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o. Introduction 

New Zealand, and many other countries, are working to develop environmental quality 

indicators. The objective of these national efforts is to derive better sustainable 

development indicators (Williams and Mulcock 1996). Land, is one of three major media 

identified in New Zealand for national indicator development. Land quality indicators 

can potentially be developed at national, regional or local level. This paper examines the 

issues surrounding one aspect of land quality to determine the possibility of developing 

farm level indicators of sustainability. 

Considerable research effort has focussed on the idea of weak sustainability which 

allows depletion of one capital stock to be offset by increases in the stocks of other 

forms of capital. At the farm level this idea might be useful if manufactured or human 

capital can be substituted for natural capital. If decline in soils' natural productivity can 

be offset by increases in manufactured capital, then farming systems may pass a test of 

weak sustainability. 

Soil compaction is the particular focus of attention in this research and data on soil 

compaction and its effects are drawn from longitudinal research into maize cropping in 

the Manawatu region of New Zealand. The term soil compaction is used in this report to 

describe the loss of soil structure generally, rather than specifically under wheel traffic. 

Worldwide, soil compaction has been recognised as a serious threat to the productivity 

of current agricultural practices (Ouwerkerk and Soane, 1994). At the farm level, soil 

compaction results in reduced yields and lower quality output, particularly in wet years. 

Increased inputs, such as greater tillage inputs and fertiliser applications, are 

symptomatic of soil compaction. These increases in inputs can partially compensate for 

the decline in soil structure and in natural soil fertility. The combination of reduced 

revenues and increased costs, lead to smaller crop Gross Margins. Soil compaction can 

also result in significant off-site environmental externalities. 

This paper outlines the bio-physical processes and consequences of soil compaction, its 

economic significance for farmers, and the possible reasons for mismanagement of soil. 

Methodologies for valuing the effects of soil degradation are surveyed. The goal of 

developing a sustainability index for on-farm monitoring, leads to a review of economic 

modelling of soil use in cropping. Considerable insight has been gained overseas by 

modelling of cropping, soil degradation, and farmer choices regarding management of 

soil. The impacts of soil compaction, and the slow rate of rejuvenation of soils in the 

Manawatu, are sufficiently well understood to conclude that increased inputs of 
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manufactured capital, energy and fertilizer inputs cannot substitute for lost soil 

properties. 

But a lack of suitable data and an absence of precise knowledge about the relationships 

between cropping and soil degradation, and the rate at which other inputs can 

substitute for soil properties, means that farm level indices of sustainability are not 

feasible at present. The report concludes by proposing targets for future soil compaction 

research. 

1. Soil Compaction Processes 

Soil compaction can be either a natural or induced phenomena. Wet soil is particularly prone to 

compaction and deformation but the occurrence and consequences of compaction vary widely. 

Factors such as climate, soil type, initial soil condition, farm management practices, crop type 

and equipment used, all influence the likelihood of damage to soil by compaction (Oskoui and 

Voorhees, 1991). Pugging of soils by animal footprints particularly occurs on dairy farms, along 

tracks and other intensively grazed areas. Cultivation practices on cropping farms is a second 

major cause of soil structural degradation. Soil structure can be lost through sustained cropping, 

leading to a loss of organic matter, and eventual soil granule breakdown. A third cause is 

cultivation when soils are wet. Damage to soil occurs when cultivation practices and wheel 

traffic, leads to compaction, remoulding and consolidation of the cultivated layer Shepherd 

(1992). A combination of pressure and wet soil are the most likely dual explanations for the loss 

of soil structure (Haynes 1995). This study focuses on the compaction of agricultural soils 

through the use of agricultural machinery. 

Changes in soil properties 

Compaction changes a number of important soil properties. Table 1 shows the changes 

in soil properties as a result of continuous maize cropping on Kairanaga soils in the 

Manawatu region (Shepherd, personal communication 1997). This data shows the 

increases in bulk density, and decreases in total carbon, oxygen diffusion rate, air 

permeability, hydraulic conductivity and macroporosity to below the levels known to 

effect root development and plant growth (Shepherd, personal communication 1997). 

After 11 years of continuous maize cropping all the above indicators had reached or 

exceeded the critical limits beyond which productivity is severely affected. 
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The slow rate of recovery after damage is also shown in these results: after ten years in 

pasture three of the six soil indicators remain at or beyond the critical levels. For at 

least one of the soil quality indicators - total carbon - the period required under pasture 

to return to pre cropping levels can be as long as 90 years (Shepherd, Dando, 

Parshotam). 

The changes in soil properties outlined above adversely affect productivity. Compacted 

soil is less permeable to air and water and is resistant to root penetration. Even after 

tillage operations, soil that has lost its structure can resettle and consolidate quickly, 

particularly if there is heavy rainfall or subsequent wheel traffic. 

Crop Growth and Developmene 

Compaction of the soil increases soil strength and mechanical resistance to root 

penetration. The reduction in air capacity and respiration limits root development 

(Raghavan et aI, 1978). The depletion of available oxygen and build up of carbon 

dioxide constrains the respiratory processes of plants and micro-organisms within the 

soil. The poor aeration also induces anaerobic processes, the by-products of which are 

toxic to plants (Hillel, 1980; Van Cleemput and EI Sebaay, 1985). 

Anaerobic conditions can also result in an increase in pathogens and a lower resistance 

to pest attack (Carter and Johnson 1989). For maize, the severity of these effects will 

depend upon which stage of development the plant is at when root diseases strike 

(Shepherd 1992). 

The lower hydraulic conductivity has numerous deleterious effects. It can exacerbate the 

anaerobic conditions, lead to nutrient loss through increased run-off and leaching, and if 

the soils remain waterlogged, result in lower soil temperatures due to increased 

evaporation (Feddes 1971). 

In anaerobic conditions the lack of respiration and build up of toxins substantially 

reduces the live organic matter in the soil, with subsequent reductions in nutrient supply. 

