

• The antibiotic rifampicin has been used to induce the ABCB1 gene expression in mammals 

(Magnarin et al., 2004; Nannelli et al., 2010). It is hypothesized that exposure of earthworms to 

rifampicin will: (1) increase the ABCB1 transcription as measured by the developed RT-qPCR 

technique in earthworm tissues expressing P-gp, (2) increase the P-gp transport activity in P-gp 

expressing tissues via outer cell membrane as measured by the RB assay. 

• The immunosuppressant CyA has been shown to inhibit the P-gp function in other species 

(Schinkel & Jonker, 2003). Based on this, it is hypothesized that CyA will: (1) decrease the P-gp 

transport activity, resulting in accumulation of RB inside cells of P-gp expressing tissues, (2) 

induce ABCB1 transcription as a protective mechanism to eliminate RB. 

• The anti-parasitic drug IVM has been shown to induce drug resistance in the model nematode 

Caenorhabditis elegans (James & Davey, 2009). This resistance was associated with increased 

expression of ABCB1 gene and protein P-gp. It is hypothesized that exposure of A. caliginosa to 

non-lethal concentrations of IVM will increase the ABCB1 transcription and P-gp transport 

activity in order to eliminate the drug from the body. 
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Chapter 2 

Literature Review 

2.1 Ecotoxicology 

Ecotoxicology is a study of the relationship between natural toxins, chemical pollutants, the environment 

into which they are released and the biota in that environment (Luedeking & Koehler, 2002). In New 

Zealand, there is intensive and extensive usage of agrochemicals in pastures and horticulture due to both 

strict export requirements for pest/pathogen-free products and in order to maintain high productivity 

(Penman & Buick, 1995; Walker et al., 2004). Furthermore, the disposal of sewage sludge in forests and 

the spray of dairy farm effluents on pastures are common practices in New Zealand and that may have 

unpredictable consequences on the ecosystem (Müller et al., 2007). The dairy effluent may contain 

chemicals such as cleaning and disinfection agents used in the milking shed, and veterinary 

pharmaceuticals excreted by animals. According to the latest New Zealand dairy statistics of 2010-11 

(www.dairynz.co.nz, 2011), the growing dairy industry has approximately 11,735 herds with 4.5 million 

cows. A recent case study has demonstrated that the widespread use of IVM, a common anthelmintic 

veterinary drug, is of high concern because of its impact on the environmental organisms (Roembke et 

al., 2010). Agrochemicals often bind to soil organic matter. Therefore, the bioavailability and the impact 

of such residues on non-target soil organisms such as the earthworm are not fully known. 

2.2 Earthworms 

The earthworm is a beneficial organism that is widely distributed in soil. Earthworms can comprise as 

much as 60-80% of total soil biomass under certain conditions (Booth & O'Halloran, 2001). The natural 

activity of earthworms promotes soil health through soil aeration, drainage, mineralisation and mixing 

(Edwards & Coulson, 1997). Earthworms play an important role in soil fertility through digestion of 

organic matter and transformation of this matter into nutrients for plants and soil microorganisms. 

Earthworm activities of burrowing and feeding, involving ingestion of large amounts of soil, continuously 

expose the earthworm to contaminants via both, its digestive tract and outer membrane (comprising 

cuticle, epidermis and muscle) (Sanchez-Hernadez, 2006). These features and the easy sample collection, 

handling and laboratory maintenance have led to the use of earthworms as sentinel species in many soil 

pollution studies (Edwards & Coulson, 1992; Reinecke & Reinecke, 2004). 
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In New Zealand, the most prevalent earthworm found in pastures is the non-native species A. caliginosa 

(Booth et al., 2001; Booth et al., 2005; Springett, 1992), commonly known as grey earthworm. In the 

Canterbury plains, A. caliginosa comprises approximately 80% of the total earthworm population (Fraser 

et al., 1996). A. caliginosa builds complex lateral burrow systems through all layers of the upper mineral 

soil and spend most of their life in these burrow systems, where it feed on decayed organic matter and 

mineral soil, categorised as endogeic (Wallwork, 1983). During wet weather, the adults move to the soil 

surface, which makes them more susceptible to surface environmental contaminants (Edwards & 

Coulson, 1997). Moreover, many reports show that A. caliginosa is the most susceptible species of 

earthworm when used in standard toxicological tests versus three other common earthworm species (E. 

fetida, Lumbricus terrestris and L. rubellus) (Edwards & Coulson, 1992; Martin, 1986). 

2.3 P-glycoprotein and ABCB1 gene 

Cells have defence mechanisms to protect them against a variety of man-made and natural chemicals. 

The body responses include, among others, complex systems as the use of biotransformation enzymes 

for chemical detoxification, and the immunologic responses that produce antibodies against these 

chemicals (Casarett  et al., 2001). The first line of defence against accumulation of toxicants within cells 

is mediated by transmembrane proteins, which pump out a variety of endogenous substances and 

xenobiotics across the cellular membranes in an energy-dependent manner (Szakács et al., 2008). It is 

known that high levels of anthropogenic pollutants and natural toxins induce the overexpression of 

these proteins which can confer protection against deleterious effects on cells (Bard, 2000). The 

overexpression is a phenomenon known as MXR in aquatic organisms, similar to multidrug resistance 

(MDR) in mammals (Smital et al., 2000). The MDR phenotype was initially identified in human tumour 

cells that were resistant to chemotheurapeutic drugs caused by an overexpression of a P-gp located in 

the cytoplasmic membrane (Cascorbi, 2006). Recently, P-gp overexpression has also been associated 

with increased drug resistance in protozoa including Plasmodium spp (de Lagerie SB et al., 2008), 

reducing the efficacy of anti-malarial treatment. P-glycoprotein has been extensively studied in an effort 

to overcome widespread drug resistance to cancer therapy, and currently it is the most well 

characterised drug efflux transporter in humans (Dean et al., 2001). 

P-glycoprotein belongs to the superfamily of ATP-dependent transmembrane proteins denominated as 

ABC proteins (Szakács et al., 2008). Most of the ABC proteins are transporters and their genes are both 

widely dispersed across eukaryotic genomes and conserved between species. In mammals, forty-eight 

ABC transporters have been identified, and classified on the basis of the phylogenetic analysis into seven 

distinct gene subfamilies, denominated as ABC A through to subfamily G or formerly known as ABC1, 
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MDR/TAP, MRP, ALD, OABP, GCN20, and WHITE respectively (Hennessy & Spiers, 2007). P-gp-like 

proteins are encoded by genes of subfamily B (or MDR/TAP) comprising 11 members (B1 to B11) (Dean 

et al., 2005).  P-gp involved in the transport of xenobiotics is encoded by the gene ABCB1 (Buss & 

Callaghan, 2008). P-gp exists in a number of different isoforms which have >70% sequence homology and 

are encoded by a small family of closely related genes.  

P-gp consists of one polypeptide chain of about 1300 amino acids and the molecular mass of the mature 

protein may vary from 130 to 180 kDa, reflecting differences in glycosylation (Sturm & Segner, 2005). P-

gp shows the domain architecture of a prototypical eukaryotic ABC full transporter, composed of two 

transmembrane domains (TMDs) and two nucleotide binding domains (NBDs) (Figure 2.1). A full 

transporter consists of two homologous halves (each with one TMD and one NBD) arranged in a tandem-

like manner whereas half transporter contains only one TMD and one NBD. The ABC sub-family B 

comprises full transporters (four members, including P-gp) and half transporters (seven members). Full 

transporter proteins are expressed in the plasma membrane whilst half-transporters are usually found in 

intracellular membranes of the mitochondria, endoplasmic reticulum and peroxisomes (Rocchi et al., 

2000). 

Each TMD is formed by 6-11 membrane spanning alpha-helices, which confer substrate specificity and 

NBD for the ATP activity (Dean et al., 2001). When a substrate binds to P-gp, it activates one NBD to 

hydrolyse ATP (ADP+P), releasing energy. This energy changes the structure of TMD, resulting in 

extrusion of substrate out of the cell (Hennessy & Spiers, 2007). Members of ABCB family possess a 

highly conserved NBD (specifically, ATPase), opposed to TMDs, which do not share great similarity 

between domains of different ABC transporters (Feldstein et al., 2006). The conservation of NBDs are 

central to the classification and demarcation of the ABC transporter super-family (Hennessy & Spiers, 

2007), which are composed of several distinct sequence motifs with a higher degree of conservation 

than the rest of domain (Ambudkar et al., 2006). At least eight of such sequences have been described in 

mammals: A-loop, Walker-A, Gln-loop, X-loop, C-motif (or ABC signature), Walker-B, D-loop and His-loop 

(Lawson et al., 2008). Several amino acids in these conserved motifs play a role in the ATP binding, 

coordination with Mg2+, communication between the NBDs and the transport substrate sites and finally, 

the ATP hydrolysis to release energy to be used in the transport of xenobiotics (Smith et al., 2002). 

P-glycoprotein transports a wide variety of substrates, with common properties such as moderate 

hydrophobicity/amphiphilicity, neutral or positive charge, a basic nitrogen atom and a high molecular 

weight (Zaja et al., 2008). Some of these substrates include important anti-cancer agents, 

immunosupressants, anti-viral drugs, steroids, anti-gout agents, pesticides and antibiotics (Ambudkar et 
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al., 1999). Due to its function, P-gp is expressed and distributed in a variety of organs and tissues 

involved in excretion, metabolism and protection, including lung, liver, kidney, gastrointestinal, adrenal 

gland, gravid uterus, and brain capillary endothelium (Zhou, 2008). Therefore, the combination of P-gp 

function and its localisation directly reduce the bioavailability and potential toxicity of xenobiotics to 

organisms. 

2.4 P-glycoprotein in environmental organisms 

Many studies have demonstrated the role of P-gp in cellular detoxification in aquatic organisms in 

polluted waters (Bard, 2000; Kurelec et al., 1996; Smital & Kurelec, 1997, 1998a; Smital et al., 2000). To 

date, the function of P-gp and other relevant transporters in cellular detoxification and defence against 

natural and anthropogenic toxicants have been demonstrated in more than 40 aquatic species (Loncar et 

al., 2010). P-glycoprotein has been also identified in fungi, bacteria, plants, invertebrates and other 

mammals (Szakács et al., 2008), but not yet in earthworms. 

P-glycoprotein has been detected in the excretory and the intestinal cells of the free living soil nematode 

C. elegans (Broeks et al., 1995). Further studies have demonstrated the role of P-gp in defence against 

toxicants in C. elegans and in the parasitic nematode Haemonchus contortus (Kerboeuf et al., 2003). P-

glycoprotein has been also identified in several aquatic organisms (Loncar et al., 2010), including mussels 

(Mytilus spp) (Luedeking & Koehler, 2002), which are somewhat phylogenetically close related to 

earthworms (super phylum Lophotrochozoa) (Figure 2.2.) However, despite the susceptibility of 

earthworms to toxicants, little is known about the presence of ABCB1 gene and the activity of P-gp 

transporter in these soil organisms. There is a high probability that P-gp is also present in earthworms 

because MXR transporters (including P-gp) are highly conserved across species. A previous study utilising 

a fluorescent dye assay to detect P-gp drug efflux activity provided some evidence for the presence of P-

gp in earthworms (Brown et al., 2008).  
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Figure 2-1 Schematic representation of the structure and function of the full transporter P-
glycoprotein (P-gp). The transporter is composed of two transmembrane domains (TMDs) and two 
nucleotide binding domain (NBDs). (A) A xenobitioc crosses the cellular membrane passively. (B) In the 
cytoplasm, when the xenobiotic binds to P-gp, the NDB is activated to hydrolyse the ATP molecule to 
release energy. (C) This energy changes the conformation of TMDs and the substrate is expelled out of 
the cell.
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Figure 2-2 Scientific classification: Aporrectodea caliginosa (grey earthworm) share the same super phylum (Lophotrochozoa) as Mytilus spp 
(mussels).
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2.5 P-glycoprotein modulators 

There is a broad range of modulators known to affect expression and function of P-gp in a variety of 

species (Bard, 2000; Buss & Callaghan, 2008; Lespine et al., 2008; Smital et al., 2004). Experiments 

with fish and bivalves using environmental toxicants including pesticides, heavy metals, crude oil and 

pulp mill effluent have demonstrated the induction of P-gp protein expression as detected by 

immunochemical assays (Bard et al., 2002; Eufemia & Epel, 2000). Moreover, widespread use of IVM, 

a known P-gp substrate, has been linked to the multidrug resistance phenomenon due to 

overexpression of P-gp in intestinal worms and nematodes (James & Davey, 2009). With respect to 

chemicals routinely used in agricultural practice, in addition to the antiparasitic drugs, P-gp 

substrates include pesticides, fungicides, herbicides, insecticides, antibiotic, alkaloids, 

immunosuppressant, hormones, and heavy metals (Buss & Callaghan, 2008; Luckenbach & Epel, 

2005; Pivčević & Žaja, 2006; Szakács et al., 2008) and the effects of these chemicals on the P-gp 

regulation in exposed organisms should be further investigated. 

Another relevant characteristic of P-gp function is that the transport of substrate may be inhibited by 

secondary compounds (Luckenbach & Epel, 2005). Chemicals that inhibit or block P-gp function, 

directly or indirectly, leading to the bioaccumulation of substrates inside the cells and resulting in 

unexpected toxic effects, are known as chemosensitisers (Smital et al., 2004). The blocking action of 

chemosensitisers makes the organism more susceptible to the harmful effect of xenobiotics at 

concentrations well below the safety threshold.  Emerging contaminants, such as polycyclic musks (a 

common fragrance ingredients) found in cosmetics, personal care products, detergents and cleaning 

agents, have been shown to be strong chemosensitisers which affect the MXR in aquatic organisms 

(Bard, 2000). A large number of anthropogenic pollutants such as polyaromatic hydrocarbons (PAHs), 

polychlorinated biphenyl (PCB), dichlorodiphenyltrichloroethane (DDT) and their metabolites can 

either induce or inhibit the expression of P-gp in fish, invertebrates and mammals (Sturm & Segner, 

2005). One example of this effect was demonstrated in the comparison of PAH-contaminated non-

tidal areas with non-polluted areas, where mussels from a contaminated region showed reduced P-

gp-related protection in their digestive glands (Einsporn & Koehler, 2008). In addition, many 

currently used pesticides have been shown to be highly competitive MXR inhibitors (Smital et al., 

2004).  

Overall, the increase in use and the action of chemosensitisers and P-gp substrates have raised the 

concerns about their effects on P-gp function and consequences on soil biota. P-glycoprotein 

substrates and chemosensitisers may increase or decrease ABCB1 gene transcript levels (Chieli et al., 

2010; Diaz de Cerio et al., 2012; Hanke et al., 2010; Rodrigues et al., 2006) and further gene 

expression studies are necessary to confirm this hypothesis. 
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2.6 Ecotoxicogenomics 

Ecotoxicogenomics is defined as the study of gene and protein expression in environmental 

organisms that are viewed as important or sentinel species in their responses to environmental 

toxicant exposures (Snape et al., 2004). The traditional ecotoxicological parameters of earthworms 

that have been used in risk assessments of contaminated land are classical endpoints such as 

mortality, reproduction, growth rate, juvenile maturation and hatchability (Booth et al., 2005). Such 

experiments may produce estimates of xenobiotic effects on populations, but they do not elucidate 

the mechanism of action. Furthermore, these monitoring parameters are subjected to the variation 

of organism age, choice of species, and environmental conditions, making the interpretation of 

results difficult and not accurate. Ecotoxicogenomics studies utilising modern molecular techniques 

have been shown to be to a large extent more sensitive, stressor-specific, predictive, cost-effective 

(in the long term) and faster compared to the more traditional earthworm tests mentioned above 

(Sturzenbaum et al., 2009). 

P-glycoprotein is constitutively expressed in cells, but may be modulated by environmental factors 

such as chemical exposure (Hennessy & Spiers, 2007). It is generally accepted that P-gp expression is 

increased through upregulation of ABCB1 mRNA levels as reported in studies with cell lines and 

human tumours (Chaudhary & Roninson, 1993).  The regulation of the ABCB1 gene in aquatic 

organisms has been associated with exposure to polluted environments and ABCB1 expression has 

been used as a biomarker to determine the level of contamination in marine habitats (Ivanina & 

Sokolova, 2008; Luedeking & Koehler, 2004; Zucchi et al., 2010). The measurement of ABCB1 

transcriptional levels in A. caliginosa may provide information to understand the role of P-gp in 

earthworm defence mechanism against pollutants in soil. Moreover, the examination of the ABCB1 

gene response could be used as an ecotoxicological tool for risk assessments of soil organisms 

exposed to agrochemicals. 

Recently, transcriptomic profile studies in two standard test earthworms, L. rubellus and E. fetida, 

were created in order to evaluate the response to environmental contaminant exposure (Owen et 

al., 2008; Pirooznia et al., 2007; Svendsen et al., 2008). Despite a vast collection of genetic data being 

produced in these studies, there is not yet an annotated reference sequence for the ABCB1 gene in 

earthworms. Moreover, whilst the release of the draft genome of L. rubellus is imminent, it is not yet 

available as an annotated sequence (Sturzenbaum et al., 2009). The lack of information of the ABCB1 

gene sequence in earthworms currently presents a challenge to primer design and ultimately the 

ABCB1 gene expression analysis. 
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2.7 Analysis of ABCB1 gene expression  

The analysis of gene expression patterns is an important tool in increasing understanding of the gene 

and subsequent protein function. A recent experiment whereby constitutive gene expression levels 

of ABC genes were determined in various tissues of rainbow trout (Oncorhynchus mykiss, a common 

aquatic research model organism for ecotoxicological assessments), provided an insight into the 

spatial distribution of relevant ABC transporters (Fischer et al., 2011). 

Today, the gold standard for accurate, sensitive and fast measurement of gene expression is the 

fluorescence-based reverse transcription quantitative real-time PCR (RT-qPCR) (Derveaux et al., 

2010). This approach has been used to measure ABCB1 expression levels in molluscs and tumours in 

mammals (Ivanina & Sokolova, 2008; Nakaichi et al., 2007 ). It is the most sensitive method for the 

detection and quantification of gene expression levels; in particular for low abundant transcripts in 

tissues with low RNA concentrations, from limited tissue samples and for elucidation of minor 

changes in mRNA expression levels (Bustin, 2004). In this PCR-based process the detection of 

fluorescence emitted by amplicons enables the visualisation of results during amplification. The 

quantification is made during the exponential phase of the PCR where the product doubles at every 

cycle making the number of amplified target directly proportional to the initial amount of target. 

According to the latest published guidelines for publications of qPCR experiments (Bustin et al., 

2009), the quantitative endpoint for expression level calculations is designated as the quantification 

cycle (Cq ). The Cq is defined as the PCR cycle at which the fluorescent signal emitted from amplicon 

crosses an arbitrarily threshold, above the background fluorescence noise (Bustin, 2004). 

Within the range of fluorescent chemistries used in RT-qPCR, SYBR Green I is the most common and 

cost effective. SYBR Green I is an nonspecific intercalator dye that binds to the minor groove of any 

double stranded DNA including the specific PCR product, primer-dimers and nonspecific amplicons 

(Bustin, 2004). However, due to the general affinity of SYBR Green I for all double stranded DNA, RT-

qPCR requires the optimisation of some critical quality parameters within the PCR assay to ensure 

the accuracy and reliability of results (Kubista et al., 2006). Thus, the increase in fluorescence alone is 

not sufficient for evaluation of replication of target nucleic acid; RT-qPCR using SYBR Green I also 

requires subsequent melting temperature (Tm) curve analysis to detect formation of nonspecific 

products and primer-dimers (Ririe et al., 1997). 

Data normalisation is required to control for the experimental error introduced during the multi-

stage process of isolating, processing RNA and quantification of mRNA transcripts. Technical 

variations are easily compounded by any variation in the amount of starting material between the 

samples, sample-to-sample variation, variation in RNA integrity, amplification efficiency differences 

and cDNA sample loading variation (Kubista et al., 2006). The normalisation of samples is commonly 
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done by comparing with an internal control gene, referred to as a reference (previously 

housekeeping) gene, whose expression levels are unaffected by different experimental conditions 

(Piana et al., 2008). The normalisation of samples is a crucial step to eliminate technical variations 

during RT-qPCR and the sample Cq values are normalised to a reference gene to account for variation 

in sample handling and reaction efficiency (Galay-Burgos et al., 2003). 

An ideal reference gene is a constitutively expressed gene that does not exhibit changes in its 

expression between samples from various experimental conditions or time points (Taylor et al., 

2010). In the study presented here, the β−actin gene, which encodes for a muscle fibre and cell 

cytoskeletal structural protein, was selected as the reference gene for sample normalisation in RT-

qPCR experiments. In gene expression analyses of diverse species, β-actin gene was revealed as one 

of most stable genes together with glyceraldehyde-3-phosphate dehydrogenase (GAPDH) when 

compared to some of the other commonly used reference genes including beta-2-microglobulin 

(B2M), hypoxanthine phosphoribosyl-transferase I (HPRT1), succinate dehydrogenase complex 

subunit A (SDHA), and tyrosine 3 monooxygenase/ tryptophane 5-monooxygenase activation protein 

zeta polypeptide (YWHAZ) (Piana et al., 2008). The β-actin gene has previously been shown to be 

stable in earthworms following metal exposure (Spurgeon et al., 2004) and it has become the 

prevalent reference gene in gene expression studies in earthworms (Chen et al., 2011; Homa et al., 

2010; Liang et al., 2011; Ricketts et al., 2004). 

The analysis of data of RT-qPCR is usually calculated by relative quantification where the 

quantification describes the change in expression of the target gene relative to some control group 

such as an non-treated control (Livak & Schmittgen, 2001). One of the methods to calculate the 

relative changes in gene expression is the comparative Cq method also known as the 2- ΔΔCq method 

(Schmittgen & Livak, 2008). The equation 2- ΔΔCq  is used to compare the gene expression in two 

different samples (a treated group and an non-treated group) and the result demonstrates the fold 

change in expression of target gene due to treatment. 

Quantifying gene expression levels through the measurement of the amount of cellular RNA has 

become fundamental for many molecular biological studies. However, the main critical step is the 

integrity of isolated RNA molecule. High quality RNA is DNA-free and must contain undegraded RNA. 

Degradation of RNA is typically due to cleavage by ribonucleases (RNases) during tissue sampling and 

isolation. Therefore, precautions must be taken during isolation in order to minimise RNA 

degradation. Contaminants such as proteins and/or chaotropic agents from the extraction reagents 

may affect the kinetics of PCR, even when present in small amounts. 
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2.8 P-gp functional activity assay 

A bioassay using the fluorescent dye RB has been successfully used to demonstrate evidence for P-gp 

activity in aquatic organisms (Kurelec et al., 2000; Smital et al., 2000). Rhodamine B is the model 

substrate for P-gp (Smital et al., 2003) and the quantification of its fluorescence accumulated in 

organs, tissues, and cells in the study can be correlated to the presence and function of P-gp. The RB 

bioassay can lead to a more accurate interpretation of the function and expression of the P-gp 

response to chemical exposure, since it measures the active protein and not intracellular pools of 

mRNA. The RB bioassay has been used in many experiments with marine organisms to evaluate the 

effects of contaminants on the P-gp activity (Shúilleabháin et al., 2005; Smital & Kurelec, 1997; 

Timofeyev et al., 2007) and in earthworms to demonstrate the P-gp activity (Brown et al., 2008; 

Hackenberger et al., 2012). 
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Chapter 3 

ABCB1 gene in Aporrectodea caliginosa 

3.1 Introduction 

The ABCB1 gene encodes the transmembrane protein P-gp which is a member of the large family of 

ABC efflux transporters responsible for cellular defence against the accumulation of drugs and 

natural toxins (Szakács et al., 2008). These transporters are ubiquitous in biological systems and are 

expressed in virtually all living organisms from bacteria to humans (Schrickx & Fink-Gremmels, 2008). 

None of the ABC gene family has been identified in earthworms. As the ABC genes of sequenced 

organisms are highly conserved between species (Loncar et al., 2010), the common approach to 

detect new ABC genes has been through the use of degenerate primers (Baker & Barrett, 1994; 

Luedeking & Koehler, 2004; Zaja et al., 2008; Zucchi et al., 2010) as described in section 1.4.1. 

Degenerate primers have been designed by alignment of published ABC gene sequences available 

from public databases such as GenBank (www.ncbi.nlm.nih.gov/) and, for earthworms, LUMBRIBASE 

(www.nematodes.org/), an on-going genome project carried out by the Gene Pool Group in 

Edinburgh to sequence the whole genome of L. rubellus (red wiggler earthworm) is available.  

The hypothesis that the ABCB1 gene is present in earthworms is supported by its ubiquitous nature 

and the detection of ABCB1 in nematodes such as C. elegans (Broeks et al., 1995; Zhao et al., 2007), 

H. contortus and Onchocerca volvulus (Kwa et al., 1998). Moreover, the detection of ABCB1 in 

mussels (Mytilus sp) (Luedeking & Koehler, 2002) , which are phylogenetically more closely related to 

earthworms than to nematodes (Giribet, 2008) reinforces that earthworms should contain a 

homologous gene.  

The aim of this study was composed of two parts: first, to identify a part of the sequence of ABCB1 in 

A. caliginosa and second, to extend this sequence to encompass the whole gene. To achieve this, 

degenerate and specific primers were designed through the identification of conserved areas from 

ABCB1 sequence information in different species, and to be used in the amplification by PCR. Once a 

putative ABCB1 fragment was obtained, extension of the novel sequence was attempted using two 

approaches. The first approach used L. rubellus contiguous sequences from LUMBRIBASE, with high 

homology to the ABCB1 fragment, to design primers to extend the novel sequence information.  The 

second was the use of 3’ RACE (Rapid Amplification of cDNA Ends). 
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3.2 Material and Methods 

3.2.1 Detection of ABCB1 in A. caliginosa  

3.2.1.1  Design of primers 

Degenerate primers 

Five degenerate primers were designed from conserved areas identified by multiple alignment of P-

gp protein sequences encoded by the ABCB1 gene from Caenorhabditis briggsae (GenBank acession 

number XM_001672012), C. elegans (Pgp-1, NP_502413.1), Cricetulus ssp (M59254), Homo sapiens 

(MDR1, EU_854148), Canis lupus familiaris (MDR1, NP_001003215.1), Pan troglodytes (MDR1, 

XP_001163417.1) and Equus caballus (MDR1, XP_001492073.2) and areas with the low degree of 

degeneracy were chosen for primer design (Appendix A.1). The most suitable conserved areas for 

primer design were those that contained amino acids encoded by few triplet codons. 

A further three degenerate primers were designed from conserved areas identified by multiple 

alignment of nucleotide sequences (mRNA sequences) from Mytilus californianus (ABCB/Pgp- like, 

EF_521414), Mytilus edulis (P-glycoprotein, AF_159717), Mimachlamys varia (mdr1, FM_994159), 

O.mykiss (ABCB1, AY_863423), Rattus norvergicus (ABCB1b, NM_012623), Homo sapiens (MDR1, 

EU_854148), Gallus gallus (Pgp, XM_418636) and Trichoplax adherens (hypothetical protein, 

XM_002110919) (Appendix A.2).  

