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Abstract

Dissolved Organic Matter (DOM) serves as a primary source of mineralizable carbon
(C), nitrogen (N), and other macroelements for plants and soil microbiota, acting
as a linchpin of nutrient dynamics and energy flows through ecosystems. However,
its mineralization through microbial activity can potentially lead to serious envi-
ronmental threats. These include inflated losses as carbon dioxide (COs) into the
atmosphere, contributing to the global greenhouse effect, or enhanced groundwa-
ter contamination and reduced soil fertility, due to leaching. The balance between
processes of formation, utilization and preservation of DOM is a function of a wide
range of biological, environmental and anthropogenic factors. As a result, current
understanding of the quantity, composition and biodegradability potential of this
dynamic soil organic matter (SOM) component in rather complex and changing
systems, such as agricultural soils, remains moot.

This study attempted to shed light on the quantitative and biochemical aspects
of DOM underpinning its biodegradability potential. What are the features that
best describe the mineralization response? How do changes in soil moisture and
land use affect these and are there preferred forms and pathways that the microbial
community exploits? These are some of the spread puzzle pieces of DOM studies
that the present study aimed to combine.

The first part of the study investigated the effect of different soil moisture lev-
els on the quantitative and qualitative changes of DOM released from sequentially
leached arable and grassland soils. The extent of soil drying before rewetting had
a strong impact on the quantity of DOM released with sequential leaching, but
these changes were inconsistent between land uses and poorly related to DOM
biodegradability. Advancing drought levels progressively decreased differences in
DOM quality, assessed by means of specific ultraviolet (UV) absorbance at 254
nm, but there remained notable changes in DOM released over the leaching course,
indicating an increasing proportion of water-soluble and relatively biodegradable
aromatic and/or conjugated structures. These proportions and their responsiveness
to biodegradation varied, however, between land uses, questioning the involvement
of components of different origin and functionality. A soil with three contrasting
management histories was further considered, with the aim of identifying and char-
acterizing, by means of fluorescence and UV indicators, specific fractions that might
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v Abstract

explain DOM mineralization response to land use. Anion exchange resin treatment
of cold (CW) and hot water (HW) extracts revealed an uncharged/protonated,
aliphatic, likely microbially derived sub-fraction, with contrasting biodegradability
in CW and HW extracts, as opposed to the negatively charged and/or hydropho-
bic, aromatic, plant and SOM-derived fraction retained by the resin, which had
comparable biodegradability between CW and HW extracts and land uses. The
Random Forest algorithm inferred the degree of humification to be an important
aspect affecting the mineralization of the CW fraction, but not of the HW fraction,
conversely characterized by a large amount of phenols and organic N content. In
contrast, DOM concentration was not a factor limiting biodegradability.

Open questions as to what caused these inconsistencies in the mineralization
response among DOM fractions and sub-fractions were finally approached at the
molecular level in the last part of the study, combining data mining of fluorescence
Excitation-Emission Matrices with high resolution Liquid Chromatography—Mass
Spectrometry. Small peptides and quaternary ammonium compounds were at-
tributed a leading role in DOM mineralization, which was, in contrast, demoted
by optically active, less oxygenated, lipid-like and phenolic compounds. This study
confirms the importance of compositional aspects of DOM in shaping the microbial
metabolism and the fate of DOM biodegradation products.

Keywords: Anion exchange, Biodegradation, Data mining, Dissolved organic
matter, Drying-rewetting, Fluorescence spectroscopy, Land use, Liquid chromatog-
raphy—mass spectrometry, Parallel factor analysis, Principal component analysis,
Random forest, Ultraviolet spectroscopy, van Krevelen diagrams, Water extractable
organic matter.
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Chapter 1

Introduction

“For most of history, few things have mattered more to human communities than
their relations with soil, because soil provided most of their food and nutrients.”

John R. McNeill and Verena Winiwarter

1.1 General introduction and scope

1.1.1 Background

Dissolved Organic Matter (DOM) in soils is a key regulator of nutrient cycling,
biological activity, and environmental health. It is considered to be the most labile
fraction of soil organic matter (SOM)(Bolan et al., 2011), but several studies have
contradicted this assumption inferring there is a significant recalcitrant component
(Gregorich et al., 2003; Michel et al.; 2006). This highly complex and heterogeneous
mixture of organic compounds confers to DOM a wide range of functionalities which
determine the ecological status of the soil. However, since DOM constituents cannot
always be assigned to a specific chemical entity or described with a defined chemical
structure, there is still a lack of knowledge about what determines its properties,
availability and fate. Thus, the determination of DOM’s chemical composition
and its concentration plays a crucial role in our understanding of carbon (C) and
nitrogen (N) cycling in nature and, therefore, our ability to preserve or improve soil
fertility, biomass production, and assess climate change risks.

Many attempts have been done to define and characterize this SOM pool: most
of the studies have been done on cold and hot water extracts or other acid or
salt-extractable fractions (Haynes, 2005). Such a variety of extraction protocols
complicates, however, inter-study comparisons and questions the integrity of the
results. Furthermore, less attention has been given to DOM in soil leachates (Ghani
et al., 2010), studied foremost in forest ecosystems (e.g. Froberg et al., 2005), and
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even less is known about the changes occurring over the leaching course. There is a
need, therefore, to understand the effects of soil dynamics on DOM properties and
identify authentic fractions reflecting the responsiveness to agricultural practices
and environmental changes.

Concentrations and fluxes of potentially mineralizable DOM are often deter-
mined by bioassay laboratory experiments using native microbial communities (see
McDowell et al., 2006). Microorganisms consume and release organic fractions
of C and N (Marschner and Kalbitz, 2003; Kallenbach et al., 2016), which can un-
dergo mechanisms of adsorption and mineral protection (Sollins et al., 1996; Kalbitz
et al., 2000), preserving available and potentially mineralizable DOM and prevent-
ing losses, or providing, in turn, a new valuable source for nutrient cycling. It is,
therefore, commonly accepted that the amount and biodegradability of these DOM
compounds play a central role in processes of mineralization and immobilization
of SOM. Nevertheless, relatively little is known about microbial interactions and
the reworking of DOM. In addition, the lack of a comprehensive insight into the
molecular identities involved and the non-standardized nature of the soil inoculum,
also hamper inter-study comparisons and lead to inconclusive answers. Therefore,
it is important to find alternative approaches to predicting the DOM mineralization
potential.

1.1.2 Research objectives

The overall objective of this PhD study was to provide an insight into the fac-
tors/mechanisms affecting DOM release and biodegradation in agricultural soils
with respect to its physicochemical characteristics.

In view of the outlined research gaps, the present study sought to:

e Investigate the quantitative and qualitative changes of DOM progressively
leached from a soil exposed to varying degrees of soil drying before rewetting;

e Identify functionally and biochemically distinct DOM fractions in response to
land use changes;

e Determine what characteristics of DOM best describe the variability in the
mineralization response;

e Identify tools and proxies of DOM biodegradability that can overcome incon-
sistencies and limitations brought about by sample manipulation and labora-
tory incubations.
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1.1.3 Thesis structure

The present body of work comprises of six Chapters.
Chapter |1/ provides a general background of the research topic, states the objectives
pursued and reviews knowledge and knowledge gaps at the basis of this study.

Chapter 2 describes the fundamental concepts of the techniques employed to
meet the appointed objectives and states the reasons behind their choice. Fur-
ther detail on these and their practical implementation in this research work are
described in the following experimental Chapters.

Chapter |3 presents the first experimental work performed with the aim of inves-
tigating the effect of the extent of soil drying prior to rewetting on the quantitative
and qualitative characteristics of sequentially leached pore volumes of an arable
and a grassland soil. It, ultimately, opens the debate around what aspects of DOM
determine its biodegradability. The overall goal seeks to clarify how the antecedent
soil water content affects the quantity and quality of DOM released when soils are
rewetted, and the potential for soil carbon losses.

Chapter 4 comprises of two main Sections. The first and central part of this

Chapter investigates the effect of land use and management on SOM fractions ex-
tracted with water at different extraction temperatures (cold and hot) and separated
by means of anion exchange resin treatment. The objectives were to identify and
characterize soluble organic matter fractions of differing reactivity, hence biodegrad-
ability. A suite of fluorescence indices was added to the UV measures in order to
determine structural properties, origin and degree of decomposition. Biodegrad-
ability was assessed by laboratory incubations and these data were included in a
modeling approach aiming to identify the properties that best describe the varia-
tion in the mineralization response. A first attempt towards the identification of
biodegradability predictors. The outcome of this study provides new information
about the qualitative aspects of DOM fractions and sub-fractions in relation to the
mineralization response, and promotes the utilization of fluorescence in biodegrad-
ability studies.
The second part presents the outcome of an experiment performed ahead of that
presented in the first Section. The objectives were to examine the effect of pH
on the retention of DOM by anion exchange resin and to determine the optimal
resin:extract ratio for the maximal DOM retention efficiency. The pH of extracts
from a soil with a higher SOM content was altered within the range of pH values
commonly found in agricultural soils. The retention efficacy by anion exchange
resin was then assessed using, in addition, several resin:exract ratios. These data
enabled the set up of the anion exchange fractionation method for the study of
DOM biodegradability.

Chapter 5| focuses on the molecular properties of DOM fractions and sub-
fractions and their effect on microbial activity. The first step involved a fluorescence
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fingerprinting of DOM quality by means of excitation-emission matrices. The over-
laying spectral components of these matrices were singled out by PARAFAC mod-
eling and investigated, within a data mining framework, for their ability to describe
DOM biodegradability and biochemical properties. The second step involved DOM
profiling through a non-targeted LC-MS analysis and the classification of resolved
compounds. Ultimately, the selected PARAFAC components were associated to
DOM’s molecular properties and linked to the mineralization response. The re-
sults provide new insights into the qualitative aspects and mechanisms regulating
biodegradability processes.

Chapter |6 conveys the knowledge gained from this study and points at the next
steps to be considered in future research on this topic.

1.2 Literature review

1.2.1 DOM in natural and agricultural ecosystems

Even though it still remains an operationally defined organic matter (OM) fraction,
whose concentrations are very small (0.05-0.4%; Haynes, 2005) compared to total
soil organic matter (SOM), dissolved (DOM) or water extractable (WEOM) organic
matter (Embacher et al., 2007) acts as a key regulator of soil carbon (C) and
nitrogen (N) cycling in terrestrial ecosystems (Kalbitz et al., 2000).

DOM is defined as being organic molecules and colloids <0.45 pm in diameter
that are known for their ability to supply nutrients to microorganisms and plants
(Bolan et al., 2011; Kaiser et al., 2015), to bind nutrients, heavy metals and or-
ganic contaminants (Zsolnay, 1996; Dudal et al., 2005; Bolan et al., 2011), and
to alter microbial activity (West et al., 1992; De Nobili et al., 2001; Fanin et al.,
2014). The wide range of functionalities demonstrated by DOM has been attributed
to its heterogeneous chemical composition and physical properties (Thurman, 1985;
Stevenson, 1994). These characteristics, however, complicate the separation of frac-
tions with different turnover times, which remain poorly defined due to challenges in
structural identification/characterization and their interaction, at the micro-scale,
with a wide range of factors.

Commonly, DOM fractions are defined with respect to their stabilization, and
thus extraction procedure, involving water or aqueous solutions with different ionic
strength. In this context, the term WEOM specifically refers to the DOM fraction
obtained by extracting SOM with water, whereas DOM most commonly reflects
the in situ release of SOM (Zsolnay, 1996, 2003). The research described in this
thesis addresses aspects of both DOM and WEOM, as both fractions have been
linked to important soil processes, including many associated with C and N cycling
in soils. For the purposes of this review, the term DOM is used generically to refer
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to various forms of water soluble organic matter fractions.

DOM is considered to be directly assimilable by soil microorganisms (Marschner
and Kalbitz, 2003) and, therefore, its bioavailability, here defined by its hydrophilic-
ity and molecular structure, represents a critical step in C and N biogeochemical
cycling. It is generally accepted that the DOM pool consists of easily decomposable
organic substances such as carbohydrates, organic acids, proteinaceous compounds,
amino sugars, fatty acids and a large pool of undefined organic compounds (Poirier
et al., 2005). However, Qualls and Haines (1992) and Gregorich et al. (2003) have
suggested that a significant proportion of DOM comprises of recalcitrant material
that is resistant to mineralization. This was true particularly for dissolved organic
C (DOC) moieties. Thus, soil extractable DOM consists of both readily mineraliz-
able and refractory OM pools. This raises the question as to what determines the
biodegradability of this OM fraction, and therefore its ecological significance.

DOM is actively cycling in the soil compartment, reacting with its mineral
components, being in a constant equilibrium with SOM, thus rapidly reflecting al-
terations in soil conditions (Zsolnay, 1996; Chantigny, 2003; Bolan et al., 2011).
While much attention has been paid to DOM immobilization vs. mineralization
and its losses as COy and N3O in the atmosphere, less attention has been paid
to the controls and properties of DOC and DON leaching from agricultural soils
(Ghani et al., 2010) and their inclusion in predictive models of C and N dynam-
ics. From this point of view, losses of DON from agricultural systems (Murphy
et al., 2000) via convection, diffusion and dispersion (van Kessel et al., 2009) could
have important environmental consequences, both for soil fertility and groundwa-
ter contamination, especially if the chemistry of DOM compounds is susceptible to
microbial degradation. Presently, little information exists on DOC and DON losses
from pasture and arable cropping soils in New Zealand (Ghani et al., 2007).

Despite its importance in nutrient mobilization and a wide range of analyti-
cal methods used to characterize DOM chemistry and functionality, there is still
a knowledge gap with respect to DOM composition, biodegradability, and the fac-
tors that affect its supply. This is especially marked in field studies conducted in
agricultural and pasture systems, where available results are few in number and
contradictory (Chantigny, 2003; Kalbitz et al., 2003), since most of the available
knowledge comes from field studies conducted in forest ecosystems (e.g. Guggen-
berger et al., 1994b; Froberg et al., 2005; Jaffrain et al., 2007).

It is, therefore, clear that “DOM is not DOM” (Zsolnay, 2003): the same op-
erationally defined DOM fractions vary in different types of environment and may
perform very different ecological functions. Also, due to practical purposes or spe-
cific research questions, non-standardized methodologies of DOM extraction may
lead to different conclusions. Therefore, attention must be paid to comparative and
interdisciplinary studies (Zsolnay, 2003).
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Figure 1.1: Conceptual model of the C mineralization process (modified from Curtin
et al., 2012): SOM- solid-phase soil organic matter; DOM- dissolved organic matter; MB-
microbial biomass.
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1.2.2 Factors and sources of DOM release
Soil water content, drying and rewetting

Soil drying and rewetting cycles have been identified as being among the most
important naturally occurring factors affecting DOM release. These cycles are also
fundamental processes in common agricultural practices, influencing OM fate and
mobility in soils. Previous studies (Kowalenko et al., 1978; Howard and Howard,
1993; Harrison-Kirk et al., 2013) suggest that these events strongly affect C and N
mineralization and emissions of CO5 and N,O into the atmosphere, but the effect
of dry/wet cycles on SOM solubilization and biochemical composition of DOM in
relation to the mineralization response is still poorly understood.

Birch (1958) observed that rewetting of a dried soil one or more times causes
a flush in the COy evolution (the “Birch effect”). Many authors (Fierer et al.,
2003; Chow et al., 2006) have reported that this flush decreases with consecutive
drying/wetting events. The source of the OM mineralized has been attributed to the
mineralization of intracellular solutes (Halverson et al., 2000) accumulated during
the stress event and released upon the rapid decrease in water potential (Kieft
et al., 1987; Fierer et al., 2003; Zornoza et al., 2007), the breakdown of microbial
cells (Bottner, 1985; Van Gestel et al., 1993a), or the enhanced microbial utilization
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of SOM released by aggregate disruption, desorption or redistribution (Denef et al.,
2001a,b; Cosentino et al., 2006). However, less is known about the changes in the
physical conformation and chemical characteristics of SOM and DOM related to
the drying effect.

Oxygen availability and soil water effects

Soil heterotrophic respiration is largely influenced by soil water content (Linn
and Doran, 1984; Moyano et al., 2013), and so is the mineralization of DOM (Fierer
and Schimel, 2002; Chow et al., 2006). In turn, the release of DOM as available
substrate for soil biota is also strongly regulated by soil moisture (Zsolnay et al.,
1999). Broadly speaking, soil water content is inversely related to Oy availability
and it is the proportion of these two parameters in the soil that determines the
physical, chemical, biochemical and, therefore, physiological processes that occur.
Fluctuations in soil water content will, therefore, have both direct and indirect
effects on the bioavailability and biodegradability of DOM.

By affecting soil aeration, dry/wet cycles change the microbial activity and
community structure (Fierer et al., 2003). This partially explains the changes in
C and N mineralization rates observed following repeated drying/rewetting events.
As soil pores are being emptied, water becomes progressively more disconnected
(Moyano et al., 2013), thus restricting microbial activity to microscale sites at
the more negative matric potential thresholds (Manzoni and Katul, 2014). As a
consequence, increased soil Oy availability, defined by its diffusivity through air
rather than water (Cook and Knight, 2003), might promote chemical oxidation of
SOM fractions encountered and determine the activity of aerobic microorganisms
(i.e. nitrifying bacteria). Repeated dry/wet cycles may enhance Os penetration
due to soil structural rearrangement, promoting oxidative decomposition of even
more refractory material.

Rodrigo et al. (1997) inferred that the majority of ecosystem models designed
to simulate C and N transformations adopt a linear response function between
soil water content and C and N mineralization rates below field capacity. If the
variability of soil moisture levels drives soil biotic and abiotic processes to a new
equilibrium for C and N transformation rates, or the recovery of the initial state
of the system is very slow (Fierer and Schimel, 2002), then the intensity of drying
prior to a rewetting event may play a fundamental role in developing models of soil
C and N dynamics.

Microbial activity

Several studies have observed the ability of microbial communities to rapidly
adapt to changes in the soil environment, especially in soils experiencing recurring
drying/rewetting cycles when compared to those from soils where moisture condi-
tions are more constant (Fierer et al., 2003; Steenwerth et al., 2005; Schimel et al.,
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2007). Many other studies have reported a flush of microbial activity after rewet-
ting a dried soil, presumably due to the utilization of microbial debris, in addition
to the OM released following the physical disruption of soil aggregates, after restor-
ing the original conditions (Denef et al., 2001a,b; Cosentino et al., 2006). In their
experiment, Wu and Brookes (2005) showed, however, that a large fraction (about
60%) of the CO,-C released derived from non-microbial biomass OM, suggesting a
primary involvement of abiotic processes in DOM mineralization (Kemmitt et al.,
2008).

Yet, in spite of external perturbations of the soil conditions, there might be
a shift in the microbial community structure still carrying out similar functions
(“redundancy principle”; Stres and Tiedje, 2006) or active in OM turnover after
the release of readily available DOM compounds ( “excessive pool principle”; Morris
and Blackwood, 2007). In their studies, Schimel et al. (2007) suggested a selection
towards Gram positive bacteria and fungi instead of Gram negative bacteria after
extreme drying and fast rewetting of the soil. This is in accordance with Harris
(1981), who attributed the ability of microorganisms to withstand rapid fluctuations
in soil water matric potential to greater cell wall thickness. This shift in the micro-
bial community structure could lead to a microbial group-specific organic-compound
decomposition in dried-rewetted soils compared to field-moist conditions.

However, substantial proportions of microbially derived DOM have been found
to increase after a drying/rewetting event, and the chemistry of these constituents
is likely to change the characteristics and the ecological functions of the DOM frac-
tion. Several authors found a strong contribution of microbially derived hydrophilic
compounds (Kaiser et al., 2001), such as proteins (Miltner et al., 2009), amino sug-
ars (Gregorich et al., 2003), contributing to the fast-cycling N-rich (Portl et al.,
2007) DOM fraction; but, it has been argued (Kaiser et al., 2015) that the increase
in the proportion of these DOM constituents could lead to an overestimation of the
“assimilable” DOM pool in excessively dried samples compared to the natural soil
environment.

Land use and management

The quality and size of the DOM pool are also shaped by changes in land use
and management, including vegetation cover, cultivation, grazing, fertilization and
amendments (Chantigny et al., 1999; Chantigny, 2003; Embacher et al., 2008; Ohno
et al., 2009). Land conversion and management practices affect primarily the SOM,
and therefore DOM, in the topsoil (Haynes, 2000). Following cultivation, changes
in soil structure and porosity affect the release of inter-aggregate (Golchin et al.,
1994) or mineral-associated DOM (Cambardella and Elliott, 1992), thus altering
both the concentration and the composition of DOM in solution. Studies con-
ducted by Kalbitz et al. (1999) reported increases in the degree of aromaticity of
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water-soluble fulvic acids in long-term arable lands as a consequence of accelerated
SOM decomposition and/or little aggregate protection, in contrast to relatively
little decomposed SOM in long-term intensive grasslands. It has also been demon-
strated that conventional tillage practices accelerate DOM turnover and microbial
decomposition (e.g. Linn and Doran, 1984), in contrast to no-tillage practices (e.g.
Bayer et al., 2000; Grandy and Robertson, 2006). In addition, recent findings also
suggested that increases in SOM are likely due to greater belowground OM inputs,
relative to the degree of cultivation (Kong and Six, 2010; Kétterer et al., 2011;
Mazzilli et al., 2015).

In mown grasslands, only a small portion of the above-ground plant biomass
enters the soil system, limiting the quantity and affecting the quality of the plant
litter involved in SOM decomposition processes. Also, management of grasslands
has a remarkable impact on rhizodeposition, root respiration and microbial turnover
(Wardle et al., 1999; Hamilton III and Frank, 2001; Klumpp et al., 2009), which
are known to strongly influence mechanisms of SOM stabilization or destabilization
(Cheng and Kuzyakov, 2005; Shahzad et al., 2012; Shahbaz et al., 2017).

Long-term fertilization studies have been shown to affect the quality of DOM,
by examining the ratios between O-alkyl-C and aromatic C (Li et al., 2015). Varia-
tions in their proportion have been also correlated to the composition and activity
of the microbial community (Michel et al., 2006). Given the strong dependency of
microbial decomposition on the available substrate and the changes induced by soil
management practices (e.g. changes in soil pH, redox conditions; Tian et al., 2012),
increasing levels of mineral nutrients (mainly through fertilization) may reduce the
production of lignin-degrading enzymes (Reid and Deschamps, 1991), which may re-
sult in an accumulation of lignins. On the contrary, depletion of nutrients (for plant
growth) may stimulate the microbial utilization of the physicochemically stabilized
and /or recalcitrant organic C pool (priming effect, Fontaine et al., 2011), thus pro-
moting the release of aromatic DOM moieties as a result of microbial metabolism
(Michel et al.; 2006). Furthermore, under N limitation (Redmile-Gordon et al.,
2015), soil bacteria produce films of negatively charged biopolymers (EPS), mainly
composed by carbohydrates, proteins, glycoproteins and large amounts of extracel-
lular DNA (Flemming et al., 2007; Dominiak et al., 2011), which: i) hold up a high
level of enzyme activity (Flemming et al., 2007) capable of converting insoluble
SOM into soluble forms (DOM); ii) being amphiphilic, may allow the solubilization
of hydrophobic substances (by hydrophobic interaction); and iii) when released into
the soil solution, may serve as a substrate for mineralization.

It is clear that the multitude of effects caused by changes in land use and manage-
ment require suitable indicators of DOM properties in response to these changes,
and thus suitable methods that help to characterize its different properties and
biodegradability potential.
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Plants as a source of DOM

Plants have been recognized as the main contributors to DOM cycling (Kalbitz
et al., 2000; Bolan et al., 2011). Plants can contribute to DOM formation directly
through leachates from plant litter (Moore and Dalva, 2001; Miiller et al., 2009;
Fanin et al., 2014) or via decomposed plant litter/residues involved in SOM for-
mation (Kogel-Knabner, 2002). There remain, however, uncertainties about the
biodegradability of these inputs and their effect on the rate of formation of the
DOM pool.

Shahbaz et al. (2017) corroborated previous studies demonstrating that (high-
rate) addition of plant residues enhances macroaggregate formation (e.g. Six et al.,
2004) via stimulation of microbial activity, albeit decreasing the stabilization of
newly supplied aboveground C within aggregates. It has also been hypothesized
(De Nobili et al., 2001) that the fresh organic matter supplied from rhizodeposition,
thought to be mainly composed of low molecular weight organic acids and labile
organic compounds, stimulates microbial activity and growth, and acts as a primer
(Kuzyakov et al., 2000; Cheng and Kuzyakov, 2005) for SOM decomposition and
DOM solubilization, providing a stimulation of nutrient cycling (Badalucco and
Nannipieri, 2007). For example, priming of SOM decomposition may lead to an
increase in ammonium ions and the dissolved CO concentration in the soil solution,
which may additionally enhance microbial activity.

Although the concentration of this soluble C pool is low, if compared to the OM
content of the bulk soil, its importance in exerting a regulatory influence on SOM
decomposition and associated N transformations has been increasingly recognized.
Cheng and Kuzyakov (2005) reported accelerated rates of SOM decomposition up
to 382%, along with inhibitory effects of about 50%, depending on the kind of
plant-soil interactions and experimental conditions. However, the limited informa-
tion on the chemical nature of the DOM released from root exudates and on the
effective microbial use efficiency of the latter still does not explain the mechanistic
relationship between the rhizosphere functions, the priming of SOM and processes
of DOM mineralization or immobilization.

Furthermore, earlier studies conducted by Merckx et al. (1987) showed that
plant nutrient supply (especially mineral N) may change the quality and quantity
of root exudates, which in turn may alter the activity and the structure of the
microbial population, with direct consequences on DOM cycling and composition
(Chen et al., 2018). In addition, Chantigny et al. (1999) noted a positive and
linear response between fertilizer mineral N concentrations and C mineralization
from plant-derived materials, measured as net 1*CO, production. In this instance,
the positive relationship was likely to be limited to the labile C pool. However, an
inverse relationship has been observed with respect to decomposition of refractory
C (Liljeroth et al., 1994).
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1.2.3 The relationship between DOM mineralization and
its properties: bioavailability and biodegradability

Bioavailability has been defined as the potential for soil microorganisms to inter-
act with DOM (Marschner and Kalbitz, 2003). But, it does not imply that the
microorganisms actually utilize and finally mineralize the DOM, the latter defined
as biodegradability (Hodson et al., 2011). These two characteristics of DOM have
often been interchangeably used with the assumption that microbial assimilation of
organic compounds is directly related to their potential for mineralization. However,
a distinction between bioavailable and biodegradable OM and its quantification is
still a complex issue in the study of C and N fluxes.

Bioavailability is generally assessed by measures of DOM extractability, thus
clearly suggesting that a comprehensive indicator of this property has not been
established to date (Hodson et al., 2011). In spite of this, concentrations recovered
with a defined extraction procedure are most common measures. Measures of COq
evolution, along with DOM disappearance, have been commonly accepted as indi-
cators of DOM biodegradability and microbial activity (McDowell et al., 2006). In
addition, as a result of biodegradation, (bio)synthesis of new compounds (transfor-
mation or re-synthesis) ought to be considered. These processes include both intra-
and extracellular decomposition of DOM, and are both biotically and abiotically
driven.

In their conceptual model for understanding the mechanisms and controls of
SOM stabilization and destabilization, Sollins et al. (1996) presented accessibil-
ity, recalcitrance and interactions to be the three main characteristics determining
SOM, and thus DOM, stability or biodegradability. Clearly, DOM needs to be
(bio)accessible by soil microbiota in order to be bioavailable (Dungait et al., 2012).
In DOM, bioaccessibility is, hence, mainly related to the physical impediment of
microbes (and other soil organisms) and their ability to access DOM, thus ham-
pering its potential bioavailability at a given time (Semple et al., 2004). Various
factors may hinder microbial access to DOM, such as its protection within soil
aggregates or association with mineral surfaces (Sollins et al., 1996; Kleber et al.,
2007; von Litzow et al., 2007). Adsorption onto mineral surfaces will, thus, affect
DOM bioavailability, but the reversibility of this reaction is controlled by exchange
equilibria, along with entropy changes involving hydrophobic interactions (Kaiser
and Zech, 1997). Such an impediment may also be a consequence of water discon-
nection in soil pores (Moyano et al., 2013) and related changes in matric potential
restricting water (thus solutes) to microscale sites (Manzoni and Katul, 2014).

Chow et al. (2006) observed that the rate of CO5-C production was proportional
to the DOC concentration (first order kinetics), but did not find a correlation be-
tween CO,-C and DOC in wet/dry cycles. Other studies reported a very strong
relationship between DOM, inferred as WEOM, and C mineralization across a wide
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range of soils and different land uses (e.g. McNally et al., 2018). Yet, Lundquist
et al. (1999) stated that DOC is not a reliable indicator of C available to microor-
ganisms, because both SOM and DOM can be substrates for CO4 production, and
the controlling factors for their biodegradability are directly related to substrate
quality and environmental conditions (Marschner and Kalbitz, 2003).

Drying/rewetting events, for instance, have been shown to decrease DOC min-
eralization with time (Chow et al., 2006). If is considered that rapid rewetting leads
to an immediate release of organic cell solutes (Kaiser et al., 2015), such as amino
acids, prokaryotic quaternary ammonium compounds, eukaryotic sugars, polyols,
and fungal derived glycerol (Halverson et al., 2000; Fierer et al., 2003), which may
be recognized as readily biodegradable, decreased mineralization may be related to
reduced amounts of organic C released after each recurrent cycle. But, previous
studies (Zsolnay and Steindl, 1991) attributed this to an increasing proportion of
DOC which is not biodegradable. Alternatively, Warren (2014) observed a strong
decrease of organic N monomers, sugars and sugar alcohols after rewetting, but he
attributed their low concentration to plant or microbial uptake.

As shown by Mueller et al. (2014), bioavailability of SOC from individually in-
cubated particle size fractions largely exceeded that inferred by incubating bulk
soils; yet, the turnover of mineral-associated SOC was comparable to chemically
more refractory particulate OM. Angst et al. (2017) built upon these findings em-
phasizing the role of plant-derived OM in mechanisms of stabilization involving
aggregation and mineral surface binding. Stable isotope research conducted by
Gregorich et al. (2000) and Sollins et al. (2006) also indicated a reduced potential
for isotope fractionation of the heavier fractions, which were approximating steady-

state C dynamics, hypothesizing a mechanism of continual microbial reprocessing
of SOM (Mueller et al., 2014).

A growing body of research has reconsidered the longstanding assumptions on
the turnover, and the related mechanisms, of the main DOM constituents (Kle-
ber et al., 2011). Examples are given by lipids, commonly found in DOM isolates
and typically considered relatively refractory to mineralization (Filley et al., 2008;
Pisani et al., 2014), lignin, whose mineral stabilization and recalcitrance were dis-
missed (Kiem and Kogel-Knabner, 2003; Rumpel et al., 2004; Fuchs et al., 2011),
or humic substances. For instance, the disappearance of cutin and suberin con-
stituents has been frequently observed (Nierop et al., 2001). Evidence also sug-
gested plant-derived lipids to have shorter turnover times than microbially derived
lipids, particularly in cultivated soils (Poirer et al., 2006). Lignin degradation and
pathways of its mobilization to DOM formation have also been critically examined
(DiDonato et al., 2016; Klotzbiicher et al., 2016).

In view of these findings, Schmidt et al. (2011) advanced the concept of per-
sistence of such compounds in the soil sphere in response to biotic and abiotic
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properties of ecosystems rather than their intrinsic molecular properties. Never-
theless, while soil mineralogy and mineral sorption were shown to have important
bearings on microbial-mineral interactions (Mueller et al., 2014) and quantitative
changes of DOM (i.e. bioavailability), they were attributed little importance in de-
termining the biochemical composition of DOM (Sanderman et al., 2014). Hence,
the molecular diversity of DOM along the soil profile ought to be attributed to
other factors, such as microbial processing and quality of plant inputs and DOM
precursors (Malik and Gleixner, 2013; Bandowe et al., 2019), but also exoenzymatic
activities and abiotic processes (Sanderman et al., 2014; DiDonato et al., 2016).

Further, reductions in SOM molecular size as a result of biodegradation pro-
cesses do not necessarily correspond to greater solubility: while solubility is a func-
tion of polar and ionizable functional groups resulting from hydrolysis and oxidative
reactions which do lead to size reduction, low molecular weight compounds are, in
fact, not equally soluble and/or reactive, suggesting the importance of chemical
properties of the molecule and the conditions of the aqueous medium in determin-
ing DOM’s fate.

Hydrophilic molecules with low free enthalpy and oxidation state close to zero
are thought to lead to a faster microbial utilization (Kuzyakov et al., 2015). Nev-
ertheless, Volk et al. (1997) explained that the relationship between hydrophilic
compounds, such as carbohydrates, and DOM degradation should be considered
carefully, as carbohydrates can also be bound to chemically more refractory DOM
compounds, such as aromatics, typical of hydrophobic DOM moieties (Guggen-
berger et al., 1994b). Earlier studies, yet, suggested the -OH group in position C,
of the aromatic ring of lignin monomers, such as ferulic (involved in carbohydrate-
lignin crosslinking) and coumaric acids, plays a larger role in the uptake and degra-
dation of these lignin monomers with respect to e.g. cinnamic acid, which is not
oxidized.

In view of the above mentioned, biodegradation of aromatics (Almendros and
Dorado, 1999; Bandowe et al., 2019) and the likely microbial origin of mineral-
associated DOM constituents (Kleber et al., 2011; Mueller et al., 2014) allude to the
critical role of soil microorganisms in controls of DOM cycling. Notwithstanding
the importance of organo-mineral interactions and aggregation in mechanisms of
SOM and DOM stabilization and preservation from microbial degradation, evidence
of the biochemical and structural properties in regulating DOM function is further
catching on. New findings suggest the involvement of charge assisted (near-covalent)
H-bonds (Gilli and Gilli, 2009; Ni and Pignatello, 2018) to explain cohesion and
thermodynamic stability of soluble OM (Wells and Stretz, 2019), offering potentially
new definitions of DOM formation and persistence. Hence the need to elucidate
molecular properties of DOM in relation to their impact on bioavailability and
biodegradability.
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It is still unknown whether there is preferential microbial utilization of certain
compounds and just what the characteristics of these compounds are. At the same
time, the effect of drying and rewetting or changes in agricultural management
regime on the formation and/or loss of DOM compounds are unknown with re-
spect to the subsequent fluxes of mineralization and immobilization. Whether we
attribute DOM biodegradability to the hydrophilic character of DOM moieties or
SOM ability to oxidize and interact with polar molecules, its solubility remains a
prerequisite for diffusion through microbial cell membranes (Marschner and Kalb-
itz, 2003) and its further biochemical pathway. Once in solution (suspension), any
interaction with the mineral matrix that could hamper DOM bioavailability and
influence biodegradability can, therefore, be excluded. Hence, this study will focus
on the factors influencing the release and mineralization of DOM in leachates and
extracts of agricultural soils with respect to its physicochemical properties.



Chapter 2

Materials and Methods

“Land really s the best art.”
Andy Warhol

Unraveling the complexity and heterogeneity of DOM represents a challenging task
for soil scientists. Several complementary approaches are usually adopted to infer
DOM characteristics and functionality. The main methods utilized to pursue the
objectives of this thesis are described herein.

2.1 General chemical analyses

2.1.1 Elemental analyses: total carbon and nitrogen

Determination of the total soil carbon (TC) and nitrogen (TN) contents provides
an initial direct measure of the effect of land use and management on soil fertility.
It also allows the relative contribution of SOM to DOM to be estimated.

Traditionally, these measurements involve either chemical (wet) or thermal ox-
idation methods (Carter and Gregorich, 2008). In the present study, TC and TN
contents were measured by Dumas dry combustion at 1250°C in a stream of ex-
cess Og (thermal oxidation), following grinding and oven drying overnight at 60°C.
These conditions allow the complete oxidation of C forms to CO5 and N forms to N
oxides, with the latter further undergoing complete reduction (by Cu-N catalyst) to
Ns. Their concentrations are then measured on a Thermal Conductivity Detector
(TCD) under He carrier and expressed as % per unit mass of soil sample. Although
none of the soil samples were pre-treated for inorganic C removal, the TC contents
presented in this study can be regarded as soil organic C (SOC), given the negligible
carbonate content of the local soils utilized.

15
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2.1.2 Dissolved organic carbon

A large variety of oxidative methods has been developed to estimate the dissolved
organic carbon (DOC) content, given the importance of this parameter in both
soil and aquatic environments and their large scale of concentrations, often be-
ing reasonably low. One of the most common and widely accepted methods for
DOC determination involves oxidation through catalytic combustion at high tem-
peratures (680°C). Using the non-purgeable organic carbon (NPOC) method, the
sample is added with acid (2 M HCI) and sparged with Ny to remove any dissolved
inorganic C form through the release of CO5. The sample is then passed to a com-
bustion tube filled with a Pt catalyst heated at 680°C in Oy stream, which converts
all the organic forms to CO,, further detected by a non-dispersive infrared gas an-
alyzer (NDIR). These measurements are then referred to an internal calibration
curve and represent the average of three to four measurements carried out on the
same sample and validated by the software. In addition, standards comprising a
solution of CgH5KO, at known concentrations enable monitoring and corrections
of instrumental drift for an improved accuracy of the results.

2.1.3 Dissolved nitrogen

Dissolved nitrogen comprises organic and inorganic nitrogen forms, the former re-
ferred to as dissolved organic nitrogen (DON) and the latter also referred to as
mineral nitrogen (Min N). Since DON is generally determined as the difference be-
tween the total dissolved nitrogen (TDN) and Min N, only the methods for TDN
and Min N assessment are outlined.

Mineral nitrogen

Inorganic (mineral) forms of N (Min N) in soils (namely nitrate- NO3~, ammonium-—
NH, ", but also nitrite— NOs™— in minor amounts) are commonly recovered with
a 2 M KCI extraction of bulk soils (Keeney and Nelson, 1982), but the present
study mainly focused on their concentration in soil water leachates and extracts.
Routine measurements of Min N follow widely adopted colorimetric methods us-
ing automated continuous flow injection analysis (FIA). This system performs a
Cd reduction of NO3~ to NOy™ in an ammonium chloride matrix (Griess-Ilosvay
method), which is then colorimetrically assessed following the reaction with sul-
fanilamide (diazotizing reagent) and N-(1-naphthyl)ethylenediamine dihydrochlo-
ride (coupling reagent), and a phenate reaction with NH4* in the presence of an
oxidizing agent and a catalyst (usually sodium hypochlorite and sodium nitroprus-
side, respectively), forming a blue color proportional to the concentration of NH,*
(indophenol blue or Berthelot reaction). Ideally, samples are analyzed shortly after
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sampling and extraction, because these forms, and in particular NH,*, are rapidly
subjected to biological transformation at optimal temperature and/or moisture con-
ditions (Carter and Gregorich, 2008). A detailed description of these methods is
given by Keeney and Nelson (1982).

Total dissolved nitrogen

The content of available N nutrients can be determined by the alkaline persul-
fate oxidation method (Cabrera and Beare, 1993). Briefly, the DOM sample is
added with an oxidizing solution made of potassium persulfate (K3S50g), boric
acid (H3BO,) and sodium hydroxide (NaOH), digested via autoclaving (manual
method) or ultraviolet (UV)-catalysis (automated system) and colorimetrically as-
sessed (as previously described) for NO3~ derived from both the oxidation of DON
or the solution pre-oxidation.

2.1.4 pH

Stoichiometric reactions in the soil solution, and thus nutrient availability, microbial
activity and physicochemical properties of DOM are largely driven by the concen-
tration of H* ions in solution. The standard method for soil pH determination
involves an extraction at a soil:water ratio of 1:2.5, followed by a potentiometric
measurement of the slurry, decanted for 1 h (Devey et al., 2010), with a calibrated
glass electrode, i.e. pH-meter.

2.1.5 Cation exchange capacity

“Next to photosynthesis and respiration, probably no process in nature is as vital
to plant and animal life as the exchange of ions between soil particles and growing
plant roots.”

Nyle C. Brady

Defined as the sum of total exchangeable cations adsorbed by soil constituents
(Stevenson, 1994), the cation exchange capacity (CEC) plays a fundamental role in
nutrient retention against leaching and constitutes the main source of soil mineral
fertility. In the soil system, OM and clay are the major contributors to CEC,
given their negative charge that attracts cations. However, the amount of negative
charge and its neutralization are pH and ionic strength dependent, and thus so are
cation exchange reactions. Cation displacement from the negatively charged surface
depends on the charge of ions in solution (along with their hydration order) and
is therefore expressed as units of positive charge per unit mass of soil (cmol, kg™!
soil).



18 Materials and Methods

Among a large suite of available methods, the ammonium acetate method
(Thomas, 1982) is widely employed for CEC determination in low carbonate content
soils and consists of a soil extraction with 1 M ammonium acetate (1:25 ratio) at pH
7 for 2 h, followed by centrifugation and assessment of cations displaced by NH,*
(Na, K, Ca and Mg) by inductively coupled plasma - optical emission spectrometry
(ICP-OES).

2.2 Spectroscopic techniques

“If you want to find the secrets of the universe, think in terms of energy, frequency
and vibration.”

Nikola Tesla

Absorbance and fluorescence spectroscopies have been identified as powerful tech-
niques being increasingly adopted in DOM characterization studies, as well as in
the research chapters of this thesis. Further to their ability to provide a chemical
fingerprint of DOM, they are rapid, non-destructive, and require relatively little
sample, thus being particularly advantageous for timely analyses of soil leachates
and extracts. The following subsections provide an overview of the basic principles
of ultraviolet (UV) and fluorescence spectroscopies and their application.

2.2.1 Ultraviolet absorbance

The absorption of energy from electromagnetic radiations between 180 and 400 nm
(near UV radiation) induces an electron transfer from 7- or non-bonding (n) or-
bitals, characteristic of aromatic compounds, conjugated unsaturated species and
n- electron systems. Consequently, the discrete amount of energy absorbed during
the transition from ground state to excited state at a specific wavelength will result
in an absorption spectra whose peak intensity enables to identify and quantify dou-
ble bond bearing moieties and resonant aromatic structures of DOM, commonly
referred to as DOM chromophores. In most cases, the peak intensity of a solu-
tion at a specific wavelength will reflect the sum of individual absorbances of the
chromophore-containing solution components. Therefore, while robust qualitative
statements can be deduced from the molecular orbitals involved, detailed struc-
tural interpretations are not plausible in this context. Furthermore, in complex
mixtures such as DOM, interferences and over saturation of the signal are likely to
occur; thus, it is essential in practice to adequately dilute the sample for accurate
measurements.

UV measurements are a function of the cell path length; thus, recorded ab-
sorbances might not be directly comparable if not referred to a unit (1 cm) path
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length. For such a purpose, the absorption coefficient (a,) was calculated, as de-
scribed by Green and Blough (1994):

ay _.2.303(5%5) (2.1)

where A is the absorbance at a specific wavelength A (e.g. 254 nm), [ is the
optical path length (expressed in cm or m), and the factor 2.303 is used to convert
from a logarithm in base 10 to a natural logarithm. Since the areas of maximum
absorption intensity of DOM are located between 254-280 nm (Albani, 2008), a
number of studies report ay as a function of A at 254 nm, given the strong absorbance
of aromatic compounds at that wavelength (Helms et al., 2008; Inamdar et al.,
2012).

Another common parameter and the main UV indicator utilized in the research
chapters of this thesis is the specific UV absorbance at 254 nm (SUVAgs,), defined
as the UV absorbance at 254 nm normalized for the concentration of DOC and thus
expressed in units of L mg™' m™! (Edzwald, 1993)":

SUVA254 - [Dj%Tsé'] (22)

Such an indicator expresses the relative contribution of absorbing moieties to

the DOC in the sample and its strong correlation with aromaticity and degree of

structural condensation has been validated with 3C NMR spectroscopy (Novak

et al.; 1992; Chin et al., 1994; Korshin et al., 1997; Weishaar et al., 2003; Jaffrain
et al., 2007).

2.2.2 Fluorescence

The relaxation of molecules from their excited state to ground state may involve
the emission of photons, an effect called fluorescence. Accordingly, chromophores
capable of producing such effect are commonly referred to as fluorophores. Aromatic
molecules (with or without heteroatoms or electron-withdrawing groups), Schiff-
bases and derivatives are well known DOM fluorophores.

The processes underlying the fluorescence phenomenon are depicted in the Jablon-
ski diagram (Fig. 2.1)). Following electron excitation to a higher energy state and
nuclei rearrangement towards a stable geometry (internal conversion?)), the pho-
ton emission during the transition to ground state occurs at a specific wavelength

!Since the path length is commonly measured in cm, units of SUVAgs, can also be expressed
as Lmg~! em™1!.

2This process occurs within 10712 s as a result of a thermal equilibration (non-radiative release
of excess vibrational energy to the lowest excited vibrational level) following the instantaneous

(10715 5) excitation to a higher vibrational level of the reached electronic state.
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independent of, and typically longer than®, the excitation wavelength (Leurgans
and Ross, 1992; Lakowicz, 2006). Such an emission wavelength is characteristic
of a given fluorophore; thus, it can be used for the structural characterization of
DOM. However, in a molecule with multiple fluorophores, the total emission will
be a function of only the fraction of the excited fluorophore that leads to photon
emission; such a fraction is the fluorescence quantum yield (®), defined as:

o — number of photons emitted

2.3

number of photons absorbed (2:3)
The intensity of fluorescence emission at a given wavelength (Ip(y)) will, there-

fore, be a function of ®, as described by the following equation (Albani, 2008):

IF()\) = [0(1 - 6_2'303€Cl)q) (24)

where [ is the intensity of the excitation beam, 2.303 is the conversion factor of
the logarithm in base 10 to a natural logarithm®, and e, ¢ and [ are, respectively,
the molar extinction coefficient, the concentration of the fluorescing species and the
path length defining the optical density (absorbance).

Assuming a low optical density (<<0.05), and thus a low concentration of flu-
orophores, such as for relatively diluted solutions, equation 2.4/ can be written as:

Simplified, it follows that Iy, will be directly proportional to the number of
fluorophores, and thus photons involved (Albani, 2008):

]F(/\) =nxF (26)

where n is the number of photons emitted at a given wavelength and E the
photon energy.

Losses occur by non-radiative decay processes (Fig. [2.1)), such as fluorescence
resonance energy transfer between fluorophores (FRET), inter-system crossing® and
the direct interaction of the excited molecule with other molecules in solution (e.g.
halide ions, oxygen, amines, referred to as quenchers), a process called quench-
ing. Typically, quenching occurs by collision of the excited fluorophore with the
quencher without molecule alteration, causing partial decrease or complete loss

3Phenomenon known as the Stokes shift.

4 According to Lambert-Beer’s law, the absorbance (A) is the logarithm (base 10) of the recip-
rocal of the transmittance (7). It follows that T can be expressed as e~ 23034 given that 2.303
is the natural logarithm of 10.