1 The effects outlined are well established in the literature. However, as noted 
later the exact nature of these processes, and in particular the interactions 
and inter-relationships between them, are not well established. This 
uncertainty regarding the scientific aspects of soil compaction and the 
consequences of various remedial actions, is a barrier to rigorous economic 
modelling. 
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As existing organic matter is removed through mineralisation, the natural fertility of the 

soil is reduced. Shepherd (1992) found that organic matter decreased by up to 32,300 

kg/ha in some Manawatu soil types after 11 years of continuous maize cropping. 

The occurrence of anaerobic conditions increases denitrification, further reducing soil 

fertility. While losses of nitrogen due to denitrification are generally low, increases of up 

to 500 percent have been recorded in compacted soils (Soane and Van Ouwerkerk, 

1995). The poor drainage properties and increased applications of fertiliser associated 

with soil compaction are principal causes of the increase in denitrification (Soane and 

Van Ouwerkerk, 1995). 

The incidence of erosion may increase with subsequent reductions in rooting depth, 

nutrient loss and soil water retention. Shepherd (1992) notes the loss of soil structure 

due to compaction means that tillage operations are pulverising the soil to dust, making 

it highly susceptible to wind erosion. Increased water erosion may also occur as the 

lower hydraulic conductivity leads to increased run-off. 

Farm Operations and Management 

Soil compaction increases the energy, capital and labour inputs for tillage operations. 

Greater soil strength increase plough resistance, demanding greater draught requirements 

(Vorhees and Hendrick 1977; Shepherd 1992). At the same time the clods become both 

larger and stronger, decreasing the effectiveness of each tillage operation and requiring a 

greater number of passes to prepare the seedbed (Chancellor 1976). As compaction 

increases, more powerful and heavier equipment is required. The use of heavier 

equipment and the greater number of passes compounds the compaction problem. 

Oskoui and Voorhees (1991) found that wheel slippage increases with compaction, the 

loss of traction leading to further cost increases. 

Lower hydraulic conductivity in compacted soils impairs drainage, decreasing the time 

available for seedbed preparation and sowing (Shepherd 1992). In areas where the 

growing season is short, delays in sowing can substantially reduce margins. 

Lower natural fertility means substantial increases in fertiliser application rates are 

required to maintain productivity. Impaired root growth and increased nitrification can 

reduce the effectiveness of fertiliser applications (Shepherd 1992). In some instances, 

poor emergence rates necessitate re-sowing. This further reduces the growing season and 

incurs additional costs. 
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In summary, the physical, chemical and biological effects of soil compaction 

substantially reduce the gross margins of cropping. Lower germination and emergence 

rates, poor root growth and development, increased susceptibility to disease and pest 

attack, all contribute to lower yield quality and quantity. At the same time costs rise due 

to increases in tillage requirements, fertiliser applications, possible re-sowing and extra 

drying costs due to uneven ripening. 

Research on the effects of continuous maize cropping on soil quality has been conducted 

in the Manawatu region for almost two decades Shepherd (1992). Data from that 

research has been used to construct the table of cultivation costs below, for one site in 

the Manawatu region. The data in Table 2 starkly illustrates the cultivation cost 

increases directly associated with continuous cropping. Number of cultivation 

operations, engine size, energy and labour required, all more than double in magnitude 

over the eleven year period reported. The overall effect is a trebling in cultivation costs 

from $101 to $324 per hectare. 

These tillage cost increases are likely to be accompanied by fertiliser cost increases of a 

similar magnitude as farmer attempt to maintain the soil's productivity level Shepherd 

(1992). Haynes (1995 p.16) provides indicative figures on costs increases, revenue and 

gross margin decreases, for maize grown on compacted soils in the Manawatu district. 

Shepherd (1992 Figure 1), provides a useful graphical illustration of these simultaneous, 

revenue and cost effects, on maize gross margins. In some instances the cost increases 

can be sufficient to reduce gross margins to zero, or even to negative values. 

The messages are clear from the research on soil compaction at one site in New Zealand 

that has alow resistance and resilience to structural degradation. Continued cultivation, 

maize growing and harvest lead to dramatic changes in soil quality, cultivation costs, 

and Gross Margins. Increased inputs of energy, labour, fertilizer and manufactured 

capital can partially offset decline in soil quality, and help maintain crop yields. Soil 

rejuvenates under pasture although there is considerable variation amongst the soil 

characteristics in their rates of recovery. 
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()ff-Site Effects 

Soane and van Ouwerkerk (1995) outline a number of off-site effects on the atmosphere, 

ground and surface water, and the physical soil resources. The off-site effects are 

generally detrimental but their impact is difficult to assess. 

The atmospheric impacts relate principally to increases in Greenhouse gas emissions. For 

instance, there is a substantial one-off increase in carbon emissions with the loss of 

organic matter within the soiL Shepherd (1992) found losses of organic carbon of 16,800 

kg/ha after 11 years of continuous cropping, which if aerobic conditions exist, will be 

released into the atmosphere as carbon dioxide. Increases in energy inputs for tillage 

operations and fertiliser production will result in further carbon dioxide and nitrous 

oxide emissions (Oskoui and Vorhees 1991). 

Methane and nitrous oxide emissions from the soil can also increase, both of which are 

many times more potent than carbon dioxide as Greenhouse gases. Methane emissions 

are the result of anaerobic conditions in the soiL The extent of the increase of nitrous 

oxide is uncertain, with some researchers suggesting soil compaction may even reduce 

these emissions due to the decline in nitrification (Soane and Van Ouwerkerk, 1995). 

The pollution of surface waters can occur through increases in run-off which is carrying 

slurry, nutrients, pesticide residues and sediment into waterways. Groundwater 

pollution can also increase as the reduced plant uptake of nitrates (due to poor root 

development) and the slower downward movement of water, combine to increase the 

nitrate content of water reaching groundwater aquifers (Soane and Van Ouwerkerk, 

1995). Compaction may also reduce the ability of the soil and micro-organisms to 

filtrate and breakdown pesticides and other chemical substances, further degrading 

water supplies (Soane and Van Ouwerkerk, 1995). 

Where water or wind erosion occurs, the transposition of soil may constitute a benefit to 

the recipient zones. However, it may also lead to silting of dams and water supplies 

(Boja 1996), or the diffusion of soil borne pathogens that have built up due to 

compaction (personal communication Shepherd, 1997). The net benefits of erosion are 

therefore uncertain. 

