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xviii. 

ABSTRACT 

The relationships between insect pests and damage 

in Brussels sprouts were studied for three seasons in 

Canterbury. Each season the major pes"t species, white 

butterfly (Artogeia rapae L.), diamondback moth (Plutella 

xylostella (Curt.)) and cabbage aphid (Brevicoryne 

brassicae L.), were monitored on unsprayed areas within 

the crop. White butterfly numbers followed the same 

pattern each season reaching a peak of between 2.9-3.4 

larvae/plant in late March of each year. Diamondback moth 

was more variable between seasons but each year there was 

a shift in the population from the leaves into the 

developing sprouts as these became available from mid 

March onwards. Cabbage aphid was the least regular in 

both timing and intensity of attack. Peak numbers in 1979, 

6.1 colonies/plant, were 15 times greater than in 1980, 

the year of the lowest attack. 

Larvae of white butterfly and diamondback moth 

were confined in clip-cages for feeding tests on Brussels 

sprout leaves. For both species over 85% of the feeding 

occurred in the final instar. 

Mean leaf area consumed at 20 0 C was 46.1 cm2 for 

2 each white butterfly larva and 2.9 cm for each diamond-

back moth larva. When tested over a range of temperatures 

it was found that pupae were lightest after development at 

the higher temperatures and that, for white butterfly, 

consumption dropped markedly at these temperatures. 



xix. 

The effects of artificial defoliation, simulating 

pest attack, on Brussels sprout plants were studied for 

two seasons in field plots. Greatest yield loss occurred 

following defoliation in the mid season. The plants were 

able to compensate for defoliation in the early stages of 

growth and to a limited extent in the mid season. In the 

late stages the plants were unable to compensate for 

defoliation but yield losses were low due to much of the 

yield already being formed. Removal of leaves from the mid 

zone of the plant caused the greatest yield loss. 

Insecticides were used in two seasons to provide 

a range of pest numbers for damage assessment. In the first 

season the selective insecticides carbaryl and demeton-S­

methyl were used to produce low numbers of lepidoptera and 

aphids respectively. The greatest marketable yield of 

sprouts was recorded from the carbaryl treatment and the 

weights of damaged sprouts/plot were positively correlated 

with diamondback moth larval numbers. In the second season 

the insecticide dichlorvos was used to control pests in 

early, mid or late periods of Brussels sprout growth. 

Resultant yields indicated that omission of sprays in the 

mid period resulted in the greatest loss of total sprout 

yield and that the greatest numbers of damaged sprouts 

followed mid and late spray-free periods. 

A range of densities of larvae were confined in 

cages over individual plants at stages throughout the 

crop's growth. Yield was negatively linearly related to 

the estimated percentage defoliation caused by white 



butterfly feeding. There was no relationship between 

diamondback moth and total yield but a positive linear 

relationship was found between larval numbers and numbers 

of damaged sprouts in the mid season. 

When sprouts were examined on the stems, greatest 

numbers of damaged sprouts were found in the middle zone. 

Sprouts were not entered by the larvae until the sprouts 

were more than 7 rom diameter. Some reduction of damage 

occurred among the lower sprouts by shedding of the 

outer leaflets. 

The relationship between white butterfly feeding 

and Brussels sprout growth was examined by using a 

simulation model. The model indicated that the cumulative 

effect of white butterfly feeding was greater than would 

be expected from a single defoliation and that 56% of 

yield loss could be prevented by use of a single insect­

icide spray 12 weeks after transplanting. 

xx. 

As a result of these investigations a rational spray 

programme is proposed utilizing pest thresholds and the size 

of the developing sprouts as indicqtors of the need for 

insecticides to be applied. 



CHAPTER 1 

INTRODUCTION 

The last three decades have been aptly named liThe 

Age of Pesticides" (Metcalfe, 1980) because this period 

has seen a phenomenal increase in the manufacture and use 

of pesticides throughout the world. Thirty years ago the 

results of using insecticides were spectacular and gave 

credence to the strategy of total eradication of pest 

species (Knipling, 1979) but initial optimism gradually 

waned as it was realised that crop losses due to insects 

continued at the same time as the use of insecticides 

grew. Indeed, Pimentel" ~ ale (1978) estimated that 

crop losses due to insects in the united States rose 

from 7% in the 1940's to 13% in 1978, despite a 100-fold 

increase in the use of pesticides over that period. 

The failure of insecticides to provide long term 

solutions to pest problems has been attributed to the 

biological characteristics of the pest populations; 

insecticide resistance to chemicals has been known for 

1. 

65 years but since the widespread use of synthetic pesti­

cides the number of resistant pests has risen exponentially 

(Metcalfe, 1980). Similarly, problems of pest resurgence 

and secondary pest outbreaks are modern phepomena and 

have become increasingly common with the use of broad 

spectrum insecticides (Coaker, 1976). Such biological 



2. 

factors have caused many entomologists to call for a re­

examination of insecticide dominated control strategies 

(e.g. van den Bosch, 1978) but unfortunately the most 

common response to apparent failure of insecticides has 

been to use more of the same, or to try another insecti­

cide, thus embarking further on a "pesticide treadmill" 

while ignoring the underlying causes of the problem 

(Luckmann and Metcalfe, 1975); a strategy which in some 

areas has led to the collapse of whole farming systems 

(Adkisson, 1973). This throwaway mentality is being 

challenged today, not only by biological reality, but 

also by the escalation of costs in the pesticide industry. 

Current development costs for a new pesticide are 

estimated at $20M with a doubling time of less than two 

years (Metcalfe, 1980). These high costs are reflected 

in the high prices of the new pesticides, but even 

traditional pesticide prices have risen dramatically 

over the past decade with the cumulative effects of 

inflation and oil price rises. The rise 

in pesticide prices has not been matched by a comparable 

increase in farm produce prices, catching the producer in 

a cost/price squeeze which acts as a further incentive to 

examine current pest control practices. 

A critical evaluation of current pest control 

practices is particularly needed in horticultural crops 

where high values and stringent quality requirements have 

led growers to become "insurance" motivated (Norton, 1976a) 

with a consequent heavy use of insecticides. This 



situation is exemplified by the production of Brussels 

sprouts in Canterbury. Insecticides are generally 

applied to the crop on a two weekly schedule with up to 

14 applications within the season for some growers. Thus 

insecticides may account for 10-20% of the total costs 

of production (A. McErlich, pers. corom.) and are a major 

component of crop management in both financial and 

physical terms. Conversations with growers prior to 

3. 

this study indicated that they were 'risk averse' (Norton, 

1976a) reacting to the threat of pest attack by insurance 

spraying. However, their perceptions of potential pest 

damage were ill-defined. This was not surprising as 

there have been few detailed studies of pest damage to 

brassicas and even fewer of damage to Brussels sprouts 

although, as Conway (1976) pointed out, these studies 

can reveal when pesticide use is unnecessary. 

Much of the present overuse of pesticides occurs 

because of their application when the pests are not 

present (Stern, 1973). Thus a study of the occurrence 

and seasonality of pest attack as well as its variability 

between years is of vital importance. Fundamental to any 

such study is an understanding of the phenology of the 

crop which may allow the definition of critical periods 

of susceptibility to pest attack (Norton, 1976a). Once 

the occurrence of pests and the phenology of the crop 

are determined, key damage relationships can be studied 

which may be elucidated by the use of simple mathematical 

models (Norton, 1976b). 



4. 

The aims of this study were, therefore: 

To monitor the seasonal distribution and abundanc.e 

of the major brassica pest species on crops of Brussels 

sprouts. 

To quantify the amount of feeding by larval stages 

of white butterfly and diamondback moth on Brussels 

sprouts and determine how this is affected by changes 

in temperature. 

To examine the plant growth pattern, especially the 

development of sprouts and determine how this process is 

affected by defoliation simulating insect attack. 

To examine and analyse the relationship between 

pests and yield in field crops of Brussels sprouts. 

To investigate the relationships between insect­

icide, pests and yield using computer and graphical 

models. 

To develop a rational insecticide programme for 

the control of insect pests of Brussels sprouts based on 

an understanding of the characteristics of the pest 

population, the phenology of the plant and the character­

istics of the pest/plant interaction. 
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CHAPTER 2 

LITERATURE REVIEW 

1. A History of Pest Control in Brassica Crops 

in New Zealand 

The brassicas now cultivated by man are thought to 

have originated in the Mediterranean region and from this 

area domesticated forms have spread throughout the world 

(Nieuwhof, 1969). All brassicas contain glucosinolates 

which are broken down by the enzyme myrosinase to produce 

bitter tasting goitrogenic substances (Thompson, 1976). 

The presence of glucosinolates acts as a "qualitative" 

barrier which deters general feeding insects (Feeny, 

1975). Evolutionary adaptation, however, has allowed some 

insects to cross this barrier which is then believed to have 

no further effect on their growth and development (Blau et 

al., 1978). Such has been the success of these insects that 

today there are a large number of species contributing to a 

pest complex attacking cultivated brassicas. Of these 

pests, three cosmopolitan species dominate the pest 

complex on brasssicas in New Zealand. These are the white 

butterfly, Artogeia rapae (L., diamondback moth, Plutella 

XYlostella(L.j, and cabbage aphid, Brevicoryne hrassicae(L. 1
• 

All three have become serious pests in New Zealand 

since the introduction of brassica food and fodder crops 

by European settlers in the latter half of the 19th 

century. White butterfly is a relatively more recent 
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introduction but both cabbage aphid and diamondback moth 

have been recorded since the early days of European 

settlement and could have existed earlier on native 

crucifers which are represented by seven genera, two of 

which are endemic (Allan, 1961). Today these plants are 

confined to mountain and coastal areas including .off­

shore islands (Moore and Irwin, 1978). Plutella 

xy:lostella has been found on wild. crucifers on Rapa 

Island (Gates-Clarke, 1971) while the endemic species 

Plutella antiphona Meyrick has been found on Lepidium 

sp. on the Antipodes Islands (Dugdale, 1973). There is 

no record of cabbage aphid on native crucifers. 

a. Cabbage aphid 

Cabbage aphid is a pest found throughout temperate 

regions around the world (C.I.E., 1977). Its life history 

and population dynamics have been studied by Hughes (1963) 

in Australia, Hafaz (1961) in the Netherlands and McLaren 

(1975) in Central otago, New Zealand. The first recorded 

attack on crops in New Zealand by cabbage aphid took 

place in 1884 causing 'near annihilation' of cabbages, 

, cauliflowers, and turnips (Travers, 1884). In the early 

..... part of the century Hilgendorf (1924) estimated that 

aphids were causing losses of more than £lM per year and 

for control of the aphid in field crops he recommended the 

use of resistant varieties and management techniques such 

as early grazing. Insecticides were prohibitively 



expensive for field application but in the home garden 

kerosine emulsion sprays could be used. 

The first recommendations for widespread insect-

icide use against cabbage aphid in New Zealand were 

given by Lowe (1956) who recommended the use of lindane 

to control this pest. This was followed by recommenda-

tions for parathion (Anon. '0 1957) and demeton-S-methyl 

(Whatman, 1958; Lowe, 1960) and more recently by a 

wide range of contact and systemic organophosphates 

(Ferro, 1976) as well as carbamates and synthetic 

pyrethoids (Anon., 1979). Little attention appears to 

have been given in recent years to non-insecticidal forms 

of control except for the selection of aphid resistant 

rape (Palmer, 1960). 

b. Diamondback moth 

The diamondback moth is a cosmopolitan pest 

species capable of severe damage to brassica crops in a 

variety of climates from sub-arctic (Shaw, 1959) to , 

tropical conditions (Yaseen, 1974). Its population 

dynamics have been extensively studied by Harcourt (1957, 

1960, °1961b, 1963a, 1963b) and aspects of its biology have 

been studied in England (Hardy, 1938) and New Zealand 

(Robertson, 1939). 

The diamondback moth has been recognised in New 

Zealand since the mid-19th century (Anon., 1887) and was 

reported as widespread by Meyrick (1886). Particularly 

7. 
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bad attacks occurred in 1885 and 1887 when the pest could 

be seen in "countless thousands". Control measures were 

elaborate and time-consuming - "In bad cases of attack ••• 

it might answer to send a man and boy through the field, 

the one with a bough to sweep with, the other with soot 

or (in careful hands) with gas lime to throw under the 

plants on the fallen caterpillars" (Anon., 1887). 

The life history of diamondback moth was described 

by Hilgendorf (1901) who estimated that in some conditions 

it could diminish brassica crops by 75%. Hilgendorf (1924) 

considered that there were no satisfactory methods of 

control and estimated national losses from the pest as 

£500 000 per annum. In small areas such as market gardens, 

arsenical sprays combined with kerosine emulsion were 

said to give some success. Muggeridge (1930) considered 

the cost of insecticides to be prohibitive for farm crops 

but recommended spraying with Paris Green for market 

gardens. He also proposed the introduction of parasites 

for biological control of the pest. 

Robertson (1939) examined the b~ology of diamondback 

moth and its parasites and called for further consideration 

to be given to the introduction of parasites. In 1938 and 

1939 two ichneumonid parasites, Angitia cerophaga Grav. 

and Diadromus collaris Grav. were introduced to Nelson 

and Hawkes Bay (Muggeridge and Given, 1941). 

However, where insecticides were still necessary, 

Muggeridge and Given (1941) recommended the use of Paris 
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Green, arsenical and derris dust, particularly in market 

gardens. Cottier and Jacks (1945a, b) evaluated rotenone, 

arsenates and nicotine sulphate for control and later 

DDT was recommended (Taylor, 1948; Kennelly, 1961). 

-More recent recommendations include those for organo-

phosphorus, carbamate (Ferro, 1976) and synthetic 

pyrethroid insecticides (Anon., 1979). 

c. White butterfly 

White butterfly is also found as a pest of 

brassicas throughout the temperate regions of the world 

(C.I.E.,1952). Its biology and population dynamics 

have been studied by, among others, Richards (1940), 

Muggeridge (1942), Harcourt (1966), Dempster (1967) and 

Ashby (1972). It was first recorded in New Zealand by 

West (1930) in Hawkes Bay from where it rapidly spread 

throughout the North Island (Muggeridge, 1932) and later 

to the South Island (Muggeridge, 1942). Following the 

accidental introduction of the butterfly, massive popu1a-

tions were described and in some cases,were reported to 

have caused complete destruction of crops (Muggeridge, 

1935a). However, as Muggeridge (1932) wrote much of 

the alleged white butterfly damage was in fact caused by 

diamondback moth. 

Shortly after white butterfly introduction, 

Muggeridge (1931) listed insecticide control recommendations 

from overseas and also reported on the introduction of the 
\ 

parasites Apanteles glomeratus L. and pteroma1us pupar.i,um L. 
\ 
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to control it. The latter rapidly became established .in 

the North Island but it was not until the introduction of 

an American strain of ~. glomeratus to Nelson in 1938 

that this parasite became widely established. The 

successful establishment of the two parasites led to a 

decline in the white butterfly population but sprays or 

dusts of Paris Green or derris were still recommended 

for heavy attacks on horticultural crops (Muggeridge 

and Given, 1942). Chamberlain (1957) recommended lindane 

for control while Todd (1960) urged caution before using 

insecticides, recognising the potential of virus epizoo­

tics to reduce the population in the autumn. More 

recently, as with diamondback moth, organophosphorus 

carbamate and synthetic pyrethroid insecticides have 

been recommended (Anon., 1979). 

The history of pest control for each of these 

pests has followed the same trends. In the late 19th and 

early 20th century chemicals for pest control were not 

particularly effective and were prohibitively expensive 

in relation to crop value. Pest control measures were 

therefore, generally managerial. In the 1930's both 

biological control and chemical control measures were 

developed while the last 30 years have seen the intro­

duction and widespread use of synthetic pesticides 

(Fig. 2.1). 

With the introduction of efficient pesticides came 

the expectation of high product quality standards which 



Fig. 1. 1. A history of brassica pest control in New Zealand. First recordings of pest species <, ), 

* 

introduction of parasites < ~ ) and control recommendations: * , cultural; •• inorganic 

pesticides; ..... biological pesticides; ~, synthetic pesticides( + . organochlorines; 

t. organophosphate; ~ • carbamate; * . synthetic pyrethroid); •• resistant plants. 

* • * 
1900 1920 

t lal racord 01 A!iIIIA 

• 

I ~ glomeralY. 

• 
• 

I Plerpmaly_ ~ 

A 

• • 

I~glomeratu. (Amer.) 

I~~ 
I~~ 

• .... .... 
.... 

• • • 
1940 

• 
~ 

+ + 
• 

t • + 
+ • • ~ 

1960 

Iv~y. 18SS; ~lcConn~ll. 1911; Berridge. 1914; Taylor. 1922; Hilgendorf. 1924: 1I1uggeridge. 1930; Muggeridge. 193]; Sinclair. ]931; Cotti~r. 1935; 

Cottier. 1936; Anon., 1938: Cottier. 1939; ~luggeridge and Given. 1941; Cottier and Jacks. 1945; Low~. 1956; Barrer. 1957; Anon •• 1957; Chamberlain, 

195.: "·hatman. 1958: Palmer. 1960; Anon .. 1!?61: Kennelly. 1961; Anon .. 1963; Gunning. 1963; French and Douglas. 1967; Helson. 1970; Helson. 1973: 

Uelson. 1!:174; Ridl .. r. I!l7S: Trought. H175: Ft'rguson. 1978: Ag, Chem. Board. I1l79. 

...~ 

~ 
.~ • 

1981)" 



12. 

resulted in schedule spraying without serious considera­

tion of the necessity for each spray (Newsom, 1973). The 

dangers of this excessive use of chemical pesticides have 

often been stated (e.g. van den Bosch, 1978). Resistance 

of diamondback moth to organophosphate insecticides has 

been recorded in Taiwan (Sun et al., 1978) and in Malaysia 

(Sudderuddin, 1978). Pesticide pollution has become such 

a problem that horticultural brassicas which have been 

sprayed with DDT may not be fed to stock (Agricultural 

Chemicals Board, 1979). With the rapidly increasing 

costs of pesticides, blanket spray schedules which keep 

a virtually constant cover of insecticide are becoming 

even more questionable on economic grounds (Haskell, 

1977). These trends, therefore, make it imperative to 

examine the nature of insect damage to brassicas to 

ascertain the potential for reducing the insecticide load 

of these crops. While many researchers have studied 

brassica pests, there are relatively few studies of the 

relationship between insect attack, crop growth, and 

yield despite a considerable research effort in this 

area in other crops. 

The remainder of this review, therefore, examines 

the importance of insects in crop management and the 

relationship between pest attack and yield in both theory 

and practice. Methods of assessing crop losses are also 

reviewed. Reference, wherever possible, is made to 

brassicas, their pests and production but when this is not 

possible relevant examples are taken from other crops. 
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2. Components of pest Management 

The idea that pest control should not be viewed in 

isolation but as a part of a wider system of crop manage­

ment is not new. Stern et ale (1959) proposed the concept 

of integrated control and more recently Geier and Clark 

(1961) proposed the term "pest management" implying the 

integration of pest control into the management of the 

crop. Pest management involves the interaction of pest, 

crop and grower, and the "pest problem" can best be seen 

as an interaction between grower management decision, 

pest attack and plant response (Fig. 2.2). 

a. Grower management decisions 

A grower's management decisions will depend on the 

control options available to him and the constraints on 

his actions set by economic and social factors. A grower 

may seek to minimise losses either by taking measures to 

limit the dimensions of pest attack (e.g. pesticides, 

cultural controls) or by enhancing plapt response (e.g. 

irrigation, fertilizer). 

Pest control options will fall broadly into two 

categories, prophylactic and threshold measures (Norton, 

1975). Prophylactic measures, such as selection of 

resistant varieties or a fixed spray schedule, are 

determined before the pest attack takes place while 

threshold measures will be initiated only when predeter­

mined pest population levels are exceeded in the crop. 
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Using the economist's tool of marginal analysis, 

Headley (1972) defined the optimal level of pest control 

as that set by the economic threshold where the marginal 

revenue gained from an increment of control is equal 

to' the costs of producing it. However, as Headley 

(1975) later pointed out, to carry out this analysis 

requires perfect knowledge of the damage and control 

functions and is a static analysis where the real 

problems are dynamic. It may also avoid consideration 

of the social costs of pest control. 

In fact most growers operate under conditions of 

uncertainty with only a vague awareness of the relation­

ship between the true costs and benefits of pest control. 

In this situation, pest control actions will be guided 

more by the farmer's perception of the pest problem than 

its actual dimensions (Mumford, 1977). His actions will 

also be influenced by his attitude to risk. Often young 

farmers with high outstanding debts will be "risk averse'~ 

seeking to guarantee a fixed level of income rather than 

being "profit maximisers" seeking the maximum profit 

regardless of risk (Norton, 1976a). The farmer's pest 

management decisions will be determined, therefore, by 

his perception of the pest problem and by his attitude 

15. 

to risk. Norton (1976b) has suggested that farmers adopt 

new measures on the basis of trial and error accepting 

those which have proved satisfactory while rejecting those 

which are unsatisfactory. 



However, a grower's perceptions of a problem are 

influenced not only by his own past experiences, but 

also by the advice he receives from advisory officers, 

chemical company representatives, university extension 

services and others. To improve decision making for 

crop protection Norton (1976b) considered that research 

and advisory programmes should be aimed at widening the 

range of crop protection measures available, increasing 

the farmer's perception of relevant information and 

improving the rules by which farmers operate. 

b. The pest attack 

The importance of a pest in crop management is 

determined by its potential to damage the crop which in 

turn depends on three factors - the intensity, the 

duration and the frequency of pest attack. 

Intensity 

16. 

The intensity of attack is determined not only by 

the numbers of insects present but also by the amount and 

rate of food consumption. The amount of feeding varies 

considerably between pests. Given (1944) calculated that 

a white butterfly larva consumed 12.8 times more leaf 

area than a diamondback moth larva; the rate of feeding 

however, was only 9.3 times greater due to the shorter 

development time of the latter. Food quality also affects 

consumption (Slansky and Feeny, 1977) as does parasitism 

of the insect (Rahman, 1970). The total injury to a crop 
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is usually linearly related to the numbers of pests 

present (Conway, 1976) and often single measurements of 

their numbers form the basis for control thresholds 

(Sylven, 1968) or economic thresholds (Stern et al., 1959). --
Grading according to intensity of infestation may also be 

used as a basis for initiation of control actions 

(Chalfant, 1979). 

Duration 

Peak intensity may be of less importance than the 

duration of attack in causing yield loss. Pests such as 

diamondback moth are generally present throughout the year 

in the tropics (Yaseen, 1974) while cabbage aphid is more 

likely to be restricted in its attack by late spring and 

autumn flights (Lowe, 1966). 

For pests of short duration and only one generation 

in the crop little regard need be given to factors such as 

density dependence between generations of the population. 

However, for pests that pass through several generations 

within the crop the density dependent relationship between 

generations and possible pest resurgence should be taken 

into account when determining control strategies (Conway 

et al., 1975). The possibilities of resurgence are 

greatest for those pests with short generation times such 

o as cabbage aphid, 9.3 days at 20 C (Hughes, 1963), and 

less for pests like white butterfly with only three 

generations a year in Canterbury. Climate will affect 

the rate of development and hence the opportunity for 



resurgence. In Britain white butterfly passes through 

only one full generation with a partial second each 
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year (Dempster, 1967) while in the southern USA it 

exceeds six generations (Parker, 1970). Diamondback moth, 

with six generations per year in New Zealand (Valentine, 

1975) completes 24 in Trinidad (Yaseen, 1974). Both 

duration and intensi ty are combined in the concept of 

pest-days. Hughes (1963) measured aphid attack in terms 

of aphid-days while Norton and Evans (1974) related 

froghopper-days to yield loss in sugar cane. 

Frequency 

In determining the value of prophylactic treatments, 

the frequency of pest attack should be established. In 

the south of England Mumford's (1978) survey indicated 

that black bean aphid was present in sugar beet three 

years in ten, while green peach aphid was present every 

year and hence posed a greater pest problem. 

Brassica pests also show differences in their 

frequency of attack. White butterfly has shown a certain 

regularity of attack between years (Dempster, 1967) while 

attacks by diamondback moth are more variable especially 

in those areas such as Canada and Northern Europe which 

are occasionally subjected to large immigration flights 

(Shaw, 1959; Harcourt, 1963). 

The frequency of pest attack was incorporated into 

a "crop vulnerability index" by Bullen (1966) to identify 

areas at most risk from locust attack thus enabling 



improvement in the allocation of resources for its 

control. 

c. The plant response to pest attack. 

19. 

The effects of pest attack on yield will be 

determined not only by the number and feeding of the 

pests but also by the plant response to their attack 

(Conway, 1976). Whilst yield loss generally follows 

insect attack, there have been many reports of no yield 

loss and some of increased yields following pest feeding 

(Bardner and Fletcher, 1974). This ability of the plant 

to compensate or over-compensate may be better understood 

by examining the morphology and physiology of the plant 

in question. 

First, desired yield may be increased by the 

pruning effects of pests, i.e. while overall biological 

yield may decline, the size of the harvested part of 

the plant may increase (Kincade et al., 1970). Insect 

feeding at the growing point of graminaceous plants may 

induce tillering which at some plant densities, may lead 

to an increase in yield (Taylor, 1972). 

Secondly the plant may directly respond to insect 

feeding by producing more leaves (Taylor and Bardner, 

1968b), a greater surface area of the remaining or undamaged 

leaves (Aung and Kelly, 1966) or longer retention of old 

leaves (Taylor and Bardner, 1968b). Evans (1972) described 

the pattern of leaf growth and indicated that removal of 

50% of a young leaf will not necessarily produce a mature 
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leaf of the same reduced proportions relative to undamaged 

leaves. 