5Conversion from singlet to triplet state with a shift towards longer emission wavelengths, a
process called phosphorescence.
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of the emission intensity (dynamic quenching), as described by the Stern-Volmer
equation (Lakowicz, 2006):

=14 krolQ) = 1+ Ksv[Q) 2.7

where Fg and F' are, respectively, the fluorescence intensities in the absence
(Ip(n) and presence of a quencher, &, is the bimolecular quenching rate constant
(M~! s71) indicating the quencher’s potential to access the fluorophore by diffusion
through the medium, 7 is the fluorophore’s lifetime in the absence of a quencher
(s), [@] is the quencher’s concentration (M) and K gy is the Stern-Volmer constant
(M™1) given by k,7¢".

An example of dynamic quenching is given by the interaction of heterocyclic
aromatic compounds (e.g. quinolinium) with chloride due to electron transfer from
the quencher (chloride) to the fluorophore (quinolinium). Such an effect has been
considered, and phased out’, in the experiment described in Chapters 4/ and 5,
given the strong dependency of F' and ® on the concentration of the quencher (i.e.
chloride).

Quenchers can also form complexes with fluorophores at ground state, thus
halting fluorescence (static quenching)®.

It is worth noting that DOM is itself a quencher, and according to equation [2.7,
adequate dilution is a prerequisite to avoid self-quenching.

The uniqueness of excitation and emission responses for different classes of flu-
orophores has promoted the utilization of fluorescence spectroscopy as a reliable
tool for DOM fingerprinting (Senesi et al., 1991; Korak et al., 2014). A number of
fluorescence indices have been introduced to infer different aspects of DOM:

DOM source

The fluorescence index (FI) (after Cory and McKnight, 2005): originally es-
tablished by McKnight et al. (2001) and defined by Cory and McKnight (2005)
as the ratio between the emission wavelengths at 470 and 520 nm when excited
at 370 nm, it has been largely used to distinguish microbially derived DOM from
terrestrial plant and SOM-derived DOM (Jafté et al., 2008; Inamdar et al., 2012;
Fernandez-Romero et al., 2016). Higher FI (~1.9) values have been associated with
low fluorophores, higher aliphaticity and a lower degree of DOM structural com-
plexity, such as DOM from microbial metabolism and cell lysis, as opposed to lower
values (<1.4-1.5) which are characterized by high fluorophores and a higher degree

6 K gy represents the slope of the linear equation only when all fluorophores are equally acces-
sible to the quencher.

"The maximum concentration of chloride revealed was 1.9 mM. For further details see Lakowicz
(2006) and Fig. |C.7.

®For static quenching, K gy represents the association constant for the complex formation and
does not involve a fluorescence lifetime nor affects the lifetime of the uncomplexed fluorophores.
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Figure 2.1: The Jablonski diagram. Adapted with permission from Lakowicz (2006).

of aromaticity and structural conjugation, likely from plant decomposition and SOM
reprocessing (McKnight et al., 2001; Chen et al., 2003; Cory and McKnight, 2005).

The freshness index (3:«) (Parlanti et al., 2000; Wilson and Xenopoulos, 2009):
studies on humic substances described as § and « the fluorophores that emit at
380-410 nm and 430-450 nm, respectively, when excited at 310-320 nm. Their
ratio has been referred to the relative contribution of recently produced (>0.8)
versus highly decomposed (<0.6) DOM, and thus is positively correlated to the FI
(Wilson and Xenopoulos, 2009), given the likely biological origin of the 5 component
(Parlanti et al., 2000). The application and related results concerning the FI and
[:a indices are described in Chapter 4l

DOM quality

The humification index (HIX): reflects advancing decomposition (e.g. oxidation
and demethylation) and structural rearrangement (e.g. polymerization and poly-
condensation) of plant and animal breakdown products towards secondary synthesis
of more complex, i.e. humified DOM. Such a process has been associated with a
fluorescence shift to longer emission wavelengths (Senesi, 1990) due to lower result-
ing H/C ratios (Zsolnay et al., 1999). With respect to source related indices (FI
and (:a), Wilson and Xenopoulos (2009) suggested the HIX to be more susceptible
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to external factors, such as moisture conditions, but not land use effects.
It has been defined by Zsolnay et al. (1999) as:

Z I435—480
Z [3007345

at 254 nm excitation, where [ represents the emission intensity at a given wave-
length, and it has been further modified by Ohno (2002) to:

> Iy35-4s0
> I300—345 + 2 La35-4s80

at excitation wavelength of 254 nm, in order to avoid any potential bias deriving
from the re-absorption of the emission intensity due to high DOM concentrations
(the so called inner-filter effect).

The Aes humification index (after Milori et al., 2002): the increase in substi-
tuted aromatic structures, condensed and conjugated systems ensuing humification
can be alternatively assessed as the total area under the emission spectra at 465 nm
excitation. Milori et al. (2002) and Milori et al. (2006) showed an increase in reso-
nance absorption of humified structures at this wavelength for a wide range of soils
with different textures, exposed to different climatic conditions or under different
land use and management. The Ayq; has, therefore, been employed as a suitable
humification index for the purposes of the experiment described in Chapter 4.

The collection of multiple emission spectra over a range of excitation wave-
lengths projected onto a single contour map of fluorescence intensities turns into
a three-dimensional excitation-emission matrix (EEM), representing the full fluo-
rescence spectrum of the analyte. As such, EEMs have been widely utilized to
study the photophysical properties of distinctive constituents of complex mixtures,
such as DOM (Coble, 1996; McKnight et al., 2001; Stedmon et al., 2003; Chen
et al., 2003; Baker et al., 2008; Fellman et al., 2008; Vergnoux et al., 2011; Cuss and
Guéguen, 2015a). Peak locations in such matrices have been related to fluorophores
of different nature and origin. Coble (1996) identified four main peaks informative
of the origin and structural properties of DOM, namely (Fellman et al., 2010):

HIX = (2.8)

HIX =

(2.9)

A-peak: )\, 250-270 nm, A, 380—480 nm, humic-like, terrestrially derived;
C-peak: A\, 320-360 nm, \.,, 420-460 nm, fulvic-like, terrestrially derived;

M-peak: \.. 290-320 nm, A, 370-430 nm, fulvic-like, microbially derived
(referred to the 8 component);

B and T-peaks: )., 270-280 nm, A, 304-312 and/or 330-368 nm, protein-like,

originating from aromatic amino acids (e.g. tyrosine and tryptophan).
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Yet, excitation and emission peak shifts might be overlooked due to spectral
overlapping of different fluorophores. Parallel factor analysis (PARAFAC, see Sec-
tion 2.5.3) has been utilized to decompose the EEM into individual spectral com-
ponents (Stedmon and Bro, 2008; Murphy et al., 2013).

Although most knowledge on DOM fluorescence emerged from studies on natural
waters (e.g. Hudson et al., 2007; Wells et al., 2017), a growing body of research on
DOM fluorescence in soil water extracts and samples from plant origin has confirmed
common fluorophores (e.g. Ohno et al., 2009; Tfaily et al., 2015; Pan et al., 2017).

2.3 Chromatographic techniques

“An expert is a person who has made all the mistakes that can be made in a very
narrow field.”

Niels Bohr

Chromatography has been defined as the separation of solution components based
on their affinity for a solid phase with specific physicochemical characteristics. The
usefulness of fractionation techniques in DOM studies allows the separation of DOM
into groups of chemical components based on their physicochemical properties. Col-
umn and batch chromatographic experiments were performed using the techniques
here described.

2.3.1 Anion exchange chromatography

Anion exchange chromatography builds upon electrostatic interactions occurring
between the positively charged solid phase and anions in solution, according to the
following equation:

MTA™ 4+ B X" = M*B™ + A~X*

This approach turns out particularly interesting for the study of DOM, due to
the abundance of functional groups negatively charged at the common range of soil
pH.

Common anion exchangers are weak-base anion resins, containing tertiary amino
groups, or strong-base anion resins, with type I (-NT(CHj)s3)) or type IT (-N*(CHjs),
(CoH4OH)) quaternary ammonium functional groups. The advantage of strong-
base anion exchange resins is that they are protonated over the whole pH range
(pK,>13). Further, type I resins are more stable, whereas type II resins are more
hydrophobic (ethanol groups) and have a greater capacity and regeneration effi-
ciency (Wachinski, 2016).
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These positively charged functional groups are attached to a polymeric matrix
(solid phase), commonly polystyrene or polyacrylic, which is either macroporous
(highly porous) or gel (no pores). Polystyrene matrices are more hydrophobic,
whereas the polyacrylic retain more water (Bolto et al., 2002; Boyer and Singer,
2008). Bolto et al. (2002) and Kanazawa et al. (2004) also showed that polystyrene
resins were more selective than acrylic, likely involving size exclusion (Boyer et al.,
2008). In addition, a macroporous resin network enables a rapid inclusion and
diffusion of larger DOM molecules and solvents (Malcolm and MacCarthy, 1992). It
was therefore concluded that polyacrylic, macroporous, strong-base anion exchange
resins would be most effective for DOC removal (Bolto et al., 2002).

The charge of strong-base anion exchangers is compensated by counter-ions,
most commonly chloride. Thus, the anion exchange occurs by displacement of chlo-
ride anions by DOM, a mechanism depending of the ionic strength of the solution
and relative to DOM surface charges and dielectric constant. The selectivity of
strong-base anion exchangers for most common inorganic anions has been defined
to vary from (Wilson et al., 2000):

SO,2~>NO;3; >Cl">HCO3; >0H"
in contrast to weak-base anion exchangers, displaying an inverse selectivity:
OH_>>SO42_>N03_>Cl_.

This aspect and the relative concentration of species in solution need to be
considered for the competition for sorption sites.

Anion exchange is commonly performed in batch or column experiments. In the
first method, the resin is added to the soil solution and removed after the exchange
has occurred, whilst in the second method, the soil solution is passed through
the resin packed into a column. The latter is generally preferred in industrial
applications (water treatment) due to the ease of regeneration and, thus, a larger
number of reuses. For the experimental purposes of this thesis, anion exchange was
conducted in batches.

Most common and effective applications of anion exchange involve waste water
and landfill leachate treatments (Afcharian et al., 1997; Kanazawa et al., 2001;
Bolto et al., 2002; Boyer and Singer, 2008; Bashir et al., 2010). Nevertheless, in
regard to DOM and WEOM studies, the disadvantage of using strong-base resins
is their tendency to irreversibly adsorb humic substances (Wachinski, 2016). For
this reason, in the studies conducted in Chapters 4/ and |5, whole extracts and resin
treated extracts were principally discussed.

2.3.2 Liquid chromatography

Liquid chromatography (LC) represents the principal method for the separation of
complex mixtures relative to their affinity to liquid (mobile) and solid (stationary)
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phases. Due to the heterogeneous nature of DOM, two types of LC have been
adopted in the study conducted in Chapter 5 and their characteristics are described
herein.

Reversed-phase liquid chromatography

One of the most commonly adopted chromatographic techniques for small or-
ganic molecules, such as peptides and small proteins, is reversed-phase (RP)-LC.
Reversed-phase because the stationary phase consists of a hydrophobic (non-polar)
matrix, commonly silica-based (silanol groups) and covalently bound to alkyl chains
of different lengths (e.g. n-octadecyl, referred to as C18), whereas the mobile phase
is hydrophilic (polar), which are inverse characteristics of the so called normal-phase
(NP) chromatography. The separation occurs such that the hydrophobic moieties
bind to the stationary phase in order to increase their system entropy (Tanford,
1980), thus the solvated polar moieties are eluted first. Subsequently, the polarity
of the mobile phase is gradually decreased by increasing the percentage of organic
solvent (e.g. acetonitrile), weakening the entropy of the hydrophobic interaction and
allowing the elution of the molecules retained. The gradient applied, along with
the characteristics of the stationary phase and column dimensions, are key factors
influencing the chromatography, and thus the number of resolved compounds. A
longer chain stationary phase usually suits better small and/or less hydrophobic
molecules in order to increase their retention (Boone and Adamec, 2016); hence its
frequent use in DOM studies (e.g. Sleighter and Hatcher, 2008). Importantly, C18
phases with endcapped” silanol groups are preferred in order to avoid undesired po-
lar interactions. Column and further chromatography details pertaining the current
study are described in Chapter 5.

Hydrophilic interaction liquid chromatography

Hydrophilic interaction liquid chromatography (HILIC) is an emerging LC tech-
nique that combines the chromatographic characteristics of both RP and NP chro-
matographies and allows the analysis of charged molecules, generally performed by
ion exchange (Buszewski and Noga, 2012). HILIC uses a hydrophilic (polar) sta-
tionary phase and a combination of an organic solvent and aqueous solvent as a mo-
bile phase, suitable for electrospray ionization and, thus, adequate for coupling with
mass spectrometry. It, therefore, preferentially retains polar, hydrophilic molecules.
A gradient is applied, such that the increasing proportion of the polar (aqueous)
eluant reduces the retention of hydrophilic species, which are eluted in order of
increasing polarity. Practically, a mechanism resembling the NP chromatography,

9End-capping refers to a procedure that replaces unreacted silanol groups of the stationary
phase, which may cause secondary polar interactions with the solution.
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but with the advantage of retaining also small, uncharged (zwitterionic) and am-
phiphilic molecules due to their partitioning between the aqueous semi-immobilized
layer formed on the stationary phase and the mobile phase, involving both dipole-
dipole and H-bond interactions (Buszewski and Noga, 2012). These features make
the HILIC versatile and particularly suitable for small polar compounds in com-
plex mixtures (Hemstrom and Irgum, 2006). Common applications include analy-
ses of peptides, nucleotides, carbohydrates, alkaloids and generally small ionizable
metabolites (Buszewski and Noga, 2012). Clearly, a promising method of choice
for DOM studies. Polar stationary phases vary from common unmodified silica to
anionic (e.g. polyethyleneimine), cationic (e.g. carboxylate) or zwitterionic (e.g.
sulfoalkylbetaine) phases, while mobile phases typically consist of aprotic solvents
(commonly acetonitrile) in small parts of water. Along with RP-LC, HILIC was
used in the study presented in Chapter |5.

2.4 Mass spectrometry

“Good decisions can’t be made in the absence of good information...”

Anon

To date, the chemical and structural identification of small molecular identities from
complex mixtures, such as DOM, is still at its early stage. Yet, mass spectrometry
(MS) performs as the best choice of technique for such a purpose, thanks to its
ability to ionize DOM, its high resolving power and ease of coupling with a liquid-
chromatography (LC) interface (Perry et al., 2008), phasing out sample pretreat-
ment, and thus limiting artifacts due to pH adjustments or DOM pre-concentration.
One of the best performers, the Orbitrap  mass spectrometer, played a pivotal role
in the final part of this thesis (Part II). The following subsections delineate the
main features of this technology and the following process of empirical molecular
formulae assignment and interpretation.

2.4.1 High-resolution accurate-mass (HRAM): Orbitrap

High spectral resolution and mass accuracy (HRAM) in MS have been promoted
by the Orbitrap” technology (Thermo Fisher Scientific). The concept of orbital
trapping of ions in an electrostatic field has been introduced by Kingdon (1923)
and the so called Kingdon trap. Ions enter an electrostatic orbital trap (namely
Orbitrap) consisting of a spindle-like inner electrode and a differential pair of outer
electrodes generating a radial logaritmic potential between the electrodes and a
harmonic axial potential inducing the ions to orbit around and exhibit harmonic
oscillations along the central electrode (Perry et al., 2008). The image current
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induced by the axial ion oscillation is detected by the pair of outer electrodes and
passed on to an amplifier. Finally, the detected signal is Fourier transformed into
the ion’s mass spectrum according to its mass-to-charge (m/z) ratio'.

At any given m/z ratio (m), the mass resolution can be determined from the full
width of a spectral peak at half-maximum peak height (Amsgy ), defined as FWHM
by the following equation (Perry et al., 2008):

m

Resolution (FWHM) =

2.10
Amgoy ( )

The resolving power will finally affect the accuracy of mass determination, esti-

mated as:
Mypeasured — Mirue % 106 (2.11)

Mass error (ppm) =
Myrye

and the signal-to-noise (S/N) ratio, generally determined as the ratio of the
signal peak height from the baseline to the standard deviation of the baseline.

A key feature of the Orbitrap mass analyzer is an external curvilinear ion trap
(C-trap) that enables ion accumulation prior to injection in the analyzer (Figure
2.2)). This feature permits a pulsed transmission of ion batches, orthogonally to
the mass analyzer, continuously released from an ion source, such as electrospray
ionization (ESI) or atmospheric pressure photoionization (APPI); alternatively, it
transmits ions axially to a collision cell, where ions are fragmented before being
returned to the C-trap and ejected to the mass analyzer. However, the amount
of charge filling the C-trap needs to be controlled by setting an injection time or
number of pulses (known as IT}44.¢) in order to avoid space charge effects (Eliuk
and Makarov, 2015).

Ionization plays a fundamental role in converting molecules into charge states
and conferring kinetic energy to the formed ions towards the MS system; however,
it demands careful optimization of the ionization source parameters, due to the
selectivity of ESI towards polar species and effectiveness of APPI for non-polar and
slightly polar species.

The fragmentation process, involving the dissociation of the ion from its neutral
loss (Pluskal et al., 2012), is a great advantage for the identification of structural dif-
ferences between ions (Desiderio, 1994), in combination to an additional quadrupole
mass filter ahead of the C-trap!!| (analytical setup referred to as tandem mass spec-
trometry, MS/MS) enabling the pre-selection of precursor masses from the mixture
of ions formed in the ion source (e.g. ESI). The high sensitivity of such a configu-
ration (resolutions >150 000 FWHM and mass accuracies <1 ppm) facilitated the

10The electrostatic force applied is a function of mass and charge according to the Newton’s
second law and Lorentz force law, as is the frequency of axial oscillation.
"' The the latest development of the Q Exactive model adopted for the current study.
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Figure 2.2: Schematic representation of the Orbitrap mass analyzer and a cross section
of the C-trap. The example shows the ion packets entering the mass analyzer, where
the voltage applied stabilizes them into a rotational motion around the central electrode,
inducing image current further detected by the amplifier. Reprinted with permission
from: Eliuk and Makarov (2015), Thermo Fisher Scientific.

non-target analysis of complex mixtures, given the link established between the pre-
cursor and the product ions, thus allowing a post-analysis selection of meaningful
mass peaks from the full scan data for further interpretation. Furthermore, coupling
with ultrahigh pressure (UHP)-LC has significantly improved S/N ratios, advanc-
ing the analysis of low molecular weight molecules (<500 Da), and thus, NOM and
DOM characterization studies (e.g. Cortés-Francisco and Caixach, 2013).
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2.4.2 Detection of unknown compounds

In the current state of art of spectral analysis of complex mixtures, heuristic rules
applied to chemometric techniques represent the basis of compound identification.
The complexity of molecular formula assignment lies in the fact that several molec-
ular formulae can be determined from one molecular mass, despite high resolution
and mass accuracy. Seven golden rules established on heuristic and chemical cri-
teria for molecular formulae prediction and validation have been detailed by Kind
and Fiehn (2007). These rules were accounted for in the workflow set up (details
in Appendix |C) and the post-analysis data processing (see Subsection 5.2.9) at the
basis of the results presented in Chapter 5.

In the first instance, the selection of relevant chemical elements and the re-
striction of their count for a molecule mass range reduces false predictions and
computational time. Soil organic matter is mainly composed of C, H, N, O, with
minor contributions of P and S, as well as other microelements. Since the number
of possible combinations between these atoms varies with molecular weight (Koch
et al., 2007), atom, atom count and maximum precursor mass have to be restricted.
However, a priori exclusion of elements may cause substantial errors (Koch et al.,
2007); thus, further rules apply.

Following ESI, radicals may occur as fragments of a certain molecule, that may
not exist in its natural state. Thus, resolved species need to be neutralized for
their adducts (e.g. mass + 1.007825 Da for a negative ion, abbr. M+1) in order
to be validated by meeting the ‘octet rule’ (Lewis rule) and the Senior’s theorem
conditions (Senior’s rule), the latter requiring:

i. the > of valences or atoms having odd valences to be even;
ii. the > of valences to be > twice the maximum valence;
iii. the ) of valences to be > twice the number of atoms -1,

and allowing for the maximum valence state of each element and different valence
states within the molecule (Kind and Fiehn, 2007).

Evaluation of isotopic abundance patterns is a fundamental criteria for formulae
computation (Kind and Fiehn, 2006), especially when attempting to identify larger
and structurally more complex molecules, likely to be part of DOM. That is be-
cause different isotopes of constituent atoms (isotopologues) may coexist within the
monoisotopic ion (e.g. peptides). The search generally scores mass spectral peaks
for the monoisotopic ion with more than one isotopologue, including only signals
with an isotopic pattern for molecular formulae prediction (Verkh et al., 2018).

Element molar ratios, such as the H/C ratio, further restrict the likelihood of
a possible formula. Commonly, H/C ratios for NOM and SOM lie between 2 (e.g.
long chain alkanes) and 0.5 (e.g. polycyclic aromatic hydrocarbons), but values 4 >
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H/C > 2and 0.5 > H/C > 0.125 are also found (Kind and Fiehn, 2007). Similarly,
O/C ratios are low (e.g. 0.2-0.6) for highly aromatic molecules and increase (up to
1.2, but increases up to 2 are not uncommon) in highly saturated molecules. Kind
and Fiehn (2007) reported a 13-fold reduction of computed molecular formulae by
applying element ratio constrains. For particularly large organic macromolecules,
predictions are refined evaluating the combination of all element ratios within the
molecule (condition defined as “multiple element count” by Kind and Fiehn, 2007).
It is noteworthy, however, that a number of known naturally occurring metabolites
(e.g. ATP) do not meet the restrictions imposed by this criteria. In light of this and
given the range of molecular weights observed in the study conducted in Chapter
5 (mainly <500 Da), this criteria was considered, yet omitted from the filtering
process.

Ultimately, spectral libraries of known natural and synthetic compounds are
commonly consulted as part of the workflow performed by softwares designed ad hoc
for compound profiling (Halket et al., 2005; Kind and Fiehn, 2006). Yet, relatively
accurate spectral and formulae matches do not warrant structure definition and
compound annotation of unknown compounds due to a large variety of possible
isomers, many of them even not available up to date (Kind and Fiehn, 2007).

2.4.3 van Krevelen diagrams and structural determinants

The van Krevelen diagrams provide a simple way of visualizing and representing
the chemical composition of complex chemical mixtures by plotting the O/C (ox-
idation) versus the H/C (unsaturation) ratio for every compound identified in the
sample. Such a representation broadly defines the biochemical fingerprint of DOM
and enables the identification of major changes in the molecular composition occur-
ring as a result of physicochemical and biological processes. Upon the development
of HRAM techniques and convenient chromatographic separation, biochemical fin-
gerprinting can be extended to single fractions, thus more accurately conveying the
chemical information pertaining the diagenesis of the organic mixture.

Additional value of the van Krevelen diagrams is given by indices such as the
double bond equivalent (DBE), indicating the number of double bonds per molec-
ular unit and calculated as (Koch and Dittmar, 2006; Murray et al., 2013):

SNV -2)

DBE =1+ f (2.12)
where N; and V; are the number of atoms for each element i and its valence, respec-
tively. Thus, for a fully saturated molecule, DBE = 0, while increases in C, N and
P and a decrease in H atoms will increase DBE. Given that DOM is largely consti-
tuted by carboxyl-bearing moieties, C=0 bonds are accounted for and unresolved
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by DBE. Normalizing DBE by the number of C atoms in the molecule (DBE/C)
renders the aromatic nature of the molecule (Hockaday et al., 2006). Yet, the va-
riety of heteroatoms likely comprising the molecule biases the relationship between
DBE/C and C=C bonds. A conceptual alternative of the DBE has been proposed
by adjusting the DBE to the relative oxygen content (DBE-O), in order to provide
an indication of the relative contribution of oxygenation to the degree of unsatu-
ration of the molecule and to discriminate solely aromatic and condensed aromatic
structures (Koch et al., 2005; Tfaily et al., 2013). Furthermore, an aromaticity
index (AI) proposed by Koch and Dittmar (2006)"| accounts for the heteroatom
contribution to double bonds and can be regarded as a measure of conjugated and
aromatic structures.

2.5 Statistical analyses and chemometric techniques
“Any fool can know. The point is to understand.”

Albert Einstein

2.5.1 Analysis of variance

The analysis of variance (ANOVA) aims at characterizing any difference in the mean
between two or more groups brought about by an independent variable (categor-
ical factor) and any external factor other than the independent variable (residual
variable). Accounting for the residual variable means accounting for any error in
the estimation of the main effect caused by inherited differences within each group.
For each group, this error is expressed as the sum of squares (SS,) of the differences
between each observed value (x;;) and the mean of its corresponding group (y;):

n

SSe = (wij — p;)° (2.13)

=1

Thus, the overall effect of the residual variable is simply the sum of these group
sum of squares (SSg).

The same concept is applied to estimate the effect of the independent variable
(A), thus the differences occurring between the groups. In this case, the overall
mean () is subtracted from the mean of each individual group (p;) and the square
of the difference is weighted by the number of groups (n;) and summed up (SS,).

12The calculation of Al and Al,,,q had been recently corrected by Koch and Dittmar (2016).
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The sum of all sums defines the main effect:
SSa =) nilu; —p)? (2.14)
=1

The overall variation induced by the independent and residual variables is,
hence, inferred by the variance (0?), or total sum of squares over the degrees of
freedom (independent measurements) for the whole data set (n-1):

éfz’(% — p)?

ol ==

m— (2.15)
where f; is defined as the probability (p;) of a number of observed values (n) to
occur multiple times.

The statistical significance of the main effect with respect to the residual effect
within a defined range of probability is given by the ratio between the SS, and
SSg, each normalized by the degrees of freedom (independent measurements) for
the number of groups (k) and the total number of observations (n), respectively:

_ SSa/(k—1)

B = S50/t —¥)

(2.16)

where F' denotes a test value to be compared with a tabulated F' value, estab-
lished by Ronald Fisher, critical for a given level of significance («), and (k-1) and
(n-k) represent the degrees of freedom for k and n, respectively. It is intuitive to
conclude that, the larger the value of F' for a given significance level, the larger the
confidence to reject the hypothesis that there is no statistically significant difference
between the group means (null hypothesis). Further to the F-statistics, ANOVA
applies several other tests (e.g. t-test) in order to identify what pair of groups cause
a statistically significant difference (defined by a P-value).

The close relationship between ANOVA and regression analysis (Iversen, 2011)
is explained by the fact that ANOVA performs as a linear regression when all the
independent variables are discrete (Shalizi, 2017). In addition, when such variables
derive from ad hoc designed experiments, it is possible to infer the causal effect on
the dependent variable. The model, described as general linear model, is defined
by:

y=1yo+ar+e (2.17)

where the intercept of such regression () will correspond to the mean of a reference
group, whereas the slope of the regression (a) will relate to the difference between
the mean of the reference group and another group, and ¢ is the associated residual
error. In this context, the coefficient of determination, known as R?, determines how
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much of the total variation in the dependent variable is explained by the variation
in the independent variable:

Z (yactual — Ypredicted ) 2

RP=1-
Z(yactual - ymean)2

(2.18)

In Chapter 4, ANOVA has been applied to investigate the effect of land use
on soil’s general properties, as well as the amount of WEOM per unit of soil mass.
Tables 4.1 and 4.2 provide a summary of the ANOVA output, with group means and
computed standard errors of the difference of means and least significant differences
among groups.

2.5.2 Restricted maximum likelihood and linear mixed
models

Multilevel and hierarchical data structure that raise into clusters of related data
and collinearity, promote the use of linear mixed models (LMMs) in place of simple
linear models. Examples of such data structures are presented in Chapters |3 and
4. The characteristic and advantageous feature of LMMs is brought about by the
integration of both fixed and random effects'® into one unique model (thus mixed),
avoiding multiple simple regressions. This not only allows the use of the whole data
set (maximizes the sample size), but most importantly, accounts for the variance
coming from the random effect(s). Furthermore, they are suitable for a large set of
parameters, unbalanced experimental designs and missing data. The model can be
summarized as (Laird and Ware, 1982):

where y is an N-vector of i responses, X; is a known n; x p matrix for the
fixed effects, (8 is a p-vector of unknown regression coefficients for the fixed effects,
Z; is a known n; x ¢ matrix for the random effects, b; is an independent g-vector
of random effects, and € is an independent and normally distributed N;-vector of
residuals (with zero mean and covariance matrix R). The parameters 5 and b; are,
thus, subjected to estimation.

Estimating model parameters is a key step in statistical modeling. The max-
imum likelihood (ML) is the most common estimator of the variance component
in 8 and b;. The likelihood estimates the probability to observe a set of data as
a function of a parameter (Shalizi, 2017), provided that the data are fixed. Thus,

13Fixed effects can be broadly described as independent variables (factors) expected to affect
the response variable, while random effects as grouping factors causing collinearity among data
within the same sample group.
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maximizing the likelihood of the model’s parameters will maximize the probability
of finding the least adequate model that best fits a set of given data. In an ANOVA
approach, this would be equal to minimizing the sum of squared error. However,
to find ML estimates in LMMs, likelihoods over all possible values of the random
effects must be integrated. As such, the restricted maximum likelihood (REML)
will dissociate the estimates for the variance components from the estimates for
the fixed effects and enable to assess the significance of any random effect without
being affected by the fixed effects

Example: The drying and rewetting leaching experiment'*

Here an example of a LMM output fitted with REML. The treatment (moisture
content) and leaching number (pore volume) effects on the variable (e.g. DOC)
was described through a series of fixed and nested terms and their interaction. The
code was written in Genstat v.17%.

poin data; !'p(DOCmg g 1C)

calc nv=nvalues(data)

prin nv

getat [att=id]datal[];id[1...nv]

prin id[i] [1]

getat[att=1lab]Soil;s

point id2;!p(#s[1)

prin id2[]

for [index=i;ntimes=nv]v=datal]

for [index=j;ntimes=2]

restr v,Treatment,Treatment_1,Treatment_2,Pore_volume,Rep;Soil.eq. ]
vcomp [fix=(Treatment_1/Treatment_2/Treatment))\
+(Treatment*Pore volume) ;fact=9] ; con=pos

reml [prin=#,wald,dev;maxcycle=200]v

vcomp [fix=Treatment*Pore volume;fact=9];con=pos
reml [prin=#,wald;maxcycle=200]v

vgra [pse=lsd]x=Treatment;groups=Pore_volume;title=id[i] [1];ytitle=id2[j]
vlsd [print=1sd]

vplot

endf

endf

MEurther details and results of this experiment are reported in Chapter 3.
5Genstat is a statistical software package originally developed at Rothamsted Research for data
analysis in the field of agriculture and extended to physical, mathematical and natural sciences.
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Figure 2.3: An example of residuals’ plots from the LMM fitted with REML.

2.5.3 Multivariate analyses

Principal component analysis

Dealing with high-dimensional data, while preserving information integrity, has
become feasible with another technique of the multivariate analysis family, known

as the Principal component analysis (PCA).

PCA reduces the number of dimensions in which the data lie and summarizes
them as a set of linearly uncorrelated variables, called principal components (Web-
ster, 2001; Shalizi, 2017).

Principal components are derived so that the orthogonal projection of the orig-
inal data points onto a new axis maximizes the variance of the projected values.
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Figure 2.4: Eigenvectors of a multivariate Gaussian distribution. Reprinted from: Wiki-
media Commons, https://commons.wikimedia.org/wiki/File:GaussianScatterPCA.svg.

The projected values corresponding to the new direction are the principal com-
ponent scores, and the axis representing the largest variance, the first principal
component. The cosine of the angle between the original and the new axis denotes
the eigenvector of the first component, and the variances of the original points along
the new axis, its eigenvalues. There are ¢ principal components; each successive
principal component is a normalized linear combination of the original variables
(p) that maximizes the remaining variance for that subspace and is orthogonal to
the previous one (thus uncorrelated). Therefore, ¢ generally represents the total
number of original variables. The loadings (e;) are the coefficients of the linear com-
binations of the continuous variables. When represented within a circle with unit
radius, their proximity to the circumference shows their strength in a given dimen-
sion (Webster, 2001). Summarized, the variance of the (i*) principal component
(Y;) will be:

hS]
bS]

var(Y;) = CikEilOr = €2e; (2.20)
k=1 I=1
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and the covariance allowing for uncorrelated components:

p p
cov(Y;_1,Y;) = Z Z i1 kCiuok = €;_12e; =0 (2.21)

k=1 l=1

Pro et contra: PCA performs as a robust descriptive, exploratory technique that
does not require model assumptions (Jolliffe, 2011). Inferring the principal com-
ponents reduces the number of meaningful predictors, which makes it, therefore,
suitable for modeling purposes. Further, while keeping the predictors independent,
it avoids multicollinearity problems, yet considering only linear relationships.

Example: The “Millenium tillage trial” (MTT) data set'®

This data set consisted of 216 observations of 45 numerical variables. The ob-
servations were grouped into four categorical factors: “Soil”, “Extraction”, “Treat-
ment” and “Time”, corresponding to land use, extraction method, anion exchange
resin treatment and pre- or post-incubation measurement, respectively. PCA was
then conducted on two main data subsets: (i) variables including pre- and post-
incubation measurements (n = 19) and (ii) variables related to the pre-incubation
measurements and WEOM mineralization (expressed as a cumulative measure over
a time period or as the difference between the pre- and post-incubation times)(n =
22).

In this example, PCA was performed in R using the function prcomp!®.

> PCA time O _finalset <- prcomp(pca rep_time 0 finalset[, c(6:27)],
center = T, scale. = T)

summary (PCA_time 0_finalset)

Importance of components:

PC1 PC2 PC3 PC4 PC5
Standard deviation 3.5286 2.4825 1.31270 0.69150 0.64866
Proportion of Variance 0.5659 0.2801 0.07833 0.02174 0.01913
Cumulative Proportion 0.5659 0.8461 0.92440 0.94613 0.96526

16The PCA results of this experiment are reported in Chapter 5 and related Appendix.

7R is an open source software environment for statistical computing and graphics (R Devel-
opment Core Team, 2018) implemented (from the S programming language) as a function-based
language that compiles and runs a large variety of extendible libraries of packages.

18In R, PCA can be performed with two functions, which differ in the mathematical approach
behind (Shalizi, 2017): princomp analyzes the eigen-decomposition of the variance-covariance
matrix (squared matrix); prcomp uses the singular value decomposition (SVD), which reduces a
rectangular matrix into its constituent parts, two orthogonal matrices and one diagonal matrix
(Salkind, 2007), and is generally more robust for multivariate analyses.
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Prior to actual PCA, mean and variance were “centered” and “scaled”, i.e.
variable’s average was zeroed out (center()) and each variable was normalized to
unit variance (scale()) to allow comparisons. This is a fundamental step when
dealing with different units of measurements within the data set and when the same
variable can be expressed with different units (Jolliffe, 2011).

Components were selected setting a threshold of accounted percentage of total
variation equal to 80% (Jolliffe, 2011). Thus, axes were rotated only within the
selected g-dimensional subspaces for exploratory and interpretation purposes.

In the current example, two principal components were selected and their loadings
evaluated according to Fig. |C.20/ in Appendix |C.

Parallel factor analysis (PARAFAC): a principle of parsimony"

Decomposition of multi-way data, i.e. sets of two dimensional matrices arranged
in multiple dimensions, into unique components capable of describing the full data
array represents a suitable method for the interpretation of trilinear structures®”
(Bro, 1997), such as those of EEMs. Parallel factor analysis (PARAFAC) is a mul-
tilinear model (Harshman, 1970; Leurgans and Ross, 1992; Bro, 1997; Andersen
and Bro, 2003) suitable for such purpose. In fluorescence studies, PARAFAC has
been widely utilized to perform spectral decomposition of EEMs and, thus, discrim-
inate the profile of independent fluorophores (termed components) underlying the
fluorescence signal of complex mixtures, such as DOM (Ohno and Bro, 2006).

Like PCA, PARAFAC decomposes the EEM three-way data array into sets of
scores and loadings, condensing the multidimensional information into few under-
lying factors (components). Yet, it can be regarded as a higher order PCA, such
that the model restricts each component to one score vector and two loading vectors
(Bro, 1997). Thus, unlike PCA, a unique solution is given by providing the position
of the axes defining a specific subspace (Harshman, 1970), which enables ease of
interpretation.

The decomposition of the three-way array X of dimension I x J x K, I referring
to the number of samples, J to the emission spectra (mode) and K to the excitation
spectra (mode) (Fig. 2.5)), can be explained by the following equation:

F
Xijk = Zaifbjfckf + €ijk (222)
f=1

9The principle of parsimonious data modeling applied to multivariate calibration has been
treated by Seasholtz and Kowalski (1993).

20A trilinear structure is defined by: (i) an equal number of components for each dimension
(axis); (ii) each component has a unique profile for each dimension and (iii) its changes in one
dimension are independent of any variation in the other two dimensions (i.e. the profile shape
of a fluorophore derived from a specific combination of excitation and emission does not change
varying its concentration) (Bro, 1997; Kumar and Mishra, 2013).
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where z;;;, is the element of X representing the light intensity of the ith sample
emitted at the jth variable when excited at the kth variable, F' denotes the number
of contributing factors (components), a;f, b;; and ¢y are the fth elements of the
loading matrices A, B, C of dimensions / x F, J x F and K x F, and g;j;, is the sum
of squares of the residuals of dimension I x J x K. For fluorescence data, elements
a;f, bjr and ¢y are a function of the relative contribution (i.e. concentration) of the
mixture component f in the sample i, its emission (j) and excitation (k) spectra,
respectively.

It follows that a simplified solution of the model can be expressed by the Khatri-
Rao product (Bro, 1997):

F
X = Zaf X bf & Cf (223)
=1

or alternatively (Burdick, 1995; Kumar, 2019):

X=Ax((Cl®|B)" (2.24)

where T indicates matrix transposition.

Emission

Excitation

Figure 2.5: PARAFAC decomposition of the trilinear EEM structure in five components.
Reprinted with permission from Murphy et al. (2013).

The PARAFAC model is commonly fitted with the alternate least square algo-
rithm (Bro, 1997). The procedure involves the estimation of the loadings for two
modes and then calculating the elements of the third mode and a residual array.
This implies initialization of the spectral variables before PARAFAC computation,
usually by singular value decomposition (SVD), which requires a relatively large
number of iterations and considerable computational time. Yet, such a two-stage
procedure allows an initial solution to be rotated towards a simple structure (Jol-
liffe, 2011) and the model fit to be improved at each consecutive iteration, until
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convergence?!. It is noteworthy that negative constraints are a fundamental cri-
teria for achieving uniqueness of the solution, since neither concentration nor the
fluorescence intensity can be negative.

Pro et contra: Such an approach can be regarded as a form of mathematical
chromatography (Bro, 1997), enabling the non-destructive study of biochemical
assemblies. As one of the most important features, uniqueness of the solution (An-
dersen and Bro, 2003) is given by rotational constraints, ensuring that the true
underlying model is only the one with the best fit (Bro, 1997). Unlike other de-
composition models (e.g. PCA), when adequately performed, PARAFAC uses less
degrees of freedom, thus avoiding fitting potential noise (overfitting). Hence, while
performing robust spectral decomposition in a structured, thus simpler manner,
it is considered as the most parsimonious among other multilinear models. How-
ever, PARAFAC is not sequential; thus, the model is re-estimated when a different
number of components is calculated. Advantageously, spectral components can be
inferred regardless of interferences; nevertheless, consideration of the Raman and
Rayleigh scattering, quenching and instrumental noise is important for an adequate
model performance and output interpretation, since these commonly observed in-
terferences can bias the model parameters (Andersen and Bro, 2003).

Example: The MTT data set

PARAFAC was performed on EEMs obtained for the set of extracts from the
MTT data set, previously described in this Subsection (2.5.3). Alternatively to
the classical approach (Bro, 1997), the number of meaningful spectral components
was determined by inferring their value in estimating a range of observed quan-
titative and qualitative WEOM properties using three regression algorithms. For
each algorithm, the component performance was evaluated through: (i) the root
mean squared error (RMSE), which scales off the errors to the same scale of the
parameters and gives more weight to larger residuals than smaller ones; (ii) the R?
of the regression and (iii) the Pearson correlation coefficient (r) for each variable
analyzed. The PARAFAC results of this experiment are reported in Chapter 5 and
related Appendix Cl

2terations are generally stopped when the difference in the model fit between two consecutive
iterations is 1075 (but also lower, e.g. 10710).
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2.5.4 Machine learning techniques
Random Forest

The Random Forest (RF) algorithm constructs a collection of decorrelated decision
trees? (non-linear models) and uses them to make a classification (Breiman, 2001)
or regression. As a rule, about two-thirds of the original data set are used for the
training purposes of the algorithm (called “training data set”), and about one-third
for the validation of the predictive power of the trained algorithm (“out-of-bag data
set”), as well as the estimation of its error (generalization error).

Here is an example of the RF algorithm logic:

fAl fBl fCl Cl

S = (2.25)

where S represents a matrix of training samples utilized by the algorithm to build
a classification model, A1 and An represent the feature A of the first and the
n-th sample, and C;...C,, indicate the levels or categories of each sample in the
bootstrapped matrix. The algorithm creates a number of subsets (i.e. S;...5,,) with
randomly selected features (variables)*’| (known as “the random subspace method”),
each of which is used to split a node essential to grow a decision tree from the
correspondent bootstrapped training data set. Finally, the large number of decision
trees generated (forest) is used to create a ranking of classifiers for prediction, based
on the number of votes (list of probabilities) collected for each class (classification),
or for regression, in which the sum of the predicted numeric values from the forest is
averaged by the number of trees. Generally, the bigger the forest, the more robust
the prediction, the higher the accuracy.

The outputs of such computation are two measures of variable importance: the
Increased Mean Square Error (IncMSE) and Increased Node Purity Index (IncN-
odePurity). The IncMSE estimates the increase in the mean squared error when
values for a specific variable are randomly permuted without altering the other
variables (Breiman, 2001). The importance of the variable increases if the random
permutation changes the predicted value. The IncNodePurity measures the mean
reduction in the residual sum of squares (increase in node purity or homogeneity)
resulting from splitting the data on a given variable.

22Quccessive trees are independently constructed using a bootstrap sample of the original data
set and do not depend on previously generated trees, a method called bagging (Breiman, 1996).

23 Typically, the optimal number of features is selected comparing the generalization error of
the predictive algorithm using the square root of the number of variables and a couple of settings
above and below that number.
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Pro et contra: Such an approach favors both classification and regression out-
comes, especially when the number of predictors exceeds the sample size (the so-
called “p>>n problem”), it does not require assumptions based on data distribu-
tion, and avoids overfitting?® that might occur as a result of higher-order interactions
between variable inputs (Breiman, 2001; Lagomarsino et al., 2017). Yet, predictions
are not made beyond the range of training data and overfitting may still occur for
particularly noisy data sets.

These attributes make RF one of the most powerful and robust supervised?*
machine learning techniques, especially for the analysis of complex, non-linear and
high-dimensional data (Lagomarsino et al., 2017).

Example: The MTT data set

An example of the RF implementation in this study is presented in Chapter 4.
Training and cross-validation (10-fold) for model selection were done in R via the
‘caret’” package (Kuhn, 2008, 2015). The RF was then run using the ‘randomForest’
package (Liaw and Wiener, 2002), as shown in the following example:

> xtrain <- dataTbl[, 8:17]
> rf fit <- randomForest(C02 ~., data = xtrain, importance = TRUE,
proximity = TRUE, ntree = 800, mtry = 9)

> print(rf_fit)

Type of random forest: regression
Number of trees: 800
No. of variables tried at each split: 9

Mean of squared residuals: 1891.307
% Var explained: 75.81

24In supervised machine learning, the algorithm uses the training data set to learn the mapping
function from the input variables (x) to the output variable (Y) and make predictions.
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Abstract

Soil rewetting can induce a flush of organic matter mineralization, but the fac-
tors underpinning this mineralization response are poorly understood. We investi-
gated the effects of antecedent soil water content, before rewetting, on the quantity,
quality and biodegradability of dissolved organic matter present in the leachate
pore volumes from a soil under two different management histories: arable and
grassland. Soils were collected at field capacity (FC) and dried to give four soil
gravimetric water contents (6,): 22% (not dried, left at FC), 15%, 8% and <2%
(air dry, AD). Soils were repacked to the same bulk density (1.1 g cm™3) and each
core was sequentially leached, with four pore volumes collected. The total amount
of dissolved organic carbon (DOC) leached increased (P < 0.001) only in the soils
that had been air-dried before rewetting (3.8 and 5.3 mg g~! soil C, for arable
and grassland, respectively), while among the other 6, treatments differences were
relatively small (1.6-2.4 mg g~* soil C). The pre-rewetting 0, treatment affected
the DOC content of the pore volume leached (P < 0.001): in the grassland soil,
the DOC of the AD treatment was consistently twice as high as the other 0, treat-
ments, but this trend was not as consistent in the arable soil. For all §, treatments
and both soils, specific ultraviolet absorbance at 254 nm increased as leaching pro-
gressed. Biodegradability, expressed as cumulative COs produced per unit of DOC
in leachates, was significantly lower in the first pore volume of all treatments in the
grassland soil and increased with sequential leaching. In the arable soil, differences
were small or insignificant across the pore volumes leached, but were large and
inconsistent across the 6, treatments. These findings improve our understanding
of how antecedent soil water content affects the quantity and quality of dissolved
organic matter released when soils are rewetted, and the potential for soil carbon
losses.

Keywords: Arable, Dissolved organic carbon, Biodegradation, Drying and
rewetting, Grassland, SUVAs,

3.1 Introduction

Dissolved organic matter (DOM) in soil solution is recognized as the most mobile
(von Liitzow et al., 2007) and reactive (Haynes, 2005) soil organic matter (SOM)
fraction, and its turnover thus represents a crucial step in carbon (C) and nitrogen
(N) cycling (Kalbitz et al., 2000; Zsolnay, 2003). The physico-chemical interaction
of DOM with the soil matrix (Stevenson, 1994) can hinder microbial accessibility
(Sollins et al., 1996; Hodson et al., 2011) to potentially bioavailable DOM (Boyer
and Groffman, 1996; Marschner and Kalbitz, 2003; Haynes, 2005). Furthermore, as
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it comprises a highly complex and heterogeneous mixture of organic compounds,
not all of the bioavailable DOM is readily biodegradable: its turnover times may
span hours to years (Marschner and Kalbitz, 2003). Thus, both the release of DOM
and its potential to be mineralized, hereafter referred to as biodegradability, have
a direct bearing on the transformations and fate of C and N.