Remedial Actions 

6 



Rejuvenation is an obvious response to consider to compacted soil and subsoiling is the 

technique used in New Zealand. Subsoiling is achieved by pulling a rigid tine through the 

soil, below the normal cultivation depth. This practice loosens the compacted layers by 

cracking and lifting them and creating airspaces (Haynes 1995). The airspaces create 

pathways which aid root penetration and the movement of air and water. 

Subs oiling has been shown to increase yields on compacted soils. In North Otago, 

subsoiling of compacted soils can lead to yield increases for wheat, barley and field 

peas of between 0.7 and 1.5 tonnes per hectare (Haynes 1995). 

Rejuvenation is only achieved at a cost - equipment, fuel and labour are required to pull 

the tine through the soil 30-50 cm below ground surface. Costs per hectare of $150 are 

typical (Haynes 1995). 

2. Economic Analysis of Soil Compaction 

Much recent economic literature has focussed on the topic of sustainability (Stiglitz 

1974; Solow 1974; Victor 1991). Defining the concept has proved difficult, and 

numerous variants have been proposed (Pearce et aI1989). A widely debated idea in 

much of the sustainability literature is the substitutability of inputs such as 

manufactured capital and labour, for natural resources. 

Two concepts have been developed to describe extreme differences in views on 

sustainability. Strong sustainability regards natural resources as providing some 

functions which cannot be substituted by manufactured capital or labour. Weak 

sustainability in contrast accepts that manufactured capital or labour are completely 

substitutable for natural resources. Acceptance of the idea of substitutability of inputs 

underlies much of the research into the possibility of continued economic growth in a 

world of large but ultimately finite resources (Solow 1974; Gutes 1996). Advocates of 

this view have argued that an economy is sustainable if its savings rate is greater than 

the combined depreciation rate of manufactured capital and natural resources (Pearce 

and Atkinson 1993; Gutes 1996). 

Much economics literature describes natural resources as natural capital. Under this 

view soil can be considered an example of natural capital. This paper adopts the view 

that soil is an essential but degradable input to agriculture. Hence substitution of other 

inputs -labour, energy, manufactured capital- can substitute, within limits, for some of 

the services provided by soil. The stock of soil can provide flows of benefits, but the 

level of these flows can decline over time if the stock is degraded. Economic analysis of 
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soil use and misuse can therefore parallel many other capital stock management 

analyses. 

Economic literature on soil degradation is primarily concerned with the efficient use of 

the soil resources. From this perspective soil degradation is not necessarily a bad thing 

as trade-offs need to be made between the net benefits of degradation versus 

conservation. In other words, the efficient use of the soil resource almost always justifies 

some level of degradation, as zero degradation generally implies the land is excluded 

from productive use (Bishop 1992). Conversely, some degree of conservation is also 

justified to facilitate future production. 

Value of capital reflects future earning potential. Where soil degradation has diminished 

the future earnings potential of land, the capitalised value of the land is likely to be 

reduced. Soil conservation actions will maintain or even increase earnings potential and 

hence should increase the capital value of land. 

The economic literature on soil degradation is dominated by water erosion studies, 

rather than soil compaction (Bojo, 1996). However, many of the economic issues 

surrounding soil compaction are common to all forms of land degradation, hence soil 

erosion and salination research offers insights into the modelling and valuation of soil 

compaction. Bishop (1992), Kirby and Blyth (1987) and Stonehouse and Bohl (1990) 

provide discussion of the general economic issues involved in soil degradation. 

Optimal Soil Structural Degradation 

Use of soil for crop production implies some degradation of the soil will occur. At the 

farm level the degradation of the soil might be offset by increased use of fertilisers, 

greater cultivation hours, and larger machinery. If soil is regarded as one of many inputs 

into the crop production process, then profit maximising farmers can consider what is 

the appropriate rate and level at which to degrade soil. Because soil can provide 

benefits over many years, dynamic efficiency rather than static efficiency is the stance 

used to judge the appropriate rate of soil degradation. 

The returns from agricultural land consist of two components: a stream of net returns 

during ownership, followed by a capital gain (or loss) at the end of the ownership 

period Stonehouse and Bohl (1990). The decision to conserve soil will affect both of 

these components, and is a function of many variables such as the marginal productivity 
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of fertile land, input and output prices, discount rates, information availability and 

attitudes to risk Bishop (1992). 

Culver and Seecaran (1986), Gould et al (1989) and Featherstone and Goodwin (1993) 

have all studied the factors influencing a farmers decision to invest in soil conservation. 

The economically optimal level of soil degradation occurs when the discounted stream of 

future net returns from land ownership and use are maximised ie net present value 

(NPV) is maximised. In reality farmers are likely to make annual or more frequent 

judgements about soil use, as they weigh up the expected benefits in the current time 

period from soil use, to the foregone future benefits because of soil use and degradation 

(Milham 1994). 

Deviations from Optimal Soil Use 

Many researchers have suggested that the rate of soil degradation may diverge from the 

economically optimal rate (Kirby and Blyth 1987). There is a considerable body of 

economic literature on the reasons for the actual rate of degradation diverging from the 

optimal rate (Kirby and Blyth 1987; van Kooten and Furtan 1987; Bishop 1992). This 

literature outlines various sources of market failure and public policy options to remedy 

these failures. This literature is important to the current research as it highlights the 

limitations of market prices as a valuation tool for estimating the loss of natural capital, 

a topic which is discussed further in the section on hedonic pricing. However, the 

considerable literature that exists regarding the role of Government in rectifying such 

problems and the cost effectiveness of various policy options is beyond the scope of this 

paper. 

The reasons for non-optimal soil degradation are discussed below. 

Information Gaps, Risk and Uncertainty 

A lack of knowledge is the most commonly cited reason for excessive soil degradation. 

The extent and impact of soil degradation may be masked by its slow but insidious 

nature, changes in technology and farm management practices or climatic variations. 

Even where soil compaction is recognised as an issue, it may not be acted upon as 

information on the extent and remedies can be costly to obtain. As information on soil 

compaction frequently contains public good aspects, individuals are prone to under­

invest in information. 
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The complexity of soil degradation processes means that even when considerable 

investments are made to obtain information, a high degree of uncertainty can persist 

(Kirby and Blyth 1987). For instance, soil degradation involves time lags and threshold 

effects, and cost-benefit predictions are subject to the stochastic vagaries of other 

complex systems, such as climate, technological change and market expectations2
. 

