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Abstract 

of a thesis submitted in partial fulfilment of the 

requirements for the Degree of Doctor of Philosophy. 

Modelling invasive species-landscape interactions using high resolution, spatially 

explicit models 

by 

Senait Dereje Senay 

Invasive species can cause a wide range of damages from destruction of indigenous and 

productive ecosystems to introduction of vectors to human and animal diseases. In many 

countries, measures taken to prevent the establishment of invasive species are known to 

significantly reduce the potential damage that might be caused. As part of those measures, 

species distribution models (SDMs) are used to predict suitable habitats for highly invasive 

species so that appropriate strategies to prevent their establishment and further spread can 

be designed. When species distribution models (SDMs) are used for practical applications, 

accounting for their uncertainty becomes a priority. However, despite their wide use, 

reporting the uncertainty of SDM predictions is not well practiced.  

The primary aim of the research in this thesis was to identify and quantify uncertainty 

associated with model predictions of species distributions. The major research question was, 

why do different models give dissimilar predictions for the same species and/or location? 

Discrepancy among model results is one of the major issues that affects the perception of 

their reliability and their capacity to inform policy decisions. In this thesis, the effect of 

factors considered to influence model performance and drive uncertainty in model 

predictions, was investigated. The particular factors were, 1) pseudo absence selection, 2) the 

individual and combined effect of predictor data, dimension reduction methods, and model 

types on model performance, and, 3) variation within the occurrence data for a given 

species. Following these investigations, improved procedures developed in this research 

were used to, 1) investigate the use of a simple mechanistic model to enhance results of 



iii 

 

correlative species distribution models in a hybrid approach and 2) improve a dispersal 

model that can be used to research the potential spread of an invasive species once it has 

established in a new habitat.   

 A multi-factor study to investigate the effect of pseudo-absence selection on model 

performance showed that not only pseudo-absences affect individual models but also 

consensus among model predictions. To improve individual model performance as well as 

model consensus, an improved pseudo-absence selection method was developed that 

balances the geographic and environmental space for selecting pseudo-absences. 

The investigation of the individual and combined effect of predictor data, dimension 

reduction methods and model types on model performance, showed that the type of model 

is a major factor that affects model performance. The results of this research showed that the 

combination of   appropriate explanatory variables and dimension reduction could increase 

individual model performance as well as model consensus. Additionally, novel indices that 

can be used to assess internal characteristics of the environmental predictors and data-pre-

processing methods for optimized model performance, were developed.  

Another important factor that contributes to model uncertainty is the reliability of the 

species occurrence data. While the precision of geographical references used for such data 

and its effect on model predictions and associated uncertainty, has been well studied, 

however, variation within the occurrence or presence data for a given species has been less 

investigated. Two case-studies were used to determine the effects of local adaptation within 

a species, on model predictions. It was found that apparent local adaptations resulting in 

ecotypes within a species could affect model predictions. As a result, methods are proposed 

to detect the effect of within presence data variation and an appropriate method to model 

potential distributions of species with such variable data, is illustrated.  

Following improved procedures proposed in this research, the use of a simple mechanistic 

model to enhance results from correlative species distribution models was investigated. 

While a well parameterised mechanistic model for species distribution modelling is the 

ideal, such models need detailed biological data that are most often not available, especially 

for many invasive insects. In this study, a simple generalized mechanistic model was used to 
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complement correlative distribution predictions.  The resulting predictions from the hybrid 

model were shown to facilitate the identification of under- or over-predicted areas by 

correlative models such that its use resulted in improved overall prediction.   

The enhanced protocols developed in this thesis were finally used to improve a dispersal 

model that can be used to project the spread of an invasive species once it has established in 

a new habitat by the integration of multiple scale suitability layers to represent a realistic 

landscape over which the dispersal of a given species can be studied.  Selective landscape 

recoding was used to customize the landscape based on specific species-landscape 

interactions, to improve dispersal rate estimation and dispersal pattern determination.  

This thesis presents novel methods that can be implemented to significantly increase model 

consensus for species distribution predictions. More important, however, the research 

highlights the need for implementing multi-model and multi-scenario modelling 

frameworks to reduce model uncertainty that can result from inappropriate use of 

modelling components.  The findings in this thesis form the basis for research aimed at 

further improvement of species distribution models to provide more reliable tools for 

applications in invasive species management, biodiversity protection, environmental 

sustainability and climate change management. 

Keywords: SDMs, invasive species, dispersal, spatial modelling, high resolution, dimension 

reduction, model uncertainty.   
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1. Introduction 

1.1 Alien Invasive species  

Alien Invasive species are non-indigenous species that adversely affect habitats and 

ecosystems they invade. While this definition is the one most accepted by ecologists 

(Richardson et al., 2000) there have been different terms used to describe such species, 

especially by the public and the media and sometimes by ecologists from other sub-

disciplines. Other terms used are “exotic”, “introduced”, “non-indigenous”, “pests”, for 

example. Such terms do not always refer to the species ability to cause damage in its new 

habitat or the fact that it is introduced from outside its home range. This inconsistency   has 

created some confusion in the way such species are classified, warranting a study on its own 

(cf.Colautti & MacIsaac, 2004). In this thesis alien invasive species refer to those species that 

are introduced into a new habitat mostly through unnatural pathways for example through 

direct or indirect human agency, and are found to be causing either economic, ecological or 

health problems in their introduced range irrespective of their status in their native range.  

Although some species become invasive in their native range, most of the serious economic, 

health and ecological effects of an invasive species is caused by  alien species that are 

introduced into a new habitat through either natural or manmade mechanisms (Simberloff, 

2011).    

Invasive species have been associated with various negative impacts especially concerning 

health throughout recorded history. Some of the great epidemics that caused humanitarian 
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and economic crises like the Bubonic plague (Yersinia pestis), malaria (Plasmodium spp.) and 

West Nile virus (Flavivirus spp.) are known to be spread by vectors of alien invasive species 

(Lounibos, 2002). Even though Charles Elton introduced invasive biology as a distinct 

discipline of ecology as early as 1958 (Elton, 1958; Richardson & Pyšek, 2008), the number of 

publications on invasion biology and invasive species control has only increased 

significantly in the last decade (Kolar & Lodge, 2001; Kenis et al., 2009).  

The  ecological impacts of invasive species on indigenous ecosystems are well known where 

they  damage and disrupt ecosystems either by driving native species into extinction 

(Novacek & Cleland, 2001; Gurevitch & Padilla, 2004), cause hybridization (Pejchar & 

Mooney, 2009; Vink et al., 2010), or ecosystem domination (Simberloff, 1996), but their 

additional impact on productive ecosystems explains why invasive species are considered 

one of the greatest threats to global ecosystems after climate change. For example, for 

nations ill-equipped to fight the advances of invasive species, residents can face livelihood 

changes as their major source of sustenance, land, is taken over by aggressive and hard to 

control invasive weed species (Angassa & Oba, 2008b, 2008a; Abate et al., 2009; Rangi, 2009). 

Invasive species also exacerbate the already grave situation of food security in developing 

countries (Admasu, 2008; Steiner, 2010). With respect to their economic impact, various 

publications report large sums of money spent on invasive species with respect to the cost of 

detection, control and eradication (Evans, 2003; Waage & Mumford, 2008; Saunders et al., 

2013). According to a World Bank report (2007) USD 1.5 trillion per annum is incurred 

globally either due to losses caused by invasive species or for their control. Pimentel et al. 

(2004), who based their study on environmental and economic costs associated with alien 

invasive species, concluded that USD120 billion/year is spent in USA alone.   

Increased global trade, tourism, transportation networks and global aid networks have been 

mentioned as major causes of accidental invasive species introductions into new habitats 

(Hulme, 2009). Prior prediction of a potential dangerous invasive species can be difficult as 

some species do not exhibit invasive behaviour in their own environment but can become 

widely invasive when in contact with a new habitat such as the case of many insect species 

that have become economic pests. At times a species is introduced to a new habitat but 

becomes invasive at a much later time when either climatic or man-made changes alter the 
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ecosystem making it more favourable (Dukes & Mooney, 1999; Matthews et al., 2000; Crooks, 

2005). Therefore, additions of new alien invasive species to new habitats are difficult to 

prevent because of limitations in prior profiling of such species and the growing commercial 

trade, international aid and transportation networks among nations (Pitt, 2008). However, in 

many countries, measures taken to prevent the establishment of invasive species are known 

to significantly reduce the potential damage that might be caused. The successful 

eradication of the painted apple moth (Orgyia anartoides) in New Zealand (Suckling et al., 

2007) and the screwworm fly (Cochliomyia hominivorax)  in the United States, Mexico (Wyss, 

2000) and Libya (Cunningham et al., 1992 ) are good examples of such successful 

eradications.  

The prolific nature of the invasive species problem has made multidisciplinary 

collaborations necessary, where many fields of biology are used to understand specific traits 

that make these species successful (Tsutsui et al., 2000; Lee, 2002; Frankham, 2005; Lefort et 

al., 2012). Such biological information and theories are incorporated into ecological models 

to characterise suitable habitats and dispersal dynamics of these species by combining biotic 

and environmental information and/or climate scenarios (Andersen et al., 2004; Elith et al., 

2006; Morisette et al., 2006; Worner & Gevrey, 2006; Watts & Worner, 2008; Pitt et al., 2009; 

Buisson et al., 2010; Sutherst, 2014). Using ecological models for alien invasive species 

management has become an integral part of invasive species studies due to recent 

advancements in computing and increased availability of data. Understanding how a 

species behaves in its own habitat can give a certain insight into where in the world it might 

establish (Worner & Gevrey, 2006; Phillips, 2008; Worner et al., 2010). Conducting large scale 

studies is now much easier with species distribution models and their prediction ability can 

facilitate taking climate change into account (Zimmermann et al., 2007; Elith & Leathwick, 

2009; Buisson et al., 2010). Results from species distribution modelling have also been used 

directly to optimise AIS control and eradiation campaigns (Gottwald et al., 2001; Anderson, 

2005; Raymond et al., 2011; Ruscoe et al., 2011).  
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1.2 Species Distribution Models (SDMs) and Niche theory 

 

“Present distribution of any species is the result of its capacity to multiply and spread within the 

limitations of time, physical and biotic barriers to all the regions in the world to which it is 

ecologically suited”        

 - Buchsbaum and Buchsbaum  (1957) 

The first logical step to study invasive species distribution is to understand and characterise 

their habitat, as the success of any species always depends on the suitability of host 

environment and availability of host species (Worner & Gevrey, 2006). Ecological models 

with appropriate underlying mathematical and statistical principles have been used for 

many years to abstract the complex environment and to quickly reach scientific conclusions 

where observational and/or experimental field studies are not possible. In this sense, some 

aspects of invasion biology study would not have been possible if ecological models did not 

exist (Jorgensen, 1986).  

Ecological modelling is also an important component of invasion ecology that is 

instrumental to re-integrate the subfield with classic ecological theories through its 

mathematical, spatial and correlational platform that enables comparison and cross analysis 

of natural ecological processes like succession with invasion events. Davis et al. (2001) 

argued that, invasion ecology has slowed down considerably over the years due to the 

unfortunate dissociation of the invasion ecology subfield from similar ecological subjects 

like succession.  It is important to acknowledge effective ecological modelling tools can be 

used not only to incorporate information from other fields of ecology, but also to provide 

important conclusions derived from the study of invasion ecology to other fields of ecology. 

Albeit, at the expense of the host habitat, invasion provides a unique opportunity to 

ecologists to understand the natural world by providing an unplanned experiments of large 

spatial and temporal expanse (Sax et al., 2007).  

Ultimately, ecological models that characterise species distribution, pattern and spread both 

in spatial and temporal dimension enable ecologists to see the difference in the processes 

and resulting impacts between natural and human assisted invasion of species into a new 
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habitat. More importantly, these species distribution models are needed in applied ecology 

where invasive species monitoring and eradication is necessary. 

A species distribution model is a specialized model that combines different environmental 

variables to characterise or predict a suitable habitat for a specific species (Franklin, 2010a).  

Modelling geographical species distribution was made possible due to the assumption that 

species can only exist in geographical areas where certain environmental requirements are 

fulfilled (Guisan & Thuiller, 2005). Therefore, understanding the niche of a species and the 

theory associated with the concept is rather important to construct any species distribution 

model.  

The term niche in the ecological sense was first described by Grinnell (1924), and he defined 

the niche as the entirety of the environmental requirements that allow a species to persist 

and reproduce in a given habitat. In this Grinnellian niche concept, niches could be occupied 

by their respective species or could be vacant in case of species extinction until filled by 

other species. Later, Elton (1958) modified the niche concept by considering the species niche 

as the functional role a species plays in its community. The Eltonian niche concept 

encompassed biotic interaction through addressing the species’ place in the trophic system 

of a given habitat as the definition of the species niche. Perhaps, the clearest statement that 

summarises Grinnellian and Eltonian niches was given by Eugene Odum in his definition of 

the ecological niche as quoted below.  

“… the ecological niche of an organism depends not only on where it lives but also on what it does 

(how it transforms energy, behaves, responds to and modifies its physical and biotic environment), 

and how it is constrained by other species. By analogy, it may be said that the habitat is the 

organism’s “address,” and the niche is its “profession,” biologically speaking. “ (Odum, 1971) 

While Grinnell and Elton started the conversation on the concept of species niche (Colwell & 

Rangel, 2009), it is Hutchinson’s definition that facilitated the underlying ecological 

assumptions for species distribution models (Kearney, 2006). Hutchinson (1957), defines a 

species niche as a multidimensional environmental feature space enveloped by optimum 

environmental conditions and resources on a multiple axes representing the environmental 

variables important to the species. 
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According to niche theory species can only exist in their respective niche which is delimited 

or defined by physiological, morphological and/or biochemical tolerances to key 

environmental variable gradients like temperature, photoperiod and relative humidity 

and/or availability of resources important for survival (Hutchinson, 1978). Such description 

of the niche allowed comparison of large number of environmental variables and 

availability of resources even though they may be disconnected in the geographical space. 

Once, the species distribution is estimated using the niche analysis of the environmental 

space, results are often projected to geographical space to give meaningful spatial 

information on species distribution.  

However, it is extremely difficult to fully comprehend the complete niche of a species let 

alone map it in a geographical space due to the complex nature of biological interactions, 

dispersal limitations and portions of the niche that are not realized in the current climate 

space that prevent a species from occupying the full extent of its niche (i.e. be at equilibrium) 

(Colwell & Rangel, 2009). To avoid confusion, some distinctions about a species niche have 

been made in previous studies to enable specification of what aspect of the niche is being 

studied (Soberón, 2007; Monahan, 2009). These are the fundamental, potential and realized 

niche of a species.  

The fundamental niche refers to the environmental hyperspace within which a species is 

supposed to survive and reproduce regardless of whether the combination of these 

environmental requirements exist in the accessible physical space or not. The fundamental 

niche therefore is made up of a set of environmental conditions which are currently 

apparent in the geographical space or might have occurred/occur in the geographical space 

in the past/future (Soberón & Peterson, 2005). In reality, the fundamental niche is not limited 

by the presence or absence of species that compete with the target species (Soberón & 

Peterson, 2005). According to Monahan (2009) the ability of species to survive in novel 

environmental conditions that do not exist in the current geographic range of the species, 

might be an adaptation to past climate and environmental conditions.  

The potential niche refers to the portion of the fundamental niche that is realized in the 

physical space or geographic extent of a given habitat at any given time (Jiménez-Valverde 
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et al., 2008; Monahan, 2009). The potential niche ideally can be fully occupied by a species 

that is at equilibrium with its niche. I believe the perfect example for such a niche is the 

human being, where being at the top of the trophic level combined by superior advantage of 

modifying the physical environment allowed humans to exclude any biotic competitions 

and cross any physical barriers.  

The realized niche refers to the portion of the potential niche where the species is actually 

present. The realized niche is a result of species not being able to occupy all areas that are 

suited to them due to inter-specific competition, physical barriers or lack of co-evolved or 

adapted dispersal agents (Soberón & Peterson, 2005). For species that occupy all geographic 

areas that possess the environmental conditions needed for their sustenance and 

reproduction, the realized niche is equal to the potential niche (Monahan, 2009).  

There are different types of species distribution models which use different computational 

methods to characterise and/or predict a species distribution in space and time based on 

known or inferred niche. For example, a model could be stochastic or deterministic; 

continuous or discrete; steady state or dynamic; mechanistic or relational; machine learning 

or conventional. These models can be broadly classified based on how the species (biotic) 

information is processed in the model to produce species distribution predictions and what 

aspect of the species niche the model attempts to characterise (Jiménez-Valverde et al., 2008).  

1.3 Species distribution modelling approaches 

1.3.1 Correlative species distribution models 

Correlative species distribution models or as sometimes described, habitat suitability 

models, characterise unique interrelationships of environmental predictors at species 

presence points to map out possible candidate host environments elsewhere. This type of 

habitat suitability modelling that infers environmental requirements for a species from their 

current or past locations of occurrence is referred as correlative habitat suitability modelling 

(Kearney & Porter, 2009).   

Predictors which are assumed  to be an important environmental and geographical variables 

that affect the survival a species, are the building blocks of any correlative habitat suitability 

study (Elith & Leathwick, 2009). There is so far no restricted or defined number or type of 
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predictors used for habitat suitability studies. Predictor choice in suitability models are 

mostly dependent on their availability to the researcher and the target species studied. 

However,  underestimating or overestimating the effect of geographical and/or 

environmental predictors in any habitat suitability model, can introduce significant error in 

model results (Ruckelshaus et al., 1997). Thus, models which fail to incorporate factors that 

affect the immediate microclimate might under- or over-predict site suitability for certain 

species (Rich & Weiss, 1991; Kearney & Porter, 2009).  

Correlative models can be broadly classified into three categories based on how 

environmental predictors and species occurrence data are characterised and utilized in the 

models. These are: 1) simple presence-only models, 2) enhanced presence-only models, and 

3) presence-absence models.  

Presence-only models are models that require only presence data to map species distribution 

or calculate a habitat suitability index for the species under study. These models extract the 

environmental space contained within the available presence points using various distance 

or polygon rules to predict suitable areas for species (Barbet-Massin et al., 2012). Such 

models assume that species distribution is dependent solely on climatic limits (Stockwell & 

Peters, 1999). I refer to these types of models “simple presence-only” as they only take 

presence location information as their reference to map species distribution without 

considering environmental variable interactions encompassed within the range defined by 

the presence points. The most common is the rectilinear envelope for BIOCLIM (Busby, 

1986), its algorithm uses a rule that defines the maximum and minimum values of 

environmental variables observed at presence points, giving rapid insight into the 

environment of the target species. However it is quite hard to represent the complex 

interaction between environmental variables that partially define the niche of a species using 

such simple rules. Other examples of simple presence-only models are newer versions of 

BIOCLIM with combined use of climate envelopes (Nix, 1986; Busby et al., 1991), 

Mahalanobis distance envelopes for BIOCLIM by Farber and Kadmon (2003), disjoint 

environmental envelop for HABITAT by Walker and Cocks (1991), point-to-point similarity 

metric for convex hulls in DOMAIN (Carpenter et al., 1993), α-hulls by Burgman and Fox 

(2003), discontinued convex hulls by Lobo et al. (2010). 
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Enhanced presence-only models use species occurrence data coupled with additional 

background data on environmental variables and their interactions which are key for 

understanding the geographical distribution of species. These models give a more accurate 

species distribution prediction as opposed to simple presence-only models which simply 

map areas encompassed by presence points in a convex hull or a polygon structure in the 

variable space. Examples of enhanced presence-only models include, MAXENT (Maximum 

Entropy) (Phillips et al., 2006), ENFA (Ecological Niche Factor Analysis) (Hirzel et al., 2002), 

PBL (Presence and Background Learning Algorithm) (Li et al., 2011). Enhanced presence-

only models use all the background data as a set of potential areas for the species presence. 

Thus there is no set of selected points labelled as “where the species is absent”. These 

models use the set of presence points as a reference with which the background data is 

compared. Each cell in the resulting distribution map is assigned a probability of presence 

based on how similar its corresponding background cell is to the set of presence points 

either based on a probability distribution or some kind of distance measure depending on 

the algorithm of the model used.  

In ENFA, Hirzel et al. (2002) employed a PCA-like method to analyse the interaction 

between environmental variables both for the global (background) data and for presence 

points, to extract information on possible environmental interactions and limits that define 

the species niche. Similarly, in the PBL, Li et al. (2011) trained a neural network both on 

environmental values at presence points and the whole background data to profile 

interactions between environmental variables. In MAXENT, information on environmental 

variable interactions is extracted both from the background data and from the set of 

presence points. MAXENT identifies the potential statistical distribution that best uniformly 

fits the background data while being constrained by the parameters of the distribution of the 

presence data along multiple environmental variables (Phillips et al., 2006; Elith et al., 2011). 

Such enhanced presence-only models utilise the complex interactions between 

environmental variables which the simple presence-only models do not. 

Presence-only models are generally sensitive to biases in presence data as all information 

regarding geographical occurrence of the species is mainly drawn from presence points 

(Phillips et al., 2009). Bias in presence records is mainly associated with surveys limited to 
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easy access areas like sampling along roads or tracks, which leaves out possible presences 

from various environments in less accessible areas.  The use of bias grids or weights that 

limit the influence of presence points in the prediction of areas further from them, has 

decreased the vulnerability of these models to bias in presence data. Another proposed 

modification to reduce bias is to limit the background data sampled within a certain distance 

of presence points to introduce similar bias to the bias expected in the presence data (Phillips 

et al., 2009).   

Presence-absence models are models that use explicitly defined absence points along with 

presence points to predict potential geographical distribution of the target species within a 

given spatial extent. Here, absence points could be true absence points obtained from field 

survey records where the species is recurrently surveyed and not found (Hanberry et al., 

2012). If true absence records are not available, various methods like random sampling 

(Wisz & Guisan, 2009), geographically constrained random sampling (Poulos et al., 2012), or 

methodological environmental profiling of background data (Chefaoui & Lobo, 2008) are 

used to identify a set of points as possible absence points (pseudo-absence points).  

There are a large number of models in this category, some regression based models like 

generalized linear models (GLM), generalized additive models (GAM) and logistic 

regression have been well used in ecological modelling (Guisan et al., 2002; Hartley et al., 

2006), while other novel machine learning and classification models like artificial neural 

networks (ANN), support vector machines (SVM), naïve Bayes (NB) and many other similar 

models have been more recently used for ecological modelling (Elith et al., 2006; Kampichler 

et al., 2010; Lorena et al., 2011). Bearing in mind that there cannot be a strict classification as 

some modelling frameworks mix various types of algorithms, these models can be roughly 

classified as classical statistical models and machine learning. One characteristic presence-

absence models have in common is that a set of true or pseudo absence locations are needed 

to model habitat suitability/species distribution. Presence-absence models are less sensitive 

to bias in the presence data compared with presence-only models because part of the 

information needed to model their distribution comes from absence/pseudo-absence data 

(Elith et al., 2006). However, obtaining or generating bias free absence data is also a 
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challenge that has been acknowledged in previous studies (Chefaoui & Lobo, 2008; Lobo et 

al., 2010; Barbet-Massin et al., 2012).  

Correlative models have a well-known limitation in predicting the whole potential 

distribution of species because presence points used in these models do not always cover all 

environmental conditions in which the modelled species can survive (Kearney & Porter, 

2009; Dormann et al., 2012). Yet the greatest criticism of correlative models is, the very weak 

link of the approach to niche-theory which is supposed to be the theoretical background that 

ties the practice of predicting species distribution with ecological reality (Sutherst, 2014). 

This disconnect is apparent when model results are used without considering the 

assumptions within which they were produced. Hirzel and Le Lay (2008) discussed some 

guidelines that should be followed to ensure such studies explicitly link research with the 

appropriate ecological theory.  

Despite these limitations, correlative models can be very useful for assessing risks of 

establishment by species for which we have little or no biological information other than 

their geographical occurrence. In addition to requiring less biotic data, correlative models 

enable the development and testing of new hypotheses about events and processes that 

derive species distribution (Worner, 1991; Gotelli, 2000).  

1.3.2 Mechanistic process-based species distribution models 

Mechanistic models, also called   process-based models use physiological variables and 

parameters to model species response to certain environmental conditions. Such models if 

appropriately parameterized, should better estimate the potential distribution of species 

than correlative models because they are independent of the current geographical 

distribution of the species (Dormann et al., 2012). Species occurrence data used in 

mechanistic modelling is usually for validation of results and is not involved in the model 

building process. Mechanistic modelling requires detailed knowledge of the biological 

requirements of the species to be modelled (Buckley et al., 2010). In particular, the 

physiological processes that are most limiting to the species survival should be identified 

and parameterized to accurately describe a species potential distribution. There are a 

number of established processes-based models that have been used for species distribution 
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predictions. These mechanistic models vary in the assumptions around the variables and 

functions that limit species distribution. Some models for example  CLIMEX1 (Sutherst & 

Maywald, 1985) use environmental thresholds of species by taking the minimum, maximum 

and optimum values of factors that affect species survival and reproduction. Such factors 

include, temperature,   soil moisture and photoperiod to map geographical areas within the 

tolerance limits of the species under study. Other models like PHENOFIT (Chuine & 

Beaubien, 2001) use phenological assumptions where specific climatic conditions required 

for each phenological stage of the species is matched to identify areas that could allow for all 

phenological stages of the species. There are also more specific and individual models where 

nutrient intake and energy consumption of species are explicitly considered to predict 

species distribution (Kearney et al., 2008; Kearney & Porter, 2009). Such detailed models that 

are based on direct physiological requirements of the species have advantages over 

correlation models especially when it comes to extrapolative predictions. However, these 

models may not be readily used for screening of multiple invasive species that is required 

for an effective national and regional biosecurity procedures due to the species specific 

knowledge that is not available (Kearney & Porter, 2009; Rodda et al., 2011).  

The high biotic data requirement of many mechanistic models  contributes   to the need for  

development of alternative correlative species models which allow analysis and 

visualization of the correlation between  biotic or abiotic phenomena and species 

distribution (Buckley et al., 2010). Poor understanding of the interaction among abiotic 

factors and the physiological trait they are presumed to control in mechanistic functions 

might cause mechanistic models to give inaccurate predictions. For example, the 

geographical distribution of a certain species with known thermal limits can be mapped by 

identifying areas that have temperatures within the tolerance limits of the species 

throughout the year.  However, such model specification could under or over-estimate the 

potential distribution of the species if topographical or other climatic features like solar 

radiation that affect temperature are not considered. Clearly, measuring and identifying 

interactions between abiotic factors is not always straightforward and its complexity may 

vary depending on spatial attributes like extent and resolution (Dormann et al., 2013). 

                                                      
1 http://www.hearne.co.nz/Software/CLIMEX  

http://www.hearne.co.nz/Software/CLIMEX
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1.3.3 Hybrid models 

Hybrid models refer to modelling species distribution using more than one modelling 

approach. Although combining mechanistic and correlative models is what is usually 

referred as hybrid modelling, incorporating other approaches like food web models and 

community models with correlative models is also considered hybrid modelling. There have 

been a number of recommendations from previous studies for increased applications of 

hybrid models for species distribution modelling to take advantage of the strength of both 

modelling techniques (Kearney & Porter, 2009; Monahan, 2009; Elith et al., 2010).   

In fact, Dormann et al. (2012) in their recent publication cautioned that dichotomizing the 

correlative and mechanistic modelling approaches places  a negative connotation in the 

whole species distribution modelling practice and suggest that  both approaches are  best 

represented  on a continuum where  modellers can  mix and match their different 

functionalities depending on the available data and expertise (but see Kriticos et al. (2013) for 

an opposite opinion). Because disadvantages as well as advantages could propagate from 

these different approaches, Dormann et al. (2012) warned that  the potential for 

compounding the shortcomings of  the different approaches should  be closely investigated 

before  hybrid models are implemented. Even though there is some discussion regarding 

hybrid species distribution models, there are not many applied studies implementing them 

(cf - Buckley et al., 2010; Kearney et al., 2010). 

1.3.4 Complex modelling systems  

Complex modelling systems consider a number of components like phenological variations, 

food web interactions and dispersal pathways along with climatic and environmental 

species requirements to model more precise species distribution over space and time 

(Grimm et al., 2005). Such systems, although difficult to parameterize, would provide the 

optimum approach that enables applied scientists to delineate the realized distribution of a 

species by simultaneously considering factors that limit species from being at equilibrium 

with their potential niche. Such models have an advantage over both mechanistic and 

correlative models in that they could be used to predict realized species distributions. 

Although to a varying degree, both correlative and mechanistic models attempt to describe 

the potential distribution of species (unless biotic interactions are considered in the latter).  
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Because of the complexity of the different biotic and abiotic factors and their interactions, 

such models are usually simulation based rather than analytical. One example is the 

Ecopath-Ecosim-Ecospace simulation framework (Christensen & Walters, 2004). As much as 

these models are very informative, they are too complex to generalize over space and species 

as well as time consuming and costly (Brown et al., 2001). Optimizing and pre-determining 

the level of abstraction of species interaction and temporal resolution for such models is 

recommended to keep the balance between maintaining reality and reducing complexity 

(Worner, 1991) as well have a strong suite of uncertainty measures (Aydin et al., 2005).   

1.4 Data sources for species distribution modelling  

1.4.1 Primary data  

Field data is one of the most reliable and most used data source for habitat suitability 

studies. Most environmental variables are collected through field data surveys. Especially 

weather variables like precipitation and temperature are the most recorded variables over a 

long period of time from established weather stations. Such variables are relatively easy to 

record at a field station and are also considered the most important variables limiting 

species distribution (Elith & Leathwick, 2009). Even most traditional agro-ecological zones 

(AEZ) were classified solely based on the temperature and precipitation values of a region. 

Consistent field data is very important both to understand environmental patterns as well as 

climate change and its effect on species distribution.  

Field observation data is especially indispensable for precise presence and absence data 

which is the most important component of correlative habitat suitability models. Even 

though there are ways where presences can be indirectly inferred or acquired from other 

data sources it is important to ensure a high proportion of presence data acquired by field 

observation. The level of certainty or uncertainty of habitat suitability model results depend 

on how precisely the habitat requirements of a specific species is characterized through 

accurate presence locations.  

There is a great need for accurate geographically referenced species occurrence locations and 

the current availability of easily accessible global biodiversity data has made a significant 

contribution to the improvement of species distribution models. Two of the most used 
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databases are the GBIF2 (Global Biodiversity Information Facility) and CABI3 

(Commonwealth Agricultural Bureaux International). For mechanistic models, laboratory 

experiments, field observations and empirical parameters that estimate the effect of different 

biotic and abiotic factors on species are by far the most important sources of information.  

1.4.2 Secondary data 

1.4.2.1 GIS and remotely sensed data 

Many publications report a major advance in the study of species distribution models after 

the emergence of GIS systems (Pereira & Itami, 1991; Elith & Leathwick, 2009).  The 

powerful data analysis suites associated with GIS have made data analysis and modelling 

easier and more accurate. However, GIS systems also have an important role in providing 

data. GIS data and its analysis gives insight into the complex spatial interrelationships of 

geo-environmental variables which were not fully appreciated previously.  

A GIS system can be used to clean spatially redundant occurrence points with respect to the 

resolution of the model. The generation of interpolated surfaces of variables like elevation, 

slope, and aspect in a GIS environment with minimal effort makes a number of important 

environmental variables available for integration in habitat suitability models.  

Another specialized source of GIS data is remote sensing. The emergence of remote sensing 

has made even more potentially important geo-environmental variables like radiation, 

vegetation status and various leaf area indices available for species distribution models. 

Remote sensing also makes  data from extremely remote, hostile and inaccessible areas 

available to ecologists, making the global geographic extent for SDM studies nearly 

complete (Kerr & Ostrovsky, 2003; Bradley & Mustard, 2006; Roura-Pascual et al., 2006; 

Zimmermann et al., 2007; Andrew & Ustin, 2009). 

1.4.2.2 Herbaria and Museums 

Data sources like herbaria and museums along with archaeological findings are probably the 

only way past distributions of species (existent and extinct) could be modelled. 

Understanding past distributions of species is key to construct a long-term temporal pattern 

                                                      
2 http://www.gbif.org/  
3 http://www.cabi.org/  

http://www.gbif.org/
http://www.cabi.org/
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on species distribution which could answer interesting evolutionary and bio-geographical 

questions. Additionally, information on past distribution of species could inform future 

species distribution predictions for species that show an apparent trend in geographical 

range shift over time. As ambitious as it sounds, data from such sources however have their 

own drawbacks. The major problem with such data is lack of explicit geographical reference 

in many cases (Elith & Leathwick, 2007). 

1.4.2.3 Computer generated projections 

Data-projections are specifically important to represent future species distributions. These 

are especially important to understand possible effects of climate change on species. Even if 

the practice is mired with opposing recommendations regarding the capability of models to 

extrapolate into future climates (Thuiller, 2003; Araújo et al., 2005; Franklin et al., 2013; 

Sutherst, 2014). Species distribution models have been used to understand possible effects of 

different scenarios of future climates on biological invasions, and they are probably the best 

way to understand future trends of biological invasions and their effects on food production, 

livelihood protection and biodiversity. Therefore, it is likely that the shortcomings of future 

species distribution modelling like the uncertainty of extrapolating in to novel climate space 

will attract more research rather than discontinuing the whole practice as there are no 

apparent alternatives currently.  
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1.5 Species Dispersal Modelling 

“All organisms in nature are where we find them because they have moved there! This is true even for 

the most sedentary of organisms”  

-  Begon et al. (2006) 

Species dispersal is  an important mechanism many species use for survival (Kokko & 

Lopez-Sepulcre, 2010). Dispersal evolves in response to natural selection promoting 

outbreeding and avoidance of kin competition for resources. Dispersal occurs also  by 

external factors such as dispersal agents which transfer progenies from their local habitat to 

new areas (Begon et al., 2006). The meta-population as a whole depends on species dispersal 

for  re-colonizing declining or extinct sub populations from donor patches in the landscape 

(Hanski & Gilpin, 1991).  

Species dispersal becomes both ecologically and economically of great concern when species  

overwhelm the host environment in ways that result in from serious impact by the  invading 

species, such as with  human assisted  species dispersal (Sharov et al., 1995; BenDor et al., 

2006; Robinet et al., 2009). Studying species dispersal mechanisms and the ability to predict 

when and where an already introduced invasive species will go next in the landscape has 

great advantage for subsequent monitoring and eradication strategies (Urban et al., 2008).  

1.5.1 Species spread and dispersal models 

There are many models developed to predict species dispersal in different environments. 

The earliest of such models is the “Island” spatially implicit approach that assumes 

individuals from a certain population just join a group of ‘dispersers’ and redistribute 

among patches (Begon et al., 2006). These models do not take spatial locations into account 

nor do they recognize variation in the probability of dispersing among individuals. An 

example of such a model is Levin’s model (Hanski & Gilpin, 1991; Begon et al., 2006). Other 

models like the reaction-diffusion model (Skellam, 1951) and its derivatives consider space 

as one homogeneous state where individuals can disperse to occupy all the available space 

(Higgins et al., 1996; Hastings et al., 2005; Morozov et al., 2008). More recently spatially 

explicit population models (SEPM) have been used to model species dispersal explicitly over 

space and time.  
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Emergence of a high volume of remotely sensed, and GIS data has encouraged the 

development and high use of SEPMs. SEPMs have varied assumptions and underlying 

algorithms, but have in common the use of spatial information along with dispersal 

parameters. The application of SEPM can result in more information with respect to spatial 

pattern as they can represent the heterogeneous nature of the landscape and its effect on 

dispersal behaviour over time (Ruckelshaus et al., 1997). The development of SEPMs have 

made the use of  models for invasive species spread, for the purpose of  monitoring, control 

and eradication, a reality (Urban et al., 2008). 

All models have their own advantages and disadvantages. For example, the earlier spatially 

implicit models failed to elucidate the effect of spatial parameters on dispersal, but  their 

simplicity promoted  understanding  species dispersal mechanisms (Begon et al., 2006). On 

the other hand,  the spatially explicit models that consider spatial heterogeneity when 

estimating dispersal rate and pattern,  require immense processing power, parameterization 

and data (Higgins et al., 1996; Ruckelshaus et al., 1997; Hastings et al., 2005; Pitt, 2008). 

 1.5.2 Challenges for dispersal modelling 

There are a number of theoretical (Johnson & Gaines, 1990) and technical (Higgins et al., 

1996) factors that challenge dispersal models to precisely estimate the rate and spatial 

pattern of species dispersal over a given landscape. Two of these factors that are relevant for 

this thesis are discussed below. 

