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Many researchers have reported differences in soil C and N dynamics between soils of 

different textures and/or soil organic matter contents. However, it has proven difficult to 

determine the exact relationships and mechanisms between C and N dynamics and soil 

texture/SOM. There are few studies that consider how these soil physical and chemical 

conditions influence the effects of drying and rewetting on the mineralisation of C and N 

and the microbial transformations that follow. 
The objectives of this study were: 1) To determine the effects of repeated drying and 

rewetting cycles on C and N dynamics in soils of differing textural class and organic matter 

levels. 2) To use C & N mineralised at constant moisture contents to calculate 

mineralisation during dry/wet cycles for comparison with actual mineralisation.  

Two soil types with contrasting textures were chosen and 6 paddocks on each soil type were 

selected to produce an OM gradient for each soil.  

Three moisture treatments were chosen to simulate moist (field capacity at -0.01 MPa), 

moderately dry (120% of wilting point at -1.5 MPa) and very dry (80% of wilting point at -

1.5 MPa) field conditions. The dry moisture treatments were then combined with a rewet 

treatment where they were either rewet or maintained dry (+ or – rewet), resulting in a total 

of five dry/rewet treatments.  

Soils were packed into funnel tops to a BD of 1.1 g/cm3 and sealed in glass jars fitted with 

septa to allow gas sampling. Drying was achieved using silica gel which allowed continued 

gas measurement during drying periods. Gas samples were collected throughout the 



 

 

experiment and analysed for CO2 by IRGA and N2O by GC. At the start and end of the 

study, soils were analysed for Min N, MBC, MBN, HWC, DOC, POM, total C and total N. 

The correlation between calculated and actual C mineralisation data indicates that the 

intercept is not consistent with the origin and that the slope is not consistent with the 1:1 

line. 

While those paddocks with high %C had high cumulative C mineralisation, there didn’t 

appear to be any strong relationship between soil texture or OM content and the difference 

between actual and calculated C mineralisation. 

A plot of calculated C mineralisation rates against the actual C mineralisation rates shows 

that much of the error in the calculated cumulative data arises from an underestimation of 

the mineralisation flush when the dry soil is rewetted, especially during the first dry-rewet 

cycle, and an over estimation of the rate at which respiration decreases as the soil dries. 

In order to use C mineralisation data from soils held at constant moisture contents to 

accurately predict C mineralisation in soils exposed to dry-rewet cycles, knowledge of the 

stress history for the soil would be required e.g. size, duration and frequency of rainfall 

events, dry rates etc.  

The N2O-N emission data is inherently more variable than the C mineralisation data. The 

fine-textured soils tend to have much higher N2O-N emissions than the coarser soils, 

probably due to the creation of anoxic sites upon rewetting in the fine-textured soils.  

The data indicates that prediction of N2O-N emissions in soils exposed to dry-rewet cycles 

using emission data from soils held at constant moisture contents would be very inaccurate, 

primarily due to the inherent variability of N2O-N emissions in soils. 
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1. Introduction 

In most terrestrial ecosystems the surface soils are exposed regular cycles of drying and 

rewetting. Increased rates of carbon (C) and nitrogen (N) mineralisation following the 

rewetting of a dried soil have been reported in many studies (Birch, 1958; Kieft et al., 1987; 

Orchard and Cook, 1983; Soulides and Allison, 1961) with elevated rates persisting for up 

to two weeks following rewetting (Beare et al, submitted 2008). Understanding how drying 

and wetting affect C and N transformations is important in predicting soil organic matter 

(SOM) dynamics, determining the effects of climate change on greenhouse gas (GHG) 

emissions from soils and estimating plant available nutrients. 

Many researchers have reported differences in soil C and N dynamics between soils of 

different textures and/or soil organic matter contents. However, it has proven difficult to 

determine the exact relationships and mechanisms between short-term C and N dynamics 

and soil texture/SOM. For instance, it has been suggested that differences in C and N 

between fine- and coarse-textured soils may be due to differences in SOM input, rather than 

decomposition dynamics, since fine-textured soils tend to be more fertile than coarse-

textured soils. Soil texture also affects soil water dynamics which in turn impacts on the soil 

microbial community and nutrient cycling, hence observed differences in C and N dynamics 

may be a function of soil water storage due to soil texture, rather than a function of texture 

directly. There are few studies that consider how these soil physical and chemical conditions 

influence the effects of drying and rewetting on the mineralisation of C and N and the 

microbial transformations that follow. 

 

1.1 Objectives 

1) To determine the effects of repeated drying and rewetting cycles on short-term C and N 

dynamics in soils of differing textural class and organic matter level with respect to: 

• C mineralisation 

• nitrous oxide (N2O)emissions 

• net N mineralisation 

2) Use C mineralised or N2O emitted at constant moisture contents to try to calculate 

mineralisation/emissions during dry/rewet cycles. 
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1.2 Hypotheses 

Hypothesis 1: That calculated C mineralisation and N2O emissions will not equal the actual 

C mineralisation and N2O emissions. 

Hypothesis 2: The difference between the calculated and the actual C mineralisation and 

N2O emissions will vary with soil texture & OM content. 

 

2. Review of the literature 

Soils are subject to seasonal variations in temperature and moisture, which can cause 

changes to soil physical and chemical properties. Natural variations in moisture conditions 

can result in drying and wetting cycles, periodically intensified by rain, condensation, 

capillarity, solar radiation and wind, amongst others. Soils under irrigation can also develop 

cyclical moisture variation, as the amount of water available to plants is decreased by plant 

uptake which is, in turn, a function of the irrigation cycle. The intensity of the dry-wet 

cycles will depend on the crop, tillage system, climate and soil type (Oliveira et al., 2005). 

It is well known that wetting a dry soil can cause a flush of C and N mineralisation (Birch, 

1958). This response to rewetting can vary with soil texture, quality and quantity of SOM, 

temperature, frequency of drying and wetting cycles and the amount of water added to rewet 

the soil. Since dry-wet cycles of soil occur naturally due to fluctuating moisture contents, 

they are likely to be important in the cycling of both SOM and plant nutrients (Wu and 

Brookes, 2005). 

Wetting of a dry soil has been found to cause both growth of microbial communities and 

rapid increases in C and N cycling rates. An important effect on microorganisms appears to 

be a shift from a dormant state to one of high metabolic activity, with the response in soil 

respiration several magnitudes higher than the response in microbial biomass. The wetting 

may also release a relatively small ephemeral pool of C that can be depleted by the 

microbial population within a matter of days (Saetre and Stark, 2005). 

Mechanisms of dry-wet cycle effects on SOM mineralisation 

The main mechanisms thought to be involved in the effects of dry-wet cycles on the 

mineralisation of SOM and nutrients are (a) the pulse is largely a result of the mineralisation 

of nonbiomass SOM, rendered accessible to microbial attack by the rewetting event. In this 

theory the drying and rewetting process disrupts soil aggregate structure, releasing organic 

matter from physical protection within aggregates and producing a pulse of microbial 
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activity as this material is mineralised (Appel, 1998; Denef et al., 2001b; Sorensen, 1974; 

Utomo and Dexter, 1982), and (b) that microbial C, not SOM-C, is the major substrate 

mineralised to produce the rewetting CO2 pulse (Bottner, 1985; Kieft et al., 1987). The rapid 

increase in soil water potential associated with the rewetting of a dry soil causes microbes to 

experience osmotic shock. In general, microbes either lyse completely or adjust to the water 

potential shock by releasing intracellular osmoregulatory solutes. The compounds released 

into the soil are taken up by surviving microorganisms and mineralised, producing the 

respiration pulse (Fierer and Schimel, 2003).  

 Previous research has supported one or the other of these mechanisms with some studies 

suggesting that much of the C and N mineralised after drying and rewetting coming from 

killed microbial biomass and other work suggesting that, although the magnitude of the 

increase in extractable organic C was similar to that of the decrease in microbial biomass C, 

only a part of the increased extractable C was so derived (Wu and Brookes, 2005). Some 

studies have combined these two proposed mechanisms, suggesting that both biomass C and 

SOM-C contribute to the rewetting CO2 pulse (Gestel et al., 1991; Scheu and Parkinson, 

1994; Van Gestel et al., 1993; Veen et al., 1985). 

Drying and rewetting may also decrease the turnover time of the biomass and hence 

immobilised nutrients, such as N, P and S, may also have an accelerated turnover rate 

during dry-wet cycles. Wu and Brookes (2005) have suggested that only about 28-40% of 

the increased CO2 evolved by dry-wet cycles came from killed biomass and the majority 

from non-biomass SOM, including microbial metabolites. This suggests that although the 

amount and turnover of microbial biomass may be significantly changed by dry-wet cycles, 

non-biomass SOM is the larger source of C which is mineralised during dry-wet cycles. 

To adapt to low soil water contents, soil microorganisms accumulate compatible organic 

solutes in their cytoplasm. When the soil is rewetted, the microbes must quickly lower their 

internal concentration of these solutes, or risk bursting from excessively high turgor 

pressure. Kieft et al. (1987) estimated that 16-60% of viable microbial biomass may be 

released upon soil rewetting. The energy released may then be consumed by nearby 

microorganisms. In contrast, Appel (1988) found that in some agricultural soils, very little 

of the N mineralised following soil rewetting came from the microbial biomass, and it was 

concluded that drying and rewetting increased the decomposability of non-biomass SOM. 

However, there is still uncertainty regarding the mechanisms responsible for the 

mineralisation pulse observed when a dry soil is rewetted. It has also been speculated that 
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the pulse of CO2 released after a dry-wet cycle is the result of the mineralisation of highly 

enriched cytoplasmic solutes by cells responding to the water potential shock (Fierer and 

Schimel, 2003). The rewetting induced mineralisation of cytoplasmic C, with limited cell 

lysis, may explain why a number of studies have observed an increase in respiration after a 

dry-wet cycles with no significant reduction in microbial biomass (Bloem et al., 1992; 

Fierer and Schimel, 2002; Lundquist et al., 1999a; Magid et al., 1999; Scheu and Parkinson, 

1994). 

However, results of Saetre and Stark (2005) indicate that the labile C pool released by soil 

rewetting is more than just microbial cytoplasm. They concluded that the labile substrate 

pool used initially by microbes was probably largely of microbial origin ( e.g. released 

cytoplasmic material and dead cells), but later in the incubation microbes may have relied 

more heavily on substrates derived from plant material. 

In the future, many areas of the globe may experience greater variability in the timing of 

precipitation events, leading to many soils experiencing more frequent dry-wet events. If 

nonbiomass SOM-C is the main source of the rewetting CO2 pulse, an increase in the 

frequency of soil dry-wet events will increase the amount of SOM-C accessible to microbial 

attack, potentially decreasing the amount of C sequestered in a soil over time. However, if 

microbial biomass is the source of the rewetting pulse, an increase in the frequency of dry-

wet events may increase the level of physiological stress for soil microbes, potentially 

reducing C mineralisation and increasing C sequestration over time (Fierer and Schimel, 

2003). 

Dry-wet cycles also affect soil physical properties such as aggregation. The rewetting of a 

dry soil can result in the rapid intake of free water during which air becomes entrapped and 

compressed in soil pores, causing swelling or inflation of the soil aggregates. This can cause 

macroaggregate disruption (slaking) and could lead to enhanced macroaggregate turnover 

and loss of macroaggregate associated SOM. However the effects of dry-wet cycles on soil 

aggregates is not clear, because water-stable aggregates decrease and increase during dry-

wet cycles (Mikha et al., 2005). Denef et al. (2001a) observed that most aggregates become 

slake resistant after two dry-wet cycles, SOM remained occluded in macroaggregates and 

physically protected from microbial decomposition.  

