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Abstract 
 

Biological systems such as cell cycle are complex systems consisting of an enormous number 

of elements . These elements interact in ways that produce nonlinear and complex systems behaviour 

such as oscillations.  A number of modelling approaches have been used to explain these kinds of 

systems; they are classified into four classes (continuous, discrete, stochastic and hybrid). Ordinary 

Differential Equations (ODEs) are used to mimic the continuous dynamic behaviour of system 

components, while discrete models can simulate the biological elements as straightforward binary 

variables providing a qualitative view of system behaviour. Stochastic models are used to model the 

effect of noise in biological systems. Combined methods together introduce hybrid models to cover 

the limitations of individual models and take advantage of their strengths.  

This study introduces a series of advanced models with increasing resolution from discrete to 

continuous in a systematic way to model the mammalian cell cycle system. Each model includes the 

essential controllers of mammalian cell cycle. Specifically, they reveal cell regulators that control cell 

cycle transitions from one phase to another in cell division. In the first model, this work introduces a 

new biological network based on a qualitative approach-Boolean network. A new Boolean model with 

13 proteins can capture the essential aspects of cell cycle phases and it can simplify cell cycle control 

system. The developed new, simple and intuitive Boolean model can mimic the fluctuation of Cyclins 

during cell cycle. Furthermore, it can show cell cycle phases based on the changes in Cyclins since each 

Cyclin leads the transition of cell cycle phases. Also, some important proteins that are missing in most 
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of the current models, such as SCF ubiquitin ligase and c-Myc, have been added to our model. This 

study provides a deep understanding of the mechanism of mammalian cell cycle regulation, especially 

when growth factors are present, and it can reveal the cell cycle process in terms of flow cytometry of 

Cyclin proteins. In addition to the aforementioned advancements related to the developed Boolean 

model, the model has captured the periodic sequence of activity of cell cycle regulatory proteins over 

repeated cell cycles. The existing discreet models failed to represent the periodic behaviour of cell 

cycle phase transitions and the correct activities for system species over repeated cell cycles. 

In the second model, another computing model based on degree of truth rather than the usual 

Boolean model with true or false (1 or 0) values is implemented. This second developed model is a 

fuzzy logic model. It involves the use of artificial intelligence to model a fuzzy cell cycle control system. 

Fuzzy logic model is a rule-based model that depends on the practical knowledge and heuristic design 

of complex systems. Specifically, this work utilizes fuzzy inference system features in the development 

process. Indeed, it is expected to provide approximate continuous dynamics for the discrete events 

using limited available data. When applied to the cell cycle system, the model reveals the intermediate 

states of concentrations of proteins during each cell cycle event. In addition, applying fuzzy logic 

provides more accurate representation of the cell cycle system than previous Boolean approaches. It 

can follow/explain the flow cytometry measurement levels of protein concentrations such as Cyclins.  

Also, the fuzzy model is expected to simplify and realistically represent the system and address the 

existing shortcomings of both discrete and continuous representations, specifically, discrete models’ 

restriction to 0 and 1 values for the states of proteins and the scarcity of available kinetic parameters 

in continuous models such as ODEs. 

Furthermore, for more accurate results and to automate the development of the fuzzy 

controller, the core of the fuzzy inference system has been successfully optimized using artificial 

intelligent approach Particle Swarm Optimization (PSO). 

 

Key words:  Mammalian cell, Cell signalling networks, Synchronous and Asynchronous Boolean 

Networks, Attractors, Fuzzy Systems, Particle swarm optimization (PSO).   
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Chapter 1. Introduction 
 

1.1 Overview 

Biological systems such as mammalian systems are characterized as complex systems 

consisting of a large number of cells. In this system, a cell is considered as the smallest basic 

unit of all living organisms. Also, this unit can control its structure with independent 

behaviors and it can reproduce itself. Simply, cells together create the composite of life’s 

building blocks Hay (1991). Each cell can reproduce itself by an ordered sequence of events 

called cell cycle. Cell cycle is considered a complex system because it contains a large 

number of simple and different elements that interact with each other to produce complex 

behavior in the system (Kitano, 2002). Further, elements have persistent interactions 

during cell cycle to produce two cells from a mother cell; this process is called cell 

proliferation. 

Biological systems are organized as complex networks that are different in type 

depending on the component elements, for example, Gene Regulatory Networks (GRN), 

protein to protein interactions networks and metabolic networks.  Similarly, cell cycle has 

a large number of proteins and genes organized in Gene Regulatory Networks and 

protein – protein interaction networks.  GRN networks consist of genes (DNA 

(Deoxyribonucleic acid) segments) inside the cell nucleus that produce copy of DNA - 

Ribonucleic Acid (RNA) that gets converted into mRNA and subsequently to protein 

products that interact with other substances in the cell. This process is controlled by rates 

that determine how fast a selected set of genes in the network is transcribed into mRNA 

and how various proteins rapidly interact activating or inhibiting each other (Vijesh, 

Chakrabarti, & Sreekumar, 2013).  

The underlying biological process of molecular mechanisms can be systematically 

understood by using  GRN and associated protein networks (De Jong, 2002; Swain, Mandel, 

& Dubitzky, 2010).  Genes and protein interactions are organized in the cell cycle system in 
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a particular way to perform the related functions. When these elements work together 

they provide a variety of complex dynamic behaviors called emergent properties, such as 

stable functioning to achieve cell division, but when they work in fragmentary ways, it can 

produce undesirable or chaotic behavior that could lead to some malfunction or diseases 

such as cancer. The large number of interacting entities makes it difficult to understand the 

interactions between them, which makes the system quite complex to understand and 

model. In addition, these interactions differ in speed. However, modelling approaches are 

useful for understanding complex systems including their element and system dynamic 

behavior and specific system events such as stages of cell cycle.  Many modelling 

approaches have been used to address complex system problems.  However, many issues 

need more investigation.  

1.2 Definition of the Problem 

Most studies on biological systems have been made based on various assumptions in their 

theoretical aspects and have focused on gene regulatory networks, metabolic networks 

and protein-protein signaling networks (Alm & Arkin, 2003). Further, criteria for selecting 

the best model for a case study are based on the availability of known information related 

to the biological system, including reaction rates and the type of the data collected to 

describe the system activities. However, most modelling approaches face problems with 

the availability of data, especially in cell cycle signaling network. 

In modelling signaling networks, various mathematical, statistical and computational 

approaches can be used to simulate the biological system processes, events, pathways and 

networks. These approaches can be used to provide a useful framework that provides 

researchers with more information to understand the gaps, issues, and insights into the 

biological system. Such frameworks can explain the system component interactions and 

generate biological insights into the system by testing hypotheses related to system 

properties, functions and structures (David Gilbert et al., 2006).  

Understanding and examining the system elements with their internal relations alongside 

system behavior and reactions raises the need for the development of new models and 

approaches that explain the individual and collective behavior of genes, proteins, enzymes, 
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and metabolites in biological systems (Kitano, 2002). Researchers and modelers can use 

mathematical and computational approaches to advance research in biology. They depend 

on available information to develop models to address one or more of these issues. For 

example,  they use gene regulatory networks and protein – protein networks to analyze 

cell cycle events and activities in relation to gene expression (Kohn, 1998). 

Modelling  approaches can be classified into several classes (Csikász-Nagy, 2009), Firstly, 

Continuous Models (ODE) are used to express continuous changes in protein 

concentrations in biological systems such as Bela Novak and John J Tyson (2004). This kind 

of models provide realistic results but have several limitations in handling complexity 

associated with large networks due to the requirement of a large number of kinetic 

parameters  (rate constants ) which are limited in biology. These rates are not yet 

completely available.  Simpler modelling  approach may sufficiently represent some 

aspects of the system. For this reasons, modelers have started looking for and developing 

alternative solutions. These solutions should be simpler and easier. Hence, since the 

available biological knowledge is either incomplete or imprecise, this gives the modeler 

flexibility to introduce new models that can still adequately describe system activities. 

Therefore, they have introduced the second class of models -  logical or discrete models 

such as Boolean networks - that describe a system behaviour in realistic qualitative form  

(Glass & Kauffman, 1973; Thomas, 1973). 

Boolean networks are very useful and effective in comparison with other methods such as 

differential equations that need kinetic data that is not available or limited. The Boolean 

network is used to model complex biological systems such as the cell cycle system based 

on available biological knowledge such as Fauré, Naldi, Chaouiya, and Thieffry 

(2006)model. Boolean models are more useful to study the qualitative aspects of the 

biological system. For instance, when detailed information is not available on the system, 

Boolean networks can explain in a simpler way how protein interactions happen and which 

protein is active or inactive (Garg, 2009; Tyson, Novak, Chen, & Val, 1995). They are useful 

for understanding a system when full details are not available.  Further, some aspects or 

parts are best be modeled qualitatively or simply due to their nature, relevance or 

importance to the whole system. However, Boolean models lack the ability to quantify 

system behavior.  Additionally, Boolean model outcome depends on the model update 
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scheme and producing realistic temporal system dynamics is a current challenge in Boolean 

models.  Further, representing slow and fast reactions together in a Boolean framework is 

also a challenge.   

The third class of models represents biological systems along with noise; these are called 

stochastic models, an example of which is Kapuy, He, Uhlmann, and Novák (2009) model; 

they simulated mitotic exit of mammalian cells. The fourth class is hybrid models. In this 

model, a combination of different techniques is used. Recently, Singhania, Sramkoski, 

Jacobberger, Tyson, and Beard (2011) have developed a new cell cycle model. This model 

relies on a mix of continuous ODE and Boolean networks in one model to dynamically study 

the system by relying on Cyclin behaviour during cell cycle. Although this model is a recent 

and a benchmark model, it lacks some important elements in cell cycle system such as 

Cyclin D, MYC, SCF and TFB,.., etc. Also, the Boolean part does not contain Boolean 

functions; they assumed a predetermined set of states to mimic the actual states.   

Most current mathematical models of cell cycle have been established for simple 

organisms, such as yeast. However, mammalian cell cycle system has been less studied and 

modeled due to its higher complexity. Furthermore, no single modelling technique can 

introduce all aspects of biological events. Each method has advantages and disadvantages 

that create real limitations and gaps in cell cycle modelling. Hence, efforts continue to 

enhance models to investigate the complex cell cycle system  (Vijesh et al., 2013).  

Currently, most of the computational modelling approaches face problems with the 

availability of data. For instance, modelling gene and protein expressions need knowledge 

about the concentrations and rates of production which at the moment is not completely 

available (Davidich & Bornholdt, 2008).For this reason, the exact values for quantities of 

species are not always the main concern in a biological setting (De Jong, 2002). However, 

the general trend of behavior of molecular species is emphasized. Furthermore, current 

benchmark mammalian cell cycle models such as Fauré et al. (2006) Boolean model and 

Singhania et al. (2011) hybrid model have several limitations. For instance, these models 

were built depending on the old available biological knowledge and they may not correctly 

represent recently discovered knowledge. For example, these models miss newly 

discovered important proteins in cell cycle system such as SCF ubiquitin ligase, c-Myc, TFB, 
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etc.. These biological elements can provide a more complete view of the underlying 

mechanism of the cell cycle control system.  As a consequence, this kind of models needs 

further development since the biological knowledge is continiously updated.  

Moreover, there is a need for modelling approaches that can provide a greater 

understanding of complex systems and are useful to study and analize the dynamic 

behavior of biological systems such as cell cycle.  Modelers have started looking for and 

developing alternative solutions and these solutions should be simpler, easier and more 

effective than existing models.  

1.3 Research Aim  

Currently,   modelling methods and techniques have become popular for modelling 

biological systems because they can provide a deep understanding and insight into them. 

For instance, they can help understand the biological processes and provide novel or 

additional information and knowledge related to them. Also, they can be used for 

prediction and diagnosis of diseases and treatment of diseases such as cancer. Models 

attempt to provide an accurate dynamic description of phenomena; they attempt to either 

explain, expose or predict biological phenomena.  There are many challenges to this 

process at the moment in systems biology.  This study addresses some of these challenges 

in modelling complex systems of mammalian cell cycle.  

This study provides a new method to model cell cycle controller systems through 

advancement in modelling approaches. The new model can enhance the knowledge of cell 

cycle signaling network and generate more insights into how network components are 

connected to each other and why, and for what purpose, they are placed in this form. 

  

The first specific objective of the thesis is to study the structural and dynamic analysis of 

mammalian cell cycle controller system.  As demonstrated before, most current models 

simulate and study simple organism such as yeast model, but few models that simulate 

and study mammalian cell cycle control network are available in the literature; accordingly, 

there is a need to develop a mammalian cell cycle control model. Since biological 
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knowledge is incomplete and not updated fast enough, there are limited computational 

approaches in the literature for modelling this protein network.  However, there is a 

necessity for a comprehensive analysis to better understand this mechanism. In addition, 

research needs to generate more insights into how, where and what is the essential 

information in the cell cycle signaling network. Therefore, the primary aim of this thesis is 

to find proper answers to the question of how we can design a single system with the 

scarcely available information to represent convincing dynamic behaviour of cell cycle 

control system? 

In this research, the main interest is to develop specific protein - protein interaction 

networks that are useful for modelling biological systems such as cell cycle system. 

Specifically, the target is to reveal cell regulators that control cell transitions from one 

phase to the other during cell division process. Specifying an appropriate mathematical 

model demands a solid comprehension of the behaviour of signaling system component 

interactions. Therefore, the second specific objective of the thesis is to propose a new 

biological network (protein - protein interaction network) based on a qualitative 

approach-Boolean network to model cell cycle controller. This Boolean network can 

mimic the controller species activity over cell cycle phases of mammalian cells. The 

previous attempt at elucidating this network was described in 2006 by (Fauré et al., 

2006)using a synchronous and asynchronous Boolean model; this model was developed 

based on ODE model (B. Novak & J. J. Tyson, 2004) with old biological knowledge. A few 

years later, another mammalian cell cycle model was developed by Singhania et al. (2011). 

These two models are referred to as bench marks in biological modelling studies.  

Therefore, in this thesis, the process to improve the mammalian cell cycle models is based 

on these two models. The new model appends the recently discovered biological 

knowledge including new important proteins which are missing in most of the current 

models.  For instance, this work studied, investigated and enhanced the Fauré et al. (2006) 

Boolean model – specifically, it added a set of new biological elements to the system such 

as SCF and MYC. Further, this study introduced updating the Boolean rules based on the 

available and recent biological knowledge.   
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Additionally, the developed Boolean model rebuilds and extends the recent hybrid model 

in Singhania et al. (2011). Although this is a recent and recommended model for biology 

researchers, it faces some of limitations. Therefore, our work overcomes this limitation by 

adding some important biological elements like CycD, P27, and RB. Also, this research has 

rebuilt the model in proper Boolean form to explain abundance of system elements within 

cell cycle phases.  Singhania model did not provide any Boolean rules. This enhancement 

increased the strength of the proposed new model by overcoming the existing limitations 

in the previous models. 

The third objective of this study is to understand the dynamics of the network and 

compare the results with other results from the existing networks such as Faure 2006 

model. The enhanced model should recapture the generic behaviour of the system with 

additional advancements.  The new enhancement which is accomplished by adding novel 

information would not contradict the available results  or biological knowledge, but it shall 

fill the missing part of the system and provide a fuller view of system interactions within 

cell cycle phases. For instance, as mentioned before, Sanghania model missed some 

important species such as CYCD, P27, and RB, while Faure 2006 model missed MYC and SCF 

species in their model. The aforementioned models have been built on some of 

assumptions since in that time some biological facts not discovered yet which recently 

should be modified in a proper form with up-to-date knowledge. While fulfilling this 

objective, current Boolean models were systematically enhanced. This enhancement can 

be used to answer the following questions: 

I. Can the Boolean model explain the transition of cell cycle phases and system 

dynamics? 

II. Can the Boolean model reproduce the temporal behaviour of the observed 

species such as Cyclins during cell cycle? 

III. Can the model provide a visualization of the activity of system components within 

cell cycle phases (system attractors), including the long term behaviour in steady 

state dynamics? 

IV. What are the changes made by the new enhancement?    

V. What are the essential components of the network needed to accomplish cell 

cycle?  

VI. How robust is the cell cycle signalling network? 
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Providing satisfactory answers to the above questions with novel information makes a 

significant contribution to understanding cell cycle. 

The fourth objective of the study is to introduce better logic based models such as fuzzy 

logic to model cell cycle controller system; herein, this objective involves fuzzy 

representation of cell cycle and implementation of a fuzzy inference system to mimic cell 

cycle controller behavior. Logic models mainly rely on knowledge based theory. This 

simplifies the representation and exploration of system components, interactions, 

behavior and events. Also, logical models have the ability to generate accurate qualitative 

results for system dynamics in discrete form (Thomas, 1973). They can provide a simplified 

view of systems activities that is useful for gaining insight. As a consequent, another novel 

model is proposed based on knowledge based theory. This model can intuitively represent 

the detailed dynamic behavior of cell regulators that control cell transitions between 

phases during cell division process. Specifically, biological knowledge presented in Boolean 

form is converted to a form of human reasoning in this model. This conversion comprises 

natural intelligence and artificial intelligence features of fuzzy logic. Fuzzy logic has the 

ability to provide methods of computing with words in a coherent manner. Moreover, 

Fuzzy logic is a suitable method to represent biological systems because of the nature of 

these systems – for example, gene regulation is inherently fuzzy (not exact); however, most 

cell cycle studies depend on crisp models. Another prompting factor to use fuzzy methods 

is that biological data are also mostly imprecise. The imprecision of data is due to the 

nature of biological experiments themselves. It makes fuzzy logic very suitable to mimic 

many biological problems such as cell cycle controller system. 

Additionally, fuzzy models provide approximate continuous dynamics for discrete as well 

as continuous events using limited available data and incomplete information expressed in 

linguistic terms. Fuzzy logic allows variables to be continuous and more finely valued than 

other discrete models such as Boolean networks. It can enable a model to consider all the 

intermediate levels of species concentration levels without leaving the qualitative 

modelling framework. Furthermore, it can state which element is more active than others. 

Also, fuzzy logic considers element states in a range of linguistic terms rather than a set of 

two numbers. In a Boolean model, a Boolean element is either a member of a limited set 

or not, such as active or inactive.  
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Therefore, this objective employs computational intelligence methods to enhance the 

bio-realism of the cell cycle controller models.  This work utilizes fuzzy inference systems 

to mimic species activity based on protein concentration measurements. Essentially, Fuzzy 

inference system has been used to represent and process vague information in many real-

life problems. This influential reason was behind the current work’s proposal to use fuzzy 

inference system to mimic cell cycle controller model.  

The fifth objective of the study is develop an approach to automate the development of 

the fuzzy inference system developed in Objective 4.  Therefore, this work optimized the 

fuzzy inference system by employing an intelligent systems approach - Particle Swarm 

Optimization (PSO). PSO is a computational optimization method inspired by social 

behavior of bird flocking or fish schooling (Akkar, A-Amir, & Saleh, 2015; Clerc & Kennedy, 

2002; Kenndy & Eberhart, 1995; Omizegba & Adebayo, 2009).  This thesis used PSO to 

optimize and automate the development of the fuzzy inference system. It provides robust 

improvements of the inference system leading to optimum performance of the system. 

These developed models such as Boolean model and fuzzy models can give a deeper 

understanding of this complex system and its dynamic behavior. They are more suitable 

than previously mentioned individual methods for modelling the dynamic behavior of the 

processes in cell cycle. They help overcome the shortcoming and limitations of these other 

models such as discrete model  in Fauré et al. (2006), ODE model in  Iwamoto, Hamada, 

Eguchi, and Okamoto (2011) and hybrid model in Singhania et al. (2011).This work provides 

a fuller and more realistic explanation of cell cycle functions by providing qualitative and 

semi quantitative descriptions.  

 

1.4 Research Contributions  

This thesis presents qualitative and semi quantitative models such as Boolean network and 

fuzzy logic system, respectively, based on knowledge based theory.  It provides a significant 

methodological enhancement to the current modelling approaches of cell cycle control 

system. The developed models help explore the complex dynamic behaviour with scarce 
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biological data and parameters. In addition, these models make the following 

contributions: 

1. Construction of novel protein - protein interaction networks that are valuable for 

modelling biological systems such as cell cycle system. Precisely, they better and 

more completely model cell regulators that control cell transitions between phases 

during cell division process. 

2. Development of a new Boolean network based on recent knowledge to model cell 

cycle control system. This includes enhancing the current bench mark models such 

as Fauré et al. (2006) model and Singhania et al. (2011) model. Further, this involves 

a comparative, robustness and resilience study of these models. This study is based 

on biological evidence and assumptions.   

3. Utilisation of imprecise, vague and incomplete knowledge and data to create 

seamless and realistic  knowledge and data by using fuzzy logic theory to mimic the 

biological interactions in cell cycle control system.  The result was the development 

of a fuzzy cell cycle controller model. 

4. Employment of Artificial Intelligence approach - Particle swarm optimization (PSO)- 

to optimise the fuzzy logic based inference system to improve the performance of 

the  mammalian cell cycle complex system.     

All aforementioned contributions have improved the representation, analysis and 

understanding of mammalian cell cycle control system as well as its species since cell cycle 

consists of several phases, and each phase contains several species that interact with each 

other in complex biological processes. We assess and analyse how the model helps explain 

cell cycle phenomena such as Cyclins activity to control cell cycle phase transitions and 

other cell cycle phenomena including system dynamics. 

 

In the next section, we briefly demonstrate how the thesis is organised to link and present 

the steps taken to achieve the research objectives and the acquired results. It provides a 

summary of the models, analyses and outcomes. 
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1.5 Overview of Chapters  

This thesis consists of several chapters that give the reader a full description of our research 

on modelling complex biological systems. It covers the cell cycle modelling system from 

both biological and computational aspects and explains all information related to it.   

 Chapter 1 provides a brief introduction to the research problem such as issues and 

gaps in current cell cycle models, followed by the objectives of the study, research 

contributions and an overview of thesis chapters.  

 Chapter 2 provides a background and available information on the biological 

system (cell cycle) and components, including biological cell types, most common 

cell cycle engine components and checkpoints.  Furthermore, it provides a 

classification of the past models of cell cycle. It also shows the advantages and 

disadvantages of existing models. 

  Chapter 3 explains the detailed method used in Boolean modelling approaches. 

Also, this chapter investigates the most popular models to be enhanced. Further, it 

develops an advanced Boolean model of cell cycle control system and explores 

the results of this modelling attempt and compares with the existing models. 

   Chapter 4 shows and describes the proposed methods for developing a fuzzy 

logic model and how fuzzy logic can convert discrete models to semi quantitative 

models mathematically. In addition, the fuzzy model components and their results 

are discussed and compared with other models. 

  Chapter 5 explains PSO concepts, method and clarifies how the optimised fuzzy 

inference system provides robustness improvements and more accurate results 

from the developed models.  

 Finally, Chapter 6 provides a summary of the results obtained for each objective 

of the study. Moreover, conclusions of the research are represented in this 

chapter. Also, it presents the future research directions necessary to improve the 

models to even better understand the system dynamics of the cell cycle signaling 

network. 
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Chapter 2: Literature Review                         
 

 This study aims at understanding the behaviour of complex biological systems, such as cell 

cycle signalling network regulators. To have more accurate and deep understating of these 

systems, and how their components interact with each other, we need to know the 

relevant information about the most important regulatory elements in the cell cycle 

system. This information can enhance our knowledge to identify and construct our model 

and introduce advancements or improvements to it. 

This chapter, provides background information that gives a solid understanding of the 

mammalian cell cycle system, particularly in two aspects; the biological and the 

computational. Regarding the biological aspect, this chapter presents a biological review 

of the mammalian cell cycle system; including, cell cycle events or phases, components of 

cell cycle regulators, cell proliferation, checkpoints and, finally, DNA damage control during 

the cell cycle. Concerning the computational aspect, this chapter discusses modelling 

approaches that have previously been used for modelling the cell cycle process, 

highlighting their advantages and disadvantages in order to pave the way for the advanced 

model proposed in this research. 

Basically, a good understanding of the mentioned topics can help the modeller to integrate 

or synthesise a comprehensive computational model that is useful for modelling biological 

systems. This will be undertaken in this study and to aid the process some of the 

outstanding issues related to the cell cycle are presented in Sections 2.1 and 2.2. 

 

  2.1 Biological Background 
 

      2.1.1 Mammalian Cell Classifications: General Review 

 

The cell is the smallest unit of all living organisms.  It can control its structure independently 

and can reproduce itself. Simply, cells, together constitute biological life, and are known as 

the “building blocks of life” (Hay, 1991). Cells are organised and classified into two types 
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depending on the existence of a nucleus.  Cells with a nucleus are called eukaryotic cells 

and those without a nucleus are called prokaryotic cells.  

2.1.1.1 The Prokaryotic Cell  

 

This kind of cell is represented in the literature as the first form of life on our planet. As 

mentioned above, prokaryotic cells do not contain a nucleus and this makes them simpler 

and smaller than eukaryotic cells  (Stein & Pardee, 2004). Prokaryotic cells are organised 

into two domains: bacteria and archaea (Koonin & Wolf, 2008).  Prokaryotic cells can also 

be characterised by three architectural regions, as shown in Figure 2.1:  First, the cell 

flagella and pili project from the cell surface. Second, a cell envelope is formed and this is 

used to enclose the cell - it is like a wall that covers the cell membrane and separates the 

cell components from the outside environment. Third, the DNA regions (cytoplasm), the 

ribosomes and various inclusions are formed. These regions are represented in Figure 2.1  

(OpenStax-CNX, 2013).  

 

  

Figure 2.1: Diagram of a typical prokaryotic cell (OpenStax-CNX, 2013) 
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2.1.1.2 The Eukaryotic Cell  

 

 The second type of cell is called a eukaryotic cell (Bell & Dutta, 2002). The volume of this 

cell is a round thousand times larger than a prokaryote cell; there is actually a wide range 

of sizes for both prokaryotic and eukaryotic cells. It is also more complex in its structure 

and contents. Some of the differences are summarised in Table 2.1.  The structure of this 

kind of cell is displayed in Figure 2.2  (OpenStax-CNX, 2013).  

Table 2.1: Differences between prokaryotic and eukaryotic cells 

Prokaryotic cells Eukaryotic cells 

Always unicellular organisms Often multicellular organisms 

Small cells – 

 0.1–5.0 µm diameter 

Larger cells -  

According to one site: 10–100 µm diameter 

No nucleus or any membrane-bound organelles, 

such as mitochondria 

Always have nucleus and other membrane-

bound organelles  

DNA is circular, without proteins   DNA is linear and associated with proteins to 

form chromatin 

Ribosomes are small (70S) Ribosome is large (80S) 

No cytoskeleton  Always has a cytoskeleton 

Cell division is by binary fission Cell division is by mitosis or meiosis 

Reproduction is always asexual Reproduction is asexual or sexual 

  

 

Figure 2.2: Structure of eukaryotic cells: a typical animal cell (OpenStax-CNX, 2013) 
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2.1.2 Cell Cycle Events, Controllers and Pathways  
 

This research aims to study and model the interactions and events between the cell cycle 

system components. Cell components, such as proteins and genes, have complex 

interactions that take place at different speeds. Understanding the complex behaviour of 

these components is a very challenging task.  Therefore, to model this issue, we first have 

to understand the major components of the system. The cell is considered to be a complex 

system with a very large and varied number of components that have a high level of 

complexity.   

Cell proliferation process depends on both the correct, and fixed, order of chromosome 

replication and division during cell cycle.  Cell cycle has a set of concentrates such as 

checkpoints to ensure the integrity of the genome and to maintain the nucleo-cytoplasmic 

ratio of the cells within viable bounds (Tyson et al., 1995).   All events in cell cycles are 

found in a dependent form; this means that if any event is blocked during cell cycle, the 

next event will not appear or take place as a result.  For example, if DNA replication is 

blocked by external factors, such as drugs, the next event, such as a cell division event, will 

be blocked.  Another example is when a growth-inducing signal is blocked by factors, such 

as anti-growth signals or nutrient deprivation,  individually or together, it will arrest cell 

division (Novák, Sible, & Tyson, 2003). 

2.1.2.1 Cell Cycle Events 

 

The cell cycle is the way to produce two daughter cells from a single cell being led through 

the duplication (replication) and division processes (Behl & Ziegler, 2014a). Eukaryotic cells 

need around 24 hours to divide (Knoblauch, Hibberd, Gray, & van Bel, 1999; Wille, 

Pittelkow, Shipley, & Scott, 1984) through an ordered and well-organised sequence of 

events.  At the end of the cell cycle, cells produce a copy of themselves; however, abnormal 

events can force the cell to die  (Florens et al., 2002). Specifically, a mother cell produces 

two daughter cells; this process depends on a specific set of operations that take place 

during  cell cycle regulation,  such as cell growth, DNA replication, chromosome segregation 

(separation of the replicated DNA from the original DNA) and cell division (separation into 
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two cells) (Braastad et al., 2004; Csikász-Nagy, 2009). In order to accomplish these events 

cells move through several events called phases, as shown in Figure 2.3 (OpenStax-CNX, 

2013).  

  

Figure 2.3:  Eukaryotic cell cycle phases (OpenStax-CNX, 2013)  

 

In this research, the eukaryotic cell is taken as a case study. The proliferation of 

eukaryotic cells consists of several events as the cell grows and divides into two daughter 

cells. 

Biologically, each new born daughter cell stays in G0 waiting for growth factors signals to 

start the cell cycle; this phase is called quiescent.   Then, when a cell receives growth factor 

signals, it starts the cell cycle process. This cycle has a set of phases (Figure 2.3) with the 

two main phases being the S phase and M phase, which are separated by two gap phases, 

G1 and G2. So the sequence of the cell cycle is G0, G1, S, G2 and M. These phases are 

ordered in sequence in a dependent manner.  

These phases comprise: 

 When growth factors are present the cell cycle moves from G0 to the G1 phase; 

this phase starts after the previous cell division (pre-synthesis phase); sometimes 

the G0 phase can be quite long.  However, during this phase, the cell starts to 

grow and the contents of the cell (cytoplasm), along with its functional machinery, 

is developed.  The time for this phase is approximately 1/3 of the 24 hours that 

Eukaryotic cells need to divide 24 hours. 
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 The S phase – the synthesis phase:  This phase is responsible for DNA replication 

and the creation of the histone proteins needed for packaging genomic DNA.  The 

average time for this phase is seven hours.  

 The G2 phase or post-synthesis phase: In this phase a cell prepares itself to be 

split into two daughter cells. It grows and increases in size. The time for this phase 

is approximately four hours. 

 The mitosis or division phase (M-phase):  In this phase, the DNA is segregated and 

the cell divided.  The time needed for this phase is between 30 to 60 minutes, and 

it can be divided into five smaller phases (prophase, prometaphase, metaphase, 

anaphase and telophase); for more details refer to (B Alberts et al., 2002; Behl & 

Ziegler, 2014b).  As shown in Figure 2.4  the five stages of mitosis can be 

summarised as follows (OpenStax-CNX, 2013): 

1. Prophase: the chromatin condenses into chromosomes (see Figure 

2.4) by dehydrating and coiling. The nucleolus and the nuclear 

envelope disappear. The centriole (animal cells only) divides into 

two centrosomes, which move apart, creating the spindle.  

2. Prometaphase: this phase is following the prophase and 

preceding the metaphase, the spindle assembly is carried out in 

prometaphase right before the chromosomes alignment on the 

spindle plate that happens during metaphase. 

3. Metaphase: the cell poles are defined when the chromosome is 

connected to spindle fibers form. In addition, the cell equator, can 

be identified as the equatorial plate which are attached to the 

mitotic spindle apparatus via microtubule. Basically, in this part the 

chromosomes move to the equator of the cell and the centromeres 

(in the chromosomes) attach to the spindle fibres so that the sister 

chromatids line up in the centre of the cell. 

 

4. Anaphase: the centromeres of each chromosome divide and are 

pulled apart by the contraction of the spindle fibres, thus moving 

the chromosomes to opposite poles of the cell. 
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5. Telophase:  the chromosomes reach the poles, the spindle 

disappears and the chromosomes then return to their functional 

chromatin state by rehydrating and uncoiling. A new nuclear 

envelope begins to form around the chromosomes at each end of 

the cell, each with its own nucleolus.   

 

The mitosis phase is followed by cytokinesis in which the cytoplasm is divided into two 

daughter cells; these are roughly equal in size.   

 

 

Figure 2.4: Cell cycle phases (OpenStax-CNX, 2013) 

As demonstrated previously, one of the study interests is to study the elements that control 

the phases in the complex cell cycle system; this includes the major components that 

control and manage each phase. Each phase is considered to be a sub-system with its own 

dynamic behavior. Thus, the next sub-section explains the major species such as cyclins 

protiens and there related activators and diactivators that contol the transition process 

inside the abovementioned cell cycle phases. 

2.1.2.2 Cell Cycle Controller Components  

 

This research has several objectives, one of which is to study and model the interactions of 

the cell cycle controller elements, their relations and effect on the system, such as changes 

in the status of the entities (i.e., concentration).  Obtaining a profound understanding of 

these aspects requires a sound knowledge of the key controllers of the cell cycle, their roles 

and interactions.  

http://en.wikipedia.org/wiki/Cytokinesis
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Cell cycle controller regulation is a motivating topic for bioinformatics researchers as it is 

one of the best studied systems in biology. The cell cycle control system was still a black 

box for researchers until the 1980s when the key proteins in the control system were 

identified.  At this time a realisation came that they are distinct from the proteins that 

perform the processes of DNA replication, chromosome segregation, and so on (Bruce et 

al., 2010). In fact, cell cycle control proteins are a specialised group of proteins that control 

these processes in the cell cycle. 

A cell cycle controller has a positive and negative feedback mechanisms that help it move 

from phase to phase. It contains many products and items that organise the cell cycle 

controller activities. These are organised into two categories – positive and negative. 

Positive mechanism start and accelerate the processes, such as CycD, CycE, CycA, and CycB. 

Further, the negative mechanism stop or delay the processes at various points and these 

include cdk inhibitors and cyclin degradation entities. Under the control of these categories 

of entities, cell division follows a highly ordered sequence of events  (Novák et al., 2003). 

The next sub-sections discuss the details of the most common cell cycle controller species.  

 

2.1.2.3 Cell Signalling Pathways 

 

Signalling networks are divided into three types of pathway; the first is the gene regulatory 

network (GRN).  This network contains DNA segments (genes) that communicate with each 

other indirectly using protein products.  This kind of network governs the expression levels 

of protein and mRNA (Düvel et al., 2010).  The second network is the signal transduction 

pathway.  This network is predominantly a protein – protein interaction network and is 

considered to be a very complex communication system. It is responsible for controlling 

most cellular activities and cell actions (Vander Heiden, Cantley, & Thompson, 2009).  The 

third network is a  metabolic pathway that transforms the nutrients into energy (Vander 

Heiden et al., 2009).   

In real biological system, gene regulatory and protein-protein interaction pathways may 

well have an actual physical boundary, like many processes take place in individual 

organelles. In cell cycle control system,  the different pathways are unified and work as an 
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integrated whole in achieving the aim of cell division  (Calder, Gilmore, Hillston, & 

Vyshemirsky, 2010; Novák et al., 2003). 

2.1.2.4 Cyclins 

 

The first discovery of cyclins was in marine invertebrates (Bela Novak & John J Tyson, 2004). 

Cyclins are important elements in cell cycle system because cyclin proteins have a 

significant influence in regulating all major events in the eukaryotic cell cycle. For instance, 

cyclins are the regulatory components of the cyclin-dependent kinases (CDKs) that control 

all the major events in eukaryotic cell cycle. Mainly, cyclin-dependent kinases (CDKs) binds 

with a regulatory protein such as cyclin. Subsequently, without cyclin, CDKs has slight 

kinase activity; and only work as  cyclin-CDK complex is an active kinase (Evans, Rosenthal, 

Youngblom, Distel, & Hunt, 1983). 

There are four important classes of cyclins in mammalian cells (Pinheiro & Sunkel, 2012), 

and these classes control the cell cycle phases. The first is G1 cyclin (e.g., CycD). These 

cyclins control the progression through the G1 phase and makes a commitment to the S-

phase. The second is S cyclin (e.g., CycE). The main job of CycE is to initiate and complete 

the replication of DNA. The third class is a G2 cyclin (e.g., CycA), which helps to increase 

the size of the cell. Lastly, a M cyclin (e.g., CycB)  guides the cell cycle in eukaryotes into 

mitosis (cell division stage) and then re-enters the cell cycle to start again with the G0 then 

the G1 phases, as shown in Figure 2.5. This figure shows the activity of cyclin products 

during the cell cycle. For instance, in the cell cycle, CycD and CycE control the G1 phase and 

CycA and CycE control the S phase, while CycA and CycB, respectively, regulate the G2 and 

M phases. 

 

 Figure 2.5:  Cyclins drive the cell cycle phases (Pinheiro & Sunkel, 2012) 
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Cyclins were identified as proteins in the cell cycle, which can be accumulated, degraded 

and oscillated during cell cycle phases, as shown in Figure 2.6.  This figure shows the 

changes in cyclin concentrations during cell cycle; these changes in concentration levels 

reflect the activity of each cyclin species (Pinheiro & Sunkel, 2012).  As shown, cyclin 

concentrations vary during the cell cycle, with their level indicating the phase where their 

activity is the strongest. For instance, at the beginning of the G1 phase the Cyclin D 

concentration level increases and then becomes stable in the S phase; it starts lowering 

protein production during the G2 phase and, in the last stage of mitosis, the concentration 

level of Cyclin D becomes very weak. Cyclin E protein production starts building up in the 

middle of the G1 phase and reaches its peak at the beginning of the S phase. It briefly 

retains peak level and reaches its lowest limit during the last quarter of the S phase.  

Cyclin A production starts gradually in the last quarter of the G1 phase and continues 

building up until it reaches its peak in the first quarter of the G2 phase. After reaching its 

peak, the protein production starts decreasing and becomes very low in the first quarter 

of the mitosis phase. Unlike the other cyclins (i.e., Cyclin D, E, and A), which increase in the 

G1 phase, Cyclin B production increases from the start of the S phase.  The production of 

this protein gradually reaches its peak in the first quarter of the mitosis phase and then it 

decreases sharply and reaches its lowest limit in the middle of the same phase.  

 

Figure 2.6: Cyclin expression cycle  (Pinheiro & Sunkel, 2012) 

The switching activity of cyclins during cell cycle events is considered a good reason for 

researchers to study and monitor the changes in cyclin levels during cell cycle (Novák et al., 

2003). Accordingly, cyclin activity will be included in our study.  
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2.1.2.5 Protein Level Regulators (Transcription Factors and Ubiquitination Machinery) 

During Cell Cycle 

 

The most important transcription factors for cyclins are Myc, TFE and TFB. For example, 

Myc activates CycD synthesis early in the G1 phase;  TFE works with CycE and CycA to lead 

cyclin synthesis in the S and G2 phases, while TFB works with CycB to activate CycB 

synthesis in the late G2 and early M phase (Singhania et al., 2011).  

 

Auxiliary proteins combine with in order to direct its ubiquitin ligase activity towards 

specific substrates. For instance,  CDC20A with APC (APC/CDC20A) can process Cyclin A 

degradation (Hilioti, Chung, Mochizuki, Hardy, & Cohen-Fix, 2001) and  CDC20B can 

combine with APC to form  APC/CDC20B that is active during the anaphase and causes the 

degradation of securin and Cyclin B (Singhania et al., 2011). The Cdh1-form of APC (APC-

Cd1) is active during G1 phase of cell cycle and keeps Cyclin B levels very low. In our model, 

we make assumptions that agree with Fauré et al. (2006) model for these proteins. Our 

model mainly includes the abovementioned protein regulators and also recent discovered 

elments such as SCF; this element has significant roles in the ubiquitination of proteins 

inside the cell cycle such as degrading of CycE. Further, SCF marks several other cellular 

proteins for destruction (Morgan, 2007). 

 

2.1.2.6 Cyclin-Dependent Kinase Inhibitor (Ckis) And Retinoblastoma Protein (RB) 

 

Cyclin activity can be inhibited by cyclin-dependent kinase inhibitors (CKIs). In the cell cycle, 

there is a set of inhibitors; for example, P15, P16, P18, P19, P21, P27, P57, and these 

inhibitors dynamically interact with cyclins during the cell cycle phases (Besson, Dowdy, & 

Roberts, 2008). For instance, P27  inhibits CycE  interactions in the cell cycle (Russo, Jeffrey, 

Patten, Massagué, & Pavletich, 1996)  and for this reason we included P27  in our model. 

 

Moreover, retinoblastoma protein (RB) can inhibit excessive growth in the cell as it 

prevents cell cycle progression until the cell becomes ready to divide; for this reason RB is 

called a tumour suppressor. RB also has an impact on cyclin activity inside cell cycle phases. 

Specifically, RB inhibits transcription factors, such as TFE, which regulates CycE and CycA 
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activity. In addition, the inhibition of TFE will not push the cell into the S phase. This restricts 

the replication of DNA inside mammalian cells since it prevents the progression from the 

first gap phase (G1) to the synthesis phase (S) of cell division cycle. The aforementioned 

regulations by RB make it an important player in cell cycle and therefore is employed in our 

model.  

 

2.1.2.7 Checkpoints  

  

The concept of checkpoints was introduced by Hartwell and Weinert (1989). They assumed 

that an uncompleted cell cycle event must send an inhibitory signal to the next event.   

These signals are called  checkpoint pathways  (Novák et al., 2003).   As shown in Figure 

2.7, the cell cycle in eukaryotic cells is guarded by three checkpoints.  These are at the 

boundaries between the cell cycle phases.  The first is at the G1/S boundary, the second at 

the G2/M boundary, and the third is at the metaphase/anaphase boundary.   

 

 

   Figure 2.7: Checkpoints in cell cycle  (OpenStax-CNX, 2013) 

 

Both yeast cells and mammalian cells have checkpoints. Therefore, the G1 checkpoint, is 

the first control point in yeast is called the START point and in the mammalian cell cycle 

system it is called the Restriction (R) Point. 

The “START checkpoint”  in budding yeast was defined as the earliest genetically controlled 

step in the cell cycle  (Hartwell, Culotti, Pringle, & Reid, 1974). In yeast cells, any cell that 
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faces a deprivation of nutrients before this point is arrested at the START point. But cells 

that face the same problem after the START point will continue the cycle and be arrested 

when they are in the next cycle.  Hartwell et al. (1974) suggest that the most important 

component of yeast cells is the CDC28 gene as this helps yeast cells pass the START point.  

Later research has shown that it encodes for an important cyclin dependent kinase (Cdk). 

Generally, in budding yeast, the activation of G1 cyclin-Cdk complexes are usually blocked 

by checkpoint signals at the START point (Novák et al., 2003). 

Similarly, the Restriction Point in mammals and growth factors show related activity. The 

efforts to understand the impacts of growth factors on cell growth process started about 

60 years ago. It has been studied using mathematical models  (Zetterberg & Larsson, 1985). 

Subsequently, many mathematical models have been developed for this purpose.  These 

models provide knowledge about the interactions that control cell cycle processes (Csikász-

Nagy, 2009). Cells in multicellular organisms need special growth factors (GFs) to continue 

and complete their proliferation.  If a cell gets the required amount of GFs, it continues the 

proliferation process by moving from phase to phase in cell cycle; otherwise, it enters a 

resting state (G0). 

In the G1 phase, the first point that cells enter is at the Restriction Point (RP) (Bartek, 

Bartkova, & Lukas, 1996; A. B. Pardee, 1989; Planas-Silva & Weinberg, 1997).  RP is a point 

of no-return in the mammalian cell cycle. A cell can be halted at the RP if the GFs are 

prevented for some reason.  But, if the GFs are prevented after this restricted point, the 

cell continues the cycle to the next proliferation phases. DNA damage is the major threat 

during cell cycle as it affects the genome’s integrity.  DNA damage triggers a signalling 

network to address the situation. When a cell is in the cell cycle one action is to arrest the 

cell cycle, which stops and keeps the cell cycle in specific places by inactivating Cdks. This 

allows time for the DNA repair pathways to repair the damage (Walworth, 2000).  

In mammalian cells, DNA damage can be due to internal or external factors. Internal 

damage is typically due to replication errors or oxidation and these are typically repaired.  

External factors, such as ionising radiation, can also cause DNA damage. This can produce 

breaks in DNA strands, either single stranded or double stranded breaks. Several elements 

work together in response to DNA damage, such as, ATM, P53 and P21 (CKI inhibitor). They 

act on Cyc/Cdk to inhibit cell cycle progression and initiate the repair or apoptosis (cell 
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death) pathways, depending on the damage; for more details see (Bartek & Lukas, 2001) 

and (Novák et al., 2003). 

The transition from G2 to M needs a fully replicated DNA. The G2-M checkpoints control 

this process by using CycB-Cdk1 to block the transition from the G2 phase to the M phase 

in mammals. In addition, the metaphase (spindle) checkpoint, must ensure that the 

separation of sister chromatids in the anaphase happens only when all chromosomes are 

connected to the bipolar mitotic spindle through their kinetochores. In the case of a cell 

that has free kinetochores it does not exit mitosis or undergo anaphase. The spindle 

checkpoint blocks both the metaphase-anaphase and anaphase-telophase interactions.  

 

Checkpoints are considered to be surveillance and quality control mechanisms in the cell 

cycle regulation process (Braastad et al., 2004; Stein & Pardee, 2004). Checkpoints have 

three important components: (i)  sensor, the main job of this component is to detect the 

errors; (ii) signal generator from the sensor via the transduction pathway; (iii) response 

element that takes action, such as blocking cell cycle progression  (Stein & Pardee, 2004). 

In a cell cycle system if any condition for cell division has not been met the cycle is halted 

at any of these checkpoints.   

However, in this study, we are not investigating DNA damage or the elements of cell cycle 

checkpoint activity. Checkpoints will be part of our future work as an extension of this 

research. The models we rely on, such as (Fauré et al., 2006) and Singhania et al. (2011), 

did not involve checkpoints in their implementation. We are focusing in this study on the 

major controllers of cell cycle system activity, like cyclins, that flow over the cell cycle. 

Therefore, all the aforementioned biological elements that control cyclin activities will be 

investigated in Chapter 3 where we explore the relations and biochemical reactions 

between these elements to incorporate them in the models we develop.  