1.5.2.1 Dispersal pathways  

Many studies and reviews have concluded that invasive species spread is primarily caused 

by the increasing human intervention in terms of transport, trade and aid networks 

(Gottwald et al., 2001; Hulme, 2009; McGeoch et al., 2010). However, these pathways  are not 

usually modelled directly in species dispersal modelling (Lippitt et al., 2008). Some species 

dispersal modellers account for human intervention by including human population density 

as part of a habitat  suitability layer (Robinet et al., 2009). Clearly it is now possible to achieve 

greater precision  by accounting for specific pathways through explicit data layers like 

roads, railroads, campsites, dams etc.(Barney, 2006b). However, incorporating human 

activity explicitly requires detailed parameterization and individual investigation of the 
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effect of each pathway on the target species. Case studies are necessary because the widely 

accepted effects of particular pathways might not hold for all species. For example Mader et 

al. (1990) discussed that they found roads and railways acted as more of a linear barrier to 

epigeic arthropods as opposed to the usual assumption that such infrastructures acts as a 

corridor for dispersal (Lippitt et al., 2008).  

1.5.2.2 Spatial extent, scale and configuration 

The observed spatial distribution of species is a result of the interplay between species 

dispersal and adaptation to new environments (Begon et al., 2006). Therefore, species 

distribution is a rather dynamic phenomenon. A challenge for dispersal modelling is to 

decide the appropriate extent, scale and complexity of the study (Frost et al., 1988).  

Inappropriate spatial extent in dispersal studies leads to a failure to capture the complete 

dynamics of the system in which the species dispersal is studied (Saura & Martinez-Millan, 

2001). The scale at which dispersal studies are carried out also affect accuracy of results, as 

the level of landscape detail (complexity) that can be incorporated in the model depends on 

the scale (Levin, 1992). Because movement over the landscape and carrying capacity of a 

given area depends on the connectivity, shape or isolation of different patches over a 

heterogeneous environment (Saura, 2002), configuration of different forms in the landscape 

and how they are represented in the dispersal model affects the estimation of rates of 

dispersal and abundance of individuals. As there is no one optimum spatial extent, 

configuration type or composition that can be used for all cases, each of these parameters 

have to be determined depending on the characteristics of the species studied (Higgins et al., 

1996). Even then finding the right combination of these factors for a given dispersal model is 

a subject of ongoing research (Plećaš et al., 2014; Steckel et al., 2014).  

 

1.6 Sources of uncertainty in SDMs 

Following the increase in popularity of species distribution models a number of studies 

critical of the way model results are interpreted have surfaced. Such criticism has shifted the 

focus from measuring individual model performance to multiple model comparisons as well 



20 

 

as   investigation into uncertainty4 within modelling frameworks.  Elith et al (2002) gave a 

very detailed review of uncertainty types in models.  Dormann et al (2008) reported that 

model components such as data quality, collinearity, model type and variable selection have 

different levels of contribution towards  model uncertainty and emphasised model type has 

the biggest effect on species distribution prediction. Buisson et al (2010) corroborated 

Dormann et al. (2008)’s result, stressing predictor and species data sampling errors could be 

a considerable source of uncertainty, and also noted model type and climate change scenario 

as major source of uncertainty  in model results. Moreover, confusion matrix based 

validation techniques that are usually used to assess performance of species distribution 

models have also been reported as possible source of uncertainty (McPherson et al., 2004; 

Jiménez-Valverde et al., 2008; Lobo et al., 2010).  

From the ongoing discussion in the literature regarding uncertainty in species distribution 

models, it is apparent that quantifying uncertainty or at least specifying it is critical to 

support the credibility of model results (Elith et al., 2002; Thuiller, 2004; Araújo & Guisan, 

2006; Elith et al., 2006; Hartley et al., 2006; Pearson et al., 2006; Araújo & New, 2007; Austin, 

2007; Dormann et al., 2008; Roura-Pascual et al., 2009; Buisson et al., 2010; Venette et al., 2010; 

Gritti et al., 2013).  

  

                                                      
4 Uncertainty here is different from the uncertainty reports given for individual performance (model error); it 

represents the array of uncertainties that propagate throughout the modelling process starting from data 

collection, pre-processing, standardizing, variable selection, modelling, space and time variation and even result 

interpretation. Refer to Elith et al (2002) for a comprehensive list. 
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1.7 Objectives 

The overall aim of this thesis is to investigate specific methodological gaps in habitat and 

climate suitability models used to predict current and future distributions of invasive 

species.  

Specific aims: 

 To investigate sources of uncertainty in commonly used methodologies associated 

with correlative species distribution models to provide improved procedures for 

more accurate species distribution predictions. 

 Evaluate the use of simple mechanistic models to rectify inaccuracies in species 

distribution predictions by correlative species distribution models.  

 Study the effect of multi-scale integration of data from global, regional and local 

sources for the development of high-resolution resource landscapes for use in 

dispersal and eradication simulation studies. 

Specific objectives:  

1. Evaluate the effect of pseudo-absence selection methods both on individual model 

performance as well as model consensus among different presence-absence models.  

2. Develop an improved pseudo-absence generation technique that balances both 

geographical and environmental space for use in presence-absence correlative 

species distribution models.  

3. Determine if a wider range of geo-environmental predictors additional to the 

commonly used temperature and precipitation predictors improve global and 

regional insect habitat suitability predictions.  

4. Investigate the effect of linear and non-linear dimension reduction methods on 

species distribution model performance.  

5. Investigate the effect of model component interactions on species distribution model 

performance based on a factorial experiment and selected case studies. 
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6. Develop species distribution prediction assessment indices that complement 

confusion matrix based validation methods. 

7. Investigate the effect of variation in species presence data on model performance and 

specify methods to detect and handle significant variation in presence datasets. 

8. Evaluate the benefits of a hybrid prediction from a correlative model and a 

simplified mechanistic model as a suitable framework to facilitate improved 

correlative species distribution predictions. 

9. Investigate recoding heterogeneous landscapes with a varying degree of composition 

across space to improve dispersal rate and pattern predictions.   

1.8 Thesis structure 

Chapter 1 gives background to the research topics discussed in this thesis along with their 

objectives. 

Chapter 2 provides a brief literature review of the six invasive insects that were used as case 

studies in this thesis. Two of these insect species have already established in New Zealand 

while the other four have not. 

Chapter 3 gives background information on the different kinds of pseudo-absence 

generation techniques that are used currently for use in presence-absence correlative species 

distribution modelling. Areas for improvement recommended by previous studies are 

highlighted. A new method that improves pseudo-absence generation for global and 

regional studies is described. Major caveats and possible future areas of research are 

discussed (Covers objectives 1 & 2).   

Chapter 4 discusses the discrepancies between species distribution model predictions using 

examples in previous studies and the investigations in the present research. Possible causes 

for discrepancies among models are reported based on the study of five species. New 

indices developed outside the confusion matrix that could be used alongside widely used 

validation methods are described (Covers objectives 3, 4, 5 & 6). 
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Chapter 5 presents a discussion of the effects of multi-modality in presence datasets on 

model prediction accuracy. Novel methods adapted to detect possible individual 

components that need to be separately considered during species distribution modelling are 

described (Covers objective 7).  

Chapter 6 gives background to the merits and demerits of using hybrid models for species 

distribution modelling. A simple framework that can be used to update correlative species 

distribution model results with a minimally parameterised mechanistic model is described. 

A case study that investigates the effect of using such a framework on prediction accuracy is 

given (Covers objective 8).  

Chapter 7 A species dispersal case study is used to illustrate the effect of utilizing multiple 

levels of detail (composition) in the landscapes to improve dispersal rate and pattern 

estimation. A procedure for obtaining varying landscape details through remote sensing 

data is also described. Additionally, the research results and new developments reported in 

previous chapters were incorporated in a case study (Covers objective 9). 

Chapter 8 presents a general discussion of all the results reported in this thesis and their 

contribution to addressing the research topics and issues outlined in the objectives. 

Concluding remarks as well as recommendations for areas of future research to improve 

species distribution models for better prediction, monitoring and management of invasive 

species are given. 
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Chapter 2 

 

 

2. Review of the invasive species used as case studies 

 

Six invasive insect species that have varying global prevalence were selected as case studies 

to demonstrate the various methods developed according to the objectives of this thesis. The 

selected species were A. albopictus, A. gracilipes, D. v. virgifera, T. pityocampa, V. vulgaris and P. 

brassicae. Available occurrence data on invasive species usually depends on the number of 

studies and survey efforts dedicated to a species. However, because of resource constraints 

usually disease vectors followed by agricultural pests get most attention with ecological 

pests coming last. The impact on resource constraints is also reflected among the six species 

selected as case studies in this thesis. For example, because of its critical health hazard 

status, extensive research has been undertaken on A. albopictus in areas of insect control, 

habitat mapping, and dispersal. Naturally, there is a greater chance of finding almost 

complete presence range information on such intensively studied insect compared with 

those that do not threaten human health.  

A brief introduction regarding the geographical distribution, pest/vector status and the 

currently used control methods of the six species is given below. The biology of the species 

is not covered here. Rather, detailed environmental or physiological requirements of the 

respective species and the relevant biological background (when available) is given in the 

description of the respective case study within the research chapters where modelling its 
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potential distribution is addressed. In this chapter, however, references to literature are 

provided that have extensive review on the biology of each species.  

2.1 Asian tiger mosquito (Aedes albopictus) 

2.1.1 Geographical distribution, native and invaded 

Aedes albopictus (Skuse, 1894) (Diptera: Culicidae) is commonly known as Asian tiger 

mosquito based on its striped appearance. Aedes albopictus was initially described from India 

as “the banded mosquito of Bengal” by Skuse (1895). Detailed biological review of A. 

albopictus is given by Hawley (1988). Aedes albopictus is native to south-east Asia, Western 

Pacific and Indian Ocean islands  (Gratz, 2004). However, it has already invaded the 

Americas, Indo-pacific regions, Australia, Europe, the Middle East and Africa (Roiz et al., 

2011). A. albopictus has been intercepted at least 12 times in New Zealand (Derraik, 2004). 

This mosquito has  continued to spread within its introduced range especially in North 

America where it is found to displace another human disease vector mosquito species in the 

same genus Aedes aegypti (Gratz, 2004).  

Currently, A. albopictus has a wide geographical range as it has adapted to both tropical and 

temperate regions. A. albopictus has diapausing eggs in temperate climates, which enabled 

the species to survive cold climates in temperate regions (Hanson & Craig Jr, 1995). The 

major pathway for its introduction is through transportation of the drought resistant eggs 

along with used tyres, used containers and plant material (Caminade et al., 2012).  

2.1.2 Hosts and vector status 

A. albopictus have adapted to breeding in  artificial containers (Hawley, 1988), resulting in  

colonization of urban and  highly populated areas where female mosquitoes can  use 

humans as hosts for blood meals. This species is not restricted to a human host.    It is a 

zoonotic vector that can transmit pathogens from its host animals to humans   (Lambrechts 

et al., 2010). 

A. albopictus is a vector of at least 22 arbovirses and some Dirofilaria nematodes which cause 

diseases in humans and animals (Honório et al., 2003; Gratz, 2004; Medlock et al., 2006). The 

list of pathogens transmitted by A. albopictus include Dengue, Chikungunya, West Nile 
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viruses , eastern equine encephalitis, yellow fever, La Crosse, Japanese encephalitis, Potosi, 

Jamestone Canyon, Tensaw, Keystone, Dirofilaria immitis and Dirofilaria repens (Roiz et al., 

2011). Apart from being a vector, the mosquito  is also generally considered a nuisance with 

painful bites  that often have haemorrhagic appearance on victims not used to A. albopictus 

toxin (Derraik, 2004). Also its  day biting habit (Lambrechts et al., 2010) makes it  difficult to 

avoid in areas where it is  introduced.  

 
Image credit 1 The Earth Times ©2012 

Figure 2.1: Asian tiger mosquito adult (Aedes albopictus)5 

 

2.1.3 Control 

Typical A. albopictus management includes mechanical eradication for example using 

trapping. Chemical methods are used especially to kill A. albopictus larvae and biological 

methods usually involve parasitizing adults. Carvalho et al. (2013) have suggested that even 

a seamlessly integrated eradication system will not work if community participation is not 

involved because availability of untended containers that could act as breeding sites could 

undo any progress achieved through various eradication methods. According to recent 

                                                      
5 http://www.earthtimes.org/nature/climate-change-asian-tiger-mosquito-invasive/1949/  

http://www.earthtimes.org/nature/climate-change-asian-tiger-mosquito-invasive/1949/
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findings genetic control could prove to be a promising control strategy. For example, Labbé 

et al. (2012) reported that they were able to alter female genes to produce  flightless 

phenotypic variant females that could be used to suppress an  A. albopictus population. 

Other methods currently being developed include realising sterile transgenic male A. 

albopictus into wild populations and inducing decline of fitness at the incident of infection of 

A. albopictus with pathogens as reviewed by Carvalho et al. (2013). 

2.2 Yellow crazy ant (Anoplolepis gracilipes) 

 

2.2.1 Geographical distribution, native and invaded 

Anoplolepis gracilipes (Smith, 1857) (Hymenoptera: Formicidae)  commonly known as yellow 

crazy ant, long-legged ant or Maldive ant is one of several invasive ants known as tramp 

ants for their dominant, aggressive and highly invasive traits. Detailed biological and 

ecological account of the A. gracilipes is given by Drescher (2011). The native range of A. 

gracilipes is not known, however more than 80% of the known species from the genus 

Anoplolepis are exclusively from continental Africa, and A. gracilipes is the only species in the 

genus to extend its range outside Africa and the Arabian Peninsula (Wetterer, 2005). Because 

the first specimen was recorded from India most publications refer to tropical Asia as A. 

gracilipes native range (Chong & Lee, 2010). Currently, A. gracilipes is established in tropical 

islands of the Indian and Pacific Oceans, India, southern China, southern islands of Japan, 

western Mexico, Chile, South Africa and Australia (Csurhes & Hankamer, 2012).  According 

to Wetterer (2005) both arid environments and high elevation limit A. gracilipes distribution 

stating that specimens were rarely recorded from elevations above 1200 m a.s.l.  A. gracilipes 

was detected in Auckland, New Zealand in 2002 but was eradicated soon after (Pascoe, 2002; 

Abbott, 2005). 
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Image credit 2 Eli Sarnat, Forestry Images 

Figure 2.2: Yellow crazy ant adult on sugar bait (Anoplolepis gracilipes)6 

 

2.2.2 Pest status 

A. gracilipes is an opportunistic feeder with known preference for carbohydrate-rich plant 

nectars and honeydew (Csurhes & Hankamer, 2012). However protein enriched food 

sources are required for brood production, such that A. gracilipes can target invertebrate and 

small vertebrate prey (O’Dowd et al., 1999). Documented cases of A. gracilipes attack include 

bird chicks, lizards and new-born mammals (Abbott et al., 2005). A. gracilipes gained 

attention as ecological pest after the implications of its impact on island ecosystems and 

island communities was demonstrated on Christmas Island (O’Dowd et al., 2003),  Seychelles 

Islands (Hill et al., 2003) and Tokelau Islands (Lester & Tavite, 2004). On Christmas Island, A. 

gracilipes has been responsible for initiating a series of destructive biotic changes on the 

native biota by preying on native red crabs resulting in high biomass growth of the forest 

understorey which is normally controlled by the crabs. Additionally, A. gracilipes can form a 

mutualistic relationship with pest scales (Abbott & Green, 2007), which accumulate honey 

dew on trees causing sooty mould cover  which can lead to a canopy dieback . Such a 

cascade  of destructive events caused by such invasive species has been  labelled “invasion 

                                                      
6 http://www.forestryimages.org/browse/detail.cfm?imgnum=5475599  

http://www.forestryimages.org/browse/detail.cfm?imgnum=5475599
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meltdown” by Simberloff (2006). Similar to other tramp ants (example, Argentine ant) A. 

gracilipes forms super colonies and are known to have low intraspecific aggression in their 

invaded ranges (Abbott, 2005; Chong & Lee, 2010) which enables them to overtake new 

habitats.  

2.2.3 Control 

There has not been a successful eradication of a large A. gracilipes invasion (Abbott et al., 

2005; Abbott et al., 2014). On Christmas Island toxicant baits have been  used successfully to 

target A. gracilipes while avoiding side effects on non-target species by placing food sources 

away from the baits to misdirect other vulnerable species like the endangered red crabs   

(Hoffmann & O'Connor, 2004). However a more successful campaign was carried out using 

aerial bait dropping that  included remote and inaccessible areas, albeit with a greater cost 

(Boland et al., 2011). Chemical sprays are  not as successful as toxic baits (Haines & Haines, 

1979). Some studies have identified possible symbiont microbes of  A. gracilipes for 

development of potential transgenic population control (Sebastien et al., 2012). 

2.3 Western corn rootworm (Diabrotica virgifera virgifera) 

2.3.1 Geographical distribution, native and invaded 

Diabrotica virgifera virgifera (LeConte, 1868) (Coleoptera: Chrysomelidae, Galerucinae) 

commonly known as the western corn rootworm (WCR) is a pest beetle known to cause 

extreme damage on maize crop plantations in Northern America and Mexico (Onstad et al., 

1999). Coats (1986) stated that the pest was probably introduced to the North American 

continent about 1,000 years ago from its tropical native origin in Central America. North 

America is now considered a native range and source of the recent D. v. virgifera 

disseminations to Europe (Henmerik et al., 2004; Moeser & Vidal, 2004; Miller et al., 2005; 

Ciosi et al., 2008) 

Geographically, D. v. virgifera has now spread and established in 20 European countries 

(Gray et al., 2009) including the more recent report of D. v. virgifera detection in Matveyev, 

the Kurgan region of Russia (EPPO, 2011). East Africa and Eastern Asia are also flagged as  

potential regions into which D. v. virgifera might spread subsequently according to CLIMEX 
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model predictions performed by a number of authors (Hummel et al., 2008 - references 

within). The multiple dissemination paths used by D. v. virgifera in its spread through 

Europe are a major source of concern. According to genetic studies conducted by Ciosi et al. 

(2008) and Miller et al.  (2005) to reconstruct possible paths of introduction, they found out 

that there is at least three separate introduction of D. v. virgifera from North America, ruling 

out  the suggestion  that the species spread through Europe as a result of a single accidental 

introduction.  

A number of first sightings of the species in Europe are located in close proximity to 

airports. For example, a first sighting in Belgrade, Serbia was near an airport in 1992 

(Henmerik et al., 2004; Ciosi et al., 2008; Gray et al., 2009), first detection in Italy was in 

Venice close to an  airport in 1998 (Henmerik et al., 2004), and in  Paris close to the Roissy 

airport (Ciosi et al., 2008). The detection history suggests a major role of transport network 

systems in the initial transatlantic dissemination of D. v. virgifera. The subsequent successful 

spread of D. v. virgifera throughout  Central and south-eastern Europe is attributed to D. v. 

virgifera’s ability for  long distance active flights (Coats et al., 1986) and passive 

transportation by wind and other natural forces (Onstad et al., 1999; Spencer et al., 1999).  

2.3.2 Hosts and pest status 

D. v. virgifera is one of the three most economically damaging species from the 

Chrysomelidae (leaf beetle) family (Branson & Krysan, 1981). D. v. virgifera is a univoltine 

species, the larvae are oligophagous and  specialises on  feeding on corn roots (Zea mays L.) 

(Branson & Krysan, 1981). However, according to a food conversion efficiency study by 

Moseser & Vidal (2004) to identify possible alternative host weed species for D. v. virgifera in 

Europe, they were able to establish that the larvae can successfully feed and grow to 

maturity on T. Aestivum (Winter Wheat), S. Bicolor (Sorghum) and C. dactylon (Durva or 

Bermuda Grass). D. v. virgifera females and eggs have been found in plots of oat stubble, 

alfalfa, and winter wheat double-cropped with soybeans and wheat plots in Illinois and 

larvae have been observed on sunflower (Helianthus annuus), alfalfa (Medicago sativa) fields 

in South-eastern Europe (Gray et al., 2009), and found to be successfully feeding on Cucurbita 

pepo (oil pumpkin) fields  in Slovenia (Hummel et al., 2008). Gray et al. (2009) also noted that 
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it is probable that D. v. virgifera populations  introduced to Europe are able to  survive in the 

complete absence of maize on some European monocot grass species such as , Setaria spp.  

 
Image credit 3 German Federal Ministry of Education and Research ©2012 

Figure 2.3: Western corn rootworm adult (Diabrotica v. virgifera)7 

 

2.3.3 Control 

Crop rotation, which used to be an efficient control for D. v. virgifera in North America, is 

now proving ineffective as a result of key adaptations like ovipositing in soybeans (Glycine 

max L.) fields which is the main rotation crop for maize. Also, diapausing at the egg stage 

enables hibernation until new maize crops are planted the following year (Levine & Oloumi-

Sadeghi, 1996; Onstad et al., 1999; Spencer et al., 1999; Gray et al., 2009). Crop rotation was 

also originally thought to be a viable solution to control new introductions of D. v. virgifera 

to Europe,  especially because of  the  heterogeneous nature of farming practice which 

involves smaller size croplands and use of more than two rotation crops for maize in Europe  

(Dillen et al., 2009). However, studies into the selection pressure that led D. v. virgifera to 

quickly adapt  to oviposition on the alternative soybean crops  in N. America suggest that 

landscape heterogeneity can have negative impact in providing  other alternative hosts  

worsening the spread of the pest (Onstad et al., 1999; Onstad et al., 2001). Moreover,  re-

                                                      
7 http://www.gmo-safety.eu/basic-info/139.pest-conquers-europe.html  

http://www.gmo-safety.eu/basic-info/139.pest-conquers-europe.html
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infestations from adjacent crop fields is highly probable unless grand scale coordinated 

eradication strategies are adapted, as female adult D. v. virgifera are able to make long 

distance sustained flights of up to 25-40 Km (Coats et al., 1986), Henmerik et al.(2004) has 

also reviewed various studies reporting similar average flight distances over a year. 

Parasitism by nematode species like Steinernema carpocapsae have been reported to be an 

effective biological control measure against the endogeic larvae of D. v. virgifera (Nishimatsu 

& Jackson, 1998). Investigation to test additional European nematodes and their efficacy 

against D. v. virgifera larvae by Toepfer et al. (2005) reported that some nematodes could be a 

viable and effective biological control agents. Experimental studies show that the larval and 

pupal stage of D. v. virgifera are susceptible to infection by parasitizing nematodes but not 

the egg stage (Jackson & Brooks, 1995).  

Genetically engineered corn varieties specifically those crossed with genes of Bacillus 

thuringiensis (Bt), a bacterium that produce insecticidal toxins, have been successfully used 

against D. v. virgifera outbreaks in N. America from 1996 onwards. However, the species is 

still a serious economic pest in the central Corn Belt of North America (Gray et al., 2009; 

Gassmann et al., 2011).  Reports of possible resistance of D. v. virgifera to the transgenic 

variety of corn began to be published around 2003 (Jaffe, 2003). More recently , the resistance  

of D. v. virgifera to Bt corn has been experimentally confirmed (Gassmann et al., 2014), 

negating  the best control method against D. v. virgifera. 

2.3.4 Summary  

It took  less than two decades for D. v. virgifera to develop  resistance  that enables it to 

overcome  corn-soybean rotation in North America (Onstad et al., 2003) and it took less than 

10 years to spread successfully throughout Central and Southeastern Europe with a 

continual spread towards the rest of Europe by means of smaller satellite populations 

(Toepfer et al., 2006). Early results indicate  that the newly introduced D. v. virgifera in 

Europe is showing tendencies to host expansion specifically to C. pepo in case of Slovenia 

(Hummel et al., 2008) and T. Aestivum, S. Bicolor and C. dactylon in Germany (Moeser & 

Vidal, 2004). Studies on D. v. virgifera in its newly introduced range show that there is a 

major host expansion and the pest can no longer be categorised as universally dependent on 
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corn plantations (Hummel et al., 2008). The rapid shift both in host species and geographical 

extent as well as the new behavioural and genetic adaptations together with multiple spread 

mechanisms, makes it apparent that D. v. virgifera, poses a high risk of invasion to potential 

new habitats.  

2.4 Pine processionary moth (Thaumetopoea pityocampa) 

2.4.1 Geographical distribution, native and invaded 

Thaumetopoea pityocampa (Denis & Schiffermuller, 1775) (Lepidoptera: Thaumetopoeidae) is 

commonly known as the Pine processionary moth due to its group marching behaviour in 

its larval stage.  The most descriptive information of the life history of T. pityocampa is 

given by Fabre (2012). T. pityocampa naturally occurs in Central Asia, the Middle East, North 

Africa and southern Europe. In Europe, despite  its distribution being originally  limited to 

the Mediterranean region, there are a number of more recent studies showing that T. 

pityocampa is expanding to colder nearby regions both with respect to latitude and altitude  

(Hódar et al., 2003; Robinet et al., 2007). Robinet et al. (2007) suggest that climate change, 

specifically winter warming, is a major factor for the expansion of T. pityocampa distribution 

northwards in Europe. Outbreaks of T. pityocampa outside its native range include Brittany 

and Strasbourg in France and north of Italy (Battisti et al., 2005; Robinet et al., 2007). T. 

pityocampa adult females only live for one day which makes any geographical range 

expansion gradual (Battisti et al., 2006). However, transportation of T. pityocampa eggs and 

larvae with tree material could increase the spread and  threat to currently favourable but 

unoccupied areas (Robinet et al., 2012).  

2.4.2 Hosts and pest status 

T. pityocampa is a known pest of Pinus spp. (Amezaga, 1997; Battisti et al., 2006) but could also 

attack Cedrus spp. (Brockerhoff et al., 2006).  The larvae stage of T. pityocampa are gregarious 

defoliators (Kanat et al., 2005) that  also make trees susceptible to secondary pests like wood 

borers (Amezaga, 1997). T. pityocampa is also a nuisance possessing  urticating larvae hairs 

causing irritation to humans which can  escalate to allergic reactions to some susceptible 

individuals (Battisti et al., 2006). Eggs are laid under the base of pine tree needles, larvae 

develop in a colony protected in silken tents hidden within the forest canopy (Hódar et al., 
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2003). The larvae are night feeders and march in a head to tail procession to feed on nearby 

branches and later in search of locations to pupate, hence the  name  (Devkota & Schmidt, 

1990). T. pityocampa is univoltine with the larval stage predominantly appearing during 

winter (Stastny et al., 2006). However a possible life-cycle shift has  been described in  an 

isolated T. pityocampa population that have larvae feeding in the summer in Portugal 

(Pimentel et al., 2006).  T. pityocampa has manifested a phenology shift in its new high 

altitude invaded areas and it is also reported that T. pityocampa expansion into high altitude 

and latitudes in the northern hemisphere are not constrained by availability of primary or 

potential hosts (Battisti et al., 2005). T. pityocampa pupae are reported to enter a prolonged 

diapause up to 7 years, the reason for such haphazard response in the population is not 

known but, it could facilitate dispersal in hard times by allowing the species to escape 

unfavourable climate (Battisti et al., 1998).  

 
Image credit 4 John H. Ghent, USDA Forest Service, United States ©2004 

Figure 2.4: Pine processionary moth larvae on a pine tree (Thaumetopoea pityocampa) 8 

2.4.3 Control 

Mechanical removal of nests and application of oil-based insecticides into larval nests are 

methods that have been used to control  outbreaks (Avtzis & Avtzis, 1999). However, aerial 

                                                      
8 http://commons.wikimedia.org/wiki/File:Thaumetopoea_pityocampa_larva02.jpg  

http://commons.wikimedia.org/wiki/File:Thaumetopoea_pityocampa_larva02.jpg
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applications of synthetic and biological insecticides are usually more effective but costly. 

Biological insecticides based on Bacillus thuringiensis are reported to be effective against the 

larvae of T. pityocampa (Battisti et al., 1998; Salvato et al., 2002). Studies using 

entomopathogenic fungi as biocontrol agents have also reported promising results (Er et al., 

2007 & references within). Naturally occurring pathogens of T. pityocampa are reported to be 

only effective on subsequent generations that appear after major outbreaks occur in 

southern Europe (Battisti, 1988).   

2.5 Common yellow jacket wasp (Vespula vulgaris) 

2.5.1 Geographical distribution, native and invaded 

Vespula vulgaris (Linnaeus, 1758) (Hymenoptera: Vespidae) is commonly known as the 

common wasp or common yellow jacket wasp. Detailed accounts of the biology and natural 

history of V. vulgaris can be found in Spradbery (1973)’s review. It is a Holarctic species 

occurring in Eurasia and North America. However a study by Carpenter and Glare (2010) 

confirmed that the North American species referred as V. vulgaris was misidentified and  is 

actually V. alascensis. Therefore it is not known if the Palearctic V. vulgaris is currently found 

in N. America. V. vulgaris have been introduced to Australia and New Zealand (Thomas et 

al., 1990; Matthews et al., 2000). There is a report of detection in Argentina but has  not been 

confirmed since the report by Masciocchi et al. (2010). V. vulgaris was introduced into New 

Zealand in  1978, it is the dominant wasp species in the honeydew beech forests (Donovan, 

1984), where its density is estimated to be extremely high  (Thomas et al., 1990).  

2.5.2 Hosts and pest status  

V. vulgaris is an ecological pest especially in New Zealand where it  outcompetes native bird 

species by reducing honeydew resources in Beech forests (Thomas et al., 1990).  In the South 

Island of New Zealand, V. vulgaris have almost displaced another invasive wasp Vespula 

germanica (Clapperton et al., 1994). Additionally, this species preys on other invertebrates 

decimating their populations with cascading ecological effects on wildlife. Thus, V. vulgaris 

not only competes with native birds for food but also has a lasting damaging effect in the 

forest ecosystems it invades by total re-structuring of food webs. For example, Gardner-Gee 

and Beggs (2013) suggested that the Avian Convergence Hypothesis that states avian-
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honeydew associations form in honeydew abundant biogeographic areas whenever ants are 

not available does not hold where abundant invasive Vespula wasps are available because 

they disrupt bird-honeydew associations and form wasp-honey dew associations. Heavy 

mortality rate of  caterpillars and other invertebrates is also reported by Beggs and Rees 

(1999). Beggs and Rees (1999) suggested that in cases like the V. vulgaris invasion of New 

Zealand , it is important to understand the threshold of ecosystem damage so that control 

and eradication only focus on keeping populations to the threshold level to avoid 

continuously using chemical and biological insecticides that might  hurt other non-target 

biota.  

 
Image credit 5 By Tim Evison ©2009 

Figure 2.5: Close up shot of an adult Common yellow jacket wasp (Vespula vulgaris) 9 

2.5.3 Control 

Mechanical control of wasps through destruction of nests is possible however this method  

is labour intensive and difficult when large populations in a natural environment are 

                                                      
9 http://commons.wikimedia.org/wiki/File%3AVespula_vulgaris_portrait.jpg  CC-BY-SA-2.5 

http://commons.wikimedia.org/wiki/File%3AVespula_vulgaris_portrait.jpg
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involved (Toft & Harris, 2004). Because of this, chemical poison baits are usually used , 

where protein based poisons are preferred to minimize the effect on non-target insects 

(Spurr, 1995). Unfortunately, it is impossible to completely eradicate V. vulgaris from a given 

area in a single campaign because foraging workers and their queen from adjacent areas re-

colonize treated areas (Beggs et al., 1998). Because of the need for re-application of 

insecticides to suppress V. vulgaris populations in invaded areas, control interventions are 

expensive and have side effects on the native biota.  Biological control included the use of 

the wasp parasitoid Sphecophaga vesparum burra in Australia (Field & Darby, 1991). S. 

vesparum vesparum diapausing cocoons released as a biocontrol of V. vulgaris and V. 

germanica in New Zealand have only established in two sites (Beggs et al., 2002). A number 

of fungi species were also proposed as a viable biocontrol agent (Harris et al., 2000). A new 

possible biological control isolated from Brevibacillius laterosporus was reported to have a 

confirmed insecticidal effect on V. vulgaris (Glare et al., 2014).    

 

2.6 Great white butterfly (Pieris brassicae) 

2.6.1 Geographical distribution, native and invaded 

Pieris brassicae (Linnaeus, 1758) (Lepidoptera: Pieridae) commonly known as great cabbage 

white, large white butterfly or great white butterfly. There are a number of reviews on the 

biology of P. brassicae because it is one of the most studied insects. Detail biology and natural 

history of P. brassicae is exhaustively covered by Feltwell (1982).  

P. brassicae is a Palearctic phytophagous insect that is common throughout Europe, North 

Africa and Asia (Feltwell, 1982). P. brassicae was accidentally introduced to Chile in 1972 

(Feltwell, 1978) and later to South Africa (Gardiner, 1995).  P. brassicae has recently 

established in Nelson region in New Zealand in 2010 (MAF, 2012; Kean & Phillips, 2013b). 

The transportation of diapausing pupae along with cargoes has been suggested as the likely 

pathway for possible inter-continental dispersals (Feltwell, 1982; NAPPO, 2002). Although, a 

human agency is required to cover such inter-continental distances, once P. brassicae is 

introduced in an area it can spread effectively because adults are capable of undertaking 
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long distance active flights, P. brassicae are also migratory insects (Feltwell, 1982; Spieth & 

Kaschuba-Holtgrave, 1996; Spieth & Cordes, 2012- & references within).  

2.6.2 Hosts and pest status 

P. brassicae is a known pest of plants of the Cruciferae family. Experimental studies have also 

confirmed that plants from this family  are the  primary food preference of P. brassicae larvae 

(Ansari et al., 2012). Alternative host plant families of P. brassicae include Capparaceae, 

Papilionaceae, Resedaceae, Tropaeolaceae, Chenopodiaceae, Euphorbiaceae, Geraniaceae, Liliaceae, 

Phytolaccaceae, Polygonaceae and Umbelliferae (Feltwell, 1982). P. brassicae is often associated 

with agricultural areas, gardens and green spaces. The larvae is a voracious feeder that can 

totally defoliate its host plants. An earlier estimate of damage caused by P. brassicae states 

that the cost could be up to $204m in its native range and $18.5m in its then introduced 

range (Feltwell, 1978). Considering the current expanded geographical range and the 

increase of commercial monoculture of Brassica spp. the damage is likely to be far greater. In 

New Zealand alone, commercial Brassica crops are estimated to be worth 80 million NZD 

(DOC, 2013b) which would  be under threat if P. brassicae spreads through the country. 

 
Image credit 6 S Sepp ©2007 

Figure 2.6: An adult large white butterfly (Pieris brassicae) 10 

                                                      
10 http://en.wikipedia.org/wiki/File:Large_white_spread_wings.jpg  

http://en.wikipedia.org/wiki/File:Large_white_spread_wings.jpg
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2.6.3 Control 

P. brassicae is one of the few insect species on which there are extensive 

biological/environmental studies. Because P. brassicae is a model species that is used to study 

a number of generic insect responses towards the environment as well as  chemical and 

biological insecticides, there is an unusually high amount of biological information 

compared with  what is available for many other invasive insects.  

 Accordingly, a wide range of biological and chemical insecticides have been effectively used 

against all developmental stages of P. brassicae. The methods included are biological control 

with viruses, fungi, predators, parasitoids and chemical insecticides of many formulations. 

Some chemicals, for example, for example, like DDT11 are not used anymore. An extensive 

list of the biological agents used is given by Feltwell (1982). Specifically, the branconid wasp 

Apanteles glomeratus is an effective parasitoid of the larval stage which kept P. brassicae 

numbers down in most areas in the United Kingdom and other regions in Europe (Debarma 

& Firake, 2013). This parasitoid is also present in New Zealand. The granulosis virus (GV) is 

a widely used effective control of P. brassicae in various parts of the world (Bonnemaison, 

1965; Hochberg, 1991).  In New Zealand both Cotesia glomerata and Pteromalus puparum, 

larval and pupal parasites respectively occur in the wild, the C. glomerata reared from 

collected P. brassicae larvae are used to control P. brassicae as part of an integrated eradication 

regime (Phillips et al., 2013).  

Transgenic control using host plants that express Bacillus thuringiensis (Bt) toxin have been 

shown to be effective against P. brassicae larvae (Kjær et al., 2009). However, care should be 

taken in implementation of pest control through transgenic crops that express Bt toxins. 

According to a report by Tabashnik et al. (2013) five insect pest species were found to be 

resistant to the Bt variety crops of Corn and Cotton. Jaffe (2003) warned that planting at least 

20% of a cropland as a refugia with non-Bt variety crop is essential to deter the development 

of resistance or at least prolong resistance by pest insects.  

Removing unwanted host species from introduced ranges is an important practice to control 

P. brassicae population along with any eradication strategy (Phillips et al., 2013).  

                                                      
11 dichlorodiphenyltrichloroethane 
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Chapter 3  

 

 

3. Novel pseudo-absence selection method for improved species 

distribution modelling 

The results of this chapter are published as 

Senay, S. D., Worner, S. P., & Ikeda, T. (2013). Novel Three-Step Pseudo-Absence Selection 

Technique for Improved Species Distribution Modelling. PLoS ONE, 8(8), e71218.  

doi:10.1371/journal.pone.0071218 

 

Abstract  

Pseudo-absence selection for spatial distribution models (SDMs) is the subject of ongoing investigation. 