Thirdly, it has been shown that plants can increase 

the rate of photosynthesis in the remaining leaf tissue 

when leaf area is removed either by insects or artifi­

cially (French and Humphries, 1977). This appears to 

be related to assimilate sink-source relationships 

reviewed by Stoy (1969) who indicated that there is often 

an overcapacity in potential supply of assimilates. 

The frequent occurrence of compensation in pest­

yield studies led Tammes (1961) to propose a sigmoid 

curve as the generalised pest-yield relationship (see 

Fig. 2.3). The upper portion represents a compensation 

plateau where no yield loss occurs despite pest damage, 

and incre&sing pest numbers past this plateau will cause 

yield loss to the point where competition between 

pests is such that further loss does not occur. 

Southwood and Norton (1973) reviewed this proposal 

and concluded that usually only a portion of the curve 

is visible in experimental results. They suggested that 

where attack occurs on foliage or roots compensation is 

likely to occur, while for direct attack on the product, 

the loss relationship is likely to be linear. 

The plant response to pest attack varies between 

species and even varieties. Similar plants such as turnip 

and radish have shown widely different compensatory 

abilities (Taylor and Bardner, 1968b). Tolerant varieties 

may be able to compensate for pest attack while 
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nutritional and other feedback processes may make the 

plants resistant to attack by affecting the growth of 

the pest population. 

The effect of insect attack on the plant may vary 

widely according to the time of that attack. Coaker 

(1970), for instance, reported that root fly attack 

within a few weeks of transplanting cabbages had the 

greatest effect on subsequent growth whilst Stone and 

Pedigo (1972) showed that soya bean yields were most 

affected by defoliation at podfill rather than at other 

times. Thus a knowledge of those periods of greatest 

susceptibility to pest attack is critical in the 

evolution of pest control strategies. 

3. Causes of Yield Loss in Brassica Production 

Smith (1967) defined two types of pest damage. 

Direct damage where the product itself is attacked by 

22. 

the pest and indirect damage where the non-yielding plant 

parts, such as leaves and roots, may be attacked and the 

effect on yield is due to a reduced flow of assimilates 

to the product. As forms of plant damage have been 

reviewed by a number of authors (Strickland and Bardner, 

1967; Smith, 1967; Bardner and Fletcher, 1974) only 

those with direct relevance to brassicas at stages through­

out their growth will be discussed here. 
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a. Loss of establishment 

Seedling establishment is particularly important 

in direct sown crops. A wide range of pests including 

springtails (Lowe, 1956), wheat bug (Trought, 1975), and 

stem weevil (Upritchard and Park, 1976) may all kill 

seedlings at, or before, emergence. The effects of 

seedling pests may be markedly affected by weather. In 

Europe, during hot periods in spring, flea beetles may 

cause severe losses of brassica seedlings (Jones and 

Jones, 1974). The number of plants killed may be less 

important than their distribution: Jones et ale (1955) 

showed that greater yield loss occurred when the attacked 

plants were clumped rather than spread evenly throughout 

the crop. Loss of seedlings has become particularly 

important in horticultural crops since the widespread 

introduction of precision drilling. 

A patchy stand will lead not only to a loss in 

yield but variations in development and harvesting problems 

caused by lack of uniformity (Wheatley, 1971). 

b. Reduction in growth rate 

Onca the plant is successfully established further 

feeding by insects may reduce the growth rate of the plant 

thus lowering yields. Feeding by white butterfly larvae 

or diamondback moth larvae will reduce the leaf -area of 

brassicas (Harcourt et al., 1955) and thus the potential 

of the plant to photosynthesize will be diminished (Watson, 



1956). Assimilates may be removed directly by 

plant bugs or aphids (Nieuwhof, 196~) where feed-

ing by large colonies may result in a major relocation 

of assimilates within the plant (Way and Cammell, 1970). 

In brassicas, aphids may also transmit viruses such as 

cauliflower mosaic virus and cabbage rain spot virus 

while flea beetles may transmit the less important 

turnip yellow mosaic virus (Nieuwhof, 1969). 

A number of pests including grass grub 

~ottier, 1956), cabbage root fly (Coaker, 1965) and 

nematodes (Rhoades, 1971) will feed on the roots of 

brassicas. This feeding will generally lower the plant 

growth rate although in cases such as turnips where the 

root is the product, this constitutes direct damage. 

c. Direct damage to the product 
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Direct damage to the product may be caused by a 

number of pests. In Britain cabbage root fly larvae are 

frequently found within the sprouts of Brussels sprouts 

(Coaker, 1967) and similar damage is caused by diamondback 

moth in New Zealand. In severe attacks white butterfly 

and cabbage moth larvae will eat into the hearts of 

cabbages while in seed crops the cabbage seed-pod weevil 

and the seed-pod midge may cause serious losses of seed 

(Jones and Jones~ 1974). 

d. Contamination 

Contamination by insects or their products may 
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make the crop unsaleable or at least reduce quality. 

Insect attacks close to harvest can cause major problems. 

Cabbage looper larvae in broccoli heads are undesirable 

as is frass in the heart of a cabbage. Aphid attacks on 

Brussels sprouts may make the sprouts unpalatable due 

to the production of honeydew and the subsequent growth 

of fungi on the sprouts (Nieuwhof, 1969). 

4. Methods of Crop Loss Assessment 

Methods of crop loss assessment have been reviewed 

by a number of authors (Smith, 1967; Strickland and 

Bardner, 1967; Ruesink, 1975; Kogan, 1976). Loss 

assessment studies may take three forms. First those 

that seek to show the potential for a pest to cause yield 

loss (Goldson and Penman, 1979). Secondly those that 

seek to establish a quantitative relationship between 

pest numbers and yield (Wilson et al., 1969) and thirdly 

those that seek to investigate the effects of pests on 

the underlying determinants of yield (Cock, 1978). In 

all cases yield comparisons between attacked and un­

attacked plants are necessary and these may be obtained 

in a number of ways. 

a. Surveys 

Farm surveys have been used to estimate crop 

losses caused by vertebrate pests (Williams, 1974), 

diseases (King, 1977) and insects(Gage and Mukerji, 1978). 

Pest populations assessed close to harvest may accurately 
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reflect yield loss but more often pest incidence is viewed 

as a rough indicator of the damage or pest numbers may be 

used together with an experimentally established yield­

loss relationship (Church, 1971). Pinstrup-Andersen 

et ale (1976) used a combination of subjective and 

experimental methods to establish levels of crop losses 

in beans. However, subjective estimates of damage may 

be highly variable as Mumford (1977) showed for farmer 

estimates of yield losses in sugar beet. Gage and 

Mukerji (1978) related grasshopper survey data to yield 

of cereals and estimated regional yield losses through a 

multiple regression model and Strickland (1957) used 

survey data to estimate national yield losses from 

aphids on Brussels sprouts but found large errors in 

converting from ranked results to quantitative terms. 

It appears, therefore, that surveys are often appropriate 

for estimation of crop losses on a regional basis, but 

models and estimates based on survey data may be impre­

cise due to the many factors causing yield variation at 

the farm level. 

b. Direct comparisons of attacked and unattacked 

plants within a naturally infested crop 

This procedure involves yield comparisons from 

marked plants (Judenko, 1973) or areas of a crop that 

have received different levels of attack within a 

naturally infested crop. Plants may be marked at the 



time of pest attack according to the presence of pests 

(Judenko, 1969), or severity of attack (Lawson, 1979). 

Alternatively, plants or plant parts may be marked at 

the beginning of the season and regularly checked for 

selective oviposition by the pest. White butterfly 

females, for example, will tend to oviposit on the 

largest brassicas in the crop (Latheef and Irwin, 1979) 

making it difficult to distinguish between yield loss 

caused by the pest and yield variations caused by plant 

size. 

Harcourt (1970) monitored plants within an un­

sprayed crop to build a life table for cabbage survival. 

He suggested that the budgetary nature of the life table 

format allowed determination of the monetary value of 

each factor causing loss to be obtained. However, the 

method as applied, does not seem to allow for plant 

compensation and includes the highly subjective decision 

as to what constitutes death for the plant. It may be 

for these reasons that life tables have not been widely 

adopted in damage assessment studies. 

c. Artificial manipulation of pest numbers 

Naturally infested crops may not give the range 

of levels of attack necessary to determine the relation­

ships between pests and yield. For this reason many 

researchers have artificially manipulated the numbers 

of pests on plants. 

27. 
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Sedentary stages of a pest may be merely placed 

on a plant. However, the distribution of the pests 

both over plants and in time needs careful consideration 

(Lynch etal., 1980). More mobile stages may be confined 

by barriers such as electric fences (Taylor and Bardner, 
~ 

1968a)or physical barriers (Muller and Engoff, 1980). 

Barriers can also be used for pest exclusion (Williams, 

1974) or for the exclusion of predators thus allowing 

the development of higher than normal levels of pest 

population (Coaker, 1965). For highly mobile insects 

it is often necessary to use cages. These may cover 

part of a crop (Ignoffo et al., 1978), the plant (Tamaki 

and Hagel, 1978), or a plant part (Gutierrez et al., 1977). 

Bracken and Butcher (1977) used cages only for the period 

of pest attack and maintained the plants insect-free with 

insecticides throughout the remainder of the crop's growth. 

Insecticides may be used to exclude pests in a 

number of ways. Goldson and Penman (1979) maintained 

check plots insect-free by frequent applications of 

insecticides. Wilson et al. (1969) used a range of 

concentrations of insecticides and Getzin (1978) used 

a different number of times of spraying to achieve pest 

gradients. Dina (1976) used sprayed and sprayfree periods 

to examine the susceptibility of cowpeas to insect pests 

at stages throughout their growth. 

The interpretation of the results from trials with 

artificially manipulated numbers of pests requires care. 
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High pest numbers may result in competition between pests 

that does not occur in the field (Pedigo et al., 1977), 

the distribution or timing of pest attack may be abnormal 

(Lynch et al., 1980) or cages may limit light intensity 

or change leaf microclimate (Strickland and Bardner, 

1967). The use of insecticides may enhance yield (Toms, 

1967) or cause loss due to phytotoxicity (Hussey, 1970). 

d. Artificial simulation of damage 

Many insects damage plants by feeding on their 

leaves, roots or other plant parts. It therefore seems 

logical to attempt to mimic the action' o·f pests by 

artificial removal of portions of the plant. Artificial 

defoliation studies simulating pest attack have been 

made on plants as diverse as cotton (Goodman, 1956), 

corn (Hanaway, 1969), rice (Taylor, 1970); sugar beet 

(Dunning and Winder, 1972), soybean (Thomas et al., 1974; 

Poston and Pedigo, 1976), radish (Jackson, 1980) and 

potatoes (Cranshaw and Radcliffe, 1980). Cotton balls 

have also been removed to simulate pest attack (Goodman, 

1956) as have roots from grasses (Davidson and Roberts, 

1968) and the buds of apple trees (Howell, 1978). 

While artificial methods can produce accurately 

defined levels of injury, Smith (1967) pointed out that 

simulated damage is not always equivalent to insect 

damage. He questioned whether artificial damage is 

intrinsically the same as insect feeding and how the 
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position and rate of insect feeding will affect the 

results. The former question has been investigated by 

Poston et al. (1976) who examined the net carbon exchange 

rates of artificially and insect defoliated soybean 

leaves and found that both methods generally caused a 

reduction in the rate of photosynthesis in the remaining 

leaf area. They concluded that insect defoliation could 

be adequately simulated by a number of methods with the 

exception of cutting across the leaf which increased the 

rate of photosynthesis in the remaining tissue. 

Hall and Ferree (1976) compared types of 

artificial defoliation of apple leaves and found that 

photosynthesis was suppressed further when lateral veins 

were cut or when many small holes were made rather than 

a few larger ones. Similarly, in western wheat grass Detling 

~ al., (1979) found that the rate of photosynthesis 

was reduced by artificial defoliation. However, the 

effects of defoliation on a single leaf may not accur-

ately reflect the plant response because, while injury 

of individual leaves may reduce the rate of photosynthesis 

in the remaining leaf tissue, yield compensation by plants 

to pest attack is a common phenomenon (Bardner and 

Fletcher, 1974). The rate of photosynthesis will be 

markedly affected by the demands of metabolic sinks, 

hence, removal of part of the leaves, the metabolite 

source, will result in an increase in the rate of photo­

synthesis of the remaining leaves (Stoy, 1969). Thus the 

rate of photosynthesis may be increased in adjacent leaves 



or those produced following defoliation. 

Taylor and Bardner (1968a) found that the position 

of defoliation of turnips had a considerable effect on 

the plant response while Gupta (1968) recorded an 

increase in sugar beet yield following removal of the 

crown leaves. The effect of rate of leaf removal on 

yield was examined by Jackson (1980) who found that 
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yield of radish was directly proportional to leaf area 

duration and that this relationship was unaltered by 

either single or periodic defoliation. Comparisons of 

artificially and insect defoliated plants are rare. 

Mukerji and Pickford (1976) found that defoliation of 

spring wheat by grasshoppers caused seven times more 

yield loss than that expected from artificial defoliation 

studies and grasshopper feeding trials. They suggested 

that the difference was due to wastage of foliage by the 

. grasshopper feeding action. However, Dyer and Bokhari 

(1976) suggest that regrowth may be affected by some 

inhibitory salivary factor and Capinera and Roltsch (1980) 

found that severe grasshopper feeding resulted in a signi­

ficantly lower rate of wheat seedling growth when compared 

with manual clipping. However, for turnips, Jackson (in 

prep.) has shown similar effects on bulb yield from both 

artificial and insect defoliations. It seems, therefore, 

that artificial methods can reasonably approximate pest 

attacks and as such have been widely used, but it is clear 

that they should be used with caution and where possible 

compared with other methods. 
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5. Economic Thresholds as a Basis for Pest Control 

The development of cheap, effective insecticides 

and consumer demands for high quality produce have led to 

the adoption of schedule applications of pesticide with­

out regard to pest numbers or potential damage (Wheatley, 

1970). As a result the amount of pesticide used far 

exceeds that actually necessary for pest control (Metcalfe, 

1980). This overuse of pesticides is not only wasteful 

but may also have deleterious effects on the environment. 

Thus the attraction of applying insecticides only when 

H,', needed is obvious aid led to the development of the 

economic threshold concept (stern et al., 1959) which 

defines levels of pest attack for the initiation of pest 

control measures. 

Central to the concept is the recognition of an 

'economic injury level' defined as the level of pest 

attack that will cause economic damage thus justifying 

the cost of artificial control measures (Stern et al., 

1959). This justification was later interpreted as being 

the loss of revenue equal to the cost of the control 

measure (N .A.S .', 1969). 

Chiang (1973) later pointed out that where the 

cost of control equals the value of yield lost there 

will be no gain to the grower. Chiang, therefore, 

proposed that the economic threshold is 'the population 

level which is capable of causing sufficient damage so 

that the value of increased crop yield resulting from 
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the control action will be twice the cost of control'. 

However the alleged greater benefits are illusory as 

pesticides in themselves almost never increase yields 

(Headley, 1975) and their use is aimed at preventing 

loss from the potential yield (Smith, 1967), thus 

Chiang's proposed alteration of the concept seems 

unwarran ted. 

The economic threshold concept has been examined 

by Headley (1972) and Carlson (1971) who proposed that 

the economic threshold is the point at which incremental 

control costs equal the incremental losses in the value 

of production. Headley's economic threshold population 

is different in concept from that of Stern et al. (1959). 

It is seen as the population level below which it is 

unprofitable to control the pest assuming that control 

costs increase at an accelerating rate as the population 

gets smaller. The pest population then is controlled 

down to the economic threshold. This is conceptually 

different from the definition given by Stern et al. (1959) 

where the economic threshold population is not the optimal 

but the maximum allowable before control measures are 

initiated. 

There are therefore, two distinct approaches to 

the development of economic thresholds. The first, 

essentially empirical, is followed by adherents such as 

Stern etal. (1959), Stone and Pedigo (1972) and Kogan 

(1976) who view each pesticide application as a marginal 

control input to be balanced against the benefits of 
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control. The second, more holistic approach, followed 

by Carlson (1971), Headley (1972) and Gutierrez etal. (1979) 

is where the overall pesticide level is balanced 

against potential savings. While even Stern (1973) is 

critical of the simplicity of the former approach the 

successful application of the latter requires a sophist-

ication of information that we seldom have (Geier and 

Springett, 1974). 

It may be more than just difficulty of calculation 

that has hindered the adoption of economic threshold 

strategies for, even in areas where economic thresholds 

have been established such as on cotton crops in Arizona, 

farmer acceptance has been low (Adkisson, 1973). Norton 

(1976a) considered that lack of acceptance is often due 

to the failure to recognize the objectives of the farmer. 

The objective of the economic threshold is one of finding 

the optimal solution while the farmer will often normally 

be content with a satisfactory solution to his pest 

problems·. This was illustrated in a survey of sugar beet 

growers by Mumford (1981) who found that most farmers in 

the survey were insurers, more interested in guarding 

against occasional severe losses than in maximizing 

profits. 

Economic threshold studies, though, have pinpointed 

times in crop growth where there is little yield loss from 

pests and also those time~ most sensitive to pest attack and 

thus,where thresholds have been adopted,there has often 
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been a reduction in pesticide use (Newsom, 1974). The 

majority of thresholds that have been incorporated into 

pest management programmes have been obtained empirically 

and often refined with further experimentation (Stern, 

1973). These have been widely implemented in field 

crops such as cotton (Stern, 1973), soybeans (Kogan, 

1976) and sugar beet (Hull, 1968) but greater difficulties 

exist with their application to perennial crops (Kain, 

1975; Wearing, 1975). 

Difficulties in establishing accurate thresholds 

arise as levels will be altered by changes in prices of 

both the insecticide and the product (Headley, 1975), 

management practices (Kain, 1975) and the attitudes 

and capabilities of the farmer (Farrington, 1977). While 

these factors may cause adjustments in threshold,levels 

general principles are probably more broadly applicable 

than implied by Reynolds et al. (1975) who hold the view 

that 'each field has to be viewed as a separate unit 

with its own unique limits, tolerances and requirements'. 

It appears, to quote Stern (1973), that "obviously the 

economic threshold concept is not so simple as originally 

proposed" and that up to the present the concept has 

gained more theoretical acceptance than practical 

in terpretation . 
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6. Modelling as an Aid to Pest Control Decision Making 

The decision of whether or not to use an insect 

control measure or which control measure to use is a 

complex problem. Increasing dependence on chemicals with 

higher costs and higher quality standar&for produce make 

the penalty for making a wrong decision much greater, yet 

correct decisions may be hard to identify. This was 

shown dramatically by Gutierrez et al. (1979) who 

suggested that Lygus control in cotton for the last 20 

years in California, where it has been regarded as the 

key pest and where control measures have caused serious 

secondary pest outbreaks, was probably unnecessary. 

In dealing with complex problems we create 

algorithms, which for simple decisions may be purely 

mental, but with increasing complexity of problems the 

algorithms are likely to take the form of more sophist-

icated, often mathematical, models as imitations or 

representations of the real world (Ruesink, 1975). There 

is a vast array of model types to choose from, varying 

from simple qualitative models (Norton, 1976a), which 

can help to provide a conceptual framework within which 

to examine problems, to complex mathematical models 

seeking to represent whole ecosystems (MacNaughton, 1979). 

Models, therefore, can be simple or extremely complex 

and tend to be found at both extremes of this range with 

few in intermediate positions (Gutierrez et al., 1979). 
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Some of the most simple models are those utilising 

linear or curvilinear regressions (Waters and Ewing, 1976). 

Many of the early economic threshold models fall into 

this category (Ogunlana and Pedigo, 1974). However, 

these simple inductive models can be dangerous as they 

tend to mould biological reality (Conway, 1973) and as 

Shoemaker (1976) pointed out there are numerous variables 

that will affect the crop yield with insect number being 

only one of them. She, therefore, proposed the use of 

more complex mathematical models to describe the inter­

action between plants, pests, weather and other variables. 

Multivariate models were first developed by Watt (1962) 

to explain pest dynamics and later put to practice in 

the analysis of spruce budworm dynamics in Canada 

(Morris, 1967). 

Many more recent pest control models have used 

differential equations as the basis for modelling as 

these are considered more appropriate for dealing with 

dynamic processes (Waters and Ewing, 1976). Gutierrez 

et al. (1979) used differential equations to construct 

simUlation models for cotton, alfalfa and grape pest 

systems. Simulations can provide good descriptive models 

of the pest/crop ecosystem which can be used for further 

experimentation including dynamic programming techniques 

to find the optimal control solutions (Shoemaker, 1976). 

Despite the research effort into modelling in 

recent years, Way (1973) questioned the benefits for 
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practical pest control programmes concluding that complex 

mathematical models have provided "no examples of improve­

ment on straight forward mental models or on simple 

predictive techniques in research and practice of pest 

control". Indeed Menke (1974) provided an illustration 

by building a simulation model of soybean and velvetbean 

caterpillar and used the model to examine pest control 

strategies with the aim of minimising the percentage 

defoliation due to the caterpillar. He concluded by 

suggesting that the kill factor should be applied early 

in the first generation and that early ins tars should be 

killed as it is impossible to kill later instars with 

normal rates of conventional insecticides. Both factors 

were reasonably well known before the simulation experi­

ments and not elucidated by them. The simulation 

experiment also avoided the central question in pest 

management in soybean, that of the relationship between 

defoliation and yield which will vary throughout the 

crop growth (Kogan, 1978). 

While there have been apparently few models that 

have directly improved pest management, Norton (1977) 

considered that this must be the prime objective of pest 

management modelling and called for a more pragmatic 

approach to the subject. He considered that modelling 

can achieve this objective by performing two roles. 

First, by improving perception of pest problems and 

second, by the more tangiple means of improving research 

and extension programmes by evaluating new forms of 
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control and providing more information on pest attack 

and the decision rules for coping with it. Within 

these rules decision theory techniques may enable the 

outcome of alternative control st~ategies to be evaluated 

(Norton, 1977). Forecasting for outbreaks or 

susceptible stages of pest population may be carried 

out by phenological models such as PETE (Welch et al., 

1978) and models that give "on-line" instructions to 

decision makers may be applicable in some circumstances 

(Tumrnula, 1976). Norton (1977) concluded by propounding 

the value of simple descriptive models to determine 

explicit questions which are followed by empirical 

experimentation to determine the answers, e.g. the 

effects of simple control strategies, or the shapes 

of key relationships in the pest management system. 

In this way the chances of improvements in real life 

systems will be greatly increased. 



CHAl?TER 3 

EXl?ERIMENTAL SITES AND CROP 

MANAGEMENT 

40. 

Crops of Brussels sprouts, var. Jade Cross, were 

grown for three seasons at the Horticultural Research 

Area, Lincoln College. In the first season, 1977/78, 

approximately 5000 Brussels sprout plants were grown in 

five beds, 65 x 6 m, at a spacing of 0.6 x 0.6 m between 

plants in a trial area of 0.25 ha (Fig. 3.1, Plate 3.1). 

Beds were separated by gaps of 1.5 m to allow tractor 

access. Seedlings were grown in a seedbed where the 

first sowing was made on 2 November 1977 but poor germin­

ation and establishment necessitated a second sowing on 

27 November 1977. Plants from the first sowing were 

transplanted on the 22 and 23 December 1977 into approx­

imately half the area in eight three-row blocks randomly 

selected from within the five beds. The remaining seven 

blocks were filled with plants from the second sowing on 

the 12 and 13 January 1978. 

Beds A and B were used for the artificial defoliation 

experiment (6.1) and were sprayed with a mixture of insect­

icides (carbaryl, 200 kg a.i./ha and demeton-S-methyl 

0.15 kg a.i./ha) with a boom spray at three weekly 

intervals, to minimize the effects of insect pests. 

Beds D and E and half of bed C were divided into 

five, 6 x 6 m plots and subjected to a selective spray 
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Fig. 3.]. Experimental site, 1977/78 season, at the Horticultural 

Research Area, Lincoln College. A - E, bed labels; 

I - V, treatments (see text). ( .. ), Brussels sprout plants, 

var. Jade Cross. 1" three-row beds from sowing 1. 2 , 

sowing 2. 
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programme for Experiment 7.1. The crop was hoed twice 

to maintain control of weeds and irrigated as necessary. 

The whole crop was sprayed with copper oxychloride 

fungicide in April and May to prevent the spread of 

disease. Plants were 'stopped' by removal of the 

terminal bud on 30 April 1978 and harvest of the 

sprouts took place in late May and early June. 

In the 1978/79 season approximately 6000 Brussels 

sprout plants were grown in a similar 0.25 ha site at 

the Horticultural Research Area (Plate 3.2). A single 

sowing took place on 11 November 1978 and the plants 

were transplanted into five and a half beds of the same 

size and spacing as the previous season (Fig. 3.2). The 

majority of the sprouts were variety Jade Cross but two 

beds of seven different varieties were transplanted each 

into five blocks with the varieties in randomly alter­

nating rows. 

Beds A and B contained the artificial defoliation 

experiments, 6.2 and 6.3, and were maintained under a 

regular three weekly spray programme' with permethrin and 

demeton-S-methyl applied at rates of 50 g a.i. and 200 g 

a.i./ha respectively with a boom spray. Beds C and D 

were divided into four blocks of eight plots to examine 

the effects of spray-free periods on pest populations 

and damage. Beds E and F were unsprayed. A 9" 

Johnson and Taylor suction trap was placed in Bed E to 

monitor insect flight. ' 



Plate 3. 1 Experimental site 1977/78 at the Horticultural 

Research Area, Lincoln College. 
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Experimental site, ]978/79 season, at the Horticultural 

Research Area, Lincoln College. A - F, bed labels. ]-

8, treatment numbers (see text). Varieties: , , Multima 

line; x Jade E; • ,Jade Cross; + Lunet: Jade G; 

Rampart: " Rasmunda. s. t., suction trap. 