The next section explains computational modelling for cell cycle systems. It discusses 

several computational models and approaches that have been developed to model cell 

cycle.  Models can help researchers study, predict, understand and provide explanations 

without the need to use laboratory experiments, as these are costly challenging and time-

consuming. 
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2.2 Computational Approaches to Modelling Cell Cycle 

 

Study of biological systems can provide understanding of a system’s structure and its 

dynamic behaviour (Bruggeman & Westerhoff, 2007; Ilsley, Luscombe, & Apweiler, 2009; 

Kremling & Saez-Rodriguez, 2007; Wolkenhauer, Kolch, & Cho, 2004). Systems biology 

research depends on, and provides, very large amounts of data which can be collected by 

several means, such as high throughput technology, including mass spectrometry 

(Reinders, Lewandrowski, Moebius, Wagner, & Sickmann, 2004; Xie, Liu, Qian, Petyuk, & 

Smith, 2011) and microarrays (Barrett & Kawasaki, 2003; Lamartine, 2006). Current studies 

use these data sets to elucidate molecular networks and their properties, including their 

dynamic behaviour, but these data sets should also have the ability to provide phenotypic 

properties for specific biological systems (De Backer, De Waele, & Van Speybroeck, 2010). 

 

Biological systems are elusive mechanisms and consists of many interactions that need to 

be clarified. For instance, the dynamic and complex behaviour of any system can emerge 

from individual interactions that happen between molecules. Moreover, this emergent 

behaviour can be studied using computational-based models. 

 

In this section, we explore modelling of biological systems and provide meaning for system 

components as well as the computational models and approaches that have previously 

been developed for cell cycle. 

 

2.2.1 Modularized Biological System Components 

 

The main objective of modelling biological systems is to explain and investigate natural 

phenomena in a simplified way (Büchsenschuß, 2014). Biological systems, such as cellular 

compartments and biological cells, consist of entities and their interactions. Therefore, any 

model that represents a biological system is abstract and uses simple representations for 

its entities and interactions. 
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2.2.1.1 System Entities  

 

Essentially, a system includes sets of components that represent a system’s species, 

subjects or a specific part of biological system, or all of them together. For instance, entities 

can be formed from biological molecules (specie/s) or sets of similar biological molecules 

(subject/s) like whole set of transcription factors of the same kind. Further, these entities 

can also be parts of molecules when a gene becomes part of the chromosome molecule. 

Any environmental condition can also be considered as an entity in the system. 

 

Over time, system entities can change their states from one state to another. The current 

state of a system is defined depending on the entirety of all the current states of the 

elements that comprise the system. Moreover, the current state of each entity depends 

on their properties as well as their previous state. Each entity has a set of properties that 

describes it. For example, each protein in the cell has a shape, a mass and a location that 

describe them. In addition, a set of proteins of a specific type also has the concentration of 

its molecules as a property.  Each current state can be specified using numerical or linguistic 

values.  

 

2.2.1.2 Interactions 

 

Entities in the system communicate with each other through interactions, as the proteins 

themselves can interact together. Furthermore, cellular processes can be classified as a set 

of interactions between pairs of entities or sets of entities. These kinds of interactions 

formulate the dynamic behaviour of biological systems; otherwise the system will display 

static represntation. More details on interaction dynamics can be found in the next sub-

section. 

 

System interactions are the main effector on the states of the system entities. Entities 

affect each other via interactions to change their states. Each entity can be an effector that 

influences another entity, or it can be a target for another entity to change its state. 

Sometimes the entity can be either an effector or a target depending on the task to be 

undertaken. This task is managed by system interactions that control its behaviour.  
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2.2.1.3 System Dynamics 

 

Basically, system components, such as entities and interactions, provide a static 

representation of the model. A static model can be used to represent the topology of a 

biological system (Xu, Wang, & Ding, 2004).  This behaviour can be transformed into 

dynamic behaviour if these components are provided with temporal and spatial 

dimensions. For example, the interactions between entities can emerge as dynamic 

behaviour.  As mentioned previously, the current state of the system is specified by the 

current states of all system elements, and the interactions, e.g., an enzymatic conversion 

or transport process, can change the states.   

 

The dynamic behaviour of the system can be graphed as trajectories of these states where 

they change in space over time, while a static description cannot provide the dynamic 

behaviour due to the complexity of these dynamics.  Studying dynamic behaviour is very 

important for explaining and scrutinising biological phenomena, such as the localisation of 

system components and oscillations in protein concentrations. This is one of the main 

objectives of this study.  

 

2.2.1.4 Description Of Models 

 

In models, each entity is mostly represented by one state, such as the level of protein 

concentration. Accordingly, in computational-based models, states are represented by 

numerical values and mathematical functions represent the reactions. Modellers and 

researchers always try to simplify complex systems, either to understand them, or to 

explain them better.  

 

Therefore, the most popular technique to simplify a complex system is to use a graphical 

representation. Most models are represented by a graphical network that consists of nodes 

and edges; this is an attempt to simplify the nature of the system’s activity. Biological 

systems can be represented as a network where nodes represent biological 

elements/species and the edges in the graph represent the biological interactions. If the 
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edges in the graph have no sign, this is called an unsigned graph. In this kind of graph, each 

edge represents the relations between elements; but the sign of the edge is useful to 

represent the type of relations (Activation or inhibition). Any network that has signed edges 

can be called a sign-directed graph.  

 

A sign-directed graph is part of graph theory where the graph consists of nodes/vertices 

and edges/arcs. These components represent the reactionary molecular elements in 

biological systems. For instance, the nodes represent biological elements and the edges 

represent their biological interactions. All edges are signed with the direction from the 

source node to the target(s) node(s) (Adhikary & Eilers, 2005). 

 

Furthermore, in a sign-directed graph, all the edges are directed from the head node, the 

source/regulator of the tail node, to the node being regulated (target or tail). In addition, 

all components in a sign-directed graph are assembled from an extensive survey of 

biological information in the literature.   

 

This kind of graph accurately representing a model can be very helpful for several reasons:  

 

 It enables structural analysis of the network, such as network connectivity and 

process cycles. 

 It helps to visualise our knowledge relating to biological systems by using 

graphical representations of biological entities and their reactions. 

 These graphical representations reflect the static structure of the system. They 

also reflect the component connectivity of a system and their relations, such as 

the effector and target entities. However, they cannot explain the dynamic 

changes in entities’ states over time.   

 

Moreover, dynamic models are more complex than static models because of the need to 

provide extra information for temporal processing. Furthermore, the interactions are 

represented by functions that calculate the current and next states for both the activator 

and target entities.  
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2.2.1.5 Knowledge-Based Models  

 

A knowledge-based model is a model that is built depending on the knowledge available 

within a current hypothesis and the information available about system components and 

interactions. Existing knowledge can be classified into two classes: first, experimental data, 

such as results observed during experiments; secondly, previous knowledge, such as the 

knowledge acquired from the scientific literature. For instance, the reaction rates and 

concentration levels for proteins can be obtained from experimental data.  Therefore, 

these models are built on the current knowledge together with hypotheses.  

 

These kinds of models can provide new knowledge and new hypotheses. This allows the 

researcher to compare the new knowledge with old knowledge, and then modify the old 

knowledge or create new knowledge with new hypotheses.  

 

 

2.2.2 Current Computational Models and Approaches for Cell Cycle  

 

Complex biological systems, such as cell cycle, have several issues that need addressing; 

these include the system structure, interactions, function and dynamic behaviour.  For 

instance, cell cycle system consists of a large number of elements interacting dynamically. 

Most of these aspects are unclear. Medical and biological researchers are currently trying 

to develop approaches and methods to investigate and understand the cell cycle 

functionality and its mechanisms. These investigations can help improve treatment and 

diagnoses of diseases  (Hanahan & Weinberg, 2000).  

 

Modelling approaches greatly help in understanding and addressing issues in the cell cycle 

system.  Researchers depend on the available information to develop models to address 

one or more of these issues. For example,  they use gene regulatory networks and protein-

protein networks to analyse cell cycle events and activities in relation to gene expression 

(Kohn, 1998). Researchers have come to understand the structure and behaviour of these 

networks depending on the limited data available (Csikász-Nagy, 2009). 
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Modelling approaches can provide specific information. One of the main outcomes of 

modelling is to predict temporal changes in the states or levels of the interacting elements.  

Another outcome is addressing system events or emerging properties arising from the 

collective behaviour of the elements. These may include a cell passing various cell cycle 

phases with the support of participatory elements. Yet another outcome is an even higher 

level system; where a system malfunction gives rise to diseases, such as cancer. A deep 

understanding with rich knowledge can be attained by studying important aspects of the 

cell cycle, such as cellular signalling and other processes involved in cell cycle regulation 

(Hanahan & Weinberg, 2000). Understanding biochemical reactions between multiple 

proteins, genes and their mRNAs (Kohn, 1998) aids our understanding at a fundamental 

level. 

 

Modelling approaches can be classified into several classes (Csikász-Nagy, 2009). The first 

class is logical or discrete models that describe a system in a qualitative form.  The second 

class is continuous models, which are used to express continuous changes in protein 

concentrations in biological systems.  The third class represents biological systems with 

noise; these are called stochastic models. The fourth class is hybrid models; in this type of 

models a combination of different methods are used.   Two or more methods work 

together to complement each other in representing a biological system.  In some cases, 

more than three methods can be used.  

 

Several computational models and approaches have recently been developed for the cell 

cycle. They have provided useful information that helps researchers (biologists) study and 

predict outcomes. This section provides a review of systems biology and mathematical 

modelling approaches used to describe properties and behaviour of complex systems, such 

as the cell cycle system.     

 

2.2.2.1 Logical or Discrete Models 

  

This modelling method, which depends on discrete or logic-based concepts, is considered 

a simple and basic deterministic model; an example of which is the Boolean Network.  The 

first Boolean model was developed by (Glass & Kauffman, 1973; Thomas, 1973) for gene 
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regulatory networks. Boolean models consist of a set of entities that represent a biological 

system’s components, such as genes, proteins and other small molecules. The edges 

represent the relations between the entities (nodes) and the activity state of each node is 

represented as inactive or active in the form of [0, 1].  

 

Boolean models of the cell cycle system have been proposed previously, most of these 

were developed to represent and mimic the yeast cell cycle. However, very few models 

have been developed to model the mammalian cell cycle controller system. 

The concentrations of the system components can be discretised by their threshold 

concentrations. For example, all concentrations that have values lower than a threshold 

value are “OFF”/0, while all other concentrations that are greater than the threshold value 

are “ON”/1. The edges represent the relations between entities (nodes), and the activity 

state of each node is represented as inactive or active in the form of [0, 1].   

In a biological system, nodes represent proteins and genes while edges represent 

interactions.  Figure 2.8a represents the structure of a Boolean network where A, B and C 

represent network nodes and the directed arrows denote activation or inhibition. Figure 

2.8b shows the rules that manage the activities in a Boolean network system.  In the cell 

cycle system the components can be represented by Boolean entities with binary values 

referred to as “OFF” and “ON.”  

    

 

 

 

 

 

 

Figure 2.8: A simple regulatory Boolean network model. (A) Network representation: A, B, and C 
are the system components or network nodes. The directed edge ---> or —| denotes activation or 
inhibition, respectively. (B) Boolean rules controlling the dynamics of node states of the Boolean 
network in (A). Each state is represented by the node name and the * in the label denotes the next 
state of each node over time. So A* means state of A is ‘on’ next time if the conditions on the right 
hand side are satisfied.   

 

A.  Boolean network 
structure 

 

 

 
 

 

B. Boolean Rules and 

network activities. 

 

A* = NOT C 

B* = A AND C 
C* = NOT A 

 

A 

B C 



33 
 

A well-known Boolean model that represents the yeast cell model was developed by Li, 

Long, Lu, Ouyang, and Tang (2004). They examined the temporal robustness of the cell 

cycle concerning checkpoint conditions in budding yeast for the construction of a Boolean 

network. However, their approach is only suited to small and well-characterised systems. 

Braunewell and Bornholdt (2007) also proposed a Boolean network to study dynamical 

attractors in the yeast cell cycle. Their proposed Boolean model consists of 11 genes that 

coordinate the dynamics of the yeast cell cycle. Braunewell and Bornholdt (2007) 

developed the framework for their proposed model using the concept of discrete threshold 

dynamics and this allowed them to introduce fluctuations in the processing time. They 

introduced noise into the model to account for the effects of biochemical stochasticity. 

However, Braunewell and Bornholdt (2007) used a very simple model and neglected to 

provide a detailed description of the system with different time scales involved in different 

processes. Their results cannot be translated directly into the cell cycle system. 

Another model was introduced to study fission yeast, Schizosaccharomyces pombe.   

Davidich and Bornholdt (2008) introduced a Boolean network model for the cell cycle of 

the fission yeast, Schizosaccharomyces pombe, which was based on known biochemical 

interaction topologies. Using this model, they dropped the 47 essential kinetic constants 

and parameters of the ODE approach and still obtained the same results for the biological 

sequence of activation. However, their work was limited to a single cell size checkpoint. 

Furthermore, they also neglected DNA damage checkpoints.   

 

Studying the wild type and mutant phenotypes has been undertaken in Boolean networks 

by researchers such as Irons (2009),  who developed a new Boolean model for the budding 

yeast cell cycle that described a wide range of wild type and mutant phenotypes. Irons 

(2009) model was robust against perturbations in reaction times and network component 

states. It overcame the FEAR pathway limitations of the  Boolean model developed by Li et 

al. (2004). They included the MEN pathway components in their proposed model. 

Furthermore, their model was suitable for sub-network analyses that can be used to 

identify key sub-dynamics for viable cell cycle control. The Irons (2009) model produced 

different times it took to pass through each phase compared to the actual biological times. 
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 The yeast model was limited in providing a better understanding of complex biological 

systems due to its simplicity (C Gérard & A Goldbeter, 2012). To understand the behaviour 

of complex biological systems, the integration of molecular data into a formal dynamical 

model is required (Fauré et al., 2006). This is the situation with the mammalian cell cycle. 

Fauré et al. (2006) proposed a Boolean model for the mammalian cell cycle based on Bela 

Novak and John J Tyson (2004) ODE  system to describe cell cycle behaviour. Bela Novak 

and John J Tyson (2004)  model was based on 27 equations and other experimentally-

derived parameters.  The Fauré et al. (2006) model is still considered a benchmark for all 

the Boolean models developed later. The major contribution of Fauré et al. (2006) model 

was its simplicity due to the reduction in the number of equations and the focus on 

important elements, including cyclins D, A, E and B, Rb and P27. However, the limitation of 

their model is that it did not incorporate cell cycle checkpoints. Moreover, this model does 

not account for the effect of some key cell cycle regulatory proteins, such as SCF, c-MYC 

and TFB; more details are investigated in the next chapter – the Boolean model. 

Boolean networks are easy to design and program and they provide information on the 

interactions and system properties simply and qualitatively. Furthermore, this kind of 

network does not depend on the model parameters. However, these models also have 

limitations.  For instance, the discrete model presents its results in qualitative form, and 

this is not enough for researchers to gain a deep understanding of system behaviour.  

Furthermore, Boolean models cannot describe the intermediate activity levels of elements, 

or which element is more active than others, because they are not part of Boolean model 

functionality; this is one of the major drawbacks of discrete models. 

 

This kind of model can also only represent the local state changes of proteins (nodes) in 

discrete time steps.  In the temporal development of the system, time is assumed to be in 

a synchronous or asynchronous form. In synchronous form, all nodes update their states 

at each time step; whereas, in asynchronous form, randomly selected nodes update their 

states at each time step. More details relating to Boolean update schemes can be found in 

the next chapter within section 3.1.4.  
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2.2.2.2 Continuous Models  

 

This model class mainly represents the mathematical approaches of ordinary differential 

equations (ODEs). It is a deterministic model like Boolean models (Glass & Kauffman, 1973; 

Thomas, 1973).  ODE models can successfully explain the continuous behaviour of 

biological systems.  

For the cell cycle, several ODE models have been developed to provide detail information; 

for example, the concentrations of proteins and other cell cycle components. Over the last 

century, researchers have discovered that molecular interactions controlled cell cycles. 

Over that era, many groups have been working on mathematical models to analyse these 

interactions, as mentioned in Table 3.1. The group of Novak and Tyson (1993) as one of the 

significant leaders in the field; has published more than 40 papers on cell-cycle regulation. 

Currently, their models are considered benchmarks for computational systems biology. 

In 1993, Novak and Tyson (1993) studied the mitosis phase in eggs of the frog, Xenopus 

laevis, and discovered that their model could provide a reliable switch for entry into 

mitosis. Novak and Tyson (1993) revealed the “hysteresis” that exists in the MPF-cyclin 

relationship. Later, they provided a detailed model for cell-cycle regulation by describing 

the Cdk control network in the budding yeast, Saccharomyces cerevisiae. Afterwards,  Bela 

Novak and John J Tyson (2004) developed a new mathematical model with the inclusion of 

restriction points that controlled the mammalian and yeast cell cycles.  Their model was 

mainly based on the effects of growth factors on the cell cycle. Moreover, they examined 

the changes and mutations in some key elements of the mammalian cell cycle, including 

Cyclin E and Retinoblastoma protein (RB). Their model had many shortcomings such as in 

regard to cell growth and division. 

More recent models, such as that of K. C. Chen et al. (2004), researchers proposed another 

continuous model for the yeast cell cycle based on biochemical rate equations. However, 

their model documented several inconsistencies between the model and their 

experiments. Their model also requires estimating the effective values of the biochemical 

rate constants, which are difficult to measure. (Ferrell, Tsai, & Yang, 2011) also proposed a 

mathematical model to explain the oscillatory biochemical circuits in the context of the 
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Xenopus embryonic cell cycle and the stability of the system. The major contribution of 

their model was the specification of kinetic parameter sets that produced oscillations. 

Furthermore, they documented the reasons for the oscillations in their model.  

The above models and other models in Table 2.2 can properly represent continuous 

biochemical reactions as shown in Figure 2.9. ODE models can provide realistic results for 

continuous changes in protein concentrations of biological systems. Furthermore, ODE 

models can mimic the dynamic behaviour over time in a better way than other models, 

such as Boolean models. Figure 2.9 explains the major differences between ODE models 

and discrete models since almost all models can be classified into one of them.   

 

Table 2.2. Some ODE mathematical models of mammalian cell cycle 

Year Organism/Cell Type Type of Model Reference 

 

1969 No specific organism ODE (Sel'kov, 1969) 

1974 No specific organism ODE (DA Gilbert, 1974) 
1999 Mammalian somatic cells ODE (Aguda & Tang, 1999) 

2006 Mammalian somatic cells Delay differential 
equations 

(Srividhya & Gopinathan, 

2006) 

2008 Mammalian somatic cells ODE (Yao, Lee, Mori, Nevins, & 
You, 2008) 

2009 Mammalian somatic cells ODE (Alfieri et al., 2009) 

2010 Mammalian somatic cells ODE (Ling, Kulasiri, & 
Samarasinghe, 2010) 

2010 Mammalian somatic cells ODE (Iwamoto et al., 2011) 
 

2011 Mammalian somatic cells ODE (L. Zhang, Cheng, & Liew, 
2013) 

2014 Mammalian somatic cells ODE (Weis, Avva, Jacobberger, & 

Sreenath, 2014) 

 

a.  
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b.   

c.    

d.  

Figure 2.9: The functionality in ODE and Boolean models and how they explain the dynamic 

behaviour of system components (node/s) in a biological system. a) Information representation; 

for example, on the left side, the Boolean model represents node/s in a binary digit form, 0 OR 1, 

while ODE provides exact number values. b) Boolean and ODE representation of the fixed point 

states when the biological system becomes silent over time. c) Boolean network representation of 

the entire system activity and the global behaviour as repeated cycles of time steps, while ODE 

representation shows repeated cycles in continuous form like oscillations. d) Boolean model 

explanation of  the changes in system components from state to state, 0 to 1, and vice versa, over 

time, while the ODE model explanation shows the changes in concentrations for system 

components over time. 

However, the problem with ODE models is that when the model has a large number of 

components, such as genes and proteins, it becomes very difficult to analyse them (Irons, 

2009). Moreover, the source of the parameters used in continuous models is generally 

experimental estimations or inferences. Either way, researchers or modellers always need 

to face the problem of parameter availability and reliability. As a consequence, if ODE is 

used for large complex systems, such as the cell cycle system, a large number of unknown 
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parameters need to be estimated.  These models can also not provide a clear view of the 

order and sequence of biological events. 

 

2.2.2.3 Stochastic Models  

Stochastic models represent a complex system, such as a cell cycle system, along with its 

inherent noise. It randomly chooses items or nodes. In this kind of model, stochastic 

behaviour is offered using mathematical methods. The most popular mathematical 

methods used are the Gillespie Stochastic Simulation Algorithm (GSSA) (Kar, Baumann, 

Paul, & Tyson, 2009) and the Stochastic Langevin Equations (SLA) (Steuer, 2004). 

Some stochastic models of cell cycles have already been produced, such as that by 

Chiorino and Lupi (2002),  who proposed a stochastic ordinary differential equations 

approach to investigate G1 phase variability such as CycD, CycE, RB ,P27 and E2F from a 

molecular point of view. In addition, they modelled the transition from the G1 phase into 

the DNA synthesis (S) phase. Their model can be used successively to predict protein 

behaviour. However, their model cannot describe cell cycle progression so easily and 

linearly as the other models. 

 

 Y. Zhang et al. (2006) also proposed a stochastic model for the network regulating the cell 

cycle of budding yeast. They advanced a probabilistic Boolean network model consisting of 

11 nodes. The stochastic effect was controlled by a Markov chain that depended on a 

temperature factor, such as parameter β. They concluded that both the stationary 

biological states and the biological pathway had a stable state for a wide range of 

‘temperatures’. However, their model showed a sharp transition in behaviour at a critical 

temperature, βc, which made the dynamics dominated by noise. Another model was built 

by Bean, Siggia, and Cross (2006) to investigate the coherence of the START phase in the 

cell division cycle;  Bean et al. (2006) developed a stochastic model based on quantitative 

time-lapse fluorescence microscopy on a multi-cell cycle timescale. Multiple fluorescent 

markers were used to examine the coherence of the START phase in the cell division cycle. 

The major contribution of their model involved its applicability to yeast grown under time-

lapse conditions and its applicability to semi-automated assignment of micro-colony 
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pedigrees. Furthermore, their model could be used for stochastic effects in prokaryotic 

transcriptional regulation.  

 

Later, Braunewell and Bornholdt (2007) examined the cell cycle of budding yeast based on 

the concept of discrete threshold dynamics to study the stability and dynamical attractors 

of the cell cycle system. However, the major limitation of their model was that it did not 

represent checkpoint mechanisms. Simplified stochastic models have now been 

developed, such as that of Zámborszky, Hong, and Nagy (2007).  In their model, they 

developed a simplified version of a four-variable mammalian circadian clock model. They 

adapted Novak and Tyson’s mammalian model (2004) to build their model.  The model was 

built and a set of assumptions were made to simplify the system; for example, they 

assumed that some elements in the system were the same and some system components 

were more stable than others, which introduced an autocatalytic positive feedback into 

the system. In the stochastic simulations,  Zámborszky et al. (2007)  they introduced noise 

into the cell cycle regulatory equations. They rewrote the cell cycle model equations as 

Langevin type equations with multiplicative noise (Steuer, 2004). As a result of their 

simulation they stated that the clock would play an important role in cell size control via a 

Wee1 element in their model.  However, Zámborszky et al. (2007) did not address a 

comprehensive mammalian circadian rhythm model. 

 

More recent models such as that of Kapuy et al. (2009) simulate the mitotic exit of 

mammalian cells. Their model predicted that in a time interval of 30 to 70 min the 

percentage of cells that completed their irreversible mitotic exit would gradually increase. 

They observed that mammalian and yeast cells shared an important point, the activation 

of Cdh1/APC in the model and the inactivation of CycB transcription at low levels of Cdk1 

activity. This happens due to the additional feedback loops that help in the irreversibility 

of the mitotic exit. However, their model has a challenge, particularly in mammalian cells, 

as the phosphatase that counteracts Cdk1–CycB is yet to be identified; therefore, 

illustrating the implied system level mechanisms will be a challenge for future research. 
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Furthermore, Claude Gérard and Albert Goldbeter (2012) developed a model to investigate 

the conditions that make the mammalian cell cycle entrained by a circadian clock. They 

observed that entrainment to a circadian period could happen when the period of the cell 

cycle before coupling was either smaller or larger than 24 h. This stochastic model reported 

a potent prediction model. Also, the transition from an entrained period of 24 hours to the 

doubled time of 48 hours might be the outcome from the level of growth factor or by a 

decrease in coupling strength. However, coupling to the circadian clock can lead to complex 

periodic oscillations or chaotic oscillation dynamics of the cell cycle in the form of an end 

replication. 

 

Generally, the advantages of the above stochastic models are that they can represent a 

system more realistically than deterministic models. In addition, this kind of model can be 

helpful when the protein concentration is too low. Further, they can be used when it 

becomes hard for the ODE models to handle the system (Wolkenhauer, Ullah, Kolch, & 

Cho, 2004). Since they are not deterministic models, the ODE models come up with 

different results each time they are run. They can also produce unreliable or unpredictable 

results in each interaction. 

 

2.2.2.4 Hybrid Models 

  

In hybrid models, modellers combine several methods to benefit from their advantages. 

The expected outcome from a hybrid model is to cover shortcomings and issues in one 

method by another and, thus, provide a better understanding of complex systems. For 

instance, hybrid models can use both discrete and continuous aspects of the same model 

to realistically represent corresponding aspects in the system.  

 

Singhania et al. (2011) proposed a hybrid model to represent the mammalian cell cycle. 

Their model was based on the best features of continuous differential equations, discrete 

Boolean networks and stochastic approaches.  The model represented the continuous 

changes in cyclin (CycE, CycA, CycB) synthesis and degradation. They were tracked by 
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piecewise linear differential equations, while the regulators of cyclin synthesis 

(transcription factors (TFE and TFB) and the ubiquitination machinery (SCF, Cdc20, and 

Cdh1) were represented by discrete variables (0 or 1), as shown in Figure 2.10. The 

variation in the state of discrete variables was based on a predetermined sequence without 

the need for Boolean rules. The timing between transitions was also determined, in part, 

by cyclin accumulation and degradation.  

 

 

Figure 2.10: Hybrid model (Boolean- ODE): used in modelling mammalian cell cycle regulation. 

Singhania et al. (2011) 

This is a simple model that represents the most important regulatory elements in the cell 

cycle system. However, this model misses some important elements, such as CycD.   More 

can be done by incorporating additional elements, such as CycD, and their interactions to 

ascertain new knowledge. In addition, this is challenged by the available experimental data 

because this model needs to estimate realistic values for many of the kinetic constants that 

determine the reaction rates. This model has been chosen for our study and further 

investigation and analysis will be presented in the next chapter. 

 

In addition, Noël, Vakulenko, and Radulescu (2013) proposed another hybrid model for the 

mammalian cell cycle. Their model was based on a combination of continuous and discrete 

methods to model cell cycle dynamics. The model depended on hybridisation from a 

smooth biochemical model. However, the appropriate hybridisation scheme used depend 

on learning from training a set of smooth model trajectories.  

Another hybrid model, developed by Noel, Grigoriev, Vakulenko, and Radulescu (2012),  

was based on a tropical geometry heuristics that unravel the commonalities of cell cycle 
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models. The model combined quasi-equilibrium states that are represented by slow 

invariant manifolds and excitability. Their system had a simple structure of monomial 

differential or differential-algebraic equations. However, their model was limited to ODE 

for the availability of experimental data.  

Recently, Behaegel, Comet, Bernot, Cornillon, and Delaunay (2015) documented that time 

was pivotal in many biological systems, especially the cell cycle.  Their model was based on 

a five-variable model of the mammalian cycle. They determined the parameters by 

applying formal methods to an underlying discrete model using timing observations of the 

cell cycle. 

 

Based on this review, most popular mammalian cell cycle models were selected for our  

study.  They have been chosen to enhance and improve both their biological and 

computational aspects.  Further, they have a significant influence on the underlying 

mechanisms and principles of the mammalian cell cycle system.  The next chapter 

provides more details about this study, including the enhancement and development 

processes for the models mentioned above. 

 

Moreover, an alternative method is introduced to describe and cover the shortcomings of 

both discrete and continuous models. This method depends on fuzzy logic theory (fuzzy 

logic model); the next section presents an overview of fuzzy logic.  

2.2.2.5 Fuzzy Logic 

 

Most of the models mentioned in the literature can be categorised based on the 

functionality of their models into two categories - discrete and continuous approaches; this 

is a general form. Continuous models are based on mathematical models, such as Ordinary 

Differential Equations (ODE), that provide accurate continuous solutions. However, the 

lack of real data and parameters create limitations to the use of continuous models. 

Nevertheless, a dynamical system, such as the Ordinary Differential Equations, provides a 

natural and detailed description of molecular events. For this reason, this technique is 
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considered the most successful (Shin & Bleris, 2010). However, these models are not 

suitable for representing large networks, as discussed previously. The availability of 

information on proteins and pathways is also limited (Morris, Melas, & Saez-Rodriguez, 

2013). On the other hand, small-scale models are not comprehensive so they cannot be 

considered as full representations of the whole system. 

ODE models provide realistic values but they cannot provide a direct interpretation of 

entity states; this is a drawback of these models. For instance, ODE models can provide a 

value, but cannot specify whether it is low, medium, or high, and at which level it affects 

other targeted elements. In addition, most ODE models in literature use fuzzy (vague) 

expressions to explain and investigate their results. For example, to explain the real 

number values for protein concentrations seen in the results, they use fuzzy expressions 

to explain these values and they attach additional illustrations to the values to determine 

whether the real number value is low or high. Indeed; this knowledge is hidden from ODE 

models while fuzzy logic models provide an interpretation of the entity states. 

Furthermore, fuzzy logic allows the modelling of imprecise, uncertain and limited 

knowledge and data domains to capture essential trends and behaviour. 

In contrast, discrete models represent a system of logical models with graphical methods 

to explain the relationships between network elements, such as protein interactions that 

can be formed into a logical sequence of events. Discrete models use limited data and can 

still be helpful in modelling and understating complex systems. As discussed earlier, one of 

the promising discrete models is the Boolean model that represents interactions among 

network elements using simple logic-based rules to represent system dynamics. 

A Boolean network entity is called a species (Kauffman, 1969). The state of these biological 

entities can be in one of two forms, “ON”/present or “OFF”/absent. These make a solid 

border between entity states. This format is acceptable to represent system activity when 

there is no need for extra details. However, this format is unnatural and cannot be held as 

an intuitive biological representation. On the other hand, fuzzy sets can be more flexible 

and unconstrained to expose the transitions from state to state to explain the intermediate 

state of the biological entity. The intermediate state in fuzzy logic eliminate the drawbacks 

in the Boolean network, such as unnatural strict discretisation of borders in the Boolean 

states (Windhager, 2013). More details will be presented in Chapter 4. Furthermore, 
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further refinements of Fuzzy logic models that enable automated model generation 

through Particle Swarm Optimisation are presented in Chapter 5.  

This chapter reviewed literature on cell cycle and modelling and highlighted the pros and 

cons of the current and existing computational modelling approaches. Based on this 

review, few Boolean models have been selected for further expansion within the Boolean 

framework and further model improvement using Fuzzy logic in Chapters 3, 4 and 5. 

Chapter 3: A novel Boolean Model – Qualitative Mammalian Cell 

Cycle Controller System 
 

The main aim of current systems biology is to clarify the complex behaviours of biological 

systems. An emphasis is on understanding how these behaviours emerge from the 

interaction of system components. Predominantly, a combination of experimental 

knowledge and computational approaches are used to obtain global insights into complex 

biological systems. 

 

Mathematical modelling, such as Boolean Networks and Ordinary Differential Equations 

(ODE), can provide insights into complex biological systems. Boolean models have become 

popular because they can be easily used for large-scale and complex networks. A biological 

system can be considered as a set of biological networks represented by Boolean 

Networks. They are easily designed and programmed as they use information on the 

interactions and system elements in a simple and qualitative way. Yet, they can provide 

valuable insights into the overall system behaviour and properties.  In addition, this kind of 

network does not depend on model parameters, as for example ODE models do (Wawra, 

Kühl, & Kestler, 2007). 

 

The ability of Boolean networks to mimic biological networks can confer insights into the 

dynamics of biological systems, such as cell cycle system, especially when describing stable 

states and system cycles (attractors) in networks. This simplicity makes them a popular 

class of modelling methods for biological networks. Therefore, our interest is to develop a 
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qualitative system that is useful for modelling biological systems, such as cell cycle control 

system. This can be undertaken after understanding the components of the mammalian 

cell cycle system and their interactions and any outstanding issues relating to cell cycle, as 

presented in the previous chapter.  

 

Hence, this chapter provides background information to understanding the fundamentals 

of mathematical Boolean networks and how Boolean networks can mimic biological 

systems, especially cell cycle control system. In addition, Boolean network features are also 

explained in this chapter. For example, we explain Boolean attractors, analysis of a Boolean 

model and also demonstrate how a Boolean model can be applied to perform structural 

analysis of signalling networks in the context of cell cycle control system. Moreover, this 

chapter discusses Boolean models that have been used for modelling the cell cycle process, 

and highlights their pros and cons in order to pave the way for the advanced model 

proposed in this research. 

 

This chapter presents a novel Boolean network which mimics the cell cycle controller 

system. In addition, it presents a number of approaches used to identify attractors in 

synchronous and asynchronous Boolean networks and their use in the BoolNet R package 

inside R language environment and Matlab software. 

 

3.1 Boolean Networks  

3.1.1 Fundamentals of Boolean network functionality 

 

Boolean Networks have become a useful and effective alternative to quantitative methods 

such as differential equations that require kinetic parameters when in reality these data 

are either not available or are limited. Boolean networks are used to model complex 

biological systems, such as cell cycle system.   
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The structure of a Boolean network consists of a set of connected nodes. Each node has a 

binary state: [0, 1], [false, true], or [active, inactive]. Boolean networks are built based on 

a set of rules, hypotheses and assumptions to represent the interactions of their elements. 

Boolean rules are organised and managed by logical operators. They are responsible for 

setting up the logical expressions of the Boolean model by combining each of the regulators 

within each expression. Modellers use three common Boolean operators when building 

Boolean Networks, which are “AND,” “OR,” and “NOT.” The operator “AND” represents the 

association of two or more regulators in a dependent manner where all the regulators are 

needed for the activation of a node. The operator “OR” is used to combine more than one 

of the independent regulators together, especially when the node can be stimulated by 

any of its regulators. The negative regulation (inhibition) process in a biological system can 

be represented by the operator “NOT.” The symbols representing each operator are 

summarised in Table 3.1. 

 

 

 

Table 3.1 Boolean operator symbols 

 

Rule Symbol 

OR | 

AND & 

NOT ! 

No regulator <> 

 

Boolean operators will be expounded further in the next section of the chapter. Modellers 

can harness Boolean operators such as “AND,” “OR,” and “NOT” in Boolean functions. In 

other words, the relations and interactions between nodes of the network can be 

determined by Boolean functions. Consequently, Boolean functions can explain the 

interactions between biological elements.  
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3.1.2 Determining Transfer Functions 

 

Each node in the Boolean model can change its state by using a Boolean transfer function. 

The Boolean transfer function can be specified, depending on the available knowledge, to 

organise the interactions between the system’s components (nodes). The transfer function 

can use the operator “AND” to indicate conditional regulations where two (or more) 

regulators are needed to activate the target node. The operator “OR” can be used in the 

case where any component is regulated by more than one regulator, but where one of 

them is enough to activate it. This kind of activity is considered as independent activation. 

In the case where the node is being regulated by more than two nodes, the transfer 

function will have a complicated form with a combination of operations that use “AND,” 

“OR,” and “NOT.” The implementation of the Boolean network allows the representation 

of the transfer function in a logical truth table. This truth table shows the states for all 

network nodes and the results of the action of their regulators. 

 

Finally, we mention that in some biological cases, it is hard to figure out the structure of 

the Boolean network since biological knowledge is not complete. In addition, the rules for 

transfer functions may not be fully known. In this case, the solution to the problem can be 

realised by creating several variants of the Boolean network and then compare the output 

responses with available observations from the real system. This can help with finding the 

missing part or aspect of a Boolean model (Davidich & Bornholdt, 2008). However, some 

biological systems or biological cases are poorly investigated. This kind of systems are hard 

to be represented by Boolean networks or translated into Boolean functions. Therefore, 

machine learning is considered as a solution to learn the topology or transfer functions of 

Boolean networks from available high throughput temporal data. On the other hand, this 

solution is also considered a key machine-learning problem(Lähdesmäki, Shmulevich, & Yli-

Harja, 2003). 
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Moreover, in the cell cycle system, components can be represented by Boolean entities 

with binary values referred to as “OFF” and “ON.” A Boolean model can easily express the 

activities of a biological system, such as proteins, genes, and their Interactions. In a 

biological system, nodes represent proteins and genes, while interactions are represented 

by edges. The system activity is represented by Boolean functions, as shown in Figure 3.1. 

Figure 3.1.a. represents the structure of a simple regulatory Boolean network where “A,” 

“B” and “C” represent network nodes and the arrows denote activation and inhibition. 

Figure 3.1.b. shows the rules that manage the activities in this Boolean network system. 

 

 

Figure 3.1: An example Boolean network: A. Boolean network structure, B. Boolean rules of the 

network. In the Network representation in (A): A, B and C represent the system’s components 

(network nodes). The directed edges —> and —| denote activation and inhibition, respectively. In 

(B), Boolean rules control the dynamic states of the nodes of the Boolean network in (A). Each state 

represents the node name, the * in the label denotes the next state of each node over time. 

 

The reliability of Boolean modelling basically depends on the definition of the transition 

rules in Boolean functions, as this is a parameter-free modelling technique. For example, if 

the regulation of node B is considered, the corresponding Boolean function determines the 

future state of B from the present state of nodes A and C as shown in Figure 3.1 in a way that 

the presence of nodes  A and C activates node B at the same time, as shown in Figure 3.1.  

 

The transition from one state to another can be made by relying on an updating scheme, 

which can be either a synchronous or an asynchronous updating scheme. A model that 

uses a synchronous update is called a synchronous model. In this model, all nodes update 
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their states simultaneously in a single step depending on the last state of the system.   In 

addition, this model treats the time for biological interactions in the same manner - it 

assumes that the time scales of all biological processes are similar. The synchronous model 

has an advantage that if we utilize the same initial conditions, it leads to the same attractor 

in replicate simulations; the reason behind this kind of behaviour is that the intermediate 

dynamic state sequence of the system is considered deterministic. In reality, biological 

processes differ in their time scales from fractions of seconds to hours: for example, 

protein phosphorylation, which is faster than protein synthesis or transcriptional 

regulation. However, in synchronous models, they assume that all system elements are 

temporally the same. Further details are discussed in the next sections. 

 

Asynchronous models update their nodes in a nonsynchronous order with different time 

scales (Chaves, Albert, & Sontag, 2005). In this updating scheme every unit of time for each 

node is updated randomly once. In addition, due to the stochasticity of this kind of 

updating, the same initial condition can lead to different states with different attractors. 

However, this update technique can provide more intuitive and reasonable results if the 

time periods for the biological processes are known. Further details shall be discussed in 

the next sections. 

 

3.1.3 Two Ways to Construct Boolean Networks 

 

A Boolean network can be built in two common ways. The first is the knowledge based 

method, which depends on qualitative literature statements and current biological facts 

(Hopfensitz, Müssel, Maucher, & Kestler, 2013). This type of knowledge can be transferred 

into Boolean rules by experts (R. Albert & Othmer, 2003). For instance, the statement 

“Gene 1 inhibits Gene 2” 

can be stated as a Boolean rule with a time factor. 

Gene2 (t+1) = ￢Gene1 (t). 
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The second method constructs a Boolean network by inferring the Boolean network from 

time series measurements such as gene expression data. This method uses algorithms that 

infer dependencies between biological elements, such as genes, by analysing changes in 

the expression of genes over time; for instance, using popular algorithms such as the Best-

Fit Extension  (Lähdesmäki et al., 2003) and REVEAL (Liang, Fuhrman, & Somogyi, 1998).  

 

3.1.4 Types Of Boolean Networks 

 

Essentially, a Boolean model can only represent changes in the local state of the proteins 

(nodes) in discrete time steps. Consequently, Boolean networks are classified into two 

main types mentioned previously - Synchronous Boolean Network (Kauffman, 1969) and  

Asynchronous Boolean Network (Harvey & Bossomaier, 1997; Thomas, 1991), and they are 

discussed in more detail here. 

 

3.1.4.1 Synchronous Boolean Networks:  

 

In synchronous Boolean networks, the assumption is that all nodes update their states 

simultaneously at each time step. Synchronous Boolean networks (Alberch, 1994; 

Kauffman, 1969) consist of a set of Boolean variables as shown in Eq.3.1: 

X = (X1, ... , Xn)                            (3.1) 

 

In addition, a set of transition functions, where one can be specified for each variable is 

defined as in Eq.3.2: 

F = (f1, ... , fn)   

                                    (3.2) 

The nature of these functions is such that they can map input Boolean variables in X to a 

Boolean value. 

 

In the implementation of a Boolean network, values of the variables are presented in 

qualitative form (0 or 1). The state of the network at time t is illustrated by a Boolean vector 
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(X(t) = (X1(t), ... , Xn(t)). The successor state X(t+1) is then calculated by stratifying the 

transition of the n-dimensional synchronous state function F to x(t), as shown in Eqs.3.3 

and 3.4: 

X(t+1) = F(X(t))              (3.3) 

Where,  F = (f1, ... , fn) and Fi(x) = fi(x)      (3.4) 

 

In this case, all network functions are exercised simultaneously. In biological situations, 

Boolean variable X identifies the state of genes or proteins in the network, and the 

transition functions explain and manage the corresponding relations between them. 

 

3.1.4.2 Asynchronous Boolean networks: 

 

Asynchronous Boolean networks (Harvey & Bossomaier, 1997; Thomas, 1973) are 

composed of a set of variables (X) and another set of transition functions (F) that are the 

same as the ones in the synchronous Boolean network. In asynchronous Boolean networks, 

the assumption is that at each point of time t, only one of the transition functions fi∗ ∈ F 

fires at random. The result is that one out of the number of potential Boolean variables updates 

its status at that time step giving the network output evolution a pseudo temporal quality. 

 

An asynchronous update state can be explained by the transition function as shown in Eq. 

3.5 (Harvey & Bossomaier, 1997; Thomas, 1973). 

     

𝑇𝑎𝑠𝑦𝑛𝑐
(𝑖∗)

= (𝑇1
(𝑖∗)

, … , 𝑇𝑛
(𝑖∗)

)        (3.5) 

 

Which is linked by the transition of gene i*. This can be defined in the form of Eq.3.6 

(Harvey & Bossomaier, 1997; Thomas, 1973): 

𝑇𝑖
(𝑖∗)

(𝑋) = {
𝑓𝑖(𝑋)    𝑖 = 𝑖∗

𝑥𝑖            𝑖 ≠ 𝑖∗         (3.6) 
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Each gene i* can have n different state transition functions. The Boolean network can 

calculate the successor state by choosing the function and applying it to the current state, 

i.e., Eq.3.7 (Harvey & Bossomaier, 1997; Thomas, 1973): 

𝑋(𝑡 + 1) =  𝑇𝑎𝑠𝑦𝑛𝑐
(𝑖∗)

(𝑋(𝑡))        (3.7) 

 

 

 

3.1.5 Boolean attractors 

 

This section explains Boolean attractors. Each Boolean network has a finite number of 

states, and the transition through all states would lead to either to a fixed point, limit cycle 

or chaotic attractor without a predictable trajectory. The fixed point defines a static steady 

state attractor comprising only one state.  All transitions from this state result in the state 

itself. These kinds of attractors can be the same for both synchronous and asynchronous 

updates, as they are considered a special case of simple and complex cycle attractors 

(Hopfensitz et al., 2013), as shown in Figure 3.2C where the numbers indicate the state 

vector.  A cycle attractor is a self-loop of states traversed over the time evolution of a 

network. This kind of attractor can explain the long-term oscillatory behaviour of system 

dynamics (Figure 3.2 A &B). Chaotic limit cycles traverse a set of states without an 

identifiable pattern of movements. 

 

 

Figure 3.2: Boolean network attractors. A: A simple limit cycle in a synchronous Boolean network. 

B: A complex attractor in an asynchronous Boolean network. C. A steady-state attractor in a 

synchronous or asynchronous Boolean network. 
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Iterating the state transitions can easily lead to attractors in synchronous and 

asynchronous networks. The types of attractors differ depending on the network type. Self-

loop attractors can be classified into several types depending on the behaviour of the 

attractor. The first type is the simple loop attractor (synchronous Boolean network), which 

comprises a set of states with exactly one successor, as shown in Figure 3.2A. The second 

type is the complex loop attractor (asynchronous Boolean network), where one state of a 

network can have more than one successor state in time progression as shown in Figure 

3.2.B. The last of which is the steady-state attractor (in both synchronous and 

asynchronous Boolean Networks), as shown in Figure 3.2C. 

 

On the whole, attractors can be a set of fixed points or closed trajectories (cycles) in the 

state space that is visited repeatedly during the time evolution of a network. These states 

may serve as an indication of achieving the goals of the system. A fixed-point attractor in a 

Boolean network is defined by a single state vector (Figure 3.2C) that is reached by many 

initial conditions of the system. In this case, the system can remain in this state until 

perturbation from external or other signals.  In the case where the system has more than 

one fixed attractor, there exists a catchment of initial conditions which leads the system to 

a specific attractor.  

 

Simple limit cycles or loops of states occur in Boolean networks when any state in the cycle 

is reached again after a fixed number of successive state transitions (the cycle length) 

(Figure 3.2 A). The synchronous and asynchronous Boolean network updates however can 

lead to differences in their attractors as shown in Figure 3.2 A &B. As stated earlier, in 

synchronous Boolean networks, such attractors are due to each state having one possible 

successor state (Figure 3.2 A). However, in asynchronous updates, there may be more than 

one successor state for a particular state leading to complex (loose) attractors (Figure 3.2 

B).   

 

Complex attractors occur in asynchronous update due to overlapping loops when there is 

the possibility of more than one successor state as a result of using this kind of update. 
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Complex attractors have a set of states, and the transitions of these states lead to other 

states in the same set and each set can be reached by all the other states in the set. 

