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Abstract of a thesis submitted in partial fulfilment of the 

requirements for the Degree of Doctor of Philosophy. 

 

Sustainable management of adult Costelytra zealandica (Coleoptera: 

Melolonthinae) damage in Marlborough vineyards 

by 

Mauricio Andrés González-Chang 

 

Conventional agriculture is facing many challenges to provide food security for a constantly growing 

human population. Unfortunately, it still relies heavily on fossil fuel-derived inputs, such as 

pesticides, which affect human health, biodiversity and contribute to global warming. In New 

Zealand, the endemic grass grub Costelytra zealandica (Coleoptera: Melolonthinae) has been a 

pasture pest for more than 100 years. By consuming plant roots, its larvae reduce pasture yield, 

affecting both dairy and meat production. Recently, adults of this species have been found feeding 

on horticultural crops, such as kiwifruit, avocado, and vines, amongst others. In vineyards, adults 

damage vines by feeding on leaves, shoots and inflorescences and can produce a substantial 

defoliation, reaching in some cases 100%. For this reason, prophylactic use of synthetic pyrethroids is 

practised as the main approach to control this pest. Pyrethroids are broad-spectrum insecticides, 

having clear impacts on arthropod diversity, but also their continuous application can have 

detrimental effects on human health and, like all such chemicals, can lead to pesticide resistance. 

Therefore, the aim of this work was to understand C. zealandica adult behaviour as it approaches 

and feeds on vine foliage and thus evaluate a sustainable approach to reduce its damage in vineyards 

without using pesticides. For this reason, a range of experiments were carried out on vineyards in 

Marlborough area of New Zealand, in the Awatere Valley (41°44’S; 173°52’E) during 2014 and 2015, 

and in Blenheim (41°33’S; 173°55’E) during 2015. By studying beetles’ distribution, through adult and 

larval sampling within vineyard blocks, higher adult and larval numbers were found at the edge of the 

vineyard compared to its centre. This distributional pattern was probably an expression of a relict 

adult behaviour in this species, in which females respond to plant silhouettes against the sky to feed 

and mate. Is therefore likely that in Marlborough vineyard-dominated landscapes, vines were the 

most abundant plant silhouettes, which might explain adult and larval abundance at the margin of 

studied vineyard blocks. In another experiment, by removing adults that landed on the vine foliage at 

several times after their daily flight activity started, it was demonstrated that females land before 

males on the vine foliage. Literature suggests that C. zealandica females attract males by releasing 
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their pheromone, phenol. Based on those results, different experiments to evaluate the contribution 

of feeding and landing deterrents to reducing beetle damage were established at the studied 

vineyards. A novel, naturally-based approach to reduce adult damage in Marlborough vineyards by 

applying silica-derived feeding deterrents, such as hydrophobic particle films (HPF) and 

diatomaceous earths (DE) on the vine foliage and secondly, by placing crushed mussel shells (MS) 

(Perna canaliculus; Mollusca: Mytilidae) under the vine-row as mulch was investigated in this work. A 

significant reduction in vine damage was produced by HPF and DE compared to control, with a 46% 

damage reduction in Pinot Noir variety. MS significantly reduced the number of adults that landed on 

the vine plants when compared to control in Pinot Noir. To explore potential synergies between HPF 

and MS, these were combined in another experiment during the 2015 adult flight season at 

Blenheim. Adult C. zealandica damage was significantly reduced by 33 and 73% by HPF and MS, 

respectively. Using infra-red sensitive video cameras it was demonstrated that MS significantly 

reduced activity of flying adults above treated vine plants (cv. Pinot Noir), which led to a 28% 

increase in grape yield. It was suggested that the light reflective properties of MS reduced the 

necessary plant contrast with the sky, altering adult landing dynamics and subsequently, vine 

damage. These findings contribute to the reduction of pesticide use within this agro-ecosystem, and 

also remove the need for disposal of large quantities of these shells, which would otherwise go to the 

local landfill. There, the proteinaceous parts of the shell waste generate methane, a key contributor 

to greenhouse gases due to the anaerobic conditions present in the landfill. In addition, this 

management is in agreement with the cultural perception of kaitiakitanga, which is the spiritual 

consideration of protecting the land for descendants, rooted in Maori (New Zealand’s indigenous 

people) cultural heritage. In this work, a sustainable pest management strategy to reduce C. 

zealandica damage in vineyards was proposed, highlighting the importance of understanding insect 

behaviour to reduce pesticide applications and thus, promote environmentally-sound agricultural 

systems. 

 

Keywords: Melolonthinae behaviour, sustainable agriculture, naturally-based pest control, insect 

ecology.  
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Chapter 1 

Introduction 

 

1.1 Sustainable agriculture and ecosystem services 

The human population has been growing rapidly since 1950 and is predicted to continue on that 

trend in the next decades, with 9 billion people predicted by 2050 (Godfray et al., 2010). This pattern 

was assessed for the first time by Malthus, describing exponential population growth while food 

production increases linearly, predicting a human population that is always hungry (Trewavas, 2002). 

Thus, the gap between population growth and food quantity led scientists in the 1960s to develop a 

new technological agricultural approach called “the green revolution”, aimed to increase worldwide 

food supply (Kesavan & Swaminathan, 2006; Robertson & Swinton, 2005). This technology was 

mainly based in the use of chemicals from fossil fuels such as fertilizers and pesticides, as well as high 

water use; improving crop yields (Tilman, 1999), but without reducing starvation rates (Carvalho, 

2006; Reganold & Wachter, 2016). In addition, this approach revealed unwanted effects on the 

environment (Bouwman et al., 2013; Chindler et al., 1997; Donal, Gree, & Heath, 2001; Porter, 

Costanza, Sandhu, Sigsgaard, & Wratten, 2009; Reganold & Wachter, 2016; Sandhu, Wratten, & 

Cullen, 2010b; Tilman et al., 2001; Tilman, 1999), such as non-target species death, which was 

originally emphasized by Rachel Carlson’s book “Silent Spring” (Carson, 1962). One of the main 

current concerns is biodiversity loss and its functions due to land use change (Sala et al., 2000) and 

climate change (De Chazal & Rounsevell, 2009). Biodiversity has a huge impact on the regulation of 

ecosystem functions (Fu, Wang, Su, & Forsius, 2013; Loreau, 2000), stability (McGrady-Steed et al. 

1997; Tilman et al. 2006) and resilience (Chapin III et al., 2000; Folke et al., 2004), as well as on 

human well-being (Cardinale et al., 2012; Díaz, Fargione, Chapin III, & Tilman, 2006; Faith et al., 

2010). Biodiversity therefore, is a key component in sustainable agricultural production (Altieri, 1999; 

Gurr, Wratten, & Snyder, 2012; Kremen & Miles, 2012; Parker, Crowder, Eigenbrode, & Snyder, 2016; 

Snyder, 2009). Since the 1960s, an exponential increase in scientific literature related to “sustainable 

agriculture” has occurred (Figure 1.1), and over that time, different types of sustainable agriculture 

have been proposed (De Jesus, 2005). These include natural agriculture (Fukuoka, 1978), organic 

agriculture (Reganold & Wachter, 2016), permaculture (Ferguson & Lovell, 2014), 

biological/ecological agriculture (Kremen & Miles, 2012), and agroecology (Altieri, Nicholls, Henao, & 

Lana, 2015; Tomich et al., 2011). One interesting approach to the sustainability concept in agriculture 

is the quantification, recognition and enhancement of “ecosystem services” (Costanza et al., 1997; 
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Kremen & Miles, 2012; Power, 2010; Sandhu, Wratten, & Cullen, 2010a; Sandhu et al., 2010b; 

Sandhu, Wratten, Cullen, & Case, 2008; Swinton et al., 2007; S. Wratten, Sandhu, Cullen, & Costanza, 

2013). The core idea in this concept is that ecosystems contribute to human wellbeing, in terms of 

provision of food, water, climate regulation, cultural values and others (Costanza et al., 1997; De 

Groot, Wilson, & Boumans, 2002; Jax et al., 2013). Ecosystem services quantification is usually 

performed through adding a monetary value to ecosystem functions (Costanza et al., 2014), although 

sometimes this valuation might go beyond that, considering ethical, spiritual, and aesthetic valuation 

(Jax et al., 2013; Roberts et al., 2015; Wratten, Gillespie, Decourtye, Mader, & Desneux, 2012). In 

recent years, scientific evidence has emphasized agricultural practices that promote these ecosystem 

services (Gurr et al., 2016; Kremen, Iles, & Bacon, 2012; Kremen & Miles, 2012; Lin, 2011; Sandhu et 

al., 2016; Wratten et al., 2012; Wratten et al., 2013). However, monocultural agriculture is still the 

basis of the current global food industry (Reganold & Wachter, 2016; Tscharntke et al., 2012). 

Despite the large number of scientific publications (Figure 1.1) quantifying, analysing and promoting 

sustainable agricultural practices, these techniques are usually hard to apply at farm level, due to 

cultural or economic factors (Altieri & Toledo, 2011; Swift, Izac, & van Noordwijk, 2004), as well as by 

policy makers and economic interests that influence political decisions (Altieri & Nicholls, 2008; 

Reganold & Wachter, 2016). Therefore, a transdisciplinary approach is required to promote the 

adoption of these sustainable techniques worldwide (Aeberhard & Rist, 2009; Méndez, Bacon, & 

Cohen, 2013; Reganold & Wachter, 2016).  

 

Figure 1.1. Quantity of publications related to “sustainable agriculture” found in the ISI Web of 

Science from 1960 to 2015, based on the same keywords used by (Gómez, Ríos-Osorio, & 

Eschenhagen, 2013; Kremen & Miles, 2012). 
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From an agronomic point of view, this change to “ecosystem service-rich agriculture” (ESRA), is 

leading by the gradual adoption of organic and other sustainable farming techniques, that can 

involve the replacement of fossil fuel inputs with organic or natural derived chemicals that produce 

similar effects on crop pests or in soil fertility, without significantly compromising crop yields, 

allowing farmers to operate without an extreme monoculture (Altieri et al., 2015; De Jesus, 2005; 

Gurr et al., 2016; Kremen & Miles, 2012; Reganold & Wachter, 2016). This gradual adoption of 

organic and other ESRA techniques allows farmers to reduce their fossil fuel based inputs, resulting in 

an improvement of ecosystem services produced at farm level (Gurr et al., 2016; Kremen & Miles, 

2012; Sandhu et al., 2010a). Nevertheless, more scientific knowledge is needed to support the 

massive change from conventional agriculture to ESRA (Brussaard et al., 2010; Letourneau & 

Bothwell, 2008), particularly with regards to crop yield and pest management (González-Chang, 

Wratten, Lefort, & Boyer, 2016; Jonsson, Wratten, Landis, & Gurr, 2008; Kremen & Miles, 2012). 

What is needed at the farm level are service providing protocols or SPPs which simplify ecosystem 

service application to “recipes” which farmers can easily interpret and adopt in their respective agro-

ecological units (Wratten et al., in preparation). This SPP concept has been recently defined by (Gurr, 

Wratten, Landis, & You, 2017) as: “A recipe that contains all the appropriate and necessary 

agronomic, floral and seasonal characteristics of an adequate ecosystem service provider (ESP) 

(Kremen, 2005) that supports a service providing unit (SPU) (Luck et al., 2009) to promote several 

ecosystem services” (Gurr et al., 2017). However, this SPP needs to be evaluated on each agro-

ecological area to reduce the potential negative non-target effects that might generate, avoiding the 

production of ecosystem dis-services (Gurr et al., 2017; Zhang, Ricketts, Kremen, Carney, & Swinton, 

2007). This challenge requires a trans-disciplinary approach to address cultural and technological 

gaps and to change the paradigm that surrounds modern fossil-fuel based agriculture (Aeberhard & 

Rist, 2009; Méndez et al., 2013; Robertson & Swinton, 2005; Swaminathan, 2006; Wratten et al., 

2013). 

 

1.2 Costelytra zealandica in vineyards 

Costelytra zealandica White, 1846 (Coleoptera: Melolonthidae: Melolonthinae sensu Endrödi 1966) is 

an endemic beetle pest in New Zealand, that has been a pasture pest problem for more than 100 

years (Jackson & Klein, 2006), still being the most important pasture pest in New Zealand (East, King, 

& Watson, 1981; Jackson & Klein, 2006; Zydenbos et al., 2011). In this agro-ecosystem, the damage is 

caused mainly by the second and third instar larvae feeding on pasture roots (Stewart & Stockdill, 

1972). Recent pasture “improvement”, to satisfy the dairy industry, uses new cultivars of exotic 

species such as Lolium spp., Trifolium spp. and Agrostis spp., which today are the predominant 
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pasture species in New Zealand (Weeks, Walker, Dymond, Shepherd, & Clarkson, 2013), in addition 

to cultivars with new endophytes (Raman, Wheatley, & Popay, 2012). Larvae of C. zealandica show a 

marked preference for roots of these three species when compared with Lupinus spp., Lotus spp., 

Phalaris tuberosa (syn. Phalaris aquatica, L.), Poa pratensis L., Arrhenatherum elatius (L.) P.Beauv. ex 

J.Presl & C.Presl, 1819, and Holcus lanatus L. (East & King, 1977; Farrell & Sweney, 1974a, 1974b). 

This preference increases the likelihood of larval survival, accentuating the damage in modern 

pastures.  

For economic reasons, most of the pastures in the Marlborough region have been converted into 

vineyards (Vitis vinifera L.) in the past 25 years (Gabzdylova, Raffensperger, & Castka, 2009). For 

example, between 1990 and 2000, the area cultivated with vines increased by 100%, from 4880 to 

9752 ha (Hughey, Tait, & O’Connell, 2005). C. zealandica is a generalist herbivorous scarab pest, 

capable of utilizing this new source of food, affecting both the below and aboveground plant 

structures of vines. The first report of adult C. zealandica damage in horticultural crops was in 

strawberry, Fragaria x ananassa Duchesne (Binfield, 1933). Adult damage was also described in 

kiwifruit, Actinidia chinensis Planch. (Blank et al., 1983), avocado, Persea americana Mill. (Blank et al., 

1983), tamarillo, Solanum betaceum Cav., (1799) syn. Cyphomandra betacea Cav., (1899) (Blank & 

Olson, 1982) and blueberries, Vaccinum corymbosum, L. (East & Holland, 1984). In vineyards, work 

on this topic is scarce in relation to adult defoliation (East, Willoughby, & Koller, 1983) and larval root 

damage (Mundy, Alspach, & Dufay, 2005), despite the growing concern about this problem amongst 

winegrowers (New Zealand Winegrowers, 2013; Scarratt, 2011). In the above-ground vine plant 

material, defoliation can be severe, reaching in three weeks levels of 80-90% of plant defoliation 

(East et al., 1983). This damage is concentrated on the edges of the vineyards (Scarratt, 2011), 

causing complete grape loss there, with 15% of vines damaged on affected vineyard blocks (Bart 

Arnst, Viticulturalist, personal communication). Vine defoliation occurs between October and 

November in the Marlborough area (Blank & Olson, 1982; Blank et al., 1983; East et al., 1983; Farrell 

& Wightman, 1972; Henzell & Lauren, 1981), when adult beetles fly from their emergence sites, 

aggregating on plant silhouettes against the sky (Farrell & Wightman, 1972; Pottinger, 1968). This 

flight behaviour might be associated with the contrast that plants create against the sky at dusk, 

which has been suggested for C. zealandica (Farrell & Wightman, 1972; Kelsey, 1951, 1957, 1968; 

Pottinger, 1968; Radcliffe & Kain, 1971) and for other melolonthids (Durán, 1954; Schneider, 1962). 

Adults that land on vines (Figure 1.2) will begin to feed on leaves, shoots and inflorescences (Scarratt, 

2011), eating first the uppermost leaves in the vine canopy while the lowest part of the plant is the 

last to be attacked (East et al., 1983), suggesting some preferences related to leaf age and associated 

palatability. The consumption of the leaves begins at the edge of the lamina (Blank & Olson, 1982), 
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leaving only the veins in cases of severe defoliation (Bart Arnst, Viticulturalist, personal 

communication). 

 

Figure 1.2. Adult C. zealandica on a vine plant at around 21:00 h.  Photo: Bart Arnst.  

 

1.3 Rationale of the work 

Until now, the most widely used management method to reduce C. zealandica damage in vineyards 

(and in several other horticultural crops (Blank et al., 1983; East & Holland, 1984)) is the prophylactic 

application of synthetic pyrethroids, such as lambda cyhalothrin (Karate ©) (Blank, 1992; East et al., 

1983; Gabzdylova et al., 2009). These applications are made when adults are present on vine leaves, 

and continue for their entire flying season (Mondo Kopua, Viticulturalist, personal communication). 

Several problems have been seen in the past with the use of synthetic insecticides on insect pest 

populations (Reganold & Wachter, 2016; Tilman et al., 2001), and from an agronomical point of view, 

acquired resistance is the most important, (Palumbi, 2001; Roush & Mckenzie, 1987). In addition, 

pyrethroids are non-selective, killing the pest as well as its natural enemies (Casida, Gammon, 

Glickman, & Lawrence, 1983). In order to avoid the social, economic and environmental problems 

associated with synthetic insecticides (Reganold & Wachter, 2016; Tilman et al., 2001), it is essential 

to investigate sustainable pest control strategies. Thus, the severity of the damage caused by C. 

zealandica in vineyards and its current chemically-based control strategy arise as an interesting pest-

crop model to investigate sustainable approaches for pest control. In addition, the New Zealand wine 
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industry is increasingly concerned about the environmental impacts of modern wine production, 

adopting the concept of “sustainability” on its management and marketing strategies (Gabzdylova et 

al., 2009). This sustainable approach is based on personal values that each wine company has, as well 

as an increasing consumer´s demand for environmentally-sound products in New Zealand (Forbes, 

Cullen, Cohen, Wratten, & Fountain, 2011). Nevertheless, there is no scientific information about 

sustainable management of adult C. zealandica in vineyards, or in any horticultural crop. This 

highlights the need for testing different ecologically-based strategies to control this endemic beetle 

pest. 

