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Two types of artificial neural networks, multilayer perceptron (MLP) and self-organizing feature
map (SOM) were used to detect mastitis by automatic milking systems (AMS) using a new
mastitis indicator that combined two previously reported indicators based on higher electrical
conductivity (EC) and lower quarter yield (QY). Four MLPs with four combinations of inputs
were developed to detect infected quarters. One input combination involved principal
components (PC) adopted for addressing multi-collinearity in the data. The PC-based MLP
model was superior to other non-PC-based models in terms of less complexity and higher
predictive accuracy. The overall correct classification rate (CCR), sensitivity and specificity of
this model were 90.74%, 86.90% and 91.36%, respectively. The SOM detected the stage of
progression of mastitis in a quarter within the mastitis spectrum and revealed that quarters form
three clusters : healthy, moderately ill and severely ill. The clusters were validated using k-means
clustering, ANOVA and least significant difference. Clusters reflected the characteristics of
healthy and subclinical and clinical mastitis, respectively. We conclude that the PC based
model based on EC and QY can be used in AMS to detect mastitis with high accuracy and that
the SOM model can be used to monitor the health status of the herd for early intervention and
possible treatment.

Keywords: Mastitis, automatic milking systems, artificial neural networks, multilayer perceptron, self-
organizing feature maps, principal component analysis.

Bovine mastitis is the most costly disease in the dairy in-
dustry and exists, to varying degrees, in every herd. Recent
research conducted by DairyNZ shows that mastitis costs
the New Zealand dairy industry $180 million annually
(Malcolm, 2006). Early detection of mastitis is important to
minimize economic loss and to safeguard the welfare of
the herd because it allows prompt treatment leading to a
higher rate of recovery (Milner et al. 1997), reduces the
risk of spread of infection and helps prevent the develop-
ment of chronic infections.

The presence of mastitis can be detected in-line by de-
tection models embedded in automatic milking systems
(AMS). These advanced milking systems use electronic
sensors and management information systems to assist the
herdsman in monitoring and detecting mastitis incidence
in the herd. While AMS are not common in New Zealand,

they are a useful research tool for developing mastitis
detection systems.

Mastitis detection systems based on electrical conduc-
tivity (EC), which reflects changes in the blood-milk barrier
due to bacteria entering the udder, have been in use for
many years (Milner et al. 1996). However, the value of EC
as a method for monitoring mastitis has been debated be-
cause although changes in EC reflect changes in the udder
due to infection, EC is also easily influenced by a number
of factors unrelated to infection status, including food and
water intake (Mein et al. 2004; Grennstam, 2005). In a
previous study, a thorough investigation of raw EC quarter
readings clearly demonstrated that not all infected quarters
have the highest EC and the lowest milk yield (QY) in an
udder (Sun, 2008). Similar observations were made by
Grennstam (2005) who developed an EC-based mastitis
detection model for AMS, with specificity and sensitivity of
77% and 53%, respectively. The model assumes that a
quarter is mastitic at milking if EC is more than 15% higher
than the average of the two quarters with the lowest EC.
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Other researchers have reported 65% and 75% specificity
and sensitivity, respectively, using EC alone (Batra &
McAllister, 1984; Lansbergen et al. 1994). Later studies
have shown that the inter quarter ratio (IQR), which is the
relative deviation of quarter EC from the lowest EC quarter
of a cow, has provided much improved results compared
with those from EC alone, reaching an accuracy of 81%
for clinical and 45% for subclinical quarters (Norberg et al.
2004).

Since other milk parameters such as QY can be
measured automatically during milking, it would be de-
sirable to test whether this information could improve
predictability when incorporated into the models. Change
in milk production has been reported to be a significant
factor associated with the presence of clinical mastitis
(CM) and computational detection of mastitis (Nielen et al.
1995b; Yang et al. 1999; Heald et al. 2000; Wang &
Samarasinghe, 2005).