Studies have shown a decrease in macroaggregates with the rewetting of a dry soil (Degens 

and Sparling, 1995; Denef et al., 2001a; Denef et al., 2001c), while others have shown a 

lack of significant effect of dry-wet cycles on the distribution of aggregate size classes and 
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aggregate-associated C and N (Mikha et al., 2005). Many soil factors affect soil-aggregate 

stability, such as the methods used to dry and rewet the aggregates, soil texture and total C 

content, in particular both clay and SOM can promote the stabilisation of soil aggregates 

(Mikha et al., 2005). Drying of soils can also increase the effectiveness of labile organic 

binding compounds (e.g. polysaccharides) in forming aggregates. Therefore, in soils 

experiencing short-term fluctuations in water content, the influence of labile organic binding 

agents on soil aggregation may be enhanced and extended compared with that in soils with 

little variation in water content (Degens, 1997). It has been proposed that the mechanical 

disruption of soil aggregates by drying and wetting may be as important as chemical and 

biological factors in causing the flush of microbial activity (Mikha et al., 2005). 

By altering the structure of macro- and microaggregates, the dry-wet process can make 

physically protected SOM extractable (Denef et al., 2001c; Utomo and Dexter, 1982). A 

dry-wet cycle can break bonds between soil particles or clay leaves, releasing SOM 

protected within microaggregates (Degens and Sparling, 1995; Denef et al., 2001c). Studies 

have also shown that the SOM-C released by dry-wet events is likely to be stable and highly 

resistant to decomposition (Degens and Sparling, 1995; Lundquist et al., 1999a; Magid et 

al., 1999) as recurrent dry-wet events could successively deplete the quantity and quality of 

labile SOM held within aggregates. Soils rarely exposed to intense dry-wet events could 

release more labile SOM on rewetting than a soil exposed to frequent dry-wet events, 

resulting in a larger pulse of mineralisation from these soils (Fierer and Schimel, 2003). 

Effects of dry-wet cycles on N dynamics 

Wetting of very dry soils usually causes a release of inorganic N, which may be taken up by 

plants (Saetre and Stark, 2005). Numerous studies have demonstrated increased net N 

mineralisation following wetting of a dry soil, yet the mechanisms responsible for this 

phenomenon are not completely resolved (Saetre and Stark, 2005). Microbial activity can be 

re-initiated rapidly (< 1 h) following wetting of a dry soil. Microbial decomposition of 

substrates with low C:N ratios results in the net release of inorganic N, and the process of 

soil drying and wetting seems to increase the availability of these substrates. (Saetre and 

Stark, 2005). 

Increased net N mineralisation may occur due to either an increase in gross N mineralisation 

or a decrease in gross N immobilisation by microbes (Saetre and Stark, 2005). Net N 

mineralisation rates can be rapid in the first days following soil rewetting. Both N 

mineralisation and microbial N immobilisation may be stimulated immediately after soil 
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wetting; however, net N mineralisation is often observed as gross N mineralisation is 

stimulated to a greater degree than N immobilisation (Saetre and Stark, 2005). 

In contrast, Mikha et al. (2005) found the flush of C mineralised after each wetting event 

was accompanied by a reduction in net N mineralisation. This resulted in a significant 

reduction in soil inorganic N in soils exposed to repeated dry-wet cycles compared to soils 

kept continuously moist. They concluded that the microbes were assimilating inorganic N to 

meet microbial demand due to multiplication, growth and maintenance of the living and 

active biomass (Mikha et al., 2005). Franzluebbers et al. (1994) proposed that repeated dry-

wet cycles could cause a reduction in net N mineralisation, either because of chemical 

reactions during the drying period which reduce the amount of available N, reduced size or 

activity of the microbial biomass, or because of a change in microbial species composition, 

such that more N was retained in the microbial biomass. 

The reduction in N mineralisation in soils exposed to repeated dry-wet cycles observed by 

Mikha et al. (2005) does not agree with other studies in which there was an increase in 

mineralisation after rewetting (Bottner, 1985; Cabrera, 1993b; Kieft et al., 1987; Scheu and 

Parkinson, 1994). The disagreement in N mineralisation upon rewetting of a dry soil could 

be related to the contribution of organic residue to the C and N flush after rewetting or in 

methodological differences between studies, especially where soil physical disruption 

and/or changes in temperature accompanied soil drying. Soil physical disruption could 

cause aggregate breakdown and release protected SOM, which contributes to the C and N 

flush on rewetting (Mikha et al., 2005).  

Saetre and Stark (2005) found a generally good qualitative correspondence between the 

patterns of C mineralisation, gross N mineralisation and gross N immobilisation rates, 

indicating that microbial consumption of C substrate and biomass production was the 

primary driver of N fluxes. However, the relationship varied with time and vegetation type, 

suggesting that additional factors besides substrate C:N may also influence N flux rates, 

such as the decomposability of the SOM which in-turn could influence substrate-use 

efficiencies. 

Effects of repeated dry/wet cycles 

Repeated drying and rewetting of soil has been shown to reduce microbial activity, resulting 

in reduced cumulative mineralised C and N. Mikha et al. (2005) and Franzluebbers et al. 

(1994), observed a reduction in cumulative mineralised C and N from soils exposed to 

repeated dry-wet cycles. Results indicated that the increased microbial activity on rewetting 
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was not sufficient to compensate for the reduction in C mineralisation during the drying 

period and as the number of dry-wet cycles increase the differences in cumulative C 

mineralisation between a soil exposed to dry-wet cycles and a soil kept continuously moist 

increases. It has been proposed by Magid et al. (1999) that microorganisms lose some of 

their ability to degrade complex substrates during desiccation. This ability is partially 

regained upon rewetting, but not to the extent maintained by microorganisms under 

continuously moist conditions. In contrast, Fierer and Schimel (2002) found that, over a two 

month incubation, soils that received multiple dry-wet events had average respiration rates 

that were either 10% higher (for a loam soil under oak) or 10% lower (for a clay loam under 

grass) than their respective continuously moist controls. This indicated that the CO2 pulse 

after each wetting event must have been large enough to either almost compensate (in the 

case of the grass soil) or overcompensate (in the case of the oak soil) for the reduced 

respiration rates during the drying periods. 

The stress history plays an important role in the magnitude of the rewetting CO2 pulse from 

subsequent dry-wet events.  The extent of the CO2 pulse upon rewetting is significantly 

reduced with repeated dry-wet cycles. This observation cannot be explained by reductions in 

the size of the microbial biomass pool. Two possible explanations have been proposed: (i) if 

drying-rewetting releases physically protected organic matter, there simply may be less 

organic matter available for release following a series of dry-wet cycles, reducing the CO2 

pulse, or (ii) after several dry-wet events, the microbial community may adjust to the water 

potential shock encountered during rewetting. This adjustment would lessen the mortality 

rate and reduce the size of the flush of labile substrate available for mineralisation by the 

surviving microorganisms (Fierer and Schimel, 2002). 

The reduction in the size of the pulse with repeated cycles could be due to changes in the 

physiological state of the microbial community, making them less susceptible to desiccation 

(Mikha et al., 2005). Studies have reported that microbial communities can adjust to dry-wet 

cycles by withstanding changes in osmotic potential (Gestel et al., 1993; Harris, 1981; 

Lundquist et al., 1999a). Harris (1981) also reported that microorganisms’ ability to 

withstand desiccation depends upon their cell walls and growth type. Slow growing soil 

organisms are less susceptible to drying conditions than fast growing ones (Mikha et al., 

2005). Studies by Mikha et al. (2005) and Franzluebbers et al. (1994) showed that repeated 

dry-wet cycles did not significantly reduce the size of the soil microbial biomass, indicating 

that the size of the microbial biomass was not a limiting factor in C and N mineralisation. 
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Although no change in the microbial biomass was observed in response to repeated dry-wet 

cycles, a change in species composition could still result (Mikha et al., 2005). However, the 

inability to definitively identify the cause of the rewetting pulse makes it difficult to explain 

the relationship between dry-wet stress history and the size of the rewetting pulse (Fierer 

and Schimel, 2002). 

Longer-term effects of dry/wet cycles 

While it is well known that drying-rewetting yields a short-term (days) increase in C and N 

mineralisation rates, less is known about the longer term implications of dry-wet stresses for 

ecosystem C and N dynamics. For instance, after the short-term pulse of C and N, do soil 

processes return to their pre-stress state? If they do then it is relatively unimportant to 

include dry-wet dynamics into soil process models due to their relatively short duration and 

limited magnitude in annual C and N transformations. If however, a dry-wet event causes a 

change in the equilibrium for soil C and N transformations (relative to the unstressed soil), 

or if the recovery to pre-stress basal rates is slow, then incorporating dry-wet events into 

models that adequately predict C and N fluxes becomes more important, and more difficult. 

If the frequency of dry-wet events controls soil processes, then the variability in rainfall in a 

given period, not just average rainfall, would have to be incorporated into models of soil C 

and N dynamics (Fierer and Schimel, 2002). 

The longer-term effects of drying-wetting stress history show greater responses compared to 

the short-term effects. A number of studies (Fierer and Schimel, 2002; Franzluebbers, 1999; 

Magid et al., 1999; Schimel et al., 1999) have found that dry-wet cycles can retard long-

term (> 6 weeks) C mineralisation rates.  A decrease in the supply of remaining 

mineralisable SOM following a period of frequent dry-wet cycles would be the most 

obvious explanation for the reduction in respiration rates. Presumably, after a single dry-wet 

cycle the pool of potentially mineralisable SOM would increase either due to a release of 

physically protected organic matter or a ‘priming effect’ caused by the release of labile 

substrates during biomass turnover. So, with time, a series of dry-wet cycles would serve to 

reduce the total supply of available SOM (Fierer and Schimel, 2002). Another potential 

explanation for the reduction in long-term respiration rates is a change in the composition of 

the microbial community. Not all members of the microbial biomass are equally adept at 

mineralising SOM. The loss of some microbes during drying-wetting or a change in the 

physiologies of the surviving population could reduce the ability of the microbial biomass to 

mineralise SOM, as has been demonstrated by Schimel et al. (1999). 
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Frierer and Schimel (2002) found that when a soil under oak from an area of Mediterranean 

climate (relatively wet winters and very dry, hot summers) was exposed to dry-wet cycles, 

the microbial biomass increased. This effect was not evident in the short-term and only 

became apparent six weeks after the last wetting event, once the soils seemed to have 

approached an equilibrium state. This finding is contrary to a number of other studies which 

have shown a decrease in microbial biomass after exposure to dry-wet cycles (Gestel et al., 

1996; Sorensen, 1983). It has been proposed that microbes found in soils that commonly 

experience extreme fluctuation in moisture content (such as those from a Mediterranean 

climate) may be better adapted to frequent dry-wet cycles, compared to microbes from soils 

that seldom experience such extremes (Frierer and Schimel, 2002). 

The frequency of dry-wet cycles also has ramifications for soil N dynamics. Frierer and 

Schimel’s (2002) results also suggested a substantial increase in the autotrophic nitrifier 

population after the application of frequent dry-wet events. This observed increase was 

surprising given that nitrifiers are generally considered to be highly sensitive to moisture 

stress and that other studies have observed a decrease in nitrification rates with repeated 

dry-wet cycles (Fierer and Schimel, 2002).  

It has been proposed that while nitrifier activity may, in general, be sensitive to periods of 

low moisture, nitrifiers from soils that commonly experience extreme fluctuation in 

moisture content (such as those from a Mediterranean climate) may be able to survive 

drying periods. This low nitrifier mortality during drying coupled with the ability of 

nitrifiers to thrive on the flush of NH4
+ released during rewetting, could lead to an overall 

increase in nitrifier biomass and activity in soils exposed to frequent dry-wet cycles (Fierer 

and Schimel, 2002). 

This increase in nitrifier biomass would be expected to correspond to an increase in 

nitrification rates in these dry-wet stressed soils. However it was found that, six weeks after 

the last dry-wet cycle, soil nitrate concentrations were actually lower in soils with a history 

of multiple dry-wet events. The microbial uptake of nitrate may have exceeded any 

enhanced nitrate production. Even though nitrate is not the preferred form of N for 

microbial uptake, when ammonium concentrations are low, nitrate consumption can be 

substantial (Fierer and Schimel, 2002). Nitrate concentrations may also be lowered in 

frequently dry-wet soils due to pulses of denitrification following rewetting. A number of 

studies have shown a short-term increase in NO and N2O emissions following a dry-wet 

event (Boyer and Groffman, 1996; Davidson et al., 1993; Scholes et al., 1997). 
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Dry/wet cycle effects on microbial community composition 

Although the effects of dry-wet cycles on microbial biomass have been well studied, less is 

known about the effects on microbial community composition or structure. Physiological 

stress, such as that imposed by drying and rewetting, could reduce total microbial diversity 

by favouring a portion of the microbial community best adapted to coping with the given 

stress. Alternatively, microbial diversity may increase due to dry-wet events by enhancing 

the spatial and temporal heterogeneity of the soil environment, promoting species 

coexistence (Fierer et al., 2003). 