Numerous techniques continue to be developed, and reports of their effectiveness vary. Because the 

quality of presence and absence data is key for acceptable accuracy of correlative SDM predictions, 

determining an appropriate method to characterise pseudo-absences for SDM’s is vital. The main 

methods that are currently used to generate pseudo-absence points are: 1) randomly generated pseudo-

absence locations from background data; 2) pseudo-absence locations generated within a delimited 

geographical distance from recorded presence points; and 3) pseudo-absence locations selected in areas 

that are environmentally dissimilar from presence points. There is a need for a method that considers 

both geographical extent and environmental requirements to produce pseudo-absence points that are 

spatially and ecologically balanced. We use a novel three-step approach that satisfies both spatial and 

ecological reasons why the target species is likely to find a particular geolocation unsuitable. Step 1 

comprises establishing a geographical extent around species presence points from which pseudo-

absence points are selected based on analyses of environmental variable importance at different 

distances. This step gives an ecologically meaningful explanation to the spatial range of background 

data, as opposed to using an arbitrary radius. Step 2 determines locations that are environmentally 

dissimilar to the presence points within the distance specified in step one. Step 3 performs K-means 

clustering to reduce the number of potential pseudo-absences to the desired set by taking the centroids 

of clusters in the most environmentally dissimilar class identified in step 2. By considering spatial, 

ecological and environmental aspects, the three-step method identifies appropriate pseudo-absence 

points for correlative SDMs. We illustrate this method by predicting the New Zealand potential 

distribution of the Asian tiger mosquito (Aedes albopictus) and the Western corn rootworm (Diabrotica 

virgifera virgifera). 
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3.1 Introduction 

Spatial distribution models (SDMs) have been used to model species distribution for 

conservation, biological control introductions and, particularly, to predict invasive species 

establishment and spread (Araújo & Peterson, 2012). Correlative SDMs are popular as the 

alternatives, mechanistic models are not always achievable due to their requirement of 

extensive knowledge of the environmental and physiological requirements of the species 

(Peterson, 2006; Kearney & Porter, 2009).  

One of the sources of uncertainty in correlative SDM predictions is the lack of true absence 

information for accurate species distribution model calibration (Soberón & Peterson, 2005; 

Wisz & Guisan, 2009). Determining true absences for species distribution prediction is a 

difficult task. A species could be absent for reasons other than simply because the location is 

not environmentally suitable (Hirzel et al., 2002; Araújo & Peterson, 2012). Possible scenarios 

include: 1) the species has not reached the locality due to natural or human barriers, 2) the 

species has not been detected despite being present, or 3) it is excluded due to competition. 

Other potential reasons could also be that the species has become locally extinct despite the 

environment being favourable or temporarily absent due to migratory behaviour.  

To compensate for the lacking absence information the following two types of modelling 

methods are used. 1) Presence-only models where models infer suitable areas for the species 

by utilizing only occurrence points and their association with the environment. These could 

be simple or enhanced presence-only models depending on usage of the background 

environmental data and model algorithm (Description given in section 1.3.1). 2) Presence-

absence models that use both presence and absence information to predict habitat suitability 

and/or species distribution. In case of the latter where real absences are not available, 

various techniques are used to generate pseudo-absence points. 

The choice between the above two approaches is often influenced by the quality and 

quantity of presence data  and research objectives such as whether a potential or realized 

species distribution prediction of the species is required (Jiménez-Valverde et al., 2008). 

The disagreement among  studies that have evaluated both types of models (Hirzel et al., 

2001; Zaniewski et al., 2002; Elith et al., 2006; Phillips et al., 2006; Elith & Leathwick, 2007; 
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Poulos et al., 2012; Hastie & Fithian, 2013) shows that each type has merits depending on the 

modelling context, such as: availability of presence data, characteristics of the predictor data 

and the modelling expertise available.  

Presence-only models work best when there is a reasonable sample of presence information 

for the target species, preferably with minimal bias (Hirzel et al., 2002; Phillips et al., 2006). If 

the available presence data is incomplete or uncertain, presence-absence models are thought 

to produce more robust results. That is because absence and/or pseudo-absence points can 

minimize over-prediction and extrapolation into unknown areas (Brotons et al., 2004; Elith et 

al., 2006).  It is always better, statistically, to develop a model that predicts based on 

negatives (in our case absences or zeroes) and positives (presences or ones) than only using 

positives, provided that the negative data are reliable (Manevitz & Yousef, 2002).  

Availability of true absence points is very limited in reality, thus to benefit from the 

advantages of presence-absence models reliable pseudo-absences are required. A number of 

studies have proposed different, often contradicting pseudo-absence selection methods 

(Chefaoui & Lobo, 2008; VanDerWal et al., 2009; Wisz & Guisan, 2009; Lobo et al., 2010; 

Warton & Shepherd, 2010; Barbet-Massin et al., 2012). Even with contrasting 

recommendations about pseudo-absence selection methods, these studies agree that the 

quality of pseudo-absence data directly affects the accuracy of model predictions.  

3.1.1 Types of pseudo-absence selection methods 

3.1.1.1 Simple random pseudo-absence selection  

This method involves taking pseudo-absence points from the background data at random 

usually excluding known presence points. No prior information about the presence and 

background data is incorporated to the selection procedure (Lütolf et al., 2006; Wisz & 

Guisan, 2009). A variation of this method  is when available true absence records are 

included along with the selected random pseudo-absence points (Stockwell & Peters, 1999). 

3.1.1.2 Pseudo absence points with limited geographical extent  

This method involves selection of pseudo-absence points within (or outside) a certain 

geographic distance from presence points. Some studies use trial and error where pseudo-

absence locations are selected from an area encompassed by varying radii around known 



44 

 

presence points. The ideal distance (radius) is chosen based on model performance results 

(Hirzel et al., 2001; VanDerWal et al., 2009; Lobo et al., 2010; Barbet-Massin et al., 2012). There 

are also cases where the radius is chosen arbitrarily or based on expert knowledge about the 

species (Poulos et al., 2012).  

3.1.1.3 Pseudo-absence points based on environmental variables  

Models that use this method are often referred to as a two-step-pseudo absence selection 

method. The method involves prior profiling of environmental data into classes (Zaniewski 

et al., 2002; Engler et al., 2004; Chefaoui & Lobo, 2008) using niche analysis models such as 

ENFA, MDE (Lobo et al., 2006), BIOCLIM (Farber & Kadmon, 2003), statistical methods like 

the Poisson point process method (Warton & Shepherd, 2010), or simply removal of the 

known environmentally suitable locations from background data  before selecting  pseudo-

absences. Once the least suitable areas are identified by such profiling, pseudo-absence 

points are selected at random. Many studies report increased accuracy using this approach. 

Moreover, judging from its repeated use in species distribution modelling studies (Chefaoui 

& Lobo, 2008; Hengl, 2009; Warton & Shepherd, 2010; Hanberry et al., 2012) it seems this 

method has become a standard.   

3.1.2 Proposed area of improvement  

Current pseudo-absence selection methods either optimize for better environmental or 

spatial discrimination. There is no existing method that provides a balance between these 

two dimensions. Good discrimination between presence and pseudo-absence points in 

environmental space alone gives models clear information about the domains in which the 

species could or could not occur. However, if there is no spatial constraint a model is likely 

to pick up global or larger scale differences rather than local variations that result in “there-

are-no-polar-bears-in-the-Sahara” predictions (Lobo et al., 2010). VanDerWal et al. (2009) 

reported that geographical/spatial extents of background data affected the accuracy of 

model predictions for 12 species. Furthermore, variable importance varied depending on the 

size and extent of background data (VanDerWal et al., 2009). This result raises two important 

questions. Does bounding background data at a certain distance from the presence points 

before pseudo-absence selection affect prediction accuracy? If so, what distance is 

appropriate for the species and predictor variables involved?  
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Barve et al. (2011) asserted that the distance used to limit background data affects model 

training, validation and comparisons, all of which are important modelling components that 

ensure species distributions are predicted appropriately. Perhaps the most comprehensive 

framework to identify an optimal background distance was proposed by Barve et al. (2011). 

Their framework involves determining background distance through a dynamic dispersal 

model that identifies the possible geographically accessible area to a species within a given 

time (t). As informative and detailed as this method is, it unfortunately cannot be used for 

all cases of species distribution prediction studies. That is primarily because the above 

explained model is geared towards determining the realized distribution of a species by 

specifying areas that are physically accessible to the species. However, areas that are 

identified as inaccessible according to a time specified dispersal model could be made 

accessible through human assisted long distance dispersal. According to Lobo et al. (2010) 

decisions about giving either spatial or environmental space more weight while selecting 

pseudo-absence points depends on whether the objective of the study is to model the 

realized or potential distribution of the target species. 

This study progresses the ideas proposed by Lobo et al. (2010) and Barve et al. (2011) 

regarding the need for incorporating geographical constraint for pseudo-absence selection 

methods, and provides a tested protocol that incorporates the use of geographically and 

environmentally balanced pseudo-absence points for improved habitat suitability analysis 

and potential species distribution predictions.  

Comparisons are made between model predictions based on the newly proposed method 

and predictions that used the three commonly used pseudo-absence selection techniques. 

Presence data of two species (Aedes albopictus, and Diabrotica v. virgifera) with varying 

relative occurrence area were used to test the pseudo-absence selection methods both in 

scenarios where presence points are abundant or scarce in relation to the study area. The 

comparison between pseudo-absence selection methods was based on individual model 

performance and resulting model consensus in a multi-model framework. The full 

geographic and environmental range of species in the early stages of invasion is usually 

unknown, especially of those transported globally through trade or tourism. This novel 
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pseudo-absence selection method will be especially useful for modelling species 

distributions of invasive species at either a global or regional level. 

3.2 Methods 

The methods proposed under this chapter are designed to investigate research questions 

defined by the first two objectives of this thesis. The objectives were: 1. To evaluate the effect 

of pseudo-absence selection methods both on individual model performance as well as 

model consensus among different presence-absence models, 2. To develop an improved 

pseudo-absence generation technique that balances both geographical and environmental 

space for use in presence-absence correlative species distribution models.   

3.2.1 Biotic data 

The target species A. albopictus and sub-species D. v. virgifera were chosen for their different 

relative occurrence area (ROA) in both geographic (Figure 3.1) and environmental space. 

Because A. albopictus is a critical health hazard, extensive research has been undertaken in 

areas of insect control, such that there were 3,029 presence points available for this study 

acquired from literature, personal communication with experts and CABI and GBIF 

databases (Ikeda et al. unpublished data). Out of the 3,029 presence points, 2,928 were 

spatially unique with respect to the resolution of the environmental data used in this study. 

For D. v. virgifera, there were 64 presence points available for this study (data courtesy of 

GBIF and PRATIQUE). All D. v. virgifera points were used for modelling as they were all 

spatially unique with respect to the data resolution of the environmental layers.  

3.2.2 Environmental data 

Data from the BIOCLIM dataset (Hijmans et al., 2005a) which is derived from a 50-year-

average (1950-2000) daily temperature and precipitation dataset (WORLDCLIM) (Hijmans et 

al., 2005b) prepared in 10 arc minute (0.17º) resolution (Hijmans et al., 2005a) was used to 

source the 19 bioclimatic variables shown in Table 3.1. A geographical variable, elevation, 

was also obtained through the BIOCLIM data portal. Hijmans et al. (2005a) reported that the 

bulk of the elevation dataset was sourced from NASA’s SRTM (NASA-GSFC, 2000) global 

Digital Elevation Model with additional data from  GTOPO30 (EROS, 1996) global elevation 

data to cover the above 60ºN areas for which there was no SRTM data. Elevation is known to 
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moderate local climate and it could act as a natural barrier between suitable areas. Elevation 

was added to account for local topographical variations in habitats.  

 
Figure 3.1: Map of global presence data for A. albopictus and D. v. virgifera. 

Two of the pseudo-absence selection methods in this study use plane circular buffers on 

background data to limit the pseudo-absence selection within a certain distance from 

presences. Such planar buffers cannot be overlaid on data in the geographic coordinate 

system without causing poleward distortion. To avoid this bias, the global (0.17º) and New 

Zealand extent (30”) data were converted into world Mercator WGS 1984 coordinate system 

and UTM-WGS1984-Zone-59S coordinate system respectively. Both datasets are then 

resampled into a 15.2 km x 15.2 km and 0.8 km x 0.8 km equal area grids using bilinear 

interpolation.  Optimum cell sizes were determined as follows. 

 For the global data, the vertical range of the BIOCLIM data (82ºN ~ 56ºS) was used to define 

latitudinal ranges of 40ºN ~ 40ºS, between 40ºN ~ 60ºN & 40ºS ~56ºS, and greater than 60ºN. 

The optimum cell size was identified by weighting the average of the mean cell width in 

each pre-determined latitudinal range by the number of pixels in the latitudinal range. 

Weighting along latitudinal zones was not necessary for the New Zealand data as the 

change in horizontal cell size along latitude was small (~0.02 km). The cell size for New 

Zealand was calculated by taking the square root of the product of the average cell width 

(0.71 km) and average cell height (0.93 km) in the dataset. 
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All of the 20 variables were combined in one raster dataset with multiple attributes and 

converted into a vector point dataset, which was then exported into an ASCII matrix. Each 

point in the matrix represented an area of 231.3 km2 within the global data set and an area of 

0.64 km2 within the New Zealand dataset. The total area of analysis covers all global 

landmass except Antarctica with an area of 135,202,962 km2. The New Zealand data covered 

268,042 km2.  

A non-New Zealand global dataset was used as a background for pseudo-absence selection. 

This is done to provide all models with a standardized independent dataset (New Zealand) 

which is used for habitat suitability projections. An environmental similarity test was 

undertaken by mapping the New Zealand extent in the environmental feature space of PCA 

transformed BIOCLIM data. There were no New Zealand data points outside the 

environmental bounds of data for the rest of the world, ensuring models did not extrapolate. 

The full extent global data was used for global habitat suitability predictions, and the high 

resolution data was used for habitat suitability projections in New Zealand. 

The following sections from 3.2.3 – 3.2.6 give the methods used to obtain four types of 

pseudo-absence points based on three methods that are currently used and a fourth method 

proposed in this study. Intermediate results regarding the methods are given within these 

sections and results that deal with comparison of model predictions based on these methods 

are given in the result section 3.3.  

3.2.3 Simple random pseudo-absence selection (SM1) 

Pseudo-absence points are selected randomly from across the whole study area. Known 

presence points were removed prior to random selection making the size of the background 

data 134,515,972 km2 for A. albopictus and 135,184,400 km2 for D. v. virgifera. The optimal 

ratio of presence points to pseudo-absence points that are used to train models is debated 

(Stockwell & Peters, 1999; Zaniewski et al., 2002; Lobo et al., 2010; Barbet-Massin et al., 2012).  

An unbalanced design where there are more  pseudo-absence points than presence points  

has been found to affect performance of some models positively, and others negatively 

(Barbet-Massin et al., 2012). That introduces bias in research designs involving multiple 

models such as this study.  Therefore, an equal number of pseudo-absence points as 
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presences points were used for the random selection method and all subsequent pseudo-

absence selection methods used in this study. Random 2,928 and 64 points were selected for 

A. albopictus and D .v .virgifera respectively from the background data. 

3.2.4 Spatially constrained pseudo-absence points selection (SM2) 

This method uses a spatial constraint on background data before selecting pseudo-absence 

points. The background data is extracted within a defined distance from presence points. 

Previous applications of this method have often used an arbitrarily chosen distance 

VanDerWal et al. (2009). Pseudo-absence points were chosen at random from the 

geographically limited background data. For consistency, in our study the same distances 

determined within the 3-step method were used. These distances were 350 km for A. 

albopictus and 3,000 km for D. v. virgifera. Pseudo-absence points were selected at random 

from the spatially constrained background dataset. The background data set for this scenario 

covered 29,219,485 km2 for A. albopictus and 64,791,235 km2 for D. v. virgifera.   

3.2.5 Environmental pseudo-absences point selection (SM3) 

 An environmental profiling, similar to other two-step pseudo-absence generation methods 

(Chefaoui & Lobo, 2008; Wisz & Guisan, 2009) was performed on the background data 

except that a one class support vector machine (OCSVM) (Schölkopf et al., 2001) classifier 

was used. OCSVM is chosen because it can handle high dimensional data and complex non-

linear relationships between predictors. The OCSVM model was trained with environmental 

variable data at presence points. An ensemble of 100 best performing OCSVM models was 

used to determine robust environmentally profiled background classes (Worner et al., 2014). 

Using an ensemble approach rather than the single best performing model reduced the 

probability of choosing an over-fitted model. The OCSVM profiling produced background 

data with values between zero and one, which represent the probability of being similar to 

the presence data. All background data points with a probability of 0 (zero-similarity with 

presences) were extracted as potential pseudo-absence points. Random 2,928 and 64 pseudo-

absences were selected from this zero-similarity background data that covered 102,831,933 

km2 and 87,744,064 km2 for A. albopictus and D. v. virgifera respectively.   
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3.2.6 Three step pseudo-absence selection method (SM4) 

The novel three-step method developed here provides a balance between using the spatial 

and environmental space for selection of appropriate pseudo-absence points. The first step is 

to determine geographic space for the species by establishing the appropriate distance by 

which background data is bound to presence data. In the second step, an OCSVM model is 

used to classify the background data constrained in step 1 into various environmental 

classes. In the third step K-means clustering is used to select a representative sample from 

all the environmentally dissimilar points identified in step 2 as pseudo-absence points.  

3.2.6.1 Step 1: Specifying geographical extent 

An independent method based on variable importance analysis was designed to identify an 

appropriate distance by which background data is bounded to presence points. 

Variable importance was analysed using the following steps:  

Step 1.1 a baseline data is prepared by extracting the 20 environmental variable values at the 

presence point locations for each species. Principal component analysis (PCA) was 

performed on the baseline data. The first n principal components (PCs) that make up to 95% 

of the variance in the baseline data are recorded.  

Step 1.2 the loadings (coefficients) of the PCA for each of the selected PCs at Step 1.1 are 

evaluated and variables that contributed the most (> 70%) to these PCs are noted.  

Step 1.3 multiple datasets were produced by bounding background data at different radii 

from presence points. I chose 50 km, 100 km, 150 km, 200 km, 250 km, 300 km, 350 km, 400 

km, and 500 km intervals.  PCA was performed on these datasets same as was done for the 

baseline data. The PCA loadings for the same variables identified at Step 1.2 are extracted 

over all background datasets. The contribution of these variables versus distance was then 

plotted and analysed for any decline in contribution to the respective principal components. 

In cases where no change was observed within the listed intervals the distance was 

increased by 100 km until change was observed (Figure 3.3). The distance at which the 

contribution of the most important variables changed was chosen as the optimal limit to 

bound background data. I suggest that including background data outside the optimum 
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distance could obscure important information for feature selection.  Tuv et al. (Tuv et al., 

2009) and references therein show that unnecessarily large and redundant background data 

introduces noise and decreases predictive power of models.  

The first three principal components explained 95% of the variance in the background data 

for both A. Albopictus and D. v. virgifera. The contribution of the most important variables to 

their respective principal component declined at 350 km for A. albopictus (Figure 3.2), and at 

3,000 km for D. v. virgifera, these distances were taken as the optimum boundary of 

background data. The area of the background data extracted from within the optimum 

distance of presence points was 29,219,485 km2 for A. albopictus and 64,791,235 km2 for D. v. 

virgifera.  

 

 
Figure 3.2: Variable importance analysis for A. albopictus background data delimitation. 

Graph labels show the coefficients of the three most important variables for A. albopictus over the 

given distances from presence points 
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Figure 3.3: Boundaries of background datasets extracted from circular buffers drawn at various radii 

from (A) A. albopictus & (B) D. v. virgifera presence points. 

The bold red boundary shows the optimum background extent identified by the variable importance 

analysis for the respective case studies. 
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3.2.6.2 Step 2:  Environmental profiling of background data:  

Environmental profiling was performed on the spatially limited background data identified 

at step 1 using an OCSVM (Schölkopf et al., 2001) classifier. All locations with a probability 

of 0 (zero similarity with presence points) were extracted as a potential background for 

pseudo-absence selection. This procedure further reduced the background data at step 1 to 

9,925,310 km2 and 12,878,516 km2 for A. albopictus and D. v. virgifera respectively.  

3.2.6.3 Step 3 K-means clustering 

 K-means clustering was used to group the zero-similarity locations defined at step 2 into k 

clusters according to their environmental value as per the specifications recommended by 

(Worner et al., 2014). The parameter k that determines the number of clusters for K-means 

clustering was set to the number of presences available (K=2,928 for A. albopictus and K= 64 

for D. v. virgifera). The centroids, from each cluster in the environmental feature space, were 

selected as they best represented their respective cluster. The projection of the centroids in 

the geographic space provided the pseudo-absence points needed to proceed with the 

presence–absence modelling. 

3.2.7 Model evaluation and output analysis 

The four methods of pseudo-absence selection were compared based on the performance of 

seven presence-absence models. The seven models were: 1) logistic regression 

(LOG)(Kleinbaum & Klein, 2005), 2) classification and regression trees (CART)(Venables & 

Ripley, 1997) 3) conditional trees (CTREE) (Hothorn et al., 2006b). 4) K-nearest neighbours 

(KNN) (Ripley, 1994); 5) naïve Bayes (NB)(McCallum & Nigam, 1998), 6) support vector 

machines (SVM)(Vapnik, 1995) and 7) artificial neural networks (NNET) (Haykin, 1998).  

Variable selection was carried out using random forests. Random forest (RF) is a 

classification algorithm that uses an ensemble of classification trees. Random forest is chosen 

because it is reported to have a good predictive performance even when noisy variables are 

included (Breiman, 2001). Variable selection was performed independently for each training 

dataset, as the domain and range of the four types of pseudo-absences vary in the geo-

environmental space. Table 3.1 shows the list of variables selected for the different scenarios. 

For validation, 20% of both the presence and pseudo-absence datasets were partitioned and 



54 

 

set aside for cross-validation while 80% was used to train the models. Each scenario was 

replicated 20 times. The models were compared based on performance scoring methods 

(Table 3.2).  

The threshold p > 0.5 was used to convert model predictions into binary presence-absence 

maps to obtain predicted presences. There is evidence that shows predefined thresholds 

such as used in this study may lead to a cut-off that does not approximate the true threshold 

at which the species is likely to be present (Jiménez-Valverde & Lobo, 2007). The optimum 

threshold based on prevalence is considered to decrease towards zero for rare species and 

increases towards one for generalist species (Jiménez-Valverde & Lobo, 2007). Both species 

used in this research are not rare; thus the bias introduced from erroneous threshold should 

be similar. The threshold of 0.5 was used as we were interested solely in variation arising 

from pseudo-absence selection methods. Percentages of predicted presences out of the total 

study area were compared for differences in habitat suitability predictions among models 

using the different pseudo-absence methods. Model consensus was analysed for the New 

Zealand extent, by identifying how many models using the same pseudo-absence method 

predicted similarly over their respective predicted presence maps. 

A habitat suitability prediction was produced using the best model for each pseudo-absence 

selection scenario at the global extent and for New Zealand. Model Kappa values were used 

to select the best model for each pseudo-absence method scenario. Kappa is chosen because 

it corrects for prediction success by chance (Manel et al., 2001). Habitat suitability maps are 

re-projected back onto a geographic co-ordinate system for visualization. All analyses were 

carried out using the free software R (R Core Team, 2012) version 2.8.1 and 2.15.1 with 

packages agricolae (Mendiburu, 2012), class, nnet, MASS (Venables & Ripley, 2002), Coin 

(Hothorn et al., 2006a), e1071 (Meyer et al., 2007), kernlab (Karatzoglou et al., 2004),  klaR 

(Weihs et al., 2005), multcomp (Hothorn et al., 2008), randomForest (Liaw & Wiener, 2002),  

SP (Pebesma & Bivand, 2005), VarSelRF (Diaz-Uriarte, 2009). An R based multi-model 

framework (Ikeda et al, Unpublished data; Worner et al., 2014) was used to run the models 

in a standardized manner. Data pre-processing and mapping were done using MATLAB 

version R2011a (MathWorks, 2011) and ArcGIS version 10.1 (ESRI, 2010).
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Table 3.1: List of variables selected using 4 pseudo-absence selection methods for the two target species 

No. Variables aaSM1 aaSM2 aaSM3 aaSM4 dvvSM1 dvvSM2 dvvSM3 dvvSM4 

V1 Annual Mean Temperature         

V2 Mean Diurnal Range (Mean of monthly (max temp - min temp))         

V3 Isothermality (P2/P7) (* 100)         

V4 Temperature Seasonality (standard deviation *100)         

V5 Max Temperature of Warmest Month         

V6 Min Temperature of Coldest Month         

V7 Temperature Annual Range (P5-P6)         

V8 Mean Temperature of Wettest Quarter         

V9 Mean Temperature of Driest Quarter         

V10 Mean Temperature of Warmest Quarter         

V11 Mean Temperature of Coldest Quarter         

V12  Annual Precipitation         

V13 Precipitation of Wettest Month         

V14 Precipitation of Driest Month         

V15 Precipitation Seasonality (Coefficient of Variation)         

V16 Precipitation of Wettest Quarter         

V17 Precipitation of Driest Quarter         

V18 Precipitation of Warmest Quarter         

V19 Precipitation of Coldest Quarter         

V20 Altitude         

Total  17 11 14 8 3 4 13 2 

*aa= Aedes albopictus, dvv= Diabrotica v. virgifera, SM1=random pseudo-absence selection method, SM2 = spatially constrained random pseudo-absence 

selection method, SM3= 2-step environmental profiling pseudo-absence selection method, SM4 = 3-step environmental profiling with spatial constraint 

pseudo-absence selection method. 
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Table 3.2: Model performance indices 

Index Formula Abbreviations Remark 

Accuracy 
=

𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 

TP=True positive, TN=True negative, FP=False positive, 

FN=False negative 

 

Kappa 

index 

 

=
(𝑂𝐴 − 𝐸𝐴)

(1 − 𝐸𝐴)
 

OA = observed agreement(Accuracy) 

EA = expected agreement 
EA(TP) = (𝑇𝑃 + 𝐹𝑁) ∗ (𝑇𝑃 + 𝐹𝑃)/(𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁 + 𝑇𝑁) 
EA(TN) = (𝐹𝑃 + 𝑇𝑁) ∗ (𝐹𝑁 + 𝑇𝑁)/(𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁 + 𝑇𝑁) 
𝐸𝐴 = (𝐸𝐴(𝑇𝑃) + 𝐸𝐴(𝑇𝑁))/(𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁 + 𝑇𝑁) 

Excellent:  >= 0.81 

Good:     0.61 – 0.80 

Medium:  0.41 -0 .60 

Not good: 0.21-0.40 

Bad:         0.00-0.20 

Very bad:  <0.00 

Sensitivity 
=

𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

 1 - omission error 

Also referred as 

“recall” 

Specificity 
=

𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 

 1 – commission error 

AUC ROC curve  
𝑇𝑃𝑅 = 𝑆𝑒𝑛𝑠𝑖𝑡𝑣𝑖𝑡𝑦  
plotted against 

𝐹𝑃𝑅 =
𝐹𝑃

𝐹𝑃 + 𝑇𝑁
 

True positive rate vs. False positive rate,  

Calculated on the test dataset. 

Threshold cut-off for presence-absence binary prediction is 

calculated at 50% prevalence for all models. 

 Values > 0.7 are 

considered good. 

 

3.3 Results 

3.3.1 Pseudo-absences 

 

The environmental range and domain of pseudo-absences from the 4 pseudo-absence 

selection methods were different for both species (Figure 3.4 for A. albopictus). SM1 pseudo-

absences had both very close points to presence points as well as environmentally extreme 

points (Figure 3.4-A). SM2 pseudo-absences were closely clustered around presence points 

(Figure 3.4-B).  SM3 (Figure 3.4-C) and SM4 pseudo-absences points (Figure 3.4-D) were 

clearly discriminated from presence points. However, the SM4 pseudo-absences did not 

have environmentally extreme points which is illustrated by their magnitudes on the 

principal component axes (Figure 3.4).   
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Figure 3.4: Pseudo-absence points from the four pseudo-absence selection methods. 

Pseudo-absence points plotted with presence points on the first three principal components of the 

training dataset for A. albopictus, (A) SM1, (B) SM2, (C) SM3, and (D) SM4. Red points mark 

presences and purple points mark absences. 
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3.3.2 Variable selection 

There was considerable variation in the subset of variables chosen for each training dataset 

from the total predictor list of 20. The 3-step selection method (SM4) gave fewer variables for 

both A. albopictus and D. v. virgifera (Table 3.1). 

3.3.3 Model performance 

Out of the 56 models from the various data-method-model combinations (7 model types x 4 

selection methods x 2 species), 55 of the models had mean AUC value better than 0.5 

meaning all models predicted better than chance except for one model (CTREE,SM1,Dvv), 

which registered a poor performance (AUC = 0.1765). Two-way within subjects analysis of 

variance was used to calculate the variance attributed to each factor in the experiment. The 

pseudo-absence selection method had a highly significant (ANOVA, SS12 = 0.285, p = 0.0017) 

effect on model mean AUC values, but the interaction between model type and selection 

method was insignificant (ANOVA, SS = 0.127, p = 0.94). Mean AUC differences due to 

model type were not significant according to Tukey’s HSD test (p < 0.05). There was a 

statistically significant difference in mean AUC of models using SM1 and SM2 pseudo-

absences compared with models using SM3 and SM4 pseudo-absences (p < 0.05) (Figure 3.5). 

The average mean AUC of models using SM1, SM2, SM3 and SM4 pseudo-absence points 

was 0.84 (±0.21 SD), 0.79 (±0.07 SD), 0.95 (±0.05 SD), and 0.95 (±0.03 SD) respectively.  

We used the proportion of the sum of correctly predicted pseudo-absences and correctly 

predicted presences out of the total test data to calculate model accuracy. The ANOVA 

results for the mean accuracy values for the same models under different pseudo-absence 

selection methods showed that pseudo-absence selection method has a significant effect on 

model accuracy (SS= 0.28, p < 0.0001). Tukey’s HSD test on model accuracy measurements 

also gave a similar result to comparison of mean AUC values; models using pseudo-absence 

selection methods SM3 and SM4 have significantly better accuracy than models that used 

SM1 and SM2 pseudo-absences (p < 0.05).  

                                                      
12 SS= sum of squares  
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Figure 3.5: Variation on mean AUC values due to model type, pseudo-absence selection method and 

number and structure of presence data. 

Error bars indicate standard errors over replicates. Bars with same letters within a graph are not 

significantly different (Tukey’s HSD test p>0.05). (A) Model type, (B) Pseudo-absence selection 

method, and, (C) species dataset.   

 

3.3.4 Prediction-reality agreement 

The Kappa index was used to compare results between the different models according to 

pseudo-absence selection method. SM1 resulted in 13 out of the 14 models that were 

between ‘good – bad’ bands with the exception of one model (SVM, SM1, A. a) in the 

‘excellent’ band (Figure 3.6). The range of scores for the SM1 method was between 0.59 - 0.82 

for A. albopictus and 0.00 - 0.75 for D. v. virgifera. For method SM2, none of the 14 tested 

models-species combinations were in the ‘excellent’ band with Kappa values between 0.43 - 

0.58 over the two species. For method SM3, model Kappa scores were in the ‘excellent’ band 

for 9 out of 14 models and in the ‘medium to good’ bands for the remaining five models over 

the two species. For method SM4 model Kappa scores were in the ‘excellent’ band for 12 out 

of 14 models and in the ‘good’ and ‘medium’ bands for the remaining two models over the 

two species (Figure 3.6).  
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Figure 3.6: Kappa values of models for the four pseudo-absence selection methods and two species 

dataset. 

Aa =A. albopictus, Dvv = D. v. virgifera, values above the red broken line are in the excellent band 

of the Kappa index. 

 

3.3.5 Sensitivity and Specificity 

Analysis of variance of the specificity results of the seven models showed that there is a 

highly significant difference between specificity scores of models using different pseudo-

absence selection methods (SS= 0.54, p < 0.0001) over the two species, and the model type 

also had a significant contribution towards the variation in the specificity results (SS = 0.14, p 

= 0.011). The lowest mean specificity values were obtained from models using pseudo-

absence selection method SM2, models using SM1 pseudo-absence points also had low 

specificity scores but were significantly better than SM2 models (Figure 3.7). Models that 

used SM3 and SM4 pseudo-absence points gave significantly better specificity than SM1 and 

SM2. There was a similar trend for sensitivity where the pseudo-absence selection method 

had a significant effect on model sensitivity (SS = 0.095, p = 0.025). All models with SM3 and 

SM4 pseudo-absences scored high sensitivity values (> 0.85) for both species dataset (SM3, 

mean = 0.90, SD = ±0.10; SM4, mean = 0.91, SD = ±0.02). While models with SM1 and SM2 

pseudo-absences had low sensitivity scores (SM1, mean 0.85, SD = ±0.14; SM2, mean 0.81, SD 
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= ±0.05). There was a considerable between-species variation with respect to sensitivity 

scores of models using SM1 and SM2. 

 
Figure 3.7: The effect of pseudo-absence selection method on mean specificity and sensitivity values. 

Error bars indicate standard errors. Bars with same letters are not significantly different (Tukey’s 

HSD test p>0.05), (A) specificity (B) sensitivity. 

 

3.3.6 Predicted prevalence, model consensus and habitat suitability 

There were variations with respect to the number and location of predicted presences by 

models that used the four different pseudo-absence selection methods. For the global 

analysis, models using the SM4 method resulted in the highest percentage of predicted 

presences (mean = 39.29%, SD = ± 17.65), with SM2 and SM3 ranking second (mean = 31.70%, 

SD = ±18.24) and third (mean = 24.82%, SD = ±10.19) respectively while SM1 (mean = 22.77%, 

SD = ±11.15) gave the smallest percentage of predicted presences. For the New Zealand data, 
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methods SM2 (mean = 52.42%, SD = ±30.27), SM3 (mean = 50.30%, SD = ±37.11), and SM4 

(mean = 51.81%, SD = ±29.68), gave very similar predicted presence percentages. The 

percentage of predicted presences from models using SM1 pseudo-absences was 

significantly lower (mean = 9.90 %, SD = ±17.78) than models using all the other three 

methods (p= 0.01, p = 0.02, p = 0.01, Tukey’s HSD test in comparison with SM2, SM3 and 

SM4 respectively). 

The predicted presences for both A. albopictus and D. v. virgifera in New Zealand were 

analysed to investigate the level of model consensus in the predictions. Model consensus 

was categorized as follows; prediction by one model = no consensus, prediction by two 

models = low consensus, prediction by 3-4 models = moderate consensus, and prediction by 

5-7 models = high consensus. Predicted presence percentages and model consensus levels 

are given in figure 3.8. 

 
Figure 3.8: Percentages of predicted suitable areas and respective model consensus on predictions in 

New Zealand. (A), Asian tiger mosquito (A.albopictus) (B), Western corn rootworm (D. v. virgifera) 

 

Habitat suitability maps were produced using the best models, according to Kappa score, for 

each scenario. For the A. albopictus dataset, the best performing models based on SM1, SM2, 

SM3 and SM4 pseudo-absence methods were NNET, KNN, NNET and SVM respectively. 

For the D. v. virgifera dataset, the best performing models based on SM1, SM2, SM3 and SM4 

pseudo-absences methods were NNET, NB, CART, and KNN respectively (Figures 3.9 & 

3.10). 
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Figure 3.9: Global habitat suitability prediction for Asian tiger mosquito (A. albopictus). 

(A), SM1 pseudo-absences with model NNET  (B) SM2 pseudo-absences with model KNN (C), SM3 

pseudo-absences with model NNET (D) SM4 pseudo-absences with model SVM. Note: A.albopictus 

occurrence data is too dense to overlay on prediction, refer to Figure 3.1.    

 
Figure 3.10: Global habitat suitability prediction for Western corn rootworm (D. v. virgifera) 

SM1 pseudo-absences with model NNET (B) SM2 pseudo-absences with model NB (C), SM3 pseudo-

absences with model CART (D) SM4 pseudo-absences with model KNN.    

Habitat suitability map comparisons in the projected range (New Zealand) show that SM1 

based maps were dissimilar from SM2, SM3 and SM4 suitability maps (Figures 3.11, 3.12). 

The SM1 suitability predictions both for A. albopictus and D. v. virgifera in New Zealand were 
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limited to very small areas of low to moderate suitability. The habitat suitability projected 

using SM2 pseudo-absences identified 72,557 km2 of highly suitable area (> 0.9 probability) 

for A. albopictus and 92,779 km2 of highly suitable area for D. v. virgifera. The suitability 

prediction based on SM3 pseudo-absences identified no highly suitable locations for A. 

albopictus and a large 247,883 km2 area of highly suitable area for D. v. virgifera. Habitat 

suitability prediction based on the 3-step method (SM4) identified 8,752 km2 of highly 

suitable area for A. albopictus and 151,569 km2 for D. v. virgifera. 

 

3.4 Discussion 

A number of studies have established that the pseudo-absence selection method used for 

SDMs affects model performance (Thuiller et al., 2004; Chefaoui & Lobo, 2008; Jiménez-

Valverde et al., 2008; Lobo et al., 2010; Barbet-Massin et al., 2012). In this study, the effect of 

pseudo-absence selection methods on the performance of seven models was investigated. 