The degree of DOM biodegradability is related to its composition. The DOM
consists of rapidly degradable components, such as simple carbohydrates, proteins,
low molecular weight organic acids, amino acids, amino sugars, fatty acids and a
large pool of non-specified organic compounds (Qualls and Haines, 1992; Guggen-
berger et al., 1994b; Gregorich et al., 2003; Poirier et al., 2005), but also contains
lignin fragments, complex polysaccharides and microbially derived polymeric com-
pounds (Kalbitz et al., 2000), which are degradable only with a specific set of
enzymes. In spite of this, Kalbitz et al. (2003) found DOM biodegradability to
be closely, but non-linearly, related to DOM’s chemical and structural properties
(i.e. DOM quality). Their study, recently expanded upon by Apostel et al. (2015),
confirmed the role of carbohydrates in the first step of microbial utilization, while
corroborating the concept that low mineralization rate constants are associated
with aromatic moieties and double-bonded alkyl compounds (Baldock et al., 1992;
Qualls and Haines, 1992; Bolan et al., 2011). However, mineralization of aromatic
hydrocarbons has also been demonstrated (Scow et al., 1989; Stapleton et al., 1998;
Almendros and Dorado, 1999). Parton et al. (2015) argued that breakdown occurs
when the aromatic substrate is available; however, the extent to which this occurs
is driven by complex interactions between the microbial communities, the degree
of oxidative alteration, the internal cross-linking of aromatic moieties and nutri-
ent cofactors (Scow et al., 1989; Guggenberger and Zech, 1994; Stapleton et al.,
1998; Almendros and Dorado, 1999), which often leads to disparate correlations
and contrasting conclusions. In addition to DOM quality, Marschner and Kalb-
itz (2003) also stressed that biodegradation is a function of external factors (such
as temperature, rainfall regime and associated vegetational cycles), which can di-

rectly influence DOM’s chemical characteristics, as well as soil microbial activity
(Sinsabaugh and Follstad Shah, 2012).

In unsaturated soil systems, soil water is a key factor regulating DOM release
(Zsolnay et al., 1999) and C mineralization (Chow et al., 2006). Although it is well
established that soil microbial activity and community structure play a fundamental
role in OM solubilization (Kuzyakov et al., 2000; Cheng and Kuzyakov, 2005) and
DOM mineralization, under field conditions, abiotic factors, such as fluctuations in
soil moisture, may play a larger role in the very first steps of OM cycling (Kemmitt
et al., 2008) by promoting both abiotic oxidation of DOM (Wu and Brookes, 2005)
and affecting microbial metabolism and community structure (Fierer et al., 2003).
Drying-rewetting events are known to enhance the release (Fierer and Schimel,
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2002; Harrison-Kirk et al., 2014) and mineralization of DOM (Birch, 1958). Al-
though a positive correlation has been found between DOC concentration and C
mineralization with dry—wet cycles, the magnitude of the mineralization response
can differ even when DOC concentrations are similar (Chow et al., 2006; Harrison-
Kirk et al.; 2014). This suggests that changes in DOM quality (affected by fluctu-
ations in soil moisture) may have a greater impact on the magnitude of the DOM
mineralization response compared to the size of this pool. Hence, uncertainties
about the relationship between the availability, biodegradability and composition
of DOM in this scenario urge further examination.

Most studies on soil DOM quantity and quality have been based on soil extracts,
obtained with different extraction protocols. This implies that DOM characteristics
may be affected by pre-extraction soil treatments (e.g. air-drying) and extraction
parameters, such as temperature, soil:extractant ratio, extraction time, pH and
ionic concentration of the extractant (Zsolnay, 2003; Guigue et al., 2014). As a
result, extracted DOM may not be correlated with DOM release in situ (DOM in
soil leachates). Furthermore, bulk extractions cannot provide information on the
dynamics of DOM release. Studies on DOM derived from bulk leachate samples
have been performed (Ghani et al., 2010) but, to our knowledge, none have exam-
ined the potential of DOM quality to change as volumes of the soil solution are
progressively leached out.

Thus, the objectives of this study were to (i) assess how the quantity, quality
and biodegradability of DOM responded to different degrees of soil drying before
rewetting and (ii) determine how these measures of DOM varied over the course of
a leaching event.

3.2 Materials and methods

3.2.1 Soil sampling and characterization

Soil samples were collected (0-15 cm depth) from a long-term arable site and from
a perennial grassland site (‘Grasslands Nui’ perennial ryegrass (Lolium perenne L.)
and white clover ( Trifolium repens L.)) at Lincoln, Canterbury, New Zealand (43°38’
S, 172°28" E) in April 2016. The arable site had been cultivated and rotationally
cropped (approximately every 3 years, with a crop rotation of barley (Hordeum
vulgare L.) — ryegrass (Lolium spp.) — wheat ( Triticum spp.) — pea (Pisum sativum
L.)) for the previous 18 years. Both sampling sites were within 200 m of each other,
on a Templeton silt-loam soil (classified as Eutric Siltic Cambisol, IUSS Working
Group WRB, 2015). The sites had not been fertilized for at least three months
before sampling. Three randomly selected samples (~5 kg) were taken from a 1 m?
area within each site that had been previously irrigated to bring the soils to field
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capacity.

In the laboratory, the field-moist soils were sieved (<4 mm) and coarse plant
residues and visible fauna removed by hand. Total organic C and N were measured
on a LECO TruMac CNS analyzer (LECO Corporation, Saint Joseph, MI, USA).
Soil texture, bulk density and pH in water were determined following standard pro-
tocols (Gee and Or, 2002; Carter and Gregorich, 2008; Devey et al., 2010). Mineral
N was determined by extracting soils with 2 M KCI for 1 h at a soil:extractant
ratio of 1:5. The filtered extracts were colorimetrically analyzed for ammonium
(NH4")-N and nitrate (NO3~)-N on a Lachat QuickChem 8500 Series 2 Flow In-
jection Analysis System (Lachat Instruments, Loveland, CO, USA) (Keeney and
Nelson, 1982). Soil properties at each site are given in Table 3.1.

Table 3.1: Physical and chemical properties of arable and grassland soils.

Sand Silt Clay pH TOC TN Min N 0
Landuse "o k) (k) (H0) (gkgl)  (gkg?)  (mgkgh o)
34 46 15
Arable (L.7) 2.3) 0.8) 4.7 20.1 +0.88 1.8+0.04 64.1+0.10 21.2+0.04
Grassland 33 43 18 5.6 29.8+0.17 2.4+0.02 105+0.15 22.6+0.06

w7 (22 (09)

TOC, total organic carbon (n = 2); TN, total nitrogen (n = 2); Min N, mineral
nitrogen (nitrate + ammonium; n = 6); §,, gravimetric water content at field
capacity (n = 3). Soil textural data are reported with 5% error (in brackets).
Values are mean + s.e.m.

3.2.2 Experimental treatments

Treatments were established to give four gravimetric water contents (6,): 22% (field
capacity), 15%, 8% and <2% (air dry) — hereafter referred to as FC, 15%, 8% and
AD, respectively. The 60, treatments were established by drying the soil from its
initial FC moisture content at low temperature (4-6°C) and constant humidity
(this allowed controlled drying, while slowing down microbial activity). Once the
designated moisture contents were reached and verified, by determining weight loss
in subsamples following oven drying at 105°C, soils were stored at 4°C in sealed
glass preserving jars for no more than 72 h before repacking and rewetting.

Total porosity (e), air-filled porosity (g,) and water-filled pore space of the
repacked cores (Table 3.2)) were calculated (Mclaren and Cameron, 1996). One pore
volume (PV) was defined as ¢ multiplied by the volume of the repacked core. The
matric potential (¢,,) of each 6, treatment was determined by fitting the volumetric
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water contents (6,) at 1.1 g cm ™3, determined in pressure plates on disturbed core
samples at suction pressures of 30, 100, 200, 500, 1000 and 1500 kPa, to the van
Genuchten (1980) equation. The parameters of the van Genuchten model were
estimated using the RETC program (van Genuchten et al., 1991) and 6, (saturated
water content) was set equal to . Finally, the maximum diameter of water-filled
pores (d, Mclaren and Cameron, 1996) was estimated for each 6, treatment.

Table 3.2: Physical properties of repacked arable and grassland soil cores.

g treatment

Land use Variable

FC 15% 8% AD

&y (cm? cm3) 0.23 0.17 0.09 0.02

Arable a (cm® cm3) 0.35 0.41 0.49 0.56
WFPS (%) 39.9 29.7 15.6 3.6

wm (—-MPa) 0.01 0.03 0.4 144.8

d (um) 30.2 9.4 0.75 0.002

& (cmd cm3) 0.25 0.16 0.08 0.03

Grassland €a (cm® cm™3) 0.34 0.42 0.51 0.56
WEFPS (%) 42.4 27.4 13.5 4.8

wm (-MPa) 0.01 0.05 0.9 61.5

d (um) 31.2 55 0.32 0.005

Bulk density = 1.1 g cm™?; total porosity = 58%; pore volume = 34.7 mL. Results
are given as a mean (n = 3) expressed on an oven-dry weight basis.
Abbreviations: §,, gravimetric water content; ¢,,, volumetric water content; e, air-
filled porosity; WEFPS, water-filled pore space; v,,, soil matric potential, as back-
calculated values predicted from the van Genuchten (1980) model; d, maximum
pore diameter full of water.

3.2.3 Leachate collection

Arable and grassland soils were repacked (at their designated 6,) into plastic Buch-
ner funnel tops (@ 5.5 cm, h = 3 ecm) to a depth of 2.5 cm, with a dry bulk density
(pp) of 1.1 g em™3. Glass microfiber filter paper (Whatman GF/A, @ 55 mm) was
placed at the base of the funnel tops to prevent the loss of fine particles during the
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leaching process. Each 0, treatment was replicated six times. Batches of repacked
soil cores at each 6, were slowly wetted with deionized water to FC and allowed
to equilibrate for ~1 h. A glass microfiber filter (Whatman GF/A, @ 55 mm) was
placed on each core to ensure even distribution of water over the entire surface and
to prevent structural disturbance.

Each core was then leached with four PVs (one PV = 35 mL) of deionized
water, by dripping water onto the soil surface at a constant rate. This was done
using a leaching manifold equipped with sterile plastic syringes (fitted with 25-gauge
needles), enabling 12 soil cores to be leached simultaneously. The PVs of leachate
were collected, after ~1-2 h, in separate 50-mL Falcon  tubes and centrifuged
at 4654 ¢ for 10 min before filtration through a 0.45-um polyvinylidene fluoride
(PVDF) syringe filter. All leachates were analyzed within 24 h and stored at 4°C
overnight before subsequent incubation.

3.2.4 Leachate sample analyses and characterization

Leachates were analyzed for total organic carbon (TOC) concentrations, determined
as non-purgeable organic carbon (NPOC), on a Shimadzu TOC-Vggy analyzer
(Shimadzu Corporation, Kyoto, Japan) fitted with a high-sensitivity catalyst for
low TOC concentrations. Instrumental drift was checked by running deionized
water and a 20 mg C L~! standard solution over the course of the analyses. Total
dissolved nitrogen (TDN) was analyzed using an on-line UV-catalyzed persulfate
oxidation method (Cabrera and Beare, 1993) on a Lachat QuickChem 8500 Series 2
Flow Injection Analysis System; leachate DON concentrations were then calculated
by subtracting the inorganic N forms (NO3~-N and NH,"-N) from TDN.

The UV absorbance at 254 nm of diluted (10-fold) leachates was determined
on a UV-Vis SpectraMax 190 microplate reader (Molecular Devices Corp., San
Jose, CA, USA) and normalized for the total DOC concentration. These data were
recorded with units of L mg™" m™! of specific UV absorbance (SUVAys4), which
has previously been shown to be positively correlated with the aromaticity of DOM
(Novak et al., 1992; Weishaar et al., 2003; Jaffrain et al., 2007), as well as with
conjugated unsaturated C heteroatoms, such as olefins (Weishaar et al., 2003).

Leachate pH was measured directly with a calibrated Mettler Toledo Seven Easy
pH-meter (Mettler Toledo, Urdorf, Switzerland).

3.2.5 Water extractable organic C (WEOC)

Five replicates of each soil, at their designated ¢,, were extracted with deionized
water by shaking for 1 h at a soil:water ratio (dry weight basis) of 1:10. The extracts
were then centrifuged at 2968 g for 10 min and the supernatants were re-centrifuged
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at 11 872 ¢ for 5 min prior to filtration (0.45-ym PVDF syringe filters). Extracts
were analyzed for NPOC within 24 h.

3.2.6 Biodegradation assay

The biodegradability of DOM in the leachates was determined using a 14-day static
incubation assay, adapted from those described by Gregorich et al. (2003) and Kalb-
itz et al. (2003). Twenty milliliters of each leachate, 50 uL of unfiltered microbial
inoculum and 1 mL of an N-free nutrient solution (to avoid nutrient limitations to
DOM decomposition) were incubated at 20°C for 14 days in sealed 100-mL Schott
bottles with rubber septa inserted in the lid to allow for headspace gas sampling.
Samples were assayed in quintuplicate. Positive and negative controls were run
in triplicate for each batch incubation. The positive control contained 20 mL of
glucose solution (20 mg C L™!) in place of the leachate, while the negative control
contained 20 mL of deionized water. The inoculum (2.1 mg C g™' soil) was pre-
pared from a combined sample of both soils. Briefly, 4 g of soil were shaken with
45 mL of deionized water before incubation at 35°C for 24 h. The inoculum was
then re-suspended and allowed to stand for ~1 h before transferring the upper 30
mL into a clean 50-mL Falcon™ tube.

The amount of DOC mineralized (DOC-C,,,;,,) was assessed as cumulative COq
produced over a period of 14 days. Gas samples were collected on days 1, 2, 4, 7, 10
and 14 of the incubation using a 20-mL gas-tight syringe after thoroughly mixing
the headspace, by pumping the syringe several times before withdrawing the sample.
Sample CO4 concentrations were determined by directly injecting the gas samples
into a Li-7000 infrared gas analyzer (IRGA, LI-COR Inc., Lincoln, NE, USA).
Following each sampling, the incubation bottles were opened and flushed to re-
establish an atmospheric CO4 concentration before being returned to the incubator.
For each 6, treatment, CO, fluxes were integrated over time, in order to calculate
the cumulative CO5 evolved. Results were expressed as COo-C produced per unit
of DOC present in the original leachate (Baldock and Broos, 2012).

3.2.7 Statistical analysis

Treatment effects on the characteristics of DOM leached — namely DOC quantity
(mg g~! soil C), DOC-C,,;, (mg CO»-C g=! DOC), DON and mineral N (mg g~*
soil N), SUVAys, (L mg™ m™!) and pH — from each of the four sequential soil
PVs were evaluated using a linear mixed model fitted with Restricted Maximum
Likelihood (REML). Variability was expressed by the least significant differences
(Ls.d.) at the 5% level of confidence.

The relationships between the quantitative and qualitative variables and the
leachate DOC mineralized were investigated using a multivariate regression analysis.
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The PVs were always clustered regardless of soil or 6, treatment; thus, this factor
was not included in the regression analysis.

During both the regression and REML model fitting, the relationships between
the response and each predictive parameter by 0, treatment were quite different.
For this reason, the 0, factor was partitioned to create a series of nested terms
(orthogonal contrasts) to help formalize how soil moisture affected the relationships
between quantitative and qualitative variables. This REML modeling proceeded
as follows: first, the overall response of the AD treatment was compared with the
mean of the remaining 0, treatments; second, the other extreme treatment, FC, was
compared with the mean of the intermediate 6, treatments; finally, the remaining
6, treatments were compared. For the regression model fitting, only the first (AD
vs the mean of the other , treatments) and final partitions (at least one of the
other 6, treatments differed significantly) were tested. The model that was most
parsimonious was selected via backward selection.

Each soil was analyzed separately because of the lack of replication for the land
use factor, as discussed in the methods. All statistical analyses were performed
using the Genstat statistical package version 17.0. Graphs were prepared using
SigmaPlot version 12.5.

3.3 Results and discussion

3.3.1 Soil properties

The two sites had similar soil texture, but differed in organic matter content; the
grassland soil had ~50% more C and ~30% more N than the arable soil (Table 3.1).
The C:N ratios in the arable and grassland soils were 11:1 and 12:1, respectively.
Despite the difference in organic matter content, 6, at FC was similar for both soils
(~22%). The arable soil had a lower pH and a higher mineral N content (dominated
by NO3-N) than the grassland soil, presumably due to the nitrification of NH,"-
based fertilizers utilized in intensive agriculture. The physical properties of the
repacked soil cores at the corresponding volumetric water content (6,) for each 6,
treatment are shown in Table 3.2l As expected, ¢, increased and water-filled pore
space (WFPS) decreased with decreasing 6,. At FC, the diameter of the pores
(macropores) filled with water was consistent for both soils, but with increasing
soil drying (mesopores) it was about half the value in the grassland soil (Table 3.2).

3.3.2 DOC in soil leachates

The total DOC leached (sum of DOC leached over four PVs) was influenced by
the 6, treatment (P < 0.001), with more DOC leached from the AD treatment
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(Fig. |3.1). Among the other 6, treatments, differences in the total amount of DOC
leached were relatively small. This is consistent with previous studies (Ludwig
et al., 1999; Kaiser et al., 2001) that reported WEOC to be 2-5 times higher in
air-dried soil samples than in field-moist soils (regardless of land use history). In
the current experiment, the WEOC and total DOC leached were comparable for
the soils when dried to 15% and 8% 6, (Fig. 3.2); however, for the FC and AD
treatments, the total DOC leached was greater than that extracted. Reasons for
this variation are not obvious. It is possible that the time required to collect a
PV caused the observed variation between WEOC and DOC leached. However, for
both soils, mean times to collect PVs at 15% and 8% 6, were both 1.5 h, and this
was also the case in the AD treatment. It was only in the FC treatment of the
arable soil where the mean PV collection time was greater (2.5 h). Thus, changes
in PV collection time in response to the drying treatments are inconsistent with
the variation seen between extractable and total DOC leached.

Comparing successive PVs in the arable soil (Fig. 3.3a) showed that the rate
of change in the amount of DOC leached varied with 6, treatment: the DOC
decreased from the first to the fourth PV in the AD and 8% treatments (47% and
42%, respectively); increased (up to 61%) from the first to the fourth PV in the
FC treatment, despite a significant decrease between the second and third PV; but
did not differ in the 15% treatment (l.s.d. > 0.05) until the fourth PV leached
(27% decrease). In the grassland soil (Fig. 3.3b), the DOC concentration decreased
systematically from the first to the third PV of all §, treatments (L.s.d. < 0.05),
with a further decrease from the third to the fourth PV in the AD treatment
only. The rate of decrease in DOC concentration was relatively constant for all 0,
treatments (63-68%). The overall decrease in the content of DOC across successive
PVs (apart from the arable FC treatment) was in line with the assumption that
continued leaching would progressively remove DOC in a dynamic system without
external OM inputs.

However, the extent of soil drying before rewetting affected the DOC concen-
tration within the PV leached (P < 0.001, Fig. 13.3). Regardless of land use, the
PVs of the AD treatment had the highest DOC concentration. Clearly, the mech-
anism(s) responsible for enhancing the release of DOC, regardless of PV and land
use, is(are) triggered to a greater extent only in AD soils. It is well recognized
that aggregate disruption enhances the release of DOC following air-drying as a
consequence of air compression, generated by surface tension occurring during the
aggregate rewetting, exceeding the cohesion between soil mineral particles and ag-
gregates (Kemper et al., 1987), as well as the uneven hydration and swelling of the
clay fraction (Caron et al., 1996). Furthermore, we cannot exclude the breakdown
of microbial cells (Bottner, 1985; Van Gestel et al., 1993a) and the release of intra-
cellular solutes (Halverson et al., 2000) induced by an increased osmotic pressure,
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Figure 3.1: Boxplots showing total dissolved organic C (sum of DOC in four pore
volumes) leached from an arable (a) and a grassland soil (b) at varying degrees of 6:
field capacity (FC), 15%, 8% and <2% 6, (air dry; AD). The upper and lower boundaries
of the boxes show the 25" and 75" percentile, respectively; the central line represents
the median; the whiskers indicate the minimum and maximum values. For the arable soil
at FC n = 3, for the other f, treatments of both soils n = 6.
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brought about by complete dehydration, as possible mechanisms.

Relatively high levels of SOM found in grassland and no-tillage soils promote
aggregate stability (Tisdall et al., 1978; Haynes and Swift, 1990; Cambardella and
Elliott, 1993; Six et al., 2004) and decrease aggregate wettability (Caron et al.,
1996). Assuming such an effect in the grassland soil, this may explain the lack of
observed differences between the FC, 15% and 8% treatments, with respect to PV
DOC concentrations (Fig. 3.3p).

It is generally recognized that arable soils have low SOM content and, therefore,
they commonly manifest lower aggregate stability (Paustian et al., 2000; Bronick
and Lal, 2005; Vogelmann et al., 2013). Assuming that this was the case in the
arable soil, this may explain the variability in the PV DOC concentrations for the
FC, 15% and 8% treatments (Fig. 3.3a). Contributing to this variability was the
decrease in the rate of leaching in the FC treatment (from 2 to 3 h for PVs 2 to 4),
compared with the AD treatment of the arable soil (1-1.5 h for all PVs), that may
have increased the contact time between the soil and the water phase, thus leading
to more DOC being released. However, these postulated effects cannot be directly
confirmed without more intensive measurements of aggregate stability and contact
time effects.

Although our study does not allow for a robust comparison of land use effects, it
shows that approximately twice as much DOC per unit of soil C was released with
the first PV of the grassland soil relative to the arable soil. This suggests either a
greater soluble C pool or a greater efficiency of soluble C extraction by infiltrating
water. Dexter (1988) reported that macroaggregates tend to break apart more
easily than microaggregates when wetted up because of their larger macroporosity,
and it is recognized that grassland soils contain a larger fraction of macroaggregates
than arable soils (Horwath, 2015). If, indeed, this was the case, macroaggregate
disruption could have led to the release of inter-aggregate soluble C (Golchin et al.,
1994; Miller et al., 2005; Smucker et al., 2007). Another explanation would be
a reduced content of intra-aggregate and/or mineral-associated soluble C in the
arable soil, as a result of cultivation (Cambardella and Elliott, 1992; Grandy and
Robertson, 2006).

3.3.3 Leachate N

Leachate DON represented only a small portion of the TDN in the first PV of
both soils, as TDN in the first PV was dominated by inorganic N (NO3™-N) (up to
98% in the arable and 88% in the grassland soil, data not shown). As the arable
soil released up to five times more TDN in the first PV than the grassland soil
(data not shown), a cumulative effect on the error associated with the NO3~-N
proportion of the TDN in the arable soil might have strongly biased the calculated
DON concentration. Thus, only data on DON released from the grassland soil are
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Figure 3.3: Dissolved organic C content (DOC; mean + s.e.m.) in the pore volumes
leached from an arable (a) and a grassland soil (b) at four levels of 6,. 1.s.d. (a = 0.05)
= 0.07 and 0.08 mg g~ ! soil C for arable and grassland, respectively. FC, field capacity;
AD, air dry.
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presented (Fig. 3.4).
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Figure 3.4: Dissolved organic N content (DON; mean + s.e.m.) in the pore volumes
leached from a grassland soil at four levels of 6. 1.s.d. (o = 0.05) = 0.12 mg g~! soil N.
FC, field capacity; AD, air dry.

The DON leachate concentration relationship to PV varied with 6, treatment
(P < 0.001 for the interaction of PV with 6, treatment). Most of the DON was
released in the first PV leached (40-49% of the total), and this gradually decreased
by ~30% (AD) to 37% (FC) in the fourth PV. In the first PV, more DON was
released from the AD treatment than from the other 6, treatments, reflecting the
effect of air-drying previously described for the DOC release. However, the FC
treatment leached 18-36% more DON with respect to the 15% and 8% treatments
(P < 0.001). We observed the same recurrent effect of the AD treatment in all the
subsequent PVs leached.

3.3.4 SUVA254

Ultraviolet light absorption at 254 nm per unit of C (SUVAys4) has been shown to
be directly proportional to the aromatic content (as well as to conjugated aliphatic
moieties, such as olefins) of DOM (Weishaar et al., 2003). Leachate SUVAy5, was
influenced by the 6, treatment and the PV leached (Table 3.3) with, generally,
higher SUVAys4 values (P < 0.001) in the wetter soil treatments (FC and 15%) than
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in the drier treatments (8% and AD). These findings are consistent with the results
reported by Chow et al. (2006), who found higher SUVAgs, in wetter treatments of
an agricultural peat surface soil with respect to the drier counterparts.

Table 3.3: SUVAys, values (L mg~! m~!) in the pore volumes leached from an arable
and a grassland soil at their 6, treatment before rewetting.

6y treatment

Land use Pore volume
FC 15% 8% AD
1 2.86 + 0.06 4,08 +£0.17 2.95+0.11 2.40 +0.13
Arabl 2 10.12 + 0.47 8.23+0.37 496 +0.38 3.52+0.10
rable
3 10.00 + 0.59 11.31+0.45 5.46 +0.22 4.06 + 0.06
4 7.48 +1.02 13.01 +0.52 6.04 + 0.26 4.50 £0.07
1 5.80+0.21 4.28 +0.05 3.73+0.15 2.95+0.08
2 8.81+0.12 6.12 +0.14 4.64 +0.05 3.94+0.01
Grassland
3 9.07 £0.19 7.62 +0.19 5.84 +0.18 4.47 +0.06
4 6.98 +0.23 7.37+0.17 5.58 +0.12 4.58 £0.05

Values are the mean + s.em. ls.d. (o = 0.05) = 0.75 and 0.39 L mg~! m™! for
arable and grassland, respectively.

Leachate SUVAys, generally decreased (P < 0.001) with decreasing 6, in both
the arable and grassland soils, indicating that an increasing proportion of non-
aromatic organic compounds was released as 6, declined. Such an effect has been
shown to occur as a result of changes in the microbial community structure (Schimel
et al., 2007) or function (Fierer et al., 2003; Zornoza et al., 2007), leading to the
decomposition of group-specific organic compounds and enhanced nutrient release;
increased microbial cell lysis (Bottner, 1985; Kieft et al., 1987; Van Gestel et al.,
1993a), and the consequent release of lipids, aliphatic moieties of proteins and
peptides, and amino sugars (Gregorich et al., 2003; Miltner et al., 2009); decreased
structural stability of soil aggregates (e.g. slaking, Adu and Oades, 1978; Denef
et al., 2001a), increasing the solubilization of labile organic compounds (Powlson
and Jenkinson, 1976); or a combination of these effects in response to soil drying
and fast rewetting.

In the arable soil, lower SUVAys4 values occurred in the first PV of all 0, treat-
ments (Table 3.3), indicating a greater proportion of aliphatic compounds. Because
the SUVAgs, values of the first PV of the arable soil did not significantly change
with soil drying (an increase (1.s.d. < 0.05) occurred only in the 15% treatment),
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we inferred that factors other than the extent of soil drying had a larger impact on
the quality of the OM readily released into solution after rewetting (first PV). For
instance, crop residue management and/or accelerated SOM decomposition under
cropping conditions might have exposed labile SOM and possibly homogenized the
composition of DOM. However, this hypothesis would require further testing to be
confirmed.

In the first PV leached from the grassland soil at FC, SUVAss, values indicated
a relatively large proportion of aromatic and conjugated olefinic C, but there was a
progressive decrease as 0, declined, suggesting that relatively more aliphatic DOM
was released with increased soil drying.

Subsequent PVs showed significant changes in the quality of DOM released.
The SUVAgs4 was consistently higher (P < 0.001) in the second PV leached, with
the magnitude of this increase tending to decline as 6, decreased. Differences in
SUVA,s54 were relatively small or inconsistent in the third and fourth PVs leached,

with the exception of the FC treatment, where SUVAy54 values were lower in the
fourth PV.

In the FC and 15% treatments of the arable soil, the rate of increase in SUVA sy,
with respect to changes in DOC concentration, was greater than that in the 8% and
AD treatments (Fig. |3.5a). We hypothesize that a net release of aromatic and con-
jugated olefinic C, rather than a relative decrease of the non-aromatic component,
occurred in progressively leached PVs of the FC and 15% treatments compared
with the 8% and AD treatments. This hypothesis is supported by the significant
increase in absorbance at 254 nm observed after the first PV leached from the
FC and 15% treatments of the arable soil (see Fig. |A.2a in the Appendix A to
this Chapter), as opposed to small or insignificant changes in absorbance at 254 nm
that were accompanied by greater decreases in DOC concentrations of progressively
leached PVs of the 8% and AD treatments (Fig. 3.5la). In the latter, less marked
but significant increases in SUVAys, are likely to reflect an increase of the relative
proportion of absorbing moieties, rather than their net release into the percolating
solution, resulting from the depletion of the aliphatic DOM fraction released upon
drying.

In the grassland soil, the observed increase in SUVAss, spanned large intervals
of decreasing DOC concentration (with exception of the fourth PV, Fig. 3.5). Yet,
relatively stable (second PV) and progressively marked decreases (third and fourth
PVs) in the absorbance at 254 nm (Appendix |A, Fig. A.2b) suggest that, in the
grassland soil, increases in SUVAy54 were largely driven by the magnitude of DOC
decrease with respect to the changes in the relative proportion of absorbing moieties.
Interestingly, similar values of absorbance in the FC and AD treatments (e.g. first
PV; Fig. A.2b) corresponded to notably different values in SUVAgs, (Table 3.3)),
thus suggesting a dilution of the absorbing component in the AD treatment by the
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relatively large proportion of non-absorbing aliphatic compounds.

The SUVAys, values recorded in the arable soil at FC and 15% 6, might be
considered exceptionally high (7.5-13 L mg~! m™!). Although NO3~ can interfere
with light absorbance at 254 nm at concentrations higher than 40 mg L~ (Weishaar
et al., 2003), corrections to SUVAss4 were not applied in the current study because
potential interferences from large NO3~ concentrations (~100 mg L™'), detected
only in the first PV of the arable soil, would have caused negligible increases (0.01
cm™! at 254 nm). Potential interferences due to soluble iron forms (both Fe?* and
Fe*™) were also ruled out, since an increase of 0.4 cm™ for 5 mg Fe L' (Weishaar
et al., 2003) can be considered negligible for the absorbance values recorded in pro-
gressively leached PVs (>2 cm™!). Although we do not have available information
on leachate Fe concentrations in this study, we assumed that low concentrations of
soluble Fe forms occurred (<5 mg L™'), as commonly observed for the soil utilized
in this study.

The SUVAgs4 values reported in most studies pertain to surface waters (in a
range of 1 to 6 L mg™' m™!, Hansen et al., 2016); however, high SUVAys4 values
similar to the current study have been reported for soil interstitial waters (>7, Jaffé
et al., 2008), litter leachates (>10, Inamdar et al., 2012), and peat soil leachates (~3,
Hansen et al., 2016). Furthermore, Rouwane et al. (2018) recently demonstrated
a 2-fold increase of SUVAysy values (up to 10 L mg™ m™!) in agricultural soils as
moderately reducing conditions developed from initially oxic conditions.

The presence and the dynamics of the aromatic moieties, revealed by SUVAgs,,
result from differences in soil management influences on OM inputs (quantity and
quality) and the ensuing chemical, biological or physical processes that occur as a
result. Previous studies reported differences in the molecular composition of SOM
under arable or grassland systems, inferring a larger contribution of microbially
derived SOM in arable soils, but with greater plant-derived SOM contributions
in grassland soils (Guggenberger et al., 1995; Nierop et al., 2001; Martens et al.,
2004). In their work on disturbed and undisturbed peatlands, Kalbitz et al. (1999)
reported an increased aromaticity of water-soluble fulvic compounds in long-term
intensively managed agricultural areas in comparison to extensively used or unused
areas. Similarly, Haumaier and Zech (1995) attributed the large presence of aro-
matic humic acids to the increased mineralization of the litter input due to high
microbial activity and cultivation. Arable soils investigated by Nierop et al. (2001)
revealed a large presence of heterocyclic N compounds, alkylbenzenes and phenols,
which have been linked to strongly humified plant material and microbially altered
proteinaceous material (Bracewell and Robertson, 1984). The abundance of such
compounds has been linked to greater SOM decomposition and cultivation inten-
sity (Nierop et al., 2001), and possibly poor aggregate protection (Kalbitz et al.,
1999). Although we did not further investigate the molecular characteristics of aro-
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Figure 3.6: The pH of the different pore volumes leached from an arable (a) and a
grassland soil (b) at their designated 6, before rewetting. l.s.d. (a = 0.05) = 0.08 and
0.09 for arable and grassland, respectively. FC, field capacity; AD, air dry; PV, pore
volume.

matic DOM, these prior studies may explain the higher SUVA,5, values observed
in leachates of the arable soil. The presence of aromatic moieties, revealed by
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SUVA,s,, in the grassland soil of the current study, might have derived from the
enzymatic degradation of ligno-cellulose compounds, or have been released with
further leaching upon cleavage of stabilized SOM complexes or the breakdown of
physically protected macroaggregates (Jongmans et al., 2001), which contain rela-
tively little decomposed OM.

3.3.5 Leachate pH

For all treatments and both soils, the leachate pH (Fig. 3.6) was lowest in the
first PV (range of 4.3-4.6 in arable and 5.7-5.9 in grassland soil) and highest in
the fourth PV leached (5.5-5.6 in arable and 6.6-6.8 in grassland soil). Leachate
pH was influenced by an interaction between the 6, treatment and the PV being
leached (P < 0.001). The FC and 15% treatments tended to have lower pH values
than the 8% and AD treatments; however, differences were smaller as leaching
progressed. The leachate pH of the first PV leached reflected the soils’ initial pH
values. Walworth (1992) also reported an increase of ~0.5 pH units in soils that were
air-dried and rewetted to their original 6, content. Ludwig et al. (1999) explained
that, by affecting soil solution composition, mineral dissolution, OM complexation,
microbial mineralization, redox reactions and the resulting equilibrium between
these processes underlie the air-drying induced increase in pH. Thus, it is possible
that changes in DOM quality, as observed from changes in SUVAgs,, may also have
contributed to changes in leachate pH.

3.3.6 Biodegradability of DOC

Biodegradability of leached DOC (DOC-C,,;,) varied with 6, treatments in both
the arable and grassland soils, with 6.7-20.2% of leached DOC mineralized over 14
days at 20°C (data not shown). Of this, 69-84% was mineralized in the first 7 days
of incubation, regardless of land use. There was a general trend for the cumulative
DOC mineralized over four PVs to increase with decreasing 6, in the arable soil,
with exception of the 8% treatment, where the lowest DOC mineralization was
followed by a plateau after 4 days of incubation (data not shown). In the grassland
soil, the cumulative DOC mineralized over four PVs decreased in the 15% and 8%
treatments, but in the AD treatment was consistent with that measured at FC.
Overall DOC-C,,,;, was not affected by the number of PVs leached from the
arable soil (Fig. |3.7a). However, there was an effect (P < 0.01) of the §, treatment
on the decomposition pattern of DOC of the different PVs: DOC-C,,;,, of the fourth
PV was lower than that of the first PV leached from the arable soil at both FC and
AD, but this trend was not observed for the other 6, treatments. The DOC-C,,,;,, in
the grassland soil (Fig. 3.7b) was generally higher in the fourth than in the first PV
leached. In the second and third PVs, there was a trend for DOC-C,,,;,, to decline
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as 0, decreased (15% and 8% treatments), before increasing in the AD treatment.
This trend was not as marked or consistent in the first and fourth PV (Fig. 3.7b).

Because arable and grassland soils showed very different patterns of DOC-C,,,;,,,
we further investigated the relationship between DOC-C,,;, and quantitative and
qualitative variables. However, no relationships between quantity and quality of
DOM and DOC-C,,,;,, of the arable soil were identified (data not shown); hence, the
DOC-C,,;, response was described only for the grassland soil.

The negative relationship between DOC concentration and DOC-C,,;, in the
grassland soil (P < 0.001, Fig. 3.8a) suggests that the amount of DOC released
was not a limiting factor for microbial decomposition, regardless of 6, treatment.
Rewetting of the AD soil released a relatively large amount of DOC in the first PV
that was less utilized by soil microbiota than the DOC solubilized in the last PV of
all 0, treatments, supporting the idea that C availability does not necessarily imply
its biodegradability.

We, therefore, investigated whether changes in the quality of DOM, hereby re-
ferred to as SUVAys,, could help to explain the significant differences in biodegrad-
ability of sequentially leached DOM. As shown in Fig. 3.8, soluble organic com-
pounds largely differing in composition and chemical characteristics can be min-
eralized to the same extent. Similarly, increases in biodegradability of DOC with
a comparable SUVA,s5, indicate substantial differences in the microbial affinity for
these compounds. The response of DOC-C,,;, to changes in SUVAys4 followed a
positive association in all §, treatments (P < 0.001), but no consistent model was
able to describe this relationship (Fig. 3.8b).

Reasons for the positive relationship between DOC-C,,,;,, and SUVA,s, require
further investigation to identify the molecular composition of leached DOM. Al-
though such data are not available for the current study, we speculate that the
(increased) utilization of aromatic compounds was closely related to the (increased)
presence of reactive polar functional groups associated with DOM aromatic rings
(Korshin et al., 1997). For example, re-oxidation of reduced forms of quinones,
either excreted by soil microorganisms (Newman and Kolter, 2000) or derived from
the oxidation of lignin (Cory and McKnight, 2005), promotes further lignin break-
down and, thus, the solubility of simplified lignin-derivatives with higher biodegrad-
ability that might have been released as leaching progressed. In addition, as sug-
gested by Rouwane et al. (2018), if reducing conditions had developed in the soil
cores, as leaching progressed, there may have been sequential release of strongly ad-
sorbed aromatic compounds (Kleber et al., 2007) with a higher oxygenation degree
and biochemical reactivity.
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and grassland, respectively. FC, field capacity; AD, air dry; PV, pore volume.



70 Quantity and biodegradability of leached DOM

240
5 200 -
o)
(]
"o 160 -
S %
o} ~
O - —
= 120 - -
£
£
O 80 -
(@)
o)
(]
40 -
0.0 05 10 15 20 25
DOC (mg g soil C)
240
(b)
®
| B =
5 200 o Ogm - ®
(@] O @
o u o
‘> 160 - c‘ga
0 e
; <o o o®@ v
ON v p . v
O 420 - & VAS @ v
o 0
£ v o v
E o4
O 80 - 00% IS
O CO0 ' @
Q O
a <
40
2 4 6 8 10

SUVA,, (Lmg"' m™)

BN FC I 15% [ 8% [ | AD
& PV1 v PV2 OPV3 O PV4
——FC - 15% ———8% — — AD
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3.4 Conclusions

The present study showed that the pre-rewetting 6, did not equally affect the quan-
tity and quality, and therefore biodegradability, of DOM leached over sequential
PVs from an arable and a grassland soil. In both soils, the DOC release was en-
hanced to a greater extent only in the AD treatment. Advancing drought levels
up to 8% 0, had little if any effect on the bulk of the leached DOC, but revealed
a strong effect on the DOC released with sequential leaching. Although the DOC
concentrations steadily declined in grassland soil leachates, they changed incon-
sistently with 6, treatment in the arable soil. Reasons for this may include soil
structural changes, microbial interactions or changes in soil redox conditions, af-
fected by an interaction between land use and soil moisture conditions that appears
to be evident under leaching conditions, but not in soil extracts. The results, indeed,
indicated that the dynamics of a simulated in situ DOM release differs from that
of a single extraction, commonly performed using standard protocols and artificial
soil-to-water ratios. Further work on soil aggregate stability and soil-to-water con-
tact time effects is required to further clarify these results. In addition, repeating
such a leaching experiment under high and low temperature conditions might help
to evaluate the microbial response to the release of DOC under leaching conditions
and infer the microbial interaction.

Sequential soil leaching released an increasing proportion of water-soluble and
biodegradable aromatic and/or conjugated olefinic structures. The SUVAys, values
generally decreased with the pre-rewetting 0,, indicating that a larger proportion
of aliphatic DOM was released upon rewetting of progressively drier soil conditions.
Despite relatively high SUVAys4 values, particularly in the later PVs leached, and
differences in DOM quality brought about by soil drying, the biodegradability of
DOM over a 14-day period was relatively fast. However, drawing some correla-
tions between the chemical and biological factors influencing DOM production and
biodegradability might be achieved only by determining the compositional changes
of leached DOM at the molecular level, using more sophisticated analytical methods
(e.g. LC-Q-TOF-MS or FT-ICR-MS) and performing an enzymatic characteriza-
tion. These findings help to further understand the quantitative and qualitative
aspects of DOM cycling following soil drying and conditions of prolonged and fre-
quent rainfall or irrigation.

Supplementary material

The values and F-probabilities of slope and intercept for the regressions of the
individual 0, treatments and the coefficient of determination for each multivariate
analysis are presented in the Tables |A.1] and |A.2| of Appendix |[Al The figure A.2
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in Appendix |A| shows the UV absorbance at 254 nm for each pore volume leached
from an arable (@) and a grassland soil (b) at four levels of 6,,.



Chapter 4

Quantitative and qualitative properties
of WEOM fractions in relation to
biodegradability: an anion exchange
fractionation study
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Soil Biology & Biochemistry and hereby adapted with the approval
of all co-authors.
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The findings presented in the previous Chapter suggested a strong interaction be-
tween soil water content and land use on the quantity and quality of organic matter
sequentially released in solution. Understanding and predicting the impact of soil
moisture on organic matter cycling, thus, requires greater understanding of the frac-
tions responsive to different land uses. The work presented in the current Chapter
aims at identifying and characterizing soluble organic matter fractions differing in
their polarity, hence reactivity, by means of anion exchange resin treatment.
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4.1 Biodegradability and qualitative characteris-
tics of WEOM fractions in a soil with
different land use histories

Abstract

There is a need to identify and characterize water extractable organic matter
(WEOM) fractions that can elucidate soil organic carbon mineralization responses
to land use and management practices. In this study, the uptake of WEOM by anion
exchange resin enabled the unretained sub-fraction to be identified, that differed in
its mineralization potential when comparing cold (CW) or hot water (HW) fractions
of WEOM (referred to as CWEOM and HWEOM, respectively). Extracts were ob-
tained from a soil collected from either a long-term permanent pasture, a no-tillage
cropping rotation or a chemical “fallow”, and these were treated with an anion ex-
change resin to discriminate WEOM according to its charge. The resin treatment
removed up to 67% and 86% of the CWEOM and HWEOM, respectively, regardless
of land use treatment. Fluorescence fingerprints and specific ultraviolet absorbance
at 254 nm revealed the structurally complex and aromatic nature of the negatively
charged and/or hydrophobic fraction of WEOM retained by the resin, in contrast
to the recently produced, possibly microbially derived, aliphatic constituents of the
uncharged /protonated sub-fraction. While the latter was associated with higher
biodegradability in the CW extracts, such a relationship was not observed in the
HW extracts. Contrary to expectations, the mineralization response was analogous
for the CWEOM and HWEOM of whole extracts (non-resin treated) regardless of
land use. This may have been due to the large presence of phenolic compounds in
the HW extracts, whose mineralization response was primarily led by N-containing
compounds. These results suggest the imperative role of plant inputs and substrate
quality in regulating microbial outputs and the formation of WEOM sinks and
sources.

Keywords: Water extractable organic matter, Biodegradation, Anion exchange,
Land use, Fluorescence spectroscopy, Random forest

4.1.1 Introduction

It is critical to understand the effects of land use on soil organic matter (SOM)
dynamics when designing sustainable farm management practices. Ideally, these
practices would increase SOM while mitigating carbon (C) losses. Conversion of
grasslands into cropping systems has resulted in significant losses of soil organic C
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(SOC), the largest terrestrial C pool and reservoir (Lal, 2004). Vice versa, the shift
from cropping systems back to grasslands has been shown to increase SOC stocks
(Guo and Gifford, 2002) resulting from the enhanced SOM content, which aids C
sequestration and improves soil stabilization, water storage and infiltration, and soil
fertility. Nevertheless, to date, estimates of SOC mineralization, and thus C losses,
or sequestration potentials in response to land use change remain inconsistent due
to the large array of chemical, physical and biological factors involved (Manzoni
and Porporato, 2009).

Numerous attempts have been made to describe functional SOM pools and frac-
tions (McLauchlan and Hobbie, 2004; Haynes, 2005; Leifeld and Kogel-Knabner,
2005; von Liitzow et al., 2007) that can explain and predict SOC mineralization
responses. For instance, quantitative and conceptual models defining labile and
stable SOM pools (based on substrate quality) have been increasingly adopted to
estimate the mass of mineralization products and to predict mineralization rate
potentials (Parton et al., 2015). However, such models often assume fixed rates of
reactivity for only a limited number of pools defined to date (Parton et al., 2015),
each of which interacts to a different extent with a variety of other parameters
(e.g. temperature) (Agren, 2000; Kleber et al., 2011). This limits the accuracy
of such models when applied to different soil types from different ecosystems (Shi-
rato et al., 2004). More often than not, this rather mechanistic approach requires
powerful computational systems (Agren and Bosatta, 1998), hence limiting model
application. Thus, there remains a need for simple and inexpensive methods that
are capable of inferring and characterizing actual functional fractions that drive the
SOC mineralization response.

Water extractable organic matter (WEOM) has been regarded as the most dy-
namic and bioactive SOM pool (Bolan et al., 2011). It is, therefore, susceptible
to microbial utilization, namely bioavailable, and soil physicochemical alterations
in response to land use and management changes (Kalbitz et al., 2000; Chantigny,
2003). However, due to the inherent heterogeneity and the variability of WEOM
composition, only a portion of the bioavailable WEOM is readily utilizable and min-
eralizable within a short timeframe (Cook and Allan, 1992; Marschner and Kalbitz,
2003), hereafter referred to as biodegradable.

Cold (CW) and hot water (HW) extractable SOM fractions are common in-
dicators of bioavailable and biodegradable WEOM (Marschner and Kalbitz, 2003;
Haynes, 2005). Although frequently recovered with different extraction procedures
(Zsolnay, 2003), the CW fraction serves as a readily available C source for soil mi-
croorganisms (Burford and Bremner, 1975). Furthermore, its utilization can also
affect soil redox conditions, impacting the release of other gases, such as nitrous
oxide and methane. It has been suggested that the bulk of this fraction derives from
decomposed SOM, in particular from soil humus (Gregorich et al., 2003). Earlier
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studies have shown that changes in soil microclimate (Milori et al., 2002) and con-
ventional soil management exert a strong impact on the amount of soil “humics” and
the degree of SOM humification (Kalbitz et al., 1999; Bayer et al., 2000); it might,
therefore, be expected that such changes would be reflected in the size, composition
and biodegradability of WEOM contained in the CW fraction (CWEOM).

The HW extractable fraction of SOM has been associated with the readily min-
eralizable (labile) WEOM (Sparling et al., 1998; Ghani et al., 2003; Gregorich et al.,
2003; Curtin et al., 2006; von Liitzow et al., 2007), composed of carbohydrates, N-
containing compounds, peptides and amides in particular (Leinweber et al., 1995;
Ghani et al., 2003; Haynes, 2005), derived from the breakdown of organo-mineral
associations, OM hydrolysis and microbial cell lysis (Sparling et al., 1998) boosted
by the relatively high extraction temperature. For this reason, it represents the
largest fraction of potentially soluble OM, hereafter referred to as HWEOM. Previ-
ous studies have shown that the HWEOM responds promptly to changes in land use
and management (Ghani et al., 2003). For instance, Haynes and Francis (1993) re-
ported decreasing concentrations of HWEOM in cultivated soils, whereas increases
were observed when cropping soils were converted into pasture. In addition, the
strong correlation observed between the C content of this fraction and the size,
and activity, of the soil microbial biomass pool (Sparling et al., 1998; Ghani et al.,
2003) has increasingly promoted its measurement in studies investigating the influ-
ence of land use and management on soil quality and its mineralization potential
(e.g. Fernandez-Romero et al., 2016).