Furthermore, as early detection is crucial for effective
management of herds, the identification of cows with sub-
clinical, as well as clinical mastitis, is very important.
Investigating the health of cows several days before and
after the date they have been diagnosed with mastitis
could shed light on subclinical mastitis (SCM) states.
Bramley et al. (1992) report that during the infection
period, there is a 15.3±2.5% reduction in milk yield of
the clinical quarter. Capturing this information in com-
putational models can help detect the stage of pro-
gression of the disease. This is important because the
ability to detect mastitis early depends strongly on the
length of the period leading up to an infection becoming
established.

In this study, mastitis detection models based on arti-
ficial neural networks (ANN) were developed incorpor-
ating EC and QY. ANNs are well-suited for detecting and
exploring mastitis as cows with mastitis have different
milk trait patterns, such as higher EC and lower QY than
healthy cows (Aoki et al. 1992; Lake et al. 1992). An ANN
consists of computational neurons that process data and
learn to recognize linear and nonlinear patterns through
iterative learning that minimizes an error criterion, such as
means square error. Two well-known ANNs are multi-
layer perceptron (MLP) and self-organizing maps (SOM).
MLP is a regressor that nonlinearly relates inputs to out-
put(s) through processing in the hidden layer of nonlinear
neurons, and is useful for detecting whether a quarter is
infected or healthy. In order to identify the stage of infec-
tion, SOM is proposed. SOM is an unsupervised neural
network that does not require an output but finds clusters
solely based on inputs. It projects quarter readings onto a
map of neurons while preserving the proximity of the
health state of quarters, thereby revealing the whole mas-
titis spectrum. Additionally, SOM reveals whether quarters
naturally form clusters representing distinct health states.
Thus, SOM is suitable for capturing the mastitis spectrum
and assessing the stage of progression and specific health
state of a quarter within the spectrum.

The objectives of this study were to develop: (1) an
accurate mastitis detection model using MLP network
based on EC and QY; and (2) an SOM to capture the
mastitis spectrum and detect the stage of progression of
mastitis in a quarter within the mastitis spectrum.

Materials and Methods

Data and variables

Data for this research were generated from a DairyNZ re-
search herd (Hamilton, New Zealand). Cows of mixed
breed (80% Holstein Friesian, remainder Jersey and Jersey-
Holstein Friesian crossbred) were managed as described
by Jago et al. (2004) and Kamphuis et al. (2008). Cows
calved seasonally, were kept outside all year and fed a
mainly pasture-based diet (approximately 0.5 kg concen-
trate per cow per day). Cows were milked on average 1.3-
times a day by two Merlin AMS (Fullwood Ltd., Ellsmere,
UK). The average milk production for the complete 2006/
07 milking season was 3700 kg/cow, with an average bulk
tank somatic cell count (SCC) of 189r103 cells/ml.

The dataset contained treatment and milking data.
Treatment data consisted of quarters that were treated with
antibiotics and included cow identification (cowID), time
of treatment, infected quarter, cow-level SCC measured
approximately every 2–3 weeks and pathogen type. Cows
and quarters suspected to have CM were identified using
multiple indicators as described in Kamphuis et al. (2008).
These included data at the herd level (e.g. clots on the
filter sock, raised bulk tank SCC, which caused the staff to
search for clinical quarters) and at the cow level [e.g.
mastitis attention lists generated by the AMS software, re-
sults of bacteriological culturing collected at calving, at
dry-off and at suspicion of CM, a high in-line SCC result
(Cellsense�) and results of regular SCC monitoring].
Clinical mastitis was determined by trained farm staff by
visually checking the milk from suspected quarters and
was confirmed if quarters showed clear signs of wateriness
or clots or other clear signs of CM such as udder swol-
lenness or redness. If confirmed these quarters were
sampled for bacteriological analysis and treated with
antibiotic. Some quarters were treated more than once.
The pathogen types isolated from bacteriological analysis
of clinical quarter fore-milk samples were Streptococcus
uberis, Escherichia coli, Staphylococcus aureus, coagu-
lase-negative staphylococci and other organisms. The most
common pathogen isolated was Str. uberis. Composite
udder SCC data were obtained from milk samples analysed
using the Fossomatic technique (FSCC) (CombiFoss 5000,
FOSS Electric, Hillerød, Denmark) as described in
Kamphuis et al. (2008).