The results showed that methodological prescription of pseudo-absence points, similar to 

the 3-step method developed in this study, enhances model predictive power. The 

commonly used approaches are to constrain the background data geographically (similar to 

SM2), or environmental profiling of the background data (similar to SM3) (Zaniewski et al., 

2002; Chefaoui & Lobo, 2008; Barbet-Massin et al., 2012). However, some studies have 

reported that random pseudo-absence selection method (equivalent to SM1) works best in 

some contexts. For example, SM1 is considered to work well with logistic regression models 

(Barbet-Massin et al., 2012) and when environmental data is too complex to perform 

environmental profiling (Wisz & Guisan, 2009). Jiménez-Valverde et al. (2008) and Lobo et al. 

(2010) suggested that the best way to get potential distribution representation of a species is 

by using absences located relatively near the external boundary of the environmental 

domain and adding geographic proximity if the requirement is to get the realized 

distribution representation. In the three-step method, we quantified these boundaries by 

utilizing variable importance analysis over various distances from presence locations. The 

challenge was to maintain model performance while introducing spatial constraint on the 

potential background data. Environmentally profiled background data without any 
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geographical constraint usually gives very high model AUC and sensitivity values because 

the data are overly and unrealistically discriminated. Rather than using an arbitrary 

distance, the 3-step pseudo-absence selection method utilizes an ecologically meaningful 

distance to specify geographic extent of background data, in order to minimize information 

loss due to the introduced spatial constraint. I found the optimum distance for the 

background data extent to be 350 km for the A. albopictus dataset and 3,000 km for D. v. 

virgifera dataset. Care should be taken not to associate distance obtained through variable 

importance analysis as a constant biogeographic characteristic of the species. The distance at 

which background data is bounded is identified based on the species relative area of 

occurrence. As a consequence, it is affected by the number of presence locations, their 

distribution and the extent of the study area. The identified distance must be re-calculated if 

the presence data or the extent of the study area changes.  

3.4.1 Variable selection 

Variable selection is an essential step in species distribution modelling. Selected variables 

and their relationship at the presence points are the mechanism by which ecological 

assumptions are incorporated in correlative species distribution models. Failing to select the 

appropriate explanatory variables leads to model results detached from ecological reality. In 

this study, we found large variation between the numbers and types of variables selected 

according to presence data and pseudo-absence selection method.  

The between-species differences in the variables selected for each pseudo-absence scenario 

can be used to assess the effect of species presence data on variable selection. More variables 

were selected for the A. albopictus training dataset than D. v. virgifera in all pseudo-absence 

selection methods. This was because the A. albopictus dataset with 2,928 presence points 

covers a large area in geographic and environmental space, requiring more variables to 

characterise the training data than the D. v. virgifera dataset that has 64 presence points over 

a relatively limited geographic and environmental range. This result is not unexpected, the 

larger the environmental range of the species, the larger number of variables needed to 

construct a valid model.  
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The within-species differences in the variables selected show that pseudo-absence data has 

considerable influence on variable selection. A large number of variables in this case 

correspond to inconsistent pseudo-absence points that require a large number of variables to 

characterise the training data.  The least number of variables were selected from data using 

the 3-step method (Table 3.1). More conservative variable selection is a result of a unique 

interplay of limiting background extent and robust environmental profiling used in the 3-

step method, which excluded environmentally extreme outliers in the training data while 

providing clear environmental classification between presence and pseudo-absence points.  

It is well established that the number of presences and the environmental data are critical for 

variable selection and accuracy of SDM predictions. However, defining appropriate 

unsuitable areas by selecting optimal pseudo-absences to contrast with suitable areas 

inferred from presence points is equally important.  Moreover, if certain methods have 

comparable performance, it is better to select the one with less number of variables for a 

simpler model that can easily be interpreted (Beaumont et al., 2005; Aragón et al., 2010). 

3.4.2 Model performance  

With respect to model Kappa values, SM1 results show that random pseudo-absence 

selection method is not consistent either for the two species or the seven models tested. For 

example, the logistic regression model (LOG) performed well for A. albopictus with a high 

Kappa value but performed poorly for D. v. virgifera. This inconsistency  is confirmed  by 

Lobo et al. (2010) who states that random pseudo-absence selection methods are unreliable 

due to their high dependence on species presence point distribution and abundance. High 

model performance using this method can occur by chance and is unlikely to be repeatable 

for different species or model scenarios as shown in this study. SM2 results were low for all 

models.  Both SM1 and SM2 resulted in significantly low mean AUC and specificity scores 

compared with models using SM3 and SM4 pseudo-absences. SM1 and SM2, therefore, seem 

not ideal pseudo-absence selection methods to use in SDMs.  

SM3 gave consistently high model performance (Kappa statistics) except for CTREE and 

CART models which had variable performance across the two species. The machine learning 

models using SM3 pseudo-absences performed consistently over the two species dataset. 
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SM3 was found to perform well, especially for the LOG model giving similar high Kappa 

values for both species. This result is despite reports stating that regression models work 

best under random selection methods (Wisz & Guisan, 2009; Barbet-Massin et al., 2012). I 

attribute the good results from the LOG model on SM3 pseudo-absences to the use of a 

robust model (OCSVM) for environmental profiling of background data.  

SM4 provided excellent Kappa values for all models for the D. v. virgifera data set and five 

models of A. albopictus dataset.  A single low Kappa value was reported for the LOG model 

performance. There was no significant difference between AUC, sensitivity and specificity 

values between SM3 and SM4 methods despite that the background data for the pseudo-

absence points of SM4 were geographically restricted.  While there was no statistical 

difference, SM4 method achieves high model performance while avoiding extreme spatial 

and environmental locations that could lead to inconsistency in prediction for new areas.    

3.4.3 Model consensus and habitat suitability  

The highest percentage of predicted presences was obtained from the 3-step pseudo-absence 

selection method. This result is very important especially for invasive species studies where 

identifying potential areas suitable for the establishment for the target species is critical. The 

lowest predicted presence percentage was from the random selection method (SM1) both at 

a global and New Zealand scale. Comparisons of predicted presence maps were done to 

check consensus among models that used the same pseudo-absence method. I recognize that 

model consensus alone does not ensure high prediction accuracy because models can 

wrongly agree on the occurrence of a species. A good example is the high consensus among 

models using SM2 pseudo-absence points for prediction of D. v. virgifera distribution in New 

Zealand (Figure 3.8-B), even when the Kappa model performance scores for these models 

were very low.  However, high model consensus combined with high model performance 

scores is preferable to multiple models with high performance scores and low agreement. 

Furthermore, inconsistency between predictions makes SDM result interpretations difficult 

for decision makers. In this study, the three step method (SM4) provided the needed 

combination of high model performance in terms of Kappa values (Figure 3.6) and 

consistency in model predictions in terms of high model consensus (Figure 3.8-A, B). 
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Habitat suitability predictions based on the 4 pseudo-absence types gave different results in 

terms of the size and location of suitable areas for A. albopictus and D. v. virgifera. Pseudo-

absence points from SM1 and SM2 methods are not distinctly separated from presences in 

the environmental feature space (Figure 3.4-A, B). This lack of discrimination is reflected in 

their respective habitat suitability predictions. Both SM1 and SM2 maps showed 

underestimation of the potential suitable area for A. albopictus and D. v. virgifera when 

overlaid with occurrence points. Pseudo-absences from both SM3 and SM4 methods were 

distinctly clustered away from presence points in the feature space allowing environmental 

discrimination (Figure 3.4-C, D). Accordingly, most of the occurrence areas are identified by 

the SM3 and SM4 models as highly suitable for both species. While such high model 

sensitivity is beneficial to more accurately estimate the potential distribution of a species, it 

is possible to overestimate the potential distribution if highly discriminated 

presence/pseudo-absence training data are used (Lobo et al., 2010). Therefore, even if both 

SM3 and SM4 gave comparable suitability predictions, it is advisable to determine optimum 

background extent for pseudo-absence selection if the study area is at a global or regional 

scale.  

3.4.4 Implications for future A. albopictus and D. v. virgifera management in New Zealand 

Aedes albopictus: the global distribution estimated for A. albopictus from SM1 and SM2 

appropriately covered the native Southeast Asian and the introduced South American 

range, but did not cover the North American distribution accurately. The European and 

African population were also not accurately represented on the maps (Figure 3.9 –A, B). SM3 

and SM4 global distribution maps for A. albopictus reflect the current complete range of A. 

albopictus. However, the extent of predicted suitable areas for A. albopictus in New Zealand 

varies between projections using SM3 and SM4 pseudo-absence methods. The SM3 

projection (Figure 3.11-C) only shows 2,000 km2 of moderately suitable area within New 

Zealand, whereas the SM4 projection identified over 8,000 km2 of highly suitable areas 

(Figure 3.11-D).  
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Figure 3.11: Habitat suitability prediction for Asian tiger mosquito (A. albopictus) in New Zealand. 

(A), SM1 pseudo-absences with model NNET  (B) SM2 pseudo-absences with model KNN (C), SM3 

pseudo-absences with model NNET (D) SM4 pseudo-absences with model SVM 

Given that other species from the Aedes genus have established in New Zealand and that A. 

albopictus is repeatedly intercepted at the New Zealand border (Derraik, 2004), I suggest that 

the suitable areas identified by SM4 be considered in future mosquito related biosecurity 

assessments. The suitability projection difference between the SM3 and SM4 shows that 

incorporating a spatial dimension while environmental profiling has a significant effect on 

model predictions. A. albopictus is a particularly difficult species to model as it is currently 

undergoing a rapid range expansion. Previous studies showed that there is a niche shift 

throughout the dispersal history of A. albopictus (Medley, 2009). It is important to select 

accurate presence and pseudo-absences data while projecting suitable areas for such species 

whose distribution spans a wide environmental range.  
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Figure 3.12: Habitat suitability prediction for Western corn rootworm (D. v. virgifera) in New 

Zealand. 

(A), SM1 pseudo-absences with model NNET  (B) SM2 pseudo-absences with model NB (C), SM3 

pseudo-absences with model CART (D) SM4 pseudo-absences with model KNN 

Diabrotica v. virgifera: similar to A. albopictus, the SM1 and SM2 global species distribution 

model for D. v. virgifera did not fully reflect the current known distribution of the species 

(Figure 3.10-A, B). The SM3 and SM4 predictions (Figure 3.10-C, D) reflected the current 

known distribution, although the former was more conservative and the latter failed to 

characterize Central America, the native habitat of the species as highly suitable. I presume 

this under-prediction of the Central American range is not related to the model and pseudo-

absence selection method used because similar result was obtained in previous studies that 

utilized a variety of modelling approaches (Aragón et al., 2010; Dupin et al., 2011; Kriticos et 

al., 2012a). An interesting variation in prediction of SM4 is the highly suitable areas 

identified close to East Africa, an area into which D. v. virgifera is expected to spread unless 

appropriate prevention measures are taken (Hummel et al., 2008). The SM4 suitability 
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projection for D. v. virgifera in New Zealand showed northern and central areas of the North 

Island and areas east of the Southern Alps as highly suitable (Figure 3.12- D). Although 

maize (Zea mays) production is not a major economic crop in New Zealand, it still accounts 

for 30% of the arable industry (Barber et al., 2011). Biosecurity measures at the border are 

essential to prevent the entry of D. v. virgifera, a major maize pest, to New Zealand.   

3.4.5 Does model type matter? 

Several studies show that model type is a major source of uncertainty in SDM results 

(Dormann et al., 2008; Buisson et al., 2010) among other factors like variable selection, data 

collinearity and pseudo-absence selection. Uncertainty in SDMs can also arise both from 

data inaccuracy and internal model error (Elith & Graham, 2009). While little can be done by 

users to fix errors inherent in model algorithms, model error from data inaccuracy can be 

reduced by boosting input data quality. Models perform differently given different datasets 

(environmental data, presence data and pseudo-absence data). While the effect of the 

accuracy of environmental and presence data have been investigated in depth, the effect of 

accuracy of pseudo-absence points on model performance has been less investigated. In this 

study, I established that a robust pseudo-absence selection method can create an input 

dataset that improves the performance of the SDMs investigated here. That is shown by the 

low standard deviation in model results that used the 3-step (SM4) pseudo-absence points 

and the very high Kappa values. Well-structured training data with appropriate variables 

increases the performance of all models. However, it is still very important to choose models 

carefully while keeping presence data quality, environmental data and model expertise in 

mind.  

3.4.6 Caveats 

The first step of the 3-step pseudo-absence selection system that identifies the appropriate 

distance within which background data is to be extracted can be quite time consuming and 

tedious. This can be overcome by developing an automated framework to test variable 

importance at a set of pre-set intervals.  

Another concern is that when large number of presence points coincide with a small 

background extent in step 1.  A small background extent that encompasses a large number 
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of presence points may reduce the area available for environmental profiling at step 2. That 

could lead to a poorly discriminated environmental classification.  That is not expected to be 

a common problem as accurate presence points are not usually available in abundance at a 

global or regional level. This, however, could be remedied by introducing a threshold that 

relates density of presence points to a minimum distance at which spatial extent of the 

background data is drawn. 

3.5 Summary 

When the complete range of a species is unknown, visualizing the distribution of the known 

presence locations both in geographic and environmental space and assessing the species 

ROA, is valuable. If presence data is highly clustered both in geographical and 

environmental space, using presence-only models often leads to extrapolation.  In such 

cases, it is advisable to use presence-absence models with a pseudo-absence selection 

method that considers both the spatial and environmental space (Jiménez-Valverde et al., 

2008; Lobo et al., 2010). When performing species distribution modelling for species 

undergoing rapid range expansion with dynamic presence data records, new distances 

should be re-calculated to specify background data geographic extent with the addition of 

new presence points according to variable importance analysis over various distances from 

the new presence dataset. 

The three-step pseudo-absence selection method (SM4) was shown to result in high model 

performance while spatially constraining background data to filter out extreme 

geographically dissimilar locations. Any loss of information from bounding background 

data geographically before environmental profiling is compensated by the added precision 

resulting from reduced over-fitting of an SDM model. While this result holds for the models 

tested in this study, further investigation over more species and models is recommended.  
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Chapter 4 

 

 

4. Why do models predict differently for the same species and/or locations?  

4.1 Introduction 

Various habitat suitability models have been used to predict the spatial distributions of a 

number of invasive species. Many such studies are based on correlative modelling that use 

species presence points along with environmental data to infer suitable habitats for species 

under study (Elith & Leathwick, 2009). Currently, discrepancies between model results have 

become a major issue in the field of ecological modelling. Overall concerns regarding 

discrepancies among model results and especially the need for quantification of uncertainty 

of model results have been repeatedly discussed in the literature (Elith et al., 2002; Thuiller, 

2004; Araújo & Guisan, 2006; Elith et al., 2006; Hartley et al., 2006; Pearson et al., 2006; Araújo 

& New, 2007; Dormann et al., 2008; Buisson et al., 2010; Venette et al., 2010).  

The difference in prediction accuracy of different models is usually attributed to the inherent 

robustness of model algorithms. Simple models (for example BIOCLIM13, DOMAIN14) are 

reported to be good for prediction of rare species with a limited environmental range 

representing uncomplicated interaction among environmental variables, while complex 

                                                      
13 BIOCLIM: a bioclimatic species distribution model using rectilinear polygons to profile environmental data 

based on presence points (Busby, 1986) 
14 DOMAIN: a bioclimatic species distribution model using disconnected convex hulls to profile climatic data 

based on presence points (Carpenter et al., 1993) 
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models (example SVM15, ANNs16) with complex functions that consider non-linearity and 

large number of variables can handle complex interactions within a high dimensional 

variable space (Elith et al., 2006; Tsoar et al., 2007). Jiménez-Valverde et al. (2008) and Lobo 

(2008) argued that the above claim is not entirely true due to inappropriate comparison of 

model prediction results for species with varying relative occurrence areas. However we can 

still conclude that there is an inherent difference in the predictions between simple and 

complex models from the difference between model predictions in studies that compared 

models based on the same occurrence data and study area (Senay et al., 2013).  

 

Figure 4.1: A hypothetical gradient of potential – realized geographic species distribution outputs 

aligned with species distribution modelling methods of varying complexity.  

 

The type and number of variables used further complicate the gradient between simple and 

complex models (Figure 4.1) because of the effect of variable interactions which differ 

among different variables. How well the interactions among environmental variables is 

represented in models affects the prediction accuracy of both simple and complex model 

                                                      
15 SVM: (Support vector machines) a machine learning algorithm based on artificial neural networks, can handle 

large number of variables and non-linearity, uses a hyper-plane classifier (Vapnik, 1995) 
16 ANNs: (Artificial neural networks) a machine learning network that mimics human neurons, the different 

nodes in the model adjust learning by back-propagating errors from earlier time steps in the learning process  

(Haykin, 1998) 
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types (Jiménez-Valverde et al., 2008; Buisson et al., 2010).  Complexity of variable interactions 

makes choice of predictor data one of the fundamental components of species distribution 

modelling. The use of geo-environmental variables in addition to purely climatic variables 

like temperature and precipitation have been reported to increase prediction accuracy in 

SDM models (Pereira & Itami, 1991; Zimmermann et al., 2007; Elith & Leathwick, 2009; 

Kearney & Porter, 2009).  

However many studies still depend on using limited variables, for example variables 

derived only from temperature and precipitation data without additional climatic or geo-

environmental information for example, elevation that might help models discriminate an 

ecological niche better (Austin & Van Niel, 2011). Often the spatial variation of geo-

environmental variables is much higher than the climatic variables, and can help 

characterize unique habitats when used along with climatic variables (Zimmermann et al., 

2007).  

General reluctance to use additional environmental variables may be associated with the 

data inconsistency that might occur when using multi-sourced and multi-scale variables. 

Because, as the types and number of variables increase the likelihood of getting variables 

from the same source decreases. Moreover, scale of the multi-source variables will also likely 

differ, which increases modelling effort and becomes relatively harder to handle. The other 

major complication with increased number of variables is increased complex interactions 

among large set of variables. Climatic variables that have been frequently used in a number 

of species distribution studies are assumed to have linear relationships which made using 

simple models possible. However, ecological theory does not generally support that one can 

always assume linear relationships between environmental variables (Austin, 2007), and this 

is even more apparent if a large number of predictors from multiple data sources and 

multiple scales are used in the modelling process. Therefore choice of predictor data is a 

factor that further affects model prediction accuracy in addition to internal model 

robustness.  

Finally, any dimension reduction performed on a predictor dataset may also affect model 

prediction accuracy. Numerous dimension reduction methods have been used for various 
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applications but only a few have been successfully adopted in ecology (Luoto et al., 2004; 

Heikkinen et al., 2005; Dormann et al., 2008). Nonetheless, as more GIS and remote sensing 

data are becoming available for species distribution models improved or more appropriate 

dimension reduction methods also need to be adopted. When using multi-sourced 

environmental predictor variables in combination with climatic variables, it is important to 

consider the possibility of complex non-linear interactions between variables before 

choosing a dimension reduction method. For instance, a high dimensional predictor dataset 

that may not be adequately handled by a simple model can be modelled after application of 

appropriate dimension reduction methods (Guyon & Elisseeff, 2003). 

Few studies have investigated sources of uncertainties in SDMs (Hartley et al., 2006; Pearson 

et al., 2006; Dormann et al., 2008; Buisson et al., 2010) and even fewer have developed 

techniques to quantify the uncertainties associated with modelling in ecology and the wider 

spatial modelling context (Wang et al., 2005; Hartley et al., 2006; Yemshanov et al., 2012). 

Based on the recommendations from previous studies, which are mainly to develop 

frameworks that report model prediction uncertainty, this study investigates whether it is 

possible to prescribe a predictor list, dimension reduction methods, and models based on 

the spatial distribution of presence points, and their pattern in the predictor feature space. If 

it is possible to recommend a set of conditions prior to developing species distribution 

models by examining the pattern of presence and associated absence points in the predictor 

feature space, uncertainties in model predictions derived from using inappropriate tools can 

be avoided.  

4.2 Methods 

Four of the objectives in this thesis are covered by the research conducted in this chapter. 

The objectives were: 1) to determine if a wider range of geo-environmental predictors 

additional to the commonly used temperature and precipitation predictors improve global 

and regional insect habitat suitability predictions, 2) to investigate the effect of linear and 

non-linear dimension reduction methods on species distribution model performance, 3) to 

investigate the effect of model component interactions on species distribution model 

performance based on a factorial experiment and selected case studies, 4) to develop species 



77 

 

distribution prediction assessment indices that complement confusion matrix based 

validation methods. The research design and methods used to conduct studies in line with 

the above objectives are given below.  

4.2.1. Research design and model conceptualization 

The study was carried out using a 3 x 3 x 4 x 5 factorial design to test the effects of predictor 

choice and data processing and analysis in habitat suitability modelling. The design 

incorporated three types of predictor data, three kinds of collinearity reduction methods, 

four types of models that utilize different techniques of modelling; and five species. Species 

results were considered as replicates to understand variation in accuracy prediction sourced 

from occurrence data.  

The presence datasets from the five species (SP1, SP2, SP3, SP4, SP5) were first used to 

generate nine sets of pseudo-absence datasets (for each species) based on the three predictor 

datasets (P1, P2, P3) and three dimension reduction method (DR1,DR2, DR3) combinations 

available (Figure 4.2). After pseudo-absence data selection, nine training/test datasets that 

have equal number of presence and pseudo-absence data were prepared for each species, 

totalling 45 training/test datasets across the five species. The ratio of test-train data was set at 

1 to 5 where 20% of the data was used for testing models and 80% for training models, 20 

replications were carried out to take the average model performance for each train-test cycle. 

The training/test datasets of each species were used to train and evaluate four model types 

(MT1, MT2, MT3, MT4) and finally predict global species distributions of the five species 

according to the different predictor-dimension reduction-model type combinations. 

With this layout each species had 36 different species distribution predictions which is a 

product of combinations of three predictor datasets, three dimension reduction methods and 

4 model types. Five different confusion-matrix-based indices and one model generated 

(Table 4.3) performance index were used to assess the cross-validation results. The best and 

worst predictions were compared to highlight the best and worst data-method-model 

combinations for each species. The repercussions of predictor data choice and associated 

data pre-processing techniques on model prediction accuracies were discussed. 
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Figure 4.2: Conceptual model showing factorial research design. 

 

To summarise, the whole process produced 180 distribution predictions from 180 models 

(SP x P x DR x MT combinations). These 180 models were chosen for their average model 

performance after each model was run with 20 replications of train-test cycles that added up 

to 3,800 runs considering all the factors and replications.  

4.2.2 Predictor data (Abiotic) 

Three predictor datasets designated as P1, P2 and P3 were used in this study. The first 

dataset BIOCLIM19 (P1) consists of 19 variables derived from temperature and precipitation 

variables of the WORLDCLIM dataset (Hijmans et al., 2005b). This dataset has been used in 
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many species distribution models and is freely accessible from the open data portal 

http://www.worldclim.com/bioclim17. 

Table 4.1: Variables included in the three predictor datasets used for in this study.  

Variable   Variable Name Dataset 

01  Annual mean temperature (°C)  P1, P2, P3 

02  Mean diurnal temperature range (mean(period max-min)) (°C)  P1, P2, P3 

03  Isothermality (Bio02 ÷ Bio07)  P1, P2, P3 

04  Temperature seasonality (C of V)  P1, P2, P3 

05  Max temperature of warmest week (°C)  P1, P2, P3 

06  Min temperature of coldest week (°C)  P1, P2, P3 

07  Temperature annual range (Bio05-Bio06) (°C)  P1, P2, P3 

08  Mean temperature of wettest quarter (°C)  P1, P2, P3 

09  Mean temperature of driest quarter (°C)  P1, P2, P3 

10  Mean temperature of warmest quarter (°C)  P1, P2, P3 

11  Mean temperature of coldest quarter (°C)  P1, P2, P3 

12  Annual precipitation (mm)  P1, P2, P3 

13  Precipitation of wettest week (mm)  P1, P2, P3 

14  Precipitation of driest week (mm)  P1, P2, P3 

15  Precipitation seasonality (C of V)  P1, P2, P3 

16  Precipitation of wettest quarter (mm)  P1, P2, P3 

17  Precipitation of driest quarter (mm)  P1, P2, P3 

18  Precipitation of warmest quarter (mm)  P1, P2, P3 

19  Precipitation of coldest quarter (mm)  P1, P2, P3 

20  Annual mean radiation (W m-2)  P2, P3 

21  Highest weekly radiation (W m-2)  P2, P3 

22  Lowest weekly radiation (W m-2 P2, P3 

23  Radiation seasonality (C of V)  P2, P3 

24  Radiation of wettest quarter (W m-2)  P2, P3 

25  Radiation of driest quarter (W m-2)  P2, P3 

26  Radiation of warmest quarter (W m-2)  P2, P3 

27  Radiation of coldest quarter (W m-2)  P2, P3 

28  Annual mean moisture index  P2, P3 

29  Highest weekly moisture index  P2, P3 

30  Lowest weekly moisture index  P2, P3 

31  Moisture index seasonality (C of V)  P2, P3 

32  Mean moisture index of wettest quarter  P2, P3 

33  Mean moisture index of driest quarter  P2, P3 

34  Mean moisture index of warmest quarter  P2, P3 

35  Mean moisture index of coldest quarter  P2, P3 

36 Elevation (m) P3 

37 Slope (deg) P3 

38 Aspect (deg) P3 

39 Hillshade P3 

* Variables without units are dimensionless indices (Kriticos et al., 2012b)  

The second dataset BIOCLIM35 (P2) includes the BIOCLIM19 variables and additional 16 

variables derived from radiation and water-balance soil moisture index (Kriticos et al., 

                                                      
17 Recent access: 11.02.2014 22:45 New Zealand time 

http://www.worldclim.com/bioclim
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2012b). This dataset is also freely available on the data portal www.climond.org18. Detailed 

information on data construction of these two datasets are given by Hijmans et al. (2005a) 

and Kriticos et al. (2012b).  

The third dataset, BIOCLIM35+T4 (P3) was prepared by adding an additional set of 4 

topographic variables derived from an elevation dataset to the P1 and P2 datasets described 

above. The four topographic variables consisted of elevation, slope, aspect and hillshade.  

The digital elevation model (DEM)19 data was downloaded from the WORLDCLIM data 

portal20 (Hijmans et al., 2005a) and the slope, aspect and hillshade datasets were calculated 

from the elevation data using ESRI’s ArcInfo® spatial analyst software. The principles 

behind the conversion/ calculation of Slope, Aspect and Hillshade values from the DEM 

dataset are given in Appendix 4.2.   

A 3 X 3 pixel focal area was used in processing all three DEM derived topographical 

variables. The above three topographical variables and elevation were added to the variables 

described in dataset P2 to make up the third dataset P3. All the variables in P3 have a 

resolution of 10 arc minute (18.5 km at equator) same as datasets P1 and P2.  

4.2.3 Dimension reduction  

Dimension reduction methods are types of data pre-processing that are essential when 

dealing with large number of variables and/or collinearity. One form of dimension reduction 

is variable selection and it sometimes is also referred as feature selection. Variable selection 

involves selecting the most important or useful sets of variables from a multi-variable 

dataset in order to maximize predictive power (Guyon & Elisseeff, 2003; Dormann et al., 

2013). While there are supervised and unsupervised methods of variable selection, it’s 

usually supervised methods that are used in species distribution modelling by utilising 

species presence/absence points as training data to select variables based on individual 

importance as well as magnitude of variable interactions. Among the many variable 

selection (and ranking) methods Pearson’s correlation coefficient backed by expert 

                                                      
18 Recent access: 11.02.2014 22:45 New Zealand time 
19 The DEM data was originally accessed from SRTM and GTOPO30 projects by Hijmans et al. (2005a) 
20 http://www.worldclim.com/current 

http://www.climond.org/
http://www.worldclim.com/current
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knowledge, decision trees and the Information theoretic criteria are frequently used in 

species distribution modelling (Dormann et al., 2008; Elith et al., 2013). Variable selection 

preserves the original units and magnitudes of the variables (unless normalized) that is 

preferable when understanding the direct effect of each variable is important (Guyon & 

Elisseeff, 2003). However, there are cases where data space dimension reduction (feature 

construction) becomes necessary. Space dimension reduction/feature construction replaces a 

number of given input variables with fewer artificial variables that are constructed out of the 

original variables. There are two major reasons for such data processing, one is to be able to 

extract the most information from the input variables without involving prior knowledge 

about variable importance or collinearity among variables. The other is to increase 

predictive power by revealing data patterns that are difficult to characterise usually due to 

multi-collinearity in the original dataset. In case of the latter, supervised reduction methods 

that construct features that are relevant to the study are used. For example, using variables 

selected based on presence points of a specific species as a base for dimension reduction, 

reveals features that explain variance in the presence dataset better than a number of 

variables unrelated to the study system (Guyon & Elisseeff, 2003).  

In this study, two commonly used methods and one new method will be used to investigate 

the effect of dimension reduction on accuracy of species distribution model results. The first 

method was to select subsets of the most important variables according to a two-step 

variable selection that involves random forests and step-wise regression.  The second 

method was to construct principal components through linear transformation of the 

variables using principal component analysis (PCA). The third method was to produce non-

linear transformed artificial components using the hierarchical-bottleneck neural network 

(also known as auto-associative neural network) algorithm (Scholz & Vigario, 2002) that 

performs hierarchical non-linear principal component analysis (h-NLPCA).  

4.2.3.1 Two-step random forest / stepwise regression (DR1) 

The random forest algorithm was selected for the first step of variable selection as it can 

handle a dataset with large number of variables similar to the ones used in this study. The 

random forest classifier results in low bias selection by averaging over a large ensemble of 
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high-variance but low correlation trees (Breiman, 2001; Worner et al., 2010). Random forests 

have been used both as variable selection as well as a main species distribution model with 

highly satisfying results (Garzon et al., 2006; Buisson et al., 2010; Kampichler et al., 2010; 

Lorena et al., 2011; Senay et al., 2013; Worner et al., 2014). Stepwise regression was used to 

further select the most predictive subset of variables from those selected by the random 

forest classifier. It is important to mention that there is a caution against using stepwise 

selection methods (Anderson, 2007). However, its use here is justified because of the 

insignificant difference reported between a full model space search and the step-wise 

method in a similar factorial study with even more factors by Dormann et al. (2008) and the 

robustness of the random forest classifier used at the first step. The Akaike’s Information 

Criteria (AIC) was used to rank variable importance in this two-step variable selection 

method. The second step was added to ensure too many variables are not selected. The two-

step approach was used because step-wise regression is shown to be unstable when used 

with large number of variables, hence applying the first step to prune certain variables of 

less importance with a random forest classifier which is shown to have low bias in variable 

selection.   

4.2.3.2 Principal component analysis (DR2) 

The second dimension reduction method used was a principal component analysis (PCA). 

PCA is a mathematical method that transforms a set of raw variables into linearly 

uncorrelated variables by mapping the newly transformed data on artificial orthogonal axes 

(Pearson, 1901). Each new variable from the transformed data are known as principal 

components of the data where the first principal component explains most of the variance in 

the data followed by the second principal component explaining most of the remaining 

variance provided that this data is orthogonal to the first component. The remaining 

variance is mapped in the same manner where subsequent principal components explain 

reduced variance (Legendre & Legendre, 2012). The PCA itself or slightly modified versions 

have been used in ecological modelling either as a dimension reduction method or as the 

main species distribution model (Hirzel et al., 2002; Dupin et al., 2011). Although results 

pertaining to data treated with PCA not being significantly different from data with no 
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dimension reduction method were reported by Dormann et al. (2008), the method is 

included in this experiment because: 1) it is the most used space dimension reduction 

method in species distribution model studies when one is used,  2) it is important to 

replicate the result for different species data as well as more models as recommended by 

Dormann et al. (2008). 

4.2.3.3 Non-linear principal component analysis (DR3)  

The third dimension reduction method used was a hierarchical non-linear principal 

component analysis (h-NLPCA)21, a neural network model developed by Scholz and Vigario 

(2002). While there are many non-linear PCA methods like symmetrical NLPCA (s-NLPCA) 

(Kramer, 1991), Principal Curves (Hastie & Stuetzle, 1989), Kernel PCA22 (Schölkopf et al., 

1998) etc. the h-NLPCA was chosen because it is reported to be the true non-linear extension 

of the linear PCA, as it achieves a hierarchical order of principal components similar to the 

linear PCA (Gorban, 2007). Generally, the h-NLPCA is both scalable and stable similar to the 

linear PCA method (Appendix 4.3).  

Most of the h-NLPCA parameters are internally computed as they get adjusted throughout 

the iterative learning. Network weights were initialized at random. The weight decay was 

set at 0.001; maximum iteration was conditionally set by taking either five times the number 

of observations or 3000 whichever is the minimum.  

  

                                                      
21 http://www.nlpca.org/ recent access: 12/02/2014 17:32 NZ time 
22 Scholz and Vigario (2002) discussed that Kernel PCA is however the most similar to h-NLPCA 

http://www.nlpca.org/
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Figure 4.3: The network topology of the hierarchical auto-associative neural network with bottleneck 

architecture used for the h-NLPCA 

the left side of the red line in the middle show the first part of the dimension reduction process where 

data are extracted non-linearly from the inputs in [x1, x2, x3 …..] and linearly decoded at [z1, (z2)] 

(function Φextr); the right side of the red line shows where data is linearly decoded from [z1, (z2)] and 

are non-linearly generated at the output [x1, x2, x3…] (function Φgen). Illustration and description 

from Scholz et al. (2008, pp. 49-50)  

4.2.4 Species data (biotic) 

4.2.4.1 Presence data 

Five invasive species profiled as highly destructive to ecosystems by the IUCN23 and the 

MPI24 have been used for this study. None of these species have successfully established in 

New Zealand except for one species whose presence points in New Zealand were kept for 

validation. However, a number of interceptions of some of the species modelled were 

reported at New Zealand borders and detections at nearby coastal areas have been recorded.  

These insects, which are from a wide range of families, are Aedes albopictus, Anoplopis 

gracilipes, Diabrotica virgifera virgifera, Thaumetopoea pityocampa and Vespula vulgaris 

(established in New Zealand). Ecological background and reviews on the current invasion 

status of these species is given in Chapter 2. The geographical extents covered by the 

presence points for these five species widely vary. A. albopictus and V. vulgaris have a 

relatively large relative occurrence area (ROA) (Figure 4.4 -A & F) whereas, D. v. virgifera 

and A. gracilipes cover an intermediate global extent (Figure 4.4-B & C). T. pityocampa (Figure 

4.4-E) has the smallest occurrence cover hence smallest ROA with regards to the study area.

                                                      
23 IUCN: International Union for Conservation of Nature 
24 MPI: New Zealand Ministry of Primary Industries, Biosecurity department 
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Figure 4.4: Map showing the occurrence data distribution of the five species used in this study. 

Inset maps show global distribution of (A) Aedes albopictus; (B) Anoplopis gracilipes; (C) D. v. virgifera; (E) Thaumetopoea pityocampa; (F) 

Vespula vulgaris. (G) Relative global extent of each species; and main map (D) shows the overlaid occurrence distribution of all five species draped on a 

global elevation model.  
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This variation in ROA between the different species tested was needed to effectively 

investigate the effect of the presence dataset characteristics and their interaction with 

predictor data and dimension reduction method used on the prediction accuracy of different 

models.  Most of the presence data for the five species was accessed from the GBIF25 

database with some obtained from literature and personal communication with experts.  

4.2.4.2 Pseudo-absence data  

The 3-step pseudo-absence generation method (Senay et al., 2013) was used to select pseudo-

absences for the five species. This method increases model consensus through optimal 

geographical and environmental discrimination of pseudo-absence points from presence 

points.  

Table 4.2: Number of presence points (available/ spatially unique) and distances used to 

limit background extent before pseudo-absence selection for the three types of predictor 

dataset used for the five species in this study. 

No. Species Predictor Distance (Km) 

1 Aedes albopictus (3,029/2,928) BIOCLIM19  350 

2 Aedes albopictus (3,029/2,928) BIOCLIM35 300 

3 Aedes albopictus (3,029/2,928) BIOCLIM35+T4 600 

4 Anoplopis gracilipes (385/101) BIOCLIM19  550 

5 Anoplopis gracilipes (385/101) BIOCLIM35 500 

6 Anoplopis gracilipes (385/101) BIOCLIM35+T4 400 

7 Diabrotica v. virgifera (449/84) BIOCLIM19  2000 

8 Diabrotica v. virgifera (449/84) BIOCLIM35 800 

9 Diabrotica v. virgifera (449/84) BIOCLIM35+T4 800 

10 Thaumetopoea pityocampa (67/33) BIOCLIM19  300 

11 Thaumetopoea pityocampa (67/33) BIOCLIM35 1300 

12 Thaumetopoea pityocampa (67/33) BIOCLIM35+T4 800 

13 Vespula vulgaris (10,048/920) BIOCLIM19  550 

14 Vespula vulgaris (10,048/920) BIOCLIM35 300 

15 Vespula vulgaris (10,048/920) BIOCLIM35+T4 700 

* Numbers next to species name show available presence points followed by points found spatially 

unique with regards to the environmental predictor dataset resolution. Another two sets of the above 

listed datasets were generated according to the above background binding distances for predictor data 

transformed using PCA and NLPCA making the final number of training/test datasets to 45.  

