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Presenter
Presentation Notes
Thank you, to Tim Davie and the Hydrological Society for the opportunity to present this address.

This presentation is about mathematical models, but with a particular bias.

The title refers to working the blue gold – and the models are called mathematical tools.

So, this is about mathematical models applied to solving problems in the management of water, in terms of both quantity and quality.

This is a personal journey, so I am being allowed to indulge in examples from my own career during the past 40 years.
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Presentation Notes
I am an engineer, so I have a particular view of hydrology

I will first of all explain the engineer’s point of view.

Then I will tell a few stories about examples of mathematical tools.

Some of these stories mention only a few of the many great colleagues with whom I have worked.

So I would like to acknowledge those who are not mentioned but have been a source of inspiration and friendship.

Finally, I will summarise the underlying theme of this presentation, which is the role of mathematics in transferring hydrological knowledge into human benefit.
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Engineers use hydrological knowledge for the design of structures and systems that are influenced by water.

Typically, the purpose is to account for floods, water supply, wastewater treatment and disposal, and agricultural water use.

Engineering design requires quantitative estimates.

These are provided by mathematical tools based on available hydrological knowledge.

There is usually a gap between what is known and what must be done.

The scientist can work on to improve knowledge – the engineer must apply it now.

Both the scientist and the engineer have a role in bridging the gap between knowledge and application.

The labels “scientist” and “engineer” refer to roles and mindsets, and both roles may at times lie within the same person.

I have designated the common ground between scientists and engineers as “simple concepts” in the diagram.

The thesis of this presentation is the role of mathematics as a common language for scientists and engineers as well as the bridge between process knowledge and tools.

The next slide focuses on the role of simple concepts.


Simple concept: water flow and storage
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Let’s consider an example of a simple concept relevant to hydrology.

It is a single water storage, for which outflow is proportional to the amount of stored water – called a linear storage.

If the inflow varies with time, then storage and outflow will also vary with time – it is dynamic.

This physically-based storage concept describes a process that can be characterised by the storage time T, which quantifies the proportionality between outflow and storage.

Application of the mathematics of differential equations and difference equations yields a mathematical tool (yellow) for calculating the dynamic behaviour of the simple storage at set intervals of time.

There are mathematical relationships between the coefficients of the mathematical tool equation and the physically-based storage time for the conceptual storage.

This example demonstrates the linkage between concept and mathematical tool, and therefore serves the purpose of the engineer. 

 But what about the linkage to the more complex processes that are of interest to the scientist?






Scientific complexity

Hydrological science can be complex, in terms of bio-
physical processes

Some complex processes can be described by complex
concepts.

Some complex concepts can be considered as systems
of simple concepts.
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In this slide we attempt to address the needs of the scientist, particularly in the hydrological sciences.

Not all of the scientific needs can be addressed, but some part of the knowledge spectrum can be selected for the approach described in this presentation.

The mathematical approach that is the theme of this presentation is aimed at representing complex bio-physical processes in terms of systems of simple concepts.

These system descriptions are often amenable to mathematical transformations that yield useful mathematical tools.

There are three steps to this procedure.

Firstly, the scientist and engineer agree about simple concepts that can represent components of complex processes.

Secondly, to agree about the interactions between components, and hence the interactions between simple concepts.

Finally, the set of process components and interactions are synthesised by the engineer into a system of simple concepts.


A system of conceptual linear water storages
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Here is an example of a system of simple concepts.

It is a cascade of our simple linear storages, all with the same value of storage time.

This example is actually the Nash model for streamflow response to rainfall excess on a catchment.

This is one of many complex conceptual models that have assisted with the understanding of catchment hydrology.

It also provides a mathematical tool for prediction of streamflow, in response to complex rain storm events.

Any system of linear components can be represented by a mathematical equation tool of the form illustrated in green. 

It is the more general form of the simple tool (yellow) that is derived from the single linear storage.

We will see this equation again, in a new context. 


Stochastic in Colorado (1970-72)

with Vujica Yevjevic (“Dr Y”) and his graduate students
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It is now time for story telling.

I spent my post-doctoral research period at the Engineering Research Center of Colorado State University.

At that time the Center was a world leader in the development of computational methods for application to stochastic hydrology – led by Professor Vujica Yevjevich.  

We just called him “Dr Y”.

Stochastic hydrology refers to the random component of hydrology.

The principal source of randomness, for our engineering purposes, is the inherently random nature of climate dynamics.