Given that WEOM composition strongly determines its biodegradability (Kalb-
itz et al., 2003), inconsistencies between WEOM components and biodegradability
reported by previous studies mean that the characteristics of WEOM that determine
its biodegradability are still not confirmed. Previous studies examining WEOM
biodegradability have conducted their investigations on bulk WEOM. It was, there-
fore, questioned if there could be a sub-fraction more susceptible to mineralization
that could define WEOM’s net mineralization rate.

Weak ion exchange (Thurman, 1985) represents a simple method that can sep-
arate WEOM fractions based on their charge. WEOM owes its ion exchange prop-
erties to polar ionizable functional groups (mainly carboxyl and phenolic, but also
carbonyl, alcoholic hydroxyl, methoxyl, and imide groups). The presence of such
groups confers upon WEOM a hydrophilic (anionic) and/or amphiphilic character
that regulates its bioavailability.

Extensive work has been done on the anion exchange removal efficacy of dis-
solved organic matter (DOM) from natural waters (Croué et al., 1999; Bolto et al.,
2002; Boyer and Singer, 2008), since DOM is a well-known precursor of potentially
carcinogenic halogenated organic disinfection by-products (DBPs). Studies that
have examined the impact of the anion exchange resin structure on DOM removal
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demonstrated that strong base (quaternary ammonium), polyacrylic, macroporous
resins, with a lower degree of cross-linking, perform better and are suitable for both
low and high molecular weight DOM, given their higher water content, larger ex-
change capacity and lower selectivity (Fu and Symons, 1990; Bolto et al., 2002).
The removal of DOM achieved through the wide range of anion exchange resins
examined ranged from 50% to >90% (Fu and Symons, 1990; Afcharian et al., 1997;
Bolto et al., 2002). The bulk of this DOM (50-65%) was broadly described as
hydrophobic acids, with the remainder comprising of hydrophilic compounds and
organic neutrals (Malcolm, 1985; Croué et al., 1999). Further studies have sub-
stantiated the correlation between DBPs formation and the aromatic C content of
DOM (Edzwald, 1993; Afcharian et al., 1997; Korshin et al., 1997; Singer, 1999).
However, qualitative studies have been abandoned due to the low recovery of resin
adsorbed DOM, and have been limited to the separation and recovery of specific
organic compounds (Kanazawa et al., 2004). Despite the limited understanding of
the qualitative aspects of anion exchange resin-fractionated DOM, the ability of
anion exchange methods to discriminate DOM/WEOM components according to
their charge makes it an interesting and potentially effective tool for studying the
nature and biodegradability of soil WEOM.

Laboratory incubations are commonly performed to provide a quantitative es-
timate of WEOM biodegradability, with functional relevance to SOM dynamics
(Schnabel et al., 2002; Gregorich et al., 2003). However, they lack definitive qual-
itative information about the readily biodegradable WEOM components, whose
nature remains controversial. In recent years, UV and fluorescence spectroscopies
have been increasingly utilized in DOM and WEOM studies (Chen et al., 2003;
Senesi and D’Orazio, 2005; Hudson et al., 2007; Fellman et al., 2010).

UV spectroscopy has been widely adopted to study the chemical and struc-
tural properties of DOM/WEOM, and in particular the degree of its aromaticity
and structural conjugation (Traina et al., 1990; Novak et al., 1992; Chin et al.,
1994). The latter have been strongly correlated with the specific UV absorbance at
254 nm normalized for the DOC concentration (SUVAgs,, Weishaar et al., 2003).
Hence, comparing SUVAs;, values before and after anion exchange resin treatment
of WEOM may provide useful information about the character of its fractions.

Several fluorescence indicators have been promoted, with the aim of determin-
ing the DOM source (Cory and McKnight, 2005), degree of decomposition (Parlanti
et al., 2000; Wilson and Xenopoulos, 2009) and humification (Zsolnay et al., 1999;
Ohno, 2002; Milori et al., 2002). Although many of these indicators have emerged
from studies on DOM in aquatic environments and humic substances (Miano et al.,
1988; Senesi et al., 1991; Stevenson, 1994; Parlanti et al., 2000; McKnight et al.,
2001), their utilization in the research of soil DOM and WEOM has gained increas-
ing interest (Kalbitz et al., 1999; Zsolnay et al., 1999; Ohno, 2002; Bu et al., 2010;
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Fernandez-Romero et al., 2016). In this context, studies investigating the effect
of land use and management on the degree of humification (Kalbitz et al., 1999;
Milori et al., 2002) have inferred a greater concentration of humified and aromatic
components to occur in long-term conventional cropping systems when compared
to non-agricultural or low-intensity cropping areas. Yet, correlations between ori-
gin and decomposition status of WEOM remained inconclusive, likewise evidence
for the relationship between these properties and WEOM'’s biodegradability po-
tential. Thus, there remain preconceptions about the biodegradability of humified
and aromatic moieties, with the idea that WEOM of recent origin and a low de-
gree of decomposition is most biologically active (Wander, 2004), despite increasing
evidence arguing against these concepts (Kleber et al., 2011).

To date, conceptual distinctions and correlations between qualitative and quan-
titative aspects of isolated fractions have been exclusively investigated rather than
incorporated into a larger experimental framework. Hence, there remains the need
to validate the significance of these qualitative indicators in studies on soil WEOM
and to combine the functionality with the structural properties of WEOM fractions.

This study attempted to identify potential predictors of WEOM biodegradabil-
ity, assessed by standard incubation methods, by means of spectroscopic characteri-
zation of anion exchange-fractionated CWEOM and HWEOM. The objectives were
to: (i) quantify the effects of land use history on the biodegradability and qualita-
tive characteristics of WEOM, (ii) investigate the potential to use anion exchange
resins to identify functionally and biochemically different fractions of WEOM and
(iii) determine which aspects of WEOM best explain the variability in mineralizable
WEOM.

4.1.2 Materials and methods
Soils

Topsoil samples (0-7.5 cm) were collected in September 2013 from a field trial
established to investigate the effects of a long-term ryegrass (Lolium perenne L.)
and white clover (Trifolium repens L.) pasture, a no-tillage crop rotation (barley
(Hordeum vulgare L.), wheat (Triticum aestivum L.), pea (Pisum sativum L.) and
ryegrass seed crops) and a chemical “fallow” treatment on SOM dynamics. The trial
was arranged in a split-plot (9 x 28 m) experimental design with three replicates
for each land use treatment. Treatments were established in November 2000 near
Lincoln, Canterbury, New Zealand (43° 40’ S, 172° 28’ E, 5 m above sea level) on a
Wakanui silt loam (32% sand, 53% silt, 15% clay, classified as a Mottled Immature
Pallic Soil, New Zealand soil classification (Hewitt, 2010); Eutric Siltic Cambisol,
[USS Working Group WRB;, 2015). The site had been under irrigated, sheep-grazed,
ryegrass/white clover pasture for at least 14 years prior to commencing the trial.
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The pasture plots had been maintained as described above pre-trial commence-
ment; the no-tillage plots had been managed under rotational cropping with direct
drilling and were ultimately kept under perennial grassland (cv. ‘Grasslands Nui’)
after the last cropping season for 1.5 years prior to sampling; the “fallow” plots had
been maintained plant-free for the duration of the trial using glyphosate and had
not been physically disturbed during the experiment. Further details on the trial,
including management information, have been given by Fraser et al. (2013). Eight
soil cores (@ 5 cm) were taken along a lengthwise transect in each plot and com-
posited. Samples were then sieved (<4 mm), air-dried and stored for subsequent
characterization.

General soil properties are given in Table 4.1. Bulk density was determined fol-
lowing standard methods (Carter and Gregorich, 2008). Total C (TC) and N (TN)
were measured on a LECO CNS-2000 elemental analyzer (LECO Corp, St. Joseph,
MI, USA). Soil pH was determined in a 1:2.5 soil to deionized (DI) water slurry,
vigorously stirred and left to stand for 1 h (Devey et al., 2010). Cation exchange
capacity (CEC) was assessed using the ammonium acetate method (Thomas, 1982)
and expressed as cmol, kg~! soil. For textural analysis, soil samples were dispersed
with an ultrasonic vibrator and then separated into sand, silt and clay fractions
using a sieving and settling process (Gee and Or, 2002).

Cold and hot water extractions

Each treatment replicate was extracted in triplicate by adding ultrapure MilliQ)
water (Millipore, 18.2 MQ cm™!) and shaking on an orbital shaker at 20°C (cold
water — CW extraction) for 1 h at a soil:water ratio (dry weight basis) of 1:10. The
extracts were then centrifuged at 2831 g for 5 min and the supernatants were re-
centrifuged at 17 696 ¢g for 5 min, to remove any residual particulate material that
could hinder subsequent filtration through 0.45-pm polyvinylidene fluoride (PVDF')
membrane filters. The extracted soils were then re-suspended in ultrapure MilliQ
water at a soil:water ratio 1:10 and shaken in a water bath at 80°C (hot water —
HW extraction) for 16 h (modified from Gregorich et al., 2003). Hot water extracts
were cooled and then centrifuged at 2831 ¢ for 5 min, with the supernatants re-
centrifuged at 17 696 ¢ for 5 min prior to filtration (0.45-ym PVDF membrane
filters).

Anion exchange resin treatment

Five grams of a macroporous, crosslinked polyacrylamide, strong base (Type I),
chloride form anion exchange resin (Lanxess Lewatit S 5528) were added to a 100
mL aliquot of either the CW or HW extracts and then shaken (170 rpm) in an orbital
shaker either for 2 h (CW) or 61 h (HW). These equilibration times were determined
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following pre-testing of the maximum water extractable organic C (WEOC) removal
efficacy (see Section B.1/in Appendix B)). Resin-treated samples were then filtered
through 0.45-pm PVDF syringe filters to separate the extracts from the resin. The
fraction remaining after the resin treatment was hereafter referred to as the post-
resin treated sub-fraction. The charge density of the WEOM isolates was calculated
from the amount of WEOC exchanged for chloride ions released by the resin and
expressed in milliquivalents (meq) per gram of WEOC.

Sample analyses and characterization of WEOM

The WEOC concentrations of the non-resin treated (whole extract) and post-resin
treated CW and HW extracts, hereafter referred to as CWEOC and HWEOC, were
determined as non-purgeable organic C (NPOC) on a Shimadzu TOC-V gy ana-
lyzer (Shimadzu Corporation, Kyoto, Japan). Total dissolved nitrogen (TDN) was
analyzed using the on-line UV-catalyzed persulfate oxidation method (Cabrera and
Beare, 1993), while mineral N species (NO3~ and NH,") were quantified colori-
metrically on a Lachat QuickChem 8500 Series 2 Flow Injection Analysis System
(Lachat Instruments, Loveland, CO, USA). The water extractable organic N con-
centrations (WEON), hereafter referred to as CWEON and HWEON for the CW
and HW extracts, respectively, were then calculated by subtracting the mineral N
from the TDN.

The quality of WEOM was assessed using a suite of spectroscopic methods. The
specific absorption at 254 nm (SUVAgs4, Weishaar et al., 2003) was determined on
a UV-Vis SpectraMax 190 microplate reader (Molecular Devices Corp., San Jose,
CA, USA). The non-resin treated samples were diluted ten times prior to analysis.
In addition to SUVA,5, as a measure of aromaticity, the absorption coefficient at
254 nm (ags4) was calculated according to Green and Blough (1994). Fluorescence
fingerprint indices, namely the fluorescence index (FI, McKnight et al., 2001; Cory
and McKnight, 2005), the freshness index (/:«, Parlanti et al., 2000; Wilson and
Xenopoulos, 2009) and the Milori humification index (Ayg5, Milori et al., 2002),
were extrapolated from fluorescence spectra collected with a spectrofluorometer
(Horiba Aqualog, Horiba Instruments Inc., Kyoto, Japan) over a range of excitation
wavelengths from 240 to 600 nm at 3 nm increments and emission wavelengths from
245 to 828 nm (mean slit bandwidth of 4.66 nm). A 10-fold dilution was applied
only to the extracts that had not been resin-treated, to set a maximum WEOC
working concentration of 35 mg L™! and to avoid scattering, inner-filter effects,
signal saturation and minimize quenching. Emission intensities were corrected a
posteriori for the dilution factor applied. The FI, previously correlated with the
source of DOM (microbial or plant and SOM-derived), was calculated according
to Cory and McKnight (2005) and adapted to this experiment as the ratio of the
emission intensities recorded at 471 and 522 nm, when excited at 369 nm. The 5:«
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index was utilized as an indicator of recently derived DOM () as opposed to older
and highly decomposed DOM («), and was calculated as the emission intensity
at 379 nm divided by the maximum emission intensity recorded between 420 and
434 nm, at 309 nm excitation. Since the inspection of the fluorescence spectra did
not show any peak in the region of emission (435-480/300-345 nm) defining the
humification index at 255 nm excitation (HIX, sensu Zsolnay et al., 1999; modified
by Ohno, 2002), the A5, calculated as the intensity area under the emission spectra
at 465 nm excitation, was chosen as being the appropriate humification index for
this study. The integrated values, expressed in Raman units (R.U.), were then
normalized for the WEOC concentration (mg L™!) in the sample.

Total dissolved phenols in CW and HW extracts were quantified with the Folin-
Ciocalteu’s reagent (Ohno and First, 1998) and expressed as salicylic acid equiva-
lents per unit of WEOC.

The pH of the extracts was measured directly with a calibrated Thermo Scientific"
Eutech PC 450 pH-meter. Chloride, fluoride, sulphate and phosphate were mea-
sured using an ion chromatography system (Dionex DX-2100) fitted with an IonPac
AS18 (4 x 250 mm) analytical column and an IonPac AS18 (50 x 4 mm) guard
column at 30°C and a flow rate of 1 mL min~!. A standard stock solution with
mixed anions (1000 mg L~!) was used to prepare a calibration curve over the range
of 0.02-100 mg L~!. For this analysis, the analytical replicates (triplicates) of
all extracts were bulked together to keep the costs within the available financial
resources.

All extracts were analyzed fresh and stored at 4°C overnight prior to subsequent
incubation.

Biodegradation assay

To account for the fact that biodegradable WEOC comprises of mineralizable and
microbially assimilable WEOM, both COs production and WEOM disappearance
(McDowell et al., 2006) were accounted for. For the purposes of this study, the
CO4 production was referred to as WEOC mineralization (WEOC,,;,,), whereas
the WEOM disappearance as WEOM utilization.

Biodegradable WEOC was assessed by incubating 40 mL of either the CW
or HW extract, or the respective post-resin treated extract, with 2 mL of N-free
nutrient solution and 100 uL of fresh soil inoculum (1.77 mg C g~! soil) in sealed,
acid-washed, 100 mL Schott bottles at 25°C for 14 days. To prepare the inoculum,
4 g of agricultural soil (Udic Haplustept, USDA 1999) were shaken with 45 mL
of deionized water and incubated at 35°C for 24 h (Gregorich et al., 2003). The
inoculum was then re-suspended and the upper 30 mL were transferred into a
clean 50 mL Falcon" tube after 1 h. Batches of CW and HW extracts, along with
the respective post-resin treated extracts, were incubated within 24 h of extraction.
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Forty milliliters of either MilliQ water, a glucose solution (20 mg C L™! for the CWE
and 80 mg C L~! for the HWE) or a phenol solution (12.2 mg C L™!) were also
added with 2 mL of N-free nutrient solution and 100 uL of fresh soil inoculum and
run in triplicate as blanks, positive and negative controls for each batch incubation.
The phenol solution comprised: quercetin (2.1 mg C L™'), coumaric (2.8 mg C
L1, syringic (1.6 mg C L™!), cinnamic (2.5 mg C L™!), nicotinic (0.2 mg C L)
and salicylic (3 mg C L™') acids.

Values of WEOC,,,;,, were determined as cumulative COy produced over a period
of 14 days and expressed as CO,-C produced per unit of WEOC present in the
extract at the start of the incubation (Baldock and Broos, 2012). Headspace gas
samples were withdrawn 3, 8 and 14 days after the beginning of the incubation using
a 20 mL gas-tight syringe. These were injected into a LI-COR Li-7000 infrared gas
analyzer (IRGA) to determine COy concentrations. Before being returned to the
incubator, the incubation bottles were flushed to re-establish an atmospheric CO,
concentration. At the end of the incubation, samples were filtered (0.45-pym PVDF
syringe filters) and analyzed for NPOC, TDN and mineral N, as described above, to
quantify, respectively, the amount of WEOC and WEON utilized. In addition, the
ratio of WEOC respired as CO; to the WEOC utilized was calculated as a measure
of metabolic efficiency and expressed as cumulative CO,-C produced per unit of
WEOC utilized.

To determine dissolved CO,, 10 mL of each post-incubation sample were trans-
ferred to 50 mL Schott bottles, whereupon 2 mL of 2 M HCI were added and the
evolved COq analyzed on the IRGA after 2 h. Dissolved CO4 was then calculated by
applying the Henry’s law of ideal gas, and the concentration of bicarbonate species
derived from the dissociation equilibria equation at a given pH (Dahlgren et al.,
1997).

Statistical analyses

A Linear Mixed Model (LMM) was fitted with Restricted Maximum Likelihood
(REML) estimates on the quantitative and quantitative variables (WEOC (mg g~*
soil C), WEON (mg g ! soil N), SUVAgss (L mg™! m™!), agsy (m™!), phenols (meq
salicylic ac. mg=" WEOC), FI, 8:a;, Ayes (L mg~! R.U.) and pH), on the resulting
WEOC mineralized (WEOC,,;,, as cumulative mg CO,-C g~ WEOC), as well as
on WEOM utilized (AWEOC and AWEON) and metabolic efficiency (cumulative
CO3-C produced per unit of WEOC utilized). Fixed effects included land use,
extracted fraction, resin treatment and their mutual and 3-way interactions, while
the random effects considered plot with land use and subsample replicate as a
nested effect. The repeated structure of the subsamples per plot and land use was
considered in the model. The response variates were log transformed to satisfy the
model’s assumptions. The mean and confidence limits were then back-transformed
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and reported.

General Analysis of Variance (ANOVA) was used to assess the land use effect
on the bulk density, TC, TN, pH, CEC, and absolute amounts of WEOC and
WEON released (mg g~* soil). The response variates were checked to meet ANOVA
assumptions. Variability within the treatments was expressed by the standard error
of difference of means (s.e.d.). Statistical significance was set at the 5% level and
expressed by the least significant differences (l.s.d.).

Random Forest (RF) with regression trees was used for dimensionality reduc-
tion and to infer the importance of the quantitative and qualitative variables on
WEOC,,,;,. Training and validation (10-fold) were performed by fitting the model
on two blocks and validating the model on the third block on each round. The
optimal model was selected using the smallest root mean square error (RMSE) and
finally, all nine quantitative and qualitative variables were included. The impor-
tance of the selected variables was expressed by the Increased Mean Square Error
(%IncMSE), measuring the increase in the estimated generalization error when
values for a specific variable are randomly permuted without altering the other
variables. Also, the Increased Node Purity Index (IncNodePurity) was used, mea-
suring the mean reduction in the residual sum of squares (increase in node purity
or homogeneity) due to splits by a given variable over all trees.

The REML LMM fitting and ANOVA were performed using the Genstat sta-
tistical package version 18.0. The RF modeling was run in the R environment (R
Core Team, 2018). Graphs were prepared using R version 3.5.1.

4.1.3 Results
Soil characteristics

Soil properties varied with land use and spatial variability (Table 4.1). Soil bulk
density was lower in the pasture and no-tillage soils than in the fallow soil. The
TC and TN were highest in the pasture soil and lowest in the fallow soil, while
intermediate values were measured in the no-tillage soil. The same pattern was
observed for the pH, with ~1 pH unit difference between the pasture and fallow
soils. The CEC was higher in the pasture soil than the fallow, with no difference
between the fallow and no-tillage soils.

Cold and hot water extractable organic carbon

The amount of both CWEOC and HWEOC was strongly influenced by land use,
with greater concentrations in the pasture soil than in the no-tillage and fallow soils
(Table 4.2). The WEOC declined by ~29 and 56% (CWEOC) and ~20 and 50%
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Table 4.1: General properties of surface soils (0-7.5 cm) kept under a pasture, a no-
tillage or a fallow regime for 13 years.

Land use Bulk density TC TN pH CEC, pH 7
(g em™) (gkg™ (gkg") (H:0) (emol. kg! soil)
Pasture 1.2 353 3.2 6.0 16
No-tillage 1.2 28.6 2.6 53 14
Fallow 1.4 20.8 1.9 5.0 13
s.e.d. 0.03 1.25 0.11 0.05 1.05
Ls.d. 0.07 3.06 0.27 0.13 2.58

Total carbon (TC); Total nitrogen (TN); Cation exchange capacity (CEC). Values
are means (n = 3) of field replicates; s.e.d = standard error of differences of means;
l.s.d. = least significant difference (o = 0.05).

(HWEOC) in the no-tillage and fallow soils, respectively, when compared to the
pasture soil.

For all non-resin treated extracts, the release of WEOC per unit of soil C was
also largest in pasture and least in fallow soil (Table 4.3), but differences were
only statistically significant for the CW extracts, as a result of a 3-way interaction
between land use, extracted fraction and resin treatment (Table 4.4)).

The resin treatment removed 64-67% of the CWEOC and 80-86% of the HWEOC
(Table 4.3). There was a strong linear relationship between the amount of WEOC
retained by the resin and chloride released (Appendix B, Fig. B.1). However, the
slope of this relationship differed for CW and HW extracts (0.7 and 0.48 for CW
and HW extracts, respectively). Based on the quantity of chloride released, the
(mean) charge density of the resin-retained WEOC was estimated at ~25 meq g™ !
WEOC for the CW extracts and ~11 meq gt WEOC for the HW extracts. The
concentrations of other anions in solution were relatively low (Appendix B, Tables
B.1a, and B.1b), with the highest values measured in the HW extracts (fluoride
<0.077 meq L1, sulfate <0.065 meq L, phosphate <0.2 meq L71).

As a result of an interaction between land use, extracted fraction and resin treat-
ment (Table |4.4), the WEOC in the post-resin treated sub-fraction also reflected
changes induced by the land use (Table 4.3)); however, the WEOC was lower only
in the fallow soil.

The HWEOC concentrations were 3 to 4-fold higher than the CWEOC con-
centrations (P < 0.001, Table 4.3). The same pattern was observed following resin
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treatment, the HWEOC being 1 to 2.5-fold higher than the CWEOC. The HWEOC
represented 77-79% of the total WEOC extracted (CW + HW), while in the post-
resin treated sub-fraction it made up 62-67% of the total WEOC recovered.

Table 4.2: Absolute amounts of WEOC and WEON released following cold (CW) and
hot water (HW) extractions of soils from different land use treatments.

WEOC (mg kg™! soil) WEON (mg kg! soil)

Land use Cw HW CwW HW
Pasture 532 1785 38 175
No-tillage 378 1427 21 118
Fallow 236 887 14 66
s.e.d. 25.2 87.6 1.9 9.1
l.s.d. 70 243 5.3 253

Values are means (n = 9); s.e.d = standard error of differences of means; l.s.d. =
least significant difference (o = 0.05).

Across land uses, there was a high correlation between the CWEOC and HWEOC
(r = 0.82, P < 0.001). However, while still significant, this correlation was not as
strong in the post-resin treated sub-fraction (r = 0.54, P = 0.004).

Cold and hot water extractable organic nitrogen

The quantity of WEON varied among land uses, the pasture soil having greater
values than the no-tillage and fallow soils (Table 4.2). The WEON declined by ~44
and 65% (CWEON) and ~33 and 65% (HWEON) in the no-tillage and fallow soils,
respectively.

The WEON extracted per unit of soil N also differed with land use (Table 4.3):
both CWEON and HWEON were highest in the pasture and lowest in the fallow
soil treatments, reflecting the same trend observed for WEOC.

The resin treatment removed 58-67% and 83-87% of the initial CWEON and
HWEON concentrations, respectively (Table 4.3). In all the post-resin treated
sub-fractions, WEON was highest in the pasture and lowest in the fallow soil, but
differed significantly only in the fallow soil, due to a mutual interaction between
land use, extracted fraction and resin treatment (Table 4.4).
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Table 4.4: REML output indicating the statistical significance of land use, extraction method, resin treatment and their
interaction on the quantitative and qualitative variables investigated.

WEOC WEON SUVAs4 , Phenols .
(mg g s0il C)  (mg g soil N) (L mg 'm) azs4(m™) (meq .mm:owro FI B:a Ades pH
ac. mg~ WEOC)
Land use 0.009 0.001 0.099 <0.001 0.002 0.078 0.005 <0.001 <0.001
Extraction <0.001 <0.001 <0.001 <0.001 <0.001 0.657 0.349 0.005 <0.001
Treatment <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001
Land use x Extraction 0.466 0.037 <0.001 <0.001 0.637 <0.001 0.041 <0.001 <0.001
Land use x Treatment 0.004 0.987 0.017 0.848 0.001 0.003 <0.001 0.025
Extraction x Treatment <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 0.001
Land use x Extraction x Treatment <0.001 <0.001 0.003 <0.001 <0.001 0.008 <0.001 0.017
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Across all fractions and land uses, WEON represented the largest proportion of
the TDN (data not shown). The proportion of CWEON varied from 56 to 76%,
being lowest in the fallow and highest in the no-tillage soil, whereas the HWEON
made up 86% of the TDN, regardless of land use. In contrast, WEON comprised
80% (pasture) to more than 90% (fallow and no-tillage) of the TDN in the CW
post-resin treated sub-fraction, while it ranged from 39% (pasture) to 53% (fallow)
of the TDN in the HW post-resin treated sub-fraction. While NO3~ comprised
the remaining TDN of the CW extracts, and decreased below the detection limit
following the resin treatment, NH;* remained the predominant mineral N form in
both the non-treated and post-resin treated HW extracts.

Regardless of land use and resin treatment, the HWEON was significantly larger
than the CWEON (~5 to 6-fold in the non-resin treated and 2-fold in the resin-
treated extracts, Table 4.3). The HWEON comprised 82-85% of the total WEON
extracted (CW 4+ HW) and represented 62-70% of the total WEON in the post-resin
treated sub-fraction. The CWEON and HWEON correlated strongly (r = 0.91, P
< 0.001), and this correlation was still moderately reflected in the post-resin treated
sub-fraction (r = 0.60, P = 0.001).

Qualitative characteristics

There was no difference in SUVAy5,4 values due to land use (P = 0.099). However,
there was a tendency for SUVAys4 of both CW and HW extracts to be highest in the
pasture soil and lowest in the no-tillage soil (Table 4.3), but to vary inconsistently
in the fallow soil, due to an interaction between land use and extracted fraction
(Table 4.4). The SUVAgs, values for CW extracts were higher than those for HW
extracts (P < 0.001, Table 4.3)).

The resin treatment strongly reduced SUVAsgs, in both the CW and HW ex-
tracts (P < 0.001, Table 4.3) to values <0.8 L mg~! m~!. Although differences
in the SUVA,s5, values of the post-resin treated sub-fraction were subtle, and over-
all statistically not significant, there was an interaction between the land use and
the resin treatment altering the SUVA,s, trends observed for the post-resin treated
sub-fraction with respect to those in the non-resin treated extracts (P = 0.02, Table
4.3). Furthermore, SUVA,5, responses to the resin treatment were also a function
of the extracted CW or HW fraction, as well as of the 3-way interaction between
land use, extracted fraction and resin treatment (Table 4.4). As such, there was a
tendency for SUVAyss to be highest in the CW post-resin treated sub-fraction of
the fallow soil and, in contrast, in the HW post-resin treated sub-fraction of the
pasture soil.

The absorption coefficient at 254 nm (ags4) was affected by land use, extracted
fraction, resin treatment and their interaction (Table 4.4). The agsy values were
higher in the HW extracts (171-200% relative to the CW extracts) and highest
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in pasture soil and lowest in fallow soil (Table |4.3). Values for agsy decreased
significantly following resin treatment, but again reflected the trends due to land
use and extracted fraction (Table 4.3).

The total phenolic concentration was higher in the HW extracts than in the CW
extracts (P < 0.001, Table 4.3). Phenolic-C comprised ~31-56% and ~14-23% of
the HWEOC and CWEQOC, respectively. For both extractions, total phenols were
lowest in the fallow soil (P = 0.002), but did not differ between the pasture and
no-tillage soils. Total phenolic concentrations in the post-resin treated samples were
below the detection limit.

The fluorescence index (FI) was generally not affected by land use (P = 0.08,
Table 4.3) and did not differ, statistically, between CW and HW extracts (P =
0.66). However, a 3-way interaction between land use, extracted fraction and resin
treatment (Table4.4) showed that values for FI were greater in the non-resin treated
HW extracts, with respect to the CW extracts, and were, vice versa, lower in
the post-resin treated HW extracts than in the post-resin treated CW extracts.
Similarly, an interaction occurred between land use and extracted fraction (Table
4.4) such that FI was lower in the HW extracts of the pasture soil than in the no-
tillage or fallow soils, but was not affected by land use in the CW extracts. For both
CW and HW extracts, FI was much higher in the post-resin treated sub-fraction
than in the non-resin treated extracts (P < 0.001, Table 4.3) and generally greater
in CW than in HW post-resin treated extracts. The largest difference between the
CW and HW post-resin treated sub-fractions (~0.3 FI units) was observed in the
pasture soil, with the smallest (<0.1 FI units) in the fallow soil.

The fluorescence derived freshness index (5:«) increased strongly following the
resin treatment and did not differ between CW and HW extracts (Table 4.3). Al-
though there was statistical evidence of a land use effect on values for f:a (Table
4.4), which had a tendency to be lower in the pasture soil when compared to the
no-tillage and fallow soils, the interaction between land use, extracted fraction and
resin treatment showed that this effect was mainly driven by the tendency of 5:a
to be lower in the post-resin treated sub-fraction of the pasture soil, but to remain
consistent across land uses in the non-resin treated fractions (Table 4.3).

For all soils and extracts, values for A,g5 decreased greatly after the resin treat-
ment (Table 4.3). In the non-resin treated extracts, the As; was generally lower
in the HW extracts (P < 0.001) and higher in the fallow soil (P < 0.001). Similar
trends were observed in the post-resin treated extracts, although, even if statisti-
cally significant, differences were relatively small.

pH

As with the soil pH (Table 4.1)), values of pH measured in the CW and HW extracts
(Table |4.3) were higher for pasture soil than for the no-tillage and fallow soils (~0.5
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to 1.0 pH unit higher for CW and HW, respectively). The pH values of the CW
extracts from the fallow and no-tillage soils were ~0.5 units higher than in the
corresponding HW extracts, while in the pasture soil, the pH did not vary between
the extracted fractions.

The pH decreased following the resin treatment, and this decrease was larger
in the CW than in the HW post-resin treated sub-fractions (0.6 (fallow) to 1.0
(pasture) pH unit in the CW extracts and 0.3 (no-tillage) to 0.5 (pasture and
fallow) pH unit in the HW extracts). However, while the land use did not affect
the pH of the CW post-resin treated sub-fraction, the HW post-resin treated sub-
fraction of the pasture soil had higher pH values when compared to the fallow and
no-tillage soils.

WEOM biodegradability

Between 32-34% of the CWEOC and HWEOC was mineralized after 14 days (Fig.
4.1). In contrast, only 3-5% of the glucose control (for the glucose at 20 mg L.=! and
80 mg L1, respectively) and ~1% of the phenolic control was mineralized within
the same time frame (data not presented).

Land use did not affect WEOC,,,;,, in either the CW or HW extracts (P = 0.129,
Fig. 4.1). In the original (non-resin treated) extracts there was no difference (P
> 0.05) in WEOC,,;, between CW and HW extracts but, after resin treatment,
WEOC,,,;, was greater in CW (mean 47%) compared to HW extracts (mean 27%,
P =0.003). There was a tendency for WEOC,,;,, to be higher in the CW post-resin
treated sub-fractions of pasture and no-tillage soils than in the fallow soil. These
changes in WEOC,,,;,, were not observed in the HW post-resin treated sub-fractions.

The WEOC utilization followed a pattern consistent with WEOC,,;,, (r = 0.88,
P < 0.001), with the highest WEOC utilization (~70-84% for fallow and pasture,
respectively) measured in the CW post-resin treated sub-fraction. In addition,
WEON utilization was greater but proportional to the WEOC utilization (r = 0.85
and 0.41 for CW and HW, respectively; P < 0.001), mainly in the CW post-resin
treated sub-fraction (see Fig. B.6/in Appendix B)). However, there was no evidence
of a significant land use effect for any WEOM fraction and/or sub-fraction (P =
0.239).

Despite differences in WEOC,,,;,, between the CW and HW post-resin treated
sub-fractions, the proportion of CO,-C produced per unit of WEOC utilized aver-
aged 58 to 62%, regardless of land use, extraction type or resin treatment.

WEOM characteristics explaining variability in WEOC,,;,

The results of the RF modeling showed that the combination of the nine quantitative
and qualitative variables included in the model explained 75.8% of the variation in
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Figure 4.1: Cumulative WEOC mineralized (WEOC,,,;,) over 14 days in non- and post-
resin treated cold (CW) and hot water (HW) extracts of a soil under different land uses.
Bars represent predicted means (n = 9), error bars represent lower and upper confidence
intervals.

the WEOC,,;,,. High values of IncMSE and IncNodePurity, corresponding to high
variable importance (Kuhn et al., 2008), revealed that the A5 contributed most in
explaining the changes observed in the WEOC,,,;,, of the different pools and fractions
(Fig. 4.2a and b). However, the regression between the A 465 and WEOC,,,;,, showed
their poor relationship in the HW extracts (Fig. B.5 in Appendix B)).

4.1.4 Discussion
The land use effect on WEOM concentration

Soil surface general properties showed that the conversion of long-term pasture to
cropping management reduced soil C and N contents (Table 4.1)) and, consequently,
the amount of WEOM per unit mass of soil. Previous studies have shown that
the decrease in SOM content due to cultivation of former long-term pastures and
native grasslands results from reduced belowground plant C inputs from annual
arable crops rather than soil physical disturbance (Francis et al., 1999; Baker et al.,
2007; Katterer et al., 2011; Curtin et al., 2014). In addition, Sisti et al. (2004) and
Raphael et al. (2016) stressed the importance of plant N inputs (biological fixation)
on SOM(C) controls in rotational cropping systems under no-tillage management.
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Figure 4.2: Outputs of the Random Forest algorithm describing the variable impor-
tance in explaining the WEOC mineralization (WEOC,,;,) response: a) Increased Mean
square-error (%IncMSE) and b) Increased Node Impurity Index (IncNodePurity). The
abbreviations, along with the corresponding units, of each descriptive variable are defined
in Subsection 4.1.2 (Statistical analyses).

However, in the no-tillage soil, these inputs might have served as a nutrient source
for N-demanding crops (wheat, barley), while the constant N inputs in the pasture
soil would have maintained SOM levels. The results of the present study concur with
these previous studies and align with the observed relative decrease in WEOM per
unit of soil observed for both no-tillage and fallow soils with respect to the pasture
soil, since none of the land use treatments underwent physical disturbance, but both
cultivation and the complete absence of plants reduced soil WEOC and WEON. The
larger decrease in WEOM than in total SOM (~20 and 40% for both TC and TN of
no-tillage and fallow, respectively) also confirms the susceptibility of the soluble pool
of SOM to changes in land use with respect to the bulk soil (Boyer and Groffman,
1996). In particular, the greater decrease in CWEOM with respect to HWEOM, for
both no-tillage and fallow soils, indicates the larger turnover of the CW fraction with
respect to the physically protected HW fraction, likely due to its active involvement
in soil microbial processes and/or its dependency on fresh C inputs. Curtin et al.
(2014) observed that the proportion of microbially mineralizable C in the pasture
soil studied in the present work was considerably lower than the decrease in the C
content following conversion to arable cropping, attributing their observations to
an apparent underestimation of C mineralization by laboratory incubations. The
results presented here do not disregard this hypothesis: however, they do suggest
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that this observed decrease was subordinate to the contribution of plant inputs,
and their ensuing role in the formation of the CW fraction (Uchida et al., 2012),
not being replenished fast enough to compensate for losses due to mineralization of
labile C forms from pasture soils.

Despite significant land use-induced changes in the absolute amount of WEOC,
extractability of both CWEOC and HWEOC per unit of soil C was generally con-
sistent with respect to different land uses (Table 4.3). A secondary effect of land use
on WEOM formation was hypothesized, primarily regulated by SOM quality. For
instance, the consistent release of WEOC from pasture and no-tillage soils suggests
a relatively large presence of stable organic forms in the pasture soil, resulting in an
equivalent contribution of less decomposed, plant-derived SOM, with respect to the
no-tillage soil. Similarly, the tendency for the fallow soil to release less WEOC per
unit soil C, although significantly less only in the CW extracts, suggests an enrich-
ment in more complex and refractory SOM following progressive humification and
depletion of labile components, and further indicates the crucial role of plant inputs
on SOM quality and WEOC formation. These ideas are also supported by the more
evident land use effect of the fallow soil on the WEON released per unit of soil N
(reduction), since it is well established that plants and the larger microbial biomass
associated with these, represent the major source of available N (Kogel-Knabner,
2002; Geisseler et al., 2010).

Characteristics of WEOM fractions prior to resin treatment

The ratio between the CWEOC and HWEOC was consistent with previous studies
that measured 2 to 7 times more HW than CW extractable C (Gregorich et al.,
2003; Fernandez-Romero et al., 2016), and confirms that the HW fraction represents
the largest stock of soluble OC. The fact that this difference was larger in the no-
tillage and pasture soils than in the fallow soil indicates the importance of plant
inputs in the formation of the HWEOC fraction, but also suggests that HWEOC
acts as a source of microbially available C in the absence of plants.

Across different land uses, the ~5 to 6-fold higher HWEON with respect to
the CWEON indicated that the largest portion of available N is stored in the HW
fraction (Rinot et al., 2018) and that this fraction is likely to be more N- than C-
rich (3 to 4-fold WEOC increase). This assumption is somewhat confirmed by the
lower WEOC:WEON ratios of the HW fraction (10-14) when compared to the CW
fraction (14-18).

Variations in the fluorescence emission spectra at 465 nm excitation (A,g5) nor-
malized for soil C, or determined on a standardized concentration, have previously
been related to structural changes associated with the humification process (Milori
et al., 2002, 2006). Since it has been well established that fluorescence intensities
are a function of WEOC concentration (Mobed et al., 1996; Rosa et al., 2005), this
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study investigated the integrated areas under such emission spectra normalized for
the WEOC concentration of the sample.

The higher Aygs in the CW extracts compared to the HW extracts indicate that
more decomposed and humified material was released with the CW extraction than
with the HW extraction. This is in accordance with previous studies relating the
source of the mineral-associated WEOM (Kleber et al., 2007) to organic material
that has undergone preferential microbial fractionation, structural rearrangement
and/or de novo synthesis, termed “soil humus” (Gregorich et al., 2000).

According to Fuentes et al. (2006), the Ayg5 effectively distinguishes the humic
features from other WEOM components. The region of excitation at 415-470 nm
has been associated with molecular entities with extended m-systems, such as those
resulting from enhanced structural condensation, conjugation and heteroatom (e.g.
-O and -N) substitution of quinone-like structures (Ghosh and Schnitzer, 1980)
and semiquinone free radicals (Senesi, 1990; Rosa et al., 2005) originating from
lignin decomposition (Senesi, 1990; Cory and McKnight, 2005) and, specifically,
phenol oxidation (Zech et al., 1997). These were shown to exhibit the characteristic
fluorescence shift towards longer emission wavelengths (Fellman et al., 2010), hence
contributing to the fluorescence at 465 nm excitation, they are likely to be related
to the increase in the degree of humification (Milori et al., 2002) of CW extracts.
The HW fraction had, in fact, a greater content of phenolic C, but lower Ags.

Earlier work on soil humic substances demonstrated a strong relationship be-
tween structural moieties fluorescing at long wavelengths (red shift), with low in-
tensity, and linearly condensed, substituted aromatic rings and other highly un-
saturated, conjugated systems (Peuravuori et al., 2002), the latter correlated with
measures of SUVAysy (Traina et al., 1990; Novak et al., 1992; Weishaar et al., 2003).
For the non-resin treated extracts, values of SUVAss, and Aygs indicated that the
bulk of both CWEOM and HWEOM was made of aromatic moieties characterized
by a relatively early stage of humification. The SUVAss, values of CW and HW
extracts are, in fact, comparable with those reported for fulvic acids (Rodriguez
and Nunez, 2011), which generally display lower SUVAys4 than humic acids due to
their lower unsaturation degree and larger content of carboxylic groups, conferring
them greater solubility in water. Of note is the increase in SUVAgs4 in the CW
with respect to the HW extracts, which suggests that the formation of the read-
ily soluble OM fraction resulted from the progressive oxidation, condensation and
polymerization of structurally less complex WEOM units, the latter being more
abundant in the physically protected HW fraction.

The FI and fS:« indicated that the largest proportion of both CWEOM and
HWEOM derived from SOM and plant decomposition, and confirmed that WEOM
with a larger humification degree and aromatic C content is released from highly
decomposed SOM (McKnight et al., 2001; Cory and McKnight, 2005; Kim et al.,
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2006; Rodriguez et al., 2014; Ferndndez-Romero et al., 2016).

According to McKnight et al. (2001), values for FI reported in this study would
correspond to fulvic acids, since humic acids generally exhibit FI values <1.2 (Chen
et al., 2003; Rodriguez et al., 2014). Differences in FI>0.1 units have been related
to significant differences in aromaticity (Kim et al., 2006; Rodriguez et al., 2014).
Thus, the FI increase >0.1 in the HW fraction with respect to the CW fraction is
indicative of less condensed aromatic structures or conjugated aliphatic polymers
(Senesi et al., 1991), confirmed by the corresponding lower SUVAys, values.

Previous studies reported a strong correlation of HWEOM with microbially de-
rived polysaccharides, concluding that this fraction was of microbial origin (Haynes
and Francis, 1993; Ghani et al., 2003). Polysaccharides were not specifically assessed
in the current study; however, while polysaccharides of microbial origin might con-
stitute a portion of the HWEOM fraction, these may have represented only a limited
proportion of the HWEOM in this study. It is likely, however, that the HW fraction
reflects an early stage of decomposition and humification, given the values of Ags,
SUVAgs4 and FI previously discussed.

In contrast, the increase in aromaticity with increases in HWEOC reported by
Fernandez-Romero et al. (2016) does not align with the SUVAgs, values reported in
the current study: however, their results may be explained by the larger total phe-
nolic concentration observed in the HW extracts of the current study. In the HW
extracts, the greater proportion of phenolic C and the lower SUVAgs, with respect
to the CW extracts suggest that the aromaticity is not solely derived from phenolic
compounds. However, it is likely that the phenolic C in the HW extracts derives
from lignin decomposition (Senesi et al., 1991), as confirmed by the low values
for FI and S:«. Advanced lignin decomposition, involving the progressive oxida-
tion of aliphatic chains of phenolic moieties to carboxyl groups, leads to decreased
aromaticity and increased solubility.

Land use effect on the characteristics of WEOM prior to resin treatment

For both CW and HW extracts, patterns for Aygs, progressively increasing from no-
tillage to fallow soils, indicated a larger accumulation of humic material in absence
of fresh plant inputs in the soil (Barré et al., 2010; Shiau et al., 2017), but also an
increased turnover of humified material (priming effect) resulting from the larger
removal of plants in a cropping system or the enrichment in less humified SOM
forms from residue decomposition (Bayer et al., 2000; Mazzilli et al., 2014). The
latter would also explain the tendency for SUVAgs, values to decrease in the no-
tillage soil, indicating an increase of the aliphatic character of WEOM. Despite the
decrease in WEOC concentration and absorbance, the consistent values for SUVAs,
in the CW extracts of the fallow soil with respect to the pasture soil revealed that the
relative proportion of aromatics remained constant, possibly due to the depletion of
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both aliphatic and aromatic/phenolic C after long-term fallow. Values of SUVAys,
in the HW extracts paralleled the decrease of asss and the phenolic content from
pasture to fallow, suggesting that, in the HW extracts, SUVAys, is affected by the
progressive depletion/humification of phenolic moieties in absence of plants, as well
as by the quality of the plant inputs (i.e. an enrichment of non-absorbing, aliphatic
compounds).

Resin treatment effects on WEOM uptake and characteristics

The strong linear relationship between the WEOC retained by the resin and the
chloride released indicates that anion exchange was the predominant mechanism
of WEOM removal. However, the fact that, for both CW and HW extracts, the
slopes of this relationship were <1 indicates that other retention mechanisms, such
as surface adsorption (Davies and Thomas, 1951; Fu and Symons, 1990), might
have occurred concomitantly (Croué et al., 1999), particularly in the HW extracts.
Competition from other anions with the WEOC for the resin binding sites was
unlikely to be significant (Appendix B, Table B.1a). Hence, considering that the
HW extracts contained significantly more phenolic C than the CW extracts and
that, for both extractions, phenols were not detected in the post-resin treated sub-
fraction, it implies that phenolic moieties, non-ionized at the pH measured for the
CW and HW fractions (4.5-6), interacted with the inner surface of the resin (Fu and
Symons, 1990). This assumption is corroborated by earlier studies, which demon-
strated that phenol removal by macroporous anion exchange (Carmona et al., 2006;
Caetano et al., 2009) occurs mainly by hydrophobic interaction via van der Waals
adsorption (Tamamushi and Tamaki, 1959; Kunin and Suffet, 1980; Aceto et al.,
1995; loannidis and Anderko, 2001). Furthermore, it is unlikely that phenols would
have reacted with the resin chloride, since such a reaction would have caused a
greater release of HY, and the decrease in pH observed in the HW extracts was
smaller than in that in the CW extracts. On the other hand, the stoichiometry of
CWEOQOC exchange for chloride ions and the higher charge density of the CWEOC
with respect to the HWEOC also suggest that the CWEOM had a greater hy-
drophilic character and content of oxygenated, mainly carboxylic functional groups
(Croué et al., 1999), effectively displacing chloride from the resin surface. Never-
theless, the WEOC uptake efficiency was ~20% greater for the HW than for the
CW extracts, despite the relatively higher concentration of HWEOC with respect
to the CWEOC, indicating a greater adsorption capacity of HWEOC per unit of
resin and ruling out any resin saturation effect after equilibration of the CWEOC
(Appendix B} Fig. B.3). Thus, the greater removal of HWEOC with respect to the
CWEOQOC appears to be the result of co-existing mechanisms of ion exchange and
hydrophobic interaction, withdrawing phenolic moieties and allowing for a clear-cut
separation of an uncharged/protonated, phenolic-free sub-fraction.
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Further evidence for both charge and quality (functional group) differences be-
tween CWEOM and HWEOM is provided by the greater decrease in the pH of the
CW extracts compared to that observed for the HW extracts. Since a relatively
large proportion of the carboxylic groups is most likely dissociated at the pH of
the CW extracts (5.5-6), their uptake by the resin and the concurrent release of
chloride ions will lead to an increase of the HT concentration, thus significantly
decreasing the pH.