 

                                                      
25 GBIF: Global Biodiversity Information Facility  
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Figure 4.5: Subsets of the global study area with different sets of pseudo-absence points by species, predictor data and dimension reduction method. 

The nine sets of pseudo-absences generated based on the different combinations of the three predictor dataset and three dimension reduction methods for A. 

albopictus (A), A. gracilipes (B), D. v. virgifera (C),  T. pityocampa (D) & V. vulgaris (E). The extents of the sub-set maps (A-E) are shown on the 

global map (F). 
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One background binding distance was used for each predictor data type, thus a total of three 

distances were calculated for each species modelled on the three different predictor datasets 

(P1, P2 & P3) regardless of dimension reduction method used. This is because although 

dimension reduction methods transform the data into a new configuration they do not add 

any new data. This distance should be re-calculated every time the presence data or the 

predictor dataset change because the variable importance analysis over distance is 

calculated based on a specific correlation structure of variables used. When these variables 

change the correlation structure also changes making the variable importance over distance 

pattern different (Senay et al., 2013).  

An automated function developed for this study was used to analyse variable importance 

over distance (VIOD) and generate all the distances at which background data is bound for 

pseudo-absence selection, the conceptual framework for this custom function is given in 

Appendix 4.1. Instead of carrying out the entire modelling procedure in Mercator coordinate 

system (cf-Chapter two), the pseudo-absence points were re-projected to a geographic 

coordinate system for the reminder of the modelling process, after performing pseudo-

absence selection in the equal-grid Mercator Coordinate system. Nine sets of pseudo-

absences were generated for each species (Table 4.2). 

4.2.5 Relative cover indicators (RCIs) 

In this study, indices that were used to estimate how much the training/test data have 

covered the geographical or the environmental domain of the study area (extent) are termed 

“Relative cover indicators (RCIs)”. The geographical RCI is adopted from the relative 

occurrence area (ROA) (Jiménez-Valverde et al., 2008). The two environmental RCIs are new 

indices developed in this study and are described in Section 4.2.5.2 & 4.2.5.3.   

4.2.5.1 Relative Occurrence Area (ROA) 

Relative occurrence area (ROA) is the ratio of presence data points to the total data points in 

the study area extent. ROA was first described by Lobo (2008) and later discussed by 

Jiménez-Valverde et al. (2008) to account for the artefacts in modelling species distribution 

results sourced from the study area extent, which is often subjective and is not related to 

biological factors. ROA is different from both prevalence and marginality. As described by 
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Jiménez-Valverde et al. (2008) prevalence is the ratio of the number of presences to absences 

in a given training dataset, and marginality (Hirzel et al., 2002) shows the deviation of the 

mean environmental condition within the presence data range from the mean 

environmental condition in the total study area. It is important to consider the ROA of 

presence datasets especially in factorial studies such as this because it affects model 

performance (Jiménez-Valverde & Lobo, 2006; Jiménez-Valverde et al., 2008; Lobo et al., 2008; 

Lobo et al., 2010). In this study no attempt was made to compare results among different 

species predictions, however the species ROA is assessed to see whether it could explain 

why different models predict differently for the same species. 

4.2.5.2 Environmental relative occurrence ratio (eROR) and environmental relative pseudo-absence 

ratio (eRAR) 

The ROA, calculated in the geographic space, had a limited discriminating power between 

the difference in the total presence and absence data coverage over varying predictor-

dimension reduction method combinations.   For example, all the five species had the same 

ROA over the three datasets as the same global extent was used throughout the study. To 

discriminate the effect of predictor-dimension reduction method combinations on model 

accuracy better, two additional simple dimensionless metrics calculated in the 

environmental space were defined. These metrics were based on the relative area covered by 

the presence and absence points when superimposed with different predictor-dimension 

reduction method combinations. All the presence and pseudo-absence datasets of the five 

species had different corresponding eROR and eRAR values according to the three datasets 

and the dimension reduction system used prior to their generation. Computing these 

additional two metrics enabled comparison of the specific effect of dimension reductions on 

the predictor data in terms of the placement of pseudo-absence points in relation to presence 

points in the predictor feature space. 

The ROA, eROR and eRAR give information on how much of the geographical and/or 

environmental area is covered by the available training data. The ROA gives the ratio of the 

presence data with respect to the study area hence can be termed as geographic relative 

cover indicator, whereas the eROR and eRAR give information about how much of the 
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environmental space of the total background data is covered by the training/test datasets 

hence can be referred as environmental relative cover indicators.  

How much of the background data is covered by the training and test data could derive 

differences in predictions of different models for the same species. This is shown in Chapter 

3; despite species distribution models being the major source of uncertainty in distribution 

predictions (Dormann et al., 2008; Buisson et al., 2010), selection of appropriate pseudo-

absence points resulted in better agreement between model predictions (Chapter 3). 

Therefore, even though SDMs are the major source of variation in species distribution 

predictions, their effect on prediction discrepancies could be reduced by utilizing better 

datasets that could level the field for SDMs of varying capabilities (Chapter 3).  

4.2.5.3 Calculating eROR and eRAR 

Step 1:  the presence/pseudo-absence training/test data (Table 4.2) points were labelled on 

each background dataset. For example, for the first BIOCLIM19 (P1) dataset, the presence 

points from the five species (5 presence datasets) and the pseudo-absence points generated 

for the five species according to the three dimension reduction methods (15 pseudo-

absences), in total points from 20 datasets are geographically overlaid and labelled on points 

from the P1 dataset. The same procedure was done for P2 and P3 datasets. 

Step 2: The three background datasets (P1-P3) on which the presence and pseudo-absence 

points were labelled, were transformed into a lower dimensional feature space using the 

standard nonlinear principal component analysis (s-NLPCA)26 dimension reduction method. 

This step is done so that the relative covered area by the training points according to all 

combinations of predictor data-dimension reduction methods can be calculated on a 

standardized environmental plane. The s-NLPCA (Kramer, 1991) was chosen here to 

represent each dataset with the best possible low-dimensional components as this method 

first tests the linear option before proceeding to test non-linear functions (Scholz & Vigario, 

2002). The reason s-NLPCA was chosen over the h-NLPCA here was because only 

                                                      
26 Description of the s-NLPCA is given in Appendix 4.3 
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dimension reduction and not feature selection was needed here. Two of the principal 

components with the highest variance were then chosen for each dataset. 

Step 3: The three reduced two dimensional feature space datasets from Step 2 were then 

converted into a raster dataset. Prescribing a user-defined resolution was necessary as the 

datasets were unit-less because they were all constructed out of proportions of variances 

from different types of variables with different units (temperature, precipitation, soil 

moisture, altitude etc.).  The default system cell unit in ArcGIS Spatial Analyst was used for 

the raster conversion. The ArcGIS system definition for the default cell size is given below. 

“The default cell size is the shortest of the width or height of the extent of the input feature dataset, in 

the output spatial reference, divided by 250” (ESRI, 2010) 

The default size was chosen because the relative position of the points from one another is 

the most important characteristics and not the cell size as long as the same resolution was 

used for the presence and pseudo-absence points within each dataset. Accordingly, 

resolutions 45, 0.0013 and 0.003 were used for P1, P2 and P3 datasets respectively.  

Step 4: Similar to the background datasets, the presence/pseudo-absence datasets for each 

species were also selected from the two dimensional reduced space datasets using labels 

applied at Step 1 and converted to raster using the same resolution used for their respective 

background datasets in Step 3.  

Step 5: The environmental relative occurrence ratio (eROR) of each species was calculated by 

dividing the total area occupied by the presence data of the respective species to the total 

area of the specific feature space. The environmental relative pseudo-absence ratio (eRAR) 

was calculated in a similar way by dividing the total area occupied by each type of pseudo-

absence for each species by the total relative area of the respective feature spaces (Step 

4/Step 3). The relative area occupied by each presence and pseudo-absence data was 

calculated by multiplying the number of pixels within each data and the respective 

resolution.  
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4.2.6 Model types 

There are a number of models that can be used to predict species distribution. It is 

impractical to exhaustively compare all species distribution models, however four methods 

that more or less represent different modelling techniques were used to illustrate effects of 

predictor data and dimension reduction and model type choices on species distribution 

predictions. Even though the sources for each model type used are stated separately in the 

sub-sections below, the multi-model framework developed by Worner et al. (2014)was used 

to run the four models in a standardized set-up. Moreover, model parameterization and 

data exporting was also done through this framework.  

4.2.6.1 Quadratic discriminant analysis - QDA (MT1) 

QDA is one of the classic multivariate models used in species distribution modelling. It is 

more complex than the basic form linear discriminant analysis (LDA) because it includes 

quadratic terms in addition to interaction and individual terms (Worner et al., 2010). While 

QDA makes it easy to assess variable contributions and the prediction in general, it cannot 

handle dataset where the number of observations are smaller than the variables. 

Discriminant analysis are commonly used for species distribution modelling studies 

(Buisson et al., 2010; Kampichler et al., 2010; Worner et al., 2010). The qda function from the R 

(R Core Team, 2012) MASS (Venables & Ripley, 2002) library was used to run QDA in the 

multi-model framework.  

4.2.6.2 Logistic regression-LOGR (MT2) 

Logistic regression model is one of the most frequently used SDMs for species distribution 

studies (Hartley et al., 2006; Lorena et al., 2011). The glm function in the Stats (R Core Team, 

2012) package in R was used to run LOGR in the multi-model framework. 

4.2.6.3 Classification and regression trees- CART (MT3) 

CART is a classification and regression decision tree that is also frequently used in species 

distribution models (Garzon et al., 2006; Kampichler et al., 2010). It also has been suggested 

that decision trees incorporate the complexity needed to explain interactions between high 

dimensional variable data without a complicated rule that can be easily explained to end-
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users (Kampichler et al., 2010) The rpart package for R was used to run CART in the multi-

model framework. 

4.2.6.4 Support Vector Machines - SVMs (MT4)  

The SVMs are model based on machine learning theory, specifically the artificial neural 

networks (Vapnik, 1995).  SVMs has proven to be an excellent classifier in a number of 

disciplines; for example in astronomy, medicine, physics, pattern recognition etc. (Way et al., 

2012). It has recently been used in ecological modelling along with other machine learning 

methods like BRT and ANNs (Kampichler et al., 2010; Lorena et al., 2011). SVM here is 

chosen to represent the complex models used for species distribution in this research 

framework. Three functions were implemented with the SVM model and these were linear, 

radial basis and polynomial. The Kernlab (Karatzoglou et al., 2004) package for R was used to 

run SVM in the multi-model framework. A separate optimization of the model has been 

done in order to specify the best parameters for the different datasets.  

4.2.7 Evaluation and validation 

4.2.7.1 Multivariate analysis 

A multiple factor multivariate analysis of variance (MANOVA) was carried out to 

investigate the effect of species data, predictor choice, dimension reduction and model types 

on five dependent variables used to measure model performance (Kappa, AUC, Sensitivity, 

Specificity and CV error). Precision was dropped from the analysis because the strong 

positive correlation it had with AUC and Sensitivity. MANOVA was chosen to make an 

informed decision about which performance measure to use for the evaluation of the 

factorial design results.  

Another reason for the choice of MANOVA was also to increase understanding of the 

multiple effects of the modelling components (Species data, Predictor choice, Dimension 

reduction and Model types) on model performance measures derived from two different 

sources; the first source being the confusion matrix from which Kappa, AUC, Sensitivity and 

Specificity scores were computed and the second source being the cross-validation error 

which indicates model consistency predicting the test data correctly within replicates. 
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Discussion on the appropriateness of MANOVA for understanding the effect of selected 

factors on a system of multiple responses is given in detail by Enders (2003).  

The Mahalanobis’ distances derived between each score and the group centroid were 

compared with the Chi-square (χ2) distribution and plotted on a q-q plot to determine 

multivariate normality of the data. The majority of the data conformed to the expected χ2 

value with a few outliers. According to Box’s M test, the equality of variance assumption 

was fulfilled for predictor choice (P) and model type (MT) but not for species data (SP) and 

dimension reduction (DR). However, I proceeded with the parametric MANOVA test 

considering the fact that none of the largest standard deviations within a group (factors) 

were four times larger than the smallest standard deviations within the same group which 

suggested that MANOVA will still be robust (Howell, 2007).  

As a cautionary measure, a conservative α value for the variables that fail the Box’s M test 

was used while carrying out the follow-up post-hoc group comparisons (i.e. α = 0.025 

instead of the usual α = 0.05).  The effects of predictor data type, dimension reduction and 

model types on individual model performance indices was analysed using single factor 

analysis of variance (ANOVA). A non-parametric analysis of variance was done to 

investigate if change in relative data cover indicators like the ROA, eROR & eRAR has an 

effect on prediction accuracy. The multivariate statistical analysis was carried out in R (R 

Core Team, 2012) statistical software version  3.0.2  and with packages agricolae 

(Mendiburu, 2012), candisc (Friendly & fox, 2013), CCA (González & Déjean, 2012), ggplot2 

(Wickham, 2009), heplots (fox et al., 2013), hier.part (Walsh & Nally, 2013) and multcomp 

(Hothorn et al., 2008).  

4.2.7.2 Model performance  

The six model performance measures used in this study are listed in Table 4.3. Model Kappa 

score in combination with cross-validation error were used to identify best and worst data-

dimension-reduction-model-type combinations from the 36 scenarios for each species. The 

model cross-validation error was used to discriminate between models that have 

comparable Kappa scores. The model with the maximum Kappa score was chosen as the 
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best model, and the model with the lowest score was considered the worst model. For V. 

vulgaris predictions, external validation was undertaken as additional occurrence data was 

obtained after the modelling was completed. 

Table 4.3: Model performance indices 

Index SDM related review and application Remark 

Kappa (Allouche et al., 2006) Developed by Cohen (1960) 

AUC (Jiménez-Valverde, 2012) Area Under the ROC* Curve 

Sensitivity (Fielding & Bell, 1997; Allouche et al., 2006)  

Specificity (Fielding & Bell, 1997; Allouche et al., 2006)  

precision (Worner et al., 2010)  

Cross-validation error (Worner et al., 2010) Calculated from cross 

validation iteration variations 

* Receiver operating characteristic curve 

 

4.2.7.3 Assessing prediction consistency using uncertainty maps 

The variability between the predictions across the 36 scenarios for each species were 

analysed. Mean and standard error maps were also produced so that the spatial pattern of 

the variability among the models can be easily visualized. The probability density of the 

standard errors by modelling components (P, DR and MT) were plotted to investigate if any 

variation found though the multivariate analysis of model performance scores was also 

reflected in the predicted data.  

 

4.3 Results 

4.3.1 Variable selection 

Individual variables were ranked based on the frequency of their inclusion in the tested 

models. The method described by Dormann et al. (2008) was adapted for this purpose. The 

frequency of variable inclusion was calculated based on the number of times a variable was 

used by a model regardless of whether it was by a straight forward variable selection (RF) or 

by dimension reduction (PCA, NLPCA). 
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Figure 4.6: Frequency of selection of individual variables across all models 

To account for variables that contributed to PCA components the eigenvectors that correspond to 

principal component scores that explained up to 90% of the variance in the dataset were used 

(specifically variables with absolute loadings >= 0.32) (Dormann et al., 2013 - & references therein). 

In the case of NLPCA, due to the non-linear nature of feature extraction it is not possible to get a 

single corresponding variable coefficient for the scores, however the final weight matrix was used as a 

proxy for estimating the major contributing variables toward the high variance principal component 

scores.  

The most frequently selected variables (Figure 4.6, Appendix 4.4) were distributed across the 

three datasets. The first dataset BIOCLIM19 (P1) had temperature and precipitation based 

variables, while the second BIOCLIM35 [P2] dataset has additional radiation and soil 

moisture data, and BIOCLIM35 +T4 [P3] had topographic variables additional to those in P1 

and P2. The more or less even distribution of frequently selected variables across the three 

predictor datasets therefore shows that it is important to use a set of predictors that 

represent various sources of environmental variation to appropriately capture any 

environmental correlations between a species and its geographical presence.  
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4.3.2 Multivariate analysis 

4.3.2.1 Major trends  

The density plot for model AUC, Kappa, sensitivity, specificity, precision and cross 

validation error are given in Figure 4.7. The plots of Kappa, AUC, Sensitivity, Specificity & 

Precision scores were skewed to the right showing that the majority of the models 

performed well above that expected from a random prediction. The density plot of the cross-

validation error was skewed to the left showing most of the models had low cross validation 

error. However, not all of the models that had high AUC scores also had low cross-

validation error shown by the CV error density curve being less-leptokurtic than that of the 

AUC density plots. In this study, the Kappa statistic was found to provide the best 

discriminatory measure. In Figure 4.7, most of the other scores except cross-validation error 

are majorly leptokurtic with thin tails showing almost all models performed very well 

whereas the Kappa plot clearly shows a more spread out distribution implying better model 

ranking.  Further statistical support for the choice of Kappa and CV error as model selection 

indices is given in section 4.3.2.2. 

The MANOVA result (Table 4.4) showed that all the modelling components and the 

interactions had a significant effect on the linear combination of the five model performance 

scores with the exception of Predictor choice (P). Predictor choice did not have a significant 

effect (Pillai’s Trace = 0.11, F = 1.50, η2 = 0.05). However, it is important to note that the levels 

in the predictor choice (P) factor were not completely unique as more variables were added 

from P1 to P2 and on to P3. Change in variables selected as a result of the newly added 

variables is reported separately in section 4.3.2.1.  

A follow up canonical correlation analysis was undertaken and the first canonical variable 

accounted for 52.4% of the model variance. The corresponding canonical correlation for the 

first variable was 0.903 (Wilks λ = 0.015, F= 3.53) showing that 81.5% (0.9032 ∗ 100) of the 

variance in the canonically derived scores was accounted for by the model component 

factors tested (species type, predictor choice, dimension reduction and model type) (Figure 

4.8). 
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Figure 4.7: Density plot of Kappa, AUC, Sensitivity and Specificity scores for the total 180 models. 

Red line at 0.5 on the x axis, in cases of AUC, Cross-validation error, Sensitivity and Specificity 

shows a score expected from a random prediction; and in case of Kappa score indicated at 0.4 on the x 

axis shows where models are expected to perform worse than a “medium performing model” on the 

Kappa scale. The blue line show, 0.8 for Kappa, where models are expected to be excellent; 0.7 for 

AUC a conventional threshold where models are expected to be good; 0.9 for Sensitivity and 

Specificity, an arbitrarily assigned high performance threshold; and 0.1 for cross-validation error a 

threshold set as an acceptable training error margin for this study.  
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Table 4.4: MANOVA results:  modelling component effects on model performance. 

Modelling components Pillai’s trace η2.100* F Df  p 

Model type (MT) 0.79 26.22 9.24 3  <0.0001 

Dimension reduction (DR) 0.42 21.01 6.86 2  <0.0001 

Species (SP) 0.81 20.32 6.68 4  <0.0001 

Predictor (P) 0.11  5.50 1.50 2      0.138 

Species x Predictor 0.68 13.51 2.58 8  <0.0001 

Species x Dimension reduction 0.58 11.65 2.18 8  <0.0001 

Predictor x Dimension reduction 0.49 12.37 3.70 4  <0.0001 

Species x Predictor x Dim. Red. 0.95 18.98 1.93 16  <0.0001 

Residuals  26.22  132   

 * The effect size (eta square) is multiplied by a factor of 100 for easy reporting 

 
Figure 4.8: Structure correlations (canonical factor loadings) for the first canonical dimension 

Arrows show the vector direction of variables that correspond to the canonical component on the y-

axis. The corresponding variables for the x-axis (combinations of modelling components) were not 

labelled so not to overcrowd the graph.  

4.3.2.2 Model performance measure selection 

The canonical correlation analysis was used to determine the model performance measures 

that most described the effects of the modelling components. The standardized coefficients 

of the canonical correlation analysis showed that the Kappa score contributed most of the 

variance of the first canonical variable (79.9%) and cross-validation error contributed the 

most for the second canonical variable (62.7%). The strong, negative correlation between 

Kappa and cross-validation error was also a further indication that the multivariate analysis 
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was supported by appropriate dependent variables as recommended by Tabachnick and 

Fidell (2001). Therefore, Kappa score and cross-validation error were used to further 

investigate the significant model component interactions using individual ANOVA and 

Tukey’s Honestly significant difference (Tukey’s HSD) post-hoc analysis. 

4.3.2.3 Quantifying variance contribution of modelling factors 

Individual follow-up ANOVA’s were performed for Kappa and cross-validation error scores 

and the results largely agree with the MANOVA analysis. Even though smaller residuals 

were obtained for the ANOVA based on cross-validation error scores, the general ANOVA 

statistic for Kappa and CV error scores were similar. Therefore the statistics for Kappa scores 

are presented below. All main effects were significant (ANOVA test, SS > 0.24, η2 > 0.12, p < 

0.0001) with the exception of predictor choice (SS = 0.007, η2= 0.003, p = 0.82). All interactions 

were also significant (ANOVA test, SS between 0.17 – 0.52, η2 between 0.09 and 0.22, p 

between 0.0001 and 0.013).  

Hierarchical partitioning (Chevan & Sutherland, 1991; MacNally, 2000) was carried out to 

quantify the independent contribution of the modelling factors, species data (SP), predictor 

choice (P), dimension reduction (DR) and model types (MT) on mean Kappa and cross 

validation scores. Accordingly, species data (SP) was identified as the source of the largest 

variation both in Kappa scores and model cross-validation errors (54.8% and 47.5 % 

respectively) followed by model types (MT) which accounted for 38.1% and 43.8% of the 

variations in Kappa and CV error scores respectively. Dimension reduction (DR) accounted 

for 6.8% in Kappa score variation and 8.6% in cross validation error variation, and predictor 

choice (P) scored 0.2% and 0.1% for Kappa and cross validation score variation respectively. 

The overall trend largely conforms to the results reported by  Dormann et al. (2008) in their 

factorial study to quantify modelling uncertainties involving similar modelling components 

(not including the species data (SP) factor as one species was used in their study).  The 

importance of model types as a source of major variation in predictions is also reported by 

similar studies (Elith et al., 2006; Pearson et al., 2006; Buisson et al., 2010).  
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Figure 4.9 Model mean Kappa scores compared over the four modelling components. Error bars 

indicate the standard deviation over replicate runs. Bars with different letters within a graph indicate 

statistically significant differences (Tukey’s HSD test, α = 0.025 for SP & DR, α = 0.05 for P & MT). 

Key to factor levels: Species data [SP], A. a = SP1, A. g = SP2, D. v. v = SP3, T. p = SP4, V. v = SP5. 

Predictor choice [P], BIO35+T4 =P3, BIO19 = P1 and BIO35 = P2. Dimension reduction [DR], RF= 

DR1, PCA = DR2, NLPCA= DR3. Model type [MT], QDA=MT1, LOG=MT2, CART = MT3, 

SVM= MT4. The comparison of mean CV errors also showed the same pattern except for a slightly 

higher CV-error forBIO35+T4 (P3) than BIO19 (P1) which is the opposite of the trend for Kappa 

scores, however because the differences within the PC group were not significant it was not 

investigated further.   

 
Figure 4.10 Model mean CV error scores compared by the four different modelling components. Error 

bars indicate the standard deviation over replicate runs. Bars with different letters within a graph 

indicate statistically significant differences (Tukey’s HSD test, α = 0.025 for SP &DR, α = 0.05 for P 

&MT). 
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4.3.3 Model components 

4.3.3.1 Predictor choice 

The multivariate and ANOVA analyses showed that predictor choice (P) did not have any 

significant effect on model performance scores. However, predictor choice interactions with 

the other factors were found significant. Although similar results were also reported from 

other studies, the extremely minimal effect in this study could be because all the variables 

included in the small predictor dataset (P1) were nested within the bigger dataset levels, P2 

and P3, which made assessing effects of individual datasets difficult. The frequency of 

individual variables selected across all models was assessed to determine the importance of 

variables (Figure 4.6).  

4.3.3.2 Dimension reduction 

Dimension reduction had a significant interaction with species data, where its effect on both 

Kappa and cross-validation error scores varied between species datasets.  Non-linear 

principal component analysis (NLPCA) generally outperformed both linear principal 

component analysis (PCA) and random forest variable selection method (RF) for all species 

except for T. pityocampa where the score from RF was slightly higher. This is especially true 

for the two species A. albopictus and V. vulgaris that had large presence point records that 

cover large environmental and geographical areas. There was a large difference in Kappa 

scores due to dimension reduction for some of the species. For example, there was an 

increase of a magnitude of 0.25 Kappa value for a D. v. virgifera distribution model when 

using NLPCA as opposed to RF. Random Forest (RF) scored better Kappa and low cross-

validation error values compared to PCA for T. pityocampa and A. albopictus, while PCA did 

better than RF for D. v. virgifera and A. gracilipes. The mean Kappa scores for RF and PCA 

were very similar for V. vulgaris.  The generally poor performance of PCA reported by 

Dormann et al. (2008) was also observed in this study. With regards to interaction with 

model types there were no clear trends except for the logistic regression model and PCA 

combinations which consistently gave poorer model performance scores. Based on the 

results from this study it is not advisable to use PCA with logistic regression species 

distribution models.  
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Figure 4.11: A plot of mean Kappa scores against standard deviation over replicates for species –

dimension reduction combinations. 

4.3.3.3 Model type 

The trend of the effect of model type was consistent throughout all combinations of factors. 

The support vector machine (SVM) model consistently outperformed the other three 

models. SVM and classification and regression trees (CART) models were consistently 

ranked with the highest Kappa score and lowest CV-error groups. Logistic regression (LOG) 

had a generally low Kappa and high CV-error scores throughout the factorial combinations. 

There is only one instance in which LOG scored better than QDA and CART for A. gracilipes 

within the group of models using the random forest variable selection method.  

4.3.3.4 Species data  

Species A. albopictus and V. vulgaris had the highest mean Kappa scores (Figure 4.11), this 

suggests that the highest prediction accuracy ranks were associated with the species that 

had the largest presence data records (A. albopictus, V. vulgaris). Presence data prevalence 

was consistently associated with high prediction accuracy when compared throughout the 

aa.dr1

aa.dr2

aa.dr3

ag.dr1

ag.dr2

ag.dr3

dvv.dr1

dvv.dr2

dvv.dr3

tp.dr1tp.dr2

tp.dr3

vv.dr1

vv.dr2

vv.dr3

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95

ST
A

N
D

A
R

D
 D

EV
IA

TI
O

N

MEAN KAPPA SCORES



104 

 

five species. For example, A. gracilipes that had higher presence records than D. v. virgifera 

and T. pityocampa had higher Kappa scores and lower CV error than both species.  However, 

previous studies showed that  prediction accuracy does not necessarily follow size of the 

presence dataset as also discussed by Elith et al. (2006) based on their factorial study 

involving 226 species and  17 SDMs. Therefore, no conclusion was drawn from the 

consistency in the relationship between presence data prevalence and high Kappa scores.  

4.3.4 Interactions between model components 

So far the main effects reported from the multivariate analysis is in accordance with results 

from previous studies. While there was no significant difference between the dimension 

reduction methods using mean Kappa values (Figure 4.9), a difference was detected based 

on the CV error scores of the models (Figure 4.10). This is a good example of how multiple 

response variables could help investigate possible type II errors in such data analyses where 

there is limited validation data to repeat the exercise on a separate dataset.  

 
Figure 4.12: Variation in model mean Kappa scores according to different Species data (SP), 

dimension reduction methods (DR) and model type (MT) combinations.  Bars with different letters 

are significantly different (Tukey’s HSD test, HSD = 0.45, α = 0.05). 

Only every other data point was marked on the graph (Figure 4.12) to make the x-axis label legible. A 

table with all the labels is given in Appendix 4.5.  
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Unfortunately, neither the hierarchical partitioning nor the group comparisons give insight 

into individual factor interactions. Such, interactions could be essential to determining why 

different models predict differently for the same species and/or locations. Further 

investigation was needed to establish if model component interactions have a varying effect 

on different species data and/or model types. Therefore, the significant two-way and three-

way interactions were further analysed using Tukey’s HSD test (Figure 4.12).  

There were a number of interesting cases where certain combinations did worse, despite 

belonging to a species with high presence prevalence. For example, the last data point on 

Figure 4.12 (not labelled) belongs to a prediction made by a PCA dimension reduction 

method using a logistic regression model for the species A. albopictus.  

Despite the fact that most of the predictions for A. albopictus were ranked high according to 

Kappa scores (5 out of 9 predictions in the top 10 ranks out of 60 combinations) this 

particular prediction came last (60th) with a Kappa score of 0.34.  This indicates that the PCA 

dimension reduction method (DR2) was not appropriate for the logistic regression model. 

Prediction for the same model (logistic regression) and species (A. albopictus) scored a Kappa 

= 0.72 that was ranked at 42 (Appendix 3.7.5) in the comparison when a random forest 

variable selection was used instead of PCA.  

The comparison between species data and model type combinations (Figure 4.13) showed 

that model type could make a difference to prediction accuracy for some presence data 

especially when the presence/pseudo-absence data is less reliable. For example, there were 

no statistically significant differences between Kappa scores for LOG, QDA, CART and SVM 

predictions for V. vulgaris. On the other hand, there was a statistically significant difference 

between Kappa scores of LOG/QDA and SVM/CART for T. pityocampa where the machine 

learning methods seem to handle the low presence data prevalence better. 
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Figure 4.13: Variation in model mean Kappa scores according to different species data (SP) and model 

type (MT) combinations.  Bars with different letters are significantly different (Tukey’s HSD test, 

HSD = 0.24, α = 0.05). 

 

4.3.5 Relative cover indicators vs model performance 

The relative occurrence area (ROA) values for the presence datasets of the five species in this 

study are given in Table 4.5. The environmental relative occurrence ratio (eROR) and the 

environmental relative pseudo-absence ratios (eRAR) calculated for the five species, three 

predictor and three dimension reduction are given in Table 4.6.  

 

Table 4.5: Relative occurance area (ROA) of the five species 

Species (SP) Area (◦2) ROA.10000* 

Aedes albopictus 84.62 1.45 

Anoplopis gracilipes 2.92 0.05 

Diabrotica virgifera virgifera 2.43 0.04 

Thaumetopoea pityocampa  0.95 0.02 

Vespula vulgaris  26.59 0.45 

 

* The ROA value here has been multiplied by a factor of 10,000 for ease of reporting. The extremely 

small ROA values reflect the prevalent problem in global and regional species distribution modelling, 

as such limited presence records are usually used for prediction over expansive areas. The total area of 

the global dataset is 16,898.38 ◦2. Area is given in decimal degree square. Each individual presence 

point is equated to represent the smallest data unit which is the resolution of the dataset (0.17◦2) 
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Table 4.6: eROR and eRAR ratios for the 45 training datasets 

 BIOCLIM19 (P1) BIOCLIM35(P2) BIOCLIM35 + T4 (P3) 

  eROR eRAR 

RF 

eRAR 

PCA 

eRAR 

NLPCA 

eROR eRAR 

RF 

eRAR 

PCA 

eRAR 

NLPCA 

eROR eRAR 

RF 

eRAR 

PCA 

eRAR 

NLPCA 

A. albopictus 9.23 11.62 9.97 2.54 13.37 10.68 12.53 11.19 11.66 21.53 23.16 24.08 

A. gracilipes 0.43 0.46 0.46 0.46 0.42 0.64 0.66 0.63 0.63 1.01 1.04 1.03 

D. v. virgifera 0.38 0.39 0.39 0.32 0.60 0.59 0.51 0.54 0.93 0.99 0.93 0.65 

T. pityocampa  0.15 0.15 0.15 0.14 0.25 0.25 0.25 0.23 0.36 0.39 0.35 0.34 

V. vulgaris  3.16 3.99 3.84 2.67 2.77 4.65 4.55 4.46 4.01 7.32 7.93 5.49 

 

eROR = environmental relative occurrence ratio; RF-eRAR = environmental relative pseudo-absence 

ratio calculated from pseudo-absences selected from variable space selected by random forest; PCA-

eRAR = environmental relative pseudo-absence ratio calculated from absences selected from variable 

space reduced by linear principal analysis; NLPCA eRAR= environmental relative pseudo-absence 

ratio calculated from absences selected from variable space reduced by non-linear principal component 

analysis. Numbers in bold indicate the highest eROR and eRAR values for each species, and 

underlined values show the highest eRAR within datasets (P1-P3). All values have been multiplied by 

a factor of 100 for ease of reporting. 

 

Analysis of variance was used to investigate if the magnitude of any of the relative cover 

indicators have any effect on model Kappa scores. A Kruskal-Wallis non-parametric test was 

used for this purpose as the homogeneity of variance assumption was not met by the 

indicators. The ROA, eROR and eRAR were found to have a significant effect on model 

Kappa and CV error scores (Table 4.7).   

 

Table 4.7: Kruskal-Wallis  statistic for mean Kappa score values 

RCI* df χ2 p 

ROA 9 68.99 < 0.0001 

eROR 14 74.36 < 0.0001 

eRAR 42 102.89 < 0.0001 

*Relative cover indicators 
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4.3.6 Species level model selection 

The species level model performance analysis showed that for A. albopictus, dimension 

reduction (DR) (ANOVA, SS = 0.118, p = 0.004), model types (MT) (SS = 0.689, p = < 0.0001) 

and their interaction (SS = 0.259, p = 0.001) had a significant effect on model Kappa scores. 

For A. gracilipes, only predictor data had a significant effect on model performance scores 

(ANOVA, SS = 0.132, p = 0.004). But pairwise comparisons of predictor and dimension 

reduction combinations (Tukey’s test, HSD = 0.24, α = 0.05) showed that PCA based 

dimension reduction gave the lowest Kappa scores for A. gracilipes predictions.  For D. v. 

virgifera, results similar to A. albopictus were obtained except that the interaction between 

dimension reduction and model types was not significant. For T. pityocampa, predictors 

(ANOVA, SS = 0.212, p = 0.026) and model types (ANOVA, SS = 0.552, p = 0.001) had a 

significant effect on model performance. Finally, for V. vulgaris, only model type had a 

significant effect (ANOVA, SS = 0.128,  p < 0.0001). 

Table 4.8: Best and worst model component combinations for the five species in this study 

Species Best Kappa CVerror Worst♯ Kappa CVerror 

A. albopictus P1DR3SVM* 0.99 0.006 P1DR2LOG 0.14 0.433 

A. gracilipes P1DR2QDA* 0.96 0.050 P2DR2LOG 0.43 0.292 

D. v. virgifera P1DR3SVM* 0.98 0.006 P2DR2LOG 0.21 0.344 

T. pityocampa  P2DR2SVM* 0.88 0.009 P3DR3LOG -0.12 0.498 

V. vulgaris  P1DR3SVM* 0.99 0.004 P1DR3LOG 0.56 0.248 

 P1DR3CART* 0.99 0.005    

*Combinations are the best based on their high Kappa and low CVerror but are not significantly 

different from the second best combination. ♯All model combinations identified as “worst” for a species 

had a significantly lower score than the second worst models. CVerror = cross-validation error. 

Model Kappa scores along with cross-validation error were used to select the best model 

combination for each species. Accordingly, the best and worst data-dimension-reduction-

model-type combinations for each species are given in Table 4.8. Worst prediction in this 

context does not imply the reported dimension reduction or model types are definitely not 

suited for the particular species, rather the recommendation is specific to the environmental 

data, presence records and spatial extent used in this study. Discrimination among models 
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that have similar Kappa scores was possible because the cross-validation error of models 

was used as a secondary selection method (Figure 4.14).  

 
Figure 4.14: Model Kappa scores plotted against cross-validation error scores 

Models to the right of the vertical black dotted line have > = 0.8 Kappa score; models below the 

horizontal black dotted line have < = 0.1 cross validation error and models below the horizontal red 

dotted line have <= 0.05 cross validation error.  The graph shows the advantage of using a second 

performance score to discriminate between models with similar scores on the first performance 

measure. 

4.3.7 Species distribution predictions and their associated uncertainty 

Model predictions were not examined until all the model performance score analyses were 

finalized. Once the best and worst model combinations for all species were identified, the 

corresponding predictions were examined. Most of the predictions from the top five best 

models identified areas that were well described as native or introduced geographical 

ranges of the five species studied.  

However, there were cases where the best model based on the test data was not always the 

best for prediction. For A. albopictus the best model (P1DR3SVM) over-predicted with more 
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than 80% of the global area designated with > 0.9 probability of presence (Figure 4.15–B). 

Because, the maps were not consulted during the “best model” selection which was based 

solely on model scores, the subjective bias resulting from selecting the second best model 

because it seemed more parsimonious (high model performance score with better 

representation of the prediction in the opinion of the modeller) was avoided. 

 
Figure 4.15: Predicted probability of presences for A. albopictus. 