The milking data included measurements taken by the
AMS up to 3-times a day for each quarter of each cow
during each milking. It contained 48 546 records (samples)
from 194 cows for the period July 2006 to early April
2007. The variables in this data file were QY, EC, cowID
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and time of milking. EC was the peak EC recorded by the
AMS during each milking of a quarter. To account for
within and between cow variation and erroneous readings
due to occasional machine malfunction, the milk variables
were transformed into three new variables for each quar-
ter. These were running mean of normalized quarter-yield
fraction (nyfRM); running mean of normalized electrical
conductivity (necRM); and fractional deviation from the
smallest necRM value (necFD) as explained below:

Running mean of normalized milk parameters of QY
(nyfRM) ; EC (necRM) ; and fractional deviation of EC
(necFD) : A cow and herd normalized running mean was
calculated as the ratio of the running mean of a milk par-
ameter for a particular quarter (left back, right front etc.)
of a cow to the running mean of the same parameter for
that quarter for the herd. For example, running mean of
QYF (QYF is the ratio of milk yield of a quarter in a milk-
ing to the total milk yield from all four quarters in that
milking) was:

x0t =xtr
1

a
+ 1–

1

a

� �
rxt – 1 ½1�

where xkt is the running mean of QYF at time t, xt is the
measured QYF at time t, xt–1 is the measured QYF at time
t–1 and a is a coefficient that represents ‘ running mean
length’. For the herd-level running mean, a value of 50
was assigned to a. With a herd size of 194 cows, these last
50 milkings were invariably of 50 different cows. The cow-
level running mean was calculated for individual quarters
over their own history of milking with a being equal to the
last 5 milkings. The nyfRM for a quarter was the ratio of
cow-level running mean to herd-level running mean.

The running mean of normalized EC (necRM) was cal-
culated from EC using the same procedure as that for the
nyfRM. The only difference was that instead of QYF in
equation 1, x refers to the measured peak EC of a quarter
in a milking. The fractional deviation EC (necFD) is the
relative deviation of necRM of each quarter of a cow at
each milking with respect to the lowest necRM among four
quarters as shown below:

necFDi =
necRMi –necRMmin

necRMmin

½2�

where necFDi is necFD of any of the four quarters of a
cow, necRMi is normalized EC running mean of the same
quarter, and necRMmin is the smallest value of necRM
between four quarters. Since not all four quarters are
usually infected at a given time, necFDi can effectively
reveal infected quarters of a cow.

Selecting mastitic and healthy quarters for model
development

The health state of each quarter was assessed on the basis
of necRM, necFD, nyfRM and information in the treatment

data. According to the treatment data, 88 quarters (in-
cluding repeat treatments) from 43 cows that received
antibiotic treatment were recognized as clinically mastitic.
Then, two thresholds based on EC and QY were applied to
these CM quarters to ensure that infected quarter readings
at various stages of progression of mastitis were identified
in the dataset. Specifically, all quarter milking data from the
CM quarters, before or after the date antibiotic treatment
was given, were considered mastitic if they had a 12.8%
drop in milk yield and 15% higher EC than the average of
the two quarters with the lowest EC and were from cows
whose SCC value (per cow) exceeded 150 000 cells/ml.
Since the exact health status before or after the date of
diagnosis was not known, these data can contain both CM
and SCM quarter readings. These were combined with the
originally detected CM cases into a dataset of ‘ infected’
quarters. Healthy quarters were identified as follows: the
weekly SCC value per cow was below 150 000 cells/ml
and the quarter was not treated for CM. Based on these
criteria, 895 infected (CM or SCM) and 3235 healthy quarter
milkings (total of 4130) were found in the milking data.
The ratio of healthy to infected samples approximated
3.6 : 1.