For both CW and HW extracts, the general decrease in values of SUVAys5, ags4,
Augs, FI and B:a following the resin treatment indicates that the anion exchange
resin consistently isolated an aliphatic, non-humified WEOM sub-fraction, likely
derived from more recent, microbial outputs. Despite this general conclusion about
the characteristics of only a small proportion of the bulk CWEOM and HWEOM,
identified with the post-resin treated sub-fraction, the patterns revealed by FI and
agsy suggest an influence of plant and SOM inputs on microbial outputs, such that
their turnover is lower in the HW sub-fraction, and in particular in the pasture soil,
whilst the microbial signature is greater in the CW post-resin treated sub-fraction.

Land use effect on the characteristics of WEOM following resin treatment

In contrast to the non-resin treated CW and HW fractions, the post-resin treated
sub-fraction reflected differences in extractability of CWEOC and HWEOC, as
revealed by the poorer correlation between CWEOC and HWEOC in this sub-
fraction. This was due to the larger spatial variability of CWEOC observed for the
different land uses (mainly fallow and pasture soils) with respect to the HWEOC
(data not shown, included in the REML LMM), indicating a higher sensitivity of
the CWEOC, and in particular of its post-resin treated sub-fraction, to micro-scale
changes in land use. However, the consistent WEOC and WEON extractability of
the post-resin treated CW and HW sub-fractions suggest the coupling of WEOC
and WEON in the organic moieties remaining following the resin treatment.

The importance of WEOM properties in explaining WEOC
biodegradability patterns

Potentially mineralizable C bioassays are commonly performed to estimate the la-
bile OM fraction (Haynes, 2005; Hopkins, 2008). Here this fraction was assessed
by determining the amount of CO,-C released per unit of WEOC in CW and HW
extracts with and without anion exchange resin treatment. The short-term incuba-
tion assay results presented in this study were consistent with previous laboratory
studies reporting that 10-44% of the water-soluble organic C decomposes in a rel-
atively short time frame (Kalbitz et al., 2000; Gregorich et al., 2003; Kalbitz et al.,
2003; Fellman et al., 2008).
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Hot water WEOC has been associated with the labile and readily mineralizable
OM fraction (Ghani et al., 2003; Gregorich et al., 2003) due to its high correlation
with microbial activity, mineralizable N and total carbohydrate content (Leinwe-
ber et al., 1995). As such, it has been regarded as being susceptible to land use
changes. However, contrarily to expectations, WEOC,,,;,, did not differ with either
CW and HW extracts or land use. This raised the question as to whether there is
a sub-fraction of both the CWEOM and HWEOM that determines the variation in
biodegradation and WEOC,,,;,, and its responsiveness to the land use effect.

The higher WEOC,,,;,, in the CW post-resin treated sub-fraction with respect
to the corresponding non-resin treated fraction shows that the resin removed the
less biodegradable fraction of WEOC. In contrast, these changes were not observed
between the non-resin treated and post-resin treated sub-fractions of HW extracts.

Therefore, the importance of the measured WEOM properties in explaining and
predicting WEOC,,,;,, was further investigated. It must be stated that the study
was not designed for a full RF implementation, with training and validation, since
the variables and WEOC,,;,, were results of the experimental factors. However, the
algorithm showed strong evidence of a relationship between the measured variables
and WEOC,,.;,.

The RF model revealed the Ayg5 (Milori et al., 2002) to be an important vari-
able in explaining the WEOC,,,;,, response (Fig. 4.2). Its strong correlation with
SUVA,s5,4 suggests, furthermore, that changes in WEOC,,,;,, are strongly related to
changes in the content of aromatic structures. Previous studies have shown that
less humified material has shorter turnover times with respect to more humified ma-
terial with a larger degree of aromaticity (Qualls and Haines, 1992; Almendros and
Dorado, 1999; Kalbitz et al., 2003; Fellman et al., 2008). Thus, it may be concluded
that in presence of more complex, humified material, microorganisms preferentially
utilize the aliphatic WEOM fraction; this would suggest that WEOC,,,;,, in the CW
extracts is largely driven by the WEOC,,;,, of the post-resin treated sub-fraction.
However, while differences in the humification degree might explain the variation
in the WEOC,,,;,, response between the non- and post-resin treated CW extracts,
they do not explain the WEOC,,,;,, pattern observed in the HW extracts, where
large changes in A5 were associated with comparable WEOC,,,;, (Appendix B,
Fig. B.5). In addition, since the HW fraction was characterized by lower A,g; and
SUVA,s, with respect to the CW fraction, it would have been expected to observe
larger values for WEOC,,,;,, but this was not the case.

The RF algorithm indicated that the concentrations of WEOC and WEON are
a weak predictor of WEOC,,;, (Lundquist et al., 1999), regardless of extracted
fraction, land use or resin treatment (Fig. 4.2a). In fact, large differences in the
size of the CW and HW fractions corresponded to a comparable WEOC,,;,, (Fig.
4.1). On the contrary, small differences in WEOC and WEON concentrations of
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the post-resin treated sub-fraction resulted in a significantly different WEOC,,,;,,
(Fig. |4.1). This is in contrast with the idea that the quantity of available substrate
determines WEOM decomposition rates (Uchida et al., 2012). Furthermore, the
lower WEQOC,,,;,, of the non-resin treated CW fraction with respect to the CW post-
resin treated sub-fraction, containing only a small proportion of the total CWEOC
and CWEON, suggests that the quantity of WEOM is not a limiting factor for
WEOC biodegradability (see also Chapter 3)). This hypothesis is further supported
by the lack of any significant relationship between the concentrations of HWEOC
and HWEON and their biodegradability.

Although the other variables were given a lower importance rank by the RF
model, they still contributed in explaining the variation in WEOC,,,;,,. This suggests
that a combination of variables, that relate to the composition and source of the
HWEOM, may clarify the WEOC,,,;,, response in HW extracts.

A large proportion of the HWEOC in this study comprised phenols, which are
not a preferentially utilizable C source for microorganisms relative to carbohydrates
and proteins (Rosa et al., 2005), although decomposition rates for phenolic com-
pounds have been shown to differ (Qualls and Haines, 1992). In contrast, it is
likely that amino acids and (plant-derived) short-chain oligopeptides also largely
contributed to the HWEOM, given the low C:N ratios, the large proportion of
WEON comprising the TDN (~86%) and the polar nature of WEON, inferred by
its large decrease after resin treatment (83-87%). Previous studies have shown that
such compounds, and in particular peptides (Miltner et al., 2009), can be taken up
intact (Higgins and Payne, 1980) and readily utilized by microbes (Farrell et al.,
2013). Farrell et al. (2014) also recently demonstrated that the soil microbial up-
take of peptides is driven by C rather than N excess: it becomes, therefore, intuitive
to conclude that, in the current study, microorganisms preferentially utilized the
HWEON pool, rather than phenols, as a C source to satisfy their metabolic needs.
As a result, the excess N was released as NH,+ (Gregorich et al., 2003; Farrell
et al., 2014; Mooshammer et al., 2014) (Appendix B} Fig. B.4). However, it is also
possible that some WEOC,,,;,, derived from phenols and other WEOM sources (car-
bohydrates, amino-sugars, fulvic acids), including the constituents of the post-resin
treated sub-fraction. We also cannot exclude, albeit minor, an inhibitory effect of
some phenolic compounds, such as tannins and flavonoids, on HWEOM decompo-
sition. These findings may partly contribute to explain the comparable (and lower
than expected) WEOC,,,;, of the HW extracts with respect to the CW extracts.
However, they contradict the idea that HWEOM represents the most labile and
bioavailable OM source.

Reasons for the large differences in WEOC,,;,, between CW and HW post-resin
treated sub-fractions are not intuitive, since the resin treatment consistently isolated
an uncharged /protonated, aliphatic, non-humified and likely microbially derived



4.1.4 Conclusions 101

WEOM sub-fraction. The fact that WEOC,,,;,, of this functionally and biochemi-
cally different sub-fraction appeared to be affected by land use (pasture vs. fallow)
in the CW but not in the HW extracts suggests that these microbial outputs and
their mineralization potential are largely affected by the quality of plant inputs.

The large proportion of WEON comprising the TDN of the post-resin treated
CW sub-fraction and the relatively proportional amount of WEOC and WEON
utilized in this fraction corroborate the coupling of WEOC and WEON in the post-
resin treated sub-fraction previously suggested. In the post-resin treated HW sub-
fraction, the lower proportion of WEON in TDN, shared with NH,*, which remains
unaltered after the incubation, and the relatively greater utilization of WEON com-
pared to WEOC suggest that the available C source is not easily degradable and
indicates the utilization of the N-containing organic C sources, in this case, likely
for both its C and N (Mooshammer et al., 2014), ruling out any influence of NH,*
on either C or N utilization (Gregorich et al., 2003). Further work should there-
fore (i) examine the effect of complex substrate decomposition (e.g. plant litter)
on microbial synthesis of low molecular weight organic neutrals, such as uncharged
(amino) sugars, amino acids and oligopeptides, and their role in WEOC,,,;,, of the
CW fraction and (ii) investigate the role of (N-containing) amphiphilic biomarkers
(e.g. lipids) in the WEOC,,,;,, of the HW fraction.

Interestingly, regardless of differences in WEOC,,;,, revealed by the post-resin
treated sub-fraction, the proportion of CO, produced per unit of WEOC utilized
(referred to as metabolic efficiency) was the same for all fractions and sub-fractions.
Such an observation indicates that the WEOC mineralization is a function of a
metabolic threshold, likely to be governed by substrate composition (Sugai and
Schimel, 1993) and, thus, nutrient limitation.

4.1.5 Conclusions

The anion exchange resin treatment separated two functionally and biochemically
different fractions of WEOM. While, in the CW extracts, the post-resin treated
sub-fraction exhibited greater biodegradability compared to the bulk extract, the
mineralization response of this sub-fraction in the HW extracts was comparable
with the bulk extract. The information revealed by the fluorescence indices was in
agreement with that of the UV spectroscopy revealing that anion exchange consis-
tently isolated an aliphatic, non-humified WEOM sub-fraction, likely derived from
more recent, microbial outputs, as opposed to the aromatic nature of the negatively
charged and/or hydrophobic fraction of the WEOM retained by the resin, charac-
terized by a relatively early stage of humification of SOM and plant components.
Further evaluation is, however, needed to substantiate the role of hydrophobic in-
teraction in WEOM adsorption by anion exchange resins in order to further develop
chemical and biochemical characterization of WEOM fractions.
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The RF model elucidated the complex relationship between the quantitative
and qualitative properties of WEOM and its mineralization potential. The model
identified the A4g; humification index (Milori et al., 2002) normalized per unit
of WEOC as an important variable explaining the biodegradability patterns of
WEOM extracted from different SOM fractions and isolated with anion exchange
resin treatment. The utilization and further validation of the Ayg5 as a simple but
robust predictor of WEOM mineralization in modeling studies is, therefore, pro-
posed. However, the results indicated that in presence of more complex, humified
material, the mineralization of the aliphatic WEOM fraction makes a significant
contribution to the overall mineralization response of the CWEOC, but not the
HWEOC. Thus, additional factors, such as the relative proportion of phenolic com-
pounds and labile, SOM or microbially derived N-containing compounds, can also
control this response, as evidenced by the increase in NH,* following mineralization
of C in the HW extracts. This reveals the importance of plant inputs, their de-
composition, and the allocation of the ensuing compounds on microbial metabolism
and the formation of WEOM sources and sinks.

Supplementary material

Supplementary information to this Chapter, including the field trial design (Fig.
B.8), the determination of the resin treatment equilibration times (Section B.1)
and the calculation and evaluation of the A4 humification index (Section B.2), is
included in Appendix B.

4.2 The effect of pH on the retention efficacy of
WEOM by anion exchange resin

4.2.1 Rationale

We previously observed that the pH of DOM and WEOM varies in soils under
different land use, during leaching, or in cold (CW) or hot water (HW) fractions
of soil extracts (Chapter 3| and Section 4.1). Since DOM/WEOM represents a het-
erogeneous assembly of a wide spectrum of organic molecules acting like weak-acid
polyelectrolytes (Stevenson, 1994), these changes in pH might alter the degree of
dissociation of ionizable functional groups (-COOH, -OH, =NH) and/or affect keto-
enol tautomerism, thus impacting the resin retention efficacy by anion exchange
from soil solutions.

Earlier studies examining the uptake of solution poly-electrolytes (Stevenson,
1994; Rios and Urzua, 2001; Li and SenGupta, 2004) by means of anion exchange
showed that the uptake mechanism (ion exchange, hydrophobic interaction or their
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combination) and the stoichiometry of exchange highly depend on the solution pH
(Croué et al., 1999; loannidis and Anderko, 2001; Kanazawa et al., 2004; Ku et al.,
2004; Caetano et al., 2009). It becomes, therefore, important to determine the
effect of the soil solution pH on the retention of DOM/WEOM on anion exchange
resins, in order to maximize resin separation efficacy and introduce a standardized
fractionation method for the study of WEOM biodegradability.

The objectives of this work were to: i) assess the effect of different pH conditions
(commonly found in agricultural soils) on WEOM retention by anion exchange resin
(by altering the pH of soil extracts); and ii) determine the optimal resin:extract ratio
for the maximal WEOM retention/fractionation efficiency. These objectives were,
thus, pursued before the experiment presented in the previous Section.

4.2.2 Experimental

The soil selected for this experiment (40.9% sand, 50.2% silt, 8.9% clay), classified
as allophanic in the New Zealand soil classification (Hewitt, 2010), was collected
from a paddock under dairy farming in the Waikato region of the North Island,
New Zealand' (38° S and 175° E; annual rainfall between 1200-1400 mm; mean soil
temperature at 1 m depth of 13-15°C). The main selection criteria were a high SOM
content (TC 8.8%, TN 0.82%) and a low pH (5.52). Soil properties were determined
following the procedures and standard protocols described in Subsections 3.2.1 and
4.1.2.

Air-dried (9.2% 6g) and sieved (<4 mm) soil subsamples were extracted in trip-
licate, as described in Subsection 4.1.2. Briefly, soils were extracted with deionized
water for 1 h at 20°C (CW extraction) and subsequently at 80°C (HW extraction)
for 16 h at a soil:water ratio of 1:10. The extracts were centrifuged at 2831 ¢ and
then at 17 696 ¢ for 5 min, respectively, and supernatants were filtered through
0.45-pm PVDF filter membranes. Each CW and HW extract was divided into five
subsamples, either kept at its original pH value (5.7 and 5.6 for CW and HW,
respectively) or adjusted to pH 5.0, 6.0, 7.0 and 7.5 using 0.05 M HC1/0.05 M
NaOH for the CW extracts and 0.1 M HC1/0.1 M NaOH for the HW extracts. An
aliquot of 100 mL of each extract at the designated pH level was added with a
macroporous, crosslinked polyacrylamide, strong base (Type I) chloride form anion
exchange resin (Lanxess Ionac MacroT)? at a ratio of 1, 1.5 and 2 g resin/20 mL
solution and shaken for 2 h. Samples were then filtered through GF-A syringe filters
to separate the extracts from the resin. Resin-treated and original samples were
immediately assessed for pH, NPOC, TDN and mineral N concentrations, and UV

!This soil belongs to the Plant and Food Research ‘N Min’ archive.
2The pH values of the solutions were within the operating pH range of the anion exchange
resin (0-14).
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Figure 4.3: Concentrations of WEOC and WEON in cold (CW) and hot water (HW)
extracts at their original or adjusted value of pH before (resin:extract ratio = 0) and after
the resin treatment (resin:extract ratio = 0.05 (1:20), 0.075 (1.5:20) and 0.1 (2:20)). Bars
are means (n = 3) + s.d. WEOC ls.d. (o = 0.05) = 2.1 and 25.5 mg L™ and WEON
ls.d. (a = 0.05) = 0.47 and 3.13 mg L' for CW and HW, respectively.

absorbance at 254 nm (details in Subsection 4.1.2). All analyses were done within
24 h.

Data were analyzed using analysis of variance (ANOVA), treatment effects were
compared by means of least significant differences (l.s.d.) at the 5% level of sig-
nificance and multiple comparisons were expressed by adjusted P-values using the
less conservative, family-wise Holm correction (Holm, 1979), valid under arbitrary
assumptions. Statistical analyses and graphs were done in R version 3.5.1 (R Core
Team, 2018).
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4.2.3 Results and discussion
Changes in WEOC and WEON concentration

The retention of WEOC by anion exchange resin was not affected by pH differ-
ences within the range 5.0-7.5 (P = 0.28 and 0.96 for CW and HW, respectively).
The resin treatment removed 63-65% of the initial WEOC in the CW extracts
(CWEOC) and 54-58% of WEOC in the HW extracts (HWEOC), regardless of
pH and resin:extract ratio (Fig. 4.3). Differences in pH did not alter the WEOC
concentration of either non- or post-resin treated, CW and HW extracts, at any
resin:extract ratio (P = 0.68 and 0.1 for CW and HW, respectively). This would
allude to a consistent degree of WEOC dissociation at pH 5.0 and above, and dis-
regard resin saturation effects for lower resin:extract ratios.

The fact that there remained a significant proportion of WEOM after the resin
treatment of both CW and HW extracts at all resin:extract ratios suggests an
incomplete removal due to chemical properties of WEOM. Similar observations have
been reported by Boyer et al. (2008), who attributed least adsorption for microbial
humic substances. It is noteworthy that the retention of CWEOC was consistent
with that observed for the soil type and the different land uses discussed in Section
4.1, suggesting a relatively constant proportion of aromatic and/or conjugated,
weakly acidic CWEOM compounds, regardless of higher concentrations. Certainly,
the reduced adsorption of HWEOC indicated longer equilibration times for the
HWEOC fraction with respect to CWEOC, as shown in Fig. |B.9/and, subsequently,
in the results presented in Section 4.1. These further method adjustments excluded
the likelihood of resin saturation after equilibration of the CWEOC.

Similarly, there was no evidence to suggest a significant effect of pH changes
on the resin retention of CWEON (P = 0.16), albeit there was some evidence
of a pH effect on the uptake of HWEON (P = 0.03). However, this effect was
mainly caused by an initially lower, yet not significant, HWEON concentration
(Fig. 4.3), leading to a lower amount of retained WEON moieties. It is assumed
that this lower HWEON concentration of the original HW samples is an artefact
caused by instrumental drift or larger variation due to sequential extraction, not
changes in pH (the concentrations at pH 5.0 and 6.0 were consistent). In fact, as for
WEOC, altering the pH did not cause significant changes in WEON concentration
of either non- or post-resin treated extracts at any resin:extract ratio (P = 0.65 and
0.73 for CW and HW, respectively). This suggested a consistent WEON retention
performed by the resin.

Regardless of pH and resin:extract ratio, the resin treatment removed a con-
sistently larger proportion of CWEON (57-62%) with respect to the HWEON
(41-44%). This is likely due to the longer equilibration times needed for the
HWEOC fraction previously discussed, but cannot exclude substantial qualitative
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Figure 4.4: Changes in pH values of cold (CW) and how water (HW) extracts following
the resin treatment (n = 3); resin:extract ratio = 0 (non-resin treated), 0.05 (1:20), 0.075
(1.5:20) and 0.1 (2:20). Error bars were omitted for clarity. l.s.d. (o = 0.05) = 0.54 and
0.34 for CW and HW, respectively.

differences between CW and HW extracts.

Changes in pH

The resin treatment significantly reduced the pH of CW and HW extracts at any
resin:extract ratio (P < 0.001). The magnitude of this decrease was larger with
increasing values of pH (P < 0.001): the largest decrease occurred in the extracts
with the highest pH values (Fig. 4.4), with an average of ~2.0 to ~2.6 and ~1.7
to ~1.8 pH units decrease for CW and HW extracts at pH 7.0 and 7.5, respec-
tively. Such a decrease was not as pronounced for the extracts that were kept at
their original pH values (~0.7-1 pH unit decrease) or that were brought to pH 5.0
(up to 0.5 and 1 pH unit decrease for CW and HW, respectively). These results
suggest a consistent degree of dissociation of the CWEOM in the range of pH val-
ues evaluated, such that the removal of a consistent number of negatively charged
moieties (e.g. carboxylic groups) by the resin treatment, followed by the release of
chloride ions, decreased the pH to the same level. Most (poly)carboxylic acids will
be, in fact, dissociated in a pH range 4-6, common under forest and agricultural
soils, in contrast to phenols, having a pK,>9 (Carmona et al., 2006). The lower
pH reduction in HW extracts was consistent with the lower proportion of HWEOC
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Figure 4.5: Changes in SUVAgs4 and agsy values of cold (CW) and how water (HW)
extracts following the resin treatment (n = 3); resin:extract ratio = 0 (non-resin treated),
0.05 (1:20), 0.075 (1.5:20) and 0.1 (2:20). Error bars were omitted for clarity. SUVAagsy
ls.d. (o =0.05) = 0.05 and 0.1 L mg~! m™! and ags4 l.s.d. (o = 0.05) = 9.9 and 109
m~! for CW and HW, respectively.

taken up by the resin, suggesting that, at any given pH level within the examined
range, there is a larger amount of WEOM capable of buffering the system, yet, a
smaller amount of ionized moieties in HWEOM cannot be excluded.

For all ratios, the pH was reduced within a range of 4.5-5.2 and 4.6-5.6 for
CW and HW extracts, respectively, indicating a greater variability in the pH values
after the resin treatment of HW extracts (Fig. 4.4). There was tendency for pH
to decrease with an increasing resin:extract ratio in the HW extracts, but these
differences were not significant (P = 0.15).
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Changes in aromaticity and/or conjugation

Values of SUVAys4 and agsy differed between CW and HW non-treated extracts
(P < 0.001, Fig. 4.5), but were not affected by changes in pH (P > 0.1). This
suggested that the optical properties of CW and HW extracts were not sensitive to
alterations within the range of pH examined. While SUVA,5, was lower in the HW
extracts (~1.4 L mg~! m™!) compared to the CW extracts (~1.9 L mg™ m™'),
an inverse pattern was observed for agsy (~297 m~! and ~926 m~! for CW and
HW, respectively), indicating that, despite the larger amount of absorbing moieties
in the HW extracts, SUVAys4 was largely affected by the relative concentration of
non-absorbing moieties with respect to the CW extracts.

Both SUVA,5, and agsy decreased significantly following the resin treatment of
CW and HW extracts (P < 0.001), and this decrease was not affected by differences
in pH (P > 0.1 for both SUVAy5, and agsy in CW and HW extracts) or resin:extract
ratio (P = 1 for both SUVAy54 and agsy and all extracts). Values of SUVAgs, de-
creased below 0.6 L mg~! m™!, regardless of extracted fraction, pH or resin:extract
ratio (Fig. 4.5)). Although ags, values after the resin treatment remained generally
higher in the HW extracts than in the CW extracts (~25 m~! and ~134 m™! for
CW and HW, respectively), the relative decrease in assy in the resin-treated HW
extracts was lower than in the CW extract, resembling the patterns observed for
the other variables. These results show that the bulk of CWEOM and HWEOM
removed by the resin treatment consists of aromatic and/or conjugated compounds
and is in line with the patterns observed from the soil under different land uses
previously discussed (Section 4.1). Given the analogy, the chemical composition of
the CW and HW fractions interacting with the resin might be comparable, but this
can be confirmed only with further molecular and chemical characterization.

4.2.4 Conclusions

This work showed that changes in pH within the range 5.0-7.5 did not likely alter-
ing WEOM retention by anion exchange resin in both CW and HW extracts. It
further allowed the suitable resin:extract ratio that enables the maximal WEOM
retention without resin saturation to be determined. In addition, it showed that
the capacity of the resin, at each resin:extract ratio examined, was not influenced
by differences in concentration. The consistently lower WEOM retention in HW
extracts suggested longer equilibration times should be considered. These have
been, in fact, demonstrated and accounted for in the experiment described in the
previous Section of this Chapter. The anion exchange resin allowed a clear sepa-
ration of more aromatic and/or conjugated moieties from relatively more aliphatic
compounds remaining after the resin treatment, which can be further investigated
for their properties and biodegradability potential.
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The previous Chapters emphasized the impact of WEOM composition, and in par-
ticular, qualifiers such as its degree of humification and aromaticity, on the ensuing
biodegradability patterns. However, questions as to what causes inconsistencies
among different WEOM fractions remain. The following Chapter aims to explain
the observed results by expanding the understanding of the WEOM profile with
powerful techniques such as fluorescence spectroscopy and high resolution liquid
chromatography—mass spectrometry.
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Abstract

Understanding what chemical features determine the biodegradability of water
extractable organic matter (WEOM) is important to optimize the use efficiency
of its mineralization products and reduce losses through CO, emissions. The
present study aimed to relate the molecular properties of WEOM fractions to their
biodegradability response assessed by conventional laboratory bioassays. Cold and
hot water soil extracts from different land uses were treated with anion exchange
resin and separated according to their charge. Untreated and resin-treated samples
were incubated for 14 days under controlled conditions to assess short-term WEOM
biodegradation. Fluorescence excitation-emission matrices (EEMs) were unfolded
by parallel factor analysis (PARAFAC) and functionally meaningful components ca-
pable of describing the variation in WEOM biodegradability and physicochemical
characteristics were inferred using a data mining approach. The extracts were run
through a hydrophilic interaction (HILIC) and a reversed-phase (C18) liquid chro-
matography and analyzed in a full scan mode on an Orbitrap mass spectrometer
using heated electrospray ionization (HESI) in both positive and negative modes.
Revealed compounds were classified according to a multidimensional stoichiometric
constraints classification approach defined by Rivas-Ubach et al. (2018) or described
by van Krevelen diagrams. Data mining of PARAFAC components identified six
components capable of describing patterns of WEOM biodegradability and physico-
chemical properties. The van Krevelen diagrams showed an abundance of low molec-
ular weight, N-containing compounds with variable unsaturation degree relative to
whole extracts or resin-treated sub-fractions. These compounds were mainly iden-
tified as peptides or clustered over a region commonly defined as lignin-derived,
which was only partly addressed by the classification applied. Non-targeted profil-
ing revealed a significant contribution of quaternary ammonium compounds, which
were attributed, along with small peptides, an important role in carbon mineraliza-
tion. Principal component analysis showed structural differences among PARAFAC
components, which were associated with the different WEOM fractions and sub-
fractions and, thus, likely explain differences in WEOM mineralization.

Keywords: Biodegradation, Data mining, Excitation-emission matrices (EEMs),
Nitrogen, LC-MS, PARAFAC, Water extractable organic matter.
5.1 Introduction
Small changes in the rate of soil organic matter (SOM) mineralization can poten-

tially cause sizable changes in global carbon (C) dynamics. The latest estimates
report COs emissions from land use and management activities for the past decade
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to equate 1.5 4+ 0.7 GtC yr~!, an equivalent of ~13% of total emissions comprising
of both land use and fossil fuel emissions (Le Quéré et al., 2018). These contributed
to an annual increase in the atmospheric CO, concentration of 4.7 & 0.02 GtC yr—!.
But there remains considerable uncertainty (~0.7 GtC yr~!) due to limited under-
standing of the biogeochemical stoichiometries, analytical inconsistencies and model
parametrization. Since the bulk of soil CO5 emissions comes from soil microbial
activity, only a small portion of SOM is active at a time. This implies SOM is
dissolved in order to be readily accessible and available for microbial utilization.

Dissolved organic matter (DOM) comprises <1% of the SOM pool, but can
be regarded as a “keyhole” for SOM mineralization processes. As a readily avail-
able C source for soil microorganisms, DOM can modulate soil microbial activity
and community structure (De Nobili et al., 2001) and, thus, the stoichiometry
between nutrient inputs and mineralization outputs. Plants and SOM are the ma-
jor contributors to DOM (Gregorich et al., 2000; Kogel-Knabner, 2002; Malik and
Gleixner, 2013), but biodegradation of DOM generates new DOM sources through
heterotrophic production (Kallenbach et al., 2016). These cycles of DOM utiliza-
tion and production depend on external conditions, such as changes in land use and
vegetation cover, climate, soil physical properties and DOM’s initial composition
(Chantigny, 2003).

The composition of DOM comprises a wide variety of low to high molecular
weight compounds, with varying structure and complexity (Kalbitz et al., 2000),
reflecting the quality of plant inputs and microbial processing (Guggenberger et al.,
1994b; Malik and Gleixner, 2013). Common DOM constituents are carbohydrates,
proteinaceous materials (proteins, peptides, amino acids) and other nitrogenous
compounds (amides, amino sugars, nucleic acids), lipids, and a large component of
aromatics and organic acids (Stevenson, 1994; Rumpel et al., 2004; Kogel-Knabner,
2006; Nannipieri and Eldor, 2009). In mineral soils, such heterogeneity is par-
ticularly accentuated in the A horizons, due to the proximity of plant litter and
root exudates and fluctuations in abiotic controls (e.g. temperature and soil mois-
ture/oxygen content). This leads to contrasting results and assumptions as to what
chemical characteristics determine DOM biodegradability (Qualls, 2005).

The complexity and heterogeneity of DOM has led to a wide range of oper-
ationally defined fractionation approaches (Zsolnay, 2003). In this context, cold
(C-) and hot (H-) water extractable organic matter (WEOM) fractions have been
commonly studied as indicators of microbially available and biodegradable DOM
(Marschner and Kalbitz, 2003; Haynes, 2005). While the CWEOM has been asso-
ciated with humified SOM (Gregorich et al., 2000), particular focus has been given
to the HWEOM fraction, due to its high correlation with the microbial biomass
(Sparling et al., 1998; Ghani et al., 2003). Nevertheless, specific biomarkers (e.g.
lignin-derivatives, polysaccharides) have been recorded to occur in both fractions
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(e.g. Bu et al., 2010; Seifert et al., 2016), and their involvement in mineralization
processes has been recently reevaluated (Kiem and Kogel-Knabner, 2003; Mueller
et al., 2014). In this context, the study of the role of molecular classes and the
dynamics of specific biomolecules during WEOM mineralization is fundamental for
understanding and predicting the fate of soil C stocks and sources.

Even though DOM/WEOM biodegradability has been widely studied (Kalbitz
et al., 2003), mainly in terms of cumulative mineralization fluxes, in-depth studies
of its biodegradation and transformation at the molecular level are scarce, mainly
due to its highly complex nature. Such information is, however, central to the
understanding of DOM/WEOM formation, preservation and utilization.

Fluorescence and UV spectroscopic methods have been widely adopted in DOM
studies (Senesi et al., 1991; Cory and McKnight, 2005; Embacher et al.;, 2008;
Fernandez-Romero et al., 2016), since optically active (chromophoric and fluoresc-
ing) moieties are characteristic features of DOM (Senesi et al., 1991; Leenheer and
Croué, 2003). Their reactivity at specific wavelengths varies as a function of the
molecular structure and complexity (Coble, 1996; Milori et al., 2002), thus enabling
information about DOM/WEOM source and properties to be characterized. How-
ever, the need to link the large variety of chromophores (Korshin et al., 1997) and
broadly defined fluorescence peaks from excitation-emission matrices (EEMs, Coble,
1996; McKnight et al., 2001) to more specific biochemical entities has paved the way
for chemometric techniques, such as parallel factor analysis (PARAFAC), which is
able to decompose the multiway EEM data array into independent components
(Bro, 1997; Andersen and Bro, 2003).

Previous studies have proposed PARAFAC of EEM spectra for monitoring
DOM/WEOM biodegradability (Fellman et al., 2008); however, contentions around
the involvement of fluorescing components in DOM/WEOM biodegradation pro-
cesses, as well as their relationship with chromophoric assemblies, including both
aromatic and conjugated aliphatic structures, have not been resolved to date. The
present work proposes a data mining approach to the study of biodegradability and
optical properties of WEOM through PARAFAC components. The information
acquired is, however, restricted to fluorescing moieties, and does not account for
weakly or non-fluorescing material, such as cell lysates (Zsolnay et al., 1999), which
may significantly impact the mineralization response. In addition, characteristic flu-
orescence components have been linked to molecular associations of different size,
the latter being inversely proportional to their potential to be biodegraded. Thus,
there is a need to complement information with other characterization techniques.

In recent years, the combination of chromatographic separation and high mass
resolution and accuracy has been increasingly adopted to unravel the molecular
characteristics of DOM (Sleighter and Hatcher, 2008; Cortés-Francisco and Caixach,
2013; Verkh et al., 2018). High-resolution liquid chromatography—mass spectrome-
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try (LC-MS) is capable of resolving individual molecular identities out of complex
mixtures, such as DOM/WEOM, and assigning them a molecular formula according
to their mass-to-charge (m/z) ratios. Yet, since DOM/WEOM is a heterogeneous
association of organic moieties, more often than not, resolved species are not defined
by a specific chemical identity. In spite of that, the calculation and the representa-
tion of O/C and H/C ratios (using van Krevelen diagrams) enables the biochemical
classification of DOM/WEOM components (Kim et al., 2003; Roth et al., 2015;
Mangal et al., 2016; Seifert et al., 2016; D’Andrilli et al., 2019) and informs us
about the transformations following biodegradation (Bailey et al., 2017). However,
in complex mixtures such as DOM/WEOM, different classes of compounds are
often shown to overlap throughout such diagrams, hampering their correct inter-
pretation and leading to inconsistent and inconclusive answers; thus, constraints of
heteroatom to C molar ratios, atom counts and molecular weight have to be applied
for a valid classification (Rivas-Ubach et al., 2018). Furthermore, such resolved for-
mulae can result in a variety of different structural configurations, strongly defining
the molecule’s functionality and, thus, its fate in biogeochemical cycles. In this con-
text, (ring) double bond equivalents ((R)DBE) provide an estimate of the degree of
unsaturation. Since double bonds with heteroatoms are included, normalized indi-
cators, such as the ratio between DBE and C atoms (DBE/C), DBE minus oxygen
atoms (DBE-O) and the aromaticity index (AI), have been additionally proposed
(Koch et al., 2005; Hockaday et al., 2006; Koch and Dittmar, 2006; Cortés-Francisco
and Caixach, 2013; Tfaily et al., 2013).

In the previous Chapter, CWEOM and HWEOM fractions were characterized
and their sub-fractions were isolated following anion exchange treatment, in order
to identify functionally and chemically different fractions of WEOM that could ex-
plain changes in biodegradability patterns. The extracts were obtained from a soil
with contrasting management histories (long-term pasture to no-tillage cropping),
including plots maintained without plant cover for 13 years. The degree of humi-
fication was inferred to be an important aspect affecting the mineralization of the
CWEOM fraction, but not of the HWEOM fraction, conversely characterized by a
large amount of phenols and organic N content. The results were consistent with
previous studies hypothesizing a selective utilization of N-containing compounds in
response to C limitation (McGill and Cole, 1981; Jones and Murphy, 2007; Farrell
et al., 2014; Mooshammer et al., 2014). Furthermore, the data suggested a close
coupling of C and N in WEOM moieties of the sub-fraction remaining following
anion exchange treatment. It was hypothesized that they performed a regulatory
role on the mineralization response as a function of secondary products from de
novo synthesis or biodegradation processes in response to plant inputs. While the
interdependence between C and N has been already recognized by earlier studies
(Gérdenas et al., 2011; Knicker, 2011), such a relationship and its bearing on the
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overall mineralization response have not been investigated in WEOM sub-fractions
isolated by anion exchange treatment. Such hypotheses, thus, require further in-
sight in the biomolecular characteristics of these fractions and sub-fractions and
their effect on microbial activity.

In the present work, an initial fingerprinting of WEOM by means of fluorescence
EEMs was followed by PARAFAC data mining, for the selection of fluorescence
components best describing biodegradability and selected biochemical properties,
and WEOM profiling through a non-targeted LC-MS analysis (Halket et al., 2005).
Ultimately, PARAFAC components were combined with LC-MS data of CWEOM
and HWEOM fractions and anion exchange isolated sub-fractions (into a PCA) to
relate the observed mineralization patterns with the optical and molecular proper-
ties of WEOM from a soil under different land uses.

5.2 Materials and methods

The treatments investigated in this study, including soils, extraction procedures, an-
ion exchange fractionation details and related WEOC/WEON; optical and biodegrad-
ability measurements, were described in Section 4.1 of Chapter 4. They are repeated
to some degree here for convenience.

5.2.1 Soils, extracts and WEOM fractionation

The soils investigated in this study were collected from a long-term field trial estab-
lished in November 2000 near Lincoln, Canterbury, New Zealand (43° 40’ S, 172°
28" E, 5 m above sea level) on a Wakanui silt loam (Mottled Immature Pallic Soil,
New Zealand soil classification Hewitt, 2010; Eutric Siltic Cambisol, IUSS Working
Group WRB;, 2015). Soil samples (0-7.5 cm) were taken from triplicated treatment
plots (28 x 9 m) consisting of a sheep-grazed permanent pasture (ryegrass (Lolium
perenne L.) and white clover ( Trifolium repens L.)), a no-tillage crop rotation (bar-
ley (Hordeum wvulgare L.), wheat (Triticum aestivum L.), pea (Pisum sativum L.)
and ryegrass seed crops) and a permanent fallow treatment (maintained plant-free
using glyphosate), 13 years after the trial establishment. Prior to the trial, the site
had been under sheep-grazed, ryegrass/white clover pasture for at least 14 years
and had a moderately high organic matter content. Further information on soil
properties, experimental design and field management has been given by Fraser
et al. (2013) and in Subsection 4.1.2 of Chapter 4.

Composites of eight sample cores from each plot were sieved to 4 mm in field
moist condition, with visible plant residues and fauna removed, and air-dried before
further extraction and analyses. Details on cold (CW) and hot water (HW) extrac-
tions, anion exchange resin treatment, and incubation experiment are described in
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Subsection 4.1.2. Briefly, CWEOM and HWEOM were sequentially extracted in
triplicate with ultrapure MilliQQ water (Millipore, 18.2 M cm™'). The soils were
extracted at a soil:water ratio (dry weight basis) of 1:10, then centrifuged at 2831
g for 5 min and the supernatants decanted and re-centrifuged at 17696 ¢ for 5 min
before filtering through 0.45-pm polyvinylidene fluoride (PVDF) filters to recover
the CWEOM. The residual soil was then re-suspended at the same soil:water ratio
and extracted in a water bath at 80°C for 16 h before repeating the centrifugation
and filtering steps to recover the HWEOM. Each CW and HW extract was then
treated with an anion exchange resin (Lanxess Lewatit S 5528) at a resin:extract
ratio of 1:20 for either 2 h (CW) or 61 h (HW) using a batch equilibrium method.

5.2.2 WEOM biodegradability assay

Controlled incubation of the CW and HW extracts, and their respective post-resin
treated extracts, was started within 24 h of their extraction and resin treatment.
Briefly, 40 mL of each extract were incubated in air-tight, acid-washed, 100 mL
Schott bottles at 25°C for 14 days following the addition of a N-free nutrient so-
lution (2 mL) and 100 pL of fresh soil inoculum. Blanks (MilliQ water), positive
(glucose at 20 and 80 mg C L) and negative (mixed phenol solution comprising
quercetin, coumaric, syringic, cinnamic, nicotinic and salicylic acids) controls were
run in triplicate with each batch incubation. Headspace CO, concentrations were
measured at days 3, 8 and 14 of the incubation, with fluxes integrated over time to
assess WEOC mineralization (WEOC,,;,,) expressed as cumulative CO4 evolved per
unit of WEOC present in the extract at the start of the incubation (Baldock and
Broos, 2012). After the incubation, samples were filtered (0.45-um PVDF syringe
filters) for further analyses.

5.2.3 WEOM characterization

The WEOC concentration was assessed as non-purgeable organic C (NPOC) with
a TOC-Vegg analyzer (Shimadzu Corporation, Kyoto, Japan). The WEON was
determined by subtracting the mineral N (Min N) forms (NO3~ and NH, "), quanti-
fied colorimetrically on a Lachat QuickChem 8500 Series 2 Flow Injection Analysis
System (Lachat Instruments, Loveland, CO, USA), from the total dissolved nitro-
gen (TDN), measured using an on-line UV-catalyzed persulfate oxidation method
(Cabrera and Beare, 1993). All extracts were analyzed pre- and post-incubation.
Accordingly, the amount of WEON mineralized was determined as the difference in
the concentration of Min N forms pre- and post-incubation. The SUVAys, (specific
absorption at 254 nm; Weishaar et al., 2003) and ags4 (absorption coefficient at 254
nm; Green and Blough, 1994) were obtained from UV measurements on non- (10-
fold diluted) and post-resin treated samples determined on a UV-Vis SpectraMax
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190 microplate reader (Molecular Devices Corp., San Jose, CA, USA). Phenolic C
concentration was determined with the Folin-Ciocalteu’s reagent (Ohno and First,
1998) and expressed as salicylic acid equivalents per unit of WEOC.

5.2.4 Suwannee River humic acid and peat extracts

Extracts of a Suwannee River humic acid (HA) reference standard (IHSS) and a
commercially available peat were used as references for the LC-MS analysis. The
freeze-dried Suwannee HA standard was dissolved with a 0.5 M NaOH solution.
Peat extracts were prepared using either a CW or a 0.1 M NaOH + 0.1 M NayP>0O-
extraction at a sample:extractant ratio of 1:10. Samples were centrifuged and fil-
tered at 0.45-um (PVDF), as previously described for the CW extracts.

5.2.5 Fluorescence analyses

Fluorescence EEMs were obtained using a FluoroMax® spectrofluorometer equipped
with a double grating monochromator (Horiba Aqualog Jobin Yvon, France) and a
1.0 cm path length quartz cuvette. Emissions were recorded over a range of 245-828
nm (mean slit bandwidth = 4.66 nm, sum of slit widths = 10), for a range of exci-
tation wavelengths 240-600 nm at 3 nm increments and an integration time of 0.2
seconds. All spectra were normalized for the Raman spectra of ultrapure MilliQ
water to eliminate Raman scatter peaks. Intensities were finally expressed in Ra-
man Units (R.U.; nm™!). Rayleigh scatter lines and noise from areas of equivalent
emission and excitation wavelengths were removed. The non-resin treated samples
were 10-fold diluted to set the WEOC working concentration <35 mg L~ and avoid
signal saturation, inner-filter effects and quenching. The resulting EEMs of these
samples were finally adjusted for the dilution factor to determine the intensities of
the original, undiluted samples. The post-resin treated samples were analyzed in
their original form. Peak position based on excitation and emission maxima were
assessed according to literature (Coble, 1996; Cory and McKnight, 2005; Fellman
et al., 2010).

5.2.6 Preliminary parallel factor analysis

Parallel factor analysis (PARAFAC) was used for dimensionality reduction of the
EEMs to a 1-D vector in order to identify statistically independent WEOM flu-
orescing components (fluorophores) characterized by their unique combination of
excitation and emission (Stedmon et al., 2003).

PARAFAC was run on a complete data set (n = 216) utilizing an algorithm
implemented in the Java programming language at the University of Waikato
(https://github.com /waikato-datamining/multiway-algorithms). The algorithm was
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oriented towards the traditional alternate least square regression approach, as de-
scribed by Bro (1997). Brieflyy, PARAFAC initialization was done with 100 itera-
tions and singular value decomposition (SVD) to estimate matrices B and C. Fur-
ther, matrix A was calculated from the input array matrix X and SVD estimated
B and C using the equation:

A=Xx((C|®|B)™H" (5.1)

where ® returns the Khatri-Rao (column-wise Kronecker) product and 7" indi-
cates matrix transposition (Burdick, 1995; Bro, 1997).

The same approach was used to calculate B and C, given A and estimated
C, or calculated A and B, respectively, and repeated until convergence (lowest
reconstruction error, e.g. 10719).

5.2.7 Data mining

A data mining approach was applied to investigate the relationship between WEOM
fluorophores (PARAFAC components), UV and biochemical properties (SUVAysy,
ags4 and phenolic C concentration) and biodegradability (WEOC,,;,,, Min N). Data
mining of PARAFAC components was performed through the Advanced Data min-
ing And Machine learning System (ADAMS), a modular open-source Java frame-
work (Reutemann and Vanschoren, 2012; Reutemann and Holmes, 2015) supply-
ing a collection of data mining applications, e.g. WEKA 3.9.0 (Bouckaert et al.,
2010; Frank et al., 2016), with integrated machine learning methods. Three su-
pervised machine learning methods were tested to evaluate the predictive power of
PARAFAC components from the generated models.

Multiple linear ridge regression: a class of linear regression for prediction using
the Akaike information criterion for model selection (Akaike, 1974), able to deal
with weighted instances. The ridge, defined by «, was set to 0.00000001 and no
attributes were selected, nor were collinear attributes eliminated. This algorithm
was mainly used as a baseline to determine the model’s lower limit.

Locally weighted—Gaussian Processes (GPD): implemented Gaussian Processes
for regression without hyperparameter-tuning, with an inline radial basic function
(RBF) kernel (MacKay, 1998). Locally weighted learning (LWL, Atkeson et al.,
1997; Frank et al., 2003) was applied using an instance-based algorithm to assign
weights to input instances. A neighborhood of 50 similar data rows (on 216 samples)
for LWL was determined to build the GPD model for prediction, keeping the default
values for data normalization, noise (0.01) and gamma (0.01).

Random Forest (RF): constructs a forest of independent decision trees from ran-
domized subsets of the original variables used to split a node of the tree (Breiman,
2001). In total, 250 trees were constructed. The sum of the predicted numeric
values was then averaged across the size of the forest.
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Prior to model generation, noisy EEM areas below 290 nm excitation (see Fig.
C.2/ and |C.3)) were filtered out. The models were further refined removing mainly
two identified outliers. Analytical blanks and controls were left out from the model
generation. No pre-processing outside the algorithms was applied to the data gen-
erated by PARAFAC. PARAFAC components were then added sequentially to the
algorithms to describe the subspace of observed features.

Summary statistics were generated using a 10-fold cross-validation and evaluated
for the selection of the best performing algorithm.

5.2.8 LC-MS analysis

Analytical triplicates (500 uL) of non- and post-resin treated extracts were bulked
and vortexed before a 400 uL aliquot was filtered with a 0.2-ym PVDF Single Step®
vial (Thomson" P/N: 65531-200). Reference extracts were diluted to 10 ppm with
ultrapure water and 400 uL were filtered at 0.2-pum (PVDF) for the LC-MS analysis.

The LC-MS analysis was performed on a Thermo Fisher Scientific” (San Jose,
CA, USA) Q Exactive” Plus Orbitrap mass spectrometer coupled with a Vanquish”
UHPLC system (Binary Pump H, Split Sampler HT, Dual Oven), controlled by the
Standard Instrument Integration for Xcalibur™ 1.4. (Thermo Scientific, USA). The
mass spectrometer was calibrated immediately prior to sample batch analysis with
Thermo" premixed solutions (PierceTM LTQ ESI Positive and Negative Ion Calibra-
tion Solutions, Catalog No: 88322 and 88324, respectively). Standards containing
caffeine, catechin and trigonelline (1, 10 and 50 ppm) and blank (methanol/water,
1:1 ratio) checks were run before and at the end of each batch. The standard mix
(50 ppm) and the sample batch ‘multi-mix’ (equal aliquot of each sample mixed)
were run after every 15 sample injections.