Plate 3.2 Experimental site 1978.79 at the Horticultural 

Research Area, Lincoln College. 
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Weeds were controlled by hoeing and irrigation 

was given as necessary. The plants were 'stopped' on 

25 April 1979 and harvesting took place in late May 

and early June. 

In the 1979/80 season one bed, 60 x 6 m, of 

Brussels sprouts was grown in another similar site 

on the Horticultural Research Area. The plants were 

sown on 5 November and transplanted on 21 December 

1979. The crop was managed as in previous years 

except that no insecticides were used. 

47. 
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CHAPTER 4 

THE CHARACTERISTICS OF PEST ATTACK ON 

BRUSSELS SPROUTS IN CANTERBURY 

1. In troducti on 

In Canterbury the major insect pests affecting 

Brussels sprout production are the white butterfly, 

diamondback moth and cabbage aphid (Harvey et al., 1979; 

Brandenburg, 1980). The biology and population dynamics 

of these pests have been extensively studied (e.g. Dempster, 

1968; Ashby, 1972 ; Harcourt, 1966; Hughes, 1963; 

McLaren, 1975). However, there is little information 

available on the characteristics of their attack as 
o 

defined in Chapter 2 by its timing, intensity and fre-

quency. The only information on these characteristics in 

Canterbury is contained in studies by Lowe (1968), which 

indicated great variability in flights of cabbage aphid, 

and work by Ashby (1972), who suggested a second peak of 

white butterfly occurred in January. 

To determine the characteristics of pest attack in 

Canterbury, Brussels sprout crops were examined and pest 

populations monitored for three consecutive growing 

seasons between 1977 and 1980. Population estimates of 

white butterfly, diamondback moth and cabbage aphid were 

obtained by direct counts, destructive harvest of plants 

and also, for diamondback moth in the developing sprouts, 



49. 

by an extraction technique. 

Close examination of the plants following destruct­

ive sampling allowed determination of the pest distribution 

pattern on the plant together with changes throughout the 

season to be monitored. The immigration potential at 

three sites was also monitored for white butterfly and 

cabbage aphid. Historical data were also used, where 

available, to reach some conclusions on the frequency 

of pest attack. 

2. Materials and Me thods 

a. Population estimation by direct counting 

In each season population estimates of the three 

major pest species were obtained at approximately three­

weekly intervals by direct counts on marked plants in 

the field. In 1978 ten plants were randomly selected 

from each of the five unsprayed blocks in the selective 

insecticide trial (Fig. 3.1, Beds C, D and E). Counts 

from these plants were used to provide seasonal population 

data based on an initial population size of 50 plants. In 

1979 and 1980 50 and 30 plants respectively were randomly 

selected from the unsprayed beds and sampled throughout 

the season. 

In each year the following listed stages of the 

. pests were categorized and noted: 



White butterfly - eggs, larvae, pupae. 

Diamondback moth - larvae, pupae. 

Cabbage aphid - alatae, colonies greater 

than 50 apterae. 

In 1979 and 1980 white butterfly and diamondback 

moth larvae were visually separated into ins tars based 

on the head capsule width and larval characteristics 

given by Ashby (1972) and Robertson (1938). 

To ensure that the regularly sampled plants were 

representative of the crop as a whole, a further 25 

50. 

plants were randomly selected from the crop on 16 February 

for comparison with the marked plants. The marked plants 

were also sampled the following day for a check on 

variation in time of sampling and searching efficiency 

of .the observer. 

b. Population estimation by destructive sampling 

In 1978 and 1979 plants were cut at ground level 

and brought back to the laboratory where leaves and 

sprouts were stripped and the pests upon them counted so 

that not only population estimates could be made but also 

the position of the pests on the plant could be determined. 

Comparisons could also be made between the population 

estimates so obtained and those determined from plants 

examined in situ. 

In 1978 one marked plant was randomly selected 

and taken from each plot in beds C, D and E at 
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approximately monthly intervals through the growing season 

and in 1979 three samples of 20 randomly selected plants 

were taken from the unsprayed area (Fig. 3.2, Bed E) 

at approximately six-weekly intervals. In the laboratory 

the crown or terminal bud was first removed from the stem 

followed by the leaves in groups of ten. Within each 

group records were made of pest numbers. Sprouts were 

then cut from the stem and, after a superficial examina­

tion, diamondback moth larvae were extracted from them. 

c. Extraction of larvae from the sprouts 

To monitor the movement of the population of 

diamondback moth larvae into the sprouts it was necessary 

to develop a method to extract the larvae from them. In 

1978 several methods were attempted and initially the 

most successful seemed to be by shaking with a wrist 

action shaker set at low speed. Sprouts were placed in 

a funnel and shaken for two minutes. Larvae thus 

extracted were shaken into a tray below the funnel. How­

ever, it seemed that as the sprouts grew larger fewer 

larvae were extracted and it was not clear whether this 

was the result of a population decline or decreasing 

efficiency of the extraction method. Subsequent tests 

revealed that efficiency was reduced with increasing 

sprout size and number (Table 4.1). At the end of the 

first season a passive extraction method was developed 

to overcome this problem. Sprout samples were placed in 



TABLE 4.1 The effect of increasing sprout number and size the efficiency of shaker 
extraction tested by seeding sprout samples with diamondback moth larvae. 
Means + standard error. 

Trial 1 

% of seeded larvae 
extracted 

Trial 2 

% of seeded Instar 
larvae 
extracted Instar 

IV 

III 

10 

67 + 6.7 

11. 4 

67 + 17.6 -
35 + 9.6 -

Sprout number (Mean size 19.2 nun) 

20 30 40 

47 + 13.4 20 + 6.7 27 + 13.4 

Mean sprout size (nun) 

17.8 22.4 26.5 

53 + 17.6 60 + 11.5 20 + 11.5 - - -
20 + 8.2 10 + 5.8 5 + 5.0 - -

Ln 
l\J 
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five litre liver pails with gauze covered holes top and 

bottom (Fig. 4.1). R The adhesive 'Tack Trap' was placed 

in a 2 cm strip on the remaining area of lid to catch 

the moths after emergence. The containers were then 

placed in a 25 0 C controlled temperature (C.T.) room with 

a 50% relative humidi ty (R.H.) and examined at intervals 

until all the moths had emerged from the sample. This 

method was tested by 'seeding' samples of sprouts with 

known numbers of larvae from a particular stage. This 

test resulted in 84% recovery of the moths with no bias 

towards the older stages (Table 4.2). This method, 

therefore, was adopted in preference to shaker extraction 

for diamondback moth larvae. 

The development of diamondback moth populations 

in the sprouts was estimated throughout the latter part 

of the season by harvesting 15 plants at approximately 

two-weekly intervals from the unsprayed bed (Fig. 3.2, E). 

The leaves were removed, the stems subsequently cut into 

three parts corresponding to upper, mid and lower zones 

and each placed in the pails in groups of five. 

d. Flight activity and immigration 

The potential pest infestation level is indicated by 

the flight activity and immigration of the pest. This 

was monitored by trap plants or flight traps depending on 

the pest characteristics. In 1978 weekly sowings of 

Brussels sprouts, var. Jade Cross, were made into 

R . 1 11 Anlma Repe ents Inc. 



Tack trap (under lid) 

Sprouts placed On bottom 

(1/3 full) 

5cms 

Fig. 4.1. Five litre container for extraction of diamondback moth from samples of sprouts. 



TABLE 4.2 Efficiency of pail extraction for different stages of diamondback moth 
tested by seeding samples of Brussels sprouts, 300 g fresh weight, 
with known numbers of larvae and eggs. 

Larval stage 

IV III II I 

Trial I 95.0 + 5.8 87.0 + 5.1 81.5 + 3.5 

No. replicates 4 4 2 

Trial II 67.5 + 7.5 100.0 + 14.7 72.5 + 17.5 71.5 + 11.1 

No. replicates 4 4 4 4 

Mean figures expressed as a percentage of initial larval number (+ S.E.) after 
correction for moth emergence from controls. 

EGG 

51.0 + 5~O 

2 

42.8 + 6.9 

4 

1Jl 
U1 
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individual pots. After six weeks four plants were placed 

2 in water-filled 0.5 m metal trays at each of three sites 

for a period of 7-10 days. They were then removed and 

replaced with fresh plants from the subsequent sowing. 

In the laboratory the plants were examined for eggs of 

white butterfly and alatae of cabbage aphid. 

The three sites were: 

1. Lincoln College Horticultural Research Area -

placed within the 0.23 ha experimental block 

of Brussels sprouts. 

2. Junction Road, Halswell - placed in a vegetable 

garden on the edge of a residential area. 

3. Research Farm, Lincoln College - placed in a 

lucerne paddock over 1 km from the nearest 

brassica crop. 

In 1979 flights of cabbage aphid and diamondback 

moth were monitored by a suction trap placed in the 

Brussels sprout crop. The trap was sunk into the ground 

so that the opening was 25 cm above ground level and 

below the crop canopy at the later stages of its growth. 

3. Results and Discussion 

a. Evaluation of sampling methods 

The results of further sampling by direct counting 

to check the validity of the method are shown in Table 

4.3. Neither recounting a selection of marked plants nor 

counting unmarked plants gave rise to any doubts about 



/ 

TABLE 4.3 Comparison of pest population estimates from marked plants in situ with 
recounts of a sample of marked plants and counts from a further-5ample 
of unmarked plants (16 February 1979) . 

Whi te butterfly Cabbage aphid 

Eggs Larvae 

Diamonaback 
moth 

Larvae Alatae Colonies 

50 plant sample 1.68 + 0.21- 0.84 + 0.16 1.26 + 0.23 11.5 + 0.77 4.9 + 0.77 - - - -
25 plant recount 1.20 + 0.21 0.82 + 0.19 1. 48 + 0.31 10.8 + 1.25 3.9 + 0.72 - - - - -

. Comparative count 1.32 + 0.23 0.64 + 0.17 1.24 + 0.36 11.33 + 1.10 5.7 + 1.07 ~ - - - -of 25.plants 

,1;: 

lJ1 
~ . 
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the consis.tency of the method in providing an accurate 

estimate of the population. 

However, as Southwood (1966) suggested, it is 

better to estimate the population by more than one 
, 

method, in particular to ensure that a proportion of the 

population is not being missed by the sampling method. 

Comparisons of population estimates from direct counts 

and destructive sampling for both seasons are shown in 

Figure 4.2. While both methods reflect the population 

trends throughout the season it appears, as expected, 

that destructive harvesting and close examination in the 

laboratory gave the more accurate estimate of 

tot.al numbers. The only exceptions were two 

occasions when considerably more white butterfly eggs 

were recorded in the field than in the laboratory examina-

tion, perhaps because these eggs are easily dislodged 

from the foliage during transport of the plants. 

Large differences occurred between numbers of 

diamondback moth recorded by each sampling method, due to 

the presence of larvae concealed within the sprouts. 

Extraction of larvae from the sprouts of harvested plants 

in both years showed clearly that, in the later harvests, 

the major portion of the population was found within the 

sprouts, thus making it impossible to make accurate 

estimates of the total population from direct counts 

alone. 

It seems clear that direct counting is most reliable 

for the large, relatively sessile larvae of white butterfly 
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and less efficient for the smaller diamondback moth larvae 

particularly when these are concealed in the crown or 

sprouts of the plant. This lower efficiency is clearly 

shown when larvae of the two lepidoptera are separated 

into instars (Table 4.4). It appears that with direct 

counts the smaller early ins tars of both species are 

more likely to be overlooked. In selection of sampling 

methods, however, the efficiency of the sampling method 

must be balanced against other factors:- time needed for 

sampling and disruption of the habitat. Direct counts 

have the advantage of speed; five minutes/plant compared 

with 25 minutes for a sampled plant subsequently examined 

in the laboratory, and at peak populations direct counts 

of 50 plants produced population estimates with standard 

errors of the means of 10% and 18% for white butterfly 

and diamondback moth respectively in 250 minutes. To 

have attained the same level of accuracy for white 

butterfly by destructive sampling would have taken over 

1500 minutes and required the destruction of 43 plants 

at each sampling. Direct counts of pest populations were, 

therefore, used as the major method of population estima­

tion throughout the growth of the crop on the grounds of 

reliability and speed with minimum disruption of the 

habitat. Nevertheless destructive harvest is useful when 

used at stages throughout the growth of the crop as a 

check on the population, to determine the position of 

insects in the plant and, by extraction of larvae from the 



TABLE 4.4 Comparison of estimates of population structure of white.butterfly and 
diamondback moth on Brussels sprouts at peak popu1ation-s estimated 
by direct counting (DC) and destructive sampling (DS). 

Instar:- v IV III II I 

Whi te butterfly 
26/3/79 DC 0.92 0.84 1.16 0.42 0.22 

DS 0.90 1.05 1.40 0.55 0.50 

Instar:- IV III II I 

Diamondback moth 
16/2/79 DC 0.94 o .32 0 0 

DS 2.10 0.95 0.55 0 

0"\ 
I-' . 



sprouts, to estimate populations of diamondback moth 

throughout the later part of the growing season. 

b. Immigration and flight activity 

White butterfly 

The pattern of egg laying at each of the three 

sites is presented in Figure 4.3. Differences existed 

between sites in both the timing of egg laying and the 

number of eggs laid. Most eggs were laid at the field 

site with the h~ghest peak recorded in late March. At 

62. 

the RaIswell site numbers fluctuated over the season with 

peaks recorded in February and March while at the Research 

Area site numbers declined from an initial peak in Jan­

uary to low numbers later in the season. The decline 

in egg numbers laid at the Research Area site may be 

due to growth of the surrounding crop which was soon 

larger than the trap plants and thus more likely to 

receive eggs (Latheef and Irwin, 1979). The greatest 

number of eggs were laid on the isolated plants at the 

Field site and least at the Research Area site suggesting 

a dilution effect through the availability of large 

numbers of possible oviposition sites at the latter. This 

would suggest that small areas of brassicas are at greater 

risk from this pest than large ones, which is borne out 

by the observations of growers (P. Bull, pers. comm.). 



>-

'" ~ 

2·0 

\ 
\ 

HR 

,ol\~ 

Artogeia rcpoe Brevicoryne brcsSicoe 

20 HR 

10 

HRrl ~------~--------~-=~--~==~--~-----====-----~~------~~~~~~~----~------~-------------

10 HSL 20 liSt. 

--c 
" Ci. --.. 5 a; 
.0 
c: 
:> 
Z 

HSL. 

>oj F 

J 
F-

2·0 F 

Jon Feb Mar Apr May Jon Feb Mar Apr 

Fig. 4. 3. Pattern of egg laying of white butterfly and immigration of cabbage aphid in the 1977/78 

season as measured by numbers collected on trap plants at three sites. 



Cabbage aphi d 

Greater similarities occurred between the cabbage 

aphid numbers recorded at each of the three sites with 

early peaks recorded in December and January and a 

second flight in March and April. This second peak was 

not, however, recorded at the Halswell site. It seems 

that these peaks correspond to the spring and autumn 

flights characteristic" of this pest in Canterbury 

(Lowe, 1966). Nearly 90% of all aphids were collected 

at the Research Area site (Table 4.5). This may have 

been due to the orientation of the flying aphids towards 

the pattern of green plants on bare soil created by the 

crop (Smith, 1976) or dispersion losses from secondary 

flights· (Hughes, 1963). Such net losses will be more 

likely from isolated plants than those within a crop 

which will also receive aphids from such local flights. 

Diamondback moth 

Daily suction trap catches of diamondback moth in 

1979 are shown in Figure 4.4. There was considerable 

variation in the daily catch but weekly totals indicated 

a decline in flight activity from February onwards 

through the autumn with few adults caught after mid May. 

c. Distribution on the plant 

White butterfly 

Examination of harvested plants in 1978 revealed 

that virtually all the larvae were found on the leaves 

64. 
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and that these were evenly distributed over the plant in 

its early growth stages but in the later part of the 

season tended to gather in the upper zone of the plant 

(Fig. 4.5). This result appeared to be caused by a 

preference of the larvae for the younger foliage. 

Diamondback moth 

Diamondback moth larvae were found predominantly 

in the crown of the young plants (Table 4.6). The 

remainder were distributed fairly evenly on the leaves 

although there was a tendency for greater numbers in 

66 •.. 

the upper part of the plant. Later in the season, follow­

ing sprout formation, the extraction technique indicated 

that there was a shift in the population from the leaves 

and the crown into the developing sprouts (Fig. 4.6). 

Cabbage aphid 

At the height of attack cabbage aphid colonies 

were distributed over the whole plant with most occurring 

in the middle leaf zone. After the autumn population 

decline colonies were found only on the lower leaves 

(Table 4.6). A similar change in distribution pattern 

throughout the season was found on Brussels sprouts in 

Britain by Church and strickland (1952). 

d. Seasonal population estimates 

Whi te butterfly 

Seasonal trends of white butterfly egg numbers 

recorded by direct counts are shown in Figure 4.7. In 
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TABLE 4.5 Total of whi te butterfly eggs and cabbage 
aph~d alat ae collected on trap plants at 
each of. three. si tes, 1977/78. 

Research area Halswell 

A. rapae -eggs 43 329 

B. brassicae 
alatae 727 33 

68. 

Field 

430 

57 

TABLE 4.6 Distribution of dialllondba.ck moth larvae and 
ca.bbage aphid colonies on the Brussels sprout 
plant at ,two stages of growth. 

P. xylostel1a B. Brassicae -

Date of examination: 17/2 23/3 17/2 23/3 

Le.af group 

Crown 1.65 0.15 0.60 0 

1 - 10 0.70 0.20 2.30 0 

11 - 20 0.60 0.10 3.00 0 

21 - 30 0.35 0.05 0.90 0 

31 - 40 0.20 0.15 0.25 0.10 

41 - 50 0.10 0.15 

51 - 60 0.05 0.10 
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all seasons egg numbers increased to a peak of between 

1.6 and 2.2 eggs/plant in mid February followed by a 

gradual decline throughout March. Larvae showed a 

similar, but delayed, pattern (Fig. 4.8) with peak 

numbers of between 2.9 and 3.4 larvae/plant occurring 

in late March of all three years. Other studies have 

generally resulted in autumn population peaks (Dempster, 

1968; Parker, 1970) but a different pattern occurred 

in New South Wales where both spring and autumn peaks 

were recorded (Hamilton, 1979). In contrast to the 

increase in egg laying in February recorded in this 

study, Ashby (1972) reported a decline of egg laying 

on September sown cabbages in mid January with few eggs , 

laid in February. The apparent contradiction in these 

results may be due to the plant age or condition acting 

as a deterrent to oviposition (Thorsteinson, 1960). 

A feature of the population curves is the regu-

larity in both time and level of peak attack between 

years. Dempster (1968) and Harcourt (1966) also recorded 

uniformity in peak populations and Ashby (1972) suggested 

that this relative uniformity between years is due to 

71. 

pressure from a steady block of mortality factors operating 

in a density dependent manner. However, occasional out-

breaks of white butterfly have been reported, apparently 

as the result of the failure of natural control by 

parasites (Todd, 19Sn). 
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Diamondback moth 

Mean larval numbers recorded from whole plant 

counts are shown in Figure 4.9. In 1978 larval numbers 

reached an early peak of 2.5 larvae/plant in mid 

February and then fluctuated between 1-3 larvae per 

plant throughout the rest of the growing season. In 

1979 the population was lower, reaching a peak of only 

1-2 per plant in early February and slowly declining 

thereafter. In 1980 high levels per plant were recorded 

in early February and from then they declined throughout 

the rest of the season. 

It must be remembered, however, that these results 

do not represent the total population, only that portion 

visible on the leaves and, therefore, not those concealed 

in the sprouts. The latter group will increase as a 

proportion of the total population with the development 

of the sprouts from mid-February onwards. Extraction 

from the sprouts revealed that the population built up 

within the sprouts with increasing sprout size. In 1979 

the number emerging reached a peak of 12.5 per plant in 

late April before declining in winter (Fig. 4.6). While, 

because of the efficiency of the sampling method, this 

figure closely reflects the actual population of eggs, 

larvae and pupae existing in the field at the time of 

harvesting, it should not be confused with the actual 

number of moths that would emerge in field conditions as 

considerable mortalities exist during the development of 

73. 
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the insect. These were shown by Harcourt (1963) who 

recorded a mean larval mortality of 76% and pupal 

mortality of 5% over 18 generations in Canada. 

Variability in intensity and pattern of attack, 

as shown in Figure 4.9, seem to be a characteristic of 

thi,s pest. Similar sizes of peak populations were found 

to occur on cabbage in New South Wales but there was a 

considerable difference in the timing of peak attack 

between years (Hamilton, 1979). Even greater variability 

was recorded in India (Abraham and Padmanaban, 1968) and 

Trinidad (Yaseen, 1974). In both countries peak 

populations coincided with periods of hot, dry weather. 

However, no such relationship was found in this study, 

perhaps due to sprinkler irrigation applied to the crop 

during dry conditions. 

Cabbage aphid 

Cabbage aphid numbers recorded from the three 

seasons are shown for alatae (Fig. 4.10) and colonies of 

greater than 50 apterae (Fig. 4.11). While peak numbers 

of alatae varied only between ten and 17 per plant, the 

variation in numbers of aphid colonies between years 

was much greater. In 1978 flights of aphids into the 

crop shortly after transplanting led to a subsequent rise 

in the number of colonies with more than 0.5 per plant 

recorded from early January until early February. Aphid 

popUlations then declined to very low numbers in mid 

February and early March until a second flight of ala tae 
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in late March which resulted in a peak of 14 alatae per 

plant. This inflight of alatae was followed by an 

increase in numbers of colonies until an autumn peak 

was reached in April. In 1979 a different pattern 

emerged. Alatae numbers reached a peak of 17 per plant 

in early March together with colonies which reached a 

peak of six per plant at this time. This peak was 

followed by a rapid crash in the population coinciding 

with a period of wet weather and the spread of the fungal 

disease Entomophthora sp. through the colonies. Few 

aphids were recorded in April and May. In 1980 an early 

season peak of alatae never resulted in great increases 

in the number of colonies which remained at less than 

0.5 per plant throughout the season. 

78-. 

Lowe (1968) recorded the flight pattern of cabbage 

aphid in Canterbury over an eight year period and showed 

that there was considerable variability in the numbers 

caught and the times of peak catches between years 

although spring and autumn peaks could always be dis­

tinguished. However, even with similar peak flights, as 

recorded in this study, the subsequent growth of colonies 

varied considerably depending on factors such as weather 

and predation. Studies of cabbage aphid in the U.K. have 

also indicated considerable variability in attack between 

both sites and seasons (Epsom, 1952; Strickland, 1954). 

Indeed the characteristic variability in both time and 

intensity of attack led Thomas (1948) to use cabbage aphid 

as an example in a discussion on the difficulties of 

forecasting pest attack. 



4. Summary - The Characteristics of Pest Attack 

in Brussels Sprouts 

a. White butterfly 

Females fly into the crop from the surrounding 

area following transplanting and commence egg laying. 

79. 

Thus isolated plants or small areas of crop are more 

likely to receive high egg numbers than those plants with-

in an extensive crop. Each year egg numbers rose to 

a peak in late February followed by a decline to low 

numbers in April after which few eggs were laid. Larval 

numbers followed a similar but delayed pattern reaching 

a peak in late March and declining to low numbers in 

May. The pattern of larval distribution on the plant 

is apparently random in the early stages but there is a 

tendency for larval aggregation on the upper leaves and 

crown in April and May. 

It appears that a characteristic of white butterfly 

attack is its regularity between years in both 

timing and intensity in crops grown ,.,ith the same manage­

ment practices. Thus, once the dimensions of pest attack 

are established for a crop in anyone year the probability 

of a similar attack in subsequent years is very high. 

b. Diamondback moth 

Diamondback moth larvae were found in the crop 

'shortly after transplanting, presumably the progeny of 

gravid females entering the crop from nearby brassica 
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crops or cruciferous weeds. Larval numbers on the leaves 

rose to an early peak in February followed by fluctua­

tions presumably due to both variable mortality factors 

and the relatively short generation time of diamondback 

moth which allows a rapid population response to 

favourable conditions. 

In the early stages of growth larvae fed on the 

leaves and in the crown of the plant. From mid February 

onwards there was a shift of the popUlation into the 

sprouts as these expanded. Numbers within the sprouts 

rose to a maximum in May and declined in the winter 

months. This decline is no doubt due to the cessation 

of flight activity in May and the decrease in egg laying 

at low temperatures. While diamondback moth was present 

in considerable numbers in all years the population showed 

a marked variation in size between years which is a char­

acteristic of attack by this pest. 

c. Cabbage aphid 

Unlike the other two pests there was little 

uniformity between years in attack by this pest. Flights 

of alatae into the crop came at different times between 

December and April and the subsequent rise in numbers of 

colonies also varied considerably. It seems that this 

variability, the causes of which are unclear, would make 

predictions of outbreaks of this pest difficult and thus 

bring into question the use of pre-emptive measures 

against it. 