 

1.4 Aims, knowledge gaps and hypotheses 

1.4.1 Rearing C. zealandica adults under laboratory conditions from field-collected 
larvae 

The hypothesis evaluated in Chapter 2 is: 

Hypothesis 1. Adult C. zealandica survival rate from field-collected larvae can be improved by using 

novel rearing containers.  

Adult C. zealandica is naturally available only during a short time window during the year, when 

mating, feeding and flight activity occur around a 4 weeks period (Farrell & Wightman, 1972; Wigley 

& Dhana, 1992). This reduces the amount of time to investigate aspects of its behaviour, biology and 

ecology. A larvae-rearing method to enhance the availability of adults, from July to late-January has 

been previously proposed (Wigley & Dhana, 1992). However, rearing larvae to adults of this species 

under laboratory conditions from field-collected larvae has historically been yielding low adult 

survival rates (Lefort, Boyer, et al., 2015; Wigley & Dhana, 1992). In this work, Chapter 2 presents a 

slight modification of the method proposed by (Wigley & Dhana, 1992). That chapter aims to achieve 

an increase in the number of laboratory-reared adults from field-collected larvae.  

1.4.2 Adult C. zealandica sex-ratio throughout its flight season 

The hypotheses evaluated in Chapter 3 are: 

Hypothesis 2. The proportion of C. zealandica males is higher at the beginning of its flight season.  

Hypothesis 3. C. zealandica females arrive before males do on vine plants.  

Observations on C. zealandica flight dynamics have been reported before (Farrell & Wightman, 1972; 

Kelsey, 1951; Pottinger, 1968). However, there is no work on observing or measuring the differences 
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in sexes arriving at the plant foliage during its flight activity, at both, daily and monthly time scales. In 

Melolonthinae, sex-driven colonization patterns are different between species. For example, in 

Melolontha melolonta L., females arrive on plant foliage before males do (Reinecke, Ruther, Tolasch, 

Francke, & Hilker, 2002), although in Maladera matrida Argaman, males arrive on the plant host 

before females (Harari, Ben-Yakir, & Rosen, 1994). This differential sexual arrival revealed the 

mechanisms behind the colonization patterns within those species, which might lead to an optimised 

strategy to reduce their populations (Reinecke, Ruther, Mayer, & Hilker, 2006). For this reason, 

Chapter 3 attempts to understand the sex-driven colonization dynamics on vine plants, aiming at 

contributing to a better understanding of C. zealandica behaviour, and also to the design of a better 

management strategy for this pest in vineyards.  

1.4.3 C. zealandica larvae and adult distribution in vineyards 

The hypothesis evaluated in Chapter 4 is: 

Hypothesis 4. Adult C. zealandica numbers and its larval density are higher at the edge of the blocks 

compared to their centre.  

Within this species, larval populations in pastures present a patchy distribution in the soil (Jackson & 

Klein, 2006; Kelsey, 1951). This has been related to females’ reproductive behaviour during their first 

flight phase (Farrell & Wightman, 1972; Kelsey, 1951; Pottinger, 1968). During their second flight 

phase females respond to a silhouette in the sky for landing, feeding and mating (Farrell & 

Wightman, 1972; Kelsey, 1951; Pottinger, 1968). Vineyards present different plant architecture 

compared to pastures therefore, vine silhouettes might influence female landing and subsequently, 

male colonization dynamics (Chapter 3). Adult C. zealandica distribution has never been measured 

before in any crop or natural habitat. The vine plant architecture might also contribute to the larval 

distribution within vineyard blocks, as larval densities in the ground have been previously associated 

with females’ mating sites (Kelsey, 1951; Pottinger, 1968). Chapter 4 aims at presenting data on adult 

and larval distribution within vineyard blocks, discussing these findings in terms of adult C. zealandica 

behaviour. Understanding this pest’s distribution within agricultural areas can give important insights 

into its management, as efforts can be concentrated were the pest is most abundant (Ferguson et al., 

2003; Sivasubramaniam, Wratten, & Frampton, 1999). The aim of Chapter 4 is also to discuss results 

in terms of sustainable C. zealandica pest management.   

1.4.4 Sustainable C. zealandica management in vineyards 

The hypotheses evaluated in Chapter 5 are: 

Hypothesis 5. Feeding and landing deterrents reduce adult C. zealandica defoliation on vines.  
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Hypothesis 6. Crushed mussel shells reduce adult C. zealandica flying and landing activity on vines, 

reducing its damage and increasing grape yield.  

Based on the results provided in Chapters 3 and 4 about adult C. zealandica ecology and behaviour in 

vines, a sustainable approach to reduce its damage is presented in Chapter 5. This approach 

evaluated two feeding deterrents; hydrophobic particle films (Glenn, Puterka, Vanderzwet, Byers, & 

Feldhake, 1999) and diatomaceous earths (Korunic, 1998). These deterrents are silica-based dusts 

that can alter insect behaviour once insects land on deterrent-treated plant foliage, reducing their 

feeding damage on several crops. Due to their composition and underlying mechanisms behind pest 

control, the undesired effects of synthetically-derived pesticides on pest acquired resistance and 

human health are avoided (Glenn et al., 1999; Korunic, 2013; Silva & Ramalho, 2013). A combination 

of both deterrents has been recently evaluated to reduce the damage caused by the vine cicada 

Psalmocharias alhageos Kolenati (Homoptera: Cicadidae) in Iran (Valizadeh, Abbasipour, Farazmand, 

& Askarianzadeh, 2013). Also, the potential contribution of crushed mussel shells from Perna 

canaliculus Gmelin (Mollusca: Mytilidae) was investigated for its use in pest control. Recently, it has 

been suggested that these shells applied as mulch in the under-vine areas reflect UV-B light 

(Crawford, 2007; Creasy & Ross, 2010), which plays a major role in host plant recognition during 

insect flying, probably altering plant contrast against the sky (González-Chang, Gurr, Tylianakis, & 

Wratten, 2017; Prokopy & Owens, 1983). Therefore, crushed mussel shells might contribute to 

reducing the number of C. zealandica adults landing on vines, with potential effects on reducing 

plant damage and increasing grape yield. Mollusc shells have never been evaluated before for pest 

control. Thus, the aim of Chapter 5 was to evaluate these feeding and landing deterrents on adult 

numbers, vine damage and grape yield, as a sustainable pest control approach. Also, C. zealandica 

flying and landing behaviour was analysed when those shells were applied. 
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Chapter 2 

An improved method to produce adults of Costelytra zealandica 

from field-collected larvae 

 

2.1 Abstract 

Rearing techniques provide a unique opportunity to study aspects of insect ecology, behaviour and 

physiology. Both the larval and adult stages in Melolonthinae scarabs have important impacts on 

crop and pasture yields worldwide. Rearing techniques for this group of phytophagous beetles 

usually results in a low survival rate from larva to adult, varying from 10% to 50%. Here, the current 

rearing method used for the New Zealand grass grub (Costelytra zealandica) was improved by 

increasing the pupation weight threshold, as well as by changing the container type used to rear the 

larvae. This improved method increased the survival rate from larva to adult to 83%. The technique 

developed here may help increase the laboratory survival rate of other Melolonthinae species 

worldwide.  

 

Keywords: White grubs, laboratory-rearing methods, mass-rearing. 

 

2.2 Introduction 

The “art” of insect rearing has a history of more than 3000 years beginning in ancient China when 

silkworms (Bombyx mori L.) were reared to produce fine fabrics (Kurin, 2002). Rearing techniques 

also provide a unique opportunity to study the biology, life cycle and physiology of insects. Some 

scarab species in the subfamily Melolonthinae, commonly known as white grubs, are important pests 

worldwide (Jackson & Klein, 2006), reducing crop and pasture yield at the larval stage by feeding on 

roots (e.g., Hata et al. 2014), and in some cases by consuming plant foliage as adults (e.g., East et al. 

1983; Oliveira et al. 2007). However, detailed methods of producing laboratory cultures of these 

animals for scientific research are rare (Romero-López, Arzuffi, & Figueroa-Brito, 2011). Amongst 

those few, the most frequently found rearing technique is to confine the larvae in a plastic container 

filled with soil and feed them with slices or cubes of plant material (e.g., Burakowski 1993; Hata et al. 

2014) or directly with living roots (e.g., Miner 1948; Rodrigues et al. 2010). These containers are kept 

at optimal temperatures and conditions for adult production. This rearing approach has been used 
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for different melolonthid species, with survival rates from larva to adult varying generally from 10% 

to 50% (Burakowski, 1993; de Souza, Maia, Albuquerque, & Iannuzzi, 2015; Rodrigues et al., 2010; 

Rodrigues et al., 2008; Romero-López et al., 2011). Although, an exception for this general trend was 

found in one Mexican species (Phyllophaga vetula Horn), which had a higher survival rate (85%) 

when compared with other melolonthids (with survival rates from 20% to 50%), all collected in the 

same area (Aragón-García, Morón, López-Olguín, & Cervantes-Peredo, 2005). This suggests that the 

success of the method is partly species-dependent.   

In New Zealand, the larvae of Costelytra zealandica White (Scarabaeidae: Melolonthinae), are 

endemic pests of pastures, and adults of C. zealandica have been found feeding on the foliage of 

horticultural crops such as blueberries, kiwifruits and vines (East et al., 1983; New Zealand 

Winegrowers, 2013). Despite the economic impact of such defoliation, laboratory experiments with 

adults are rare, mainly because of the reduced availability of adults during the flight season (i.e., 

from late spring to early summer), the short life-span of the adults (i.e., 3-4 weeks) and the difficulty 

of rearing this species under laboratory conditions (Wigley & Dhana 1992; Lefort et al. 2015a). In 

1992, Wigley and Dhana suggested a technique to overcome some of these issues. They proposed 

the use of varying rearing temperatures throughout the developmental stages in order to accelerate 

or delay C. zealandica larval development, and consequently, adult emergence. This method 

extended access to adults from July to late-January. In addition, the larval weight necessary to enter 

the pupation phase, called hereafter, “pupation threshold” is critical for inducing morphological 

changes from larva to pupa, previously recorded for this species to be 120 mg (Wightman, 1974a). 

Despite the noticeable improvements of this C. zealandica rearing method in terms of adult 

availability and in the establishment of temperature thresholds necessary to reach each 

developmental stage, the highest adult emergence rate never exceeded 25% (Wigley & Dhana, 

1992). In the current note, we report a modification of the method used by Wigley and Dhana 

(1992), which greatly improved the survival rate from larvae to adults up to 83%.  

 

2.3 Material and methods 

A total of 633 third-instar larvae were collected from Lincoln University’s Field Service Centre arable 

land (Canterbury, NZ, 43°38’S; 172°27’E). Samples were taken from late April to mid-May 2014. 

Larvae were weighed and individually placed in either: (1) cylindrical plastic containers (CPCs) (2.5 x 7 

cm) filled with 50 g of gamma-irradiated (Schering-Plough Animal Health, Wellington, NZ) (Lefort  et 

al. 2015b) moist soil (20% w/w); (2) in 14-well ice cube trays (ICTs) (24.5 x 9 x 2.5 cm); or (3) in 24-

well tissue culture plates (TCPs) (Biofil ®, 12.5 x 8.3 x 2.3 cm). CPCs were closed with a plastic lid with 

holes (Figure 2.1). A piece of organically-cultivated carrot (c. 1 cm3) was put in each of the three 
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container types, which were then stored in a dark climate-controlled room at 15°C to increase larval 

weight until 180 mg, based on the results of Wightman (1974b). ICTs were wrapped with moist tissue 

paper and grouped in pairs inside a plastic bag, to reduce larval and carrot desiccation. In the ICT and 

TCP treatments, carrot was supplied every 4 to 7 days, while in CPCs it was supplied every two 

weeks, as larval consumption rate was lower under the latter treatment. During this feeding step, all 

diseased larvae were removed and the tissue paper was changed and rewetted (ICT only). After two 

weeks, larval weight was recorded and individuals weighing more than 180 mg were placed in a new 

clean CPC, ICT or TCP. All container types were placed in an incubator chamber at 4°C with 60% 

relative humidity in complete darkness for eight weeks to induce pupation (Wigley & Dhana, 1992). A 

total of 164 larvae were maintained in CPC, 175 in ICT, and 198 on TCP. After eight weeks, all the 

containers were stored in a dark climate-controlled room at 20°C to induce adult emergence. Adults 

started to emerge after two weeks in this controlled environment. A Chi-Squared test of 

independency was used to evaluate the effect of the container type (CPC, ICT and TCP) on adult 

survival. Statistical analysis was performed using R v.3.2.5 (R Core Team, 2016).  

 

Figure 2.1. Container types used to rear C. zealandica larvae into adults. a) Ice cube trays, ICT; b) 

cylindrical plastic containers, CPC; and c) tissue culture plates, TCP. Larvae feeding on organically –

cultivated carrot can be seen in a) and c). Pupae can be seen in c). 

 
a b 

c 
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2.4 Results and discussion 

The number of adults produced by each treatment was dependent to the container type (χ2=130.3; 

df=2; p<0.001). A total of 38, 102 and 164 adults respectively were produced in the CPC, ICT and TCP 

treatments. The survival rates were 23.2, 58.3 and 82.8%, respectively. The low survival rate 

observed in CPC may have been due to high moisture content, either in the CPC or in the incubator 

chamber, as fungal hyphae were discovered in several tubes at the end of the pupation phase. 

Furthermore, it is important to note that because the food was placed in the top of the CPC, an 

additional foraging effort was needed for the larva to reach its food, which might have had potential 

consequences for larval weight gain and further adult development. However, a survival rate of 

23.2% is within the general trends found in the literature (10% to 50%). Higher survival rates were 

obtained in the ICT (58.3%) and TCP (82.8%) treatments, presumably related to a higher larval weight 

of 180 mg before entering pupation phase, compared with the low survival rate of 25% when larvae 

weighing 130 mg were used to produce adults (Wigley & Dhana 1992). It has been previously 

observed that a direct relationship exists between larval weight and successful pupation, as the 

highest survival rates were obtained with larvae weighing more than 160 mg (Wightman, 1974a). 

This relationship is also suggested by the variations in C. zealandica life cycle duration; a one-year life 

cycle is usually present throughout New Zealand, although a two-year cycle can be found in harsh 

environments (Perrot & Stockdill, 1973). This variation in life cycle has been related to food and 

temperature restrictions, as larvae cannot gain the necessary weight to reach the pupation threshold 

in one season (Wightman, 1974a).  

The fact that TCP produced 24% more adults than ICT was unexpected, as the methods are similar. 

Speculatively speaking, this result could be explained by the conditions inside the wells offered by 

the plate’s shape (TCP), with a potential effect on gas exchange from the well with its surrounding 

atmosphere. When O2 decreases due to larval respiration, the O2/CO2 ratio present in the plate well 

could change, which might trigger metabolic responses in the larva, as low O2 levels had been linked 

to a temporary inhibition of ecdysteroid secretion, with a latter stimulation of the prothoracic glands 

that secrete ecdysone, promoting metamorphosis (DeLalio, Dion, Bootes, & Smith, 2015). It has been 

noted that C. zealandica third instar larvae produce a pupation chamber made of soil particles 

(Pottinger, 1968), as described for other melolonthids (Burakowski 1993; Rodrigues et al. 2010; de 

Souza et al. 2015), but the implications of this behaviour remains unknown. Therefore, is plausible 

that this pupation chamber might contribute to triggering metabolic changes at the larval stage by 

changing the O2/CO2 ratio inside it that could trigger larval metamorphosis, increasing adult 

emergence. Finally, considering the high survival rate found in both the ICT and TCP treatments, our 

study suggests that in C. zealandica, the use of soil (or other substrates) to produce adults from field 

collected larvae is not necessary. Moreover, the non-soil methods used here offer an easy approach 



 13 

to larval care, with less handling effort and better control of food supply, with easy removal of 

diseased or dead larvae.  

 

2.5 Conclusions 

By changing the container type and increasing the larval weight before pupation phase used to rear 

C. zealandica, up to 83% of the larvae were successfully reared to adults. Our study suggests that by 

using ICT or TCP, a potentially valuable increase in adult emergence under laboratory conditions can 

be obtained from field-collected larvae. This approach, in combination with changes in temperature 

during the different developmental stages proposed earlier by Wigley and Dhana (1992), could 

facilitate laboratory studies with adult C. zealandica over a large part of the year, increasing our 

understanding of its biology and behaviour. Furthermore, the advantages provided by both ICT and 

TCP could eventually enhance the survival rate of other species of white grubs around the world, 

especially when conventional methods have produced a very restricted number of adults. However, 

key issues such as food type, temperature and weight thresholds must be considered from species to 

species, as slightly variations in these factors could affect the outcome of the culture. 
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Chapter 3 

Ecological and pest-management implications of sex differences in 

Costelytra zealandica landing patterns on vines 

 

3.1 Abstract 

Melolonthinae beetles, comprising different white grub species, are a globally-distributed pest group. 