Frequent dry-wet cycles may alter the specific composition of microbial communities by 

selecting for microbes that can survive rapid changes in soil water potential. Actively 

growing microbes have been found to be more susceptible to dry-wet stress than slower 

growing microbes, possible due to differences in cell wall characteristics (Bottner, 1985; 

Gestel et al., 1993; Van Gestel et al., 1993). Rapid changes in soil water potential may also 

select for gram-positive bacteria and fungi which have thicker, more rigid cell walls, and 

compatible solutes that enhance osmoregulatory capabilities (Harris, 1981; Schimel et al., 

1999). Alternatively, other studies have suggested that frequent dry-wet cycles may select 

for fast-growing microbes that are able to grow rapidly on the labile substrates released into 

the soil on rewetting (Denef et al., 2001c; Jager and Bruins, 1975; Lundquist et al., 1999a; 

Scheu and Parkinson, 1994). 

Differences in soil abiotic conditions, such as temperature and soil moisture, have been 

shown to influence microbial community structure. The microbial community structure can 

also be a function of organic matter availability, organic matter quality and soil nutrient 

status. Above ground plant communities can also directly contribute to differences in 

microbial community composition (Fierer et al., 2003). Studies have shown that moisture 

regime can influence the structure of the microbial community, but the differences between 

litter and soil types are often greater in magnitude than any moisture effects (Fierer et al., 

2003; Lundquist et al., 1999a). 

Fierer et al. (2003) observed that the soil bacterial community in a soil under oak changed in 

response to dry-wet stress while the soil bacterial community in a soil under grass was 

largely unaffected. The possible explanation for this observation was that the grass soil 

microbial communities were, in their natural state, already selected for by frequent dry-wet 

cycles, compared to the oak soil which had been covered by a thick litter layer and canopy 

shading leading to lower natural soil moisture variability.  Microbial processes (respiration 
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and nitrification) were also more strongly affected by dry-wet stresses in the oak soil than in 

the grass soil. Other studies have reported that exposure to dry-wet cycles is often more 

stressful for microbial communities not preadapted to a high degree of variability in natural 

soil moistures (Gestel et al., 1993; Kieft et al., 1987; Lundquist et al., 1999a; West et al., 

1988). 

Since C is often the primary nutrient limiting microbial biomass growth in soils, it could be 

expected that frequent dry-wet events would select for soil microbial communities that can 

adjust to sudden increases in water potential without rapidly mineralising a large proportion 

of their accumulated cytoplasmic solutes. Work has shown considerable variability in the 

physiological responses of different soil isolates to a rapid increase in water potentials. 

Besides mineralisation, other mechanisms bacteria and fungi can use to remove 

accumulated solutes include: the rapid conversion of the solutes to less osmotically active 

forms inside the cell, or leaving the solutes largely intact and having strong enough cell 

walls to sustain the increased turgor pressure generated upon rewetting (Fierer and Schimel, 

2003; Harris, 1981). Soils that are exposed to frequent dry-wet events may have a microbial 

community that utilises the more efficient mechanism to adjust intracellular water 

potentials, mineralising a smaller proportion of cytoplasmic C on rewetting than soils rarely 

exposed to dry-wet events (Fierer and Schimel, 2003). 

 

3. Materials and Methods 

3.1 Site selection 

Two soil types commonly found on the Canterbury Plains of New Zealand were selected: 

Lismore silt loam (NZ classification: Brown soil, USA classification: Udic Ustochrept), and 

Temuka clay loam (NZ classification: Gley soil, USA classification: Mollic Haplaquept). 

The Crop and Food Research Land Management Index (LMI) database was used to identify 

paddocks on these soil types with differing soil organic matter (SOM) contents. For each 

soil type six paddocks were selected to represent a SOM gradient.  

 

3.2 Sample collection and preparation 

Samples were collected of the soil A horizon from six sites within each paddock, avoiding 

wheel marks, stock camps, fence lines and other such artefacts. At each sampling site a soil 
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sample 15 x 15 cm square and 7.5 cm in depth was collected with a spade and placed in a 

crush resistant container for transport to the laboratory. 

At the laboratory the samples were passed through a 4 mm sieve and large pieces of OM 

and fresh plant material were removed. The samples from the six sites within each paddock 

were combined and mixed to form one sample per paddock, this bulk soil sample was air-

dried 25oC and then stored at room temperature until the beginning of the experiment. 

Soils from each paddock underwent preliminary analysis for a range of soil properties 

(Table 1). The percentage of sand, silt, and clay was determined using the pipette method 

(Gee and Or, 2002), with sand defined as particles > 53 µm, silt between 53 and 2 µm and 

clay as < 2 µm. Total carbon (C) and nitrogen (N) content was measured on a LECO CNS-

2000 analyser, and moisture contents at field capacity (FC) and wilting point (WP) (water 

potentials of -0.01M Pa and -1.5M Pa respectively) were determined using tension tables 

and pressure plate apparatus. 

 

Table 1. Some chemical and physical properties of the soils used. 
Paddock 

ID 

 

Land use 

 

%C 

 

%N 

 

% sand 

 

% silt 

 

% clay 

FC  
(-0.01 
MPa) 

(%ww) 

WP 
(-1.5 
MPa) 

(%ww)
LIS 2 Pasture 4.9 0.44 24 58 15 42.1 14.8 

LIS 3 Pasture 4.7 0.41 19 62 15 32.8 12.0 

LIS 4 Cropping 2.9 0.26 21 62 15 30.7 10.0 

LIS 5 Cropping 2.6 0.24 19 63 15 29.9 10.2 

LIS 6 Cropping 2.2 0.22 21 59 17 27.8 9.8 

LIS 7 Pasture 4.4 0.40 26 56 17 35.8 14.2 

TEM 1 Pasture 6.2 0.61 16 52 27 53.1 22.3 

TEM 2 Cropping 4.1 0.38 10 59 28 39.5 13.8 

TEM 3 Cropping 3.7 0.31 8 69 21 39.3 11.6 

TEM 4 Cropping 3.1 0.27 21 50 26 32.2 14.1 

TEM 5 Cropping 3.2 0.28 20 54 24 34.5 12.0 

TEM 6 Cropping 2.0 0.19 23 57 18 32.3 9.3 
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3.3 Experimental Design 

Three moisture treatments were selected for the experiment; FC, 120% of WP (WP x 1.2) 

and 80% of WP (WP x 0.80). They were chosen to simulate moist, moderately dry and very 

dry field conditions. The dry moisture treatments were then combined with a rewet 

treatment where they were either rewet or maintained dry (+ or – rewet), resulting in a total 

of five dry/rewet treatments (Table 2). 

 

Table 2. Dry/rewet treatments. 
Treatment name Treatment ID Moisture 

Treatment 

Rewet treatment 

Continuously moist WW FC Maintained at FC 

Moderately dry, rewet MDW 120% WP + rewet 

Very dry, rewet VDW 80% WP + rewet 

Moderately dry MD 120% WP - rewet 

Very dry VD 80% WP - rewet 

 

A pre-experiment was carried out using a sub-set of the soils to determine the length of the 

period required to slowly dry the soils down to the target moisture contents using silica gel 

desiccant (chromatography grade, Sigma-Alrich, Cat. #288624). A sample of the silica gel 

desiccant was sealed in an incubation jar containing elevated levels of CO2, the CO2 levels 

were monitored for several days to ensure the gel did not adsorb CO2 which would lead to 

an underestimation of C mineralised during the drying phase. Under these test conditions, 

the silica gel used was found to not adsorb CO2. 

The experiment consisted of three phases; the pre-incubation phase, the treatment phase and 

the post treatment phase. The experiment commenced with all samples at field capacity for a 

14 day pre-incubation phase, this allowed the soils to reach an equilibrium before the 

dry/rewet treatments were imposed. The treatment phase consisted of three 20 day dry/wet 

cycles in which the soil is dried down for 16 days, then rapidly rewet and incubated moist 

for 4 days before the next drying cycle began. Those soils that reached their target moisture 

contents prior to the end of the 16 day drying period (such as the MDW treatments) had the 

silica gel removed and were incubated dry until the start of the rewet period. The MD and 

VD treatments were dried down to their respective moisture contents under the same drying 

conditions as their corresponding dry-rewet treatments, they were then incubated in their dry 
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states for the rest of the treatment phase of the experiment. Following the completion of the 

treatment phase, all the soils were adjusted back to FC and incubated for a further 18 day 

post treatment phase (Fig. 1). 

 

 
 

Figure 1. A schematic diagram representing the dry/wet treatments and rewetting 
cycles. 
 

Four replicates of each soil were prepared for each dry-rewet treatment and an additional 

four replicates of each soil were prepared for removal after the pre-incubation phase for 

destructive sampling and analysis, giving a total of 288 samples. Due to the limitations of 

space and equipment and the time requirements of this number of samples, it was decided 

(after discussion with a Biometrician) to split the experiment into two incubation runs, with 

two reps in each run. 

 

3.4 Experiment set-up 

The air-dried soils were wetted to FC by spreading the soils onto trays and spraying with N-

free nutrient solution (100 mg Ca L-1, 24 mg Mg L-1, 113 mg S L-1, 0.5 mg P L-1, and 4 mg 

K L-1, added as KH2PO4, K2SO4, MgSO4 and CaSO4 (Cabrera, 1993a)) the soils were mixed 

and refrigerated overnight to allow even moisture distribution. The next day the soils were 

mixed again and packed into plastic Buchner funnel tops (55 mm diameter x 30 mm high) to 

a depth of 25 mm and a dry bulk density (BD) of 1.1 g/cm3. The holes in the base of the 
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funnel tops aided soil drying and gaseous exchange, while a glass fibre filter paper placed 

over the holes retained any fine particles. The soil packed funnel tops were weighed and 

sealed in 1L glass preserving jars. These jars had a rubber septa inserted in the lid to allow 

for headspace gas sampling (Fig. 2a). The incubation was carried out at 22oC. 

Drying of the soils will be achieved by adding a pottle containing 40 g of silica gel desiccant 

to the jars. A piece of plastic mesh was placed on top of the pottle to support the soil sample 

and ensure the silica gel did not come into direct contact with the soil. This arrangement 

allowed for continuous gas measurement while the soils are drying (Fig. 2b & 2c). Moisture 

loss was by monitored by weighing the soil samples periodically over the drying period, the 

silica gel was replaced at the same time. 

 

        

 

 

 

 

 

 

 

a)       b) 

  c) 

Figure 2. The incubation set-up used when the soils were a) moist or b) being slowly 
dried down; c) a photograph of the actual set-up. 
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Rapid rewetting was performed by dripping deionised (DI) water onto the soil surface via a 

syringe barrel fitted with a 23 gauge needle. The surface of the soil sample was protected 

from impact damage by the water droplets using a glass fibre filter paper placed on top of 

the soil prior to rewetting commencing, and by suspending the needle tip only 2-3 cm from 

the soil surface (Fig. 3). A final moisture adjustment was made after removing the filter 

paper by weighing the soil sample and adding any additional water using a transfer pipette. 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
Figure 3. The set-up used for rapid rewetting of the dry soils. 
 

3.5 Gas sampling and analysis 

Gas samples were collected by inserting a needle through the septum in the jar lid and 

withdrawing a sample using a 20 ml gas tight syringe (Fig. 4). The headspace was mixed 

before sampling by pumping the syringe four times. After collection of the gas samples, the 

jars were opened and placed in front of a fan for a period of approximately 30 seconds to 

allow them to return to ambient conditions, before being sealed and returned to the 

incubator.  