The interest for us engineers was the ability to simulate many realisations of climatic history for use in design of water resource systems.



Stochastic in Colorado (1970-72)
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As well as learning from the staff and graduate students at CSU, I was influenced by a significant book by Box and Jenkins published at that time.
  
Essentially, this book describes the mathematics of our high-order difference equation (green) for the various cases of random components in the input.

The authors, George Box and Gwilym Jenkins, came from a background of application of statistical methods to dynamic systems in economics and the chemical industries.

Within this statistical context, the high-order equation (in green) has a general mathematical structure referred to as auto-regressive, on the output variable ‘O’, and moving average on the input variables ‘I’.

These terms ‘auto-regressive’ and ‘moving average’ hint at the statistical background.

This structure is referred to by the acronym ARMA, and similar variants.

ARMA structure is often applied to time-series data as a form of “black box” modelling, in the sense that we don’t understand or know the underlying processes.

However, its use as a diagnostic tool can lead to a better understanding of processes.

The ARMA “black box” approach features in the next story…


Flood forecasting in Kuala Lumpur (1972-74)
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I worked for two years in the Hydrology Department of the Ministry of Agriculture and Fisheries, Government of Malaysia.

Much of my work was concerned with the implementation of the TIDEDA hydrological data processing software, written by Steve Thompson, then with Ministry of Works.

However, I was also assigned to the development of a number of hydrological applications.

One of the more interesting tasks was the design of a flood forecasting procedure for the capital city, Kuala Lumpur.  

The name ‘Kuala Lumpur’ means ‘muddy confluence’ – located by the red arrow in the left figure of the catchment – figures are from the Society’ journal.

The photo shows the modern confluence of the Gombak and Klang Rivers.






Flood forecasting in Kuala Lumpur (1972-74)
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The ARMA mathematics was used to establish the relationships between rainfall and river stage in the three sub-catchments to river stage in the city.

The ARMA equation coefficients were determined off-line by use of an IBM 370 mainframe computer at the National Electricity Board, with a FORTRAN programme loaded from punched cards. 

The resulting ARMA equation coefficients were then incorporated into a cardboard template, shown on the right.

This template was used to align coefficients with relevant values of observations received hourly by telephone and written into columns of a paper form.

The real-time forecasts could be computed by use of a then ‘modern’ electronic calculator, or even by manual calculation.




Cardboard mathematical tool - ARMA model
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Here is a closer view of the cardboard template.

At that time and earlier, cardboard mathematical tools were quite common.


Guided model for flood forecasting
with George Griffiths, 1994
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To continue with the flood forecasting theme…

Since returning to NZ, I have been employed on the present Lincoln University campus, so some of the interesting studies have been in Canterbury.

The following stories are not in chronological order, but do follow a theme.

The next opportunity to study flood forecasting involved George Griffiths, Canterbury Regional Council, and myself applying the ARMA model to flood stage data on the Waimakariri River and rainfall at Arthurs Pass.

A simple ARMA model was used which had coefficients that could be adjusted in real time according to recent forecasting errors.
This continual adjustment of the  model coefficients was done by means of the Kalman Filter algorithm.

The “Guided model” label on this slide refers to the development of the Kalman Filter algorithm and its application by engineers to aerospace navigation and guided missile control during the Cold War era.

Statisticians may know the Kalman Filter as Baysian identification of dynamic sytems.

This aspect is significant because the underlying theory is part of a body of mathematics for system control under uncertainty that shows much promise for water management.


Discovery at Well 92

with Peter Callander and Catherine Moore, 1991
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I was in full flight with this ARMA modelling approach, and I was using the software package based on the methods of time-series analysis developed by Peter Young at Lancaster University.

Peter Callander and Catherine Moore were then at Canterbury Regional Council, and brought to me the problem of relating estimates of monthly land surface recharge on the Central Canterbury Plains to variations in groundwater level at a monitoring well L36/0092 in the centre of this region.



Discovery at Well 92

with Peter Callander and Catherine Moore, 1991
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The original land surface recharge data and groundwater level time series are shown in the top left.

The model prediction fit is illustrated in the lower figures.

The time-series analysis quickly yielded a very simple ARMA model that fitted the data with R2 of about 90%.

We couldn’t believe our luck!  This was serious black box modelling!

We subsequently developed a plausible description of groundwater flow processes to satisfy ourselves that our world was truly simple and linear, before submitting a paper for publication.

However, my curiosity had been aroused.