Their larvae feed voraciously on roots of several crop and forestry species, and adults can cause 

severe defoliation. Understanding the flight and the landing behaviour pattern within this group of 

insects can give valuable insights into reducing their damage. In New Zealand, the endemic scarab 

pest Costelytra zealandica produces severe defoliation on different horticultural crops. By analysing 

its sex ratio during its entire flight season, is clear that the proportion of males is higher at the 

beginning of the season, gradually declining towards its end. When adults were successively removed 

from the vines (Vitis vinifera) at 5-min intervals after flight activity begun, the mean proportion of 

males ranged from 6 to 28%. The latter suggests that males were attracted to females that already 

landed on vines, probably through pheromone release. These results are discussed in the context of 

C. zealandica behaviour, with implications for sustainable management of this important pest group.   

 

Keywords: Landing behaviour, vineyards, beta regression, sex-ratio. 

 

3.2 Introduction 

White grubs (Coleoptera: Melolonthidae: Melolonthinae, sensu Endrödi, 1966) are a widely 

distributed group of herbivorous insects feeding on a variety of plant hosts around the world 

(Jackson & Klein, 2006). Their larvae feed on plant roots, leading to severe damage to commercial 

crops and pastures (Frew, Barnett, Nielsen, Riegler, & Johnson, 2016; Jackson & Klein, 2006), as well 

as to natural forests and forestry plantations (Švestka, 2006, 2010). Although, not all species feed as 

adults, such as with Leucopholis lepidophora Blanchard (Kalleshwaraswamy, Adarsha, Naveena, & 

Sharanabasappa, 2016) and Phytoloema herrmanni Germain (Durán, 1954). In some cases minor 

plant defoliation has been recorded, such as with Schizonyza ruficollis F. (Kulkarni, Chandra, Wagh, 

Joshi, & Singh, 2007) and Holotrichia spp. (Kulkarni, Paunikar, Joshi, & Rogers, 2009) in India, Hoplia 

philanthus Füessly in Belgium (Ansari, Casteels, Tirry, & Moens, 2006), and Phyllophaga cuyabana 
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Moser in Brazil (Oliveira & García, 2003). However, dramatic defoliation can also occur. In Eastern 

Asia, Ectinohoplia rufipes Motschulsky adults can severely defoliate ornamental trees around golf 

courses, as well as in gardens and parks (Kim et al., 2013). In Central and Western Europe, adult 

defoliation by Melolontha melolontha L. and M. hippocastani F. has led to severe defoliation on 

different horticultural crops, such as vines (Vitis vinifera L.) and forest trees, respectively (Jackson & 

Klein, 2006; Reinecke et al., 2006; Švestka, 2006, 2010). Such defoliation has been also recorded in 

New Zealand, where Costelytra zealandica White attacks several horticultural crops, including 

tamarillo, avocado, blueberries, strawberries, kiwifruit, and vines (Binfield, 1933; Blank & Olson, 

1982; Blank et al., 1983; East & Holland, 1984; East et al., 1983). In some cases, severe defoliation 

can occur, leading to the prophylactic application of synthetic insecticides to reduce damage (Blank, 

1992; Blank et al., 1983; East et al., 1983). Nowadays, the use of such approach is strongly 

discouraged due environmental and human health problems related to their use (Reganold & 

Wachter, 2016).  

The importance of the defoliation produced by this group of beetles has promoted investigation of 

their plant colonization patterns, subsequently leading to work on their flying and landing behaviour. 

In Melolonthinae, after landing on their host plants, females attract males by releasing sex 

pheromones (Henzell & Lowe, 1970) or by the release of green leaf volatiles (GLV) produced after 

feeding on plant foliage (Harari et al., 1994; Reinecke, et al., 2002), or both acting together (Reinecke 

et al., 2006; Reinecke, Ruther, & Hilker, 2002). In Maladera matrida Argaman, males land on their 

plant hosts before females do. By feeding on those, GLV are released attracting the females to where 

feeding occurs (Harari et al., 1994). Conversely, in M. melolontha and M. hippocastani, females arrive 

before males do. In that case, GLV produced by female feeding attracts males, which are also 

attracted by the release of female pheromones (Reinecke et al., 2006). Observations on C. zealandica 

flying behaviour have suggested that females land before males on shrubs and trees (Farrell & 

Wightman, 1972). After landing, males are attracted to those plants by the female pheromone, 

identified as phenol (Henzell & Lowe, 1970). Although the effects of this chemical on male attraction 

are well understood for C. zealandica (Henzell & Lowe, 1970; Marshall et al., 2016; Unelius et al., 

2008), for M. melolontha, M. hippocastani (Reinecke et al., 2006), and P. cuyabana (Zarbin, Leal, 

Ávila, & Oliveira, 2007), there are no studies quantifying adult C. zealandica sex ratio at the landing 

phase of its daily plant colonising activity. In addition, no research has reported the trends in sex 

ratio throughout the entire C. zealandica flight season for any agricultural or natural system. We 

hypothesized that females arrive on V. vinifera before males do. Therefore, the aims of this work 

were: i) to quantify C. zealandica sex ratio throughout its seasonal and daily flight period; and ii) to 

correlate adult abundance with sex ratio through its seasonal and daily flight activity. 
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3.3 Material and Methods 

3.3.1 Study sites 

This work was conducted in the Marlborough region of New Zealand. In this area, two commercial 

vineyards were chosen. One in the Awatere Valley (41°44’S; 173°52’E) is owned by Kono Beverages, 

and the other close to Blenheim city (41°33’S; 173°55’E) belongs to Wither Hills. These locations are 

situated in homogeneous landscapes generally dominated by conventionally-managed vineyards. To 

reduce the effect of those management practices on the interpretation of the observations described 

below, organically-managed vineyard blocks (cv. Pinot Noir) were chosen at both sites. The sizes of 

the blocks were 6.12 and 4.58 ha in the Awatere Valley and Blenheim, respectively. During the study 

period, from late October to late November 2014 and 2015, no pesticides or herbicides were applied 

on those blocks, apart from sulphur, which was applied to control fungal diseases. In New Zealand, 

organic vineyard areas, including headlands, inter-row and under-vine areas are covered by a mixture 

of grass species. These mainly comprise ryegrass (Lollium perenne L.), white clover (Trifolium repens 

L.), and fescue (Festuca spp.).   

3.3.2 Adult C. zealandica sampling  

Sampling was carried out every day during this insect’s flight season. In the Marlborough area, 

individuals start fly from the end of October until the end of November (Farrell & Wightman, 1972). 

Within this period, adults fly at dusk, 20 min after sunset, for approximately 26 min (see Chapter 5). 

During their flight activity, adults land on vine foliage and then feed and mate, staying on the vines 

for at least 3 h (González-Chang, Unpublished data). For this reason, adults were visually counted and 

then removed from 96 selected plants at both study locations from 21:30 until 23:00 h. These plants 

were distributed within three rows, from the edge of a vineyard block until 50 m towards its centre. 

This sampling method was performed at the Awatere Valley during 2014 and 2015, and in Blenheim 

only on 2015.  

3.3.3 Seasonal sex ratio  

Every day during the flight season, from October 26 until December 2, hand-collected beetles were 

put in one plastic bag. However, in 2015 flight in the Awatere Valley started on November 7. Using a 

50 ml cylindrical plastic container, a sub-sample was taken from that bag for sex ratio analysis. 

Within this sub-sample the ratio was analysed by randomly taking 20 individuals from it. This 

procedure was repeated three times for each day. The proportion of males (M) over females (F) for 

each sampled day was obtained after taking a mean of those three measurements. This proportion 

was calculated as M/(M+F). Days without flight activity were removed from further sex-ratio analysis. 

The separation of males from females was carried out using the morphological characteristics 
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proposed by Kain, (1972) and Kelsey, (1965). Using a stereomicroscope (Carl Zeiss), the distal-ventral 

section of the abdomen was examined for male characters, including a shallow depression in the 

centre of the sixth abdominal sternite (Kelsey, 1965), and the presence of parameres through the 

pygdium (Kain, 1972). Female characters included the presence of colleterial glands, as two spherical 

dots in the fifth sternite, and two genital sclerites situated at each side of the vulva (Kain, 1972). 

3.3.4 Adult C. zealandica removal to determine daily sex-ratio patterns  

To investigate the dynamics of sex-ratio changes on vine foliage during the flight season, adult 

beetles were successively removed from the vines at different periods during 2015. At both sites, 

adults were removed from the vine foliage at dusk 5, 10, 15, 20 and 25 min after flight started. One 

plant at the edge of each of those selected vineyard blocks at each location was used for this 

experiment. This plant was different from the ones used in the seasonal sex-ratio determination 

explained above. Adults were visually counted on the selected vine and then removed by hand at 

each time period. When the number of adults collected exceeded 60, 20 individuals were sub-

sampled three times from those samples. The mean of those proportions was used for further 

statistical analyses. The mean proportion of males and total adult numbers for each sampled day on 

each time interval were considered as replicates. This sequential adult removal was performed from 

November 2 to 28, and from November 14 until 28 at Blenheim and the Awatere Valley, respectively. 

Days without flight activity, because of adverse weather, were removed from further sex-ratio 

analysis. 

3.3.5 Statistical analyses 

The proportions obtained for each day during the sampling season, and those calculated at each 

evaluated time period, were analysed using a generalised linear model (GLM), with a beta-binomial 

distribution and “logit” as the link function (Cribari-Neto & Zeileis, 2010). It has been previously 

suggested that this beta regression approach is inherently heteroscedastic and easily accommodates 

asymmetries typically found in rates and proportions (Cribari-Neto & Zeileis, 2010; Grün, Kosmidis, & 

Zeileis, 2012). Beta-binomial GLMs were calculated with the R package “Betareg” (Cribari-Neto & 

Zeileis, 2010). Spearman’s rank correlation was used to assess the correlation between adult 

abundance and sex ratio through the flight season (Crawley, 2007). The same analysis was used to 

evaluate the correlation between adult abundance and the sex ratio at each time period studied. 

Differences in adult abundance between periods were analysed using Tukey’s multiple contrasts 

post-hoc analysis (Venables & Ripley, 2002) after fitting a GLM with a negative binomial distribution 

and a logarithmic link function at each sampling site. Negative binomial GLM and Tukey test were 

performed using the R packages “MASS” (Ripley et al., 2016) and “Multcomp” (Hothorn et al., 2016), 
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respectively. All statistical analyses were performed using the statistical software R v.3.2.5 (R Core 

Team, 2016). 

 

3.4 Results 

3.4.1 Adult C. zealandica abundance and sex ratio through time 

Adult abundance during 2014 and 2015 is shown in Figure 3.1. In the Awatere Valley in 2014, a total 

of 36, 369 adults were sampled, while in 2015 only 6,111 were collected. During 2015 in Blenheim, 

14,731 adults were collected. Sex-ratio was not statistically correlated with beetle abundance 

through the flight season in the Awatere Valley during 2014 (φ=0.02; p=0.92) nor in 2015 (φ=-0.35; 

p=0.12). However, at the Blenheim site, this correlation was positive and significant (φ=0.51; p<0.01). 

In the Awatere Valley the proportion of males decreased through time during 2014 (slope=-0.08; z=-

4.8; p<0.001) and in 2015 (slope=-0.02; z=-2.6; p<0.01). Similar result was observed in Blenheim 

during 2015 (slope=-0.03; z=-4; p<0.001). Those trends are shown in Figs. 3.2-3.4. 

 

Figure 3.1. Temporal abundance of C. zealandica adults through the 2014-2015 flight seasons. Adults 

were counted and removed by hand on 24 bays (96 vines plants) every day from October 26 until 

December 2. In light and dark blue, adult distribution through time is presented for Awatere Valley in 

2014 and 2015, respectively. In green, adult distribution for Blenheim in 2015 is shown. 
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Figure 3.2. C. zealandica sex ratio (proportion of males) on 35 days after its flight begun, from 

October 27 to November 30 at the Awatere Valley in 2014. The beta regression model (solid line) is 

presented with its confidence intervals (dashed lines). The proportion of males is reduced through 

time (slope=-0.08; z=-4.8; p<0.001). 

 

Figure 3.3. C. zealandica sex ratio (proportion of males) on 25 days after its flight begun, from 

November 7 to December 1, at the Awatere Valley in 2015. The beta regression model (solid line) is 

presented with its confidence intervals (dashed lines). The proportion of males is reduced through 

time (slope=-0.02; z=-2.6; p<0.01).  
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Figure 3.4. C. zealandica sex ratio (proportion of males) on 37 days after its flight begun, from 

October 26 to December 1 close to Blenheim city (2015). The beta regression model (solid line) is 

presented with its confidence intervals (dashed lines). The proportion of males is reduced through 

time (slope=-0.03; z=-4; p<0.001).  

 

3.4.2 Adult removal and daily sex-ratio trends  

When adults were removed from the vine foliage every five minutes after their flight activity started, 

the proportion of males increased through those (slope=0.06; z=2.12; p<0.05) at Blenheim but not at 

the Awatere Valley (slope=0.001; z=0.03; p=0.98). These trends are shown in Figure 3.5. Adult 

abundance at each period for the two studied locations is shown in Figure 3.6. Tukey contrasts 

showed that adult numbers significantly increased between 10 and 15 min after flight occurred, and 

then decreased to initial levels between 20 and 25 min after it started. In the Awatere Valley, flight 

activity completely ceased 25 min after began, while in Blenheim it stopped 30 min after it began. No 

correlation was found between adult abundance and the sex-ratio during each time period evaluated 

at Blenheim (φ=-0.1; p=0.87) and in the Awatere Valley (φ=-0.8; p=0.2).  
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Figure 3.5. Proportion of C. zealadica males, after adult removal from a single vine plant at five-

minute periods after daily flight activity begun, at the Awatere Valley (right) and Blenheim (left). The 

beta regression model (solid line) is presented with its confidence intervals (dashed lines). In the 

Awatere Valley, male proportion did not change during C. zealandica daily flight activity 

(slope=0.001; z=0.03; p=0.98), but in Blenheim, it increased through this time period (slope=0.06; 

z=2.12; p<0.05). Error bars are two-standard errors. 

 

Figure 3.6. Adult abundance during C. zealandica daily flight activity at different five-minutes periods, 

at the Awatere Valley (circles) and Blenheim (triangles). Tukey contrasts are presented as different 

letters above each dot. Different letters represent significantly differences between the studied 

periods, but not between locations. Error bars are two-standard errors. 
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3.5 Discussion 

In this work, seasonal and daily changes in adult C. zealandica sex-ratio throughout its flight season 

are presented for the first time. The proportion of males significantly decreased towards the end of 

the season at both studied locations. However, when adults were removed from the vine foliage at 

several time periods during the same day, trends in the sex-ratio differed between the two locations. 

These results are discussed in terms of this insect’s behaviour. The implications of these results on 

sustainable C. zealandica control in vineyards are also discussed.  

3.5.1 Seasonal sex-ratio trend 

A widely-accepted sex-ratio theory based on natural selection proposed by R.A. Fisher, suggests that 

sex-ratio is equilibrated on a 1:1 proportion to promote species survival (Fisher, 1930; p.143). 

However, many species do not follow this trend as they respond to their changing local 

environmental conditions (Hamilton, 1967). In Melolonthinae (sensu Endrödi, 1966) sex-ratio though 

their flight season can be female-biased (Kalleshwaraswamy et al., 2016; Méndez-Aguilar, Castro-

Ramírez, Alvarado, Pacheco-Flores, & Ramírez-Salinas, 2005), male-biased (Ansari et al., 2006; 

Švestka, 2006, 2010) or at a 1:1 ratio (Harari et al., 1994; Méndez-Aguilar et al., 2005). However, it is 

worthwhile noting that sex-ratio can vary between those proportions every day during the flight 

season (Kalleshwaraswamy et al., 2016; Švestka, 2006, 2010), as shown in Figures 3.2-3.4. In this 

work, seasonal sex-ratio varied between years and locations, being male-biased (64% males) and 

female-biased (47% males), in the Awatere Valley in 2014 and 2015, respectively. In Blenheim, the 

seasonal sex-ratio was 1:1 (50% males). This highlights the temporal and spatial variability of 

melolonthid sex-ratio, which might be determined by environmental conditions (Gempe & Beye, 

2011; Sánchez, 2008). Previous studies suggested that C. zealandica males appear before females do 

(Farrell & Wightman, 1972; Kelsey, 1951; Pottinger, 1968). This might have important evolutionary 

consequences for the survival of this species because as soon as the females emerge, males are 

already present for mating (Durán, 1954; Harari et al., 1994; Kalleshwaraswamy et al., 2016; Kelsey, 

1951). This is in agreement with the results presented in this work, as higher proportion of males was 

found at the beginning of the flight season at both studied years and locations. Because those adults 

were removed from the plants, the reduction in male numbers through time might be associated 

with a reduction in female pheromone production towards the end of the flight season, as its effects 

on male attractiveness have been well studied in C. zealandica (Henzell, 1970; Marshall et al., 2016; 

Unelius et al., 2008). Recently, it has been suggested that phenol, the main sex pheromone in C. 

zealandica (Henzell, 1970), is produced by a mutualistic bacterium Morganella morganii in its 

colleterial gland, which is biosynthesized from the amino acid tyrosine (Marshall et al., 2016). In 

general, insect protein synthesis decreases with aging (Levenbook, 1986), and tyrosine in particular 

has been shown to decrease with age in Bombyx mori (Lepidoptera: Bombycidae) (Osanai & Kikuta, 
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1981). Considering that the C. zealandica flight season lasted for around 4 weeks, from late October 

to late November at the studied vineyards, females that landed on the vine foliage at the end of that 

period might already have ceased to synthesize their pheromone due to aging, reducing the number 

of males attracted to them.  