Glass fibre 

filter paper 

Needle 

Syringe 

barrel
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Figure 4. Collection of gas samples (infrared gas analyser in the background). 
 

The gas samples were analysed for CO2 and N2O. Samples for CO2 analysis were injected 

directly into a LI-COR Li-7000 infrared gas analyser (IRGA) at the time of sampling (Fig. 

4). Samples for N2O analysis were injected into evacuated 6ml vials and analysed in batches 

on a Shimadzu GC-17A gas chromatograph fitted with FID and ECD detectors. 

Gas samples for CO2 analysis were collected periodically throughout the pre-incubation and 

post treatment phases of the experiment as required. During the treatment phase of the 

experiment, samples were taken on days 2, 5, 8, 11, 14, 16, 17, 18 and 20 of each of the 

three dry-rewet cycles shown in Figure 1.  

Gas samples for N2O analysis were also collected periodically throughout the pre-incubation 

and post treatment phases of the experiment, although not as frequently as for CO2 analysis. 

During the treatment phase of the experiment, samples were taken on days 2, 5, 11, 17, 18 

and 20 of each of the three dry-rewet cycles shown in Figure 1.  

 

3.6 Soil Analyses 

At the end of the pre-incubation stage soil samples were removed from their jars, passed 

through a 4 mm sieve and analysed for: 

- Mineral (inorganic) nitrogen (Min N) 

- Microbial biomass carbon and nitrogen (MBC & MBN) 

- Hot water extractable carbon (HWC) 

- Dissolved organic carbon (DOC) 

- Particulate organic matter (POM) 
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- Total C and N 

- Gravimetric moisture content (MC) 

This data served as a baseline. 

 

Immediately after all the soils were returned to FC at the end of the treatment phase, a small 

sub-sample was removed from each of the incubated soils using a 10 mm diameter cork 

borer. These sub-samples were crumbled and analysed for: 

- Min N 

- HWC 

- DOC 

These measures were performed to see if there were changes in these parameters over the 

post treatment phase of the incubation. This is sampling time two. 

 

At the end of the incubation all soil samples were removed from the incubation jars, passed 

through a 4 mm sieve and analysed for: 

- Min N 

- MBC & MBN 

- HWC 

- DOC 

- POM 

- Total C and N 

- MC 

This is sampling time three. 

 

Mineral N concentrations were determined by 1 hour extraction with 2 M KCl and 

subsequent analysis of the filtered extract for NH4-N and NO3-N on a FIAstar 5000 

analyser (Keeney and Nelson, 1982).  

Microbial biomass C and N were determined using the chloroform fumigation technique 

(Vance et al., 1987). The total organic carbon (TOC) in the extracts was measured directly 

on a Shimadzu TOC-V CSH analyser, while the total N was determined using the 

persulphate oxidation method (Cabrera and Beare, 1993) and measured on FIAstar 5000 

analyser. 
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Hot water extractable C was determined using the procedure described by Ghani et al. 

(2003). Total organic C was measured in both cold water and hot water extracts on a 

Shimadzu TOC-V CSH analyser. The fraction of soil organic carbon in the cold water 

extracts was classified as dissolved organic C (DOC), while the fraction in the hot water 

extracts was classified as hot water extractable C (HWC). 

Two size fractions of particulate organic matter (POM) were measured; 1000-250 and 250-

53 µm diameter. Briefly, 20g of moist soil was dispersed in sodium hexametaphosphate 

(Calgon) solution by shaking overnight. The soil suspension was then washed through a 

stack of sieves with screen sizes of 1000, 250 and 53 µm. The material retained on the 250 

and 53 µm sieves was dried at 60oC overnight, weighed, ground and analysed for total C 

and N on a LECO CNS-2000 analyser. 

Soil total C and N content was measured on a LECO CNS-2000 analyser, and gravimetric 

moisture content was determined by weight loss following drying at 105oC overnight. 

 

4. Water Filled Pore Space 

The target gravimetric moisture contents used in the trial were converted to water filled pore 

space (WFPS). Those paddocks with high % clay and/or high %C have higher WFPS at 

field capacity (FC), particularly Tem 1 which has 100% of pore space filled at FC. Any 

differences in WFPS between the paddocks are not as evident under drier conditions, except 

again for Tem 1 which retains markedly higher WFPS than the other paddocks (Table 3). 

 Table 3. Water filled pore space (%) (WFPS) 
Paddock 

FC 
1.2 x WP 

(MD) 
0.8 x WP 

(VD) 
LIS 2 79 33 22 
LIS 3 62 27 18 
LIS 4 58 23 15 
LIS 5 56 23 15 
LIS 6 52 22 15 
LIS 7 67 32 21 
TEM 1 100 50 33 
TEM 2 74 31 21 
TEM 3 74 26 17 
TEM 4 61 32 21 
TEM 5 65 27 18 
TEM 6 61 21 14 
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5. Statistical Analysis – Chemical Analyses 

The data was analysed using a mixed model for each response variable.  Some variables 

appeared to be strongly heteroscedastic.  Although it appears that the paddocks from which 

the soil was sampled were quite variable in their composition, a weighted analysis did not 

solve the problem.  A log transformation of that data was then used to stabilise the variances 

where necessary. Results are presented on the log scale in these situations for ease of 

interpretation.  All analyses were carried out using the REML (Restricted Maximum 

Likelihood) algorithm in GenStat v.10 (VSN International) 

It was hypothesised that the organic matter content (represented by %C) and texture 

(represented by %Clay) in the soil may affect the behaviour exhibited in response to the 

wet-rewet cycles with which it was treated. In most cases one or both of these variables was 

instrumental. However, in some situations there was strong evidence that although these 

linear continuous variables did aid in explaining some of the variability in the data; it was 

not sufficient.  This was shown by the significant Lack of Fit of the model when the 

saturated (or most complete) model was fitted. The saturated model is that in which 

Paddock is fitted as a predictive factor even though it is not replicated.  This indicates that 

other factors (e.g. landuse, management history, or vegetation type) may contribute to the 

variability in the data. Where necessary the saturated model was used to obtain estimates of 

means and standard errors. 

The most appropriate model for each variable was fitted, and in figures showing the means 

some measure of the precision of these estimates were created to describe the behaviours 

indicated by this model.  Models with categorical factors are presented with Least 

Significant Differences (LSD), and models with continuous predictors are presented with 

Confidence Limits (CL). 

 

6. Results – Chemical Analyses 

The form of the model and statistical importance of each term in the model is given in Table 

4 & 5.  Overall results suggest that Paddock, or %C and/or %Clay, strongly affected the 

response of the soil. This can be seen in the graphs (e.g. 5 & 6) where different paddocks are 

not only higher or lower than others (even at baseline), but also the response to the dry-

rewet cycles is quite different.  In variates where data was collected only at baseline and at 
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the termination of the trial, a discussion of differences between “Treatments” is taken to 

include the baseline as a separate treatment. 

Table 4. The statistical significance of each term of the mixed model in explaining the 
variation in each of the chemical analysis where %C or %Clay affects the response of 
the soil. 
Term %C %Clay %Clay

.%C 
T*Trt %C*T

*Trt 
%Clay
*T*Trt 

%C* 
%Clay*Trt

HWC <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 
Total C <0.001 <0.001 0.57 <0.001 0.037 <0.001 - 
Total N <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 - 
MBC  <0.001 0.010 <0.001 0.052 <0.001 - 
Log (C in 
POM 53µm) 

 <0.001 0.047 0.002 - <0.001 - 

Log (N in 
POM 53µm) 

 <0.001 0.211 <0.001 - 0.002 - 

Log (C in 
POM 250µm) 

 <0.001 <0.001 <0.001 <0.001 0.060 - 

Log (N in 
POM 250µm) 

 <0.001 0.007 <0.001 0.005 <0.001 - 

Log (C in total 
POM ) 

 <0.001 0.003 0.001 <0.001 <0.001 - 

Log (N in total 
POM) 

 <0.001 0.102 <0.001 <0.001 0.004 - 

T = sampling time, Trt = dry/rewet treatment. 
POM 53µm = Particulate OM of the size fraction 53 – 250 um, POM 250 µm = Particulate 
OM of the size fraction 250 – 1000 µm, and total POM is the sum of the fractions. 
 

Table 5. The statistical significance of each term of the mixed model in explaining the 
variation in each of the chemical analysis where paddock affects the response of the 
soil. 
Term Paddock*Time Paddock*Trt T*Trt Padddock*T*Trt 

Min N <0.001 <0.001 0.066 0.093 

Log (DOC) <0.001 <0.001 0.009 0.132 

MBN - <0.001 - - 

 

6.1 Mineral Nitrogen 

Mineral N was measured at the end of the pre-incubation phase (baseline), at the end of the 

treatment phase (Time 2) and at the end of the incubation (Time 3). This was done in order 

to compare changes over time with respect to the response to the dry-rewet treatments and 

after the treatments were removed. There was strong evidence of a difference between 

paddocks, and that this difference was not consistent with either sampling time or dry-rewet 

treatment (p<0.001 for each) (Fig. 5 & 6).  Figure 5 indicates that mineral N concentration is 
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larger at times 2 and 3 when compared to the baseline; particularly for paddocks Lis 2, 3, 7 

and Tem 1. Most soils also show an increase in mineral N concentration from Time 2 to 

Time 3. 

 

 

 

Figure 5. Effect of sampling time and paddock on concentrations of mineral N 
determined for Lismore and Temuka soils (bar represents average 5% LSD with 
t=2). 
 

Figure 6 shows a complex story that indicates that the different levels of %C and %Clay in 

the soils interact to influence the effect of dry-rewet treatments on mineral N.  The baseline 

measurements are consistently lower than the Time 3 measurements, but are higher for 

Paddocks Lis 2 and 3 than for other paddocks. WW treatments usually results in the highest 

concentration of mineral N, and the VD treatment is often the lowest, although still higher 

than baseline.  However, paddock Tem 1 is quite unusual in its response to the treatments in 

that the VDW and MD treatments resulted in the highest mineral N concentrations with 

WW and MWD being very low. 

Graphs for individual paddocks showing mineral N concentrations at each sampling time 

and for all of the treatments can found in the Appendix (Fig. A1 and A2)
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Figure 6. Effect of treatment and paddock on concentrations of mineral N in Lismore and Temuka soils at the end of 
the incubation. 
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6.2 Dissolved Organic Carbon 

DOC required a log transformation to standardise variances. There was strong evidence of a 

difference between Paddocks, and that this difference was not consistent with either Time 

or Treat (p<0.001 for each) (Fig. 7, 9).  There is also some evidence (p=0.009) that the 

effect of Time is not the same for each Treatment (Fig. 8).   

Measurements taken at Time 2 are usually slightly higher than either the Baseline or Time 3 

measurements.  There are large, and significant, differences in measurements taken from 

different paddocks, with Lis 4, 5 & 6 (low %C, low %Clay) having low log (DOC); and 

Tem 1 (high %C, high %Clay) having higher log (DOC).  The other paddocks appear very 

similar, indicating that perhaps the effects of %C and %Clay are additive (i.e. these 

paddocks have a combination of medium %C, %Clay; high %C, low %Clay; and vice 

versa) (Fig. 7).  

 

 

 
Figure 7. Effect of sampling time and paddock on log (dissolved organic C) 
determined for Lismore and Temuka soils (bar represents average 5% LSD with 
t=2). 
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over time is greater for the MD and VD treatments than for the other three dry-rewet 

treatments (Fig. 8).  Graphs for individual paddocks showing untransformed DOC results at 

each sampling time and for all treatments can found in the Appendix (Fig. A3 and A4). 

 

 

 
Figure 8. Effect of sampling time and treatment on log (dissolved organic carbon) 
determined for all the soils (bar represents average 5% LSD with t=2). 
 