Incentives for Conservation 

Farmers may under-invest in soil conservation due to their inability to appropriate its 

benefits. For example, tenure arrangements such as communal ownership, or short term 

leases (Kirby and Blyth, 1987) can lead to under-investment in soil conservation. Even 

where individual property rights are clearly defined and the on-site benefits can be 

appropriated by the land owner or farmer, capital markets frequently fail to recognise 

the value of soil conservation measures, as the section below on hedonic pricing 

indicates. If soil conservation investments are not reflected in land prices, the benefits to 

land owners of investments in soil conservation can be substantially reduced. 

Externalities 

The optimal private level of soil conservation may deviate from the socially optimal 

level due to externalities and public good aspects to soil conservation. The most 

significant externalities appear to be the off-site environmental impacts, such as water 

and air pollution (McConnell 1983; Stonehouse and BohI1990). The security of food 

supply is frequently cited as an example of a public good aspect to soil conservation, 

particularly in the literature of the mid-1980's. 

Milham (1994) compares the optimal social rate of soil degradation with the optimal 

private rate of soil degradation. He suggests that distortions in capital markets and 

input and output prices are important factors but that the external costs and benefits 

may be the most significant cause of a differential between the optimal private and 

social rates of soil degradation. 

Price Distortions 

2 Despite the prevalence of uncertainty in the analysis of soil degradation, 
there appears to be relatively little work regarding the impact of uncertainty 
on farmers, and farmers levels of risk aversion (Ardilia and Innes, 1993). Setia 
(1987) used Monte Carlo simulation to illustrate how two risk management 
strategies may lead to different preferred management systems. Ardilia and 
Innes (1993) develop two theoretical models to illustrate the impact of risk, 
wealth and production levels on output and, consequently, soil depletion. 
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Kirby and Blyth (1987) suggest that distortions in the prices of inputs and substitutes 

lead to excessive levels of soil compaction. For instance, subsidies on the prices of 

fertiliser can compensate for the lower levels of natural fertility due to compaction. 

Similarly, subsidies for land clearance may reduce the value of conservation measures on 

existing agricultural land. 

Subsidies for land rejuvenation following soil degradation, will lower the economic 

penalty associated with soil degradation, compared with the situation where there are 

no subsidies. This may have the perverse effect of increasing the amount of soil 

degradation which occurs (LaFrance 1992). Landowners may continue cultivation and 

cropping practices which degrade soil, in the knowledge that there are low economic 

penalties. One possible consequence of lower penalties for soil degrading practices, is 

that there will be more soil degradation than would otherwise occur (Kirby and Blyth 

1987). 

Investment Constraints 

Soil conservation generally requires investment in some form or other. This can take the 

form of expenditure on information, changes to capital equipment, or forgoing current 

productivity and income in exchange for increased productivity in the future. Some 

farmers will lack the resources to make such investments (Bishop, 1992). 

Farmers' opportunity costs can diverge from that of society. Bishop (1992) suggests that 

the true opportunity costs of many conservation investments are higher than they 

initially appear as the timing of such investments coincides with the beginning of the 

growing season, when the demands on farmers time and capital is a its peak. 

Discounting 

The valuation of land degradation or soil conservation efforts requires a comparison of 

costs and benefits occurring over many time periods. Discounting is commonly used to 

facilitate such comparisons and the expected returns of soil investment options will 

depend on the choice of discount rate (Miranowski 1984; Kirby and Blyth 1987). 

The discount rate reflects, among other things, consumers time preferences and the rate 

of return of capital (opportunity cost). It may also include a premium to reflect risk 

associated with the investment. Despite a vast amount of literature on discounting there 

is still no clear consensus on the circumstances in which discounting is appropriate, 

what rate should be used, or how the rate should be determined (Hanley and Spash 

1993). The use of discounting where there are potentially irreversible impacts, and in 

issues regarding sustainability, is particularly controversiaL 

1 1 



There is considerable debate over the possibility of divergence of private and social 

discount rates. The use of discounting and the selection of an appropriate discount rate 

involves subjective decisions. The decisions taken by landowners may cause private 

investments in soil conservation to diverge from what is socially optimal. It is widely 

argued that social discount rates should be lower than private discount rates (Pearce et 

aI1989). If this proposition is accepted, one consequence is the socially optimal level of 

soil degradation will be below the level tolerated by farmers if they use higher discount 

rates in decision making (Bishop, 1992). 

This brief review suggests there can be many reasons why private decisions of 

landowners and managers can result in faster than socially optimal soil degradation. A 

second implication of these ideas is that land prices may be imperfect indicators of 

changes in soil quality, and of the true costs associated with soil degradation. 

3. Mathematical modelling of farming and soil quality 

A key issue in resource economics is how to maximise social welfare if soil (or other 

depletable resources) are depleted by economic activity. Mathematical economic 

techniques have been developed to gain insights into these issues. If adequate data is 

available two approaches may be used: simulation, and dynamic optimisation methods 

such as dynamic programming and control theory. The fundamental difference between 

these two approaches is that simulation addresses 'what if' questions, while 

programming models address 'what should be' questions (Greiner, 1996). 

Some issues can be noted before selectively reviewing this literature. Problems for any 

modelling methodology include questions of scale, and aggregation and dis-aggregation. 

Compaction may be studied at the molecular level and up to the global impacts but it is 

not legitimate to generalise from one to the other. Plant growth models are amongst the 

most accurate but aggregating from these to farm level or regional level production is 

prone to major errors (Whisler et aI, 1989). The complexity of soil processes and food 

production systems are further problems. The effects, even at one site, of variations in 

climate, farming practices, inputs, soil types, are difficult to manage. The information 

problems that hamper farmers making optimising decisions also affect the researcher. 

Walker (1982) employs a two step simulation process. First he estimates via non linear 

regression a soil-depth-wheat-yield equation. Second a damage function is established 
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to estimate the effect on net present values of various cultivation and cropping regimes. 