Alignments were performed by the software DNAMAN version 4.0 (Lynnon Biosoft, Quebec, Canada). 

Primers were manually selected based on the following criteria: 18-22 nucleotides in length, 

avoidance of three or more consecutive bases, G (guanine)-C (cytosine) content between 40-60%, G 

and/or C at 3’ terminal region for stability, avoidance of complementarities between primers, melting 

temperature (Tm) in the range of 56-62˚C and similar for each pair of primers (Dieffenbach & 

Dvesksler, 1995; Innis et al., 1990). Melting temperatures were calculated by the formula 4˚C (G+C) + 

2˚C (A+T) (Wallace et al., 1979). Primers were synthesised by Invitrogen Life Technologies, New 

Zealand. All primers were reconstituted and stored following the manufacturer’s recommendations. 

Primers designed using LUMBRIBASE 

The ABCB1 partial mRNA sequence (446 bp) of M. edulis (blue mussel) (AF_159717.1) was used as 

query to search LUMBRIBASE using the Basic Local Alignment Search Tool (BLAST) in order to find 

homologous ABCB1 sequences in L. rubellus. Primers were designed manually from the returned L. 

rubellus sequence with highest homology (>50%) to the ABCB1 mRNA from M. edulis and C. elegans 

(Appendix A3). The criteria for design, synthesis, reconstitution and storage of primers followed the 

same procedures as described in the section of the degenerate primers. 
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3.2.1.2  Sample collection 

Two species of adult lumbricid (Familiy Lumbricidae) earthworms, A. caliginosa (Savigny, 1826) and L. 

rubellus (Hoffmeister, 1843) were collected for DNA extraction and used as templates for the 

detection of ABCB1 gene. Adult earthworms with well-defined clitellum weighing between 300- 600 

mg and measuring approximately 60 to 100 mm in length were collected from an organic apple 

orchard of Biological Husbandry Unit (organic farm) at Lincoln, using a spade followed by hand-

sorting of the collected soil. They were collected during the months of March to November 2010 and 

species identification was based on the taxonomic features which are described elsewhere 

(http://www2.uclan.ac.uk).  

Other specimens were also collected for the analysis of homology between the ABCB1 sequences of 

common earthworms in New Zealand: Aporrectodea trapezoides and Octolasion cyaneum (both 

collected from the same area as A. caliginosa), E. fetida (kindly donated from Patricia Fraser, 

AgResearch, Lincoln) and Allolobophora chlorotica (collected from an organic dairy farm in 

Ashburton). Mytilus edulis was collected from Dunedin Harbour and its DNA was included as positive 

control in PCR using degenerate primers, as well the cDNA from C. elegans (kindly donated from 

Susan Stasiuk, AgResearch, Palmerston North). 

3.2.1.3  DNA extraction 

Earthworms were placed on a glass Petri dish lined with moist filter paper for 48 h to void the soil 

content in their digestive tract and thus, to minimise DNA contamination from other soil organisms. 

The earthworms were briefly immersed in a Petri plate filled with sterile distilled water to remove 

external soil and then placed on absorbent paper to dry. A piece of approximately 10 mm length of 

the posterior end of worm, without digestive tract contents, was cut with a sterile blade and 

immediately transferred to a mortar filled with liquid nitrogen, ground to a fine powder and 

approximately 10 mg of frozen tissue was transferred into a 1.7 ml tube containing 300 µl of cell lysis 

solution (Puregene™, Gentra Systems, Minneapolis, USA). The DNA extraction followed the 

manufacturer’s instructions for the solid tissue protocol with a few modifications as described below: 

1.5 µl of Proteinase K Solution (Fermentas, 900 U/ml, 20.2 mg/ml) was added to the lysate, mixed by 

inverting 25 times and incubated at 55˚C overnight; followed by the addition of 160 µl of Protein 

Precipitation Solution to the lysate, and the pellet was hydrated with 20 µl of nuclease–free water 

(Ultrapure distilled water, Gibco) and incubated overnight at 4˚C.  

The purity and quantity of the DNA extract were measured by spectrophotometry (NanoDrop® 

Technologies Inc., Delaware, USA). To confirm the extracted DNA was of high molecular weight and 

undegraded, it was run in a non-denaturing 1% agarose (Agarose Molecular Grade Bioline) gel. Two 

µl of extract was added to 6 µl of nuclease-free water and 3 µl of loading buffer (0.25 % 
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bromophenol blue, 0.25 % xylene cyanol and 40% sucrose in water) and loaded into each well 

alongside 5 µl of a 1 kb plus DNA ladder (Invitrogen, Carlsbad, USA). The gel was run at 10 V/cm for 

45 min in 1× TAE (40 mM Tris acetate, 1 mM EDTA, pH 8.0).  The gel was stained with ethidium 

bromide (0.5 µg ml-1) for 10 min and rinsed with tap water 3 times. Bands were visualised using a 

VersaDoc™ model 3000 imaging system (BIO-RAD). Subsequently, all samples were adjusted to a pre-

determined concentration (10 ng/µl). DNA extracts were stored at -20˚Cuntil further PCR. The same 

extraction procedure was used for the frozen tissue of M. edulis.  

3.2.1.4 Polymerase chain reaction (PCR)  

Gradient PCR 

A gradient PCR was run initially for each pair of primers in order to determine the optimal annealing 

temperature to minimise the amplification of nonspecific products. The annealing temperatures 

were 48.5, 49.1, 52, 55.9, 59.6 and 61.9°C. Each 25 µl of reaction contained 1.25 U of FastStart Taq 

DNA Polymerase (5 U/ µl Roche Applied Science, Mannheim, Germany), 1 � buffer [500mM Tris/HCl, 

100 mM KCl, 50 mM (NH4)2SO4, 20mM  MgCl2, pH 8.3], 2 mM of MgCl2, 200 µM of each dNTP 

(Fermentas Life Sciences, Cat # R0192), 2 µM of the forward primer, 2 µm of the reverse primer, 

nuclease-free water (Ultrapure distilled water, Gibco) and 20 ng of DNA. A negative control (only 

water) was included for each PCR. The thermal cycler was set as follows: initial denaturation at 94˚C 

for 4 min; followed by 40 cycles of denaturation at 94˚C for 45 s, annealing at different temperatures 

for 45 s and extension at 72˚C for 45 s; and a final elongation step at 72˚C for 7 min. Ten µl of each 

PCR product was mixed with 3 µl of loading buffer and loaded into a non-denaturing 1.3% agarose 

gel alongside and 5 µl of a 1 kb plus DNA ladder run at 10 V/cm for 1 h in 1� TAE.  Gel was stained 

and visualised as described in section 3.2.1.3. 

PCR optimisation  

The amplification with degenerate primers required further optimisation of PCR components to 

produce single amplicons. The optimisation comprised modifications to the reagent concentrations 

and cycler parameters of the standard PCR as follows. In the absence of PCR products, the MgCl2 

concentration was increased from 2.0 mM to 2.5 mM and the cycle number was increased from 40 to 

45. In the event of multiple bands, the template in the reaction mix was decreased from 2 µl to 1 µl 

and the cycle number decreased from 40 to 35. 

Product isolation 

In the event that a band of expected size was present among nonspecific products, this band was 

excised from the agarose gel under ultraviolet (UV) illumination using a sterile scalpel blade. The 

band was placed in a sterile 1.7 ml tube with 15 µl of nuclease-free water. The band was used either 

as a template in re-amplification by using 1 µl of melted solution after 95˚C for 2 min or the PCR 
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product was sequenced directly after purification using the HiYieldTM Gel/PCR DNA extraction kit 

(Real-Biotech, Taiwan) according to the manufacturer’s protocol. 

Another approach to produce single amplicons from nonspecific products was the use of nested PCR 

with primers designed from a region within the amplicon sequence of previous PCR. The master mix 

and cycler settings were the same as the first PCR and the template for the nested PCR was 1 μl of 

the first PCR product diluted 1:500 or 1:1000 in water. 

3.2.1.5 Sequencing 

PCR products were sequenced directly at Lincoln University Sequencing Facility. Sequencing was 

carried on an ABI Prism 3100-Avant Genetic Analyser installed with a 4 capillary 80 cm array using 

Performance Optimized Polymer 4 (POP4). Products were sequenced using the original primers on 

both forward and reverse orientations. Chomatograms were analysed by software Chromas Lite 2.1 

(Technelysium PTY Ltd) and areas with ambiguous bases were removed. Trimmed sequences were 

aligned with DNAMAN version 4.0 software and identities were determined with BLAST using the 

online nucleotide database, the GenBank (http://blast.ncbi.nlm.nih.gov/Blast.cgi). 

For the analysis of the ABCB1 sequences of different earthworm species, a phylogenetic tree was 

created using the software MEGA version 4.0 (Tamura et al., 2007). 

3.2.2 Extension of novel sequence 

Two approaches were used to extend the sequence data of the ABCB1 novel sequence as follows. 

3.2.2.1 Identification of ABCB1 conserved areas  

The first approach was the design of primers located in conserved areas of ABCB1 homologues 

identified by alignments between L. rubellus contiguous sequences (LUMBRIBASE) and the ABCB1 

sequences of different species. Conserved areas in the downstream regions from novel sequence 

were used to design new reverse primers to be used in combination with a specific A. caliginosa 

ABCB1 forward primer. 

The partial mRNA sequence of M. edulis ABCB1 (AF_159717.1) was used as query in the LUMBRIBASE 

database. Returned L. rubellus contiguous sequences that were overlapping (>65% of similarities) 

were assembled into one sequence using DNAMAN 4.0 (Appendix A.4). The translated assembled 

sequence was compared against the M. edulis ABCB1 protein sequence by the program WISE2 

(http://www.ebi.ac.uk/Tools/Wise2/) and homologous areas were identified (Appendix A.5). From 

these homologous areas, one reverse primer was manually designed using the same criteria on 

section 3.2.1.1. The new reverse primer was used in combination with forward ABCB1-AC primer for 

A. caliginosa template or Lum_ABCB1F1 for L. rubellus. 
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Also, the novel A. caliginosa sequence was used as query in the LUMBRIBASE database. The returned 

L. rubellus contiguous sequence with highest similarity was then used to query the GenBank protein 

database (BLASTx) to find other similar sequences. All sequences were aligned and conserved areas 

were identified (Appendix A.6). Two reverse primers were manually chosen within conserved areas 

using the same criteria on section 3.2.1.1. Each reverse primer was used in combination with forward 

ABCB1-AC primer to amplify A. caliginosa DNA. Lumbricus rubellus DNA was included as positive 

control.   

For both strategies, the PCR mixture and cycler parameters were as described in section 3.2.1.4. Any 

PCR products were directly sequenced and/or cloned and sequenced. 

3.2.2.2 Rapid amplification of cDNA ends (3’RACE)  

The second approach was the method of rapid amplification of cDNA ends (3’RACE) using the kit 

5’/3’RACE kit - 2nd Generation (Roche Applied Science, Germany).  The 3’RACE method is a 

procedure for amplification of nucleic acid sequences from a messenger RNA template between a 

defined internal site and the 3´ end of the mRNA (Zhang & Frohman, 1998). This method takes 

advantage of the natural poly (A) tail of mRNA to be a generic priming site for PCR. The specific A. 

caliginosa ABCB1 forward primer was used together with generic primer to amplify the unknown 

flanking regions, allowing the extension of sequence information. 

RNA extraction 

RNA extraction required general precautions to minimise the contamination by RNAses including 

wearing gloves during all steps and changing them often, using RNAse-free glassware treated with 

diethylpyrocarbonate (DEPC at 0.1% in distilled water), commercially supplied RNase and DNase- free 

plasticware and water, a set of pipettes specific for RNA use and barrier pipette tips.  

One randomly chosen earthworm was placed for 48 h on moist filter paper to void digestive tract 

contents, then briefly washed in a Petri plate filled with sterile distilled water to remove external soil 

and minimise contamination by RNAses from soil. The earthworm was placed on absorbent paper 

and a piece of the posterior end (caudal extremity) measuring 10-12 mm in length and weighing 50- 

60 mg was removed with a sterile scalpel blade. The excised piece was placed into a mortar filled 

with liquid nitrogen and ground to a fine powder with a pestle and quickly transferred to a 1.7 ml 

tube. Total RNA was extracted using the Nucleic Acid Isolation kit (E.Z.N.A.® Mollusc RNA isolation 

Kit, Omega Biotek Inc., Georgia, U.S.A.) according to the short protocol of the manufacturer’s 

instructions with a few modifications. The modifications were the addition of 500 µl of buffer RB/2- 

mercaptoethanol (at step 2) rather than 350 μl, 500 µl of 70% ethanol gently mixed with a pipette tip 

(at step 4) rather than vortexing and (before step 5) an additional centrifugation at 10, 000 � g for 

15 s at room temperature (RT), then the flow-through liquid discarded and centrifugation repeated 
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for the remaining mixture. The first elution was with 50 µl of RNAse/DNase –free water, then 2 min 

incubation at RT prior to centrifugation at maximum speed for 1 min. The elution step was repeated 

using the first eluate into the same tube. Isolated RNA was placed on ice.  

The quantity and quality of the extracted RNA were determined by spectrophotometry and by 

agarose gel electrophoresis. Ten µl of RNA extract was mixed with 3 µl of loading buffer and loaded 

into a non-denaturing 1.3% agarose gel alongside 5 µL of the 1 kb plus DNA ladder. The gel was run 

at 10 V/cm for 1 h in 1 � TAE. The gel was stained and visualised as described in section 3.2.1.3. An 

aliquot of the RNA extract was separated for subsequent cDNA synthesis and the remaining volume 

was immediately stored at -80°C.   

cDNA Synthesis and amplification 

Following the 3’RACE protocol, the mRNA component of the total RNA extract was synthesised into 

cDNA using reverse transcriptase and an oligo-dT anchor primer that targeted the poly (A) tail region. 

One µl of RNase inhibitor (RNaseOUTTM Recombinant Ribonuclease Inhibitor; Invitrogen) was added 

to the cDNA synthesis reaction. After first-strand cDNA synthesis, the specific cDNA was then 

amplified by PCR using the ABCB1 forward primer specific to A. caliginosa (section 3.3.1) and the 

supplied anchor primer. The master mix was prepared according to the manufacturer’s 3’RACE 

protocol and the thermal cycle was as follows: initial denaturation 94˚C for 3 min, followed by 40 

cycles of 94˚C for 1 min, 60˚C for 30 s, 72˚C for 3 min and one final elongation step at 72˚C for 7 min. 

After amplification, the PCR product was used in a nested PCR with forward primer AC71rc - 5’ 

GGCGCTGTTATGATTGACGC 3’ and reverse anchor primer in order to isolate the target amplicon from 

the multiple products. The templates were two concentrations of diluted first PCR product in water 

(1:500 and 1:1000) and an excised band. The nested PCR product was cloned.  

3.2.2.3  Cloning 

PCR products were cloned into plasmid pGEM®-T Easy Vector (Promega, Madison, WI, USA) following 

the manufacturer’s instructions. The ligation reaction consisted of 1 µl of PCR product combined with 

5 µl of 2 X Rapid Ligation Buffer, 1 µl of  pGEM®-T Easy Vector (50 ng), 1 µl of T4 DNA Ligase (3 Weiss 

units/ µl) and 2 µl of nuclease-free water. The positive control contained 1 µl of Control Insert DNA 

instead of PCR product and the negative control used water as the insert. All reactions were mixed by 

pipetting and incubated overnight at 4˚C.  

For transformation, JM109 High-Efficiency Competent cells (Promega, Madison, WI, USA) were used. 

Two µl of each ligation reaction was transferred to a sterile 1.7 ml tube and kept on ice. The 

competent cells were allowed to thaw on ice and mixed by gently flicking the tube. Fifty µl of cells 

were transferred to each ligation reaction and mixed by stirring with a pipette tip. The reactions were 

then incubated for 30 min on ice, followed by heat-shock treatment at 42˚C for 40 s, and transferred 
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to ice for 2 min.  Two hundred and fifty µl of SOC medium (Appendix C.1) was added to the ligation 

mixture and placed on the shaker (1,400 rpm, Labnet 211DS) at 37˚C for 1 h. Two volumes, 40 µl and 

100 µl, of each transformation culture were plated onto LB/ampicillin plates previously spread with 

40 µl of 5-bromo-4-chloro-3-indolyl-b-D-galactosidebromo-chloro-indolyl-galactopyranosisde (X-Gal) 

(Appendix C.2). Plates were incubated at 37˚C overnight.  

Transformed colonies (white colonies) were randomly chosen and amplified by colony PCR using 

primers complementary to the plasmid region of insertion. Primers were M13 F 

(5’CTGGCCGTCGTTTTAC 3’) and M13 R (5’ CAGGAAACAGCTATGAC 3’) at a final concentration of 10 

µM. The thermal cycler was set as follows: 94˚C for 5 min, then 35 cycles of 94˚C for 30 s, 60˚C for 20 

s, 72˚C 1 min and one final extension of 72˚C for 10 min. PCR products of expected size (product size 

+ 257 bp flanking) were sequenced. 

3.3 Results 

3.3.1 Detection of ABCB1 gene in A. caliginosa 

Degenerate primers 

Alignment of ABCB1 amino acid sequences of seven different species identified conserved areas 

which were used to design five degenerate primers: DEG2487 (forward) 5’GGIGAYAARATIGGIATG 3’, 

DEG6744 (forward) 5’ ATIGTIWSICARGARCC 3’, DEG6983 (forward) 5’ WSIGGIGGICARAARCA 3’, 

DEG2667 (reverse) 5’ IACIKYICCIGCYTTIGCRTA 3’ and DEG7127 (reverse) 5’ GIGCIATIACIATRCAIGT 3’ 

(see appendix A.1 for alignment details). Alignment of the ABCB1 nucleotide sequences of eight 

different species was used to design a further three degenerate primers: DEG 1526 (forward) 5’ 

TICAGAGRYTCTAYGAYCC 3’, DEG 1804 (reverse) 5’ AIICIYTGYTTYTGYCCHCC 3’ and DEG 1869 (reverse) 

5’ GCWGAIGTDGCYTCATCCA 3’ (see Appendix A.2 for alignment details). These primers were used in 

PCR in the combinations listed in table 3.1. 

Table 3-1 Sets of degenerate primers used to amplify a partial sequence of ABCB1 in 

earthworms. 

 

Using A. caliginosa DNA as template none of the primer combinations produced a band with 

homology to the ABCB1 gene. Set A amplified a single product of the expected size at an annealing 

Set Pair of primers  Expected amplicon size 

A DEG2487 and DEG2667 180 bp 

B DEG6744 and DEG7127 383 bp 

C DEG6983 and DEG7127 144 bp 

D DEG 1526 and DEG 1804 276 bp 

E DEG 1526 and DEG 1869 343 bp 
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temperature at 52˚C (Figure 3.1a) which produced ambiguous sequencing results. Set B produced 

two bands (300 and 650 bp) but these were not the expected 383 bp product (Figure 3.1b). Set C 

produced one band at the expected size of approximately 144 bp (Figure 3.1c). Following band 

excision and re-amplification the product was sequenced but produced weak peak signals and high 

background. Set D produced multiple nonspecific products (Figure 3.1d). Set E produced one distinct 

band with a greater size than the expected 343 bp (Figure 3.1e) and when sequenced a translated 

BLAST search showed that it was similar to the protein dynein, axonemal heavy chain 5 from many 

species.  

Caenorhabiditis elegans cDNA and M. edulis genomic DNA were used as a positive control. PCR with 

primer sets D and E produced an amplicon of the expected size in both templates. The single product 

from set E of C. elegans cDNA (Figure 3.b b) was sequenced directly. The product had 98% identity 

with the sequence of a P-gp related transporter family member in C. elegans (GenBank NP_506927.2, 

results not shown).  

Primers designed using LUMBRIBASE 

The search in LUMBRIBASE (L. rubellus genome) with ABCB1 partial mRNA of M. edulis returned one 

matching contiguous sequence (contig_344933 of 858 bp) with 54.47% identity and 58.1% coverage, 

of which the predicted genes were ABC transporters. The alignment between the returned L. rubellus 

contiguous sequence, C. elegans ABCB1 mRNA (NM_070012.3), and M. edulis ABCB1 partial mRNA 

indicated the ABCB1 homologous regions within the contiguous sequence (see appendix A.3 for 

alignment details). From the homologous areas, two forward and two reverse primers were designed 

as following: Lum_ABCB1/F1 5’GATACTGAACGGTCTGAACGT3’; Lum_ABCB1/F95 

5’ATCCAACGCTTCTACGACCC 3’; Lum_ABCB1/R255 5’TCCTTCTCTCCCGTATCGAAT3’ and 

Lum_ABCB1/R281 5’TCTATCTCAGCCTGGCTCAC3’. The primers were used in sets as illustrated on 

table 3.2.  

Table 3-2 Primer sets to amplify a partial sequence of ABCB1 gene in Lumbricus rubellus. 

 

All sets amplified products of expected size using L. rubellus and A. caliginosa DNA (Figure 3.2). The 

sequencing results of L. rubellus and A. caliginosa (see sequence results on appendixes B.1.1 and 

B1.2) products in the BLASTx search resulted in matches with high homology to protein sequences of 

Set Pair of primers Expected amplicon size 

F Lum_ABCB1F1 Lum_ABCB1R255 255 bp 

G Lum_ABCB1F1 Lum_ABCB1R281 281 bp 

H Lum_ABCB1F95 Lum_ABCB1R255 160 bp 

I Lum_ABCB1F95 Lum_ABCB1R281 186 bp 
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P-gp in other species. The most relevant matches are on table 3.3 according criteria of highest degree 

of similarity and lower E parameter values. 

 

Table 3-3 BLASTx search results of novel sequences of Lumbricus rubellus (278bp) and 

Aporrectodea caliginosa (208 bp) with highest identity to known protein in other species with 

query coverage > 94% and E values < 1
-26

*.  

Novel 

sequence 
Species Protein Name 

Amino acid 

identity 

L. rubellus 

Branchiostoma floridae  

Florida lancelet 
hypothetical protein 
**(XP_002593897.1) 

 

77% 

Mus musculus 

 house mouse 
 

ABCB1(NP_035205.1) 73% 

Strongylocentrotus 

purpuratus  
Sea urchin 

 

ABCB1a (AFD10328.1) 72% 

Rattus norvegicus Norway 
rat 

 

ABCB1b protein(AAI07561.1)  72% 
 

 Branchiostoma floridae 

Florida lancelet 
hypothetical protein 
(XP_002593897.1)** 

 

84% 

A. caliginosa Trematomus bernacchii 

Antartic fish 
 

ABCB1(ACX30417.1) 81% 

 Poeciliopsis lucida  
clearfin fish 

 

P-glycoprotein(ADQ20481.1) 79% 

 Strongylocentrotus 

purpuratus  

sea urchin 

 

ATP-binding cassette transporter 
ABCB1a(AFD10328.1) 

79% 

 Expect value (E parameter) represents the number of times this match or a better one would be 
expected to occur purely by chance in a search of the entire database. Thus, the lower the E value, 
the greater the similarity between the input sequence and the match. 
** contains several recognised ABCB motifs.  
 

 

The novel fragment of A. caliginosa sequence was used to design specific primers: ABCB1-AC forward 

5’ TCGGGTCGAGCGGGTGTG 3’ and ABCB1-AC reverse 5’ GCAAACAGCACTGGTTCCTG 3’ with a 

product of 166 bp. The optimal annealing temperature was set to 60˚C after gradient PCR.  

  



 

 

2
6

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3-1 Gel electrophoresis of amplicons produced by gradient PCR of Aporrectodea caliginosa DNA and Caenorhabditis elegans cDNA (with 
different annealing temperatures denoted at the base of the gels) with degenerate primer sets A (a) , set B (b), set C (c), D (d) and  E (e) to amplify a partial 
sequence of ABCB1 gene. The black arrow indicates the expected product size and the red arrow indicates product that was sequenced. M is the molecular 
marker.  
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Primer set F also amplified products of expected size using DNA from other common earthworms, 

namely, A. trapezoides, O. cyaneum, E. fetida and A. chlorotica (see sequence results on appendix 

B.1). The sequence of these PCR products also showed high homology to ABCB1 proteins (data not 

shown). The neighbour joining tree generated from the novel sequences of six species of pasture 

earthworms and three homologous sequences of other species (M. edulis, R. norvergicus and C. 

elegans) showed that all earthworm sequences clustered together with > 94% similarity (Figure 3.3).   

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3-2  Gel electrophoresis of amplicons produced by gradient PCR (increasing annealing 
temperatures) with specific primer sets F (a) and set G (b) using Aporrectodea caliginosa DNA and 
Lumbricus rubellus DNA to amplify partial sequence of ABCB1 gene. The black arrow indicates the 
expected product size. M is the molecular marker and NTC is non-template control using water as 
template. 

 

Figure 3-3 Neighbour joining tree of novel sequences homologous to the conserved ATPase 
domain of ABCB1 transporter of six species of pasture earthworms (Alllopobhora. chlorotica, 

Octolasion cyaneum, Aporrectodea caliginosa, Aporrectodea trapezoides , Eisenia fetida and 

Lumbricus rubellus and the Mytillus edulis ABCB1 (Genbank acession number: AF159717.1), Rattus 

norvergicus ABCB1b (NM_012623.2) and Caenorhabditis elegans P-gp1  (NM_070012.3). Bootstrap 
values are given above the branches based on 1000 bootstrap replicates, using MEGA version 4.0 
(Tamura et al, 2007). 
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3.3.2 Extension of novel sequence 

Identification of ABCB1 conserved areas to design primers 

The first strategy, using M. edulis ABCB1 to query LUMBRIBASE, resulted in three overlapping L. 

rubellus contiguous sequences (contigs_ 121673, 154463 and 1166) which were assembled into one 

sequence of 4776 bp (Appendix A.4). Comparison between the M. edulis ABCB1 protein sequence 

and the 4776 bp contiguous sequence (Wise2 program) showed that there was a homologous 135 aa 

sequence with 72.6% identity that was split across two putative exons (Figure 3.3). The two exons 

within the contiguous sequence were designated here as L. rubellus exon 1 (nucleotides 3616-3850 

of assembled sequence) and exon 2 (4360-4531). The novel A. caliginosa ABCB1 sequence was 

located at L. rubellus exon 1, and in order to extend the A. caliginosa sequence, a new reverse primer 

was designed from the L. rubellus exon 2 sequence (Lum_exon2: 5’GAGAGCAGACGTMGCTTCATC3’) 

(Figure 3.4). 

Amplification of A. caliginosa cDNA using the forward ABCB1-AC primer (located in putative exon 1 

region), and Lum_exon2 produced an amplicon of the expected size (411 bp) (see sequencing results 

on Appendix B.2.1).  Amplification of A. caliginosa DNA produced two products with different sizes 

from the expected size of 920 bp (Figure 3.5). Only the smallest product (between 500 and 650bp) 

could be reamplified and the resultant sequence was not homologous to ABCB1 from any species. 