Untransformed DOC data for each paddock at time 3 again indicate the strong difference in 

response for the paddocks, and the lesser effect of treatment within each paddock.  In the 

Lismore paddocks the dry treatments (MD & VD) result in the higher levels of DOC, and 

the WW treatment results in lower levels. This pattern is not so consistent for the Temuka 

paddocks, where the VD treatment still often results in higher DOC levels, but WW is not 

always lowest (Fig. 9).   
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Figure 9. Effect of treatment and paddock on concentrations of dissolved organic carbon in Lismore and Temuka 
soils at the end of the incubation. 
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6.3 Hot Water Extractable Carbon 

There is evidence (p<0.001) that there is a treatment and time effect; and that this effect is 

not consistent with %C and %Clay. For Lismore paddocks there is little difference between 

HWC at Baseline and Time 2, but Time 3 HWC is slightly lower. Temuka paddocks show a 

different pattern with HWC at Baseline and Time 3 very similar and Time 2 slightly higher, 

however, these differences between sampling times are small (Fig. 10). Graphs for 

individual paddocks showing HWC results at each sampling time and for all treatments can 

found in the Appendix (Fig. A5 and A6). 

At the end of the trial all of the treatments in the Lismore paddocks showed a decrease in 

HWC from baseline, in contrast most of the Temuka paddocks showed an increase in HWC 

relative to Baseline for at least one of the treatments. Across all the paddocks the dry 

treatments (MD & VD) often had the highest HWC (Fig. 11) but again the differences are 

quite small. 
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Figure 10. Effect of sampling time and paddock on concentrations of hot water 
extractable carbon in Lismore and Temuka soils. 
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Figure 11. Effect of treatment and paddock on concentrations of hot water extractable carbon in Lismore and Temuka 
soils at the end of the incubation. 
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To better understand the impact each continuous variable (%C and %Clay) has, in 

conjunction with the categorical variables (treatment), the model estimates (from the REML 

variance components analysis) are presented in Figure 12 a, b & c.  Predictions and mean 

estimates of HWC from the model are based on these parameter estimates. 

Percent clay has relatively small effect on HWC. For each increase in %Clay, the estimated 

HWC increases by ~0.4 (ug C/g soil) depending on which treatment is under assessment. 

However this differs between sampling times and for MD and MDW at Time 2, the 

estimated HWC decreases by ~0.2 (ug C/g soil).  Apart from this, there is not much 

difference in the effect of %Clay at times 2 or 3 (Fig. 12a). 

Percent C has a much larger affect and the model indicates that for each increase in %C, the 

estimated HWC increases by 140-170 (ug C/g soil) depending partially on treatment, but 

mostly on Time (Time 3 has lower estimates than time 2) (Fig. 12b). 

The model also indicates that the relationship between %C, %Clay and the categorical 

factors is not linear (positive values in Fig. 12c).  
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Figure 12 a, b & c. estimates of the terms in the model describing the relationship 
between concentration of hot water extractable C and %C, %clay, treatment and 
time for all soils. 
 

6.4 Microbial Biomass Carbon and Nitrogen 

MBC 

There is strong evidence that there is a strong treatment effect; and that this effect is not 

consistent with %C (p<0.001). Overall the predicted MBC concentration (from the REML 

analysis) increases with increasing levels of %C across all the dry-rewet treatments for all 

the soils (Fig. 13). However, there is also some evidence that %C and %Clay interact in 

their effect on MBC (Fig. 15).  Further, at higher levels of %C, MBC increases with 
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increasing %Clay, however at the lowest levels of %C, MBC decreases with increasing 

%Clay (Fig. 15). 

By the end of the incubation MBC concentrations for all treatments decreased from 

Baseline, with the lowest concentrations in the WW treatment and the highest 

concentrations in the dry treatments (MD & VD) in almost all of the paddocks (Fig. 14).     
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Figure 13. Predicted MBC concentrations for increasing percentages of clay for each 
treatment (red lines represent 95% CL for the baseline measurements). 
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Figure 14. The effect of paddock and treatment on concentrations of microbial biomass carbon in Lismore and 
Temuka soils at the end of the incubation. 
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Figure 15. Predicted MBC concentrations for increasing percentages of clay and 
carbon (red lines represent upper and/or lower 95%CL). 

 

MBN 

There is strong evidence (p<0.001) that there is a difference in response for each paddock; 

and that this is not consistent for each treatment (Fig. 16).  Again there are large differences 

in MBN response for each paddock, with paddock Tem 1 being particularly high.  There is 

evidence that MBN of all treatments drops after baseline for the Lismore paddocks, tending 

to remain highest in the dry treatments (MD & VD).  There does not appear to be any 

consistent pattern for the Temuka paddocks although some treatments show an increase in 

MBN from baseline, particularly WW. 

Ratio of MBC to MBN 

The ratio of MBC:MBN was very similar for all paddocks at Baseline. There is strong 

evidence of a treatment effect at the end of the trial. In the majority of the paddocks many 

of the dry-rewet treatments showed a decrease in MBC:MBN from baseline, with WW 

having the lowest ratio and the dry treatments (MD & VD) tending to have the highest, 

paddocks Lis 2 & 3 do not follow this pattern (Fig. 17).
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Figure 16. The effect of paddock and treatment on concentrations of microbial biomass nitrogen determined of 
Lismore and Temuka soils. 
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Figure 17. The effect of paddock and treatment on the ratio of concentration of microbial biomass carbon to 
microbial biomass nitrogen determined for Lismore and Temuka soils. 
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6.5 Total Carbon and Nitrogen 

Total C 

There is some evidence of a treatment effect on the concentration total C measured at the 

end of the trial, but the changes are small and not consistent with %Clay (p<0.001) or %C 

(p=0.037). In general there is a decrease in total C from baseline, this decrease tends to be 

greatest in the WW treatment and smallest in the dry treatments (MD & VD). This trend is 

more consistent in the Lismore than the Temuka soils (Fig. 18). 

 

Total N 

There is evidence of a treatment effect on the total N measured at the end of the trial, and 

that this effect is not consistent with %Clay or %C (p<0.001, respectively). There is also 

evidence that the dry treatments (MD & VD) have higher total N than the other dry-rewet 

treatments (Fig. 19), but as with Total C the changes are small. 

 

 

6.6 Particulate Organic Matter 

POM 53µm Carbon and Nitrogen 

The patterns of response for C and N in the 53µm POM fraction are similar. In the 

paddocks with high C content (Lis 2, 3, 7 & Tem 1) there is evidence of a response to the 

dry-rewet treatments for both C and N, however this response is not consistent. The 

Temuka paddocks tend to show an increase in C and N from Baseline, particularly in the 

MDW, VWD and VD treatments, this pattern is not evident in the Lismore paddocks where 

the VD treatment shows a marked decrease from Baseline in Lis 2, 3 & 7 (Fig. 20 & 21).   
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Figure 18. The effects of paddock and treatment on the amount of total carbon in Lismore and Temuka soils. 
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Figure 19. The effects of paddock and treatment on the amount of total nitrogen in Lismore and Temuka soils. 
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Figure 20. The effects of paddock and treatment on the carbon content of the 53µm fraction of particulate organic 
matter in Lismore and Temuka soils. 
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Figure 21. The effects of paddock and treatment on the nitrogen content of the 53µm fraction of particulate organic 
matter in Lismore and Temuka soils. 
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POM 250 µm Carbon and Nitrogen 

Like the 53µm POM fraction, the patterns of response for C and N in the 250µm POM 

fraction are similar and the paddocks with high C content (Lis 2, 3, 7 & Tem 1) show a 

decrease from baseline in both C and N concentrations across the dry-rewet treatments, but 

the pattern of  response is not consistent.  

In the Lismore paddocks the treatments tend to show a decline from Baseline. In the 

Temuka paddocks, with the exception of Tem 1, the treatments show a slight tendency to 

increase from Baseline. As with the 53µm POM fraction, the Temuka paddocks tend to 

show the greatest increase in C and N from Baseline in the MDW, VWD and VD 

treatments. (Fig. 22 & 23). 



51 

 

Lis
 2

Lis
 3

Lis
 4

Lis
 5

Lis
 6

Lis
 7

Te
m 1

Te
m 2

Te
m 3

Te
m 4

Te
m 5

Te
m 6

PO
M

 2
50

um
 C

 (u
g 

C
/g

 s
oi

l)

0

500

1000

1500

2000

2500

3000

3500

4000

Base 
WW
MDW
VDW 
MD 
VD

 
Figure 22. The effects of paddock and treatment on the carbon content of the 250µm fraction of particulate 
organic matter in Lismore and Temuka soils. 
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Figure 23. The effects of paddock and treatment on the nitrogen content of the 250µm fraction of particulate 
organic matter in Lismore and Temuka soils. 
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7. Data Calculation & Statistical Analysis - Carbon Mineralisation & 

Nitrous oxide emissions 

Calculated Data 

The moisture contents and average repiration/emmission rates (average of rates over 

treatment phase (days 32 to 70) of the incubation) of the constant moisture content 

treatments (WW, MD & VD) were used to produce calculated rates and cummulative 

mineralisation/ emmission data. The moisture contents of the MDW and VDW treatments 

were recorded whenever gas measurements were made during the treatment phase of the 

incubation. These moisture contents were converted into a proportion of the constant 

moisture contents, e.g. if the constant moisture content for WW is 42.1%  and MDW soil is 

at 28.9%, then, as a proportion of the constant soil moisture, it is at 0.68. This proportion 

was in turn used to calculate the respiration/emmision rate by multipling the constant 

treatment rate by the proportion figure, e.g. if the WW rate is 0.21 and the moisture 

proportion is 0.68, then the calculated rate is 0.14.  

Calculated respiration/emmission rate data was produced to correspond to every actual 

measured data point over the entire treatment phase of the incubation. To produce the 

calculated cummulative data, the calculated respiration/emmission rates were multiplied by 

the number of hours in the interval between measurements and then summed. 

 

Statistical Method 

In order to investigate the relationship between the calculated and observed cumulative C 

mineralisation and N2O-N emmission data for the samples that underwent a series of drying 

and rewetting cycles (VDW and MDW treatments)  there were three approaches used: 

• The first was simply a graphical exploration the data to get a better understanding of 

the correlation between the observed and calculated cumulative mineralisation rates. 

• The second was an ANOVA with treatment and the “method of obtaining the data” 

(i.e. actual or calculated) as predictive factors.  This would indicate whether there is a 

significant difference in values, and where the means for the two groups lie in 

relation to one another.    

• The third was to use a series of F-tests to better understand how well the calculated 

data fits the the observed in a regression framework, testing the intercept and the 

slope both separately and together. 
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The rates of C mineralisation and N2O-N emission at the end of the trial and cumulative 

values of C mineralised and N2O emitted was analysed using ANOVA in GenStat v. 10.  

For these data sets there was evidence that the assumption of heteroscedasticity was not 

met, so a log transformation was used and results presented on the log scale. 

 

8. Results - Carbon Mineralisation & Nitrous oxide emissions 

8.1 Actual versus calculated data 

Carbon mineralisation 

Graphical exploration of the data indicates that one paddock (Tem 1) has very high values 

in both the predicted and the observed variates (Fig. 24).  It also indicates that the 

variability of data increases with increasing mean; indicating that either a log 

transformation or removal of the outlying paddock will be required.  There does not appear 

to be any reason to remove this paddock apart from the fact that it will be very influential. 
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Figure 24. The actual  cumulative C mineralisation data versus the calculated 
cumulative C mineralisation data for Lismore and Temuka soils. 
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Analysis of the log transformed data indicates that the actual values were higher than the 

calculated values, and that this difference was statistically significant.  There was also 

evidence of a difference between MDW and VDW for the calculated values, but not the 

observed values (Fig. 25). 

Investigating the nature of the correlation between the calculated and observed C 

mineralisation data, the model indicates that not only is the intercept not consistent with the 

origin (p<0.0001) but that there is evidence that the slope is not consistent with the 1:1 line 

(p<0.001).  The actual estimates for the intercept and slope for the model y=a+bx are 

a=52.9; b=1.07 (still quite close to 1). The fitted model can be seen in Fig. 26, the R-sq for 

this model is 96.6%. 

 
 

 
Figure 25. The effects of the method of obtaining the data and treatment on log 
(cummulative C mineralisation) (bar represents the standard error of the differences 
(SED) between means). 
 