The LC was applied to both a hydrophilic interaction (Hypersil Gold" HILIC
1.9 pm, 100 mm x 2.1 mm, P/N: 26502-102130) and a reversed-phase (Accucore
Vanquish” C18 1.5 gm, 100 mm x 2.1 mm, P/N: 27101-102130, Thermo Fisher
Scientific) liquid chromatography column, hereafter referred to as HILIC and C18
chromatographies, respectively.

A 1 pl aliquot of each prepared extract was separated with either: HILIC
conditions — a mobile phase consisting of 0.1% formic acid in acetonitrile (A) and 5
mM ammonium acetate in ultrapure (type 1) water (B), maintained at 55°C and a
flow rate of 400 uL min~!, with a gradient elution applied as follows: 01 min/5%
B, linear increase to 7 min/80% B, isocratic 10 min/80% B, equilibration 11-14
min/5% B; or C18 conditions — a mobile phase consisting of 0.1% formic acid in
ultrapure (type 1) water (A) and 0.1% formic acid in acetonitrile (B), maintained at
40°C and a flow rate of 400 uL min~!, with a gradient elution applied: 0-1 min/5%
B, linear increase to 7 min/95% B, isocratic to 10 min/95% B, equilibration 11-14
min/5% B.
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For both chromatographies, the eluent was scanned from 0.5-11 minutes fol-
lowing heated electrospray ionisation (HESI) at 350°C in both the negative (n)
and positive (p) modes with capillary temperature of 320°C. Data were acquired
for precursor masses from 110-1600 m/z (HILIC) and 110-1200 m/z (C18) at 70K
resolution (AGC target 3 x 10° maximum IT 100 ms, profile mode) with data de-
pendent MS/MS for product ions generated by normalized collision energy (NCE:
35, 45, 60) at 17.5K resolution (TopN 10, AGC target 2 x 10°, maximum IT 50
ms, isolation 1.4 m/z).

5.2.9 LC-MS data processing

Acquired spectra were processed with the Compound Discoverer v. 3.0 software
(Thermo Fisher Scientific). The mass tolerance for spectral selection was restricted
to <5 ppm. Only mass spectral peaks for the monoisotopic ion with more than one
isotopologue were considered. Compound detection considered multiple ion defi-
nitions (details in Appendix |C|, Section “Processing node 9: Detect Compounds”,
“Ions” and “Preferred Ions” of the processing workflow) with a minimum mass peak
intensity of 500 000 (Q Exactive Plus). Resolved compounds with a signal-to-noise
ratio (S/N) >3 were assigned elemental compositions using the atom constraints:
Ci-90 Hi—100 No—15 Og_20 Po_1 So_5, an H/C ratio of 0.1-4, and a maximal RDBE
of 40, within 5 ppm mass error and intensity tolerance for the isotope pattern search
of 30%.

Compound features generated from m/z ions, formulae and spectra features
(isotope ratios, precursor and product fragment ions) were queried against KEGG",
BioCyc", and Metabolika" (Thermo Scientific) biological pathway databases, spec-
tral libraries (mzVault (Thermo Scientific), lipid mediators and polar metabolites
libraries (stepped NCE: 10 30 45; Bamba lab 34 and 598, respectively)), ChemSpider
and mass search lists (Extractables and Leachables HRAM Compound Database
(Thermo Scientific), Biological Magnetic Resonance Bank database (BMRB.db
(www.bmrb.wisc.edu, Ulrich et al., 2008), namely “OpenVK”, sourced from Open-
VanKrevelen’s repository, Brockman et al., 2018), an in-house library in develop-
ment (namely “T'V”, 55 entries)) for compound identification (see processing work-
flow in Appendix C). The LC-MS library (97 018 spectra) from the MoNA database
(MassBank of North America, http://mona.fiehnlab.ucdavis.edu/) was additionally
consulted for the identification of masses resolved with the HILIC positive mode.

Differential analyses were applied to sample groups in order to filter compounds
of interest for each chromatography/ionization mode. For any given compound,
statistically significant differences between sample groups were tested using analy-
sis of variance (ANOVA) followed by a Tukey’s HSD post-hoc hoc test at 5% level of
significance. Computed P-values were then corrected for the whole set of samples
(multiple comparisons) as a function of the sample set size (adjusted P-value) us-
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ing the Benjamini-Hochberg algorithm for the false discovery rate (Benjamini and
Hochberg, 1995). Only compounds with adjusted P-values <0.05 for at least one
sample within the whole set were exported for further analysis.

Further, non- and post-resin treated samples and references were corrected for
the masses detected in the blank (ultrapure water) and resin controls (resin-treated
ultrapure water), respectively, by subtracting the maximum area of a signal in
the blank/resin control from the correspondent signal in the sample. For each
chromatography /ionization mode batch, median group coefficients of variation (CV)
were manually checked and a cutoff of 35% was arbitrarily set in order to account
for biological and technical variation (Gan et al., 2007; Casado and Cutillas, 2011;
Maes et al., 2015). Data cleaning and all subsequent handling were done in the R
environment (R Core Team, 2018).

Out of 2555 identified compounds, only masses with an assigned molecular for-
mula were considered for the data interpretation (n = 1708 for the combined data of
both chromatographies and ionization modes). Yet, some significant features whose
formula remained unidentified were manually checked with their identification in-
terpreted by automated searches (with reference to theoretical spectra features or
literature from SciFinder).

In addition to the constraints applied by the software, heteroatom to C ratios
were filtered to O/C<2, N/C<4, P/C<0.5 and S/C<0.8, allowing for the extended
range (99.99%) of small organic molecules (Kind and Fiehn, 2007). This process
filtered further 147 compounds. It should be noted that multiple element count
restrictions (Kind and Fiehn, 2007) were verified, but were not implemented in the
filtering process given the veiled nature of WEOM and the recognition of naturally
occurring metabolites that do not obey this criteria (Pluskal et al., 2012).

Ultimately, for each chromatography and ionization mode, compounds with
peak intensity areas below their median value were filtered out (149 compounds).

In R, the unsaturation degree (or double bond equivalent, DBE) of all re-
solved molecules in WEOM was calculated using the following equation (Koch and
Dittmar, 2006):

1
DBE =1+ 3(2C — H+N +P) (5.2)

and normalized for the number of C atoms (DBE/C) or adjusted by removing
the O atom contribution (DBE-O).

The modified aromaticity index (Al,.q), corrected a posteriori by Koch and
Dittmar (2016), was defined as:

1 1
1+O—§O—S——(N+P+H)

- 2 (5.3)

C—iO—N—S—P

AImod =




5.2 Materials and methods 123

considering that 1/2 O is bound through m-bonds (Koch and Dittmar, 2006;
Chassé et al., 2015). It is noteworthy that the results ensuing the corrections applied
to this formula may not be comparable to previous studies in absolute terms.

Compounds resolved across both chromatographic separations and ionization
modes were then classified into six main biochemical categories, namely “Amino
sugars”, “Carbohydrates”, “Lipids”, “Nucleotides”, “Peptides” and “Phytochemi-
cal oxyaromatics”, defined by a set of constraints, based on C/H/O/N/P stoichio-
metric ratios, atom number and molecular weight, developed by Rivas-Ubach et al.
(2018). If duplicate molecular features occurred due to their detection by both
HILIC and C18 chromatographic separations, only the compound with the largest
peak area was included for sample classification.

Preliminary results revealed that a relatively large proportion of compounds
(34.5%) did not match any of the six classes defined (hereafter referred to as
“Not matched”). In order to gain a better characterization of this fraction, as-
signed formulae were parsed into six discrete categories (Seidel et al., 2014; Chassé
et al., 2015), based on their Al,,,q (Koch and Dittmar, 2006), H/C and O/C ratios,
and heteroatom contents (Perdue, 1984; Stenson et al., 2003): (i) condensed aro-
matics (Al,,,;>0.66), such as polycyclic aromatics; (ii) highly aromatic molecules
(0.66>Al,,,4>0.50), including polyphenols and polycyclic aromatics with aliphatic
chains (Koch and Dittmar, 2006); (iii) highly unsaturated molecules (Al,;,,4<0.50,
H/C<1.5), such as lignin-derived material (Stenson et al., 2003); (iv) unsaturated
aliphatic molecules without N (2>H/C>1.5, N = 0); (v) unsaturated aliphatic
molecules with N (2>H/C>1.5, N>0); and (vi) saturated molecules (H/C>2 or
0/C>0.9).

5.2.10 PCA

Principal Component Analysis (PCA) was performed on the quantitative vari-
ables and optical indices, fluorescence-derived PARAFAC components and a set of
weighted molecular determinants inferred by LC-MS for each combination of land
use, extracted fraction and resin treatment, to investigate their relationship with
WEOC and WEON mineralization. The nine variables selected from the LC-MS
analysis (H/C, O/C, #C, #N, #P, MW, Al, .4, DBE/C, DBE-O) were included
in the PCA analysis as a weighted average of each molecular entry (Schmidt et al.,
2009):

Z(MUZ X AZ)
Moy, = =———"— 5.4
v = S (54)
where w stands for weighted variable, Mv represents the molecule determinant
variable and A the peak area for each individual molecular formula (). These
calculations and PCA analyses were performed in R version 3.5.1.
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5.3 Results

5.3.1 WEOM fingerprinting

For all land uses and both CW or HW non-resin treated extracts, the EEMs revealed
a large peak in the area corresponding to the C-peak (Coble, 1996)(see Fig. |C.2
and (C.3|in the Appendix (C to this Chapter). Higher intensities were recorded for
the HW extracts, where maxima ranged 1.4-3.2 R.U., with respect to 0.4-1.4 R.U.
recorded in the CW extracts (Table 5.1).

A marked decrease of fluorescence intensity occurred following the resin treat-
ment, with values ranging 0.03-0.07 R.U. and 0.16-0.55 R.U. in post-resin treated
CW and HW extracts, respectively. The relative decrease of intensity was accompa-
nied by a shift of the emission maximum towards shorter wavelengths (intermediate
C-M peak), particularly in the HW extracts (Table|5.1). While the excitation wave-
length remained essentially stable for the HW extracts, there was a relative increase
for the post-resin treated CW extracts (Table 5.1).

Biodegradation of WEOM from all land uses and both extractions led to a de-
crease of fluorescence intensity, but the peak position remained relatively unaltered
(Fig. [C.2 and C.3). In contrast, the magnitude of intensity did not markedly change
following incubation of the post-resin treated extracts, but there was a shift of both
excitation and emission maxima towards shorter wavelengths, especially in the CW
extracts (Table 5.1). Differences between the post-incubation patterns of non- and
post-resin treated fluorescence intensities were, however, linked by an increase in
WEOC-normalized intensities (Fig. C.4 and |C.5).

5.3.2 Algorithm evaluation and selection of PARAFAC
components

The attributes of the PARAFAC components were investigated through their re-
lationship with WEOM properties and biodegradability. For this purpose, three
supervised machine learning algorithms were applied. For each variable and com-
ponent configuration, evaluations of B2 and RMSE indicated a greater performance
of both RF and LWL-GPD, with respect to ridge regression, in describing WEOM
properties and detecting changes in the variables measured.

For all investigated variables other than the phenolic content, the accuracy of
the algorithms significantly improved with two components (see Fig. C.8 and |C.10
in Appendix C)). While the RMSE for Min N remained relatively stable when pro-
gressively adding new components to the RF algorithm, it further declined for the
other variables while adding up to five (e.g. WEOC,,;,,) or six (e.g. SUVAgs4) com-
ponents. With further component configurations, the RMSE varied inconsistently.
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Table 5.1: Range of maximum fluorescence intensities (I,4,) and relative excitation
(Ex) and emission (Em) wavelengths of non- and post-resin treated, cold (CW) and hot
water (HW) extracts across three land uses (n = 9 for each land use), before and after
the 14-day incubation.

Extraction
Incubation Treatment CW HW
Imax Ex Em Imax Ex Em
Min 0.42 330 439 1.44 330 434
non-resin treated Max 1.45 342 453 3.24 336 443
Mean 0.66 334 443 2.27 332 440
e Min 0.03 336 411 0.16 330 406
post-resin treated Max 0.07 351 443 0.55 339 411
Mean 0.05 342 430 0.31 336 409
Min 0.34 330 434 1.16 333 434
non-resin treated Max 0.77 339 453 2.48 336 443
Mean 0.52 335 444 1.77 334 440
Post-
Min 0.03 324 388 0.12 327 393
post-resin treated Max 0.05 333 416 0.33 336 411

Mean 0.04 328 402 0.22 332 405

A relatively similar pattern was observed adding from two up to six or seven com-
ponents to the LWL-GPD algorithm, albeit, with respect to RF, the RMSE for
Min N clearly declined using five components.

The R? for the relationship between the observed values and the PARAFAC
features generated by the algorithms increased consistently with the decrease in
RMSE. Two components explained 93% of the total variation in Min N using the
RF algorithm, whereas 70% (WEOC,,.;,,) to 98% (ags4) were explained by five or six
components. The LWL-GPD inferred relatively similar variation patterns across
the variables of interest, explaining 95% of the variation in Min N with five com-
ponents and 73% (WEOC,,;,,) to 99% (ags4) using six or seven components for the
other variables.

When values for undetected phenols in the post-resin treated fraction were set
to zero, as would be their biochemical meaning, none of the algorithms succeeded
at establishing a relationship with the pattern observed for the phenols (data not
shown). However, when the values of these samples were left out, 74% and 68% of
the variation was explained using one component for RF and LWL-GPD, respec-
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tively. The R? increased up to 86% and 82% by adding six components to the RF
and LWL-GPD, respectively, while further additions varied the R? inconsistently.
Large changes in the R? were accompanied with overall small changes in the RMSE
when sequentially adding up to six components (Fig. |C.9 and (C.11), indicating
model robustness.

Considering that relatively similar performances were achieved with RF and
LWL-GPD, but a relatively faster and less intensive computational process lies
behind the RF with respect to the LWL-GPD algorithm, the RF added with six
PARAFAC components was elected according to parsimony principles (Table 5.2).
Thus, PARAFAC scores of a six-component model were further investigated.

The correlation coefficients between actual and estimated variable patterns are
presented in Table 5.2. For all variables, the patterns inferred by six PARAFAC
components strongly correlated to actual values.

Table 5.2: Summary statistics for the Random Forest regression between actual and
estimated variables using six PARAFAC components.

WEOChin Min N SUV A5, a2s4 Phenols
Correlation coefficient 0.83 0.98 0.96 0.99 0.93
Bias 0.917 0.173 -0.016 1.307 -0.0001
Mean squared logarithmic error 0.05 NaN 0.54 244 NaN
Ratio of performance to deviation 1.58 4.36 341 7.04 2.55
R? 0.68 0.95 0.93 0.98 0.86
Standard deviation of residuals 50.67 5.07 0.36 32.19 0.12
Mean absolute error 35.11 3.00 0.22 17.98 0.08
Root mean squared error 50.68 5.08 0.36 32.21 0.12
Relative absolute error (%) 50.84 18.34 19.09 10.22 31.10
Root relative squared error (%) 56.56 22.23 27.03 13.85 36.55
Total number of instances 106 106 214 214 106

5.3.3 Preliminary filtering evaluation

The median values of CV for group peak areas varied from 13% (n = 115) to
22.5% (n = 1602) (representing, respectively, the batches with the smallest and
the largest number of resolved compounds, Table 5.3), thus indicating relatively
high peak reproducibility when all ion intensities were considered (Molloy et al.,
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2005). Indeed, a cutoff CV <35% allowing for biological and technical (extraction
and instrumental) variability removed only ~0.54% of the total number of resolved
compounds (n = 2569), mainly derived from the C18(p) batch. This filtering criteria
adjusted the CV across all chromatographies and ionization modes within a range
of 10.4-11.2%.

Molecules with a predicted formula accounted for 66.9% of the total number of
resolved masses. These formulae were further validated by applying heteroatom to
C ratios constraints, which filtered 8.5%. An additional 9.5% of the remaining for-
mulae with peak areas below the median value for each chromatography /ionization
mode batch, identified with the noise threshold, were removed. About 93% of these
were detected in the C18(p) batch. Finally, ~55% of the initial number of formulae
revealed across all chromatographies and ionization modes were utilized for further
data analysis.

Table 5.3: Initial median values of coefficients of variation (CV) of all peak areas relative
to their chromatography /ionization mode, and peak area distribution of only compounds
with assigned molecular formulae, following CV and heteroatom/C filtering. The median
peak area value laid around the noise threshold and was therefore selected as a filtering
criteria for each batch. The number of compounds prior to each filtering step is included
in brackets.

Median area CV

%) Peak area
Median Mean Max
HILIC(p) 17.7 (523) 1470 (432) 144 290 46 786 527
HILIC(n) 15.9 (329) 692 (238) 73554 56 918 433
C18(p) 22.5 (1602) 923 (828) 78 227 34 431 067
C18(n) 13.0 (115) 851 (63) 16 005 670511

5.3.4 Biochemical profile of resolved compounds

Table 5.4 shows the biochemical profile of WEOM resulting from the full data set
that included: land use, extraction, resin treatment and incubation effects. Be-
fore the incubation, non-resin treated samples were characterized by two dominant
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classes, corresponding to peptides (and/or simple amino acids and amides) and com-
pounds not matching any of the classes defined, regardless of CW or HW extraction
(Fig. 5.1). Both fractions were, however, larger in the HW extracts. Lipids and
phytochemical oxyaromatic compounds comprised the second most abundant pro-
portion of classified compounds, followed by a minor contribution of amino sugars
and carbohydrates, and only two if any nucleodites were detected. Similar patterns
were observed for all land uses (Fig. 5.1); however, the fallow soil contained fewer
compounds from most classes (excluding amino sugars and carbohydrates) in the
CW extracts, and showed a reduction of only peptides and not matched compounds
in the HW extracts.

Table 5.4: Number of molecules and relative proportion of designated biochemical classes
across the full data set. Counts refer to unique observations with the highest intensity
area across chromatographic separations and ionization modes.

Class Molecule count Relative proportion (%)
Nucleotides 2 0.2
Amino sugars 38 2.9
Carbohydrates 35 2.6
Lipids 247 18.5
Phytochemical oxyaromatics 181 13.6
Peptides 369 27.7
Not matched 460 34.5
Total 1332 100

Surprisingly, patterns and relative contributions of these classes remained quite
consistent following the resin treatment of CW extracts, with only a minor decrease
of not matched compounds in the no-tillage soil. In contrast, substantial decreases
of mainly peptides and not matched compounds occurred in the HW extracts,
particularly in the pasture soil. It is noteworthy, however, that despite their lower
count, the resin treatment of HW extracts removed most of the amino sugars and
carbohydrates, along with some lipids and oxyaromatic compounds (pasture and
no-tillage).

There was a remarkable decrease in the peptide content of the CW and HW
non-resin treated extracts after 14 days of incubation (Fig. 5.1), particularly in
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the HW extracts. Such a decrease was observed in the post-resin treated sub-
fraction of CW, but not the HW extracts. In the non-resin treated HW extracts
of all land uses, the utilization of compounds classified as not matched followed a
similar, but less pronounced pattern to that observed for the peptides. Similarly,
not matched compounds decreased, to a lower extent, in the non-resin treated CW
extracts, with an exception being the fallow soil, where their relative abundance
remained unaltered. The same pattern was reflected after the resin treatment of
CW extracts, while relatively small if any changes occurred in the post-resin treated
HW extracts. While oxyaromatic compounds changed inconsistently with land
use in all non-resin treated extracts (with a larger decrease in HW extracts), the
other compound classes underwent substantial (lipids), almost entire (amino sugars
and carbohydrates) utilization. The reduction of lipids was, however, marginal
in the post-resin treated CW extracts, while their proportion remained constant or
increased somewhat along with oxyaromatics in the post-resin treated HW extracts.
If present, amino sugars and carbohydrates were utilized.

The profile of the not matched category was further investigated by classify-
ing the compounds in six discrete groups based on their Al,,,s, H/C and O/C
ratios, and N presence. Fig. 5.2 revealed that across all samples, the changes
described for the group of not matched compounds were mainly driven by highly
unsaturated, possibly lignin-derived moieties (Stenson et al., 2003). Such a fraction
prevailed, withal, in the post-resin treated CW sub-fraction, followed by a smaller
proportion of aromatic and condensed aromatic molecules with fewer saturated and
aliphatic molecules containing N. Overall, the relative contribution of these groups
corresponded to that observed in the non-resin treated CW extracts. In contrast,
the proportion of highly unsaturated, aromatic and condensed aromatic molecules
decreased following the resin treatment of HW extracts, whereas the minor contri-
bution of aliphatic and saturated compounds was not notably affected.

The incubation of non-resin treated HW extracts largely decreased the propor-
tion of highly unsaturated and aromatic moieties, whereas such an effect was less
pronounced in the non-resin treated CW extracts, and involved mainly highly un-
saturated and condensed aromatics of pasture and no-tillage soils. As previously
noted, the same post-incubation trend was observed for the post-resin treated CW
extracts, whereas minor or inconsistent post-incubation changes were observed for
the post-resin treated HW extracts.

5.3.5 Changes in molecular characteristics of WEOM

The van Krevelen diagrams showed the changes occurring in the molecular compo-
sition of CWEOM and HWEOM in relation to their N content, DBE-O, DBE/C
and MW, after the resin treatment or following biodegradation, inferred by differ-
ent chromatographies and ionization modes (Fig. 5.3, 5.4, C.16/ and C.17). Even
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Figure 5.1: Distribution of compound classes designated according to Rivas-Ubach
et al. (2018) in pre- and post-incubation, non- and post-resin treated, cold (CW) and hot
water (HW) extracts of different land uses. Bars represent cumulative counts of unique
compounds, regardless of chromatography or ionization mode.
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Figure 5.2: Distribution of compounds not matching any of the classes defined by Rivas-
Ubach et al. (2018) across six discrete categories based on Al,,,q (Koch and Dittmar,
2006), H/C and O/C ratios, and heteroatom contents in pre- and post-incubation, non-
and post-resin treated, cold (CW) and hot water (HW) extracts of different land uses.
Bars represent cumulative counts of unique compounds, regardless of chromatography or
ionization mode.



132 Proxies of WEOM biodegradability

though the C18(p) resolved the largest proportion of compounds across all samples
(Table 5.3)), the HILIC(p), followed by the HILIC(n), revealed the largest variation
due to resin treatment and biodegradation effects within the CW and HW extracts.

For all extracts, the bulk of the identified compounds had an O/C<1, with most
values ranging from 0-0.4, and an H/C ranging from 0-3 (e.g. Fig. 5.3)). However,
an extended range for O/C ratios was allowed (Kind and Fiehn, 2007; Pluskal et al.,
2012), thus a minor number of compounds displayed O/C ratios in a range 1-2.
There was an increase in the non-resin treated HW extracts of low MW (<500 Da),
N-bearing compounds with an O/C<0.5 and higher DBE-O with respect to the
non-resin treated CW extracts (Fig. |C.17, 5.4/ and 5.3)). Changes in DBE/C were,
however, less apparent (Fig. C.16).

Following the resin treatment, the changes revealed by the HILIC chromatog-
raphy showed a large decrease in the number of molecular formulae in HW but
not CW extracts, reflecting the patterns for the peptides and not matched com-
pounds previously observed (Fig. |5.1). As a consequence, post-resin treated HW
extracts were characterized by a greater proportion of low MW compounds with
higher DBE-O, but with a relatively lower N content and comparable DBE/C with
respect to the post-resin treated CW extracts (Fig. 5.3, 5.4, |C.16 and |(C.17). In
contrast, relatively smaller changes following the resin treatment were detected by
the C18 chromatography.

The chromatographic separation revealed a relatively consistent post-incubation
trend, regardless of extracted fraction and resin treatment. The HILIC chromatog-
raphy in both positive and negative modes revealed a net decrease of molecules
after 14 days of incubation, with a magnitude of this decrease being larger in the
post-resin treated CW extracts and in the non-resin treated HW extracts with re-
spect to their post-resin treated HW and non-resin treated CW counterparts. In
contrast, the C18 chromatography inferred a moderate increase in post-incubation
compounds, with the exception of the non-resin treated HW extracts. The result
of these trends was a net decrease in MW and N content along with a relative
increase of the unsaturation degree resolved by the HILIC chromatography, but
inconsistent post-incubation variations in MW, N content and unsaturation degree
revealed by the C18 chromatography. It is noteworthy that there was an increase in
high MW, N-bearing molecules with low unsaturation degree resolved by the C18
in the post-resin treated HW extracts (Fig. C.17).

5.3.6 Optical and molecular aspects in relation to WEOM
biodegradability

Mean PARAFAC scores and weighted averages of the molecular variables included
in the PCA are available in Tables |C.2 and |C.3| of Appendix [C. Generally, the
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Figure 5.4: van Krevelen diagrams of non- and post-resin treated, cold (CW) and hot water
(HW) extracts before and after the 14-day incubation, plotted against the number of nitrogen
atoms (# N) and relative to their chromatography/ionization mode of detection. n = the number
of compounds revealed under the correspondent chromatography/ionization mode (HILIC and
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C18 in positive (p) and negative (n) ionization modes).
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PARAFAC scores of all components were larger in HW extracts than in the CW
extracts and consistently increased from fallow to pasture soil extracts. The scores
revealed by PARAFAC component 1 were by far the largest in both non- and post-
resin treated HW extracts. Component 3, followed by component 5, displayed
higher scores in the non-resin treated HW extracts, whereas scores of components
2 and 4 were larger in their post-resin treated counterparts. The scores of compo-
nent 6, resulting from a six-component PARAFAC model, appeared to be negative.
While negative scores do not have any physical meaning, it has been suggested that
these might be the result of a simplification of complex systems of natural/bio-
logical origin, where a continuum of similar fluorophores attached to distinctive
macromolecules is described by discrete PARAFAC modeling (Thygesen et al.,
2004). Nevertheless, for the purposes of PCA, and according to non-negativity
constraints, this component was not further explored.

Despite relatively small differences in the number of compounds revealed in the
non- and post-resin treated CW extracts, there was a general tendency for MW,
O/C, DBE/C, Al,,,q and the number of O and P atoms to decrease and H/C to
increase after the resin treatment of CW extracts (Tables C.2 and |C.3/in Appendix
C). The impact of a larger number of O atoms in the non-resin treated CW extracts
was reflected in a relatively lower DBE-O with respect to the post-resin treated CW
extracts. The same pattern was observed after the resin treatment of HW extracts,
with an additional mean decrease in the number of N atoms (Tables C.2 and |C.3).

These changes were revealed by principal components 1 (PC1) and 2 (PC2),
which together explained 84.6% of the variance among the extracts (Fig. 5.5)
when including the molecular information from all analyses. PC1 revealed 56.6%
of the variance derived from the resin treatment. The PARAFAC components 3
and 5 dominated in the non-resin treated extracts, and particularly in the HW
extracts characterized by a relatively larger phenolic content, asss and Min N. The
larger DBE/C and SUVAss4 expressed in these samples strongly correlated with
PC1. PARAFAC components 2 and 4 were prominent in the post-resin treated,
mainly HW extracts, featured by a larger DBE-O. In contrast, component 1 was
weakly projected on to PC1. There was an association between the intermediate
C-M fluorescence peak and the H/C ratio on PC1. The variation in WEOC,,,;,, was
totally uncorrelated to these changes, yet was negatively projected on to PC2, which
explained further 28% of the total variation. PC2 was characterized by differences
in DBE-O, ag54 and phenolic C content, which separated CW and HW extracts,
regardless of resin treatment (Fig. 5.5). All PARAFAC components were positively
projected on to PC2, and in particular component 1.

The variation caused by the land use was discernible to some extent only in the
HW extracts and was largely reduced in the CW extracts and respective post-resin
treated sub-fractions.
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Figure 5.5: Principal component analysis of PARAFAC component scores (C1-C5),
weighted molecular variables, WEOM optical properties and biodegradability indicators.
Axes ware rotated to visualize the vector loadings in the second dimension (PC2). P,
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5.4 Discussion

5.4.1 RF identification of PARAFAC components

EEM spectral decomposition by PARAFAC modeling enabled the identification
of distinct fluorescent components capable of describing the variation in WEOM
biodegradation and its properties resulting from the interaction between land use,
extracted fraction, resin treatment and biodegradation effects.

Ohno and Bro (2006) previously pointed out the relative importance of the
sample size in resolving fluorophores with similar spectral properties. PARAFAC
ran on a data set comprising of 216 samples and forward search of the optimal
number of explanatory components using the RF algorithm revealed six components
foremost explaining the variability of all the selected variables, thereby suggesting
the strong link between fluorescence features and WEOM biodegradability and
biochemical properties (Kalbitz et al., 2003; Saadi et al., 2006; Baker et al., 2008;
Fellman et al., 2008). Drifts in the variation explained by a larger number of
components suggested that the algorithm was in fact inferring patterns from noise.
On the other hand, values of RMSE and R? suggested that two large fluorophores
were associated with most of the variation in WEOCmin, Min N and UV properties,
confirming the strong effect of the aromatic and/or conjugated character of WEOM
on biodegradability.

The best model fit for the phenolic C concentration led to the prediction of nega-
tive values. Such a result alludes to the phenolic C content in the post-resin treated
sub-fraction, along with that in the post-incubation CW extracts, which was below
the detection limits set by the calibration curve for the Folin-Ciocalteu’s method.
Actual null values would then need to be set as such in the post-processing step of
pattern estimation. In contrast to the other variables, the bulk of the changes in
the phenolic C content was described by a singular PARAFAC component, confirm-
ing the large impact of the phenolic hydroxyl groups on the fluorescence properties
of WEOM (Senesi et al., 1991). An increase of up to six components, thus, sug-
gested either differences in polycondensation and/or polysubstitution or different
structural features that can explain fluorescence in spite of their paucity.

5.4.2 Analysis of EEMs and PARAFAC components

Differences in fluorescence intensities between CW and HW extracts were largely
driven by ~3.6-fold higher HWEOC concentrations. According to Coble (1996),
the large C-peak identified in the CW and HW extracts indicated the presence
of plant and SOM-derived, fulvic-like WEOM. Yet, higher intensities in the HW
extracts were mainly associated with the larger phenolic C content (see Table 4.3
in Chapter |4). The C-peak was consistently found in extracts of all land uses,
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indicating the presence of the same type of fluorophores, but their contribution to
fluorescence intensity in CW and HW extracts varied according to changes in their
concentration across different land uses. This variability was more pronounced in
HW extracts, suggesting that this fraction is highly dynamic.

Following the resin treatment, the reduction in fluorescence intensity confirmed
that the bulk of the CWEOM and HWEOM comprised of humified material and
phenolic moieties derived from the decomposition of plant-derived organic matter
(e.g. lignin). In contrast, the remaining post-resin treated WEOM proportion was
characterized by blue-shifted emission maxima indicating an intermediate C-M peak
consistent with a small fraction of fluorescing by-products of microbial metabolism.
This shift was accompanied by a decrease in agsy (see Fig. (C.1 in Appendix |C,
and further evidence in Fig. 5.5), indicating a close relationship between fluores-
cence and absorbance (Green and Blough, 1994). For instance, Cory and McKnight
(2005) observed similar excitation and emission spectra referred to less conjugated
forms of reduced quinones of microbial origin or microbially derived moieties sur-
rounding the fluorophore. The latter seems to be a more plausible explanation,
considering that a hydrophobic interaction of the anion exchange resin with hydro-
quinones might have occurred. Yet, it can be speculated upon the involvement of
intramolecular electron donor-acceptor complexes formed through charge-assisted
H-bonds (Ni and Pignatello, 2018) between e.g. functionalized derivatives of qua-
ternary alkylbenzenes and hydroquinones ensuing microbial metabolism.

The decrease of fluorescence intensity following biodegradation suggested the
relative utilization of aromatic and conjugated moieties over a short period (14
days). This was further confirmed by the corresponding decrease in agsy, thus
demonstrating a strong ability of PARAFAC components to interpret changes in
ags4 (Table [5.2). However, WEOC-normalized fluorescence intensities revealed an
increase in the relative amount of fluorescing units per unit of WEOC following
biodegradation of both non- and post-resin treated extracts (see also Fig. (C.4 and
C.5 in Appendix C)), indicating that both plant and SOM-derived, as well as micro-
bially derived fractions comprised of a significant proportion of unreactive WEOM.
It is noteworthy that such an increase cannot exclude the formation of new fluoresc-
ing material following biodegradation (Saadi et al., 2006), an effect that might be
outweighed by concomitant degradation processes, resulting in a net reduction of
the post-incubation fluorescence signal. The latter scenario might involve reduction
processes ensuing WEOM biodegradation, thus leading to relatively more intense
fluorescence intensities (Cory and McKnight, 2005). The increase in the proportion
of fluorescing units following biodegradation was reflected by the relationship be-
tween SUVAys, and the component features estimated by the RF algorithm (Table
5.2), denoting fluorescence of aromatic and conjugated systems (Senesi, 1990). Four
clusters emerged (Fig. (C.12), corresponding to post-incubation non-resin treated
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CW (highest values, 4-5.1 L mg™' m™!) and HW (higher central values, 2.7-3.5 L
mg~' m~!) extracts, pre-incubation non-resin treated CW and HW extracts (lower
central values, 1.8-3.1 L mg~! m™!) and pre- and post-incubation post-resin treated
extracts (lower and upper end, respectively). While these patterns cannot discern
between the progressive transformation of WEOM towards more aromatic, con-
densed or conjugated structures (non-resin treated extracts) or their accumulation
following the depletion of more labile WEOM, they clearly show a consistent change
in the composition of “newly available” substrate. These changes were further in-
vestigated using van Krevelen diagrams for WEOM profiling.

5.4.3 Current understanding of van Krevelen diagrams

The bulk of the O/C and H/C ratios revealed across all WEOM samples, was char-
acteristic of DOM and WEOM (Kim et al., 2003; Ohno et al., 2010; Roth et al.,
2015; Verkh et al.; 2018; D’Andrilli et al., 2019). Resolved compounds were most
abundant in an area corresponding to lignin derived moieties, proteins (and/or
peptides and amino acids) and lipids (Ohno et al., 2010; D’Andrilli et al., 2015;
Brockman et al., 2018), hereby identified as peptides, lipids, phytochemical oxyaro-
matics and not matched compounds (Rivas-Ubach et al., 2018). While there was a
large overlap of not matched compounds with all other classes (see Fig. |C.18 and
C.19/in Appendix C), most of these compounds were centered in the lignin, protein,
lipid and condensed aromatic hydrocarbons regions (e.g. Fig. 5.6)), hence according
to the patterns described in Fig. |5.2. It appeared from Fig. 5.2 that the bulk of the
not matched compounds comprised of highly unsaturated, possibly lignin-derived
(Stenson et al., 2003), and aromatic moieties. However, the fact that phenolic C,
a typical biomarker of lignin decomposition (Hedges and Ertel, 1982; Senesi et al.,
1991), prevailed in the HW extracts with respect to the CW extracts (Table 4.3
and supplementary Fig. |C.1)), suggests that decomposition processes, involving ring
opening reactions and progressive oxidation of aliphatic chains of phenolic moieties
to carboxyl groups (Waksman, 1932), would have occurred during the formation of
the CWEOM, reducing the phenolic C signature without changing the position of
these new compounds from the lignin region (Sleighter and Hatcher, 2008). Fur-
thermore, given the ubiquitous presence of N in these compounds, such an effect
might have also involved the oxidation of lignins to quinones in the presence of
amino compounds (see Stevenson, 1994 for more detail) and/or reactions with N-
containing nucleophiles. In support of these hypotheses is a general decrease in
DBE-O of the CW extracts, indicating a higher degree of oxygenation of this frac-
tion (Fig. 5.3)), referred to as fulvic acid fraction (Stenson et al., 2003). In this
context, Perdue and Ritchie (2003) reported the C oxidation state of humic sub-
stances to range +0.25-0.33 with respect to their precursors, having an overall C
oxidation state of -1. Considering an initial oxidative step, this would correspond
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Figure 5.6: van Krevelen diagram of all compounds revealed in pre-incubation, non-resin
treated hot water extracts across different land uses. Designated areas were approximated
from literature and correspond to: 1. lipids, 2. proteins, 3. amino sugars, 4. carbohy-
drates, 5. condensed hydrocarbons, 6. lignin, 7. tannins. The color code corresponds to
the classes defined according to Rivas-Ubach et al. (2018).

to greater O-functionalized unsaturation of the transformed material, without frag-
mentation of the C backbone. This might explain the relatively narrow window of
MW observed for CW and HW extracts.

For both CW and HW extracts, the location of phytochemical oxyaromatics
resolved by the HILIC(n) within the van Krevelen plot with O/C 0.2-0.4 and H/C
~(0.9 suggests that lignin was their common source. Supporting evidence is given by
the presence of well documented lignin derivatives such as 4-hydroxybenzoic acid,
4-hydroxybenzaldehyde, 4-hydroxy-3-methoxycinnamaldehyde, trans-cinnamic and
p-coumaric acids (Waksman, 1932; Whitehead, 1964; Kononova, 1966; Mansell
et al., 1974; Boerjan et al., 2003; Dai et al., 2018; Takada et al., 2018), as well
as quinones (e.g. 2-methyl-1,4-benzoquinone), all products of lignin degradation
and redox reactive components of humic substances (Senesi, 1990; Newman and
Kolter, 2000; Cory and McKnight, 2005).
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Phytochemical oxyaromatics, along with not matched compounds, also spanned
the adjacent region of the van Krevelen diagrams commonly assigned to condensed
aromatic hydrocarbons and resolved in the positive ionization mode. This was
consistent with the presence of N in their structure (Fig. [5.4, C.18 and |C.19),
suggesting a potential mechanism for its preservation (Hsu and Hatcher, 2005) or
stabilization on soil mineral surfaces (Ohno et al., 2010).

An interesting area populated by not matched compounds in both CW and
HW extracts with an O/C = 0 indicated a large proportion of non-oxygenated,
low MW compounds varying from highly unsaturated, condensed hydrocarbons
(H/C<1.5) to fully saturated molecules (H/C>2). Whilst most of these compounds
remained unknown, some were identified as (amino) benzothiazoles and dibenzy-
lamines (H/C<1.4, Table [C.6), reported as either micropollutants with potent an-
timicrobial activity (Xiao et al., 2016) or bacterially produced fungistatic volatiles
(Zou et al., 2007), adenine (H/C = 1), or cyclic amines (e.g. 2-ethylpiperidine,
H/C = 2.1, Table C.6) possibly derived from heteroaromatization of aliphatic
imines. Clearly, the presence and impact of these and similar compounds on WEOM
biodegradation processes is not inconsequential, as partly revealed by the van Krev-
elen post-incubation plots (Fig. (C.18 and (C.19), and thus requires more investiga-
tion.

Lipids and lipid-like moieties overlapped in the area largely populated by pep-
tides and amino-N. Lipid biomarkers have been suggested to be used as tracers
of SOM biogeochemical dynamics due to their selective preservation potential and
structural specificity (von Liitzow et al., 2007; Filley et al., 2008; Pisani et al.,
2014), whereas amino-N compounds are known for their ease of biodegradation and
reutilization for biological production. Amino sugars contributed only to a minor ex-
tent to the total WEOM pool and included D-glucosamine, DL-2-aminoadipic acid,
N-acetyl-D-mannosamine, 2-acetamidoglucal, glycerophosphocholine, neuraminate
and another 57% of amino sugar-like compounds. Similarly, the abundance of car-
bohydrates (O/C>0.8 and 1.65>H/C<2.7, Fig. [5.6) was relatively small, which
would have been expected for soils collected in early spring, indicating that they
have been depleted during the winter period.

Resin treatment changes revealed by the HILIC chromatography confirmed that
the bulk of HWEOM comprises of low MW, relatively unsaturated N-bearing do-
mains and saturated N compounds, alluding to the proportion of not matched, ox-
yaromatic, and peptide-like compounds (Fig. 5.3, 5.4, |C.16, C.17, C.19). However,
the C18 chromatography emphasized the relevant contribution of small uncharged
or protonated, relatively unsaturated N compounds comprising the HWEOM sub-
fraction isolated by the resin treatment. In contrast, the abundance of low MW,
N compounds revealed by both chromatographies in the post-resin treated CW
sub-fraction suggested that these compounds comprise a larger proportion of the
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CWEOM, and that the changes in WEOC concentration following the resin treat-
ment related to only a specific fraction of the whole extract, without significantly
altering the composition of the medium. According to fluorescence measurements,
such a fraction would refer to the fulvic-like fraction, comprising of highly carboxy-
lated, polymeric units, identifiable within the lignin region. However, reasons for
the overall poor exchange of compounds revealed under the HILIC(n) in the CW ex-
tracts are not obvious, but one explanation might consider the pH variability among
extracts from different land uses with respect to the pKa of these compounds or,
for instance, the lack of ionization of hydroxy groups on alyciclic compounds.

Post-incubation changes revealed by the HILIC chromatography suggest the
utilization of lignin-derived compounds from all extracts. In fact, the charac-
teristic lignin biomarkers were no longer present in the post-incubation extracts,
with exception of 4-hydroxybenzaldehyde, and partly 4-hydroxybenzoic acid, re-
covered in all fractions of grassland and no-tillage soils. This is in contrast with
the opinion regarding lignins as refractory compounds (D’Andrilli et al., 2013) and
suggests their dynamic involvement in biodegradation pathways. Indeed, both aer-
obic and anaerobic degradation of lignin-monomers have been demonstrated (e.g.
Fuchs et al., 2011). This suggests that an appreciable proportion of compounds
revealed by the C18(p) chromatography in the lignin region, not identifiable as
lignin-derived, is either resistant to biodegradation or likely represents newly syn-
thesized by-products of microbial activity (e.g. post-incubation, post-resin treated
HW extracts in Fig. (C.17). Circumstantial evidence alludes to the effect revealed
by fluorescence EEMs, mainly referring to the mean increase in post-incubation
fluorescence intensity normalized per unit WEOC (Fig. (C.4/and (C.5). Accordingly,
one would also assume a relationship between small hydrophilic neutrals, positively
ionizable WEOM compounds and fluorescing moieties. Earlier studies reported the
presence of carboxylic-rich alicyclic molecules (CRAM, Hertkorn et al., 2006) along
with nonprotonated carbon centers in aromatic heterocycles and nonprotonated
quaternary carbon (Gao et al., 2016a; Cao and Schmidt-Rohr, 2018), associated
with substitution, branching, and cross-linking occurring during humification (Mao
et al., 2007). Their occurrence has been attributed to, respectively, progressively
demethylated, terpenoid-like molecules (Leenheer et al., 2003; Hertkorn et al., 2006),
tannins and tannin-like structures (Kogel-Knabner et al.; 1991), but also aromatic
amino acid residues, such as those of tyrosine and phenylalanine (Glick, 2009),
and N-containing alkyl-substituted aromatic heterocycles (Mao et al., 2007). These
compounds, which have been conferred recalcitrance (Kogel-Knabner et al., 1991;
Hertkorn et al.; 2006), overlap with the lignin region of the van Krevelen diagram
(Hertkorn et al., 2006; D’Andrilli et al., 2013) and may be, therefore, linked to
the proportion of undefined, relatively unsaturated, post-incubation compounds re-
vealed mainly by the C18 chromatography in the current study. Complementary
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analyses, such as 13C solid state and *H NMR, and further investigation are neces-
sary to confirm these ideas and the role of these and simile structures in WEOM
biodegradability studies.

Contributing to the pool of low molecular weight, unsaturated compounds present
after the incubation were (N-containing) lipids and (condensed) phytochemical ox-
yaromatics, but also peptides and/or protein-like compounds (saturated), which
would have contributed to the residual fluorescence intensity in both non- and post-
resin treated extracts. Of note is the increase, in the post-resin treated (especially
HW) samples, of compounds in the lipid region, which has been also associated
with CRAM-like structures (DiDonato et al., 2016).

Although these van Krevelen representations with N-bearing compounds might
appear oversimplified, they provide a useful indication of the WEOM forms involved
in biodegradability processes. The major classes emerging in this study, according
to the multidimensional stoichiometric constraints classification approach defined
by Rivas-Ubach et al. (2018), were further investigated.

5.4.4 Peptides or nonpeptides?

The large proportion of compounds classified as peptides revealed in both CW
and HW extracts indicates a large contribution of high microbial activity and mi-
crobial biomass turnover in the formation of WEOM (Kogel-Knabner, 2006). In
the CW extracts, the bulk of these compounds comprised the post-resin treated
sub-fraction, supporting the idea of the microbial origin of this sub-fraction (see
Chapter [4). However, their low affinity for the anion exchange resin in the CW
extracts has been questioned, as for many, their retention due to carboxylic groups
would have been expected. A dominant peak corresponding to betaine (Table C.6)),
a quaternary ammonium compound, occurred in both non- and post-resin treated
CW extracts of all land uses. Microorganisms accumulate betaine in response to
osmotic stress conditions, such as soil drying (Warren, 2014 ), thus its large presence
in CW extracts might have occurred following cell lysis (Schimel et al., 2007) or
release following soil rewetting (Halverson et al., 2000; Warren, 2013a). Its plant
origin and release as an osmoprotectant cannot, however, be excluded. Goldmann
et al. (1991) have shown that soil bacteria, and in particular Rhizobium sp., are ca-
pable of utilizing exogenous betaines as a source of C and N during osmoregulation.
However, the mechanisms supporting betaine biodegradation as a readily available
WEOM source cannot be fully confirmed by the present study, given that it has been
consistently found in the post-incubation extracts of the post-resin treated, but not
non-resin treated CW and HW fractions. Further confirmation of its likely micro-
bial derivation is, indeed, given by its presence in both non- and post-resin treated
HW extracts, resulting from cell lysis at high extraction temperatures (Sparling
et al., 1998).
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Other osmolytes, corresponding to ectoine (Table (C.6), a pyrimidine derivative
(Lippert and Galinski, 1992), and L(-)-carnitine (Table C.6), also a quaternary am-
monium compound, were identified within the same class in pre-incubation extracts.
While L-carnitine was found in all extracts, ectoine was mainly present in non- and
post-resin treated CW extracts of all land uses. In addition to their osmoregula-
tory function, these compounds have also been identified as C and N sources for
bacterial cellular functions in both aerobic and anaerobic environments or as final
electron acceptors (Talibart et al., 1994; Meadows and Wargo, 2015). This is con-
sistent with their utilization observed in the current study and likely explains the
post-incubation occurrence of betaine in post-resin treated extracts as a result of
an uncomplete L-carnitine metabolization (Meadows and Wargo, 2015). Following
this pathway, L-carnitine is used as a N source, following serine deamination to
pyruvate and ammonia. This is in agreement with the complete mineralization of
betaine in non-resin treated CW and HW extracts, and suggests the contribution
of quaternary ammonium compounds to the WEOC,,,;, and Min N pools (Fig. 4.1
and B.4). In contrast, ectoine assimilation and utilization follows a different path-
way, with COs ultimately released and no ectoine-derived metabolite accumulation
(Talibart et al., 1994).