Amplification with L. rubellus DNA using forward Lum_ABCB1F1 (based on putative exon1) and 

Lum_exon2 resulted in an amplicon of the expected size (974 bp) (Appendix B.2.2). The BLAST search 

of translated sequences of L. rubellus DNA and A. caliginosa cDNA matched protein sequences of P-

gp in other species (Table 3.4).  
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Multiple Protein Sequence Alignment 

Lumbricus rubellus assembled contig sequence, Caenorhabiditis elegans P-gp, 

Mytilus edulis P-gp and novel Aporrectodea caliginosa P-gp 

 

ORIGIN 

L. rubellus          ILnGlsLtiakGQTVALVGSSGCGKSTvIqLvqRfYDpLd      

M. edulis            ................................qRfYDpda      

C. elegans           ILRGMNLRVNAGQTVALVGSSGCGKSTIISLLLRYYDVLK      

A. caliginosa        .................VGSSGCGKSTvIqLiqRfYDpLe      

 

L. rubellus          GcvmIDGtDiRelNikwLRqNigVVSQEPiLFatTIaENI     

M. edulis            GqvllDGnnikDlNLnwLRqNigVVSQEPvLFgCTIaENI     

C. elegans           GKITIDGVDVRDINLEFLRKNVAVVSQEPALFNCTIEENI      

A. caliginosa        GavmIDGtDiRqlNikwLRqhigVVSQEPvLFatTIaENI      

 

L. rubellus          ryGrEGvTdaEiekAaieANAhnFIskLPl<--Intron--  

M. edulis            rLGnpnaTitEieqAaKqANAhdFIKsLPq 

C. elegans           SLGKEGITREEMVAACKMANAEKFIKTLPN    

A. caliginosa        ryGK     

 

L. rubellus          --->kYgTLVGeRGaQLSGGQKQRIAIARALVRdPrILLL     

M. edulis                sYNTLVGeRGaQLSGGQKQRvAIARALiRdPrILLL     

C. elegans               GYNTLVGDRGTQLSGGQKQRIAIARALVRNPKILLL     

 

L. rubellus          DEATSALDtESEatVQsALDK...................                                     

M. edulis            DEATSALDsESEnIVQeALeK...................                                     

C. elegans           DEATSALDAESEGIVQQALDK...................                                     

 

Figure 3-4  Alignment of amino acid sequences of Lumbricus rubellus contiguous sequence, 
Mytilus edulis P-gp, Caenorhabditis elegans P-glycoproteins and the translated sequence of the novel 
Aporrectodea caliginosa sequence. Capital letters denote homology between all four sequences, red 
letters show homology between Lumbricus rubellus and Mytilus. edulis, green letters between 
Lumbricus rubellus and Caenorhabditis elegans and blue are between Lumbricus rubellus and 

Aporrectodea. caliginosa. The Lumbricus rubellus sequence in a box was chosen to design the reverse 
Lum_exon2 primer. 

 

 

 

 

 

 

Figure 3-5 Gel electrophoresis of PCR products amplified by primers targeting the ABCB1 gene. 
Lanes 1 and 2 are Lumbricus rubellus DNA amplified by Lum_ABCB1F1 and Lum_exon2 primer with 
expected product size of 974 bp. Lane 3 is Lumbricus rubellus DNA amplified by ABCB1-AC and 
Lum_exon2 with expected product size of 920 bp. Lane 4 and 5 are Aporrectodea caliginosa cDNA 
amplified by ABCB1-AC and Lum_exon2  with expected product size of 411 bp and lane 6 is from 

Aporrectodea caliginosa DNA amplified by ABCB1-AC and Lum_exon2 with expected product size of 
920 bp. Black arrows indicate the expected product size. 

 974 bp 

411 bp 

920bp 

Second exon 

First  exon  
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Table 3-4 BLAST search results of Aporrectodea caliginosa translated sequence (134 amino 
acids) with highest identity to known proteins in other species with query coverage > 94% and E 
values < 1-58  .  

Species Protein Name 
Amino acid identity 

Branchiostoma floridae  
Florida lancelet 

hypothetical protein* 
(BRAFLDRAFT_131055) 

 

87% 

Strongylocentrotus purpuratus 

sea urchin  

ABCB1a 
(AFD10328.1) 

83% 

Danio rerio 
zebra fish 

ABCB4 
(NP_00110855) 

80% 

Heterocephalus glaber 

naked mole rat 
Multidrug resistance protein 

(EHB12084) 
80% 

Poeciliopsis lucida 

freshwater fish 
P-glycoprotein 
(ADQ20481.1) 

80% 
 

Crassostrea ariakensis 

Asian oyster 
P-glycoprotein 
(AET34454.1) 

79% 

 Xiphophorus hellerii 

swordtail fish 
P-glycoprotein 
(AEV93606.1) 

79% 

Rattus norvegicus  

 Norway rat 
 

ABCB1b 
(AAI07561.1) 

78% 

* contains several recognised ABCB motifs.  
 
 

The alignment of the novel translated L. rubellus sequence (974bp) and A. caliginosa (411bp) with 

the protein sequence of R. norvergicus ABCB1b (GenBank AAI07561.1) confirmed the presence of 

two putative exons (see alignment in appendix B.2.3). The exons encoded 110 and 36 amino acids 

(aa) in L. rubellus and 92 and 42 aa in A. caliginosa. A 508 bp intron was present in L. rubellus and 

exons had 97.9% and 100% homology respectively.  

The typical conserved sub-domains of P-gp (Lawson et al., 2008) were identified in A. caliginosa by 

the alignment with R. norvergicus ABCB1, S. purpuratus ABCB1a and D. rerio ABCB4 sequences. The 

motifs are shown in the figure 3.6. 
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Figure 3-6  Alignment of P-glycoprotein amino acid sequences of Rattus novergicus 
(AAI07561.1), Strongylocentrotus purpuratus ABCB1a (AFD10328.1) and Danio rerio ABCB4 
(NP_00110855) and the translated novel Aporrectodea caliginosa sequence. In the boxes are the 
conserved ABC transporters motifs in P-glycoprotein (Lawson et al., 2008) 

 

The second strategy, using the A. caliginosa novel sequence (208 bp), resulted in one contiguous 

sequence (contig 76678) of 1730 bp with 87% identity to the A. caliginosa novel sequence and 84% 

identity to both ABCB1 protein sequences, B. floridae (XM_002593851.1) and R. norvergicus 

(BC_107560.1). The multiple sequence alignment of L. rubellus contiguous sequence, B. floridae and 

R. norvergicus identified a conserved area of approximately 180 bp, located at 760 bp downstream 

from the novel A. caliginosa sequence (Appendix A.6). Two reverse primers were designed from the 

conserved region: BR1 5’GCGATTCTTTGCTTCTGTCC3’ and BR2 5’ACCTTGTCGAGAGCCGCC3’. The 

amplification in L. rubellus DNA with ABCB1-AC forward and BR2 reverse resulted in a product of 

approximately 900 bp.  BLASTx search resulted in 50% identity to a predicted sequence of similar to 

ORF2 encoded protein.  

ABCb1 R.norvergicus VYFNYPSRSEVKILKGLNLKVKSGQTVALVGNSGCGKSTT     40 

ABCB1a S.purpuratus hfs.YPSRasVKvLnGiNLKVdvGkTVAmVGsSGCGKSTc     39 

ABCB4_Danio rerio    nFRYPSrddvkvlngmnlkvmsgqtialvGSSGCGKStT     40 

Novel A. caliginosa ..............................GsSGCGKSTv     10 

 

 

ABCb1 R.norvergicus VQLLQRLYDPIEGEVSIDGQDIRTINVRYLREIIGVVSQE     80 

ABCB1a S.purpuratus iQLiQRfYDvaEGsikIDGiDIRdlNVswLRdhIGVVSQE     79 

ABCB4_Danio         iqlLqrfydpqegsvsidghdirslnvrglrelIgvVSQE     80 

Novel A. caliginosa iQLiQRfYDPlEGaVmIDGtDIRqlNikwLRqhIGVVSQE     50 

 

 

ABCb1 R.norvergicus PVLFATTIAENIRYGRENVTMDEIEKAVKEANAYDFIMKL    120 

ABCB1a S.purpuratus PiLFATTIeENIRYGRldVTqaEIEKAaeEANAhDFIsKL    119 

ABCB4_Danio         pvlfatTiaenirygrqdvtqdeieqaAreanaynfimkl    120 

Novel A. caliginosa PVLFATTIAENIRYGRdgVsqaEIEmAaKEANAhDFIsKL     90 

 

 

ABCb1 R.norvergicus PHKFNTLVGERGAQLSGGQKQRIAIARALVRNPKILLLDE    160 

ABCB1a S.purpuratus PegysTLVGERGAQLSGGQKQRIAIARALVRNPtILLLDE    159 

ABCB4_Danio         pdkfeTLVGdRgtqmSGGQKQRIAIARalvrnpkILLLDE    160 

Novel A. caliginosa PlKyeTLVGERGAQLSGGQKQRIAIARALVRdPKILLLDE    130 

 

 

ABCb1 R.norvergicus ATSALDTESEAVVQAALDKAREGRTTIVIAHRLST         195 

ABCB1a S.purpuratus ATSALDTESEAtVQlALeKAqhGRTTlVIAHRLST         194 

ABCB4_Danio         atSALDaesetiVqaAldkvrlgrtTIVVAHrlsti         195 

Novel A. caliginosa ATSA                                        134 

           

 

 

A-loop Walker-A 

Gln-loop 

Gln-loop 

X-loop C-motif 

ABC s ign. 

Walker-B 

D-loop 
His-loop 



 

 32

3’ RACE 

The first rapid amplification of cDNA ends using A. caliginosa cDNA resulted in a strong product of 

approximately 1650 bp among multiple products with weaker signals. Following nested PCR, one 

main 750 bp amplicon was produced which was sequenced. The translated nucleotide sequence 

showed 92% identity (16% coverage) with methyl-coenzyme M reductase alpha subunit.  

3.4 Discussion 

3.4.1 Novel sequence 

This work describes the discovery of a partial sequence of the ABCB1 gene in the two most abundant 

species of earthworms (A. caliginosa and L. rubellus) found in the pastures of New Zealand, using a 

combined approach of degenerate PCR and sequence retrieval from the draft L. rubellus genome 

LUMBRIBASE. The novel translated sequence(s) has high amino acid sequence identity (>78%) to P-gp 

involved in the drug resistance mechanism, encoded by ABCB1 gene in vertebrate and invertebrate 

species. According to Hennessy et al (2007), homologies at protein level that achieves at least 40% 

identity compared to known sequences of other species predicts the gene family affiliation. 

Therefore, for the first time, a new coding sequence of an ABCB1 gene has been identified from the 

organisms of Lumbricidae family.  

The novel coding sequences from A. caliginosa, the species of interest of this study, and the positive 

control L. rubellus shared high similarity. The novel sequences of A. caliginosa and L. rubellus 

comprised two putative exons that encompass 10.5% and 12% of the ABCB1 coding region found in 

other species respectively (411 and 466 bp out of 3883 bp).  The comparison of the lumbricid 

translated sequences with proteins of other species revealed high homology to P-gp of mammals and 

aquatic organisms. The highest homology (84%) was with a hypothetical protein sequence from a 

marine invertebrate (Branchiostoma floridae, Florida lancelet), whose genome has been sequenced, 

but for which not all genes have been annotated. Although this hypothetical protein has not yet been 

fully characterised, it has the domain architecture of a typical eukaryotic ABC full transporter, 

composed  of two transmembrane domains (TMDs) and two nucleotide binding domains (NBDs) 

(Lawson et al., 2008), including the main ABC signatures within the conserved NBDs of ABC subfamily 

B (Biemans-Oldehinkel et al., 2006). Since ABC transporters are classified based on the sequences 

and organisation of their NBDs (Dean et al., 2001), the sequence of the B. floridae strongly indicates 

it is a Pgp-like protein. 

The lumbricid novel translated sequences contain the conserved NBD sub-domains (highly conserved 

sequence motifs), typically found in P-gp sequences, including the classical ABC motifs: Walker-A and 

Walker-B. Both motifs are conserved among all ABC transporter superfamily members, as well as 
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other ATP-binding proteins (Leslie et al., 2005). Furthermore, the novel sequences contain the 

signature sequence “LSGGQ”, which is a highly conserved amino acid sequence within another 

classical sub-domain, the C-motif. This signature distinguishes the novel sequences as an ABC 

transporter rather than other ATP-binding proteins (Ambudkar et al., 2006; Lawson et al., 2008). In 

addition, the novel sequences contain sub-domains of subfamily B: the complete motifs Gln-loop and 

X-loop, and partial sequence of D-loop. The high level of conservation within ABCB signatures was 

also reported in the multi-alignment of ABCB1 sequences of Trematomus bernacchii, O. mykiss and 

Homo sapiens (Zucchi et al.,2010). Overall, five complete motifs and one partial within the novel 134 

amino acid sequence, were identified from the eight established motifs typically found along  the 200 

amino acid sequence of conserved sub-domains in P-gp (Feldstein et al., 2006; Luedeking & Koehler, 

2002). This information strongly suggests that the A. caliginosa and L. rubellus novel sequences 

encode P-gp. 

In mammals, there are two classes of P-gp (Sturm & Segner, 2005). P-glycoprotein class 1 is involved 

in the xenobiotic transport and is encoded by the ABCB1 gene, and P-gp class 2 is mainly expressed in 

the liver and transports the bile component phosphatidylcholine, exclusively in mammals. P-

glycoprotein 2 is encoded by the ABCB4 gene and shares high homology to ABCB1, including the 

presence of conserved motifs mentioned above. However, in a phylogenetic analysis comparing ABC 

proteins of birds and fish to human ABC proteins it was reported that ABCB4 gene is lacking in birds 

and fish (Annilo et al., 2006) . This result is supported by the fact that non-mammal species do not 

contain phosphatidylcholine in their systems, which strongly suggests the ABCB4 is also absent in 

invertebrates (Heumann et al., 2012). Moreover, numerous studies in invertebrates demonstrated 

the presence of ABCB1-like P-gps capable of drug transport, but not ABCB4-like P-gps (Heumann et 

al., 2012). Therefore, the novel sequence, although showing homology to ABCB4 gene, is more likely 

to be part of ABCB1 gene as earthworms do not have the bile component in their system.  

Among the ABCB1 gene family, there are closely related genes encoding for P-gp isoforms involved in 

the multidrug resistance. Rodents have two P-gp isoforms, Mdr1a (encoded by ABCB1a) and Mdr1b 

(encoded by ABCB1b) which share approximately 85% amino acid identity with each other, and share 

a similar physiological function (Schinkel, 1997). The novel sequences were homologous to a 

common region of both isoforms of Norway rat (R. norvergicus) but, due to its short length; the 

homology of lumbricid sequences could not be specifically associated to one of the rat isoforms. Until 

now, there is no report that earthworms have more than one P-gp. However, their presence is 

hypothesized since multiple P-gp isoforms have been found in the nematode C. elegans (Zhao et al., 

2007), and in the sea squirt Ciona intestinalis (Annilo et al., 2006). C. intestinalis has two P-gp-like 

proteins that are 95% similar, 94% at the nucleotide level of the predicted transcript, and share 
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approximately 70% similarity at genomic sequence level. The presence of isoforms in lumbricids is 

unknown and requires further investigation. 

In this study, new genetic information related to ABCB1 gene in other pasture earthworm species (A. 

trapezoides, A. chlorotica, E. fetida and O. cyaneum) was also obtained. Primers based on L. rubellus 

sequence amplified a 208 bp fragment in all six species, resulting in translated sequences comprising 

one putative exon with high homology to P-gp in other species. In the phylogenetic analysis of the six 

species, a high degree of conservation within NBD was seen at nucleotide level (> 94% similarity). 

This outcome is probably because the organisms belong to the same family (Lumbricidae) and was 

not observed between more phylogenetically distant species used for the design of degenerate 

primers. This high similarity will be advantageous in future studies characterising the ABC genes of 

subfamily B in other earthworms using the approach used for A. caliginosa and L. rubellus.  

3.4.2 Degenerate primers 

The most critical step in designing degenerate primers based on the protein alignment was to find 

potential sites, preferably clusters of six or seven amino acid sequences that did not contain 6-fold 

degenerate residues, to avoid high degeneracy level (>512-fold degenerate) (Lang & Orgogozo, 

2011). However, these sites were rare in the P-gp alignments and resulted in four primers out of five 

with degeneracy higher than 1024-fold. The high degeneracy level contributed to the amplification of 

multiple products in A. caliginosa which hindered the identification of target gene by direct 

sequencing. The primer (DEG2487) was the only one that showed low degeneracy (256-fold), 

however it was located within the TMDs, and TMDs of different species share little sequence 

homology (Ambudkar et al., 2006). This may explain the lack of amplification of target gene when 

using the low degenerate DEG2487. Although degenerate primers with high level of degeneracy have 

been used successfully in other studies in the search for ABC sub-family B genes (Feldstein et al., 

2006; Luedeking & Koehler, 2002), this was not the case here. 

 A second group of degenerate primers were designed based on the alignment of nucleotide coding 

sequences of more closely related species, such as mussel and scallops. At that time in this study, 

there was no annotated ABCB1 gene in any species of Annelida phylum. The closest species to 

earthworms, with available ABCB1 information, were mussel and scallops, which, at least, share the 

same super-phylum, Lophotrochozoa, with earthworms. Although the mussel and scallops sequences 

were incomplete, the region was of a nucleotide-binding domain (NBD) with some ABC subfamily B 

classical features. Degeneracy went down to 72-fold or less in two primers, and they were able to 

amplify a P-gp-like homologue in C. elegans cDNA, which species sequence was not included in the 

alignment for the design of second set of degenerate primers. For C. elegans, the use of cDNA 

sequence instead of whole genomic sequence contributed to direct sequencing due to minimisation 
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of nonspecific products, opposed to several nonspecific products observed in the amplification of A. 

caliginosa genomic DNA, which interfered in the direct sequencing.  It is likely that the addition of 

sequences from the species in the same phylum together with the use of cDNA as template may have 

improved the production of successful degenerate primers. Given the difficulties experienced here 

with design of degenerate primers using sequences from distantly related species, it is probable that 

the new lumbricid sequences will be valuable in the design of degenerate primers for other Annelid 

species. 

The success of the degenerate primers may have been improved by incorporating a post-PCR cloning 

and sequencing step (Allikmets et al., 1998). In this study, although common approaches were used 

for the optimisation of the degenerate PCR, it is likely that there was considerable amplification of 

nonspecific products (Lang & Orgogozo, 2011). The success of the use of cloning in the identification 

of ABC genes fragments, amplified by degenerate primers, has been demonstrated in other studies 

(Feldstein et al., 2006; Heumann et al., 2012; Löffert et al., 1998; Luedeking & Koehler, 2002; Zaja et 

al., 2008; Zucchi et al., 2010). The main product of A. caliginosa remains to be characterised by 

cloning techniques.  

3.4.3 Lumbribase 

Access to the draft L. rubellus genome, an on-going project to sequence the whole genome was 

invaluable to this research by providing another option for primer design. Primers were based on a L. 

rubellus sequence homologous to the conserved NBD of M. edulis ABCB1 containing some of the 

typical ABC motifs. The close phylogenetic relationship between the two lumbricid species allowed 

the design of primers without degeneracy. A similar study was done in the isolation of P-gp in the 

salmon louse (Lepeophtheirus salmonis) where the NBDs of the crustacean Daphnia pulex were used 

as queries in the publicly available EST (expression sequence tag) database for sequences encoding 

sea-louse ABC transporters (Heumann et al., 2012) 

LUMBRIBASE information also facilitated the extension of the novel sequence by finding homologous 

sequences to the downstream conserved motifs. As the draft genome becomes fully assembled and 

annotated LUMBRIBASE will allow further extension of this gene and expansion to identify ABC 

transporters and other genes in the Lumbricidae family. 

3.4.4 3’ RACE 

The amplification of the 3’ end of A. caliginosa mRNA was the approach to rapidly extend the known 

gene region. In many studies, the amplification from a defined internal site towards the cDNA ends, 

either 3’ or 5’, has been the method of choice to obtain the entire open reading frame of 

transporters (Feldstein et al., 2006; Heumann et al., 2012; Zaja et al., 2008; Zucchi et al., 2010). In 
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those studies, the products were cloned into a plasmid vector for the isolation of target gene and 

subsequent identification. It is possible for the products of 3’ RACE amplification be inserted into a 

clone for identification of the target gene sequence. For future studies, the method should be 

repeated with cloning, and amplification of the 5’ end to obtain the whole open reading frame of P-

gp in A. caliginosa. 

3.4.5 Conclusion 

 A new gene has been identified in A. caliginosa, the most abundant pasture earthworm of New 

Zealand, with high homology to the ABCB1 gene that encodes for the protein P-gp involved in the 

MXR, a mechanism of defence against accumulation of drugs and natural toxins at cellular level. 

Although not yet fully characterised, the new sequence encodes classical domain features of an ABC 

transporter confirming the presence of ABC transporters in earthworms. To date, the presence of P-

gp in earthworms has been only evidenced by functional assays using P-gp substrates. Further work 

is required to obtain the entire sequence of this novel gene, as are studies into the localisation, 

function, expression pattern, and substrate specificities by methods such as qPCR and 

immunochemistry assays including Western-blot and in-situ hybridization. In addition, the number of 

P-gp isoforms has yet to be determined in earthworms, as many invertebrates have more than one P-

gp (Dean et al., 2006; Sturm et al., 2009; Zhao et al., 2007).  

 

 



 

 37

Chapter 4 

Development of a reverse transcription-quantitative PCR assay for 

the analysis of ABCB1 gene expression in Aporrectodea caliginosa  

4.1 Introduction 

The expression of P-gp is closely regulated, particularly at the level of transcription (Scotto, 2003). 

The ABCB1 expression can be induced by a variety of drugs and hormones in vitro in mammals 

(Magnarin et al., 2004). Today, the method of choice for accurate, sensitive and fast measurement of 

gene expression is the fluorescence-based RT-qPCR (Derveaux et al., 2010). In a number of aquatic 

toxicological studies, this technique has been used to measure ABCB1 expression levels in marine 

organisms in order to understand the role of ABC transporters in the defence against pollutants 

(Fischer et al., 2011; Ivanina & Sokolova, 2008; Loncar et al., 2010; Luedeking & Koehler, 2004; Zucchi 

et al., 2010). 

The analysis of altered expression of ABC transporter genes in contaminated habitats can serve as 

biomarkers when environmental factors are correctly taken into account (Luedeking & Koehler, 

2004). At present, few transcriptome profiles have been produced in earthworms via microarray 

technology (Owen et al., 2008; Steinberg et al., 2008; Svendsen et al., 2008), but these did not 

specifically assess the ABC transporter response. Analysis of ABCB1 transcript levels in earthworms 

would contribute to the knowledge of P-gp function in the defence against xenobiotics. Such studies 

may establish a biomarker for ecotoxicological assessments in soil.  

The objective of this work was to develop, validate, and optimise a RT- qPCR assay to measure the 

ABCB1 mRNA copies in A. caliginosa. Preliminary exposure experiments were done to test the assay 

and to examine whether ABCB1 expression in A. caliginosa was modulated by chemical exposure. 

The chemicals were: 1) to the antibiotic rifampicin, a known ABCB1 inducer at transcriptional level in 

mammalian cells (Magnarin et al., 2004), 2) to the immunosuppressant CyA, a specific P-gp substrate 

that inhibits the protein function and has previously been used as a P-gp transport blocking agent in 

mammals (Saito et al., 2001) and earthworms (Brown et al., 2008) and 3) the widely used 

anthelmintic IVM, which has been associated with ABCB1 overexpression in nematodes (James & 

Davey, 2009). 
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4.2 Material and Methods 

4.2.1 Chemicals  

Rifampicin powder (Sigma-Aldrich, R7382) was dissolved in methanol (Scharlau) to obtain a stock 

solution of 500 µM. Cyclosporin A powder (Fluka, Biochemika, Cat # 30024) was dissolved in 96% 

ethanol (Scharlau) to obtain a stock solution of 416 µM and stored at 4˚C. IvermectinTM (commercial 

concentration = 200 mg/L) was kindly donated by Rob McAnulty (Johnston Memorial Laboratory- 

Lincoln University). Further dilutions of the three chemicals were made in water. 

4.2.2 Pre-treated soil generation 

Soil was taken from the same area where earthworms were collected to a depth of approximately 30 

cm. Soil was placed in metal trays and oven dried at 30˚C for 7-10 days with daily soil mixing. To 

eliminate contamination by invertebrates, large pieces of stones and vegetation, dried soil were 

sieved (2 mm metal mesh) with help of a ceramic pestle to break aggregates of dried soil and push 

the soil through the sieve. 

4.2.3 Pre-treated manure generation 

Sheep manure was added to soil as source of organic matter for earthworms. The manure was 

collected from animals that were not receiving any medication. The fresh dung was air -dried at room 

temperature and subsequently frozen at –80˚C to diminish contamination by microorganisms 

(partially sterilised) and to maintain its nutritional value (Lowe & Butt, 2005) or alternatively heated 

in the microwave at high (1000 W) for 3-5 min (pers. comm. Dr Stephane Boyer, Jan 2010). After 

thawing, dung was ground with a ceramic mortar and pestle until it was the consistency of a coarse 

powder and 15 g of dried manure per kg of dried soil was added weekly to the container.   

4.2.4 Collection and maintenance of A. caliginosa 

Adult earthworms of the species A. caliginosa were selected for this experiment. Species 

identification, method and area of collection were described in chapter 3, section 3.2.1.2.  

Earthworms were transported to the laboratory from the field site inside a bucket covered with soil. 

They were transferred to a 6 L sealed plastic container (lid with < 5 mm holes for ventilation) 

containing pre-treated soil. Moisture was adjusted to 30- 35% (v/w) of the dry weight with distilled 

water. Earthworms were kept in a controlled temperature room (15˚C) with a light programme (16h 

light and 8h dark) for at least one week for acclimatisation before being exposed to soil treated with 

chemicals.  
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4.2.5 Determination of suitable chemical concentrations for A. caliginosa 

bioassays (Range finding study) 

Since there is little information available about the effects of the chemicals used in this study on A. 

caliginosa, suitable dosage concentrations to be used in the exposure experiments were determined 

by preliminary contact tests in filter paper (OECD, 1984) with a range of concentrations. Previous 

studies in A. caliginosa have shown that chemicals are mostly absorbed through the pores of the 

surface cuticle when exposed to chemicals externally other than via soil (Booth & O'Halloran, 2001).  

The chemicals were assessed either in combination with their respective solvents and the solvent 

alone as a control, in order to identify any negative effects on earthworm physiology that could 

disrupt the modulatory effect on ABCB1. The endpoint of the chemical range was established as the 

maximal concentration that did not cause any visible physiological change on earthworms.  

The tested rifampicin concentrations in A. caliginosa were chosen according rifampicin 

concentrations used to induce the ABCB1 gene in mammalian cells (Magnarin et al., 2004; Manceau 

et al., 2010) as follows: 6, 12, 25, 50, 100, 200, 300, 400, 500, 1000, 2000, 2500, 5000 and 10000 µM. 

IvermectinTM was tested in four dilutions (20, 2, 1, and 0.2 µg/ml) from the commercial product 

concentration of  200 µg/ml. Cyclosporin A was not tested for toxicity in this section because a safe 

and effective concentration that caused P-gp transport blocking, had been already determined in the 

functional assay in this research (chapter 5) at concentration of 50 µM. 