CHAPTER 5 

THE FEEDING BEHAVIOUR OF 

DEFOLIATING PESTS ON 

BRUSSELS SPROUTS 

1. Introduction 

The impact of a pest on a crop depends not only 

on population size but also on the rate of feeding of 

the individuals that make up the population. This will 

be governed by the population structure, competition and 

fitness as well as environmental factors, in particular 

temperature. However, as Waldbauer (1968) commented, 

little is known about the effects of environment on the 

rate of feeding of insects. 
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In this chapter the effects of developmental stage 

and temperature on the amount and rate of feeding by white 

butterfly and diamondback moth larvae are assessed. 

2. Materials and Methods 

a. White butterfly 

Eggs of white butterfly were collected from a crop 

of Brussels sprouts, var. Jade Cross, and maintained at 

15 + lOCo The eggs were checked daily and after hatching, 

the neonate larvae were removed and placed in 50 mm 

diameter clip cages clamped on the leaves of six week old, 

glasshouse grown Brussels sprout plants (var. Jade Cross) 

(Plate 5.1). The clip cages were made from polyethylene 
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Plate 5. 1 Clip cages for feeding experiments with white butterfly 

and diamondback moth larvae on Brussels sprout 

leaves. 



tube and gauze, an enlarged version of the aphid cages 

developed by Burt et ale (1955). 

The plants were then placed in constant environ-

ment cabinets at one of the following temperatures: 

15 0 C, 20 oC, 24o C, 29 0 C (all ~ IO), with ten larvae at 

each temperature. All cabinets were set to a 16L:8D 

photoperiod with a relative humidity of 70% + 5%. 

Larvae were examined daily to determine instar 

stage by head capsule width, and then moved to a fresh 

leaf. The leaf area consumed by the first and second 

instars was measured using a binocular microscope with a 
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calibrated grid eyepiece. The areas consumed by the third 

to fifth ins tars were determined by placing the leaves 

2 above I rom graph paper and counting the uncovered squares. 

Leaf weight consumed was calculated by a difference tech-

nique (Taylor and Bardner, 1968a). Fresh plants were 

placed in the cabinets every 2-3 days. Resulting pupae 

were removed, oven dried at 70 0 C for 48 hours and then 

weighed. 

A further set of ten larvae was placed on three 

month old Brussels sprout plants in the field. The field 

plants were larger than the laboratory plants and the 

cages were moved every second day, otherwise the procedure 

was as described above. 

b. Diamondback moth 

To carry out experiments with this insect, a colony 

was maintained in a 20 0 C constant temperature chamber. 



Adults were confined in a 600 x 300 x 450 mm muslin 

covered cage and allowed to oviposit on young Brussels 

sprout plants, var. Jade Cross. These plants were then 

removed from the cages and the resultant larvae allowed 

to develop on them. Pupae were returned to the ovi­

position cage and the colony was frequently supplemented 

with field collected adults. The adults were fed with a 

solution of honey and water. 

Experiment 1. Larval feeding of diamondback moth. 

Daily feeding of larvae on Brussels sprouts was 

examined at 25 0 C. Twenty neonate diamondback moth larvae 

were taken from the colony described above and placed 

individually in 20 mm diameter clip cages on the lower 

surface of eight week old, glasshouse grown Brussels 

sprout plants, var. Jade Cross. Each day the cages were 

removed and the area consumed, either as a mine or total 

leaf area, was estimated under a binocular microscope 

using a calibrated grid eyepiece. The larval stage was 

determined on the basis of head capsule width (Robertson, 

1939) and the sex determined by examination of the fourth 

instar. Following emergence from the mine, larvae were 

moved each 2-3 days to a new leaf. The amount consumed 
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in each ins tar and the total leaf area consumed was calcu­

lated from the sum of daily increments. On pupation, the 

pupae were removed and oven dried at 70 0 C before weighing. 

Due to high mortality in the early stages, a second trial 



was established with 20 second instar larvae following 

the same procedure as described above. 

Experiment 2. The effects of temperature on 

feeding and development of the 

diamondback moth. 

Previous experiments had revealed that larval 

mortality was lower on turnips (Jackson, unpub.). There-
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fore, in this experiment young turnip plants were used in 

place of Brussels sprouts. 

Ten second instar larvae were placed individually 

in 20 rom diameter clip cages on the leaves of eight week 

old, glasshouse grown turnips. var. York Globe, at each 

o 0 000 of four temperatures: 15 C, 20 C, 25 C, 30 C (all + 1 ) . 

Each day, as in Experiment 1, the leaf area consumed was 

estimated, the ins tar determined and the larvae moved to 

a fresh portion of leaf. In the fourth instar sex was 

determined and following pupation, weight measured. 

3. Results 

a. White butterfly 

The effects of temperature on development time, 

larval feeding and resultant pupal weight for white butter-

fly are summarised in Table 5.1. Eighty-eight percent of 

larvae in the experiment survived to pupation and develop-

ment time was clearly inversely proportional to temperature. 

As temperature increased, both leaf area and weight 

consumed decreased: absolute consumption at lS.SoC being 



TABLE 5.1 

Temperature 
(T) 

15.5 

19.9 

24.1 

29.5 

Regression 
equation 

Correlation 
coefficient 
(33 df) 

The effect of temperature on larval development, leaf consumption and 
pupal weight of white butterfly. Mean + SEe 

Development Leaf area (LA) Leaf weight (LW) Pupal weight 
time (days) consumed ( cm2 ) consumed (mg) (P) (mg) 

25.1 + 0.7 58.37 + 2.59 212.1 + 12.3 48.4 + 1.2 - -
a l a a a 

17.8 + 0.4 46.05 + 2.35 151.0 + 9.1 38.9 + 1.3 -
b b b b 

11.3 + 0.4 33.19 + 2.61 136.9 + 9.8 39.8 + 1.8 -
c c c b 

8.8 + 0.5 37.62 + 2.82 140.2 + 13.5 30.4 + 1.5 - -
d c bc c 

LA=-1. 41T+77. 68 LW=-4. 6T+261. 3 P=-1.14T+64.61 

-0.60*** -0.55*** -0.79*** 

~urnbers followed by the same letter in the same column are not significantly 
different (P < 0.05). 

*** P < 0.001 



o approximately 1.5 times higher than at 29.5 C. Pupal 

weights were correlated with leaf area and leaf weight 

consumed (r = 0.54 and 0.62 respectively, 33 df.) and 

showed a corresponding decline with increasing 

temperature. 

Food consumption may be estimated by measuring 
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either the leaf area or leaf weight consumed. Comparison 

of these alternative methods showed that, particularly for 

the early instars, the visual estimation of leaf area 

removal provided the more reliable estimate of 

consumption (Table 5.2). 

TABLE 5.2 Comparison of methods of estimating white 
butterfly larval food consumption showing 
mean leaf area and mean leaf weight consumed 
together with the coefficients of variation 
(CV) for each instar. 

Instar 

I II III IV V 

Leaf 2 0.10 o .35 1.28 4.36 37.96 area (cm ) 

CV% 39.2 32.1 53.9 30.2 18.9 

Leaf weight (mg) 0.41 1.55 3.81 15.72 138.91 

CV% 190.7 81. 7 46.2 41. 3 22.5 

At all temperatures larval feeding increased 

exponentially with each successive instar so that approx­

imately 86% of the total larval consumption took place in 



the fifth instar (Fig. 5.1). This relatively high con­

sumption in the fifth instar is partially explained by 

a higher feeding rate but is also affected by the 

longer development time of this instar compared with 

the earlier stages. Within each instar, feeding rose to 

a maximum mid-way through the stage and then declined 

prior to ecdysis (Fig. 5.2). A similar pattern was 

found by Smith and Smilowitz (1976) who distinguished a 

post-moult recovery phase, a feeding phase and a pre-

moult phase within each instar of white butterfly. 

In the field plot the mean screen temperature 

recorded for the experimental period was l8o C. The mean 

field larval development time of 17 days, slightly less 

than expected from the laboratory work (Table 5.1), 

suggests that the leaf temperature was slightly 

higher than the recorded air temperature as has been 

reported for apple leaves on cool days in Canterbury 

(Ferro et al., 1979). The mean leaf area consumed was 

269 + 15 mm2 , and the corresponding leaf weight 237.9 ~ 

13.1 mg. This decrease in leaf area consumption in the 

field compared with that in the laboratory reflects the 

increased leaf thickness and weight/mm2 in the former 

which was more than twice that of the glasshouse grown 

plants. The leaf weight consumed, however, was greater 

than that observed in the laboratory at l8-20 o C. It 

seems likely that this was a function of lower nitrogen 

levels in the leaves of the older field grown plants. 

88. 
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Slansky and Feeny (1977) have shown that total consumption 

will increase from 119 to 212 mg for fifth ins tar larvae 

with decreasing nitrogen levels of fertilized collards 

(Brassica oleracea var. asephala). This explanation is 

supported by the fact that the mean pupal dry weight in 

the field was 43.8 + 2.1 mg - approximately that 

predicted from the linear regression model for a temper­

ature of 18-20o C. 

b. Diamondback moth 

The food eaten and time taken for the development 

of each instar on Brussels sprouts is shown in Table 5.3 

using pooled data from both trials of Experiment 1. 

TABLE 5.3 Development time and leaf area consumption 
by ins tars of diamondback moth feeding on 
Brussels sprout leaves at 25 0 C. Mean 
values + SEe 

Instar 

I II III IV 

Development time 1.9+0.04 2.6+0.26 3.0+0.34 4.0+0.27 
(days) 

Leaf area (mm2 ) 1.4+0.3 7. 7+0.8 31.0+3.9 302. 8+ 19.6 

% of total 
consumption in 0.4 2.2 9.0 88.3 
each instar 



92. 

Survival of larvae in the first trial was low (40%) with 

most mortality occurring before the transition from leaf 

mining to leaf eating stage. It appeared that this high 

mortality was due to some qualitative factor in the leaf, 

possibly cuticle thickness, which also retarded the 

growth of the larvae because the mean development time 

for the first instar of surviving larvae was 1.9 days 

compared with 3.6 days for those that subsequently died. 

Survival in the second section, where larvae were placed 

on the plants in the second instar, was higher, 60%. 

The bulk of consumption took place in the final ins tar 

with female larvae consuming significantly more than the 

males (P < 0.05) (Fig. 5.3). Female pupae were also 

significantly heavier (P < 0.01) than the males, 16.5 mg 

and 11.7 mg dry weight respectively. 

The effects of temperature on feeding and develop­

ment of third and fourth ins tar larvae in Experiment 2 

are presented in Table 5.4. Survival of larvae in this 

experiment was 85%. With each increase in temperature 

there was a significant decrease (P < 0.05) in the 

duration of the larval stage. While differences in con­

sumption due to temperature were not significant, a 

trend of decreasing pupal weights emerged with increasing 

temperatures. The mean female pupal weight in this 

experiment was 1.2 times that of the males. 
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TABLE 5.4 Effect of temperature on development time, 
consumption and pupal weight of diamondback 
moth feeding on turnip leaves. 
Mean values + SEe 

Temperature 

Developmen t Leaf area Pupal n 
time ins tars consumed weight 
III and IV (rnrn2 ) (fresh mg) 

1 
15 11. 7+0.33 387.7+44.32 67.4+2.98 6 

a a a 

20 7.9+0.30 287.8+24.18 63.6+3.71 8 -b a ab 

25 5.2+0.56 237.9 + 40 • 37 61.8+1. 9 8 9 
c a ab 

30 3.9+0.23 329.5+20.98 55.7+3.09 10 
d a b 

1 Means adjusted with larval sex as covariate. 

4. Discussion 

a. Larval development rates 
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The relationship between temperature and development 

rate is shown in Figures 5.4 and 5.5 for white butterfly 

and diamondback moth respectively, using data from the 

experiments outlined above as well as those from earlier 

workers. For both insects the relationship tends to be 

linear except for some deviation at low temperature. How-

ever, as Wigglesworth (1974) explained, the relationship 

between the development of insects and temperature takes 

the form of a sigmoid curve with low rates or nil develop-

ment taking place at both high and low extremes. The 
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assumption of linearity over the central portion of the 

curve has been utilised in the estimation of developmental 

threshold temperatures and the thermal constant for 

development (Chiang, 1978). These parameters, estimated 

from the present data, are 175 DD above 9.1 °c and 128 DD 

above 8.7o C for white butterfly and diamondback moth 

respectively. The results are lower than those, 208 DD 

above 7.l7o C for white butterfly and 148 DD above 6.8o C 

for diamondback moth calculated from all available data 

in Figures 5.4 and 5.5. The lower temperature thresholds 

obtained in both cases from the total data may be due to 

the inclusion of low temperature data which breaks from 

linearity to conform to the sigmoid relationship, although 

Umeya and Yamada (1973) have shown that local differences 

can occur in the developmental characteristics of diamond-

back moth. In Taiwan, Chen and Su (1978) suggested that 

the development rate of diamondback moth reaches a maximum 

at 25 0 C but this does not seem to be borne out in this 

or other experiments. 

b. Larval consumption 

2 White butterfly consumed an average of 43.81 cm 

of the leaves of glasshouse grown Brussels sprouts. This 

was 12.8 times the consumption by diamondback larvae 

2 which consumed an average of 3.43 cm of leaf area. 

Similar results were obtained by Parker and Pinnell (1973) 

who recorded a mean leaf area consumption by white 
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2 butterfly on cabbage of 42.68 cm and Taylor and Bardner 

(1968a) who recorded a mean of 3.74 cm2 turnip leaf 

consumed by diamondback moth larvae. Chen and Su (1978) 

reported feeding of the latter ranging between 3 and 

2 12 cm per larvae with the highest levels recorded at 

low temperatures. A similar ratio of consumption 

between the two pests to that in this study, 12.8:1, 

was found by Given (1944). 

For both species consumption increased markedly 

wi th stage of development and in each over 85% of con-

sumption took place in the final instar. In reviewing 

feeding studies, Waldbauer (1968) also found that the 

bulk of food was eaten by the later instars, particularly 

for lepidopterous larvae. More specifically, Parker and 

Pinnell (1973) reported 85% of total consumption by fifth 

instar larvae of white butterfly but, for diamondback 

moth, Chen and Su (1978) calculated only 60% of con-

sumption by fourth instar larvae reared on cauliflower 

at 25 0 C. However, their method of calculation would 

tend to underestimate consumption at this stage as their 

experiment was terminated when only half the larvae had 

pupated. 

Pupal weight decreased with increasing temperature, 

for both species. However, such variations in pupal 

weight according to the temperature of development are 

not uncommon. Danthanarayana (1975) found that pupae of 

Epiphyas postvittata (Walker) were lighter when reared at 

25 0 C than at 20 0 C and he observed that in the field 
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heavier individuals occurred during cool conditions. 

Pupal weights of Trichoplusia ni (Hubner) were also found 

to vary with temperature (Boldt et al., 1975) where 

maximum weight occurred at 2S oe corresponding to the 

maximum consumption of soybean foliage. 

c. Larval feeding rate 

In assessing the impact ofa pest on a crop, 

absolute feeding will be of less importance than the 

rate of feeding in relation to the stage and rate of 

growth of the crop. For both pests the rate of feeding 

increased with increasing temperature. This is shown for 

white butterfly in Figure S.6 where the feeding rate (FR) 

clearly increased with temperature (FR = 0.140T - 0.092, 

r = 0.80, 33 df), but at a lesser rate than would be 

expected from the development curve. If lSoe is set as 

a base measurement for development and feeding it can 

be shown that while development rate increases by three 

times between lSoe and 270 e the feeding rate will increase 

by only 1.8 times. Extrapolation of the relationship 

between feeding and temperature reveals.a feeding 

threshold of 1.Soe, far below the development threshold 

of 9.loe estimated earlier. This indicates that feeding 

continues, albeit at a slow rate, at temperatures where 

development is very slow or has stopped, a feature that 

has, in fact, been noted among larvae stored at low 

temperatures. 
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The relationship between temperature and feeding 

for each instar is presented in Table 5.5 The daily 

feeding of a population of white butterfly larvae can 

therefore be represented by the model: 

where N refers to the number in each instar and C is 

the relationship between temperature and feeding for 

each instar given in Table 5.5. A similar model may 
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be constructed for diamondback moth utilizing feeding 

rates for the third and fourth instars, where the majority 

of feeding occurs: 

with C(DBM) values as presented in Table 5.6. 

The models thus developed may need adjustment for host 

plant stage and quality as well as for competition 

between pests but can provide a satisfactory approximation 

of the feeding of the larvae in normal conditions. For 

example, the predicted output of the feeding model for 

white butterfly can be compared with field collected 

data from Experiment 1. After adjustment for lower 

absolute consumption of leaf area in the field, there is 

a close relationship between the model output and observed 

values for the feeding rate of larvae during the 

experiment (Fig. 5.7). 



TABLE 5.5 

Instar 

I 

II 

III 

IV 

V 

Larval No. 

The effect of temperature on daily leaf area consumption (C) (cm2/day) of each 
larval ins tar of white butterfly feeding on Brussels sprout leaves. 

Tempe ra t ure (oC) Regression Correlation 
equation Coefficient ( 33df) 

15 20 25 30 

0.026 0.038 0.048 0.067 Cl = -0.014 + 0.003T 0.59** 

0.027 0.134 0.155 0.150 C2 = 0.050 + 0.004T o .46 * * 

0.363 0.426 0.531 0.654 C3 = 0.025 + 0.021T 0.53** 

1.154 1.497 1.765 2.050 C4 = 0.235 + 0.062T 0.63** 

6.856 8.190 7.563 11.790 C5 = 1.275 + 0.335T 0.66** 

8 10 8 9 (**, p < 0.01) 
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The importance of temperature in the models can be 

seen in Table 5.7 where the rate of feeding of a final 

instar larvae of each pest has been calculated from the 

feeding rate curve, in relation to the mean monthly 

temperatures throughout the period of sprout growth. It 

is clear that the rate of consumption declines markedly 

throughout the autumn months. The use of mean temperatures 

in the model is also an oversimplification since even on 

days with mean temperatures below the threshold the daily 

temperature peak will often exceed it. To overcome this 

Poston etal. (1978) used the concept of accumulated heat 

in constructing a model for leaf consumption by p~inted 

lady (Cynthia cardui L.) larvae on soybeans but their 

model does not take into account the variations that 

occur in absolute feeding as a result of temperature 

variation or the differences that may occur between 

developmental and._feeding thresholds. Thus while both 

types of model can give results that approximate feeding 

by natural populations their improvement depends on a 

better understanding of the relationship between develop­

ment and feeding since the amount of feeding is clearly 

dependent on both the accumulation of heat and the 

temperature at which it accumulates. 



TABLE 5.6 The effect of temperature on mean daily consumption (C(DBM) mm2/day) by third and 
fourth instar diamondback moth larvae feeding on turnip leaves. 

Instar Temperature (T) (oC) Regression Correlation 
equation coefficient 

15 20 25 30 (31 df) 

III 7.3 6. 7 12.8 17.5 C (DBM) 3 = 1.06T 11.54 o .57* * 

IV 57.7 68.4 112.8 137.4 C (DBM) 4 = 7.llT - 57.87 0.64** 

Larval No. 6 8 9 10 (**, P=<O.Ol) 

TABLE 5.7 Comparison of mean monthly temperatures in Canterbury with the estimated 
white butterfly fifth instar larval feeding rates throughout the period 
of Brussels sprout growth. 

Month 

Jan. Feb. Mar. Apr. May June 

Mean temp. (oC) 16.0 15.8 14.1 11.4 8.1 5.6 

Mean feeding rate 6.63 5.29 4.72 5.09 3.99 3.15 
(cm2/day) 

I-' 
o 
U1 
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CHAPTER 6 

PLANT GROWTH AND RESPONSE TO 

DEFOLIATION 

1. Introduction 

To understand the impact of pests on a crop it is 

necessary to be aware of the growth pattern of the plant 

and its responses to insect attack. The former aspect 

of Brussels sprout growth has been studied in Europe 

(Jones, 1972; Fisher and Milbourn, 1974; Fisher, 1974a, 

b; Berntsen, 1975) but there is little information avail­

able on the effects of insect pests on growth and yield 

of the crop. 

Brussels sprouts are widely grown throughout 

Western Europe, needing both a long cool growing season 

and winters where frosts do not exceed -10 to -15 0 C 

(Kronenburg, 1975). They are either direct sown in spring, 

or, more commonly, sown in seed beds and transplanted into 

2 the field at densities ranging from 1.2 - 4.8 plants/m 

(Nieuwhof, 1969). After transplanting, leaf growth is 

rapid with maximum leaf area index reached in early autumn 

followed by the senescence of older leaves (Jones, 1972). 

Stopping, or removal of the apical bud, takes place in 

autumn approximately two months before harvesting and 

results in a more even pattern of sprouts on the stem 

(Fisher, 1974a) and can also increase yields (Berntsen, 
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1975). In England, the axillary bud, i.e. the sprout, 

starts to form in August but rapid bud growth does not 

begin until September (Fisher and Milbourn, 1974). The 

sprouts may be picked over as many as five times during 

harvesting (Nieuwhof, 1969) or alternatively, single 

destructive harvests may be made, stripping all sprouts 

from the stem at one time (Fisher, 1974b). Hand picking 

is often used for sprouts sold on the fresh market while 

single harvests are more common for processing sprouts. 

At harvest, sprout dry weight accounts for between 25 

and 40% of total plant weight (Fisher and Milbourn, 1974). 

In this chapter the growth pattern of the Brussels 

sprout plant in Canterbury will be examined as well as 

its response to artificial defoliation designed to 

simulate pest attack. Experiment 6.1 took place in the 

1977/78 growing season while all others occurred in the 

1978/79 season. The Brussels sprout variety Jade Cross, 

was used in all experiments. Experiment 6.5 also included 

other varieties for a comparison of growth patterns,. 

Details of the site and management of the crop are given 

in Chapter 3. 

2. Materials and Methods 

a. Experiment 6.1. The effects of defoliation on the 

growth pattern and yield of Brussels sprouts. 

In this experiment the effects of defoliation on 

growth and yield of Brussels sprouts were examined using 

two sowing dates in a split-plot experiment. Main plot 
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treatments, i.e. sowing times, were completely randomised 

as were the 23 sub-plot treatments presented in Table 6.1. 

Treatments 1 - 13 were designed to examine the effects 

of three levels of defoliation, 25, 50 and 75%, at four 

stages of gvowth with a common control. Treatments 14 -

23 were designed to reveal, by sequential harvests, the 

growth pattern of undefoliated plants and the effects of 

50% defoliation at four stages of growth on the subsequent 

growth of the plant. The experimental layout is shown in 

Figure 3.1, Beds A and B. There were three three-row 

plots from each sowing time, each consisting of 276 

plants in sub-plots of 12 plants (3 x 4). Details of 

the crop growth and management were presented in 

Chapter 3. Defoliation was carried out by cutting along­

side the leaf midrib with scissors in accordance with 

the procedure described by Jackson (1980) (Plates 6.1 and 

6.2). At each sampling the two centre plants in each 

plot were removed and taken to the laboratory where each 

plant was divided into leaves, petioles, crown, stem and 

sprouts. Leaf area was measured using a Licor No. 3150 

leaf area meter and component plant parts were oven-dried 

at 70 0 C to a constant weight to provide dry matter 

measurements. 



TABLE 6.1 Treatments for Experiment 1, 1977/78, showing level and time of defoliation 
and time of harvesting of Brussels sprouts. 

Treatment 
number 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 

Defoliation 

Level 

0 
25 
50 
75 
25 
50 
75 
25 
50 
75 
25 
50 
75 

Times 

Sowing 1 

Sowing 2 

Time 

I 
I 
I 

II 
II 
II 

III 
III 
III 

IV 
IV 
IV 

Harvest 
time 

I 

11/1 

13/2 

V 
V 
V 
V 
V 
V 
V 
V 
V 
V 
V 
V 
V 

II 

13/2 

20/3 

Treatment 
number 

III 

20/3 

20/4 

14 
15 
16 
17 
18 
19 
20 
21 
22 
23 

IV 

20/4 

18/5 

Defoliation 

Level 

0 
0 
0 
0 

50 
50 
50 
50 
50 
50 

V 

6/6 

16/6 

Time 

I 
I 
I 

II 
II 

III 

Harvest 
time 

I 
II 

III 
IV 
II 

III 
IV 

III 
IV 
IV 



Plate 6. 1 Artificial defoliation of Brussels sprouts. 

50% defoliation, 16 February 1978. 

110 



Plate 6.2 Artificial defoliation of Brussels sprouts. 

75% defoliation, 16 February 1978. 

111 
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h. Experiment 6.2 The effects of early defoliation 

on the subsequent growth pattern of Brussels 

sprouts, 1978/79. 

In this experiment the effects of early defoliation 

on subsequent plant growth were examined in a randomised 

block design using plants from Beds A and B (Fig. 3.2). 

There were five blocks~ each of three rows of 13 plants. 

Each block was surrounded by a guard row. Each row 

within the block was randomly allocated one of three 

treatments; no defoliation, 50% defoliation or 100% 

defoliation and defoliation took place on 14 February, 

1979. Every second plant within the row was randomly 

allocated a sampling date at anyone of three-weekly 

intervals when it was removed at ground level and taken 

to the laboratory. 

In addition to the characteristics recorded in 

Experiment 6.1, leaf number and the number of leaf 

scars were recorded as well as stem height, sprout 

number and sprout fresh weight. 

c. Experiment 6.3. The effect of defoliation on 

yield of Brussels sprouts - season 2, 1978/79. 