Similarly, crotono-betaine (Table (C.6), a betaine-fatty acid derivative, was also
not retained by the resin treatment of both CW and HW extracts, likely due to the
protonation of its zwitterionic structure at low pH and the presence of quaternary
ammonium groups (Table C.6). Such a compound is another known intermediate of
the L-carnitine metabolism in microorganisms, further acting as electron acceptor
under anaerobic conditions and absence of nitrate (Roth et al., 1994). When lacking
other readily available C sources, such as glucose or succinate, bacteria adapted to
these conditions (e.g. E. coli) utilize betaine derivatives under coordinated induc-
tion (Collins et al., 1997) to satisfy their metabolic needs.

Recent studies conducted by Warren (2013a,b) showed that quaternary ammo-
nium compounds in sub-alpine grasslands and wheat seedlings were among the top
10 most abundant N compounds. Nevertheless, their impact on WEOM cycling has
been largely overlooked (Warren, 2019). Although their net fluxes were shown to be
several magnitudes smaller than rapidly degradable amino acids (e.g. alanine) us-
ing laboratory incubations, their cycling in soils exposed to environmental changes,
such as fluctuations in soil water content, may be considerably larger (Warren,
2019). The results presented here, thus, warrant their inclusion in WEOM studies
and invite further investigation of their impact on WEOM mineralization.

Both CW and HW non-resin treated extracts comprised of L-amino acids (me-
thionine, proline, phenylalanine, valine, asparagine, threonine, tyrosine, aspartic
and glutamic acids) and L-enantiomers of small di-peptides (e.g. alanyl-proline,
glycyl-proline, glycyl-phenylalanine, alanyl-leucine, isoleucyl-alanine, isoleucyl-
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glutamine, isoleucyl-serine, leucyl-valine, leucyl-alanine, leucyl-asparagine, pro-
lyl-isoleucine, seryl-leucine, S-homoalanyl-3-homoleucine), generally utilized over
the short-term incubation. However, an inconsistent post-incubation permanence of
proline (CW), alanyl-proline (HW), glycyl-proline (CW and HW) and seryl-leucine
(CW) was noted in the non-resin treated extracts, regardless of land use. For in-
stance, the preservation of proline, a well recognized osmoprotectant (Csonka, 1989;
Kempf and Bremer, 1998) of several bacteria (e.g. Bacillus sp. and Rhizobium sp.
under drought stress and salt resistance, Gloux and Le Rudulier, 1989; Chen et al.,
2007), might indicate a regulatory mechanism for microbial support in adverse
conditions and selective utilization. Further, strong electrostatic (Biedermannova
et al., 2008) and hydrophobic (e.g. Zang et al., 2000) interactions with WEOM
aromatic moieties favored by its structural features (e.g. heterocyclic structure)
or intrinsic functional properties (see Redmile-Gordon et al., 2015 and references
therein) cannot be excluded. Interestingly, DL-phenylalanine was identified in only
pre-incubation non-resin treated CW extracts and conversely in post-incubation
non-resin treated HW extracts. These results suggest that pathways of biosynthe-
sis and biodegradation are driven by the microbial nutrient partitioning in response
to the composition of the surrounding media, possibly involving different microbial
co-workers. It is noteworthy the L- configuration of nearly (if not) all amino acids
and peptides, suggesting their relatively recent formation, given that racemization
to their respective D-enantiomers is a slow process resting on both biotic and abi-
otic processes (Amelung, 2003). A small fraction of D-amino acids in soils also
originates from bacterial peptidoglycans, hence their absence in the extracts hereby
investigated may be also due to plant uptake at soil solution concentrations (Hill
et al., 2011). Although these hypotheses still need to be confirmed (e.g. Amelung,
2003), they align with the idea of a more recent, microbial origin of the post-resin
treated sub-fraction (Chapter 4).

Indeed, most of the amino acids and peptides were also found in the post-resin
treated CW extracts (with exception of e.g. leucyl- and isoleucyl-alanine), yet only
tyrosine and a few peptides were not retained by the resin treatment of HW extracts
(e.g. alanyl-proline and some proline- and (iso)leucyl-bearing ends). These general
patterns, observed in Fig. 5.1, were likely due to the isoelectric point of amino
acids and peptides at the pH of CW and HW extracts of the different land uses (see
Table 4.3 in Chapter 4). These few oligopeptides revealed in the post-resin treated
HW extracts consistently occurred in both post-incubation CW and HW post-resin
treated extracts of at least one land use. Their poor involvement in biodegrad-
ability was partly reflected in their non-resin treated counterparts. Isoleucine, for
instance, has been recognized as part of fulvic acids in NMR studies conducted by
Mao et al. (2007); tyrosine might have been involved due to nonprotonated aro-
matic structures, as discussed earlier. However, further investigation is needed to
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clarify the controls of their utilization in the soil solution. In addition, although
the presence of tyrosine has not been clearly observed in the fluorescence EEMs,
its involvement in the emission blue shift (C-M peak) cannot be excluded. These
findings support the hypothesis that the pathways of soil C and N utilization will
be regulated by a suite of low MW peptides actively involved in WEOM biodegra-
dation (Farrell et al.,; 2013) and is in agreement with recent studies re-appraising
the likely underestimated size of this pool (Farrell et al., 2011). More work on the
factors affecting the molecular characteristics, hence solubility and concentration of
small peptides in soil water is, therefore, essential.

In addition to quaternary ammonium compounds and protein amino acids, non-
protein amino acids were involved in the utilization of compounds classified as pep-
tides (Fig. 5.1). Some of them included important microbial biomarkers, such as
DL-a,e-diaminopimelic acid (DAP, Table |C.6), occurring specifically in bacterial
cell walls (Stevenson, 1994), and its analogs (e.g. 4-methylene diaminopimelate
and (25,3R,65)-2,6-diamino-3-hydroxydiaminopimelate, Auger et al., 1996) found
in both CW and HW non-resin treated extracts, as well as after the resin treatment
of CW extracts. While their utilization was most likely involved in the reconstruc-
tion of cell wall peptidoglycans, L-lysine formation ensuing decarboxylation or a
potential microbial inhibition by DAP analogues (Auger et al., 1996) can be con-
sidered in the WEOC,,,;,, patterns observed. In spite of this, their presence confirms
the microbial signature of the post-resin treated CW sub-fraction. However, it can
only be speculated upon that such a CW sub-fraction derives from the microbial re-
processing of dead cell components and debris, in contrast to the non-resin treated
HW extracts, where these compounds would have been “artificially” released with
high extraction temperatures. In fact, dialanine, a component of the peptidoglycan
backbone (Hill et al., 2012), was detected, and utilized, in non-resin treated HW
extracts only.

A large proportion (~56%) of compounds included in the peptide class and in-
volved in biodegradation processes remained, however, unidentified, and only some
estimated structural features were further analyzed.

5.4.5 A closer look at the character of “not matched”
compounds

Although the present study did not aim to quantify the contribution of different
biochemical classes to the WEON pool, it is clear that a large proportion of WEON
comprised the, hereby defined, not matched class (Fig. |C.18 and (C.19). Both non-
and post-resin treated CW and HW extracts comprised of nucleobases (i.e. adenine,
guanosine, cytosine, hypoxantine, Table |C.6). It was previously hypothesized that
microorganisms release these compounds (Bacillus sp.) as a strategy for cross-



5.4 Discussion 147

feeding of other heterotrophs to reduce substrate competition (Baran et al., 2015).
This hypothesis is well aligned with the occurrence of e.g. adenine in both pre-
and post-incubation non-resin treated HW extracts and its disappearance from
post-resin treated HW extracts after the incubation. Baran et al. (2013) reported
the ability of some bacteria (E. coli and S. oneidensis) to grow on adenine (as
well as the other nucleobases here listed) as either a C or N source. Accordingly,
lacking other energetically viable nutrient resources (e.g. amino-compounds and
peptides), such as in post-resin treated HW extracts, microorganisms would have
utilized nucleobases for their sustainment, with consequent release of COy and N
assimilation.

In contrast, some of these compounds were still found in the post-resin treated
CW extracts. In support of this hypothesis is the presence of (S)-ureidoglycine (Ta-
ble C.6)), revealed only post-incubation, yet in both CW and HW post-resin treated
extracts. (9)-ureidoglycine is a nonstandard a-amino acid directly derived through
the degradation of allantoate formed during purine catabolism (ureide pathway).
Such a pathway aims at the mobilization of the ring N for further assimilation by
plants (e.g. A. thaliana) and microorganisms (e.g. E. coli) (Serventi et al., 2010;
Shin et al., 2012). The process releases CO,, as well as ammonia, as a by-product of
allantoate degradation. While (.5)-ureidoglycine alludes to the mineralization of nu-
cleobases and N assimilation in the post-resin treated sub-fractions, it is questioned
why would microbes then (partly) utilize nucleobases in the post-resin treated CW
extracts comprising of readily degradable substrates, such as the amino-N pool?
One possible explanation would assume microbial substrate specialization in order
to avoid competition (Baran et al., 2015). In addition, McGill and Cole (1981) and
Qualls and Haines (1992) suggested that N-containing compounds are not selec-
tively utilized in response to N limitation, but C mineralization.

Other compounds, such as (sodiated) nitroacetamide (Table |C.6), were mainly
found in post-incubation samples of all extracts, suggesting that a proportion of not
matched compounds might have, indeed, been replenished by degradation products.
The ability of several fungi (Teramoto et al., 2004) and bacteria (Zhang and Ben-
nett, 2005) to degrade nitro-aromatic compounds has been reported (Gilcrease and
Murphy, 1995); thus it is likely that nitroacetamide derived from the reductive
degradation of nitro-aromatic compounds and acetylation of the amine products
and condensation.

Organic acids derived from the citric acid cycle (e.g. succinic acid and oxaloac-
etate) also comprised CW but also HW non-resin and post-resin treated extracts.
Some, including R(-)-citramalic acid (Table C.6), were found after the incubation of
only post-resin treated HW extracts from grassland and no-tillage soils. While some
studies have indicated the release of citramalate from root exudates of pasture and
crop legumes and grass species (e.g. Kidd et al., 2016), its post-incubation presence
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in only post-resin treated HW extracts suggests its de novo formation, possibly from
bacterial anaerobic metabolism of glutamate and cleavage of ammonia directed to
the formation of ATP (Buckel and Barker, 1974) or the synthesis of isoleucine from
an alternative pyruvate pathway by methanogenic archaea, involving acetate and
COg as C source (Ekiel et al., 1984; Howell et al., 1999). However, given that pyru-
vate was only detected in the non-resin treated HW extracts, where citramalate
formation did not occur, its formation might be directly related to oxaloacetate
(Table (C.6) utilization (Tsai, 1967; Wang et al., 2019), a hypothesis that would
need to be confirmed despite its disappearance observed after the incubations of
the non- and post-resin treated HW extracts. Nevertheless, such a result alludes to
the shortage of biodegradable C sources in the post-resin treated HW extracts and
the potential utilization of CO,, which would help to explain the lower WEOC,,,;,,
observed in this sub-fraction.

It is evident that numerous metabolic pathways and sources, including het-
eroaromatic N compounds, define the nature and fate of soil WEOM and an integral
committement is needed to enable a clearer classification of metabolites and their
identification as potential biomarkers in SOM studies.

5.4.6 Inconsistent aspects of structural determinants

The unsaturation degree of WEOM was investigated by complimentary approaches.
Given the strong dependency of DBE on N and P heteroatoms (Koch and Dittmar,
2006), C=C unsaturations were quantified by normalizing the DBE to the number
of C atoms in a molecule (DBE/C, Koch and Dittmar, 2006). Further, the contri-
bution of carbonyl unsaturations was assessed subtracting the O atoms from the
molecule’s DBE (Koch et al., 2005). Values of DBE/C were strongly biased by
the relatively large N content. A threshold of DBE/C>0.67 was set for aromatic
and highly condensed structures, yet leading to an overestimation of aromaticity
due to heteroatom unsaturations (Koch and Dittmar, 2006). In such a context, the
Al was developed to designate aromaticity through conservative constraints and a
minimum value of 0.5, including all heteroatom contributions (Koch and Dittmar,
2006). However, the assignment of this parameter to infer aromaticity might lead
to erratic conclusions. An example is given by adenine (Table (C.6), detected in
both non- and post-resin treated CW and HW extracts from all land uses, whose
AT value would be undefined, or technically zero (Koch and Dittmar, 2006). In this
case, the assumptions made by DBE/C would lead to a more appropriate interpre-
tation, i.e. aromaticity, despite the relatively high values (DBE/C = 1.2) driven
by N in the cyclic array of m-bonds. The same conclusion is inferred by DBE-O,
which ends up being a better indicator. Under these circumstances, adenine has
been regarded as a highly unsaturated compound (H/C = 1, O/C = 0), yet not
included in the classes defined by Rivas-Ubach et al. (2018), but its aromaticity
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impact within a given system might have been overlooked.

In the present study, the investigation of the group of compounds not matching
the classes defined according to Rivas-Ubach et al. (2018) involved the utilization
of a modified Al (Al,,.q), expecting a large proportion of WEOM to be comprised
of carboxyl groups (DiDonato et al., 2016). While Al,,,; works well for compounds
such as pyromellitic acid (Al,,,q = 0.67, see Table |C.6)), whose aromaticity would
have not been inferred by the conservative Al (Al = 0), neither by DBE-O (DBE-O
=0), it is largely biased by N-C m-bonds (e.g. adenine) where, likewise Al it fails to
determine aromaticity. Furthermore, large overestimation may also occur. An ex-
ample is given by (5)-ureidoglycine (Table C.6), erroneously classified as condensed
aromatic molecule (Al,,,q = 1.67) in post-incubation, post-resin treated CW and
HW extracts, or oxaloacetate (Table |C.6) recovered in both non- and post-resin
treated CW and HW extracts (Al,,,q = 0.67). In both cases, such overestimation
was also reflected by DBE/C, while correct attributions were assigned by Al and
DBE-O (Al = 0 and DBE-O = -1 and -1.5, for (S)-ureidoglycine and oxaloacetate,
respectively).

These inconsistencies led to a question as to what parameters might best repre-
sent the chemical and structural characteristics of WEOM that can explain WEOC,,,;,,.
In view of the examples discussed, the general patterns depicted by the van Krev-
elen diagrams, and the range of values for the vast majority of compounds, all
indicators were finally included in a PCA analysis, but patterns of their weighted
average, rather than absolute values, were finally investigated. However, further
work is clearly critical for an unambiguous characterization of WEOM.

5.4.7 Relationship with WEOM biodegradability

Principal component analysis confirmed large differences in the optical and struc-
tural characteristics of non- and post-resin treated CW and HW fractions. Gen-
erally, bulk extracts were characterized by a larger degree of oxygenation (CW)
and unsaturation (HW) with respect to the sub-fractions recovered after the resin
treatment, thus revealing a shift towards lower MW compounds with higher H/C
and lower O/C ratios falling into the lipid region (Ohno et al., 2010, Fig. 5.6)),
particularly in the HW extracts. These differences in the molecular structure of
the post-resin treated WEOM sub-fractions were picked up by PARAFAC compo-
nents 2 and 4, suggesting their possible olefinic and/or lipid-like structure, such as
that of isoprene and fatty acid derivatives, but also nonprotonated aromatic cores,
associated with quaternary aliphatic carbons, in contrast to condensed aromatic
and phenolic-like compounds linked to components 3 and 5 of non-resin treated
extracts. Leenheer et al. (2003) reported terpenoids (isoprene derivatives) as being
DOM precursors refractory to biodegradation. In addition, as support for some
of these hypotheses, an example of an interesting compound found in the post-
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resin treated HW sub-fraction of the current study was 1,3-di-tert-butylbenzene, a
volatile, refractory quaternary carbon, likely of microbial origin (e.g. rhizobacte-
ria strain) (see Table C.6). To date, the fluorescence properties of such compounds
and/or their interaction with surrounding fluorophores in DOM and WEOM studies
have been largely overlooked by most general humic-like definitions and aromatic
amino acids, and are, thus, understudied.

Despite their overlapping within the same region, post-resin treated CW ex-
tracts generally had higher oxygenation and lower unsaturation degrees compared
to their HW counterparts, suggesting more labile lipid structures, such as those of
short chain (<20) fatty acid derivatives (e.g. glaurin (Table C.6) or crotono-betaine,
previously discussed), likely to be microbially derived (Lichtfouse et al., 1995; Pisani
et al., 2014), but also a dilution effect from the larger proportion of labile N com-
pounds. Albeit, the contribution of more stable quaternary carbon structures (e.g.
C11H91NOS, Table|C.6) or macrocyclic polyether compounds (crown ethers) capable
of conjugation (e.g. C17H27NO4S3, Table C.6) was not excluded. With respect to
the former, no evidence of crown ethers, their origin and involvement in DOM and
WEOM studies has been found, but it is speculated these might have occurred as a
result of humification processes (e.g. via synthesis of Schiff bases). There remained,
however, in both post-resin treated sub-fractions, some exceptions of oxygen-free
heteronuclei, such as nucleobases previously discussed.

There remain open questions as to what caused a comparable WEOC,,;,, re-
sponse in non- and post-resin treated HW extracts in lieu of the differences ob-
served and what would have determined a larger WEOC,,,;,, in post-resin treated
CW extracts given the relatively similar composition of CW extracts.

The variability in WEOC,,,;, was strongly related to compositional differences
between CW and HW extracts (Fig. 5.5), mainly determined by their post-resin
treated sub-fraction. PARAFAC components were the most prominent factors
of this separation, and in particular component 1, which was almost equally ex-
pressed in both non- and post-resin treated HW extracts in the order pasture>no-
tillage>fallow (Fig. 5.5 and supporting Tables |C.2 and |C.3). This suggests that
the largest fluorophore in the bulk HWEOM comprises of uncharged or protonated,
unsaturated and poorly oxygenated moieties whose origin is strongly influenced
by plants and associated microbial activity. These features, with the exception of
the molecule’s net charge, were in large contrast with those enhancing WEOC,,,;,,.
It could be, therefore, concluded that an analogous effect resulted from the low
oxygenation and high unsaturation degree of components 2 and 4, and the rela-
tively more oxygenated, but largely aromatic components 3 and 5, likely related to
the structures previously discussed. Although relatively low, the PARAFAC scores
revealed by components 2 and 4 in the post-resin treated HW sub-fraction were,
indeed, comparable or even higher than those revealed by components 3 and 5 in
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the bulk HW extracts (Tables |C.2| and |C.3)), suggesting that their impact on the
WEOC,,;, is worthy of attention.

Interestingly, SUVAssy, Al,.q and DBE/C had little if any effect on this sepa-
ration, in contrast to DBE-O and absgs,, suggesting that the unsaturations inferred
by the former were largely biased by the degree of oxygenation (i.e. C=0 groups),
which was much larger in the CW extracts. This is in line with the higher SUVAgs4
values observed in the non-resin treated CW extracts (see Chapter 4 and supporting
Fig. |C.1) and their progressive humification previously discussed. Another obser-
vation is the position of the C-peak, assigning a humic-like fingerprint to WEOC,
likely derived from plant and SOM sources. This peak was consistently present
in the non-resin treated CW and HW extracts, while the blue shift that was at-
tributed to a transition (C-M) towards an M-peak (but not corresponding to an
M-peak as defined by Coble, 1996) appeared mainly in the post-resin treated HW
extracts, suggesting that: (i) there is an unexplained component (component 67)
underlaying the C-peak, which is characteristic of CW extracts and masked by
phenolic moieties; (ii) the shift towards shorter emission wavelengths (C-M) and
higher H/C ratios designates the microbial origin of PARAFAC components 2 and
4 in post-resin treated HW extracts. However, while the position of the C-peak
remained unaltered in the post-resin treated CW extracts, likely due to residual,
poorly fluorescing structures, it can only be associated with enhanced WEOC,,,;,
for the low fluorescence intensities, not for its presence (Fig. |C.2).

Yet, given the compositional similarity of these sub-fractions with the bulk CW
extracts, it was suggested above that the resin-depleted fulvic fraction represented
only a limited, but high C content CWEOC proportion. Assuming that this was the
case, is it possible that such a smaller proportion of the CWEOM caused such large
differences in WEOC,,,;, (Fig. |4.1)? Even if the same labile C source (e.g. amino-
compounds and peptides) was present in both fractions, and there was much less C
per unit biomass in the post-resin treated sub-fraction, indicating that this source is
only a small proportion of the total available C, it is clear that microorganisms likely
elected different metabolic strategies to satisfy their needs. This would point at the
utilization of only a preferred source according to elementary flux modes (Wortel
et al., 2014), for which microorganisms will gain the highest energy production.

It was previously hypothesized (Chapter 4) that there was a close coupling of C
and N in WEOM moieties of the sub-fraction remaining following the resin treat-
ment and a regulatory role on the mineralization response as a function of secondary
products from de novo synthesis or biodegradation processes. The proportional
WEOC and WEON utilization (Fig. B.6) and the higher WEOC,,,;,, in the post-
resin treated CW sub-fraction likely reveal the co-utilization of the sources remain-
ing after the resin treatment. In contrast, the utilization of the non-resin treated
CW fraction suggests that the most energetically viable source (e.g. peptides) is
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utilized first, which would support the hypothesis (Chapter 4) that the WEOC,,;,
of the CW extracts is mainly driven by its post-resin treated sub-fraction. Once
an optimal microbial growth rate is established, they utilize the secondary sources,
a phenomenon referred to as diauxie (Monod, 1947), which in this case appears to
be effective in the pasture and no-tillage soils (Fig. |5.1)), with consequent release of
excess NHyt (Fig. B.4). In view of the recent findings of Wang et al. (2019), it may
be that these sources (in the bulk extract) derive from a similar metabolic pathway,
as opposed to the substrates isolated by the resin treatment, which may designate
the utilization of sources from different metabolic pathways. It has already been
shown that the latter case would lead to a higher microbial use efficiency than when
utilizing those sources individually (Hermsen et al., 2015).

The same concept would then be applied to the patterns observed in the bulk
HW extracts, confirming the hypothesis that small peptides (and other easily
degradable sources, such as quaternary ammonium compounds) are prioritized
within a large amount of available C. This is in line with the findings of Farrell
et al. (2014), who demonstrated that the soil microbial uptake of peptides is driven
by C rather than N excess. But these results also infer that phenols and other
compounds falling under the not matched category, including organic acids and
heteroaromatic N, are subsequently utilized (Fig. 5.1). The larger proportion of N
with respect to the CW extracts led to a larger amount of excess NH, ' released from
microbial metabolism. There remains that the previously hypothesized, optically
active and less oxygenated compounds of the post-resin treated HW sub-fraction are
only partly and least utilized, mainly involving N-containing moieties, such as nu-
cleobases or N-containing lipids (Gasparovi¢ et al., 2017). Indeed, the small fraction
of amino-compounds classified under the peptide category in the post-resin treated
HW extracts does not exclude a margin of error in the classification adopted (e.g.
crotono-betaine), given the large overlapping of these compounds with lipid-like
moieties on the van Krevelen diagrams.

5.5 Conclusions

Linking C and N cycles is crucial for predicting and controlling nutrient use effi-
ciency, losses and environmental threats. This study builds upon the well recognized
view of microbial metabolic adaption to the available substrate showing that the
integral composition of the medium, rather than its fraction, may explain microbial
utilization and the related mineralization response. Low molecular weight peptides
and quaternary ammonium compounds were attributed an important role in reg-
ulating metabolic pathways of even more refractory, aromatic moieties, possibly
serving as a readily available C source which then permits the mobilization of N
from heterocyclic biomolecules. Although a large proportion of resolved molecules



5.5 Conclusions 153

remains undefined and an even larger proportion remains completely unknown, by
means of fluorescence spectroscopy and structural determinants, such as heteroatom
to C ratios, DBE and derived parameters, it was possible to estimate a substan-
tial proportion of highly unsaturated and/or aromatic compounds participating
in biodegradability processes. In spite of this, given the inconsistencies discussed
around some of these aromaticity parameters, advancements in the prediction of
this character are central to the interpretation of the ambiguous nature of WEOM,
as well as the identification of new molecules, whose proportion in WEOM remains
appreciably large. Here, the inclusion of Kendrick mass defects and complimen-
tary structural analyses, such as *C solid state NMR and FTIR, in a framework
for structural definition, would greatly improve the understanding of compositional
changes.

PARAFAC of fluorescence EEMs enabled components of different nature to be
distinguished, which would have been otherwise masked under the same peak region.
For a large space of features, such as that of EEMs, estimating the model parame-
ters at a given number of components greatly reduced the complexity of further data
mining and interpretation. However, the current algorithm implementation requires
more attention in regard to non-negativity constraints and processing tools for a
robust data mining approach and a wider use. Nevertheless, the use of data mining
has shown the ability to identify an appropriate number of components able to ef-
fectively describe WEOM'’s quantitative and qualitative characteristics commonly
assessed by means of diverse analytical and spectroscopic methods (e.g. UV ab-
sorbance) and biochemical assays. It, thus, represents a promising and valuable tool
capable of providing distinctive information on WEOM from different sources and
fractions and ultimately, combining those with its biodegradability potential. The
advantage of using data mining applications on rather powerful measures, such as
fluorescence EEMs, is to reduce laborious and lengthy laboratory incubations and
allow for rapid quantitative and qualitative characterization, while reducing the
number of samples and analyses and ameliorating resource management. In this
context, the inclusion of structural features might be an interesting tool for struc-
tural predictions and the characterization of broadly defined WEOM fluorophores.

The present work also showed that anion exchange was able to separate, with
a certain level of confidence, a WEOM sub-fraction of microbial origin, likely to
be comprised of low molecular weight zwitterionic compounds, quaternary carbon
moieties, and relatively unsaturated, lipid-like structures. It is noteworthy that
this method requires adjustments in order to account for pH differences among
soil samples and its effect on molecule’s reactivity. Further work should better
characterize these compounds and investigate their involvement in biodegradability
patterns and their interaction with the large suite of broadly defined, anonymous
WEOM constituents. This could be achieved by performing isotope-labeling studies
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to link the microbial communities involved to WEOM’s metabolomic profile in order
to gain valid understanding of formation and utilization pathways. An in situ study
would also reveal the effect of sorption on soil minerals or aggregate preservation on
microbial activity and community structure in response to variations in substrate
availability.

Supplementary material

Panel plots of the variables included in the data mining approach (Fig. |C.1)), EEM
spectra averaged across each combination of land use, extracted fraction, resin
treatment and pre- or post- incubation time (Fig. |C.2-C.5), RF and LWL-GPD
algorithm comparisons of RMSE (Fig. |C.8-C.11) and model regressions (Fig.
C.12-C.15), van Krevelen diagrams (Fig. (C.16, C.17,|C.18 and |C.19)), mean scores
of PARAFAC components and weighted parameters included in PCA (Tables C.2,
C.3,|C.4 and (C.5)), PCA loadings (/C.20), structural properties of some compounds
(Table |C.6), and LC-MS compound identification workflow are presented in Ap-
pendix |C. In addition, the van Krevelen diagrams of reference extracts (i.e. peat
and Suwannee River HA), which were not specifically discussed in the manuscript,
are shown in Fig. (C.21-C.25/



Chapter 6

Corollaries and Implications
for future work

“For the past century or two, nothing has mattered more for soils than their re-
lations with human communities, because human action inadvertently ratcheted up
rates of soil erosion and, both intentionally and unintentionally, rerouted nutrient
flows.”

John R. McNeill and Verena Winiwarter

Behind the scenes of soil drying and rewetting or land use effects, the present study
clinched the role of DOM/WEOM composition on the ensuing biodegradability
patterns. The suite of analytical methods adopted, ranging from more traditional
oxidative and colorimetric methods, to more powerful spectroscopy and sophisti-
cated chromatography and mass spectrometry, enabled the biodegradability profile
of DOM and WEOM fractions, assessed by laboratory incubations, to be related to
the characteristics of their components within a framework of prediction tools that
do not rely on modeling assumptions. The objectives and outcomes have been de-
scribed in the individual Chapters above; hereafter, a synthesis of the implications
of these outcomes with respect to future work is discussed.

Chapter 3| showed that DOM properties vary between soil leachates and ex-
tracts when the soils have been kept at field capacity or air-dried. While air-drying
strongly enhanced the bulk of the DOC released with respect to the other moisture
treatments, advancing drought levels determined the rate of change in the amount
of DOC sequentially leached: a steady decline in the grassland soil and inconsistent
variations in the arable soil. These inconsistencies precluded the establishment of
a relationship with DOC mineralization in the arable soil, whereas in the grassland
soil, mineralization concurred with a progressively lower amount of DOC released
with sequential soil leaching and an increase of the aromatic character, inferred
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by means of specific UV absorption at 254 nm (SUVAgs,). Despite an overall fast
short-term biodegradability of DOM, arable and grassland soils responded differ-
ently to the increasing proportion of aliphatic DOM released upon rewetting of
progressively drier soil conditions. These results reiterate the role of soil struc-
tural changes, microbial interactions or changes in soil redox conditions brought
about by different land uses in the resultant effect of soil moisture conditions on
the dynamics of DOM release and mineralization. Further, they show the need for
a better understanding of the biochemistry of DOM in relation to its reactivity and
responsiveness to different land uses. Ultimately, they point to the need to invest
more research in optimizing extraction methods and means of storing soil samples
in order to avoid over- or under-estimations of DOM’s size, minimize artifacts of
its qualitative assessments and, therefore, abridge the still widespread discrepancies
between laboratory and in situ, field experiments.

The results presented in Chapters 4 and 5 confirmed the usefulness of widely
adopted fluorescence and UV spectroscopies in DOM characterization studies. Flu-
orescence fingerprint indices, most commonly utilized in studies on aquatic DOM,
gained increasing interest for their application in soil DOM studies (e.g. Fernandez-
Romero et al., 2016), due to the correlation established between the exogenous DOM
in such environments and DOM leached from soils, hence the general consistency
of the values reported. In this study, values of FI corresponded to those originally
found in the literature, including those from either river and wastewater isolates or
compost and soil extracts (e.g. Chen et al., 2003; Antizar-Ladislao et al., 2006; Jaffé
et al., 2008; Rodriguez et al., 2014; Ferndndez-Romero et al., 2016). This was likely
due to the dependency of the FI on shifts in the peak emission wavelength, thus
enabling a microbial signature to be assigned to the WEOM sub-fraction isolated
by anion exchange resin treatment, as opposed to plant and highly decomposed
SOM constituents characterizing the bulk of the WEOM. Supporting evidence for
this distinction was further provided by LC-MS profiling, promoting fluorescence
indices as being valid in soil DOM and WEOM research. Their value in providing
a “snapshot” of the origin and the degree of WEOM humification obtained with
different extraction methods, thus, enables comparisons between studies and likely
overcomes methodological impacts on the fractions studied.

More controversial was the information gathered from SUVAgs,, due to the va-
riety of structural configurations involved. Nevertheless, the results presented in
Chapter 3 clearly show large differences brought about by soil drying or sequential
leaching, substantiating its power to summarize the abundance of resonant struc-
tures and conjugated systems. In Chapter 4, this was further confirmed by the
strong positive correlation between SUVAss, and the shift to low intensity fluores-
cence emission at 465 nm excitation (Milori et al., 2002), characteristic of molecular
entities with extended 7w-systems, but also heterosubstituted aromatic structures
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forming H-bonds with the medium. These changes suggested a greater degree of
decomposition of the CWEOM fraction with respect to the HWEOM fraction, the
latter displaying a much larger content of phenolic C, but lower emission intensities
at 465 nm excitation.

However, inconsistent relationships between SUVAss, and DOM biodegradabil-
ity among leachates, drying levels or land uses call for a better designation of this in-
dicator. This will help to avoid misleading interpretations. For instance, the results
presented in Chapter 5 suggested that the correlation between SUVAgs,, DBE/C
and Al,,.q, reputed as aromaticity indicators, was largely biased by the degree of
oxygenation, as indicated by the impact of oxygen on the degree of unsaturation
(DBE-0), involving carboxyl and carbonyl functional groups often, but not always,
associated with aromatic structures (e.g. Sleighter and Hatcher, 2008). Emerging
research has been emphasizing the presence of relatively stable, O-functionalized
CRAM and quaternary carbon structures, likely derived from humification pro-
cesses of plant residues and microbial debris (Hertkorn et al., 2006; Mao et al.,
2007; DiDonato et al., 2016; Gao et al., 2016a; Cao and Schmidt-Rohr, 2018).

This may explain the inconsistent (Chapter |3) or unexplained (Chapter [5) as-
sociation between SUVAss, and DOM mineralization. Therefore, the structural
variability held under the absorbance at 254 nm needs to be complemented with
more recent *C NMR and MS findings, to fully leverage the information provided
by this simple indicator in DOM and WEOM biodegradability studies. From this
perspective, the more conservative assy, was consistently inversely related to pat-
terns of mineralization (e.g. Chapter 5). Moreover, changes in a5y were strongly
described by PARAFAC components (Chapter |5)), suggesting that the primary flu-
orophores responsible for the changes in maximum fluorescence intensities within
distinct regions of EEMs (viz. broadly defined C- and M-peaks, Coble, 1996) cor-
respond to the components absorbing at 254 nm; an aspect further encouraging
the utilization of fluorescence analyses as being more informative of compositional
changes occurring during biodegradation or from environmental and management
factors.

In Chapter 5, PARAFAC of EEMs was used as an input for testing several
machine learning algorithms with the aim of identifying functionally meaningful
components capable of describing the variability in physicochemical and biological
properties of WEOM. A rather striking outcome was the power of the Random
Forest algorithm to describe the interrelated patterns of WEOM quantity, quality
and biodegradability, inferred from a number of different analyses and demanding
laboratory incubations, using the PARAFAC components from the spectral decom-
position of fluorescence EEMs. The algorithm inferred 70% of the variation in
WEOC mineralization was described by six PARAFAC components, which were
inversely associated with patterns of biodegradability and strongly reflective of a
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high degree of unsaturation, characterizing especially the HWEOM. While its uti-
lization in natural sciences for conducting biodegradability studies has only started
to gain attention, its application as a means for predictions of DOM and WEOM
biodegradability is novel. The results presented in Chapters |4 and |5, hence, show
a rather promising tool for this purpose.

In addition, this algorithm denoted the relatively weak ability of WEOM con-
centration to describe changes in mineralization, supporting the idea that C avail-
ability does not necessarily imply its biodegradability (introduced in Chapter 3
and corroborated in Chapter 4). In Chapter |4, for instance, the larger (3 to 4-
fold) amount of HWEOC compared to the CWEOC corresponded to comparable C
mineralized (32-34%), whereas small differences in the quantity of bioavailable C
remaining after the resin treatment resulted in significantly different mineralization
responses (about 20% higher in the post-resin treated CWEOC sub-fraction). In
contrast, the algorithm showed relatively strong evidence of a relationship between
the Aygs humification index (Milori et al., 2002) and the biodegradability patterns
of WEOM extracted from different SOM fractions and isolated by anion exchange
resin treatment (Chapter |4). The resin treatment distinguished an uncharged/pro-
tonated, aliphatic, more recent and likely microbially derived WEOM sub-fraction,
comprising of low molecular weight N compounds, but also quaternary carbon moi-
eties and relatively unsaturated, lipid-like structures, from the aromatic, relatively
humified and /or phenolic, lignin and SOM-derived components comprising the bulk
extracts. These results indicated a significant contribution of the aliphatic post-
resin treated sub-fraction to the overall mineralization response of the CWEOC,
but not of the HWEOC, likely driven by the mineralization of its WEON pool as
a C source in presence of less energetically viable compounds, such as phenolics.
These findings suggest that even in presence of large concentrations of bioavailable
C, microorganisms selectively utilize only the preferred source to gain the highest
energy production (e.g. Wortel et al., 2014).

Taken in isolation, the association of these differences with WEOM mineraliza-
tion was, however, not apparent. This suggested that, despite the valuable infor-
mation gleaned from fingerprinting and classification tools, generalizing upon com-
positional classes might not be sufficient to predict the microbial response, inferred
by the resulting mineralization products, given the molecular specificity of biolog-
ical systems and the diversity of communities apt to respond, or not, to a given
substrate. In this context, the irregular and heterogeneous structural definition of
humic substances certainly does not facilitate microbial decisions oriented towards
efficient enzyme allocation and energy production (De Nobili et al., 2001). Even
less can be learned from the large proportion of DOM compounds whose nature is
still poorly defined. The ubiquitous presence of N in the structure of the molecules
resolved in the present study suggested, however, that mechanisms involved in
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SOM and DOM/WEOM formation are strongly related to mechanisms of N preser-
vation. The large proportion of compounds not matching any of the designated
classes here investigated alluded to the role of lignin in SOM and DOM/WEOM
formation. Lignin derivatives and N heterocycles may, hence, provide a clue as to
new structural definitions and pathways of N mobilization, but more effort must be
invested to elucidate their contribution in shaping the “unknown” and its fate.

Quaternary ammonium compounds and small peptides represented the most
abundant WEON source in both CW and HW extracted fractions. These findings
were in line with the most recent studies arguing their contribution to the soluble
N pool has been largely overlooked (Farrell et al., 2011; Warren, 2013b; Meadows
and Wargo, 2015). While the ubiquity of these compounds has been demonstrated
and their chemical characteristics formalized, little is still known about their role in
biogeochemical cycles of C and N. Limitations have certainly derived from the fact
that most investigations on DOM and WEOM require a priori selection of standard
laboratory assays or analytical techniques, which builds upon preconceptions on the
chemistry of soil DOM and WEOM. In this scenario, the development of powerful
analytical techniques, such as LC-MS, helps pave the way for metabolomic studies,
which are clearly one avenue of future research.

Evidence suggested the greater proportion of labile N compounds and the lower
degree of unsaturation characterizing the post-resin treated CWEOM sub-fraction
was likely to be regulated by differences in land use (Chapter 5). An increasing
number of studies has demonstrated the importance of belowground C inputs to
SOM formation and mineralization (Kong and Six, 2010; Kétterer et al., 2011;
Mazzilli et al., 2015; Sokol and Bradford, 2019). The results presented in Chapter
4, and in particular evidence of the land use effect on the mineralization of the post-
resin treated CW sub-fraction (Subsection 4.1.3), are strongly in line with these
findings and advance the importance of plant inputs in shaping the size and quality
of microbial outputs, expanded upon in Chapter 5. Furthermore, for both CW and
HW extracts, and in particular for CW extracts, an overall reduction of compounds
observed in the fallow soil relative to the pasture and no-tillage soils (Chapter 5)
confirms the importance of plant inputs in WEOM quantity and composition. Thus,
an additional distinction between belowground and aboveground OM sources may
provide valuable understanding of land use and management effects (Mazzilli et al.,
2015) on DOM/WEOM formation and mineralization in relation to the qualitative
indicators promoted by the present study (e.g. Aygs).

The research presented in this thesis grounds on long-term field sites, yet valida-
tion of these emerging biodegradability proxies can only be achieved while including
them in both new and ongoing long-term field experiments, over different time scales
and along the soil profile. This would further allow apt model parametrization for
the prediction of long-term biodegradability drivers and patterns. In this context,
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the alternative approach to such predictions introduced by the present study, in
particular while being at its early stage, invites to explore its potential and value
for future research. Next, the introduction of an anion exchange resin treatment as
a practical and convenient tool for the identification and characterization of func-
tionally and structurally distinct DOM/WEOM fractions requires further method
refinement, including a better understanding of hydrophobic interactions in WEOM
by anion exchange resins and the validation of its potential on different soils from
different environments.

While attempts to identify changes in DOM/WEOM fractions focused on our
predictions of COs release from a molecular perspective, the findings presented in
Chapter 5| disclose a much more complex reality. For example, low mineralization
rates may have negative implications for plant nutrition; yet, it was observed that
aromatics can be, in fact, mineralized, demonstrating that it is not just a matter of
perceived recalcitrance. These findings urge a sharp understanding of the microbial
“multitasking” capabilities within a given context and the interactions occurring
within the suite of microbial co-workers in a given scenario, in order to predict
metabolic pathways of available substrates and their allocation. Linking microbial
community structure and enzymatic activity to the soil metabolomic profile is a
compelling challenge that must be undertaken in order to build authentic informa-
tion at the microscale for further macroscale applications, such as the development
of models of nutrient cycling across ecosystems. For such purpose, the metabolomic
profile described in Chapter 5 may contribute to the design of ad hoc experiments
for both qualitative and quantitative assessments of some target WEOM sources by
conducting tracer studies and validating the fluxes by means of some of the most
recent models developed (e.g. Wang et al., 2019). However, the introduction of
metabolomics and molecular characteristics for the development of models for the
prediction of C dynamics lies in the use of collaborative efforts and multidisciplinary
expertise. The current study shows an example.
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Table A.1l: Multivariate linear regression for SUVAss4 as a function of DOC concen-
tration (Fig. 3.5)) in leachates from an arable and a grassland soil at different 8¢ before
rewetting.

Intercept Slope
Land use 0y treatment Estimate P-value Estimate P-value
FC -1.86 0.388 15.96 <0.001
15% 30.96 <0.001 -51.21 <0.001
Arable
8% 9.21 <0.001 -8.88 <0.001
AD 6.77 0.003 -3.29 <0.001
FC 9.29 <0.001 -3.28 <0.001
15% 9.07 0.677 -5.21 0.022
Grassland
8% 7.01 <0.001 -3.41 0.884
AD 5.52 <0.001 -1.17 0.003

Model: y = 4o + ax, where y, = intercept and a = slope (R? = 0.63 and 0.85 for
arable and grassland, respectively)
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Table A.2: Multivariate linear regression for DOC biodegradability (DOC-C,,;,) as a
function of DOC concentration (Fig. 3.8a) in leachates from a grassland soil at different

fg before rewetting.

Intercept Slope
Land use 6y treatment Estimate P-value Estimate P-value
FC 271.1 <0.001 -222 <0.001
15% 186.1 <0.001 -124.4 0.001
Grassland
8% 209.9 0.001 -154.6 0.019
AD 1741 <0.001 -22.1 <0.001

Model: y = yy + az, where y, = intercept and a = slope (R* = 0.79)
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Figure A.1: Experimental drying curves of an arable and a grassland soil utilized for the
establishment of the designated fg treatments at low temperature (4-6°C) and constant
humidity. Equations: y = 2.01e™8z* - 2.99¢ %3 + 7.35¢ 7322 - 0.65z + 21.2 (R? = 1) and
y = 3.14e "2t - 1.15e7 423 + 1.54e 222 - 0.97 + 22.5 (R? = 1) for arable and grassland,

respectively.
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Figure A.2: UV absorbance at 254 nm of the pore volumes leached from an arable (a)
and a grassland soil (b) at their designated 0g. l.s.d. (o = 0.05) = 0.28 and 0.22. FC,
field capacity; AD, air-dried; PV, pore volume.
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Figure A.4: Grassland site
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Figure A.6: Infrared gas analyzer (IRGA) setup and gas sampling
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Appendix B

Table B.1: Concentration of anions in cold (CW) and hot water (HW) extracts before
(a) and after (b) the resin treatment. Values are means (n = 3); s.e.d = standard error
of differences of means; l.s.d. = least significant difference (v = 0.05).

(a) Non-resin treated extracts

Bicarbonate Nitrate Fluoride Sulphate Phosphate

(meq L) (meq L) (meq L) (meq L) (meq L)
Land use Ccw HW Ccw HW Ccw HW Ccw HW Ccw HW
Pasture 0.008 0.007 0.021 0.003 0.025 0.063 0.052 0.042 0.054 0.127
No-tillage 0.003 0.001 0.006 0.002 0.033 0.073 0.042 0.059 0.023 0.041
Fallow 0.003 0.001 0.014 0.002 0.013 0.040 0.048 0.045 0.024 0.079
s.e.d. 0.001 0.001 0.002 0 0.006 0.004 0.005 0.009 0.014 0.041
l.s.d. 0.002 0.002 0.004 0.001 0.016 0.012 0.013 0.026 0.040 0.114

(b) Post-resin treated extracts

Bicarbonate Nitrate Fluoride Sulphate Phosphate

(meg L) (meq LY (meq LY (meq LY (meq LY
Land use Ccw HW Ccw HW Ccw HW Cw HW Ccw HW
Pasture 0.001 0.003 0 0 0.013 0.021 0.005 0.002 0 0.006

No-tillage 0.001 0.001 0 0 0.010 0.030 0.001 0.003 0 0

Fallow 0.001 0 0 0 0.006 0.018 0.001 0.002 0 0.024
s.e.d. 0.001 0 0 0 0.002 0.002 0.003 0.001 0 0.001
l.s.d. 0.002 0.001 0 0 0.005 0.005 0.009 0.003 0.001 0.003
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Figure B.1: Anion exchange stoichiometry of WEOC for chloride (C17) in cold (CW)
and hot water (HW) extracts. Data points are means (n = 3) of field replicates for each
land use treatment.



Appendix B. 169

CW

30 1

25 - y =0.63x+2.7, R>=0.86

20 1

Cl” release (mg L™)

15+

20 30 40
Net anion uptake (mg L)

HW

60 1
50 -

y =0.47x-11.1, R?=0.87

40 A

Cl” release (mg L™)

30 1

75 100 125 150
Net anion uptake (mg L)

Figure B.2: Anion exchange stoichiometry of total anions (WEOC+HCO;3™ -
C+NO3~+F~+S042=+P04*") for chloride (C17) in cold (CW) and hot water (HW)
extracts. Data points are means (n = 3) of field replicates for each land use treatment.
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Figure B.3: Resin removal isotherms of cold (CW) and hot water (HW) extracts showing
the equilibrium adsorption capacity (qe), estimated as the amount of adsorbed WEOC
(mg) per unit mass resin (g), associated with the non-removable WEOC sub-fraction.
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Figure B.4: Boxplots (n = 9) showing the difference in mineral N (Min N = NO3~ +
NH4 ") before and after the 14-day incubation of non-resin treated and post-resin treated
cold (CW) and hot water (HW) extracts of a soil under three different land uses. The
upper and lower boundaries of the boxes show the 25! and 75! percentile, respectively:
the central line represents the median; the whiskers indicate the minimum and maximum
values.
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Figure B.5: Random Forest regression analysis revealing the relationship between the A5 Milori Humification Index and
WEOC,,ip, in non- and post-resin treated cold (CW) and hot water (HW) extracts.



Appendix B. 173

Extraction Treatment

100 raci A
« CW e non-resin treated
HW A post-resin treated N
§ 801
b
2
; 60 -
<l
401

30 40 50 60 70 80 90 100
AWEOC (%)

Figure B.6: Relationship between utilized WEOC (AWEOC) and WEON (AWEON)
after the 14-day incubation of cold (CW) and hot (HW) extracts. Model: y = 1.16x -
7.89 (R? = 0.71) and y = 0.452 + 37.17 (R? = 0.17) for CW and HW, respectively.
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Figure B.7: Relationship between the absorption coefficient at 254 nm (ags4) and min-
eral N (Min N = NO3~ + NHy™) for cold (CW) and hot (HW) extracts. Model: y =
0.03z + 0.41 (R? = 0.57) and y = 0.087 - 6.02 (R? = 0.94) for CW and HW, respectively.
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Figure B.8: Millenium Tillage Trial split-plot design with three replications for each
land use treatment. The main plots are laid out in an incomplete Latin square (7 rows of
3 plots). Main plot treatment: cultivation; Split-plot treatment: cover crop. Cultivations
(the first letter relates to spring time, the second letter to autumn): Nn: No-Tillage, No-
Tillage; Mm: Minimum tillage, Minimum tillage; Ii: Intensive tillage, Intensive tillage;
Mn: Minimum tillage, No-Tillage; Im: Intensive tillage, Minimum tillage; In: Intensive
tillage, No-Tillage; G/F: Grass or Fallow.
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B.1 Anion exchange resin equilibration times

A batch equilibrium experiment was conducted on cold (CW) and hot water (HW)
extracts from the MTT pasture soil to assess the anion exchange resin equilibra-
tion time allowing for the maximum WEOC removal. Triplicates of CW and HW
extracts were added with the resin (Lanxess Ionac MacroT) at a resin:extract ratio
of 1:20 and shaken on orbital shaker (80 rpm) for 2, 6, 16, 24, 48 h. The super-
natant was then filtered through a 0.45-um membrane filter and assessed for TOC
(Shimadzu Corp.).