Data analysis

Scatter plots and Pearson’s correlation coefficient were
employed (SPSS, 2007) to assess trends and relationships
in the data that would aid and simplify the subsequent
model development.

Model development: multilayer perceptron (MLP)
networks: Four data sets were generated according to
combinations of input variables (Table 1). Datasets 1, 2
and 3 were used to explore whether or not multi-
collinearity had any effect on model performance. A
fourth, new dataset, with three PC variables was gener-
ated using PC analysis (PCA) (SPSS, 2007) so that the
performance of non-PC and PC-based models could be
evaluated in terms of prediction accuracy. The best

Table 1. Datasets with different input variables for multilayer
perceptron (MLP) neural networks

MLP
model Dataset Input variables

Output variable
categories†

1 1 nyfRM‡; necRM· Infected: Healthy
2 2 nyfRM; necFD¶ Infected: Healthy
3 3 nyfRM; necRM; necFD Infected: Healthy
4 4 PC1; PC2; PC3†† Infected: Healthy

† Infected or healthy

‡ Running mean of normalized quarter-yield fraction

·Running mean of normalized electrical conductivity

¶ Fractional deviation from the smallest necRM

††PC1, PC2 and PC3 are first, second and third principal component,

respectively
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model was retained. These models predicted whether a
quarter was healthy or infected.

A three-layer MLP was used for developing prediction
models. Each dataset in Table 1 was randomly divided into
training (70%) and validation subsets (30%). All modelling
was performed on SYNAPSE software (2007). A genetic
algorithm optimizer was used to automatically search for
optimum model parameters (e.g. numbers of hidden neu-
rons, learning parameters etc.). The performance accuracy
was evaluated by the sensitivity, specificity and overall
correct classification rate (CCR) on the validation set.

Model development: self-organizing maps (SOM) : For
SOM models, the dataset 3 with three inputs of necRM,
necFD and nyfRM (Table 1) was used but the output vari-
able was not used. A 15r15 SOM (225 neurons) was
trained and the SOM results were evaluated using k-
means clustering, ANOVA and least significant difference
(SPSS, 2007).

Results

Correlation between milk parameters and infection status

There was a strong positive (P<0.05) correlation (r=0.869)
between necRM and necFD, whereas nyfRM was nega-
tively correlated (P<0.05) with both necRM and necFD
(r= –0.369 and –0.371, respectively). Furthermore, the
necRM and necFD had a positive relationship (P<0.05)
with mastitis status (r=0.58 and 0.531, respectively),
whereas nyfRM had a smaller negative relationship
(P<0.05) with mastitis status (r= –0.438).

Mastitis prediction results from MLP

The performance of the PC-based model in terms of
classifying the validation data set was superior
(CCR=90.74%) than non-PC-based models (Table 2). The
sensitivity of the model for correctly detecting infected
cases was higher than other non-PC-based models.
Although the specificity of model 1 was slightly higher
than that of the PC-based model, its overall CCR and

sensitivity were poorer. For non-PC-based models, models
1 and 2 showed similar performance in overall CCR
(89%); however, their specificity and sensitivity differed.
Model 2 with EC deviation (necFD) was slightly superior in
detecting infected cows. Model 3 had the lowest CCR and
sensitivity of 87.21% and 78.93%, respectively.

In Fig. 1, the misclassified infected cases from model 3
were superimposed on its validation data for necRM and
nyfRM. It revealed that the misclassified infected quarters
were closer to, or within, the healthy region and that
the most misclassified infected cases are those that have
neither high necRM nor low nyfRM.