Sensitivity analysis is conducted to test the effects of variation in: soil-loss rates; 

discount rates, production costs and product prices. The modelling suggests that 

deferred conservation via minimum tillage is appropriate for deep topsoil areas, but 

immediate switch to minimum tillage is appropriate for sites with shallower eroded 

topsoil. Walker notes his work is site-specific, and the outcomes could vary greatly for 

different soils, crops, precipitation zones and tillage systems. 

Miranowski (1984) employs a multiple period linear programming model with a penalty 

function in the terminal period. The objective function in his model is designed to 

maximize the present value of crop production over a fifty year period, less the present 

value of the cumulative productivity losses to the end of the fiftieth year discounted into 

perpetuity. Soil losses due to cropping are estimated via the Universal Soil Loss 

Equation (USLE), and these projected soil losses are subsequently translated to yield 

losses. Miranowski concludes that given the assumptions of his model, if farmers 

recognize the productivity impacts of soil loss and maximize long run net returns, they 

will adjust their crop management practices in response to the significant yield losses 

associated with soil erosion. 

Walker and Young (1986) investigate the implications of technological change on the 

decision to invest in soil conservation. They conclude that the effect depends on the 

nature of the technological change: where the change is complementary to soil 

conservation the incentives for conservation are enhanced; where it is a substitute for 

conservation the incentives decline. 

Considerable modelling of farming and its effects on soil quality has been completed in 

North America. The US Department of Agriculture's Erosion Productivity Impact 

Calculator (EPIC) model is used in some of these studies to generate output on soil loss. 

As the title suggests EPIC is directed at projecting productivity losses associated with 

erosion of topsoil. This soil loss data can be used as input data for economic modelling 

to search for optimal cropping regimes. Faeth (1993) is an example of research which 

builds upon EPIC generated data, to calculate via programming models, the present 

value of various tillage, and crop rotation regimes. 

Milham (1994) employs an optimal control framework to determine the rate of soil 

depletion which maximizes the discounted value of the stream of annual net profits plus 

the market value of the land at the end of the planning period. Milham notes that 

researchers such as King and Sinden (1988) have recently recognized that soil has at 

least three unique components namely depth, fertility and structure. His model explicitly 
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recognizes these three separate components, and he comments that soil fertility and 

structure are renewable features and hence, are in effect harvested, while soil depth can 

only be depleted. Despite the distinction, his summary conclusion is quite general, if 

farmers are well informed as to how soil degradation affects future profits and farm 

resale values, soil degradation will be incurred until the value of returns from additional 

degradation equals the marginal costs of degrading the soil. 

Milham observes several caveats must be noted. First, decisions by profit maximizing 

farmers will only be optimal to the extent that they are well informed about the 

contribution of soil depth, fertility and structure to both current production and the 

terminal value of the land. Second, choice of commodity to produce and production 

technique are made under uncertainty regarding product prices and environmental 

effects. Errors in these judgements could lead to significantly greater, or lower, rates of 

soil degradation than anticipated. Third, external costs are typically ignored by farmers 

and hence private decisions will not mimic social decisions. Fourth, capital markets are 

often imperfect and high private discount rates will lead to faster than optimal soil 

degradation rates. 

Some comments on modelling 

Physical and biological science experiements are rarely set up to provide data which is 

useful for economic research. It is noticeable that almost all of the economic modelling 

surveyed focuses on soil erosion and not on soil compaction. It is relatively straight 

forward to measure change in soil depth and to relate that to change in soil productivity. 

It is more difficult to quantify soil compaction and then to relate that to change in soil 

productivity. 

To establish rigorous economic models for either programming or for simulation, requires 

knowledge of the relationships between the factors involved. Some authors suggest that 

current knowledge is inadequate to create mechanistic models, and hence statistical 

estimation of the required relationships is required. Statistical estimation requires 

adequate data to ensure that relationships can be calculated with sufficient reliability. 

Economic modelling of soil stuctural degradation seems unlikely to progress until further 

knowledge of key relationships, or appropriate data, are available. 

Modelling prospects in New Zealand 

Data illustrating changes in soil characteristics, cultivation costs and crop yields for soil 

compaction prone soils have been collected for several years in the Manawatu region 

(Shepherd 1992). Table 2 above provides calculated cultivation costs associated with 

continued cropping of one soil type, and for a second soil type in Table 1 Shepherd 

14 



(1992). But this data does not allow robust statistical estimation of the impacts of 

cultivation on soil productivity, as many confounding influences must be controlled for. 

These include weather during growing seasons, timing of cultivation, and the effects of 

different farming practices. 

To attempt to go further and explain what are the optimal cropping rotations on soil 

compaction prone soils, will require the following: 

• 
• 

• 

development of an index for soil compaction and its application at various sites 

knowledge of the relationship between soil compaction index values and 

productivity for various crops at each site 

knowledge about the effects of stochastic elements such as weather, timing of 

cultivation, effects of various tillage practices on crop yields at these sites 

• knowledge about the effects of various remedial actions on soil productivity 

following varying levels of soil compaction at various sites 

Almost no knowledge is available on those items at present. There is no single best 

indicator, or an index, of soil compaction. Table 1 provides 4 snapshots of soil quality: 

under permanent pasture; after 4 years cultivation, maize growing and harvesting; after 

11 years cultivation, maize growing and harvesting; and after a further 10 years of 

pasture. This data is valuable in illustrating the major changes which occur in soil 

quality, and can be used in an inductive fashion to draw general conclusions. But it is 

clear that a considerable volume of pooled cross section - time series data is required to 

support statistical estimation and deduction of precise answers on optimal cultivation 

and cropping regimes. 

When there is insufficient data to support statistical analysis, simulation provides an 

alternative analytical technique. Scrimgeour (1995) provides a New Zealand attempt to 

model the effects of soil compaction via simulation of profits over a 20 year period. 

This approach assumes a linear reduction in yields over time and makes no allowance 

for increases in cultivation costs or fertilizer costs. 