(A) Occurrence data, distribution models based on (B) the “best” model (high Kappa and low CV 

error); (C) the optimum model with similar Kappa and CV error scores as the “best” model but based 

on validation data with higher eROR and eRAR; (D) the worst model with the lowest Kappa and CV 

error that also happened to be trained on low eROR and eRAR data.  

To avoid introducing subjective bias in model selection, the eROR and eRAR values were 

consulted to assess the relative coverage of the environmental space by the training/test data 

using the different data-dimension reduction combinations. It turned out that the model 

with the best Kappa score and the least cross-validation error for A. albopictus prediction also 

had the lowest eRAR and eROR value for the selected dataset, P1 (Table 4.6, Table 4.8).  

As shown in Figure 4.15–B the single “best” model in case of A. albopictus over-fitted with 

extensive areas classified with high probability of presence. The dimension reduction 

method DR1 (RF) yielded the best eRAR for dataset P1, therefore instead of DR3 (NLPCA) 



111 

 

the dimension reduction method DR1 but with same SVM model and same dataset P1 was 

chosen as the optimum model for A. albopictus (Figure 4.15-C).   

Predictions for D. v. virgifera (Figure 4.16-B) and V. vulgaris (Figure 4.17-B) were similar 

where the “best” model over fitted. In case of D. v. virgifera the “best” model P1DR3SVM 

had the lowest eRAR for the selected data. But for the same data, dimension reduction 

methods RF and PCA have higher eRAR. The model P1DR2SVM (Figure 4.16-C) was selected 

as the optimum model for D. v. virgifera as the SVM model with DR2 had higher Kappa 

score than the one with the DR1 method even if they share the same eRAR value.  

 
Figure 4.16: Predicted probability of presences for D. v. virgifera. 

 

For V. vulgaris the “best” model P1DR3SVM covered an extensive global area with predicted 

presence probability of > 0.9. Similar to A. albopictus and D. v. virgifera the selected “best” 

model had the lowest eRAR. Whereas the same dataset and model but with the RF 

dimension reduction method had higher eRAR. Therefore P1DR2SVM was selected as the 

optimum model for V. vulgaris (Figure 4.17-C).  
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Figure 4.17: Predicted probability of presences for V. vulgaris. 

 

 
Figure 4.18: Predicted probability of presences for A. gracilipes. 

 

The predictions for A. gracilipes (Figure 4.18-B) and T. pityocampa (Figure 4.19-B) were not as 

complicated as the cases discussed above. The “best” model (P1DR2QDA) selected for A. 

gracilipes was also trained on the validation data that best represented the environmental 
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data (high eRAR). In fact, for A. gracilipes the eRAR values according to RF, PCA and 

NLPCA methods were the same for the first predictor dataset P1 (Table 4.6).  

In Figure 4.18-C the alternative best model for A. gracilipes with the same dataset but a 

different dimension reduction method and second highest Kappa value was shown. It can 

clearly be seen that the predictions are similar with the best Kappa model. 

The models for T. pityocampa have generally lower model performance scores compared to 

all the other species. The low model performance was expected because of the limited 

presence data that was available for modelling. The model-data combination P2DR2SVM had 

the best Kappa score and lowest cross-validation error (Figure 4.18-B). The “best” model also 

had high eRAR for the chosen predictor dataset P2 (Table 4.6).  The other combination with 

high eRAR for the selected predictor dataset as well as high Kappa score was P2DR1 (Figure 

4.18-C).  

 
Figure 4.19: Predicted probability of presences for T. pityocampa. 

 

The predictions shown in sub figure (D) for all the five species above (Figure 4.15 -4.19) were 

the predictions from the worst model-data-dimension reduction method combinations for 

the respective species. Identifying the worst model was straight forward in all cases because 

all the model-data combinations identified as the “worst” had a significantly low Kappa 
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score unlike the “best” models which had the highest Kappa but were not necessarily better 

than the second or third best models in terms of statistical significance.  

The fact that all the “best” three models that over-fitted for A. albopictus, D. v. virgifera and V. 

vulgaris were based on the same data-dimension reduction-model type combinations 

(P1DR3SVM) called for further investigation. The presence/pseudo-absence data for the three 

species based on the BIOCLIM19 (P1) dataset and NLPCA (DR3) dimension reduction were 

plotted in two-dimensional environmental feature space of the P1,P2 and P3 dataset (Figure 

4.20) .  

 
Figure 4.20 Relative locations of D. v. virgifera presences and the three types of pseudo-absences in 

the environmental spaces of the three predictor datasets. 

The training/test data points were plotted on two dimensional environmental space of the three 

predictor datasets. The axes represent principal components that explained most of the variance in (A) 

the BIOCLIM19 [P1] dataset (B) the BIOCLIM35 [P2] dataset and (C) the BIOCLIM35+T4 [P3] 

dataset.  

The results showed that the NLPCA pseudo-absences were particularly hyper-discriminated 

from the presence points for A. albopictus, D. v. virgifera and V. vulgaris, while pseudo-
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absences from RF and PCA were still separated but not limited to an extremely limited 

region of the feature space like the NLPCA pseudo-absences (For example D. v. virgifera in 

Figure 4.20).  Such, highly discriminated classification usually leads to over or under 

prediction (Lobo et al., 2010). However it is highly unlikely in this case due to the use of the 

3-step pseudo-absence method that uses a geographical constraint before environmental 

profiling which ensures even the furthest pseudo-absence point is not extremely separated. 

The other likely explanation is that models could overfit the highly marginalized pseudo-

absence points (low eRAR values) which leads to poor generalization of the unsuitable 

environmental space leading to over-prediction of suitable areas.  

Therefore, I suggest that the most likely reason why the three “best” models selected for 

their top Kappa score for A. albopictus, D. v. virgifera and V. vulgaris dataset have over-

predicted was because they were all trained on the highly discriminated as well as localized 

NLPCA pseudo-absences.  

The variability in model predictions between the 36 scenarios (3P x 3DR x 4MT) for each 

species was estimated by the standard error across all predictions (Figure 4.21-B for A. 

albopictus). As expected, most of the geographical locations with low variability were close to 

presence points, however, for all species there were areas with low variability even in areas 

where there were no presence points in the proximity. Such information gained from the 

variation in predictions of different models is not as precise as validation data, however it 

gives more confidence to prediction results.   

Even though, only the optimal models and the associated uncertainty maps will be used to 

discuss the distribution predictions for the species in this study, the average prediction from 

all the 36 scenarios are also reported.  Despite, many warnings in the literature (Kriticos et 

al., 2013 - & references therein) about averaging predictions from models with different 

algorithms, the mean prediction maps for the three species with an over-predicting “best” 

model have noticeably corrected the effect of the over-fitted models (For example, Figure 

4.15-B vs Figure 4.21-A for A. albopictus).     
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Figure 4.21: (A) Mean predicted presence across all scenarios for A. albopictus; (B) the associated 

uncertainty around the mean prediction 

 

The probability density functions for standard error of model predictions by the different 

modelling components is given in Figure 4.22-D for A. albopictus and in Appendix 4.8 for the 

other species. Model type had a similar standard error distribution across the five species 

indicating its constant effect regardless of species data. Dimension reduction and predictor 

datasets had varied standard error distributions depending on the species. There was 

considerable spatial variability of predictions according to predictor datasets, even though 

predictor data (P) did not come out as a major model component in the multivariate model 

performance analysis. This result shows that model uncertainty analysis should also have a 

spatial component to determine and understand the full extent of uncertainties in model 

predictions.  

Based on the uncertainty maps the spatial pattern of variability according to model type 

used (Figure 4.22–C) was not influenced by locations of presence data points as much as the 



117 

 

predictor (Figure 4.22–A) and dimension reduction (Figure 4.22–B) uncertainty maps. This 

observation, shows that variable prediction power can be gained by using different models 

even using the same occurrence data. Furthermore, it shows that model type affects spatial 

characteristics of predictions, which explains the discrepancy in prediction locations among 

models. The implication of this low spatial auto-correlation between presence locations and 

magnitude of uncertainty from model types can be important to improve the accuracy of 

species distribution predictions. For example, if the appropriate model type, given the 

available species data, environmental data and dimension reduction is selected, improved 

species distribution prediction could potentially be obtained even for areas that are spatially 

not close to available presence records. However, more research is needed to confirm this 

suggestion because the effect of spatial auto-correlation is outside the scope of this thesis.  

 
Figure 4.22: Spatial pattern of variability according to (A) Predictor data (P) (B) Dimension 

reduction (DR), (C) Model type (MT) and (D) the probability density function of the predicted 

presences by the three modelling components for A. albopictus. 

4.4 Discussion 

4.4.1 Effects of the major modelling components  

As already demonstrated the effects of major modelling components such as model types, 

dimension reduction, species data and predictor data on model performance is in 

accordance with previous studies that investigated sources of model uncertainties in SDM 
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predictions (Elith et al., 2006; Lawler et al., 2006; Dormann et al., 2008; Diniz-Filho et al., 2009; 

Roura-Pascual et al., 2009; Buisson et al., 2010).  

The exception was that the per-species univariate analysis of variance that showed the order 

of significance of the modelling components was different in one case. For A. gracilipes only 

predictor data had a significant effect on model performance unlike the other four species 

where model types had the largest effect in accordance with previous studies. Therefore, in 

such cases where there are exceptions to the established trend further investigation is 

needed to identify the most important modelling component for further fine tuning of 

model predictions. For A. gracilipes presence locations were clearly clustered in the 

environmental feature space.  All presences were in the Pacific Islands where the data points 

represented a more or less uniform climate. Such a distinct grouping of occurrence data in 

the environmental space meant that all models performed well with no significant 

differences between them.  

4.4.1.1 Predictor datasets 

Type of predictor dataset used did not have significant effect on model performance in four 

out of the five species studied. However, the frequency of inclusion of individual variables 

across the 180 models showed that particular variables from all three predictor datasets were 

consistently included for all the five species (Figure 4.6 & Appendix 4.4). Because the three 

predictor datasets were nested within each other and were not independent, it is possible 

that the effect of some variables was confounded in the multivariate analysis.   

According to the analysis of frequency of variables selected more individual variables from 

the BIOCLIM19 (P1) dataset were consistently included in the models than the BIOCLIM 35 

(P2) and BIOCLIM35+T4 (P3) datasets. However, since the P2 dataset contains all the 

variables in P1, and some variables in P2 were also consistently included in model selection, 

it is recommended to use the BIOCLIM35 dataset unless the modeller has good evidence the 

target species distribution can be adequately described by temperature and precipitation 

derived variables only.  
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Elevation was the only variable unique to the P3 dataset that was consistently selected. The 

other three variables slope, aspect and hillshade that were also unique to the P3 dataset were 

however only included in three models. Therefore, it seems that these three topographical 

variables may be more useful for higher resolution data at local scales than global or 

regional scale studies where elevation data is a good proxy for those variables. Despite that, 

this study was based on five species it may be that further large scale multiple species 

studies that incorporate these topographical variables may be needed to confirm their 

redundancy. Alternatively, the variable clustering method proposed by Dormann et al. 

(2013) could be used to check if elevation indeed could be used as a proxy for the other 

topographical variables for large scale studies.  

4.4.1.2 Dimension reduction method 

Nonlinear principal component analysis (NLPCA) appeared to perform well based on 

comparisons of Kappa and cross-validation error. The most important information 

concerning dimension reduction methods however was obtained from assessing the actual 

predictions rather than the statistical pairwise comparisons of model Kappa scores.  

Three of the five “best” models selected for the five species had used the h-NLPCA as a 

dimension reduction method and when their corresponding predictions were assessed it 

was apparent that all the three models had over predicted. Deciding whether model has 

over-fitted is not an easy task unless there is additional external validation data that covers 

areas beyond what is covered by the training/test data. 

In the case of the three models selected for A. albopictus, D. v. virgifera and V. vulgaris 

determining whether they were overfitting was straightforward because the areas that were 

wrongly predicted were in areas where the environmental conditions were outside the 

known biological tolerance of these three species. For example, some of these areas were 

Greenland for A. albopictus, Sahara and the Middle East for D. v. virgifera and V. vulgaris. 

Additional indices such as the relative cover indicators used to assess the best data-

dimension reduction combination given the occurrence and predictor data helped to select 

better data-dimension reduction-model type combinations (see 4.4.2 below). However, 
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identifying over-prediction is still a difficult problem in cases where over-prediction is not 

as obvious as the examples given above.  

The analysis of the relative locations of the presence points of the three species and their 

corresponding pseudo-absences points selected from the h-NLPCA (DR3) transformed data, 

revealed a possible reason for the over-prediction. The pseudo-absences selected from the h-

NLPCA transformed datasets were highly discriminated from the presence points as well as 

localized in the feature space. While high discrimination between presences and pseudo-

absences was a welcome attribute of this analysis, the localization of the pseudo-absence 

points was problematic, leading to less information about the environmental space with a 

low eRAR.  

Therefore, this study suggests that h-NLPCA is not appropriate for presence-absence species 

distribution modelling that does not involve ensemble prediction or some kind of penalty or 

regularization to prevent over-fitting of models. However, this method  could be  an 

excellent dimension reduction method for presence-only models perhaps in  combination 

with  one class SVM (OCSVM) or maximum entropy (MAXENT) (Phillips et al., 2006), and 

even for the same models used in this study as long as they are modified to incur penalty for 

over-fitting (Dormann et al., 2013).  

The other interesting observation regarding dimension reduction methods in this study was 

that the only time the h-NLPCA transformed data was selected as optimum was in 

combination with a QDA model for A. gracilipes. This result may suggest that highly 

localized pseudo-absences in environmental space might affect statistical models like QDA 

less than machine learning models.  

4.4.1.3 Model type 

 SVM gave consistently the best result for all species except for A. gracilipes. But the next best 

3-5 models ranked for each species also included CART and QDA and often there was no 

statistically significant difference between the model that scored the highest Kappa and 

lowest cross-validation error and the next 3-5 models. That basically means with the 

appropriate combination of variables and dimension reduction techniques improved 



121 

 

performance of the simpler modelling techniques like the QDA is possible. Logistic 

regression consistently ranked low especially when used with the PCA dimension reduction 

method, but all logistic regression predictions with the RF variable selection gave better 

performance. There are conflicting reports in the literature about using logistic regression   

in species distribution modelling. But this debate re-enforces the finding in this study that 

the outcome of each correlative study really depends on the type occurrence data used and 

data pre-processing methods. What this means could be simply that logistic regression was 

not the best model type for the five species used in this study given the presence data, the 

data pre-processing methods and model types used. 

Previous studies have shown that regression techniques like GLM and GAM have 

performed similar to,  or sometimes  better than machine learning methods (Dormann et al., 

2008) and that complex models in general may not be necessarily better than simpler models 

(Jiménez-Valverde et al., 2008), but the opposite where machine learning methods perform 

better have also been reported (Elith et al., 2006; Valle et al., 2013).  

Based on the results in  this study and those in of Chapter 2, model performance depended 

on  data pre-processing including  pseudo-absence selection and dimension reduction as 

well as the training/test data (Lobo, 2008). Machine learning methods were consistently 

highly ranked for performance for species with high occurrence data prevalence covering 

large portions of environmental space while QDA did better with species that had low 

occurrence data prevalence that occupied a localized area in the environmental space. 

Similar results were reported by Segurado and Araújo (2004) in their study that evaluated 

commonly used species distributions models. This result leads to the conclusion that each 

species should be treated individually and model selection should be solely based on the 

occurrence data to be used and not based on recommendations from other studies that have 

used totally different presence data and environmental variables. The correlative aspect of 

the modelling process requires that modelling components and data conditions remain 

similar for species distribution models even based on the same species to be compared.  

More important, most species distribution modelling studies do not specify parameters used 

in the various machine learning algorithms (But see - Manel et al., 1999; Pearson et al., 2004; 
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Dormann et al., 2008). With such poor information presentation it is quite possible for end-

users to wrongly conclude that machine learning methods such as SVMs and ANNs do not 

have any advantage. Such a practice is similar to the unacceptability of reporting a statistical 

analysis without the specific test and assumptions involved. 

4.4.2 Prediction evaluation beyond the confusion matrix 

Indices that are based on the confusion matrix are the most used method for model 

performance measurement in species distribution modelling (Fielding & Bell, 1997). These 

methods were widely and successfully used in other disciplines, especially in clinical 

studies, long before they were adapted for ecological modelling (McPherson et al., 2004). 

However, methods based on the confusion matrix are not always sufficient for model 

validation in the ecological context because of the minimal test data used  for predictions of 

environmental data that cover many orders greater than the test data (McPherson et al., 2004; 

Lobo et al., 2008; Hanczar et al., 2010).  And this test data/ prediction space imbalance is 

especially pronounced when SDMs are used for regional or global studies.  

An example for such a case in this study is when three of the top Kappa score models for 

three of the five species resulted in an over-predicted distribution. While, the over-

prediction in these cases were exacerbated by using the highly localized h-NLPCA pseudo-

absences, there is no guarantee that a similar outcome will not occur with other dimension 

reduction methods or even with expert selected ecologically important variables.   

The idea of working with relative cover indicators both in  geographic and environmental 

space was an attempt to include some  information on the total background data regardless 

of whether it was covered by the validation data or not.  The method was developed while  

attempting to use Lobo et al. (2010)’s ROA as an indicator of geographic relative cover of 

species occurrence data with respect  to the study area extent. However, the ratios resulting 

from ROA could not be used to compare different data and dimension reduction 

combinations, because the ratio does not change for the different data-dimension reduction 

combinations. Because most species distribution models use the high dimensional 

environmental space to generate predictions and that the relative cover of validation data in 

the environmental space varies with the data and dimension reduction method used. It was 
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necessary to compute environmental relative cover indicators to select the appropriate 

dimension reduction method with regard to occurrence and background data.   

The environmental relative cover indicators eROR and eRAR gave different values 

depending on the different data-dimension reduction combinations which were used along 

with model performance scores to select optimum models. For all the five species the 

optimum model with high model performance score and also the highest eRAR within the 

selected dataset gave the optimum prediction. Using higher eRAR but  lower Kappa scores 

rather than high Kappa scores with low eRAR values was supported by  the pair-wise 

Tukey’s HSD test that showed that the difference in Kappa scores of the top 3-5 models were 

not  significantly different. That makes choosing a model within the same confidence 

interval as the highest score model but with additional evidence based on better underlying 

data (in this case the high eRAR), acceptable.  

Incorporating cross-validation error along with the Kappa score for model selection was 

useful in this study because a few models had an almost identical Kappa score (Table 4.8).  

4.4.3 Prediction uncertainty and model averaging 

Reporting spatially explicit model uncertainty along with species distribution predictions 

has the advantage of communicating the risk around the prediction. Because of that it has 

been continually called for in the literature (Guisan & Zimmermann, 2000; Elith et al., 2002).  

Spatial patterns of low uncertainty in prediction were common in all the standard error 

maps close to areas where there are occurrences.  However, for all species there were areas 

where low uncertainty was reported even where there were no occurrences near those 

locations. Such spatially explicit low uncertainty reports enable the identification of hotspot 

areas where end users could be more certain of the prediction outcome compared with other 

areas in the study extent.  

Standard error maps that reflect geographic variation by the different modelling 

components used could be very informative for assessing spatial patterns of variability 

according to the different modelling components. Such visualizations can be used to select 

specific fitting combinations of data-dimension reduction and model type when conducting 
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further high resolution studies on subsets of the study extent. The spatial pattern in the 

standard error maps was informative for assessing effects of modelling components on 

predictions. Importantly, assessment of the standard error maps and the standard error 

density plots showed that model type has a uniform spatial effect on predictions as opposed 

to the other modelling components (Figure 4.22). Additionally, the standard error spatial 

distribution according to model types was not influenced by the locations of presences. 

These two observations mean that discrepancy among species distribution predictions 

mainly occurs due to the difference in ability of models to generalize spatial (Figure 4.22) as 

well as environmental (Figure 4.20) complexities in the background data.  

Model averaging is a controversial subject in species distribution modelling. The major 

criticism stems from the attempt to average predictions that result from models that have 

different algorithms (Kriticos et al., 2013).  But see Marmion et al. (2009)’s justification where 

they state the variation in algorithms is actually beneficial in terms of the different 

advantages the different models could offer. Another difficulty is the lack of methods to 

appropriately rescale probabilistic outputs of different models so that direct averaging of 

model results can be performed. The mean prediction from the 36 models for each species 

were reported along with their associated uncertainty map for comparison with the selected 

optimum model.  Interestingly, the mean predictions seem to correct for the models that 

over-predicted, however mean predictions for the species that had no apparently over-

predicting models seem to be more conservative in the spatial coverage of high probability 

predictions than the selected optimum model. A further discussion of model averaging is 

beyond the scope of this Chapter but the exercise raised interesting issues. For example, 

whether pre-selecting only the models that give high Kappa or AUC as suggested by 

Marmion et al. (2009) may not still be optimal when models overfit.   

4.4.4 Distribution predictions for the five species in this study 

Species level results were briefly discussed in the results section as well as in the previous 

paragraphs, therefore only observations related with each species and their associated 

prediction from the optimum model are briefly discussed here.  
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4.4.4.1 A. albopictus 

The data-dimension reduction-model combination (Figure 4.15–C) that comprised the 

optimum model for A. albopictus was BIOCLIM19 with the RF variable selection method and 

SVM model which was the same combination used for the A. albopictus case study in 

Chapter 2. Therefore, the recommendations given in Chapter 2 regarding the distribution 

and future research for A. albopictus still hold and are not discussed further. Areas identified 

as having a high climatic suitability for A. albopictus could further be assessed by using high 

resolution data along with trade and cargo network information for the target area because 

used tyres and plant material imports are identified to be the most important introduction 

pathways for this species (Scholte & Schaffner, 2007; Scholte et al., 2008).   

4.4.4.2 A. gracilipes 

For A. gracilipes, areas of high probability of predicted presence obtained from the selected 

P1DR2QDA model (Figure 4.18-B) were further assessed by examining the uncertainty map 

for A. gracilipes. The following locations were indicated as highly climatically suitable with 

overall low uncertainty: Bahi and Amazonas regions of Brazil, the northern coast of 

Venezuela, Honduras, Nicaragua, coastal areas of Equatorial Guinea, Liberia, Ghana, the 

western coast of Namibia, south-eastern coast of South Africa (Wetterer, 2005), northern 

Australia (Hoffmann, 2014) and most islands in the Caribbean and Indian Ocean. A. 

gracilipes is reported to be established in some of the identified areas, even though they were 

not included in the training or test data as there was no geo-referenced data with the reports. 

Locations listed with citations are predictions where A. gracilipes is already in the country. 

For New Zealand no high probability areas were predicted. However there was a great deal 

of variation between A. gracilipes distribution predictions for New Zealand by the other 

models with significantly high Kappa, so maybe this result should be interpreted with 

caution. On the other hand,  A. gracilipes have been detected in New Zealand in 2002 in the 

Auckland area but was later eradicated (Wetterer, 2005). In light of the distribution 

prediction for A. gracilipes in this chapter, it is probable that the success of the eradication 

could have been enhanced by the unsuitability of the climate in New Zealand.  
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4.4.4.3 D. v. virgifera 

In Chapter 2, it was shown that although the best model for D. v. virgifera prediction covered 

most of the known range of the species, it did not predict the original native range of D. v. 

virgifera, Central America despite presence points from the area being explicitly included in 

model training. In this study, the optimum model combination P1DR2SVM (Figure 4.16-C) 

predicted the original native range. The only difference between these two models was the 

dimension reduction method, the same predictor dataset BIOCLIM19 was used in both 

models. The SVM prediction in Chapter 2 also failed to identify the native range, therefore, 

model type was not considered a factor. This result implies that models can miss important 

locations if the appropriate data pre-processing method is not used. Cases where known 

locations are not predicted even if an occurrence record from the same locality was included 

in the model training is particularly worrying because modellers will probably not 

investigate further. Therefore, further study is needed to investigate such scenarios. The 

recommendations given in Chapter 2 for D. v. virgifera are still relevant in this study except 

that by using the PCA based model in this Chapter it was possible to ensure that the original 

native range of D. v. virgifera was covered and therefore predictions for the rest of the world 

were conservative. Modelling the climatically suitable areas along with maize plantation 

cover is recommended to prioritize suitable areas at the risk of D. v. virgifera invasion 

(Aragón et al., 2010).  

4.4.4.4 T. pityocampa 

The selected model P2DR2SVM (Figure 4.20-B) predicted the known geographical ranges of 

T. pityocampa in Europe and Central Asia, except for its distribution in the North Africa 

(Rousselet et al., 2010). The under prediction was a result of incomplete occurrence data as 

all the presence points available were from the Mediterranean range of T. pityocampa 

distribution. For New Zealand, most areas in the Manawatu-Wanganui Region, eastern 

coasts of Canterbury and Otago regions were predicted to be highly climatically suitable for 

T. pityocampa establishment. Because the occurrence data used in this study only covers part 

of the known ranges of T. pityocampa, only positive predictions for the potential distribution 

of the species were considered. This is essentially because predicted low probability areas 
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might not necessarily show actual unsuitability due to the missed opportunity of matching 

areas similar to the North African range for which there were no presence points available to 

this study. In such cases it is advisable to further consult mechanistic model outputs if 

physiological information is available for the species (Robinet et al., 2007).   

4.4.4.5 V. vulgaris 

The SVM model selected for V. vulgaris prediction was based on BIOCLIM19 data and a 

random forest variable selection method. The prediction covered the native Holarctic range 

of V. vulgaris and its introduced range in New Zealand including the Stewart Island and 

Tasmania in Australia (Thomas et al., 1990; Matthews et al., 2000). An external validation 

carried out for New Zealand using V. vulgaris presence data obtained from the website27 of 

Landcare Research Centre showed that 91% of the occurrence sites were correctly predicted 

by the selected model (Appendix 4.9).  Another area identified as a highly suitable was 

Southern Argentina, V. vulgaris was reported from this location in 2010 by Masciocchi et al. 

(2010) but no follow up report on its establishment could be found. However, since the 

German wasp (Vespula germanica) which co-occurs with V. vulgaris in New Zealand is 

present in Argentina (D'Adamo et al., 2002; Lopez-Osorio et al., 2014), it is entirely possible 

that the climate in the predicted areas of Argentina is also suitable for V. vulgaris. If this is 

the case displacement of V. germanica from Argentina is also a possibility according to the 

trend reported in New Zealand (Harris, 1991). A suitable area of notable size is also 

predicted in Canada and the U.S.A.  

4.4.5 Caveats  

1) The geographic and environmental relative cover indicators were useful for 

understanding the relationship between the training/test dataset and the larger background 

data into which predictions were made. The eRAR was especially useful for narrowing 

down the best models along with Kappa and cross-validation error scores. Higher eROR and 

eRAR values were consistently associated with optimum prediction. However, even if high 

eRAR values indicated the optimum model for all species in this study there is no strong 

                                                      
27http://www.landcareresearch.co.nz/science/plants-animals-fungi/animals/invertebrates/invasive-

invertebrates/wasps/distribution/common  

http://www.landcareresearch.co.nz/science/plants-animals-fungi/animals/invertebrates/invasive-invertebrates/wasps/distribution/common
http://www.landcareresearch.co.nz/science/plants-animals-fungi/animals/invertebrates/invasive-invertebrates/wasps/distribution/common
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evidence that this could not happen by chance. Having an index that can be used to assess 

model predictions in addition to the Kappa and AUC values to increase the robustness of 

model selection is very desirable but more research is needed to establish that indices can be 

used to indicate which predictors and data pre-processing combinations give improved 

prediction by a given model. Further research may show that the use of such profiling 

methods could reduce the discrepancy among species distribution models predicting for the 

same species. 

2) In their present form all three relative data cover indicators were calculated based on the 

single data point they represent, i.e. one occurrence or pseudo-absence data point accounted 

for one unit of the background dataset.  Other methods like minimum convex polygon as 

used by Elith et al. (2006) for the geographical cover and standard deviational ellipses for the 

environmental relative cover could give less conservative estimate of relative cover ratios.  

4.5 Conclusion: why models give different predictions for the same species and locations 

Buisson et al. (2010) have given a good explanation for why models can predict differently 

for the same species and study area. Their statement regarding this topic is a very fitting 

background for this summary and is given below.  

“Although SDM are all based on a correlative approach, they use different assumptions, mathematical 

algorithms, and parameterizations. They may vary in how they model the shape, nature, and 

complexity of species’ response, select predictor variables, weight variable contributions, or allow for 

interactions.“  (Buisson et al., 2010, p. 1153) 

The investigation of discrepancies between model predictions in this study has shown that it 

is not appropriate to use such discrepancies as an argument against the robustness of 

correlative modelling as presented by Kriticos et al. (2013). It is apparent that correlative 

modelling like any scientific technique requires expertise and detailed fine tuning of the 

methods especially because the correlative approach allows the use of multiple datasets, 

data pre-processing techniques and model types (Aguirre-Gutiérrez et al., 2013).  

Determining why discrepancy among model predictions occurs requires some data mining, 

visualizing expertise and willingness on the modeller’s part, to reveal reasons for 

discrepancy.  As shown in this study the discrepancy is often related to the use of a single 
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data pre-processing technique for varied model types that have different capacities to model 

different data well in the interest of keeping a controlled research design.  

For example, conventional statistical classifiers cannot handle a dataset where the number of 

observations is smaller than the number of predictors (Maboudou-Tchao & Agboto, 2013). 

Various dimension reduction methods are usually used to reduce the number of predictors 

so that such models could be used. However, doing the same for other machine learning 

models that can handle large number of predictors just to standardize the study can lead to 

loss of valuable information that could have been used for improved prediction. That is 

especially so for a correlative study where the objective is to find predictors that adequately 

explain the similarity of the presence points while maximizing the difference between the set 

of presences and absence /pseudo-absences.   

Correlative models even when used with the appropriate predictors and data pre-processing 

methods, may still be affected by incomplete occurrence data from which the potential 

distribution of species is inferred (Kearney & Porter, 2009; Dormann et al., 2012). That issue 

is best mitigated as additional occurrence data becomes available. Improving SDMs and 

associated data pre-processing methods such as pseudo-absence selection, dimension 

reduction methods and appropriate model specification especially by applying 

regularization to avoid model over-fitting could lead to a better potential distribution 

prediction using correlative species distribution models. However, it must be remembered 

that any improvement will be within the constraints posed by the species environmental 

range information which could be significantly incomplete. 
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Chapter 5 

 

 

5. Incorporating biological traits and environmental adaptation in 

correlative species distribution models 

5.1 Introduction 

Species experience novel climate and environmental conditions in the continuum of time. 

This is especially true for invasive species because the possibility of their contact with new 

climatic and environmental conditions is much higher due to dispersal into new regions 

compared to the much slower process of climatic change endemic species experience in their 

native range (Sutherst, 2000). 

Of all species that continuously disperse to new regions due to the increasingly 

interconnected global transport and trade system, only the ones that arrive in a habitat 

similar to their native habitat, or species with high tolerance to environmental change 

manage to establish (Mooney & Cleland, 2001).  

Where species are introduced to a habitat similar to their native habitat, it is possible to use 

species distribution models (SDMs) to understand their potential distribution (Elith & 

Leathwick, 2009). As a result of increased availability of environmental and presence 

information on different species as well as continuous research to improve model 

predictions, use of SDMs has increased both for theoretical exploration of invasion biology 

and to provide practical tools for surveillance and monitoring of invasive species in applied 

ecology (Sinclair et al., 2010).  When invasive species establish in new environmental 
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conditions which are not found within their native environmental range, modelling of the 

potential species distribution is difficult regardless of how SDMs have improved (Diamond 

et al., 2012).   

When there is no biotic and/or physiological information that allows calibrating an invasive 

species response to the environment, it becomes very difficult to use the preferred 

mechanistic models (Kearney & Porter, 2009). In this case, correlative species distribution 

models become an alternative method despite their shortcoming in extrapolating species 

distribution to environmental ranges outside of the environmental domain of the validation 

data.  

One advantage of a correlative species distribution model over a mechanistic model is the 

fact that it implicitly accounts for trait variability and evolutionary change of a species 

(Kearney & Porter, 2009).  This is because the modelling process automatically considers the 

environmental conditions at all presence locations especially if some are outside the known 

physiological tolerance of the species. This allows to implicitly account for the new 

environmental ranges species expand through phenotypic plasticity or genetic variation 

(Helmuth et al., 2005). Nevertheless, correlative species distribution models cannot 

accurately predict range expansions into environmental conditions that are not included in 

the model by way of presence points.  

In correlative modelling, occurrence data are used to infer the optimal environmental 

conditions suitable for the species by fitting the model to the values of environmental 

variables extracted at the occurrence locations (Araújo & Peterson, 2012). This process is 

highly dependent on the predictors (variables) used to represent or approximate the 

environmental conditions that are assumed to limit the species distribution (Elith & 

Leathwick, 2009; Rödder et al., 2009).   

Beaumont et al. (2009) found models that used presence data from both the invaded and 

native ranges provided a more complete species distribution prediction than of models that 

used only native range presence data. Attempting to model the potential distribution of a 
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species which is still expanding its range  using occurrence points only from its native range 

can seriously underestimate its potential distribution  (Rodda et al., 2011).   

For correlative models, better prediction accuracy is expected from training data that better 

represent the realized distribution of the species. However, there are factors that need to be 

considered while selecting species occurrence points for models. The first and most 

important is the geographical precision of these occurrence points. Since this is discussed 

sufficiently in the literature (Rodda et al., 2011) it will not be addressed in this study. The 

second and less investigated factor is variation between presence points which increases as 

new presences from invaded ranges are added and its effect on appropriate characterization 

of the potential distribution of the target species.  

Environmental variation between presence points could be a source of uncertainty in 

correlative model predictions. For example, presence points from the invaded range could 

be significantly different from the native range due to the species becoming locally adapted 

to the new habitat. The other notable reason could be a particular population of a species 

developing biological traits that are distinct from the rest of the population which can allow 

them to occupy environmentally distinct areas from the commonly occupied range of the 

species even within the native range.  

Such variations within a species often creates multi-modality in environmental data 

associated with presences. Multi-modality in presence datasets used for species distribution 

models is rarely discussed in niche modelling studies, but was discussed by Yesson et al. 

(2012) for deep-sea species, which are usually studied at higher taxonomic levels due to lack 

of species level information. In that study presence points from different species were used 

in combination to produce habitat suitability at sub-order taxonomic level.  Yesson et al. 

(2012) noted that the presence sample distribution was bimodal and that this phenomenon 

was expected as species are bound to have niche specialization even if they belong in the 

same sub-order. Hypothetically, local adaption to environmental conditions in a new range 

could lead to a multimodal distribution within presence data for a single species too. 

Sangermano and Eastman (2007) showed that seven species distribution models performed 
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poorly when predicting for a virtual species that had bimodal distribution with regard to the 

predictors used.  

 

Figure 5.1 An illustration 

showing the possible effects of 

variation in environmental 

ranges obtained from presence 

data. 

Assume that the species under 

study is an invasive species 

that is undergoing rapid 

environmental range 

expansion through time (t). X 

and Y denote a lower 

dimensional environmental 

feature space (for example, the 

first two principal components of a PCA transformed set of predictors) constructed out of multiple 

environmental variables that are selected for species distribution modelling. A, represents the relative 

position of presence points from the native range in the feature space; B, represents presence points 

from the invaded range; C, represents a possible alternative environmental adaptation by the species 

in its invaded range that is non-continuous with the native range unlike the usual circumstance 

where species are expected to occupy environmental conditions that are contiguous with their native 

environmental range.  In most studies discussed in the paragraphs above the recommendation is to 

use presences from newly invaded ranges in order to predict the invaded range adequately (using 

presences from A and B, ensures the prediction of both the native and invaded ranges of the species). 

However, if the environmental adaptation creates distinct populations (C2) that are adapted to a 

unique environment compared with the population in the native range (A or C1) then the 

contribution of populations like C2 can be masked in the overall predictions if models are not 

parameterized appropriately to handle multi-modality in the presence dataset.  

In this chapter, two species were used to investigate the challenges in modelling species 

with occurrence data of significant variation in terms of response to environmental 

variables. Occurrence data for western corn rootworm (D. v. virgifera) were investigated to 

see if predictions differed due to significant environmental variation between the invaded 

and native range of the species. And the great white butterfly (Pieris brassicae) occurrences 

were used to study whether the occurrence of locally adapted population within a species 

affects SDM predictions. The latter is considered to cover cases where biological traits evolve 

in response to environmental conditions rather than biotic interactions.  
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5.1.1 Case study 1: range expansion by D. v. virgifera  

Three studies that predicted the potential distribution of Diabrtoica v. virgifera were used to 

explore the effect of variation within presence datasets on model predictions. Dupin et al. 