In this experiment the effects of different levels 

of defoliation on yield were again examined at times 

throughout the growing season corresponding to early, 

mid and late stages of growth. A 3 x 5 factorial, 

randomised block experiment was designed to examine 
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the effects of defoliation on the yield of Brussels 

sprouts. There were three defoliation times; 1 February, 

13 March and 30 April; and five levels of defoliation; 

O 25 50 75 and 100% Each of the S ;x blocks of , , ". . 
Brussels sprouts was divided into 15 plots of 12 plants 

(3 x 4) (Fig. 3.2, Beds A and B). Defoliation was 

carried out as in the previous season. 

Intermediate harvests were not taken, but measure­

ments of leaf number and sprout size were recorded 

throughout the later part of the growing season. At the 

final harvest, two plants were taken from the centre of 

each plot and, in the laboratory, sprout size in the 

upper, mid and lower zones was measured together with 

plant height and leaf area. The plant was divided into 

crown, leaves, petioles, stems and sprouts and oven dried 

as in Experiment 6.1. 

d. Experiment 6.4. The effect of leaf removal from 

different zones of the Brussels sprout plant. 

In Chapter 4 it was shown that in the latter part 

of the growing season white butterfly larvae were 

aggregated in the upper part of the Brussels sprout 

plant. In order to assess the effects of defoliation in 

different plant zones the following 2 x 3 factorial 

experiment was carried out. Five sets of eight matched 

plants were selected from among adjacent, untreated plants 

in the completely sprayed plots (1) of Beds C and D in 
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the 1978/79 season (Fig. 3.2). The plants were divided 

into upper, mid and lower zones and leaves removed from 

individual zones or combinations of zones on 25 April. 

One sprout from each zone was then measured and marked 

with a spot of indelible ink. The marked sprouts were 

remeasured on the 7 May and on the 15 May the treated 

plants were harvested. 

In the laboratory marked sprouts were removed 

from the stern, measured and weighed individually. Five 

sprouts were removed from the centre of each zone and 

weighed together and the total sprout weight was also 

recorded. 

e. Experiment 6.5. Brussels sprout varieties -

patterns of growth. 

In 1978/79 the growth of seven varieties of 

Brussels sprouts, selected for differences in maturity 

times, was assessed in each of two beds, one under the 

regular spray schedule and the other unsprayed (Fig. 3.2, 

Beds B and E). Wi thin each bed there were five blocks 

comprising seven rows by nine plants. On transplanting, 

varieties were assigned at random to rows within the 

block. To examine the growth characteristics of the 

varieties, leaf number and sprout size in upper, mid and 

lower zones were assessed in situ from Bed B. At harvest 

two plants were randomly selected from each row in Bed E 

and plant height, sprout weight and sprout number were 

assessed as well as damage to the sprouts which will be 

discussed in Chapter 7. 
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3. Results and Discussion 

a. Pattern of plant growth. Experiments 6.1 and 6.2. 

The pattern of plant growth, from both sowings in 

Experiment 6.1 and from the single sowing in Experiment 

6.2 is shown, with curves fitted by eye, in Figure 6.1a 

and b (Appendices 6.i and ii). For all three sowings 

plant growth followed a similar pattern. An initial 

period of slow growth during establishment of the plant 

was followed by s tern elongation and rapid leaf grow.th. 

The plant then entered a period of maturity when leaf 

growth and senescence were balanced with a rapid growth 

of both stem and sprouts. The final phase was one of 

senescence where total plant weight declined due to the 

loss of leaves and petioles. Data from the two sowings 

of Experiment 6.1 are combined in Figure 6.2 to show the 

general growth pattern for a Brussels sprout plant. In 

the first year, following early November sowing, peak leaf 

area occurred in March. A three week delay in sowing 

caused leaf area to reach a peak at the end of April. In 

1978/79 initial growth was slower and leaf area reached a 

peak in mid April. Sprout weight increased rapidly from 

March onwards in both years while delayed planting delayed 

sprout formation. Sprout weight at harvest reached an 

average of 50% of the total dry weight of the aerial part 

of the plant in both years. This compared with 25-40% 

(Fisher and Milbourn, 1974) and 30-40% (Jones, 1972) in 

England where the total plant weight included the roots. 
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Fisher and Milbourn (1974) calculated that the contri­

bution of roots to total weight was 20% at all stages 

throughout the plant growth while Jones (1972) calculated 

it as 10%. Mean yields from undefoliated plants in 

Experiments 6.1-3 varied from 105-111 g dry weight/plant, 

or approximately 700-800 g fresh weight/plant, which 

were higher than yields obtained for variety Jade Cross 

in Europe (Jones, 1972; Grainger, 1974; Berntsen, 

1975) • 

Leaf area must be considered a major determinant 

of yield but its dimensions at anyone time will be the 

results of two processes, new leaf growth and leaf 

senescence. The rate of leaf production reaches a 

maximum in late March (see Chapter 8) while senescence 

of older leaves seems to bear a linear relationship with 

time from April onwards (Fig. 6.3). 

Sprout yield is the aggregate of the weight of 

individual sprouts borne in the leafaxils up the 

stem. The growth of sprouts in upper, mid and lower zones 

of the stem is shown in Figure 6.4. The growth of the 

lower zone sprouts is initiated first, followed by those 

in the mid zone and later in the upper zone. The result 

is a gradation from large to small sprouts up the stem, 

the characteristics of which may be altered by crop 

management practices such as spacing and stopping 

(Nieuwhof, 1969). 
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b. The effect of defoliation on final harvest yield 

of Brussels sprouts. Experiments 6.1 and 6.3. 

The effects of time and level of defoliation in 

both years are presented in Table 6.2. In Experiment 

6.1 yields were significantly (p < 0.05) reduced follow-

ing mid-season defoliati,on when compared to those after 

early or late defoliation and trend analysis (Denenburg, 

1976) indicated a significant (P < 0.05) quadratic trend 

between the treatment means. At the highest level of 

defoliation (75%) yields were significantly lower than 

in any of the other treatments and trend analysis 

re'vealed a significant, negative, lineqr relationship 

between defoliation and yield. The mean yields from , , 

each level and time of defoliation are presented in 

Figure 6.5 and treatment means for each time of sowing 

in Appendix 6.iii. 

In Experiment 6.3, mid-geason defoliation again 

caused significantly greater (P < 0.05) yield loss than 

early or late season defoliation. Increasing ~evels of 

defoliation caused, in general, increased yield loss 

with significant linea4quadratic and cubic trends 

revealed by the method of orthogonal po.ly~omials 

(Denenberg, 1976). The relationship between yield and 

the level of defoliation at each stage is shown.in 

Figure 6.6 (Appendix 6.iv). 



TABLE 6.2 The effect of level and stage of artificial 
defoliation on yield of Brussels sprouts. 
Experiments 6.1 and 6.3. 

Level of defoliation 1977/78 

0 106 

25 109 

50 99 

75 89 

100 

LSD(5%) 8 (15) 1 

Linear trend ** 
Quadratic trend ns 

Cubic trend 

(1) LSD for comparison of common control with 
level of defoliation means. 

Time of defoliation 1977/78 

I 105 2 1 Feb 

II 91 13 Mar 

III 94 23 Apr 

IV 105 

LSD( 5%) 9 

Linear trend ns 

Quadrati c trend ** 

(2) Means do not include control yield • 

. ~ 

1979/80 

112 

102 

103 

98 

71 

12 

** 
** 
** 

1978/79 

107 

86 

98 

8 

Footnote: The only significant interaction in 1977/78 
was Time of sowing x Time of defoliation 
(quad.) x Level of defoliation (lin.) - 5% 
significant and in 1978/79 Time of defoliation 
x Level of defoliation (lin.) - 5% significant. 
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Fig. 6.5. The effect of defoliation of Brussels sprouts on sprout 
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In each case there was a significant decrease 

(P < 0.05) in yield over the range of defoliation but it 

is clear that the shapes of these relationships vary 

between times of defoliation. Following early defoliation, 

trend analysis (Denenberg, 1976) indicated that the line 

of best fit contained a significant (P < 0.05) cubic 

element suggesting strong compensatory growth for 

intermediate levels of defoliation. After mid season 

defoliation, a significant (P < 0.05) quadratic trend 

indicates that as the level of defoliation increases the 

rate of yield loss increases; following late defoliation 

however, the relationship is best explained by a linear 

function (P < 0.01) with no significant improvement 

obtained by adding the quadratic or cubic terms (Appendix 

6. i v) • 

It seems, therefore, that at the early growth 

stage there is high yield loss only with extreme levels 

of defoliation. Greatest yield loss will follow high 

levels of defoliation in the mid season. This has also 

also been found for potatoes (Cranshaw and Radcliffe, 

1980) and sugar beet (Dunning and Winder, 1972) and it 

has been suggested that the plant is able to recover from 
.~ 

early defoliation while for late defoliation a considerable 

portion of the product is already formed, hence defoliation 

has less effect. Following late defoliatlon the relation-

ship tends to be linear but losses are low as demonstrated 

by its shallow slope (Fig. 6.6). 
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;I:t seems clear, therefore, that defoliation can 

cause yield loss in Brussels sprouts but that the extent 

of the loss will vary with the growth stage of the plant. 

Thus, it is important to examine the growth of the 

plant to determine how defoliation interferes with the 

growth of the yield forming organs. 

c. Effects of defoliation on the components of yield. 

Experiment 6.3. 

Fisher (1974b) defined the components of Brussels 

2 sprout yield to include the number of plants per metre , 

the number of sprouts per plant and the mean weight per 

sprout. In these experiments plant population was 
\ 

((/\ cons tant and set by transplanting. Hence, the effects 

'---of defoliation on sprout number and size deserve exam-

ination. The effects of time and level of defoliation 

on sprout number and mean sprout size are shown in 

Table 6.3. There was little variation in sprout numbers 

following defoliation and thus yield losses were the 

result of lower mean sprout weight following defoliation. 

Trends in the mean sprout weights closely reflect those 

from aggregate yield following defoliatio~ (Table 6.2) . 

The time of defoliation has a considerable effect 

on the growth of sprouts from different zones. Measure-

ments of sprout size following 0, 50 and 100% defoliation 

are shown in Figure 6.7. Early defoliation seems to have 

greatest effect on the lower and mid zones of sprout 

growth but with evidence of some compensation towards 
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harvest. Mid season defoliation affects all zones of 

sprouts but particularly those in the middle zone while 

late defoliation has apparently no effect on the lower 

sprouts but does reduce sprout size in the mid and 

upper zones. 

TABLE 6.3 The effect of time and level of artificial 
defoliation of Brussels sprouts at three 
stages of growth on sprout number, and 
mean sprout weight (g dry wt) 1978/79. 

sprout Mean sprout 
no. weight 

Time of defoliation 

2 Feb 105.8 1.01 

13 Mar 103.5 0.83 

23 Apr 103.0 0.95 

LSD (5%) 2.8 0.07 

Level of defoliation 

0 106.2 1.05 

25 104.4 1.04 

50 102.1 1.01 

75 103.9 0.94 

100 103.9 0.68 

LSD (5%) 3.6 0.11 

Linear trend ns ** 
Quadratic trend ns ** -J 

Footnote: The only significant interaction was for mean 
sprout weight, Time of defoliation x Level of 
defoliation (lin.) - 5%. 
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d. The relationship between leaf area duration and 

yield. Experiments 6.1 and 6.2. 

Yield is dependent on the amount of photosynthesis 

carried out in the leaves (Watson, 1971) which in turn is 

dependent on both the leaf area and its duration (Thorne, 

1971). In these experiments plants were grown at a 

uniform spacing s~ that the leaf area duration of the 

plant (LAD), the integral of the leaf growth curve, will 

be used in the discussion. This can easily be converted 

to leaf area duration as defined by Watson (1956) by 

2 
mUltiplying the number of plants/m by 2.7. 

At each time of sowing of Brussels sprouts there 

was a highly significant (P < 0.01) 

between LAD and yield (Fig. 6.8). 

linear relationship 
1 

The slope of the 

line relatin.g yield to LAD was obtained for each sowing 

time and when tne slopes were compared by t-tests 

(Steele and Torrie, 1960) it was found that they declined 

significantly with delay in sowing date (Sowing I, 1977 > 

1978 Sowing> Sowing 2, 1977). This decline reflects a 

lower rate of growth when maximum leaf area occurs later 

in the growing season as it did in the later sowings. 

In Experiments 6.1 and 6.3 lowest yields ~ere obtained 

in the after mid season defoliation and the leaf growth 

curves following 50% defoliation treatments in Experiment 

6.1 show clearly the effects of defoliation treatment 

at this time in reducing leaf area duration (Fig. 6.9). 
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e. Effect of defoliation of different zones of the 

plant on sprout yield. Experiment 6.4. 

The effect of defoliation of upper, mid and lower 

leaf zones, either individually or in combination, is 

presented in Table 6.4. Factorial analysis (Bailey, 

1959) revealed that removal of the mid zone leaves 

caused a highly significant (P < 0.01) yield loss. 

When the sprouts within each zone were examined in more 

detail, it was found that individual sprout size in the 

mid and upper zones was significantly reduced (P < 0.05 

and P < 0.01 respectively) by removal of the mid zone 

leaves. 

Factorial analysis of the weights of "the five 

sprout samples taken from the centre of each zone 

indicated that in each case removal of leaves led to a 

decrease in harvest weight of adjacent sprouts. Sprout 

weight in both the lower and upper zones was also 

significantly (P < 0.05 and P < 0.01 respectively) 

reduced by removal of the mid zone leaves. 

The analysis of upper zone sprout size showed a 

significant interaction between upper and lower zone 

defoliation, removal of the upper leaves Jdecreasing the 

size of the upper zone sprouts only if the lower zone 

leaves were present. This may mean that the lower zone 
I 

leaves, which were partially senescent, were acting as a 

sink for photosynthates at this stage and thus, if present, 

will act in direct competition to the growing sprouts in 



TABLE 6.4 Sprout yield, size and weight in each of the upper (U), mid (M) and lower (L) 
zones following removal of leaves in each zone in a factorial experiment (6.4). 

Zone of Total Sprout size (rom) Five sprout wt 
leaf yield 
removal (g fresh L M U L M wt) 

Control 630.9 27.6 25.6 18.6 51.2 38.7 
U 799.5 30.2 26.8 17.2 61.5 45.0 
M 560.9 28.0 24.8 15.4 47.1 36.1 
L 593.6 27.6 25.0 17.6 46.9 38.3 
U~1 506.9 27.2 21.6 14.0 46.6 29.8 
UL 638.7 28.0 24.6 17.0 49.3 40.4 
LM 540.1 26.2 23.6 15.2 29.9 33.1 
UML 483.8 24.6 21.2 13.2 41. 3 26.1 
LSD (5%) 191.2 5.1 5.4 2.5 4.2 5.0 

Significance of main effects 
U ns ns ns ns ns ns 
M ** ns * ** * * 
L ns ns ns ns * ns 

Significant interactions 

( g) 

U 

17.0 
10.8 
9.2 

11.1 
6.5 

13.4 
8.9 
7.0 
1.0 

* 
** 
ns 

UL ** 
UML * 

I--' 
Lv 
Lv . 



the upper zone. A significant UML interaction was 

detected but reasons for. it are unclear. 

f. Patterns of growth of different Brussels sprout 

varieties. Experiment 6.5. 

Leaf numbers for seven varieties counted from 

Bed B in the early, mid, and late season are shown in 

Table 6.5. 

TABLE 6.5 Number of leaves/Brussels sprout plant on 
three dates throughout the growing season. 

Mean leaf number 

26 Jan 26 Mar 22 June 

Multima line 17.2 40.2 28.6 

Jade E 25.3 62.0 28.0 

Jade Cross 22.0 60.5 26.0 

Lunet 15.8 55.0 36.2 

Jade G 20.1 56."0 23.4 

Rampart 13.4 41.5 33.8 

Rasmunda 17.2 47.0 39.8 

LSD (5%) 2.9 6.6 5.8 

The results reveal higher leaf numbers early in 

the season on the Jade varieties of sprouts but leaf 
1 
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senescence also appears to be earlier in these varieties 

resulting in lowe.r leaf numbers in late season, ,especially 

when compared to varieties Lunet and Rasmunda. Plant 
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height at harvest, sprout number/stem and total yields 

from varieties in Bed E are shown in Table 6.6. 

TABLE 6.6 Growth parameters of seven Brussels sprout 
varieties recorded at a single harvest 
(6 June 1979). 

Height Sprout Sprout 
no. fresh 

weight 
( g) 

Multima Line 37.6 81.2 916.8 

Jade E 42.2 111.6 636.0 

Jade Cross 41. 4 89.6 644.4 

Jade G 39.2 93.8 827.4 

Rampart 40. 8 72.8 444.8 

Rasmunda 43.4 78.2 321.8 

LSD (5%) 4. 7 8.8 176.3 

The total yield figures presented are results from a 

single harvest taken in June and, therefore, do not 

provide the best comparison between varieties. P. Bull 

(pers. comm.) reported from variety trials in Canterbury 

that the number of reject sprouts from variety Jade Cross 

was high, reaching up to 44% in some trials, while 

generally varieties Lunet and Rasmunda produced lower 

percentages of rejects. A single harvest also tends to 

overestimate the commercial yield from early varieties, 
1 

e.g. Multima Line, which have passed their optimum harvest 

date so that gross yield includes many blown sprouts. 

Conversely, single harvests tend to underestimate the 
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yields of late varieties, e.g. Rasmunda, which for optimum 

yield should be harvested in August. 

It is, therefore, of greater value to examine the 

pattern of sprout growth revealed by measurements of 

sprout diameter through the latter part of the growing 

season. The pattern of sprout growth for each variety 

in the upper, mid, and lower zones is shown in Figure 

6.10. In all cases growth is initiated first among the 

sprouts of the lower zone, followed by the mid and upper 

zones. Large differences in final size between upper 

and lower sprouts indicate the tapering pattern of 

sprouts on the stems of varieties Multima Line and Jade 

Cross, while Lunet and Rampart phow a more even size 

dis~ribution. Higher growth rates in the late season 

are associated with those varieties that maintain their 

leaves, Lunet, Rampart, Rasmunda, in comparison with the 

early season varieties, Multima Line, Jade Cross and Jade 

E which all show early leaf senescence and little sprout 

growth in May and June. 

g. General discussion; the effects of defoliation 

on growth of the plant. 

Following transplanting of the young Brussels 

sprout plant, the rate of growth is initially low and 

the major proportion of the plant dry matter is contained 

in the leaves. It is during this phase that the young 

plant is vulnerable to soil inhabiting pests, such as the 
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cutworm, Agrotis spp., or mobile'pests immigrating into 

the crop. There are, however, few pests present at 

this stage (Chapter 4), and the plants have a strong 

ability to compensate, with yield loss resulting only 

from defoliations of greater than 75%. Strong compensa­

tion in the early stages of plant growth has also been shown 

for sugar beet (Jones et aI, 1955), flax (Rella and Stoa, 

1964), rice (Taylor, 1972) and soybean (Thomas et al., 

1974). This cannot, however, be viewed as a universal 

rule as Jackson (1980) found that radish was unable to 

compensate for defoliation and early defoliation resulted 

in the greatest yield loss. It is possible, though, that 

radish is exceptional, being harvested so early in its 

physiological growth. 

Following establishment, the plant passes into a 

phase of exponential leaf growth. New leaves are 

produced rapidly and the leaf area of the plant increases 

to a maximum from which point senescence balances new 

leaf production. It is in this mid-season growth phase 

that losses of leaf area, when viewed proportionally, 

cause the greatest yield losses. Similar responses to 

mid season defoliation have been found with onions (Baker 

and Wilcox, 1965), sugar beet (Dunning and Winder, 1972), 

and potatoes (Cranshaw and Radcliffe, 1980). Watson 

(1956) found that for many crops the yield was directly 

proportional to leaf area duration and it seems logical, 

therefore, to expect a c~nsiderable yield loss at this 

stage when large amounts of leaf area are removed. It 



seems, though, that some compensation still operates 

within this growth stage as there is little yield loss 

for 50% defoliation in Brussels sprouts. 
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The late stage of growth is dominated by leaf 

senescence together with continued growth of the sprouts. 

At this stage of growth the relationship between yield 

and defoliation tends to be linear as there is little 

time for compensation. However, the maximum yield losses 

are low as a considerable amount of yield has been formed 

before the defoliation took place. During the late 

season greatest yield losses followed mid-zone defoliation. 

Metcalfe (1954) reported significant yield losses with 

removal of the lower leaves of Brussels sprouts, but it 

is not recorded when the defoliation took place, while 

Fisher and Milbourn (1974) recorded no increases in yields 

after removal of the lower leaves of the plant just prior 

to leaf senescence. 

The pattern of yield response of the Brussels 

sprout plant to defoliation, i.e. high levels of compensa­

tion in the early stages, maximum yield loss in the mid 

growth stage and a linear relationship between defoliation 

and loss in the later stages, can also be shown in sugar 

beet from data obtained by Soine (1967) following a series 

of defoliations to simulate hail damage (Fig. 6.11). 

It seems that the growth of each sprout is the 

result of the translocation of assimilates from adjacent 

leaves but that if these are removed, assimilates may be 

mobilised from other areas. Sprout growth begins with 
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maturity of the older leaves and maximum growth rate 

is associated with maximum leaf area. The translocation 

of assimilates from mature leaves to the sprouts gives 

rise to the gradual increments in yield throughout the 

season in much the same pattern of yield production as 

described for sugar beet (Goodman, 1968). An alternative 

pattern of yield production has been described for crops 

such as sweet potato (Milthorpe, 1969), wheat (Thorne, 

1971) and cauliflower (Nieuwhof, 1969), where the plants 

have a distinct vegetative phase followed by a yield 

producing phase. For cauliflowers, it has been demon­

strated that curd size is directly proportional to leaf 

area at preheading (Salter, 1958), which indicates that 

protection of leaf area at this stage would be a priority 

rather than protection of leaf area duration throughout 

plant growth which must be the objective in Brussels 

sprout production. 

It is clear that the interpretation of the results 

given above is based on a plant "viewpoint ll
• It must be 

remembered, however, that the leaf area of the plant 

varies considerably throughout its growth causing a 

different interpretation from the perspective of the 

pest population, seeking to utilize the resources avail­

able, and from the perspective of the grower, seeking to 

minimize revenue losses. These factors will be examined 

further in Chapt~r 8. 
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DAMAGE ASSESSMENT 

1. Introduction 

In the previous three chapters the components of 

the pest-damage relationship, pest numbers, feeding and 

plant response, have been examined individually. In 

this chapter the relationships between these factors are 

examined directly using techniques of damage assessment 

to relate pest numbers to yield loss. In order to assess 

the amount of damage suffered by the crop it is necessary 

to compare plants both with and without ins~ct attack. 

A number of experimental methods have been developed to 

achieve this objective (Chiarappa, 1970) including, among 

others, the comparison of plants within naturally infested 

crops (Judenko, 1973), the use of pesticides to produce 

different pest populations (Wilson et al., 1969) and the 

use of cages to confine or exclude pests from the crop 

(Bracken and Butcher, 1977). Damage may be separated 

into two classes; indirect, where feeding on the leaves 

and roots causes a loss in gross yield, aRd direct, where 

the marketable product itself is attacked and there is a 

loss in both quantity and quality of yield (Bardner and 
I 

Fletcher, 1974). 

In this chapter both classes of da~age are examined 

and experiments are described where insecticides were 
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used to produce both differences in pest numbers between 

plants throughout the whole season and to provide "pest­

free" periods of growth. In some experiments c~ges were 

used to contain populations of pests higher than 

would naturally occur on the plants. The relationship 

between damage, sprout position and size was also 

investigated, and the effects of pests on a number of 

Brussels sprout varieties were evaluated. 

2. Materials and Methods 

a. Experiment 7.1 Damage assessment following the 

use of selective insecticides 1977/78. 

The effects of selective insecticides on pest 

numbers, plant growth and insect damage were examined in 

a randomised block design experiment. Five treatments 

(Table 7.1) were applied to plots of 90 plants in each of 

five blocks (Beds D, E and half of C). The insecticide 

carbaryl (treatment II) was used for its known activity 

against lepidopterous larvae and demeton-S-methyl was 

used at two rates (treat~ents III and IV) as a selective 

aphicide. Both insecticides were combined for late 

season sprays to control all pests (treatment V) • The 

insecticides were applied with a knapsack sprayer. 

Within each block five plants were random~y selected and 

marked for subsequent pest counts. Counts were made at 

approximately three weekly intervals and the number and 

species of pests on them recorded. 



TABIE 7.1 Selective spray programmes applied to Brussels sprouts, Beds C, D and E 
1977/78 season (Fig. 3.1). 

Treatment 

I Control 

II Carbaryl 

III De me ton -S -me thy 1 

IV De me ton -S -me thy 1 

V Carbaryl + 
Demeton-S-methyl 

* spray application; 

Rate 

(a.i./ha) 

2.0 kg 

0.08 

0.15 kg 

0.15 

- no spray. 

6/1 

* 

* 

* 

Spray dates 

21/1 11/2 12/3 5/4 28/4 20/5 

* * * * * * 

* * * * * * 

* * * * * * 

* * * 



At each of four monthly intervals, one plant 

was randomly selected in each plot, the numbers and 

species of pests on it were recorded, and it was then 

removed and taken back to the laboratory for a more 

detailed examination (see Chapter 4). 
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At the final harvest (6 June for the early 

sowing; 16 June for the late sowing), the marked plants 

were harvested and taken back to the laboratory where 

they were divided into leaves, petioles, stems and 

sprouts. The leaf area was measured and the sprouts 

divided into four categories: 

1) marketable sprouts with no damage beyond 

the covering leaflets, 

2) damaged sprouts with evidence of)feeding into 

the sprouts, 

3) "blown" sprouts with the outer leaflets open, 

4) small sprouts less than 10 rom diameter. 