For the contact test of each chemical, a glass Petri dish was lined with filter paper (Whatman 

Qualitative grade 1 filter paper 63.5 cm2) and loaded evenly with 1 ml of each target chemical. For 

each target chemical a control was included which consisted of a Petri dish loaded with 1 ml of the 

solvent used to make the stock solution. The wetted filter paper was dried by leaving the Petri dish 

without a lid overnight at room temperature inside a class I laminar flow unit to ensure that solvent 

would be totally evaporated and protected from light to limit chemical degradation. The following 

day, the dry filter paper was loaded with 1 ml of non-sterile distilled water to provide moisture for 

the earthworms. For each treatment, three randomly chosen earthworms were placed onto each 

filter paper to examine the effects of chemicals in their physiological status or clinical behaviour. 

The Petri dishes were transferred into a cardboard box to protect earthworms from light and the box 

was placed randomly in the temperature controlled room (15˚C). The earthworms were observed for 

48 h and any mortality or signs of toxicity were recorded.  



 

 40

4.2.6 Exposure of chemicals to A. caliginosa in soil 

Safe concentrations of chemicals were determined and used in the exposure experiments in soil. 

Each exposure experiment included one treated group and one non-treated control group (solvent 

minus chemical). The solutions added to the soil for each experiment were: 

• Rifampicin – at 10 mM and 5 mM, diluted in 100 mM and 50 mM methanol, respectively. 

The control was solvent only at the respective concentration. 

• Cyclosporin A – at 50 µM in 120 mM ethanol. The control was ethanol only at 120 mM 

• Ivermectin™ – at 2.0 µg/ml and 1.0 µg/ml in water. The control was water only. 

For all experiments each container contained 40 g of pre-treated dried soil (section 3.2.3) and 15 ml 

of chemical solution. The mixture was homogenised well with a spatula and then spread onto a metal 

tray (40 � 30 cm) with layer depth of 5 –8 mm to let the solvent evaporate. The tray was left inside a 

class I laminar flow unit for 24 h in the dark. The dried mixture was transferred to a mortar and 0.5 g 

of pre-treated sheep manure (section 3.2.4) was added. Soil clumps were ground with pestle to <1 

mm particle size. The mixture was transferred to a 70 ml polypropylene screw top container 

(Thermofisher Scientific, Albany, New Zealand) with a manually perforated screw top (< 5 mm-hole). 

Soil was rehydrated with 15 ml of distilled water and mixed with a spatula.  

Three adult and active earthworms with healthy appearance were chosen randomly and placed 

inside each container. The earthworms had previously been placed onto moist filter paper for 48 h to 

void the soil content in their guts and to stimulate the ingestion of treated soil. Containers were 

maintained in a temperature controlled room (section 3.2.2) for seven days. Each exposure to 

rifampicin or CyA was replicated 4 times (4 containers) for both the treated soil (solvent + chemical) 

and solvent control. The pilot study with IVM had duplicate containers for the treated soil (IVM + 

water) and non-treated control (water only).  

Daily observations were made to check for mortality and, at the end of the trial, clinical alterations 

such as such as decreased activity, dehydration, impaired and abnormal reflexes, constrictions along 

body, detachment of osterior end, presence of hemorrhagic spots and death were recorded. Those 

earthworms were discarded from analysis.  

4.2.7 RNA extraction and DNAse treatment 

After seven days, the earthworms were removed from the experimental containers for extraction of 

total RNA. RNA was extracted as described in chapter 3 (section 3.2.2.2), but excluding the voiding 

gut of materials for 48 h on filter paper because the measurement of transcriptional copies had to be 



 

 41

done immediately after exposure of tested chemical. To remove the intestinal contents, the 

posterior end was gently pressed with forceps to force the soil out from intestinal lumen. The excised 

portion of earthworm was immediately cut into smaller pieces (~3 mm) and transferred to a RNAse 

and DNAse- free 1.7 ml  tube containing 500 µl of RNA stabilisation reagent (RNAlater, QIAGEN, Cat # 

76104). The stabilisation reagent prevented RNA degradation and maintained RNA stability for up to 

4 weeks at 2–8°C. For extraction of RNA, the tissue was removed from the stabilisation reagent and 

RNA extracted as described in chapter 3.  

An aliquot of the RNA extract, containing 1 µg of total RNA, was aliquoted into a separate 0.6 ml 

DNAse/RNAse-free tube for subsequent DNA synthesis and the remaining volume was immediately 

stored at -80˚C. Genomic DNA contamination was removed using a Deoxyribonuclease I 

Amplification Grade kit (DNase I, Amp Grade; Invitrogen) as follows. One µg of RNA sample was 

incubated in  1 � DNase I reaction buffer [200 mM Tris-HCl (pH8.4), 20 mM MgCl2, 500 mM KCl], 1 U 

of DNase I (1 U/µL) and RNase-free water in a total volume of 10 µL. The reaction solution was 

incubated at room temperature for 15 min, then 1 µL of 25 mM of EDTA (pH 8.0) was added and the 

solution heated for 10 min at 65˚C. The DNA-free RNA was then used for cDNA synthesis. 

4.2.8 cDNA synthesis 

The SuperScript ™ III Reverse transcriptase kit (Invitrogen) was used to synthesise cDNA. Into a 

nuclease-free 0.6 ml tube the following was added: 1 µL of 50 µM oligo (dT)20 (Ambion; Texas, USA), 

1 µg of DNase-treated RNA sample, 1 µL of 10 mM dNTP (dNTP Mix, 10 mM each , Fermentas Life 

Sciences) and nuclease-free water to a total volume of 13 µL. The mixture was heated to 65˚C for 5 

min and incubated on ice for at least 1 min. Tube contents were collected by brief centrifugation at 

5,000 � g and the following reagents were added: 4 µl of 5 � First-Strand Buffer [250 mM Tris HCl 

(pH 8.3), 375 mM KCl, 15 mM MgCl2], 5 mM of dithiothreitol (DTT), 1 U of RNase inhibitor 

(RNaseOUTTM Recombinant Ribonuclease Inhibitor; Invitrogen, 40 units/µl), 10 U of SuperScript TM III 

RT (200 U/µL) to a final volume of 20 μl. The solution was mixed gently with a pipette and incubated 

at 50˚C for 60 min. The reaction was inactivated by heating at 70˚C for 15 min. The cDNA was stored 

at -20˚C until use as a template in RT-qPCR. 

4.2.9 Primer design of target and reference genes  

Primers of target gene ABCB1 

Primers used for the amplification of target gene (ABCB1) were ABCB1-AC forward 5’ 

TCGGGTCGAGCGGGTGTG3’ and ABCB1-AC reverse 5’ GCAAACAGCACTGGTTCCTG 3’ which produced 

a product of 166 bp (see section 3.3.2.1 for primer design).  
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Primers for the reference gene ββββ-actin 

The β-actin gene was selected as the reference gene for normalisation. β-actin sequence information 

for A. caliginosa was not available, so a strategy similar to that used to obtain the ABCB1 gene 

(section 3.2.1.1 –primers designed using LUMBRIBASE) was applied here. Firstly, partial sequences of 

β-actin mRNA from species phylogenetically close to the Lumbricidae family were retrieved from the 

GenBank database (http://www.ncbi.nlm.nih.gov/): E. fetida-accession number DQ286722.1; 

Lumbriculus variegatus- AY157021 and Taenia taeniaeformis- AB533224.1 in order to identify 

conserved regions within this gene. The sequences were used as queries on the LUMBRIBASE 

database (http://www.nematodes.org/Lumbribase) to find the L. rubellus β-actin gene. The returned 

contiguous sequence from LUMBRIBASE and the three partial mRNA sequences were aligned using 

DNAMAN 4.0 software (Lynnon Corporation, Quebec, Canada) and homologous areas (>50% of 

similarity) were identified for primer design (see alignment details in appendix A.7). Primers were 

designed manually according the criteria described on section 3.2.1.1.  The synthesis, reconstitution 

and storage of primers followed the same procedures as described in the section 3.2.1.1.  

The A. caliginosa β-actin gene was amplified from RNA using the QIAGEN OneStep RT-PCR Kit. 

Lumbricus rubellus was used as positive control. Each reaction mix contained 1 � RT- PCR buffer 

[Tris·Cl, KCl, (NH4)2SO4, 12.5 mM MgCl2, DTT; pH 8.7 (20°C)], 1� Q-solution, 400 μM of each dNTP, 

0.6 μM of forward and reverse β-actin primers, 1 U of RNase inhibitor (RNaseOUTTM), 1µl of RT-PCR 

enzyme mix (Omniscript and Sensiscript Reverse Transcriptase and HotStarTaq DNA Polymerase), 

200 ng of RNA (DNAse treated) and nuclease-free water to the volume of 25 μl. The thermal cycler 

was set as follows: reverse transcription at 50˚C for 30 min; then initial PCR activation at 95˚C for 15 

min followed by 35 cycles of denaturation at 94˚C for 45 s, annealing at 62˚C for 45 s and extension 

at 72˚C for 45 s; and a final elongation step at 72˚C for 7 min. The visualisation of products was as 

described in section 3.2.1.4. The product of A. caliginosa was directly sequenced and identity 

determined by BLASTx results. Primers specific to the. A. caliginosa β-actin gene were designed from 

this sequence. The criteria for design, synthesis, reconstitution and storage of primers followed the 

same procedures as described in section 3.2.1.1. 

The new β-actin primers for A. caliginosa were tested on A. caliginosa genomic DNA with gradient 

PCR. The DNA template was extracted according to procedures described in section 3.2.1.3. Each 25 

μl reaction contained 1� buffer , 2 mM of MgCl2,  200 µM of each dNTP, 2 µM of each primer, 1.25 U 

of FastStart® Taq DNA Polymerase, 10 ng of template DNA. The thermal cycler was set as follows: 

initial denaturation at 94˚C for 4 min; followed by 40 cycles of denaturation at 94˚C for 45 s, 

annealing at 54˚C to 64˚C with 2˚C increments for 45 s and extension at 72˚C for 45 s; and a final 

elongation step at 72˚C for 7 min. The visualisation of products was according to section 3.2.1.4. 
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4.2.10  Optimisation of RT-qPCR 

The RT-qPCR was optimised to improve the amplification kinetics and to limit the formation of any 

nonspecific products. Amplification kinetics was evaluated by the calculation of amplification 

efficiency combined with the analysis of the shape of amplification curve (fluorescence value in 

arithmetic scale versus cycle number). Amplification efficiency was estimated by a standard curve 

(see details in section 4.2.12) and the optimal RT-qPCR parameters were deemed those that 

produced amplification efficiency > 80% (Schmittgen & Livak, 2008; Taylor et al., 2010). The expected 

curve shape was of sigmoidal shape with the steepest exponential phase indicating the highest 

efficiency of the tested parameters. The formation of nonspecific products was monitored by melting 

curve (Tm) analysis. 

 The tested parameters included primer concentrations for both target and reference primers 

(forward and reverse) which were determined by testing three final concentrations: 0.2 µM, 0.4 µM 

and 0.6 µM, with the cycling programme and master mix recipe as described in section 4.2.11. Also, 

two MgCl2 concentrations, 2.0 mM and 2.5 mM, and two dilution rates of the fluorescent 

intercalating dye SYBR Green I, 1:1,000 and 1:5,000, were tested.  

Once the optimal concentration of reagents had been determined, a range of cDNA concentrations 

were tested to establish the template concentration that would be detectable without inhibiting the 

reaction. The synthesised cDNA was diluted in water to 10 ng/µl, then further diluted 8-fold to 2 

pg/µl. The template concentrations 10, 1.25, 0.156, 0.019 ng/µl, and 2 pg/µl were tested in RT-qPCR 

according protocol described below (section 4.2.11) 

4.2.11 RT-qPCR protocol 

RT-qPCR was performed on a real-time PCR instrument (ABI PRISM ® 7000 Sequence Detection 

System-Applied BioSystems, CA, USA) using 96-well reaction plate for real-time (Global Sciences, 

AYPCR96ABC) and optical adhesive cover for microplate (Raylab, EXTSSRQ100). Each 16 µl of reaction 

contained the following reagents, except when the process was subject to optimisation, 0.8 U of 

FastStart Taq polymerase, 1�buffer [500 mM Tris/HCl, 100 mM KCl, 50 mM (NH4)2SO4, 20 mM  

MgCl2, pH 8.3], 2 mM of MgCl2,, 200 µM of each dNTPs, 0.4 µM as the final concentration for both 

ABCB1 and reference primers (both directions), 1.25�ROX reference dye (Invitrogen, Cat # 12223-

012), 0.23 µl of pre- diluted (1:1000 in water) SYBR® Green I (nucleic acid gel stain, 10,000X 

concentrate in DMSO, Invitrogen Molecular Probes) and 1.25 ng of template. Each template was a 

sub-sample from a pool of three cDNA samples extracted individually from earthworms from the 

same experimental container, so to minimise the inherent differences in gene expression levels 

between individual organisms (Taylor et al., 2010). Each pool was tested in 2−3 technical replicates 
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to minimise deviations associated with pipetting error, and sample quality or quantity (Taylor et al., 

2010). Non-template controls (NTC) in which the cDNA template was substituted with water were 

run in parallel to ensure all reactions were free of contamination. 

The PCR thermal cycler parameters were set to an initial denaturation of 95˚C for 5 min followed by 

40 cycles of 15 s at 95˚C (denaturation), 30s at 60˚C (primer annealing) and 30s at 72˚C (extension). 

The fluorescence signal was measured at 60˚C during the annealing step and results were 

represented as Cqvalues (Chapter 1). In the RT-qPCR machine utilised, the melting point analysis was 

automatically carried out by a dissociation stage provided in the manufacturer’s software (ABI Prism 

700 by DLS Inc., version 1.0) following amplification.  

4.2.12 Data Analysis  

The generated Cq values were transferred to Microsoft Excel and the average of the technical 

replicates calculated for each pool. The target Cq were normalised by subtracting the endogenous 

reference gene (β-actin) Cq value. Normalisation of target gene expression levels was performed to 

compensate for intra- and inter-kinetic RT-qPCR variations, otherwise known as sample-to-sample 

and run-to-run variations (Derveaux et al., 2010).  

After normalisation of Cq values, the mean ± standard deviation (S.D.) of experimental replicates 

were calculated for treated and control groups. Gene expression analysis was performed by the 

comparative Cq method also referred to as the 2- ΔΔCq method (Livak & Schmittgen, 2001; 

Schmittgen & Livak, 2008). The normalised means were applied in the following formula 2− ΔΔCq 

where ΔΔCq is the difference between normalised Cq mean of treated group and normalised Cq 

mean of non-treated. The 2− ΔΔCq values represented the fold change in mRNA amounts in treated 

samples relative to the non-treated control, arbitrarily set at 1. Results greater than 1 indicated 

increase in gene expression due to treatment (Schmittgen & Livak, 2008). The analysis of variance (P 

value) between treated and control was done using single factor ANOVA (Microsoft Excel) and a P 

value < 0.05 was considered statistically significant. 

The determination of amplification efficiency for each primer pair was determined by a standard 

curve which was created by plotting serial 8-fold cDNA dilutions (in triplicate) of a representative 

sample of cDNA template (1.25, 0.156, 0.019 ng/µl and 2 pg/µl) in the x-axis versus correspondent 

generated Cq values in the y-axis. The slope of the curve and the coefficient of determination (r2) 

were automatically calculated by the manufacturer’s software and were used to evaluate the 

amplification efficiency of each primer pair. The efficiency of RT-qPCR was determined by the 

formula E= [10(-1/slope)]-1, where E is the efficiency value (Bustin et al., 2009).  
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4.3.2 RT-qPCR performance 

Reagent concentrations for the RT-qPCR protocol were tested to improve the amplification kinetics 

and to limit the formation of any nonspecific products. The optimal primer concentration for target 

and reference gene was 0.4 µM which is within the standard range of 0.05–1.0 µM used in general 

PCR assays (Phillips, 2004). The optimal concentration of MgCl2 was 2 mM (standard range is 1.5–4.0 

mM) (http://www.neb.com) and the optimal dilution of SYBR Green I was 1:1,000. The optimal 

template concentration was 1.25 ng/µl as higher concentrations caused irregular amplification 

curves (dropping after exponential phase) and lower concentrations resulted in late fluorescence 

signal (results not shown).  

The amplification efficiency of each primer pair was calculated from the standard curve generated in 

the analysis of samples (Figure 4. 2). Overall, efficiencies of  analyses of rifampicin 10 mM, rifampicin 

5mM, Cya 50 µM and IVM 2.0 µg/ml treatments had an average of E=0.96 + 0.07 with coefficient of 

variation (CV) of 8% for target gene, and for reference gene E= to 1.16 + 0.11 with CV of 9.7%, which 

were within the range (0.8 to 1.2) (Schmittgen & Livak, 2008). Although the theoretical maximum 

amplification is 1 (or 100%) (Bustin et al., 2009), casual higher values (up to 1.2) were also accepted 

due to technical variations. A single amplification efficiency for the reference gene in the analysis of 

CyA experiment (E=1.27) was beyond this range. However, this result was not significantly different 

from the other results and was included in the normalisation and comparison.  

The amplification efficiencies of IVM 1.0 µg/ml experiment were 1.36 (target gene) and 1.44 

(reference gene) and were therefore discarded from analysis. The r2 values were greater than 0.980 

for all standard curves which is acceptable for RT-qPCRs (Taylor et al., 2010). The formation of 

nonspecific products in all experiments was monitored by the analysis of melting curves. The melting 

points for target and reference gene products were 86.5˚C + 0.63 (S.D.) and 87.5˚C + 0.63 (S.D.), 

respectively (Figure 4.3). 
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Figure 4-2 Standard curve is generated in the RT-PCR for the calculation of amplification 
efficiency of reaction. On the x-axis are logarithmic values of known template concentrations and on 
y-axis are the Cq values.  The slope value is applied in the formula E=[10(-1/slope)]-1 to calculate 
amplification efficiency (E). The r2 value represents how variable the replicates are and how well the 
data fits the regression line. 

 

 

Figure 4-3 Dissociation curve showing the melting points (Tm) from amplicons produced by 
reverse transcription quantitative PCR using ABCB1 primers for amplification of target gene (red) and 

ββββ-actin primers as the reference gene (green). The corresponding Tm(s) are 86.5˚C and 87.5°C. 

4.3.3 Toxicity of selected chemicals to A. caliginosa 

A range finding study was carried out to determine suitable exposure concentrations. The antibiotic 

rifampicin did not cause any evident toxic effect in A. caliginosa even at the highest tested 

concentration (10 mM). In contrast, exposure to the highest tested IVM concentration (20 µg/ml) 

resulted in dehydration, abnormal/slow or absent reflex after stimulus and constrictions along body. 

A concentration of 2 µg/ml on filter paper resulted in some abnormal/slow or absent reflexes after 

stimulus and a few constrictions along body. Although 2 µg/ml was mildly toxic on filter paper, when 

ABCB1 Reference 
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mixed in soil the toxic effects were not evident. Therefore, the 2 µg/ml IVM treatment was included 

in the RT-qPCR experiments.   

4.3.4 ABCB1 gene expression in A. caliginosa following exposure to selected 

chemicals 

Earthworms of the exposure experiments were analysed by RT-qPCR to measure the ABCB1 mRNA 

levels of treated and non-treated (control) samples (see data in the appendix D1.1 to D1.4). A 

significant increase in expression was observed in earthworms exposed to 10 mM rifampicin for 7 

days (2.63 fold-change, P<0.05) compared to control (Figure 4.4). In contrast, exposure to 5 mM 

rifampicin did not increase expression (0.58 fold-change). The CyA treatment (1.17-fold) was not 

significantly different from the control (P=0.430).  

Exposure to 2.0 µg/ml IVM moderately induced the expression of ABCB1 by 2.32 and 2.46 in two 

samples respectively. However, significance could not be calculated due to the lack of adequate 

replication. 

 

Figure 4-4 Effect of rifampicin and cyclosporin A on ABCB1 gene expression in Aporrectodea 

caliginosa (grey earthworm). Expression was determined by comparison with the ββββ-actin reference 
gene. The bars correspond to fold increase of mRNA expression levels of treated samples relative to 
the corresponding non-treated control (constitutive expression). Significant differences (*) between 
treated and non-treated groups are denoted by an asterisk (*) (P< 0.05), n.s denotes not significantly 
different from the control.   
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4.4 Discussion 

This work describes the development of a RT-qPCR assay to measure the transcriptional mRNA 

copies of ABCB1 gene in A. caliginosa. Although RT-qPCR using fluorescent probe is a common 

method to measure gene expression, to date, there are no studies of ABC genes expression in 

earthworms using this approach, presumably due to the lack of genetic information. As part of the 

design and optimisation of the RT-qPCR assay, a reference gene (β-actin) was identified for the first 

time in A. caliginosa, this will facilitate expression studies for genes in addition to ABCB1 in this 

species. This study demonstrated that a mammalian inducer of ABCB1, rifampicin, is also suitable as a 

positive control for examining the expression levels of ABCB1. 

4.4.1 β-actin  for reference gene expression 

The β-actin gene is a well-established reference gene, widely used in gene expression studies in 

earthworms (Chen et al., 2011; Homa et al., 2010; Liang et al., 2011; Ricketts et al., 2004; Spurgeon 

et al., 2004; Stürzenbaum et al., 1999; Wang et al., 2011; Zheng et al., 2008b). The β-actin gene was 

demonstrated to be the most stable gene under different experimental conditions (Piana et al., 

2008) and it was reported that its expression was constant after exposure to different rifampicin 

concentrations (Nishimura et al., 2006). However, according to the latest guidelines for real-time PCR 

experiments (Bustin et al., 2009), the most appropriate and universally applicable method is the 

normalisation against 3 or more validated reference genes to show strong correlation with total 

amounts of mRNA present in the samples and to eliminate as much as possible the technical 

variation (Derveaux et al., 2010). In this study, only one reference gene was used. The approach used 

here to find the β-actin sequence in A. caliginosa, could be applied in future earthworm studies to 

increase the number of reference genes available. 

The translated A. caliginosa sequence had high homology with protein sequences of β-actin in 

several invertebrates and vertebrates species. The homologies observed in this study confirm that 

the β−actin gene family is conserved across eukaryotic species, and its family members share a high 

degree of protein sequence homology (Bunnell & Ervasti, 2011).  

4.4.2 RT-qPCR optimisation 

This RT-qPCR assay was optimised for assurance and quality control issues that influence the 

accuracy of the results and reliability of the conclusions (Derveaux et al., 2010). The main focus of 

optimisation was the parameters involving the formation of nonspecific products and amplification 

kinetics. The primer concentrations were optimised as the excess of primers could cause mis-priming 

and formation of nonspecific products, and low concentrations could impair efficiency of the reaction 

(Phillips, 2004). The presence of MgCl2 was essential for the activity of DNA polymerase and either its 
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excess or deficiency could affect the amplification (Phillips, 2004). The dye SYBR Green I has an 

important effect on the melting temperature of DNA molecules and its excess could have impaired 

the denaturation of dsDNA and further amplification (Bustin & Nolan, 2004). Also, the template 

concentration was determined to avoid inhibition of amplification caused by the excess of template 

and high concentrations of reverse transcriptase and the reagents of DNAse digestion (Bustin, 2000). 

4.4.3 RT-qPCR performance 

The amplification efficiencies of ABCB1 and β-actin primers were in the acceptable range, between 

0.8 and 1.20 and since it is not a strict rule, the outlier result (1.27) was considered as valid. Similar 

results were reported in the gene expression analysis of ABC efflux transporters in rainbow trout, 

with an amplification rate range of 0.96 + 0.07 (S.D.) for target gene and 1.03 for the reference gene 

(Loncar et al., 2010). The poor efficiency observed in the analysis of exposure to IVM 1.0 µg/ml was 

probably due to human error during preparation of sample mix, as both gene amplifications were 

affected.  

The ABCB1 primers were designed to bind to the ATPase domain which is conserved across ABC 

transporters and there was potential for nonspecific amplification of ABC genes. However, the 

visualisation of a single band with expected size on gel electrophoresis (figure not shown) and 

analysis of the melting curve confirmed the presence of a single product. Although the product 

sequence had a high DNA sequence homology to both ABCB1 and ABCB4 genes in mammals (Dean et 

al., 2001; Lawson et al., 2008), it is unlikely that ABCB4 exists in invertebrates because they do not 

produce bile. This is supported by the numerous studies on P-gps in invertebrates which have not 

detected of ABCB4-like P-gps (Annilo et al., 2006; Heumann et al., 2012). Therefore, it is unlikely that 

there is any nonspecific amplification of other ABC genes in the RT-qPCR.  

4.4.4 Toxicity of chemicals used in this study 

This study has produced new information about the toxic effects of the selected drugs on A. 

caliginosa, either through direct contact on filter paper or through mixing in soil and ingestion of 

mixture. The antibiotic rifampicin, used in the treatment of the mycobacterial infections 

actinomycosis and histoplasmosis, did not cause any observable toxic effects on earthworms at the 

concentrations tested. The low toxicity of rifampicin allowed the addition of solubilised drug to the 

soil with concentrations 400-500 � higher than concentrations used in experiments with mammalian 

cells. Magnarin et al. (2004) used 25 µM rifampicin in a tubular renal cell line to induce the ABCB1 

gene, which is almost double the standard therapeutic concentration for tuberculosis treatment, 

equivalent to 12 µM (Kaplan, 2004). In the present study, the use of the highest tested concentration 
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(10 mM) was to ensure that sufficient amount of ingested rifampicin would reach the intestinal walls 

of earthworms to stimulate ABCB1 expression. 

IvermectinTM showed to be more toxic when in direct contact to the earthworm than mixed in soil 

and ingested. This finding is similar to the study of Svendsen et al. (2005) that reported ingestion of 

IVM at low doses, found in the residues of cattle dung excreted after animal treatment, is innocuous 

to earthworms and no adverse effects were observed on L. terrestris when ingested.    

4.4.5 ABCB1 gene expression due to chemical exposure  

The preliminary tests with rifampicin showed ABCB1 gene upregulation in A. caliginosa when 

exposed to a concentration of 10 mM. There are several studies demonstrating that rifampicin 

induces ABCB1 expression in human, mice and other mammalian cells (Buss & Callaghan, 2008; 

Magnarin et al., 2004; Piana et al., 2008). However, there is no published information on the use of 

rifampicin as an ABCB1 inducer in invertebrate species. The induction of expression in A. caliginosa 

(2.63 fold-change) was comparable to the work of Manceau et al. (2010), where a human colon 

cancer cell line (LS174T) was used as positive control for the ABCB1 gene induction and this resulted 

in a 4 fold-change after exposure to 20 µM rifampicin for 24 hours. A similar result was also reported 

in a human hepatocyte cell line treated with 10 μM rifampicin which resulted in a 3 fold increase in 

ABCB1 expression (Mills et al., 2004). In mammals, ABCB1 transcriptional expression has been shown 

to be regulated by specialized multi-protein complexes that include common basic transcriptional 

components (transcription factors and promoters) (Scotto, 2003). Rifampicin is a known ABCB1 

transcription factor activator (Ott et al., 2009). The results presented here, suggest that there are 

likely to be similarities in this induction pathway between mammals and earthworms.  