Synchronous networks produce simple loops which may also appear in asynchronous 

network but this is not necessarily the case (Garg, Di Cara, Xenarios, Mendoza, & De 

Micheli, 2008). 

 

 

Fundamentally, each Boolean network with n nodes should provide 2n possible initial 

conditions. A Boolean system should eventually converge to a limited set of attractors. 

Both synchronous and asynchronous systems can have a steady state (fixed point 

attractors) or k-cycles (k represents states that are repeated regularly. 

 

Thus depending on the initial state of the network, a system model could develop a number 

of attractors. In regard to updating schemes in Boolean network models, synchronous 

updating scheme can provide simple loops for the long-term behaviour of the system. The 

attractors of asynchronous updating scheme thus can have one of these forms such as fixed 

point, simple loops, complex loops or chaotic limit cycles. Chaotic limit cycles traverse a set 

of states without an identifiable pattern of movements. 

 

In addition, attractors have a basin of attraction. The basin of attraction represents all 

states that lead to a specific attractor. Usually, biological network attractors have a large 

basin of attraction (Huang, 1999; Li et al., 2004). 

 

3.1.6 Using Boolean Attractors to Explain Biological Phenomena 

 

Recently, Boolean models have become quite popular as they can be easily used for 

modelling large scale systems and can explain the dynamic behaviour of complex networks 

by using, for instance, attractors. Boolean network attractors are used to explain various 

biological phenomena. For instance, attractors are used to explain cell cycle events, such 
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as cell cycle phases; several studies have depended on attractors to elucidate cell cycle 

phases  (Fauré et al., 2006) and Li et al. (2004). 

 

In other studies, attractors are used to study wild-type gene-expression patterns; R. Albert 

and Othmer (2003) used companion attractors in a Boolean model of Drosophila 

melanogaster with wild-type gene-expression patterns of the segment polarity genes. 

Adult tissue cell states, such as growth, differentiation and apoptosis (programmed cell 

death), can be explained by attractors. Huang (1999) considered three states and showed 

that cycles of multiple states represented the growth of the cell, while single-state 

attractors represented differentiation or apoptosis. On the other hand, disruptions in cell 

state balances (attractors) are a characterisation of neoplasia (i.e. tumours). 

 

Boolean models have also been used in investigations of diseases such as cancer. This kind 

of modelling can provide new insights into the origins of cancer. For instance, Sahin et al. 

(2009) used a Boolean network model to show single and multiple losses of protein 

function. In their models, they used single and double knockdowns of network elements 

before measuring their effect on the G1/S transition within the cell cycle process. 

Moreover, they studied the sensitivity and resistance of cells and how these cells 

responded to some of the perturbations. Sahin et al. (2009) discovered that MYC is a 

potential novel target protein in breast cancer cells (Orlando et al., 2008; Sahin et al., 2009). 

 

In this proposed Boolean model, we studied the dynamic behaviour of the system using 

Boolean network attractors. Boolean network attractors usually represent the steady 

activation state of the biological components. In addition, it can represent cell phenotypes 

(Fauré et al., 2006; Li et al., 2004). Once we characterise the system attractors, we can 

study system dynamics and system robustness. Furthermore, we can examine the steady 

states of the elements by comparing them with the existing literature and to answer the 

questions below: 
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 Can the model reproduce and reveal the observed importance of cyclins during cell 

cycle, with a visualisation of the activity of system components during cell cycle 

phases (system attractors)? 

 Can the model reveal system dynamics of the whole cell cycle process? 

 

 

3.1.7 Search Algorithms for Boolean Attractors  

There are different search algorithms for finding attractors in a Boolean network with 

synchronous and asynchronous update scheme.  These algorithms depend on a number of 

factors including the size of the network.  Boolean attractor search can be performed in an 

exhaustive manner or by using a heuristic that allows to starts from predefined states. 

These search algorithms are categorised into three modes in attractor search: 

 

 Exhaustive Synchronous State Space Search 

 

In this search, attractors can be recognised by calculating the successors of all 2n states 

(where n is the number of nodes and the maximum number of nodes allowed for an 

exhaustive search is 29). In this method, synchronous state transitions are carried out from 

each of the possible states until an attractor is reached. This identifies all synchronous 

attractors. Furthermore, this algorithm can generate a full state transition graph. 

 

 Heuristic Synchronous State Space Search 

 

In this search, attractors can be recognised only by using a subset of possible states; 

depending on these states, synchronous transitions are carried out until an attractor is 

reached. This method is in contrast to the exhaustive synchronous search as it depends 

only on a subset of the possible states being used. This subset is defined using the start 

states method. 

 

 Exhaustive Synchronous SAT-Based Search 
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In this search, the attractor search problem is solved using Armin Biere's PicoSAT solver. 

This method depends on searching for a satisfying assignment of a chain constructed by 

unfolding the transition relationships. This method is suitable for large-scale networks, 

where the size of network can be up to several hundreds of genes. For more details, see 

(Dubrova & Teslenko, 2011). 

 

 Heuristic Asynchronous Search 

This algorithm depends on the asynchronous state transitions, and it can also recognise 

steady-states and complex attractors, where these attractors represent a set of states, and 

these states from all probable asynchronous transitions lead to a state that is a member of 

the set as well.  

 

We closely tested our model’s functionality depending on the values of the initial 

conditions of the simulation. Two types of searches were used - exhaustive and heuristic 

space searches for synchronous and asynchronous updates. Further details can be found 

in the simulation section. 

 

 

3.2 Procedure for Constructing Boolean Networks 

 

Construction of any Boolean model for any biological network must follow six steps as 

shown in Figure 3.3. This represents the formal procedure for a good model structure. Our 

study will use this procedure because it can help us construct our new model effectively 

with updated elements. 

 

The first step is to synthesise the network structure by collecting information and data from 

experiments and literature.  

The second step is to determine the Boolean functions depending on the information 

obtained from literature and experimental observations. Each function defines the state 

of an item in the network.  
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The third step is to simulate the Boolean network scheme (i.e., the transition from one 

system state to another over time). We have two updating schemes for Boolean networks: 

The first is synchronous updating scheme, where all the nodes in the model are updated 

simultaneously at each time step. Thus, this assumes that the time scales for all reactions 

and events in the biological system are similar. But, in real biological systems, the time 

scale for events are different and can range from fractions of a second to hours (Papin, 

Hunter, Palsson, & Subramaniam, 2005). Therefore, the synchronous scheme cannot 

describe the changes taking place in a real situation. The second updating scheme is the 

asynchronous updating scheme, where the system is updated in an asynchronous manner 

depending either on real time scales for an individual biological event or by allowing 

randomly-selected nodes to update themselves at each time step. The asynchronous 

update provides more realistic results as the update time is different for each step (Wang, 

Saadatpour, & Albert, 2012).  

 

The fourth step is analysing the system output. In this step, the long-term behaviour of the 

system is studied and this can reveal the steady state (attractors) and the activity of the 

components.  

In the fifth step, the correctness of the model is tested. A good model is expected to 

reproduce the previous experimental observations, such as cellular responses. With this 

step, we validate the model.  

The final step is about biological implications and predictions. In this step, we investigate 

the network to study its long-term behaviours, loops, the rules of the network and various 

model perturbations. 
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Figure 3.3: The main steps in the Boolean modelling of biological systems (Wang et al., 2012) 

 

We can use specialised software to construct and simulate the model (Wang et al., 2012). 

A number of software programs are available to develop Boolean networks for biological 

systems; these include the BooleanNet (I. Albert, Thakar, Li, Zhang, & Albert, 2008), the 
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BoolNet (Müssel, Hopfensitz, & Kestler, 2010), the SimBoolNet (Zheng et al., 2010) and the 

ChemChains (Helikar & Rogers, 2009). We selected the BoolNet package to construct, 

study, analyse and simulate the Boolean network for the cell cycle controller we 

constructed in this study.  Furthermore, testing and validating a Boolean model is essential 

for testing the hypotheses and assumptions used in the model and to assess its usefulness. 

 

However, as discussed before, with this proposed Boolean model we are primarily 

interested in studying the system attractors as the attractors usually represent the 

biological phenomena arisen from the activity of the components. 

 

 

3.3 The Proposed Boolean Model 

 

As demonstrated above, our Boolean model can be built depending on the available 

knowledge. This kind of knowledge can help the modellers construct Boolean networks, as 

it supports the processes through the assembly of network components (nodes) and 

formulation of the logic of biological interactions found in the literature. 

 

The model in this study is the cell cycle controller signalling network. In chapter 2, we 

described the cell cycle controller signalling network, highlighting the role of each member 

as has been experimentally discovered to date. In our study, we introduced several vital 

new components of the cell cycle controller-signalling network, primarily cyclins activators 

and degraders. Furthermore, this study covers the most important biological elements in 

cell cycle controller system, as it is based on a thorough investigation of the most popular 

existing models for mammalian cell cycles, such as the models made by Singhania et al. 

(2011) and (Fauré et al., 2006) that represent the most important regulatory elements in 

cell cycle systems and we expand/complement them with the newly added important 

elements that were missing in the previous models . Furthermore, this section provides 

abbreviated descriptions of the most important biological elements in our model. 
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As explained in literature review (Chapter 2), almost all current and recent models have 

investigated the simple yeast cell cycle, while the mammalian cell cycle has been less 

studied or modelled. In this section of the study, we relied on the most popular mammalian 

cell cycle models. These models had been created by (Fauré et al., 2006) and Singhania et 

al. (2011). Before we discuss the model we developed, we will investigate these prior 

models. However, in this thesis, we investigate the mammalian cell cycle system from both 

its biological and computational aspects using our developed model based on extensions 

to Faure 2006 model and Singhania 2011 model. 

 

3.3.1 Faure’s 2006 Model 

 

To understand the behaviour of complex biological systems, such as the cell cycle system, 

we have to integrate the molecular data into a formal dynamical model (Fauré et al., 2006); 

this is the situation for the mammalian cell cycle. One of the most popular logical models 

is the one made by Fauré et al. (2006), who proposed a Boolean model for the mammalian 

cell cycle based on Bela Novak and John J Tyson (2004) ODE system to describe cell cycle 

behaviour. Bela Novak and John J Tyson (2004) model was based on 27 equations and 

experimentally-derived parameters. Fauré et al. (2006) model is still considered as a 

benchmark for all later Boolean models. The major contribution of the Fauré et al. (2006) 

model was the reduction in the number of equations and the focus on some important 

elements, including cyclins (D, E, A and B), Rb and E2F, as shown in Figure 3.4. However, in 

this model Cyclin D is considered as a cell growth signal receiver and a partial element 

without any Boolean rules. In addition, they, for convenience, assumed that Cyclin D is the 

starter for the cell cycle system and it should be active for the all cell cycle phases.  

Biologists have recently reported that MYC is the receiver of the cell growth signals in the 

mammalian cell cycle system. Therefore, in the model we developed, we covered these 

shortcomings by involving MYC. There are other additional elements, such as SCF and TFB, 

which control cyclin activities in our model. In addition, we systematically updated system 

networks, such as rules and interactions. Faure’s 2006 model is based on biological 



62 
 

knowledge that was available at the time as found in Bela Novak and John J Tyson (2004) 

model, while we used more recent biological knowledge from various studies such as 

(Iwamoto et al., 2011). Enhancements in our model cover the abovementioned limitations 

by reconstructing a new Boolean network for the mammalian cell cycle controller system. 

 

 

Figure 3.4: Faure et al. (2006) Boolean model for the mammalian cell cycle system (Fauré et al., 

2006)  

 

3.3.2 Singhania Et Al. (2011) Model 

 

In hybrid models, modellers combine several methods to benefit from their advantages. 

The expected outcome from a hybrid model is to cover the shortcomings and issues in one 

method by another and, thus, provide a better understanding of complex systems. For 

instance, hybrid models can use both the discrete and continuous aspects of the same 

model to realistically represent the corresponding aspects in the system. Singhania et al. 

(2011) proposed a hybrid model to represent mammalian cell cycle signalling network 

regulators; specifically, their model was evaluated in terms of flow cytometry 

measurements of the cyclin proteins in mammalian – human cell lines. They relied on 

studying cyclin proteins to investigate cell cycle phases. They used their model to simulate 

the accumulation and degradation of cyclin proteins during cell proliferation. Their model 

was based on the best features of continuous differential equations, discrete Boolean 

networks and stochastic approaches as shown in Figure 3.5.  
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Figure 3.5: Singhania et al. (2011) hybrid model containing the most important regulatory 

elements in the cell cycle system. 

The model represented the continuous change in cyclin synthesis and degradation (CycE, 

CycA, CycB), which were tracked by piecewise linear differential equations, while the 

regulators of cyclin synthesis (transcription factors (TFE and TFB) and ubiquitination 

machinery (SCF, Cdc20 and Cdh1) were represented by discrete variables (0 or 1). The 

variation in the state of discrete variables was based on a predetermined sequence. 

Therefore, they did not use any Boolean rules to control system activity. In addition, the 

transition between phases were determined, in part, by cyclin accumulation and 

degradation. This is a simple model which represents the most important regulatory 

elements in the cell cycle system. However, this model missed some other important 

regulatory elements such as CycD, Myc, Rb and P27. For instance, Myc is considered as 

growth factor receiver to initiate cell cycle processes. Further, CycD is an important 

regulator for G1 phase and can move the cell for G0 phase to G1 phase, and both RB and 

P27 have  impacts on cell growth and cyclin activities.  Rb controls transcription factor of 

CycE and p27 supresses CycE/Cdk2 and CycA/Cdk2 complexes. 

 

The model we developed substantially enhanced Singhania et al. 2011 model by 

incorporating the aforementioned elements; especially by adding these elements to 

complement their interactions to ascertain new knowledge. This provides a full image 

about the system activity during cell cycle phases and more realistically simulates the 

accumulation and degradation of cyclin proteins during cell proliferation. The next section 

describes the specific enhancements made to the two abovementioned models.  
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3.3 The Proposed Model and Definition of Boolean Functions in the Cell Cycle 

Control Network 

 

The model we obtained represents the cell cycle signalling network regulators. This study 

covers the most important biological elements in the cell cycle system. It includes items 

available from existing models of mammalian cell cycle, such as (Fauré et al., 2006; 

Singhania et al., 2011)  models. These models  represent the most important regulatory 

elements in the cell cycle system and describes cell cycle dynamics based on cyclin activities 

in cell cycle phases. However, in the previous model such as Singhania et al. (2011) they 

represented a small subset of the elements in discrete form; but without depending on or 

providing any Boolean rules or transfer functions that represent the interactions of system 

elements. This section provides abbreviated descriptions of the most important biological 

elements in our model. The following paragraph provides a description of each function in 

the cell cycle control model. Furthermore, we justify how we established specific logic 

gates to represent each of the regulatory mechanisms.  

 

Our Boolean model studies the behaviour of cyclin production and degradation in cell cycle 

and control of transition between cell cycle phases, so we built our system rules relying on 

cyclins and their relationships with synthesis regulators (transcription factors and 

ubiquitination machinery) during cell cycle. Cyclin proteins have a substantial effect on the 

control of all the major events of the eukaryotic cell cycle. Cyclins are the regulatory 

components of cyclin-dependent kinases (CDKs) that control all the major events of the 

eukaryotic cell cycle. There are four important classes of cyclins in mammalian cells: D, E, 

A and B (Evans et al., 1983).  

 

Cyclin concentrations change in a cyclical fashion during cell cycle. The fluctuations or 

oscillations of cyclins are made by variations in cyclin gene expression and degradation. 

Cyclin destruction happens through ubiquitin-mediated proteasome pathway; this 

promotes oscillations in CDK activity that leads the cell cycle process. Cyclins complex with 

CDK when binding with it; this event needs phosphorylation (Morgan, 2007). Cyclins are 
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classified into four classes named according to their role in various cell cycle stages: G1/S 

cyclins, S cyclins, G2 cyclins and M cyclins. These cyclin products were identified in the last 

chapter, but here we highlight the biological effect of each cyclin in cell cycle. 

 

Basically, we assembled our Boolean rules systematically; each rule relied on the literature 

for the biological knowledge that was converted into a Boolean rule. We based it on 

recently available biological knowledge from sources such as (Iwamoto et al., 2011; 

Tashima, Hamada, Okamoto, & Hanai, 2008) systems to describe cell cycle behaviour, while 

Faure’s 2006 model was based on prior reference knowledge from sources such as Bela 

Novak and John J Tyson (2004). Furthermore, we depended on the antagonism between 

elements such as (CycB and CDH1/APC), retinoblastoma protein (Rb), and the antagonism 

between P27 and Cyclins A and E to build the system rules. 

 

In our Boolean model, each cyclin (CycD, CycE, CycA and CycB) and the other system 

components are represented by Boolean nodes. The relations and interactions between 

these nodes and other network elements are organised by Boolean rules. We updated the 

system’s component rules one by one and, and each time, we did several experiments to 

validate the element’s activity individually along with their impact on the system’s global 

dynamic behaviour. Each Boolean rule consists of one or more Boolean functions, to 

represent the relations and interactions between system species/elements. Furthermore, 

in our model, we depended on the logical operators: “OR” gates to represent independent 

regulation (any input can regulate the target) and “AND” gates to represent the cumulative 

effect of more than one regulator. In addition, the operator “NOT” is used to perform the 

inhibitory regulations. A Boolean representation of the system elements can be formed 

with these operators and we discuss how Faure et al. (2006) model specifies these rules. 

 

The previous sections explained how we reconstructed the cell cycle control signalling 

network. In this signalling network, we depended on Boolean functions to represent the 

biological reactions. For this reason, most realistic Boolean functions are required. These 

Boolean functions decide the “ON”/“OFF” states of nodes. In addition, setting up the initial 

conditions for the model with a correctly defined updating scheme is crucial.   
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The following sections provide the details of each key step we used to construct the 

Boolean model of the cell cycle controller signalling network. The following paragraphs 

provide a description of each function in the control model. Furthermore, they justify how 

we established specific logic gates to represent each of the regulatory mechanisms. 

 

Biologically, each new born daughter cell starts its own cell-cycle when it receives growth 

factor signals. Upon receiving growth signals, synthesis of Cyclin D (or G1 Cyclin) is launched 

at the G0-G1 transition; this is called early G1 phase (A. Pardee, 1989). These signals make 

the cell size increase and unless it reaches a certain size threshold, the cell cycle is not 

initiated. It has been proven that a growth factor activates a transcription factor called c-

Myc (receiver) that eventually promotes the synthesis of Cyclin D as shown in Figure 3.6. 

(Adhikary & Eilers, 2005; B. Alberts, 2008; Morgan, 2007). In our model, we assumed that 

a growth factor (GF) is available from early G1 and c-Myc is the most important link 

between GF and cell cycle machinery to trigger its initiation (by inducing the synthesis of 

Cyclin D). This means that following the presence of GF, c-Myc becomes activated and, 

subsequently, stimulates synthesis of Cyclin D as shown in Figure 3.6. 

 

 

Figure 3.6: Growth factor signal activation of c-MYC leading to Cyclin D synthesis 

 

Regarding Cyclin D (CycD) protein, in (Fauré et al., 2006) model, they assumed that CycD is 

an input for their model and considered it as a constant, either 0 or 1 denoting absence or 

presence.They used this node to mimic the presence of growths factors, so CycD keeps to 

state 0 when there are no growth factors and it becomes 1 when it senses growth factors; 

however, in our model, we expanded this aspect.  We assumed that CycD involves other 

biological elements and interactions that can help demonstrate realistic biological 

behaviour of CycD. We know that CycD leads the G1 phase at the beginning of cell cycle. 

C-MYC CYCD 
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So, we assumed that CycD becomes active when Myc becomes active. This means that 

CycD production process starts after the growth factors come and activate c-Myc, and then 

c-Myc  promotes CycD synthesis (Massagué, 2004). However, there are a set of elements 

that have been discovered that inhibit CycD as shown in Figures 3.7a and 3.7b; for example, 

when SCF, CDC20A and CDC20B become active, they deactivate CycD and make it inactive 

(Alao, 2007). The main reason for this is that those elements (SCF, CDC20A and CDC20B) 

are E3 ubiquitin ligases that play crucial roles in degrading cell cycle proteins. In brief, CycD 

can be active only when the activator (c-Myc) is present and the degradation factor (!SCF 

& !CDC20B &! CDC20A) is absent as shown in Boolean functions (BF) 3.8. 

 

 

 

Figure 3.7: CycD activity controller. a) CycD production and degradation and b) CycD regulation in 

the Boolean Network model. The green node represents CycD while the other nodes represent 

CycD activator and deactivators. The directed edges —> or —| denote activation or inhibition, 

respectively. 

 

 

CYCD, MYC & (!SCF & (!CDC20A & !CDC20B))        (3.8) 

 

Cyclin E (CycE) is the second cyclin in the process.  In our model, we assumed that CycE 

needs transcription factors such as TFE to start its synthesis early in the cell cycle 

(comparable to the E2F family of transcription factors) (Trimarchi & Lees, 2002). However, 

Cyclin E will stop accumulation if a degradation factor becomes present, such as ubiquitin-

ligase complexes (APC-C and SCF). Here, we introduced SCF’s impact on CycE in our model 

SCF 

Cdc20 
c-Myc 

Cyclin D 

C-MYC 
CYCD 

SCF 

CDC20A 

CDC20B 

(a) 

(b) 
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TFE CYCE 
SCF 

P27 

TFE 

Cyclin E 

SCF 

(Ang & Harper, 2004). Moreover, P27 has a negative impact on Cyclin E so its presence 

lowers the levels of CycE as shown in Figures 3.8a and 3.8b (Chu, Hengst, & Slingerland, 

2008). While in Faure et al. (2006) model, they assumed that CycE is controlled by the 

presence of E2F,  with the assumption that E2F is already released from Rb/E2F complex which 

keeps E2F in check  (Helin, 1998) they did not involve SCF in their model, which was 

discovered later. However, in this case, our assumptions for the Boolean functions that can 

organise Cyclin E activity can be used in the form shown in BF 3.9. 

 

CYCE, TFE | (!SCF & !P27)        (3.9) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.8: CycE activity controller. a) CycE production and degradation and b) CycE regulation in 

the Boolean network model. The green node represents CycE while the other nodes represent CycE 

activator and inhibitors. The directed edges —> or —| denote activation or inhibition, respectively.   

 

With regard to Cyclin A (CycA) protein in our model, we assumed that CycA needs 

transcription factors, such as TFE (comparable to the E2F family of transcription factors), 

as well starting its synthesis relatively early in the cell cycle. As with Cyclin E (Singhania et 

al., 2011), P27 can inhibit CycA activity (Chu et al., 2008). However, Cyclin A will accumulate 

until degradation factors or conditions become present. In order for Cyclin A to be 

degraded, two conditions must be present at the same time to stop CycA production and 

(a) 

(b) 

P27 
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TFE 

Cyclin A 

P27 

start the degradation process. CDH1 and CDC20A can work simultaneously to inhibit Cyclin 

A and make it inactive (“OFF”), otherwise, CycA will still be active until the two degradation 

conditions are available (Singhania et al., 2011). While this protein’s activity was managed 

in Faure et al (2006) model by assuming that CycA can be produced by E2F (Helin, 1998) 

and degraded by CDH1, the degradation of CycA can use CDC20 as well as a pair formed 

with CDH1 as shown in Figure 3.9. However, in this case, the Boolean functions that can 

organise CycA activity in our model have the form of BF 3.10. 

 

CYCA, (TFE & !P27) | (!CDC20A & !CDH1)      (3.10) 

 

 

  

 

 

 

 

 

 

 

 

Figure 3.9: CycA activity controller. a) CycA production and degradation and b) CycA regulation in 

the Boolean network model. The green node represents CycA while the other nodes represent CycA 

producer and deactivators. The directed edges —> or —| denote activation or inhibition, 

respectively. 

 

Concerning Cyclin B (CycB) protein in our model, basically, Fauré et al. (2006) model 

presupposes that the CycB protein can be active only in the absence of both CDC20 and 

CDH1, as they destroy CycB (Harper, Burton, & Solomon, 2002). In our model, we 

systematically built these rules following the processes that make CycB become active. 

TFE CYCA 
CDC20A 

CDH1 

P27 

a.  

(b) 

CDH1 

CDC20A 
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TFB 

Cyclin B 

CDH1 

However, we also assumed that CycB required an additional element for its accumulation 

– another  transcription factor such as TFB to initiate synthesis late in the cell cycle 

(comparable to FoxM1 and Myc) (Trimarchi & Lees, 2002). However, CycB will remain 

active until degradation factors or conditions become present. For Cyclin B level to 

decrease, two conditions must be present at the same time to halt Cyclin B production and 

start the degradation process. CDH1 and CDC20B can work together to inhibit Cyclin B and 

make it inactive (“OFF”)  (Harper et al., 2002; Singhania et al., 2011) as shown in Figure 

3.10. In this case, the Boolean functions that organise Cyclin B activity can take the form of 

BF 3.11. 

 

CYCB, TFB | (!CDH1 & !CDC20B)       (3.11) 

 

 

 

 

 

 

 

 

 

Figure 3.10: CycB activity controller. a) CycB production and degradation and b) CycB regulation 

in the Boolean network model. The green node represents CycB while the other nodes represent 

CycB producer and deactivator. The directed edges —> or —| denote activation or inhibition, 

respectively.   

 

Moreover, in our proposed model, we have to represent transcription factors. A 

transcription factor is sometimes called a “sequence-specific DNA-binding factor.” It is a 

protein that controls the rate of genetic information transcription from DNA to messenger 

RNA (Martirosyan, Figliuzzi, Marinari, & De Martino, 2016). Controlling the rate can be by 

TFB CYCB 
CDC20B 

CDH1 
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       (b) 

CDC20B7 

https://en.wikipedia.org/wiki/Transcription_%28genetics%29
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binding with other DNA sequences; this protein operates alone, or with other proteins in 

complex to activate or repress the recruitment of RNA polymerase (an enzyme that is 

responsible for executing the transcription process related to the movement of genetic 

information from DNA to RNA) (Lee & Young, 2000; Nikolov & Burley, 1997; Roeder, 1996). 

 

In the cell cycle system, transcription factors participate in several tasks to control various 

processes, such as cell cycle regulation process. In addition, it helps in specifying what the 

cell size is and when the mitosis or division process happens in the mother cell 

(Meyyappan, Atadja, & Riabowol, 1996; Wheaton, Atadja, & Riabowol, 1996). In our 

proposed model, we have transcription factors, such as TFE, TFB and Myc. 

 

TFE protein is a generic name for transcription factors for E-type cyclins in mammalian cells; 

namely, transcription factors of the E2F family. In our Boolean model, we relied on 

biological knowledge from the literature review to build TFE rules and conditions. TFE is 

active in the absence of CycA and CycB, which inhibits TFEs, such as E2F (B. Novak & J. J. 

Tyson, 2004).  We share the same rules and assumptions with Faure et al. (2006) model for 

TFE activity shown in Figure 3.11. The Boolean functions which organise TFE activity can be 

represented in the form of BF 3.12. 

 

TFE, (!RB & !CYCA & !CYCB) | (P27 & !RB & !CYCB)                                        (3.12) 

 

 

 

 

 

Figure 3.11: TFE Activity regulation in the Boolean network model, the green node represents TFE 

while the other nodes represent the TFE activator and deactivators. The directed edges —> or —| 

denote activation or inhibition respectively. 
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In our model, we have another transcription factor called TFB protein. TFB is a generic 

name for transcription factors for B-type cyclins in mammalian cells; namely, transcription 

factors, such as FoxM and Myc (Singhania et al., 2011). This element affects CycB activity 

by helping CycB production as shown in Figure 3.12. This element is one of a number of 

differences between our model and Faure et al. (2006) model, as they did not include this 

element in their model. We assumed that TFB can be active in the presence of CycA. The 

Boolean functions that organise TFB activity can be presented in the form of BF 3.13. 

 

TFB, CYCA         (3.13) 

 

 

  

 

Figure 3.12: TFB activity regulation in the Boolean network model. The green node represents 

TFB while the other node represents TFB activator, CycA. The directed edge —> denotes activation. 

 

An additional element is the Myc protein which can be found in our model and in biological 

studies by (I. Albert et al., 2008; Morgan, 2007). These researchers reported that Myc 

oncogene was one of the most important transcription factor in cell cycle. It takes a 

substantial part of the cell cycle processes, such as cell growth progression, programmed 

cell death (apoptosis) and cellular transformation. In our Boolean model, Myc is considered 

as an input and it can be constant; it can take either 0 when no growth factors have 

occurred, or 1 when growth factors have occurred and it is represented by BF 3.14.  

 

So, in our model, Myc is the receiver of the growth factor signals; it can be “ON” when 

sensing the growth factors and is the starting point for our proposed Boolean network. 

When Myc receives growth factors, it fires the Boolean network which represents the cell 

cycle control system, as shown in Figure 3.13 and BF 3.14. We note that Faure et al. (2006)  

does not include this element in their model. 

 

CYCA 
TFB 
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MYC = MYC        (3.14) 

 

 

Figure 3.13 Myc activity controller 

 

We introduced another element, the SCF protein “SCF” = "Skp2-Cullin-Fbox"). This is an E3 

ubiquitin ligase that plays a crucial role in degrading cell cycle proteins (Singhania et al., 

2011). In addition, this element does not exist in Faure et al. (2006) model. This element 

has a crucial impact on cyclin activity, such as CycD and CycE. Therefore, our assumption 

for this element in our Boolean model is that SCF is active in the presence of CycE and 

inactive/absent in the presence of CDH1, since CDH1 can inhibit SCF activity (Alao, 2007), 

as shown in Figure 3.14. The Boolean functions which organise SCF activity are shown in BF 

3.15. 

 

SCF, !CDH1 & CYCE           (3.15) 

 

 

 

 

Figure 3.14: SCF activity regulation in the Boolean network model. The green node represents SCF 

while the other nodes represent SCF activator and deactivator. The directed edges —> or —| 

denote activation or inhibition, respectively. 

 

 

Moving on to CDH1 and CDC20 (CDC20A and CDC20B) proteins, these are “auxiliary” 

proteins that combine with APC/C (anaphase-promoting complex/cyclosome, an E3 

ubiquitin ligase) in order to direct its ubiquitin ligase activity towards specific substrates. 

The CDC20B-form of APC is active during anaphase when it causes the degradation of 

securin and Cyclin B (Singhania et al., 2011). The CDH1 form of APC is active during the G1 

CYCE SCF CDH1 
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phase of cell cycle when it keeps Cyclin B levels very low. CDC20A form can cause Cyclin A 

degradation (Hilioti et al., 2001).  Our assumptions agree with Faure et al. (2006) model for 

these proteins.   

 

CDH1 depends on several conditions that work together to organise CDH1 activity and 

make it active. CDH1 is active in the absence of CycA and CycB and in the absence of CycE 

or in the presence of CDC20A and CDC20B, or by the presence of P27 and the absence of 

CycB. Otherwise, it will be inactive (Harper et al., 2002; B. Novak & J. J. Tyson, 2004), as 

shown in Figure 3.15. The Boolean functions that organise the CDH1 activity can be 

developed in the form of BF 3.16. 

 

CDH1= (!CYCA & !CYCB) & !CYCE | (CDC20A & CDC20B)|(P27 &!CYCB)  (3.16) 

 

 

 

Figure 3.15: CDH1 activity regulation in the Boolean network model.  The green node represents 

CDH1 while the other nodes represent CDH1 activators and deactivators. The directed edges —> 

or —| denote activation or inhibition, respectively. 

 

CDC20A controls CycA activity and CDC20B controls CycB activity; we share this assumption 

with Singhania et al. (2011) model. But both CDC20A and CDC20B activities are managed 

depending on the presence of CycB (Harper et al., 2002; Singhania et al., 2011), as shown 

in Figure 3.16. The Boolean functions that organise CDC20A and CDC20B activity can be 

presented in the form of BF 3.17 and 3.18, respectively. 

 

CDC20A = CYCB           (3.17) 

CDC20B = CYCB          (3.18) 
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Figure 3.16: CDC20A/B activity regulation in the Boolean network model. The green node 

represents CDC20A or CDC20B while the other node represent the activators such as CycB. The 

directed edge —> denotes activation. 

 

Our model involves a supplementary controlling element which is P27 protein. This protein 

keeps the cell in quiescent mode (G0), so it can be found at high levels during the early G1 

phase. However, when growth factors are present, c-Myc activates CycD then the cell cycle 

is started and moved to new phase such as S phase which make P27 concentration 

decreases. These actions decrease the amount of P27 available and its activity, as shown 

in Figure 3.17. (Chu et al., 2008). In Faure et al. (2006) model, they assumed that P27 could 

become active only in the absence of a set of cyclins. We also depend on this knowledge 

to build the Boolean rules for P27 as shown in BF 3.19. 

 

P27 = (!CYCD & (!CYCD & ! P27)) & (!CYCD & !CYCE) |(!CYCE & !CYCA)   (3.19) 

 

 

Figure 3.17: P27 activity regulation in the Boolean network model. The green node represents P27 

while the other nodes represent P27 activator and deactivators. The directed edges —> or —| 

denote activation or inhibition, respectively. 

 

 

An extra controlling element has been added to our model- Rb protein. For this protein, it 

has been assumed in Faure et al. (2006) model that Rb is expressed in the absence of a set 

of cyclins (B. Novak & J. J. Tyson, 2004). We assumed in our model the same for Rb activity 
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which requires CycD, CycE and CycA to be absent as shown in Figure 3.18 (Iwamoto et al., 

2011). This invests our model with the ability to describe the transition process from late 

M phase to G0 phase and the transition from G0 to the early G1 phase; and the 

corresponding rules can be represented in the form of BF 3.20. 

 

RB, !CYCD & (!CYCE & !CYCA)         (3.20) 

 

 

 

Figure 3.18:  Rb activity regulation in the Boolean network model. The green node represents RB 

while the other nodes represent RB deactivators. The directed edges —| denote inhibition. 

 

Finally, when all the above described system development processes are complete, we get 

the new mammalian cell cycle control system as shown in Figure 3.19. 

 

Figure 3.19: Proposed enhanced model of cell cycle controller (novel aspects are shown in blue). 

The red lines represent the new added impacts (activation or inhibition for the targeted node). 
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In addition, this novel model can be presented in Boolean form – computational and 

network interaction aspects of the model are as shown in Table 3.2 and Figure 3.20, 

respectively. We then use this model to answer following questions: 

 

 What extra insights can be gained by incorporating the new elements – or these 

elements in combination with others – in the network design? 

 Can the model describe the temporal qualitative behaviour of the cell cycle system with 

greater accuracy or realism? 

 

These are important questions to raise and we provide worthwhile answers to these 

questions in this chapter. 

 

Table 3.2 Proposed Boolean network with 13 proteins and their transfer functions  

Protein Transition Functions: 

Myc MYC = MYC 

CDH1 CDH1= (!CYCA & !CYCB) & !CYCE | (CDC20A & CDC20B)|(P27 &!CYCB) 

P27 P27 = (!CYCD & (!CYCD & ! P27)) & (!CYCD & !CYCE) |(!CYCE & !CYCA) 

RB RB = !CYCD & (!CYCE & !CYCA) 

CYCD CYCD = MYC & (!SCF & (!CDC20A & !CDC20B)) 

TFE TFE = (!RB & !CYCA & !CYCB) | (P27 & !RB & !CYCB) 

SCF SCF = !CDH1 & CYCE 

CYCE CYCE = TFE |(!SCF & !P27) 

CYCA CYCA = (TFE & !P27) | (!CDC20A & !CDH1) 

TFB TFB = CYCA 

CYCB CYCB = TFB | (!CDH1 & !CDC20B) 

CDC20A CDC20A = CYCB 

CDC20B CDC20B = CYCB 
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Figure 3.20: Proposed Boolean Model generated by BooleSim simulator (Matthias Bock, 2014). In 

this graph, each node represents a protein and double headed arrows with directed edges —> or —| 

denote activation or inhibition, respectively. We use double headed arrows to reduce the 

appearance of the number of arrows and to keep the graph simple and clear. In our model, we have 

around 43 connections among the 13 network nodes, which represent the biological interactions 

between system components 

 

The proposed network is also used to probe more into model features, such as attractors, 

in cell cycle. In addition, the model can describe the temporal qualitative behaviour of the 

cell cycle system. It can also show how perturbations may change the system behaviour 

that can reveal system resilience and vulnerabilities as well as potential causes of cell cycle 

malfunction and potential avenues for recovery. 

 

3.4 Model Simulation 

 

We studied the system dynamics using the proposed Boolean network and we relied on 

some of the salient features of Boolean networks, such as Boolean attractors. Boolean 

network attractors usually represent steady activation states for biological components. In 

addition, it can represent specific cellular phenotypes (Fauré et al., 2006; Li et al., 2004). 
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Once we have characterised the system attractors, we can study the dynamics and 

robustness of the system. Furthermore, we can examine the steady states of the elements 

by comparing them with existing literature and answer the question: 

 

 Can the model properly explain steady state dynamics in cell cycle progression? 

 

Models need tools and software to transfer the theoretical ideas into the design of the 

model. Most logical models, such as Boolean networks, are built on a set of rules, 

hypotheses and assumptions from literature, and they attempt to represent and produce 

realistic dynamic behaviour. Much of the existing software available can be used to model 

the dynamic behaviour of biological systems, such as the BooleanNet (I. Albert et al., 2008), 

BoolNet (Müssel et al., 2010), SimBoolNet (Zheng et al., 2010),  ChemChains (Helikar & 

Rogers, 2009) and Odefy package (Krumsiek, Pölsterl, Wittmann, & Theis, 2010). 

 

Herein presents a full investigation of the cell cycle dynamics from the simulations of the 

proposed Boolean network.  In the coming section of the chapter, we explain the methods 

used to determine the initial conditions for the simulations. 

 

3.4.1 Determination of the Initial Conditions for the Model 

 

Prior knowledge of the system can be very useful in model simulation; especially when 

there exist many unknowns or uncertainty.  This can include the knowledge of the initial 

states of the system.  In Boolean models, the concentration of each node is represented as 

a binary variable; each variable can have one of two qualitative states – active/present or 

inactive/absent states. Concentration or activity levels above a threshold indicate active 

state (1) and below the threshold indicate inactive state (0). The inactive state for any 

variable in the Boolean model did not mean that the variable was completely absent. It 

means that the concentration of the variable was below the threshold level. 

 

In many cases, it is hard to have an adequate knowledge of the initial levels of each 

variable; therefore, the general approach in modelling Boolean networks is to use an 
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exhaustive search (Section 3.1.6). In this kind of update, all possible states in the network 

state space are treated as starting conditions. 

 

However, in some cases, the states of some or the majority of the network nodes are 

known a priori. In this case, a need to employ heuristic search (Section 3.1.6.) arises to 

benefit from this knowledge in the analysis of the attractors and their basin (catchment of 

initial state vectors that flow into specific attractors). Sections 3.4.3 and 3.4.5 investigate 

the use of exhaustive search and heuristic search in synchronous and asynchronous 

updates. 

 

3.4.2 System Dynamics of the Cell Signalling Network 

 

In Chapter 2 and Section 3.3, we presented the development of the Boolean network and 

information related to the model, especially the biological knowledge. Our knowledge is 

based on current and recently available information from the experimental literature. The 

model developed consists of 13 proteins with 56 interactions. Each protein is represented 

by a node, while the interactions are represented by the edges as explained in Sections 

3.1.1 and 3.3.3. 

 

Simulating cyclin synthesis, degradation and cell cycle phases with our developed network 

required us to involve a set of elements. These elements include cyclins that lead the cell 

cycle phases, and the other elements that control protein production and destruction; 

these elements have been explained in Section 3.3. Our model consists of four sets of 

proteins as shown in Figure 3.21. The first set represents cyclin products, while the second 

set represents transcription factors required for protein synthesis. The third set represents 

protein degradation factors responsible for the destruction of the existing cyclins. The 

fourth set represents Rb and P27. These four sets work together as one to control cell cycle 

system and transition between phases. 
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Figure 3.21: Cell cycle controller sub-sets 

 

Regarding the timing for the interactions between system elements simulated in our 

Boolean model, the arrows represent the interaction between system components as 

shown in Figure 3.20; these interactions have different time scales and different binding 

constants and rates. However, in our model, which is similar to the models in literature, 

we are looking for model simplicity to represent the dynamic behaviour of the system. 

Therefore, in the first stage of model simulation with synchronous update, we assumed 

that all the nodes are the same – meaning that the activation and degradation of elements, 

which are considered fast events, are treated similar to production of proteins such as 

cyclins.  Cyclin production is considered slow as protein synthesis takes hours. In 

asynchronous update, all the nodes have the same timing as well, but the randomisation 

feature in this type of update represents slow events in better way than synchronous 

update.    

 

 

3.5 Modelling Dynamics of Cell Cycle Signalling – The Synchronous Model 
 

The main objective of this study was to unravel the qualitative characteristics of the 

dynamic behaviour of cell cycle system. This investigation can be done using synchronous 

and asynchronous Boolean approaches. This is the initial part of our study, which aims to 

provide a significant qualitative study of global dynamics of the system. The results from 

the synchronous approach should be compared with current and existing models as these 

models are part of literature review and provided the base for model advancements in our 

study. The aim is to estimate how our results are compatible with other studies, such as 

the Singhania et al (2011) and Faure et al (2006) models. The comparison includes steady-

state behaviour of attractors, and whether they represent simple or complex, limit cycle or 

Activators: 

MYC, TFE, TFB 

Deactivators: 

CDH1, SCF, CD20 

A/B 
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fixed point attractors, and comparing the attractors with Faure et al (2006) model 

attractors. It is also aimed to explore how the developed Boolean network reflect the global 

behaviour of cell cycle system; especially the transition from phase to phase. 

To validate our results, we compared them with the results from Faure et al (2006) model. 

Therefore, we needed to simulate Faure et al (2006) model using both updating methods 

and obtain correct results. Then results from the two models were compared.  

 

Synchronous Model Simulation 

 

The synchronous Boolean approach depends on updating all elements (nodes) in the 

Boolean network simultaneously at each time point. The updating state for each node is 

controlled by Boolean rules that were defined previously in this chapter. Aspects of 

dynamical behaviour, such as attractors along with their basin of attraction, have been 

investigated using synchronous Boolean network models of cell cycle and other signalling 

processes (Dubrova & Teslenko, 2011; Fauré et al., 2006; Garg, 2009). 

 

Our developed network contains a constant node (c-Myc) which represents the firing node. 

In addition, this node does not have any input links. Each node in the network must have 

one of two states, either active “ON” or inactive “OFF.” Each node must change its state 

between one of these two states. Concentration measurements can determine the activity 

of the element.  Based on these an appropriate threshold value is determined; typically,  

concentration at the half activation level of the element is taken as the threshold beyond 

which the element is active; otherwise, the element is inactive. 

 

The simulation of the network we developed and the investigations were conducted on an 

effective software package - BoolNet for R programming environment (Hopfensitz et al., 

2013).  We study the attractors in our proposed network dynamics using two different 

scenarios: the heuristic search and exhaustive search. 
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3.5.1 Exhaustive Search Scenario within the Synchronous Update 

 

In order to assess whether our network can reproduce the same global biological behaviour 

of cell cycle system, we assumed here that we lack knowledge of initial states of the 

proteins. Therefore, we used all possible initial conditions where nodes were allowed to 

choose a random initial state for each simulation. The number of trial random initial 

conditions is 2n, which equals 213 = 8,192 where 13 is the number of network components.  

 

According to the simulation results, the system completes the entire cell cycle phases with 

a complete description of the cyclin oscillations as shown in Figure 3.22a. The results 

showed that all 8,192 random initial conditions fall into two attractors.  Half the random 

initial conditions falls automatically into Attractor 1 with one state (steady state) with 4,092 

vector basin of attraction (Figure 3.22a left image). This attractor represents the quiescent 

(G0) state where there is no growth factor present to start cell cycle.  We found with this 

attractor that only CDH1, P27 and RB were active and the other elements were inactive. 

This means that these active elements keep cells in G0 state waiting for growth factors 

signals and this is supported by existing biological knowledge. 

 

(a) 
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(b) 

Figure 3.22: Visualisation of state changes in attractors. a) The Boolean attractors from our model 

using 213 random initial conditions and b) Boolean attractors from Faure et al. (2006) model using 

210 random initial conditions.  Columns in the images represent consecutive states of attractors. At 

the bottom, percentage of states leading to the attractor is given; green cells represent active state 

while red cells represent inactive state. The simulation used Boolnet for R-language package. 

 

The other half of the initial conditions produced a second limit cycle attractor with 12 states 

with 4,096 basin vectors (Figure 3.22a right image); this attractor represented remarkably 

correctly cell cycle phases with cyclin oscillations. This means that when the growth factor 

is present all these trajectories converge and are directed towards a unique dynamical limit 

cycle; this shows simplicity and potentially the advantage of synchronous updating. This 

attractor represented cell cycle phases depending on the changing states of cyclin products 

in the presence of growth factor – the oscillation of cyclins in the cell cycle phases and 

other cell cycle controller species activity. Our developed model shows the correct 

biological behaviour for cell cycle elements, especially cyclin activity. It showed how each 

cyclin leads and moves the cell cycle from phase to phase. Our model also properly 

described cyclin synthesis, degradation, and the activity of other system components over 

cell cycle phase transitions. 
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Moreover, the supplementary simulation used Faure et al. (2006) model and we simulated 

this model using 210 random initial conditions with synchronous update. The results 

revealed two attractors (Figure 3.22b). The first was a steady state attractor that 

represented the G0 state in the absence of growth factors (Figure 3.22b left image).  The 

second was a limit cycle attractor with seven states describing dynamic behaviour of cell 

cycle system. These results are reported in literature by Faure et al. (2006). However, 

Figure 3.22b shows that the cell cycle attractor in Faure et al. (2006) model does not show 

system activity properly. Cell cycle stages or phases are neither clear nor properly 

continuous. In addition, some of the element behaviours were not presented correctly, for 

instance, CycE, which became active at the beginning, then became silent, and then 

became active again at a later stage – this is contrary to CycE behaviour in cell cycle, where 

it becomes active just at the early stage of cell cycle phases. But CycE start its activity only 

late in G1 phase until the end of S phase; it helps the cell to move from G1 phase to S phase 

as shown in Figure 3.22a.  