(2011) used training data from both the native and invaded range of the species in North 

America and Europe. While their model appropriately predicted invaded ranges in these 

two regions, it did not predict the original range of the species in Central America (Toepfer 

& Kuhlmann, 2005; Daves et al., 2007). Senay et al. (2013) used an improved pseudo-absence 

method to predict the potential distribution of D. v. virgifera. While model Kappa and AUC 

values were high and the target invaded regions were accurately predicted, the original 

native region of Central America was not predicted.  Aragón et al. (2010) used an additional 

method of climate matching the native range of the species as well as physiological limits to 

validate the species distribution along with a presence only model (ENFA) to predict 

suitable areas for D. v. virgifera. Their result also shows that the N. American and European 

ranges of D. v. virgifera were appropriately predicted with the exception of the Central 

American range.  The modelling approaches undertaken in these three studies are similar in 

that they used multiple modelling frameworks and more than one model was used to reach 

conclusion. *28 

5.1.2 Case study 2: micro adaptation by P. brassicae 

Another case which has raised the issue of variation within a presence dataset is modelling 

the global potential distribution of the great white butterfly (Pieris brassicae). While 

modelling its potential global distribution, it was determined that even if all available global 

presence points for P. brassicae were used (except presence points in New Zealand, which 

were not accessible at the time) none of the multiple models tested were able to predict the 

recently invaded area in New Zealand. A literature search to identify more presence data 

revealed interesting information that a distinct population of P. brassicae in southern Spain 

and Portugal have apparently locally micro-evolved a specific biological trait (Held & 

Spieth, 1999; Spieth, 2002; Spieth et al., 2011). This species undergoes aestivation (summer 

                                                      
28 The Central American range of D. v. virgifera was predicted using a PCA transformed data in a factorial study 

reported in Chapter 4. This study investigates the failure of the various models to predict this range using raw 

variables as most SDM studies do use raw (untransformed) variables.  
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diapause) in a restricted area to south of the Pyrenees. It is assumed the adaptation is a 

response to environmental conditions that differ from those experienced by non-aestivating 

populations of P. brassicae, which occur elsewhere in Europe (Spieth et al., 2011). 

5.1.3 Research questions 

These two cases raise the following questions, were the environmental conditions 

experienced by the populations of D. v. virgifera and P. brassicae in central America and 

southern Spain respectively so different that a single model is not able to fit environmental 

values associated with these sites and therefore could not accurately predict the potential 

distribution of these species? In this case do more complex models handle such presence 

data variation better than simple models? Or maybe a methodology that allows a model to 

predict distinct populations of a species separately to be combined later, is required?  

These considerations led to the hypothesis that using presence data that consists of 

significant variation within occurrence points that represent different populations might 

mask the contribution of some of the populations towards the global potential distribution 

of the species.  

5.2 Methods 

The seventh objective of the thesis was to investigate the effect of variation in species 

presence data on model performance and specify methods to detect and handle significant 

variation in presence datasets. 

Two approaches were taken to investigate the effect of variation within presence datasets in 

this chapter. The first was to investigate the effect of variation between presences from 

invaded and native range of D. v. virgifera and the second was investigating the possibility of 

distinct environmental adaptation by a population of P. brassicae in southern Spain and 

Portugal. In both cases, distinct presence groups within presence data are modelled 

separately and their predictions were combined to obtain a final potential distribution map 

for each species. The combined predictions are compared with the predictions from models 

that did not consider variation within the presence data.  
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5.2.1 Predictor dataset, Modelling and Validation (both case studies) 

A set of 39 global environmental variables that are derived from temperature, precipitation, 

radiation, soil moisture and elevation were used for this study (Table 5.1). The first 35 

variables were accessed from the CLIMOND website (Kriticos et al., 2012b). The remaining 

four variables were derived from an SRTM based (NASA-GSFC, 2000) elevation data 

accessed from the WORLDCLIM data portal (Hijmans et al., 2005b). Details on any pre-

processing or derivation performed on/from these datasets were given in Chapter 4.  

A high resolution New Zealand extent dataset was prepared by interpolating the above 

mentioned global dataset into a 30 arc second resolution using a bilinear interpolation 

method. This was necessary because a high resolution (30’) gridded BIOCLIM dataset does 

not exist for the 35 variables that are provided at 10” resolution on the CLIMOND data 

portal.  

A multi-model framework that includes five models integrated with a pseudo-absence 

method which uses both geographical and environmental profiling, was used (Worner et al., 

2010; Senay et al., 2013). After pseudo-absences were generated variable selection was 

performed based on the random forest feature selection algorithm using rpart package from 

R (R Core Team, 2012). Variable selection was done according to the complete 

presence/pseudo-absence dataset as well as according to the sub-sets of the presence points 

identified as invaded range and native range for D. v. virgifera and aestivating and non-

aestivating populations for P. brassicae.  The procedure followed to identify the independent 

components in the presence data of D. v. virgifera and P. brassicae are given in 5.2.2.1 and 

5.2.2.2 respectively. The models used for comparison of species distribution predictions were 

QDA, LOG, CART, SVM and NNET. Kappa scores were used select the best model for DvvI 

(D. v. virgifera invaded range), DvvN (D. v. virgifera native range), Dvvall (D. v. virgifera all 

presences)29, PbAes (P. brassicae aestivating populations), PbNAes (P. brassicae non-aestivating 

populations), and PbAll (P. brassicae all presences) scenarios.  

 

                                                      
29 For the Dvvall the result from the D. v. virgifera study in Chapter 3 where invaded and native presence are used 

for the model training is used.  
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Table 5.1 Variables selected according to the different presence data components 

*The tick marks show the variables selected for the respective components of D. v. virgifera and P. 

brassicae presence datasets as well as the variables selected when the presence datasets are not 

divided into components.  

5.2.2 Identifying components in occurrence data 

5.2.2.1 Cluster analysis – D. v. virgifera  

Cluster analysis was used to investigate if there was a significant difference between 

populations in Central America and the rest of the D. v. virgifera range and if it could affect 

over all model prediction. A presence dataset that incudes geographically referenced D. v. 

virgifera occurrences from N. America, Central America and Europe was prepared. This 

Var. No  Variable Name DVVI DVVN DVVall PbAes PbNAes Pball 

01  Annual mean temperature (°C)        

02  Mean diurnal temperature range (mean(period max-min)) (°C)        

03  Isothermality (Bio02 ÷ Bio07)        

04  Temperature seasonality (C of V)        

05  Max temperature of warmest week (°C)        

06  Min temperature of coldest week (°C)        

07  Temperature annual range (Bio05-Bio06) (°C)        

08  Mean temperature of wettest quarter (°C)        

09  Mean temperature of driest quarter (°C)        

10  Mean temperature of warmest quarter (°C)        

11  Mean temperature of coldest quarter (°C)        

12  Annual precipitation (mm)        

13  Precipitation of wettest week (mm)        

14  Precipitation of driest week (mm)        

15  Precipitation seasonality (C of V)        

16  Precipitation of wettest quarter (mm)        

17  Precipitation of driest quarter (mm)        

18  Precipitation of warmest quarter (mm)        

19  Precipitation of coldest quarter (mm)        

20  Annual mean radiation (W m-2)        

21  Highest weekly radiation (W m-2)        

22  Lowest weekly radiation (W m-2       

23  Radiation seasonality (C of V)        

24  Radiation of wettest quarter (W m-2)        

25  Radiation of driest quarter (W m-2)        

26  Radiation of warmest quarter (W m-2)        

27  Radiation of coldest quarter (W m-2)        

28  Annual mean moisture index        

29  Highest weekly moisture index        

30  Lowest weekly moisture index        

31  Moisture index seasonality (C of V)        

32  Mean moisture index of wettest quarter        

33  Mean moisture index of driest quarter        

34  Mean moisture index of warmest quarter        

35  Mean moisture index of coldest quarter        

36 Elevation (m)       

37 Slope (deg)       

38 Aspect (deg)       

39 Hillshade       
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dataset comprised 39 environmental variables that were extracted at the recorded 

occurrence points of D. v. virgifera.  Principal component analysis (PCA) was used to 

transform the presence dataset onto artificial orthogonal axes to explain most of the variance 

in the environmental variables while reducing collinearity.  

K-means clustering was performed on the first three principal components of the PCA 

transformed data. The parameter K for K-means clustering was set to two as the aim was to 

test for variation between presences from the invaded and native ranges of D. v. virgifera. 

The geographic projection of the clustered presence points showed that all but one of the 

presence points in Central America were included in one cluster while all the presence 

points from outside of Central America were included in the second cluster. To denote 

invaded range the first cluster was labelled I and to denote native range the second cluster 

was labelled N. It is important to note that D. v. virgifera is now considered native to N. 

America. The reference to the N. American range as invaded here is strictly limited to this 

study, because here the native range is referenced to Central America due to earlier 

endemism of the species to that area (Coats et al., 1986).  

To test if there was significant variation between these two clusters, the means and standard 

deviations of the two clusters on the first principal component were assessed.  

Let  

I = the set of values from the first principal component extracted at the presence points of D. v. 

virgifera in the invaded range cluster 

N = the set of values from the first principal component extracted at the presence points of D. v. 

virgifera in the native range cluster 

Then the means for each cluster are given by, 

  𝐼 ̅ =
1

𝑛𝑖
∑ 𝐼𝑗 and  𝑁̅ =

1

𝑛𝑛
∑ 𝑁𝑗   − − − − − − − − − − − − − − − − − − − − − − − − − − − − − −  − eq5.1 

Where I = [I1, I2…Ij] and N = [N1, N2…Nj] and ni is the number of presences in the invaded cluster 

and nn is the number of presences in the native cluster 

  𝐼 ̅𝑎nd 𝑁̅  were used to approximate the population mean of the invaded (𝜇𝐼) and native (𝜇𝑁) 

ranges respectively.  

The standard deviation of the two clusters 
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 𝑆𝐼 = √
(𝐼𝑗−𝐼)̅2

𝑛𝑖−1
  and 𝑆𝑁  = √

(𝑁𝑗−𝑁)2

𝑛𝑛−1
  − − − − − − − − − − − − − − − − − − − − − − − − − − −  −eq5.2   

𝑆𝐼 and 𝑆𝑁 were used to approximate the standard deviation of all occurrences in the invaded 

(𝜎𝐼) and native (𝜎𝑁) ranges respectively.  

The above sample mean and standard deviations of the two populations were used to 

parameterize a mixed normal random probability density function that contained the 

sample estimates of the invaded range and the native range as shown in eq. 5.3.  

𝑓(𝑥|𝜇, 𝜎) =
1

2
( 𝑓𝐼(𝑥| 𝐼,̅ 𝑆𝐼) +  𝑓𝑁(𝑥| 𝑁̅, 𝑆𝑁)) − − − − − − − − − − − − − − − − − − − − − −  − eq5.3 

The normal probability density function (PDF) of the native and invaded component are 

given by   

 𝑓𝐼(𝑥| 𝐼,̅ 𝑆𝐼) =   
1

√2𝜋𝑆𝐼
2

𝑒
(

−(𝑥−𝐼)̅2

2𝑆𝐼
2 )

 and   𝑓𝑁(𝑥| 𝑁̅, 𝑆𝑁) =   
1

√2𝜋𝑆𝑁
2

𝑒
(

−(𝑥− 𝑁̅)2

2𝑆𝑁
2 )

− − − − − −  − eq5.4 

And the mixture density of the invaded and native range components are given in Eq. 5.5. 

Proof and justification for the formulae in Eq. 5.4 and Eq. 5.5 are given by Reschenhofer 

(2001). 

 𝑓𝑀(𝑥|𝜇𝐼, 𝜇𝑁,𝜎𝐼 , 𝜎𝑁) =   
1

2
[

1

√2𝜋𝑆𝐼
2

𝑒
(

−(𝑥−𝐼̅)2

2𝑆𝐼
2  )

 + 
1

√2𝜋𝑆𝑁
2

𝑒
(

−(𝑥− 𝑁̅)2

2𝑆𝑁
2 )

] − − − − − − − −  − eq5.5  

The combined normal distribution from Eq. 5.5 was plotted for visual investigation of 

variation between the two components of the combined dataset.  

A likelihood ratio bimodality test was also performed on the complete D. v. virgifera 

presence data, this method is more robust than by simply plotting the mixed PDF of the two 

samples as it compares the sample distribution against a unimodal curve option and an 

unrestricted fit set by the sample parameters (Holzmann & Vollmer, 2008).  The test 

confirmed the variation between the two clusters of D. v. virgifera presence points, DvvI and 

DvvN (Results section 5.3.1).   
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5.2.2.2 Biological traits as a precursor to environmental variation in presence data - P. brassicae 

The P. brassicae training dataset was classified into two user defined classes to represent the 

aestivating and non-aestivating populations of P. brassicae. This classification followed the 

geographic boundaries of the aestivating P. brassicae population as per the description by 

Held and Spieth (1999) and Spieth et al. (2011).  

The more or less permanent geographical cline (Figure 5.2) that was reported by Spieth et al. 

(2011) to represent the transition between aestivating and non-aestivating populations of P. 

brassicae was constructed using spatial markers given in their publication. All presence 

points south of the cline in continental Europe were recorded as aestivating and all other 

presence points were recorded as non-aestivating.  

Out of the total 2,241 spatially unique P. brassicae presence points, 35 fell into the aestivating 

class and the remaining 2,206 points were classed as non-aestivating. Assessing 

multimodality of the P. brassicae presence dataset using the equations described above is 

difficult as the aestivating class represents only 1.5 % of the sample dataset and any 

significant difference could be due to spurious variation that shows a local maxima due to 

lack of data. Moreover, environmental variation may remain undetected due to the small 

number of observations for the aestivating class. This is because datasets with possibly two 

components do not always need to be bimodal, as well, a unimodal dataset could appear to 

have two modes if there is no sufficient data to characterise its true distribution (Holzmann 

& Vollmer, 2008). Therefore, a separate method was employed to check if the contribution of 

the aestivating population towards the overall potential distribution of P. brassicae was 

masked when using all presence points in model predictions.  

The number and type of variables selected according to presence locations from the 

aestivating and non-aestivating populations were compared. To check for variation between 

environments associated with aestivating and non-aestivating presence points, their relative 

position in the feature space of variables selected according to the aestivating presences as 

well as the non-aestivating presences were mapped.  
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Figure 5.2 Classification of P. brassicae presence points. 

The diagonal black line shows the cline where P. brassicae populations transition from non-

aestivating to aestivating types. The black squares show spatial markers (place names) used to 

describe the geographical boundary of P. brassicae by Spieth et al. (2011). Labels show place names 

along with an “a” or “na” suffix which means aestivating or non-aestivating respectively. It was 

reported that P. brassicae populations were not aestivating in Gerona even if aestivating populations 

were found 70 km south of Gerona. Accordingly a circle around Gerona was drawn with 70 km radius 

to mark a point through which the transition should pass while being north of Lequetio and tangent to 

the circle at the same time. While this left Vilafranca, where aestivating populations were reported out 

of the aestivating side, I proceeded with the above line as it satisfies all the other descriptions.  

Directional distribution standard deviation ellipses were used to assess the proximity of the 

New Zealand invaded locations to the aestivating, non-aestivating and combined presence 

points. Directional distribution ellipses are usually used to assess central tendency, 

dispersion and directional trends of spatial features (Lefever, 1926). The derivation of the 

standard deviational ellipse has been improved by Furfey (1927) to use Cartesian co-
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ordinates, and a further improved derivation of the directional ellipse of a spatial data 

distribution was given by Gong (2002). The naming of the standard deviational curve in 

geographical space as an “ellipse” has been questioned by both Furfey (1927) and Gong 

(2002), as other geometrical forms of the curve were obtained depending on the spatial 

dispersion of the distribution of a given data. However referring to the standard deviation 

ellipse (SDE) as the standard deviation curve as suggested by Gong (2002) confuses it with 

the familiar standard deviation curve usually used for the bell shaped normal standard 

deviation distribution. Therefore, the SDE is referred as an ellipse in this study. Major spatial 

analysis software including ESRI®’s ArcGIS also still refer to the SDE curve as ellipse.  

I adopted this method to assess the proximity of the New Zealand P. brassicae locations to 

both aestivating and non-aestivating presences in the feature space of variables selected 

according to aestivating and non-aestivating presences. Directional ellipses are used for 

spatial data, where autocorrelation is assumed to decline as the distance between points 

increases. The principal component values used to construct the feature space were also 

based on continuous environmental variables that co-vary in the environmental space 

fulfilling the assumption for the use of SDEs.  

The SDEs for the aestivating and non-aestivating P. brassicae classes were derived from the 

parameters of presence points distribution on the PCA transformed environmental feature 

space. Three types of feature space were tested, the first two based on variables selected 

according to aestivating and non-aestivating presence points respectively, the third feature 

constructed based on variables selected for the unclassed presences (complete presence 

data). 

The directional standard deviation ellipses for the presence points in the aestivating and 

non-aestivating class as well as for the complete presence dataset (with no classification) was 

constructed as follows.  
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Let, Xi and Yi denote the value of a presence point from a given presence class on the X and Y axes 

respectively, where X and Y are the first (PC1) and second (PC2) principal components of the feature 

space constructed out of the PCA transformed environmental variables.  

The standard deviations of each presence class according to the X and Y axes are given by 

𝑆𝑥 = √
∑(𝑋𝑖−𝑋̅)2

𝑛
, and 𝑆𝑦 = √

∑(𝑌𝑖−𝑌̅)2

𝑛
  − − − − − − − − − − − − − − − − − − − − − − − − − − −eq5.6 

Where n = number of points in the presence class, and 𝑋̅ and 𝑌̅ are the mean centres of all the points 

in the presence class on the X and Y axes respectively. 

To construct the standard deviational ellipse at the direction of maximum standard 

deviation, standard deviations 𝑆𝑥 and 𝑆𝑦, obtained in Eq. 5.6 are rotated by an angle 𝜃 at the 

mean centres 𝑋̅ and 𝑌̅. The angle 𝜃 is determined by selecting the angle that maximizes the 

resultant standard deviations 𝑆𝑥 and 𝑆𝑦. A simplified formula for the determination of the 

angle 𝜃  as well as the derivation of the rotated standard deviations 𝜎𝑥 and 𝜎𝑦  based on the 

angle 𝜃  was given by Mitchell (2005) and these are given in Eq.5.7 – 5.9.  

tan 𝜃  =  
𝑎 + 𝑏

𝑐
 − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − −  −eq5.7 

Let  𝑥̅ and 𝑦̅ be the deviations of the points on the transformed x’ and y’ coordinate from the mean 

centre.  

Then,  

a  =  ∑(𝑥̅𝑖
2 − 𝑦̅𝑖

2),  b  =  √(∑ 𝑥̅𝑖
2 − 𝑦̅𝑖

2)
2

+ 4(∑ 𝑥𝑖̅𝑦𝑖̅)
2
, and  c  =  2 ∑ 𝑥𝑖̅𝑦𝑖̅  − − − − −  − eq5.8 

Using the relationship between Eq. 5.7 and Eq. 5.8 the standard deviations in the rotated 

axes are given by Eq. 5.9.   

𝜎𝑥  =  √2√∑(𝑥̅𝑖 cos 𝜃−𝑦𝑖̅ sin 𝜃)
2

𝑛
   and   𝜎𝑦  =  √2√∑(𝑥̅𝑖 sin 𝜃−𝑦𝑖̅ cos 𝜃)

2

𝑛
  ----− − − − − − − − −  − eq5.9  

Thus, the centroid of the ellipse is at 𝑥̅ and 𝑦̅, and 2𝜎𝑥 and 2𝜎𝑦 are the long and short axes of 

the ellipse.  
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Two directional standard deviational ellipses (1SD and 2SD) were derived for each presence 

data class PbAes (n=35) and PbNaes (n= 2,206) as well as the unclassified P. brassicae dataset (n= 

2,241). The SDEs were computed using spatial statistics extension in ArcGIS. 

The direction of the ellipse was also used as an additional measure to determine the 

direction of the different presence data distributions in the feature space. As the standard 

deviations of the distributions studied in the feature space are the long and short axes of the 

ellipse, let the values obtained in Eq. 5.9 be given as 𝜎𝑠ℎ𝑜𝑟𝑡 and 𝜎𝑙𝑜𝑛𝑔. In the event these two 

values are equal the distribution is circular or uniformly distributed in all directions.  

To determine whether the distribution is directional in the feature space, I used the 

recommendation by Gong (2002) to obtain the circularity index (Ci) of the distribution by 

using the ratio between the two axes. Smaller values show directionality (oblong ellipses) 

whereas values closer to one show that the distribution is circular. The same assumptions 

were extended for features on the variable space as the ones used to implement the SDE in a 

geographical space. Additionally, the exact direction of the ellipse was depicted on the plots 

by drawing a straight line through the mean centre of the ellipses at an angle 𝜃 determined 

in Eq. 5.7. 

Ci  =  
𝜎𝑠ℎ𝑜𝑟𝑡

𝜎𝑙𝑜𝑛𝑔
 − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − −  − eq5.10 

5.2.3 Merging predictions (both case studies) 

The model with the highest Kappa was selected for each of the four scenarios (DvvI, DvvN, 

PbAes and PbNAes). The predictions from the selected models for DvvI and DVVN were 

combined to produce a final D. v. virgifera global and New Zealand extent potential 

distribution. Similarly, the selected models for PbAes and PbNAes were combined to produce a 

final global and New Zealand extent potential distribution for P. brassicae. 

To facilitate combination of predictions from the best models, the point datasets that have 

the predicted values from the selected models were converted to raster datasets using cell 

size 10’ and 30” for the global and New Zealand extent respectively. All “no data” values 

were set to 0. The respective rasterized predictions from the two components of the D .v. 
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virgifera and P. brassicae were combined using the rule given on Eq. 5.11. The map algebra 

function in the Spatial Analyst extension of the ArcGIS software was used to combine the 

component raster for both species.  

𝐶𝑜𝑛 ( (Comp1 >=   0.5), Comp1,   𝐶𝑜𝑛 ((Comp1 <  0.5) &  ( Comp2 >=   0.5), Comp2,
Comp1+Comp2

2
)) − − − − − − − − − −Eq5.11 

The Con function in ArcGIS raster calculator facilitates conditional statements. Comp1= the 

prediction from the component with the large number of presences (DvvI and PbNAes). And Comp2 = 

the prediction from the component with fewer presences (DvvN and PbAes). The simple merging rule 

above was used to keep predictions from the large presence dataset wherever possible to give 

precedence to the component with high prevalence, hence the precedence in Eq.5.11 for predictions 

from Comp1. The combination rule at the same time specifies that areas that are not predicted by the 

large prevalence class (Comp1) but predicted by the low prevalence class (Comp2) are considered in 

the final prediction.  

 

Since the individual models corresponding to these component predictions were 

parameterized and validated separately, a simple accuracy and sensitivity validation was 

undertaken on the final predictions for both species. Sensitivity is chosen as a performance 

measure for the combined predictions because maximising sensitivity is more important 

than other performance measures like specificity or precision when it comes to prediction of 

potential distribution of invasive species to obtain the maximum possible estimation of 

where these species might establish. 

5.3 Results 

5.3.1 Testing for significant variation in presence data- case study 1 D. v. virgifera 

A normal distribution fit to the histogram plot of the D. v. virgifera presence dataset gave a 

poor fit to the data (Figure 5.3-A). K-means clustering was performed to identify distinct 

components in the dataset.  The result for the K-means clustering with K=2 on the PCA 

transformed D. v. virgifera presence dataset is shown in Figure 5.3–B. The geographical 

projection of the clustered presences showed a distinct spatial pattern (Figure 5.3-C). 
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Figure 5.3 D .v. virgifera presence dataset: (A) histogram plot of the presence dataset with a fitted 

normal probability density distribution line, (B) the presence dataset after K-means clustering, and 

(C) the geographic projection of the clustered presence points. 

 

The likelihood ratio bimodality test (Holzmann & Vollmer, 2008) analysed based on the first 

principal component values of the presence points in the environmental feature space 

showed that the mixed normal random distribution parameterized by the two cluster means 

and standard deviations was bimodal (bimodality test, likelihood ratio = 618.98, p  <  

0.00001, Figure 5.4).  
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Figure 5.4 the cluster means 𝐼 ̅and  𝑁̅ and 

standard deviation 𝑆𝐼 and 𝑆𝑁 fitted to a 

mixed random probability density curve 

(blue line).  

The black dotted line shows the empirical 

density, and the red line shows the unimodal  

fit. 

 

 

 

5.3.2 Testing for significant variation in presence data- case study 2 P. brassicae 

Because the presence points identified to represent the aestivating population of P. brassicae 

were a small percentage (1.5%) compared with the total number of presences, the method 

proposed for the D. v. virgifera case was not appropriate to assess any variation within the P. 

brassicae presence dataset according to aestivating and non-aestivating presences. A different 

approach that considers the difference in variables selected when using the two classes of P. 

brassicae presence dataset was employed. This approach was appropriate as it was less 

density dependent and the values inferred from the presence points and their position in the 

feature space of the selected variables was important rather than the number of presences in 

each class.   

The relative positions of the aestivating and non-aestivating class presence points with 

regard to the newly invaded locations in New Zealand were compared in the PCA 

transformed feature space of four different variable combinations (Figure 5.5).  

The first plot (A) where all variables are indiscriminately used did not provide a very good 

discrimination between the background (the rest of the world) and the presence points. Plot 

(D) shows the feature space constructed out of variables selected for aestivating presences, 

here there was a distinct clustering of presence points in the aestivating and non-aestivating 

classes that is not captured in Plot (B) and Plot (C).   
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Figure 5.5: Comparison of the relative positions of aestivating and non-aestivating presence points in 

feature space of four different bioclimatic variables combinations. 

 (A) P. brassicae global occurrences in PCA transformed feature space of 39 predictors. (B) P. 

brassicae global occurrences in PCA transformed feature space of 15 variables selected according to 

the complete P. brassicae presence dataset (n=2,241). (C) P. brassicae global occurrences in PCA 

transformed feature space of 11 variables selected according to presences in the non-aestivating class 

(n=2,206). (D) P. brassicae global occurrences in PCA transformed feature space of four variables 

selected according to presences in the aestivating class (n=35).  

A more systematic analysis was undertaken to check if the effect of the low prevalence 

aestivating class of presence points, could have been masked when prediction was 

performed using all presence points. Figure 5.6 shows the one standard deviation (SD) and 

two standard deviation (2SD) ellipses drawn with the mean centres for the aestivating, non-

aestivating and unclassed presences as the respective centre of the directional ellipses. 
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Figure 5.6: Distribution directional 1SD and 2SD standard deviational ellipses (SDE) derived from the centre means of aestivating, non-aestivating and 

combined presences of P. brassicae on the feature space of variables selected according to (A) non-aestivating presences (B) aestivating presences. Green stars 

show P. brassicae locations in New Zealand. 

Only the feature spaces constructed out of the variables selected based on the aestivating and non-aestivating class of P. brassicae presence points were used 

for the SDE analysis. The feature space constructed out of the variables selected based on the combined presence dataset (Figure 5.6-B) is not considered as it 

is very similar with the non-aestivating feature space. The long axes of the ellipses indicate the direction of the respective distributions.  
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The configuration of the different presence points on the feature space from variables 

selected based on the non-aestivating presences (Figure 5.6-A) show no proximity between 

the newly invaded New Zealand locations and P. brassicae presence points. The New 

Zealand locations were outside the 1SD and 2SD ellipses of the aestivating, non-aestivating 

and combined presence clusters in Figure 5.6-A. The second feature space (Figure 5.6-B) 

however, shows that the New Zealand locations were partially contained in the 1SD ellipse 

derived from the mean centre of the aestivating clusters and wholly contained in the 2SD 

ellipses of all three clusters. The 1SD ellipses of the combined presence points and the non-

aestivating points did not include any New Zealand points and was distinctly further from 

the 1SD ellipse based on the aestivating presences. 

Evidently, the feature space according to the aestivating presence points explained the 

environmental similarity between the invaded New Zealand locations and all P. brassicae 

points better than when all presences or just non-aestivating presences were used to select 

variables.  Moreover, the direction of the distribution of both presence classes was aligned 

with the newly invaded locations in New Zealand in the second feature space constructed 

with variables selected for aestivating presence points. 

Table 5.2. Circularity index of the directional standard deviational ellipses computed for the 

three types of presence data classes on two types of environmental variable feature spaces. 

Presence data 

class 

Feature 

space* mean x mean y 

σx 

(2SD) 

σy 

(2SD) rotation (θ) Ci 

aestivating 1 15.12 3.44 31.39 143.94 87.36 0.22 

non-aestivating 1 62.96 -51.19 190.85 89.74 95.12 0.47 

all presences 1 62.20 -50.32 191.10 90.88 95.71 0.48 

aestivating 2 52.14 83.97 53.57 73.87 49.03 0.73 

non-aestivating 2 -84.65 18.21 65.14 118.28 50.03 0.55 

all presences 2 -82.46 19.25 66.02 128.87 53.27 0.51 

*The Feature spaces one and two are made up of the 1st and 2nd principal components of the PCA 

transformed data of variables selected based on non-aestivating and aestivating presence points 

respectively. The shaded rows show ellipses that have higher directional (oblong) distribution, hence 

the low circularity index (Ci) index. The σx and σy are given as 2xSD divide the values by two for the 

standard distance (standard deviation) of the distribution according to x’ and y’ axes. 
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The circularity index for the ellipses of the presence dataset clusters tested is given in Table 

5.2. The direction of the different presence distributions on the two feature spaces shown in 

Figure 5.6 are indicated by the straight line drawn through the mean centre of the respective 

presence distributions inclined at the angle of rotation of the directional ellipse, this line is 

also the long axis of the respective ellipses.  

5.3.3 Model performance and muli-model comparisons 

For D. v. virgifera, according to model Kappa scores the models SVM and CART were 

selected for predictions of the native and invaded ranges respectively (Figure 5.7-A&B). Both 

of the best models selected for D. v. virgifera had acceptable area under the ROC curve scores 

(AUC > 0.7) (Figure 5.7). The minimum Kappa score from the best models was 0.7, which 

was within acceptable range to perform prediction.  

 

Figure 5.7: Performance of models trained based on presences from the native (A), invaded (B) and 

unclassed presences (all presences) (C) of D. v. virgifera populations 

NNET model scores were removed from the sub-plot (A) and (B) to make the graph easily readable as 

they were almost identical with the SVM predictions in both cases. The model predictions given for 

(C) are the exact results from the study in Chapter 2 and are shown here for comparison. The arrows 

show the models with the highest AUC and Kappa scores.  



153 

 

For P. brassicae, the Kappa scores of the models based on the unclassified presence points of 

P. brassicae (Figure 5.8-C) were close to the Kappa scores of the non-aestivating presence 

models (Figure 5.8-B). The scores for the aestivating presence models (Figure 5.8-A) was 

generally low. Considering only 1.5 % of the presence data was labelled for the aestivating 

class, the low model performance was expected. However, the best model selected for the 

aestivating presence models had an acceptable performance (Kappa=0.7, AUC = 0.7) 

allowing the prediction to be used for the final combined prediction. LOG and SVM were 

selected as the best models for the aestivating and non-aestivating presence classes 

respectively.    

 
Figure 5.8: Performance of models trained based on presences from the aestivating (A), non-

aestivating (B) and unclassified (all presence points) (C) P. brassicae populations. The arrows show 

the models with the highest AUC and Kappa scores.  

5.3.4 Combined predictions 

The combined prediction for both species was assessed using the test data that was used for 

the individual component models. Ideally, external validation data would provide better 

validation for such composite predictions. With external validation one can appropriately 

assess if distinct areas that were masked due to direct training on mixed component data 

were identified through separate modelling of these components. Because such data was 
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unavailable the validation using the same test data was done to check if the combined 

prediction has a comparable accuracy with the individual predictions.  

The overall accuracy (the ratio of correctly predicted presences and absences out of the total 

number of test points) and sensitivity of the combined prediction as well as the individual 

components for both species are given in Figure 5.9-A & B.  

 
Figure 5.9: Accuracy and Sensitivity scores for the combined prediction for both species using the test 

data from the component predictions (A) D. v. virgifera (B) P. brassicae.  

PP in the sensitivity score bars stands for predicted prevalence; the PP % was given both for global 

(G) and the high resolution New Zealand extent predictions (NZ).  

 

The global D. v. virgifera potential distribution prediction obtained when the SDM was 

trained directly on both native and invaded range presences is shown in 5.10-A. The global 

potential D. v. virgifera distribution prediction, which was the combination of the separate 

native and invaded range predictions is given in Figure 5.10-B.  

The global extent P. brassicae potential distribution prediction obtained when the SDM was 

trained directly on both aestivating and non-aestivating presences is shown in 5.11-A. The 

New Zealand extent P. brassicae potential distribution prediction, which was the 
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combination of the separate aestivating and non-aestivating population predictions is given 

in Figure 5.11-B.    

 
Figure 5.10: Global potential D. v. virgifera distribution (A) direct prediction (B) combined 

prediction 

(A) Shows the direct prediction result where the model was trained on presence points from both 

invaded and native range. The result was taken from the study in chapter 3, K-nearest neighbours 

(KNN) was the best model out of a seven model framework  for the D. v. virgifera potential 

distribution prediction using the 3-step pseudo-absence method (see Figure 5.7-C for the model 

performance results). (B) Shows the combined prediction obtained from two separate predictions based 

on the native and invaded range presences respectively. The numbered arrows show major differences 

between the two maps, Arrow 1- shows that the combined map predicted the Central American range 

as well as the invaded range in N. America and Europe, while the first map predicted only N. 

America and Europe. Arrow 2 shows that the over prediction of suitable areas for D. v. virgifera in 

the ice covered areas of Greenland in the first map is reduced when predictions are combined. Arrow 

3- Even though south eastern Australia was predicted as highly suitable in the three studies in this 

investigation it was not shown as a high probability for establishment in the combination prediction. 

Since the species has not reached that part of the world it is difficult to validate the large discrepancy 

for this region. However, the map of individual predictions (Appendix 5.1) show that the New 

Zealand prediction was influenced by the presences in the invaded range rather than the native range. 

Therefore for New Zealand it might be more useful to either use the direct prediction where models are 

trained on both native and invaded ranges simultaneously, or using presences in the invaded range.   
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Figure 5.11: Global potential P. brassicae distribution (A) direct prediction (B) combined prediction. 

(A) The global direct potential species distribution prediction for P. brassicae by the best model 

(SVM) that was directly trained on both aestivating and non-aestivating presences. Even though the 

model predicted the European P. brassicae range it did not include the newly invaded locations in 

New Zealand (better shown in Figure 5.12). The predictions for the invaded area in Chile and the 

Middle East did not also show adequate intensity (predicted presence probability (P) < 0.5).  (B) 

Prediction for P. brassicae based on the combined prediction of the aestivating and non-aestivating 

individual predictions. Note that there were more areas predicted as suitable in the Americas and 

Africa as well as Australia. The combined model predicted the occurrences in Chile (arrow no. 1), the 

Middle East as well as the newly invaded locations in New Zealand. Arrow no. 2 shows the invaded 

location in South Africa. The prediction for South Africa lies in a very limited spot in Cape Town 

same as the direct prediction above, indicating that the P. brassicae was introduced in an 

environmental suitability island where immediate areas are unsuitable for the species. This could be 

the possible explanation for the delayed spread of P. brassicae up wards into the continent. Arrow no. 

3 show high suitability areas in the Middle East that were not predicted in the first map.   
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The New Zealand extent P. brassicae potential distribution prediction obtained when the 

SDM was trained directly on both aestivating and non-aestivating presences is shown in 

5.12-A. The New Zealand extent P. brassicae potential distribution prediction, which was the 

combination of the separate aestivating and non-aestivating population predictions is given 

in Figure 5.12-B.    

 

Figure 5.12:  Potential P. brassicae distribution prediction for New Zealand (A) direct prediction (B) 

combined prediction 

The core distribution of the newly invaded location in New Zealand was not predicted by 

the model directly trained on both aestivating and non-aestivating presences (Figure 5.12-

A). The combined prediction however, has identified all the areas where the core and 

satellite populations of P. brassicae were located (see inset maps of Nelson city and the 

Tasman district of The South Island, Figure 5.12). The difference in prediction was large for 

The North Island where more areas were found suitable using the combined predictions 

(Figure 5.12-B).  The predicted presences from the direct and combined predictions were 

compared with true presences by plotting both on the environmental feature space (Figure 

5.13).  
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Figure 5.13 Comparison of predicted presences with true presences in the environmental spaces 

(A) Combined and direct potential distribution prediction for P. brassicae in New Zealand plotted in the feature space of variables selected according to non-

aestivating presences. (B) The same predictions plotted on the feature space of variables selected based on aestivating presences. The first feature space is also 

similar with the feature space obtained from variables of all combined presence points thus it is not given here. The fact that the direction of the maximum 

deviational ellipse is away from the predictions in the first map indicates that the variables used for this feature space were not the most appropriate for the 

presence dataset.  Feature selection models could select in appropriate variables if there is considerable noise in the dataset under study (Steyerberg et al., 

1999; MacNally, 2000). The use of a presence dataset with varying components (e.g. aestivating, non-aestivating) can be the reason for the selection of less 

appropriate variables in the case of the first feature space 
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5.4 Discussion 

Previous studies showed that correlative SDMs perform best as more presence data becomes 

available (Urban et al., 2007; Beaumont et al., 2009; Dupin et al., 2011). Additionally, 

geographical accuracy of the presence points have also been shown to affect SDM 

predictions (Rodda et al., 2011), hence there is a need for compromise between having a high 

quantity of presence points (locations) as well as making sure those points are accurately 

geo-referenced. The other factor that is closely associated with uncertainty in relation to 

presence datasets is sampling bias. Utilising bias grids for presence only models (Phillips et 

al., 2009) and limiting background data for pseudo-absence selection in presence-absence 

models (Lobo et al., 2010) have been suggested to overcome the effect of sampling bias in 

presence data.  