In the Awatere Valley, no correlation was found between adult numbers throughout the flight season 

and changes in the sex-ratio. However, in Blenheim, this correlation was positive and significant. This 

suggests that an increase in adult numbers is due an increase in the number of males, because in the 

Awatere Valley 2014 flight season, 63% of the sampled adults at their peak in abundance (November 

14, 6968 individuals) were males. Conversely, at the same location during 2015, only 37% of the 

adults were males at their peak (November 19, 1039 individuals). In Blenheim, 55% of them were 

males at their peak (November 6, 1966 individuals). The lack of any significant correlation between 

sex-ratio and adult abundance through time in the Awatere Valley, in contrast with the results found 

in Blenheim, suggests that temperature might be involved in this species sex-ratio determination at 

the landscape level. It is well accepted that sex determination in insects is governed by the Doublesex 

gene expression, which is affected by zygotic, maternal or environmental signals (Gempe & Beye, 

2011; Sánchez, 2008). Amongst these environmental signals, temperature has been related to 

changes in population sex-ratio in Sciara ocellaris (Diptera: Sciaridae) (Nigro, Campos, & Perondini, 

2007) and in the crustacean Daphnia magna (Cladocera: Daphniidae) (Kato, Kobayashi, Watanabe, & 

Iguchi, 2011). Perhaps, different temperature regimes affected the sex-ratio present at landscape 

level, producing a male-biased population in the warmer area of Blenheim. However, so far there is 

no literature related to the effects of temperature on sex determination affecting melolonthid eggs, 

larvae or pupae therefore, the factors underlying the contradictory results found in this work 

between the Awatere Valley and Blenheim in terms of adult C. zealandica abundance and sex-ratio 

correlation throughout its flight season, still remain unknown.  

3.5.2 Adult removal and daily sex-ratio trends 

C. zealandica flight activity has been divided in two phases (Farrell & Wightman, 1972; Kelsey, 1951; 

Pottinger, 1968). Firstly, males emerge from the ground and hover over the grass. When females 

emerge, they climb to the top of a grass leaf and release their sex pheromone to attract males. Once 

mating has occurred, females return to the ground to lay eggs. Secondly, females fly from the grass, 

searching for silhouettes in the sky, landing on trees, hedgerows and shrubs (Farrell & Wightman, 

1972). After landing occurs, pheromones are released, attracting males from the surrounding areas 

again. Then, males and females drop to the ground, where females lay eggs, although in fewer 

numbers compared to their first ovisposition made close to their initial emergence sites (Farrell & 

Wightman, 1972). The results presented here are in agreement with the colonization sex-driven 
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dynamics for the second flight phase observed during 1970s, in which females land first on the 

vegetation; as the proportion of males found when adults were removed from the vines never 

exceed 28%. In fact, 10-min after flight begun, only 9 and 18% of the removed adults were males, at 

the Awatere Valley and Blenheim, respectively. It seems that without females, the number of males 

landing on vines is further reduced. Remarkably, an identical two-phase flight behaviour has been 

described before for Phyllopertha horticola L. (Coleoptera: Rutelinae) (Schneider, 1962) and for P. 

herrmanni (Durán, 1954). Similar landing behaviour where female melolonthids arrive before males 

on plant foliage has been also reported on M. melolontha, M. hippocastani (Reinecke et al., 2002) 

and P. cuyabana (Oliveira & García, 2003). In the Awatere Valley (2015), the proportion of males did 

not change throughout their daily flight activity, which lasted for 25 min. However, in Blenheim 

(2015) this proportion increased throughout their daily flight period, which totally ceased 30 min 

after flight begun. These differences in adult abundance and flight length at dusk could be related to 

the two-fold increase in adult numbers found in Blenheim compared to the Awatere Valley. Basically, 

higher female densities attracted higher amount of males. This appears to be true at Blenheim, as 

higher adult abundances were related to higher number of males. In addition, potential variations in 

the sex-ratio present at landscape level might contribute to the increase of males towards the end of 

the daily flight activity at Blenheim. 

3.5.3 Female behaviour and plant silhouettes 

Considering that males are attracted to females that have already landed on their host plant, through 

pheromone communication (Henzell & Lowe, 1970) and/or plant volatiles (Reinecke et al., 2002), the 

mechanisms behind the location of females’ host plants have relevance to pest management. 

Different authors have proposed that female host finding in Melolonthinae is through the visual 

recognition of the tallest plant silhouettes in the sky (Durán, 1954; Farrell & Wightman, 1972; 

Oliveira & García, 2003; Schneider, 1962). Although it cannot be neglected that males might also use 

visual cues in the sky for orientation at some extent, a study in Brazil showed that P. cuyabana 

females preferred tall soybean and corn plants for landing and mating (García, Oliveira, & de Oliveira, 

2003). Recent work suggests that plant location by C. zealandica females might be mediated by the 

contrast that plant silhouettes produce in the sky (see Chapter 5). Thus, investigating the addition of 

tall plant species at the edge of crops might divert females from landing further into the crop area, 

and also pulling the males away from it as a consequence.   

3.5.4 Implications for sustainable C. zealandica management in vineyards 

Recently, it has been suggested that a “push-pull” strategy (Khan, Midega, Pittchar, Pickett, & Bruce, 

2011) might contribute to the control of white grub populations (Dynastinae, Rutelinae, 

Melolonthinae) around the world (Frew et al., 2016). In the context of C. zealandica pest control in 
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vines, it seems straightforward to use the sex attractant pheromone (phenol) to “pull” the adults 

away from the vines. This pheromone, combined with another management intervention which 

“pushes” the adults away, as recently shown when crushed mussel shells were applied on the under-

vine vineyard areas (see Chapter 5), might arise as a novel variant on the “push-pull” approach to 

control this New Zealand pest in several horticultural crops. However, the use of phenol in such a 

way has some shortcomings. Although it was identified as the pheromone for this species more than 

40 years ago (Henzell & Lowe, 1970), it has been occasionally used to control this pest due 

constraints in trap design that led to low capture efficiency (Unelius et al., 2008). Another negative 

factor in this approach is its high toxicity for humans (Shadnia & Wright, 2008; Unelius et al., 2008). 

Instead, if females can be attracted to a host plant outside the crop, the overall numbers of adult C. 

zealandica landing on the crop could be reduced, with subsequent consequences for reducing plant 

damage (see Chapter 5). The mechanisms behind female C. zealandica host location remain 

unknown, with literature only suggesting that females might locate its host plant by their contrast 

against the sky at dusk (Farrell & Wightman, 1972). Despite those assumptions, it cannot be ignored 

that females can also be attracted to different floral plant volatiles, as demonstrated for P. horticola 

(Ruther, 2004). Furthermore, the potential contribution of green leaf volatiles (GLV), released after 

females feed on vines (Reinecke et al., 2002), might play an important role on seasonal C. zealandica 

peak activity, as it has previously been suggested that its damage in vines is dealt at the middle of the 

flight season (East et al., 1983). In this work, the peak of abundance was registered during that 

period. Thus, the chemical ecology underlying C. zealandica reproductive behaviour needs further 

investigation. Another approach could evaluate the contribution of native New Zealand vegetation 

outside the vines (Shields, Tompkins, Saville, Meurk, & Wratten, 2016), as it can provide the 

necessary height for females to “look at”, and eventually release some organic volatiles that might 

further attract males or females. Although the establishment and growth of those native plants in 

horticultural areas will take time, it could contribute for a long-term sustainable C. zealandica pest 

management strategy, with effects on local biodiversity and biological conservation that need to be 

further addressed.  

 

3.6 Conclusions 

The proportion of C. zealandica males landing on the vine foliage decreased throughout the flight 

season during 2014 and 2015, at two New Zealand locations. Only at Blenheim (2015), increases in 

sex-ratio (male-biased) were correlated with increases in overall adult abundance. This might be 

related to spatial and temporal landscape variations in sex-ratio between Blenheim and the Awatere 

Valley, although those were not measured here. When adults were removed every day from the 
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vines at several times after their flight activity begun, female-biased sex-ratio was recorded. This 

suggests that females land on the plant foliage before males do, subsequently attracting them 

afterwards by the release of their sex pheromone, phenol. The vine colonization sex-driven dynamics 

during adult C. zealandica flight activity presented in this work might contribute to reducing the 

damage of this endemic New Zealand pest on several horticultural crops, and eventually in other 

scarabaeids with similar flight behaviour around the world.   
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Chapter 4 

Distribution of Costelytra zealandica in vineyards: Implications for 

reduced pesticide inputs 

 

4.1 Abstract  

Information on larval and adult distribution within a crop can provide valuable insights into insect 

behaviour, with potential applications to sustainable pest control. In New Zealand, vines can suffer 

from severe damage produced by adults of the endemic scarab Costelytra zealandica White 

(Melolonthinae). Here, larval and adult distribution of this pest has been assessed by recording larval 

numbers in the soil and by counting and removing adults that landed on the vine plants. Also, soil 

moisture and soil penetration resistance were measured to evaluate their impact on larval 

distribution within vineyard blocks. Distribution patterns within vineyard blocks were evaluated using 

generalised linear mixed-effects models. This study shows that both larval and adult stages were 

concentrated at the edge of the vineyard, with higher larval numbers in the under-vine compared to 

the inter-row areas. Soil parameters partly explained differences in larval densities within the blocks. 

Larval spatial distribution was mainly attributed to an ancient relict adult behaviour that led to the 

adults’ landing on tall plants to feed and mate, then laying their eggs in the under-vine after dropping 

from the vine plants. Based on these results, protocols can be developed for non-pesticidal or 

restricted pesticide management of this pest, as well as for other species displaying similar crop 

colonization patterns or behaviours. 

 

Keywords: Crop aggregation, relict adult behaviour, sustainable management. 

 

4.2 Introduction 

The spatial distribution of white grubs (Coleoptera: Melolonthinae) at broader regional scales has 

been studied for several species in different parts of the world (e.g., Barratt 2007; Montreuil 2008; 

García-López et al. 2012). However, the spatial distribution at local or farm scale has only ocasionally 

been described. Work has focussed essentially on white grub larval distribution, bacause the damage 

to plant roots caused by larvae can be severe, having impacts on crop yield and plant survival 

(Allsopp & Bull, 1989; Ghaioule, Lumaret, Rochat, Maatouf, & Niogret, 2007; Kim et al., 2013; Pardo-
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Locarno & Montoya, 2007; Way, Mwelase, Magagula, & Matimba, 2013). The understanding of larval 

distribution within agricultural areas can enhance the effectiveness of control strategies, as 

agricultural management can thereafter be concentrated on highly infested areas. For example, in 

Australia, the larval population of Antitrogus parvulus Britton (Coleoptera: Scarabaeidae) was 

concentrated under the row of sugarcane (Saccharum sp.), which was related to soil conditions, such 

as soil compaction and moisture content, that could affect larval survival in this agricultural system 

(Logan, Allsopp, & Zalucki, 2003). Several studies have shown that changes in soil condition, such as 

soil moisture and compaction are likely to affect larval survival (Cornelisse & Hafernik, 2009; East et 

al., 1981; Ellsbury, Exner, & Cruse, 1999; Frew et al., 2016; Stewart & Van Toor, 1986). Some 

agricultural practices contribute to increased soil compaction, affecting water and air fluxes in the 

soil profile (Horn, Domżał, Słowińska-Jurkiewicz, & van Ouwerkerk, 1995). Amongst those, vehicles’ 

wheels can severely alter soil conditions (Hakansson, Voorhees, & Riley, 1988; Horn et al., 1995). In 

the USA, this variable has been suggested as the main factor influencing corn rootworm larvae 

(Diabrotica virgifera Le Conte) (Coleoptera: Chrysomelidae) survival and migration from soil 

previously planted with corn (Zea mays L.) to corn strips (Ellsbury et al., 1999). Despite the 

unquestionable importance of soil conditions on larval survival (Frew et al., 2016), a localised larval 

distribution within agricultural areas can also be related to adult reproductive behaviour. In Brazilian 

corn and soybean (Glycine max L.) fields, the larval population of Phyllophaga cuyabana Moser 

(Coleoptera: Scarabaeidae) was concentrated at the edge of those crops (García et al., 2003). This 

was explained by a direct correlation between the location of mating and oviposition sites, showing 

that larval spatial distribution is related to females’ landing preferences for feeding and mating 

(García et al., 2003). This aggregated distribution in the soil has been recorded for other melolonthids 

colonizing a wide range of different crops, such as sugarcane in Swaziland (Way et al., 2013) and 

Australia (Allsopp & Bull, 1989), corn in Brazil (Oliveira & García, 2003), and even turf in Korean golf 

courses (Kim et al., 2013).  

In New Zealand, the endemic scarabeid Costelytra zealandica White (Coleoptera: Melolonthinae) has 

been an important pasture pest for more than 100 years (Jackson, 1990; Kelsey, 1951). In this agro-

ecosystem, larvae tend to be aggregated (Jackson & Klein, 2006; Kelsey, 1951), which can be 

explained by eggs laid in a clustered pattern by females, close to their mating site (Farrell & 

Wightman, 1972). During the 1980s, an increase in the number of scientific articles reporting C. 

zealandica adults attacking different horticultural crops, such as avocado (Persea americana Mill.), 

tamarillo (Cyphomandra betacea Cav.), kiwifruit (Actinidia chinensis Planch.) (Blank et al., 1983), 

blueberries (Vaccinum corymbosum L.) (East & Holland, 1984) and grape vines (Vitis vinifera L.) (East 

et al., 1983) were published. Amongst these horticultural crops, vine plants can be severely damaged 

by adults, reaching in some cases 100% defoliation (personal observation). The widely used approach 
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to reduce adult damage in conventionally managed vineyards is by prophylactic applications of 

synthetically derived pyrethroids (Blank, 1992), which besides the associated health and 

environmental problems, can deteriorate the “clean and green” image of New Zealand wines around 

the world (Gabzdylova et al., 2009). Conversely, larval damage is seen as a problem only on recently 

established young vine plants (Mundy et al., 2005), so no control methods for larvae are used on 

already established vineyards. A similar effect of melolonthid larvae damaging recently established 

oak trees (Quercus suber L.) in Morocco has resulted in unsuccessful tree regeneration programmes 

on degraded deforested areas (Ghaioule et al., 2007).  

This recent adult damage caused to New Zealand vineyards could be related to recent land use 

changes (Jackson et al., 2012) from pastures to vineyards in the last 25 years, especially in the 

Marlborough area. Furthermore, the different plant structure provided by vine plants (as compared 

to grass) could be more “attractive” for C. zealandica as it has been suggested that adults fly towards 

the highest plant silhouette available, as an expression of relict adult behaviour (Farrell & Wightman, 

1972) related to this endemic insect’s original grass/shrub habitat (Merton, 1980). Nevertheless, the 

factors responsible for this recent vineyard invasion by C. zealandica adults, and for other 

melolonthids in different human-associated landscapes (Kim et al., 2013; Wagenhoff, Blum, & Delb, 

2014) is beyond the scope of this paper, (but see Lefort et al. 2015 for suggestions). Unfortunately, 

there is no study so far that evaluates larval and adult melolonthid distribution within vineyards in 

New Zealand or anywhere else around the world. Therefore, the aims of this paper are to quantify 

and interpret adult and larval distribution patterns to help in managing this pest. The steps followed 

in this study were: i) to analyse the larval and adult distribution of C. zealandica, ii) to record adult 

seasonal flight abundance during 2014 and 2015, iii) to measure soil moisture and penetration 

resistance, and iv) to evaluate adult patterns along the vine row in 2014 and 2015.  

 

4.3 Material and methods 

4.3.1 Study sites 

All data were collected in the Marlborough region, New Zealand. In 2014, larval and adult 

distributions were evaluated in the Awatere Valley (Kono Beverages, 41°44’S; 173°52’E). During 

2015, adult distribution was measured in the Awatere Valley and in Blenheim (Wither Hills, 41°33’S; 

173°55’E). Both sites were 50 km apart. The Awatere Valley is influenced by the Blue Mountain 

range, making the area colder than Blenheim. Organically-managed blocks of the Pinot Noir variety 

were chosen at the Awatere Valley and Blenheim for the experiments described below. As part of the 

viticultural practices, the inter-row and headlands were covered by grass, generally a mixture 
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4.3.3 Soil condition 

Soil condition was assessed by measuring the volumetric moisture content (MC) (volume %) and 

penetration resistance (PR) (kPa) in the under-vine and inter-row areas, at both edge and centre of a 

vineyard block in the Awatere Valley in July, 2014 (Figure 4.1). MC was measured using a digital soil 

moisture unit (Delmhorst Instruments Co, Towaco, USA). The probe was inserted at a depth of 5 cm. 