Assessing stage of progression of mastitis in a quarter
in the mastitis spectrum

The SOM displayed the mastitis spectrum and revealed
three distinct quarter health states within it (top-left panel
in Fig. 2). These were named: healthy, moderately ill and
severely ill. Each hexagonal cell represents a neuron and
the black dots inside the neurons indicate the number of

Table 2. Prediction accuracy of the best multilayer perceptron (MLP) models for the four sets of inputs

Models Input variables
Neurons in
hidden layer MSE† Specificity, % Sensitivity, % CCR, %‡

1 nyfRM·, necRM†† 12 0.170 92.00 81.23 89.46
2 nyfRM, necFD‡‡ 7 0.171 90.00 83.15 89.77
3 nyfRM, necRM, necFD 10 0.173 91.31 78.93 87.21
4 PC1, PC2, PC3 6 0.169 91.36 86.90 90.74

† Mean square error

‡ Overall correct classification rate

·Running mean of normalized quarter-yield fraction

††Running mean of normalized electrical conductivity

‡‡Fractional deviation from the smallest necRM

PC1, PC2 and PC3 are first, second and third principal component, respectively

Fig. 1. Relation of misclassified infected cases to healthy and
infected cases for the validation data set. Crosses represent
healthy cases; circles represent infected cases; triangles rep-
resent infected cases that were wrongly detected as healthy
cases.
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quarters that fell in that neuron (or location) on the map.
A larger dot indicates a larger number of quarters. The
size and location of dots shed light on the distribution of
quarters in the spectrum of the three health states.
Accordingly, most of the healthy cows (dark area) were
very healthy and a large proportion of the sick cows (light
area) were very ill, and these two clusters were separated
by a cluster populated with moderately ill quarters.

The distribution of individual input variables (necFD,
nyfRM and necRM) in the location of the corresponding
quarters on the map is shown in Fig. 2. In the case where a
neuron represents more than one quarter, the average of
the quarter readings for an input variable is displayed at
the location of that neuron on the map. The lighter areas
indicate higher values and the darker areas represent lower
values.

A valuable feature of SOM is that the location of neu-
rons on the panels representing individual input variables
corresponds to the same neuron location on the cluster
panel. Thus, following the location of a particular neuron,
the cluster as well as the average value for the three vari-
ables for a quarter represented by that neuron can be
easily determined. Accordingly, Fig. 2 revealed that necFD

and necRM increased (i.e. the shade in Fig. 2 became
lighter) as the health status of a quarter deteriorated
gradually from healthy to severely ill. Also, as the health
state deteriorated, the nyfRM decreased progressively from
healthy and moderately ill to severely ill (from lighter to
darker colour). Thus an infected quarter had higher than
normal EC and produced less milk. The SOM detected this
trend well.

As stated previously, EC (necFD and necRM) was more
strongly correlated with health state than milk yield
(nyfRM). PCA corroborated this evidence by demonstrating
that the very first PC almost exclusively consisted of necFD
and necRM, capturing the largest amount (70%) of vari-
ation in data. The SOM confirmed this by highlighting
that the three health states (Fig. 2, cluster panel) were de-
marcated strongly according to the levels of necFD and
necRM. Although the influence of nyfRM was over-
shadowed by necFD and necRM on the cluster panel, milk
yield played a meaningful role as shown by the nyfRM
panel in Fig. 2 and as explained previously. Owing to the
high correlation between necFD and necRM, the panels
representing necFD and necRM showed similar patterns of
variation.

Fig. 2. Mapping of 3-dimensional data onto a two-dimensional SOM. The top-left panel shows the health states in terms of three
clusters (white, grey and black clusters represent severely ill, moderately ill and healthy states, respectively). The other three panels
show the distribution of the three input variables (necFD, nyfRM, and necRM) on the map. The bar below each panel shows the
range of values for each variable. necRM, running mean of normalized electrical conductivity ; necFD, fractional deviation from the
smallest necRM; nyfRM, running mean of normalized quarter-yield fraction.
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Figure 3 illustrates the structure of the spatially or-
ganised data in the SOM in 3-D format. It revealed mean-
ingful cluster structures where healthy quarters (circles)
had high yield (nyfRM) and severely ill quarters (triangle)
had very high EC (necFD and necRM). The moderately
ill (gray dots) cluster had in-between values for these
variables.