Categories 2, 3 and 4 were classes that would be rejected 

by the processor. The component parts of the plant were 

oven-dried to a constant weight at 70 o C. 

b. Experiment 7.2 

1978/79. 

Evaluation of spray-free periods 

To create spray-free periods in the Brussels sprout 

crop in the 1978/79 season, eight spray treatments, based 

on combinations of early, mid and late growth stages, were 

allocated to each of eight plots in a factorial, randomised 
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block design with four replicates. (Fig. 3.2, Beds C and 

D). The insecticide dichlorvos was applied at 0.5 kg 

a.i./ha with a knapsack sprayer according to the spray 

programme (Table 7.2). Plot size was 45 plants except 

for treatments 2, 3 and 4, which contained 63 plants to 

enable extra plants to be used for the caged larvae 

experiments (Exp. 7.3). Counts of white butterfly and 

diamondback moth larvae and cabbage aphid colonies were 

made at three weekly intervals on two marked plants 

randomly selected ·from the centre row of each plot •. To 

control the 1979 outbreak of cabbage aphid the selective 

aphicide pirimicarb was applied on the 20 February to all 

plants. The aphicide was applied at half the recommended 

rate to minimize its effects on all fauna but the aphids. 

c. Experiment 7.3 Cage studies. 

To study the effects of both time and intensity of 

pest attack cages were used to confine a range of known 

numbers of lepidopterous larvae on Brussels sprout plants 

at stages throughout the crop's growth. The cages used 

were cylinders, 0.5 m diameter x 0.75 m high and covered 

with fine cotton netting (Plate 7.1). Tbey were placed 

over individual plants from plots 2, 3 and 4, Experiment 

7.2, at a time corresponding to the spray-free period in 

that plot. White butterfly or diamondback moth larvae 

were then added to the cages to complete their development 

and, on pupation, the cages were removed. 



TABLE 7.2 Dichlorvos spray programme to create early (E), mid (M) and late (L) season 
spray free periods in a crop of Brussels sprouts, Experiment 7.2, 1979. 
o = complete spray coverage. 

Date 
Treatment 

15/1 29/1 13/2 26/2 12/3 2/4 9/4 23/4 7/5 21/5 

E M L 

1 0 * * * * * * * * * * 
2 E * * * * * * 

3 M * * * * * * * 
4 L * * * * * * * 
5 EM * * * 

6 EL * * * 

7 ML * * * * 

8 EML 

* spray application; - no spray. 



Plate 7. 1 Cages for confining white butterfly or diamondback 

moth larvae on Brussels sprout plants to assess 

their effects on plant growth and yield. 

149 
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White butterfly larvae were placed in cages 

five times throughout the season while diamondback moth 

larvae were placed twice (Table 7.3). Both species 

were placed at a range of larval densities determined 

by the size of the plant. For the first three trials 

with white butterfly, larvae were raised from field-

o collected eggs in a controlled temperature room at 20 C. 

However, low recovery of pupae from the 16 March trial 

led to the abandonment of reared larvae in favour of 

field collected larvae from an unsprayed block for the 

two later trials. On both occasions diamondback 'moth 

larvae were obtained from a laboratory culture. 

TABLE 7.3 Date of placement and number of larvae placed 
on caged Brussels sprouts, Experiment 7.3, 
1979. 

Spray-free Date Number 
period 

Whi te butterfly 

Early 24 January 0 3 6 9 12 15 

99 February 0 4 8 12 16 20 

Mid 16 March 0 5 10 15 20 25 

30 March 0 15 30 60 

Late 17 April 0 25 50 

Diamondback moth 

Early 1 February 0 8 16 24 32 40 

Mid 30 March 0 25 50 100 

For both species penultimate ins tar larvae were 

always used to ensure the maximum rate of ,feeding over a 

short period of time and thus minimize the effects of 
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the cage on the growth of the plant. The effects of 

insect attack at other times were minimized by the 

regular spray programme. 

Before being caged, the plants were ranked accord-

ing to size and their leaves counted. For the two later 

trials, 30 March and 17 April, plants were matched within 

each block to reduce interplant variation before 

selection and allocation of treatments. 

After sufficient time had elapsed to allow for 

development to pupation, cages were removed and each 

cage and plant was searched for pupae and their numbers 

were recorded. Plants were checked at stages throughout 

their growth for sprout development and at the final 

harvest, sprout size, numbers, damage and weights were 

recorded. 

d. Experiment 7.4 Relationship between sprout 

position and damage. 

A series of small experime'nts were carried out to 

examine the relationship between the position of the 

sprout on the stem and insect damage. 

(i) Relationship between sprout zone and diamondback 

moth attack 

In 1979, 20 Brussels sprout plants were harvested 
, 

each three weeks from the unsprayed bed (E) and sprouts 

were divided into those from the upper, mid and lower 

zones. The sprouts were then placed in extraction 



boxes (Chapter 4) and placed in a constant temperature 

room at 25 0 C for 21 days. The boxes were then removed 

and the diamondback moth adults removed from the Tac 

trap on the lid. 

(ii) The relationship between sprout position and 

damage 

In order to determine the characteristics of 

sprouts under attack, three harvests of 15 plants were 

made (1 May, 1 June, 22 June 1979). Groups of five 

sprouts were removed at 10 cm intervals up the stem, 

measured and examined for signs of damage which was 

categorised as new or old, depending on the character-

istics of the feeding hole. The proportion of damaged 
1 
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sprouts in each position on the stem was then calculated. 

(iii) The position of egg laying by diamondback moth. 

To examine the effect of oviposition in deter-

mining larval numbers in different zones 50 moths were 

placed in each of five cages, of the same design as in 

Experiment 7.3, covering a single Brussels sprout plant. 

After one week, the cages were removed and the whole 

plant harvested. Groups of sprouts, each with their 

associated leaf where appropriate, were removed at 10 cm 
J 

intervals up the stem of the plant and examined for the 

presence of eggs. 
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e. Experimen t 7.5 Relationship between sprout 

size and attack by diamondback moth 

As the size of sprouts appeared to be an important 

parameter determining damage in 1979, ten untreated 

Brussels sprout plants were harvested mid-season in 

1980 (24 April) and all sprouts were removed. Individual 

sprouts were measured, placed into categories corres­

ponding to 1 mm increments in diameter and examined for 

damage. 

In a further experiment, sprouts were removed 

from the ~tem of untreated plants from each of three 

zones - upper, medium and lower. Thirty-two sprouts 

from each zone were then measured and placeo individually 

into small plastic pottIes. A neonate first instar 

diamondback moth larvae was then added to each pottle, 

the pottle sealed and placed in a controlled temperature 

cabinet for one week at 25 0 C after which la~val survival 

was assessed. 

f. Experiment 7.6 Estimates of yield loss caused 

by cabbage aphid using the analytical method 

Following the outbreak of a cabbage aphid attack 

in January 1979 each of 70 plants, from two blocks 

within the unsprayed Bed E, was graded into one of the 

following categories dependent on the severity of 

aphid attack: 



I Aphid free 

II Aphids present in low numbers 

III Aphids present in distinct colonies 

IV Aphid colonies causing leaf curl and 

chlorosis 

V Serious stunting of the plant 

VI Death of the plant 

The plants were revisited at approximately ten 

day intervals for the next six weeks and regraded at 

each time. Following a crash in aphid population levels 

in mid March the procedure was discontinued. The plants 

were harvested in late May. Crop loss was then 

estimated using the method of Judenko (1973). For each 

time of assessment, the proportion of plants in each 

grading was calculated together with the mean sprout 

weight of that grade. The difference between the 
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average sprout weight over all grades and the mean of 

insect-free plants, or those within the lowest grade of 

attack, was then calculated and expressed as a percentage 

of the latter as an estimate of yield loss due to the 

insect attack in the crop. 

g. Experiment 7.7 Evaluation of the response of 

seven varieties of Brussels sprout to insect 

attack 

This experiment uses the seven Brussels sprout 

varieties in the sprayed and unsprayed beds (B and E, 

Fig. 3.2) described in Chapter 6. Insect counts on 
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the varieties in the unsprayed bed were made on the 7 

February to determine pest populations. Three plants 

were counted from each variety in each of the five blocks. 

In early March the aphid population in the sprayed bed 

built up between spraying dates. Plants within this 

bed were examined for the presence of aphids and 

colonies of more than 50 were counted. In late March 

the varieties in the unsprayed bed were graded for 

aphid attack according to the scale presented in 

Section f. They were also graded on a 1-5 scale accord­

ing to feeding severity by lepidoptera larvae. 

At the final harvest one plant, randomly selected 

from each row in each of the five blocks, was taken to 

the laboratory where the sprouts were removed and 

divided into those from upper, mid and lower zones 

before being examined for signs of insect damage and 

weighed. Two randomly selected sprouts were taken from 

each zone of each sampled plant and examined to determine 

the number of senesced leaflets at the base of the sprout. 

3. Results 

a. Effects of selective insecticide sgray regimes on 

pest populations and yield loss in Brussels 

sprouts. Experiment 7.1, 1977/78. 

(i) Pest population 

The seasonal mean numbers of each pest species and 

each stage recorded are presented in Table 7.4 and show 



TABLE 7.4 Effect of five different spray regimes on mean pest population levels/plant 
in Brussels sprouts, Experiment 7.1, 1977/78. 

Treatment A. rapae P. xylostella B. brassicae -

Eggs Larvae Larvae Pupae Alatae Colonies 

I Unsprayed 0.76 0.88 1. 41 0.10 2.29 0.33 

II Carbaryl 0.65 0.26 0.48 0.04 3.47 0.30 

III De me ton-S-methyl , 1.05 1.21 2.10 0.20 1.58 0.06 
full rate 

IV Demeton-S-methyl, 1.16 1. 32 1.78 0.10 0.95 0.05 
half rate 

V Demeton-S-methyl and 0.67 0.85 1. 38 0.16 2.40 0.14 
carbaryl, late 
spray 

LSD (5%) 0.42 0.44 1.02 0.11 0.91 0.12 
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clearly the effects of the selective spray programme. 

Lowest numbers of lepidoptera larvae were recorded in 

the carbaryl treatment (II). There were significantly 

(P < 0.05) less white butterfly larvae in this treatment 

than in any other and significantly less diamondback 

moth larvae than in either of the demeton-S-methyl 

treatments (III and IV). Both demeton-S-methyl treat-

ments resulted in significantly (p < 0.05) less cabbage 

aphid colonies than the control (I) or carbaryl (II) 

treatments. 

The effects of each treatment on the seasonal 

trends of each of the damaging stages of each pest is 

shown in Figure 7.1. white butterfly larval numbers 
'/ 

were significantly (P < 0.05) lower in the carbaryl 

treatment (II) than in all other treatments throughout 

the mid-season period. Diamondback moth larvae were 

also significantly (P < 0.05) lower in the carbaryl 

treatments (II) than the control (I) at each of the 

population peaks. High numbers of diamondback moth 

larvae were present in the demeton-S-methyl treatments 

(III and IV) towards the end of the season but these were 

not significantly higher than those in the control. 

The application of demeton-S-methyl kept cabbage 

aphid populations at low levels in treatments III and 

IV throughout the experiment. In the carbaryl (II) 

treatment, however, significantly (P < 0.05) more cabbage 

aphid colonies were recorded than in the control (I) at 

the time of the first population peak, late January-early 
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February. The application of late sprays of carbaryl 

and demeton-S-methyl (V) maintained all pests at 

levels lower than those in the control (I) in the late 

season. 

(ii) Sprout yields and damage 
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Sprout yields may be reduced indirectly, by 

pests feeding on the leaves reducing the flow of assim­

ilates to the sprouts, or directly, by feeding on the 

sprouts themselves. White butterfly larvae and cabbage 

aphid colonies were found primarily on the leaves while 

diamondback moth not only feed on the leaves but also 

bore into the sprouts making them unmarketable (Plate 

7.2) • 

In this experiment total sprout yield in the 

carbaryl treatment (II) was significantly greater than 

in the control (I) although no greater than in the 

demeton-S-methyl treated plots (III and IV) (Table 7.5). 

Only a portion of the total sprout yield is marketable. 

Sprouts are unmarketable for a number of reasons; they 

may be damaged by insects; become "blown" through 

opening of the bud; or may be too small for marketing. 

Marketable yield was significantly (P < O~OS) higher in 

the carbaryl treatment (II) than in any other and the 

weight of damaged sprouts in this treament was the lowest 

of all treatments but not significantly less than the 

control (I). Significantly (P < O.OS) higher damage 

levels occurred in the demeton-S-methyl treatments (III 

and IV) than in the control (I) or carbaryl (II) 



Plate 7. 2 Dire ct damage to Brussels sprouts caused by 

diamondback moth larvae. 
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TABLE 7.5 The effect of five different insecticide spray regimes on total yield and yield 
components of Brusse1s,.sprouts, Experiment 7.1, 1977/78. (g dry wt) 

I 

II 

III 

IV 

V 

LSD (5%) 

Total 
yield 

88.2 

106.2 

94.3 

104.8 

90.6 

16.0 

Marketable 
yield 

50.5 

71. 8 

35.3 

41.0 

49.9 

17.9 

Damaged 
sprouts 

17.9 

10.9 

35.9 

40.0 

18.5 

13.5 

Blown 
sprouts 

14.4 

17.1 

20.2 

18.2 

18.3 

7.2 

Small 
sprouts 

5.5 

4.0 

4.8 

5.7 

4.0 

2.1 
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treatments probably reflecting the high number of 

diamondback moth in the former. There was little 

difference in the weights of blown or small sprouts 

between treatments. Despite late sprays of carbaryl 

and demeton-S-methyl in treatment V there was neither 

an increase in yield nor less damage in this treatment 

than in the control (I). 

b. Effects of insecticide spray-free periods on 

insect populations and Brussel sprout yields, 

Experiment 7.2, 1978/79. 

In Experiment 7.3 populations of diamondback moth 

and white butterfly in the unsprayed plots followed the 

same seasonal trends as in the unsprayed bed (E) wi th 

populations of diamondback moth approximately half those 

of the 1977/78 season. The numbers of white butterfly 

and diamondback moth in each treatment throughout the 

season are shown in Figure 7.2 and indicate effective 

control by dichlorvos in each of the sprayed periods. 

The effects of treatments on plant height, sprout 

numbers, and sprout weight are shown in Table 7.6. plant 

height and sprout number, indicators of t~e general vigour 

of the plant, appear to belittle affected by spray free 

periods. sprout yield, though, is significantly 
I 

(P < O. OS) reduced following the mid spray-free period 

and the effects of an early spray-free period only just 

fail to reach significance at the 5% level. There was 

also a significant EL interaction indicating that where 
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TABLE 7.6 Effect of early (E), mid (M) or late (L) 
spray-free periods on plant height, sprout 
number and sprout weight in Brussels 
sprouts. 

Treatment Plant Sprout Sprout 
height number dry 

weight 
(em) ( g) 

0 36.5 96.4 93.9 

E 37.8 97.4 101.1 

M 37.3 97.8 83.8 

L 36.3 99.5 103.5 

EM 35.5 94.6 90.9 

EL 36.4 91.7 85.0 

ML 35.1 95.6 92.7 

EML 35.5 94.7 75.6 

LSD (5%) 6. 7 21.0 

Significance of 
main effects 

E ns ns ns 

M ns ns * 

L ns ns ns 

Interactions EL* 
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spray had not been applied early in the season a late 

spray-free period caused a reduction in sprout weight. 

The effects of spray-free periods on levels of 

damage in the upper, mid and lower zones were also 

examined and the results are presented in Table 7.7. 

The early spray-free period resulted in a significant 

increase in damage only in the mid sprout zone. The 

mid spray-free period resulted in a significant 

(P < o. o~t increase in all zones and the late spray-free 

period a highly significant (P < 0.01) increase in all 

zones. There were no significant interactions following 

transformation (Ln (x + 1) of the data. 

It appears, therefore, that each sp,iay-free 
" 

period will contribute to an increase in the level of 

damage. The early spray-free period had least effect 

on damage levels in the sprouts which was expected as 

it occurs before the development of the sprouts. 

Considerable damage was caused in the middle 

period but the greatest increase in damage resulted 

from the late spray-free period which corresponded to 

the peak of diamondback moth numbers in the sprouts 

together with the maximum number of sprouts susceptible 

to attack. 
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TABLE 7.7 Total damaged sprouts/plant (transformed 
In (x + 1) ) and numbers in each of the 
upper, mid and lower zones following 
combinations of early (E), mid (M) and 
late (L) spray-free periods. Raw 
data in parenthesis. 

Treatment 

0 

E 

Damaged 
sprouts/ 
plant 

0.21(0.25) 

o • 35 (0 .42) 

M ,0.63(1.00) 

L 0.59(0.88) 

EM 1. 00 (1. 79) 

EL 1.31(2.68) 

ML 1.54(3.56) 

EML 1.91(5.54) 

LSD (5% ) 0.44 

Significance of 
main effects 

E ** 
M ** 
L ** 

Interactions 

Damaged sprouts in each zone 

Upper Mid Lower 

0.07(0.08) 0.07(0.08) 0.08(0.09) 

0.04(0.04) o . 16 (0.19) o • 16 (0.19) 

0.27(0.38) 0.32(0.42) 0.18(0.21) 

0.34(0.46) o • 12 (0.13) 0.24(0.29) 

0.37(0.50) 0.62(0.92) 0.30(0.38) 

0.86(1.46) 0.59(0.~4) 0.30(0.38) 

0.91(1.50) 0.94(0.94) 0.37(0.46) 

1.25(2.75) 1.03(1.88) 0.63(0.92) 

0.41 0.32 0.26 

* 
* ** * 

** ** ** 

, 
-
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c. Effect of pest species and time of attack on 

yield loss in Brussels sprouts, Experiments 

7.1 and 7.2. 

Spray programmes such as those in Experiments 

7.1 and 7.2 affect the yield of sprouts indirectly by 

controlling the pests on the plant but it is not clear 

from the results of these experiments just which pests 

are responsible for yield loss and when this occurs. To 

investiggte these aspects further, correlations were 

made between insect numbers, yields and damage in both 

experiments. 

In the first season, Experiment 7.1, pests were 

monitored throughout the season and for each of the two 

sowings the mean number of pests per plot was correlated 

with both mean yields and mean weight of damaged sprouts. 

The results are presented in Table 7.8. There was no 

significant correlation between the numbers of any of 

the pests and sprout yields from the first sowing while 

in the second sowing white butterfly larval numbers were 

significantly (P < 0.05), negatively correlated with 

yield and the correlation between diamondback moth 

numbers and the weights of damaged sprouts. 
J 

In the second season, Experiment 7.2, mean pest 

numbers of each treatment were correlated with yield and 

numbers of damaged sprouts but no significant relation-

ships were found. When larvae were divided into those 

present in early and mid periods there was a highly 

significant (P < 0.01) correlation between numbers of 



TABLE 7.8 Correlations between pest numbers, yield and damage in Brussels sprouts. 

a. Correlations between overall mean pest numbers, yield and damaged sprouts, Experiment 7.1 
(21 df.) . 

Total yield Damaged sprouts 

White Diamondback Cabbage Diamondback 
butterfly moth aphid moth 

Sowing 1 0.29 ns 0.25 ns 0.01 ns 0.56** 
Sowing 2 0.41* 0.37 ns 0.07 ns o • 49 * * 

b. Correlations between mean numbers of diamondback moth in early and mid periods of 
sprout crop growth, yield and damage, Experiment 7.2 (6 df.). 

Total yield 
Damaged sprouts 

ns, not significant; *, P < 0.05; 

Early 

o ns 
o ns 

**, P < 0.01. 

Mid 

0.53 ns 
0.92 ** 



diamondback moth present in the mid stage and numbers 

of damaged sprouts but no correlation between those 

present in the early stage and the number of damaged 

sprouts. There were few pests present at the late 

stage so no correlations were attempted. 

White butterfly feed on the leaves of the sprout 

plants and therefore the negative correlation between 

larval numbers and yield may be the result of this 

feeding indirectly reducing sprout yield. Diamondback 

moth also feed on the leaves and in addition can cause 

yield loss by feeding directly on the sprouts. In both 

sowings of Experiment 7.1 there was a significant 

170. 

(P < 0.05) correlation between mean diamondback moth 

numbers and damaged sprouts. In Experiment 7.2, when 

insects were separated by insecticide sprays into discrete 

periods, there was no correlation between numbers and 

damage in the early stage but a highly significant 

(P < 0.01) correlation in the mid stage indicating the 

importance of pest attack at this time. 

d. The effects of caged white butterfly and diamond­

back moth larvae on yield of Brussels sprouts, 

Experiment 7.3. 

After seven to 14, days the cages were removed from 

the plants and a thorough search was made for pupae. 

Recovery of white butterfly pupae ranged from 60 yo 80% 



of the added larval numbers with the exception of the 

trial started on the 16 March when disease caused a 

171. 

high mortality leading to a recovery of only 30% of the 

pupae. The feeding levels were correspondingly low and 

consequently'this trial was abandoned. Numbers of 

diamondback moth larvae were not recorded as their 

smaller size and often concealed position made searching 

for them impractical without damaging the plants. 

The relationships between white butterfly larval 

numbers, introduced at stages throughout the growing 

season, and yield are presented in Table 7.9 together 

with the relationship between estimated defoliation and 

yield. While the analyses indicate a negat~ve relation­

ship between larval numbers and yield this only reached 

significance (P < 0.05) in the earliest trial (24 

January). In each case estimated defoliation was more 

closely correlated to yield than pest numbers placed on 

the plant, probably due to different rates of survival 

and different positions of feeding among the larvae . 

Scattergrams of the relationship between yield and 

defoliation are shown in Figure 7.3, together with the 

fitted functions. It is evident that in the early stages 

of growth very high yield losses occurred at the extremes 

of defoliation. By the mid stage, 30 March, maximum 

losses were low as the level of defoliation never exceeded 

50%. While there is some hint of curvature in the 

relationships there was no significant improvement by 

the addition of a quadratic term to any of the functions. 



TABLE 7.9 

24 Jan 

9 Feb 

30 Mar 

17 Apr 

Relationship between white butterfly numbers, estimated defoliation and 
yield of Brussels sprouts. Cage studies 1979. 

Larval numbers Estimated % defoliation (D) 

Y = 629.4 25.2 N, r = 0.43* Y = 690.8 - 4.9 D, r = 0.58** 

Y = 642.8 5.2 N, r = 0.16 n.s. Y = 750.9 - 4.7 D, r = 0.49* 

Y = 603.3 - 1.8 N, r = 0.47 n.s. Y = 602.1 - 3.4 D, r = 0.58** 

Y = 704.3 - 0.33 N, r = 0.05 n.s. not recorded 

"* P < 0.05; ** - P < 0.01 

22 df 

22 df 

14 df 

10 df 
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The results from these defoliations with white 

butterfly larvae apparently contradict those from the 

artificial defoliation study (Chapter 6) where mid 

season defoliation resulted in most yield loss. In 

these trials, however, it was not possible to achieve a 

complete range of defoliations, especially in the mid 

stage, due to the size of the plant. Thus it appears 

that for the 30 March trial only the upper part of the 

yield response curve is showing which corresponds to 

the portion of the curve below 50% defoliation in the 

artificial defoliation study. 

No relationship was found between diamondback 

moth numbers and yield at either stage of introduction 

but this may have been because few of the introduced 

larvae fed at the crown of the plant where most feeding 

occurs naturally among field populations. 

When the sprouts were examined for damage a 

'different pattern emerged (Fig. 7.4). In early February 

neither the addition of white butterfly nor diamondback 

moth had any effect on the damage levels recorded in the 

sprouts. In late March however, there was a significant, 

increase (P < 0.01) in the numbers of damaged sprouts 
J 

with increased diamondback moth larval numbers. Even as 

many as 60 white butterfly larvae per plant still had no 

effect on the damage levels recorded in the sprouts. 
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e. The effects of position of sprouts growth and 

size on damage, Experiments 7.4 and 7.5. 

176. 

Extraction of diamondback moth from different 

zones of the stem revealed that the greatest number are 

associated with the mid zone and that there was a shift 

upwards over time (Chapter 4) • 

Direct examination of sprouts on the stem also 

showed that most damage occurred in the mid zone. The 

high proportion of newly damaged sprouts on 1 May 

indicated that most damage occurred at that time and the 

presence of the bulk of damage in the upper part of the 

plant in the later harvests suggests a shift in the larval 

population up the stem as the season progresses. (Fig. 7.5). 

There was also a reduction in the levels of damage in the 

lower part of the stem in the late sampling. 

Examination of sprouts from heavily damaged plants 

in 1980 revealed that most damage occurred in the larger 

sprouts and there was a size threshold, of 7 mm diameter, 

below which few sprouts were damaged (Fig. 7.6). The 

movement towards the upper part of the plant is, therefore, 

in part explained by the availability of resources as 

sprout growth up the stem takes a greater number across 

the 7 mm threshold but it is also affected by adult 

oviposition and larval survival. When adult moths were 

caged over mature plants it was found that 82% of eggs 

were laid on the upper half of the plant (Fig. 7.7). 

Larval survival was also affected by the position of the 
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sprouts on the stem as shown by the results of attempt-

ing to rear larvae on individual sprouts from different 

zones in pottIes (Table 7.10). This showed clearly that 

larval survival was highest among the upper zone sprouts 

and decreased markedly in the mid and lower zones. 

Close examination of the sprouts in this study revealed 

that the average penetration by larvae into the sprouts 

was 4.1 leaflets although the range was from 2-8 

leaflets._ 

TABLE 7.10 Survival of first instar diamondback moth 
larvae on sprouts from each of the upper, 
mid and lower zones of the Brussels sprout 
plant. 