 

 

The dynamic trajectory of the system can also be observed from model simulation as a cell 

responds to a large number of different initial conditions. Figure 3.23 describes the 

transition states of the trajectories of our developed cell cycle signalling network over the 

simulation time. In the figure, each dot represents a state vector of the system at a specific 

time step during simulation. 

 

 

Figure 3.23: The trajectories of state transition from our model obtained by using 213 initial 

random conditions. The trajectories leading to the limit cycle attractor corresponding to cell cycle is 
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represented by the green graph while those leading to the fixed attractor representing G0 state is 

represented by the blue graph. 

 

The state vectors are 13 digit binary numbers with values 0 or 1 corresponding to the states 

of the 13 nodes of the Boolean network. These trajectory graphs were generated using a 

force-directed graph-drawing algorithm from (Kawai, 1989).The simulation showed that 

the attractor states repeat themselves with every initial condition; this is a recurrent cycle 

of states (attractor). As it is difficult to ascertain attractor behaviour from all possible initial 

conditions as shown in Figure 3.23, we carried out another simulation using only 200 

different random initial conditions and we still noted that half of them automatically fell 

into the same fixed-point attractor (steady state) as before and the other half of random 

initial conditions fell into the same previously found 12 state-limit cycle attractor (periodic 

self-loop) as shown in Figure 3.24a. Figure 3.24b shows the transition states of the system 

elements in each attractor over time; the state for each element is either 0 or 1. 

 

 

 

      (a) 
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(b)  

 

Figure 3.24: Transition states obtained from 200 random initial conditions for system elements in 

each attractor over time. a) State transitions in limit cycle attractor representing cell cycle (green 

graph) and the state of the fixed-point attractor representing G0 state (blue graph); b) values of 

transition states for system elements in each attractor over time 

  

3.5.2 Heuristic Search Scenario within the Synchronous Update 

 

This method depends on the values of the initial conditions that can be known from 

previous knowledge. It is always preferable to start the simulation with relevant initial 

conditions if possible. In the literature, all sources of knowledge agree that early in the G1 

phase, when growth factors are present, there are some elements that need to be and are 

active. For instance, CDH1 as well as P27 and Rb are active at the beginning of cell cycle 

(Sangahi, 2011). The other elements are inactive or absent.  Accordingly, we started the 

simulation in our model with these initial conditions - Myc, CDH1, P27 and Rb in active form 

with all having values of 1. The synchronous Boolean approach depended on updating all 

elements (nodes) in the Boolean network simultaneously at each time point. The updating 
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state for each node was controlled by Boolean rules that were defined earlier in the last 

section. 

 

The result of this scenario provided one attractor with 12 states (limit cycle) similar to the 

one found in exhaustive search; these states represent a recurrent cycle that explains the 

oscillation of cyclins and cell cycle phase transitions as shown in Table 3.3 and Figure 3.25. 

Here, state 1 shows the G0 state for the new born cell. The biological elements that are 

active in the G0 state are - Myc, CDH1, P27 and Rb. The next state demonstrates the 

production of protein CycD due its promoter Myc becoming active in the previous state.  

State 3 shows how CycD activity affects Rb by making it inactive. In the next state (time 

step 4), only one element becomes active, which is TFE - transcription factor for Cyclin E. 

In the next state (time step 5), the new element CycE is produced by TFE. Then in state 6, 

the model simulates the late G1 phase. State 6 mimics the transition from G1 phase to S 

phase (DNA synthesis phase); researchers call this the “boundary phase”; in this state, P27 

is made silent by cyclins such as CycD and CycE. The next transition state, (time step 7), 

reveals that Cyclin A becomes active and the continuous production of CycE makes CDH1 

inactive. State 8 represents the continuous production of CycE that activates SCF, but TFE 

then becomes silent. Moreover, CycA keeps its production and activity and other elements, 

such as TFB and Cyclin B, become active. The next state (time step 9), SCF remains active 

and inhibits CycE and make it silent.  CycA, TFB, and CycB are also active. In addition, CycB 

activates CDC20A and CDC20B; in this state, CycD becomes inactive due to CDC20A, 

CDC20B and SCF being active which degrade CycD. All these activities represent the G2 

phase. 

 

Table 3.3 For known initial conditions, simulation results shows a limit cycle attractor similar to the 

one found in exhaustive search 
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Figure 3.25: Visualisation of the state changes in the cell cycle attractor. The columns represent 

consecutive states of the attractor. Green denotes active state (“ON”) while red denotes inactive 

state (“OFF”). The visualisation reveals the changes in states of system elements in each phase 

over the simulation period of cell cycle. 

 

 

The next state (time step 10) shows CDH1 becomes active again, this because CycA and 

CycB together inhibit CDH1 but this condition is no more presence since CycA become 

inactive by P27 in the previous state, also, CDC20A/B further activates CDH1. In addition, 

in this state, SCF becomes silent due to CDH1 being active and CycE is silent. However, TFB 

would still be active promoting CycB synthesis which keeps CDC20A and CDC20B active 

(the mitosis phase). In State 11 (time step 11), the system shows the events that occur at 

a later time in the mitosis phase. For instance, TFB becomes silent to reduce the amount 

of CycB production/activity, but Rb becomes active again in this phase. Finally, in the last 

12th time step, simulation shows that CycB becomes silent. This is because CDC20B and 

CDH1 works together to degrade CycB, and this represents the final state when the cell 

divides into daughter cells and moves into the G0 phase. This time step reveals transition 

from M phase to G0 phase in each new cell. The new cell now either enters cell cycle and 

follows the limit cycle attractor or stays in G0 phase until further notice. 

 

This simulation results revealed realistic dynamics of cell division process in mammalian 

cell cycle.  Both exhaustive and heuristic search based simulations show identical limit cycle 

attractor for cell cycle.  Both scenario simulations revealed cell cycle phases and how cyclin 
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oscillations lead cell cycle. These results provided evidence that our model was robust even 

with different random initial conditions. This means that extensive perturbation to initial 

conditions can still sustain the limit cycle attractor in cell cycle which also points to the 

robust design of cell cycle. The synchronous simulation captured the main dynamics of the 

cell cycle system, such as cyclin localisation; these results agree with experimental 

literature (Fauré et al., 2006; Iwamoto et al., 2011; Singhania et al., 2011).  They also agree 

with the results that were previously published in mathematical models (Ali Abroudi, 2017; 

Iwamoto et al., 2011).  Precisely,  our results are compatible with the biological knowledge that 

was discovered from models in literature, but these models in the literature provide only a part of 

cell cycle knowledge since each of them miss one or more elements, but our model provides new 

comprehensive biological knowledge concerned with cell cycle controller system.  

 

However, this model is really useful in describing cell cycle behavior, but synchronous models 

cannot provide time delays between biological interactions since each change in state required 

only one time step; and all the nodes are treated in the same way. This makes a distinction between 

synchronous Boolean model results and actual cell cycle. Therefore, this model results have 

limitations and asynchronous updating can address these limitations. 

 

The next section investigates asynchronous update scheme in detail.   

 

3.6. Modelling Dynamics of Cell Cycle Signalling – Asynchronous Boolean Approach 

 

In regard to synchronous updating scheme, it depended on applying Boolean functions for 

all elements simultaneously with respect to the previous state vector of the system. This 

idea is used to describe system dynamics. In addition, synchronous model was considered 

a deterministic model due to the possibility of the model starting at given initial conditions 

will always converge to the same end state after the same time steps (Kauffman, 1993).  

 

Although the Boolean model with synchronous updating scheme showed realistic 

progression of cell cycle events, it could not capture the real temporal dynamics due to 

being unable to incorporate realistic time delays in the update schedule. Each event needs 
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suitable timing with the correct sequence of events. Therefore, asynchronous update was 

considered an alternative solution since it can introduce time delays for the interactions of 

system elements. 

 

In this section, we discuss asynchronous update scheme that was used in the literature 

review and in our system, and show how it can enable representation of temporal 

dynamics of cell cycle in the Boolean network. We also investigate the system attractors 

from asynchronous update, explain time delays in our system, and compare results from 

asynchronous update experiments with the synchronous update model from the last 

section.  

 

3.6.1 Asynchronous Updating Scheme for the Boolean Network 

 

Generally, biological interactions that describe the dynamic behaviour of biological 

systems have time scales. The time scales associated with biological interactions can vary 

from fractions of a second to hours. For instance, signalling activities such as 

kinase/phosphatase reactions have time scales from fractions of a second to seconds, while 

transcriptional events and cellular growth can take hundreds of seconds or sometimes 

even longer (Papin et al., 2005).  In particular biological scenarios, some elements/nodes 

in the biological network must have their states updated less frequently than others. These 

kinds of biological elements, represented by node(s), should not have a prompt response 

to biological signals; they may need longer times to complete their reactions. Therefore, 

asynchronous models have been developed to represent various time scales (Thomas, 

1973), which add more variability to the update order. Later, various prominent 

asynchronous models have been added, such as the ones made by Chaves et al. (2005)); 

Harvey and Bossomaier (1997); Thakar, Pilione, Kirimanjeswara, Harvill, and Albert (2007) 

; and R. Zhang et al. (2008). 
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Due to the limited availability of biological information, asynchronous updating scheme 

has three assumptions that any asynchronous Boolean network adheres to and they are:  

I. In a single discrete time step, only one node can make a transition. 

II. If the network has any element/node without any regulators that control its activities, 

this kind of node should remain in the identical state during simulation. 

 

In asynchronous update, nodes are represented in the same way as in synchronous update. 

Any node in the system becomes either a 0/”OFF” or a 1/”ON”. Changing their states 

depend on a set of Boolean functions. The main difference between synchronous and 

asynchronous update is that these Boolean functions turn nodes active with different time 

delays. 

 

In some asynchronous updates, nodes become lined up in a specific order with a 

predetermined sequence for their updates where only one node changes its state at a 

given time in each update Saadatpour, Albert, and Albert (2010). However, in this part of 

the simulation, we randomly selected an element at each new time step to be updated. 

The reason for this choice, as mentioned before, is that available knowledge of time delays 

is limited.  For instance, kinetic data that can help us specify the exact length of each state 

transition are scarce. 

 

In this part of the research, we simulate our cell cycle signalling network with asynchronous 

updating method discussed above. We maintain the same network topology, Boolean 

transition functions, and the assumptions made in simulating the synchronous model, but 

a randomly selected node updates its state at each time step.  

 

As in synchronous update, asynchronous model can also be simulated either with 

exhaustive search using 2n random initial conditions or with heuristic search using known 

initial conditions from literature.  We intend to utilise both to gain more knowledge.  
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3.6.2 Asynchronous Update – Exhaustive Search Scenario 

 

In the previous simulation, we investigated the dynamic behaviour of our developed cell 

cycle system using the synchronous Boolean update. There we revealed that our developed 

model could be considered as an efficacious model to mimic cell cycle transition system 

even without time delays.  Since the results and the network were robust, we use the 

results from synchronous analysis to compare with asynchronous results. Furthermore, we 

also simulate Fauré et al. (2006) model with the asynchronous update for comparison. 

 

With the exhaustive search using 213 random initial conditions, asynchronous simulation 

provided us with a very complicated result as shown in Figure 3.26; this made it difficult to 

interpret and investigate. The reason was that the states can be reached from other states. 

This can be a normal result since asynchronous update can provide complex attractors. Our 

results in Figure 3.26a showed that there could be two attractors; the first was a simple 

steady state attractor, which represented G0 state, and the second was a complicated 

attractor which contain cell cycle attractor. Further, Figure 3.26b shows how the states can 

be reached from other states in both steady attractor and complex attractor from our 

asynchronous Boolean model, as noted, this figure shows a small part of state transition 

from a huge and complex states transition that can be found inside the complex attractor. 

Hence, we simulated Faure et al. (2006) model with asynchronous update using 210 random 

initial conditions. We gained two attractors that were compatible with our results, but the 

main difference was that there was greater clarity in the nature of the complex attractor 

due to the smaller number of initial conditions as shown in Figure 3.26c. The cell cycle 

complex attractor have a complicated order of reactions. Although randomised update has 

captured a version of time delays making it more realistic than synchronous update in 

concept the complexity of the attractors indicated that there needed to be a simpler 

approach or proper time delays integrated into the update.   
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(a)  

(B) 

 

 

(c)  
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Figure 3.26: Representation of asynchronous attractors. a) The two attractors from our 

asynchronous Boolean model update obtained from 213 random initial conditions; and b) the states 

transition inside the complex attractor from our asynchronous Boolean model; and c) The two 

attractors from Faure et al. (2006) asynchronous Boolean model update from 210 random initial 

conditions. 

 

Therefore, for simplicity of investigation and extracting more knowledge from the dynamic 

behaviour from asynchronous update, we decided to use heuristic search. The next section 

reveals details of heuristic search with asynchronous update. 

 

3.6.3 Asynchronous Update – Heuristic Search Scenario 

 

Here we selected the same known initial conditions that were used in the synchronous 

update for the heuristics search. In addition, for simulation and analysis, we used an open 

source Odefy Matlab package that helped simulate asynchronous update using specific 

initial conditions. The network revealed longer simulation cycles of 81 discrete time points, 

which is longer than total time steps in synchronous update. This is because the 

asynchronous attractors are expected to be longer than synchronous attractors due to 

randomised update of only one individual node at a time. 

 

After running several experiments using asynchronous update, we obtained several 

different results. The variation in simulation results was due to the randomisation in the 

selection of nodes to be updated in asynchronous update. Therefore, we adopted the 

results most compatible with biological knowledge of the cell cycle. Consequently, the 

results from asynchronous analysis revealed realistic dynamic behaviour for cell cycle 

transition between phases. This was comparable with synchronous results, but in the 

asynchronous results, the time scale was longer than in the synchronous update. For 

instance, in the synchronous update the system components needed just 12 time steps to 

complete cell cycle with known initial conditions, whereas in asynchronous update, the cell 

cycle transition required approximately 81 time steps as shown in Figure 3.27. 
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Figure 3.27: Visualisation of the state changes in attractor in asynchronous update. Red indicates 

active (“ON”) states for individuals proteins over time, while blue indicates inactive (“OFF”) 

States. The simulation was carried out on Odefy-Matlab open source program. 

 

The results showed that majority of the network nodes were either in the “ON” or “OFF” 

state within the cycle of state dynamics. Similar results were observed in the synchronous 

Boolean model but with different time steps. 

 

We observe that asynchronous update can describe cell cycle phase transitions well. In 

addition, it revealed correct biological interactions and cyclin oscillations. Moreover, 

asynchronous update showed time delays for biological interactions between system 

elements in a realistic way. For instance, TFE takes a major part in activating either Cyclin 

E or Cyclin A. In synchronous update simulation, we observed that when TFE became active 

Cyclin E became active in the next time step.  However, in asynchronous update, the 

element’s activity became  different; when TFE became active, we noticed that time delays 

were observed before Cyclin E became active, and Cyclin A followed this regulatory 

behaviour as well. 

The asynchronous Boolean model was considered to be a realistic model but needed prior 

knowledge to explain and investigate system behaviours. In the asynchronous model, each 
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simulation can provide a different result; this makes modellers take a long time to choose 

the most appropriate results. An alternative solution could be to use synchronous update 

while incorporating time variables to control the time of firing of the rules; this can provide 

realistic results. In the next section, we explain this method. 

3.7. Synchronous Update of Boolean Model with a Time Variable  

 

In this model, we implemented a synchronous update with time delays.  When a node is 

turned active, different time delays (steps) are required to activate its targets. Updating 

scheme with time delays requires realistic knowledge of time delays in the absence of 

which random time delays become an option, but this kind of implementation is very 

computationally intensive and can lead to complex results, due to incorrect 

implementation of rules, that may or not provide useful insights.  In this study, therefore, 

a constrained version of this updating scheme was used as a compromise.   

 

We mainly applied discrete time delays for cyclins to become active since it is considered 

a slow biological reaction. Slow reactions of cyclin production require extra time steps and 

so a single time step is not enough as in synchronous update and random update may miss 

the target. For example, after becoming active TFE should produce CycE in a number time-

steps and not after a single time step as in the normal synchronous update.  

 

Furthermore, we used both exhaustive and heuristic approaches to generating initial 

conditions for the simulation. However, the exhaustive approach turned out to be very 

costly in terms of processing time as it required a high-performing device to handle the 

complexity of processing time. For instance, at the beginning, we ran the simulation with 

213
 random initial conditions, and then discovered the timing issue, so we ran it with a 

smaller number of 100 random initial conditions.  We obtained a set of attractors as shown 

in Figure 3.28; one of these attractors represented G0 state, and another attractor 

represented cell cycle system with 20 states. This attractor mimicked the time delays in 

biological interactions within cell cycle.  For instance, the time delays obviously appear in 

this attractor; it shows system element activities during cell cycle phase transitions 
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properly - each cyclin has several time steps to be active in contrast to typical synchronous 

update which needs just one time step. In addition, this attractor explains how cyclin 

products lead cell cycle phases; this attractor is further explained in the heuristic search 

since heuristic search provides this attractor as well.  The rest of the attractors were either 

spurious or attractors that can expose some missing or undiscovered knowledge or 

diseases such as cancer. 

 

 

 

Figure 3.28: Attractors from synchronous update with time delays for cyclins showing 

visualisation of state changes within attractors. Columns represent consecutive states, green 

denotes active state (“ON”) and red indicates inactive state (“OFF”). This visualisation reveals 

changes in system element states in each phase of the simulation. 

 

Another attempt was undertaken by employing heuristic knowledge of initial conditions in 

simulation with time delays for cyclins. The same initial state (G0 state) that was used in 

the first synchronous and asynchronous update simulations was used again to run the 

simulation. It provided the same results for the attractor as was discovered by the 

exhaustive search with limited number of initial conditions as shown in Figure 3.29. This 

attractor showed cell cycle system activity; it also revealed the movement from phase to 

phase with time delays. For instance, in this attractor, state 1 represents the early G1 phase 

when growth factors are present, this makes Myc, CDH1, P27 and Rb active. In state 2, 
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CycD starts its activity and affects RB and makes it silent; in state 3 the early mentioned 

elements are still active and in state 4, only TFE becomes active and join other active 

elements. TFE will not activate CycE in the coming state, as CycE should wait few time steps 

to be active – thus we mimic the biological time delays between CycE and their activator. 

Therefore, in state 8, CycE becomes active. The next state shows that P27 becomes silent 

since several cyclins products become active which affects its activity. In state 10, CycA 

becomes active and CDH1 becomes silent. CycA waits several time steps to be active even 

though TFE has become active earlier and wait for P27 and CDH1 to become silent. In state 

11, SCF becomes active and join all active elements, but TFE becomes silent and join other 

silent elements. In state 12, SCF does not silence CycE in the next state similar to typical 

synchronous update, CycE still active. Further, in this state TFB becomes active, TFB waits 

few time steps to be active although its activator CycA has become active earlier. However, 

in this state CycD becomes silent. State 13 has no any major or minor change in system 

element activity. In state 14, CycB becomes active. In state 15 CDC20A/B becomes active 

while CycE becomes silent, as we can note CycE become silent after several time steps even 

their inhibitor SCF earlier became active. In state 16, CycA becomes silent while CDH1 and 

P27 become active. State 17, Rb becomes active again. In state 18, TFB becomes silent 

while other active elements are still active. State 19 has no changes in system element 

activity. In the last state, CycB becomes silent. This state represents the end of mitosis 

phase. However, in this investigation we analysed this attractor from timing aspects since 

the biological conditions and relations are previously explained. As we can see almost all 

system elements have a time delay to become active in contrast to synchronous update 

requiring only one time step for state transition. 
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Figure 3.29: Attractor with 20 states from asynchronous update with time delays for cyclin 

production and heuristic initial conditions 

 

Considering the results from the 6 analyses (synchronous, asynchronous update (random) 

and specified synchronous time delays) for exhaustively or heuristically selected initial 

conditions, we conclude that our Boolean model of cell cycle (i) produces realistic cell cycle 

stages in all cases, (ii) provides a greater level of temporal resolution and reality to cell 

cycle stages with the introduction of time delays for cyclins in asynchronous update 

compared to other updates, (iii) reveals that the system is robust against perturbations to 

initial conditions as evidenced by the similarity of results for random initial conditions 

(which represent perturbations to the actual initial conditions) and heuristic (known) initial 

conditions for all scenarios. The robustness is further investigated in the next section. 

 

3.8 Analysis of Time Evolution of Network Events  

 

Previously we presented results from various simulations on our system to highlight 

attractors, cell cycle stages that are invariant to update method and initial conditions and 

robustness of the system to initial conditions. Here, we reveal more results and additional 

investigations related to other important aspects such as time evolution of cell cycle 

systems in synchronous and asynchronous updates. 
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3.8.1 Analysis of Time Evolution of Network Events – Asynchronous Update 

 

While asynchronous update with a large number of random initial conditions was difficult 

to analyse, we chose the exhaustive search nonetheless. We chose the same known initial 

conditions used in the case of synchronous update with heuristic initial conditions. 

The network showed simulation cycles of 81 discrete time points for heuristic initial 

conditions. The total time steps in this simulation was longer than that in synchronous 

update. This was because the asynchronous update with randomly updating one element 

at a time was expected to be longer than the synchronous update where all elements are 

updated simultaneously. We found a number of different results for different initial 

conditions due to random selection of elements for updating.  For this investigation we 

selected the results that most realistically represent cell cycle phases. 

 

Figure 3.30 shows the temporal evolution of the state of individual elements and the time 

required for their activation or inactivation over 81 time steps of asynchronous update.  It 

presents cyclins such as Cyclin D, E, A and B that control cell cycle stages. Additionally, it 

shows Rb and P27 that control cyclin activities. Further, it presents transcription factors 

needed for cyclin syntheses, such as TFE and TFB. Finally, it reveals the behaviour of cyclin 

degraders CDC02A, CDC20B and CDH1.  
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Figure 3.30: Temporal evolution of the state of individual elements and the required time steps 

for their activation/inactivation in asynchronous update. 
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We noticed from the previous figures that asynchronous update provided more realistic 

behaviour than synchronous update. This is because asynchronous update incorporates 

time delays for system activities, such as cyclins activators, inhibitors.  

 

The asynchronous update takes more than one time step to activate or inhibit the 

interactions of system components. For instance, Figure 3.31 represents the controlling 

process for CycD.  CycD is one of the cyclins that should be available early in the cell cycle. 

Therefore, CycD should be active sometime after Myc becomes active. Figure 3.30 shows 

that when Myc becomes active after a few time steps at the beginning CycD becomes 

active as well. This leads the cell cycle transition into G1 phase. CycD activity can be 

reduced and eliminated when its degraders become active, i.e., SCF and CDC20A/B. The 

asynchronous update showed that more than one time step is needed to inhibit CycD by 

SCF and CDC20BA/B when they become active. These were the most important activations 

and inhibitions that managed CycD activity. Consequently, we can summarise this process 

by saying that CycD becomes active in time step 5, several time steps after Myc is activated. 

The inhibitor SCF becomes active in time step 43, and it takes more than one time step to 

affect CycD activity; CycD becomes silent in time step 47.  CDC20A and CDC20B become 

active later, in time steps 52 and 51, respectively. These kept CycD silent until the end of 

cell cycle. Thus asynchronous update provides realistic descriptions of temporal evolution 

of CycD and the elements affecting its activity, relative to each other.  How these timings 

compare with actual timing of cell cycle events need further investigation.   
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Figure 3.31: Temporal evolution of CycD and its controllers in asynchronous update  

 

Figure 3.32 presents temporal evolution of CycE activity in relation to its activators and 

inhibitors. For instance, TFE activates CycE after several time steps and inhibitors also 

require several time steps to inhibit CycE activity. For example, TFE becomes active in time 

step 15 and activates CycE in time step 19.  P27 and SCF also took more than one time step 

to affect CycE activity, while synchronous update required only one time step for this, 

either through activation or inhibition. For example, SCF becomes active in time step 44 

and impacts CycE in time step 46. P27 then becomes active in time step 55 to keep CycE 

silent until the end of cell cycle. 

 

 

Figure 3.32: Temporal evolution of CycE and its controllers in asynchronous update  
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Likewise, CycA activity is appropriately mapped by synchronous update. CycA is the most 

important regulator of S phase of cell cycle, and it should be available in S phase.  It works 

with other cyclins to move the cell from S phase to G2 phase (the second gap phase). 

Consequently, CycA should be active sometime after TFE becomes active on time step 15; 

this TFE first synthesises CycE prior to synthesis of CycA. Further, CycA activity is inhibited 

by P27 and CDH1. The asynchronous update demonstrated the relative time delays 

between these events as shown in Figure 3.33. For instance, P27 becomes inactivated in 

time step 29 (see also Figure 3.32) and later CDH1 becomes inactive in time step 35. 

Therefore, after several time steps CycA becomes active in time step 38 and this leads to 

cell cycle transition in G2 phase. However, CycA activity goes down when its degraders 

CDC20A and CDH1 become active. At time step 52, CDC20A becomes active and then CDH1 

is activated in time step 61. After a few time steps from here CycA gets degraded. These 

activations and inhabitations control CycA movement. Figure 3.32 characterises the 

processes of CycA control showing the time delays between the activators and inhibitors.  

 

 

 

Figure 3.33: Temporal evolution of CycA and its controllers in asynchronous update  

 

CycB is the main regulator in M phase; it should be active after TFB becomes active since it 

synthesises CycB. So when TFB becomes active CycB also becomes active after a delay of 

few time steps, as shown in Figure 3.34. Moreover, the asynchronous update revealed the 

time delays for CycB inhibition by CDC20B and CDH1. CycB is inhibited by CDC20B and CDH1 
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when they work together to inhibit it. The CDC20B inhibitor becomes active in time step 

51, and later on in time step 62, CDH1 becomes active, followed by CycB inactivation in 

time step 69, which was inhibited by both CDC20B and CDH1. 

 

 

       

Figure 3.34: Temporal evolution of CycB and its controllers in asynchronous update  

 

3.8.2 Time Evolution of Network Events in the Synchronous Update 

 

As demonstrated previously, the core functionality of our model was to explain the 

dynamic behaviour of cyclins and other parts of the cell cycle controller system. Therefore, 

we mainly focused on the behaviour of cyclins since each cyclin leads a phase in the cell 

cycle. To simplify our investigation, we used known initial conditions from biological 

literature.. Figure 3.35 demonstrates the temporal variability in the activity of a set of 

elements that represents the major functional events in the cell cycle system. It shows 

individual activations/inhibitions and the corresponding required time steps for each 

element during the simulation. The simulation timeline is 12 time steps for the 

synchronous update. 
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Figure 3.35: Individual activations/inhibitions and the corresponding required time for each 

element in the synchronous model. 

 

We also explored cyclin control activity in the synchronous update. Figure 3.36 represents 

the controlling process for CycD.  As described earlier, CycD should be available early in the 

cell cycle when the Myc becomes active. Figure 3.36 shows that when Myc becomes active 

at time step 1, CycD becomes active and leads the cell cycle transition into G1 phase in the 

next time step 2. CycD activity can be reduced and eliminated when its degraders SCF and 

CDC20A/B become active. At time step 8, SCF becomes active and then CDC20A/B become 

active as well at time step 9; therefore, they inhibit CycD activity at time step 9. CDC20A/B 

both keep CycD silent for the rest of the cell cycle. These were the most important 

activations and inhabitations processes managed by the CycD activity. 

 

 

 

Figure 3.36: Temporal evolution of CycD and its controllers in synchronous update  
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Figure 3.37 characterises the controlling process for CycE which is the controller of G1 

phase of cell cycle. As such, it should be available early in the cell cycle. As demonstrated 

earlier, CycE works with CycD to move the cell from G1 to S phase. Therefore, CycE should 

be active when its transcription factor TFE becomes active. Figure 3.37 shows that when 

TFE becomes active at time step 4, then at the next 5th time step CycE becomes active and 

leads the cell cycle transition into S phase.  However, CycE activity can be reduced and 

eliminated when its degrader and inhibitor SCF and P27 become active. At time step 8, SCF 

becomes active and then at time step 9 CycE activity is inhibited. Moreover, P27 becomes 

active at time step 10 to keep CycE at bay for the rest of cycle. These activation and 

inhibition processes manage CycE activity as needed to enable it to control cell cycle.  

 

 

 

Figure 3.37: Temporal evolution of CycE and its controllers in synchronous update  

 

Figure 3.38 characterises the control process for CycA, the main controller of S phase and 

works with other cyclins to move the cell from phase S to G2 phase, which is the second 

gap phase.  As such, it should be available in S and G2 phases. Consequently, CycA should 

be active when its transcription factor TFE becomes as shown in Figure 3.38. Moreover, 

CycA activity requires another two factors P27 and CDH1 to be silent.  P27 becomes silent 

at time step 6 while CDH1 becomes silent at time step 7. After that, CycA becomes active 

and leads the cell cycle transition into G2 phase at time step 7. However, CycA activity can 

be inhibited when its degraders CDC20A and CDH1 become active. At time step 9, CDC20A 

becomes active and then at time step 10 CycA activity is inhibited. CDH1 also becomes 
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active at time step 10 to keep CycA silent for the rest of the cell cycle. These activation and 

inhibition processes manage the movement of CycA to enable it to carry out its function.  

 

 

 

Figure 3.38: Temporal evolution of CycA and its controllers in synchronous update  

 

Figure 3.39 characterises controlling processes for CycB. Synchronous update has clarified 

CycB activity. Specifically, CycB should be active when TFB becomes active. However, CycB 

activity requires another two factors CDC20B and CDH1 to be silent. As shown in Figure 

3.39, when CDH1 becomes silent at time step 7, CycB becomes active and leads the M 

phase transition at time step 8. However, CycB activity can be inhibited when its degraders 

CDC20B and CDH1 become active. CDC20B becomes active at time step 9. However, this is  

not enough to inhibit CycB so at time step 10, CDH1 becomes active. It works together with 

CD20B to inhibit CycB activity. These activation and inhibition processes manage CycB 

levels to enable it to do its control function.  
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Figure 3.39: Temporal evolution of CycB and its controllers in synchronous update  

 

3.8.3 Cyclin Activity in Cell Cycle with Synchronous and Asynchronous Updates Compared 

With ODE Model 

 

The cell cycle system as described previously consists of four phases. These phases are well-

ordered and controlled by cyclins. The literature shows that each cyclin can control each 

phase or can work with other cyclins to move the cell from phase to phase. Figures 3.40a 

and 3.40b show how our Boolean system results characterised the long-time behaviour of 

cell cycle system depending on cyclin activity, and how cyclins can lead cell cycle phases in 

the mammalian cell cycle system similar with realistic result from ODE Model (Ali Abroudi, 

2017) as shown in Figure 3.40.c. This was revealed especially when we used the 

synchronous and asynchronous updates with the same initial conditions 
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(b)  

             

 

(c) 

Figure 3.40: Cyclin activities in cell cycle phases 1 (Ali Abroudi, 2017). (a) Synchronous and (b)  

Asynchronous updates, and (c) ODE model results.  One cyclin or more than one can lead a 

particular cell cycle phase. 

 

The synchronous update explained the abundance of cyclins and their activity in cell cycle 

over 12 time steps of simulation as shown in Figure 3.40a. Asynchronous update showed 

time delays in system interactions and therefore these results can be considered more 

realistic.  Time for this simulation was 81 time steps as shown in Figure 3.40b. However, 

our model can explain cell cycle activities and behaviour either with synchronous or 

asynchronous updates; the main difference is that asynchronous update presented the 

activities with temporal reality incorporating time delays. Consequently, the results from 

the discrete model can describe the dynamic behaviour of the cell cycle system 

approximating realistic continuous results from the ODE model (Figure 3.40c in comparison 

with Figure 3.40b).  The results from our discrete model and ODE model are compatible 

with the biological knowledge in terms of how each cyclin leads cell cycle phases. 

                                                             
1 Reprinted from Elsevie, Journal of Theoretical Biology,429, Ali Abroudi,Sandhya Samarasinghe,Don 

Kulasiri, A comprehensive complex systems approach to the study and analysis of mammalian cell cycle 
control system in the presence of DNA damage stress, Page No 25, Sep 21, 2017, with permission from 
Elsevier, License Number 4464060603162 License date Nov 08, 2018. 
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3.8.4 Comparison of Asynchronous and Synchronous Attractors 

 

The results from simulation experiments from our model were compatible with the most 

popular existing models such as Faure et al. (2006) that was also compatible with the 

studies of Novak (2006) and Tyson (2004) that explained cell cycle events.  However, our 

model has been developed with new and novel biological knowledge. Further, our model 

provides better results than current models in representing the dynamic behaviour of the 

cell cycle controller elements. For instance, our model shows the realistic order of all 

system element activities.   

 

In the simplest synchronous update, we acquired two attractors as shown in Figure 3.41a. 

The first one was in a stable state with only CDH1, P27 and Rb being active in the absence 

of growth factors. This state was reached from all the other states lacking Myc activity, and 

thus, it corresponded to G0 or the quiescent state. In contrast, the second attractor on the 

right side of Figure 3.41a showed that in the presence of Myc, all corresponding trajectories 

lead to a unique limit cycle consisting of a sequence of 12 successive states. This 12-state 

cycle appeared with both exhaustive and heuristic (Figure 3.41b) initial conditions. 

 

These attractors were also discovered in the asynchronous update. For instance, an 

exhaustive search within asynchronous update provided two attractors as shown in Figure 

3.41c; however, despite complexity, asynchronous update provided two attractors, as 

shown in Figure 3.41c. The first one was in a steady state, while the second one was a 

complex attractor which hard to be investigated. Furthermore, the heuristic search within 

asynchronous update provided an attractor that describe cell cycle controller activities. 

This attractor is more realistic since it represented time delays in system activities as shown 

in Figure 3.41d.  

 

In the case where random time delays were applied on system components, synchronous 

update also provided promising results revealing realistic temporal evolution cell cycle over 

20 time steps as shown in Figure 3.41e; even this model was very demanding 

computationally. Since this update is biologically more realistic than either standard 
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synchronous or asynchronous update, the temporal progression could also be closer to 

biological reality.    

 

 

 

(a)  

 

(b)  
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(c)  

 

 

(d)  

 

 

(e)  

Figure 3.41 Asynchronous and synchronous attractors from model simulation. (a) 

Synchronous update with exhaustive (213) initial conditions; (b) Synchronous update with 

known (heuristic) initial conditions; (c) Asynchronous update with exhaustive (213) initial 

conditions.All the right part represents one complex attractor. The ring on the right side 
represents complex attractor for all possible random initial conditions 2 13, the blue ring 
represent the values for each state (the labels) and each states is represented by dot. 
Therefore, the black ring represents the dots for each state. The gray lines represents the 
states transitions between states.(d) Asynchronous update with known (heuristic) initial 

conditions; and (e) attractor with 20 states using asynchronous update with random time 

delays applied to cyclins only 

 

It is clear from the last part of the simulation that both synchronous and asynchronous 

updates are comparable in describing the phases of cell cycle transitions. Moreover, both 

showed the correct biological interactions and cyclin oscillations. They both gave the same 
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results; however, synchronous update using time delays produced a realistic temporal 

evolution of cell cycle showing a longer time horizon.    

 

Our enhancement for the current models provides better results, especially, the realistic 

structure and dynamic behaviour for the cell cycle components. We can conclude that our 

system can represent cell cycle stages and dynamics well and the attractors found 

correspond to actual processes in various cell cycle stages.  Simulations with a large 

number of initial conditions revealed that systems is robust against the perturbations to 

initial conditions in all the scenarios studied.  A comprehensive robustness study is 

presented and investigated in the next section. 

 

3.9 Network Robustness, Temporal Dynamics and Sensitivity Assessment 

 

This part assesses the robustness of our developed Boolean network. Boolean networks 

that simulate biological networks are presumed to be robust when facing a small amount 

of noise or change in the system. From this perspective, it is important for network models 

to be tested for robustness against various noises such as element failures.  Here we used 

artificial noise such as a random noise. 

Random noise can be applied by using perturbations to the current state of the network in 

simulation. We appreciatively employed BoolNet package due to its inclusion of the 

functions that support these robustness assessments.  

 

We applied noise to the current state of the network and used perturbation trajectories 

function to measure its impact on network states. Specifically, we generated a set of initial 

states and then created a set of perturbed copies from these states. We made these 

perturbed copies by randomly flipping bits before measuring the impacts of these flips on 

the dynamic behaviour of the network. For example, we generated 100 states and another 

100 copies with a one-bit flip, then performed a single state transition for each state. Then 

we measured the fraction of different bits (normalised Hamming distance) between each 
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state and the corresponding perturbed copy. Boolean network robustness can be assessed 

with the assumption that more robust networks yield a lower Hamming distance. Our 

simulation results showed a very small Hamming distance of 0.079 which indicates that the 

model is robust. In addition, we compared our results with the most popular Boolean 

model available in the literature, Faure et al. (2006) model, which was considered a very 

robust model with Hamming distance of 0.107 as shown in Table 3.4. 

 

Further, we studied another measure of robustness- the effect of perturbation on the long-

term behaviour of the system by comparing the attractors reached from the initial states 

with those reached from their perturbed copies using normalized Hamming distance. 

Results revealed a difference of 0.73 and the same measure for Faure et al. (2006) model 

was 0.93 as shown in Table 3.4. Our models shows a greater level of robustness against 

changes to attractor states due to perturbed initial conditions. Thus our results show a 

greater agreement with literature assumption that small changes in the state must not 

affect the long-term behaviour of the network, so most of the attractors should be the 

same.  

 

 

 

 

Table 3.4 Robustness of the Boolean model comparison with previous model 

Robustness Measure Our model 
Faure et al. (2006) 

model 

Impact on system states based on 

Hamming Distance 
0.079 0.107 

Impact on long-term behaviour of system 

(Attractors) 
0.73 0.93 

 

 

Moreover, we studied the average sensitivity of element behaviour to perturbed initial 

states as shown in Table 3.5. This measure only assesses single transition functions, and we 

counted the number of successor states for a specific element for the original initial states 

and their corresponding perturbed copies and estimated the average difference for the 
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two conditions.  For instance, the measured average sensitivity of the transition function 

of one of our system elements Cyclin E had a value of 0.11. We then compared it with Faure 

et al. (2006) model which had the same average sensitivity of 0.11 for CycE. Individual 

sensitivity comparison between the two models was also carried out as shown in in Table 

3.5 and Figure 3.42. 

Table 3.5 Individual transition function sensitivity comparative study 

Average sensitivity of transition function Our Model Faure et al., 2006 Model 

Myc 0.03 NA 

CDH1 0.09 0.09 

P27 0.05 0.1 

Rb 0.14 0.06 

CycD 0.04 0.06 

TFE 0.11 0.12 

SCF 0.09 NA 

CycE 0.11 0.11 

CycA 0.17 0.08 

TFB 0.04 NA 

CycB 0.10 0.12 

CDC20A 0.05 0.09 

CDC20B 0.12 0.09 

 

 

 

Figure 3.42: Transition function sensitivity for individual species in the network. Blue columns 

indicate our model results and red columns indicate those for Faure et al. (2006) model. 
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3.10. Mutation Study 
 

Boolean network used to modelling biological network such as human signalling network; 

It helps to investigate human diseases and therapeutic (Saadatpour et al., 2011). 

In this section we can specify how each element can effects on the global behaviour of cell 

cycle model. Applying systematically perturbation on the system by tuning the state of 

specific node from active to inactive (or vice versa). By doing this kind of perturbation we 

mimic the either biological genetic knock out to exposes the pharmacological inhibition of a 

particular node or gene overexpress. In addition, this can support to investigate human 

diseases, also this provides us a new knowledge about our system for example which elements 

have a critical effect on network efficiency. 

 

Herein, we studied the effect of mutation in elements on system behaviour. We fixed the 

value of Myc to 1 and kept it active for all mutations to mimic consistent presence of 

growth factor that activated Myc to fire up the Boolean network. Then, we applied 

individual mutations to all system elements.  

 

We applied two types of mutation: 1) a knock-off mutation by fixing the values of the 

selected element to be 0 for the whole simulation, and then 2) an overexpressed mutation 

by fixing the value of the selected element to 1 for the whole simulation. In this kind of 

mutation study, we investigate the effects of mutation in individual elements in the 

network. First, the chosen element was knocked off for the whole simulation. We then 

repeated the simulation by overexpressing the same chosen element and collected 

corresponding results for the system.  These mutation tests were conducted on all 12 

elements one by one, which represented the components of the whole system. We then 

investigated and compared results with available literature to draw our conclusions. 
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The initial states for the system used in these investigations were the known (heuristic) 

states used previously in this study and this state vector represents the early G1 phase of 

cell cycle.  The next sub-section investigates the individual knock off mutations in the 

Boolean cell cycle controller model and the sub-section that follows investigates individual 

overexpression mutations.   

 

3.10.1 Knock off Mutations 

 

Figure 3.43 summarises all the knock-off mutation results. When P27 was knocked off, the 

system provided us with cell cycle phase transitions, but all cyclin activities had one fewer 

time step than usual as shown in Figure 3.43a; this provides 7 states not 12 states as normal 

cell cycle transitions. Moreover, the Rb knock-off mutation showed an acceptable cell cycle 

global behaviour and cyclin oscillations, but with 9 states and CycE was become active with 

CycD at the same time, this is not precise result as shown in Figure 3.43b. In addition, 

knock-off mutation on Cyclin E for the entire simulation affect the system efficiency, when 

Cyclin E that has been knocked off the system had not the ability to describe cell cycle 

phases and cyclin oscillations as shown in Figure 3.43c, the simulation provides just one 

state. In addition, knocking off SCF has a negative impact on both of Rb and P27, which 

made it inactive for the entire of simulation. Further, Cyclin E becomes active for all the 

simulation and the cell cycle for this mutation has just seven states as shown in Figure 

3.43d. 

Knock off  Mutation 
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(a) (b) (c) 

 

(d) 

 

(e) 

 

(f) 

 

(g) 

 

(h 
 

(i) 

 

(j) 

 

(k) 
 

(l) 

Figure 3.43: knock off mutation from model simulation. (a) Knock off P27; (b) Knock off RB; (c) Knock 
off CycE; (d) Knock off SCF; (e) Knock off CycD; (f) Knock off TFE; (g) Knock off CDC20B; (h) )Knock off CDH1; 
(i)   Knock off CycB; (j) Knock off CDC20A; (k) Knock off TFB and (l) Knock off CycA.  

 

Another inference from this type of knock-off mutations was that several elements, when 

knocked off, the cell cycle did not go anywhere, such as knock-off Cyclin D, TFE and CDC20B 

as shown in Figure 3.43e, f and g, respectively. Furthermore, some other elements, when 

knocked off such as CDH1 CycB, CDC20A, TFB and CycB respectively, produced inconsistent 

cell cycle activities as shown in Figure 3.43h, I, j, k and l respectively.  
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3.10.2 Overexpressed Mutations 

 

The second type of mutation was overexpressed mutations as shown in Figure 3.44. This 

figure presents concise results from overexpressed mutation experiments. consequently, 

Overexpressing most of system elements forced the cell cycle to not go anywhere; these 

include overexpressing TFE, CycA, P27, CDC20A, CDC20B, SCF and Rb as shown in Figure 

3.44a, b, c, d, e, f and g respectively. . In addition, overexpressing CycB and TFB produced 

just two states then the system is not go anywhere as shown in Figure 3.44h and I 

respectively. 

 Furthermore, some system elements when were overexpressed, the system worked in the 

incorrect way. For instance, overexpressing CDH1, CycE and CycD for the entire simulation 

retained inconsistent global system dynamics as shown in Figure 3.44j, k and l respectively. 

Overexpressed  Mutations 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 
 

(f) 
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(g) 

 

(h) 

 

(i) 

 

(j) 
 

(k) 
 

(l)  

Figure 3.44: Overexpressed mutation from model simulation. (a) )Overexpressed TFE; (b) 

Overexpressed CycA; (c) Overexpressed P27; (d) Overexpressed CDC20A; (e) Overexpressed 
CDC20B; (f) Overexpressed SCF; (g) Overexpressed RB; (h) ) Overexpressed CycB; (i) 

Overexpressed TFB; (j) Overexpressed CDH1; (k) Overexpressed CycE and (l) Overexpressed 
CycD.  

 

Finally, we present another scenario for mutation simulation. This scenario did not depend 

on a specific initial condition to start the system but used a very large number of random 

initial conditions. The number of random initial conditions was 2 11 (2048). We found that 

the simulation results were the same as those for original known (heuristic) initial states of 

cell cycle. 

 

Indeed, our work provided a roadmap for how Boolean network modelling can be used as 

a predictive tool to uncover the dynamic patterns of a biological system under various 

perturbations. This qualitative model can be used to investigate Biological mutations such 

as protein function loss and protein overexpression as mentioned previously. We did 

individual element mutation studies but multiple element mutations can also be studied 

with the model. Thus we have utilized our model to introduce and investigate a new 
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individual biological mutation study for cell cycle controller system while previous models 

have not been used to study or investigate any biological mutation for cell cycle controller 

system.   

 

3.11 Chapter Summary 

 

With our proposed model, we assessed the strength of the logical approach to model 

complex biological systems. This was undertaken using a Boolean network which was 

considered the simplest form of logical model. Our developed model was used to study the 

dynamics of the cell cycle control system.  

 

We introduced a new Boolean model that can mimic the fluctuations or oscillations of 

Cyclins in cell cycle progression. The model included the most important elements, such 

as cyclins, and their activators and inhibitors. Our Boolean network with 13 proteins can 

capture the essential aspects of cell cycle and show cell cycle phases depending on the 

changes in cyclins since each cyclin lead a cell cycle phase. The new model has also 

revealed localisation of system elements (i.e., element abundances, such as Cyclins 

abundance) and the fluctuations of cyclins in cell cycle. 

 

Our model was inspired by Singhania et al. (2011)generic model which consisted of nine 

elements to control Cyclin activities that control cell cycle phases. Their model was built 

without regulating system activities and interactions using any Boolean rules or functions. 

Singhania et al. (2011) model depended on the assumption that the elements interacted 

and changed their state in a sequence of states and values for these states were given to 

the model externally as Boolean rules were absent in their model. In addition, their model 

did not include all Cyclins; it missed some elements, such as Cyclin D that controls G1 phase 

in cell cycle and affects the behaviour of other elements. Therefore, we enhanced this 

model in several ways; first, we boosted this model by increasing the size of this system. 