Although the increase in expression between mammal cell lines and A. caliginosa was similar, the A. 

caliginosa was exposed to a much higher concentration of rifampicin with a longer exposure period 

(7 days). This approach was to ensure that an effective drug dosage would reach intestinal walls 

through ingestion of mixed soil. The drug may have been degraded due to the long exposure, and 

this outcome may explain the lack of induction in the 5 mM treatment. This may have been 

exacerbated by soil micro-organisms which are known to metabolise chemicals (Burns, 1991). Long 

exposure to rifampicin has been shown to be effective in experiments on a pig kidney epithelial cell 

line, with significant ABCB1 induction. During that experiment, fresh solutions of rifampicin were 

added to the culture twice a week during cell sub-culturing, ensuring exposure to the undegraded 

chemical (Magnarin et al., 2004). For future experiments with earthworms, fresh solutions of 

rifampicin should be added to the soil, perhaps over a shortened time frame, in order to achieve 

higher ABCB1 expression.  
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Cyclosporin A treatment had a negligible effect on the ABCB1 expression in A. caliginosa indicating 

that it is not upregulated by P-gp interaction with CyA. This was unexpected as CyA inhibits the P-gp 

function by blocking the ATPase activity through competitive binding (Smital et al., 2004; Thomas & 

Coley, 2003), and it is known that that chemicals that interact with P-gp can lead to overexpression 

of this protein (Romiti et al., 2002). Cyclosporin A produced reversible overexpression of P-gp in the 

rat (Jetté L, 1996). The 50 µM concentration of CyA was shown to block P-gp function in A. caliginosa, 

as observed in the P-gp functional assay done in this research (chapter 5).Thus, it was hypothesised 

that the blocking of the P-gp protein would induce ABCB1 expression in A. caliginosa. This result 

suggests that there is an absence of strict correlation between increase of P-gp expression and 

induction of mRNA levels, as reported in other studies (Ivanina & Sokolova, 2008; Shirasaka et al., 

2006) probably because the overexpression of P-gp has been shown to be controlled partially 

through post-transcriptional mechanisms, such as mRNA stabilisation (Ménez et al., 2012). 

IvermectinTM was chosen as the candidate agrochemical in this research because of the emerging 

concern of its effect on the environment and its role in a drug resistance related to P-gp function in 

free-living and parasitic nematodes (James & Davey, 2009; Kaplan, 2004; Liebig et al., 2010). In this 

study, two pilot studies were performed to examine the ability of IVM to induce ABCB1 expression in 

A. caliginosa. The results suggested that IVM can induce ABCB1 expression in earthworms, as 

reported in other studies. In a recent study, IVM induced ABCB1 expression in a murine hepatocyte 

cell line in both a time- and dose-dependent manner (Ménez et al., 2012).  

Elsewhere, researchers have generated resistant populations of the model free living nematode C. 

elegans by selecting survivors from exposure to increasing concentrations of IVM. Gradually, over 

several generations, a highly resistant population of C. elegans was created. In this resistant 

population a 12 fold-change in ABCB1 was observed (James & Davey, 2009). This research showed a 

link of ABCB1 expression to IVM resistance. To confirm such a response in earthworms would take 

considerable time, as A. caliginosa takes almost four months from larva to adult under optimum 

conditions. Therefore, IVM is a potential drug to be used as ABCB1 inducer in future studies with 

earthworms, possibly without the need to generate a resistant population to obtain the desired 

effect.  
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4.4.6 Final conclusion 

The present study has demonstrated that the developed RT-qPCR assay can measure transcript levels 

of the ABCB1 gene in A. caliginosa. More reference genes should be included to the assay to 

strengthen the correlation with total amounts of mRNA present in the samples and to eliminate as 

much technical variation as possible. The approach used in this research could be used for the 

identification of other reference genes. 

Rifampicin is a suitable ABCB1 inducer in A. caliginosa, with low toxicity and low cost and may be 

used in the future validation of new reference genes as well as in other studies on ABCB1 expression 

in earthworms. The method to expose rifampicin to earthworms should be modified to optimise 

induction and this may involve assessment of expression levels over time. Furthermore, IVM affects 

ABCB1 expression in A. caliginosa and since it is a widely used agrochemical its impact on 

earthworms should be investigated further. 
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Chapter 5 

P-gp protein functional assay 

5.1 Introduction 

P-gp actively transports a wide variety of structurally and functionally diverse compounds (Hennessy 

& Spiers, 2007). The common P-gp substrates are natural or anthropogenic compounds with 

common chemical properties (Kurelec et al., 2000). Due to its function, P-gp is expressed in several 

important epithelial barriers of tissues involved in secretion and excretion of toxicants (Thiebaut et 

al., 1987). The number of P-gps in cellular membranes may be increased by constant high exposure 

to P-gp substrates, conferring the MXR phenotype (Smital & Kurelec, 1997). Several other chemical 

agents, although not always characterized as P-gp substrates, can inhibit directly or indirectly the 

function of P-gp and consequently affect the MXR. These chemicals are defined as chemosensitisers 

because they enhance the effects of natural and anthropogenic toxins, including P-gp substrates 

(Smital & Kurelec, 1998a). The MXR mechanism has been demonstrated by biochemical, molecular, 

physiological and toxicological methods in several marine and freshwater organisms in polluted 

aquatic environments exposed to P-gp substrates (Bard et al., 2002; Kurelec & Pivcevic, 1991; Kurelec 

et al., 2000; Luedeking & Koehler, 2004; Smital et al., 2004). To date, there were only a few studies 

about the presence and activity of P-gp in earthworms, exclusively to Eisenia genera (Brown et al., 

2008; Hackenberger et al., 2012), but there were no records in A. caliginosa. 

The aim of this study was to demonstrate the presence of P-gp in A. caliginosa by establishing a 

biochemical assay using a common P-gp substrate, the fluorescence dye RB to analyse the P-gp 

activity when earthworms were exposed to known P-gp modulators (Kurelec et al., 2000; Smital et 

al., 2003). To achieve this, experiments were conducted in filter paper contact tests (OECD, 1984) 

with selected chemicals to examine whether P-gp activity in A. caliginosa was modulated by chemical 

exposure. The chemicals were: 1) verapamil, a known chemosensitiser that inhibits the MXR function 

by blocking the calcium channel (Tsuruo et al., 1981), 2) CyA, another chemosensitiser that inhibits 

the P-gp function by strongly binding to the ATPase domain and has previously been used as a P-gp 

transport blocking agent in mammals (Saito et al., 2001) and earthworms (Brown et al., 2008), 3) 

rifampicin, an antibiotic known to induce P-gp expression at transcriptional level in mammalian cells 

(Magnarin et al., 2004) et al, 2004), and 4) IVM , the anthelmintic which has been associated with 

MXR phenotype in nematodes (James & Davey, 2009).  
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5.2  Material and Methods 

5.2.1 Chemicals 

Rhodamine B (Sigma-Aldrich, USA, R6626-1006) was diluted in distilled water to 750 mg/L (stock 

solution) and kept in a dark glass bottle (protected from light) at 4˚C. Verapamil hydrochloride 

(Sigma-Aldrich, 1 G, V4629) was dissolved to 1 mM in 96% ethanol (Scharlau, Australia) and stored at 

4˚C. Propanol-1 was purchased from Scharlau (Australia). Cyclosporin A, rifampicin and IVM (200 

µg/ml) were described in section 4.2.1. 

5.2.2  Earthworms 

Adult specimens of A. caliginosa were selected for this experiment. Species identification, method 

and area of collection are described in chapter 3, section 3.2.1.2. Transportation of earthworms to 

the laboratory and their maintenance in containers until chemical exposure are described in chapter 

4, section 4.2.2. Earthworms were not depurated before the experiment  in order to maintain a 

balanced energy level since the P-gp activity is ATP-dependent (unlike in previous experiments 

described in chapter 3, where the worms were allowed to empty gut contents before treatment). 

Only earthworms that appeared healthy and active were selected for experiments. Each earthworm 

was rinsed briefly in distilled water and placed on moistened loaded filter paper with one earthworm 

per Petri dish. All dishes were kept in conditions as described on section 4.2.5.  

5.2.3 Exposure dishes  

The procedures for preparation of exposure dishes (chemical loading, drying and moistening of filter 

paper) are described on section 4.2.5. A working solution containing 8 mg/l of RB was prepared in 

water (concentration based on preliminary studies during Summer Scholarship, 2009 at Lincoln 

University). Briefly, glass Petri dishes lined with filter paper were loaded first with 1 ml of freshly 

prepared 8 mg/l RB solution, dried, then loaded with 1 ml of each fresh prepared test solutions 

(stock solution diluted in water) and dried again. The following day, filter papers were moistened 

with water and earthworms were placed on filter paper containing the RB and test solution (treated 

groups), and the negative control in RB only. 

5.2.4 Experiments 

Accumulation assay 

Earthworms were exposed to RB (8 mg/l), either alone (negative control group) or in combination 

with one of selected chemicals (treated group) at varied concentrations (Table 5.1), for a period of 48 

h in the dark at 15˚C.  Three concentrations of each chemosensitiser (verapamil and CyA) were used. 

The concentrations of verapamil were based on the unpublished information during a study of the 
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dairy effluent effect on P-gp function in A. caliginosa at Lincoln University (person comm. Dr. Jeff 

Brown, Jan 2009) and CyA concentrations were based on the study of inhibitors of MXR in freshwater 

clam (Smital & Kurelec, 1997). IvermectinTM concentrations were based on the toxicity test results 

obtained during the measurement of ABCB1 gene expression due chemical exposure in this research 

(section 4.3.3), and rifampicin concentrations were based on the studies in ABCB1 induction in 

mammal cells (Magnarin et al., 2004; Manceau et al., 2010). Each group consisted of 4-6 worms 

placed individually in Petri dishes.  After the exposure period, earthworms were sacrificed and the RB 

contained in each individual homogenate was extracted and measured (see method of extraction 

and measurement in sections 5.2.5 and 5.2.6). The differences of accumulated amount of RB 

between treated samples and the control was indicative of P-gp activity. 

Table 5-1 Treated groups of earthworms (4-6 replicates per group) exposed to different P-gp 
modulating chemical concentrations combined with fluorescent dye rhodamine B (8 mg/l) in filter 
paper contact test. Control groups were exposed only to rhodamine B.  

Group Chemical solution Concentrations 

1 Verapamil  100, 200 and 250 µM 

2 Cyclosporin A  25, 50 and 100 µM 

3 IvermectinTM  0.2 and 0.02µg/ml 

4 Rifampicin  100 µM and 2 mM 

 

Efflux assay 

In the efflux assay, one group of 20 earthworms were first exposed to verapamil at concentration of 

100 µM (treated group) combined with RB (8mg/l) and another group of 20 earthworms were the 

negative control (only RB). The chemical exposure procedures were according to the protocol 

described above in the accumulation assay. The only difference was that after the 48h exposure 

period, the earthworms were not sacrificed but transferred to a container with clean soil (generation 

of soil described on section 4.2.3) to let them efflux the dye. The efflux periods were divided in four 

intervals, starting at 0h (immediately after exposure), 24 h, 48 h, and 72 h and at the end of each 

interval, five earthworms were sampled from each group (treated and negative control) to measure 

the RB in their homogenates. 
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5.2.5 Dye extraction and fluorescence measurement 

After exposure, each live earthworm was rinsed with distilled water to eliminate material attached to 

its body including the excreted dye, which would interfere with the accuracy of fluorescence 

measurement. After rinsing, each earthworm was briefly dried on a paper towel, placed in a small 

plastic bag with individual identification, and stored in a -80˚C freezer for at least 1 h. Each frozen 

worm was removed from the bag, cut transversally with a blade at the base of clitellum dividing 

worm in two pieces: the head part with whole clitellum and the rest of the body containing majority 

of the intestinal tract. The part with majority of intestinal tract was discarded because it contained 

extracted dye in its lumen, which would interfere with the fluorescence measurements. The head 

piece with clitellum was weighed and placed in 12 ml-polypropylene tube with screw top (Labservs 

LB1280) containing 1.5 ml of 1-propanol. The tube was left overnight in the refrigerator at 4˚C. 

Samples were homogenised using the Ultra Turrax (IKA-WERK, Janke & Kunkel, # 45621). After each 

homogenisation, the Ultra Turrax was washed with water and rinsed with 1-propanol after use, to 

avoid cross contamination between samples. Homogenates were stored for 1-2 h at 4˚C. Samples 

were centrifuged (Megafuge 1.0R- Heraus) at 4000 rpm for 30 min at 4˚C. A volume of 100 µl of 

supernatant from each sample was transferred into a well of a 96-well-microplate (Brand Corning, 

non-treated polystyrene black round bottom wells # CLS3792) in two or three technical replicates. 

Serial RB dilutions in 1-propanol with known concentrations (from 0.01 mg/l to 0.9 mg/l) were 

included in triplicates to generate a calibration curve. The fluorescence was measured using a 

Fluostar BMG with a 544 nm excitation filter and a 580 nm emission filter.  Data were transferred to 

an Excel sheet for calculations of the amount of RB in each sample. 

5.2.6  Data analysis 

The average of fluorescence values of each individual sample was calculated. For every plate, a 

calibration curve was created by plotting a graph of the standard RB concentrations (x axis) and the 

respective fluorescence values (y-axis) (one example of a calibration curve is shown in figure 5.1). 

Linear trendline equation and the R-squared value (R2) of calibration curve were calculated using the 

Excel program. The RB concentration of each sample was calculated by extrapolating the 

fluorescence value in the trendline equation. Sample normalisation was required to correct 

differences due to experimental variation, which was done by dividing the RB concentration by the 

weight of respective sample. The normalised ratio was expressed in mg/l g-1. For each treatment, the 

average of the normalised ratios of experimental replicates and standard deviation (SD) were 

calculated. The results of treated groups were compared with the respective control group and the 

statistical significance of the difference between groups (P-value) of each treatment was calculated 

by ANOVA. For the efflux assay, the normalised ratios of each interval of both groups were plotted in 

a graph.  



 

 58

 

 

Figure 5-1 Calibration curve of rhodamine B concentrations versus fluorescence values. In the x-
axis are the values of known rhodamine B concentrations between 0 and 1 mg/L (0, 0.015, 0.029, 
0.059, 0.117, 0.234, 0.469, and 0.937). In the y-axis are the fluorescence units of correspondent 
measurements by the fluorometer. To calculate the rhodamine B concentration (x value) of samples, 
the fluorescence values are applied in the y value of the trendline equation (y=34553x+880.19). The 
R2 denotes the correlation between x and y axes values. 

5.3 Results 

5.3.1 Accumulation assay 

Earthworms exposed to the three concentrations of verapamil for 48 h on filter paper showed higher 

RB accumulation in their homogenates compared to the negative control (Figure 5.2a). The 

fluorescence was significantly higher (P < 0.05) compared to the negative control showing the 

inhibitory effect of verapamil on P-gp transport of RB.  Earthworms exposed to 25 and 50 µM CyA 

concentrations also showed significantly higher RB accumulation compared to their negative control 

(Figure 5.2b), indicating the inhibitory effect on the P-gp function without causing clinical signs of 

toxicity in earthworms. The 100 µM CyA concentration was toxic to earthworms. It caused 

dehydration and death and therefore, fluorescence was not measured in those earthworms. 

Exposure to IVM did not result in significant difference between the treated groups with 0.2 and 

0.02µg/ml concentrations and the negative control (Figure 5.2c). Similarly, the rifampicin exposure 

with 100 µM and 2 mM concentrations did not show a significant difference between the treated 

and the control (Figure 5.2d). The data of all treatments are shown in the appendix D.2.1 to D.2.4. 

y = 34553x + 880.19
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Figure 5-2  Effect of P-gp modulators on the amount of the accumulated fluorescent dye rhodamine B in earthworms Aporrectodea caliginosa. a) 
treated worms were exposed to a mixture of rhodamine B and verapamil and control only to rhodamine B; b) treated worms were exposed to a mixture of 
rhodamine B and cyclosporin A; c) treated worms were exposed to a mixture of ivermectin and rhodamine B and control only to rhodamine B; d) treated 
worms were exposed to a mixture of rifampicin and rhodamine B and control only to rhodamine B. Asterisks denotes significant differences (p<0.05) 
between control and treated, indicating the accumulation of rhodamine B in treated worms and (n.s.) denotes non- significant differences, indicating that 
chemical exposure had no effect in the accumulation of rhodamine B. Data are expressed in amount of accumulated fluorescence dye (mg/l) per gram of 
anterior piece of earthworm [mean + standard deviation (errors bars), n= 4 to 6 replicates]. 

a) b
) 

c) d) 

* * * * 

* 

(n.s.) 

(n.s.) 

(n.s.) 
(n.s.) 



 

 

5.3.2 Efflux assay 

On exposure to 100 µM verapamil for 48 h, the earthworms showed a higher RB accumulation in the 

homogenate prior to the efflux period, compared to the negative control. When the treated 

earthworms were transferred to a clean soil environment, free of verapamil, the earthworms showed 

the re-establishment of P-gp function as shown by decrease in the fluorescence ratios measured at 3 

intervals during efflux (Figure 5.3

amount of RB detected in their homogenates

of each interval are shown in the appendix 

 

Figure 5-3 Efflux of Rhodamine B dye in earthworms exposed to verapamil 100 µM and the 
negative control. 
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On exposure to 100 µM verapamil for 48 h, the earthworms showed a higher RB accumulation in the 

homogenate prior to the efflux period, compared to the negative control. When the treated 

earthworms were transferred to a clean soil environment, free of verapamil, the earthworms showed 
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Both MXR inhibitors demonstrated to be suitable P-gp blockers in A. caliginosa. Verapamil was used 

in the studies with aquatic species involving marine and freshwater mollusc species to inhibit the 

function of P-gp and other MXR transporters (Hennessy & Spiers, 2007; Smital et al., 2000). 

Cyclosporin A has been used in a study conducted in oysters (Ivanina & Sokolova, 2008) where the 

extruded dye was measured in the water at constant intervals and the results showed a decrease in 

the rates of RB efflux from oyster gills in the presence of CyA, demonstrating its inhibitory effect on 

P-gp. 

Here, the P-gp activity on A. caliginosa was also demonstrated in a modified version of the 

accumulation assay, the efflux assay. In this study, the efflux assay was conducted to demonstrate 

the functional activity of P-gp that enables the organism to eliminate the RB dye following exposure 

to a MXR inhibitor. Their P-gp function was re-established in less than 24 h of efflux, and pre-treated 

earthworms were able to eliminate RB at a similar rate as the controls. Similar result was reported in 

a study with marine mussel, where the P-gp response was restored after cessation of the MXR 

inhibitor exposure (Smital & Kurelec, 1998b). During the efflux period, part of RB extrusion is due to 

the passive transport of substrate through the cells (diffusion), but the majority is via P-gp transport.  

It was found experimentally that substrates with low lipid solubility diffuse relatively slowly across 

membranes compared to chemosensitisers, such as verapamil which traverses lipoprotein bilayers 

quickly (Bard, 2000). Therefore, the elimination of RB from pre-treated earthworms was mainly from 

the cessation of verapamil exposure and restoration of P-gp activity. 

Earthworms exposed to rifampicin did not present increased transport activity as expected.  

Rifampicin has been used to induce mRNA expression in mammals (Asghar et al., 2002). In this study, 

rifampicin induced the mRNA expression after exposure to 10 mM rifampicin solution mixed in soil 

(Chapter 4) suggesting that an increase of gene expression would result in increase of protein 

expression and consequently the RB extrusion would be higher than control.  One of the possible 

explanations for the absence of P-gp overexpression in this study is the induction pathway of P-gp. 

The results are suggestive that the P-gp protein regulation in A. caliginosa may be occurring at the 

post-transcriptional level. The overexpression of ABCB1 transcripts may have occurred, but the 

transcripts were not translated immediately and directly to the functional P-gp. Other studies have 

also noted the absence of strict correlation between mRNA and protein levels of P-gp (Ivanina & 

Sokolova, 2008; Shirasaka et al., 2006). This meant that the P-gp overexpression did not correspond 

to the increase of mRNA levels, suggesting that P-gp synthesis occurred at the post-transcriptional 

level. Moreover, there is evidence from earlier studies that P-gp has to undergo considerable post-

translational modification including phosphorylation and glycosylation to become functional (Bard, 

2000) and the translocation from intracellular compartments to plasma membrane takes over 7 days 

(Kota et al., 2010). Therefore, the complexity of post-transcriptional and post-translational steps 
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involved in the P-gp regulation, the details of which are not known at this time, may explain the lack 

of increased P-gp activity in earthworms when exposed to rifampicin, a known inducer of mRNA of 

ABCB1.  

The exposure to IVM did not increase the P-gp transport activity in A. caliginosa. IvermectinTM has 

been shown to upregulate the ABCB1 gene expression and also increase the expression of functional 

P-gps through post-transcriptional regulation in murine hepatocyte cell line (Ménez et al., 2012). In 

this study, the concentrations of 2 µg/ml induced mRNA upregulation (Chapter 4), but this 

concentration was  toxic to earthworms when exposed via direct contact on filter paper (Section 

4.3.1). Therefore, lower concentrations (0.2 and 0.02 µg/ml) were used in the functional RB dye 

assay described above. In the study of James & Davey (2009), IVM induced the P-gp overexpression 

in C. elegans after repeated treatments starting with low IVM concentration just below the lethal 

threshold and increasing gradually. The survivors were selected and allowed to reproduce. The next 

generation was exposed to an increased concentration and after several generations, a resistant 

population was created which showed overexpression of P-gp (MXR phenotype). As already 

mentioned in the previous chapter, the development of a resistant earthworm population to IVM in 

order to demonstrate the P-gp overexpression, is a long-term project because earthworms take 

approximately 3-4 months to reach maturity for reproduction under optimal conditions. 

In conclusion, the results of accumulation and efflux assays in this study demonstrated the P-gp 

function in A. caliginosa. The extrusion of the specific P-gp substrate (RB) was altered when 

earthworms were exposed to known MXR inhibitors (CyA and verapamil), but efflux was not 

significantly changed when exposed to ABCB1/P-gp modulators (rifampicin and IVM). 
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Chapter 6 

Final Discussion 

6.1 Novel findings 

In the present study, new genetic information was generated for A. caliginosa (Lumbricidae family), 

the most abundant pasture earthworm in New Zealand. A partial sequence (10.7% of the exonic 

sequence) homologous to the ABCB1 gene was obtained using a combined approach of degenerate 

PCR and sequence retrieval from the draft L. rubellus genome LUMBRIBASE (Chapter 3). The 

presence of conserved motifs within this ABCB1 gene fragment indicated that it encodes P-gp, an 

ATP-dependent transmembrane transporter that is involved in the cellular defence against natural 

and anthropogenic toxins. Furthermore, partial sequences homologous to the A. caliginosa ABCB1 

gene were identified in other five members of the Lumbricidae family including L. rubellus (a 

common earthworm used in toxicological soil assessments), A. trapezoides, O. cyaneum, E. fetida and 

A. chlorotica. This work reported for the first time an ABCB1 gene in A. caliginosa or in a member of 

the Lumbricidae family. The alignment of the six novel lumbricid sequences showed high homology 

(>94%) at nucleotide level which will facilitate further work to extend these gene fragments in all six 

species. All translated novel sequences showed high similarities with P-gp sequences of vertebrate 

and invertebrate species confirming the presence of conserved domains within P-gp.  

The new gene sequence from A. caliginosa was used to develop a reverse-transcription quantitative 

PCR (RT-qPCR) assay for measuring ABCB1 gene expression in this species (Chapter 4). The assay was 

validated using earthworms treated with the ABCB1 drug inducer (rifampicin) that had been shown 

to work in mammals. This RT-qPCR assay was optimised for the numerous critical quality assurance 

and control that influence the accuracy of the results and reliability of the conclusions (Derveaux et 

al., 2010). Two key components of this process were (i) the identification of β-actin as a reference 

gene for A. caliginosa RT-qPCR assays, and (ii) determining the toxicity of chemicals and their 

solvents used to induce P-gp expression. The assay was also optimised for PCR parameters to 

improve the amplification kinetics of the reaction and minimise the production of nonspecific 

products.  

Using the optimised RT-qPCR assay, new data was obtained on the effects of selected drugs when 

exposed to A. caliginosa. Rifampicin was demonstrated to be a suitable ABCB1 inducer for 

earthworms, with low toxicity and cost. Rifampicin upregulated the ABCB1 mRNA levels, but it did 

not increase the amount of functional P-gp measured by the RB assay (Chapter 5), suggesting that 

there is additional control on the pathway that produces the functional P-gp protein. In many cell 

lines and human tumours, it is generally accepted that P-gp expression is increased through 
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upregulation of ABCB1 gene mRNA levels (Chaudhary & Roninson, 1993), however this may not occur 

in a straight forward pathway (Hennessy & Spiers, 2007).  The overexpression of P-gp has been 

shown to be controlled partially through post-transcriptional mechanisms, such as mRNA 

stabilisation (Ménez et al., 2012). 

In the functional studies of this research, CyA, a known MXR inhibitor, blocked P-gp function in A. 

caliginosa. Despite blocking protein function, CyA did not increase ABCB1 gene expression, 

suggesting that P-gp blocking alone does not lead to overexpression of ABCB1 to compensate for the 

inactive P-gps. In contrast, in a preliminary study with IVM, ABCB1 expression was increased in A. 

caliginosa, suggesting that this specific P-gp substrate has the same effect on ABCB1 expression seen 

in other studies (James & Davey, 2009; Ménez et al., 2012). This result was significant as IVM is a 

widely used agrochemical and there is increasing concern about its effect on the environment. 

Future research may demonstrate that the measurement of the ABCB1 gene in earthworms could be 

used as a biomarker in toxicological risk assessments.  

The presence of an ABCB1 gene homologue in A. caliginosa and its expression in response to known 

inducers supported the hypothesis that P-gp is present in A. caliginosa. Although P-gp itself was not 

isolated or directly measured in this research, the presence of a functional P-gp in A. caliginosa was 

demonstrated indirectly using a biochemical assay with a RB dye as a P-gp substrate and two known 

MXR inhibitors known to affect the P-gp of mammals and aquatic organisms (verapamil and CyA). 

The results showed that there was a high level of P-gp substrate accumulation in A. caliginosa 

treated with these inhibitors compared to the non-treated worms indicating that P-gp function was 

disrupted and therefore, suggesting its presence in A. caliginosa. The study contributes to the few 

that have reported evidence of P-gp in earthworms other than A. caliginosa using similar functional 

assays (Brown et al., 2008; Hackenberger et al., 2012).   