Buckets of groundwater

with Matthew Morgan, for the Canterbury Strategic Water Study, 2002
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I worked with Matthew Morgan who was the lead author for the report on the first stage of the Canterbury Strategic Water Study.  
My role was to contribute to the analysis of groundwater resources and how these might be managed in relation to environmental effects.
This really put the pressure on me to sort out the mathematics of groundwater dynamics and put it into a real world context.

Fortunately, in 1983, Andres Sahuquillo from the Polytechnic University of Valencia, in Spain, had published the necessary mathematical proof.  

His theory demonstrated that the general partial differential equation of groundwater flow could be transformed into a set of simple conceptual water storages.

These were the concepts needed for our simple ARMA equations.  They were real after all!

I had the privilege of meeting Andres at a conference in Prague in 2002, where I presented the contribution from Matthew and myself.

In that same year, a grant from MAF allowed me to convert this material into a publicly available mathematical tool, which has become known as the Eigenmodel.

It is important to realise that although these conceptual water storages can accurately simulate the dynamic behaviour of groundwater, they do not exist in any physical form within an aquifer.

They are abstract concepts, with an existence supported only by mathematics.


Forecasting groundwater level

with ECan groundwater staff
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The ARMA or eigenmodel description of groundwater dynamics enables access to the mathematics of time-series forecasting, as presented by Box and Jenkins, for example, as mentioned earlier in this presentation.

The distinction between forecasting and prediction is that forecasts incorporate corrections according to the recent history of forecast errors, so there is a built in self correction feature

During periods of drought in Canterbury, there has been interest in being able to forecast groundwater levels.

The dynamic behaviour of the aquifers of the Canterbury Plains has time scales that make it feasible to provide useful forecasts up to about six months ahead, for various recharge scenarios.

Since groundwater discharge to streams depends on groundwater levels, then these forecasts also provide early warning of low streamflows during droughts.

There is also potential for more timely management of groundwater abstraction but this has yet to be fully explored.


We have control
— mathematics for water management

Many water resource quantity issues can be described by
systems of conceptual linear water storages

The mathematical basis for analysis, prediction, and
control of linear systems is a well developed engineering
science

This discipline includes algorithms, such as Kalman filter,
which take account of knowledge uncertainty as well as
Imperfect monitoring
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I have so far talked about mathematical tools for analysing and managing water quantity.

Before turning to the subject of water quality, I would like to pause and indicate the potential for management of water quantity.

The application examples so far in this presentation indicate the scope for representing the dynamic behaviour of water resources in terms of systems of simple conceptual water storages.

Such systems can be represented by a well developed body of mathematics for linear systems that is considered to be the norm for applications in various fields of engineering technology.  

This mathematics incorporates algorithms for monitoring and management, under conditions of knowledge uncertainty and imperfect monitoring.

It is my opinion that the potential for this technology for water resources management in New Zealand, is yet to be fully realised.


Waves in the vadose zone
with Hugh Thorpe, 1998-2001
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Before proceeding with examples of mathematical tools for water quality, I need to confess to a departure from my tidy linear world into a non-linear problem posed by Hugh Thorpe.

Well, Hugh didn’t actually use those words.  He just wanted me to model what seemed to be an interesting example of macropore flow through the soil.

Hugh had been irrigating  900 mm deep lysimeters at the Winchmore Irrigation Research Station, in preparation for some experiments.

These lysimeter are essentially just big columns of soil held in concrete pipes (in this case) with arrangements for collecting soil water drainage from the bottom of the column. 

Hugh noticed, and recorded, what appeared to be rapid flow through the lysimeters. This flow was also sensitive to the timing of irrigation applications, at a time scale of minutes.

Well, we came up with a fairly successful explanation in terms of water displacement through the unsaturated macropore portion of the soil.  This model was based on the kinematic wave theory of water displacement.

I was now in “scientist” mode.  This seemed to me to be the missing link for rapid propagation of water pressure through the vadose zone from surface infiltration down to groundwater pressure response.  But that’s another story.
I was also reminded about the pressure displacement of “old water” that had concerned Mike Stewart and myself at the Maimai catchments.  This puts the story telling back on track for water quality.


Old water at Maimai
with Mike Stewart, 1997

Maimai
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The Maimai experimental catchments are near Reefton, on the West Coast of the South Island, and have played a significant role in the hydrological studies conducted by some of our Hydrological Society members.

Mike Stewart (GNS) involved me in his research at the Maimai catchments to help settle the ongoing scientific argument about the contribution to streamflow of “old water” that might be rapidly displaced during rainstorms, in contrast to “new” water that had arrived with the current rainstorm.