We added four new and significant biological elements to the system components - Myc, 
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CycD, P27 and RB; these elements have been selected assiduously from literature to 

improve the system efficiency.  

Our model consisting of these new 13 rules can explain cell cycle phases and system 

dynamics (temporal evolution of element activities).   It can be used to study diseases, such 

as cancer. We made a comprehensive individual element mutation study and some of 

these mutations may be indicative of diseases.  The second enhancement is that we 

developed a comprehensive Boolean model with new Boolean rules. These developed 

rules controlled all biological interactions in cell cycle phases. This set of Boolean rules that 

represents system activities was developed from biological knowledge and a literature 

review of Boolean models.  

 

We compared our model with one of the most popular Boolean models, mammalian cell 

cycle control model developed by (Fauré et al., 2006)). Our model can localise all Cyclins in 

different cell cycle phases while Faure model cannot localise cyclins and other elements. 

Our model can also show the transition states, such as local transition from G1 phase to S, 

G2 and M phase until the end of cell cycle in contrast to the aforementioned model.  

 

We have demonstrated that our proposed Boolean network was robust and resilient in 

design. The biological states of the attractor represented cell cycle phases and the dynamic 

change in oscillation of Cyclins in cell cycle phases. The model we developed relied on two 

crucial benchmark models  (Fauré et al., 2006; Singhania et al., 2011); these models did not 

include checkpoints in their implementations. They studied the major components of the 

cell cycle, which were often able to capture the essential behaviour of cell cycle system. 

Our model did not involve cell cycle checkpoints either. 

 

Mainly, our results were investigated from a qualitative point of view, where the order of 

activity (“OFF” or “ON”) was consistent with the available data. Further, our model 

provided a visual assessment of cell cycle dynamics; it revealed cell phenotypes.  

This information was provided in qualitative form and demonstrated cell phenotypes 

such as the cell states. 
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Next chapter presents and investigates a semi-quantitative model developed by converting 

this Boolean model, a qualitative model, into a continuous fuzzy logic model. It explores 

how the qualitative knowledge from this discreet model can be used to develop the novel 

semi-quantitative model. 
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Chapter 4.  A Novel Semi-Quantitative Cell Cycle Controller Model – 

A Fuzzy Logic Model 
 

Mathematical and computational modelling approaches are becoming influential tools to 

analyse and discover knowledge hidden in biological systems. Generally, there is a close 

correspondence between these modelling techniques and laboratory experiments on  

signalling and regulation of networks (Wittmann et al., 2009). However, as mentioned 

earlier, use of these modelling techniques, such as the ODE models, is limited by the 

scarcity of data which in some case are available only in qualitative form. Furthermore, 

these methods are considered crisp methods since they utilize crisp (exact) values such as 

concentration for the entities in the system. The scarcity of such crisp values and the 

vagueness of uncertain data can and must be addressed by other methods. 

 

These limitations prompted researchers to carry out research on alternative methods that 

can make greater use of the advantages offered by continuous and other discrete models. 

These attempts will greatly aid in understanding complex systems. Logic-based models, 

such as fuzzy logic, can be promising in modelling biological systems. This is because logic 

models make it simpler and easier to represent system components, interactions, 

behaviour and events. In addition, logical models can generate accurate qualitative results 

from system dynamics in a discrete form. This can provide a simplified view of system 

activities that are useful for gaining insight into overall behaviour.  

 

There is the potential for fuzzy logic to replace both Boolean and ODE models in modelling 

cell cycle system. Here, it is one of our research objectives to attempt to develop a new 

fuzzy logic model to enhance the Boolean model presented in the previous chapter. A 

description of the development process and other related information is given in detail in 

this chapter. 

This chapter explores the following questions: 
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 Is it possible to transform the qualitative model in the previous chapter into a 

fuzzy logic model? 

 If fuzzy logic relies on prior knowledge and vague information with missing data, 

such as the kinetic parameters, can it be flexible like the Boolean model and be 

accurate like the ODE model in order to simulate the continuous behaviour of 

the cell cycle controller system? 

 Can the cell cycle controller in the form of a fuzzy logic model provide the 

expected result and improvements? Are the semi-continuous results from a 

fuzzy model better and more flexible than discrete results from the Boolean 

model to investigate and mimic cell cycle controller system? 

 What are the best features of fuzzy logic method that can be utilised to make a 

fuzzy logic model a close equivalent of an ODE model? 

 Can a fuzzy logic model handle imprecise biological information?  

 

It is hypothesised that a thorough investigation can answer these questions and enable the 

development of a fuzzy logic model for continuous description of biological systems in a 

way that approximates ODE models while making it easier to analyse and gain insights into 

the mammalian cell cycle controller system.   

 

Information in this chapter is organised into several sections including fuzzy logic theory, 

principles and fuzzy sets. Furthermore, we explore the potential of fuzzy logic to explain 

the behaviour of complex biological systems. In addition, we investigate more into fuzzy 

inference systems to identify how they can be made to mimic ODE models, and then we 

compare the outcomes from both fuzzy and ODE models simulating the behaviour of the 

mammalian cell cycle controller system to explore the benefits of the fuzzy model. 
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4.1 What is a Fuzzy Logic System?  
 

Fuzzy logic allows variables to be continuous and more finely valued than other discrete 

models such as Boolean models. It allows the possibility to consider all the intermediate 

levels of what is modelled within a qualitative modelling framework. In addition, it can 

show the relative activity of elements resembling real biology.  

 

L. A. Zadeh (1965) Introduced fuzzy logic and fuzzy theory as well as fuzzy sets and this 

transformed the two-valued [0, 1] representation into that of an interval [0, 1].In this new 

representation, vague and uncertain data are represented using fuzzy sets (L. A. Zadeh, 

1965). In fuzzy set theory, the total range of a particular variable (universe of discourse) in 

the interval [0, 1] is populated by a number of overlapping fuzzy subsets each representing 

a membership function of the variable which is predominantly active in a specific region of 

the range.  A particular value of the variable can then belong to one or several membership 

functions with a degree of membership between [0, 1]; this allows continuous 

representation of system. This method is the opposite of the traditional theory, such as 

crisp set theory, where an element can be a part of the set or not. 

 

The main difference between fuzzy logic and other methods is that fuzzy logic depends on 

linguistic terms more than numbers. For instance, “John is very tall;” in this example, the 

linguistic term “very” depicts the proportion (fuzzy subset) of the fuzzy variable “tall.” As 

noted in this example, and by extension, a fuzzy sets depend on linguistic expressions to 

represent a problem and find solutions. Reasoning with fuzzy sets emulates human 

reasoning and decision-making thus creating a solution framework for vaguely defined 

systems. 

4.1.1 Fuzzy Logic in Biology and Bioinformatics  
 

Bioinformatics is a combination of computer science, biology, chemical and physical 

principles and tools that are used to model large biological data sets. For example, high-

throughput technologies, such as DNA microarrays, provide  large amounts of data rapidly. 
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These data contain rich information embedded in high levels of complexity to be analysed 

by biological data analysis (Torres & Nieto, 2006). 

 

Currently, fuzzy logic is one of the available solutions to problems in bioinformatics and 

biology. For instance, it is used to study differences between polynucleotides (Torres & 

Nieto, 2003). Fuzzy adaptive resonance theory has also been used to evaluate experimental 

expression data (Tomida, Hanai, Honda, & Kobayashi, 2002). Fuzzy logic is used to predict 

the subcellular locations of proteins from their dipeptide composition; here, the modeller 

depends on a specific algorithm, such as fuzzy k-nearest neighbour algorithm. 

Furthermore, some studies have used fuzzy logic to cluster a large number of genes from 

microarray data (Belacel, Čuperlović-Culf, Laflamme, & Ouellette, 2004) and used genetic 

fuzzy systems for DNA sequencing (Cordón, Gomide, Herrera, Hoffmann, & Magdalena, 

2004). 

 

Biology researchers are interested in studying biological systems; and many use protein 

and gene regulatory networks (GRN) to understand cellular functions and diseases. These 

networks can help specify the temporal or spatial expression patterns of a set of genes 

(Helgason & Jobe, 2003).  Although various methods have been constructed to understand 

GRN and develop hypotheses that are related to the interactions of genes, few of them 

have been related to the mammalian cell cycle (Helgason, Malik, Cheng, Jobe, & Mordeson, 

2001). 

 

Therefore, a fuzzy inference system based on fuzzy logic concepts is used to develop a cell 

cycle control system in this study. It is hypothesised that analysis of biological data and 

modelling biological systems become easier using fuzzy logic-based modelling and analysis 

approaches. 
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4.2 Features of Fuzzy Logic  

 

Biological knowledge is currently imprecise and fuzzy systems can handle this kind of 

knowledge. Therefore, choosing fuzzy systems as computational tools is considered a good 

decision. Fuzzy logic can make variables continuous within a qualitative form. As we have 

the aim of converting the Boolean model in the previous chapter into a fuzzy model, we 

need to know how to transform the Boolean discrete representation into a flexible semi-

continuous representation using fuzzy logic. For this reason, the next sub-section explains 

how the Boolean network can be mathematically transformed into semi-continuous 

models using fuzzy logic theory. 

 

4.2.1. Transforming Boolean Models into Fuzzy Models 
 

Boolean models represent the state of components in a discrete form- either “OFF”’ or 

“ON.” These models are often able to capture the essential behaviour of a network. 

However, these models cannot provide intermediate values of variables, such as 

concentration of proteins in a signalling system.  Mathematically, many standardised 

methods have been introduced to transform discrete Boolean models into continuous 

models, such as HillCube, which uses the multivariate polynomial interpolation technique 

and incorporate Hill kinetics. However, fuzzy logic can work with qualitative knowledge in 

the literature and as stated before it allows variables to be more continuous or multivalued 

than discrete models, such as the Boolean network (Wittmann et al., 2009). 

 

The state of each node in Boolean models can be “ON” if the concentration of the protein 

is above the specified threshold. Boolean models can be generalised by using fuzzy logic. 

Therefore, in fuzzy logic, the concept of a node being “ON” or “OFF” can be eased; this is 

done through the degree of membership (DOM) µ as represented in Equation 4.1: 
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0 ≤ μ Xi(x̅i) ≤ 1      (4.1.) 

Eq. 4.1 states that the level of species Xi belongs to the membership function µ with a 

degree of membership between 0 and 1.  This equation is applied to each species X i, and 

their concentration 0 = x̅i = 1 can identify the degree of activation “ON”. There are two 

standard ways to generalise Boolean operators “AND”, “OR” and “NOT” (Wittmann et al., 

2009) as explained in Eqs 4.2 and 4.3: 

 

Min-Max Logic  (Wittmann et al., 2009)                     (4.2.) 

𝑋𝑖 ∧ 𝑋𝑗  ⟼ min (𝜇𝑥𝑖
(𝑥̅𝑖), 𝜇𝑥𝑗

(𝑥̅𝑗)) 

𝑋𝑖  ⋁ 𝑋𝑗  ⟼  max( 𝜇𝑥𝑖
(𝑥̅𝑖), 𝜇𝑥𝑗

(𝑥̅𝑗) ) 

¬𝑋𝑖 ⟼  1 − 𝜇𝑥𝑖
(𝑥̅𝑖) 

 

 Product-Sum Logic (Wittmann et al., 2009)     (4.3.) 

𝑋𝑖 ∧ 𝑋𝑗  ⟼ 𝜇𝑥𝑖
(𝑥̅𝑖). 𝜇𝑥𝑗

(𝑥̅𝑗) 

𝑋𝑖⋁ 𝑋𝑗  ⟼  𝜇𝑥𝑖
(𝑥̅𝑖) + 𝜇𝑥𝑗

(𝑥̅𝑗) ) 

¬𝑋𝑖 ⟼  1 − 𝜇𝑥𝑖
(𝑥̅𝑖) 

 

Product sum requires normalising the unit intervals. The reason is that 𝜇𝑥𝑖
(𝑥̅𝑖) + 𝜇𝑥𝑗

(𝑥̅𝑗) 

can be greater than 1. However, both min-max  logic and product-sum logic can be used to 

construct fuzzy function  from Boolean function Bi. 

 

In this sub-section, we provided the mathematical conversion of Boolean aspects into fuzzy 

logic aspects where values of the variables become more flexible than discrete. The next 

https://media.springernature.com/full/springer-static/image/art:10.1186/1752-0509-3-98/MediaObjects/12918_2009_Article_366_IEq6_HTML.gif
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sub-section provides more details on fuzzy logic aspects, such as fuzzy sets and principles 

of fuzzy rules. 

 

4.2.2 Main Differences between Traditional Theory, the Fuzzy Set and Membership 

Function 
 

The traditional theory in terms of crisp theory can be extended; this extension can be  

interpreted as fuzzy theory. So, what is the main difference between them? This can be 

explained using an example of thinking and decision making in our daily life. For example, 

to specify the height X of a person as a member or not in the set tall (A), the membership  

μ A(x) of X in A can be shown as in Equation 4.4: 

 

 μ A(x)  = 1  if x is completely in A;   (4.4.) 

 μ A(x)  = 0  if x is not in A; 

0 <  μ A(x)  < 1 if x is partly in A. 

 

As we can notice, the membership value can be in the interval 0 and 1. So, any person taller 

than say 180cm is considered tall and can be classified by the crisp values x|x >/ 180 cm as 

shown in Figure 5.1a.  The same situation can be represented by fuzzy set method using a 

degree of membership function as shown in Figure 5.1b. It describes a fuzzy set of over a 

universe of discourse of x by membership function μ A(x): X-> [0, 1].  This means that every 

element of x has a degree of membership μ A(x) in A in the interval [0, 1].  

 

Mathematically, a membership function can be presented as a curve that specifies how 

each point in the input space is mapped into a degree of membership in the interval [0, 1]. 
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Figure 4.1: Difference between crisp and fuzzy representations of height:  a) Representation of a 

tall person in crisp form and b) Representation of a tall person in continuous fuzzy form  

 

Experts and software engineers can specify this design depending on its suitability to 

represent the situation in an efficient and simple way by selecting appropriate membership 

functions for the fuzzy sets(J. S. R. S. JANG, C.T., 1995; MATHWORKS, 2012) . The selection 

of an efficient fuzzy set can be made by identifying a suitable universe of discourse and by 

specifying a convenient membership function. This needs good knowledge of the human 

experts (J. S. R. S. JANG, C.T., 1995). 

 

Using the previous example of a person’s height, the fuzzy set representing height can be 

classified into three subsets: short, average and tall (further details related to fuzzy sets 

are given in Sub-section 4.2.3). The representation of these fuzzy sub-sets by a degree of 

membership function can be demonstrated as shown in Figure 4.2. Here, the three fuzzy 

subsets are represented by Trapazoidal (for short and tall) and triangular (for average) 

membership functions.  As we see from this figure, the person with a height of up to 184 

cm can be a member of both the average and tall subsets with a value of the degree of 

membership of 0.1 and 0.4, respectively. 
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Figure 4.2: Height membership functions. Height consists of three fuzzy sets, which are short, 

average, and tall. The figure also shows how a person with a height of 184 cm can fall with a specific 

degree of membership function into both average and tall fuzzy sets. 

 

In this figure, we demonstrated the meaning of fuzzy sets, membership functions and 

degree of membership in fuzzy subsets to represent the height of a person. Next we discuss 

how to reason with this information using fuzzy reasoning. 

 

4.2.3 Linguistic Variables and Fuzzy Rules in Fuzzy Reasoning 
 

L.A. Zadeh (1975) had introduced linguistic variables; he interpreted the variables values in 

linguistic expressions more than in numerical values(L.A. Zadeh, 1975). For instance, as 

described earlier, when we say John is tall, this indicates that height represents a linguistic 

variable and tall is the linguistic value in this sense. This linguistic expression can be part of 

an “IF-THEN” conditional statement called fuzzy reasoning  (Negnevitsky, 2005)  as shown 

in Equation 4.5: 

 

IF antecedent(s) THEN consequent(s)     (4.5) 

 

In Eq. 4.5 the first part represents the antecedent that involves input in fuzzy form and the 

second part represents the output or consequence also in fuzzy form.  In case we have 

more than one antecedent, fuzzy operators can be used to connect them together. There 

are three different operators that are used:  “AND” operator, called fuzzy intersection or 
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conjunction, the “OR” operator, called fuzzy union or disjunction, and “NOT” operator, 

called fuzzy complement. 

 

The following example employs the use of these operators. For instance, if we have two 

fuzzy sets, A and B, with membership functions μ A(x) and μ B(x)  

 

The intersection or conjunction between fuzzy sets A and B can be defined as: 

 μ A ^ B(x)  = min( μ A(x), μB(x))        (4.6.) 

 

The union of two fuzzy sets A and B can be defined as: 

μ A(x)˅  B(x) = max(μA(x), μB(x))       (4.7.) 

The complement of fuzzy sets A can be defined as shown in Figure 4.3. 
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Figure 4.3: Use of fuzzy logic operators on fuzzy sets (Fuzzy set A and Fuzzy set B). The results for 

intersection and union are represented by the dotted line while the complement is represented in 

the last figure.  

 

After setting up all the antecedents and connecting them together using suitable fuzzy 

operators, these parts should be processed together. The final result can include multiple 

parts that are aggregated into a single output of a fuzzy set (Negnevitsky, 2005); this output 

must be processed by defuzzification to convert it to a crisp value. Defuzzification is a 

process that extracts crisp values from fuzzy sets (J. S. R. S. JANG, C.T., 1995). Concerning 

how fuzzy sets, fuzzy rules, fuzzification, and defuzzification work in a single process is 

discussed in more detail in the fuzzy inference system in Section (4.3.). 
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In this section, we explained the aspects of fuzzy reasoning. In the next sections, we 

demonstrate the most important aspects in the design of fuzzy sets; then, we explain how 

fuzzy sets can characterise the states of biological entities. 

 

4.2.4 Fuzzy Set Design 
 

The design of fuzzy sets involves determining several properties such as shapes and 

parameter of fuzzy sets and the domain of discourse for the fuzzy sets. To design suitable 

fuzzy sets, several aspects must be taken into consideration due to their ability to influence  

system performance.  

 Type of biological property: type of biological entity and its property can specify 

the fuzzy set design. For instance, fuzzy design for protein concentration must 

incorporate different levels of protein concentration, such as low, medium, and 

high concentration levels. 

 Functional considerations: fuzzy design must reflect the functional behaviour of 

the biological entity. For example, the design for the fuzzy set must represent 

changes in concentration when system elements interact with each other. 

 Range of data observed: the range of observed data should be compatible to the 

domain of discourse because it leads the design of the fuzzy set. For example, it 

should represent the absence of a protein or a low, medium, or high concentration 

of system elements. The level of abstraction defines the quantitative behaviour of 

the system, especially when the modeller uses more fuzzy sets to improve 

granularity of discretisation.  However, in some cases, modellers can achieve the 

desired quantitative behaviour with only few fuzzy sets. 

 Detection limits and precision: when concentration is quite low or extremely high, 

measurement methods cannot capture these concentrations, so fuzzy sets such as 

trapezoids can be used to cover a broad range of extremes and imprecisions.  See 

first and last fuzzy sets in Figure 4.2) 
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Basically, each function µ: D-> [0, 1] is a fuzzy set included in a domain of discourse called 

D. These fuzzy sets are designed in several shapes. Here, we are investigating the most 

common fuzzy shapes such as triangle, trapezoid and Gaussian as shown in Figure 4.4. 

 

The nature of the entity specifies the shape that is suitable to achieve desired 

results(Windhager, 2013). For example, triangle fuzzy sets shown in Figure 4.4a are used 

when results are quite sensitive to state changes, such as when small variations in the 

states of effectors can be propagated to their targets. Also, Trapezoid fuzzy sets shown in 

Figure 4.4b can be utilized to specify regions where the precise value of a state is not 

essential or irrelevant for a systems. The last common shape is Gaussian fuzzy set shown 

in Figure 4.4c. This kind of shape is typically used to represent noisy data. These data are 

centred on a specific (mean) value, such as when representing the change in the fold 

extracted from gene expression data. 

(a)    (b) 

  

(c)  

Figure 4.4: Most common shapes for fuzzy set representation. a) Triangular fuzzy sets with low, 

medium and high categories; b) Rectangular fuzzy sets with low, medium and high categories; c) 

Gaussian fuzzy sets with low, medium and high categories. The domain of discourse (x-axis) 

represents the range of the expected observations which in this example is the interval [0, 1]. 

 

These fuzzy sets need a real number (R) as the domain of discourse. For example, a 

biological entity’s property, such as protein concentration, can generally be mapped into 
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the domain of discourse with real numbers; and this provides a quantitative result. Next 

section investigates how fuzzy sets interpret protein concentrations. 

 

4.2.5 Fuzzy Sets Describe the States of Biological Entities 
 

Every element in a biological system, such as a protein, has a specific state concerning its 

properties. For example, a protein has a location in a cell or its compartments. In addition, 

its concentration shows the current phase in the cell cycle. These properties can be 

measured and exposed from experiments. These properties provide us with qualitative or 

quantitative results that describe the state of an entity, such as protein measurements 

from fluorescence, which provide intensity levels. These measurements must be converted 

and estimated into molar concentrations. Another example is the studies that provide 

visual assessments of cells, which can indicate cell phenotypes. This information is 

qualitative. 

 

Indeed, biological system behaviour can be explained using their qualitative description 

with the help of IF-THEN rules using ‘natural language’ expressions. This description does 

not need specific mathematical functions. For example, protein concentration can be 

described in terms of low, medium and high. The values for protein concentration must be 

normalised to intervals such as [0, 1]. The linguistic values of low, medium, and high can 

be mapped inside the interval [0, 1] as shown in Figure 4.5. 

 

The above concentration interval can be divided into three different intervals, such as [0, 

0.25], [0.25; 0.75), and [0.75; 1]. In Figure 4.5, the left part demonstrates the 

representation of the concentration in crisp set, and the input value (0.749) would be 

considered as high since it is located in the high crisp set. The right part of the same figure 

shows the fuzzy set representation of concentration. This makes the intervals more 

natural; for example, if we have a protein concentration value of (0.749), then fuzzy sets 
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can work with it in a more flexible manner, as we cannot say it is high, but it is high to a 

degree such as rather high. 

 

 

Figure 4.5: Main difference between crisp and fuzzy representation of concentration. The left part 

represents the crisp set while the right side represents the fuzzy sets. They represents species 

concentrations in three levels of low, medium and high. Also shown is an example of mapping a 

specific concentration value, such as (0.75), into membership functions.  

 

In experimental measurements, we mostly get measurements of protein concentrations as 

shown in the left part of Figure 4.6 (Windhager, 2013). The domain of discourse can have 

values between [0, 100] in (%) unit. This time course measurement is represented in the 

fuzzy sets as shown in the right part of Figure 4.6, where the interval [0,100] is discredited 

using three fuzzy sets to represent the states of the concentrations. The fuzzy sets are low, 

medium and high must be interpreted according to the domain of discourse D. the 

membership function μ of a fuzzy set represents all states within the interval [0, 1]. Each x 

has a specific membership value. This value determines the degree of membership of x in 

the fuzzy set as represented in Equation 4.9 where D is the discourse. 

 

μ: D-> [0;1]                         (4.9.) 

 

The right part of Figure 4.6 also shows the mapping process between the y-axis that 

represents the membership values and the x-axis that represents the relative 

concentration.  The mapping process called fuzzification, this process is responsible for 

mapping crisp values into membership values. 
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Figure 4.6: Mapping time course measurements in fuzzy logic: The left part shows some 

measurements for protein concentrations. These measurements occur in an unspecified time 

interval. In addition, the domain of discourse consists of all real numbers in the interval [0, 100] ( 

% unit). Furthermore, fuzzy sets can discretise the aforementioned interval into three subsets. 

These subsets describe the protein concentration as low (µ low), medium (µ medium) and high (µ 

high) as shown in the right part of the figure. The fuzzy sets should map the relative concentration 

values on the x-axis to the membership values on the y-axis. 

 

The fuzzification process produces a fuzzy results which typically have to be transformed 

into crisp output. To convert the fuzzy result into crisp values a defuzzification process 

should be performed. Precisely, defuzzification is the process of transforming the fuzzified 

result into a single crisp value with respect to a fuzzy set.  There are several defuzzification 

methods are available such as center of sums method (COS), Maxima method, and center 

of gravity (COG)/ Centroid of area method (COA). 

 

The most popular method is center of gravity, this method produces a crisp value based on 

center of gravity of the fuzzy set. In this method, the over-all area of the membership 

function distribution utilized to signify the combined control action is separated into a 

number of sub-areas. The area and the center of gravity or centroid of each sub area is 

computed and then the sum of entire sub areas must be taken to get the defuzzified value 

for a discrete fuzzy set. 

  In COG the defuzzified value for the discrete membership function is denoted by x* as 

represented by Equation 4.10: 
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𝑥∗ =
∑ 𝑥𝑖∙𝜇(𝑥𝑖)𝑛

𝑖=1

∑ 𝜇𝑛
𝑖=1 (𝑥𝑖) 

        (4.10.) 

Where xi indicates to the sample element, µ(xi) is the membership function, and n indicates 

the number of the elements in the sample.  

Further, the continuous membership function for x* is represented by Equation 4.11 

 

𝑥∗ =
∫ 𝑥 𝜇𝐴(𝑥) 𝒹𝑥

∫ 𝜇𝐴(𝑥) 𝒹𝑥
       (4.11.) 

 

All the information mentioned above is integrated into a fuzzy inference system details of 

which are presented in the next section. 

 

4.3. Fuzzy Inference System 
 

Essentially, the fuzzy inference system became popular for several reasons. For example, it offers 

the capability to convert data into knowledge, which makes it more understandable by people. 

Moreover, the system’s behaviour can be represented using a set of rules that are constructed with 

expert human knowledge.  

 

4.3.1. Fuzzy Inference System Functionality 

 

Asmuni (2008)  provides a detail description of fuzzy inference system (FIS); simply put, it 

is a process of mapping of an input to an output using fuzzy set theory. Fuzzy inference has 

several functional blocks, each representing a main stage. These stages are called 

fuzzification, inference, and defuzzification, as shown in Figure 4.7 (Asmuni, 2008). Initial 

data for the system is typically crisp values representing input and output. In the fuzzy 

inference system, the fuzzification process transforms all crisp input values into a fuzzy 

membership depending on how the membership functions are defined. 
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Figure 4.7: Fuzzy inference system with five functional blocks. 

 

The fuzzy inference engine employs logical rules from the rule base block. It should also 

employ suitable fuzzy operators in order to process rules and reach an output. This stage 

utilises fuzzy logic operators such as “AND”, “OR” and “NOT” to reason with fuzzified 

inputs. Furthermore, the rules are processed and aggregated in this part. The output is 

reached in fuzzified form at the conclusion of fuzzy reasoning.  Finally, fuzzy inference is 

responsible for transforming the final fuzzy output into a crisp output; this is undertaken 

using a specific defuzzification method. In summary, it can be seen from the above figure 

that the membership functions block is connected to most other blocks inside the fuzzy 

inference system and all blocks work together in a single process called fuzzy inference.  

More details of this proves are provided in the upcoming sections. 

 

4.3.2. Fuzzy Inference Process 
 

The essential part of fuzzy inference system is the fuzzy inference process (MATHWORKS, 

2015), shown for an example system in Figure 4.8 that explains the process flow inside the 

fuzzy inference engine. For instance, we have a system that consists of two inputs, two IF-

THEN rules, and one output. The process flow commences from the two inputs (crisp 

values) in the lower left of the figure. Then, these values go through a fuzzification process.  

The rows represent system rules that contain domain knowledge of the system and after 
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rules are processed the THEN part of the rules provides a fuzzified output. These are then 

defuzzified and averaged as shown in the figure into a crisp output.   

 

 

Figure 4.8: Fuzzy inference system process. Starting with crisp values, process goes through 

fuzzification of inputs into linguistic variables, followed by processing rules to provide fuzzy output 

that is defuzzified and aggregated into a crisp output. 

 

There are two common methods used in fuzzy inference systems - Mamdani method and 

the Sugeno method (Negnevitsky, 2005). These methods rely on the use of simple 

language, such as in IF-THEN rules, to explain the essential system response as a function 

of several linguistic variables. The main difference between the two is in the specification 

of the consequent part (output). For instance, in Mamdani method, the consequent part is 

represented by fuzzy sets. Conversely, in the Sugeno method, the consequent part is 

represented by real numbers that can be either linear or constant; this means that the 

output takes on a different form to that in the Mamdani method - it is a singleton output 

membership function equivalent to the weighted average of each rule’s output(Mamdani 

& Assilian, 1975).  For example, a fuzzy rule of the first-order Sugeno method can take the 

form of Equation 4.12. 

 

IF x is A AND y is B THEN z = ax + by + c                     (4.12.) 
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In this example, A and B are the fuzzy sets in the antecedent and the consequent is 

represented by mathematical linear function ax+by+c. The output is a function which can 

be constant when a = b = 0. This is known as the zero-order Sugeno model. However, the 

Sugeno model faces limitation in specifying effective coefficients. There is no good intuitive 

method for determining the coefficients in the Sugeno model. 

 

In our model, we employ Mamdani method for the fuzzy inference system that is  

developed. Any Mamdani fuzzy inference system typically has the same functional blocks 

shown in Figure 4.7.  If we have two crisp values (x1, y1) as inputs for the Mamdani fuzzy 

inference system, then the process should go through these steps: 

 

 The first step in the Mamdani system is mapping the crisp inputs x1 and y1 into  

membership functions of the relevant fuzzy sets and determining the degree to 

which these inputs belong to each of fuzzy sets as shown in Figure 4.9. This figure 

shows fuzzy sets representing inputs and demonstrates how the crisp input values 

are mapped into membership values. 

 

Figure 4.9: Mapping the crisp input values X1 and Y1 into fuzzy sets 

 

The first membership function represents the X variable and consists of three subsets, A1, 

A2 and A3 respectively.  The domain of discourse for input X is from 0 to X and includes all 

possible values of the variable X. The particular input X1 belongs to A1 fuzzy set with 0.5 

membership and A2 with 0.2 membership. For variable Y, there are two membership 
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functions B1 and B2 with domain of discourse ranging from 0 to Y, which contains all 

possible values for Y. The value Y1 belongs to B1 fuzzy set with 0.1 membership and B2 

with 0.7 membership. 

 

 The second step is rule evaluation. In this step, the fuzzified inputs values µ(x=A1) 

= 0.5, µ(x=A2) = 0.2, µ(y=B1) = 0.1 and µ(y=B 2) = 0.7 are applied to the antecedent 

part in the fuzzy rules as shown in Figure 4.10. In this figure, each fuzzified input 

value is applied to the relevant fuzzy rule. Furthermore, in the case where we have 

a fuzzy rule that has multiple antecedents, the fuzzy operators (“AND” or “OR”) are 

used to acquire a single value that represents the result of antecedent evaluation. 

In this example, we have three rules: in the first rule antecedent is compounded 

with an “OR” operator and “AND” operator joins the second rule. The result of 

antecedent processing is then mapped to the consequent membership function- 

the conclusion part of the fuzzy rule.  

 

 

 

Figure 4.10: Mapping inputs into membership functions to obtain fuzzified inputs, fuzzy inference 

rule base and fuzzy inferencing 
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As shown in Figure 4.10, rule number one is 

 

IF x is A3 OR y is B1 THEN z is C1             (4.13) 

 

It consists of two parts that are grouped by the “OR” operator. In Rule 1, the condition part 

relating to x refers to fuzzy set A3 but the degree of membership of input value x1 in this 

set is 0. The second condition, which is related to y, refers to fuzzy set B1; so the degree of 

membership of y1 in this set is 0.1. As demonstrated before in Section 4.2.2, to evaluate 

the disjunction in the rule antecedents, we use “OR” fuzzy operation. In this case, fuzzy 

expert system typically utilises fuzzy Union operation to get the maximum value as shown 

in Equation (4.14): 

 

𝝁𝑨∪𝑩(𝒙) = 𝒎𝒂𝒙[𝝁𝑨(𝒙) , 𝝁𝑩 (𝒙)]                              (4.14) 

 

The result of this rule is the maximum value in the antecedent part and equals to 0.1. This 

is mapped to the relevant fuzzy set C1 of output z according to the rule resulting in 

membership of 0.1 in C1. 

 

The second rule is 

IF x is A2 AND y is B2 THEN z is C2  (4.17) 

 

This comprises two parts grouped by the “AND” operator. The first condition is related to 

x that belongs to fuzzy set A2, and the degree of membership of input value x1 in this set 

0.2. The second condition is associated with y belonging to fuzzy set B2 and the degree of 

membership of input value y1 in this set 0.7.  In order to evaluate the conjunction of the 

rule antecedents, “AND” fuzzy operator is used to find intersection represented by the 

minimum value as in Equation 4.18: 
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  𝝁𝑨∩𝑩(𝒙) = 𝒎𝒊𝒏[𝝁𝑨(𝒙) , 𝝁𝑩 (𝒙)]    (4.18) 

 

Accordingly, the result of this rule is that the minimum value for the antecedent part equals 

to 0.2. Therefore, the consequent part z is C2 take membership value of 0.2. 

 

The last rule is 

IF x is A1 THEN z is C3  (4.19) 

 

This rule has condition part related to fuzzy set A1 in and the degree of membership of 

input value x1 in this set 0.5.  The consequent part relates fuzzy set C3 in z and so the 

resulting output is 0.5.   

 

Next, aggregation process applies to all outputs from all rules. Here, all consequent 

membership functions from the rules are combined into an overall membership 

representation as shown in Figure 4.11. 

 

 

Figure 4.11: Aggregation process for consequents of fuzzy rules in the fuzzy inference system 
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to a crisp value. The input of the defuzzification method is the aggregated output fuzzy set 

and the output should be a single number. 

 

In the literature, we can find several types of defuzzification methods, such as the mean of 

maxima (MOM), centre of gravity (COG), and the bisector of the area (BOA) (Cox, 1999). 

The most popular defuzzification method is the centre of gravity (COG). COG finds the point 

where a vertical line slices the aggregate set into two equal masses as shown in Figure 4.12. 

 

The COG defuzzification method finds the centre point in the fuzzy set within a specific 

interval [a, b].  A reasonable estimate of this can be obtained by computing it over a sample 

of points. Therefore, we used COG method in the fuzzy model developed in this study. 

Further information concerning our model is given in Section 4.4. 

 

 

Figure 4.12:  Operation of Centre of gravity (COG) method 
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determining the most natural terms to represent states of all the entities in the system 

which then allows expression of the qualitative knowledge in natural language to represent 

the relationships (mathematical functions) existing in the system in a qualitative form to 

describe system function.   

 

In this part of the chapter, we investigate the development of a fuzzy model of cell cycle 

controller. The development follows the process described above as discussed next.   

 

4.4.1. Developing Fuzzy Logic Procedure: 
 

Fuzzy approaches can play a fundamental role in merging biological processes with logical 

techniques for reconstructing the underlying biological system such as the cell cycle 

controller system. The nonlinear behaviour of proteins can also be explained by fuzzy 

models. This could be achieved by exploiting the extracted knowledge from the specialists 

or specialised knowledge bases, and then converting the data about protein relations into 

appropriate new fuzzy logic models. Fuzzy models use human reasoning to construct 

system rules for a complex system such as the biological system. This helps build 

comprehensive knowledge systems about regulatory mechanisms to explain their 

behaviour in an intuitive way using the semantics of fuzzy logic (Kong & Kosko, 1992). 

 

Developing a powerful fuzzy system still requires a standard development procedure. 

Furthermore, when there is a need to develop a significant fuzzy system, the developer 

and biological specialists should work together with respect to the following procedures: 

 

 Determine the case study problem and analyse the purpose/goal for the new 

model. 

 Specify the linguistic variables that need to be represented by fuzzy sets in  

antecedent and consequent parts of rule.  This should cover system activity or 
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observations. For example, fuzzy sets must describe protein concentrations as low, 

medium or high. 

 Construct the fuzzy rules: these rules should appropriately control the activity of 

the system variables and interpret system behaviour including the interactions of 

the system components. For example, fuzzy rules in our case study should control 

the biological interactions between the species in the system. Furthermore, since 

the concentration levels are considered as indications of the activity of biological 

species, each change in individual protein level has an impact on other species in 

the system; so these rules must expose the impact of the change of protein levels 

on other species. 

 Determine and employ appropriate methods of fuzzification, fuzzy inference and 

defuzzification. 

 Evaluate the outcome of the developed fuzzy system and enhance the system 

outcome if required. This is the case where the fuzzy system produces an 

unacceptable result.  

 

The implementation of this development procedure could provide an efficacious fuzzy 

system to explain, analyse and predict the behaviour of complex systems such as cell cycle 

controllers. 

 

4.4.2. Properties Cell Cycle Controller Fuzzy Model  
 

This section demonstrates the main properties of cell cycle controller in the fuzzy logic 

model. It also shows how we can develop a new semi-quantitative system. This system is 

deduced from the discrete model we developed in the previous chapter and its outcomes 

will be compared with the results of the ODE continuous model. 

 

Each species behaviour is represented by a fuzzy inference system. We derive fuzzy 

inference for each cell cycle species from the Boolean model we developed (Chapter 3). In 
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addition, each fuzzy inference model mimics the ODE model functionality to interpret the 

relationships between the species activator(s) and degrade(s). For instance, the nonlinear 

behaviour of proteins can be explained by a fuzzy inference system similar to the ODE 

model. This depends on the effect of the concentration levels of a protein on activation or 

suppression of the level of a target protein.  However, the developed fuzzy models use 

linguistic fuzzy reasoning using linguistic knowledge descriptions for species in the cell cycle 

model rather than the mathematical calculations as used in ODE equations. 

 

Basically, each fuzzy inference system (FIS) has a set of input variable(s) and output 

variable(s). Any fuzzy inference system would have at least a single input variable and 

output variable; this is called the single input-output fuzzy inference system. Other kinds 

of fuzzy inference can have a set of inputs and one-output variable; this is called the multi-

input single output system. Here the input variables from any fuzzy inference system 

represent the activators, degraders, or inhibitors of a specific element. The output variable 

represents the current state of an element affected by inputs as mimicked by this inference 

system. Here, all the fuzzy model's input variables are the same as those used in our 

Boolean network. 

 

Although it is possible to extract best features from existing modelling platforms such as 

fuzzy logic toolbox for Matlab, which can provide approximate and realistic results, it is 

advisable to carry out experiments to choose the right shapes, number, locations and 

domain of discourse of fuzzy sets. In addition, it is necessary to choose optimal approaches 

to rule representation such as “AND”, “OR” operators as well as methods of aggregation 

and defuzzification. 

 

The selection of a method should be based on which approach provides more accurate 

results. For example, we created a fuzzy inference system that mimicked the behaviour of 

SCF. This fuzzy inference system has two inputs and one output as shown in Figure 4.13. 

The first input is CycE and the second input is CDH1, and the universe of discourse for 
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protein concentration levels is then defined depending on observations from the available 

ODE model results for the same system. Furthermore, the fuzzy rules for this system have 

been built on the relations between these species and the impacts of the two inputs (CycE 

and CDH1) on SCF. 

 

Table 4.1 shows the protein concentration measurements that are used as input data for the ODE 

model to calculate SCF values as outputs; this provided the SCF value. Also, these same input values 

would be used as inputs for our fuzzy experiments, and the results from the SCF fuzzy inference 

system will be compared with the SCF value from the ODE model. This is the validation process for 

the developed fuzzy model. The results from the SCF fuzzy inference model closest to the ODE 

results can help us select the optimal method for the inference system.    

 

 

Figure 4.13: SCF fuzzy inference system structure: Two input variables and one output variable 

 

We carried out six experiments as shown in Table 4.2. In each experiment, we made several 

attempts to make changes to the system, such as methods for processing “AND” or “OR” 

operators, implications, aggregation and defuzzification. We also experimented with 

different membership function shapes, such as rectangular, trapezoidal and sigmoidal. 

These changes were carried out within a heuristic design framework. We used our previous 

knowledge to design the systems that produce the most accurate results that should be 

close to the realistic values. Furthermore, we checked whether or not the shape and fuzzy 

set borders of the membership functions were appropriate for the system’s species. 

Finally, we selected the sigmoid membership function as the best since this shape can 

represent protein concentration levels, such as low, medium, and high, in the fuzzy sets 

more accurately, and describe the nonlinear behaviour of protein concentration 

measurements and activity. Moreover, the fuzzy parameters for each fuzzy set are adjusted 
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heuristically (manually) by using trial and error to achieve the best representation of 

species behaviour based on our biological knowledge.
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Table 4.1 Example of ODE model input and output protein concentration measurements 

ODE model- result 

CycE Cdh1 SCF 

0.001 0.9 0.1 

 

Table 4.2 Six different experiments to specify the best method for designing the fuzzy inference system. In each experiment, we used the same input values 

for CYCE and CDH1 but we changed the methods used to calculate the SCF values 

Fuzzy Logic Model –

Experiment 1 

Fuzzy Logic Model –

Experiment 2 

Fuzzy Logic Model –

Experiment 3 

Fuzzy Logic Model –

Experiment 4 

Fuzzy Logic Model – 

Experiment 5 

Fuzzy Logic Model – 

Experiment 6 

AND Method MIN AND Method MIN AND Method MIN AND Method PROD AND Method PROD AND Method PROD 

OR Method MAX OR Method MAX OR Method MAX OR Method PROBOR OR Method PROBOR OR Method PROBOR 

Implication MIN Implication MIN Implication MIN Implication PROD Implication PROD Implication MIN 

Aggregation MAX Aggregation MAX Aggregation SUM Aggregation SUM Aggregation SUM Aggregation SUM 

Defuzzification CENTROID Defuzzification MOM Defuzzification CENTROID Defuzzification CENTROID Defuzzification MOM Defuzzification CENTROID  

CYCE 0.001 CYCE 0.001 CYCE 0.001 CYCE 0.001 CYCE 0.001 CYCE 0.001 

CDH1 0.9 CDH1 0.9 CDH1 0.9 CDH1 0.9 CDH1 0.9 CDH1 0.9 

SCF 0.0874 SCF 0 SCF 0.088 SCF 0.0874 SCF 0 SCF 0.0893 
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From the results in Table 4.2, we proposed methods used in Experiment 6 for our whole 

model.  

 

Henceforth, the development process of the fuzzy logic model utilises this method from 

Experiment 6. The methods are product sum method and the centre of gravity method since 

they provide more accurate results and are close to realistic values. For each species in the 

system we developed a single fuzzy inference system. All fuzzy inference systems share the 

same principles in computation.  

 

Additionally, we validate all individual fuzzy inferences systems which represent the cell cycle 

controller with realistic input values. These input values were extracted from the ODE model 

(Ali Abroudi, 2017). There were 390 records of these values representing the most precise 

continuous values of protein concentration over cell cycle phases. In this validation process, 

we make sure that each fuzzy inference system predicts the correct values for protein 

concentration that closely approximate result from the ODE model. 

  

4.4.3 Fuzzy Inference Model for SCF, Design, Results and Discussion: 
 

SCF Design 

The SCF fuzzy inference system (FIS) mentioned above has two input variables and one output 

variable. SCF FIS was derived from the Boolean model we developed (Chapter 3). The Boolean 

functions which organise SCF activity are shown in the BF in Eq. 3.15.  

 SCF, !CDH1 & CYCE         (3.15) 

 

 SCF FIS works in an analogous manner to the SCF ODE model which is represented in 

Appendix 2, Equation 4.20: 
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The SCF (FIS) reflects the same functionality as that of the ODE model, but the fuzzy system 

can work without the need for kinetic parameters. In this way, the SCF fuzzy system can cover 

the limitations of the SCF ODE model. Both rely on the protein concentration levels to activate 

or degrade SCF protein level. The SCF fuzzy inference model should interpret the relations 

between SCF activator and degrader.  

 

SCF FIS interprets the behaviour of SCF over the cell cycle phases as shown in the fuzzy rules 

in Table 4.3. The linguistic fuzzy reasoning is expected to provide accurate results using these 

linguistic knowledge descriptions for the SCF species in the cell cycle model as an alternative 

to using mathematical descriptions in ODE equations. 

 

Table 4.3 Fuzzy rules for the SCF fuzzy model. The first column represents the rule number; and the 

second and third columns represent system inputs while the last column represents SCF status. Each 

row represents a rule that describes the impact of inputs on the SCF value. For instance, in Rule 1, 

when CycE concentration is low (low availability) SCF level also goes down and so on for the rest of 

the rules.  

Rule number CYCE CDH1 SCF 

1 L - L 

2 - L M 

3 L L L 

4 H - H 

5 L L L 

6 - H L 

7 - L H 

  

Furthermore, the output variable of the SCF FIS model can describe SCF activity or 

concentration by employing three fuzzy sets (low, medium and high) as shown in Figure 4.14. 

and the fuzzy membership functions for inputs are presented in the next subsections. 
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Figure 4.14: SCF output variable membership function design. This shows fuzzy sets, low, medium 

and high, and the universe of discourse [0, 1.5]. 

 

The fuzzy inference system development processes described previously were employed to 

develop the SCF FIS model. This model was validated with a realistic data set of around 390 

records. These input values obtained from ODE model represent the most precise and 

continuous values of CycE and CDH1 over mammalian cell cycle. These values were used in 

conjunction with the rules (Table 4.3) in the SCF fuzzy inference system to compute the values 

of SCF over cell cycle phases as shown in Figure 4.15. 

 

 

 

Figure 4.15: Fuzzy model outcome mimicking SCF activity over cell cycle. The green line represents 

CycE activity and the orange line represents CDH1 activity. These two are the input variables in the 

system. The blue line represents crisp values for SCF activity from the fuzzy system. 
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The figure above shows that at the inception point of the cell cycle and early in the G1 phase, 

CDH1 protein concentration is found at the highest level.  This prevents SCF from 

accumulating.  Moreover, CycE, activator of SCF, has a low level at the beginning of the cell 

cycle. Later in G1 phase, CDH1 protein level decreases gradually while CycE increases 

dramatically.  These changes in activator and degrader cause SCF levels to go up for a period 

during cell cycle. The SCF protein level as shown in Figure 4.15 goes up from being low at the 

G1 phase to medium and then a high level in the S and G2 phases; this is considered the 

maximum for that protein level. This is due to the SCF activator being available while the 

degrader being at the lowest point of protein concentration. This arrangement keeps SCF level 

steady. However, when CDH1 becomes active again in M phase, its concentration increases 

leading to reduction of SCF concentration gradually to zero as shown in Figure 4.15.  