Soil PR was used as measure of soil compaction, as an increase in PR is due to an increase in bulk 

density and a reduction in macroporosity, both being direct consequences of soil compaction 

(Hakansson et al., 1988; Horn et al., 1995). These PR values were obtained by a hand penetrometer 

(Eijkelkamp, Agrisearch Equipment, Giesbeek, The Netherlands) with a 3 cm2 cone. This cone was 

inserted 15 cm into the soil. All measurements were performed adjacent to each hole dug to quantify 

larval density within the vineyard block. MC and PR data were obtained in the under-vine and inter-

row, at both edge and centre of the studied vineyard block. A total of 240 measurements for each 

evaluated soil parameter were obtained.  

4.3.4 Adult sampling 

The pattern of adult distribution on vine plants through the flight season was obtained by counting 

and removing by hand all adult beetles landing on 96 vine plants (3 rows of 32 vine plants each), 

collected every day. Collection was performed at both locations (Awatere Valley and Blenheim) 

during 2014 and 2015, from October 26 until December 2. This period was chosen based on the 

seasonal flight length for C. zealandica recorded previously in this area (Farrell & Wightman, 1972), 

but also on observations made by the authors in the field. At dusk, C. zealandica starts to fly (Farrell 

& Wightman, 1972; Kelsey, 1951), like other melolonthids around the world (García et al., 2003; 

McQuate, 2013; Santos & Ávila, 2009; Tanaka et al., 2008). After landing on the plants, the adults 

remain on the leaves, where they feed and mate at least until 23:00 h (González-Chang, Unpublished 

data, Figure 1.2). Then, they drop to the ground, where the females dig to lay their eggs (Blank, 1992; 

Farrell & Wightman, 1972). This provided a “window” between 20:30 and 23:00 h during which 

individuals were visually counted (García et al., 2003; McQuate, 2013) and removed by hand from 

the plants. 

To analyse adult beetles’ distribution pattern along the vine row, three vine rows were selected and 

adult beetles on the vine plants were counted and removed. The collection started from the first 

plant at the edge of the block up to 52.5 m towards its centre. Three dates in each year and location 

were used to analyse the distribution of adults along vine rows, in the beginning, at the middle and 

the end of the flight season. In 2014, the dates for the Awatere Valley were: November 7, 11 and 22, 

and in 2015 were November 10, 19 and 30. In 2015, the Blenheim dates were: October 26, 

November 2 and 16. In total, 864 vine plants were assessed over both years and sites (ntotal=n2014(32 
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plants x 3 vine rows  x 3 dates x 1 site)+n2015(32 plants x 3 vine rows x 3 dates x 2 sites)). Adult density 

between the edge and centre of the vineyard block, on two different dates: November 8 and 22 

(2014), was assessed by counting and removing the adults at the edge and at 100 m towards the 

centre of the vineyard block. Five different rows, with a total of 10 plants on each row were sampled, 

at both edge and centre. Each replicate included 20 plants (10 in the edge and 10 in the centre). 

Replicates were separated by 10 m between each other. For this experiment, five replicates were 

considered, with a total of 100 plants evaluated (n=10 plants x 5 rows x 2 places (edge/centre)).    

4.3.5 Statistical analyses  

All analyses were performed using generalised linear mixed-effects models (GLMM), to quantify 

group variability under a pseudoreplicated design (Bolker, 2015; Bolker et al., 2009). A negative 

binomial distribution with a logarithmic link function was used when larval densities were evaluated, 

due to the number of zero counts and the overdispersion present (Zuur, Ieno, Walker, Saveliev, & 

Smith, 2009). Larval abundance in the under-vine and the inter-row (rows) within the edge and 

centre of the vineyard (place) were considered as fixed effects. The areas where holes were dug 

within a replicate were considered as a random effect. Soil conditions were evaluated using a 

Gamma distribution with an inverse link function (Bolker, 2015). Fixed and random effects were the 

same as those used when larval abundance within vineyard blocks was evaluated. Adult distribution 

between edge and centre over the two dates was also analysed using a negative binomial 

distribution with a logarithmic link function to correct for overdispersion. In this model, edge and 

centre (place), and the two different dates (November 8 and 22) were considered as fixed effects. 

Each plant within a replicate from which adults were counted and removed was considered as a 

random effect. When adult density was analysed along the vine rows, a penalized quasi-likelihood 

approximation (PQL) was used, with Poisson distribution and a logarithmic link function (Bolker et al., 

2009; Zuur et al., 2009). In the latter, the position of the sampled plants in the row from the edge to 

the centre (plants) and the three different dates were considered as fixed effects, while the row in 

which those plants occurred was treated as a nested random effect (plants within a row) (Zuur et al., 

2009). One PQL-GLMM was used for each location and year. For graphical purposes, a regression 

with its respective 95% confidence intervals was fitted for each date, location and year, based on the 

predicted values produced by the individual PQL-GLMMs (which already included the effect of the 

fixed and random effects) using a generalised linear model (GLM) with Gamma distribution and an 

inverse link function. All models described above were graphically checked for unusual patterns in 

residuals vs. fitted values, residuals within a Q-Q plot and residuals’ frequency distribution (Bolker, 

2015; Zuur et al., 2009). Also at this stage, overdispersion was tested again by comparing the sum of 

the squared Pearson residuals to the residual degrees of freedom (Bolker, 2015). A Wald test based 

on a χ2 distribution was used to obtain P-values to assess the significance of the three different dates 
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and the interaction between those dates and adult distribution along vine rows (Bolker et al., 2009). 

All statistical analyses were performed using R v. 3.2.5 (R Core Team, 2016), using the R packages 

MASS (Ripley et al., 2016), Matrix (Bates & Maechler, 2016), lme4 (Bates et al., 2016) and aod 

(Lesnoff & Lancelot, 2015). 

 

4.4 Results 

4.4.1 Larval distribution 

Larval abundance was higher at the edge of the vineyard block when compared to its centre (z=5.37; 

p<0.001). Also, higher larval numbers were found under vines compared to the inter-row (z=3.35; 

p<0.001). The mean number of larvae m-2 was 63.7 and 34.6 for the inter-row in the edge and centre 

of the vine block, respectively. For the under-vine, the mean larval number was 103.8 and 49.3 larvae 

m-2 for the edge and the centre, respectively. These results are shown in Figure 4.2. 

  

Figure 4.2. Larval abundance in the under- and inter-vine row at the centre and edge of a vineyard 

sampled during winter 2014 at the Awatere Valley. Confidence intervals (95%) are presented as error 

bars (two-standard errors).  
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three dates evaluated (χ2=49.2; df=2; p<0.001), although the interaction between both was not 

statistically significant (χ2=3.8; df=2; p=0.15) (Figure 4.4). For 2015 at the same location, the influence 

of the distance from the edge was not statistically significant to explain the variation in adult density 

by itself (t=0.08; p=0.93). However, the latter differed significantly amongst the three dates 

evaluated (χ2=94.6; df=2; p<0.001). Also, the interaction between the distance from the edge and the 

sampling date was significant in explaining adult distribution along the vine row (χ2=16; df=2; 

p<0.001), showing a change in distribution patterns from the edge towards the centre of the 

vineyard at the different sampled dates (Figure 4.5A). A similar trend was observed in Blenheim 

during 2015, in which the distance from the edge explained the variation in adult density along the 

vine row (t=-5.58; p<0.001), as well as between the different sampling dates (χ2=116.3; df=2; 

p<0.001) and the interaction between them (χ2=31.7; df=2; p<0.001) (Figure 4.5B). 

 

Figure 4.4. Adult density along the vine row (4 plants = one vineyard bay), from the edge towards the 

centre of the vineyard block, sampled during the 2014 flight season at the Awatere Valley. 

Regression curves were plotted using a generalised linear model (solid lines) with their confidence 

intervals at 95% (dashed lines). Three different sampled dates are shown, for the beginning, the 

middle and the end of the flight season.  
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Beverages), with a total of 36,369 adults collected during the flight season. In contrast, in 2015 the 

peak was only 1,039 on November 19, with a total of 6,111 collected adults. In Blenheim (Wither 

Hills), the peak in adult abundance was recorded on November 6, with 1,966 individuals. During the 

whole flight season, 14,731 adults were collected.  

 

 

 

 

 

 

 
Figure. 4.5. Adult density along the vine row (4 plants = one vineyard bay), from the edge towards 

the centre of the vineyard block, sampled during the 2015 flight season. Awatere Valley (left) and 

Blenheim (right) sites are shown. Regression curves were plotted using a generalised linear model 

(solid lines) with their confidence intervals at 95% (dashed lines). Three different sampled dates are 

shown, for the beginning, the middle and the end of the flight season. 

 

4.5 Discussion 

Here, for the first time, the distribution of a melolonthid beetle is quantified in vineyards. Both adult 

and larval stages of C. zealandica were concentrated at the edge of the vineyard blocks, but larvae 

and adults were also present at the centre of the block. Larval and adult distribution was discussed in 

the context of soil conditions and female reproductive behaviour.  

4.5.1 Larval distribution and soil condition 

In the Awatere Valley, the mean of 103 larvae m-2 that was found under vines at the edge of the 

block, is lower than the 150 larvae m-2 found in dryland pastures and also lower than 200 larvae m-2 

in irrigated pastures, previously proposed to be pasture density thresholds that produce severe 

economic damage in Canterbury, New Zealand (Townsend & Jackson, 1997). Nevertheless, a larval 

threshold to propose an economic injury level in vineyards has never been calculated, although 

(Mundy et al., 2005) suggested (using a pot experiment), that C. zealandica larvae feeding on vine 

roots, can only weaken young plants, but are unlikely to affect older plants. However, the effects of 
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larval densities at field level on the vine root system remains unknown. The differences found in soil 

MC and PR between under-vine and inter-row areas, at both edge and centre, could be related to 

viticultural management which relies heavily on machinery, increasing the compaction of the inter-

row. Vehicle wheels do increase PR, affecting the MC in the soil profile (Hakansson et al., 1988; Horn 

et al., 1995). Similar results on vineyard soil compaction have been recently found in other 

Marlborough vineyards when weta (Hemiandrus sp. “promontorius”, Orthoptera: Anostostomatidae) 

distribution was studied (Nboyine, Boyer, Saville, Smith, & Wratten, 2016). Considering that both 

measurements were performed in winter, it is likely that as compaction reduces soil hydraulic 

conductivity; soil evapotranspiration is also reduced, leading to higher values of MC in the inter-row 

compared to under-vine areas. Despite the statistical differences found in soil conditions, the ranges 

for MC (34%-31% for the inter-row and 23%-24% for the under-vine) did not affect C. zealandica 

larval mortality in pastures (van Toor & Stewart, 1986). Furthermore, under laboratory conditions a 

moisture range between 12% and 30% did not affect C. zealandica larval survival (Wightman, 1974b). 

In contrast, increased soil compaction has been identified as a strategy to reduce C. zealandica larval 

numbers in pastures by increasing the stocking rate (East & Pottinger, 1983) or by using a heavy 

roller pulled by a tractor (Stewart & Van Toor, 1986; van Toor & Stewart, 1986). The calculated 

pressure of a heavy roller (>6 t) on the soil surface to produce such a reduction in larval density is 

higher than 250 kPa (Stewart & Van Toor, 1986), although its effectiveness was also related to 

variations in soil moisture through the season (van Toor & Stewart, 1986). In terms of the PR values 

reported here, the difference between under-vine and inter-row for edge and centre was 185 kPa 

and 284 kPa, respectively. Therefore, the differences in larval numbers between under-vine and 

inter-row areas at the centre of the block could partly be influenced by soil compaction, but not at its 

edge. Despite the statistical differences reported here, larval numbers between 300-380 larvae m-2 

have occurred in soils with PR ranges between 700 kPa and 1400 kPa, suggesting that the differences 

in the degree of compaction reported here are not enough to affect larval survival (East & Pottinger, 

1975).  

4.5.2 Larval distribution and adult behaviour    

The distribution of C. zealandica has been described previously only in pasture ecosystems (Kelsey, 

1951). In the 1970s, it was proposed that C. zealandica adults fly at dusk, searching for the highest 

plant silhouette available on which land (Farrell & Wightman, 1972). A recent study in Brazil showed 

that adults of P. cuyabana preferred to land on tall shrub patches, tall corn and soybean plants when 

compared to smaller ones, aggregating in the upper parts of those plants (García et al., 2003). Also, 

when trees were present in the middle of the crop, a higher abundance of P. cuyabana was found in 

the upper part of the trees (Oliveira & García, 2003). Similar adult preferences towards trees have 

been reported in Korean golf courses (Kim et al., 2013). In New Zealand vineyards, defoliation by C. 
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zealandica adults is initially concentrated (during the flight season) in the uppermost part of the 

vines (East et al., 1983). Those results could be related to a relict adult behaviour, as suggested 

previously by (Farrell & Wightman, 1972). From an evolutionary perspective, the New Zealand 

environment in which C. zealandica evolved comprised mainly shrubs and tussock grasslands 

(Merton, 1980). By landing above the grass layer, female pheromones could spread widely, 

increasing the likelihood of attracting males for reproduction, and therefore potentially enhancing 

the genetic pool of its offspring. In this context, flying males attracted to pheromones also land 

where females are present, contributing to its aggregated pattern. After mating, females lay eggs in 

the soil close to the mating sites, which leads to larval patches in pastures (Jackson & Klein, 2006; 

Kelsey, 1951).  

The high proportion of larvae present in the under-vine areas at the edge of the vineyard block 

suggests that after adults land on vine plants for feeding and mating, they dropped to the ground 

(Blank, 1992; Farrell & Wightman, 1972). Eggs are then laid into the under-vine area, leading to 

differences in larval abundance between areas within the vineyard block reported here. This is in 

agreement with the higher proportion of adults collected at the edge of the vineyard block, when 

compared with its centre. In 2014, when adult distribution patterns along the vine row were 

analysed, a steady reduction in adult numbers was observed from the edge towards the centre of the 

vineyard block, irrespective of the sampling date. However, this pattern varied between the different 

sampled dates in 2015 at both studied locations. These differences in adult distribution along the 

vine row can be explained by inter-annual variations in adult abundance between the two studied 

flight seasons. Therefore, in high-adult abundance years during the flight season, higher adult density 

can be expected at the edge of the block compared to its centre, as the effects of the relict behaviour 

described above could be exacerbated by the high population of females in the area. Conversely, 

during low-adult abundance years, fewer insects land on the edge of the block, as the overall 

concentration of female pheromones could be dissipated in the air. This idea is supported by the 

adult density along vine rows in 2015, as more were found at the edge of the vineyard only at times 

of peak of abundance, while in the early and late stages of the flight season, the abundance of adults 

along the row did not differ. Unfortunately, the proportion of adults landing on the vine plants that 

originated within the vineyard block, and those that came from outside the vineyard remains 

unknown. Under this scenario, the origin of those invaders could be the grassy vineyard headlands, 

remnants of native vegetation, hedgerows and/or neighbouring vineyards. This pattern of invasion 

from outside the landing, feeding and mating sites has also been suggested for Ectinohoplia rufipes 

Motschulsky (Coleoptera: Scarabaeidae) (Kim et al., 2013) and Melolontha melolontha (Coleoptera: 

Scarabaeidae) (Wagenhoff et al., 2014). Recently, anecdotal evidence suggests that some Chilean 
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melolonthids present similar aggregation pattern at the edge of vineyards in Central and Southern-

Central Chile (González-Chang, Personal observation).  

4.5.3 Adult distribution through the flight season 

Due to the wide range of biotic and abiotic variables involved in population dynamics, the reasons for 

a 6-fold difference in adult numbers between 2014 and 2015 are difficult to determine. However, it is 

likely that the severe drought that affected Marlborough area during the summer 2015 could have 

severely reduced larval populations, as low soil moisture has been previously identified as one of the 

soil parameters that affect larval survival and therefore, population dynamics on this species (East et 

al., 1981; Farrell, 1972). However, inter-annual variation in adult densities during the flight season is 

common in melolonthids, as reported for M. melolontha L. and M. hippocastani Fabricius in Europe 

(Wagenhoff et al., 2014).   

4.5.4 Implications for pesticide reduction 

The results discussed above have important implications for the control of this pest, which can lead 

to a reduction in pesticide applications. This can contribute to enhancing vineyard sustainability 

helping to maintain the good image and reputation that New Zealand wine industry has worldwide 

(Gabzdylova et al., 2009). The inter-annual variability suggested by a 6-fold reduction in adult 

abundance during the flight season between 2014 and 2015 highlights that the current prophylactic 

pesticide use may not be required every year, being necessary only during high-adult abundance 

years. The measurement of soil conditions, such as summer moisture content could be used as a 

proxy for larval survival, and therefore, adult density during the following flight season. Such an 

approach would require further research into the origin of flying adults and the development of a 

“larval sampling protocol” that can easily be deployed by the winegrowers. As larvae and adults are 

concentrated at the edge of the blocks, a key strategy to reduce pesticide use (if necessary) can be to 

limit its application to the edge of the vineyard blocks. This approach has been previously used 

against the carrot rust fly (Psila rosae L.) (Diptera: Psilidae), which lay eggs at the edge of carrot 

(Daucus carota L.) fields, achieving satisfactory levels of pest control by using only 10% of the 

recommended pesticide dose (kg ha-1) (Sivasubramaniam et al., 1999). This localised approach to 

pest control has also been suggested for other pests that show an aggregated distribution at the 

edge of their crops, such as the brassica pod midge Dasineura brassicae Winnertz (Diptera: 

Cecidomyiidae) (Ferguson et al., 2003) and the cabbage seed weevil Ceutorhynchus assimilis Paykull 

(Coleoptera: Curculionidae) (Ferguson et al., 2000). Such strategy was also suggested for D. virgifera, 

which was concentrated on strips of corn used as an inter-crop in USA (Ellsbury et al., 1999).  