The results demonstrated that, for the CW extracts, the equilibrium was achieved
after 2 h, with ~80% of WEOC removed (Fig. [B.9). There was no significant
WEOC uptake after 48 h (P = 0.11), when the maximal removal was 85%. In con-
trast, WEOC removal significantly increased from ~63% after 2 h up to 73% after
48 h in the HW extracts (P = 0.007). These equilibration times were accounted
for in the experiment described in Chapter 4.
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Figure B.9: Determination of resin equilibration times and maximal WEOC removal
from cold (CW) and hot water (HW) extracts. Baseline, initial WEOC concentration;
Lanxess, WEOC concentration following Lanxess anion exchange resin treatment.
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Common Description

Delivery form Cl-

Functional group Quaternary ammonium;
type 1

Matrix Acrylic

Structure Macroporous

Appearance White, opaque

Specified Data

Uniformity coefficient max 1.8
Range of size for >90 mm 0.40-1.60
vol% of all beads
Effective size d10 mm 0.50-0.65
Total capacity (delivery min. eq/L 0.85
form)
Operation
Operating temperature max. °C 80 (CI)
Operating pH range during exhaustion 0-12
Bed depth for single min. mm 800
column
Back wash bed % 10
expansion per m/h
(20°C)
Specific pressure loss kPa*h/m? (15°C) 11
kPa*h/m? (15°C)
Max. pressure loss kPa 250
during operation
Specific flow rate max. BV/h 5
Freeboard during backwash min. vol. % 80-100
Typical Physical and Chemical Properties
Bulk density for shipment | (+/- 5%) g/L 720
Density approx. g/mL 1.07
Water retention (delivery approx. weight % 63-71
form)
Volume change (CI- -OH") max. approx. % 25
Stability pH range 0-14
Stability temperature °C 1-80 (CI)
range
Storage time (after min. years 2
delivery)
Storage temperature °C -20 - +40

range

Figure B.10: Properties of the anion exchange resin used in this study. Reprinted from

Lanxess.
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B.2 Selection and calculation of the humification
index

In order to select the appropriate humification index for this study, a preliminary
inspection of fluorescence EEMs was handled within the R environment (R Core
Team, 2018). The humification index (HIX) was calculated according to (Ohno,
2002) using the ‘eemR’ package (Massicotte, 2017). The A5 (Milori et al., 2002)
was determined by fitting a locally-weighted regression (LOESS) smoother (Cleve-
land, 1979) to the emission intensities at an excitation of 465 nm, then integrating
the fit across the entire emission range (247.2 to 825.5 nm). The smoothing span in
LOESS was determined automatically for each sample via a repeated k-fold cross-
validation (CV) procedure; here, 10 repetitions of 10-fold CV were elected (Kohavi,
1995) and run via the ‘caret’ package (Kuhn, 2008, 2015).

Values of HIX were disregarded (data not shown), given the lack of fluorescence
emission at 255 nm excitation. Thus, only the results for A5 were summarized for
pre- and post-resin treatment of CW and HW extracts (Subsection 4.1.2) and plot-
ted as approximated smoother fits of the actual data via the geom_smooth function
of the ‘ggplot2’ package (Hadley, 2016).
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Figure B.11: Smoother fits and actual values for the Ags Milori Humification Index in non- and post-resin treated cold
water extracts (CWE). Intensities are in Raman units (R.U.). F: Fallow, NT: No-Tillage, P: Pasture, 1-9: sample replicates.
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Post-incubation CWE
Ases (Milori et al. , 2002)
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Figure B.13: Smoother fits and actual values for the A4g5 Milori Humification Index in non- and post-resin treated cold
water extracts (CWE) after the 14-day incubation. Intensities are in Raman units (R.U.). F: Fallow, NT: No-Tillage, P:
Pasture, 1-9: sample replicates.
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Figure C.1: Variables included in the data mining approach, showing pre- and post-
incubation changes in non- and post-resin treated cold (CW) and hot water (HW) extracts
of a soil under different land uses (Fig. a-d). Phenols (Fig. e) were not detected in post-
resin treated samples. Bars are means (n = 9) + s.d.; P, pasture; F, fallow; NT, no-tillage.
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Figure C.2: EEMs of WEOM in non- and post-resin treated cold water (CW) extracts of
a soil under three different land uses before (pre-) and after (post-) the 14-day incubation.
Each EEM represents an average across nine replicates for each combination of land use,
extracted fraction, resin treatment and incubation time. Intensities are expressed in
Raman units (R.U.).
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Figure C.3: EEMs of WEOM in non- and post-resin treated hot water (HW) extracts of
a soil under three different land uses before (pre-) and after (post-) the 14-day incubation.
Each EEM represents an average across nine replicates for each combination of land use,

extracted fraction, resin treatment and incubation time.
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Figure C.4: Pre- and post-incubation changes in WEOM fluorescence of non- and post-
resin treated cold water (CW) extracts of a soil under three different land uses. Each EEM
represents an average across nine replicates for each combination of land use, extracted
fraction, resin treatment and incubation time. Intensities are expressed in Raman units
(R.U.) normalized to WEOC concentration (mg L~1).



Appendix C. 187

HW HW
non-resin treated post-resin treated

ald
Mmojred

1s0d
Mo|[e4

Normalized intensity

- 0.03

0.02

. 0.01
0.00

ald
alnised

al 1s0d
abe|n-oN alnsed

1sod
abe|n-oN

250 300 350 400 450 500 250 300 350 400 450 500
Excitation wavelength (nm)

Figure C.5: Pre- and post-incubation changes in WEOM fluorescence of non- and post-
resin treated hot water (HW) extracts of a soil under three different land uses. Each EEM
represents an average across nine replicates for each combination of land use, extracted
fraction, resin treatment and incubation time. Intensities are expressed in Raman units
(R.U.) normalized to WEOC concentration (mg L=1).
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Figure C.6: EEM of the post-incubation phenolic mixture. Intensities are in Raman
units (R.U.).
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Figure C.7: Fluorescence emission at 330 nm excitation with varying chloride (Cl7)
concentrations before and after the resin treatment.
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C.1 PARAFAC data mining

The selection of meaningful fluorescence components derived from the PARAFAC
spectral decomposition included the evaluation of: RMSE, shape of the data points,
Pearson correlation coefficient () and coefficient of determination (R?) of the re-
gression (described in Chapter 5) in relation to the variables of interest. Mainly two
algorithms, Random Forest (RF) and Locally weighted Gaussian Processes (abbr.
LWL-GPD), competed in the data mining of PARAFAC components.

For both algorithms, an initial screening of the RMSE revealed a substantial
reduction explained by five or six components, followed by an increase (for most
variables) preceding another large decrease at around eight or nine components
(Fig. |C.8-C.11). Given the wide variety of experimental factors (land use, ex-
tracted fraction, resin treatment, pre- or post-incubation analysis), a larger num-
ber of components, reflecting the variability in peak positions due to meaningful
variability in the molecules present, shall not be excluded. Thus, a six vs. nine
component model was evaluated (Fig. C.12-C.14).

For both models, overlaying values estimated from six or nine components
showed minimal improvement of the model fit, suggesting overfitting when more
than six components were used. Six PARAFAC components, hence, represented a
meaningful set for the interpretation of WEOM properties and biodegradability.

Table C.1: Summary statistics for the RF regression between actual and estimated
WEOC and WEON utilization (AWEOC and AWEON), and pre- and post-incubation
WEOC and WEON using six PARAFAC components.

AWEOC AWEON WEOC WEON
Correlation coefficient 0.90 0.78 0.98 0.98
Bias 0.066 -0.007 0.264 -0.001
Mean squared logarithmic error 0.03 0.02 15 NaN
Ratio of performance to deviation 2.16 1.33 5.56 5.38
R? 0.81 0.61 0.97 0.97
Standard deviation of residuals 5.16 7.52 7.64 0.72
Mean absolute error 3.45 5.26 4.19 0.38
Root mean squared error 5.16 7.52 7.64 0.72
Relative absolute error (%) 37.69 58.81 13.13 13.87
Root relative squared error (%) 43.40 62.13 17.43 17.75

Total number of instances 107 107 214 214




Appendix C.

190

WEOCin

704

654

RMSE

55+

50+

45+

6 7 8 9 10
Number of components

[
N
w4
IS
o

SUVAgs,

11

1.254

1.001

RMSE
(=)
o

0.50+

6 7 8 9 10
Number of components

[N
N
w4
IN
&

RMSE

RMSE

201

104

200+

150+

1004

501

Min N

i1 2 3 4 5 6 7 8 9o 10 11 12 13 14 15
Number of components

azss

6 7 8 9 10 11 12 13 14 15
Number of components

[N
N
[
IN
o

Figure C.8: Root mean square error (RMSE) of the RF algorithm in estimating WEOC mineralization (WEOC,,;,) and
mineral N (Min N) production over 14 days and WEOM pre- and post-incubation optical properties (SUVAg54 and agsy)

using PARAFAC components.
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Figure C.10: Root mean square error (RMSE) of the LWL-GPD algorithm in estimating WEOC mineralization
(WEOC,,,i) and mineral N (Min N) production over 14 days and WEOM pre- and post-incubation optical properties
(SUVAgs54 and agss) using PARAFAC components.
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Figure C.12: Actual vs. predicted patterns of WEOC mineralization (WEOC,,,;,), mineral N (Min N) production, pre-
and post-incubation WEOM optical properties (SUVAgs4 and agss) and phenolic content determined by six (blue dots) or
nine (red dots) PARAFAC components using the RF algorithm.
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Figure C.14: Actual vs. predicted patterns of WEOC mineralization (WEOC,,,;,), mineral N (Min N) production, pre-
and post-incubation WEOM optical properties (SUVAgs4 and agss) and phenolic content determined by six (blue dots) or
nine (red dots) PARAFAC components using the LWL-GPD algorithm.
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Figure C.16: van Krevelen diagrams of non- and post-resin treated, cold (CW) and hot water
(HW) extracts before and after the 14-day incubation, plotted against DBE/C and relative to their
chromatography /ionization mode of detection. n = the number of compounds revealed under the
correspondent chromatography /ionization mode (HILIC and C18 in positive (p) and negative (n)
ionization modes.)
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Figure C.17: van Krevelen diagrams of non- and post-resin treated, cold (CW) and hot water
(HW) extracts before and after the 14-day incubation, plotted against the molecular weight (MW)
and relative to their chromatography /ionization mode of detection. n = the number of compounds
revealed under the correspondent chromatography/ionization mode (HILIC and C18 in positive
(p) and negative (n) ionization modes.)
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Figure C.18: van Krevelen diagrams of compounds classified according to Rivas-Ubach et al.
(2018) in non- and post-resin treated, cold water (CW) extracts before and after the 14-day
incubation, relative to their chromatography /ionization mode of detection and presence or absence
of nitrogen in their structure. n = the number of compounds revealed under the correspondent
chromatography /ionization mode (HILIC and C18 in positive (p) and negative (n) ionization
modes.)
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Figure C.19: van Krevelen diagrams of compounds classified according to Rivas-Ubach et al.
(2018) in non- and post-resin treated, hot water (HW) extracts before and after the 14-day
incubation, relative to their chromatography /ionization mode of detection and presence or absence
of nitrogen in their structure. n = the number of compounds revealed under the correspondent
chromatography /ionization mode (HILIC and C18 in positive (p) and negative (n) ionization

modes.)
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Table C.2: Mean scores of PARAFAC components (C1-C5) and weighted average of molecular determinants of pre-
incubation, non-resin treated cold (CW) and hot water (HW) extracts of different land uses utilized for PCA analysis.

Pre-Incubation

Extraction :MMME Landuse Replicate C1I C2 C3 C4 C5 MW #C #N # O/C HIC Alwg DBE/C DBE-O
1 102 019 040 -002 021 23840 807 248 024 072 173 048 053  -1.33

Fallow 2 077 016 049 003 024 24419 829 256 023 071 174 039 052  -1.42

3 090 019 058 004 029 24645 845 258 025 069 172 040 052  -1.29

1 097 020 055 003 029 27547 927 287 016 065 177 -002 044  -217

cw non-  No-tillage 2 100 022 055 003 031 28033 949 28 015 066 176 -0.03 043  -2.39
3 100 022 057 003 031 28215 956 292 018 066 175 -001 045  -2.11

1 137 028 080 001 037 25545 896 283 018 058 178 013 045  -1.21

Pasture 2 158 031 091 003 044 24698 870 266 017 056 1.82 005 042  -1.36

3 152 030 093 000 041 25246 890 266 018 058 178 014 044  -1.38

1 257 056 090 017 071 23710 853 295 041 053 165 020 054  -021

Fallow 2 295 061 107 014 080 23299 839 298 041 052 165 015 055  -0.03

3 361 073 134 017 099 23165 841 293 011 052 162 014 055 005

1 378 081 123 016 093 22015 848 253 010 047 163 -010 050 002

HW non-  No-tillage 2 384 082 125 015 096 22078 851 255 009 047 162 -010 051 006
3 344 075 111 015 087 22149 857 253 010 046 164 -012 049  -0.03

1 457 090 165 007 102 23495 887 268 014 050 162 -001 051  -0.14

Pasture 2 545 108 191 012 119 23248 879 259 014 050 163 -003 050  -0.20

3 505 097 193 003 112 23328 886 266 013 049 163 -003 051  -0.13

Abbreviations: MW, molecular weight (Da); #C, #N and #P, number of carbon, nitrogen, phosphorus atoms;
O/C and H/C, oxygen and hydrogen to carbon ratios, respectively; Al,,,q, modified aromaticity index; DBE/C
and DBE-O, double bond equivalents per unit carbon and minus oxygen, respectively.
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Table C.4: Mean scores of PARAFAC components (C1-C5) and weighted average of molecular determinants of post-
incubation, non-resin treated cold (CW) and hot water (HW) extracts of different land uses utilized for PCA analysis.

Post-Incubation

Extraction :Mﬂ”a Landuse Replicate C1 C2 C3 C4 C5 MW #C #N #P OIC H/IC Alng DBE/C DBE-O
1 062 013 035 004 020 17795 560 238 029 052 155 035 074 160

Fallow 2 066 013 040 003 021 18172 562 246 029 056 154 027 075 142

3 077 016 048 004 026 18288 560 251 029 055 151 031 078 166

1 0.75 015 043 004 024 16820 445 204 023 106 179 080 071  -045

cw non-  No-tillage 2 078 016 045 004 026 173.80 472 205 026 096 170 061 073  -0.09
3 078 016 045 004 025 173.44 472 197 027 095 169 061 072  -0.12

1 1.09 021 067 005 035 16181 477 215 021 083 174 083 072 052

Pasture 2 127 025 075 006 041 16135 462 227 021 087 176 080 074 037

3 118 023 079 006 039 16056 459 213 021 088 179 087 071  0.27

1 206 047 073 015 060 15248 355 202 012 123 184 106 078  -0.74

Fallow 2 236 052 089 016 070 149.82 358 198 013 110 180 092 081  -0.19

3 276 059 1.06 017 081 15150 351 202 016 117 183 098 079  -0.63

1 284 064 099 018 080 17695 496 179 014 105 180 087 068  -0.71

HW non-  No-tillage 2 209 068 103 020 085 18181 517 177 016 099 176 071 068  -0.49
3 272 062 091 018 079 17713 500 1.80 0.6 101 175 074 071  -0.39

1 359 078 146 021 104 16105 447 192 025 086 174 062 075 034

Pasture 2 423 093 165 024 119 17294 484 187 026 080 165 029 074 045

3 380 082 165 021 115 16540 449 181 024 092 179 049 070  -0.03

Abbreviations: MW, molecular weight (Da); #C, #N and #P, number of carbon, nitrogen, phosphorus atoms;
O/C and H/C, oxygen and hydrogen to carbon ratios, respectively; Al,,,q, modified aromaticity index; DBE/C
and DBE-O, double bond equivalents per unit carbon and minus oxygen, respectively.
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Table C.6: List of compounds discussed in Chapter 5, including the molecular formulae,
monoisotopic masses, structures and chromatography /ionization modes of detection.

Mode Compound name Molecular | Monoisotopic Molecular structure
formulae mass
HILIC(p) Betaine CsHuNO:; 117.079 Ch
3
0
CH
e 3
+N
- Ok \CH3
HILIC(p) Crotono-betaine C7H1NO; 143.095 cH
o 3
JJ\/\/ /CH3
+N\
OH = CH;
HILIC(p) L(-)-Carnitine C7H1sNOs 161.105 H
0 OH ‘ :
CH
MN< ’
-0 R CH3
HILIC(p) Ectoine CsH10N202 142.074 )\
NZ N
l\)( of
[o]
HILIC(p) DL-a,e-Diaminopimelic | C7H14N204 190.095 0 0
and (n) acid
OH OH
NH; NH,
HILIC(p) Nicotinamide CsHeN20 122.048 o]
NH, ZE
AN
HILIC(p) Nitroacetamide CoHsN204 104.022 0
NH,
HILIC(p) Creatine C4HsN30; 131.069 NH
Jk OH
NHD T/ﬁ(
CH; O
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Table C.6: List of compounds discussed in Chapter |5, including the molecular formu-
lae, monoisotopic masses, structures and chromatography /ionization modes of detection.
(cont.)

HILIC(p) 2-Methyl-1,4- C7HsO2 122.037 o}
benzoquinone
o
HILIC(p) 4-1soquinolinol CoH/NO 145.053 OH
=
AN
HILIC and | 1,3-Benzothiazole C7HsNS 135.014 s
C18 (p) W
N
HILIC(p) 2-[(4,6-diamino-1,3,5- CsH1oNgO3S 234.053 NH,
tilr?ZIn-21¥l)§mln931- N)\N .
ethanesulfonic aci | Vi
NHZJ\N)\NH/\/S\OH
HILIC and | L-Alanosine C3H7N304 149.044 NO
C18(n) | NH,
N : OH
Ho~ W
(0]
HILIC(p) Adenine CsHsNs 135.054 NH,
and (n), NH
C18(p) N m
-
N
HILIC(p) Guanosine Ci10H13Ns0s 283.092 0
and (n) y A
@y
NH NH R R \OH
p=
OH OH
HILIC(p) Inosine C10H12N4Os 268.081 0
and (n) N
N X
(T ..
NH ER RZ"\OH
OH OH
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Table C.6: List of compounds discussed in Chapter 5, including the molecular formu-
lae, monoisotopic masses, structures and chromatography /ionization modes of detection.

(cont.)
HILIC(n) Uridine CoH12N206 244.07 o o
)T\/@
NH N o N
7}”\)
O
HILIC(n) Indole-3-acetic acid C10H9oNO; 175.063 NH
‘ o
OH
HILIC(p) 5'-Deoxyadenosine Ci10H13N503 251.102 e
N N\
-
N “(r R,
OH OH
HILIC(p) 2'-Deoxyguanosine Ci10H13N504 267.097 f
N.
N S
J\ | ﬁw NN
NH;  NH "KK R7 OH
N
OH
HILIC(p) 2'-Deoxycytidine CgH13N304 227.091 oH
]
NJKN/ o N
L
NH,
HILIC(n) 2'-Deoxyinosine Ci10H12N4O4 252.086 0
N.
N X
gl A
NH AR "‘\\OH
OH
HILIC(n) 2'-Deoxyuridine CoH12N205 228.075 OH
[o} 3
NHJKN 5 R \/OH
o)\)
HILIC(n) 3'-Ketosucrose C12H20011 340.101 M
N NN o
on S0 o{ OH
ON/I OH
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Table C.6: List of compounds discussed in Chapter |5, including the molecular formu-
lae, monoisotopic masses, structures and chromatography /ionization modes of detection.
(cont.)

HILIC(n) | 4-Hydroxybenzaldehyde C7HsO> 122.037 /©/\
0
OH
HILIC(n) | 4-Hydroxybenzoic acid C7HsO3 138.032 9
O)L "
OH
HILIC(n) | 4-hydroxy-3- C10H1003 178.063 o
methoxycinnamaldehyde CHy X X
OH
HILIC(n) | trans-Cinnamic acid CoHgO- 148.052 o
E
©/\)‘\OH
HILIC(n) | 4-Indolecarbaldehyde CoH/NO 145.053 o\
X
NH
HILIC(n) | Glaurin C16H3204 288.230 o
/\/0\/\ /[k _~CHs
OH 0 (CH2) 1o
C18(p) Oxaloacetate C4H30s 130.998 o
O_T‘/\’_HL
OH
0 e}
C18(p) 2-Chloroethylphosphonic | C;HsCIOsP 143.974 O OH
acid \\ /
P
~
o "¢
C18(p) Dibenzylamine CiHisN 197.12 @A
NH ]: j
C18(p) 3-(Aminomethyl)aniline C7H10N2 122.084 NH
2
NH,
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Table C.6: List of compounds discussed in Chapter 5, including the molecular formu-
lae, monoisotopic masses, structures and chromatography /ionization modes of detection.

(cont.)
C18(p) Caprolactam CsH1:NO 113.084 o
g
C18(p) Aminocaproic acid CsH13NO: 131.095 0
OHM
D1—NH,
C18(p) 2-Ethylpiperidine C7/HisN 113.12
Ct/
C18(p) N,N-Diethyl-N"- C7H1sN; 130.147
methylethylene-diamine /\N /\/NH\CH
L 3
C18(p) 5-Ethyl-2-methylpyridine CgHuN 121.089
ZZN
X
C18(p) 1,3-Di-tert-butylbenzene CuaHa 190.172 )4©><
C18(n) Pyromellitic acid C10HeOs 254.006 OH___0 o
OH
OH
o
OH (¢}
C18(n) (S)-Ureidoglycine C3H7N30s 133.049 o NH,
J\ OH
NH, NH
o]
C18(p) Citramalic acid CsHgOs 148.037 o
and (n)
OH
OH
OH 0
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Table C.6: List of compounds discussed in Chapter 5, including the molecular formulae,
monoisotopic masses, structures and chromatography /ionization modes of detection.
These structures have been manually interpreted by automated searches. Superscripts
a and b denote their presence in pre-incubation, post-resin treated hot water extracts;
superscripts ¢ and d denote their detection in pre-incubation, post-resin treated cold
water extracts.

C18(p)? P-[1-[[(2-amino-5- C7H13N4O3P 232.179 o /OH
pyrimidinyl)methyl] Sp'=o
amino]ethyl]-Phosphonic

acid /kNH ZY
T

C18(p)® 4-(dibutylphosphinyl)-y- C20H330PS 352.51

SH
ethenyl-, (yS)- /©/\‘<\/
Benzenebutanethiol S, N

HILIC(p)°® | N,3,3-trimethyl-N- CuHaNOS | 215134 s
(tetrahydro-3-thienyl)- 0
Butanamide M
N
|
CH,
C18(p)* | 10-[(4-methylphenyl) Ci17H27NO4Ss 405.60 Q 0

sulfonyl]- 1,4-Dioxa-7, s \\s//
13-dithia-10- NS v
azacyclopentadecane s Q

o
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Figure C.21: van Krevelen diagrams of the peat and Suwannee River humic acid extracts plot-
ted against the molecular weight (MW) and relative to their chromatography /ionization mode of
detection. n = the number of compounds revealed under the correspondent chromatography /ion-
ization mode (HILIC and C18 in positive (p) and negative (n) ionization modes).
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Suwannee HA
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Figure C.22: van Krevelen diagrams of the peat and Suwannee River humic acid extracts plot-
ted against the number of nitrogen atoms (# N) and relative to their chromatography /ionization
mode of detection. n = the number of compounds revealed under the correspondent chromatog-
raphy /ionization mode (HILIC and C18 in positive (p) and negative (n) ionization modes).
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Suwannee HA
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Figure C.23: van Krevelen diagrams of the peat and Suwannee River humic acid extracts
plotted against DBE-O and relative to their chromatography/ionization mode of detection. n
= the number of compounds revealed under the correspondent chromatography /ionization mode
(HILIC and C18 in positive (p) and negative (n) ionization modes).
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Suwannee HA
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Figure C.24: van Krevelen diagrams of the peat and Suwannee River humic acid extracts

plotted against DBE/C and relative to their chromatography /ionization mode of detection. n
= the number of compounds revealed under the correspondent chromatography /ionization mode
(HILIC and C18 in positive (p) and negative (n) ionization modes).
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Peat Suwannee HA
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Figure C.25: van Krevelen diagrams of compounds classified according to Rivas-Ubach et al.
(2018) in the peat and Suwannee River humic acid extracts plotted relative to their chromatogra-
phy /ionization mode of detection. n = the number of compounds revealed under the correspon-
dent chromatography /ionization mode (HILIC and C18 in positive (p) and negative (n) ionization
modes).
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standardized PC2 (24.9% explained var.)
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Figure C.26: Principal component analysis of all PARAFAC component scores (C1-C6), flu-
orescence peaks, maximum intensities (I,;q,.) and relative excitation (Ex) and emission (Em)
wavelengths, and all quantitative and qualitative variables investigated in Chapter [4.
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Search description: Untargeted Metabolomics workflow: Find and identify the differences
between samples.

Performs retention time alignment, unknown compound detection, and compound grouping
across all samples. Predicts elemental compositions for all compounds, fills gaps across all
samples, and hides chemical background (using Blank samples). Identifies compounds using
mzCloud (ddMS2) and ChemSpider (formula or exact mass). Also performs similarity search
for all compounds with ddMS2 data using mzCloud. Applies mzLogic algorithm to rank order
ChemSpider results. Maps compounds to biological pathways using Metabolika. Applies QC-
based batch normalization if QC samples are available. Calculates differential analysis (t-test
or ANOVA), determines p-values, adjusted p-values, ratios, fold change, CV, etc.).

Search ID: HILIC positive

Created with Discoverer version: 3.0.0.294

[Input Files (6)]
-->Select Spectra (33)
[Select Spectra (33)]
-->Align Retention Times (26)
[Align Retention Times (26)]
-->Detect Compounds (9)
[Detect Compounds (9)]
-->Group Compounds (31)
[Group Compounds (31)]
-->Search mzCloud (22)
-->Assign Compound Annotations (25)
-->Map to BioCyc Pathways (40)
-->Map to KEGG Pathways (41)
-->Fill Gaps (32)
-->Predict Compositions (29)
-->Map to Metabolika Pathways (34)
-->Search ChemSpider (42)
-->Search Mass Lists (36)
-->Search mzVault (37)
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[Fill Gaps (32)]

-->Normalize Areas (30)

[Map to BioCyc Pathways (40)]
-->Apply mzLogic (35)

[Normalize Areas (30)]
-->Mark Background Compounds (28)

[Map to Metabolika Pathways (34)]
-->Apply mzLogic (35)

[Search ChemSpider (42)]
-->Apply mzLogic (35)

[Search Mass Lists (36)]
-->Apply mzLogic (35)
[Search mzCloud (22)]
[Assign Compound Annotations (25)]
[Apply mzLogic (35)]
[Map to KEGG Pathways (41)]
[Mark Background Compounds (28)]
[Predict Compositions (29)]
[Search mzVault (37)]
[Differential Analysis (17)]
[Descriptive Statistics (38)]

Processing node 6: Input Files

Processing node 33: Select Spectra

1. General Settings:

- Precursor Selection: Use MS(n - 1) Precursor

- Use Isotope Pattern in Precursor Reevaluation: True
- Provide Profile Spectra: Automatic

- Store Chromatograms: False
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2. Spectrum Properties Filter:

- Lower RT Limit: 0

- Upper RT Limit: 0

- First Scan: 0

- Last Scan: 0

- Ignore Specified Scans: (not specified)
- Lowest Charge State: 0

- Highest Charge State: 0

- Min. Precursor Mass: 0 Da

- Max. Precursor Mass: 3000 Da
- Total Intensity Threshold: 0

- Minimum Peak Count: 1

3. Scan Event Filters:

- Mass Analyzer: Is FTMS

- MS Order: Any

- Activation Type: Is HCD

- Min. Collision Energy: 0

- Max. Collision Energy: 1000
- Scan Type: Any

- Polarity Mode: Is +

4. Peak Filters:
- S/N Threshold (FT-only): 1.5

5. Replacements for Unrecognized Properties:

- Unrecognized Charge Replacements: 1

- Unrecognized Mass Analyzer Replacements: FTMS

- Unrecognized MS Order Replacements: MS2

- Unrecognized Activation Type Replacements: HCD

- Unrecognized Polarity Replacements: +

- Unrecognized MS Resolution@200 Replacements: 60000
- Unrecognized MSn Resolution@200 Replacements: 30000
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Processing node 26: Align Retention Times

1. General Settings:

- Alignment Model: Adaptive curve

- Alignment Fallback: Use Linear Model
- Maximum Shift [min]: 2

- Shift Reference File: True

- Mass Tolerance: 5 ppm

- Remove QOutlier: True

Processing node 9: Detect Compounds

1. General Settings:

- Mass Tolerance [ppm]: 5 ppm

- Intensity Tolerance [%]: 30

- S/N Threshold: 3

- Min. Peak Intensity: 500000

- lons:
[2M+ACN+H]+1
[2M+ACN+Na]+1
[2M+FA-H]-1
[2M+H]+1
[2M+K]+1
[2M+Na]+1
[2M+NH4]+1
[2M-H]-1
[2M-H+HAc]-1
[M+2H]+2
[M+ACN+2H]+2
[M+ACN+H]+1
[M+ACN+Na]+1

[M+CI]-1
[M+FA-H]-1
[M+H]+1
[M+H+K]+2
[M+H+MeOH]+1
[M+H+Na]+2
[M+H+NH4]+2
[M+H-H20]+1
[M+H-NH3]+1
[M+K]+1
[M+Na]+1
[M+NH4]+1
[M-2H]-2
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[M-2H+K]-1 [M-H+HACc]-1
[M-H]-1 [M-H-H20]-1
- Base lons (Advanced):
[2M+H]+1 [M+H+Na]+2
[2M+K]+1 [M+H+NH4]+2
[2M+Na]+1 [M+H-H20]+1
[2M+NH4]+1 [M+H-NH3]+1
[M+2H]+2 [M+K]+1
[M+3H]+3 [M+Na]+1
[M+H]+1 [M+NH4]+1
[M+H+K]+2

- Min. Element Counts: CH
- Max. Element Counts: C90 H100 N15 020 P S5

2. Peak Detection:

- Filter Peaks: True

- Max. Peak Width [min]: 0.5
- Remove Singlets: True

- Min. # Scans per Peak: 5

- Min. # Isotopes: 1

Processing node 31: Group Compounds

1. Compound Consolidation:
- Mass Tolerance: 5 ppm
- RT Tolerance [min]: 0.2

2. Fragment Data Selection:

- Preferred lons:

[2M+H]+1 [M+3H]+3
[2M+Na]+1 [M+H]+1
[2M+NH4]+1 [M+H+Na]+2

[M+2H]+2 [M+H+NH4]+2
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[M+H-H20]+1 [M+Na]+1
[M+H-NH3]+1 [M+NH4]+

Processing node 22: Search mzCloud

1. Search Settings:

- Compound Classes: All

- Match lon Activation Type: True

- Match lon Activation Energy: Match with Tolerance
- lon Activation Energy Tolerance: 20

- Apply Intensity Threshold: True

- Precursor Mass Tolerance: 10 ppm

- FT Fragment Mass Tolerance: 10 ppm
- IT Fragment Mass Tolerance: 0.4 Da
- Identity Search: HighChem HighRes
- Similarity Search: Similarity Forward
- Library: Reference

- Post Processing: Recalibrated

- Match Factor Threshold: 50

- Max. # Results: 10

Processing node 25: Assign Compound Annotations

1. General Settings:

- Mass Tolerance: 5 ppm

2. Data Sources:

- Data Source #1: Predicted Compositions
- Data Source #2: MassList Search

- Data Source #3: Metabolika Search

- Data Source #4: BioCyc Search

- Data Source #5: mzVault Search
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Processing node 40: Map to BioCyc Pathways

1. Search Settings:
- BioCyc Database/organism to be searched: MetaCyc (META)

- Search Mode: By Formula or Mass

2. By Mass Search Settings:

- Mass Tolerance: 5 ppm

3. By Formula Search Settings:
- Max. # of Predicted Compositions to be searched per Compound: 3
4. Display Settings:

- Max. # Pathways in 'Pathways' column: 20

Processing node 35: Apply mzLogic

1. Search Settings:

- FT Fragment Mass Tolerance: 10 ppm

- IT Fragment Mass Tolerance: 0.4 Da

- Max. # Compounds: 0

- Max. # mzCloud Similarity Results to consider per Compound: 10
- Match Factor Threshold: 30

Processing node 41: Map to KEGG Pathways

1. Search Settings:

- Search Mode: By Formula or Mass

2. By Mass Search Settings:

- Mass Tolerance: 5 ppm

3. By Formula Search Settings:

- Max. # of Predicted Compositions to be searched per Compound: 3
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4. Display Settings:

- Max. # Pathways in 'Pathways' column: 20

Processing node 32: Fill Gaps

1. General Settings:
- Mass Tolerance: 5 ppm
- SIN Threshold: 1.5

- Use Real Peak Detection: True

Processing node 30: Normalize Areas

1. QC-based Area Correction:

- Regression Model: Cubic Spline

- Min. QC Coverage [%]: 50

- Max. QC Area RSD [%]: 30

- Max. # Files Between QC Files: 20

2. Area Normalization:
- Normalization Type: None

- Exclude Blanks: True

Processing node 28: Mark Background Compounds

1. General Settings:

- Max. Sample/Blank: 5
- Max. Blank/Sample: 0
- Hide Background: True

Processing node 29: Predict Compositions

1. Prediction Settings:

- Mass Tolerance: 5 ppm
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- Min. Element Counts: CH

- Max. Element Counts: C90 H100 N15 O20 P S5
- Min. RDBE: 0

- Max. RDBE: 40

- Min. H/C: 0.1

- Max. H/C: 4

- Max. # Candidates: 10

- Max. # Internal Candidates: 200

2. Pattern Matching:

- Intensity Tolerance [%]: 30
- Intensity Threshold [%]: 0.1
- SIN Threshold: 3

- Min. Spectral Fit [%]: 30

- Min. Pattern Cov. [%]: 90

- Use Dynamic Recalibration: True

3. Fragments Matching:

- Use Fragments Matching: True
- Mass Tolerance: 5 ppm

- S/IN Threshold: 3

Processing node 34: Map to Metabolika Pathways

1. Search Settings:

- Search Mode: By Formula or Mass

2. By Mass Search Settings:

- Mass Tolerance: 5 ppm

3. By Formula Search Settings:

- Max. # of Predicted Compositions to be searched per Compound: 3
4. Display Settings:

- Max. # Pathways in 'Pathways' column: 20
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Processing node 42: Search ChemSpider

1. Search Settings:
- Database(s):
ACTOR: Aggregated Computational Toxicology Resource
BioCyc
ChEBI
E. coli Metabolome Database
EAWAG Biocatalysis/Biodegradation Database
EPA DSSTox
FDA UNII - NLM
KEGG
LipidMAPS
MCISB
PlantCyc
SMPDB Small Molecule Pathway Database
Yeast Metabolome Database
- Search Mode: By Formula or Mass
- Mass Tolerance: 5 ppm
- Max. # of results per compound: 100
- Max. # of Predicted Compositions to be searched per Compound: 3

- Result Order (for Max. # of results per compound): Order By Reference Count (DESC)

2. Predicted Composition Annotation:

- Check All Predicted Compositions: False

Processing node 36: Search Mass Lists

1. Search Settings:

- Mass Lists: Extractables and Leachables HRAM Compound Database.massList |
TV.massList | OpenVK.massList

- Mass Tolerance: 5 ppm
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- Use Retention Time: True

- RT Tolerance [min]: 2

Processing node 37: Search mzVault

1. Search Settings:

- mzVault Library: Bamba lab 34 lipid mediators library stepped NCE 10 30 45.db | Bamba
lab 598 polar metabolites stepped NCE 10 30 45.db | mzVault May 2018.db | Lipids-Aug18.db
| MoNA-export-LC-MS-Jan19.db | J0022-ref-H-T001-(1).db

- Max. # Results: 10

- Match Factor Threshold: 50

- Search Algorithm: HighChem HighRes
- Match Analyzer Type: False

- IT Fragment Mass Tolerance: 0.4 Da
- FT Fragment Mass Tolerance: 10 ppm
- Use Retention Time: False

- Precursor Mass Tolerance: 10 ppm

- Apply Intensity Threshold: True

- Match lonization Method: False

- lon Activation Energy Tolerance: 20

- Match lon Activation Energy: Any

- Match lon Activation Type: False

- Compound Classes: All

- Remove Precursor lon: True

- RT Tolerance [min]: 2

Processing node 17: Differential Analysis

1. General Settings:

- Log10 Transform Values: True

Processing node 38: Descriptive Statistics
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Search ID: HILIC negative, C18 positive, C18 negative

Created with Discoverer version: 3.0.0.294

[Input Files (6)]
-->Select Spectra (33)
[Select Spectra (33)]
-->Align Retention Times (26)
[Align Retention Times (26)]
-->Detect Compounds (9)
[Detect Compounds (9)]
-->Group Compounds (31)
[Group Compounds (31)]

-->Search mzCloud (22)

-->Assign Compound Annotations (25)

-->Map to BioCyc Pathways (40)

-->Map to KEGG Pathways (41)

-->Fill Gaps (32)

-->Predict Compositions (29)

-->Map to Metabolika Pathways (34)

-->Search Mass Lists (36)

-->Search mzVault (37)

[Fill Gaps (32)]
-->Normalize Areas (30)
[Map to BioCyc Pathways (40)]

-->Apply mzLogic (35)
[Normalize Areas (30)]
-->Mark Background Compounds (28)

[Map to Metabolika Pathways (34)]
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-->Apply mzLogic (35)

[Search Mass Lists (36)]
-->Apply mzLogic (35)
[Search mzCloud (22)]
[Assign Compound Annotations (25)]
[Apply mzLogic (35)]
[Map to KEGG Pathways (41)]
[Mark Background Compounds (28)]
[Predict Compositions (29)]
[Search mzVault (37)]
[Differential Analysis (17)]
[Descriptive Statistics (38)]

Processing node 6: Input Files

Processing node 33: Select Spectra

1. General Settings:

- Precursor Selection: Use MS(n - 1) Precursor

- Use Isotope Pattern in Precursor Reevaluation: True
- Provide Profile Spectra: Automatic

- Store Chromatograms: False

2. Spectrum Properties Filter:

- Lower RT Limit: 0

- Upper RT Limit: 0

- First Scan: 0

- Last Scan: 0

- Ignore Specified Scans: (not specified)

- Lowest Charge State: 0
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- Highest Charge State: 0

- Min. Precursor Mass: 0 Da

- Max. Precursor Mass: 1000 Da
- Total Intensity Threshold: 0

- Minimum Peak Count: 1

3. Scan Event Filters:

- Mass Analyzer: Is FTMS

- MS Order: Any

- Activation Type: Is HCD

- Min. Collision Energy: 0

- Max. Collision Energy: 1000
- Scan Type: Any

- Polarity Mode: (not specified)

4. Peak Filters:
- SIN Threshold (FT-only): 1.5

5. Replacements for Unrecognized Properties:

- Unrecognized Charge Replacements: 1

- Unrecognized Mass Analyzer Replacements: FTMS

- Unrecognized MS Order Replacements: MS2

- Unrecognized Activation Type Replacements: HCD

- Unrecognized Polarity Replacements: +

- Unrecognized MS Resolution@200 Replacements: 60000
- Unrecognized MSn Resolution@200 Replacements: 30000

Processing node 26: Align Retention Times

1. General Settings:

- Alignment Model: Adaptive curve

- Alignment Fallback: Use Linear Model
- Maximum Shift [min]: 2
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- Shift Reference File: True

- Mass Tolerance: 5 ppm

- Remove Quitlier: True

Processing node 9: Detect Compounds

1. General Settings:

- Mass Tolerance [ppm]: 5 ppm

- Intensity Tolerance [%]: 30

- S/N Threshold: 3

- Min. Peak Intensity: 500000

- lons:

- Base lons: [M+H]+1; [M-H]-1
- Min. Element Counts: CH

[2M+ACN+H]+1
[2M+ACN+Na]+1
[2M+FA-H]-1
[2M+H]+1
[2M+K]+1
[2M+Na]+1
[2M+NH4]+1
[2M-H]-1
[2M-H+HAc]-1
[M+2H]+2
[M+ACN+2H]+2
[M+ACN+H]+1
[M+ACN+Na]+1
[M+CI]-1
[M+FA-H]-1

[M+H]+1
[M+H+K]+2
[M+H+MeOH]+1
[M+H+Na]+2
[M+H+NH4]+2
[M+H-H20]+1
[M+H-NH3]+1
[M+K]+1
[M+Na]+1
[M+NH4]+1
[M-2H]-2
[M-2H+K]-1
[M-H]-1
[M-H+HACc]-1
[M-H-H20]-1

- Max. Element Counts: C90 H100 N15 020 P S5
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2. Peak Detection:

- Filter Peaks: True

- Max. Peak Width [min]: 0.5
- Remove Singlets: True

- Min. # Scans per Peak: 5

- Min. # Isotopes: 1

Processing node 31: Group Compounds

1. Compound Consolidation:
- Mass Tolerance: 5 ppm

- RT Tolerance [min]: 0.2
2. Fragment Data Selection:

- Preferred lons: [M+FA-H]-1; [M+H]+1; [M-H]-1; [M-H-H20]-1

Processing node 22: Search mzCloud

1. Search Settings:

- Compound Classes: All

- Match lon Activation Type: True

- Match lon Activation Energy: Match with Tolerance
- lon Activation Energy Tolerance: 20

- Apply Intensity Threshold: True

- Precursor Mass Tolerance: 10 ppm

- FT Fragment Mass Tolerance: 10 ppm
- IT Fragment Mass Tolerance: 0.4 Da
- Identity Search: HighChem HighRes
- Similarity Search: Similarity Forward
- Library: Reference

- Post Processing: Recalibrated
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- Match Factor Threshold: 50
- Max. # Results: 10

Processing node 25: Assign Compound Annotations

1. General Settings:

- Mass Tolerance: 5 ppm

2. Data Sources:

- Data Source #1: Predicted Compositions
- Data Source #2: MassL.ist Search

- Data Source #3: Metabolika Search

- Data Source #4: BioCyc Search

- Data Source #5: mzVault Search

Processing node 40: Map to BioCyc Pathways

1. Search Settings:
- BioCyc Database/organism to be searched: MetaCyc (META)

- Search Mode: By Formula or Mass

2. By Mass Search Settings:

- Mass Tolerance: 5 ppm

3. By Formula Search Settings:
- Max. # of Predicted Compositions to be searched per Compound: 3
4. Display Settings:

- Max. # Pathways in 'Pathways' column: 20

Processing node 35: Apply mzLogic

1. Search Settings:
- FT Fragment Mass Tolerance: 10 ppm
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- IT Fragment Mass Tolerance: 0.4 Da
- Max. # Compounds: 0
- Max. # mzCloud Similarity Results to consider per Compound: 10

- Match Factor Threshold: 30

Processing node 41: Map to KEGG Pathways

1. Search Settings:

- Search Mode: By Formula or Mass

2. By Mass Search Settings:

- Mass Tolerance: 5 ppm

3. By Formula Search Settings:
- Max. # of Predicted Compositions to be searched per Compound: 3
4. Display Settings:

- Max. # Pathways in 'Pathways' column: 20

Processing node 32: Fill Gaps

1. General Settings:
- Mass Tolerance: 5 ppm
- S/N Threshold: 1.5

- Use Real Peak Detection: True

Processing node 30: Normalize Areas

1. QC-based Area Correction:

- Regression Model: Cubic Spline

- Min. QC Coverage [%]: 50

- Max. QC Area RSD [%]: 30

- Max. # Files Between QC Files: 20
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2. Area Normalization:
- Normalization Type: None

- Exclude Blanks: True

Processing node 28: Mark Background Compounds

1. General Settings:

- Max. Sample/Blank: 5
- Max. Blank/Sample: 0
- Hide Background: True

Processing node 29: Predict Compositions

1. Prediction Settings:

- Mass Tolerance: 5 ppm

- Min. Element Counts: CH

- Max. Element Counts: C90 H100 N15 020 P S5
- Min. RDBE: 0

- Max. RDBE: 40

- Min. H/C: 0.1

- Max. H/C: 4

- Max. # Candidates: 10

- Max. # Internal Candidates: 200

2. Pattern Matching:

- Intensity Tolerance [%]: 30
- Intensity Threshold [%]: 0.1
- S/N Threshold: 3

- Min. Spectral Fit [%]: 30

- Min. Pattern Cov. [%]: 90

- Use Dynamic Recalibration: True
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3. Fragments Matching:
- Use Fragments Matching: True
- Mass Tolerance: 5 ppm

- S/N Threshold: 3

Processing node 34: Map to Metabolika Pathways

1. Search Settings:
- Search Mode: By Formula or Mass
2. By Mass Search Settings:

- Mass Tolerance: 5 ppm

3. By Formula Search Settings:
- Max. # of Predicted Compositions to be searched per Compound: 3
4. Display Settings:

- Max. # Pathways in 'Pathways' column: 20

Processing node 36: Search Mass Lists

1. Search Settings:

- Mass Lists: Extractables and Leachables HRAM Compound Database.massList |
OpenVK.massList | TV.massList

- Mass Tolerance: 5 ppm
- Use Retention Time: True

- RT Tolerance [min]: 2

Processing node 37: Search mzVault

1. Search Settings:

- mzVault Library Bamba lab 34 lipid mediators library stepped NCE 10 30 45.db | Bamba lab
598 polar metabolites stepped NCE 10 30 45.db | mzVault May 2018.db | J0022-ref-H-T001-
(1).db
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- Max. # Results: 10

- Match Factor Threshold: 50

- Search Algorithm: HighChem HighRes
- Match Analyzer Type: False

- IT Fragment Mass Tolerance: 0.4 Da
- FT Fragment Mass Tolerance: 10 ppm
- Use Retention Time: False

- Precursor Mass Tolerance: 10 ppm

- Apply Intensity Threshold: True

- Match lonization Method: False

- lon Activation Energy Tolerance: 20

- Match lon Activation Energy: Any

- Match lon Activation Type: False

- Compound Classes: All

- Remove Precursor lon: True

- RT Tolerance [min]: 2

Processing node 17: Differential Analysis

1. General Settings:

- Log10 Transform Values: True

Processing node 38: Descriptive Statistics
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