6.2 Future work 

The partial sequence of the putative A. caliginosa ABCB1 gene should be extended to obtain the full 

length genomic sequence. The information obtained from a full-length A. caliginosa sequence will 

further confirm the identity of the gene fragment and clearly differentiate it from closely related 

genes within the ABCB1 subfamily. Some organisms, such as rodents, have two members of ABCB1 

(ABCB1a and ABCB1b) which encode P-gps with similar function (Sturm & Segner, 2005). There is a 

high probability that earthworms also have more than one P-gp isoform involved in xenobiotic 

resistance as they do not possess sophisticated protective mechanisms that the mammals have 

against environmental toxins (Zhao et al., 2007). For example, the free-living nematode C. elegans 

has 15 ABCB1 gene homologues within a comparatively small genome, but only two are confirmed to 

be involved in drug transport (Zhao et al., 2004), and the helminth H. contortus has 12 P-gp 
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sequences (Smith & Prichard, 2002).  In addition, a full length sequence would provide information 

on the base sequence and structure of this gene in annelids and may prove useful to facilitate gene 

discovery in other earthworm species. 

The partial A. caliginosa ABCB1 cDNA could be extended by repeating the 3’ RACE method in 

combination with a cloning step to separate the resultant cDNA sequences and facilitate DNA 

sequencing. Similarly, 5’ RACE would amplify the cDNA towards the 5’ end. Primers designed to the 

cDNA sequence could then be used to amplify the genomic DNA to obtain the complete gene 

sequence with introns. The complete ABCB1 sequence information would be useful to design new 

primers complementary to unique sequences of ABCB1 gene, preferably from regions encoding the 

transmembrane domains (TMD), which are less conserved among ABC transporters than the 

nucleotide domains (NBD). This would improve the RT-qPCR assay by eliminating any possibility of 

confounding data from nonspecific amplification of other ABC transcripts. Another approach to 

improve RT-qPCR of the ABCB1 transcript would be the use of a hybridisation probe instead the DNA 

intercalator SYBR Green I. Although SYBR Green I has been used in most qPCR studies of ABCB1 

expression in other species (Fischer et al., 2011; Loncar et al., 2010; Ménez et al., 2012), as well as in 

earthworms (Chen et al., 2011; Ricketts et al., 2004), the use of a probe is a more sensitive and 

accurate assay. This was observed when a fluorogenic TaqMan probe was used in a 5’ nuclease assay 

in the study of metallothionein gene expression in L. rubellus, (Spurgeon et al., 2004).  

To further improve the RT-qPCR assay, it is necessary to identify more references genes in A. 

caliginosa for better normalisation of the samples. According to the latest guidelines for qPCR 

experiments, a quantitative PCR requires at least three or more reference genes to increase accuracy 

and reliability of gene measurements.  The strategy elected for this study to find the novel sequences 

may be used for the finding of other reference genes. There are a number of common reference 

genes described elsewhere (Stürzenbaum & Kille, 2001) and this may guide the choice of the 

additional reference genes.   

One of the refinements needed in the process of RT-qPCR analysis of treated earthworms is to 

improve the chemical exposure methodology.  The exposure period to ABCB1 modulators could be 

shortened because the ABCB1 expression is likely to be detected before 7 days. It has been reported 

that ABCB1 gene induction was achieved after 72 h in human intestinal epithelial cells exposed to 

different drug compounds (Haslam et al., 2008) and a rapid induction of ABCB1 (up to 10-fold) was 

obtained in human tumours within 10 minutes of exposure to doxorubicin (Abolhoda et al., 1999). 

More recently, Menez et al. (2012) demonstrated that ABCB1 induction in rodents is transient and 

the ABCB1 mRNA levels decline after 72 h of exposure to IVM. As an initial experiment, earthworms 

could be immersed in an aqueous solution of inducer for 72 h to allow drug absorption and ingestion, 
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with the advantages that drug is evenly distributed in the medium and the short exposure avoids 

drug degradation. Another approach to achieve higher induction of ABCB1 gene expression could be 

the exposure to a combined P-gp substrate and a P-gp blocker. According to mammalian models, 

evidence shows that ABCB1 expression can be induced as part of a general response to cellular 

stress, such as the accumulation of a P-gp substrate (Sturm & Segner, 2005). In contrast this study, 

analysed gene expression with samples exposed to Pg- substrate (IVM) and a P-gp blocker (CyA) 

separately. These new approaches may enhance the assay accuracy and improve the gene expression 

data obtained from the chemical exposure experiments.  

The chemicals used in this study have previously been shown to affect either the ABCB1 expression 

or the P-gp function in other organisms. However, there are numerous other chemicals described in 

the literature that are known to modulate ABCB1 gene transcription and P-gp function in different 

organisms (Bard, 2000; Buss & Callaghan, 2008; Lespine et al., 2008; Smital et al., 2004). Testing 

other chemicals would identify the spectrum of ABCB1/P-gp modulators and P-gp substrates for 

earthworms and they could then be used as reference or control drugs in future experiments. For 

example, dexamethasone drug induces expression of P-gp in E. andrei (Hackenberger et al., 2012), 

chemotherapeutic agents transiently induce ABCB1 gene in mammals (Scotto, 2003), and the 

barbiturate phenobarbitol is a common ABCB1 inducer in mammals (Manceau et al., 2010). These 

ABCB1 inducers may produce higher induction in A. caliginosa than observed with rifampicin in this 

study. 

The accurate evaluation of the effect of chemicals on the P-pg and ABCB1 expression is usually 

obtained in studies with isolated tissues or pure cell lines because P-gp and ABCB1 expression is 

inducible at different levels in several tissues and its regulation can differ between cell types (Sturm 

& Segner, 2005). It has been reported that rifampicin does not induce the ABCB1 expression in 

human lymphocytes and brain cells (Nannelli et al., 2010) as opposed to hepatocytes and 

enterocytes (Manceau et al., 2010). However, the only established in vitro experiment with 

earthworms used a culture of coelomocytes, but it lasted only 3 h (Quaglino D, 1996). The isolation 

and culture of cells from specific tissues or organs in earthworms could be attempted but would 

require considerable skill and specialised equipment. 

Alternatively, the localisation of P-gp in earthworm tissues could be performed by immunochemistry. 

This information would confirm the presence of P-gp in earthworms and would establish which 

tissues should be targeted for RT-qPCR. Localisation of P-gp in fish, aquatic invertebrates and 

nematodes has been conducted using antibodies raised against mammalian P-gp (Kerboeuf et al., 

2003; Sturm & Segner, 2005; Sturm et al., 2001). Antibodies against the P-gp of any invertebrate 

species, including earthworms, are not yet available and therefore assays would have to rely on 
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available mammalian antibodies. The most frequently used monoclonal antibody (mab) C219 

recognises an epitope common to all known P-gps. However, not all P-gps are involved in drug 

resistance. There are other mab that bind specifically to the P-gp product encoded by ABCB1 gene 

(Schinkel et al., 1993 ; Taylor et al., 2001) . They include mabs UIC2 and MRK16 (specific for external 

P-gp epitopes) and JSB-1 and C494 (specific for internal P-gp epitopes), which have been used in 

mammalian assays (Taylor et al., 2001). However, it is unclear whether they would recognise the P-

gp of earthworms. For example, Hemmer et al. (1995) used JSB-1 and C494 in Poecilia reticulata 

(guppy fish) with ambiguous results, suggesting that P-gp of fish differ significantly from mammals. In 

contrast, Riou et al.(2005) successfully used mab UIC2 in an indirect immunofluorescence staining 

assay in the helminth H. contortus, showing that P-gp was located in the external layer and cuticle of 

the worm. To date, there are very few published data about the use of mammalian P-gp mabs in 

invertebrate species and none for earthworms. 

Another approach that would be useful for the localisation of P-gp in earthworms is the detection of 

ABCB1 mRNA by in-situ hybridisation using frozen or paraffin embedded sections. Smith and Prichard 

(2002) observed the distribution of ABCB1 mRNA in transverse cryosections of adult H. contortus 

using a digoxigenin-labelled cDNA encoding the ATP-binding region of H. contortus P-gp. The probe 

sequence had similarity to 12 P-gp sequences previously identified in H. contortus, and thus 

hybridisation gave an overall measurement of the total P-gp mRNA. Similarly, a specific probe could 

be designed for earthworms from the full length lumbricid ABCB1 sequence in order to determine 

the localisation and distribution of P-gp expression. These studies would contribute to the 

understanding of P-gp function in this species.   

 With the RT-qPCR optimised and identification of which tissues express P-gp, the next step would be 

to test field samples to examine whether the ABCB1 measurement can be used as an indicator to 

detect the presence of contaminants in soil. Further work is needed to determine the number of 

earthworms required to minimise the variability inherent in ABCB1 and P-gp expression due to 

genetic factors (Hoffmeyer et al., 2000). Identification of additional ABC proteins involved in the MXR 

would improve the use of A. caliginosa as a bio-indicator. The most relevant ABC proteins are the 

multidrug resistance associated protein (MRP) 1 and 2, encoded by ABCC1 and ABCC2 gene 

subfamily, and breast cancer resistance protein (BCRP) encoded by ABCG2 which transport a wide 

spectrum of substances (Leslie et al., 2005; Zaja et al., 2008; Zucchi et al., 2010). Studies in aquatic 

organisms have shown that exposure to common environmental pollutants modulated the gene 

expression of these MXR members detected by RT-qPCR, (Diaz de Cerio et al., 2012; Franzellitti et al., 

2010; Kingtong et al., 2007; Luedeking & Koehler, 2004).  
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For a better understanding of the role of P-gp in earthworms, more advanced technology and 

sophisticated approaches could be used in future studies. To unequivocally establish the role of the 

P-gp encoded by the ABCB1 gene, methods such as gene knock-down, direct mutagenesis or 

transgenic modifications could be attempted. In a transgenic experiment, Zhao et al. (2004) 

demonstrated ABC transporter expression in C. elegans using promoter–driven green fluorescent 

protein (GFP) fusions to address when and where these genes are turned on in vivo. For similar 

experiments to be done in earthworms the challenge of modifying earthworm embryonic cells would 

have to be overcome. To date, there are no publications of lumbricid embryonic cell manipulation. In 

the nematode model, C. elegans embryonic cells can be obtained from eggs harvested from 

synchronized gravid adults and then are dissociated using a combination of enzymatic treatment and 

manual pipetting (Bianchi & Driscoll, 2005). However, it is unknown whether a similar approach 

would work in earthworms.  

Extending genomic sequence of ABCB1 in A. caliginosa to include upstream regulatory regions would 

improve understanding of ABCB1 transcriptional regulation in earthworms. In humans, ABCB1 gene 

and P-gp expression involves a complex regulatory pattern controlled by several transcription factors 

(Labialle et al., 2002; Scotto, 2003). The most relevant transcription factor in the multidrug resistance 

phenomenon is the pregnane X receptor (PXR) (Buss & Callaghan, 2008; Wassmur et al., 2010) that 

can be activated by a wide array of xenobiotics including numerous pharmaceuticals and other 

environmental pollutants. When activated, it regulates the expression of P-gp (Wassmur et al., 2010). 

Rifampicin is a specific PXR agonist (Haslam et al., 2008) and the response of A. caliginosa ABCB1 

gene to rifampicin exposure reported in this study suggests that A. caliginosa may have a similar 

pathway involving transcriptor factors as in mammals for ABCB1 transcription.   

6.3 Final conclusion 

The identification of a partial sequence homologous to the ABCB1 gene and the use of this data to 

create an RT-qPCR assay for ABCB1 expression have provided fundamental new knowledge of the 

ABCB1 gene in earthworms. In aquatic animals, P-gp overexpression is associated with the MXR and 

the measurement of ABCB1 expression has been used to identify resistant organisms and the 

presence of pollutants. Thus, the results of this research may provide baseline data for similar assays 

using earthworms. From an ecotoxicological context, information related to ABCB1 and P-gp in 

earthworm is important to understand their response to agrochemical use in pastures and in the 

future, this response may be used as a tool for ecotoxicological research and toxicological risk 

assessments. 
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Appendix A- Primer design  

A.1 Alignment of P-gp protein sequences for design of degenerate primers 

 
C. briggsae         ILRQDIS....WFDTNHSGTLATKLFDNLERVKEGTGDKI     76 

C. elegans          ILRQeIS....WFDTNHSGTLATKLFDNLERVKEGTGDKI     76 

Cricetulus sp       ffhaimnqeigWFDvhdvGeLnTrLtDdvskinEGiGDKI     80 

P.troglodytes       ffhaimrqeigWFDvhdvGeLnTrLtDdvskinEGiGDKI     80 

E. caballus         ffhaimqqeigWFDmhdvGeLnTrLtDdvskinEGiGDKI     80 

H. sapiens          ffhaimrqeigWFDvhdvGeLnTrLtDdvskinEGiGDKI     80 

C. lupus            ffhaimrqeigWFDvhdvGeLnTrLtDdvskinEGiGDKI     80 

Consensus                      wfd    g l t l d      eg gdki 

 

C. briggsae         GMAFQYMSQFITGFIVAFTHSWKLTLVMLAVTPIQALCGF    116 

C. elegans          GMAFQYlSQFITGFIVAFTHSWqLTLVMLAVTPIQALCGF    116 

Cricetulus sp       GMfFQaMatFfgGFIigFTrgWKLTLViLAisPvlgLsag    120 

P.troglodytes       GMfFQsMatFfTGFIVgFTrgWKLTLViLAisPvlgLsaa    120 

E. caballus         GMfFQsMatFfTGFIVgFTrgWKLTLViLAisPvlgLsag    120 

H. sapiens          GMfFQsMatFfTGFIVgFTrgWKLTLViLAisPvlgLsaa    120 

C. lupus            GMfFQsiatFfTGFIVgFTrgWKLTLViLAisPvlgLsaa    120 

Consensus           gm fq    f  gfi  ft  w ltlv la  p   l 

 

C. briggsae         LIAKSMSTFAIRETVRYAKAGKVVEETISSIRTVVSLNGL    156 

C. elegans          aIAKSMSTFAIRETlRYAKAGKVVEETISSIRTVVSLNGL    156 

Cricetulus sp       iwAKilSsFtdkElqaYAKAGaVaEEvlaaIRTViafgGq    160 

P.troglodytes       vwAKilSsFtdkEllaYAKAGaVaEEvlaaIRTViafgGq    160 

E. caballus         iwAKilSsFtdkEllaYAKAGaVaEEvlaaIRTViafgGq    160 

H. sapiens          vwAKilSsFtdkEllaYAKAGaVaEEvlaaIRTViafgGq    160 

C. lupus            iwAKilSsFtdkEllaYAKAGaVaEEvlaaIRTViafgGq    160 

Consensus             ak  s f   e   yakag v ee    irtv    g 

 

******************************************************************* 

 

C. briggsae         EVFIDGSEIKTLNPENTRSQIAIVSQEPTLFDCSIAENIV   1034 

C. elegans          EiFIDGSEIKTLNPEhTRSQIAIVSQEPTLFDCSIAENIi   1036 

Cricetulus sp       tVFlDGkEvnqLNvqwlRahlgIVSQEPiLFDCSIAENIa   1022 

P.troglodytes       kVllDGkEIKrLNvqwlRahlgIVSQEPiLFDCSIAENIa   1022 

E. caballus         tVllDGtEIKhLNvqwlRahlgIVSQEPiLFDCSIgENIa   1022 

H. sapiens          kVllDGkEIKrLNvqwlRahlgIVSQEPiLFDCSIAENIa   1022 

C. lupus            sVlIDGkEIKhLNvqwlRahlgIVSQEPiLFDCSIAENIa   1022 

Consensus               dg e   ln    r    ivsqep lfdcsi eni 

 

C. briggsae         YGLDPTTVTMSRVEEAAKLANIHNFISELPEGYETRVGDR   1074 

C. elegans          YGLDPssVTMaqVEEAArLANIHNFIaELPEGfETRVGDR   1076 

Cricetulus sp       YGdnsrvVsqdeiErAAKeANIHqFIesLPdkYnTRVGDk   1062 

P.troglodytes       YGdnsrvVsqeeivrAAKeANIHaFIesLPnkYsTRVGDk   1062 

E. caballus         YGdnsrvVsqeeivqAAKeANIHpFIetLPdkYnTRVGDk   1062 

H. sapiens          YGdnsrvVsqeeivrAAKeANIHaFIesLPnkYsTkVGDk   1062 

C. lupus            YGdnsrvVsheeimqAAKeANIHhFIetLPEkYnTRVGDk   1062 

Consensus           yg     v       aa  anih fi  lp    t vgd 

 

C. briggsae         GTQLSGGQKQRIAIARALVRNPKILLLDEATSALDTESEK   1114 

C. elegans          GTQLSGGQKQRIAIARALVRNPKILLLDEATSALDTESEK   1116 

Cricetulus sp       GTQLSGGQKQRIAIARALVRqPhILLLDEATSALDTESEK   1102 

P.troglodytes       GTQLSGGQKQRIAIARALVRqPhILLLDEATSALDTESEK   1102 

E. caballus         GTQLSGGQKQRIAIARALVRqPqILLLDEATSALDTESEK   1102 

H. sapiens          GTQLSGGQKQRIAIARALVRqPhILLLDEATSALDTESEK   1102 

C. lupus            GTQLSGGQKQRIAIARALVRqPhILLLDEATSALDTESEK   1102 

Consensus           gtqlsggqkqriaiaralvr p illldeatsaldtesek 

 

C. briggsae         IVQEALDRAREGRTCIVIAHRLNTIMNADCIAVVNNGTII   1154 

C. elegans          vVQEALDRAREGRTCIVIAHRLNTvMNADCIAVVsNGTII   1156 

Cricetulus sp       vVQEALDkAREGRTCIVIAHRLsTIqNADlIvViqNGkvk   1142 

P.troglodytes       vVQEALDkAREGRTCIVIAHRLsTIqNADlIvVfqNGrvk   1142 

E. caballus         vVQEALDkAREGRTCIVIAHRLsTIqNADlIvVfqNGkvk   1142 

H. sapiens          vVQEALDkAREGRTCIVIAHRLsTIqNADlIvVfqNGrvk   1142 

C. lupus            vVQEALDkAREGRTCIVIAHRLsTIqNADlIvVfqNGkvk   1142 

Consensus            vqeald aregrtciviahrl t  nad i v  ng 

 

Note: The letters in red denotes the selected amino acid sequences for the design of degenerate 
primers.  
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A.2 Alignment of ABCB1 nucleotide sequences for the design of degenerate 

primers 

M.edulis     ........................................      0 

O.mykiss     cagtagtggctgtgggaaaagcaccaccgttcagctgctg   1413 

R.norvergicus caacagtggctgtgggaaaagcacaactgtccagctgctg   1349 

H. sapiens   aaacagtggctgtgggaagagcacaacagtccagctgatg   1128 

T. adherens  aggtagtggttgcggtaagagcactgtagtacagttaatt   1221 

G. gallus    tggcagcggctgtgggaaaagtacaactgttcagctcatc   1413 

M.californianus atcgagtggatgtggaaaatctaccatagtcaatctcata   1528 

M. varia     ........................................      0 

Consensus     

 

M.edulis     CAGAGGTTCTATGACCCAGATGCAGGACAAGTTTTACTTG     40 

O.mykiss     CAGcGGTTCTATGAtCCAcAaGatGGAtcAGTgTatgTaG   1453 

R.norvergicus CAGAGGcTCTAcGACCCcataGagGGcgAgGTcagtaTcG   1389 

H. sapiens   CAGAGGcTCTATGACCCcacaGagGGgatgGTcagtgTTG   1168 

T. adherens  CAaAGaTTCTAcGAtCCAcAgGacGGttgtGTTgaAaTcG   1261 

G. gallus    CAGAGaTTtTAcGACCCcaAgGaAGGcacgaTTaccaTTG   1453 

M.californianus CAGAGryTCTAyGAyCCAGATGCAGGACAgGTTTTACTaG   1568 

M. varia     .........................GACAAGTTTTACTTG     15 

Consensus                             g     t     t g 

 

              ........................................ 

 

M.edulis     AACACACTAGTTGGAGAGCGTGGAGCTCAGTTATCGGGAG    280 

O.mykiss     gAgACtCTAGTTGGAGAcaGaGGAaCcCAGaTgagtGGAG   1693 

R.norvergicus AACACcCTgGTTGGtGAGaGaGGgGCgCAGcTgagtGGgG   1629 

H. sapiens   gACACcCTgGTTGGAGAGaGaGGgGCcCAGTTgagtGGtG   1408 

T. adherens  gAtACAaTgGTcGGtGAaCGTGGgGCTCAacTtagtGGAG   1501 

G. gallus    gAaACtgTgGTTGGAGAaaGaGGgGCaCAGaTgagtGGAG   1693 

M.californianus AACACACTAGTTGGAGAGCGaGGAGCTCAGTTATCaGGAG   1808 

M. varia     AACACACTAGTTGGAGAGCGTGGAGCTCAGTTATCaGGAG    255 

Consensus     a ac  t gt gg ga  g gg  c ca  t    ggdg 

 

M.edulis     GGCAAAAACAACGAGTAGCCATTGCCAGAGCTTTGATCAG    320 

O.mykiss     GaCAgAAACAgaGgaTcGCtATcGCacGcGCTcTcgTacG   1733 

R.norvergicus GaCAgAAACAgaGgaTcGCCATTGCCcGgGCccTGgTCcG   1669 

H. sapiens   GGCAgAAgCAgaGgaTcGCCATTGCacGtGCccTGgTtcG   1448 

T. adherens  GaCAAAAgCAACGtaTtGCtATcGCtcGcGCgTTGgTtAa   1541 

G. gallus    GGCAgAAgCAgCGAaTAGCaATTGCCcGtGCTcTGgTtcG   1733 

EF521414     GGCAgAAACAAaGAGTAGCCATTGCCAGgGCTTTGATCAG   1848 

FM994158     GaCAgAAACAACGAGTAGCCATTGCCAGAGCTTTGATtAG    295 

Consensus    grcaraarcarigiit gc at gc  g gc  t  t 

 

M.edulis     AGACCCAAGAATCCTATTGCTGGATGAAGCTACATCTGCA    360 

O.mykiss     caACCCcAagATCCTcTTGtTGGAcGAgGCTACcTCaGCc   1773 

R.norvergicus caACCCcAagATCCTtTTGtTGGATGAgGCcACgTCaGCc   1709 

H. sapiens   caACCCcAagATCCTccTGCTGGATGAgGCcACgTCaGCc   1488 

T. adherens  AaAtCCcAaAATttTAcTatTaGATGAAGCaACtTCaGCA   1581 

G. gallus    caAtCCtAaAATtCTtcTGCTtGATGAgGCaACgTCaGCt   1773 

EF521414     AGACCCAAGAATCCTATTGCTGGATGAAGCTACATCTGCA   1888 

FM994158     AGACCCAAGAATCCTATTGCTGGATGAAGCTACAT         330 

Consensus      a cc a  at  t  t  tggatgargchacitcwgc 

 

             ........................................ 

 

Note: The letters in red denotes the selected nucleotide sequences for the design of degenerate 
primers.  
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A.3 Alignment of nucleotide sequences of ABCB1 C. elegans, ABCB1 M. 

edulis, and L. rubellus contiguous sequence with homology to ABCB1 M. 

edulis. 

 

Lumbricus contig    .................GATACTGAACGGTCTGAACGTGG     23 

M. edulis           ........................................      0 

C. elegans          tcccgcccggatgttccaATtCTacgtGGaaTGAAtcTcc   1320 

 

Lumbricus contig    AGATAAAGCGAGGTCAGACGGTGGCTTTGGTCGGGTCGAG     63 

M. edulis           ........................................      0 

C. elegans          gtgTAAAtgcAGGTCAaACtGTcGCacTtGTCGGaTCatc   1360 

   

 

Lumbricus contig    CGGGTGTGGCAAGAGCACAGTCATTCAGCTCATCCAACGC    103 

M. edulis           ..................................CAgaGg      6 

C. elegans          gGGaTGTGGaAAGtcgACgaTtATcagttTgtTgttgCGt   1400 

 

Lumbricus contig    TTCTACGACCCACTAGAGGGCGCTGTGATGATTGACGGAA    143 

M. edulis           TTCTAtGACCCAgatGcaGGacaaGTttTacTTGAtGGtA     46 

C. elegans          TaCTACGAtgtttTgaAaGGCaagaTtAcGATTGAtGGAg   1440 

 

Lumbricus contig    CGGACATTCGCCAGCTGAACATCAAGTGGTTACGGCAACA    183 

M. edulis           acaACATaaaagAttTaAAttTgAAcTGGTTACGaCAgaA     86 

C. elegans          tcGACgTTCGggAtaTcAACtTggAaTttTTgaGaaAAaA   1480 

 

Lumbricus contig    TATCGGAGTCGTCAGTCAGGAACCAGTGTTGTTTGCTCTC    223 

M. edulis           cATCGGtGTgGTttcTCAGGAACCAGTcTTGTTTGgTtgC    126 

C. elegans          TgTgGccGTCGTgtcaCAGGAgCCAGcGTTGTTcaaTtgt   1520 

 

Lumbricus contig    ACGATAGCAGAGAACATTCGATACGGGAGAGAAGGA....    259 

M. edulis           ACcATAGCcGAGAACATcCGActaGGaAatccgaatgcaa    166 

C. elegans          ACGATcGagGAGAAtATTaGtctCGGaAaAGAAGGcataa   1560 

 

Lumbricus contig    ........................................    259 

M. edulis           ccattacagaaatagaacaagcagccaaacaagccaacgc    206 

C. elegans          cacgtgaggaaatggttgctgcatgtaagatggccaacgc   1600          

 

Lumbricus contig    ........................................    259 

M. edulis           acatgatttcataaaaagtcttcctcagagttacaacaca    246 

C. elegans          agaaaagttcatcaaaactctaccaaacggatataatact   1640 

 

Lumbricus contig    ........................................    259 

M. edulis           ctagttggagagcgtggagctcagttatcgggagggcaaa    286 

C. elegans          cttgtcggagatcgtggaacccagctctccggaggccaga   1680 

            

Lumbricus contig    ........................................    259 

M. edulis           aacaacgagtagccattgccagagctttgatcagagaccc    326 

C. elegans          aacaacgtatcgctattgctcgtgctctcgtcagaaaccc   1720 

            

Lumbricus contig    ........................................    259 

M. edulis           aagaatcctattgctggatgaagctacatctgcattagac    366 

C. elegans          gaaaatccttctattggacgaagccacgtcagcactggac   1760 

            

Lumbricus contig    ..................GTGAGCCAGGCTGAGATAGAAA    281 

M. edulis           tctgagagt...............................    375 

C. elegans          gctgaatccgagggaattGTGcaaCAGGCattGgacaAAg   1800 

            

Note: The letters in yellow denote the selected nucleotide sequences for the design of L. rubellus 
primers in the forward direction and the green letter denote the primers in reverse direction.  
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A.4 Assembled sequence of overlapping L. rubellus contiguous sequences 

that were homologous to the partial mRNA sequence of M. edulis 

ABCB1. 