This approach could be used as a basis for establishing the Net Present Value (NPV) 

maximizing cropping rotations on these soils, if more detailed information is available 

about the expected yields, cultivation costs, fertiliser requirements, terminal land values, 

etc under a variety of cropping rotations. In the absence of that knowledge, only crude 

rules about cropping rotations seem possible at present. 
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4. Estimating the Costs resulting from Loss of Natural Capital 

Where they exist, appropriate economic models can provide accurate data on the 

private and social losses resulting from soil degradation. In the absence of such models, 

alternative methods are required to estimate these losses. Estimating the costs which 

follow loss of natural capital is more complex than first appearance would suggest. 

Boja (1996) discusses ten cost concepts which may be used in evaluation of the costs of 

land degradation. As well as these ten measures, a range of methodologies exists which 

have been used to assess the economic impacts of soil degradation Bishop (1992). The 

purpose of this section is to outline the strengths and weaknesses of each of the 

methodologies and to discuss their previous application to soil degradation research. In 

past empirical studies the choice of method has usually been dependant on practical 

concerns such as data availability, analytical capacity and time available (Boja, 1996). 

Hedonic Pricing 

Hedonic pricing compares sale or rental values with respect to variations in attributes of 

properties. In theory, sale or rental prices should reflect the future income potential of an 

area of land. Soil degradation, which decreases land's future income, should be reflected 

in the unit price of land. This may be expressed as P = P(X) where P is the price per unit 

of land, and X is a vector of land and soil characteristics. The partial derivatives of this 

function give the willingness to pay for each characteristic. 

There are a number of limitations in using hedonic pricing to value land degradation or 

soil conservation measures. It is assumed that the agricultural land markets are 

sufficiently well developed to incorporate the effects of degradation and are not plagued 

by information barriers, price distortions or other constraints. This is often not realistic 

(as previously outlined). Even when markets are functioning well, prices will only 

capture the costs and benefits to the parties involved. The wider costs and benefits to 

society, such as the off-site impacts, will not be recognised in market prices. 

Empirical hedonic pricing studies focussed on the degradation of agricultural land, 

generally relate to erosion rather than soil compaction. These studies have given mixed 

results. Miranowski and Hammes (1984) found that agricultural land markets do 

discount degraded soil but they did not assess whether price changes properly reflect 

the decline in productivity. Ervin and Mill (1985) concluded that farm prices 

underestimate erosion effects and suggest that the high costs of information are the 

principal cause. A similar conclusion is reached by Gardner and Barrows (1985) who 

found that farm prices do not accurately reflect soil conditions, except where extensive 

erosion has occurred and the problem is clearly visible. They conclude imperfect 
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information is the most likely cause, particularly as the relationship between erosion and 

productivity is non-linear - it contains a threshold effect - which complicates 

productivity assessments. 

In contrast to these studies King and Sinden (1988) found that land condition was 

clearly recognised in land prices in the area under study in Australia. Moreover, the price 

variations accurately reflect appropriate values for conservation measures. It is 

noteworthy that King and Sinden (1988) deliberately selected an area where 

conservation measures had been actively encouraged and assisted by the New South 

Wales State Government for many years. The land markets in that area may therefore be 

more aware and better able to estimate the impacts of soil degradation, than is the case 

in other areas. 

In conclusion, it appears that agricultural land markets are generally hampered by 

information barriers and that the discounting of degraded land is insufficient to 

accurately value the effects of soil degradation, or conservation. However, when 

sufficient information is provided the changes in land productivity may be accurately 

reflected in land prices. The harmful effects of soil compaction are unlikely to be fully 

recognised in land prices because there are no widely recognised, comprehensive 

indicators of change in soil quality following continuous cropping. 

Productivity Losses 

Estimates of productivity loss are commonly used to assess the economic impact of land 

degradation. There are numerous empirical studies of this type for soil erosion, but 

relatively few for soil compaction. The basis of this method is to assess the decline in 

farm productivity due to soil degradation. The productivity loss may be calculated as 

either a gross or net figure, but in practice gross estimates are more common (Bojo, 

1996). Gross measures look only at changes in revenue and ignore farmer responses to 

soil degradation. They also often ignore soil re-deposition on contiguous land areas. 

Bishop (1992) suggests that a common mistake in this technique is to compare 

productivity losses from virgin soil with the losses from degraded soiL This implies that 

crops may be grown without any loss of soil fertility, which is generally unrealistic. More 

realistic measures compare changes in long run farm income, with and without soil 

conservation practices. 

A further difficulty with this method is that the relationship between soil degradation 

and yield losses is not well defined (Bishop 1992). 
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Boja (1996) outlines five methods that can be used to assess productivity losses: expert 

judgements; inferred soil loss decline functions; directly estimated soil loss yield decline 

functions; depth loss yield decline models; and/ or plant growth models. The method 

which is employed will depend upon the degree of rigour required, analytical capacity, 

and the data and time available. 

Examples of assessment of soil erosion's impact via each of the five approaches are 

given in Boja (1996) and in Bishop (1992). Relatively few examples exist with respect to 

soil compaction. A New Zealand example is Shepherd (1992) who reports soil losses, 

yield reductions, cost changes, and declines in Gross Margins. The application of 

Productivity Loss methodology to assessment of erosion impact has produced a wide 

range of estimates, but these have generally been lower than expected. Estimates for the 

tropics are given in Boja (1996), who concludes the magnitudes of cumulative losses 

should not invoke images of a rapidly approaching doomsday. Stonehouse and Bohl 

(1990) suggests the impacts are lower than initially feared in Canada. 

Replacement Costs 

The basis of this approach is to estimate the additional inputs required to compensate 

for the loss of soil fertility. In the soil erosion literature these costs usually refer to the 

cost of commercial fertiliser to replace the nutrients lost, although Bishop (1992) 

suggests that it could also include increased labour inputs. For soil compaction it would 

appear that the costs of any of the remedial measures outlined by Shepherd (1992) 

could be estimated to provide a replacement cost for the lost capabilities of Manawatu 

cropping soils. 

The advantage of this approach is that it can be simple to apply (Boja, 1996). For 

example, if data is available on nutrient losses, then the fertiliser equivalent may be 

readily estimated. However, there are also limitations. For instance, adjustments will 

need to be made to account for nutrient availability (Boja 1996; Bishop 1992). As 

nutrient loss is being used as a proxy for productivity loss, it will only be appropriate if 

nutrient loss is the binding constraint (Boja 1996). This will equally apply to other 

remedial actions. 