 40 

In addition to localised pesticide application, habitat manipulation strategies can also be established 

at the edge of the block, such as the push-pull strategy (Cook, Khan, & Pickett, 2007; Frew et al., 

2016; Khan, Pickett, van den Berg, Wadhams, & Woodcock, 2000). By placing a tall crop on the edge 

of the vineyard (i.e., on the vineyard headland), C. zealandica adults may land mainly there, reducing 

the damage to the vine foliage, shoots and inflorescences. Plant species that offer suitable traits to 

attract C. zealandica such as height and/or attracting volatile compounds, could be established in 

combination with species such as lucerne (Medicago sativa L.) which reduces larval survival in the 

soil by feeding-deterrent activity (Sutherland, Hood, & Hillier, 1975), or by direct toxicity (Sutherland, 

Hutchins, & Greenfield, 1982). The use of plant species that are attractive to adults in combination 

with those that can act as trap crops for larvae could form the basis of an agro-ecological strategy to 

reduce the damage caused by C. zealandica adults in vineyards, as suggested for other melolonthids 

attacking different crops (Frew et al., 2016; García et al., 2003).  

 

4.6 Conclusions  

In the present study, C. zealandica adults and larvae were concentrated in the edge of the studied 

vineyard blocks, with higher larval abundance in the under-vine areas when compared to the inter-

row. Based on data presented here, it is strongly recommended that control strategies to reduce the 

damage caused by this endemic scarabeid in vineyards should be concentrated at the edge of the 

vineyard blocks. Furthermore, inter-annual variability in adult numbers based on the 6-fold 

difference found between 2014 and 2015 on the same site could indicate that pesticides are not 

needed every year, although no economic threshold or economic injury levels have been established 

for this pest in vines. Prophylactic use of pyrethroids is the main management practice to date in 

conventionally-managed New Zealand vineyards to control this pest, so the current work can help by 

limiting insecticide use to the edge of the vineyard blocks. Finally, this article highlights that by 

understanding pest distribution within agricultural crops, a localised strategy which concentrates 

pest control on high-pest density areas could reduce the use of pesticides. However, this requires 

population monitoring which farmers may not be trained or inclined to carry out.  
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Chapter 5 

Mussel shell mulch can increase vineyard sustainability by changing 

Costelytra zealandica behaviour 

 

5.1 Abstract 

Global concern about external costs of pesticides (environment and human health) has promoted the 

development of new strategies for pest control in agro-ecosystems. Mineral-based dusts, such as 

hydrophobic particle films (HPF) and diatomaceous earths (DE) have been tested against several 

pests in different crops worldwide, highlighting their use as alternatives to synthetic pesticides. Also, 

optical barriers that alter insect visual orientation through UV manipulation have been used against 

flying insects. Recently, mussel shells (MS) optical properties have been investigated, suggesting that 

their UV-B reflective properties could affect insect behaviour, and therefore contribute as an 

alternative to orthodox pest control. In the present study, the effects of HPF, DE and MS were 

evaluated for their potential in reducing the endemic New Zealand scarab Costelytra zealandica 

damage in vineyards. HPF and DE significantly reduced beetles’ damage by 46% when applied to 

Pinot Noir vines. MS treated vines had 69% fewer adults on them. When HPF and MS were 

combined, 33% and 73% reduction in damage was achieved by these two treatments, respectively. 

Furthermore, MS additions increased grape yield by 28%. The potential mechanisms behind these 

results are discussed in terms of insect behaviour and plant physiology. Although MS had a dramatic 

effect in reducing C. zealandica damage, and led to a subsequent grape yield increase, it also 

changed C. zealandica behaviour and distribution, with potential implications for scarab damage 

across the whole vineyard block.   

 

Keywords: Feeding deterrents, sustainable pest control, seafood waste recycle. 

 

5.2 Introduction 

In recent years, increasing attention has been paid to the negative effects that synthetic-derived 

pesticides have on environmental quality (Tilman et al., 2001), pest resistance (Denholm, Devine, & 

Williamson, 2002) and human health (Stoytcheva, 2011). Despite the past success of these 

compounds for increasing crop yield (Tilman, 1999), recent advances in pest management science 
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have suggested the use of more ecologically-based approaches, including changing insect behaviour, 

as an important tool for sustainable pest management (Cook et al., 2007; Foster & Harris, 1997; 

Roitberg, 2007). Special interest has focussed on understanding the mechanisms behind behavioural 

changes that these inputs can have in terms of reducing pest damage (Roitberg, 2007). These 

changes usually involve alteration of insects’ visual and/or olfactory perception of its environment 

(Cook et al., 2007; Foster & Harris, 1997). Although pest management has historically involved the 

use of olfactory behavioural disruptors, such as pheromones (Witzgall, Kirsch, & Cork, 2010), the 

application of different coloured reflective surfaces has also been studied to some extent to 

investigate behavioural changes mediated by the modification of insects’ visual perception of its host 

(Prokopy & Owens, 1983). In aphids, reflective mulches placed on the ground have been used to 

reduce the damage caused by several species (González-Chang et al., 2017), with important 

consequences for the reduction of insect-borne viruses on a range of crops worldwide (Antignus, 

2014). The mechanism behind this management relies on reflection of short-wavelength light (<400 

nm) from those mulches, which might reduce the contrast between insects’ host plants and their 

surrounding environment (González-Chang et al., 2017; Prokopy & Owens, 1983). Despite the 

beneficial effect of such mulches for pest control, the dramatic increase in the use of plastic 

reflective materials in agro-ecosystems during the last 10 years have raised major agronomic, 

economic and environmental concerns related to their removal and disposal (Kasirajan & Ngouajio, 

2012). A potential environmentally-friendly alternative to this problem could partly involve the use of 

crushed mussel shells (MS). Studies in vineyards have shown that when MS are placed in the under-

vine areas, short-wavelength light (UV-B, 280-320 nm) is reflected from the shells to the vine canopy 

(Crawford, 2007; Creasy & Ross, 2010). Therefore, it is plausible that the MS reflective properties 

might alter insect behaviour through an “optical barrier”, as described above, where other reflective 

mulches were used to control several flying pests (Antignus, 2014). Although MS have been used 

before in filters (Zapater-Pereyra, Malloci, van Bruggen, & Lens, 2014) to enhance wine quality 

(Crawford, 2007; Creasy & Ross, 2010), and as a soil amendment (Álvarez, Fernández-Sanjurjo, Seco, 

& Núñez, 2012), they have never been tested as a control strategy to reduce pest damage in crops.  

Feeding deterrents, such as hydrophobic particle films (HPF) and diatomaceous earths (DE) can also 

change insects’ behaviour, offering a natural approach for pest control (Glenn et al., 1999; Korunic, 

2013). The former is a product made of kaolin clays (kaolinite) bounded to a synthetic hydrocarbon 

that makes the clay hydrophobic (Glenn et al., 1999), and therefore less affected by rainy conditions 

when applied for pest control in the field (Glenn & Puterka, 2005). So far, different mechanisms have 

been discussed that alter insect behaviour; i) by producing a film on the treated plant foliage that 

produces a physical barrier between the insect and its host, therefore, reducing herbivores’ ability to 

recognise their host plant; ii) by adsorption of kaolin particles around insects’ body parts, affecting 
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movement and behaviour; and iii) by absorption of insects´ cuticles (Glenn et al., 1999; Glenn & 

Puterka, 2005). This approach has been used against several pest species on different crops over the 

last 15 years (e.g., Barker, Holaschke, Fulton, Evans, & Powell, 2007; Cadogan & Scharbach, 2005; 

Larentzaki, Shelton, & Plate, 2008; Lo Verde et al., 2011; Peng, Trumble, Munyaneza, & Liu, 2011), 

including coleopterans (Showler, 2002; Silva & Ramalho, 2013). On the other hand, DE are silica-

derived particles from ancient diatom shells that settled in the bottom of the ocean after they died, 

between 20 and 80 million years ago (Korunic, 1998). When insects contact plant foliage treated with 

DE, damage reduction might also be achieved through behavioural changes involving the removal of 

diatoms from insects’ cuticles (Ebeling, 1971; Korunic, 1998). However, the absorption of lipids 

present in insects’ cuticles by these shells has been recognized as the main mechanism behind 

reduction in pest populations. This promotes water loss and therefore, insect desiccation (Ebeling, 

1971; Korunic, 2013). The latter can be exacerbated by external injuries produced by the sharp edges 

that diatom shells can have (Korunic, 1998, 2013). In contrast to HPF, DE are easily removed from 

treated plants by rainy conditions, and for this reason, they have been extensively investigated in the 

area of stored agricultural products against several coleopteran species (Athanassiou et al., 2011; 

Kljajić et al., 2010; Korunic, 2013). However, DE have been recently used in combination with HPF to 

reduce vine cicada Psalmocharias alhageos Kolenati (Homoptera: Cicadidae) oviposition and nymph 

numbers (Valizadeh et al., 2013). This suggests that potential additive effects on pest control could 

be expected when HPF and DE are combined in field conditions.  

In New Zealand vineyards, adults of the endemic beetle Costelytra zealandica White cause severe 

vine defoliation (New Zealand Winegrowers, 2013). At dusk, between October and November, C. 

zealandica adults’ flight activity lasts for approximately 25 minutes (see Chapter 5), flying towards 

plant silhouettes to feed and mate (Farrell & Wightman, 1972). After a short period on the plants, 

they drop to the ground and lay eggs (Farrell & Wightman, 1972). As a consequence of this 

ephemeral presence on vine foliage, at both daily and monthly time scales, the prophylactic use of 

contact synthetic insecticides, such as pyrethroids, has dominated the vineyard management 

spectrum to control this pest since early 1990 (Blank, 1992). Considering adult C. zealandica flying 

and landing behaviour, in addition to the current non-sustainable reliance in synthetic pesticides, the 

use of HPF, DE and MS could offer an ecologically-friendly alternative to reduce adult grass grub 

damage in vineyards. Therefore, the aims of this work were i) to evaluate the contribution of HPF, DE 

and MS to reduction of damage caused by C. zealandica adults on vine plants, ii) to analyse the 

contribution of HPF and MS on grape yield, and ii) to quantify the effects of MS on adult C. zealandica 

behaviour.   
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5.3 Material and methods 

5.3.1 Study sites 

The Marlborough region in New Zealand is well recognized as an important area for wine production. 

Within that region, severe vine defoliation produced by C. zealandica adults has been recorded (New 

Zealand Winegrowers, 2013). Two Marlborough areas were selected to study alternative strategies 

to reduce adult C. zealandica damage in vineyards. In the Awatere Valley (41°44’S; 173°52’E) one 

vineyard block (2.21 ha; Kono Beverages; experiment 1) was used in spring 2014 to evaluate the 

effects of feeding deterrents and another to evaluate crushed mussel shells (6.12 ha; Kono 

Beverages, experiment 2). Such approaches were established and evaluated separately. However, 

during spring 2015, HPF and MS were combined in another vineyard block (4.58 ha; Wither Hills, 

experiment 3), close to Blenheim city (41°33’S; 173°55’E), to evaluate potential synergistic or additive 

effects. At both locations, organically-managed vineyards (cv. Pinot Noir) were used.  

5.3.2 Experimental design 

Experiment 1  

In the Awatere Valley (2014), HPF (Surround WP©, USA), DE (Redox Pty Ltd, NZ), a mixture of both 

(HPF+DE) and a control were established in a randomized block design to test their efficacy to reduce 

adult C. zealandica damage. Each treatment was applied to five vines in each of two adjacent parallel 

rows (10 plants in total). Treatments were established along these two rows, next to each other. 

Unfortunately, separation between those was not possible along the row, due the spatial vineyard 

constraints. To counter this limitation to some extent, damage was measured only in the two central 

plants in each of those treated rows. Overall, 6 replicates were established separated by 5 m. The 

feeding deterrents were mixed with water and applied to the vine foliage using a 400 l hydraulic vine 

sprayer (Silvan G3, Australia), three times before the adult flight activity peak for 2014 occurred, on 

October 30, November 7 and 14 (See Chapter 3). In this experiment, the treatments were applied 

three times, due to the rapid foliage growth that occurred during that period. A dose of 20 g l-1 at a 

rate of 400 l ha-1 (8 kg a.i. ha-1) was used (Valizadeh et al., 2013). When HPF and DE were combined, 

10 g l-1 of each product was used to keep the 20 g l-1 concentration constant amongst treatments.  

Experiment 2 

To evaluate the effect of MS on adult grass grub numbers landing on vine plants, crushed MS were 

applied to the under-vine areas in the Awatere Valley (2014). This experiment was established at the 

edge of the vineyard block, as it has been suggested that C. zealandica adults aggregate in this area 

(see Chapter 4). For this reason, the first four plants along a vine row (comprising one bay) at the 

edge of the block were used. Treatments (MS and control) were established in a randomised block 

design, with 15 replicates. On each treated MS bay, 1.4 m3 of previously-crushed MS were evenly 
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applied using a modified manure spreader (Millcreek, USA). This produced a 30 cm layer of MS on 

the under-vine area. These shells were crushed at Kono Seafood factory (Blenheim, NZ), as a strategy 

to reduce the volume of disposed shells after industrial mussel processing. C. zealandica adults were 

counted and then removed from treated and untreated rows between 21:30 h and 23:00 h on 

November 16, 2014.  

Experiment 3 

Based on the results obtained from the two experiments described above, the effect of MS and HPF 

on adult grass grub numbers, its damage on vine foliage and its effect on grape yield was investigated 

at Wither Hills, during spring 2015 and autumn 2016, respectively. HPF, MS, a combination of both 

(HPF+MS) and a control were established in a randomised block design (Figure 5.1A). HPF was 

selected over DE as feeding deterrent for this experiment due to its hydrophobic nature (Glenn et al., 

1999), but also because no statistical differences were found between HPF and DE on adult damage 

(see results). HPF was applied using a 20 g l-1 concentration at a rate of 400 l ha-1 only once, on 

November 1, 6 days before the adult flight peak of abundance for the 2015 season was recorded (see 

Chapter 3). All treatments were established at the edge of the vineyard block, using the first bay (a 

group of four vine plants along the row) from the block edge towards its centre (Figure 5.1A). On 

each MS or HPF+MS treatment, crushed shells were applied as described for experiment 2. Eight 

replicates were used separated by 10 m.  

5.3.3 Adult C. zealandica activity  

At Wither Hills (2015), beetle activity was recorded on vines with and without MS using the 

arrangement of experiment 3 (Figure 5.1). Adult activity was measured using security surveillance 

infra-red sensitive video cameras (Sanyo VCC-HD4600P, China). Two cameras were established at 50 

cm in front of the first vine plant in a row; one on a MS-treated bay and the other on control (Figure 

5.1C). Cameras were established at 1.5 m over the ground using a tripod. Beetle activity in those two 

plants was recorded on five consecutive days, starting on November 6 until November 10, from 

19:00 h to 23:00 h. On each date, all videos were recorded using 1280 x 720 pixel resolution and 

encoded afterwards into MKV format (Matroska Video Codec) using VSDC free video editor software 

(Flash-Integro LLC, v.4.0.1.479). Each video was subsequently cut from the start to the end of adults’ 

flight activity. Then, screenshots of those edited videos were taken every minute using VSDC 

software. On each screenshot, every white dot found was counted, as well as “shadow” dots that 

appeared on the plants. Each dot (shadow or white) represented one C. zealandica adult. These 

shadows were produced by adults flying in front of the infra-red light, projected over the white 

background produced by the vine plants. Due the lack of image background contrast produced by the 

infra-red light over the vines, all white and shadow dots in the screenshots were counted manually. 
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Through the analysis of the screenshots, two different behaviours were recognised; i) hovering or 

flying, in which each counted dot was over the vines, changing its position between two consecutive 

screenshots, and ii) landing, where each counted dot was on the vines, without changing its position. 

The presence/absence of dots between screenshots was assessed by rapidly alternating between 

two consecutive screenshots in the computer screen, allowing for the identification of 

flying/hovering and/or landed beetles. These white dots and shadows were counted using the “cell 

counter” function within the software Fiji (Schindelin et al., 2012). A similar approach that compares 

changes in animal presence/absence between two photographs has been recently used to study 

salmon (Oncorhynchus spp.) passage and abundance in Alaskan streams (Deacy, Leacock, Eby, & 

Stanford, 2016).  

 

Figure 5.1. Experimental design used for three different experiments (A, B, C). Symbols represent one 

vine plant along a vine row. A) Random distribution (of one replicate) of mussel shell mulch (MS, 

triangle), hydrophobic particle films (HPF, square), both combined (HPF+MS, star) and control (circle) 

on leaf damage and grape yield, applied at the end of the vine rows in Wither Hills. The distance from 

the edge of the block towards its centre is shown in brackets. B) Second, third and fourth bay used to 

evaluate adult C. zealandica distribution when experiment “A” was present in the first bay. Adult 

counts were taken from all 4 bays. “B” represent one replicate. C) Position of two infra-red video 

cameras at the ends of two treated vine rows (MS and control) to study adult beetle activity. Data 

were recorded for 5 consecutive days. Each date was considered a replicate.  
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5.3.4 Plant damage and grape yield  

Adult C. zealandica damage on vine leaves starts from their margin towards their centre, leaving the 

leaf veins untouched when severe cases of defoliation occur (González-Chang, Personal observation). 