The mean of the three variables (necFD, nyfRM and
necRM) were significantly different across the three clus-
ters (P<0.05) (Table 3). Milk yield declined sharply as
healthy quarters deteriorated into moderately ill and de-
creased much less dramatically from moderately ill to
severely ill. In contrast, the two conductivity-related vari-
ables, showed a marked increase in the transition between

moderately ill and severely ill states. Of these two
variables, necFD showed the most marked increase. Corre-
lation between the clusters obtained from SOM and
k-means was 0.82 (P<0.01).

Discussion

The PC-based MLP model achieved a detection accuracy
of 91% specificity, 87% sensitivity and 91% CCR, across
a dataset of 4130 quarter readings (895 infected and 3235
healthy). To put these results in perspective, Nielen et al.
(1995a) developed an MLP with 100% specificity and
92% sensitivity but they used only 13 mastitic and 17
healthy quarters. It is possible that such a small dataset
may not represent population characteristics of conditions
induced by mastitis. Yang et al. (1999), Nielen et al.
(1995b) and López-Benavides (2003) developed ANNs
with EC and/or other variables including SCC, milk com-
ponents and days in milk (DIM) with accuracies ranging
from 67% to 80%. The above mentioned Nielen et al.
(1995b) study compares three analysis techniques: PCA,
linear logistic regression and MLP for in-line detection of
mastitis. The variables included are QY, EC and milk
temperature, and MLP has slightly higher sensitivity and
specificity.

Recently, Wang & Samarasinghe (2005) developed a
mastitis detection model for AMS using MLP based on
cow- and herd-normalized quarter EC, QY and maximum
relative EC deviation among four quarters. The sensitivity

Fig. 3. SOM clustered three health categories (healthy, moderately ill, and severely ill) with respect to inputs (nyfRM, necFD and
necRM) (empty circles indicate healthy, filled gray circles indicate moderately ill, and empty triangles indicate severely ill quarters).
necRM, running mean of normalized electrical conductivity ; necFD, fractional deviation from the smallest necRM; nyfRM, running
mean of normalized quarter-yield fraction.

Table 3. Mean and SD of the variables in each self-organizing
map (SOM) based health category

Health Category†

Variable H0 H1 H2

nyfRM*‡ 1.12±0.27 0.68±0.22 0.46±0.31
necRM*· 0.95±0.91 1.03±0.11 1.41±0.19
necFD*¶ 0.04±0.05 0.05±0.08 0.43±0.21

* Means of all health categories differ (P<0.05)

† H0, H1 and H2 are healthy, moderately ill, and severely ill categories,

respectively

‡ Running mean of normalized quarter-yield fraction

·Running mean of normalized electrical conductivity

¶ Fractional deviation from the smallest necRM
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and specificity for MLP are 84% and 100%, respectively.
Linear discriminant analysis (LDA) has only 81%
sensitivity with 100% specificity. Their study has only 32
clinical cases based on monthly veterinary tests and 1026
healthy cases, and the large proportion of healthy to in-
fected cases may have improved the specificity of their
model. This is the study that comes closest to our study in
terms of the variables used and results obtained. The main
difference is that they have very few mastitis cases and
they assume that an infected quarter has the highest EC
and lowest QY in the udder; whereas, in our study,
threshold were used for both EC and QY based on a
thorough examination of raw quarter readings of a large
number of cows, along with an additional threshold on
cow-based SCC levels. This allowed for subclinical states
to be present in the data. Heald et al. (2000) used ANN
and LDA to predict bacterial causes of mastitis using SCC,
lactation number, DIM and several inputs related to herd
management practices. Their sensitivity and specificity for
300 cows are 39% and 79%, respectively, with poorer
results for LDA.