Trt

  

MDW

6.00 

s.e.d. 

6.05 

6.10 

5.90 

5.95 

VDW 

Calc 
Act 



56 

 

 
Figure 26. Fitted model for the relationship between the actual and calculated 
cumulative C mineralisation data for the Lismore and Temuka soils, where y=a+bx. 
 

Looking at individual paddocks, with the exception of Lis 3, the calculated data is lower 

than the actual data and the percentage difference between the calculated and actual data is 

greater for the VDW treatment than the MDW treatment, with a range of -7 to -28% for 

MDW and -10 to -36% for VDW respectively (Table 6). 

While those paddocks with high %C had high cumulative C mineralisation (especially Tem 

1), but there doesn’t appear to be any evidence of a strong relationship between %Clay or 

%C and the percent difference between actual and calculated cumulative C mineralisation 

(Table 6 & Fig. 27). 

 

 

 

 

 

 

 

Fitted and observed relationship 

1500 

1000 

2000 

250 2000 1750 15001250

500 

1000750500 
C_Calculated 

C
_A

ct
ua

l 



57 

 

Table 6. The calculated and actual amounts of C mineralised for each 
paddock and the percentage difference between the two values (n=4). 
 MDW   VDW   
Paddock Calculated 

(mg C/kg) 
Actual 

(mg C/kg)
% diff. Calculated

(mg C/kg) 
Actual 

(mg C/kg) 
% diff. 

Lis 2 774 888 -13 746 847 -12 
Lis 3 594 557 7 549 537 2 
Lis 4 308 394 -22 286 400 -29 
Lis 5 230 296 -22 211 309 -32 
Lis 6 166 229 -27 156 234 -33 
Lis 7 545 609 -10 536 598 -10 
Tem 1 1762 1896 -7 1643 1961 -16 
Tem 2 351 448 -22 328 461 -29 
Tem 3 378 408 -7 359 430 -17 
Tem 4 260 318 -18 233 289 -20 
Tem 5 260 361 -28 244 335 -27 
Tem 6 206 284 -27 189 296 -36 
 

Plotting the calculated C mineralisation rates against the actual C mineralisation rates 

shows that much of the error in the calculated cumulative data arises from an 

underestimation of the mineralisation flush that occurs when the dry soil is rewetted, 

especially during the first dry-rewet cycle, and an over estimation of the rate at which 

respiration decreases as the soil dries, especially during the initial drying phase. There is 

evidence that the fit becomes improves for the second dry-rewet cycle, but there may be an 

overestimation the mineralisation flush by the third cycle (Fig. 28). Figure 28 shows the 

average actual and calculated C mineralisation rates across all the paddocks, plots for 

individual paddocks can be found in the Appendix (Fig. A7 & A8). 
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Figure 27. The actual and calculated amounts of C mineralised over the treatment phase in the MDW and VDW 
treatments for each paddock. 
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Figure 28. The actual and calculated C mineralisation rates over the duration of the treatment phase of the 
study (rates are means across all paddocks). 



60 

 

Nitrous oxide-nitrogen emission 

Graphical exploration indicates that the N2O-N emission data is inherently more variable 

than the C mineralisation data, and paddock Tem 1 still lies as a set of clearly influential 

points. It also indicates that the relationship between the observed and calculated data is not 

particularly linear (Fig. 29). 

Investigation of the residuals indicated that a log transformation of the data was required. 

The analysis indicated that the calculated means were lower than the observed means 

(p<0.001).  Further, there was evidence that MDW had lower N2O-N emission than VDW 

in the observed data, but not the calculated data (p=0.084) (Fig. 30). 

The results of the analysis investigating the nature of the correlation between the calculated 

and observed N2O-N emission data indicates that the slope is not consistent with the 1:1 

line (p<0.0001), however there is no evidence that the intercept departs from the origin 

(p=0.1372). There does not seem to be an indication that the slope should be fitted as a non-

linear curve. The actual estimate for slope for model y=bx is b=9.385 (i.e. the calculated 

data is nearly 10-fold lower than the actual data). The R-sq for this model is 74%, far lower 

than for the C model (Fig. 31). 
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Figure 29. The actual cumulative N2O-N emission data versus the calculated 
cumulative N2O-N emission data for Lismore and Temuka soils. 
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Figure 30. The effects of the method of obtaining the data and treatment on log 
(cummulative N2O-N emissions) (bar represents the SED between means). 
 

 
Figure 31. Fitted model for the relationship between actual and calculated 
cumulative N2O-N emissions for Lismore and Temuka soils, where y=bx. 
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Looking at individual paddocks, with the exception of Lis 2, the calculated data is higher 

than the actual data for the MDW treatments in the Lismore paddocks. In contrast the actual 

data is higher than the calculated data in the Temuka paddocks for both treatments. The 

amount of N2O-N emitted is greater for the VDW treatment than the MDW treatment in all 

paddocks, but the percentage difference between the calculated and actual data is not 

always greater for the VDW treatment than the MDW (Table 7 & Fig. 32). 

 

Table 7. The calculated and actual N2O-N emissions for each paddock and 
the percentage difference between the two values. 
 MDW   VDW   
Soil Calculated 

(ug N/kg) 
Actual 

(ug N/kg)
% diff. Calculated 

(ug N/kg) 
Actual 

(ug N/kg) 
% diff. 

Lis 2 1553 5053 -69 1406 9721 -86 
Lis 3 463 230 101 416 262 59 
Lis 4 72 70 3 67 63 6 
Lis 5 61 27 126 60 718 -92 
Lis 6 44 28 56 43 54 -21 
Lis 7 158 101 55 168 299 -44 
Tem 1 6980 90568 -92 6490 54444 -88 
Tem 2 265 3025 -91 251 4001 -94 
Tem 3 1092 2321 -53 1012 3618 -72 
Tem 4 244 341 -29 295 365 -19 
Tem 5 1689 8642 -80 1677 9940 -83 
Tem 6 186 120 55 167 462 -64 
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Figure 32. Actual and calculated cumulative N2O-N emissions in the MDW and 
VDW treatments of each paddock, a) paddocks with emissions >1000 ug N/kg soil, b) 
paddocks with emissions <1000 ug N/kg soil. 
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8.2 Rates of C mineralisation and N2O-N emission 

The rate data at the end of the trial showed there was evidence that the assumption of 

heteroscedasticity was not met, so a log transformation was used. There is strong evidence 

(p<0.001 respectively) of a difference in the rate data of the treatments for both C and N at 

the end of the trial. Overall, the VD treatment had the highest rate, MD and WW 

intermediate and MDW and VDW the lowest, with this pattern consistent for both C and N 

although the differences are not always statistically significant for the N data (Fig. 33a & 

b). Graphs of untransformed rates for individual paddocks can be found on the Appendix 

(Fig. A9 & A10). 
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Figure 33. Effect of treatment on a) log (C mineralisation rate) and b) log (N2O-N 
emission rate) at the end of the study (bar represents 5% LSD with 188 df). 

 

8.3 Cumulative C mineralisation and N2O-N emission 

The cumulative amount of C mineralised or N2O-N emitted by the end of the treatment 

phase of the incubation was compared to the cumulative total at the end of the trial. Again 

there was evidence of departure from homoscedasticity so the data was investigated using a 

log transformation.  

During this period of the trial (the post treatment phase) all the treatments were returned to 

field capacity and incubated in a moist state. The cumulative amounts for both C and N 

continued to increase over this period but the process was not the same for all treatments. 

For example, the amount of material mineralised/emitted overall is lower for MD and VD 

than for the other treatments, but a far higher proportion of the mineralisation/emissions 

that did occur happened in the post treatment phase of the trial.  Conversely more Carbon 

was mineralised for WW than any other treatment; but most of this happened in the first 70 

days of the trial (Fig. 34 a & b). 

 



66 

 

a) Treatment

MD MDW VD VDW WW LSD

lo
g(

C
um

ul
at

iv
e 

M
in

er
al

is
ed

 C
ar

bo
n)

5.0

5.2

5.4

5.6

5.8

6.0

6.2

6.4

6.6

6.8
Day 70
Day 88

 

b)  

Figure 34. Effect of treatment and time on a) log (cumulative mineralised carbon), 
b) log (cumulative N2O-N emitted) (bar represent 5% LSD). 
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If the cumulative mineralisation/emissions at the end of the treatment phase are calculated 

as a percentage of the total mineralisation/emissions at the end of the trial, it can be seen 

that for C these percentages are very similar for all treatments across all the paddocks 

despite vastly differing amounts of C being mineralised (e.g. Tem 1 WW ~3500 mg C/kg 

soil, Lis 6 WW ~350 mg C/kg soil). For the WW treatment, 80% of the cumulative total is 

mineralised by the end of the treatment phase, the MDW and VDW treatments are much the 

same with cumulative mineralisation at around 75% of the total, MD drops to 60% and VD 

to only 50% (Table 8). 

 

The percentage of cumulative N2O-N emitted for each treatment is much more variable 

across the paddocks. On average the percentages are similar for WW, MDW and VDW at 

81, 84 and 87% respectively; MD drops to 46% and VD to 29% (Table 9). 

 

Table 9. Cumulative N2O-N emitted at the end of the treatment phase as a 
percentage of the total N2O-N emitted at the end of the trial. 

 Lis 
2 

Lis 
3 

Lis 
4 

Lis 
5 

Lis 
6 

Lis 
7 

Tem 
1 

Tem 
2 

Tem 
3 

Tem 
4 

Tem 
5 

Tem 
6 

Ave 

 % % % % % % % % % % % % % 
WW 98 63 76 90 79 89 57 95 62 86 90 89 81 

MDW 87 64 79 81 87 86 98 88 98 94 85 67 84 
VDW 93 66 60 99 88 93 94 89 99 80 91 96 87 
MD 37 57 71 75 70 7 74 11 31 54 19 51 46 
VD 24 30 48 12 64 27 51 10 25 24 11 24 29 

 

Graphs of cumulative C mineralisation and N2O-N emissions for individual paddocks can 

be found on the Appendix (Fig. A11, A12, A13 & A14). 

 

Table 8. Cumulative carbon mineralised at the end of the treatment phase as a 
percentage of the total carbon mineralised at the end of the trial. 
 Lis 

2 
Lis 
3 

Lis 
4 

Lis 
5 

Lis 
6 

Lis 
7 

Tem 
1 

Tem 
2 

Tem 
3 

Tem 
4 

Tem 
5 

Tem 
6 

 % % % % % % % % % % % % 
WW 83 83 82 82 82 83 82 81 78 81 78 82 
MDW 77 74 75 77 76 76 79 72 75 74 75 77 
VDW 76 74 74 75 75 75 80 72 75 72 74 77 
MD 65 63 60 60 61 65 73 59 63 63 61 61 
VD 58 51 51 50 52 54 62 52 55 50 54 51 
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Discussion 

Soil water filled pore space 

Aeration is required for C and N mineralisation and factors that influence the diffusion of 

oxygen through the soil, such as moisture and soil structure, will also alter rates of 

mineralisation. The optimum moisture level varies between different soils, but 

mineralisation generally proceeds readily at -0.1 to -1 MPa moisture tension, because 

neither diffusion of substrates nor the diffusion of gases is restricted. Fine-textured soils 

have smaller pore spaces and so anoxic sites occur at lower moisture contents than in 

coarser textured soils (Bollmann and Conrad, 1998; Paul and Clark, 1989). 

A number of studies using a wide range of soils show that the percentage of soil pore space 

filled with water is well correlated with aerobic and anaerobic microbial activity and 

associated processes of respiration, mineralisation and denitrification (Doran et al., 1990; 

Franzluebbers, 1999). In general, aerobic microbial activity increases in a linear manner 

with increased water content between 30 and 60% WFPS and tends to decline above 60 to 

70% WFPS (Doran et al., 1990). 