Similar damage patterns have been recorded on tamarillos (Solanum betaceum Cav.) (Blank & Olson, 

1982). Damaged leaves (DL) were identified and counted on each vine plant considered in 

experiment 1 and 3. Damage was expressed as the number of DL on the total number of leaves (TL) 

per plant. Damage assessment was performed at the end of the adults’ flight season, in early 

December 2014 and 2015. Grape yield was measured as weight of all grape bunches per plant (kg 

plant-1) only in experiment 3. An electronic portable balance was use for the latter (CAS SW series, 

Korea).  

5.3.5 Adult C. zealandica vineyard distribution after mussel shells application 

The same randomised block design applied to experiment 3, was used to investigate the potential 

effect of those treatments applied at the edge of the vineyard block on adult C. zealandica 

distribution (Figure 5.1B). Therefore, adults were collected on the first, second, third and fourth bay 

along the vine row (Figure 5.1B). In those selected bays, adults were counted on the vine foliage, and 

then removed by hand between 21:30 h and 23:00 h on November 16, 2015. 

5.3.6 Statistical analyses 

Data from experiment 1 and 3 (damage and yield) were pooled and averaged on each replicate 

within their respective treatments to correct spatial pseudoreplication (Crawley, 2007). Proportional 

data were corrected using a square root arc-sine transformation to fulfil the necessary requirements 

for an analysis of variance (ANOVA). Yield data was homoscedastic and normally distributed, 

therefore ANOVA was carried out. A post-hoc analysis was performed using Tukey’s honest 

significant difference test, using the R package “Multcomp” (Hothorn et al., 2016). To evaluate the 

effect of MS on the number of adults that landed on vines in 2014 (experiment 2), data were log10 

transformed, and subsequently, a paired t-test was carried out between MS-treated bays and 

control. The same analysis and transformation were performed to evaluate adult numbers on MS, 

HPF, and HPF+MS treated vines (experiment 3).  

Mean adult beetle activity data (beetle min-1) from the screenshot analysis was calculated for 5-min 

time periods. During the flight period recorded, 6 periods were created at 5, 10, 15, 20, 25 and 30 

min after adults began to fly. Such periods included data on mean beetle activity (flying/landing) 

during that period. Due to a lack of homoscedasticity in the data, they were transformed using a 

spread-stabilizing power transformation with the R package “Car” (Fox et al., 2016). No 

autocorrelation was found between data from the five different recorded dates, so these were 
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considered as replicates. Each period was analysed independently, using a paired t-test between MS 

and control treatments. Adult distribution from the edge towards the centre of the vineyard block 

after HPF and MS were applied was analysed using generalised linear mixed effect models (GLMMs). 

In these, the interaction between the treatments (MS, HPF, HPF+MS and control) and the position in 

the row in which adults were collected (1st, 2nd, 3rd, 4th bay), were considered as fixed effects, while 

the row in which those bays occurred was treated as a nested random effect (bays within a row) 

(Figure 5.1B). A negative binomial error family was used to correct overdispersion (Zuur et al., 2009). 

A Wald test with a χ2 distribution was used to assess the significance of the treatments and the 

position in where beetle samples were taken (B. M. Bolker et al., 2009). GLMMs were performed 

using the R packages “MASS” (Ripley et al., 2016), “Matrix” (Bates & Maechler, 2016), “Lme4” (Bates 

et al., 2016) and “Aod” (Lesnoff & Lancelot, 2015). All statistical analyses were calculated using the 

software R v.3.2.5 (R Core Team, 2016).  

 

5.4 Results 

5.4.1 Adults landing on vines 

The addition of MS to the under-vine areas significantly reduced the number of adult C. zealandica 

that landed on those vines by 69% (t=-9.46; df=14; p<0.001). In control plots, the mean number of 

adults was 189 adults bay-1, while on MS-treated vines these were 59 adults bay-1. In 2015, adult 

numbers on MS (t=3.32; df=7; p<0.05) and HPF+MS (t=5.26; df=7; p<0.01) treated vines were 

statistically fewer than control. However, non-significant differences were found between HPF and 

control (t=0.37; df=7; p=0.71), nor between MS and HPF+MS (t=2.28; df=7; p=0.06). The mean 

number of adults per bay was 56.5, 54, 27.5 and 16, for control, HPF, MS, and HPF+MS, respectively.  

5.4.2 Plant damage and grape yield  

During 2014, feeding deterrents (HPF and DE) statistically reduced damage caused by adult C. 

zealandica compared to control (F3,20=7.98; p<0.01). No differences were found between the feeding 

deterrent treatments used (p>0.8) (Figure 5.2). In this experiment, the application of these 

deterrents on Pinot Noir vines reduced damage by 46%. In 2015, when HPF and MS were evaluated, 

a significant damage reduction was also found (F3,28=31.9; p<0.001). A 33% and 73% damage 

reduction was achieved by HPF and MS, respectively (Figure 5.3). The combination of both 

approaches (HPF+MS) was not statistically different from the only-MS application (p=0.9). Grape 

yield was significantly increased (F3,28=3.12; p<0.05) from 3 to 4.2 kg plant-1 when MS were present. 

No differences were found when HPF was applied alone (p=0.5), nor between MS and HPF+MS 

(p=0.9) on grape yield. This addition of MS led to a 28% increase in grape yield (Figure 5.4).  
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Figure 5.2. Proportion of damaged vine leaves (DL TL-1) under different feeding deterrents. No 

statistical differences were found between diatomaceous earths (DE), hydrophobic particle films 

(HPF), and both approaches combined (HPF+DE) (p>0.8). All treatments were significantly different 

from control (F3,20=7.98; p<0.01). Error bars represent two-standard errors.  

 

Figure 5.3. Proportion of damaged vine leaves (DL TL-1) under hydrophobic particle films (HPF), 

mussel shells (MS) and both combined (HPF+MS). All treatments were statistically different from 

control (F3,28=31.9; p<0.001). No differences were found between HPF+MS and MS (p=0.9). Error bars 

are two-standard errors.  
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Figure 5.4. Effects of hydrophobic particle films (HPF), mussel shells (MS) and both combined 

(HPF+MS) on grape yield (kg plant-1). HPF+MS- and MS-treated vines were statistically significant 

from control (F3,28=3.12; p<0.05). HPF was not different from control (p=0.5). Error bars are two-

standard errors.  

 

5.4.3 Video analysis of adult behaviour 

Adult C. zealandica began its flight 20 minutes after sunset, from 20:31 h on November 6th, until 

20:39 h on November 10th. This behaviour stopped between 20:57 h and 21:06 h over the studied 

dates, respectively, with a mean flight time of 26 minutes each day. Adult hovering activity (beetles 

min-1) was lower over MS treated plants, 10 (t=3.49; df=4; p<0.05) and 15 min (t=3.29; df=4; p<0.05) 

after adult flight activity started (Figure 5.5). Landing activity was also lower in the MS treatment, 10 

(t=2.76; df=4; p=0.051), 15 (t=5.22; df=4; p<0.01), 20 (t=4.51; df=4; p<0.05), and 25 min (t=4.4; df=3; 

p<0.05) after adult flight activity started (Figure 5.6).  
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The number of adults that landed along the vine rows was significantly affected by the treatments 

applied (χ2=42.7; df=3; p<0.001). In addition, there was a significant interaction between treatments 
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mean number of adults was 55.3 and 29.8 adults bay-1, in the 1st and 4th bays, respectively (Figure 

5.7).  

 

Figure 5.5. Flying/hovering adult C. zealandica activity on un-treated (upper line) and MS-treated 

vine plants (bottom line). Error bars are two-standard errors. Significant differences between 

treatments at each time interval are presented in the figure (*
 p<0.05).  

 

Figure 5.6. Adult C. zealandica landing activity presented on un-treated (upper line) and MS-treated 

vines (bottom line). Error bars are two-standard errors. Statistical differences between treatments at 

each time interval are presented in the figure (* p<0.05; ** p<0.01).  
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Figure 5.7. Adult C. zealandica distribution along vine rows, from the end of the rows towards the 

centre of a vineyard block. Different bars within hydrophobic particle films (HPF), mussel shells (MS), 

and both treatments combined (HPF+MS), represent the different bays along the vine row (a group 

of 4 vine plants), where adults were collected. On each treatment, from the left to the right, the first, 

second, third, and fourth bays are presented. The interaction between those treatments and the 

bay’s position along the row was significant (χ2=40.2; df=3; p<0.001). Error bars are two-standard 

errors.   

 

5.5 Discussion 

This work presents for the first time the effect of crushed mussel shells (MS) applied to under-vine 

areas on insect pest behaviour. In contrast, hydrophobic particle films (HPF) and diatomaceous 
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the plots), it is likely that such volatiles were also present on the control treatments. This suggests 

that a potential mechanism behind the differences in adult numbers between MS and control 

treatments was associated with changes in the visual perception of the plant host by adult C. 

zealandica instead. Short-wavelength UV-B radiation emission from MS has been quantified before in 

New Zealand (Crawford, 2007; Creasy & Ross, 2010) and USA (Sandler, Brock II, & Vanden Heuvel, 

2009). Because these short wavelengths play a major role in insect orientation, navigation, feeding 

and mating (Dacke, Nilsson, Scholtz, Byrne, & Warrant, 2003; Seliger, Lall, & Biggley, 1994), the use of 

different materials that manipulate UV-B reflection altered the behaviour in Ceratothripoides 

claratris Shumsher (Thysanoptera: Thripidae) (Nguyen, Borgemeister, Max, & Poehling, 2009), 

Bemisia tabaci Gennadius (Hemiptera: Aleyrodidae) (Antignus, Nestel, Cohen, & Lapidot, 2001), 

Myzus persicae Sulzer (Homoptera: Aphididae) (Chyzik, Dobrinin, & Antignus, 2003), and Frankliniella 

occidentallis (Thysanoptera: Thripidae) (Kigathi & Poehling, 2012). This may explain the significant 

reduction of the flying/hovering activity of C. zealandica around MS-treated vines and therefore, the 

reduced number of individuals landing on those. It has recently been suggested that C. zealandica 

adults aggregate at the edge of vineyard blocks due the expression of a relict adult behaviour (see 

Chapter 4). Female pheromones released after landing on tall plants might increase the likelihood of 

attracting males from surrounding areas, which has potential evolutionary consequences for 

increasing the genetic diversity of its offspring (Merton, 1980). This could explain the hovering 

behaviour of males over vines, reflecting their attempts to locate the females that have already 

landed on those. Recent unpublished data support the previous idea, as sex-ratio analysis has 

indicated that a higher proportion of females on the vines were found after C. zealandica adults were 

successively removed from the vines every five minutes after flight activity started (See Chapter 3). 

Conversely, under natural conditions sex-ratio was male biased at the beginning of the flight (Farrell 

& Wightman, 1972).  

In a previous non-manipulative study, adult C. zealandica numbers were higher at the ends of the 

vine rows (1st bay), decreasing gradually towards the centre (8th bay) (see Chapter 4). This work 

showed that MS application at the edge of the vineyard block reduced the number of adults there 

but increased its numbers towards the centre (Figure 5.7). This change on beetles’ distributional 

patterns might have implications for larval densities and adult damage distribution within vineyard 

blocks, therefore this behavioural change needs further investigation. Attention should focus on the 

number of bays (or rows) that need to be treated in order to deter adults from landing further into 

the block.  
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5.5.2 Damage reduction and grape yield increase 

In vines, HPF and DE have previously been combined to control the vine cicada P. alhageos, 

producing a significant reduction on its egg numbers by 55%, and subsequently, an increase on grape 

yield by 48% (Valizadeh et al., 2013). The latter was attributed to the hydrophobic barrier produced 

by HPFs on the leaf surface, which limits the ability of P. alhageos to recognise its host, reducing the 

amount of eggs laid by this pest. However, in the present study, no significant differences were found 

when HPF and DE were mixed compared with solely the HPF or DE application, suggesting that the 

presence of this hydrophobic barrier might not be the mechanism behind C. zealandica damage 

reduction, as DE do not produce such a barrier (Korunic, 2013). Previous studies have suggested that 

HPF deterrency might also be based on altering insect visual perception of its host plant, reducing the 

numbers that land on those (Glenn & Puterka, 2005; Showler, 2002; Silva & Ramalho, 2013). 

However, in this work, the number of adult C. zealandica on HPF-treated plants was not different 

from control. Considering that both HPF and DE particles attach to insect’s body parts (Ebeling, 1971; 

Glenn & Puterka, 2005), C. zealandica adults might attempt to remove them, reducing their 

movement on vine leaves (Glenn et al., 1999). Also, plant palatability could be decreased by the 

presence of silicon-based particles (Massey, Ennos, & Hartley, 2006). Furthermore, it has been 

suggested that HPF can obstruct insects´ digestive system (Showler, 2002). It is therefore likely that a 

combination of these factors altered adult C. zealandica feeding behaviour after landed on vines.   

Reflective mulches, such as plastic, aluminium, and geotextile membranes have been tested to 

improve wine quality and increase grape yield (Hostetler, Merwin, Brown, & Padilla-Zakour, 2007a, 

2007b; Osrečak, Karoglan, & Kozina, 2016; Sandler et al., 2009). Also, increases in grape yield through 

the addition of MS to the under-vine row areas have been reported before. In the USA, MS-treated 

vines (cv. Chancellor) produced 5.56 kg plant-1 compared to 4.21 kg plant-1 in control plots, which is a 

32% increase (Sandler et al., 2009). However, when MS-treated vines (cv. Pinot Noir) were evaluated 

in New Zealand no-significant differences were observed in grape yield (Crawford, 2007; Creasy & 

Ross, 2010). This differential response in grape yield might be related to physiological differences 

between those cultivars under conditions of environmental changes, as described before between 

Shiraz and Grenache varieties (Soar et al., 2006). Additionally, mollusc species used in those 

experiments varied, as Mercenaria mercenaria L. (Veneridae) was used in the USA, while Perna 

canaliculus Gmelin (Mytilidae) was the species in New Zealand. Is likely that the different shell 

pigmentation between these two species affected the amount of reflected photosynthetically active 

radiation into the canopy (Creasy & Ross, 2010; Sandler et al., 2009). This is in agreement with 

significant grape yield differences found in the USA (cv. Pinot Noir) when black geotextile membranes 

yielded 1.38 kg plant-1 compared to 2.23 kg plant-1 under white geotextile membranes (Hostetler et 

al., 2007b). In this work, the 28% increase in grape yield could be the expression of three different 
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factors acting together, namely i) insect damage reduction, ii) UV-B effects on plant physiology, and 

iii) soil moisture increase. The 73% reduction in vine defoliation attributed to the “optical barrier” 

produced by MS UV-B reflective properties on C. zealandica behaviour, probably increased vine-plant 

leaf area, which might have enhanced the photosynthetic rate (Petrie, Trought, Howell, & Buchan, 

2003). Also, UV-B light can regulate the guard cells in leaf stomata, irreversibly closing or opening 

them (Jansen & van den Noort, 2000). This permanent stomata opening might increase CO2 

absorption from the surrounding atmosphere, enhancing the overall amount of carbohydrates 

produced through photosynthesis (Roelfsema & Hedrich, 2005). In addition, UV-B has been 

associated with the jasmonate pathway (Ballaré, 2014), which plays a major role in plant induced 

defences against herbivorous insects (Howe & Jander, 2008). Finally, the increased soil moisture 

previously found under MS-treated vines (Crawford, 2007; Creasy & Ross, 2010; Sandler et al., 2009) 

could increase the amount of water available to the fruits, and thus enhance grape yield (Reynolds & 

Naylor, 1994). A better understanding of the mechanisms behind the reflective and other properties 

of MS on insect behaviour and plant physiology could replace the use of plastic-derived mulches, 

especially considering the current high cost of biodegradable plastic mulches (Kasirajan & Ngouajio, 

2012). Similar economic constraints were reported when geotextile membrane mulches were used 

to enhance wine quality and grape yield (Hostetler et al., 2007a, 2007b). Conversely, MS are 

inexpensive and easily available (where mussel farms are close) and if not recycled they are disposed 

in local landfills, with eventual ecological and social consequences (Iribarren, Moreira, & Feijoo, 

2010). In this context, MS mulches might have a role as alternatives to enhance vineyard 

sustainability, and also have potential application for other horticultural crops that today rely heavily 

on plastic mulches for weed and pest control, moisture retention, crop yield increase and food 

quality.  