LUMBRIBASE contiguous sequences: 
121673, 154463, 1166      
1      CAAGTGCACA TAAAAAATAC AAATGTTAAA GTATGTTTTT CACACCCCGA 

51     TTCCAAGTGG ATAATGGTCC AACCCCCTCC CACTTCTTTT TCCACAACTC 

101    TTACACTGTA TATCGACAAC GAACAGGAGA AAGAGCAATG CCAATGATCC 

151    CTATGTTTTC TATGTATAGA TGACTACAGG CTACTTCAAG TCTTCAACGA 

201    ATCCAAATCA ATAATAATTG TTGAAACCAA GCCTTTTCTA AGAACGAGGA 

251    CTTCCGACAC ACGGTTAAGT GCATACGATG AATTATAATT ATCAAAGCAG 

301    AGTACTGTAT AGGCCAGTAA GCTACTGCAT CTATAATTCA ATCGTGTGGA 

351    TTTAAATCGG CGGCCGGCGG GTATATCTTT ATTCGAATCT AAATTAAATC 

401    TAAGTTCCCT TCTGATTAAA CTGGATCGAG CAAGTGCGTC GCTTGCCTTT 

451    AGTTGGTATA GCCTACTGTT GGTTAGGTTT AATGGCTATG GGAGTGGCTA 

501    TAATTATGGG TTGAGAACAG AGTCTCCTGT ATTACGTTCA TGCGGGTTTC 

551    AAATCGCAGA ATAAAATTTC AACGCAATGA AATGTCTAAG TGCCCACAGC 

601    AGTTAAGTCA AACAGAGACC AGCTTATTTA CCGGCGTAAA AAGAATAAAA 

651    AGAGCCAAAG GCTAATCATG AACAAAAAGC CATAGGCTAT AAGCTTAGGC 

701    CCATAGTAAT CATGCACTAG TCTATTATGG GTATAGAAGC CACGCATAGC 

751    CTACTTCAGC CTCAGGAACC AGTCTTGTTT TATTGCTCCT GGTTAAAATT 

801    ATATAATAGT AAAATGTATT TATTACGTCC GTATTTGGGT AGTGCCCTTC 

851    ATGCTCTTGC CACAATTAAA GCTCTGAACA AACAGTAATA TTCCGGAAAA 

901    AGTTATCACC CGCTAATAAT AGGTAGGCCT ATTGTCCTAT ACTTCAGAGA 

951    AACGTCTAAA TATGGCATGC GCCTGAAAGT AGAAATCCCC CTTTGAGCTG 

1001   TCGTCTCGAA GACAGCCAAT CATATTCGCT TTTAACTAAA GACTGCTACC 

1051   GTGTATGTGT AGACCTAGGC CTACATTGTC TGTAAAACCA GCTGAACTCC 

1101   CACTCGAAAG AGTATAAGGA CAAAGGATGA CAGATGACTG AGTTACATTT 

1151   GACTCATGAG AGACAGGTGG AATTTAACAT CCCTGTGAAA AAACAGTCCT 

1201   TGTATGTGAC ACAGAAATGC AAATCGAACT CAAAATATAT CACTTCAGAT 

1251   TTATTTTAAA GAAATCTCAA TATGACCATC CGTCATAGGC CTCAGTGGCG 

1301   GATCCAGAAC TGTTCCAAGG GGGGGGGGCA AAATCTTAGA TACATGTGCA 

1351   AAATTTTTCG AAATTTGGTT CTTGGTTCCC AAAAAAATCG GTCTTCGGTT 

1401   GAGGAAAAAA GGAATTTTCA TCCGCCGAAA AAGTTAAAAG TATATTTTTG 

1451   ATAGTAGTTT GACGGTAGGT GTACAGATTT AATTTCTGGA GATCGCCAAT 

1501   AAGCAGTTCA TTGCAAAGAT TCAAATGTTT TAACCAATCA ATTTCACGTC 

1551   CTTCAATAGT GAAGTTACGG TAGTCCAACA GTTACGGTCA CATTATCACA 

1601   GCGCATTAAC CATCATTCCA TGTATGATCA CAATGCACCA CATAGATCAT 

1651   TCAGTTTGCA CATGATTTCA TAAAAATTAT ATTGGCGCCA GTTTCTCTAA 

1701   AGATAGTTAC TTATCTTTAT ATTTATAGGC CTATCATTGT CTGAAGTAAC 

1751   ACACTGGCAT GAATGCACCA TCGGTCCACA GCAGAAGGGT GAAGCGCAGG 

1801   CAGAGGCTGG TTATTCCATC GTACTACATC ATGCCTTGTT GGGTTTTCCC 

1851   ATCACAGGAG TTGAATGTCA CAGCATTCCA GAAGCATGTT TCTTCATGTG 

1901   CATTTTCAGA GTGTAGCTAC GAACAAAACA CTTGAAACAG ATGTCACAGA 

1951   CATATGGCTT TTCTCCCGTG TGCATCGCCA TGTGTCGGTT CAACGTGTTG 

2001   CTCTTCGCAA ACTGTTTACC GCACTCCATG CAGATAAACC GCTTCTCGCC 

2051   AGTGTGTGTC GTCATGTGCG ACATCAGCGT GCTCCGAAGC GCAAATTTCT 

2101   TGTCACAAAT GACACAGTCA AACGGTTTCT CGCCAGTGTG GATAAGCATG 

2151   TGCTTGTTAA CCTGGCTCTT GTGCGCCAGT TTGCGGTCAC AAATGACACA 

2201   GCTGTACGGT GCTTCACCAG AGTGAATACG TTTGTGCGTC TGCAATTGGC 

2251   TGTTGTGTGC AAAGCGAACG CCGCATTCGT GGCAGACGAA CGTCTTCACT 

2301   CCAGTGTGAG TGACCGAGTG AACCTGAAGG CTGTTTTTGC TCGTAAACTT 

2351   CTTATCACAG AGCGAACACT CGTACGGTTT GATGCCCGTG TGCAGCATTC 

2401   TGTGGTACTG CAAACCGGCT TTCTGTGCAA AACACCGGTC GCAGATCTCA 

2451   CACTTAAATG GCTTTTCACC TGTATGGGTC CGTAGGTGAG ACTTGAGCTG 

2501   GCTGGCCAGG ATAAACTGTC GTCCGCAGGC CTTACAATTG AAAGGCTTCT 

2551   CCTCTGAGTG TCGAAGCAGG TGGTACTTAA GTGAAAGTGC AACCTTGAAG 

2601   CCTTTCCCAC ACAGCTCGCA GGAAAACGGT TTTACGCCTG AATGTGTCCG 

2651   TTGGTGCTGC TTAAGCTTGT CACTTCTTGA AAAACACTTT CCACACATAC 

2701   TGCATGAATA GGGCTTCTCT CCGGAATGCA CTCGTAAGTG TGCCTTGAGC 

2751   TTATCAGAAC GACGAAAGGA CTTTCCACAA TTCGAGCAAA TGTGTTCTTT 
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2801   ATTACTACGG CGTTTTCCAT AAAGTCGGCC TTCCTGTTTA GGAGAGTTAT 

2851   CTGAAGTCCG TTTTTGAATC TTGACTGCTT TTGACCTCTT TTTAGCAGTG 

2901   TTTTTTGCAA CAACATCCGA TGGCTCTTCA ATGTCAGTTG ATTTGTTTTC 

2951   AACTTTCACT TCATTGGTTT TGAATTCTGT AACTTCTTCA ACATCAGTCA 

3001   TTTCATCATC AACTTCTACT TCATCGGTTT TGAACTCTGT TACTTCTTCA 

3051   ACATCAGTCA ATTCATCTTC AACTTTCACT TCATCGGTTT TGAATTCTGT 

3101   TACTTCTTCA ATCTCAGTCA ATTCATCTTC AACTTTTACT TCATTGGTTT 

3151   TTAATTCTGT TTTTTCATCA ACGCCAGTCA TTTCTTCAAT TCTGACGCTG 

3201   CCTTTAGGAC TCTCTTTGAC TCCCATTCCA TCTTCAAAAT CAGTCATTAC 

3251   TTCGACTTTG ACTTTGTCAA CGGTTTTTGT AGTGACTTCA GATTGTTTTT 

3301   CAGCATTACT CATTTTTGCA GCTCTGACTT TACCCAAAGT TCTTTTGTTG 

3351   ACTTGCAGCT TGCATGGGTC TGAAAGAAGA AAAAAATAAA TGAAACTAAA 

3401   ATGCTGACAC ATTACTACTC AGACGTGCTC CTGACTATAG CACGGTAAAA 

3451   AAAGAAATTT TTGAGTTTAA ATTTTAAAAA TTAATAATTT TTAAAATTAT 

3501   TGTGCTGTGT ATTAAACAGA TCTTGAACGG ATTGAGTCTG ACGATAGCGA 

3551   AAGGTCAGAC GGTGGCTTTG GTCGGGTCAA GCGGTTGTGG TAAGAGCACG 

3601   GTGATTCAAC TCGTCCAGCG ATTCTACGAC CCACTCGATG GTTGCGTGAT 

3651   GATCGACGGA ACGGACATTC GTGAGTTGAA CATCAAATGG TTGCGACAGA 

3701   ACATTGGCGT CGTCAGCCAA GAACCGATTC TCTTTGCAAC GACGATTGCG 

3751   GAGAACATTC GATACGGAAG AGAAGGAGTG ACGGATGCGG AGATCGAGAA 

3801   GGCGGCGATA GAGGCGAATG CTCACAACTT CATCAGTAAA CTGCCATTGG 

3851   TATGATGATG ATCTGAAATG CTCAATTAAA GACTCTTCAA TATTGATGTT 

3901   GTTGTTGTAG ATTAGAGTTG AATGAAAGGT TTAATTAATG AATTGTTTAT 

3951   ATACGTGACT AAGGTTGATG TTGCTCTTTT AGCTCTTATA TGTGTCTCTA 

4001   AAGGTGTGAG TGCGTGTGTG TGCGCGTGTG TGGTGTGTGT GTGTGTGTGT 

4051   GGGTTTTTAT CTGTACGACA TAGTAATGAT TTAGTTTAAG TGCATGGTGT 

4101   GGGCTCCAGT CTTTCCTGAT GTAATGACAT TCTGGAAGTC CTTTCTGCAT 

4151   AATTGCTCAA GGTTTGATAC AGAGCTCTGC GTTGTAAGGT GCCCATGTAA 

4201   TAGCATTGCC ATGTTACGAC ACCATTCAGA CAGTCCTAAT TATTATTGTT 

4251   ATTATTATTG TCATCTGTCA CAATGTAATT AAGATCTATG GTTAGGGTTG 

4301   TGGTGAACAC TGTTATGCCG TGCAACTGGC TTGCAAGTTG GTTGTTGTCG 

4351   TTGTTGTTAG AAATACGGTA CGTTGGTTGG AGAGCGTGGA GCTCAGTTGA 

4401   GTGGAGGACA GAAGCAGAGG ATAGCAATTG CACGTGCGTT GGTTCGTGAT 

4451   CCACGAATTC TTCTTCTTGA TGAAGCGACG TCTGCTCTCG ACACGGAATC 

4501   AGAAGCCACC GTTCAGTCGG CGCTTGACAA GGTAATGTCA TATTATGACC 

4551   GTTGTATTCA GTGCTGCATT TGTTAAGCTT AATTCGTTTC AGAATGATAA 

4601   ATTATTATTA ATTAATTAAC TAGTAGGTAA GTAGGTTCTT CTTTTGTGTT 

4651   GATGTCTAAT AAATGTTTTG AAATAATTTG TTTCAACGTC AGTTGATGCC 

4701   AAAGACTTTA ATGGATGACG CACCAAAACC AGTCTAAAAT ATTGATGAGA 

4751   ATAATAATAA TATTCTCTTT ATTCAA 
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A.5  Comparison of the translated assembled sequence against the M. edulis 

ABCB1 protein sequence by the program WISE2  

 

M. edulis          1 QRFYDPDAGQVLLDGNNIKDLNLNWLRQNIGVVSQEPVLFGCTIAENIR  

                     QRFYDP  G V++DG +I++LN+ WLRQNIGVVSQEP+LF  TIAENIR  

                     QRFYDPLDGCVMIDGTDIRELNIKWLRQNIGVVSQEPILFATTIAENIR  

L. rubellus     3616 ccttgccggtgaaggagacgtaaattccaagggacgcactgaaaggaac  

                     agtaactaggtttagcatgatatagtgaatgttgaactttccctcaatg  

                     gacccacttcggccagcttggccaggagctccccaagtctaggtggcta  

 

 

M. edulis         50 LGNPNATITEIEQAAKQANAHDFIKSLPQ                      

                      G    T  EIE+AA +ANAH+FI  LP                       

                     YGREGVTDAEIEKAAIEANAHNFISKLPL                      

L. rubellus     3763 tgagggagggagaggaggagcataaacctGTATGAT  Intron 1     

                     aggagtcacataacctacacaattgatct<0-----[3850 : 4360]  

                     caaaaggtggcggggaggttcccctagag                      

 

 

M. edulis         79    SYNTLVGERGAQLSGGQKQRVAIARALIRDPRILLLDEATSALDSE  

                         Y TLVGERGAQLSGGQKQR+AIARAL+RDPRILLLDEATSALD+E  

                        KYGTLVGERGAQLSGGQKQRIAIARALVRDPRILLLDEATSALDTE  

L. rubellus     4358 TAGatgatgggcggctaggcacaagagcgtgcgccacccgggatgcgag  

                     -0>aagcttgaggcatgggaaagtctcgcttgacgttttaacccctaca  

                        actggtagtatggtaaggggaatatggtttaatttttaggttccga  

 

 

M. edulis        125 SENIVQEALEK                                        

                     SE  VQ AL+K                                        

                     SEATVQSALDK ....                                       

L. rubellus     4499 tggagctgcga                                        

                     cacctacctaa                                        

                             aacctgggtcg  
 

Remaining amino acids from mussel fragment = ....ARQGRTTLVIAHRL    

 

L. rubellus P-gp sequence analogous to mussel 

ORIGIN 

1      QRFYDPLDGC VMIDGTDIRE LNIKWLRQNI GVVSQEPILF ATTIAENIRY 

51     GREGVTDAEI EKAAIEANAH NFISKLPLKY GTLVGERGAQ LSGGQKQRIA 

101    IARALVRDPR ILLLDEATSA LDTESEATVQ SALDK  

Note: The letters in red show the similarities between sequences and the green letters are the 
sequence of primer exon2 (reverse direction) to extend the novel ABCB1 sequences of L. rubellus and 
A. caliginosa. 
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A.6 The alignment of L. rubellus contiguous sequence (contig_76678), ABCB1 

B. floridae, ABCB1 R. norvergicus, and novel A. caliginosa  

 
 

ORIGIN 

A.caliginosa        ........................................      0 

L.rubellus          tatagcattgaaaagaacacacatttctgcaccgtacaaa     40 

B. floridae         ........................................      0 

R. novergicus       ........................................      0 

 

                    ---------------------------- (380 bases omitted) 

           

A.caliginosa        ............................GGTCGGTCGAGC     12 

L.rubellus          gataaagcgaggtcagacggtggctttgGtcgGGTCGAGC    560 

B. floridae         ........................................      0 

R. novergicus       ........................................      0 

           

 

A.caliginosa        GGGTGTGGCAAGAGCACCGTCATTCAGTTGATCCAACGCT     52 

L.rubellus          GGGTGTGGtAAaAGCACCGTCATTCAGcTcATCCAACGCT    600 

B. floridae         ........................................      0 

R. novergicus       ........................................      0 

            

 

A.caliginosa        TCTACGATCCACTAGAAGGCGCTGTTATGATTGACGGGAC     92 

L.rubellus          TCTACGAcCCACTAGAgGGCGCTGTgATGATTGACGGaAC    640 

B. floridae         ........................................      0 

R. novergicus       ........................................      0 

          

 

A.caliginosa        AGACATTCGTCAGTTGAATATCAAGTGGTTGCGACAACAC    132 

L.rubellus          gGACATTCGTCAGcTGAAcATCAAGTGGTTaCGgCAACAt    680 

B. floridae         ........................................      0 

R. novergicus       ........................................      0 

           

 

A.caliginosa        ATCGGAGTCGTCAGCCAGGAACCAGTGCTGTTTGCCACGT    172 

L.rubellus          ATCGGAGTCGTCAGtCAGGAACCAGTGtTGTTTGCtctca    720 

B. floridae         ........................................      0 

R. novergicus       ........................................      0 

           

 

A.caliginosa        CGATCGCTGATAACATTCG                         191 

L.rubellus          CGATaGCaGAgAACATTCGatacgggagagaaggagtgag    760 

B. floridae         ........................................      0 

R. novergicus       ........................................      0 

           

                    ---------------------------- (760 bases omitted) 

 

 

L.rubellus          aactgtgaagtatttctcctgttatgtttccggtagaaat   1560 

B. floridae         ..............................ccacagacat     10 

R. novergicus       .................................cacaaat      7 

           

 

L.rubellus          acgagactctggttggcgagagaggagcccagttgagtgg   1600 

B. floridae         acgagacgctggtcggagagcgaggtgcccagctgtctgg     50 

R. novergicus       ttaacaccctggttggtgagagaggggcgcagctgagtgg     47 

           

 

L.rubellus          tggacagaagcaaagaatcgcaattgccagagctttggtt   1640 

B. floridae         cggacagaagcagaggattgcgatcgcccgcgctctggtg     90 
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R. novergicus       gggacagaaacagaggatcgccattgcccgggccctggtc     87 

         

 

L.rubellus          cgcgatccaaagattctgcttcttgatgaggcaacgtctg   1680 

B. floridae         cgggacccacggatcctgctattggacgaggccacctctg    130 

R. novergicus       cgcaaccccaagatccttttgttggatgaggccacgtcag    127 

           

 

L.rubellus          cgctcgatacagaatcagaggctacggttcaggcggctct   1720 

B. floridae         cgcttgacacagagagcgaggctaccgtacaggctgcact    170 

R. novergicus       ccttggacacagaaagcgaagccgtggttcaggccgctct    167 

 

L.rubellus          cgacaaggta                                 1730 

B. floridae         ggacaaggca                                  180 

R. novergicus       ggataaggctaga                               180 

         

Note: The letters in red show the similarities between lumbricid sequences and the green letters 
denote the conserved area which two reverse primers were designed to extend the novel ABCB1 
sequences of L. rubellus and A. caliginosa.  
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A.7 Multiple Sequence Alignment for ββββ-actin primers 

 

L. rubellus         CACCCGGTGCTGCTGACCGAGGCTCCCCTCAATCCCAAGG     40 

T. taeniformis      CACCCcGTcCTGCTGACgGAGGCTCCCCTCAATCCCAAGG     40 

L. variegatus       CAtCCtGTtCTttTtACtGAGGCaCCttTgAATCCaAAaG     40 

E. fetida           ........................................      0 

 

L. rubellus         CCAACCGTGAGAAGATGACCCAGATCATGTTCGAGACCTT     80 

T. taeniformis      CCAACaGgGAaAAGATGACCCAGATCATGTTCGAaACCTT     80 

L. variegatus       CCAACCGaGAaAAaATGACgCAGATCATGTTCGAGACCTT     80 

E. fetida          ........................................      0     

 

L. rubellus         CAACTCCCCAGCCATGTACGTCGCAATCCAGGCCGTCCTC    120 

T. taeniformis      CAACTCCCCAGCCATGTACGTCGCcATCCAGGCtGTCCTg    120 

L. variegatus       CAAtTCtCCAGCaATGTAtGTtGCAATtCAGGCtGTCCTg    120 

E. fetida          ........................................      0            

 

L. rubellus         TCCCTCTATGCCTCCGGTCGTACCACCGGTATCGTCCTCG    160 

T. taeniformis      TCCCTgTAcGCtTCCGGTCGTACCACCGGTATCGTgCTCG    160 

L. variegatus       TCgCTgTATGCtTCtGGTCGTACaACtGGTATCGTtCTCG    160 

E. fetida          ........................................      0           

 

L. rubellus         ACTCTGGCGATGGTGTCACCCACACGGTTCCCATCTACGA    200 

T. taeniformis      ACTCcGGCGATGGTGTCACCCACACcGTgCCCATCTACGA    200 

L. variegatus       ACTCcGGaGAcGGTGTCACaC                       181 

E. fetida          ........................................      0          

 

L. rubellus         GGGTTACGCCCTGCCACATGCCATCCTCCGGCTCGATTTG    240 

T. taeniformis      GGGTTACGCCCTGCCcCAcGCCATCCTCCGtCTgGAcTTG    240 

E. fetida          ........................................      0            

 

L. rubellus         GCCGGCAGAGATCTCACCGACTACCTGATGAAGATCCTGA    280 

T. taeniformis      GCCGGCAGAGATCTCACCGAtTACCTGATGAAGATCCTGA    280 

E. fetida          ........................................      0            

 

L. rubellus         CCGAGAGAGGCTACAGCTTCACAACCACGGCCGAGAGTGA    320 

T. taeniformis      CCGAGAGAGGCTACAGCTTCACcACCACGGCCGAGcGTGA    320 

E. fetida          ........................................      0            

 

L. rubellus         AATTGTTCGTGACATCAAGGAGAAGCTGTGCTACGTTGCA    360 

T. taeniformis      AATcGTTCGTGACATCAAGGAGAAGtTGTGCTACGTcGCc    360 

E. fetida          ........................................      0           

 

L. rubellus         CTCGACTTCGAGCAGGAGATGGGAACACCGCTTCGCCTCA    400 

T. taeniformis      CTCGACTTCGAcCAGGAGATGGGcACtgCcgcctct.TCA    399 

E. fetida          ........................................      0          

 

L. rubellus         TCGTCCCTCGAGAAGAGCTACGAGTTGCCCGACGGTCAGG    440 

T. taeniformis      TCGTCCCTCGAGAAGAGCTACGAGcTtCCCGACGGTCAGG    439 

E. fetida          ........................................      0          

 

L. rubellus         TCATCACCATCGGAAACGAGCGCTTCCGCTGCCCAGAAGC    480 

T. taeniformis      TCATCACCATCGGAAACGAGCGCTTCCGtTGCCCAGAgtC    479 

E. fetida          ........................................      0           
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L. rubellus         CATGTTCCAGCCAAGCTTCCTGGGAATGGAGTCTTGTGGT    520 

T. taeniformis      CATGTTCCAGCCAgcCTTCCTGGGtATGGAaTCTgccGGT    519 

E. fetida          ........................................      0           

 

L. rubellus         ATCCACGAGACGACCTACAACAGCATCATGAAATGCGATG    560 

T. taeniformis      ATCCAtGAGACGACCTtCAACAGCATCATGAAgTGCGATG    559 

E. fetida          ........................................      0         

 

L. rubellus         TCGACATTCGTAAAGACCTCTACGCCAACACCGTCCTTTC    600 

T. taeniformis      TCGAtATcCGTAAgGAtCTgTACGCCAACACCGTCaTgTC    599 

E. fetida          ........................................      0           

 

L. rubellus         GGGAGGCACCACCATGTTCCCAGGCATTGCCGACCGTATG    640 

T. taeniformis      cGGAGGCACgACCATGTTCCCAGGtATcGCCGAtCGTATG    639 

E. fetida          ........................................      0           

 

L. rubellus         CAGAAGGAGATCACGGCTCTGGCACCAGCCACCATGAAGA    680 

T. taeniformis      CAGAAGGAGATCACcagcaTGGCtCCgagCgggATGAAGA    679 

E. fetida          ........................................      0            

 

L. rubellus         TCAAGATCATCGCTCCACCTGAGCGCAAGTACTCCGTCTG    720 

T. taeniformis      TCAAGATCATtGCTCCACCTGAGCGCAAGTACTCCGTaTG    719 

E. fetida          ........................................      0           

 

L. rubellus         GATCGGTGGATCCATCCTGGCGTCCCTGTCCACCTTCCAG    760 

T. taeniformis      GATCGGTGGATCCATCCTGGCtTCCCTGTCCACCTTCCAG    759 

E. fetida          ..........................TcTCCACCTTCCAG     14            

 

L. rubellus         CAGATGTGGATCAGCAAGCAGGAGTACGACGAGTCTGGCC    800 

T. taeniformis      CAGATGTGGATCAGCAAGCAGGAGTACGACGAGTCcGGCC    799 

E. fetida          CAGATGTGGATCAGCAAGCAGGAGTACGAtGAGTCcGGgC     54            

 

L. rubellus         CATCCATCGTTCACAGCAAATGCTTCTAA               829 

T. taeniformis      CATCCATCGTcCACAGgAAgTGCTTCTAA               828 

E. fetida          CATCCATCGTcCACAGaAAgTGCTTCTAA                83 
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Appendix B-Sequencing results 

B.1 Novel ABCB1 sequence in lumbricids 

B.1.1  Lumbricus rubellus 

ORIGIN  

1      GATACTGAAC GGTCTGAACG TGGAGATAAA GCGAGGTCAG ACGGTGGCTT 

51     TGGTCGGGTC GAGCGGGTGT GGCAAGAGCA CAGTCATTCA GCTCATCCAA 

101    CGCTTCTACG ACCCACTAGA GGGCGCTGTG ATGATTGACG GAACGGACAT 

151    TCGCCAGCTG AACATCAAGT GGTTACGGCA ACATATCGGA GTCGTCAGTC 

201    AGGAACCAGT GTTGTTTGCT CTCACGATAG CAGAGAACAT TCGATACGGG 

251    AGAGAAGGAG TGAGCCAGGC TGAGATAGAA ACGGCCG // 

B.1.2 Aporrectodea caliginosa 

ORIGIN  
1      GGTCGGATCG AGCGGGTGTG GCAAGAGCAC CGTCATTCAG TTGATCCAAC 

51     GCTTCTACGA TCCACTAGAA GGCGCTGTTA TGATTGACGG GACAGACATT 

101    CGTCAGTTGA ATATCAAGTG GTTGCGACAA CACATCGGAG TCGTCAGCCA 

151    GGAACCAGTG CTGTTTGCCA CGACGATCGC TGAGAACATT CGATACGGGA 

201    AGAGAAGGA // 

B.1.3 A. chlorotica 

ORIGIN  
1      ATACTGAACG GTCTGAACGT AGAGATACAG AGAGGTCACG GTAGCAATTG 

51     GTCGGGTCGA GCGGGTGTGG CAAGAGCACC GTCATTCAGC TGATCCAACG 

101    CTTCTACGAC CCACTAGAGG GCGCCGTTAT GATTGACGGG ACAGACATTC 

151    GTCAGTTGAA TATCAAGTGG TTGCGCCAAC ACATCGGAGT CGTCAGCCAG 

201    GAACCAGTGC TGTTTGCGAC GACGATCGCT GAGAACATTC GATACGGGAG 

251    AGAAGGAA 

B.1.4 Eisenia fetida 

ORIGIN  
1      TGATACTGAA CGGTCTGAAC GTGGAGATCA AGAGGGGCCA GACGGTGGCC 

51     TTGTGGGGTC CGAGCGGGTG TGGCAAAGAG CACGGTCATT CAGTTGATTC 

101    AACGCTTCTG CGACCCACTA GAGGGCGCCG TTATGATTGA CGGGACAGAC 

151    ATACGTCAGC TGAACATCAA GTGGTTGCGA CAAAACATCG GGGTCGTCAG 

201    CCAAGAGCCA GTGTTGTTTG CGACGACCAT CGCTGAGAAT ATTCGATACG 

251    GGAGAGAAGG AA// 

B.1.5 Aporrectodea trapezoides 

ORIGIN 

1      TGGTGGGGTC GAGCGGGTGT GGCAAGAGCA CGGTCATTCA GTTGATCCAA 

51     CGCTTCTACG ACCCACTGGA GGGCGCCGTT ATGATTGACG GGACAGACAT 

101    ACGTCAGCTG AACATCAAGT GGTTGCGACA AAACATCGGG GTCGTCAGCC 

151    AAGAGCCAGT GTTGTTTGCG ACGACCATCG CTGAGAATAT TCGATACGGG 

201    AAGAGAAGGA A // 
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B.1.6 Octolasion cyaneum  

ORIGIN 

1      TGGTCGGGTC GAGCGGGTGT GGCAAGAGCA CAGTCATCCA GCTGATCCAA 

51     CGCTTCTACG ACCCACTAGA GGGCGCCGTT ATGATTGACG GAACAGACAT 

101    TCGTCAGCTT AATATCAAGT GGTTGCGCCA ACACATCGGA GTCGTCAGCC 

151    AGGAACCAGT GCTGTTTGCC ACGACGATCG CAGAGAACAT TCGATACGGG 

201    AGAGAAGGA // 

 