For all our models, specificity was higher than sensi-
tivity. This could be due to the high proportion of healthy
cases in the training data. Other researchers (Nielen et al.
1995b; Yang et al. 1999; Hassan et al. 2009) state that
high proportions of healthy cases increase the specificity of
the predictions. The PC-based model not only provided
the best performance (CCR=90.74%) but also had the
least complex network structure (i.e. the smallest number
of hidden neurons), providing the smallest validation mean
square error among the four models (Table 2). Inferior re-
sults of model 3 and the improvement achieved by the PC-
based model proved that multi-collinearity existed within
the input variables and that PCA dealt with this to signifi-
cantly improve the sensitivity.

In research, mastitis is commonly defined based on SCC
and bacteriological analysis. Owing to the EC and QY
thresholds used in this study, the proportion of infected
cases was high leading to a relatively low error rate i.e. the
model had gained more relevant knowledge about mastitis
and in turn more accurately detected infected quarters.
Typically, EC values vary from cow to cow and not all
clinical quarters have very high EC or even have a reduced
QY. For such cases, it is difficult or impossible for a model
to detect them correctly as illustrated by the misclassified
cases in Fig. 1.

The SOM model illustrated the mastitis spectrum in the
data by preserving the proximity of the health state of
quarters on the map. The statistically significant means of
the variables across the three clusters indicated that the
yield was quite sensitive to infection and was affected
either early on in the disease or in a minor pathogen in-
fection as also has been stated by Mein et al. (2004). The
marked increase in necRM and necFD in the transition
from moderately ill to severely ill cluster reflected the
known biological evidence that EC increases as a result of
breaking of blood-milk barrier at later stages of a major

pathogen infection (Mein et al. 2004). A similar obser-
vation on EC has been made by Hassan et al. (2009) with
an SOM that clustered quarters based on milk parameters
into no-infection, minor- and major- pathogen infections.
They show that an increase in EC is statistically significant
for major pathogen infections but not for minor pathogen
infections.

Thus, statistical significance of the three health clusters
declared by SOM and the trends in the changes in con-
ductivity and milk yield across the clusters indicated the
high likelihood that they corresponded to healthy, SCM
and CM. The strong agreement with k-means clustering
provided further validity to the three SOM clusters. The
k-means is a simpler linear version of SOM but without
the proximity preserving quality of SOM. These two as-
pects: ability to handle nonlinear cluster boundaries and
preserving proximity of the clusters, give SOM an added
advantage over k-means (Samarasinghe, 2006).

In conclusion, the best MLP model developed in this
study has a higher rate of detection of mastitis than
the previously reported models for AMS. Furthermore, the
SOM model could be used to identify the stage of pro-
gression of mastitis in a quarter by identifying the health
cluster it belongs to as well as its location within the
cluster (i.e. how close or distant this location is from the
surrounding clusters on the map) so that further testing and
treatment can be considered before the clinical symptoms
are manifest. Therefore, the models could be used as de-
cision aids in detection and management of mastitis in a
herd. This study highlighted the strong likelihood that the
three SOM clusters of healthy, moderately ill and severely
ill quarters represented healthy, SCM and CM, respect-
ively. Field validation of this would be advantageous.
Additionally, our study used a limited number of mastitis
indicators ; therefore, in future research, more informative
milk traits related to mastitis should be added so that the
detection models could be improved further.

The authors thank Dr Robert Sherlock of SmartWorks Ltd. for
valuable comments. The data were generated through a research
project funded by DairyNZ and the Foundation for Research
Science and Technology, New Zealand.

References

Aoki Y, Notsuki I & Ichikawa T 1992 Variation in patterns of mastitis

indicators during milking in relation to infection status (summary in

English). Animal Science Technology (Japan.) 63 728–735

Batra TR & McAllister AJ 1984 A comparison of mastitis detection

methods in dairy cattle. Canadian Journal of Animal Science 64

305–312

Bramley AJ, Dodd FH, Mein GA & Bramley JA 1992 Machine Milking and

Lactation. Burlington VT, USA: Insight Books

Grennstam N 2005 On predicting milk yield and detection of ill cows.
(http://www.ee.kth.se/php/modules/publications/reports/2005/IR-RT-

EX-0519.pdf)
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