The replacement approach appears to be less readily applicable to soil compaction as 

the complexity of the soil degradation process is greater than for soil erosion. Soil 

compaction changes a number of soil properties and before remedial action can be taken 

the binding constraint must be identified. Equally there is no certainty that all changes to 

soil properties can be overcome by the use of substitute inputs. Time, and natural soil 

forming processes may have few substitutes. 

1 8 



Net benefits of conservation. 

Bishop (1992) suggests that the net benefits of soil conservation offers an alternative 

technique to the estimation of soil degradation losses. This method appears to be the 

same as the productivity loss approach, except here the emphasis is on valuing the 

improvements in productivity attributable to soil conservation, rather than valuing land 

degradation. It would therefore contain the same advantages and disadvantages of that 

method and could be applied as a gross or net measure. 

Treatment of Off-site Costs 

None of the above methods take into account off-site costs or benefits. The estimation of 

off-site costs is constrained by the lack of physical data. Moreover, the absence of 

markets for many of these off-site effects makes valuation problematic even where data 

is available. As a consequence valuation of off-site costs has been largely confined to 

off-site impacts that are readily measured and costed, such as the cost of removing 

accumulated silt from dams after erosion has occurred. 

Estimation of off-site costs and benefits is problematic due to the absence of physical 

data. In addition, many of the costs are beyond markets and hence non-market 

estimation procedures are required. These can incur heavy data requirements. A useful 

insight into off-site cost estimation is provided by Bishop (1992, Box 5) who cites two 

South East Asian studies which calculate silt removal costs, reduced hydroelectric 

output and irrigated crop production losses due to soil erosion. 

Contingent Valuation Method 

One further possibility is to use Contingent Valuation Method (CVM), to assess 

Willingness to Pay (WTP) for land with compacted soil compared to WTP for non­

degraded land. The WTP calculated are expected to provide estimates for the annual 

losses associated with soil compaction. Some initial work using CVM, has been initiated 

by Scrimgeour (1995) who used both a postal survey, and personal interviews with 

farmers to estimate WTP to avoid compacted soils. The results generated provide some 

support for the usefulness of the approach. 

CVM has proved extremely valuable for eliciting WTP for many environmental assets 

Bishop, Champ and Mullarkey (1995), but it is reliant on some key items including the 

following. Respondents to the survey questions must have a consistent, unambiguous 

understanding of the nature of the item they are expressing WTP for. In the soil 

compaction case, this requires conveying to respondents a clear picture of the nature, 

impact, and likely duration of the costs associated with soil compaction. An 'index of 
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soil degradation' and its expected change over time, would be very helpful in 

summarising to respondents the nature of the soil compaction. 

Some comments on valuation methodologies 

Hedonic pricing has proved a useful valauation technique where there are robust 

markets for well understood, and measured, products. Housing markets are an obvious 

example where Hedonic Pricing works well. In the absence of those criteria, the standard 

errors of valuation estimates can be very large, or the technique may not be able to 

provide any estimate of the item to be valued. Replacement Cost technique is only 

applicable in valuation of losses associated with soil degradation, when soil 

degradation is the binding constraint to production. The replacement costs estimated are 

at best only a proxy for productivity losses. Contingent Valuation is a very versatile 

technique, but the veracity of any values estimated is crucially dependent on survey 

respondents being well informed on the precise nature of the item for which they express 

Willingness To Pay. 

The limitations of Hedonic Pricing, and Replacement Cost, suggests the Productivity 

Loss approach is among the few viable method to assess the costs associated with soil 

compaction. CVM also appears worthy of further research effort to assess its 

usefulness at estimating the losses linked with soil compaction. 

5. Linking Losses of Natural Capital to National Accounts 

Conventional Systems of National Accounts (SNA) which are used in many countries, 

provide misleading statements about national income because, among many reasons, 

they overlook degradation of natural resources, and other changes in natural resource 

assets. Several countries have explored ways to improve their National Accounting 

systems to provide more accurate statements of their sustainable income flows 

(Common, 1995). 

Bigsby (1995) has recently explored the linkages between New Zealand forestry sector 

activities and the New Zealand System of National Accounts (NZSNA). By treating 

forests as a stock or 'material in process', growing forests add to the nation's assets. The 

changes in forest value can arise from changes in area, age class, market prices or 

silvicultural practices. Additions to the value of the forest estate comprise a significant 

component of New Zealand's recent GDP growth Bigsby (1995). 
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The economic impact of soil degradation will already effect New Zealand's national 

income if soil compaction leads to higher tillage costs, lower yields and lower farm 

profitability. It might also be included in enhanced National Accounts if soil compaction 

today, foreshadows diminished future farm productivity. If there is a consistent 

evidence of lower future farm profitability because of soil compaction, this will lead to 

reductions in farm valuations and ultimately effect New Zealand's GDP growth rate. 

The crucial information required for this modification to reported National Income 

levels, is accurate data on asset values. The preceding section of this report outlines the 

difficulties faced in accurately measuring the losses associated with soil degradation. It 

is notable that Boja (1996) reporting on a survey of 12 Sub-Saharan Africa land 

degradation studies concludes that ... 'Potential adjustments to the National Accounts 

appear modest, but are still worth doing from a conceptual point of view' (Boja1995, 

pl72). A similar conclusion may be warranted for New Zealand. 

6. Future Directions on Sustainability and Soil Quality Research 

Much of the economic literature on soil degradation argues that well informed 

landowners and land markets make rational decisions about rates of degradation of 

soil. Soil degradation is expected to reduce both current farm incomes, and terminal land 

values. Crucial to those conclusions are availability of information about both on-farm 

costs, and external costs associated with soil degradation. 

Soil quality is a key input in agriculture, and soil compaction significantly reduces the 

sustainability and profitability of cropping in the Manawatu region (Scrimgeour and 

Shepherd, 1997). The data presented in Section 1 above clearly indicates both the 

physical and the financial impacts of repeated cropping on one soil type. However the 

data available is too sparse to enable development and calibration of mechanistic 

models of cropping, cultivation, and soil quality. Equally, it appears that land markets 

are insufficiently informed about the impact of soil compaction on sustainable income 

levels, and land prices do not fully reflect changes in land productivity. Finally, is not 

possible at present to construct an index of sustainability for cropping farms, based on 

changes in quality and stock of natural and manufactured capital. 