 

SCF fuzzy system results were compared to those from the corresponding ODE model and a 

close agreement was found for the pattern of behaviour as shown in Figure 4.16.  The whole 

range of SCF activities from the beginning to end and the temporal changes agree well with 

the ODE results.  However, there is some variation between the two in terms of exact values.   

Our aim is to provide a simpler and easier model than the ODE model and is a close 

approximation of it. Therefore, this SCF could be enhanced to provide better results. 

Therefore, in the next Chapter, we attempt to optimise this model using one of the most 

popular autonomous optimisation methods, particle swarm optimisation (PSO).  
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Figure 4.16: Comparison between SCF fuzzy model and ODE model outcomes for concentration of SCF 

in cell cycle. Protein concentration values are over the cell cycle phases. The blue line shows SCF values 

from the fuzzy model and red line shows SCF values from the ODE model.  

 

4.4.4 CDH1 Fuzzy Inference Model, Design, Results and Discussion 
 

 FIS Design for CDH1 

CDH1 fuzzy inference system (FIS) has a set of input variables and an output variable (multiple 

inputs and single output (MISO)). As demonstrated earlier, CDH1 has activators and degraders 

similar to other cell cycle controller components. Here, the CDH1 fuzzy inference system 

consists of seven input variables and one output variable as shown in Figure 4.17. The input 

variables represent the activator(s) and degraders of CDH1 (FIS), while the output variable is 

the CDH1. CDH1 FIS was derived from the Boolean model we developed (Chapter 3). The 

Boolean functions which organise CDH1 activity are shown in the BF in Eq.3.16.   

CDH1= (!CYCA & !CYCB) & !CYCE | (CDC20A & CDC20B)|(P27 &!CYCB)          (3.16) 

 

Furthermore, CDH1 fuzzy inference system works in a similar way to the corresponding ODE 

equation which is represented in Appendix 2 (Equation 4.21).  
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Figure 4.17: CDH1 fuzzy inference system structure.  Seven input variables with one output variable  

 

In addition, CDH1 FIS has a set of fuzzy rules that control the relations between the CDH1 and 

its activator and deactivator elements as shown in Table 4.4. These rules interpret the 

behaviour of CDH1 over cell cycle activity. 

 

Table 4.4: Rules for the CDH1 fuzzy model. The first column represents the rule number, while the rest 

of the columns represent system inputs except the last column which represents the CDH1 status. 

Each row signifies a rule that describes the impact of inputs on CDH1 value. For instance, Rule 5 

explains the fact that cyclins are not active while CDH1 is active (antagonist relation between cyclins 

and CDH1). This means that when CDH1 is at high concentration and high activity, cyclins are found in 

low concentrations, and so on for the rest of the rules. 

 

Rule 

number 

CYCD CYCE CYCA CYCB CDC20A CDC20B P27 CDH1 

1 H - - - - - L L 

2 - H - - - - L L 

3 - - - M - - - L 

4 - - L L H H L M 

5 L L L L - - - H 

6 - - - M - - - L 

 

Each variable involved in the fuzzy inference system was described by fuzzy sets and 

associated membership functions. Fuzzy inference system provides an efficient and flexible 
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way to design and update the membership functions for the FIS variables as shown in Figure 

4.18. In this section, we investigate only the CDH1 since the rest of the input elements are 

investigated individually in the coming sections. However, all of them share the fuzzy set 

format (Low, Medium, and High).  

 

 

Figure 4.18: CDH1 output variable membership function design. This shows the fuzzy sets as low, 

medium and high and the universe of discourse. The left part shows the fuzzy sets for the inputs 

variables for the CDH1 FIS. The fuzzy membership functions for inputs are presented in the next 

subsections. 

 

The dynamic behaviour can generally be explained by temporal variation of protein 

concentration levels. Consequently, the CDH1 output variable has three fuzzy subsets (low 

(L), medium (M), and high (H)). The universe of discourse for CDH1 is the interval [0, 1]. This 

universe of discourse includes all possible values for CDH1 concentration that can appear over 

the simulation.  

 

 CDH1 FIS Results and Discussion 

 

Both the ODE model and our developed fuzzy model depend on concentration levels of 

activators or degraders to determine the level of CDH1 protein concentration. Figure 4.19 

shows the results from the FIS for CSH1.  At the beginning of cell cycle, the CDH1 protein 

concentration is at a peak. Then, accumulation of cyclins over G1-S phases decrease CDH1 
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abundance. For example, CycD accumulation in mid-late G1 slightly inhibits CDH1 activity and 

lowers its concentration as shown in Figure 4.19. 

 

In addition, CycE is considered as one of the most important inhibitors of CDH1 since they 

have a high antagonism. In late G1 phase, CDH1 protein level decreases steadily while CycE 

increases dramatically. This makes CDH1 level fall to a low after G1 phase as shown in Figure 

4.19. Furthermore, CDH1 should stay at a low level since another cyclin, CycA, would be 

accumulating in the middle of the cell cycle (S-G2 phases).  Another three species keep CDH1 

concentrations at a low level in the M phase; these are CDC20A, CDC20B, and CycB. But the 

concentration of cyclins and other degraders decrease at the end of M phase. As a result, 

CDH1 protein starts to accumulate again with a rising level as shown in Figure 4.19.  

 

  

 

 

Figure 4.19: CDH1 fuzzy model outcome to mimic CDH1 activity in cell cycle. The blue line represents 

CDH1 activity (protein concentration) with crisp values from the fuzzy system. The other lines 

represent activity of the input variables. 
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CDH1 fuzzy system delivers an approximately similar result to ODE model as shown in Figure 

4.20. At the start, CDH1 level from the fuzzy system is similar to ODE results as shown in this 

Figure. However, there is a substantial difference between the two at the end of M phase 

when the cell completes cell cycle.  The fuzzy model provides the appropriate cyclic behaviour 

for CDH1 during the simulation; this makes the cell start a new cycle with the close peak level 

that was observed in the previous cycle while the ODE model failed to observe this starting 

behaviour in the new cycle. Indeed, our simpler CDH1 model provides results that 

approximate for the most part ODE model results. 

 

 

 

 

Figure 4.20: A comparison between CDH1 fuzzy model and the ODE model outcomes for CDH1 

concentration in cell cycle over the cell cycle phases. The blue line shows CDH1 from the fuzzy system 

while red line shows CDH1 results from the ODE model.  
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Figure 4.21. This output variable provides all the predictable approximate values for P27 over 

the cell cycle phases. 

P27 FIS was derived from the Boolean model we developed (Chapter 3). The Boolean 

functions which organise CDH1 activity are shown in the BF in Eq. 3.19. 

 

P27 = (!CYCD & (!CYCD & ! P27)) & (!CYCD & !CYCE) |(!CYCE & !CYCA)   (3.19) 

 

 

 As confirmed earlier, each fuzzy system can mimic a specific ODE equation. Therefore, the 

P27 fuzzy model mimics ODE model which is represented in Appendix 2, Equation 4.22, which 

estimates the activity of P27 in cell cycle phases. 

 

 

Figure 4.21: P27 fuzzy inference system structure. The three input variables with one output variable 

 

Principally, P27 fuzzy inference system works in a like manner to the ODE model to interpret 

p27 relationship to its activator and degrader. P27 FIS has a set of fuzzy rules to explain the 

dynamic behaviour of P27 as shown in Table 4.5. These sets of fuzzy rules can reveal the 

relationships of each input variable(s) to the output variable relying on protein concentrations 

levels, and these rules were extracted from and are compatible with biological knowledge.  

For example, fuzzy rules invert the relationship between CycD, CycE, CycA, and P27 over the 

cell cycle. Furthermore, fuzzy rules demonstrate how cyclin protein levels have a negative 
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effect on P27 activity. The rise in cyclin protein production would increase cyclins levels. As a 

result, these species reduce P27 abundance in the cell cycle system.  

 

Table 4.5: Fuzzy rules for the P27 fuzzy model. The first column represents the rule number, while the 

rest of the columns represent system inputs, except the last column, which represents P27 status. 

Each row indicates a rule that describes the impact of the inputs on P27. These rules interpret the 

biological knowledge related to P27 and other species in cell cycle. For instance, Rule 1 describes the  

fact that when cyclins are not active (low level), then  P27 would be active at a high level. The second 

rule reflects the decrease in P27 concentration level when CycD starts accumulating and binding with 

P27,and so on for the rest of the rules.  

 

Rule 

number 

CYCD CYCE CYCA P27 

1 L L L H 

2 M L L M 

3 H L L L 

4 H H L L 

5 - - M L 

 

 

Concerning the P27 membership function design, P27 concentration values are classified into 

three fuzzy sets (low (L), medium (M), and high (H)) as shown in Figure 4.22. The fuzzy 

membership functions for inputs are presented in the other subsections 

 Based on the membership functions, the universe of discourse for this variable has values 

inside the interval [0, 1.2]. This interval denotes P27 concentrations that correspond to 

realistic biological observations. The borders for fuzzy sets (fuzzy set parameters) are also 

adjusted carefully by using heuristic design to provide the most accurate results. This form of 

fuzzy sets can provide approximate continuous results to ODE models for the dynamic 

behaviour of P27 over cell cycle system. 

 



168 
 

 

Figure 4.22: The membership function design of P27 output variable. It shows the fuzzy sets as low, 

medium and high over the universe of discourse. 

 

 P27 FIS Results and Discussion 

 

The P27 FIS model interpreted all P27 activity over cell cycle in a very realistic manner as 

shown in Figure 4.23. At the start of the cell cycle, P27 protein concentration can be found at 

the highest level. The main task for P27 is to keep the new born cell in G0 until the growth 

factor arrives to start cell cycle. However, cyclin abundance over cell cycle phases can 

influence P27 abundance and activity. For example, from the FIS results shown in Figure 4.23, 

CycD in G1 started synthesis and accumulated sharply to reach a peak, which affected P27 

activity and reduced the available P27 protein level. In addition, CycE has a negative impact 

on P27 activity. At a late point in the G1 phase, P27 protein level decreases gradually to reach 

the lowest point. Thereafter, it remains at the same low level for most of the cell cycle.  This 

is because P27 should stay at a low level while another cyclin (CycA) accumulates in the middle 

of the cell cycle. When concentration of cyclin species that control P27 activity become low, 

P27 level starts to rise and accumulate again. This increases P27 level gradually at the end of 

cell cycle as shown in the Figure 4.23. 
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Figure 4.23: P27 fuzzy model results that mimic P27 activity during cell cycle. The blue line represents 

P27 activity (protein concentration) in crisp values from the fuzzy system. The other lines represent 

the input-variable activity over cell cycle phases. 

 

The P27 fuzzy system offers realistic results close to those from the ODE mode (Figure 4.24). 

Regarding P27 activity, the onset and the change of P27 over cell cycle phases have been 

described similarly to ODE as shown in Figure 4.24. Hence, our attempts aimed at providing a 

simpler and easier model with accurate results comparable to ODE models have been 

successful.  We realised that our P27 FIS model is similar to the last CDH1 FIS model in that  

P27 FIS represents initial p27 condition at the beginning of the next cell cycle better than the 

ODE model which failed to represent this behaviour as shown in Figure 4.24. 
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Figure 4.24: Comparison between P27 fuzzy model outcome and P27 ODE model outcome for P27 

activity in cell cycle. The blue line indicates p27 from the fuzzy system whereas the red line 

represents p27 activity from the ODE model.   

 

 

4.4.6. CycD Fuzzy Inference Model, Design, Results and Discussion: 
 

 CycD FIS Design  

The CycD fuzzy inference system is considered a multi-input and single output system. It has 

four input variables and one output. These four inputs influence CycD activity over the cell 

cycle phases. The output variable represents the values of CycD over the simulation as shown 

in Figure 4.25. CycD FIS was derived from the Boolean model we developed (Chapter 3), The 

Boolean functions which organise CycD activity are shown in BF 3.8.  

 

CYCD, MYC & (!SCF & (!CDC20A & !CDC20B))        (3.8) 

 

0

0.2

0.4

0.6

0.8

1

1.2

1 1
2

2
3

3
4

4
5

5
6 67 7
8

8
9

1
0

0

1
1

1

1
2

2

1
3

3

1
4

4

1
5

5

16
6

1
7

7

1
8

8

1
9

9

2
1

0

2
2

1

2
3

2

2
4

3

2
5

4

2
6

5

2
7

6

28
7

2
9

8

3
0

9

3
2

0

3
3

1

3
4

2

3
5

3

3
6

4

3
7

5

38
6

Chart Title

FUZZY_P27 ODE_P27



171 
 

 Essentially, CycD FIS aims to mimic the ODE equation model for CycD over the cell cycle, 

shown in Appendix 2, equation 4.23. 

 

 

 

Figure 4.25: CycD fuzzy inference system structure. Four input variables with one output variable. 

 

Basically, CycD membership functions consist of three fuzzy sets (low (L), medium (M) and 

high (H)), and the universe of discourse for this variable is the interval [0, 1.4] as shown in 

Figure 4.26. The fuzzy membership functions for inputs are presented in the other 

subsections. These values represent all possible CYCD concentration values; these values are 

generated from the ODE model. The parameters for fuzzy sets are also tuned carefully to 

provide the most accurate results. With this form of fuzzy sets and parameter adjustment, it 

is hypothesised that a close result or the same patterns of dynamic behaviour for CycD over 

the cell cycle system as the ODE model would eventuate. 

 

Figure 4.26: CycD output variable membership function design. It shows the fuzzy sets; low, medium 

and high over the universe of discourse [0, 1.4]. 
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CycD FIS also has a set of fuzzy rules to elucidate the dynamic behaviour of CycD as shown in 

Table 4.6. This set of fuzzy rules can capture the relationship between input variable and the 

output variable. For example, the fuzzy rules demonstrate how protein levels have either a 

positive or negative impact on CycD activity. Increased levels of SCF, CDC20A, and CDC20B 

can reduce CycD abundance in the cell cycle system whereas increased levels of MYC 

increases it. Accordingly, fuzzy rules reveal the Inverse relationship between MYC and SCF, 

CDC20A, and CDC20B over time in the cell cycle system. 

 

Table 4.6: Fuzzy rules for CycD fuzzy model. The first column represents the rule number, while the 

rest of the columns represent the system inputs except the last column, which represents CycD status. 

Each row indicates a rule that defines the effect of the inputs on CycD.  For instance, Rule 2 explains 

the fact when growth factors are present and activate MYC to a high level, CycD reaches a  high level 

in the absence of other degraders (i.e., low level of SCF, CDC20A and CDC20B), and so on for the rest 

of the rules. 

 

Rule 

number 

MYC SCF CDCC20A CDC20B CycD 

1 M L L L M 

2 H L L L H 

3 H H H H L 

4 L L L L L 

5 L  H H L 

6  L M M L 

7  H L L H 

8  H M M L 

9 !L L L L L 

 

 CycD FIS Results and Discussion 

The CYCD (FIS) functionality is shown in Figure 4.27 and it follows the results from the CycD 

ODE model. Both depend on protein concentration levels to activate or degrade CycD and 
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influence its abundance. The outcome from the CycD FIS model is acceptable. For example, 

supporting the available knowledge presented earlier, at the start of the cell cycle CYCD level 

is at the lowest (Figure 4.27). Then, when MYC becomes active, this causes CycD 

synthesis/production to start and CycD accumulates gradually. As a consequence, CycD 

moves the cell from the G1 phase to the S phase. In this stage of the cell cycle, CycD remains 

at a high concentration level. However, the CycD abundance is affected by SCF, CDC20A, and 

CDC20B that reduce the available CycD protein as shown in Figure 4.27. At late G2 phase, 

CycD protein level decreases gradually to the lowest level as shown in Figure 4.27 so that it 

remains low at the start of the next cycle.    

 

 

 

Figure 4.27: CycD fuzzy model results simulating CycD activity over the cell cycle. The blue line 

represents CycD activity (protein concentration) in crisp values from the fuzzy system. The other lines 

represent input variables values and activity over cell cycle phases. 

 

CycD fuzzy system provides generally similar behaviour to that of ODE model as shown in 

Figure 4.28.  The start and the change of CycD over the cell cycle phases have been described 

similar to ODE. However, there are some differences in CycD abundance level and  therefore 

FIS system can be improved to provide better results. So, we attempted to optimise this 

model by using particle swarm optimisation (PSO) in a similar way to the SCF FIS model; 

further information on this can be found in the next chapter. 
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Figure 4.28: Comparison between CycD fuzzy model outcome and CycD ODE model outcome for CycD 

concentration throughout the cell cycle. The blue line indicates fuzzy system computed CycD whereas 

the red line show ODE model results for CycD. 

 

4.4.7 TFE Fuzzy Inference Model, Design, Results And Discussion: 
 

 TFE (FIS) Design  

 

The TFE FIS model has four input variables and one output variable. Rb, CycA, CycB and P27 

are the input variables while TFE is the output variable as shown in Figure 4.29. TFE FIS was 

derived from the Boolean model we developed (Chapter 3). The Boolean functions which 

organise TFE activity are shown in the BF in Eq. 3.12. 

 

 TFE, (!RB & !CYCA & !CYCB) | (P27 & !RB & !CYCB)                                        (3.12) 

 

TFE FIS has been designed to mimic the TFE ODE model which is represented in Appendix 2,   

Equation 4.24. 
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Figure 4.29: TFE fuzzy inference system structure. There are four input variables with one output 

variable. 

The TFE membership functions have been designed in a similar way to those for other species 

we have studied so far.  They consist of three fuzzy subsets (low (L), medium (M) and high 

(H)) over the universe of discourse [0, 1.8] covering all possible TFE values in cell cycle as 

shown in Figure 4.30. The fuzzy membership functions for inputs are presented in the other 

subsections. 

 

 

Figure 4.30: TFE output variable membership function design. This shows the fuzzy sets, Low, medium 

over the universe of discourse [0, 1.8]. 

 

Furthermore, this FIS model involves a set of fuzzy rules, which explain the biological 

interactions between TFE and its TFE activator(s) and degrader(s) as shown in Table 4.7. These 

fuzzy rules capture system element activity in terms of the status of the protein concentration 

levels for each input variable and their influences on the target TFE protein concentration 

level. 
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Table 4.7: Fuzzy rules for TFE fuzzy model. The first column represents the rule number, while the rest 

of the columns represent the system inputs except the last column, which represents the TFE status. 

Each row indicates a rule that defines the effects of inputs on TFE value. For instance, Rule 2 explains 

the fact when RB and P27 are at a moderate level and in the absence of degraders CycA and CycB, TFE 

remains low; and so on for the rest of the rules. 

 

Rule 

number 

RB CYCA CYCB P27 TFE 

1 H L L H L 

2 M L L M L 

3 L L L L H 

4 L H L L L 

5 M - M L L 

6 L M L L M 

7 - M - - L 

 

 TFE Results and Discussion 

 

The simulation shows that RB negatively impact TFE since it is the strongest inhibitor of TFE; 

therefore, at the beginning of cell cycle, RB has high concentration levels, while the rest of 

cyclins are at a low level. This leaves TFE at a low level at the beginning of cell cycle as shown 

in Figure 4.31. However, the purpose of CycD accumulation at the beginning of cell cycle is to 

form CycD_Cdk4 that in conjunction with the other cyclins in the system facilitates the release 

of TFE from RB.  This leads to accumulation of TFE and TFE induced production of CycE and 

CycA as shown in Figure 4.31. When released, TFE keeps gradually increasing until the 

maximum accumulation but when the degraders, such as CycA, CycB and P27, start their 

accumulation, they degrade TFE levels over time as shown in Figure 4.31. 
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Figure 4.31: TFE fuzzy model results simulating TFE activity over the cell cycle. The blue line 
represents TFE activity (protein concentration) in crisp values from the fuzzy system. The other lines 
represent input-variable values and activity over cell cycle phases. 

 

The previous figure shows that the TFE fuzzy model is an effective model since it provides the 

expected behaviour of all elements resulting from their interactions in the system.  It 

represents the dynamic behaviour of TFE over the cell cycle well. There is high level of 

agreement between the fuzzy and ODE models for the TFE dynamic behaviour as shown 

Figure 4.32.  However, there is a small variation between the two in terms of exact values.    

 

 

Figure 4.32: Comparison between TFE fuzzy model outcome and TFE ODE model outcome for TFE 
concentration and activity over the cell cycle. The blue line shows TFE from the fuzzy system whereas 
the red line represents TFE from the ODE model.   
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4.4.8 CycE Fuzzy Inference Model, Design, Results and Discussion: 

 

 CycE FIS Design 

The CycE protein was represented by its fuzzy inference system model. This model mimics 

CycE activity; it has three input variables and one output variable as shown in Figure 4.33. 

These input variables are the activators and degraders of CycE. As elucidated before, TFE is 

the activator of CycE while both SCF and P27 are degraders of CycE.  

CycE FIS was derived from the Boolean model we developed (Chapter 3). The Boolean 

functions which organise CycE activity are shown in the BF in Eq. 3.9. 

 

CYCE, TFE | (!SCF & !P27)        (3.9) 

 

This fuzzy model should approximate the CycE ODE model which is represented in Appendix 

2, Equation 4.25:  

 

 

 

Figure 4.33: CycE fuzzy inference system structure. The three input variables and one output variable. 

 

Comparable to other developed model designs, CycE variable was represented by three fuzzy 

sets for CycE concentration levels of low, medium and high.  The membership functions are 

as shown in Figure 4.34. As before, model development involves a manual setup of fuzzy 
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parameters over the domain of discourse. The fuzzy membership functions for inputs are 

presented in the other subsections. 

 

Figure 4.34: CycE output variable membership function design. It shows the fuzzy sets, low, medium 

and high over the universe of discourse. 

 

CycE inference system also has a set of fuzzy rules to mimic CycE abundance over cell cycle. 

These rules depict the variable interactions that change species concentration levels as shown 

in Table 4.8.  

Table 4.8: Fuzzy rules for the CycE fuzzy model. The first column represents the rule number, while 

the rest of the columns represent system inputs except for the last column, which represents CycE 

status. Each row indicates a rule that defines the effects of the inputs on CYCE. For instance, Rule 1 

explains the fact that at early G1 phase, high level of P27 keeps CycE at a low level; and so on for the 

rest of the rules in the table. 

Rule 

number 

TFE SCF P27 CYCE 

1 - - H L 

2 L L H L 

3 M L  L M 

4 H L L H 

5 M  - L H 

6 - H L L 

7 - L H L 

8 L L L L 

9 L - - L 

10 M - - M 

11 H - - H 
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 CycE FIS Results and Discussion 

 

The simulation revealed CycE activity over the cell cycle system as shown in Figure 4.35. For 

example, P27 should be reduced to a low level after initiating cell cycle since it keeps the cell 

in G0 as it prevents CycE production. TFE is also the activator for CycE production during the 

cell cycle. The TFE concertation should be at a low level at the beginning of the cell cycle but 

when TFE starts to accumulate, it causes CycE to be accumulated quickly. However, other 

CycE degraders become active appropriately to bring CycE level down. For instance, SCF 

concentration steadily decreases CycE protein level as shown in Figure 4.35.  

 

 

 

Figure 4.35: The CycE fuzzy model results simulating CycE activity through the cell cycle. The blue line 

represents CycE activity (concentration) in crisp values given by the fuzzy system. The other lines 

represent input variables and their activity over cell cycle phases 

 

The results from the CycE fuzzy model and the ODE model were also compared.  Indeed, the 

simpler fuzzy model can provide satisfactory results comparable to the ODE in describing the 

dynamic behaviour and protein concentrations as shown in Figure 4.36.  

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

1 1
2

2
3

3
4

4
5

5
6 67 7
8

8
9

1
0

0

1
1

1

1
2

2

1
3

3

1
4

4

1
5

5

16
6

1
7

7

1
8

8

1
9

9

2
1

0

2
2

1

2
3

2

2
4

3

2
5

4

2
6

5

2
7

6

28
7

2
9

8

3
0

9

3
2

0

3
3

1

3
4

2

3
5

3

3
6

4

3
7

5

38
6

TFE SCF P27 FUZZY_CYCE



181 
 

 

 

Figure 4.36: Comparison between CycE fuzzy model and CycE ODE model outcomes for CycE 

concentration and activity over the cell cycle. The blue line shows CycE from the fuzzy system whereas 

the red line represents CycE from the ODE model.   

 

4.4.9 CycA Fuzzy Inference Model, Design, Results and Discussion: 
 

 CycA Design 

 

CycA activity has also been modelled using fuzzy inference system. The fuzzy inference system 

consists of four input variables and one output variable as shown in Figure 4.37. The input 

variables represent the activator and degraders of CycA activity over the cell cycle. It is known 

that the TFE variable has a positive impact on CycA abundance while rest of the elements, 

CDC20A, P27 and CDH1, negatively impact CycA abundance. Precisely, CycA FIS was derived 

from the Boolean model we developed (Chapter 3), The Boolean functions which organise 

CycA activity are shown in in BF 3.10. 

CYCA, (TFE & !P27) | (!CDC20A & !CDH1)      (3.10) 
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Correspondingly, this fuzzy inference model should mimic the CycA ODE model which is 

represented in Appendix 2, Equation 4.26.  

 

 

Figure 4.37: CycA fuzzy inference system structure. The four input variables with one output variable 

 

The description for CycA protein concentration level is similar to that used in other system 

components. The CycA membership functions include three fuzzy sets (low, medium and 

high) as shown in Figure 4.38. The fuzzy membership functions for inputs are presented in the 

other subsections. 

 

 

Figure 4.38: CycA membership function design. It shows the fuzzy sets, low, medium and high over 

the universe of discourse. 
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CycA fuzzy inference system rules describe the entire relationship between CycA and its 

activators and degraders. These rules are presented in Table 4.9. 

 

Table 4.9: Fuzzy rules for the CycA fuzzy model. The first column characterises the rule number, while 

the rest of the columns characterise system inputs excluding the last column, which characterises the 

CycE status. Each row specifies a rule that describes the effect of inputs on CYCA value. For example, 

Rule 1 explains the fact that at the early G1 phase when P27 and CDH1 are at a high level while TFE is 

at a low level, CycA remains at a low level; and so on for the rest rules in the table. 

 

Rule 

number 

TFE CDC20A P27 CDH1 CYCA 

1 L  H H L 

2 M L L L H 

3  H    L 

4 H NOT L NOT L NOT L H 

5 L   M M L 

6   M M L 

 

  CycA FIS Results and Discussion 

 

Simulation results for the dynamic behaviour of CycA FIS elements are shown in Figure 4.39. 

For example, as described previously, both CDH1 and P27 have prevented CycA protein 

production at the beginning of the cell cycle, where CDH1 concentration level is at the highest 

as shown in Figure 3.49. P27 also keeps the new born cell in the G0 phase until receiving the 

growth factor and other elements to initiate cell cycle. For this reason, P27 should be at the 

highest level too at the beginning.  Our fuzzy rules in the model are built on the 

aforementioned facts concerning the protein concentration levels and interactions. 

 

Furthermore, we assumed that to start CycA production, both CDH1 and P27 should gradually 

reduce their concentration level from high to medium and, finally, to the lowest level of 
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concentration. This way, we are mimicking the transition from the G0 to the G1 phase. 

Afterwards, TFE can be active and stimulate the production of CycA protein, while CDC20 is 

available in the lowest amount. CycA steadily accumulates in the cell when TFE becomes 

active, but when CDH1 reaches the lowest point and is no longer active, CycA increases 

intensely and reaches the uppermost peak. However, the degrader of CycA, CDC20A, would 

be active after a while. This degrader would decrease CycA abundance steadily until it reaches 

the lowest level in the latter part of cell cycle.    

 

 

 

Figure 4.39: CycA fuzzy model simulating CycA activity through the cell cycle. The blue line represents 

CycA activity (concentration) in crisp values computed from the fuzzy system. The other lines 

represent input-variable values and activity over cell cycle phases 

 

A comparison has been established between CycA FIS model results and CycA ODE results as 

shown in Figure 4.40. Although there is general agreement between the two models, in order 

for this FIS model to achieve better results, it is highly recommended that it be enhanced. The 

enhancement of this model can be done using PSO optimisation method; further details are 

explained in the next chapter.  

 

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

1

1
5

2
9

4
3

5
7

7
1

8
5

9
9

1
1

3

1
2

7

1
4

1

1
5

5

1
6

9

1
8

3

1
9

7

2
1

1

2
2

5

23
9

2
5

3

2
6

7

2
8

1

2
9

5

3
0

9

3
2

3

3
3

7

35
1

3
6

5

3
7

9

TFE CDC20A P27 CDH1 FUZZY_CycA



185 
 

 

 

 

Figure 4.40: A comparison between CycA fuzzy model outcomes and CycA ODE model outcomes for 

CycA concentration and activity over the cell cycle. The blue line shows fuzzy system computed CycA 

values whereas the red line represents CycA from ODE model. 

 

4.4.10 TFB Fuzzy Inference Model, Design, Results and Discussion: 
 

 TFB FIS Design 

The fuzzy inference system for TFB has a single input and a single output; the input variable 

is CycA while the output variable is TFB as shown in Figure 4.41. TFB FIS was derived from the 

Boolean model we developed (Chapter 3), The Boolean functions which organise TFB activity 

are shown in the BF in Eq. 3.13. 

TFB, CYCA         (3.13) 

This fuzzy inference model should imitate the TFB ODE model  which is represented in 

Appendix 2, Equation 4.27. 
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Figure 4.41: TFB fuzzy inference system structure. The single input variable and one output variable. 

 

As confirmed earlier, we depend on heuristic design, so a heuristic design has been applied 

to design the TFB membership function and the domain of discourse. The design of the TFB 

variable has three fuzzy subsets (low, medium and high) as shown in Figure 4.42. The fuzzy 

membership functions for inputs are presented in the other subsections. 

 

 

 

Figure 4.42: TFB output variable membership function design. It shows the fuzzy sets; low, medium 

and high, and the universe of discourse. 

 

TFB FIS has a set of fuzzy rules which organise the TFB activity as presented in Table 4.10. TFB 

activity is related to CycA concentration level, and for this reason, the abundance of CycA can 

affect TFB production level as shown in Figure 4.42. 
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Table 4.10: TFB fuzzy rule set. The first column shows rule numbers in the system. The second column 

represents the input variables of the system, while the last column represents the output variable,  

TFB.  Each row represents a different fuzzy rule, which explains how the input variables control TFB 

protein level in cell cycle.  These rules describe species activity in cell cycle. 

Rule 

numbers 

Input 1 

CycA 

Output 

TFB 

1 L L 

2 M M 

3 H H 

 

 TFB FIS Results and Discussion 

Overall, the design information presented here generates an efficient fuzzy inference system 

to simulate the behaviour of the TFB as shown in Figure 4.43. As we can see, the fuzzy model 

reproduces the biological behaviour of TFB based on the biochemical reaction between the 

input variable CycA and TFB.  

 

 

Figure 4.43: TFB fuzzy model results simulating TFB activity through the cell cycle. The green line 

represents CycA activity. The blue line represents TFB activity - this represents the computed crisp 

values from the fuzzy system. 
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Furthermore, the output of this TFB FIS model is considered satisfactory as it is very consistent 

with ODE model as shown in Figure 4.44. 

 

 

 

Figure 4.44: Comparison of TFB fuzzy model outcomes and TFB ODE model outcomes for TFB 

concentration and activity over the cell cycle. The blue line shows fuzzy system generated TFB values 

whereas the red line represents TFB from ODE model.   

 

4.4.11 CycB Fuzzy Inference Model 
 

 CycB FIS Design 

The fuzzy inference system for CycB comprises three input variables and one output variable, 

as shown in Figure 4.45. The input variables represent the activator and degraders of CycB 

activity over the cell cycle. The TFB has a positive impact on CycB production while the rest of 

the elements, CDC20B and CDH1, negatively impact CycB abundance. CycB FIS was derived 

from the Boolean model we developed (Chapter 3). The Boolean functions which organise 

CycB activity are shown in the BF in Eq. 3.11. 
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CYCB, TFB | (!CDH1 & !CDC20B)       (3.11) 

 

 The main aim of this fuzzy model is to provide a CycB profile comparable to that from the 

ODE model which is presented in Appendix 2, Equation 4.28.  

 

 

 

Figure 4.45: CycB fuzzy inference system structure with three input variables and one output 

variable. 

 

Concerning the design of CycB membership functions, we created three-fuzzy sets (low, 

medium and high) to describe the activity (protein concentration) for this variable. Depending 

on prior knowledge, the fuzzy parameters for the fuzzy sets are adjusted manually; this also 

includes the domain of discourse of the variable, as shown in figure 4.46. The fuzzy 

membership functions for inputs are presented in the other subsections. 

 

 

Figure 4.46: CycB (output) membership function design. This shows the fuzzy sets, Low, medium and 

high, and the universe of discourse [0, 0.8]. 
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This fuzzy model also has a set of fuzzy rules. Our assumptions regarding the fuzzy rules are 

that they are built on the biological facts mentioned previously concerning protein 

concentration levels and interactions. Table 4.11 shows the CycB fuzzy inference system rules 

which describe the entire relationship between CycB and its activator and degraders.  

 

Table 4.11: CYCB fuzzy rule set. The first column shows the number of rules in the system. The second 

column represents the input variables in the system while the last column represents the output 

variable CYCB. Each row represents a different fuzzy rule, which explains how the input variables can 

control CycB protein levels in cell cycle. These rules describe species activity in cell cycle. 

Rule 

number 

TFB CDH1 CDC20B CYCB 

1 - - H L 

2 L L H L 

3 M L  L M 

4 H L L H 

 

 CycB FIS Results and Discussion 

Simulation results from the CycB FIS model are shown in Figure 4.47. Fuzzy rules we 

established showed that both CDH1 and CDC20B have prevented CycB protein production in 

the late phase of the cell cycle.  We assumed that to start CycB production both CDH1 and 

CDC20B should be at their lowest concentrations. When TFB is active, it stimulates the 

production of CycB protein while CDC20 is available in the lowest amount and CycB levels rise 

quickly to its upper limit.  Once CycB has reached the highest level, it activates CDC20B for its 

own degradation. This degrader would steadily decrease CycB abundance. Subsequently, 

CDH1 would be active again and work with CD20B to degrade CycB to the lowest level as 

shown in Figure 4.47.  
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Figure 4.47: CycB fuzzy model results simulating CycB activity through the cell cycle. Green line 

represents TFB which activates CycB in M phase. The orange line represents CDH1 activity while the 

red line represents CDC20B activity to degrade CycB. These lines represent the system input variables. 

The blue line represents the outcome of the fuzzy CYCB model (CycB level) in crisp values.  

 

Thus, CycB FIS produced realistic CycB activity over the cell cycle phases.  For instance, there 

is a silent mode of CycB in the first and middle phases of the cell cycle, and the increase in 

CycB concentration becomes pronounced afterwards.   Moreover, the results from this model 

and ODE model were compared and they are in good agreement overall as shown in Figure 

4.48.  

 

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1 1
2

2
3

3
4

4
5

5
6

6
7

7
8

8
9

1
0

0
1

1
1

1
2

2
1

3
3

14
4

1
5

5
16

6
1

7
7

18
8

1
9

9
21

0
2

2
1

2
3

2
2

4
3

2
5

4
2

6
5

2
7

6
2

8
7

2
9

8
3

0
9

3
2

0
3

3
1

3
4

2
3

5
3

3
6

4
3

7
5

3
8

6

TFB CDC20B CDH1 Fuzzy_CYCB



192 
 

Figure 4.48: Comparison between CycB fuzzy model outcomes and CycB ODE model outcomes for 

CycB concentration and activity over the cell cycle. The blue line shows fuzzy system computed CycB 

values whereas the red line represents CycB from ODE model.  

 

4.4.12 RB Fuzzy Inference Model: 

 

 RB FIS Design 

Here, the RB fuzzy inference system is considered as a multi-input system with a single output. 

It consists of three input variables (CycD, CycE and CycA) and one output as shown in Figure 

4.49. The literature has reported that these three inputs influence RB activity in  cell cycle. 

The output variable represents the values of RB over the simulation. RB FIS was derived from 

the Boolean model we developed (Chapter 3). The Boolean functions which organise RB 

activity are shown in the BF in Eq. 3.20 

RB, !CYCD & (!CYCE & !CYCA)         (3.20) 

 RB FIS is expected to mimic the behaviour of RB in cell cycle similar to the RB ODE model 

which is presented in Appendix 2 (Equation 4.29). 
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Figure 4.49: RB fuzzy inference system structure - three-input variables and one output variable. 

Depending on the previous knowledge and using heuristic design, we aim to create the RB 

FIS. For instance, the membership function for RB has three-fuzzy sets (low (L), medium (M) 

and high (H)); and the universe of discourse for this variable is [0, 1.2]. These values signify 

the possible RB concentrations values; they are mined from realistic biological observations. 

The borders for fuzzy sets are also tuned judiciously to provide results with greater accuracy. 

This way, the tuned membership functions in FIS (Figure 4.50) can produce results for Rb 

similar to ODE. The fuzzy membership functions for inputs are presented in the other 

subsections. 

 

 

Figure 4.50: RB output variable membership function design. It shows the fuzzy sets; low, medium 

and high, and the universe of discourse [0, 1.2] 

 

RB FIS also has a set of fuzzy rules to elucidate the dynamic behaviour for RB as shown in 

Table 4.12. This set of fuzzy rules capture the relationship between the input variables and 

the output variable. 
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Table 4.12: RB fuzzy rules set. The first column shows the number of rules in the system while the rest 

of the columns represent the input variables of the system, except the last column, which represents 

the output variable, RB. Each row represents a different fuzzy rule, which explains how the input 

variables control RB protein level in cell cycle. These rules describe species activity in cell cycle. For 

example, Rule 1 reflects the fact when cyclins are in low-level concentration, RB is at high level; this is 

the situation in G0 phase. The rest of the rules explain the relations between RB and the rest of the 

species.  

 

Rule 

Number 

Input 1 

CYCD 

Input 2 

CYCE 

Input 3 

CYCA 

Output 

RB 

1 L L L H 

2 M L L L 

3 H L L L 

4 H H L L 

5 - - M L 

 

For instance, the fuzzy rules presented in the above table reveal the inverse relationship 

between the inputs CycD, CycE, CycA and RB over time in cell cycle system. Furthermore, fuzzy 

rules have demonstrated how cyclins protein levels negatively impacts RB activity. The 

increments in cyclins protein production increase cyclins levels that then reduce RB 

abundance.  Cyclins affect both P27 and RB in a similar manner over cell cycle phases.  

 

 RB FIS Results and Discussion 

RB fuzzy inference works similarly to ODE model to infer the relationship between RB and 

activators and degraders. It can be seen that the RB (FIS) functionality produces the same 

functionality as the ODE model since both depend on protein concentration levels to activate 

or degrade RB protein abundance. For instance, as verified before, at the beginning cell cycle, 

RB protein level is at the highest level as shown in Figure 4.51.  
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The main task of RB is to prevent cell cycle initiation. This can be done by inhibiting TFE activity 

which produces CycE that initiates cell cycle. However, the abundance of cyclins over cell cycle 

phases can affect RB abundance and its activity. For instance, in G1 CycD starts synthesis and 

accumulates to a very high level, which affects RB activity and reduces the available RB protein 

level. CycE also negatively impacts RB activity. In late G1 phase, RB protein level decreases 

gradually to the lowest level and remains so over the rest of the cell cycle as shown in Figure 

4.51. This is because another cyclin (CycA) is accumulated in the middle of the cell cycle that 

further suppresses Rb. On the other hand, when the cyclins species concentrations that 

control RB activity become low due to their degradation, the RB protein starts to accumulate 

again and increase gradually, especially in the transition from M phase to G0 phase, in the 

new born cell as shown in Figure 4.51.  

 

 

 

Figure 4.51: RB fuzzy inference system activity over cell cycle simulation. The blue line represents RB 

activity (protein concentration) in crisp values from the RB fuzzy system. The other lines represent 

input variables values and activity over cell cycle phases. 

 

Finally, a comparative study has been done between the RB FIS model and RB ODE model. 
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showed that our RB FIS model has the ability to mimic the behaviour of RB over the cell cycle 

phases as shown in Figure 4.52. In addition, our fuzzy model better represents the cyclic 

behaviour of RB from first cell cycle to the next (beginning and end values), whereas  RB ODE 

model fails to produce this cyclic behaviour, as shown in Figure 4.52.  For instance, RB should 

be highly active at the beginning and end of the simulation. Our fuzzy model shows that RB is 

at high level at the beginning and at the end of the cell cycle. The fuzzy model starts the 

second cycle with a high level of RB (cyclic behaviour). The RB ODE model shows that RB is 

inactive at the beginning of the cell cycle and is at high level at the end of cell cycle as shown 

in Figure 4.52.  Thus the ODE has difficulty representing RB correctly at the beginning.  

 

 

Figure 4.52: RB protein activity over cell cycle phases. The blue line shows fuzzy system generated 

RB whereas the red line represents Rb from ODE model. 

 

4.4.13 CDC20A and CDC20B Fuzzy Inference Model: 
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As demonstrated before, CDC20 species have a strong negative impact on Cyclin A and B, 

Concerning the CDC20 in our design, we rely on the biological facts from popular models, such 
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CDC20A which deactivates CycA, and CDC20B, which deactivates CycB, but both CDC20A and 

CDC20B are dependent on CycB for their activation.  Thus same principles were used in the 

design of for both proteins.   

 

Consequently, our assumptions regarding the fuzzy inference systems for CDC20A/B are the 

same. So, to reduce the redundancy in analysis and discussion, we investigate both of them 

in the same manner in this section.  

 

The CDC20A/B fuzzy inference system has a single input and a single output; the input variable 

is CycB, while the output variable is CDC20A/B as shown in Figure 4.53. CDC20A/B FIS’s were 

derived from the Boolean model we developed (Chapter 3). The Boolean functions which 

organise CDC20A/B activities are shown in the BFs in Eqs 3.17 and 3.18, respectively. 

CDC20A = CYCB           (3.17) 

CDC20B = CYCB                        (3.18) 

 

CDC20 behaviour has been mimicked by ODE model which is presented in Appendix 2, 

Equation 4.30.  The intuitive and simple fuzzy inference system is expected to mimic 

CDC20A/B behaviour.  

 

a.  CDC20A fuzzy inference system structure - A single input variable and single output variable 
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b. CDC20B fuzzy inference system structure -A single input variable and single output variable 

Figure 4.53: CDC20A/B fuzzy inference system structure 

 

The design of the membership function for CDC20A/B include three fuzzy subsets (low, 

medium and high) as shown in Figure 4.54. The fuzzy membership functions for inputs are 

presented in the other subsections. The fuzzy rules organise the CDC20A/B activity through 

these membership functions.  As discussed, CDC20A/B activity is controlled by CycB 

concentration level. For this reason, the abundance of CycB affects CDC20A/B level. 

 

 

a. CDC20A variable membership function design 

 

b. CDC20B variable membership function design 

Figure 4.54: The design of CDC20A/B output variables membership function. It shows the fuzzy sets 

low, medium and high and the universe of discourse [0, 1]. 

 

In addition, these fuzzy systems have a set of fuzzy rules as presented in Table 4.13. 

Table 4.13: CDC20A/B Fuzzy rules sets  

Rule 

number 

CYCB CDC20A Rule 

number 

CYCB CDC20B 
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1 L L 1 L L 

2 M M 2 M M 

3 H H  3 H H 

 

 CDC20A/B FIS Results and Discussion 

This simulation offered appropriate results as shown in Figure 4.55. As can be seen, as long 

as CycB is not active CDC20A/B would stay at a low level. This is the situation in the cell cycle 

phases until the middle of the G2 phase. However, in late G2 phase, CycB concentration 

gradually increases, which affects CDC20A/B, since it is considered to be their activator. In the 

middle of the M phase, when CycB concentration decreases, then CDC20A/B would also 

decrease. These biological events are successfully interpreted by the intuitive CDC20A/B FIS 

models as shown in Figure 4.55.  

  

 

Figure 4.55: CDC20A/B fuzzy inference system activity over cell cycle simulation. The blue line 

represents fuzzy CDC20A/B activity protein concentration) in crisp values from the fuzzy system. The 

other line represents the input variable CycB. 

 

Furthermore, a comparison was undertaken between CDC20A/B FIS models and CDC20A/B 

ODE model. A high level of agreement was found as shown in Figure 4.56.  
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Figure 4.56: Comparison between CDC20A/B fuzzy model outcomes and CDC20 ODE model outcomes 

for CDC20A/B concentration and activity all over the cell cycle. The blue line shows fuzzy system 

generated CDC20A/B values over cell cycle simulation. The red line represents CDC20A/B from the 

ODE model.   
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4.5 Chapter Summary 
 

In this chapter, we presented and investigated a highly promising method to mimic the 

mammalian cell cycle control system. We introduced and investigated fuzzy logic features; 

we also explained how it can become a significantly effective method to bridge the limitations 

in current discrete (Boolean etc.) and continuous (ODE etc.) models. Indeed, fuzzy logic proves 

that it can be considered as a novel method to mimic cell cycle controller system activity and 

dynamic behaviour by computing protein concentrations and describing the nonlinear 

behaviour of species over the cell cycle, using a fuzzy inference system in the modelling 

process. Furthermore, we developed a set of simple and intuitive fuzzy inference systems to 

mimic each cell cycle species. These fuzzy models are shaped depending on prior knowledge 

mined from realistic biological observations to design them in the best possible way. Each 

fuzzy inference model mimics the behaviour of one element of the cell cycle controller system 

over cell cycle phases. Earlier in the literature, each element in the cell cycle controller has 

been presented by an ODE model, since the ODE model is the most accurate and popular 

method used to mimic these element activity. 