B.2 Extended sequences 

B.2.1 Aporrectodea caliginosa 

ORIGIN 

1      TTTGGGTCGA GCGGGTGTGG CAAGAGCACC GTCATTCAGT TGATCCAACG 

51     CTTCTACGAC CCACTAGAGG GCGCTGTTAT GATTGACGGG ACAGACATTC 

101    GTCAGTTGAA TATCAAGTGG TTGCGACAAC ACATCGGAGT CGTCAGCCAG 

151    GAACCAGTGC TGTTTGCCAC GACGATCGCT GAGAATATTC GATACGGCAG 

201    AGACGGAGTC AGTCAGGCAG AGATAGAGAT GGCCGCCAAG GAAGCAAACG 

251    CACACGACTT CATCAGCAAA CTGCCGCTGA AATACGAGAC TCTGGTTGGC 

301    GAGAGAGGAG CCCAGCTGAG CGGTGGACAG AAGCAGAGAA TCGCAATTGC 

351    CAGAGCTTTG GTTCGCGATC CAAAGATTCT GCTTCTTGAT GAAGCTACGT 

401    CTGCCTCAA// 

 

B.2.2 Lumbricus rubellus 

ORIGIN 

1      GATACTGAAC GGTCTGAACG TGGAGATAAA GCGAGGTCAG ACGGAGGCTT 

51     TGGTCGGGTC GAGCGGGTGC GGTAAGAGCA CCGTCATTCA GCTCATCCAA 

101    CGCTTCTACG ACCCACTAGA GGGCGCTGTG ATGATTGACG GAACGGACAT 

151    TCGCCAGCTG AACATCAAGT GGTTACGGCA ACATATCGGA GTTGTCAGTC 

201    AGGAACCAGT GTTGTTTGCT CTCACGATAG CAGAGAACAT TCGATACGGA 

251    CGAGAAGGAG TGAGTCAGGC AGAGATAGAA ACGGCCGCCA AGGAGGCAAA 

301    CGCTCACGAC TTCATCAGCA AACTGCCGCT TGTAGGTGGC GCTAACTGTC 

351    CTTTGTGTTC AGATTGCAAT TGTTATTTAT TCACAGTTTC ACAGTTACAC 

401    TCCTGCACCA TAAAAAAATC AAAAGAGTGA TTTACTTTGC CTTTGGAAGT 

451    GGTACAGTAA CTGAGCGACT AAGGCGTCGC TTTTTGCATA TGCGTCGCGG 

501    GTTTAATTCC AGACGTAACA TGTAAAAATA ATTGACATGA GTTTAGATCT 

551    TTAATAATCA TGAGCATCTT CTCAAGTCCA GAAAACACTG TTGCTATGAT 

601    CGAGATATGC TGCTATGTGC CCAGTGCACG CTGCATCAAG TAAAGGTTAG 

651    AATCTGCTGT CAATGTAAAC AAACGTTTAT TGTATGTATT CATATGACCT 

701    GATTATCTAA TTCTCAAAAC GCTGCTCTCT ACACGTTTAA AATTAATAGA 

751    CTATTTATCT TAGAAACTTA GACCTACAAT GGTCAACAGC TACTCGTTTT 

801    AACTGTGAAG TAAGCTTTTT CTCCTGTTAT TTTCTGTTAG AAATACGAGA 

851    CTCTGGTTGG CGAGAGAGGA GCGCAGCTTA GTGGTGGACA GAAGCAAAGA 

901    ATCGCATTTG CCAGAGCTTT GGTTCGCGAT CCAAAGATTC TGCTTCTTTG 

951    ATGAAGCTAC GTCTGCTCTC// 
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B.2.3 Comparison of ABCB1b Rattus norvergicus (GenBank AAI07561.1), P-gp 

homologue Lumbricus rubellus and P-gp homologue Aporrectodea caliginosa 

 

R. norvergicus      SRSEVKILKGLNLKVKSGQTVALVGNSGCGKSTTVQLLQR    440 

L. rubellus         ......ILnGLNveiKrGQTeALVGsSGCGKSTviQLiQR     34 

A. caliginosa       ........................GsSGCGKSTviQLiQR     16 

Consensus                                   g sgcgkst  ql qr 

 

R. norvergicus      LYDPIEGEVSIDGQDIRTINVRYLREIIGVVSQEPVLFAT    480 

L. rubellus         fYDPlEGaVmIDGtDIRqlNikwLRqhIGVVSQEPVLFAT     74 

A. caliginosa       fYDPlEGaVmIDGtDIRqlNikwLRqhIGVVSQEPVLFAT     56 

Consensus            ydp eg v idg dir  n   lr  igvvsqepvlfat 

 

R. norvergicus      TIAENIRYGRENVTMDEIEKAVKEANAYDFIMKLPHKFNT    520 

L. rubellus         TIAENIRYGREgVsqaEIEtAaKEANAhDFIsKLPlKyeT    114 

A. caliginosa       TIAENIRYGRdgVsqaEIEmAaKEANAhDFIsKLPlKyeT     96 

Consensus           tiaenirygr  v   eie a keana dfi klp k  t 

 

R. norvergicus      LVGERGAQLSGGQKQRIAIARALVRNPKILLLDEATSALD    560 

L.rubellus          LVGERGAQLSGGQKQRIAIARALVRdPKILLL            146 

A. caliginosa       LVGERGAQLSGGQKQRIAIARALVRdPKILLLDEATSA      134 

Consensus           lvgergaqlsggqkqriaiaralvr pkilll 

 

Note:  Amino acids shown in black bold letters belong to an exogenic region and in red to the  
following exon. Capital letters show the identity between all sequences. 
 

B.3 ββββ-actin gene homologue Apporrectodea caliginosa  

ORIGIN 
1      TTCGAGACCT TCAACTCCCC GGCCATGTAT GTCGCCATCC AGGCCGTCCT 

51     CTCCCTGTAC GCGTCCGGTC GTACCACCGG TATCGTGCTG GACTCCGGCG 

101    ATGGTGTCAC CCACACCGTC CCCATCTATG AGGGTTACGC CCTGCCCCAT 

151    GCCATCCTTC GTCTCGACTT GGCCGGCAGA GATCTCACCG ATTACCTGAT 

201    GAAGATCCTG ACGGAAAGAG GTTACAGTTT CACCACCACG GCCGAGCGTG 

251    AAATCGTTCG TGACATCAAG GAGAAGCTGT GCTACGTCGC TCTGGACTTC 

301    GACCAGGAGA TGGGAACGGC TGCCTCCTCC TCCTCCCTCG AGAAGAGCTA 

351    CGAGCTTCCC GACGGTCAGG TCATCACCAT CGGAAACGAG CGCTTCCGTT 

401    GCCCAGAGTC CATGTTCCAG CCAGCCTTCC TGGGTATGGA GTCGGCCGGT 

451    ATCCATGAGA CGACCTTCAA CAGCATCATG AAGTGCGATG TCGATATCCG 

501    TAAGGATCTG TACGCCAACA CCGTCATGTC CGGAGGCACG ACCATGTTCC 

551    CAGGTATCGC CGATCGTATG CAGAAAGAGA TCACGAGCAT GGCTCCAAGC 

601    ACGATGAAGA TCAAGATCAT TGCTCCACCT GAGCGCAAAT ACTCCGTATG 

651    GATCGGTGGA TCCATCCTGG CCTCCCTGTC CACCTTCCAG CAGATGTGGA 

701    TCAGCAAG// 
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Appendix C-Recipes 

C.1 SOC Medium  

(to make 100ml) 

Bacto®-tryptone: 2.0g 

Bacto®-yeast extract: 0.5g 

1M NaCl : 1ml  

1M KCl: 0.25ml  

2M Mg2+: 1ml stock, filter-sterilised (as prepared below) 

2M glucose: 1ml, filter-sterilised 

Add Bacto®-tryptone, Bacto®-yeast extract, NaCl and KCl to 97ml distilled water. Stir to dissolve. 

Autoclave and cool to room temperature. Add 2M Mg2+ stock and 2M glucose, each to a final 

concentration of 20mM. Bring to 100ml with sterile, distilled water. Filter the complete medium 

through a 0.2μm filter unit. The final pH should be 7.0. 

2M Mg2+ stock 

20.33g MgCl2 • 6H2O 

24.65g MgSO4 • 7H2O 

Add distilled water to 100ml. Filter sterilise. 

C.2  Luria broth/ampicilin/X-Gal plates  

Add 12.5 g of Luria broth (L3522-Sigma) and 7.5 g of agar (Davis) into 500 ml of distilled water. After 

autoclaving, add ampicilin to final concentration of 100 µg/ml. 5-bromo-4-chloro-3-indolyl-b-D-

galactosidebromo-chloro-indolyl-galactopyranosisde (X-Gal) (20 mg/mL dissolved in N,N’-dimethyl 

formamide) was spread onto surface of each plate just before plating the transformation culture.  
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Appendix D-Data analyses 

D.1 Data from RT-qPCR and associated calculations with statistical analysis  

D.1.1 Treatment with rifampicin 10 mM 

 

cDNA from treated group 

earthworms exposed to rifampicin 10mM for 7 days in soil Normalisation 2e - ΔΔCq

ABCB1 (target) Cq Cq Cq Average  Δ Cq (target-reference) Average Fold change

Pool 1 27.14 27.71 27.43 9.78 10.24 2.63

Pool 2 28.18 27.87 28.03 10.77

Pool 3 28.75 28.19 28.47 10.17

B-actin (reference)

Pool 1

Pool 2 17.66 17.64 17.65

Pool 3 17.36 17.15 17.26

- 18.3 18.30

cDNA from  control (exposed to methanol  for 7 days in soil)

ABCB1 (target) Cq Cq Cq Average Δ Cq (target-reference)

Pool 1 30.6 31.3 30.95 12.08 11.63

Pool 2 29.44 29.85 29.65 11.71

Pool 3 29.19 29.66 29.43 11.72

Pool 4 28.48 28.22 28.35 11.02

B-actin (reference)

Pool 1 18.85 18.89 18.87

Pool 2 18 17.87 17.94

Pool 3 17.69 17.72 17.71

Pool 4 17.44 17.22 17.33

Anova: Single FaCqor

SUMMARY

Groups Count Sum Average Variance Standard deviation

control 4 46.53 11.6325 0.196358333 0.443123384

treated 3 30.715 10.23833333 0.251008333 0.501007319

ANOVA

Source of Variation SS df MS F P-value

Between Groups 3.332058333 1 3.332058333 15.26937853 0.011322241

Within Groups 1.091091667 5 0.218218333

Total 4.42315 6
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D.1.2 Treatment with rifampicin 5 mM 

 

cDNA from treated group 

(exposed to rifampicin 5mM  or 7 days in soil) Normalisation 2e - ΔΔCq

ABCB1 (target) Cq Cq Cq Average  Δ Cq (target-reference) Average Fold change

Pool 1 26.7 27.83 27.27 9.99 9.16 0.59

Pool 2 25.21 25.91 25.56 8.28

Pool 3 26.57 26.36 26.47 9.32

Pool 4 26.28 26.55 26.28 9.06

B-actin (reference)

Pool 1 16.91 17.65 17.28

Pool 2 17.35 17.22 17.29

Pool 3 17.04 17.26 17.15

Pool 4 17.2 17.25 17.23

cDNA from  control (exposed to methanol  for 7 days in soil)

ABCB1 (target) Cq Cq Cq Average Δ Cq (target-reference)

Pool 1 27.67 27.67 8.96 8.39

Pool 2 26.15 26.03 26.09 8.39

Pool 3 25.53 26.1 25.82 8.25

Pool 4 24.9 25.36 25.13 7.99

B-actin (reference)

Pool 1 18.72 18.71 18.72

Pool 2 17.52 17.89 17.71

Pool 3 17.57 17.57

Pool 4 17.09 17.2 17.15

Anova: Single FaCqor

SUMMARY

Groups Count Sum Average Variance Standard deviation

control 4 33.5375 8.384375 0.177184896 0.420933363

treated 4 36.6475 9.161875 0.498505729 0.706049382

ANOVA

Source of Variation SS df MS F P-value

Between Groups 1.2090125 1 1.2090125 3.578597824 0.107395957

Within Groups 2.027071875 6 0.337845312

Total 3.236084375 7
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D.1.3 Treatment with cyclosporin A 50 µM 

 
 

D.1.4 Treatment with Ivermectin™ 2.0 µg/ml 

 
 
 
 
 
 
 
 
 

cDNA from treated group 

 (exposed to cyclosporin A 50µM  for 7 days in soil) Normalisation 2e - ΔΔCq

ABCB1 (target) Cq Cq Cq Average  Δ Cq (target-reference) Average Fold change

Pool 1 24.16 24.68 24.42 8.61 8.46 1.17

Pool 2 24.34 24.85 24.60 8.40

Pool 3 23.45 23.67 23.56 7.95

Pool 4 24.18 25.07 24.63 8.89

B-actin (reference)

Pool 1 15.78 15.85 15.82

Pool 2 16.18 16.22 16.20

Pool 3 15.56 15.67 15.62

Pool 4 15.53 15.95 15.74

cDNA from  control (exposed to ethanol  for 7 days in soil)

ABCB1 (target) Cq Cq Cq Average Δ Cq (target-reference)

Pool 1 24.94 25.18 25.06 8.60 8.69

Pool 2 24.5 24.71 24.61 8.65

Pool 3 23.67 24.06 23.87 8.31

Pool 4 24.62 25.3 24.96 9.19

B-actin (reference)

Pool 1 15.76 17.17 16.47

Pool 2 15.67 16.24 15.96

Pool 3 15.36 15.75 15.56

Pool 4 15.49 16.05 15.77

Anova: Single FaCqor

SUMMARY

Groups Count Sum Average Variance Standard deviation

control 4 34.745 8.68625 0.134989583 0.367409286

treated 4 33.83 8.4575 0.157025 0.396263801

ANOVA

Source of Variation SS df MS F P-value

Between Groups 0.104653125 1 0.104653125 0.716766429 0.429674393

Within Groups 0.87604375 6 0.146007292

Total 0.980696875 7

cDNA from treated group 

exposed to ivermectin diluted to 2.0 µg/ml 7 days in soil) Normalisation 2e - ΔΔCq

ABCB1 (target) Cq Cq Cq Average  Δ Cq (target-reference) Fold change

Pool 1 23.39 23.52 23.455 7.89 2.32

Pool 2 24.22 23.32 23.77 7.80 2.46

B-actin (reference)

Pool 1 15.17 14.82 15.6

Pool 2 15.97 15.21 15.97

cDNA from  control (exposed to water  for 7 days in soil)

ABCB1 (target) Ct Normalisation

Pool 1 24.56 23.66 24.56 9.10

B-actin (reference)

Pool 1 15.46 15.04 15.46
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D.2 Data from biochemical assay and associated calculations with statistical 

analysis  

D.2.1 Treatments: Verapamil 200µM, Ivermectin™ 0.02µg/ml, and Ivermectin™ 

0.2µg/ml 

 
 
 

Normal ized rate 

RB conc/weight

Sample  weight (mg) Average FLR RB conc.mg/l mg/l g
-1

Average STDEV

Neg. Control 144 855 869 862 0.1047 0.727 0.709 0.096

Neg. Control 144 676 694 685 0.0820 0.569

Neg. Control 102 666 666 666 0.0795 0.780

Neg. Control 134 831 850 841 0.1019 0.761

Verapami l  200 µM 132 1010 1030 1020 0.1249 0.946 1.184 0.201

Verapami l  200 µM 128 1455 1481 1468 0.1824 1.425

Verapami l  200 µM 161 1590 1617 1604 0.1998 1.241

Verapami l  200 µM 138 1242 1264 1253 0.1548 1.122

Ivermectin 0.02 mg/l 114 282 290 286 0.0308 0.270 0.635 0.313

Ivermectin 0.02 mg/l 112 929 963 946 0.1154 1.031

Ivermectin 0.02 mg/l 160 858 893 876 0.1064 0.665

Ivermectin 0.02 mg/l 218 1013 1026 1020 0.1249 0.573

Ivermectin 0.2 mg/l 118 1140 1143 1142 0.1405 1.191 0.870 0.330

Ivermectin 0.2 mg/l 139 578 597 588 0.0695 0.500

Ivermectin 0.2 mg/l 317 1743 1759 1751 0.2187 0.690

Ivermectin 0.2 mg/l 141 1243 1270 1257 0.1553 1.101

Std Curve Average FLR

0.937 6039 5930 5985

0.469 3109 1555 2332

0.234 1895 948 1421

0.117 1012 506 759

0.059 504 252 378

0.029 299 150 224

0.015 157 79 118

0 30 15 23

SUMMARY

Groups Count Sum Average Variance

Neg. Control 4 2.836169511 0.709042378 0.00917116

Verapamil 200 µM 4 4.734252026 1.183563007 0.040533141

ANOVA

Source of Variation SS df MS F P-value F crit

Between Groups 0.450339655 1 0.450339655 18.12075203 0.005339732 5.987377584

Within Groups 0.149112902 6 0.02485215

SUMMARY

Groups Count Sum Average Variance

Neg. Control 4 2.836169511 0.709042378 0.00917116

Ivermectin 0.02 mg/l 4 2.538492006 0.634623001 0.098198868

ANOVA

Source of Variation SS df MS F P-value F crit

Between Groups 0.011076487 1 0.011076487 0.206323632 0.665633088 5.987377584

Within Groups 0.322110085 6 0.053685014

SUMMARY

Groups Count Sum Average Variance

Neg. Control 4 2.836169511 0.709042378 0.00917116

Ivermectin 0.2 mg/l 4 3.481632162 0.870408041 0.108656565

ANOVA

Source of Variation SS df MS F P-value F crit

Between Groups 0.052077754 1 0.052077754 0.883964353 0.383410503 5.987377584

Within Groups 0.353483175 6 0.058913862

Fluorescence reading

Fluorescence reading

y = 7795.7x + 46.057
R² = 0.9997

0

500

1000

1500

2000

0.000 0.050 0.100 0.150 0.200 0.250
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D.2.2 Treatments: Verapamil 100 µM, verapamil 250 µM 

  

Norma l ized ra te 

RB conc/weight

Sampl e  wei ght (mg) Avera ge FLR RB conc.mg/l mg/l g
-1

Average STDEV

Neg. control 246 1113 998 972 1028 0.113 0.459 0.558 0.207

Neg. control 159 822 708 737 756 0.076 0.479

Neg. control 100 736 686 698 707 0.070 0.696

Neg. control 141 568 546 574 563 0.050 0.356

Neg. control 174 775 744 772 764 0.077 0.444

Neg. control 141 1051 1329 1045 1142 0.128 0.911

Verapamil 100 µM 100 1211 1226 1274 1237 0.141 1.413 1.146 0.339

Verapamil 100 µM 140 710 755 766 744 0.075 0.533

Verapamil 100 µM 112 1014 997 1048 1020 0.112 0.999

Verapamil 100 µM 154 1547 1641 1624 1604 0.191 1.240

Verapamil 100 µM 134 1647 1638 1581 1622 0.193 1.443

Verapamil 100 µM 122 1325 1352 1274 1317 0.152 1.247

Verapamil 250 µM 221 1636 1732 1800 1723 0.207 0.936 1.198 0.355

Verapamil 250 µM 133 1816 2183 1859 1953 0.238 1.790

Verapamil 250 µM 156 1683 1580 1604 1622 0.193 1.240

Verapamil 250 µM 172 1863 2012 1822 1899 0.231 1.342

Verapamil 250 µM 252 1567 1569 1763 1633 0.195 0.773

Verapamil 250 µM 127 1112 1253 1336 1234 0.141 1.109

Std Curve Average FLR

1.875 15470 13580 13360 14137

0.938 7312 6843 6740 6965

0.469 3726 3697 3497 3640

0.234 2041 1985 2007 2011

0.117 1101 1111 1086 1099

0.059 672 638 677 662

0.029 414 404 432 417

0.015 312 279 285 292

0.000 147 141 129 139

SUMMARY

Groups Count Sum Average Variance
Control 6 3.345 0.5575 0.042699

Verapamil 100 µM 6 6.875 1.145833 0.115183

ANOVA

Source of Variation SS df MS F P-value F crit
Between Groups 1.0384083 1 1.038408 13.15429 0.0046364 4.9646027

Within Groups 0.7894063 10 0.078941

Total 1.8278147 11

SUMMARY

Groups Count Sum Average Variance
Control 6 3.345 0.5575 0.042699

verapamil 250 6 7.19 1.198333 0.126031

ANOVA

Source of Variation SS df MS F P-value F crit
Between Groups 1.2320021 1 1.232002 14.60329 0.0033657 4.9646027

Within Groups 0.8436468 10 0.084365

Total 2.0756489 11

Fluorescence reading

Fluorescence reading

y = 7398.9x + 191.6
R² = 0.9997
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12000
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16000
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D.2.3 Treatments: Cyclosporin A 25 µM and Cyclosporin A 50 µM 

 
 
 
 

Normal ized rate 

RB conc/weight

Sample  weight (mg) Average FLR RB conc.mg/l mg/l g
-1

Average STDEV

Neg. control 246 1117 984 967 1023 0.112 0.456 0.546 0.204

Neg. control 159 825 690 706 740 0.075 0.469

Neg. control 100 722 660 664 682 0.067 0.667

Neg. control 141 557 533 561 550 0.049 0.348

Neg. control 174 752 727 764 748 0.076 0.434

Neg. control 141 1050 1315 1042 1136 0.127 0.904

Cyclosporin 25 µM 185 1176 1200 1219 1198 0.136 0.734 1.122 0.422

Cyclosporin 25 µM 140 1637 1667 1631 1645 0.196 1.397

Cyclosporin 25 µM 142 2067 2091 2134 2097 0.256 1.803

Cyclosporin 25 µM 177 1037 1122 1121 1093 0.122 0.688

Cyclosporin 25 µM 133 1185 1199 1173 1186 0.134 1.008

Cyclosporin 25 µM 143 1364 1413 1313 1363 0.158 1.104

Cyclosporin 50 µM 151 2199 2312 2413 2308 0.284 1.882 1.366 0.473

Cyclosporin 50 µM 153 2218 2655 2300 2391 0.295 1.930

Cyclosporin 50 µM 142 1448 1390 1409 1416 0.165 1.161

Cyclosporin 50 µM 163 1001 1063 962 1009 0.110 0.677

Cyclosporin 50 µM 142 1466 1442 1602 1503 0.177 1.244

Cyclosporin 50 µM 181 1713 1992 2117 1941 0.235 1.299

Std Curve Average FLR

1.875 15669 13701 13469 14280

0.938 7373 6953 6676 7001

0.469 3859 3707 3536 3701

0.234 2039 1984 2021 2015

0.117 1103 1093 1079 1092

0.059 666 631 670 656

0.029 421 390 421 411

0.015 303 275 311 296

0.000 129 123 119 124

SUMMARY

Groups Count Sum Average Variance
Control 6 3.278 0.546333 0.041716

Cyclosporin 25 µM 6 6.734 1.122333 0.178321

ANOVA

Source of Variation SS df MS F P-value F crit
Between Groups 0.995328 1 0.995328 9.046901 0.0131669 4.9646027

Within Groups 1.1001867 10 0.110019

Total 2.0955147 11

SUMMARY

Groups Count Sum Average Variance
Control 6 3.278 0.546333 0.041716

Cyclosporin 50 µM 6 8.193 1.3655 0.224094

ANOVA

Source of Variation SS df MS F P-value F crit
Between Groups 2.0131021 1 2.013102 15.14692 0.0030002 4.9646027

Within Groups 1.3290508 10 0.132905

Total 3.3421529 11

Fluores cence reading

Fluorescence reading

y = 7475.9x + 183.15
R² = 0.9997
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D.2.4 Treatments: rifampicin 100 µM and rifampicin 2 mM 

 
  

Normalized rate 

RB conc/weight

Sample  weight (mg) Average FLR RB conc.mg/l mg/l g
-1

Average STDEV

Control 131 638 662 650 0.071 0.544 0.479 0.089

Control 124 643 653 648 0.071 0.573 
Control 130 462 461 462 0.046 0.353 
Control 160 620 644 632 0.069 0.431 
Control 132 594 613 604 0.065 0.493 
Rifampicin 100 µM 90 409 430 420 0.040 0.448 0.420 0.085

Rifampicin 100 µM 201 623 661 642 0.070 0.349 
Rifampicin 100 µM 183 884 902 893 0.104 0.568 
Rifampicin 100 µM 135 444 460 452 0.045 0.331 
Rifampicin 100 µM 216 747 776 762 0.086 0.400 
Rifampicin 100 µM 70 338 342 340 0.030 0.422 
Rifampicin 2 mM 118 624 655 640 0.070 0.592 0.543 0.221

Rifampicin 2 mM 194 677 703 690 0.077 0.395 
Rifampicin 2 mM 140 679 699 689 0.077 0.547 
Rifampicin 2 mM 140 561 583 572 0.061 0.434 
Rifampicin 2 mM 70 605 624 615 0.067 0.950 
Rifampicin 2 mM 141 467 483 475 0.048 0.339 

Std Curve Average FLR 
0.937 7209 6905 7057 
0.469 3459 3669 3564 
0.234 1950 2011 1981 
0.117 1054 1079 1067 
0.059 578 584 581

0.029 314 323 319

0.015 171 172 172

0 33 32 33

SUMMARY

Groups Count Sum Average Variance

Rhodmne 5 2.393997285 0.478799457 0.007857987 
Rifam 2 6 3.258085064 0.543014177 0.048769528 
ANOVA

Source of Variation SS df MS F P-value

Between Groups 0.011245992 1 0.011245992 0.367676827 0.559255193

Within Groups 0.275279588 9 0.030586621

Total 0.28652558 10

SUMMARY

Groups Count Sum Average Variance

Rhodmne 5 2.393997285 0.478799457 0.007857987 
Rifam 100 6 2.518274109 0.419712351 0.007234128 
ANOVA

Source of Variation SS df MS F P-value

Between Groups 0.009521689 1 0.009521689 1.267631974 0.289337314

Within Groups 0.067602589 9 0.007511399

Total 0.077124278 10

Fluorescence reading

Fluorescence reading 

y = 7426.4x + 120.4
R² = 0.9992
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