To enable progress toward those goals the following actions seem advisable. 

1. Establish, validate, and publicise readily measurable indicators of soil quality for soil 

susceptible to structural degradation. 
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2. Conduct long term monitoring of soil quality, cultivation costs, yields on several 

cropping farms to establish a data base which allows statistical analysis to be 

conducted on the relationship between cultivation practices, weather, cropping 

rotations, soil characteristics, yields. 

3. Complete more work on the rates of rejuvenation of compacted soils, particularly to 

establish 'ideal' cropping rotations for soil compaction prone soils. 

4. Disseminate widely information regarding the effects of cultivation and harvesting on 

soil quality, cultivation costs, yields, and Gross margins to land owners in soil 

compaction prone areas. 

Where there is widespread knowledge of soil compaction status following continued 

cropping, farmers can be expected to change cropping patterns, and land markets better 

reflect sustainable income levels. If those outcomes occur the case for farm level 

economic sustainability indicators is greatly diminished. 
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Biophysical indicators of soil quality of the Kairanga soil under various land uses 

Land use Oxygen Air Hydraulic Air-filled Bulk Total 
diffusion rate penneability conductivity porosity density carbon 

(at -10 kPa 'l's) (at -10 kPa (at -5kPa 'l's) 
'l's) (mm hr-1) 

(10-8 g O2 (%) (Mglm3
) (%) 

cm-2 min-I) (10-13 m2) 

K-I0 K-40 

Pennanent 83 (11) 97 (17) 23 (3) 13 (2) 5.4 (0.4) 1.03 5.56 
pasture 

4 yrs maize 25 (3) 8.2 (1.2) 3.8 (0.9) 1.7 (0.3) 5.0 (0.3) 1.26 3.24 

11 yrs maize 7 (1) <0.5 (0.1) 0.2 (0.06) 0.1 (0.05) 0.1 (0.03) 1.39 2.53 

11 yrs maize + 17 (4) 36 (4) 9.7 (2.8) 2.9 (0.8) 3.2 (1.0) 1.21 3.01 
10 yrs pasture 

Critical limit 20 4 1 0.4 5 1.28 2.50 

Standard errors are given in parentheses 



Figure 1 
Costs of Seed Bed Preparation ($1996) 
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Table 2 
Costs of Preparation - Maize Seed Bed ($1996/97) 

Year Fixed costs Variable Costs Variable Costs Total Costs Total costs 
(excllabour) (incllabour) (excllabour) (incllabour) 

1 $34.85 $37.21 $66.86 $72.06 $101.70 
2 $39.51 $43.24 $76.85 $82.74 $116.36 
3 $50.68 $51.77 $94.88 $102.45 $145.56 
4 $61.64 $60.21 $112.65 $121.85 $174.29 
5 $70.41 $53.54 $113.44 $123.95 $183.86 
6 $72.80 $61.29 $101.69 $134.09 $174.50 
7 $110.61 $88.29 $149.68 $198.90 $260.30 
8 $108.61 $89.04 $149.32 $197.64 $257.93 
9 $115.99 $102.09 $158.63 $218.08 $274.62 
10 $139.65 $116.33 $184.85 $255.97 $324.50 
11 $139.65 $116.33 $184.85 $255.97 $324.50 



Notes: 

The upwards trend is interrupted in some places because: 

• in Year 5 variable costs (excluding labour) decline when the number of passes 
declines from 7 to 4, thus reducing total fuel despite the use of the rotary hoe 

• in year 6 total costs decline reflecting the lower labour requirement associated 
with the use of the larger (85 hp) tractor 

• in Year 8 there is a slight decline in labour and therefore total costs when a 
disc and roller pass is substituted for the slower rotary cultivator. There is 
also a small reduction in fixed costs which are calculated on a per hour basis. 



Cultivation Costs for Maize Seed Bed 

Tractors: 

Hp 

55 Ford 

85 John Deere 

100 John Deere 

Assumptions: 

Fuel Cost per hectare: 

Operation 

Heavy cultivation 

Plough 

Light cUltivation 

Rotary cultivation 
Drill 

Labour: 

Wage rate/hour 

Cost Calculations: 

Year Hours 

per ha 

3.35 

2 3.80 
3 4.87 

4 5.93 

5 6.77 

6 4.57 

7 6.94 
8 6.81 

9 1.85 

4.55 

10 2.54 

5.21 

11 2.54 

5.21 

Assumptions: 

Purchase Resale Fixed cost 

Price Price per hour 

$40,000 $20,000 $10.40 

$67,000 $38,860 $15.94 

$81,000 $46,980 $19.04 

Interest rate used in opp. cost and sinking fund 

calculations = 7% (real) 

Tractors sold after 6 years and 3,500 hours 

Fuel (I/ha) $/ha 

13 $5.98 

21 $9.66 

8 $3.68 

13 $5.98 

4 $1.84 

$8.85 

Fixed costs Variable costs Labour costs 

(excl labour) 

$34.85 $37.21 $29.65 

$39.51 $43.24 $33.61 

$50.68 $51.77 $43.12 

$61.64 $60.21 $52.44 

$70.41 $53.54 $59.91 

$72.80 $61 .29 $40.41 

$110.61 $88.29 $61.39 

$108.61 $89.04 $60.28 

$115.99 $102.09 $56.54 

$139.65 $116.33 $68.53 

$139.65 $116.33 $68.53 

Tractor R&M - 100% of purchase price over 10,000 hours 

Oil and filters - 15% of fuel cost 

Variable cost 

per hectare 

4 
6.7 

8.1 

Total varia Total costs 

Costs 

$66.86 $101.70 
$76.85 $116.36 

$94.88 $145.56 

$112.65 $174.29 

$113.44 $183.86 

$101 .69 $174.50 

$149.68 $260.30 

$149.32 $257.93 

$158.63 $274.62 

$184.85 $324.50 

$184.85 $324.50 
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