 

5.6 Conclusions 

The results presented here suggest that HPF, DE, and MS can be used as a sustainable strategy to 

reduce the damage caused by C. zealandica adults in vineyards. Furthermore, MS application 

increased grape yield by 28%, which was explained by behavioural changes in flying (hovering) and 

landing patterns exhibited by this pest. Although the mechanisms behind this behavioural change 

and grape yield increase were not evaluated here, it was suggested that MS reflective properties in 

the UV-B spectrum range might be responsible for these two phenomena. The use of crushed MS for 

pest control has never been reported before, so the results presented here open a new opportunity 

to recycle these shells, which otherwise will be disposed of in the local landfill. However, the effects 

of this treatment on insect behaviour need further investigation, as MS deterrent effects on C. 
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zealandica adult landing behaviour might lead to higher infestation rates in other parts of the 

vineyard if placed only at its edge.  
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Chapter 6 

Discussion 

 

The human race faces problems that have never been present in its history before. Environmental 

problems, such as biodiversity loss, land degradation and climate change threatens an endless 

number of life forms that are intimately entwined with human development, culture and evolution 

(Rockström et al., 2009; Steffen et al., 2015). Unfortunately, despite the urgent need for a change in 

human behaviour, this seems to be trapped by political and economic interests, diluted thereafter by 

the un-informed media. An example of the previous statements lies in modern agriculture, which 

largely contributes to the environmental problems mentioned before (Reganold & Wachter, 2016; 

Turner et al., 2016). The latter is due its indiscriminate use of fossil-fuel based inputs and the need 

for large monocultural areas (Tilman et al., 2001). Although more than 235 thousand scientific 

articles were published from 1960 until 2015 in relation to sustainable agriculture (Figure 1.1), 

modern agriculture still contributes in a major way to environmental degradation and socially-related 

problems (Reganold & Wachter, 2016). Probably, one of the reasons for this unreasonable lack of 

adoption of this vast amount of scientific research is that there is still a gap on how research 

performed by universities and research institutes is transferred to farmers, which is accentuated by 

the lack of locally based “recipes” to apply that knowledge at farm level (Gurr et al., 2017). In this 

process, the participation of farmers is crucial (Altieri, Funes-Monzote, & Petersen, 2011; Méndez et 

al., 2013; Warner, 2008) in order to highlight their agricultural constraints, which should guide to 

some extent the development of applied agro-ecological sciences (Aeberhard & Rist, 2009; Méndez 

et al., 2013; Wezel et al., 2009). An example of the latter is the research presented throughout this 

document. This PhD thesis aimed to reduce the damage caused by adults of the endemic New 

Zealand grass grub, Costelytra zealandica White, without using synthetic pesticides. This issue was 

previously highlighted by New Zealand’s organic winegrowers, as before this thesis, no work was 

done in order to control this pest in an environmentally-sound way (Scarratt, 2011).  

The approach used here to help winegrowers to reduce the pesticide load on their vineyards was a 

combination of field and laboratory work, the latter comprising the development of an improved 

rearing protocol to enhance the survival rate of C. zealandica adults from field-collected larvae 

(Chapter 2). The field component comprises non-manipulated adult and larvae distribution within 

vineyard blocks (Chapter 4), and the analysis of this insect’s sex-ratio throughout its flight season 

(Chapter 3). Experimental work involved the removal of adult beetles after landing on the vine 

foliage to assess its landing dynamics (Chapter 3) and the use of alternative natural products, such as 
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hydrophobic particle films (Glenn et al., 1999), diatomaceous earths (Korunic, 1998), and crushed 

mussel shells to reduce the damage caused by this insect pest (Chapter 5). The understanding of 

adult C. zealandica behaviour on vines (Chapters 3 and 4), contributed to the evaluation of the 

different management strategies described in Chapter 5. Notwithstanding the constraints that a 

limited 3-year PhD programme has, a final sustainable-management protocol will be delivered to 

New Zealand winegrowers after some additional experiments that will address some important 

unanswered questions that arose during this intellectual endeavour. Due to timing and financial 

constraints, these are not presented as experimental chapters here, but highlighted as future 

research avenues in section 6.1.4 below.  

 

6.1 Overall outcomes of the study  

6.1.1 Adult C. zealandica rearing protocol 

Before this PhD work, few publications have reared adults from field-collected larvae of this species 

due the low survival rates achievable (Lefort et al., 2015; Wigley & Dhana, 1992). After increasing the 

survival rate from larvae to adults, from 25 to 83% by using a closed container, instead of the ice-

cube trays used before for this purpose (Wigley & Dhana, 1992), this new rearing approach will 

certainly encourage researchers interested in studying aspects of Melolonthinae biology and 

behaviour in New Zealand, and eventually around the world. Despite the lack of proper replication in 

the treatments used in Chapter 2, due the differential larval weight gain under each treatment, the 

dramatic difference between the treatments, revealed after the application of a Chi-squared test of 

independency, highlights the efficacy of the protocol proposed here and opens the possibility to 

discover its future applicability.  

Adults obtained from the rearing method described in Chapter 2 were used in feeding choice-tests to 

assess adult C. zealandica feeding preferences. Previous work successfully performed feeding tests 

with adults collected from the field (i.e., Farrell , 1975; Wigley & Dhana, 1992), or with adults reared 

from field collected pupae (i.e., Farrell 1973). However, feeding tests for this endemic scarab species 

have never been done before with adults reared from field collected larvae. By applying a basic 

choice-test briefly described below, insights into plant selection for a potential “push-pull” strategy 

can be empirically tested under laboratory conditions. For this reason, 10 pairs of adults (10 males 

and 10 females) reared from field collected larvae (Chapter 2), were placed in a plastic box (4,5 L), 

filled to a half of its height with 20% w/w moist soil from Lincoln University’s Field Service Centre 

arable land. In each plastic box, 3 leaves from V. vinifera and 20 from T. repens were left in the soil 

surface. The leaves from each species were left at opposite sites within the box, and adults were 
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released in the centre of the box. Then, the boxes were covered with muslin fabric, and distributed 

based on a randomised block design inside a climate-controlled room for one week at 20°C with a 

16:8 light-dark photoperiod. Unfortunately, feeding did not occur in the experiment described above. 

The lack of feeding in C. zealandica adults reared from field collected larvae has never been reported 

before. This unexpected result suggests that some environmental factors might be triggering the 

feeding behaviour in C. zealandica adults. Interestingly, environmental parameters used here such 

as, soil moisture, temperature and photoperiod were similar to the ones previously applied by 

Farrell, (1975). Future work should address if the lack of adult feeding found here (if consistent with 

future work) is related to: i) the food type provided to the larvae for their development, ii) the 

potential emission of volatile compounds from the cut vine leaves that might have interrupted 

adults’ feeding behaviour, iii) or simply a laboratory artefact in the rearing method (Chapter 2) 

and/or in the choice test performed here.   

6.1.2 Sex ratio analyses through the C. zealandica flight activity period 

Female C. zealandica arriving at vines before males do has interesting potential applications for pest 

control. Despite the inherent value of this knowledge in its own right, it might contribute to further 

develop a management strategy to control this pest, such as with Melolontha melolontha L. and M. 

hippocastani F., where aspects of those species’ chemical communication were explored to develop 

an optimised lure (Reinecke et al., 2006), after understanding their sex-driven arrival dynamics 

(Reinecke et al., 2002). However, host plant location mechanisms that drive female C. zealandica 

colonization patterns on plant foliage are still unknown. It has been suggested that the contrast that 

plant silhouettes produce in the sky at dusk contribute to plant host location in this species (Farrell & 

Wightman, 1972; Kelsey, 1951; Pottinger, 1968). At dusk, the relative amount of UV light present 

from the sky is extremely high compared with its amount from the ground (Mellor & Hamilton, 

2003), producing the perfect contrast for insect orientation and navigation (Dacke et al., 2003; Mellor 

& Hamilton, 2003; Seliger et al., 1994). Also, moon brightness, starlight and milky way illumination 

might play a role in C. zealandica orientation (Kelsey, 1957, 1968; Radcliffe & Kain, 1971), as 

demonstrated before in the dung beetle Scarabaeus satyrus F. (Coleoptera: Scarabaeidae) (Dacke, 

Baird, Byrne, Scholtz, & Warrant, 2013). Further research might consider artificially creating the light 

characteristics present at dusk, as within a planetarium facility (Dacke et al., 2013). Despite the 

logistic drawbacks of releasing flying insects in such a building, an experiment revealing the 

mechanisms behind C. zealandica orientation at dusk might contribute to understand the 

colonization patterns of several adult Melolonthinae beetles that cause severe defoliation around 

the world.  
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6.1.3 Adult and larval distribution within vineyard blocks 

Adult C. zealandica densities were higher at the edge of the vineyard block compared to its centre. 

This was probably due to a relict behaviour described in this species, where females land on plant 

foliage to release their sex pheromone to increase the likelihood of attracting males from 

surrounding areas (Merton, 1980). After landing on those, adults drop to the ground, where females 

lay eggs. This behaviour explained the higher larval densities found where higher numbers of adults 

were present. However, larval sampling was performed at only one site during 2014; therefore the 

larval pattern found in the Awatere Valley might be particular to that site, thus assumptions about 

larval distribution in other vineyards are difficult. Nevertheless, if the adult relict behaviour described 

before (Chapters 3 and 4) is not changed by other landscape characteristics (i.e., hills, mountains, 

rivers), it is expected that C. zealandica larval abundance will be higher close to adults’ 

landing/mating sites. Thus, future work should explore C. zealandica larval distribution at several 

vineyards in the Marlborough area. The above-mentioned association between mating and 

oviposition sites has been also described in Brazil on Phyllophaga cuyabana Moser (Oliveira & García, 

2003; Oliveira et al., 2007). Although this PhD work was not able to distinguish the proportion of 

adults coming from outside the vineyard from the ones from within, organically-based management 

in the under-vine areas, such as cultivation for weed control during September and early October, 

might reduce pupal populations (Kain & Atkinson, 1970) with potential impacts in further adult 

colonization and establishment dynamics within vineyard blocks. Adult densities found at the edge of 

the vineyards, and subsequently, their larval populations, are in agreement with the theory of 

females responding to plant silhouettes in the sky (Chapters 3 and 4), as vines might be the first plant 

silhouettes that females identify after starting their second flight phase (Chapter 3). In this sense, tall 

plants could contribute to divert them from the vines. It was demonstrated for P. cuyabana, that 

females prefer to land on tall plants compared to small ones (García et al., 2003). Further research 

should explore this avenue, as it might contribute to new strategies for sustainable adult C. 

zealandica pest control. Tall plants established in the hedgerows or headlands in the vineyard areas 

could attract females and therefore, males, reducing the number of adults landing on the vines, and 

subsequently their damage. In Chapter 5, it was demonstrated that a reduction in adult numbers 

landing on vines reduced the damage caused by this insect pest.  

Nowadays, conventional winegrowers are reducing their pesticide loads, as their awareness of this 

current work grows, applying pesticides only at the edge of their vineyards. This approach has 

economic and environmental benefits.  
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6.1.4 Sustainable adult C. zealandica management in vineyards 

Many good examples can be found in the literature where biodiversity has been managed to reduce 

pest numbers (Altieri, 1999; Gurr et al., 2017; Gurr et al., 2016; Gurr et al., 2012; Jonsson et al., 2008; 

Koohafkan, Altieri, & Gimenez, 2011; Kremen & Miles, 2012; Landis, Wratten, & Gurr, 2000; Parker et 

al., 2016; Reganold & Wachter, 2016; Snyder, 2009; Wratten et al., 2012). The mechanisms behind 

the effects of biodiversity on pest control are related to the increase in the numbers of natural 

enemies, such as generalist predators and parasitoids, in those agricultural landscapes, by enhancing 

shelter, nectar, alternative food, and pollen (Barnes, Wratten, & Sandhu, 2010; Gurr et al., 2017; 

Landis et al., 2000), but see (Tscharntke et al., 2016) when this approach fails. Generalist predators 

certainly do contribute to reducing pest populations (González-Chang et al., 2016; Symondson, 

Sunderland, & Greenstone, 2002). It has been previously suggested that C. zealandica larval and 

pupal generalist predators cannot contribute to effectively reduce their numbers (Cameron & 

Wigley, 1989; Jackson, 1990). This might be related to the study system, as those conclusions were 

made based on pasture ecosystems (Jackson, 1990). Also, the only know parasitoid for this species, 

Proscissio cana Hutton (Diptera: Tachinidae) (Thomas, 1963) attacks its larval host in spring and 

summer (Merton, 1980). Due the pastoral improvements in New Zealand during the last 40 years, C. 

zealandica larvae can easily increase their larval weight therefore, if no environmental constraints 

exist, such as low temperature or drought (Wightman, 1974a, 1974b), a one year-life cycle will be 

expressed, instead of the two-year life cycle necessary to provide the required hosts to its parasitoid 

during spring and summer (Merton, 1980; Perrot & Stockdill, 1973). This suggests that native New 

Zealand plants might have evolved with some root defences against C. zealandica larval feeding, 

allowing the parasitoid to evolve with its host. If an overall increase in biodiversity is desired within 

New Zealand vineyards as a strategy to reduce C. zealandica numbers, and promote several 

ecosystem services (Shields et al., 2016; Wratten et al., 2012), further research should focus on the 

relationship between native New Zealand plants, larval feeding and their effects on the natural 

enemy community of this endemic pest. Native plants might also contribute to divert females from 

landing on vines, through their silhouettes in the sky. Because such work requires more than the 

limited 3-year time of a PhD programme to produce a practical outcome, it is strongly recommended 

to explore this avenue as a strategy to produce a long-term sustainable management of this endemic 

scarab pest. In this sense, a control approach aimed at this insect’s larval population control should 

consider the proportion of larvae within the vineyards and in their surrounding areas, as on-farm 

larval control alone might not ensure a reduction in adult defoliation, especially if adults are coming 

from surrounding vineyard areas. This framework also applies to the larval biological control 

produced by the bacterium Serratia entomophila (Grimont, Jackson, Ageron, & Noonan, 1988), as 

initially promising results found in pastures (Frew et al., 2016; Jackson, 2007) might not reduce adult 

defoliation in vineyards if regional larval population distribution is not considered.  



 62 

For the reasons mentioned above, this PhD work explored naturally-based products that alter adult 

feeding and landing behaviour. In Chapter 5, it was demonstrated that hydrophobic particle films and 

diatomaceous earths reduced adult damage between 33 and 46%, depending on the studied year. 

Moreover, crushed mussel shells placed as mulch in the under-vine areas reduced adult damage by 

73%, with an associated grape yield increase of 28%. This mulch has the property to reflect UV-B 

light, which affects plant physiology (Jansen & van den Noort, 2000; Osrečak et al., 2016) and insect 

orientation (Antignus, 2014; González-Chang et al., 2017). Although at dusk, UV-B levels are low 

(Théry, Pincebourde, & Feer, 2008), their relative intensity present in the sky compared to the 

ground might be enough to disrupt insect visual orientation (Mellor & Hamilton, 2003). Therefore, 

UV-B reflection from the ground covered by crushed mussel shells could “erase the vine silhouettes” 

from adult C. zealandica visual perception, confounding them with a portion of the sky. Further 

research should address the mechanisms behind mussel-shell effects on reducing adult hovering and 

landing activity on treated vines by measuring the light reflected from those crushed mussel shells at 

dusk. Also, different reflected mulches can be tested, as crushed mussel shells might not be available 

in all areas where vineyards are attacked by this endemic pest. The implications of alternative 

materials placed as mulch to deter Melolonthinae beetle landing behaviour on vines could have 

important effects on how this insect group is currently managed worldwide. Chapter 4 demonstrated 

that C. zealandica adults were concentrated at the edge of the vineyard blocks, and suggested that 

management strategies should focussed there. However, when mussel shells were placed in this 

area, adults landed further into the block. This result highlights another research avenue in which the 

distance from the edge towards the centre of the block which needs to be treated with mussel shells 

to avoid insects landing further into the vineyard, needs to be addressed. That final piece of 

knowledge might complete the puzzle related to adult C. zealandica sustainable management in 

vineyards, allowing the creation of a protocol that can easily be applied by New Zealand 

winegrowers, especially for organic and biodynamic ones.  

In conclusion, through studying aspects of C. zealandica adult behaviour, this PhD work contributed 

with an ecologically-sound pest management approach, which is in tune with New Zealand wine 

industry needs, and also with a scientific “way of thinking” that conceives the sustainable 

management of insects by evaluating aspects of their behaviour, instead of just applying pesticides. 

One of the contributions of this work was demonstrating that C. zealandica females arrive before 

males on vines. After females land, male distribution is likely affected by female pheromone release. 

Due to this sex-driven colonization dynamic, adults were concentrated at the edge of the studied 

vineyards which partly contributed to higher larval densities found at the same area. Higher pest 

aggregation at the edge of the crop suggests that control strategies should focus that area, reducing 

the overall pesticide load in that particular vineyard block. In this work, all the alternatives to 
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synthetic pesticides tested produced a significant reduction in vine damage (from 33 to 73%) when 

applied at the edge of the vineyard block. This result highlights their feasibility for being used in 

commercial vineyards as alternatives to current pesticide applications. Although mussel shells 

applied in the under-vine areas produced a dramatic reduction in vine damage (73%), and 

subsequently a 28% increase in grape yield, their application only at the edge of the block changed 

the colonisation pattern of flying adults. Certainly, this change in adults’ behaviour needs further 

investigation. Because this work was generated by the need that New Zealand winegrowers had to 

manage this pest without using pesticides, the techniques evaluated in the current work are 

gradually being applied by Marlborough winegrowers. However, it is expected that the outcomes of 

this work help winegrowers throughout other New Zealand areas, and even in some parts of Europe, 

Asia and South America, where melolonthid species heavily defoliate their orchards. In New Zealand, 

industry motivations for contributing with funding to the research presented here arise partially 

because of pesticides’ adverse effects on the environment and human health, but also due to cultural 

and spiritual values present in parts of New Zealand society. At a more strategic level this work 

highlighted the urgent need for sustainable agricultural practices to meet food security for an 

increasing human population without having undesired environmental and social effects. It is well 

known that agriculture will face several challenges in the following decades, such as climate change, 

human overpopulation and land degradation; however, there is no scientific consensus on how they 

will be faced. In this sense, scientific research looking at ecologically-sound management strategies 

that enhance several ecosystem services at farm level will certainly contribute to advance into the 

mitigation of those challenges.  
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