Mike had some good data of the dynamics of water quantity and the natural isotopic tracer oxygen-18, for the catchment known as M8.



Old water at Maimai
with Mike Stewart, 1997
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The slide shows an example of the two sets of data for, respectively, water quantity and water quality.

My task was to provide a suitable mathematical model that would quantify the dynamics of both sets of data.

The water quantity, or hydrometric, model followed the well worn path of being constructed from simple water storage components.

Simulation of oxygen-18 transport, however, required the addition of a larger component of water within which the tracer is completely mixed.  Hence called a “mixing cell”. 

This mixing cell has no hydrometric, storage-flow response.

This size of the mixing cell, at 250 mm on a unit area basis, suggested that this quantity of water was held in the catchment as pre-storm old water.

Anyway, my journey into modelling water quality had been launched.


Mixing cell is a simple concept for water quality
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The conceptual mixing cell is the water quality equivalent of the conceptual simple water storage.

The mixing cell is described in the same mathematical terms as the conceptual water storage, as highlighted in yellow.

The single mixing cells can similarly be assembled into more complex systems.

The series of mixing cells shown in the slide is a model with a long history in the literature of chemical engineering, soil physics and surface water transport for representing advection and dispersion of solutes.

The Peclet number is a measure of the degree of dispersion, and can be directly related to the components of the conceptual system.

The mixing cell system does not exactly simulate the mathematical theory of advective-dispersive solute transport, but it is very, very close.

For the mathematical toolmaker this is close enough.






Mixing cells in the soil

with soil scientists at Lincoln University
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One of the most useful characteristics of mixing cell models is that solute transformations can be detached from the transport equations and computed separately within individual mixing cells.

The slide shows a model concept and some results for transient advection-dispersion and non-equilibrium sorption in unsaturated soil.

Even quite complex systems of transport and transformation can still be described by the mathematics of linear systems.

The Kalman Filter could be wrapped around the whole system and we have control!




Managing land treatment of wastewater

with meat processing industry
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Presentation Notes
The mathematics of system control has a long history in industrial applications.

Here is an example of industrial process control extended to managing the effects on groundwater quality of land treatment of wastewater from meat processing.

The monitored process variable was observations of nitrate-nitrogen in leachate from groups of lysimeters in the irrigated wastewater fields.

Monitoring of groundwater is too late for effective management because of large transport time lags.

These data on leachate volume and nitrate concentration are collected approximately monthly and are highly variable, so are useless for decision-making in the raw form.

This is a typical problem for Statistical Process Control in manufacturing quality assurance.  Quality control data are often highly variable from unit to unit.

One approach is to smooth the monitored data and test the result against a quality criterion.

The method designed for managing wastewater applications was to use the mixing cell conceptual model of contaminant transport to produce predictions of nitrate concentration in groundwater at a downstream target location.

The result was a physically-based, smooth, signal that could be compared with water quality standards and then used for management decisions. 


Managing effects of land use on water quality
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Presentation Notes
Managing nutrient discharge from agricultural land use to groundwater and surface water has become a current major issue.

The slide illustrates the scale and major sources for nitrate discharge to groundwater and surface water, with Central Canterbury Plains as an example.

The mathematical tools for managing this task must take account of multiple land uses over catchment-scale areas, complex hydrology, and the likely range of social and regulatory instruments.

Development of suitable mathematical tools calls for appropriate simplification and use of conceptual building blocks.  

The alternative path of strictly process-based modelling can have a daunting computational burden.

The next few slides illustrate an example of applying concepts within a simplified view of the landscape.

This example forms part of the AquiferSim model that has occupied the most recent period of my toolmaking career. 



Streamlined groundwater flow
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Presentation Notes
This simplified view is a cross section of an aquifer beneath an alluvial plain.

This slide shows the pattern of groundwater flow in a cross section of a large aquifer.

It is a big picture view that is intended to assist with the understanding and assessment of the effects of nutrients from land use on groundwater and surface waters.

This picture displays the output of 10,000 computational cells residing in a spreadsheet-based mathematical tool.

The underlying mathematics depends on the concept of stream functions rather than groundwater pressure potential.

Stream function is an old mathematical concept favoured by engineers and hydro-geologists, but is not a tangible physical quality.

The use of streamfunctions is a departure from most modern groundwater modelling packages, and has a number of restrictions in terms of assumptions.