Upper Mid Lower LSD 

% Survival 93.8 62.5 50.0 11.8 

f. The effects of cabbage aphid on yield of 

Brussels sprouts, Experiment 7.6. 

The growth of the 1979 aphid population recorded 

in Figure 4.11 was reflected in an increase in the mean 

grading of aphid attack as the season progressed among 

those plants monitored in the unsprayed block. By mid 

March, aphids were present on all plants but none had 

been killed by the aphid outbreak; class VI was therefore 

removed from the analysis. Following harvest, yield 

figures were grouped according to aphid grading for 
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each time of assessment and the results (Table 7.11) 

show little yield loss in the lower classes of attack 

but considerable loss within the higher classes. There 

were, however, few plants in the two higher categories, 

hence overall yields were little affected. For example, 

at the first assessment, yield losses of 50 and 84% 

were recorded from plants in attack classes IV and V 

respectively, yet total yield loss was estimated at 

only 11% • __ Estimates of o,verall yield loss ranged between 

11 and 19% depending on the time of assessment, with a 

mean of 15.2%. 

The results in Table 7.11 suggest that the 

earlier a plant comes under heavy aphid attack the 

greater will be the yield loss. This was substant-

iated by multiple regression analysis using times of 

grading as variates with yield where step-down 

procedures (Zar, 1974) selected gradings on day 49 

as making the greatest contribution to yield loss 

(P < 0.01) although attack at peak population, on day 

77, also significantly (P < 0.05) affected yield. 

g. Varietal differences in Brussels sprouts' 
J 

susceptibility to pest attack, Experiment 7.7. 

The mean numbers of pests per plant on the variety 

trial sampled in the unsprayed bed (E) on 7 February are 

shown in Table 7.12. Although the sampling occurred 

early in the season, before the peak of pest attack, 



TABLE 7.11 Mean yields (g fresh wt) of Brussels sprouts in relation to severity of aphid 
attack. Yields are g.rouped according to the class of aphid attack assessed at 
fi ve stages through the 1979 outbreak. Yield loss estimates by Judenko' s 
(1973) method. 

Time of Class of attack Estimated 
assessment yield 
(days from I II III IV V loss 
transplant- (%) ing) 

39 617.9+38.1 663.3+32.7 514.6+59.4 307.1+39.2 101 11 
(36 ) (27) - (19) (16) - (2) 

49 667.0 652.5+35.6 557.2+52.2 393.0+47.8 218.2+42.0 16 
( 3) (50 ) ( 21) ( 18) ( 8) 

63 655.4+34.1 524.0+46.7 404.0+55.0 191.0+23.4 16 
(0) (55 ) (23) ( 14) ( 8) 

70 696.5+94.2 614.8+43.0 541. 4 278.0+67.4 19 
(0 ) (15 ) ( 35) (35) (15) 

77 636.5+38.0 527.7+31.5 237.1+39.4 14 
(0 ) (55) (32) ( 13) 



TABLE 7.12 Mean numbers of insects/plant from seven varieties of Brussels sprouts in 
a trial counted on 7 February 1979. 

White butterfly 

Eggs Larvae 

Multima line 3.2 0.6 

Jade E 2.1 0.5 

Jade Cross 1.8 0.9 

Lunet 1.5 0.4 

Jade G 2.4 0.3 

Rampart 2.5 0.5 

Rasmunda 1.9 0.7 

LSD (5%) 1.2 o . 7 

Diamondback 
moth 

Larvae 

1.5 

0.2 

1.8 

2.4 

2.2 

1.6 

1.7 

1.4 

Cabbage aphid 

Alatae Colonies 

3.2 0.7 

4.0 2.0 

2.5 0.4 

2.1 0.1 

4.8 o .3 

3.8 0.5 

2.3 0.1 

1.7 1.2 

i--' 
co 
N 
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some differences emerge. There was little difference 

between numbers of white butterfly eggs or larvae 

between varieties but numbers of diamondback moth 

larvae were significantly lower on variety Jade E. 

The lowest numbers of cabbage aphid alatae occurred 

on varieties Lunet and Rasmunda while Jade E had signi-

ficantly (P < 0.05) more aphid colonies than any of the 

other varieties at this time. The results of gradings 

and counts made in March for both sprayed and unsprayed 

blocks are shown in Table 7.13. In the sprayed plot 

high numbers of aphid colonies were present on varieties 

Jade E and Jade Cross and every plant of Jade E had 

aphids present, at least in low numbers. This contrasted 
) 

with variety Lunet where only 20% of the plants held 

aphids and there were none with colonies (Plate 7.3). 

In the unsprayed block a similar pattern emerged with 

the grading of the varieties according to pest attack. 

The highest gradings for aphid attack were those for 

variety Jade E and the lowest on variety Lunet. Con-

versely lowest levels of feeding damage occurred on 

variety Jade E and the highest on varieties Lunet and 

Rasmunda. 

The susceptibility of the plant through its growth 

is not necessarily related to the amount of direct damage 

that will occur at harvest. The variety trial was 

harvested on 7 June and the results of sprout examination 

are shown in Table 7.14. There was little difference 



Plate 7. 3 Differential responses among sprout varieties to 

cabbage aphid attack. Varieties Jade Cross and 

Jade E in the centre with Lunet in the right 

f ore ground. 
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TABLE 7.13 Percentage of plants infested with aphids 
with mean number of aphid colonies/plant 
from the sprayed block (5 March 1979) and 
mean grading for aphid attack and feeding 
injury in the unsprayed block (19 March 
1979) • 

Sprayed Unsprayed 

% plants Mean Aphid Feeding 
with no. of attack injury 
aphids colonies/ 

present plant 

Multima 
line 40 0 2.93 1. 80 

Jade E 100 2.3 3.13 1. 27 

Jade Cross 80 1.9 2.13 2.00 

Lunet 20 0 1. 53 2.07 

Jade G 80 0 2.27 1. 87 

Rampart 60 0.2 1. 40 1. 80 

Rasrnunda 70 0.4 1. 87 2.07 

LSD (5%) 1.2 0.52 0.61 
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in the overall levels of damage between the varieties but 

a tendency did exist for greater damage in those with 

later maturity. This effect was even more pronounced 

when the presence of aphids or their detritus was con-

sidered. On careful examination of the sfrouts from each 

zone for damage it was found that new damage was generally 

confined to the upper zone which was also where the 

highest levels of damage were located. The apparent 

recovery of sprouts in the lower zones from damage, as 

indicated in section e, may be explained by leaflet 

senescence. In section e it was recorded that the 



average penetration by diamondback moth larvae was 

4.1 leaflets. The results of examination of the 

Brussels sprout varieties for senescence of leaflets 

186. 

are shown in Table 7.15. It can be seen that the 

earlier maturing varieties, in general, showed greatest 

senescence particularly in the lower zones. When number 

of damaged sprouts was plotted against senescence in the 

mid zone (Fig. 7.8) a significant (P < 0.05) inverse 

relationsnip emerged and it can be seen that leaflet 

senescence was probably an important factor in reducing 

damage levels in some varieties. 

4. Discussion - The Relationship Between Pests and 

Damage in Brussels Sprouts 

The results show clearly that, in specific cir-' 

cumstances, each of the three pests can cause damage to 

the crop. White butterfly and cabbage aphid were both 

found to be responsible for loss of gross yield indirectly 

by feeding on the plant, while diamondback moth caused 

losses both by foliage feeding and feeding directly on 

the sprouts. Direct damage by diamondback moth was 

related to the seasonal mean numbers and, therefore, the 

losses in unsprayed plots were high in 1978 and 1980, 21% 

and 14% respectively, and low in 1979 with 6% of the 

sprouts damaged. 
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TABLE 7.14 Mean percentage of sprouts at harvest damaged 
by diamondback moth or containing aphids or 
aphid detritus from a comparison of seven 
different Brussels sprout varieties. 

Diamondback moth Aphid 
damage contamination 

Multima line 7.7 3.26 

Jade E 8.9 1. 54 

Jade Cross 8.3 0.54 

Lunet 10.6 2.34 

Jade G 6.3 1.90 

Rampart 10.9 6.98 

Rasmunda 19.5 4.98 

LSD (5% ) 6.6 2.6 

TABLE 7.15 Relationship between sprout leaflet senescence 
and numbers of damaged sprouts from each of 
three zones among seven Brussels sprout 
varieties. 

Mean no. of senesced Mean no. of damaged 
leaflets/sprout sprouts/plant 

Upper Medium Lower Upper Medium Lower 

Multima 
line 0.8 4.4 10.3 3.0 3.2 1.0 

Jade E 0.1 4.4 6.3 8.4 1.6 0.4 

Jade Cross 0 5.9 9.6 9.4 0.4 0 

Lunet 0 2.5 4.5 6.4 3.6 0.8 

Jade G 0 4.5 8.4 2.6 2.4 1.6 

Rampart 0 1.3 2.5 5.4 2.0 0.8 

Rasmunda 0 0.1 1.1 10.2 6.2 2.0 

LSD(5%) 1.6 2.1 5.9 3.4 1.8 
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The use of schedules of different insecticides 

and examination of harvest yield in 1978 allowed the 

effects of the major pests to be identified, in particular 

with the reduction of larvae and the subsequent reduction 

of damage in the carbaryl treatment. The use of selective 

insecticides, however, resulted in increased numbers of 

non-target pests. Carbaryl promoted an increase in the 

cabbage aphid population, as had been previOUSly noted 

by Piment~l (1961) and Root and Selsey (1969). The 

former author considered that increased aphid numbers 

were the result of predator mortality while the latter 

authors proposed that decreased herbivore competition was 

the most important factor. In this experiment up to six 

dead coccinellids were noticed under each plant in the 

carbaryl treated plot thus tending to support the former 

argument. In the demeton-S-methyl treated plots levels 

of damage caused by diamondback moth were significantly 

higher than in other treatments as were diamondback 

moth numbers in those plots but the causes of this 

are unclear. 

While selective insecticides used in the 1977/78 

season allowed identification of the effects of the major 

pests they gave little indication of the dynamics of the 

pest-crop interaction. Division of the crop growing season 

into three phases of treated or untreated periods in 

1978/79 showed that sprout yield was reduced when insect­

icides were omitted in the mid season. The number of 

damaged sprouts was greatest following a late spray-free 
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period but omission of sprays in either the early or 

mid periods also led to an increase in damage. 

The effects of attack at specific times were 

examined by confining known numbers of larvae of white 

butterfly and diamondback moth on individual plants in 

cages. The results indicated that white butterfly 

could cause considerable yield loss by feeding on the 

foliage while diamondback moth, more commonly, caused 
-

direct damage to the sprouts. In these cage experiments 

white butterfly were found to have greatest effect on 

yield at early growth stages. Similar effects were 

found for defoliator attack on cabbages (Prasad, 1963) 

and wheat (Pickford and Mukerji, 1974). When natural 

populations were studied (Experiment 7.2) there was, 

however, little yield loss following insect attack at 

early stages. This was probably due to the few pests 

present (Figs. 4.7-11) and the ability of the plant to 

compensate for defoliation in the early stage (Chapter 6) • 

In Experiments 7.1 and 7.2 yield losses occurred 

after attack by relatively low numbers of pests in 

comparison to those required to cause yield loss in 

the cage experiments. The apparent differences in the 

results may be due to the fact that losses caused by 

natural populations are dynamic and will accumulate 

over time while caged populations are confined to one 

time period. It is interesting to note that the majority 

of cage studies of insect damage have led to the conclusion 



that field populations do not cause yield loss (e.g. 

Mueller and Engross, 1980). The relationship between 

time of attack and damage will be examined further in 

Chapter 8. 

191. 

Direct damage to the sprouts was caused by feeding 

of the diamondback moth larvae. When white butterfly 

larvae were confined at levels of 60/plant there was no 

increase in damage levels over the control plants. 

Cabbage aphid were occasionally found in the sprouts, 

causing contamination, but this was a relatively minor 

problem. Diamondback moth larvae feed on the leaves and 

in the crown of the plant in the early stages of growth 

but later in the season were mainly found in the develop­

ing sprouts. The larvae do not feed on the very small 

sprouts and thus there was a threshold of 7 mm below 

which they did not, or could not, enter the sprouts. 

This, therefore, confined their ability to damage the 

sprouts to the latter part of the season when the sprouts 

had exceeded this size and the use of spray-free periods 

(Experiment 7.3) confirmed that, in fact, most damage 

occurred in the mid and late periods. Among the lower 

sprouts there appears to be some tolerance of damage as 

these sprouts will naturally shed the outer leaflets 

before harvest. Differential leaflet shedding between 

varieties may help to explain some of the differences in 

varietal susceptibility that were found in this study. 

In the early part of the season there were no 
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clear differences between varieties with regard to attack 

by diamondback moth or white butterfly although Jade E 

did have lower numbers of diamondback moth and a lower 

grading for feeding damage. At harvest the later 

maturing varieties had the greatest number of damaged 

sprouts. Clear differences were evident for aphid 

attack with variety Lunet consistently supporting the 

lowest number of aphids. The leaves of this variety were 

relatively-flat as opposed to curled in some of the other 

varieties which may, in part, explain the differences in 

numbers of aphids (Dunn and Kempton, 1971). 

At harvest it is the late maturing varieties that 

have the most contaminated sprouts. This may be due to 

the low shedding of leaflets prior to harvest in these 

varieties. It is clear, therefore, that variations in 

response to pest attack, particularly aphid attack, are 

evident between currently grown commercial varieties of 

Brussels sprouts and that the use of tolerant or 

resistant varieties should be examined further as a 

means of reducing insecticide use in this crop. 



CHAPTER 8 

MODELLING AS AN AID TO THE UNDERSTANDING 

OF YIELD LOSSES CAUSED BY DEFOLIATING 

PESTS IN BRUSSELS SPROUTS 
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Norton (1976a) proposed that our understanding of 

pest problems could be 'improved by examining key relation­

ships through the use of simple models which could be 

either simply descriptive or mathematical in form. 

Many of the simple models fo!;' pe;3b-yield inter­

actions are static in relation to time and as Ruesink 

(1975) pointed out, implicit in the use of these models 

is the assumption that no leaf growth occurslduring 

defoliation. Hence static models are most appropriate 

to those pests which are present in the crop for short 

periods only, e.g. locusts., For pests present through 

a considerable period of the crops' growth, like the 

brassica pests in this study, dynamic models of pest­

crop interactions are more appropriate. 

In this chapter, Section 8.1, a dynamic-determin­

istic computer model (Ruesink, 1975) is developed to 

elucidate the relationship between plant gtowth and 

defoliation. In Section 8.2 simple graphical models are 

developed to show the relationship between I pest population, 

feeding and insecticide use. The computer model is then 

used (Section 8.3) to assess the effects of white butterfly 

feeding on yield loss and the optimal timing of insect­

icide sprays. 



1. Plant Growth and Response to Defoliation 

The model described below is developed from data 

gathered in Experiments 6.1 and 6.2 and output is then 

compared with the results from Experiment 6.3. 

a. Model development 

For construction of even a simple model data is 

needed on the growth pattern of the plant and the 

development of yield in the crop. In Chapter 6 it was 

shown that leaf area duration over the whole season was 

the major determinant of yield. Leaf area at anyone 

time is the result of two processes, the growth of new 

leaves and the senescence of old. The former can be 

represented by a logistic curve while the latter seems 

to follow a linear relationship (Fig. 8.1). 
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The effects of early defoliation on leaf growth 

and leaf senescence are shown in Figure 8.1. In each 

case the leaf growth follows a logistic function with a 

similar asymptote (assume K = 155). Leaf senescence 

appears to occur at the same rate in all three treatments 

following defoliation. The apparently high senescence 

on 18 April, following 100% defoliation, is in fact due 

to the removal of more than 40 leaves from this treatment 

which were then considered senesced. Yielp is a function 

of leaf area duration (Ch. 6) and therefore, with thi~ 

information a simple simulatio~ model of plant growth was 

constructed using Fortran as the programming language. 
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The model parameters are presented in Appendix 8.1 and 

the model, including a compensation factor outlined 

below, in Appendix 8.2. 

The leaf area output of the initial model is 

presented in Figure 8.2a for 0, 50 and 100% defoliation 

on day 54, the time of defoliation in the original 

experiment. The relationship between defoliation at 

stages throughout crop growth and yield output for the 

model is presented in Figure 8.2b. It can be seen that 

while the model adequately describes plant growth and 

sprout production in the absence of defoliation, plant 

growth following de·foliation at early stages is not 

adequately represented. It appears that this is due to 

the omission of a compensatory factor from the model 

operating over the early stages of growth. Compensation 

is the result of an increase in the leaf area growth 

rate (LAGR) following defoliation. The compensation 

factor is calculated on the basis that the LAGR is 

increased until such time that the leaf area of the 

defoliated plant is again equal to that of the control 
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plant after which the compensation factor returns to zero. 

The time taken for this to occur seems to be a maximum of 

six weeks for the 100% defoliated plants and proportionately 

less according to the degree of defoliation such that the 

compensation factor COMPF = 0.053xdefoliation/leaf area 

on previous day. It is also assumed that compensatory 

ability is at a maximum in the early stages of growth and 
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then declines proportionately from day 50 to day 100. 

There is no indication of compensation in the later 

growth stages. 

To account for differences in absolute leaf area 

due to defoliation, senescence is introduced into the 

model as a proportionate loss of leaf area from day 98 

onwards. 

h. Model output 
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The effects of introducing defoliation into the 

model at various stages through the crop's growth are 

shown in Figure 8.3. The results show the expected 

response with a high ability to compensate for defoliation 

in early stages of growth followed by a mid-growth stage 

of greatest susceptibility with limited compensation 

and a late stage where there is no c9mpensation but 

yield losses are low due to much of the yield being 

already formed. 

A more detailed comparison between model output 

and the independently obtained results of defoliations 

on days 43, 82 and 121 from Experiment 6.3 shows a 

close relationship between model output and empirically 

obtained results (Fig. 8.4). 

The model thus presented has dealt with the 

proportion of the plant defoliated, i.e. damage from the 

plant point of view. It must be remembered,however, that 

the plant varies greatly in leaf area throughout its 
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growth and of greater importance to the grower will be 

the relationship between absolute levels of damage 

and yield loss and how this relationship varies as the 

crop matures. Thus, Figure 8.5 shows the relationship 

between time of defoliation and the amount of leaf area 

removal necessary for yield losses ranging from 5-30%. 

It is clear that the plant is most sensitive to absolute 

defoliation in the early growth stages and that its 

tolerance to defoliation increases with age. The 

relationship between yield and pest populations will 

be examined further in Section 8.3. 

2. The Effect of Insecticides in Reducing Foliage 

Losses Due to White Butterfly Feeding 

Insecticides are usually evaluated on the basis 

of their efficacy in the short term with less attention 

given to their effects over the whole season. However, 

it is this reduction of pest popUlation over the whole 

season and the consequent reduction in feeding and crop 
.1 { 

damage that is the principle concern of the grower. Thus, 

in this section, the effects of a single insecticide 

spray applied at different times throughout the season 

will be evaluated from a graphical model in terms of its 

ability to reduce the number of 'larval days' and to 

reduce the amount of feeding on Brussels sprout plants. 
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a. Methods 

The graphical model used in this section is based 

on the seasonal population distribution for white butter­

fly larvae recorded in 1979 and adjusted for missing 

larvae (Section 4.3a). To assess the effects of insect­

icides in reducing this population and its feeding, the 

following information and assumptions are necessary. 

Relationship between feeding, instar and temperature 

(Chapter 5) . 

Effect o,f pesticide; assume 90% reduction in 

population. 

Development of pest population. Thermal constants 

for development were given for larval stages in 

Chapter 5 and for eggs and pupae from Ashby (1972) 
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and are combined in Figure 8.6; assume the population 

one generation from the application of the spray equals 

that of the unsprayed crop. 

Assume that the relationships between known data 

points are linear. 

b. Results 

The population curve corrected for larvae missed 

by direct counting is presented in Figure 8.7 together 

with the feeding rate curve of the population. It can 

be seen that peak feeding occurs at a later date than the 

peak population due to the increase in food consumption 
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of the later larval instars. The effects, according to 

the, graphical model, of insecticide sprays on larval 

populations at early, mid and late growth stages, are 

shown in Figure 8.8. 

Early and late sprays have little effect but 
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the mid season spray causes a reduction of approximately 

60% in the number of larval days. The reduction in 

feeding was similarly examined and the results are 

shown in Figure 8.9 indicating again the greatest 

reductions in feeding following the mid-season spraying. 

The percentage reduction in larval days and feeding 

according to spray time is shown in Figure 8.10. The 

greatest reduction in the number of larval days, 59%, 

occurs following a spray in week 10, while 
'/ 

the greatest 

reduction in feeding, 84% , follows a spray in week 12. 

3. The Pest-Yield Interaction 

White butterfly feeds through a large part of the 

Brussels sprout growing season and therefore the cumula-

tive effects of the feeding of a population of this 

insect warrant further investigation. White butterfly 
J 

populations showed a regular seasonal pattern in each of 

the three years of the study and thus the following daily 

feeding curve may be estimated from the data in Figure 

8.7. 
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of the later larval instars. The effects, according to 

the graphical model, of insecticide sprays on larval 

populations at early, mid and late growth stages, are 

shown in Figure 8.8. 

Early and late sprays have little effect but 
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the mid season spray causes a reduction of approximately 

60% in the number of larval days. The reduction in 

feeding was similarly examined and the results are 

shown in Figure 8.9 indicating again the greatest 

reductions in feeding following the mid-season spraying. 

The percentage reduction in larval days and feeding 

according to spray time is shown in Figure 8.10. The 

. greatest reduction in the number of larval days, 59%, 

occurs following a spray in week 10, while the greatest 

reduction in feeding, 84%, follows a spray in week 12. 

3. The Pest-Yield Interaction 

White butterfly feeds through a large part of the 

Brussels sprout growing season and therefore the cumula­

tive effects of the feeding of a population of this 

insect warrant further investigation. White butterfly 

populations showed a regular seasonal pattern in each of 

the three years of the study and thus the following daily 

feeding curve may be estimated from the data in Figure 

8.7. 
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LARI = -0.7238 + 0.0000194J3 - 0.00000013lJ4 

(a), (P<0.05) 

lLAR, Leaf area removed (cm2 ); 
J, days from transplanting. 

The results of adding this feeding curve to the model 

and five and ten times this amount of defoliation are 

shown in Figure 8.11 and the relationship between popula-

tion size and yield loss in Figure 8.12. The impact of 

a "normal" population is small resulting in only a 1.1% 

yield loss but increasing population size leads to an 

exponential increase in the yield loss. 

The purpose of insecticide use is to reduce yield 

loss. The effects of early, mid and late insecticide 

applications on feeding were shown in Figure 8.7. The 

daily feeding curve (a) can similarly be modified by 

insecticide application and the model output can be 

compared with estimates of the feeding rates of field 

populations of white butterfly monitored in 1979 follow-

ing early, mid and late applications of insecticide 

(Experiment 7.2). The model results show a similar 

pattern of feeding to that estimated from the field data 

indicating the validity of the assumptions upon which the 

model is based (Fig·. 8.13). The relationship between the 
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time of application of a single insecticide and yield loss 

is shown in Figure 8.14 indicating that yield loss by 

white butterfly will be minimized by application of 
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Fig. 8. 12. Model output showing the relationship between white 

butterfly population size and yield loss in Brussels s 

sprouts. 
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insecticides in the 13th week from transplanting and 

that the potential yield loss can be reduced by 56% 

by a single insecticide application at this stage. 

4. Discussion 

The simple simulation model thus developed 

represents the Brussels sprout plant and seems to ade-

quately describe the interaction between defoliation and 

yield and can, therefore, assist our understanding of 

the relationship between defoliating pests and yield 

in this crop. The model indicates that the plant is 

most $usceptible to loss of leaf area in t4e mid-

growth stage but when considered in absolute terms 

heavy defoliation in the early stages of growth can 

cause high yield loss. Such relationships can 

be determined by the use of static models but the pest/ 

plant interaction becomes more complicated when the 

feeding of a population of insects over the whole season 

is considered. 

For defoliation by white butterfly, static models 

such as could be represented by the regression lines in 
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Figure 8.3, indicate that, on day 100, 37%Jdefoliation or 

2 approximately 3700 cm of leaf removal would be necessary 

to cause 10% yield loss. This would represent about 100 

larvae per plant. The dynamic model, however, indicated 

that a population of five times the normal would cause 

this loss, i.e. only 22 larvae per plant at peak 



populations. The effects of gradual defoliation, are, 

therefore, most insidious but no less important than 

sudden removal of large amounts of leaf area but cannot 

be represented by static models. It is interesting to 

note that in most cases where economic injury levels 

have been established or pest impact determined using 

static models it has generally been concluded that the 

pests under study have little effect on yield (e.g. 

Tamaki and Hagel, 1978). 

While the development of models such as that 

described here aid the understanding of the system 

that is being modelled, the true benefit 

from such models will arise from their use in assisting 

pest managers to manipulate that system to minimize 
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crop losses. Experiments can be carried out on such a 

model and may indicate the relative benefits of pest 

control measures at different times throughout the crop's 

growth and can even pinpoint the optimum time for the 

use of control measures. The criteria for initiating 

control actions may also receive attention as maximum 

reductions in numbers, feeding and yield loss may not be 

synchronous as in this case where the optimum time for 

spraying to maintain yields was later than that to provide 

the maximum reduction in insect numbers but about the same 

time as that for greatest reduction in total feeding. 