Cumulative C mineralisation is at a maximum at WFPS between 53 and 66% and clay 

content has been found to have no effect on the level of WFPS to achieve maximum C 

mineralisation (Franzluebbers, 1999). When the moisture treatments used in this study are 

converted to WFPS it can be seen that at field capacity the majority of the paddocks fall 

within the range for maximum C mineralisation. The exceptions to this are those paddocks 

that have high SOM contents, particularly Lis 2, and Tem 1, 2 and 3, which have WFPS 

above optimum probably due to the ability of SOM to attract and hold water. The C 

mineralisation in these paddocks does not appear to be adversely affected by these higher 

levels of WFPS at FC. In particular, in the case of Tem 1 where WFPS is 100% at FC, it 

may be expected that the moderately dry treatment, with a WFPS of 50%, would have a 

higher cumulative C mineralisation than at FC, but this is not the case. This may be due to 

the large amounts of C available for mineralisation and the ability of some soils to maintain 

up to 93% of maximum C mineralisation even at WFPS of 90% (Franzluebbers, 1999). 

Unlike C mineralisation, net N mineralisation decreases sharply when the optimum WFPS 

level is exceeded to approach zero at values near 80 to 90%. At high WFPS levels, the 

dramatic decrease in NO3-N is likely to be due to denitrification which occurs at WFPS 

>70% (Doran et al., 1990; Franzluebbers, 1999). 
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The optimum WFPS for maximum net N mineralisation has been found to be lower than 

that for maximum C mineralisation, ranging from 34 to 60% (Doran et al., 1990; 

Franzluebbers, 1999). Of the coarser textured Lismore soils, only paddock Lis 2 shows a 

reduced net N mineralisation at FC (WFPS 79%) as indicated by a lower mineral N in the 

WW treatment compared to the MDW treatment. There is also clear evidence in the 

Lismore paddocks of greater net N mineralisation with higher levels of SOM. In 

comparison, in the finer textured Temuka soils, paddocks with a WFPS ≥65% show 

reduced net N mineralisation at FC, and in some cases also in the MDW treatment. Because 

of the effects of WFPS on net N mineralisation in the Temuka paddocks any effect of SOM 

levels is masked. 

Reduced net N mineralisation is accompanied by high cumulative N2O emissions due to 

anaerobic microbial denitrification. Denitrification has been shown to be absent below 63% 

WFPS and to increase exponentially at WFPS exceeding 70 to 75% (Doran et al., 1990). 

N2O emissions were highest in those paddocks with a combination of fine texture (i.e. high 

clay content), adequate supply of available C (i.e. high SOM content),  high levels of initial 

mineral N and WFPS >63% at FC.  

Those treatments in which the soils were subjected to a series of slow drying and rapid 

rewetting cycles (MDW and VDW treatments) resulted in the greatest amounts of N2O 

being emitted over the course of the study, particularly in the fine-textured Temuka soils. 

This is likely to be due to the formation of anoxic sites due to rapid rewetting, a sudden 

flush of available substrates upon rewetting and a corresponding rapid increase in microbial 

activity. 

Soil microbial biomass carbon (MBC) has been found to respond almost linearly to 

increasing WFPS, with an optimum level ranging from 65 to 100%, with no evidence of 

reduced MBC near saturation as observed for cumulative C and N mineralisation 

(Franzluebbers, 1999). The WFPS levels at FC used in this study fall well within this 

optimum range. 

Microbial Biomass 

Overall, the soils in this study show increasing MBC with corresponding increases in SOM. 

This is in agreement with other studies that have found MBC and total C were strongly and 

positively correlated (Cleveland et al., 2004). Soil organic matter and clay content of the 

soils appear to have an interesting interaction in their effect on MBC. Where SOM content 

is high, MBC increases with increasing clay content, this could be due to a combination of 
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factors including adequate SOM for microbial growth, small pore spaces in fine-textured 

soils ensuring biomass and SOM are in close proximity and protection of the biomass in 

micro-pores. However, where SOM content is low, MBC decreases with increasing clay 

content. Again there are a number of factors that are likely to have contributed to this 

observation; limited SOM limiting microbial growth, isolation of the biomass from the 

SOM due to the fine pore structure and the protection of SOM from microbial attack by its 

inclusion within clay micro-aggregates.  

All of the dry-rewet treatments resulted in a decrease in MBC from baseline levels. The 

soils that were kept continuously moist showed the greatest reduction in MBC, probably 

due the depletion of C substrates after 88 days incubation with no inputs, resulting in a 

biomass that is in a maintenance phase rather than actively growing. Compared to the 

continuously moist treatments, MBC increased with increasing intensity and duration of 

drying resulting in the highest MBC levels in those soils maintained under very dry 

conditions and this was consistent across both the coarse and fine-textured soils.  

Microbial biomass was assessed after completion of the dry-rewet cycles at the end of the 

treatment phase after all the soils had been returned to FC and incubated for a further 18 

days. The fact that those soils that were maintained under dry conditions throughout the 

treatment phase had the highest MBC at the end of the study indicates that more substrates 

were available for microbial growth at the end of the treatment phase of the study due to; 

reduced microbial activity during the treatment phase of the study because of water stress, 

and a flush of substrates becoming available when the dry soils were rewetted.  

The clear pattern of treatment effects seen in the soil MBC levels was not reflected in the 

MBN levels, this resulted in changes to the ratio of MBC to MBN (MBC:MBN) in the 

soils. The pattern of treatment effects on MBC:MBN ratio is similar to that for MBC in 

most of the soils, with the dry-rewet treatments resulting in a decrease in MBC:MBN ratio 

from baseline levels, the soils that were kept continuously moist having the greatest 

reduction and highest MBC:MBN ratio in those soils maintained under very dry conditions.  

An average MBC:MBN ratio for a wide variety of soils has been found to be 8.6 and to 

range from 3 to 24, so MBC:MBN ratios found in this study can be considered “normal” 

(Cleveland et al., 2004). The observed changes in MBC:MBN ratio due to the dry-rewet 

treatments may have been brought about through a number of mechanisms: 

a) The soil microbial biomass consists of a diverse community of organisms with 

differing C:N ratios e.g. bacteria have an average C:N ratio of 6.5 compared to fungi 
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with a ratio of 5 to 17 (Cleveland et al., 2004). Microbial community structure and 

composition can alter in response to a series of dry-wet cycles. The changes in 

community composition could result in a change in C:N ratio of the microbial 

biomass (Fierer and Schimel, 2002); 

b) Since microbes need to maintain the same water potential inside the cell as that 

outside. Different microorganisms will accumulate different compounds in their 

cytoplasm to regulate cellular water potential and these compounds can have differing 

C:N ratios (Killman et al., 1990); 

c) In those soils kept continuously moist, the depletion of C substrates through 

microbial mineralisation may lead to C limited conditions and consequently a 

reduction of the C:N ratio in the microbial biomass;  

d) Wetting of a dry soil has been found to cause both growth of microbial 

communities and rapid increases in C and N cycling rates (Saetre and Stark, 2005). 

Those microorganisms in a dormant state, such as those in the continuously moist 

soils, may differ in their C:N ratio compared to those microorganisms that are actively 

growing, such as those exposed to drying and rewetting. 

It is not possible to determine which, if any, of these proposed mechanisms is responsible 

for the changes in MBC:MBN ratio observed in this study. 

Labile Carbon Pools 

There are considerably larger amounts of C in the hot water extractable C (HWC) than in 

MBC due to the fact that the HWC method would have extracted not only the MBC, but 

also root exudates, soluble carbohydrates and amino acids. The C bound to soil enzymes 

would also be extracted because most soil enzymes would have been denatured at 80oC. 

Most of these components of SOM are considered labile in nature (Ghani et al., 2003).  

Hot water soluble carbon has been proposed as a surrogate measure to estimate MBC as a 

strong correlation has been found between HWC and MBC (Ghani et al., 2003). However, 

this is not the case for the data in this study. Our HWC data is more strongly correlated with 

total C than MBC (R2 = 0.87 vs. 0.75). Hot water soluble carbon also does not show the 

same pattern of response to the dry-rewet treatments which is clearly evident in the MBC 

data, although there is still some evidence of lower levels of HWC in the continuously 

moist treatment and higher levels in the dry treatments. This suggests that the non-microbial 

SOM material that is extracted as HWC is less sensitive than MBC to the effects of drying 

and rewetting. Since MBC comprises only one half to a quarter of the total C extracted as 
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HWC, the response of the MBC component of HWC to the dry-rewet treatments may well 

be lost due to the lack of response of the non-MBC component.   

Over the course of the study there was also little change in HWC with time. Within the 

paddocks there are only small changes in HWC between baseline, at the end of the 

treatment phase and at the end of the study, again suggesting that non-microbial SOM is 

less sensitive than MBC to the effects of drying and rewetting or that the material is not as 

labile as has been proposed. 

Dissolved organic C (DOC) is considered to be part of the highly labile pool of SOM and so 

may be sensitive to perturbation and stress in the soil-plant system (Doran and Parkin, 

1994). DOC has been proposed as an indicator of the C available to soil microorganisms, 

however the factors controlling its concentration and bioavailability are not well understood 

(Lundquist et al., 1999b). DOC comprises a relatively small fraction of the total SOM and 

depending on how it is measured, DOC can represent between 0.05 – 1.7% of total SOM 

(Gregorich et al., 2003; Matlou and Haynes, 2006; Zsolnay, 2001).  

The results of this study show an apparent additive effect of SOM content and texture on 

levels of DOC extracted from the soils. Perhaps unsurprisingly, soils with high SOM 

contents have correspondingly higher DOC levels. What is interesting is that the 

combination of high SOM content and fine soil texture results in higher levels of DOC than 

a similar SOM content in a coarser textured soil. This is evidenced in the results where the 

Temuka paddocks have higher DOC levels than the Lismore paddocks even where they 

have lower SOM levels. This observation may be due to interaction of the organic 

molecules with clay minerals giving protection against chemical and possibly biological 

attack, leading to higher DOC levels being retained in the soil (Kaiser and Guggenberger, 

2003; Kaiser and Guggenberger, 2007).  

Rewetting of the soils at the end of the treatment phase of the study resulted in a sharp 

increase in DOC levels relative to baseline in those soils that had been maintained in a dry 

state during the treatment phase. In contrast, those soils that had been subjected to a series 

of dry-rewet cycles during the treatment phase showed little change in DOC levelsat the 

end of the treatment phase, relative to baseline. While it is not possible to identify 

definitively the source of peak in DOC levels following rewetting of dry soil, the main 

mechanisms thought to be involved are; disruption of the soil aggregate structure, releasing 

SOM from physical protection within aggregates (Appel, 1998; Denef et al., 2001b; 

Sorensen, 1974; Utomo and Dexter, 1982), and/or the rapid increase in soil water potential 
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associated with rewetting a dry soil causes soil microorganisms to experience osmotic 

shock, resulting either complete lysis of microbial cells or the release of intercellular 

osmoregulatory solutes (Fierer and Schimel, 2003). The lack of response in DOC levels to 

rewetting in those soils exposed to a series of dry-rewet cycles may be due to the decrease 

in the amount of physically protected SOM available for release with each subsequent dry-

rewet cycle, and/or the microbial community may adjust to the water potential shock 

lessening the mortality rate (Fierer and Schimel, 2002).  

Eighteen days after the end of the treatment phase when all soils were adjusted to FC, DOC 

levels had decreased in all treatments, but most markedly in the dry treatments that had 

shown a peak in DOC levels after being adjusted to FC. This suggests that the DOC 

released following rewetting was highly labile and was rapidly utilised by the soil microbial 

community and is supported by the corresponding flush of C mineralisation and higher 

levels of MBC found in the dry treatments. 

Total C and N and Particulate Organic Matter 

The dry-rewet treatments had little consistent effect on the levels of total C or N in the soils 

used in this study. Although the treatments did have an effect on other soil C and N pools 

such as MBC, DOC, Min N and MBN, these pools only make a small fraction of the total C 

and N present in the soil and there was little change in the overall levels of C and N. This 

demonstrates that soil total C and N respond much more slowly to changes in the soil-plant 

system or to short-term stressors, compared to more rapidly cycling pools such as MBC and 

MBN. 