Again, this is a concept-dominated mathematical tool, which aims at an appropriate compromise between process knowledge and purpose of application.

Each of those 10,000 computational cells can be filled with a mixing cell. 


Mixing cells in the aquifer
Simulate horizontal & vertical, advective-dispersive
transport, and transformations
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Presentation Notes
The groundwater modelling specialist would call this combination of groundwater flow model and mixing cell, a finite volume approach.

However, the distinction here is that stream functions and mixing cells are not physical entities, in contrast to modelling approaches based on physical process equations.

The justification for using concepts is mathematical performance.  The resulting simulation is realistic.

The reason for using concepts is practical, based on reduced computational resources and convenience of use as a tool.

The price of this convenience is sometimes a lack of generality for application to a wide range of other groundwater transport problems.

But then this is the art of the mathematical toolmaker.



Streamlines + mixing cells = nutrient transport
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So here are the results of the 10,000 mixing cells.

This is an indicative big picture of nitrate contamination from a land use scenario.

It is possible to include additional complexity in aquifer properties and to include nutrient transformations.


Groundwater age is a contaminant
that grows in the mixing cells
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Presentation Notes
One interesting transformation concept is to consider groundwater age as a contaminant that grows as it transits the mixing cells.  

This is also called direct simulation of groundwater age 

The results enable assessment of the lag time for response of groundwater and surface water to changes in land use, even though this is a steady state model.


We still manage - water quality tools

Mixing cells don’t exist in the bio-physical world

Stream functions are a mathematical construct that can'’t
be directly observed

Mathematics links these concepts to processes

Mathematics describes systems of concepts and enables
management
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So I return to the original principles of simple concepts as building blocks for the ideas constructed in the common space of the scientist and the engineer, or process knowledge and applications.

These common-space ideas comprise systems of simple concepts.

Mathematics can justify the simple concept, in terms of fundamental processes, and also enable the assembly of process knowledge into tools for management.


Conclusions from the journey

“Scientists” pursue knowledge
“Engineers” apply knowledge to decisions
Concepts are the meeting points of these minds

Mathematics links knowledge to solution of real problems
by means of abstract concepts

Mathematical tools are the expressions of these linkages
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Presentation Notes
There is not much novelty in my conclusions, but these have been reinforced by my experiences.

I use the labels of “scientist” and “engineer” as descriptors of two kinds of mindsets.

Mixtures of these mindsets probably occur within most of us.

These mindsets can interact with simple abstract concepts which are linked mathematically to components of bio-physical processes.

Mathematics is the medium for synthesising concept systems from complex processes, and expressing these as tools.

I conclude finally with this thought: “Mathematics enables human benefit from hydrological science”..


Mathematics enables human benefit
from hydrological science



	Working the blue gold: �a personal journey �with mathematical tools �for water management
	Outline
	Engineers, tools, and hydrology
	Simple concept: water flow and storage
	Scientific complexity
	A system of conceptual linear water storages
	Stochastic in Colorado (1970–72)�with Vujica Yevjevic (“Dr Y”) and his graduate students
	Stochastic in Colorado (1970–72)�with Vujica Yevjevic (“Dr Y”) and his graduate students
	Flood forecasting in Kuala Lumpur (1972-74)
	Flood forecasting in Kuala Lumpur (1972-74)
	Cardboard mathematical tool -  ARMA model
	Guided model for flood forecasting�with George Griffiths, 1994
	Discovery at Well 92�with Peter Callander and Catherine Moore, 1991
	Discovery at Well 92�with Peter Callander and Catherine Moore, 1991
	Buckets of groundwater�with Matthew Morgan, for the Canterbury Strategic Water Study, 2002
	Forecasting groundwater level�with ECan groundwater staff
	We have control �– mathematics for water management
	Waves in the vadose zone�with Hugh Thorpe, 1998-2001
	Old water at Maimai�with Mike Stewart, 1997
	Old water at Maimai�with Mike Stewart, 1997
	Mixing cell is a simple concept for water quality
	Mixing cells in the soil�with soil scientists at Lincoln University
	Managing land treatment of wastewater�with meat processing industry
	Managing effects of land use on water quality
	Streamlined groundwater flow
	Mixing cells in the aquifer�Simulate horizontal & vertical, advective-dispersive�transport, and transformations
	Streamlines + mixing cells = nutrient transport
	Groundwater age is a contaminant �that grows in the mixing cells
	We still manage - water quality tools
	Conclusions from the journey
	Mathematics enables human benefit �from hydrological science