These differences would be greater where the critical 

period is more defined or occurs at a markedly different 



time to peak populations. The dangers of using simple 

models such as this are that the mathematical require­

ments of the model may distort biological reality. It 

is often appropriate that stochastic elements are 

entered into pest/crop models to reflect chance events 

that occur in nature. In the case modelled here, 

however, the use of a deterministic model appears 

warranted due to both the uniformity of both Brussels 

sprout growth and white butterfly populations between 

years. 

214. 
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CHAPTER 9 

A RATIONAL APFROACH TO PEST CONTROL IN 

BRUSSELS SPROUTS PRODUCTION 

Dunn and Coaker (1965) proposed the concept of 

rational control of pests in vegetable crops which was 

defined as use of the minimum amounts of insecticide in 

crop production by utilizing an understanding of both 

crop growth and insect ecology. It was proposed as an 

alternative to the then fashionable integrated control 

concept because natural enemies, which are essential to 

the integrated control concept, were not considered as 

providing adequate control of pests for the high quality 

standards demanded in vegetable production. 

To meet these high standards,many growers use 

insecticides on a schedule basis but it would appear, 

from this study as already reported, that insecticide 

use in Brussels sprouts can be reduced without loss in 

quantity or quality of yield, and that a theoretical 

rational control programme can be proposed, based on an 

understanding of the insect ecology, crop growth and 
, 

damage relationships gained in the previous chapters. 

1. Schedule Spraying - An Appraisal 

Many commercial growers of Brussels sprouts apply 

chemicals for pest control on a schedule basis every two 



weeks from transplanting. They do this in the belief 

that this programme is necessary to insure against pest 

attack. However, for schedule spraying to be rational 
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it would imply that there is a constant, persistent 

threat from insects throughout the season. This, however, 

is not the case. The data presented in Chapter 4 

indicated that, for all the pests, numbers varied 

throughout the year. Between years the seasonal distri­

bution of white butterfly is regular but for diamondback 

moth and cabbage aphid the pattern was highly irr~gular 

with few colonies of the latter recorded in the third 

year. It is also evident that the plant response will 

vary with two major periods of susceptibility (Chapters 

6 and 7). The first of these occurs in February when 

the plants are most susceptible to indirect damage and 

the second occurs later in the season when direct 

damage and contamination can occur. Thirdly, it is 

evident that the pests themselves will pose less of a 

threat as the season progresses and their development 

and feeding rates are lowered by declining autumn 

temperatures. 

Therefore, in the face of varying attack and 

varying sensitivit~ schedule spraying is an 

irrational form of control and leads to the use of 

greater amounts of pesticide than are necessary to ensure 

the production of high quality, damage free, sprouts. 



2. Potential Improvements in Pest Control 

a. Pre-emptive measures 

There are a number of measures that the grower 

can take before sowing that may limit pest attack to 

the crop. 

Sowing date 

Adjustment of sowing date has been used in many 

crops as a means of avoiding pest attack. While there 

217. 

is little direct evidence from this study, some specula­

tion may be made as to the effect of~ sowing date on 

damage. Potential attack on the crop is delineated by 

sowing and harvesting dates and also by intrinsic factors 

in the pest population such as diapause and temperature 

dependent feeding and development rates. Simulation of 

pest attack by white butterfly indicates that the potential 

attack would be greatest following sowing in September and 

would be decreased by each subsequent sowing due to a 

shorter potential time for pest development in the crop 

(Jackson, unpub.). Thus, January and February transplant­

ings would result in low levels of damage. However, 

research indicates that yield of Brussels sprouts declines 

markedly with each transplant after December (P. Bull, pers. 

couun.) • In this study, in 1978, yield following the 

second sowing and January transplanting was only 70% that 

of the first sowing. Thus delayed sowing, while potentially 

limiting damage, does not appear to be a feasible method 

of pest control while maintaining yields. 
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Varietal selection 

Dunn and Kempton (1971, 1976) have shown considerable 

variation in response to pest attack among varieties of 

brassicas. The limited testing of varieties reported in 

Chapter 7 also indicated considerable differences in pest 

levels on the.plants. The most noticeable of these was for 

the low numbers of aphid colonies on varieties Lunet and 

Rasmunda. Resistance to white butterfly and diamondback 

moth was less evident and all unsprayed sprout varieties 

displayed considerable levels of damage by diamondback 

moth at harvest. Thus it appears that rapid selection 

for resistance to cabbage aphid can be made from 

current commercial cultivars without loss in commercial 

yield but that the potential for resistance to other 

pests is less clear and requires further evaluation. 

Spacing 

While all experiments were carried out at single 

spacing some speculation can be made as to the effect of 

spacing on pest attack, particularly in regard to direct 

damage by diamondback moth. Experiments reported in 

Chapter 7 revealed a critical size threshold of 7 mm 

diameter below which sprouts are not, or cannot be, 

attacked by diamondback larvae. In the crop grown at 

60 x 60 cm spacing, basal sprouts passed this threshold 

in late February. However, at high densities Verheij 

(1970) reported two major effects, delayed maturity and 

greater uniformity in the sprouts. Thus, increasing 



density can decrease the period of susceptibility of 

the sprouts and, therefore, enable a reduction in insect­

icide usage. Hence the relationship between density, 

sprout growth and pest attack needs further evaluation 

in local conditions. 

b. Pest control measures at stages throughout 

crop growth 

Establishment phase 
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This period is characterised by a high compensation 

potential in the plants. Artificial damage studies 

revealed that the plants could tolerate up to 75% 

defoliation without yield loss although cage studies 

indicated a lower threshold. However, in this period the 

plants showed greatest susceptibility to attack by cabbage 

aphid. 

At this time diamondback moth and cabbage aphid 

pose the greatest threat as white butterfly are only 

present in low numbers. Due to the variability of 

attack by cabbage aphid and diamondback ~oth a 

threshold approach to control will be most appropriate. 

As this is a period of rapid plant growth the relationship 

between pest numbers and yield will be constantly changing. 

Thus initial thresholds can be more easily based on visual 

effects on the plant than pest numbers. For cabbage aphid 

it appears that only populations causing severe leaf 

curling and obvious stunting would cause yield loss and 
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consequently require control. The effects of diamondback 

moth populations are less clear although the results 

indicate that 50% defoliation of the young leaves in the 

crown of the plant would warrant control of the pest. 

Mid season 

Following establishment, the plant enters a period 

of stem elongation and rapid leaf growth. In both 

artificial defoliation and field studies this period 

was found to be the period of highest susceptibility 

to pest attack. While threshold measures are possible 

in this phase it was calculated in Chapter 8 that the 

optimum time for a spray to minimise white butterfly 

damage was in mid March. There would be little 

value in adopting a threshold approach for the control 

of this pest as, at least within this cropping system 

and location, it is extremely regular in its timing be­

tween seasons. Thus a single effective schedule spray 

would provide protection from both defoliating pests 

over this period. 

Sprout growth 

In Chapter 7 it was established that diamondback 

moth larvae only enter sprouts with a diameter greater 

than 7 mm. Thus once the sprouts have passed this size 

they will be susceptible to direct damage. Tolerance 



levels for direct damage in sprouts are ill defined, 

thus the aim of the grower is to avoid this type of 
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damage. Therefore the most appropriate pest control strategy 

is one of schedule sprays once sprout si?e has passed the 7 mm 

barrier. While there is no information available on the 

frequency of sprays within the schedule it seems likely 

that the present two weekly programme may be necessary 

throughout March and early April but this could 

be reduced to every 3-4 weeks in May and June due to 

lower levels of insect activity at this time. A visual 

threshold, based on aphid presence, could be used through­

out the whole season with particular importance placed on 

late season contamination of the sprouts. 

c. A rational approach to pest control in Brussels 

sprouts 

It would appear, therefore, that a rational spray 

programme, with considerable reductions in the present 

spray loading is feasible for Brussels sprouts. The 

programme would combine pre-emptive measures such as 

selection of varieties, sowing date and spacing, with 

visual thresholds for the main pests in the early stages 

of growth. Once sprouts have passed the 7 mm size 

threshold, schedule spraying would commence with intervals 

between spraying widening into the autumn as the damage 

potential of diamondback moth was reduced by lower feeding 

rates and lower flight activity (Fig. 9.1). 
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Fig. 9. 1. Comparison of current two-weekly spray schedule and rational spray programme incorporating 

threshold initiated sprays and schedule sprays over the critical phase of plant growth. 



Thus it is possible that by adopting a rational 

spray programme based on an understanding of pest 

ecology and plant response, insecticide usage could be 

halved. Before being adopted by growers the proposed 

programme obviously needs testing as a package under 

field conditions with further definition of thresholds, 

and identification of the most effective materials 

and methods of application. 
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CHAPTER 10 

CONCLUSIONS 

1. The characteristics of attack by each of the major 

pest species of Brussels sprouts, white butterfly, 

diamondback moth and.cabbage aphid, were markedly differ­

ent. White butterfly was noted for its uniformity in 

population growth within each season. Each year larval 

numbers increased to a similar peak in late March. 

Diamondback moth larvae were present on the leaves through­

out most of the season but the numbers fluctuated with no 

consistent pattern between years. Cabbage aphid popula­

tions showed the greatest variability with no consistency 

in the pattern between years and huge differences in the 

peak numbers recorded. 

2. The distribution of the pests on the plant changed 

markedly through the season. White butterfly fed randomly 

over the young plant but in the latter part of the season 

were found primarily in the upper leaves. Diamondback 

moth larvae were located mainly in the crown of the young 

plant but after sprout formation the majority of the larvae 

were found in the young sprouts. Colonies of cabbage aphid 

were initially found over the whole plant but in the later 

stages were pre?ominantly found on the lower leaves. 

3. The rate of feeding of white butterfly larvae 

increased throughout its development such that the bulk 
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of feeding occurred in the final instar. The rate of 

feeding within each instar was dependent on temperature 

but this was not directly proportional to the development 

rate. At high temperatures larvae consumed less and the 

resultant pupae weighed less than those from within the 

lower range. Calculation of feeding and development 

thresholds indicated that feeding by white butterfly 

continued at low temperatures where development had 

ceased. Feeding by diamondback moth larvae followed a 

similar pattern with absolute consumption approximately 

7% that of white butterfly. 

4. Brussels sprout growth after transplanting followed 

an establishment phase, a period of stern elongation with 

rapid leaf growth and then a period of sprout growth in 

the autumn and winter months. The plants were able to 

compensate even for high levels of defoliation in the 

early stages of growth. Greatest yield losses followed 

mid season defoliation but some compensation still 

occurred. Following late defoliation, the relationship 

was linear but yield losses were low due to much of the 

yield being formed prior to defoliation. 

5. Total yield may be reduced indirectly by feeding 

of each of the pests on the leaves. Yield losses due 

to white butterfly and diamondback moth feeding were 

greatest in the mid season while attack by cabbage aphid 



early in the growth of the crop in 1979 had most effect 

on yield 

6. Direct damage, by feeding on the sprouts, was 
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caused by diamondback moth in contrast to white butterfly 

where even very high numbers of larvae had no effect on 

damage levels among the sprouts. Only sprouts over 7 mm 

in diameter were affected by diamondback moth showing 

that there is a critical point defined by sprout size, 

after which the crop is susceptible to diamondback moth 

attack. This period occurs after 15 weeks from 

transplanting. 

7. The pattern of growth varied markedly between 

varieties. The use of late maturing varieties such as 

Rampart and Rasmunda may reduce the need for insecticide 

by delaying the onset of the critical period for direct 

damage to the sprouts. No firm conclusions could be 

reached regarding differential levels of feeding between 

the varieties but consistent differences in response to 

aphid attack were noted. The variety Lunet had con­

sistently less cabbage aphid than the other varieties. 

8. Examination of the relationship between defoliation 

by white butterfly and yield loss using a simulation model 

showed that the effect of feeding by a normal population 

of white butterfly was low, reducing yield by little more 

than 1%, but that increasing population size led to an 
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exponential increase in the yield loss. The optimum 

time for application of a single insecticide was the 

13th week from transplanting which reduced the potential 

yield loss by 56%. 

9. The present high use of insecticides for pest 

control in Brussels sprouts may be rationalised by 

changing from the current two weekly schedule to a 

flexible control strategy based on insect numbers and 

stage of plant growth. A rational spray programme 

would involve adoption of a threshold for insect control 

through the early stage of growth followed by scheduled 

sprays through the critical period. 
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Appendix 6.i Results summary for intermediate harvests, 
Experiment 6.1. Mean values for leaf 

Harvest 

II 

III 

IV 

number, leaf area, sprout weight and total 
weight. S.E., standard errors for comparison 
of treatment means within each sowing time. 

Sowing 
time 

Defol­
iation 
time 

Leaf Leaf 
number area 

Sprout 
weight 

Total 
weight 

(cm2xl02) ( g) ( g) 

1 0 52.4 79 .9 3.6 114.4 

I 51.5 72.5 2.4 102.1 

2 0 60.2 76.2 11.5 150.3 

I 58.4 70.2 8.3 139.4 

SE 0.93 7.43 1.92 9.63 

1 0 63.9 100.1 39.1 246.3 

I 62.6 98.4 39.5 238.7 

II 58.7 65.4 13.6 145.4 

2 0 72.0 102.7 41.7 214.2 

I 72.3 107.2 40.9 212.8 

II 73.8 79.3 32.9 171. 7 

SE 1.68 6.94 5.49 11.94 

1 a 70.3 85.5 75.3 254.7 

I 73.5 92.3 80.9 275.7 

II 74.3 87.2 71.0 257.5 

III 72.5 63.6 78.9 247.3 

2 0 59.4 83.4 62.7 198.1 

I 56.8 80.6 76.5 225.3 

II 55.2 65.2 60.2 177.3 

III 58.9 53.8 60.3 170.1 

SE 3.24 6.18 7.18 12.89 
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Appendix 6.ii Results summary for' sequential samplings 
of Brussels sprouts, 1978/79. Experiment 
6.3. Mean values for leaf numbers, leaf/ 
area, sprout weight and total plant 
weight. S.E., standard error. 

Harvest Defoliation Leaf Leaf Sprout Total 
date level no. area weight weight 

(cm2xl02) ( g) ( g) 

6 Mar 0 54.4 55.7 3.1 74.7 

50 55.8 44.9 3.0 67.2 

100 21. 8 19.2 0.9 33.3 

SE 2.04 5.83 0.9 9.82 

23 Mar 0 65.4 70.7 14.2 108.4 

50 71. 8 78.6 11.6 122.9 

100 36.2 45.2 2.4 58.3 

SE 2.76 5.58 1. 85 7.98 

18 Apr 0 74.2 104.2 52.9 213.8 

50 79.8 93.8 43.5 189.5 

100 61.2 87.9 25.0 148.4 

SE 2.71 6.51 4.51 14.35 

10 May 0 66.0 81. 4 71.2 200.8 

50 62.2 80.5 68.4 199.8 

100 52.6 69.9 53.8 168.7 

SE 2.60 7.47 7.26 18.49 

28 May 0 55.2 66.4 137.0 275.6 

50 47.0 57.9 119.8 253.6 

100 41.0 68.6 88.1 218.3 

SE 3.68 7.49 10.14 23.72 

18 June 0 29.6 38.6 111.4 198.5 

50 29.8 44.2 117.2 215.5 

100 25.2 36.0 91.1 174.7 

SE 1. 87 6.08 14.02 19.61 



Appendix 6.iii Results summary for final harvest, 
Experiment 6.1. Mean results for leaf 
number, leaf area, sprout weight and 
total plant weight. 

Leaf number 

Sowing 1 

Sowing 2 

Defoliation 
time 

I 

II 

III 

IV 

I 

II 

III 

IV 

Leaf area 2 2 (em xlO ) 

Sowing 1 

I 

II 

III 

IV 

Sowing 2 

I 

II 

III 

IV 

Level of defoliation 

Control 25 50 

43.7 

40.5 40.0 

40.8 44.0 

40.7 38.8 

35.2 37.5 

35.2 

31.2 35.3 

31.5 34.2 

32.3 33.3 

37.2 35.7 

S.E.l = 2.29; S.E.2 = 2.31 

33.8 

34.2 37.1 

29.7 31. 8 

25.6 27.3 

30.1 21.5 

31. 7 

34.2 37.1 

29.7 31. 8 

25.6 27.3 

30.0 21.5 

S.E.l = 31.12 ; S.E.2 = 3. 15. 

253. 

75 

45.3 

39.5 

39.0 

33.3 

31. 7 

29.5 

21. 7 

19.3 

27.6 

23.4 

18.5 

9.5 

27.6 

23.3 

18.5 

9.5 



Appendix 6.iii continued: 

Sprout wt (g) 

Sowing 1 

Sowing 2 

Total wt (g) 

Sowing 1 

Sowing 2 

Defoliation 
time 

I 

II 

III 

IV 

I 

II 

III 

IV 

I 

II 

III 

IV 

I 

II 

III 

IV 

254. 

Level of defoliation 

Control 

124.1 

87.3 

S .E.l ;:: 5.34; 

253.0 

180.6 

S.E.l;:: 11.61; 

25 

118.3 

123.8 

120.0 

140.0 

102.7 

50 

119.8 

108.2 

100.5 

123.0 

97.2 

80.0 70.6 

83.6 80.8 

95.1 88.8 

S.E.2 = 5.37. 

233.6 

261. 3 

251.6 

265.4 

209.4 

168.8 

170.6 

194.9 

251.1 

223.4 

216.2 

244.2 

197.2 

158.0 

169.2 

186.1 

75 

114.2 

105.4 

105.4 

105.4 

76.7 

74.2 

82.6 

76. 7 

239 .9 

202.2 

201.0 

215.3 

155.3 

152.8 

163.0 

142.4 

S.E. 2 = 11.66. 

S.E.l - Standard error for comparision of cornman control means 
with treatment means within each time of sowing. 

S.E.2 - Standard error for comparison of treatment means within 
each sowing time. 



Appendix 6.iv Mean sprout yield (g dry wt) following 
defoliation (Experiment 6.3), and summary 
of F tests from trend analysis for the 
relationship between yield and defoliation 
at each time of defoliation. 

Time of Level of defoliation 
de foli ation 

o 25 50 75 100 

255. 

1 Feb 

13 Mar 

23 Apr 

116.3 

105.0 

114.2 

105.8 

99.8 

99.3 

110.2 

98.3 

100.6 

116.6 

79.0 

98.9 

85.9 

49 .9 

77.1 

Linear 

Quadratic 

Cubic 

F-tests for trends 

1 Feb 13 Mar 

5.71* 39.16** 

2.40 ns 7.02* 

6.17* 0.42 ns 

* P < 0.05 

** P < 0.01 

ns not significant at the 5% level 

23 Apr 

12.70** 

0.46 ns 

0.68 ns 



APPENDIX 8. i 

Model parameters 

1. Initial leaf area 

245 cm2 (measured leaf area of transplants) . 

2. Leaf area growth 

. Smooth curve drawn through da ta points from 

Brussels sprouts harvested in Experiment 6.3. 

Logistic function fitted . 

. Asymptote assumed to be 155 cm2 x 10 2 . 

256. 

Leaf area growth curve LAGR = 155/(l+e4.18-0.047J)* 

Regression accoUnts for> 99% of variation. 

3. Senescence; calculated daily as a proportion of the 

total leaf area and accumulated daily after day 98. 

For undefoliated plants 

Senes ced leaf area = ,0.9 2J - 89. 73 

% of leaf area senesced/day 

% SEN = 0.0000266J 3 - 0.01044J2 

+ 1.344785J - 55.25 (P < 0.01) 

Absolute defoliation/day 

SEN(J) = % SEN x LAACT/IOO 

Cumulative senescence 

SENESC(J) = SEN(J) + SENESC (J-l) 

4. Yield g = (0.016 x leaf area duration) - 21.654. 

5. Compensation factor COMPF ., 
to day 50, COMPF=0.053 x defoliation/leaf area 

days 50-100, COMPF=COMPF x (1-«Day-50)/50») 

past day 100, COMPF = O. 

* J = days from transplanting. 



A PPEN DIX 8. ii. 

C*************.******·.,***********************,******.***** C* * 
C * S P HOI J T D E F 0 L I4 T I 0 l'I ; I U [) E L * 
C* * 
C************************************·********************** 

o HI E il S I UN L 1\ ( 2 0 0 ) , L L ( ) 0 ) , .s r: !H~ S C ( L 0 I] )' , L A A C 'J ( 20 U ) , G 1\ Y ( 6 ) 
HEAL LAG,LAlil,LAC,LA,LL,Ll\ACT,LAC 

D A TAL L I * * lJ E f eLI A T I U IJ P A fH J,I ETc. H ~ (S I X G R I) IJll S U F f] V E) * *' I 
J) A T A J) A Y I * * [; A Y LJ F U E F 11 L I J\ T I 0 f'j ( S I X P A HI\ ~'i E T E R S ) 'I' *' I 

C * * * LJ U 3 0 LOU P CO! JT Fl C L SUA Y 0 F J) E F U L 1 A '1'1 IJI-l 

DU 30 K=l,b 

C * * * 0 (J 20 L (] fJ P CO f J 'ifl C L S P r:F~ C t: il TAG ~~ D r~ F I) L I A T I U N 

DtJ 20 IJ=1,5 

SENESC(l)=O.U 
LAO=O.U 
LA(1)=2.45 
Y1ELD=0.0 
LAAC'1'(1)=2.56 
LAGR=O.048 

~HUTE(b,5U) 

C * * * D (J 1 0 L 0 fJ P CO rH R C L S L UJ G T JJ U F H U ij HI lJ A I ::; 

DU 10 J=2,200 

UEFfJL=O.O 
C CtlLCULATE LEAF Af,EA Of COiJTHUL PLIIIJ'f (LAC) 

LAC=155/(EXP(4.18-U.047*J)+1) 
C T r~ S T T U S r: Elf [) E F 0 L I A T I lJ II LJ C C lJ n ::i (U U (J L ) 

I F' ( J • t: 0 • 0 fI Y ( K ) ) [J E F U L = L L ( (I( - 1 ) * 5 t I J ) 

C Cf,LCULflTI:: I!'JCHEMEi~TAL LEAf GRUIJTH FUR Dt\l (LflIil) 
ili\ HI = LAG R * ( L i\ ( J - 1 ) - J) E F U L ) * ( ( 1 5 5 - ( L 1\ ( ,./ - 1 ) - f) t: F' ( J L ) ) I 1 'j 5 ) 

C f I i I 0 J.J t: A FAR E A U 1\ [) A 'f J ( LA) 
LA(J)=LA(J-l)tLAlh-I)t:FIJL 
IF(LA(J).LT.l.U)LA(J)=1.0 

C U (J r:.s S E iH:: oS C E U C E C C CUR? If:) u, C,U C II L i\ T E. ( oS Eo ~ r j t: s C ) 
IF ( J • G T • 98 ) ::; E 1 J b: S C ( J ) = oS E rl E .s C ( J - 1 ) + ( ( 0 • U 0 0 0 L t) b * ( J -\ ) * * 3 ) -

.. ( .01014 * (J -1 ) * ... 2 l+ ( 1 • ) ,H., ~l5 * (J -1 ) ) - 5 ') .2') ) * L!\ /\C T (d - 1 ) 11 () r) 

C ACTUAL LEAF AREA. (LAflCT) 
L A ACT ( J ) = LA ( J ) - S 1:. I~ t: S C CcJ ) 

C CUHULATIVE LEAf 1\8£A UH LEI1f' AHt:A f)[JRflTIOfJ. (LAD) 
LAD=LflOtLAACT(J) 

C CALCULATE YIELD 
YIELD=(0.OI6*LAD)-21.654 

C CALCULATE COi~PENSf\Tlml FACTOR (CCi /1 PF) fUH SUCCEEGIUG U/\YS 
C AfTER DEfULIATION. 

COMPF=O.053*(DEFCL/LAACT(J-l)) 
IF(LA(J) .GE.LAC)LAGR=O.{)4U 
IF(J.GT.50)CONPF~CUMPf*(1.-(fLOAT(J-5{)/50.») 
If(J.GT.100)COPPF~0.O 
I f ( L A ( d ) • G E • LAC • A IW • 0 E F 0 L • G T • 0 • 0 ) l A r; k = LAC; P + C 1 It,1 P F 

C inn T ERE oS U L T S E V F F Y T I:: 1'/ 0 A Y S 
I F HI 0 0 ( J , 1 0 ) • E Q • C ) vnu T r:: ( 6 , 1 () 0 ) ,] , SEll ESC ( J ) , U r: F 0 L , L A I : J , 

*LAACT(J),LAO,YI~LC,LAGR,CUMPF,LAC 

10 CON'rrrJUE 
2 0 C C1 WI' HJ U E 
30 CONTINUE 

50 FOR /VI A T ( , 1 ' , lOX, ' C t; F' 0 L J A TIll j I II C n F: L' I II * 2 X , , T HI E ( 0 A Y S)' 13 X , , S E I J £:: oS C t: ric E' '2. X , • 0 t: F 0 L 1 A T I (J ill ' , 2 X , * ' L A 1I~ eRE H E WI ' , :2 x , , D l\ I L Y LA' '2. X, ~ CUll U i, i\ T I VEL A ' , '1 X , • Y I r: L L ' , * 5 X, , LAG H' 7 X , , C 0 tv: H' , , 5 X , , L,A C C ) 
1 00 f () R 1-' A T ( , 0 ' , ij x , 13 , 1 8 X , 4 ( F U • 2 , 4 X) , F H • 2 , L. X , FLO. ) , '3 ( 2 X , ~'}3 • 3 ) ) 

£110 

257. 
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