Like total C and N, there was no consistent effect of the dry-rewet treatments on the POM 

C or N across the soils studied. The largest changes to POM C and N are seen in those 

paddocks under pasture (Lis 2, 3, 7 and Tem 1), particularly showing decreases in C and N 

in the POM fraction between 250 – 1000 µm, but there is still no consistent response to the 

treatments even in these paddocks. POM between 250 – 1000 µm is largely intact plant 

material. It may be that the OM inputs from the vegetation present in the pasture paddocks 

is much more labile than that in the cropping paddocks, such that it is easily degraded even 

when the soils are water stressed. So, changes in POM C and N may have more to do with 

the source of the OM than the effects of any dry-rewet treatments imposed. 

Carbon Mineralisation 
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Where the soils underwent a series of dry-rewet cycles, the size of the peak in C respiration 

following rewetting became progressively smaller with each subsequent rewetting cycle. 

Several earlier studies have also found that stress history plays an important role in the 

magnitude of the rewetting CO2 pulse from subsequent dry-wet events, such that the extent 

of the CO2 pulse upon rewetting is significantly reduced with repeated dry-wet cycles. This 

observation cannot be explained by reductions in the size of the microbial biomass pool. 

Two possible explanations are proposed: 

(i) if drying-rewetting releases physically protected organic matter, there simply may 

be less organic matter available for release following a series of dry-wet cycles, 

reducing the CO2 pulse; 

(ii) after several dry-wet events, the microbial community may adjust to the water 

potential shock encountered during rewetting. This adjustment would lessen the 

mortality rate and reduce the size of the flush of labile substrate available for 

mineralisation by the surviving microorganisms.  

However, the inability to definitively identify the cause of the rewetting pulse makes it 

difficult to explain the relationship between dry-wet stress history and the size of the 

rewetting pulse (Fierer and Schimel, 2002). 

The change in the magnitude of the rewetting pulse with repeated dry-rewet cycles meant 

that the use of C mineralisation rates from the treatments under constant moisture 

conditions to estimate mineralisation under dry-rewet cycles, tended to underestimate the 

cumulative C mineralised over the course of the treatment phase when compared to the 

actual mineralisation data. This underestimation in cumulative C mineralisation was largely 

due to; an underestimation of the mineralisation flush when the dry soil is rewetted, 

especially during the first dry-rewet cycle, and an over estimation of the rate at which 

respiration decreases as the soil dries, especially during the initial drying phase. There is 

evidence that the fit of the estimated data improves for the second dry-rewet cycle, but there 

may be an overestimation the mineralisation peak by the third cycle. The magnitude of the 

difference between estimated and actual C mineralisation was not influenced by the SOM 

content or texture of the soils in this study.  

A number of studies (Fierer and Schimel, 2002; Franzluebbers et al., 1994; Magid et al., 

1999; Schimel et al., 1999) have found that dry-wet cycles can retard long-term C 

mineralisation rates. This study had similar finding, with the soils that underwent a series of 

dry-rewet cycles having the lowest C mineralisation rates 18 days after the final rewetting. 
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The highest rate was in those soils kept in a very dry state for a prolonged period before 

being returned to FC, while those soils maintained at FC capacity for the duration of the 

study had rates intermediate to the two.  

A decrease in the supply of remaining mineralisable SOM following a period of frequent 

dry-wet cycles would be the most obvious explanation for the reduction in respiration rates. 

Presumably, after a single dry-wet cycle the pool of potentially mineralisable SOM would 

increase either due to a release of physically protected organic matter or a ‘priming effect’ 

caused by the release of labile substrates during biomass turnover. So, with time, a series of 

dry-wet cycles would serve to reduce the total supply of available SOM (Fierer and 

Schimel, 2002). Another potential explanation for the reduction in long-term respiration 

rates is a change in the composition of the microbial community. Not all members of the 

microbial biomass are equally adept at mineralising SOM. The loss of some microbes 

during drying-wetting or a change in the physiologies of the surviving population could 

reduce the ability of the microbial biomass to mineralise SOM (Schimel et al., 1999). 

The pulse in C mineralisation that occurred when the dry soils were rewetted was not 

sufficient to compensate for the reduction in mineralisation during the drying period; this 

finding is consistent with other studies where, as the number of dry-wet cycles increased, 

the difference in cumulative C mineralisation between soils exposed to dry-wet cycles and 

soils kept continuously moist increased (Franzluebbers et al., 1994; Mikha et al., 2005).   

It is interesting to note that at the cumulative C mineralised end of the treatment phase of 

the study as a proportion of the total cumulative C mineralised at the end of the study, is 

consistent across the soils for each of the treatments, despite the absolute amounts of C 

mineralised varying considerably. This suggests that, although soils may differ in SOM 

content and texture and consequently have differing rates of C mineralisation, when 

subjected to the same drying and rewetting conditions the effect on C mineralisation is 

proportionally the same. 

N2O emissions 

The N2O emission data is inherently more variable than that for C mineralisation. This is 

likely to be due to combined effects of soil texture and WFPS, as discussed earlier. As a 

consequence, the use of N2O emission rates from the treatments under constant moisture 

conditions, to estimate emissions under dry-rewet cycles, resulted in large discrepancies in 

the cumulative N2O emitted over the course of the treatment phase in comparison to the 

actual emissions data. In the coarser textured soils N2O emissions are relatively low and the 
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estimated emissions tend to be higher than the actual emissions. In comparison, the fine 

textured soils generally have higher N2O emissions and the estimated emissions are lower 

than the actual emissions.  

At the end of the study, 18 days after the final rewetting event, the pattern of N2O emission 

rates for the treatments was similar to that for C mineralisation, with the soils that 

underwent a series of dry-rewet cycles having the lowest N2O emission rate, and the highest 

rate in those soils kept in a very dry state for a prolonged period before being returned to 

FC. Since N2O emissions are microbially mediated and dependant on adequate supplies of 

available C, the reasons for this pattern of treatment response are probably similar to that 

for C mineralisation, being; a decrease in the supply of remaining mineralisable SOM 

following a period of frequent dry-wet cycles, and/or a change in the composition of the 

microbial community. 

 

Conclusion 

Of the C and N parameters measured, there was clear evidence of C and N pools that were 

dynamic, and responded quickly to the changes in soils conditions, and those that were less 

so. Mineral N, MBC, MBN and DOC all showed a clear response to the dry-rewet 

treatments and that these responses were influenced by soil texture and SOM content, 

indicating that these C and N pools are labile and rapidly turned-over. In contrast, total C 

and N, HWC and POM showed little response to the dry-rewet treatments, indicating that 

these pools are more recalcitrant and show less of an impact of short-term fluctuations in 

soil conditions. 

In the case of cumulative C mineralisation, the overall correlation of calculated data to 

actual data appeared quite good, but the calculated data constantly underestimated 

cumulative C mineralised. When C mineralisation rate data is examined, there was a clear 

lack of fit of the calculated to the actual data over a series of dry-rewet cycles. The lack of 

fit of the calculated data was due to an underestimation of the mineralisation flush when the 

dry soil is rewetted, and an overestimation of the rate at which respiration decreases as the 

soil dries.  

Despite the soils used in this study having a range of different C mineralisation rates and 

amounts of cumulative C mineralised, there was no evidence of an effect of soil texture or 

SOM content on the difference between calculated and actual C mineralisation. 
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The results of this study suggest that estimates of C mineralisation for soils exposed to dry-

rewet cycles using data from soils held at constant moisture contents is possible, but 

knowledge of the stress history for the soil would be required to improve accuracy e.g. size, 

duration and frequency of rainfall events, drying rates etc. 

Calculated cumulative N2O emissions varied greatly from the actual measured emissions, in 

some cases by a whole order of magnitude. Unlike C mineralisation, there was some 

evidence of a texture effect on the difference between calculated and actual N2O emissions, 

with an overestimation of emission in the coarse textured soils (where emissions were low), 

and an underestimation in the fine textured soils (where emissions were high). This study 

indicates that prediction of N2O-N emissions in soils exposed to dry-rewet cycles using 

emission data from soils held at constant moisture contents would be very inaccurate, 

primarily due to the inherent variability of N2O-N emissions in soils. 

Overall, the results of this study support the first hypothesis that calculated C mineralised/ 

N2O emitted would not equal the actual C mineralised/ N2O emitted. However, the second 

hypothesis, that the difference between calculated and actual C mineralised/ N2O emitted 

would vary with soil texture and organic matter content, was not so well supported. In the 

differences between calculated and actual data, C mineralisation showed no evidence of any 

texture or SOM effect, but N2O emissions did show some evidence of a texture effect which 

was probably also linked to WFPS since fine-textured soils have smaller pore spaces and so 

anoxic sites occur at lower moisture contents than in coarser textured soils. 

As this was a laboratory study, the findings need to be verified under field conditions. 

Future work should also focus on other soil factors commonly encountered in field 

situations which may influence the response to dry-rewet cycles such as compaction, urine 

addition, vegetation type and landuse, for example. Depending on the duration of any future 

studies, emphasis should be placed on measuring those C and N pools that have shown the 

more dynamic responses to changes in soil conditions. 
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Figure A1. The effect of sampling time and treatment on the concentration of mineral 
nitrogen in the individual Lismore paddocks. 
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Figure A2.  The effect of sampling time and treatment on the concentration of mineral 
nitrogen in the individual Temuka paddocks.  
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Figure A3.  The effect of sampling time and treatment on the concentration of dissolved 
organic carbon in the individual Lismore paddocks. 
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Figure A4. The effect of sampling time and treatment on the concentration of 
dissolved organic carbon in the individual Temuka paddocks. 
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Figure A5. The effect of sampling time and treatment on the concentration of hot 
water extractable carbon in the individual Lismore paddocks. 
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Figure A6. The effect of sampling time and treatment on the concentration of hot 
water extractable carbon in the individual Temuka paddocks. 
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Figure A7. Actual versus calculated C mineralisation rates over the dry-rewet phase 
of the study for the MDW and VDW treatments in the Lismore paddocks. 
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Figure A8. Actual versus calculated C mineralisation rates over the dry-rewet phase 
of the study for the MDW and VDW treatments in the Temuka paddocks. 
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Figure A9. The effect of paddock and treatment on the rate of carbon mineralisation at the end of the 
study. 
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Figure A10. The effect of paddock and treatment on the rate of N2O-N emission at the end of the study. 



94 

 

LIS 2

WW MDW VDW MD VD

C
um

ul
at

iv
e 

C
 m

in
er

al
is

ed
 (m

g 
C

/k
g 

so
il)

0

200

400

600

800

1000

1200

1400

1600

Post dry-rewet
End

LIS 3

WW MDW VDW MD VD
0

200

400

600

800

1000

1200

1400

1600

LIS 5

WW MDW VDW MD VD
0

100

200

300

400

500

600

700

800

LIS 7

WW MDW VDW MD VD
0

200

400

600

800

1000

1200

1400

1600

LIS 4

WW MDW VDW MD VD
0

100

200

300

400

500

600

700

800

LIS 6

WW MDW VDW MD VD
0

100

200

300

400

500

600

700

800

 

Figure A11. The effect of treatment and time on cumulative C mineralised in the 
Lismore paddocks. 



95 

 

 

TEM 1

WW MDW VDW MD VD

C
um

ul
at

iv
e 

C
 m

in
er

al
is

ed
 (m

g 
C

/k
g 

so
il)

0

1000

2000

3000

4000

Post dry-rewet
End

TEM 2

WW MDW VDW MD VD
0

100

200

300

400

500

600

700

800

TEM 4

WW MDW VDW MD VD
0

100

200

300

400

500

600

700

800

TEM 6

WW MDW VDW MD VD
0

100

200

300

400

500

600

700

800

TEM 3

WW MDW VDW MD VD
0

100

200

300

400

500

600

700

800

TEM 5

WW MDW VDW MD VD
0

100

200

300

400

500

600

700

800

 

Figure A12. The effect of treatment and time on cumulative C mineralised in the 
Temuka paddocks. 
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Figure A13. The effect of treatment and time on cumulative N2O-N emitted in the 
Lismore paddocks. 
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Figure A14. The effect of treatment and time on cumulative N2O-N emitted in the 
Temuka paddocks. 
 