 

Thus each species was modelled by the fuzzy inference system model and validated with the 

existing ODE model but, as demonstrated previously, ODE models require kinetic parameters 

that are scarce. Accordingly, fuzzy inference system has the advantage of mimicking the 

continuous behaviour of these elements without the need for kinetic parameter values, and 

even under the conditions of missing and vague knowledge.  This is achieved by creating local 

functions (membership functions) to represent variable as fuzzy variables that are processed 

by If- THEN rules to provide continuous outputs. Furthermore, these intuitive fuzzy inference 

systems can provide similar insights to ODE with greater simplicity and less effort.  For 

instance, fuzzy inference models, such as RB, P27, and CDH1, have better represented the 

cyclic behaviour of these proteins in cell cycle while corresponding ODE model showed some 

difficulty creating this behaviour. 
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Essentially, the developed fuzzy inference systems provided the expected results to describe 

the temporal behaviour of protein concentrations over the cell cycle phases. We revealed 

that the results from the semi-continuous FIS models are comparable to the results from the 

continuous ODE model.  However, we discovered that few of the developed fuzzy models 

(SCF, CycD and CycA FIS) show small variance from the ODE model.  However, our aim was to 

provide simpler and easier approximate models that closely resemble the behaviour of ODE 

models as an alternative to ODE models and that was largely achieved by the FIS models.  

However, the above mentioned remaining few variant models can be improved to obtain 

more accurate results in order to make the whole model system a close equivalent of the ODE 

system.  For this reason, we attempted to optimise the stated models by using one of the 

most autonomous optimisation methods - particle swarm optimisation (PSO).  These 

attempts are discussed in the following chapter. 
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Chapter 5:  Tuning fuzzy model with Particle Swarm Optimisation 

(PSO) 
 

In the previous chapter, we investigated the fuzzy inference models we developed. As a 

consequence of manual tuning the models, they provided accurate results, which were 

compatible with the available biological knowledge (C.-C. Chen & Zhong, 2008; Iwamoto et 

al., 2011; Massagué, 2004). Furthermore, we compared our results with the most accurate 

and realistic results from the corresponding ODE model. The comparison revealed good 

agreement; however, several models showed a small variation in their results compared to 

the ODE model results. Therefore, in this chapter, a computational optimisation technique is 

used to improve the results. 

In essence, most computational techniques have been inspired by existing and well known 

complex systems (Omizegba & Adebayo, 2009). For instance, artificial neural networks were 

considered to be a simplified model of the human brain. Furthermore, genetic algorithms 

were inspired by human evolution. In this chapter we investigate an additional biological 

social system inspired method called the Swarm Intelligence System, which can be used in 

computational methods. The Swarm Intelligence System is a collection of behaviours for a set 

of individuals who are interacting with their environment and each other. In addition, Swarm 

Intelligence has intelligent behaviour that  is created by means of some agents, such as birds, 

ants and fish (Kenndy & Eberhart, 1995). The most popular examples of Swarm Intelligence 

in the computational intelligence area are the Ant Colony Optimisation (ACO) and the Particle 

Swarm Optimisation (PSO). ACO was developed on the basis of ants' behaviour and was used 

to optimise many discrete problems. The concept of Particle Swarm Optimisation (PSO) was 

developed to simulate a simplified social system and as an optimizer. Further details, 

including PSO concepts and the method used, are explained in the next sections.  
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5.1 PSO with Evolutionary Computation 

 

Evolutionary computation is inspired by biological evolution; it is a family of algorithms for 

global optimisation, and most of the sub-fields of soft computing and artificial intelligence use 

these algorithms. In addition, evolutionary computation is considered as part of a family of 

errors and problem solvers and is based on the stochastic optimisation character. 

Typically, evolutionary techniques go through a similar general procedure; the steps of this 

procedure are described below: 

1. The initial population should be generated randomly. 

2. Each subject should have a fitness value. This fitness value depends on the distance to 

the optimum.  

3. Reproduction of the population depended on fitness values. 

4. The stop condition -  if requirements are met, then stop, otherwise go back to Step 2. 

Generally, Particle Swarm Optimisation is comparable to other common evolutionary 

computational techniques, such as the Genetic Algorithm (GA) (Akkar et al., 2015).  The 

system in PSO commences with a population. This population consists of random solutions, 

and a search process is employed to find the optimal one by updating the generations. 

Furthermore, PSO, like GA, needs fitness values to evaluate the population; but neither 

system guarantees success. 

However, the main difference between PSO and GA is that PSO does not use evolutionary 

operators. For example, PSO has no crossover or mutation operators, such as the ones used 

in GA. Furthermore, the potential solutions in PSO are called "particles”; further details of the 

particles in PSO are clarified in the next section, Section 5.2. These particles update 

themselves with an internal velocity. These particles also have a memory, which is important 

for the algorithm. Moreover, information sharing among population members is completely 

different. For example, GA provides the chromosomes with the ability to share information 

between each other; this makes the entire population work as one group, which moves to the 

optimal area. However, PSO uses either g-Best or l-Best (as explained in the next section) to 

provide information to others. This mechanism is called "a one-way information sharing 
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mechanism." In most cases, compared to GA,  all particles in the PSO tend to find the best 

solution rapidly (Akkar et al., 2015). 

In addition, PSO is easier to implement than GA and needs fewer parameters to adjust (Akkar 

et al., 2015).  These advantages make PSO applicable in many areas, such as function 

optimisation, fuzzy system optimisation, and any areas where GA can be applied. This inspired 

the researcher to involve PSO in the model refinement process as it could provide solutions 

relatively easily.  The next section highlights the most important features of PSO. 

5.2 The Basics of PSO 

 

This technique was developed by Dr Eberhart and Dr Kennedy; it is a population-based 

stochastic optimisation technique (Kenndy & Eberhart, 1995). The authors were inspired by 

the social behaviour shown in existing biological systems, such as birds flocking and fish 

schooling. Therefore, PSO is an intelligent swarm method that uses some intelligent agents 

called "particles" to reach a higher level of intelligence. The main functionality of PSO is based 

on mimicking the behaviour of birds flocking (Clerc & Kennedy, 2002). For example, if we have 

a group of birds that are searching for food in a specific area in a random way, and the search 

area has only one piece of food.  The birds do not know exactly where the food is, but they 

do know how far away the food in each iteration is. Therefore, what is the premium strategy 

to discover where the food is? The most efficient way is to follow the bird that is considered 

to be the nearest to the food. 

The example above explains how the learning method in PSO for solving the optimisation 

problem works. In the PSO algorithm (Clerc & Kennedy, 2002; Kenndy & Eberhart, 1995), each 

single solution is called either an "agent," "bird," or "particle" in the search space. The search 

space represents all possible solutions for the optimisation problem. In addition, all the 

particles should have fitness values; these values are evaluated by the fitness function to be 

optimised. Particles should also have velocities, which direct the particles' acts of flying. Also, 

the flying process inside the problem space –the search process – for these particles would 

be accomplished by following the current optimum particles. 
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PSO is initialised by a group of random particles. These particles represent solutions in the 

search space; the algorithm then starts a search for the optimal by updating generations. In 

each iteration, each particle should update itself based on the two best values. The first value, 

which controls the updating scheme, is the best solution (fitness), achieved so far. This value 

is called “Personal Particle Best” (p-Best). Each particle remembers the position they were in 

when it had its best result so far; and, for this reason, this value should be stored. The second 

best value, which is tracked by the PSO optimiser, is the “Global Best” value (g-Best). G-Best 

is the best value obtained so far by any particle in the population, as shown in Figure 5.1. 

 

 

Figure 5.1: The global values within the population. The pink area represents the search space, while 
the orange peaks represent the solution area. The green nodes represent the particles in the swarm, 
while the blue circle indicates the global values of the swarm 

 

In addition, particles in a swarm cooperate; they exchange information between each other 

about what they have discovered from the places that have been already visited. In the case 

when a particle takes part in a population with its topological neighbours, a particle knows 

the fitness values of those that are in its neighbourhood and uses the position of the one with 

the best fitness value. The particle can have a local best value called (l-Best), as shown in 

Figure 5.2. Accordingly, these personal (p-Best) and global (g-Best) positions are used to 

adjust the particle's velocity to achieve the new optimum solution (position), as shown in 

Equations 5.1 and 5.2. 
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Figure 5.2: Particles and neighbours in the population. The pink area represents the search space, 

while the orange peaks represent the solution area. The blue circles represent the neighbouring 

particles in the swarm, while the blue lines show the social influence and information exchanges 

between the particles in the swarm (social experience); this makes the particle follow the best 

neighbour’s direction. 

 

The next section explains the dependency of each particle on the values of p-Best and g-Best 

for their movements. It also explains how each particle’s movement attempts are processed 

in the search space to seek out the optimal solution in PSO. 

5.3 The Mathematical Model for PSO 

 

In PSO, particles adjust their positions and movements according to a “psychosocial 

compromise” between what an individual is satisfied with, and what society estimates. 

Mathematical representation of PSO can be clarified in this example: Suppose we have a 

particle called i that has a position denoted by a vector called xi, which is also a member in 

the search space, as shown in Figure 5.3. This vector has a discrete time step denoted by (t), 

and it shows the number of iterations of the algorithm. In addition, each particle has a 

velocity, which is denoted by vector vi(t). The velocity vector describes the movement of the 

particle i in the sense of direction, distance, and size of the steps. Both positions of the vector 

xi(t) and the velocity vector vi(t) are in the same search space, which means they have the 

same dimension. Therefore, in Figure 5.3, we have a particle in time step t, which is located 

in position xi(t) and moves in the direction of vector vi(t). 

Furthermore, each particle has a memory to save the best-won position or the best-owned 

experience, which is called “Personal Best” (p-Best). This p-Best for particle i is denoted by 

the vector Pi(t). In addition, in Figure 5.3, we have another experience with a common best 
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value among members of the swarm, which is denoted by g(t). We need to be aware that this 

is not denoted with i because it belongs to the whole swarm called “Global Best” (g-Best). 

 

 

Figure 5.3: Simple model of the particle moving within the search space. The black node, Xi(t), is the 
current position vector of particle i., while Vi(t) is the velocity vector, which is represented by the black 
arrow. The blue node represents Pi(t), which is the personal best (p-Best vector for particle i) and 
represents the previous experience of the particle i, while the blue arrow shows the distance between 
the current position and the p-Best. The red node, g(t), represents the global best (g-Best vector), and 
the red arrow represents the distance between the g-Best and the current position of the particle i. 
The green node, xi(t+1), represents the new position of the current particle i, which is the new best 
solution, while the green arrows show the calculation for the three aforementioned vectors (black, 
blue, and red arrows) for the movement to the new position. The purple arrow, Vi (t+1), represents 
the distance vector between the new and the previous positions for the particle i in the next time step. 

 

According to Figure 5.3, mathematical model of PSO is very simple in defining these concepts 

in every iteration of PSO. Consequently, in each iteration the position and velocity of each 

particle is updated according to this simple mechanism. Each particle in the swarm must 

follow this mechanism. 

Specifically, in updating with the mechanism of PSO, we first define a vector from the current 

particle position to be the p-Best and another vector that connects with the current position 

as the g-Best. So, if we want to define an equation for the vector between the current position 

and the p-Best, it would be the beginning point, xi(t), subtracted from the endpoint, Pi(t) (the 

blue arrow in Figure  5.3). Also, the vector between the current position and the g-Best would 

be the beginning point xi(t) subtracted from g(t) (the red arrow in Figure  5.3), while the 

velocity vector vi(t) is the black arrow in Figure  5.3. 

Xi (t) 

Vi (t) 

Pi (t) – Xi(t) 

Pi (t) 

g (t) – Xi(t) 

Vi (t) +1 

Xi (t+1) 

g (t) 
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Each particle should use these three vectors to move towards a new position. At the 

beginning, the particle moves in the direction of vi(t) velocity vector, then it moves towards 

the vector that connects xi(t) to pi(t). After that, it moves towards the vector that connects 

xi(t) with the g-Best. Hence, the newly-updated position would be xi(t+1), the green  node as 

shown in the previous figure, also the addition to the three vectors used from the beginning 

of the first vector to the end of the third vector defines the new velocity vector vi(t+1). As we 

can see, the new position (the green node in Figure 5.3) is created according to the previous 

velocity as well as the p-Best and g-Best values. Consequently, this is a better location due to 

using previous decisions about the movement of this particle Vi(t), the previous experience 

of the particle itself (p-Best), and the previous experience of the whole swarm (g-Best). 

 

In each iteration, both the velocity and the position of each particle is changed by using the 

values and equations of the best positions. The particle can find this best position and so 

can other particles in the neighbourhood. Every particle regulates its travelling speed 

dynamically; this regulation would correspond to the flying experiences of the particle and 

its swarm. The particle update rule for the postioin is repesented in Eq. 5.1 

p = p + v                   (5.1) 

and the violocity update equation is represented in Eq.5.2  

v = v + c1 * rand * (pBest – p) + c2 * rand * (gBest – p)                       (5.2) 

where p: particle’s position, v: path direction , c1: weight of local information , c2: weight of 

global information, pBest: best position of the particle, gBest: best position of the swarm, 

rand: random variable, stands for a random number between (0, 1). This random number 

changes with each iteration. 

Meanwhile PSO is iterative technique, the equation for iterative update of the PSO particles 

in each time step can be written as follows (Akkar et al., 2015): 

The position of a particle at time t+1 is given by: 

 xi(t+1) = xi(t) + vi(t+1)     (5.3) 
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However, the second part of the previous equation, vi(t+1) vector, consists of the sum of three 

vectors shown in Figure  5.3 - previous velocity vector, vector that connects xi(t) to Pi(t), and 

a third vector which connects xi(t) to the g-Best as follows: 

 Vi(t+1) = w vi(t) +  C1 (pi(t) – xi(t)) +  C2(g(t) – xi(t))   (5.4) 

 

Where w is a real value coefficient (inertia weight), p is the personal best position of the 

particle, while v represents the particle velocity or path direction, and C1 and C2 represent the 

learning factors. C1 can be considered as the personal best value, while C2 can be considered 

as the neighbourhood’s best value. These factors typically have values of C1=C2=2. C1 is the 

weight of local information, while C2 is the weight of global information. Furthermore, in Eq. 

5.4, the part that includes C1 and p-Best represents the personal influence; this part improves 

the individual and helps the particle return to the previous best position, which is better than 

the current one, while, the second part, with C2 and g-Best, represents the social influence. It 

makes the particle track the best neighbour’s direction. p-Best is the best position of the 

particle, while g-Best is the best position of the swarm, as demonstrated previously.  

 

The previous equation, which explains PSO particles’ velocity in each iteration, can be 

generalised as follows: 

Vi(t+1) = diversification (inertia) + intensification      (5.5) 

 

Diversification searches for new solutions and explores the regions with potentially the best 

solutions, while the inertia forces the particle to transfer in the same direction and with the 

same velocity in the search space. As for the intensification part, it discovers the previous 

solutions and explores the best solution in a given region. 

 

 

 

inertia 

weigh

t 

Personal influence Social influence 

w vi(t) C1 (pi(t) – xi(t)) +  C2(g(t) – xi(t)) 
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5.4 PSO Algorithm Pseudo Code 

 

PSO functionality, i.e., equations of motion for particles, can be organised in a general pseudo 

code. The pseudo code describes the principles and functionality of the PSO algorithm in a 

high-level description. Therefore, the structural convention for PSO is as follows: 

 

For each particle                             // line 1 
    Initialise particle                          // line 2 
END                                                    // line 3 

 
DO              // line4 
    For each particle         // line 5 
        Calculate fitness value       // line 6 
        If the fitness value is better than the best fitness value (p-best) in history  // line 7 
            Set current value as the new p-best       // line 8 
    END          // line 9 

 
    Choose the particle with the best fitness value of all the particles as the g-best   // line 10 
    For each particle                   // line 11 
        Calculate particle velocity according equation (5.4)     // line 12 
        Update particle position according equation (5.3)     // line 13 
    END           // line 14 
While maximum iterations or minimum error criteria is not attained   // line 15 

Figure 5.4: The pseudo code for the particle swarm optimisation 

 

The first part – lines 1 to 3 – of the pseudo code describes the initialisation of the random 

population of PSO. The second part – lines 4 to 9 – defines the process of calculating the 

fitness function for each particle. Furthermore, it also explains how to select and update the 

p-Best of each particle. Line 10 shows how to select and update the g-Best value for the entire 

swarm. The next section – lines 11 to 14 – explains the updating process for velocity and 

position of each particle. The last part of the pseudo code, line 15, explains the stopping 

condition for the optimisation process. The stopping condition would be either the maximum 

number of iterations or the minimum value for the error. 

The next section provides more details about PSO and how effective it would be in 

optimising the fuzzy model parameters. 
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5.5 Tuning Fuzzy Membership Function Parameters by PSO 

 

We developed our Mamdani fuzzy inference systems based on the available human expert 

knowledge to control various activities of mammalian cell cycle. Throughout the development 

process, we discovered that the fuzzy rules need to be set up in a way that reflects the 

activities of the species. A good understanding of the activities of the species helps to derive 

accurate fuzzy rules. Furthermore, we adjusted the fuzzy membership functions (MFs) 

manually, based on our expertise and knowledge; this type of design of membership function 

is called “heuristic design.” Even though the fuzzy inference systems developed provided 

acceptable results with few exceptions, we sought more precise results from our fuzzy 

inference systems. Further, these manual adjustments were time-consuming. We also 

sometimes faced the need to carry out several additional experiments for each membership 

function (MF) that were tiresome. 

Several techniques have been reported in the literature to overcome the difficulties of manual 

adjustment for MFs. One such method is adaptive neural-network-based fuzzy inference 

system (ANFIS) (J.-S. Jang, 1993). This technique uses an adaptive neural network (NN) to 

learn the mapping between system inputs and outputs, and then create a Sugeno-type fuzzy 

system based on the neural network. Another example is adjusting the membership function 

parameters automatically using a method such as GA. GA has been used to tune MFs in 

electrical engineering fuzzy systems (Mucientes, Moreno, Bugarín, & Barro, 2007; Pratihar, 

Deb, & Ghosh, 1999). 

As explained previously, PSO is more efficient and flexible than other techniques, such as GA; 

this has made PSO more popular and more applicable in engineering applications and for 

modelling systems (Kwok, Ha, Nguyen, Li, & Samali, 2006). Consequently, we use PSO to 

automatically tune the membership functions of our Mamdani fuzzy inference systems. Using 

PSO, the aim is to minimise the difference between all our fuzzy inference systems’ results 

and ODE results. It is expected that PSO would enhance our results and make them more 

precise and more convincing. 
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The difference between actual and predicted values is the “error”. The function that 

calculates the error is called the “fitness function”.  The most popular error function is the 

mean-squared error (MSE) as shown below in Equation 5.6: 

    

𝑀𝑆𝐸 =  
1

𝑛
∑  (𝑋̂𝑖 −  𝑋𝑖 )

2𝑛
𝑖=1               (5.6) 

 

Accordingly, we employed the MSE function as a fitness function in the implementation of 

PSO, as PSO was similar to other evolutionary computational techniques such as GA, which 

needed a fitness function. 

Consequently, the proper adjustment of MFs for each fuzzy inference system (FIS) should 

provide a new and better MFs design with more precise results. Furthermore, the results from 

each FIS will have minimised the differences from the target ODE results. The next sub-section 

explains the procedure for tuning the parameters of membership functions using PSO. 

 

5.5.1 Procedure for Tuning MFs  

 

The approach used to employ PSO for adjusting the membership function parameters in fuzzy 

inference systems in our study is shown in Figure 5.5. As shown, each particle should 

represent the parameters of the membership functions for the input and output variables of 

the fuzzy inference system. In the last chapter – Chapter 4 – we observed that some fuzzy 

systems have to be optimised due to their results being slightly different from the original 

ODE results. Even so, their biological activities were elucidated very well. In this chapter, we 

optimise these fuzzy inference systems, including SCF, CycD, and CycA. Each of these systems 

would follow the same optimisation procedure. 
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Figure 5.5: Tuning the fuzzy set parameters using PSO 

 

Almost all the fuzzy inference systems developed consisted of multi-inputs and single-output; 

we call them MISO. To optimise these MISO fuzzy systems, we follow these assumptions in 

our implementation: 

 We use the same fuzzy rules that already exist inside the fuzzy inference system that we 

intend to optimise. Therefore, the optimisation of each fuzzy inference system would be 

applied to fine tune the membership function parameters. 

 If we have an inference system with m number of inputs, then, the number of fuzzy sets 

for these input variables would be m1, m2, m3, ...  mn, as shown in Table 5.1. 

Each input and output variable in these systems has Gaussian-shaped membership functions. 

For this kind of fuzzy set shape, the parameters are the mean and the standard deviation for 

each fuzzy set as shown in Figure 5.6. This means that each fuzzy set has two parameters as 

shown in Table 5.1. Fundamentally, almost all fuzzy inference systems that we established for 

each species have membership functions in the Gaussian form.  
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Figure 5.6: Representation of the general Gaussian shape with mean and standard deviation  

 

 We can specify the size of the parameters of the Gaussian membership function of the 

input variables by Equation 5.7: 

∑ (2𝑚𝑖)𝑛
𝑖=1      (5.7) 

This represents the dimensions of the particles for the input variables where n indicates the 

number of input variables and m indicates the number of fuzzy sets. In addition, particle 

dimensions for the output variable can be represented by Equation (5.8):  

                     ∑ (2𝑡)𝑛
𝑖=1            (5.8) 

 

Where n indicates the number of output variables and t indicates the number of fuzzy sets. 

Table 5.1 General representation of PSO particles for Gaussian membership function parameters in 
the MISO system. The first column illustrates the system variables, such as the input and output 
variables. In this column, the number signifies the input variable. The first row describes the mean and 
standard deviation for each membership function. These rows are for the n input variables and one 
output variable. The input variables have 1 to m membership functions and the output variable has 1 
to t of membership functions. Finally, in the last column, 2m means that two positions have been used 
until the m variables. 

                                                              C 𝝈 C 𝝈 ……. C 𝝈  

Input Variable number 1 X11 X11 X12 X12 ……. X1m X1m 2m1 

Input Variable number 2 X21 X21 X22 X22 ……. X2m X2m 2m2 

……. ……. ……. ……. ……. ……. ……. ……. ……. 

……. ……. ……. ……. ……. ……. ……. ……. ……. 

Input Variable number n Xn1 Xn1 Xn2 Xn2 ……. Xnm Xnm 2mn 

Output Variable Y1 Y1 Y2 Y2 ……. Yt Yt 2t 

 

 In PSO, the aforementioned parameters are represented as a particle that flies in the 

search space searching for the global best fitness. Furthermore, each simulation starts 

with an initialised set of parameters. 
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 When the optimisation method adjusts the parameters, they should be used to examine 

the efficiency of the fuzzy logic system. When the membership functions undergo 

change, the inputs and outputs of the membership functions would become different. 

 

This procedure is repeated until the goal is achieved, either by finding the minimum error or 

by reaching the end of iterations. In our optimisation, we specified the stopping condition 

using the minimum error. 

 

Our main idea in exploiting PSO is to use particles to adjust the MF parameters. Therefore, in 

the PSO, each particle was implemented to signify the parameters in MFs. The optimisation 

is applied to MFs representing both the input and output variables in each fuzzy inference 

system. 

 

PSO is implemented in MatLab to optimise the fuzzy sets parameters as shown in Figure 5.7. 

Each particle is expected to accurately represent membership function parameters of input 

and output variables (Section 5.5.1); therefore, in our implementation, we treated all fuzzy 

set parameters as variables in the PSO algorithm, where each particle contains x values 

indicative of the total number of fuzzy set parameters. For each set of variables, we assessed 

the performance by measuring the error using the MSE fitness function. The implemented 

program reads the input values from the source file and stores the values in the variables. It 

then uses the same variables to evaluate the fuzzy system and calculate the error using the 

MSE fitness function. As shown in Figure 5.7, the PSO implementation attempts to minimise 

the mean square error between fuzzy output results and targeted ODE output results. 
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Figure 5.7: PSO Procedure to tune fuzzy membership function parameters in the fuzzy inference 

systems  

 

Concerning the number of particles in the PSO population, most literature report that typically 

20-40 particles are enough, but for complex optimisation, suggestion is to use a larger 

number, such as 100 particles, in order to get more accurate results. Therefore, we assumed 

that the size of the population was 100 particles. As mentioned before, the stopping condition 

is set to the minimum value for the error. For other PSO factors such as C1, C2, and the inertia 

factor, we used the optional default values for them, the most commonly used parameters of PSO 

algorithm.  For instance, the aacceleration factors (c1 and c2): 2 to 2.05 (Alam, 2016). 

The next section investigates the optimisation of the aforementioned fuzzy models.  
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5.6 Optimisation Results and Discussion 

 

Here, we investigate the optimisation of the fuzzy inference systems for SCF, CycD, and CycA. 

The optimisation aims to get new and more precise results than those we achieved in Chapter 

4. The results from the newly optimised models better reflect protein concentrations and 

species activity for each element in cell cycle phases. For all optimisation attempts, we used 

the assumptions and methods as explained in the following sections. 

 

5.6.1 Optimising SCF Fuzzy Inference System 

 

The SCF fuzzy inference system components have been explained in the last chapter, in 

Section 4.2. However, we applied the optimisation for this inference system to adjust the 

fuzzy set parameters. As demonstrated previously, this fuzzy inference system has two input 

variables and one output variable. Each variable has three fuzzy sets in the form of  Gaussian 

function.  According to Equations 5.6 and 5.7, the number of parameters for this system is 18 

parameters. These parameters need to be tuned. Therefore, in PSO implementation, each 

particle would have 18 dimensions. 

By completing the MFs tuning procedure using the optimisation procedure described in 

Section 5.5.1, we achieved optimum results for the 18 parameters that provided minimum 

value for the fitness function. As can be seen in Figure 5.8., the search was terminated after 

80 iterations since the stopping condition was achieved. Furthermore, as we can see, no 

reduction in error was observed. From the figure we can see that the best MSE fitness 

function value is 0.000780685; this is the minimum value for the error between the optimised 

fuzzy inference system results and the target ODE system results. 
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Figure 5.8: The reduction of error during PSO for the SCF fuzzy inference system 

 

PSO optimisation has tuned the MFs for the input and output variables of the SCF model. As 

shown in Figure 5.9.b, the membership functions of the fuzzy sets have been modified 

significantly compared to the manually tuned configuration 5.9.a. Also, the values of the 

optimised fuzzy set parameters are quite different from manually tuned values.  Table 5.2 

represents the values of the parameters – pre- and post-optimisation - for the input variables 

and the output variable for the SCF model. This optimisation provides a new fuzzy inference 

system for SCF with the same fuzzy rules but with optimised fuzzy sets. 
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(a)  

 

  

 

(b)  

Figure 5.9: Pre- and post-optimisation of membership functions (shapes and parameters) of the 2 
input variables and one output variable in the SCF fuzzy inference system. (a) Parameters, shapes, and 
values of the heuristically optimised membership functions; (b) Parameters, shapes, and values of the post-
optimised membership functions  

 

Table 5.2: Heuristically optimised and post-optimisation memberships function parameter values for 

input and output variables of SCF fuzzy inference system 

Input 
Variable 1 

CYCE Fuzzy Set Parameters Pre-
Optimisation 

CYCE Fuzzy Set Parameters Post-
Optimisation 

L M H L M H 

[0.1636 2.08e-
17] 

[0.142 
0.7111] 

[0.3397 
1.6] 

[1 1] 
[0.5804 
0.9866] 

[0.184 
0.9998] 

Input 
Variable 2 

CDH1 Fuzzy Set Parameters Pre-
Optimisation 

CDH1 Fuzzy Set Parameters Post-
Optimisation 

L M H L M H 

[0.05055 
6.94e-18] 

[0.111 
0.3568] 

[0.1674 1] 
[0.07317 1e-

05] 
[0.9715 
0.9897] 

[0.03676 
0.1131] 

Output 
Variable 1 

SCF Fuzzy Set Parameters Pre-
Optimisation 

SCF Fuzzy Set Parameters Post-Optimisation 

L M H L M H 
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[0.1668 
1.041e-17] 

[0.207 
0.8181] 

[0.1062 
1.5] 

[0.0161 
0.06675] 

[0.3788 1] 
[6.54e-05 
0.3301] 

 

The new optimised fuzzy inference system was used to calculate the values of SCF over the 

cell cycle simulation and validate whether the new model can explain SCF activity in cell cycle. 

We employed the same data set as inputs as used in Section 4.4, and here we obtained new 

results that were more precise and closer to the target ODE results, as shown in Figure 5.10a. 

Furthermore, Figure 5.10b explores the variation between the results from the PSO optimised 

fuzzy model, the heuristically designed model (pre-optimised), and the ODE target model 

results. 

Figure 5.10b elucidates the enhancements attained by PSO optimisation of the SCF fuzzy 

inference model. The results showed how the newly optimised model (green line) can provide 

closer results to the target values (red line), and also how the optimised model has 

outperformed the heuristically designed model (blue line). 
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(b)  

Figure 5.10:  SCF concentrations and activity results over cell cycle for the pre-optimised (heuristic) 
fuzzy model, PSO optimised fuzzy model and ODE model.  (a) Optimised SCF fuzzy model results 
(green line) and the target ODE model results (red line) showing that the difference between the two 
has been remarkably reduced in PSO optimisation; and (b) Comparison between the heuristic (blue 
line) and PSO optimised (green line) SCF fuzzy model results and ODE results (red line).  A 
remarkable improvement in SCF concentration can be seen after PSO optimisation. 

 

 

5.6.2 Optimising CycD Fuzzy Inference System 

 

We applied the PSO optimisation to CycD fuzzy inference system as well to tune the fuzzy set 

parameters. As explained earlier (Chapter 4), this fuzzy inference system has four input 

variables and one output variable. Each variable has three fuzzy sets of Gaussian shape. From 

Equations 5.6 and 5.7, the number of parameters for this system is 30. These parameters 

need to be adjusted. Hence, in PSO implementation, each particle has 30 dimensions. 

 

Optimisation on the CycD model reached minimum error in 460 iterations, as shown in Figure 

5.11. This figure shows the fitness function value for the given optimal solution (MSE= 

0.018464). This is the minimum value for the error between the optimised fuzzy inference 

system’s results and the target ODE system results. 
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Figure 5.11: The reduction of error during PSO for the CycD fuzzy inference system 

 

The optimisation progressively adjusted the MFs of the input and output variables of the CycD 

fuzzy inference system. The newly-adjusted fuzzy set parameters are shown in Figure 5.12. 

Furthermore, Table 5.3 presents the values for the parameters of the pre- and post-optimised 

functions for the input variables and the output variable. The values of the optimised fuzzy 

set parameters are all more diverse than those that were adjusted manually. This 

optimisation provides a new fuzzy inference system for CycD with identical rules but with new 

optimised fuzzy sets. 
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(a)  

 

  

  

 

(b)  

Figure 5.12:  Heuristically optimised (Pre-) and post-optimised membership functions of the input 
and output variables in the CycD fuzzy inference system (a) Parameters, shapes and values of the 
heuristically optimised (pre-optimised) membership functions; (b) Parameters, shapes, and values of 
the post-optimised membership.  
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Table 5.3: Heuristically optimised (Pre-) and post-optimisation memberships function parameters 

values for input and output variables of the CycD fuzzy inference system 

Input 
Variable 1 

MYC Fuzzy Set Parameters Pre-
Optimisation 

MYC Fuzzy Set Parameters Post-Optimisation 

L M H L M H 

[0.0911 0.193] 
[0.138 
0.569] 

[0.2016 
0.998] 

[0.01866 
0.1488] 

[0.003481 
0.9996] 

[0.002386 
0.9098] 

Input 
Variable 2 

SCF Fuzzy Set Parameters Pre-
Optimisation 

SCF Fuzzy Set Parameters Post-Optimisation 

L M H L M H 

[0.2101 -
0.0291] 

[0.1402 
0.505] 

[0.1182 
0.987] 

[0.06521 1] 
[0.982 

0.003733] 
[0.2382 
0.6458] 

Input 
Variable 3 

CDC20A Fuzzy Set Parameters Pre-
Optimisation 

CDC20A Fuzzy Set Parameters Post-
Optimisation 

L M H L M H 

[0.108 -
0.01386] 

[0.0785 
0.348] 

[0.1496 
0.913] 

[0.1722 
0.3678] 

[0.07373 
0.4671] 

[0.02136 
0.1288] 

Input 
Variable 4 

CDC20B Fuzzy Set Parameters Pre-
Optimisation 

CDC20B Fuzzy Set Parameters Post-
Optimisation 

L M H L M H 

[0.1001 1.04e-
17] 

[0.0677 
0.3596] 

[0.09201 
0.9] 

[0.4684 
0.004563] 

[0.9901 1] 
[0.9911 

0.002583] 

Output 
Variable 1 

CycD Fuzzy Set Parameters Pre-
Optimisation 

CycD Fuzzy Set Parameters Post-Optimisation 

L M H L M H 

[0.1956 
0.0003806] 

[0.1319 
0.6103] 

[0.2509 
1.589] 

[0.004199 
0.003097] 

[0.231 
0.000921] 

[0.1679 1] 

 

The newly optimised CycD fuzzy inference system was used to predict the protein 

concentration and activity of CycD over the cell cycle simulation. Furthermore, by using a 

similar data set as had been used in Section 4.11 for inputs, new optimised model was also 

validated.  New results were more accurate and closer to the target ODE results as shown in 

Figure  5.13a. Furthermore, Figure 5.13b examines the differences between the results from 

the three systems - the optimised fuzzy model, the heuristically-designed model (pre-

optimised) and the ODE target model. The figure shows a remarkable improvement from the 

PSO optimised CycD fuzzy inference model. 

 

Figure 5.13b also interprets the improvement that we achieved using PSO optimisation for 

the CycD fuzzy inference model. The results revealed how the new optimised model (green 

line) can offer closer results to the desired (red line); likewise, the optimised model results 

are better than those from the original heuristic model (blue line). There is still a slight 
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difference between the optimised and ODE results but the improvement gained is quite 

significant.   

 

 

 

(a)  

 

 

 

(b)  

Figure 5.13: CycD model results over cell cycle simulation from the heuristically-optimised fuzzy 
model, PSO optimised fuzzy model and ODE model. (a) Difference between the optimised fuzzy 
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model results (the green line) and the target ODE model results (the red line); (b) Comparison 
between all three model results. The green line represents the optimised fuzzy model, blue line 
represents the heuristically-optimised fuzzy model, and the red line represents the target ODE 
model.  

 

5.6.3 Optimising CycA Fuzzy Inference System 

 

Here, we exploited PSO optimisation to fine tune the fuzzy set of parameters in the CycA fuzzy 

inference system. As shown previously, this fuzzy inference system consists of four input 

variables and one output variable. Each variable has three fuzzy sets of Gaussian shape. From 

Equations 5.6 and 5.7, the total of parameters for this system is 30, so it is essential for these 

parameters to be tuned. Hence, in PSO implementation, each particle has 30 dimensions. 

 

Optimising the CycA model via PSO also provides significant results. The minimum error 

(0.288982) was obtained in 1030 iterations as shown in Figure 5.14. However, the minimum 

error similar to the final value is reached far sooner than 1030 iterations. 

 

Figure 5.14: The reduction of error during PSO optimisation of the CycD fuzzy inference system 

 

As expected, PSO optimised the MFs for the input and output variables of the CycA fuzzy 

inference system. The newly-adapted fuzzy sets are shown in Figure 5.15 and the new 
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parameter are presented in Table 5.4. This table presents the values of the parameters from 

the heuristically optimised and PSO optimised systems for the input variables and the output 

variable. We note that the values for the optimised fuzzy set parameters are quite different 

from the ones that were adjusted manually. This optimisation provides a new fuzzy inference 

system for CycA with comparable rules but with different optimised fuzzy sets. 

 

  

  

 

(a)  
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(b)  

Figure 5.15: Heuristically optimised and PSO optimised fuzzy membership functions for the input 
and output variables in the CycA fuzzy inference system. (a)  Heuristically optimised membership 
functions for the input variables and the output variable; (b) PSO optimised membership functions for the 
input variables and the output variable  

Table 5.4: Heuristically optimised and PSO optimised fuzzy membership function parameter values for 

input and output variables of the CycD fuzzy inference system 

Input 
Variable 1 

TFE Fuzzy Set Parameters Pre-
Optimisation 

TFE Fuzzy Set Parameters Post-Optimisation 

L M H L M H 

[0.1962 
3.47e-17] 

[0.111 
0.595] 

[0.2932 
1.8] 

[0.8432 
0.0007668] 

[0.5906 
0.009638] 

[0.4923 
0.002487] 

Input 
Variable 2 

CDC20A Fuzzy Set Parameters Pre-
Optimisation 

CDC20A Fuzzy Set Parameters Post-Optimisation 

L M H L M H 

[0.06572 
1.04e-17] 

[0.0799 
0.3143] 

[0.1426 
0.9] 

[0.6141 0.9954] 
[0.02334 
0.9675] 

[0.992 
0.4593] 

Input 
Variable 3 

P27 Fuzzy Set Parameters Pre-
Optimisation 

P27 Fuzzy Set Parameters Post-Optimisation 

L M H L M H 

[0.07684 
2.08e-17] 

[0.125 
0.4667] 

[0.1793 
1.2] 

[0.03137 
0.1943] 

[0.6391 
0.08892] 

[0.00361 
0.0164] 

Input 
Variable 4 

CDH1 Fuzzy Set Parameters Pre-
Optimisation 

CDH1 Fuzzy Set Parameters Post-Optimisation 

L M H L M H 

[0.08201 
6.94e-18] 

[0.091 
0.381] 

[0.1562 1] 
[0.004926 
0.001388] 

[0.4903 0.64] 
[0.003841 

0.4843] 

Output 
Variable 1 

CycA Fuzzy Set Parameters Pre-
Optimisation 

CycA Fuzzy Set Parameters Post-Optimisation 

L M H L M H 

[0.2477 
0.0476] 

[0.669 
2.05] 

[0.6348 
4.42] 

[1e-05 0.9774] 
[0.00179 
0.0331] 

[0.999 
0.9502] 

 

The newly optimised CycA fuzzy inference system was validated by predicting CycA activity 

over cell cycle simulation using the same data set that was used in Section 4.4.   New results 

were closer to the target ODE results, as shown in Figure 5.16a. However, the main difference 

was the peak point between the optimised model results and the target results, while the 

activity pattern was the same for both models. Figure 5.16b examines the differences 
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between the results from the optimised fuzzy model, the heuristically optimised model and 

the ODE target model. The figure clearly elucidates the advancements made by the PSO 

optimisation. Results here revealed that the newly optimised model (green line) provided 

closer results to the desired (red line) and also that the optimised model was better than the 

heuristically optimised model (blue line). 

 

(a)  

 

 

(b) 

Figure 5.16: CycA protein concentration and activity over cell cycle simulation from the heuristically 

optimised fuzzy model, PSO optimised fuzzy model and the ODE model. (a) Difference between the 

results from PSO optimised fuzzy model (green line) and the target ODE model (red line) for CycA 

concentration; and (b) Comparison between the three models. The green line represents the PSO optimised 

fuzzy model results, while the blue line represents the heuristically optimised fuzzy model results and the red 

line represents the target ODE model results.  
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5.7 Chapter Summary 

 

Adjusting fuzzy set membership function parameter values heuristically (manually) is 

generally time consuming in most cases. This is due to the trial and error nature of the tuning 

process which can also be exhausting and frustrating. For this reason, in this chapter, we 

introduced an autonomous method to adjust membership functions in the design of fuzzy 

inference systems for mammalian cell cycle controller species. This method is called particle 

swarm optimisation (PSO). PSO was used to adjust parameters in some of the models 

developed heuristically, whose results were relatively different from the target ODE results. 

The results have revealed that the tuned fuzzy inference system provided more precise results 

than those optimised manually. 

 

This chapter introduced a new contribution to the modelling field of mammalian cell cycle. 

We employed an intelligent system, PSO, to enhance the fuzzy computational approach that 

we used in Chapter 4 to model the mammalian cell cycle system. Indeed, the optimised fuzzy 

inference system provided a significant improvement and more accurate results in 

comparison with the same heuristically optimised fuzzy inference system. This chapter has 

provided a new methodological contribution similar to the contributions of the previous 

chapters (Chapters 3 and 4) where new methods or extensions were employed to model the 

complex mammalian cell cycle controller.  With the successful application of PSO, this chapter 

offers an approach to automate the development of fuzzy inference systems for modelling 

cell cycle based on simple if then rules involving binary logic.    
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Chapter 6. Summary, Conclusions, Contributions and Future Research 
 

In this thesis, we studied, analysed, designed and modeled a real complex system to provide 

advanced solutions to support varied decision making and prediction processes using 

powerful and novel computation methods for environmental and biological systems. The 

researcher has chosen a case study from a complex biological system; specifically, mammalian 

cell cycle which is a system that performs controlled cell division using specific gene-protein 

interaction networks in such a way that avoids abnormal cell proliferation leading to cancer. 

Cell cycle system is regulated by a set of elements constituting mammalian cell cycle 

controller. Therefore, in our study we involved the essential controllers of mammalian cell 

cycle. Precisely, this study reveals cell regulators that control cell transitions from one phase 

to another in cell division. It has been stated in the literature that most of the studies 

investigate simple biological systems such as yeast cell cycle while mammalian cell cycle 

system is less studied in the research domain due to the complicity of mammalian cells.  

 

Therefore, the primary purpose of this study was to study the structural and dynamic analysis 

of mammalian cell cycle controller system.  Basically, protein signaling pathway is studied that 

is involved in mammalian cell cycle controller to understand how these proteins communicate 

through biochemical interactions to achieve the global system output, and control cell 

transitions from one phase to another in mammalian cell division. 

 

Furthermore, this research aimed to study and model interactions and events between cell 

cycle controller components.  Cell components such as proteins and genes have complex 

interactions taking place at different speeds. It has been found that understanding the 

complex behavior among these components is a very challenging task.  Therefore, to model 

this issue first, we have to understand the major components of the system. For instance, 

Cyclins are important elements in cell cycle system due to cyclin proteins having the most 

significant influence on the regulators of all the major events of the eukaryotic cell cycle. For 

example, Cyclins are the regulatory components of the Cyclin-Dependent Kinases (CDKs) that 

control all the major events of the eukaryotic cell cycle. There are four important classes of 
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cyclins in mammalian cells; these control cell cycle phases. Also, cell proliferation processes 

depend on the correct and fixed order of chromosome replication and separation and cell 

division during cell cycle. 

 

This chapter summarizes the chapters of the thesis following the order of the research 

objectives outlined in Chapter 1.  Herein, in each section, an elucidation of each objective and 

a summary of the results are provided. The end of each section highlights the conclusions and 

contributions made under each objective giving suggestions or directions for future research 

as appropriate. 

 

6.1 Reconstruction of the mammalian cell cycle controller from the Available 

Information 

 

6.1.1 Summary of the Results 

 

The extended work consists of 13 network nodes (proteins) and 43 biological interactions in 

total. The Fauré et al. (2006) network had 9 nodes and 22 interactions, while Singhania et al. 

(2011) network had 9 nodes and 10  Boolean states considered as interactions. The two 

aforementioned networks (the Faure 2006 network and Singhania 2011 network) and our 

network share 9 nodes while almost all the interactions are updated in our model. Based on 

these modifications, we found that the extended cell cycle controller model provides 

improved results. For instance, each phase in mammalian cell cycle is controlled by a set of 

species such as cyclins and their transcriptions factors; we believe that the expansion of the 

components of the network and their connections with other network elements have 

incorporated the biological interactions in a better way than in previous models. It improves 

the coordination of transition of each phase of the cell cycle. Indeed, the developed model 

reveals the orderly sequence of regulatory protein activity along the cell cycle, contrary to the 

aforementioned models which failed to represent the circular behaviour of cell cycle phase 

transitions and the correct activities of system species over cell cycle. Also, regulatory 
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components that are newly added for regulating mammalian cell cycle system have 

meaningfully contributed to mammalian cell cycle phenomena. 

6.1.2 Conclusion  
 

 The protein and gene interaction network of mammalian cell cycle controller has been 

studied, modeled and analyzed in order to understand the dynamic events and 

changes in this system.   

 I developed a new biological network with 13 proteins which mimic cell cycle 

controller. Further, it is represented by a qualitative- Boolean model that consists of 

13 proteins to study the oscillations of the cyclins because cyclins behaviour has been 

studied scarcely in mammalian cells. The selection of cyclins are due to cyclins (Cyc D, 

Cyc E, Cyc A and Cyc B) being a family of proteins that control the progression of cells 

through the cell cycle by activating cyclin-dependent kinases (Cdk).  

 The extended mammalian cell cycle controller network has been significantly 

enhanced with the new amendments.  

 

6.1.3 Contribution and Future Directions 
 

Here a new biological network was developed which mimic the most important regulatory 

items of the mammalian cell cycle controller. This work enhanced the exiting models by 

expanding the mammalian cell cycle controller network with novel biological findings to 

investigate it using a systems biology approach, and to meet the crucial current need in the 

mammalian cell cycle system research field to bridge the gaps in our understanding. 

 

We cannot assert that our developed network can be considered as a complete network since 

the biological knowledge is incomplete; there are still missing species and relations that can 

be discovered to complete the understanding. For instance, in the previous models, they 

assumed that some of the elements were directly linked in the cell cycle network, but few 

years later researchers have discovered new intermediate biological elements and relations. 

In this regard, we trust that employing any new elements that may be found in future and 

updating their relations to the network should provide more significant biological results. 
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6.2 Study of Network Dynamics and Comparing Results with the Existing Network 

Results (Synchronous Boolean Model)   
 

The addition of novel information was expected to provide improved results compared to 

those in the literature such as Fauré et al. (2006) model and Singhania et al. (2011) model as  

the new elements completed the missing links and assumptions in the previous models of the 

cell cycle system controller. Indeed, we assessed the system dynamics with synchronous 

update Boolean model to answer the questions in below. 

 

 What are the dynamics of the mammalian cell cycle controller network?  

 What are the improvements made by the new amendments?  

 What are the important components of the network to regulate cell cycle phase 

transitions?  

 Is the developed cell cycle controller network considered a robust and resilient 

network?  

 

6.2.1 Summary of the Results 

 

Our model has improved the representation of the dynamic behavior of cell cycle control 

system while preserving the core characteristics of the cell cycle controller system found in 

previous models. Concerning the comparative analysis of our model and previous models, 

both models (Fauré et al. (2006) model and our model) display common results with regard 

to cell cycle system species’ activity over cell cycle phase transitions when simulated by 

applying either exhaustive search or heuristic search algorithms. Further, in terms of the 

Boolean attractor to explain biological phenomena, the two models agree on the number of 

attractors - both models provide two attractors. But, our model provides better results in 

revealing individual element behaviour and periodic behaviour of cell cycle. Specifically, the 

first attractor is a steady state attractor that represents the G0 phase when no growth factors 

are present; we shared the same result with Faure et al. (2006) model to specify which 

elements are active. In this case, just few elements should be active such as CDH1, P27, and 
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RB. The second attractor with 12 states (limit cycle- cell cycle- transitions phases) shows the 

dynamic behaviour of the cell cycle system and these results broadly agree with literature. 

Consequently, this is considered a good outcome since the additional new nodes in our 

developed Boolean model have not disagreed with system regulation captured by the 

available models in the literature. However, although the second attractor in Fauré et al. 

(2006) model is the cell cycle attractor, it does not show system activity properly, i.e., cell 

cycle stages are not clearly or continuously represented.  

Furthermore, we applied an additional mutation study on system elements to specify which 

element can affect the system significantly. Also, we studied the long-term behaviour of our 

system and evaluated system behaviour by making a comparison between the attractors 

reached from the initial states and their perturbed copies. It shows how each cyclin lead and 

move the cell cycle from phase to phase. Our model also shows cyclin synthesis, degradation, 

and other system component activity over cell cycle phase transitions. 

 

6.2.2 Conclusions 

 

 The developed synchronous Boolean cell cycle controller model explains the biological 

phenomena in a creative way. It explains the impact of the presence or absence of 

growth factor signals to establish cell cycle for the new born mammalian cells. In 

addition, it shows the correct dynamic behaviour for cell cycle elements; especially 

cyclins activity; our model explains and supports the facts about how each cyclin leads 

the cell cycle phase transitions. This includes the biological interactions between 

cyclins and transcription factors and other regularity components. 

 Our model reveals the activities of all species that regulate the cell cycle system. 

 Our model is identified as robust and resilient against biological noise. The Boolean 

network that simulated the cell cycle controller revealed that it was robust when 

facing a small amount of noise. For instance, we measured the impact of the noise 

when we applied it to the current state of the network. 

 In this work we studied the long term behaviour of the developed model and the 

results agreed with those in the literature.  
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6.2.3 Contributions and Future Directions 

   

Based on the above findings, we believe that the developed model in this thesis reveals the 

state transition patterns in the attractors more descriptive of the cell cycle system as our 

developed model involved novel, more accurate and realistic regulatory mechanisms in the 

system than other models. For illustration, in the Fauré et al. (2006) model some of the 

element behaviours are not presented correctly – for example, CycE was shown to become 

active at the beginning, then silent, and then become active again at a later stage. 

Furthermore, the mutation study shows that the proposed model can be considered as a good 

qualitative prediction model. It can be utilised to predict the impact of any biological mutation  

on cell cycle controller such as protein loosing function and protein over expressions. This can 

help study cell cycle diseases such as cancer. 

However, the developed process relied on two bench mark models, and they have not 

included cell cycle checkpoints. Neither has our model. Therefore, future research should 

include additional species that represent the activity of checkpoints to control DNA damage. 

 

6.3 Modelling the cell cycle controller Network with an Asynchronous Boolean 

Approach 

 

Difficulty in mimicking the realistic behaviour of biological events is considered as a drawback 

of synchronous Boolean models, specifically, mimicking the state transitions of the network 

elements. Therefore, the researcher decided to apply another updating method on the -

Boolean network - asynchronous update - to represent the times delays between biological 

interactions. 

The asynchronous update was applied on the Boolean model of the cell cycle controller to 

answer the following questions. 
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 What are the main differences in the result between the synchronous and 

synchronous update?  

 What are the cell cycle dynamics from the asynchronous approach? 

 How does this update reflect the realistic biological behaviour of the mammalian cell 

cycle controller? 

 

 

6.3.1 Summary of the Results 

 

The asynchronous update revealed the correct biological interactions and cyclin oscillation 

with time delays. Basically, we applied the exhaustive search and heuristic search and the 

results were compatible with the available results in the literature such as the result from 

Fauré et al. (2006) model. The exhaustive search provided two attractors, the first revealed 

the steady state attractor which represented the G0 phase, while the second attractor was a 

complex attractor. With the heuristic search algorithm, asynchronous update provided more 

realistic behaviour than the synchronous update. Furthermore, asynchronous update 

revealed the time delays between species activities by using randomization in the selection 

of proteins to update their states from active to inactive and vice versa. 

 

6.3.2 Conclusions 
 

 The asynchronous model correctly captured the temporal behaviour of most of the 

events in the cell cycle controller system.  

 The asynchronous model also showed resilience and robustness of the cell cycle 

control system that is consistent with the results in the literature. 

 

6.3.3 Contributions and Future Directions 

 

The asynchronous model provided realistic results that are compatible with biological 

knowledge, but it needs prior knowledge to explain and investigate system behaviour since 
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the randomisation in each simulation can provide different results. Therefore, we believe that 

there should be an alternative method which can provide consistent results but without 

randomization update. For instance, the future work could use the synchronous update with 

the incorporation of actual timing to control the time of firing of the rules; this can provide 

more realistic results. 

 

6.4 Modelling the Cell Cycle Controller Network with Synchronous Update with Time 

Variables Boolean Model 
 

The Synchronous update is easy to explain and investigate while asynchronous update is 

complex to explain and investigate. Here, in this model we depend on the simplicity of 

synchronous update and incorporate realistic time delays between cyclin activation and 

deactivation and activity of other system elements.  

Involving timing with biological interactions to reflect the time delays, this attempt can 

answer the following questions: 

 What are the dynamics of this cell cycle controller network? 

 What is the advancement achieved from this model? 

 How important are the cyclins to the maintenance of system behaviour?  
 

 

6.4.1 Summary of the Results  

 

The main difference between the prior synchronous model that we developed and this model 

is that when a node turns active, different time steps (delays) are required to activate each of 

its targets. Here, timing is incorporated into Boolean interactions; specifically, the cyclin 

nodes take extra time steps to be active. However, this technique is time consuming in 

computing with exhaustive search. Therefore, the researcher utilised a heuristic search to 

evaluate this model. This model provides realistic behaviour with time delays to activate or 

inactivate cyclins nodes and other cell cycle controller species.  
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6.4.2 Conclusion  

 

 The model correctly captured the temporal signalling events in the cell cycle control 

system, such as cyclins and their transcription factors. 

 

 The model generated biologically realistic steady state dynamics of the cell cycle 

control system. It provides four attractors. The first is a steady states attractor which 

represents G0 phase. The second attractor is a limit cycle that represents the entire 

cell cycle phases with time delays, while the rest of the attractors are spurious which 

could indicate missing or undiscovered knowledge. 

 

 The result from this model is compatible with biological knowledge in the literature. 

It provides the steady state attractor G0 and full cell cycle transition. 

 

6.4.3 Contributions and Future Directions 

 

Our contribution from this model is cooperating time delays that properly describe the slow 

biological interactions inside the cell cycle controller system into the network updating 

method.   We believe that this model revealed cell cycle activity (e.g., cyclins activities) more 

realistically than previous models.  However, future studies should investigate the spurious 

attractors and attempt to link them with biological research and undiscovered knowledge.  

 

6.5 Modelling the Cell Cycle Regulatory Network with a semi Continuous Approach 

 

The literature reported that the most popular and accurate models used in modelling cell 

cycle signaling network are continuous models. Continues models are based on mathematical 

models such as ordinary differential equations that provide accurate continuous solutions but 

their parameters need estimation from data which are limited. Therefore, discrete models 

such as Boolean that can use limited data and still be helpful in modelling and understating 

complex systems have become more popular. However, Boolean model provides only 

qualitative analysis and results since it assumes that each node in the network takes only one 
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state either:  1 (‘ON’/’active’) or 0 (‘OFF’/’inactive’); this assumption cannot clearly reveal the 

temporal development of the dynamical events. Further, Boolean models cannot show the 

intermediate states for protein concentrations. Hence, it was expected to enhance the 

discrete Boolean model with a continuous model, but the available continuous models 

depend on kinetic parameters which are limited or not available.  Also, available biological 

knowledge is generally imprecise. These draw backs inspired us to select an alternative 

method that covers the shortcoming of the aforementioned method. The alternative method 

is simple, similar to Boolean model, and has the ability to work with ambiguous and missing 

data; we select fuzzy logic because it can cover the shortcoming of both discrete and 

continuous models. 

This model attempted to answer the following questions: 

 Can we transform the qualitative model – Boolean model - into a fuzzy logic model? 

 If fuzzy logic relies on the prior knowledge and vague information even with missing 

data such as the kinetic parameters, then can it work with a flexible approach like the 

Boolean model and be accurate like the ODE model in order to simulate the 

continuous behaviour of cell cycle control system? 

 Can the cell cycle controller in the form of a fuzzy logic model provide the promised 

results? Are the semi-continuous results from the fuzzy model better and more 

flexible/continuous than the discrete results from the Boolean model to investigate 

and mimic cell cycle controller system? 

 What are the best features of a fuzzy logic methodology that we must utilise to 

consider the developed fuzzy logic model an accurate model that is similar to ODE 

model? 

 The biological knowledge is imprecise; Can the Fuzzy systems handle this kind of 

knowledge. 

 

6.5.1 Summary of the Results 

 

A semi quantitative representation was derived from the developed Boolean model. This 

work proposed an intuitive and simple fuzzy logic model to provide a semi quantitative 
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representation of a system and its dynamics. Each element in the cell cycle controller is 

represented as a fuzzy inference system (FIS). These fuzzy inference systems have been 

employed to compute the proteins concertation levels and reveal element activities. 

According to results, fuzzy logic model provides approximate continuous dynamic for the 

discrete events using limited available data. Furthermore, this model produces realistic 

concentrations of proteins during each cell cycle event as well as how the system operates as 

a whole.  

 

Finally, the entire fuzzy inference systems have been validated by utilising a data set that is 

available in the literature (Ali Abroudi, 2017). Then we accomplished an individual comparison 

study to make sure that the developed fuzzy inference systems can mimic each element 

interactions, behaviours and provide accurate results for protein synthesis and degradations.  

Indeed, the semi continuous results from the fuzzy inference system have been compatible 

with results from a recent continuous ODE model  Ali Abroudi (2017) model. Further, in some 

cases our fuzzy inference system provided better result than the aforementioned ODE model. 

For instance, it describes the periodic behaviour of the entire set of system components from 

one cell cycle to the next, while the ODE model failed to describe the periodic behaviour for 

some elements such as P27, RB and CDH1.   

 

6.5.2 Conclusions 

 

 The transformation of the Boolean model into a semi continuous model by using fuzzy 

logic provided accurate results. It reproduced biologically-observed behaviour of the 

cell cycle controller signalling system.  

 

 Fuzzy inference system can be considered as a useful approach to describe the 

nonlinear behaviour of protein activities such as protein synthesis and degradation.  

 The fuzzy logic model was able to work with missing knowledge such as kinetic 

parameters and provide accurate results. For instance, it relies on human reasoning 

rather than exact numbers to compute protein concentration levels and describe 

species activities.  



243 
 

 

 

6.5.3 Contribution and Future Directions 

 

Our contribution in this objective is the transformation of the Boolean model of the cell cycle 

system into a semi continuous model to better understand the dynamics of the system. This 

was a successful attempt to reveal the nonlinear behaviour of the cell cycle controller and 

describe the continuous behaviour without needing kinetic parameters such as ODE models. 

Also, the proposed model provided in some cases a better results than the recent ODE 

continuous model -  Ali Abroudi (2017) model. We believe that the simplicity and the flexibility 

of fuzzy logic make it an attractive alternative method to ODE models in modeling cell cycle. 

However, the design of the fuzzy inference system relies on heuristic design and manual 

adjusting of the sensitive membership function parameters; this can work well for some fuzzy 

inference models in the system but some other fuzzy inference models may require more 

enhancements to get accurate results. Therefore, we used an artificial intelligent technique - 

particle swarm optimization PSO - method to enhance the functionality of these models. 

Furthermore, we believe that development a full fuzzy logic network can provide more insight 

for the cell cycle controller system, this is one of our future work. 

 

6.6 Enhancing Biological Fuzzy Inference Models by Employing Particle Swarm 

Optimization  
 

Our entire set of fuzzy inference models have been built and designed based on prior 

knowledge. Further, the computing was based on human/biological reasoning instead of 

typical ordinary differential equations. Also, developing the fuzzy rules was an easy, while 

tuning the fuzzy parameters was more complex since we adjusted them manually.  Adjusting 

the fuzzy parameters is an extremely sensitive task as it can make the outcome either very 

close to the realistic results or quite vary from them.  With careful tuning, the outcomes from 

the developed fuzzy inference systems agreed well with the biological evidence available for 

cell cycle controller system induced cyclin oscillations and other species activities. However, 

we noticed that few models needed more enhancement to provide accurate results similar  
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to the continuous model used for comparison. We believed that the best way to enhance the 

functionality of these models was to tune the fuzzy parameters automatically.  

 

This investigation attempted to answer the following questions: 

 What is the best way to enhance the functionality of the developed fuzzy inference 

models? 

 What are the best features of the selected optimization method, the Particle Swarm 

Optimisation (PSO)?  

 What advancement can be achieved by using PSO?  

   Does the optimization make the result more accurate? 

   

6.6.1 Summary of the Results 

 

We automatically adjusted the fuzzy parameters of the fuzzy inference systems.  We used a 

novel way to implement a specific programing code to integrate an intelligence method based 

on a biological social system - PSO - to tune the fuzzy parameters automatically. 

Consequently, the outcome from fuzzy models that adjusted parameters automatically were 

more accurate than the results from the manually adjusted models.  

 

6.6.2 Conclusions 

 

 The behavior of cell cycle controller fuzzy inference models and outcomes are 

sensitive to small changes in the adjustment to fuzzy parameters. 

 The automatic tuning of fuzzy parameters is better than manual adjusting since it 

required less efforts but, it needs an efficient approach to do the fine tuning.  

Therefore, this study integrated and imported a method that is widely used in the 

engineering filed into complex biological systems modeling.  
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 The automatically adjusted fuzzy inference systems, such as CycD, CycA and SCF fuzzy 

inferences models, provided better results than the same fuzzy inference systems that 

were adjusted and designed manually. 

 

 

6.6.3 Contributions and Future Directions 
 

One of the main contributions of this part is related to modelling mammalian cell cycle. This 

is considered as a novel modelling attempt in the field of cell cycle modelling.  The researcher 

employed an intelligent systems approach, PSO, to empower fuzzy logic computational 

approach that we used to model the mammalian cell cycle system. This technique was 

imported from the electrical and industrial engineering modelling field and integrated into 

cell cycle modelling. 

 

Concerning future research, we intend to extend our developed cell cycle controller network. 

This extension should include up-to-date discovered elements. Furthermore, it can involve 

more primary elements that perform other biological activities such as protein P25 which play  

roles in cell cycle checkpoints and DNA damage. In this study, we did not investigate DNA 

damage and cell cycle checkpoint element activities. Checkpoints will be one of our future 

works that we intend to implement as an extension of our research.  Certainly, the models 

which this thesis is based on such as Singhania et al. (2011) model and Fauré et al. (2006) 

model did not involve checkpoints in their implementations; similar our study also only 

focused on the major controllers of the cell cycle system activity like Cyclin flows over cell 

cycle. Therefore, this expansion will update the entire models that we developed such as 

Boolean model and fuzzy logic model. Further, PSO would play a crucial part in enhaning these 

computational models.  

 

Concerning future studies, the researcher studied and investigated the most important 

regulators of cell cycle such as cyclins. Cyclin can be used in the investigation of human 

diseases. For instance, cyclin A overexpression correlates with poor prognosis in breast 

cancer. Also, the presence of cyclin D is required to maintain tumor growth in ErbB2-induced 
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mammary carcinomas (breast cancer). Furthermore, the abundance of cyclin E transcript and 

protein is increased in carcinomas of the lung, gastrointestinal tract, and breast in addition to 

lymphomas and leukemia. The new model proposed in this thesis can be used to examine the 

localization of system elements (element abundances such as abundance of cyclins in cell 

cycle) and can mimic the fluctuation of cyclins during cell growth and division. 
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Appendix 
 

Appendix 1 

 

Boolean model utilized in the study (in both the Synchronous and asynchronous 

Approaches) is given in this Appendix 1. 

This model is an assortment of statements collected on node dependencies from literature 
as elucidated in Chapter 3 and expresses as Boolean rules according to:  
 

Targets, Factors such as: 

MYC,MYC 

CDH1,(!CYCA & !CYCB) & !CYCE | (CDC20A & CDC20B)|(P27 &!CYCB) 

P27,(!CYCD & (!CYCD & ! P27)) & (!CYCD & !CYCE) |(!CYCE & !CYCA)   

RB,!CYCD  & (!CYCE & !CYCA) 

CYCD, MYC & (!SCF & (!CDC20A & !CDC20B)) 

TFE,(!RB & !CYCA & !CYCB) | (P27 & !RB & !CYCB) 

SCF,!CDH1 & CYCE 

CYCE,TFE|(!SCF & !P27)  

CYCA,(TFE & !P27)  | (!CDC20A & !CDH1) 

TFB,CYCA  

CYCB, TFB| (!CDH1 & !CDC20B)  

CDC20A,CYCB 

CDC20B,CYCB 

 

Appendix 2 
 

 This Appendix includes all the ODE models related to the mammalian cell cycle regulator 

(Abroudi et al. (2017). 

 

𝑑[𝑎𝑆𝐶𝐹]

𝑑𝑡
=   𝑘92 ∙ [𝑎𝐶𝑦𝑐𝐸_𝐶𝑑𝑘2] ∙ [𝑖𝑆𝐶𝐹] − 𝑘91 ∙ [𝑎𝑆𝐶𝐹] ∙ [𝑎𝐴𝑃𝐶_𝐶𝑑ℎ1], (4.20) 
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Where 
𝑑[𝑎𝑆𝐶𝐹]

𝑑𝑡
 represents the changes in the concentration levels of SCF over time.  This ODE 

equation consists of activator CycE and inhibitor CDH1 of SCF. The process also depends on 

kinetic parameter values, k92 and k91, relating to SCF production and degradation, 

respectively, to define the changes in SCF protein level over time.  

 

We also need to be aware that each ODE equation consists of an activator and a deactivator 

and a set of kinetic parameters. These components control the changes in protein 

concentration levels over the cell cycle time. However, the most evident bottleneck is the lack 

of availability of kinetic parameter values. ODE representation is considered more complex 

continuous form (Chapter 2) compared to Boolean representation but the required set of 

kinetic parameter values are very hard to find for signalling networks.  In the rest of the 

Appendix, ODE functionality, including kinetic parameters, activators and inhibitors will not 

be explained since each ODE model follows the same basics and principles in mimicking 

biological events.  

𝑑[𝐶𝑑ℎ1]

𝑑𝑡
=  𝑘145 ∙ [𝑖𝐴𝑃𝐶_𝐶𝑑ℎ1] −  𝑘144 ∙ ([𝑎𝐶𝑦𝑐𝐵_𝐶𝑑𝑘1_𝑁𝑢𝑐] + [𝑎𝐶𝑦𝑐𝐴_𝐶𝑑𝑘2] + [𝑎𝐶𝑦𝑐𝐸_𝐶𝑑𝑘2]) ∙

[𝑎𝐴𝑃𝐶_𝐶𝑑ℎ1],          (4.21) 

 

𝑑[𝑝27]

𝑑𝑡
= 𝑘49 + 𝑘47 ∙ [𝑝27_𝐶𝑦𝑐𝐷_𝐶𝑑𝑘4] + 𝑘50 ∙ [𝑝27_𝐶𝑦𝑐𝐸_𝐶𝑑𝑘2] + 𝑘51 ∙ [𝑝27_𝑎𝐶𝑦𝑐𝐴_𝐶𝑑𝑘2] −

(𝑘48 ∙ [𝐶𝑦𝑐𝐷_𝐶𝑑𝑘4] + 𝑘52 ∙ [𝑎𝐶𝑦𝑐𝐸_𝐶𝑑𝑘2] +  𝑘53 ∙ [𝑎𝐶𝑦𝑐𝐸_𝐶𝑑𝑘2] + 𝑘54 ∙ [𝑎𝐶𝑦𝑐𝐴_𝐶𝑑𝑘2] + 𝑘55 ∙

[𝑎𝐶𝑦𝑐𝐴_𝐶𝑑𝑘2]) ∙ [𝑝27],                                    (4.22) 

 

𝑑[𝐶𝑦𝑐𝐷]

𝑑𝑡
= 𝑘39 + 𝑘40 ∙ [𝑎𝑐𝑀𝑦𝑐] + 𝑘41 ∙ [𝐶𝑦𝑐𝐷_𝐶𝑑𝑘4] − ( 𝑘44 + 𝑘42 ∙ [𝐶𝑑𝑘4] + 𝑘43 ∙ [𝑎𝑆𝐶𝐹] +

𝑘147  ∙ [𝑎𝐴𝑃𝐶_𝐶𝑑𝑐20]) ∙ [𝐶𝑦𝑐𝐷]        (4.23) 

 

 

𝑑[𝐸2𝐹_𝑝𝑅𝑏]

𝑑𝑡
=  𝑘56 ∙ [𝐸2𝐹] ∙ [𝑝𝑅𝑏] − ( 𝑘57 ∙ [𝐶𝑦𝑐𝐷_𝐶𝑑𝑘4] +  𝑘58 ∙ [𝑝27_𝐶𝑦𝑐𝐷_𝐶𝑑𝑘4] +  𝑘59 ∙

[𝑝21_𝐶𝑦𝑐𝐷_𝐶𝑑𝑘4]) ∙ [𝐸2𝐹_𝑝𝑅𝑏],        (4.24) 
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𝑑[𝐶𝑦𝑐𝐸]

𝑑𝑡
=  𝑘70 ∙ [𝐸2𝐹] +  𝑘72 ∙ [𝑖𝐶𝑦𝑐𝐸𝐶𝑑𝑘2] − (𝑘73 +  𝑘71 ∙ [𝐶𝑑𝑘2] +  𝑘74 ∙ [𝑎𝑆𝐶𝐹]) ∙

                    [𝐶𝑦𝑐𝐸                     (4.25) 

 

𝑑[𝐶𝑦𝑐𝐴]

𝑑𝑡
=  𝑘75 ∙ [𝐸2𝐹] +  𝑘76 ∙ [𝑎𝐵𝑀𝑦𝑏] +  𝑘77 ∙ [𝑁𝐹𝑌] +  𝑘78 ∙ [𝑖𝐶𝑦𝑐𝐴_𝐶𝑑𝑘2] − ( 𝑘79 +

                  𝑘80 ∙ [𝐶𝑑𝑘2] +  𝑘81 ∙ [𝑎𝐴𝑃𝐶_𝐶𝑑𝑐20] +  𝑘82 ∙ [𝑎𝐴𝑃𝐶_𝐶𝑑ℎ1]) ∙ 𝐶𝑦𝑐𝐴,   (4.26) 

 

𝑑[𝑇𝐹𝐵]

𝑑𝑡
=  𝑘96 ∙ [𝑎𝐶𝑦𝑐𝐴_𝐶𝑑𝑘2] −  𝑘97 ∙ [𝑇𝐹𝐵],       (4.27) 

 

𝑑[𝐶𝑦𝑐𝐵]

𝑑𝑡
=  𝑘123 ∙ [𝑁𝐹𝑌] + [𝑖𝐶𝑦𝑐𝐵_𝐶𝑑𝑘1_𝐶𝑦𝑡𝑜] ∙ ( 𝑘124 +  𝑘125 ∙ [𝐺𝑎𝑑𝑑45]) − ( 𝑘126 +

              𝑘127 ∙ [𝐶𝑑𝑘1]  + ( 𝑘128 ∙ [𝑎𝐴𝑃𝐶_𝐶𝑑𝑐20] +  𝑘129 ∙ [𝑎𝐴𝑃𝐶_𝐶𝑑ℎ1])) ∙ [𝐶𝑦𝑐𝐵],   (4.28) 

𝑑[𝑝𝑅𝑏]

𝑑𝑡
= ( 𝑘60 ∙ [𝑎𝐶𝑦𝑐𝐸_𝐶𝑑𝑘2] +  𝑘61 ∙ [𝑎𝐶𝑦𝑐𝐴_𝐶𝑑𝑘2]) ∙ [𝐸2𝐹_𝑝𝑅𝑏𝑃𝑃] −  𝑘64 ∙ [𝑝𝑅𝑏𝑃𝑃𝑃], (4.29) 

𝑑[𝑎𝐴𝑃𝐶_𝐶𝑑𝑐20]

𝑑𝑡
=  (𝑘143 ∙ [𝑎𝐶𝑦𝑐𝐵_𝐶𝑑𝑘1_𝑁𝑢𝑐] +  𝑘148 ∙ [𝑎𝑃𝑙𝑘1]) ∙ [𝑖𝐴𝑃𝐶_𝐶𝑑𝑐20] −  𝑘142 ∙

 [𝑎𝐴𝑃𝐶_𝐶𝑑ℎ1] ∙ [𝑎𝐴𝑃𝐶_𝐶𝑑𝑐20],           (4.30) 

 

 

Appendix 3 
 

 This Appendix includes all the Fuzzy inference models related to the mammalian cell cycle 

regulator. 

[System] 
Name='CDC20A' 
Type='mamdani' 
Version=2.0 
NumInputs=1 
NumOutputs=1 
NumRules=3 
AndMethod='min' 
OrMethod='max' 
ImpMethod='min' 
AggMethod='sum' 
DefuzzMethod='centroid' 

  
[Input1] 
Name='CYCB' 
Range=[0 0.9] 
NumMFs=3 
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MF1='L':'gaussmf',[0.157 3.47e-18] 
MF2='M':'gaussmf',[0.0822 0.486095238095238] 
MF3='H':'gaussmf',[0.069765719309373 0.9] 

  
[Output1] 
Name='CDC20A' 
Range=[0 1] 
NumMFs=3 
MF1='L':'gaussmf',[0.133689542637929 6.94e-18] 
MF2='M':'gaussmf',[0.0977 0.470899470899471] 
MF3='H':'gaussmf',[0.0887518812470284 1] 

  
[Rules] 
1, 1 (1) : 1 
2, 2 (1) : 1 
3, 3 (1) : 1 

 
Name='CDC20B' 
Type='mamdani' 
Version=2.0 
NumInputs=1 
NumOutputs=1 
NumRules=3 
AndMethod='prod' 
OrMethod='probor' 
ImpMethod='min' 
AggMethod='sum' 
DefuzzMethod='centroid' 

  
[Input1] 
Name='CYCB' 
Range=[0 0.9] 
NumMFs=3 
MF1='L':'gaussmf',[0.0958698270607015 0.00736] 
MF2='M':'gaussmf',[0.113 0.416] 
MF3='H':'gaussmf',[0.0857410579338381 0.895] 

  
[Output1] 
Name='CDC20B' 
Range=[0 1.2] 
NumMFs=3 
MF1='L':'gaussmf',[0.08763 8.328e-18] 
MF2='M':'gaussmf',[0.1156 0.6084] 
MF3='H':'gaussmf',[0.04988 1.2] 

  
[Rules] 
1, 1 (1) : 1 
2, 2 (1) : 1 
3, 3 (1) : 1 

 
[System] 
Name='CDH1_A' 
Type='mamdani' 
Version=2.0 
NumInputs=7 
NumOutputs=1 
NumRules=5 
AndMethod='prod' 
OrMethod='probor' 
ImpMethod='min' 
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AggMethod='sum' 
DefuzzMethod='centroid' 

  
[Input1] 
Name='CYCD' 
Range=[0 1.5] 
NumMFs=3 
MF1='L':'gaussmf',[0.240978209208704 1.39e-17] 
MF2='M':'gaussmf',[0.179206899860772 0.664] 
MF3='H':'gaussmf',[0.242865590987121 1.53] 

  
[Input2] 
Name='CYCE' 
Range=[0 1.6] 
NumMFs=3 
MF1='L':'gaussmf',[0.174358126196694 2.08e-17] 
MF2='M':'gaussmf',[0.135 0.702645502645503] 
MF3='H':'gaussmf',[0.206713242398143 1.6] 

  
[Input3] 
Name='CYCA' 
Range=[0 3.8] 
NumMFs=3 
MF1='L':'gaussmf',[0.388486082724335 0] 
MF2='M':'gaussmf',[0.557 1.64095238095238] 
MF3='H':'gaussmf',[0.738550464959449 3.8] 

  
[Input4] 
Name='CYCB' 
Range=[0 0.8] 
NumMFs=3 
MF1='L':'gaussmf',[0.0871790630983469 1.04e-17] 
MF2='M':'gaussmf',[0.124706504125888 0.341] 
MF3='H':'gaussmf',[0.132116724489247 0.8] 

  
[Input5] 
Name='CDC20A' 
Range=[0 1] 
NumMFs=3 
MF1='L':'gaussmf',[0.106726945803389 6.94e-18] 
MF2='M':'gaussmf',[0.0887518812470285 0.5] 
MF3='H':'gaussmf',[0.113467595012024 1] 

  
[Input6] 
Name='CDC20B' 
Range=[0 1] 
NumMFs=3 
MF1='L':'gaussmf',[0.0685299336211232 6.94e-18] 
MF2='M':'gaussmf',[0.10222419213202 0.418] 
MF3='H':'gaussmf',[0.120208244220659 1] 

  
[Input7] 
Name='P27' 
Range=[0 1.2] 
NumMFs=3 
MF1='L':'gaussmf',[0.114591036546796 2.08e-17] 
MF2='M':'gaussmf',[0.154751824531844 0.467] 
MF3='H':'gaussmf',[0.160427451165515 1.2] 

  
[Output1] 
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Name='CDH1' 
Range=[0 1] 
NumMFs=3 
MF1='L':'gaussmf',[0.0662830505515782 6.94e-18] 
MF2='M':'gaussmf',[0.0786 0.429783068783069] 
MF3='H':'gaussmf',[0.171886554820194 1] 

  
[Rules] 
3 0 0 0 0 0 1, 1 (1) : 1 
0 3 0 0 0 0 1, 1 (1) : 1 
0 0 0 2 0 0 0, 1 (1) : 1 
0 0 1 1 3 3 1, 2 (1) : 1 
1 1 1 1 0 0 0, 3 (1) : 1 

 
System] 
Name='CYCB' 
Type='mamdani' 
Version=2.0 
NumInputs=3 
NumOutputs=1 
NumRules=6 
AndMethod='min' 
OrMethod='max' 
ImpMethod='min' 
AggMethod='sum' 
DefuzzMethod='centroid' 

  
[Input1] 
Name='TFB' 
Range=[0 0.9] 
NumMFs=3 
MF1='L':'gaussmf',[0.102120835510821 1.04e-17] 
MF2='M':'gaussmf',[0.062 0.354142857142857] 
MF3='H':'gaussmf',[0.144586925525222 0.9] 

  
[Input2] 
Name='CDH1' 
Range=[0 1] 
NumMFs=3 
MF1='L':'gaussmf',[0.104480062733844 6.94e-18] 
MF2='M':'gaussmf',[0.0865 0.430973544973545] 
MF3='H':'gaussmf',[0.171886554820194 1] 

  
[Input3] 
Name='CDC20B' 
Range=[0 0.9] 
NumMFs=3 
MF1='L':'gaussmf',[0.100098640748231 1.04e-17] 
MF2='M':'gaussmf',[0.0859 0.376619047619048] 
MF3='H':'gaussmf',[0.144586925525222 0.9] 

  
[Output1] 
Name='CYCB' 
Range=[0 0.8] 
NumMFs=3 
MF1='L':'gaussmf',[0.0889789512500367 0.00423] 
MF2='M':'gaussmf',[0.0618 0.38337037037037] 
MF3='H':'gaussmf',[0.157281814868152 0.8] 

  
[Rules] 
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1 0 0, 1 (1) : 1 
2 0 0, 2 (1) : 1 
3 0 0, 3 (1) : 1 
0 0 1, 3 (1) : 1 
0 1 3, 1 (1) : 1 
0 3 0, 1 (1) : 1 

 
[System] 
Name='CYCE_4' 
Type='mamdani' 
Version=2.0 
NumInputs=3 
NumOutputs=1 
NumRules=11 
AndMethod='prod' 
OrMethod='probor' 
ImpMethod='min' 
AggMethod='sum' 
DefuzzMethod='centroid' 

  
[Input1] 
Name='TFE' 
Range=[0 1.8] 
NumMFs=3 
MF1='L':'gaussmf',[0.18 -0.0278095238095239] 
MF2='M':'gaussmf',[0.11526510146766 0.9] 
MF3='H':'gaussmf',[0.305351409151169 1.8] 

  
[Input2] 
Name='SCF' 
Range=[0 1] 
NumMFs=3 
MF1='L':'gaussmf',[0.131442659568384 6.94e-18] 
MF2='M':'gaussmf',[0.0842581151079385 0.5] 
MF3='H':'gaussmf',[0.1112 1] 

  
[Input3] 
Name='P27' 
Range=[0 1.2] 
NumMFs=3 
MF1='L':'gaussmf',[0.0984134784460721 2.08e-17] 
MF2='M':'gaussmf',[0.101109738129526 0.6] 
MF3='H':'gaussmf',[0.163123710848969 1.2] 

  
[Output1] 
Name='CYCE' 
Range=[0 2] 
NumMFs=3 
MF1='L':'gaussmf',[0.3617 2.6e-17] 
MF2='M':'gaussmf',[0.1057 0.894] 
MF3='H':'gaussmf',[0.356 2.025] 

  
[Rules] 
0 0 3, 1 (1) : 1 
1 1 3, 1 (1) : 1 
2 1 1, 2 (1) : 1 
3 1 1, 3 (1) : 1 
0 2 1, 2 (1) : 1 
0 3 1, 1 (1) : 1 
0 1 3, 1 (1) : 1 
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1 1 1, 1 (1) : 1 
1 0 0, 1 (1) : 1 
2 0 0, 2 (1) : 1 
3 0 0, 3 (1) : 1 

 
[System] 
Name='P27_A' 
Type='mamdani' 
Version=2.0 
NumInputs=3 
NumOutputs=1 
NumRules=5 
AndMethod='prod' 
OrMethod='probor' 
ImpMethod='min' 
AggMethod='sum' 
DefuzzMethod='centroid' 

  
[Input1] 
Name='CYCD' 
Range=[0 1.4] 
NumMFs=3 
MF1='L':'gaussmf',[0.0927962707722095 1.39e-17] 
MF2='M':'gaussmf',[0.165 0.466925925925926] 
MF3='H':'gaussmf',[0.335010265669163 1.4] 

  
[Input2] 
Name='CYCE' 
Range=[0 1.6] 
NumMFs=3 
MF1='L':'gaussmf',[0.235477075514214 -0.00847] 
MF2='M':'gaussmf',[0.149 0.546206349206349] 
MF3='H':'gaussmf',[0.386463887961744 1.6] 

  
[Input3] 
Name='CYCA' 
Range=[0 3.8] 
NumMFs=3 
MF1='L':'gaussmf',[0.8069 0] 
MF2='M':'gaussmf',[0.8068 1.9] 
MF3='H':'gaussmf',[0.8069 3.8] 

  
[Output1] 
Name='P27' 
Range=[0 1.2] 
NumMFs=3 
MF1='L':'gaussmf',[0.0660583622446237 2.08e-17] 
MF2='M':'gaussmf',[0.0902 0.460587301587302] 
MF3='H':'gaussmf',[0.246707761036044 1.2] 

  
[Rules] 
1 1 1, 3 (1) : 1 
2 1 1, 2 (1) : 1 
3 1 1, 1 (1) : 1 
3 3 1, 1 (1) : 1 
0 0 2, 1 (1) : 1 

 
[System] 
Name='RB_3' 
Type='mamdani' 
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Version=2.0 
NumInputs=3 
NumOutputs=1 
NumRules=5 
AndMethod='prod' 
OrMethod='probor' 
ImpMethod='min' 
AggMethod='sum' 
DefuzzMethod='centroid' 

  
[Input1] 
Name='CYCD' 
Range=[0 1.4] 
NumMFs=3 
MF1='L':'gaussmf',[0.187165359693101 1.39e-17] 
MF2='M':'gaussmf',[0.0811 0.54137037037037] 
MF3='H':'gaussmf',[0.281534448613992 1.4] 

  
[Input2] 
Name='CYCE' 
Range=[0 1.6] 
NumMFs=3 
MF1='L':'gaussmf',[0.159978074551606 2.08e-17] 
MF2='M':'gaussmf',[0.134961278455292 0.597] 
MF3='H':'gaussmf',[0.260638436067223 1.6] 

  
[Input3] 
Name='CYCA' 
Range=[0 3.8] 
NumMFs=3 
MF1='L':'gaussmf',[0.251971489065406 0.00994] 
MF2='M':'gaussmf',[0.637800228121051 1.52] 
MF3='H':'gaussmf',[0.798272616947956 3.81] 

  
[Output1] 
Name='RB' 
Range=[0 1.2] 
NumMFs=3 
MF1='L':'gaussmf',[0.109171593678819 3.17e-05] 
MF2='M':'gaussmf',[0.109 0.368206349206349] 
MF3='H':'gaussmf',[0.281759136920946 1.2] 

  
[Rules] 
1 1 1, 3 (1) : 1 
2 1 1, 1 (1) : 1 
3 1 1, 1 (1) : 1 
3 3 1, 1 (1) : 1 
0 0 2, 1 (1) : 1 

 
[System] 
Name='TFB' 
Type='mamdani' 
Version=2.0 
NumInputs=1 
NumOutputs=1 
NumRules=3 
AndMethod='prod' 
OrMethod='probor' 
ImpMethod='min' 
AggMethod='sum' 
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DefuzzMethod='centroid' 

  
[Input1] 
Name='CYCA' 
Range=[0 3.8] 
NumMFs=3 
MF1='L':'gaussmf',[0.8069 0] 
MF2='M':'gaussmf',[0.8068 1.9] 
MF3='H':'gaussmf',[0.8069 3.8] 

  
[Output1] 
Name='TFB' 
Range=[0 1] 
NumMFs=3 
MF1='L':'gaussmf',[0.2123 6.939e-18] 
MF2='M':'gaussmf',[0.2123 0.5] 
MF3='H':'gaussmf',[0.2123 1] 

  
[Rules] 
1, 1 (1) : 1 
2, 2 (1) : 1 
3, 3 (1) : 1 

 
[System] 
Name='TFE_EX_B' 
Type='mamdani' 
Version=2.0 
NumInputs=4 
NumOutputs=1 
NumRules=7 
AndMethod='prod' 
OrMethod='probor' 
ImpMethod='min' 
AggMethod='sum' 
DefuzzMethod='centroid' 

  
[Input1] 
Name='RB' 
Range=[0 1.2] 
NumMFs=3 
MF1='L':'gaussmf',[0.084932180028802 2.08e-17] 
MF2='M':'gaussmf',[0.106 0.35868253968254] 
MF3='H':'gaussmf',[0.2548 1.2] 

  
[Input2] 
Name='CYCA' 
Range=[0 3.8] 
NumMFs=3 
MF1='L':'gaussmf',[0.379947927060064 0] 
MF2='M':'gaussmf',[0.286 1.46772486772487] 
MF3='H':'gaussmf',[0.8069 3.8] 

  
[Input3] 
Name='CYCB' 
Range=[0 1] 
NumMFs=3 
MF1='L':'gaussmf',[0.104480062733844 6.94e-18] 
MF2='M':'gaussmf',[0.107 0.415343915343915] 
MF3='H':'gaussmf',[0.2123 1] 
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[Input4] 
Name='P27' 
Range=[0 1.2] 
NumMFs=3 
MF1='L':'gaussmf',[0.114591036546796 2.08e-17] 
MF2='M':'gaussmf',[0.19 0.603507936507937] 
MF3='H':'gaussmf',[0.2548 1.2] 

  
[Output1] 
Name='TFE' 
Range=[0 2] 
NumMFs=3 
MF1='L':'gaussmf',[0.191 2.311e-17] 
MF2='M':'gaussmf',[0.2317 0.7411] 
MF3='H':'gaussmf',[0.3168 2] 

  
[Rules] 
3 1 1 3, 1 (1) : 1 
2 1 1 2, 1 (1) : 1 
1 1 1 1, 3 (1) : 1 
1 3 1 1, 1 (1) : 1 
2 0 2 1, 1 (1) : 1 
1 2 1 1, 2 (1) : 1 
0 0 2 0, 1 (1) : 1 

 
[System] 
Name='CYCA_optmized' 
Type='mamdani' 
Version=2.0 
NumInputs=4 
NumOutputs=1 
NumRules=6 
AndMethod='prod' 
OrMethod='probor' 
ImpMethod='min' 
AggMethod='sum' 
DefuzzMethod='centroid' 

  
[Input1] 
Name='TFE' 
Range=[0 1.8] 
NumMFs=3 
MF1='L':'gaussmf',[0.0438358723682758 0.350818098616905] 
MF2='M':'gaussmf',[0.999782444622033 0.00747231938859937] 
MF3='H':'gaussmf',[0.053563457703846 0.269395528027957] 

  
[Input2] 
Name='CDC20A' 
Range=[0 0.9] 
NumMFs=3 
MF1='L':'gaussmf',[0.00253885515902562 0.554169242737569] 
MF2='M':'gaussmf',[0.994382706810766 0.746809360168231] 
MF3='H':'gaussmf',[0.0846367469078191 0.999999869810367] 

  
[Input3] 
Name='P27' 
Range=[0 1.2] 
NumMFs=3 
MF1='L':'gaussmf',[0.0674452811568626 0.211057148539961] 
MF2='M':'gaussmf',[0.117969901647764 0.74283332551062] 
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MF3='H':'gaussmf',[0.998114974980433 0.34777897930689] 

  
[Input4] 
Name='CDH1' 
Range=[0 1] 
NumMFs=3 
MF1='L':'gaussmf',[0.9999999985794 0.853622539699502] 
MF2='M':'gaussmf',[0.999973886232124 0.81092539309712] 
MF3='H':'gaussmf',[0.999985070365868 0.490643917685763] 

  
[Output1] 
Name='CYCA' 
Range=[0 5] 
NumMFs=3 
MF1='L':'gaussmf',[0.0213394062321226 1.51523342162408e-05] 
MF2='M':'gaussmf',[0.984034505265254 0.999968077144573] 
MF3='H':'gaussmf',[0.999999418503115 0.0400599322050034] 

  
[Rules] 
1 0 3 3, 1 (1) : 1 
2 1 1 1, 3 (1) : 1 
0 3 0 0, 1 (1) : 1 
3 -1 -1 -1, 3 (1) : 1 
1 0 2 2, 1 (1) : 1 
0 0 2 2, 1 (1) : 1 

 
[System] 
Name='CYCD__optimized' 
Type='mamdani' 
Version=2.0 
NumInputs=4 
NumOutputs=1 
NumRules=8 
AndMethod='prod' 
OrMethod='probor' 
ImpMethod='min' 
AggMethod='sum' 
DefuzzMethod='centroid' 

  
[Input1] 
Name='MYC' 
Range=[0 1] 
NumMFs=3 
MF1='L':'gaussmf',[0.0186619326121608 0.148808855408691] 
MF2='M':'gaussmf',[0.00348141977304808 0.999561778460741] 
MF3='H':'gaussmf',[0.00238578765838237 0.909763903746813] 

  
[Input2] 
Name='SCF' 
Range=[0 1] 
NumMFs=3 
MF1='L':'gaussmf',[0.0652101978693894 0.999959905626557] 
MF2='M':'gaussmf',[0.981984393422502 0.00373291072680879] 
MF3='H':'gaussmf',[0.238215901043482 0.645798957133665] 

  
[Input3] 
Name='CDC20A' 
Range=[0 0.9] 
NumMFs=3 
MF1='L':'gaussmf',[0.172244711641824 0.367796475120247] 
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MF2='M':'gaussmf',[0.0737345483190596 0.467077442908999] 
MF3='H':'gaussmf',[0.0213589405564776 0.128849308959119] 

  
[Input4] 
Name='CDC20B' 
Range=[0 0.9] 
NumMFs=3 
MF1='L':'gaussmf',[0.468372103636873 0.004563282985519] 
MF2='M':'gaussmf',[0.990099286578992 0.999997497254048] 
MF3='H':'gaussmf',[0.991100519967061 0.0025826580508018] 

  
[Output1] 
Name='CYCD' 
Range=[0 1.6] 
NumMFs=3 
MF1='L':'gaussmf',[0.00419871343604425 0.003097363364918] 
MF2='M':'gaussmf',[0.231255190110146 0.000921316377010458] 
MF3='H':'gaussmf',[0.167872327565564 0.999998433224413] 

  
[Rules] 
1 1 1 1, 1 (1) : 1 
2 1 1 1, 2 (1) : 1 
3 1 1 1, 3 (1) : 1 
3 3 2 2, 2 (1) : 1 
3 3 3 3, 1 (1) : 1 
3 2 2 2, 1 (1) : 1 
3 1 2 2, 1 (1) : 1 
3 1 2 2, 1 (1) : 1 

 
[System] 
Name='SCF_optz' 
Type='mamdani' 
Version=2.0 
NumInputs=2 
NumOutputs=1 
NumRules=6 
AndMethod='prod' 
OrMethod='probor' 
ImpMethod='min' 
AggMethod='sum' 
DefuzzMethod='centroid' 

  
[Input1] 
Name='CYCE' 
Range=[0 1.6] 
NumMFs=3 
MF1='L':'gaussmf',[1 0.999999995583782] 
MF2='M':'gaussmf',[0.580426508896776 0.986631710057269] 
MF3='H':'gaussmf',[0.183986325940716 0.999818181039404] 

  
[Input2] 
Name='CDH1' 
Range=[0 1] 
NumMFs=3 
MF1='L':'gaussmf',[0.0731739283401547 1e-05] 
MF2='M':'gaussmf',[0.971524400094879 0.989680990010237] 
MF3='H':'gaussmf',[0.0367643109907039 0.113092004577116] 

  
[Output1] 
Name='SCF' 
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Range=[0 1.5] 
NumMFs=3 
MF1='L':'gaussmf',[0.0160957093496636 0.0667510017410857] 
MF2='M':'gaussmf',[0.378790253816283 0.999999984794546] 
MF3='H':'gaussmf',[6.54019745187982e-05 0.330104315291503] 

  
[Rules] 
1 0, 1 (1) : 1 
0 1, 2 (1) : 1 
1 1, 1 (1) : 1 
3 0, 3 (1) : 1 
0 3, 1 (1) : 1 
0 1, 3 (1) : 1 
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