In this study, I have shown that there is another factor that could affect SDM predictions in 

relation to presence data. The ideal presence dataset has abundant presence points, accurate 

geographic references and is devoid of sampling bias or it is corrected for presence sampling 

bias. However, even then, high variation between presence points associated with local 

environmental adaptation by a specific population of the species could lead to over- or 

under-prediction of the potential distribution of the species under study.  

Modelling mutli-modal data is a well-researched subject and is not a new consideration 

(Ashman et al., 1994; Ahmed et al., 2008). In case of mutli-modality, mixture models that each 

explain the distinct components of the data are usually used for modelling (Chen & Li, 

2009). Species distribution modelling studies however usually assume species presence 

points can be explained by unimodal density distributions (Austin, 2007). And this usually 

could be the case as many species are present in locations which are environmentally 

similar.  

On the other hand, invasive species are successful establishing populations in their new 

habitats often because of higher environmental adaptation abilities compared with their 

non-invasive counterparts. As a result the invaded range of an invasive species does not 

necessarily have to be similar to the native range. Therefore, it is important to investigate the 

possibility of mutli-modality in presence data especially if a species distribution model fails 

to predict areas where the species is known to occur either through field data or when their 
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presence is assumed due to evolutionary reasons. Most machine learning models can handle 

such mixture component datasets, however if they are not parameterized appropriately the 

ability of the models to handle such data will not automatically deliver a higher accuracy in 

predictions of presence data that is multi-modal.   

5.4.1 Investigating multi-modality in presence datasets 

5.4.1.1 D. v. virgifera 

In the D. v. virgifera case study, a pre-determined number of clusters (K=2) was used for the 

cluster analysis to detect whether there was bimodality in the D. v. virgifera presence dataset 

according to the native and invaded range of the species. Such supervised clustering with a 

user defined number of clusters has less uncertainty if the source of variation in the presence 

dataset is already known and predictors that accurately describe the variation are chosen.  

For D. v. virgifera presences there were two distinct peaks according to the parameters from 

the two clusters (Figure 5.4) but possible additional multi-modality in the data could be 

further investigated in future studies when more presence points are available. Such 

investigation is essential as previous genetic studies on D. v. virgifera invasion of Europe 

(Hummel et al., 2008- & references within) reported that D. v. virgifera populations have 

undergone remarkable adaptations in Europe. Therefore, it is important to check if the 

reported adaptations are environmentally distinct and whether that can create further 

distinction between the N. American and the Europe presences for SDM modelling. 

However, a larger number of presence points are needed to avoid false modes in the dataset 

introduced due to spurious fluctuations caused by the lack of data. 

 On the other hand unsupervised clustering could give a unique opportunity to investigate 

unknown variation in presence data (Jain et al., 1999). Since the predictors that best explain 

the unknown variation cannot be pre-determined, a robust dimension reduction method as 

well as cluster number optimization might be necessary. It is also important to acknowledge 

that there are uncertainties with clustering data regardless of the clustering method used 

especially if there are not enough presence points to characterise any possible distinct 

components in the dataset. 
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5.4.1.2 P. brassicae  

Some populations of a species could develop certain environmental adaptations that allow 

them to occupy geographical areas that are distinct from the rest of the population. Such a 

scenario is one possible way multi-modality can occur in a presence dataset, as presences 

taken from the uniquely adapted populations will have environmentally different values 

than the rest of the presences.  This type of variation is difficult to detect unless prior 

information is available. For example, availability of information on the aestivating 

population of P. brassicae in this study made it possible to identify the distinct components in 

the presence data. Although while testing a different hypothesis, Stockwell and Peterson 

(2002) also reported that by separately modelling populations of Mexican birds artificially 

divided through a given latitude and combining the results gave high prediction accuracy 

than when they used the whole data.  

The second case study of the aestivating population of P. brassicae in this thesis is a good 

example of variation in presence data due to biological adaptation. Detecting variation in 

presence data due to a distinct biological trait is more complicated. The unique response to 

different environmental conditions might be subtle and could be a result of unique 

interactions between environmental variables instead of direct responses to selected 

variables. Care should also be taken not to mistakenly analyse biological trait adaptations 

due to biotic factors as a result of abiotic factors.  

The example given in this study is a borderline case where the reported aestivation in a 

specific population of P. brassicae has been suggested to be caused by either the need to 

avoid parasitic attack or to synchronize with populations that go into a lengthy winter 

diapause in the colder northern Europe range of the species (Spieth et al., 2011). However, it 

was suggested in the same study that the trait could also be attributed to the warmer and 

longer photoperiod environmental conditions in Southern Spain that facilitates a high 

number of generations per year for the species. This means that the time spent in aestivation 

to avoid parasitism is less costly because sufficient generations are produced even with the 

time lost for aestivation in this warmer environment, compared with the colder ranges of the 

species. In other words, a possible abiotic factor for the development of the trait.  
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5.4.2 The effect of variable selection 

It is important to understand the impact of variable selection on the interpretation of the 

underlying environmental space shared by presence points that are assumed to represent 

suitable environmental conditions for a species. The potential geographic distribution of any 

species is a function of this common environmental space at least in terms of the 

assumptions of correlative modelling (Elith & Leathwick, 2009; Austin & Van Niel, 2011).    

Therefore, working with the most appropriate variables for a given species is as important 

as identifying any cause of variation within presence data. For example, according to the 

directional SDE analysis (Figure 5.6) the aestivating presences of P. brassicae were 

significantly further from the majority of the remaining presence data when plotted in a 

feature space constructed out of variables selected according to the aestivating presence 

locations, however this discrimination was not visible when the various presence data 

classes were plotted either in a feature space constructed of variables selected based on the 

unclassified presence points or non-aestivating presence points.  In fact, the directions of the 

maximum standard deviations (indicated by the long axes of the SDEs) of the respective P. 

brassicae classes  show that the distribution direction of the aestivating presences is different 

from the non-aestivating presences when projected on environmental space derived from 

variables selected according to all presences or non-aestivating presences. This result 

signifies that variables selected based on the non-aestivating or the combined presence data 

would not have characterised the information within the aestivating presence locations. That 

result implies an effective masking of the contribution from the aestivating presences during 

direct modelling predictions.  

 On the contrary, the SDEs in the feature space based on variables selected according to 

aestivating presences, show that: 1) the maximum standard deviational direction is similar 

for all presence points, showing that any of the environmental conditions between 1SD and 

2SD, SDEs are likely to be occupied and the fact that the species is not in equilibrium, 2) that 

the newly invaded New Zealand locations were perfectly aligned within the standard 

deviational direction of distribution of both presence data classes as well as the overall 

presence data distribution, where it is contained in the 2SD SDE of both aestivating and non-

aestivating presence classes (Figure 5.13-B).  
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SDE ellipses were shown to be predictive when assessing appropriate environmental 

variables for P. brassicae. All the predicted presences from the direct prediction for New 

Zealand (no presence data classes) fell into the 2SD ellipse of all presence data classes. And 

all the predicted presences from the combination model fell in either of the ellipses of the 

aestivating, non-aestivating or unclassed presences (Figure 5.13-B). That shows that some 

areas in New Zealand were only predicted by the combination prediction and would have 

been missed if the direct model that is trained in all presences was used. Testing the use of 

the SDE with more species presence data of known within variation is recommend before 

the method can be accepted as a general variable selection optimization tool.  

Another important point to be made on the use of SDEs for such analyses is that the 

variables might have complex and non-linear interactions, and since SDEs are based on a 

linear statistics they may not be appropriate for all cases. However, an effective method 

could be to use a non-linear PCA or other non-linear dimension reduction methods that 

constructs the feature space using different non-linear functions instead of the direct linear 

relationship assumed in the PCA. Then one could undertake the SDE on the resulting 

feature space.  

Provided that a statistical method rather than expert knowledge is used to perform variable 

selection from the provided predictor data, the type and number of variables selected 

entirely depends on the training dataset and the algorithm used for variable selection. That 

also means that the composition of the training dataset (presence and absence points) 

directly affects the variables chosen. If there are mixed components within the presence data 

that are likely to be explained by significantly different environmental variables as shown in 

this study, it is important to subscribe the appropriate variables for each component by 

separately considering the various presence data groups that correspond to a distinct 

population of the species.   

Morency et al. (2010) provided an interesting methodology on joint feature selections for 

multi-modal data in their study that was designed to provide better human-virtual 

interaction systems. Such a process could be applied for joint variable selection in multi-

modal presence datasets that compare the variables selected for the individual component 

presence data classes with the unclassified presence data to build a variable set that can 
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jointly explain all components. Such variable selection could be an alternative to modelling 

the components separately and combining predictions. But more studies need to be 

conducted to verify if the jointly selected variables effectively predict areas that would have 

been predicted if the components were individually modelled.  

5.4.3 Combined predictions 

A simple rule was set to combine the different component predictions based on the distinct 

presence data components identified from D. v. virgifera and P. brassicae presence datasets. 

Proceeding with predicting the potential distribution of the species according to the 

different components within the presence data separately, and combining the results later is 

the simplest and probably the most straight forward method for dealing with mixed 

component presence data.  

However, the rules used to combine the component predictions could be a source of 

considerable uncertainty as there was no unified performance measure to apply to the 

combined predictions. For example, the rule to combine the component predictions in this 

study was set in a such a way that the majority presence data component is given 

precedence when it comes to assigning values to the final combined prediction and 

whenever the major component failed to predict an area the alternative component was 

used to assign prediction values. This rule maximizes sensitivity of the combined 

predictions which means more environmental variation will be accounted for, compared to 

individual component predictions. It unfortunately also leads to a low specificity which 

introduces significant commission error in the combined prediction compared to the 

individual component predictions.  

The comparison between the direct prediction and the combined prediction based on model 

sensitivity and overall accuracy showed that the direct prediction had better scores (Figure 

5.9). Which means for the global extent the direct prediction performed well. However, The 

combined P. brassicae potential distribution prediction correctly identified the invaded 

regions in New Zealand and Chile (where P. brassicae is confirmed to be established, but for 

which there were no presence points included in the training and test datasets).  
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These externally predicted presence locations compelled me to investigate the combined 

prediction further. One reason for the low model performance of the combined models 

could be the test data used in the assessment. The presence and pseudo-absence points used 

to test the individual component models were also used for the combination model. While 

the presence test data does not pose any problem, the pseudo-absences however can impose 

a very conservative measure for the combined prediction. This is because it is highly likely 

that pseudo-absences generated for the aestivating population could encompass non-

aestivating presences and vice versa. Therefore, a subset of the pseudo-absences generated 

for the individual components might include presence points in the combined prediction 

leading to lower overall accuracy. Such drawback can be avoided by setting aside a 

percentage of presence points from all identified components as a test dataset for the 

combined prediction, which means these data points should not be used either as a training 

or test data for the individual component predictions. In this study, it was not possible to set 

such data aside as one of the components had very few points.  

Mixed component modelling is a new practice in SDM analysis, therefore an in depth study 

and analysis is required to develop sound mixed model evaluation methods to confidently 

compare direct and combined predictions and decide the better choice case by case, as the 

choice is likely going to depend on the species data and study extent. In case of this study it 

is clear that the combined prediction gave better information regarding suitability of New 

Zealand to Pieris brassicae.  This is further shown in the SDE analysis (Figure 5.6 A) where 

the invaded area in New Zealand would not have been predicted in the direct prediction 

because those locations were closer to the aestivating P. brassicae population presences 

which were left as outliers in the direct prediction.  

The use of mechanistic models that depend on independent physiological limits as a test 

system to validate correlative SDM predictions has been suggested in a number of studies 

(Kearney et al., 2008; Monahan, 2009; Aragón et al., 2010; Buckley et al., 2010). Clearly, 

however the physiological limits need to be known and established by experimentation, 

which is not the case for many invasive insect species. 

When physiological limits of a species are known, it may be especially important to validate 

such combined predictions using physiological environmental thresholds of the target 
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species, as it is often the areas where the species is not currently established that are likely to 

contribute to most of the uncertainty in correlative SDM results and particularly in 

combination prediction results such as demonstrated in this study. For instance, when the 

combined global potential distribution of P. brassicae in this study was compared to the 

prediction obtained by training models directly on both aestivating and non-aestivating 

population presences (Figure 5.11), the core distribution of P. brassicae in Europe is predicted 

similarly in both cases.  For areas away from the P. brassicae native range the combined 

prediction identified more suitable areas. For example, in the American and African 

continents, and more locations in Australia and New Zealand (Figure 5.11-B). 

There was no information to validate some areas predicted in the combined prediction, for 

example in Africa and North America. A number of questions need to be answered to 

validate these new predictions that were not identified with the direct model prediction.  

Such as, are these new predictions a result of high commission error? Or a result of 

unmasking the effect of the aestivating presences which were not considered in the direct 

predictions? Or can it be a combination of both factors suggested above? Such questions can 

only be answered if the species is introduced into these areas, or mechanistic models based 

on physiological thresholds are used to independently verify the discrepancy in predictions. 

Meanwhile, the SDE analysis of the P. brassicae presence components in the various feature 

spaces as well as the improved prediction of the locations where this species has invaded in 

New Zealand, with the combined model, suggests that within-presence data variation can 

affect over all potential species distribution predictions.  

5.5 Conclusion 

It is often difficult to decide if species presence data contains data representing sub-

populations adapted to different environmental conditions. Often the presence data that is 

generally available for most invasive species is limited. Even if multi-modality is observed 

during data exploration, if the presence data is composed of too few presence points, the 

apparent multi-modality could be a result of spurious local maxima that are caused by the 

lack of data, rather than explaining the true nature of the species density curve. Even more 

confusing, even if a dataset has abundant points, distinct variation among different 

populations of a species could still be masked if the appropriate variables that explain that 
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variation are not used to investigate the data. Statistically, heterogeneous populations with a 

mixture of two distinct components might not necessarily become bimodal (Holzmann & 

Vollmer, 2008), whereas two components of a homogenous population could have more 

than one mode due to lack of data.  

Therefore, it is important to develop a credible background about the species biology, 

geography and other environmental associations before assuming bimodality in presence 

datasets. Otherwise, extra steps taken to pre-process distinct presence data components 

could cause data dredging at worst or simply complicate a species distribution modelling 

process unnecessarily. Moreover, such split predictions followed by combination of 

component predictions is likely to over-predict potential species distributions due to 

increased commission errors, which might be overly maximized if a unimodal distribution is 

unnecessarily assumed to be bimodal.  

Despite all that, species could adapt to a new habitat either though specialized biological 

traits like diapause (Spieth, 2002) or by forming new symbiotic, host or predator-prey 

relationships with other species (Altieri et al., 2010), or simply acquiring higher tolerance to 

new environmental conditions outside their native range (Lee, 2002).  Therefore it is 

important to carefully investigate response curves of the presence sample dataset of any 

species before performing species distribution modelling (Sangermano & Eastman, 2007). 

Such data investigation helps reduce the possibility that certain populations of the species 

represented by some of the presence locations have evolved a micro-niche that might not 

apply to all members of the species.  This is especially true, if areas where the species is 

known to occur is not appropriately predicted through the usual direct modelling methods 

or if there is biological/ biogeographical evidence that shows that the species have 

populations that occupy environmentally distinct areas from the rest of the population.   

If a heterogeneous population in terms of adaptation to different environmental conditions 

is represented in species presence data, the contribution of one or more of these distinct 

populations towards the total potential distribution of the species could be masked due to 

combined processing of all the presence locations.   In such cases, it is advisable to model the 

distinct components of the presence dataset separately and combine the predictions using a 

set of rules that maximize a selected performance measure depending on the objective of the 
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study. Additionally, more complex rules can be set to consider multiple performance 

measures. For example, predictions can be weighted according to the individual component 

sensitivity, specificity, Kappa, AUC or other model performance scores.   

It is also possible to use complex models that consider multi-modality in a presence dataset. 

Modular associative neural networks have been reported to handle multi-modal datasets 

satisfactorily (Crepet et al., 2000). However since these have not been covered in this study I 

can only recommend more research of this aspect, as such models could avoid the need for 

individual component predictions and facilitate a direct combined predictions for multi-

modal presence data as is done in most species distribution modelling.  
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Chapter 6 

 

 

6. Hybrid species distribution modelling  

6.1 Introduction 

A number of improvements to species distribution models including the ones proposed in 

the preceding chapters have been suggested to increase their prediction accuracy (Stockwell 

& Peterson, 2002; Elith et al., 2006; Chefaoui & Lobo, 2008; Wisz & Guisan, 2009; Kampichler 

et al., 2010; Warton & Shepherd, 2010; Lorena et al., 2011; Barbet-Massin et al., 2012; Senay et 

al., 2013). The continued effort to improve the methods used for modelling species 

distributions (Araújo & Guisan, 2006; Venette et al., 2010), is essential as these predictions are 

often used to inform researchers and decision makers where species are likely to establish a 

viable population and where they may not (Hannah et al., 2002; Guisan & Thuiller, 2005).  

However, there are thresholds beyond which results from SDMs cannot be reliable, 

especially when used to predict species distribution under future climate scenarios (Sinclair 

et al., 2010). Correlative models assume that environmental values observed at the sites of 

current presence of a given species can be used as proxy measures of physiological 

suitability of that area for that species (Guisan & Zimmermann, 2000; Austin, 2007). 

However, when these models are used to project the observed environmental data onto new 

environmental ranges or in a future climate scenario there is no evidence the above 

assumption may hold. Physiological response of species to a set of environmental conditions 

in their current environment might not remain constant over extreme changes in space or 

time (Monahan, 2009; Araújo & Peterson, 2012). Therefore, when it comes to projecting 

species distribution onto new environmental ranges, especially under future climate 
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scenarios, it is necessary to further investigate physiological limits of the species in order not 

to extrapolate (Helmuth et al., 2005; Elith et al., 2010; Diamond et al., 2012). 

Mechanistic models are offered as an alternative to correlative models for more precise 

prediction of species distributions without the need for occurrence data. There is much 

evidence in the literature that shows mechanistic models predict new environmental ranges 

into which species might expand better than bioclimatic envelope models (Helmuth et al., 

2005; Kearney, 2006; Elith et al., 2010). These models range from sophisticated process based 

models that may account for nutrient intake, energy balance, food web interaction (Buckley 

et al., 2010), to models that only require the physiological or developmental limits of the 

species measured in terms of environmental conditions that directly affect survival 

(Monahan & Tingley, 2012). Some of the direct environmental variables used in the latter 

models include temperature thresholds, relative humidity level, soil moisture and 

photoperiod.  

Mechanistic models, however also have some shortcomings. First, a number of species 

specific biotic parameters are required to run these models and this information might not 

be readily available.  Second, environmental thresholds used in model construction might 

not be the exact limiting factor in the field as interaction between various other proxy 

environmental, geographical or climatic factors could modify the target environmental 

variable. This is because values used to calibrate mechanistic models are usually direct 

measurements often taken in a laboratory under a controlled experiment (Buckley et al., 

2010).   

Potentially, these two modelling techniques could complement each other. For example, the 

limitations of the correlative model to identify areas with environmental conditions which 

are already in the existing physiological tolerance of the species, but are not realized in the 

current landscape could be covered by predictions from mechanistic models (Morin & 

Lechowicz, 2008). On the other hand, the limitation of a mechanistic models to appropriately 

calibrate environmental variables to correspond to physiological limits of a species can be 

complemented by correlative models that can utilize numerous variables, which allows 

them to provide good explanatory power to understand which environmental variables 

limit the species’ distribution.   
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Figure 6.1: Potential species distribution prediction according to correlative, mechanistic and hybrid 

species distribution modelling methods.  

(A) Represents the portion of the species range for which there is no occurrence data; (B) Represents 

the portion of the species range where occurrence data is available; (C) Represents  a new 

environmental range into which the species is expanding. Black dots show occurrences in known 

environmental ranges and red dots show occurrences in newly invaded ranges. (D) prediction by 

mechanistic models; (E) prediction by correlative models with occurrence data only in the existing 

known environmental range of the species (F) prediction by correlative models with complete 

occurrence information; (G) Hybrid model predictions shown either as (D+E) or (D+F) depending on 

the type of occurrence data available.  This diagram shows the higher probability of covering more of 

the species range in hybrid predictions than when mechanistic or correlative models are used 

separately. 

This suggests that even more accurate species distribution predictions are possible by 

combining these modelling methods instead of their individual use. This idea of using a 

hybrid correlative and mechanistic species distribution modelling has been proposed by a 

number of previous reviews and studies (Kearney & Porter, 2009; Elith et al., 2010; Nabout et 

al., 2012).  

6.1.1 Case study: Prediction of the potential distribution of P. brassicae using a hybrid model 

Further validation of the potential distribution prediction made for P. brassicae in Chapter 5 

was necessary to evaluate if the suitable areas identified in New Zealand were correctly 

predicted. Ensuring accuracy of the predictions was needed because the suitability map was 

to be used for an eradication simulation study reported in the next chapter (Chapter 7). Pieris 

brassicae has recently invaded New Zealand (Kean & Phillips, 2013b) where an eradication 
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process has already been implemented in the area where it established (Kean & Phillips, 

2013d).  

A number of interesting results about the distribution of P. brassicae were obtained from the 

combined component prediction in Chapter 5. For example, the suitable areas in the north of 

New Zealand, the south of Australia and northern areas of the South American continent 

were only predicted with the modelling method that accounted for variation within 

presence data. In this chapter a hybrid model was used to investigate if these areas were 

over-predicted or if they were correctly identified suitable habitats.  

Most hybrid model studies are based on cases where there is sufficient biotic data to develop 

mechanistic models, and the results from these mechanistic models can be used in the 

process of developing a correlative model (Kearney & Porter, 2009; Elith et al., 2010; Nabout 

et al., 2012). However, in cases where there is no sufficient biological data, it is important to 

design a mechanistic approach that requires as few biotic parameters as possible. Because it 

requires minimum parameterization a generalized mechanistic niche modelling method 

proposed by Monahan (2009) is adapted to construct the hybrid model used in this study.   

6.2 Methods 

The eighth objective of this thesis was to evaluate the benefits of a hybrid prediction from a 

correlative model and a simplified mechanistic model as a suitable framework to facilitate 

improved correlative species distribution predictions. Accordingly, the methods developed 

to produce a global and New Zealand extent hybrid prediction of potentially suitable areas 

for P. brassicae are given below.  

6.2.1 Simple Generalized mechanistic niche model framework 

6.2.1.1 Physiological data 

Thermal thresholds that directly affect the physiology of Pieris brassicae were obtained from 

the literature (Table 6.1). Lethal and optimal temperature thresholds corresponding to 

survival and reproduction of Pieris brassicae respectively were used to identify the 

fundamental thermal niche and other physiologically important thermal ranges of the 

species both globally and for the New Zealand extent.  
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Table 6.1: Lethal and optimal thermal thresholds of Pieris brassicae used in the study 

No.  Parameters Values Source 

1. Upper lethal temperature (ULt)  40◦C (Wigglesworth, 1945); (Feltwell, 1982) 

2. Lower lethal temperature (LLt) -26.4◦C (Sømme, 1967);  

(Hansen & Merivee, 1971) as referred by 

Turnock and Fields (2005);  

3. Realized thermal range (RTR)* -20◦C to  28 ◦C (Klein, 1932) as referred by Feltwell 

(1982);(David & Gardiner, 1962) 

4. Highly suitable thermal range  (HSTR)ⱡ 10◦C  to 26◦C Koehler and Geisenhoffer (2012) 

 *RTR -this thermal range is based on the winter (January) and summer (July) isotherm of P. 

brassicae reported by Feltwell (1982) ⱡHSTR-this thermal range gives the optimum laboratory 

thermal range in which P. brassicae reproduction is maximized and diapause period is minimized. 

The lower lethal temperature used in this study was -26.4 ◦C as recorded by Sømme (1967) 

for a diapausing pupae. However, it is important to note that, even the non-diapausing 

pupae was reported to have a super cooling point of -21.4 ◦C, that indicates  the general high 

tolerance of P. brassicae to low temperatures (Pullin & Bale, 1989; Pullin et al., 1991).  

The realized thermal range (RTR) described in Table 6.1 is the temperature range in which 

Pieris brassicae can persist at a location as these isotherms have been consistently reported to 

describe the presence of P. brassicae in the northern hemisphere  (Klein, 1932; Feltwell, 1982). 

The temperature range given as highly suitable (HSTR) is the range within which Pieris 

brassicae was observed to have the highest number of generations, low egg mortality and 

minimum days for completion of the pupal stage (David & Gardiner, 1962; Koehler & 

Geisenhoffer, 2012). 

6.2.1.2 Climate data 

A 50 year average global maximum and minimum temperature data at 10” resolution was 

accessed and downloaded from the WORLDCLIM website (Hijmans et al., 2005b). The 

maximum and minimum temperatures of the coldest and warmest months were calculated 

using Cell statistics function of the ArcGIS (ESRI, 2010) spatial analyst toolbox. Similar 

analysis was done for a higher resolution 30’ New Zealand extent WORLDCLIM dataset. 

The four derived variables used in the generalized mechanistic niche model are given in 

Table 6.2. 
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Table 6.2: Variables used in the generalized mechanistic niche model 

No.  Variables and parameters Derived from Source dataset 

1. Minimum temperature of the coldest month  Minimum monthly temperature WORLDCLIM* 

2. Maximum temperature of the coldest month  Maximum monthly temperature  WORLDCLIM 

3. Minimum temperature of the warmest month  Minimum monthly temperature WORLDCLIM 

4. Maximum temperature of the warmest month  Maximum monthly temperature WORLDCLIM 

* http://www.worldclim.org/ ; (Hijmans et al., 2005b) 

Determining a generalized lethal temperature for a species that has a varied threshold for 

each of its different life stages is difficult. This complication can be easily handled by using 

independent thresholds in process based ecophysiological (Kearney et al., 2008), 

phenological (Yan et al., 2000) or food web models (Pimm & Rice, 1987). However, for 

generalized mechanistic niche models such as employed in this study it is important to 

carefully incorporate certain assumptions to use a single value for the species.  The 

following two sections discuss aspects of the biogeography of Pieris brassicae that are 

considered in order to use the extreme thermal thresholds reported for the species.  

6.2.1.3. The realized historical and current geographical distribution of Pieris brassicae 

Pieris brassicae has been reported to occur in extremely harsh temperature conditions 

(Sømme, 1967; Feltwell, 1982). Early occurrence records of the species show its presence in 

temperature conditions as low as -22.5 ◦C  in its pupal life stage (Bonnemaison, 1965).  In 

contrast, Pieris brassicae has also been recorded in warm climate countries like Syria, 

Lebanon, Israel and Morocco (Feltwell, 1982). The species is known to have a typical 

Palaearctic distribution prior to its introduction to Chile (Kellner & Shapiro, 1983), South 

Africa (Gardiner, 1995) and recently New Zealand (Kean & Phillips, 2013b). Forty one 

geographical locations where Pieris brassicae is present, some reported as early as 1874 

(Dubois & Dubois, 1874), were obtained from  Feltwell’s (1982) review. The forty one 

presences were used to construct the historical presences of the species. Overlaying the past 

presence records with the current occurrence distribution obtained from GBIF (Figure 6.2) 

revealed that the species still exists in locations with the temperature conditions given in the 

early publications above. The establishment of the species in these locations is regardless of 

the fact that the temperatures experienced in these areas are known to be too harsh, for some 

life stages of the species. Especially for the early instar larvae and the ova. Clearly, life cycle 

phenology and adaptation is very important in these areas. Because of such a long term 

http://www.worldclim.org/
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record of the establishment of the species in such areas, it is apparent that the species niche 

must have a dynamic geographic representation that follows a seasonal gradient as well as a 

biological adaptation that allows it to survive such conditions. 

 
Figure 6.2: Global presence of P. brassicae. Data courtesy of GBIF 

 Yellow areas represent all the 103,059 points accessed from GBIF, black dots represent the 2,241 

points used in this study. The New Zealand presence points are not shown here. 

6.2.1.4 Biological traits of Pieris brassicae allowing survival in harsh environmental conditions 

Pieris brassicae has three major mechanisms allowing it to survive harsh environmental 

conditions which are all partially associated with temperature. The first mechanism is winter 

diapause (hibernation) and this is employed throughout the Pieris brassicae range (Spieth, 

2002). However, longer diapause associated with fewer generations are observed in the 

colder ranges, mostly above northern France (Held & Spieth, 1999). Although, winter 

diapause is commonly used to escape harsh winter conditions, it is activated by the 

combined effects of shorter photoperiod with low temperatures (Spieth, 2002).  The second 

survival mechanism used by Pieris brassicae is migration and this is usually observed 

throughout its distribution (Spieth & Cordes, 2012). The third mechanism is summer 

diapause (aestivation) and this is observed in its warmer ranges of southern Spain, Portugal 

and Northern Africa (Held & Spieth, 1999). While aestivation by Pieris brassicae was first 

reported by Larsen (1974) in Lebanon, there are no subsequent publications or research that 
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shows that this is the case for the population in Lebanon. There has been no conclusive 

research that shows why this adaptation is necessary for the populations in Spain and 

Portugal except the theory that this adaptation may have been sourced from the North 

African Pieris brassicae populations (Hubert Spieth, personal communication October 10, 

2013), and even then it does not explain why the Spanish/Portuguese populations developed 

aestivation as opposed to the widely used method, migration, to escape high temperatures 

in its other warm climate ranges like in Israel and Iraq. According to a phenological 

modelling study carried out by Kean and Phillips (2013d), there is a possibility that the 

newly introduced P. brassicae population in Nelson, New Zealand also aestivates. However, 

further field study is needed to confirm this result.  

6.2.1.5 Constructing the seasonal niche of P. brassicae  

By considering the historical information on the realized distribution of the species (Sec-

6.2.1.3) together with, the survival mechanisms Pieris brassicae uses to survive in its varied 

environmental range (Sec-6.2.1.4) one can make two assumptions. First, the most vulnerable 

life stages of Pieris brassicae avoid the coldest temperatures that are realized in their 

geographical range due to winter diapause. Therefore, using the lowest lethal temperature 

recorded for the pupal stage will identify the fundamental niche of Pieris brassicae without 

risk of overestimating the niche boundary. Second, vulnerable life stages avoid the hottest 

temperatures in their range by either migration or sometimes aestivation. Therefore, the 

highest upper lethal temperature will allow the higher temperature bounds of the 

fundamental niche to be characterised. Using these extreme thresholds on record allows 

characterisation of seasonal niches of P. brassicae even if they migrate or stay in diapause and 

therefore not always occupy it. 

Accordingly, the upper and lower lethal temperature thresholds (Table 6.1) were used to 

model the Pieris brassicae fundamental niche by relating them to two major seasonal 

temperature events.  These are the minimum and maximum temperature of the coldest 

month and the minimum and maximum temperature of the warmest month. The  

temperature within the upper and lower lethal temperature of a species was used to 

construct fundamental thermal niche of the species (Monahan, 2009; Monahan & Tingley, 

2012). 
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Figure 6.3: The seasonal thermal potential niche of Pieris brassicae bounded by the upper and lower 

lethal temperature thresholds and its geographic projection 

 (A) and (C) show the potential thermal niche of Pieris brassicae in the warmest and coldest months 

in a thermal feature space. Green stars show the recently invaded New Zealand locations in the 

thermal feature space. (B) and (D) show the geographic projection of the potential niche bounded by 

the lethal temperature thresholds in the warmest and coldest months respectively. Yellow dots show 

the global occurrence data. Black arrow points to occurrences recorded outside the lethal thermal 

thresholds. Note: geographically referenced locations for the well-established populations in Chile and 

the recent invaded region in New Zealand are not provided in the occurrence dataset, hence are not 

shown here.  

However, not all temperatures within the upper and lower limit of the species exist in the 

climate space where the species occurs. Therefore, temperature thresholds obtained from the 

literature were intersected with the climatic space available in the study area to identify 

parts of the fundamental niche that are found in the current climate space. This portion of 

the fundamental niche is known as the potential niche (Monahan, 2009).  

Two different realizations of the potential niche were obtained (Figure 6.3) by intersecting 

the temperature thresholds with two extreme temperature events manifested in the Pieris 

brassicae range, the warmest and coldest months of the year. This demonstrates the dynamic 



178 

 

nature of Pieris brassicae niche that is alternatively occupied by migrating populations and/or 

diapausing populations.  

6.2.1.6 Accounting for mobility to unify the seasonal niches of P. brassicae 

The seasonally variant suitable areas for the warmest and coldest months respectively (from 

Figure 6.3-B&D) were overlaid to identify the disconnection between the seasonal niches. 

This approach was proposed in order to eliminate any identified suitable areas that are only 

suitable in either the hottest or coldest month and are not close enough to suitable niches for 

the Pieris brassicae populations to immigrate. The distance allowed between the two 

seasonally suitable areas was 200 km. This distance was chosen by taking the minimum of 

the distance range (200 - 400 km) reported for migrating Pieris brassicae based on a 14-day life 

span (Spieth & Cordes, 2012). Accordingly, all areas either identified as suitable during both 

the coldest or warmest months, or areas that are only suitable during the coldest or warmest 

months but are within 200 km of a suitable area were selected as a part of Pieris brassicae 

potential niche (Figure 6.4).  

 
Figure 6.4: The global thermal potential niche of Pieris brassicae. 

6.2.1.7 Characterising the fundamental and potential niche of Pieris brassicae 

The fundamental and potential niches and other relevant thermal ranges found from the 

literature were defined (Table 6.3) on the thermal feature space constructed from two 

computed thermal variables. The variables were temperatures of the maximum warmest 

month and the minimum coldest month. These variables were capped according to the 
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seasonal thermal suitability and mobility assumptions incorporated in 6.2.1.5 and 6.2.1.6, to 

characterise the potential niche based on areas that are either suitable for P. brassicae or allow 

it to persist through diapause or migration. Accounting for migration was achieved by 

including seasonally suitable areas within 200 km of suitable areas (The “all year” area 

obtained from Figure 6.4).  

Table 6.3: Definitions of the various thermal niche fractions calculated for P. brassicae 

Name Abbreviation Definition 

FN Fundamental niche A hypothetical thermal space defined by the upper and lower 

lethal thermal thresholds of P. brassicae. (Table 6.1) 

PN Potential niche A portion of the fundamental niche (FN) that is available in 

the current climate space. Additional consideration of mobility 

of the species is incorporated in defining the potential niche in 

this study by matching areas within a geographical range of 

200 km to a suitable area so that the potential niche is made of 

the thermal range in which P. brassicae could persist, either 

because it is suitable (within FN) or because it is within a 

range of 200 k, of a suitable thermal range, for the seasons 

temperatures are unsuitable for P. brassicae. 

UFN Unutilized fundamental thermal niche Thermal combinations that are not realized in the current 

climate space in the study area (obtained by subtracting the 

potential niche from the fundamental niche) 

UCCS Unutilized current climate space Areas that are unsuitable to P. brassicae due to temperatures 

outside the lethal limits of P. brassicae (outside of the FN&PN) 

RD' Projected realized distribution The projection of the thermal values extracted at the presence 

points of P. brassicae on the thermal feature space, used to 

estimate the unfilled potential niche of P. brassicae with regard 

to its current locations. 

RTR Realized thermal range The projection of the isotherms within which P. brassicae was 

reported to occur in early literature. (Recovered from the 

review of P. brassicae natural history by Feltwell (1982)) 

HSTR Highly suitable thermal range A thermal range reported to be optimal for maximum P. 

brassicae generation in a year as well as the minimum time 

spent on diapause. (Table 6.1) 

The relative areas of the various niches in the thermal feature space were calculated. The 

areas were later used to assess how many of the predicted presences from the correlative 

model fall within the thermal niche of P .brassicae.  

The area of the fundamental niche was calculated with a precision of 0.1 ◦C. The total 

fundamental niche space in ◦C2 is calculated using eq 6.1. 

𝐹𝑁 = ( 𝑈𝐿𝑡 − 𝐿𝐿𝑡 )2  ×  0.5 − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − 𝑒𝑞 6.1 

Where ULt = Upper lethal temperature & LLt = lower lethal temperature 

The area of the PN, RD’, RTR and HSTR were obtained by multiplying the number of cells 

that fall within each category by the cell resolution of the thermal dataset which is 0.1 ◦C. 
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Niche fractions were calculated by dividing the various niche types (Table 6.3) by the 

potential thermal niche (PN) of P. brassicae.   

6.2.1.8 Deriving physiological suitability surface from the potential niche 

While it is difficult to accurately characterize a species niche with only thermal data, it is 

possible to assume that a species will fill the optimum thermal range before occupying the 

marginal thermal range in their potential niche, as long as there is no physical barrier that 

prevents the species from doing so (Hutchinson, 1957; Araújo & Pearson, 2005). 

Accordingly, the geographic projection of the potential niche constructed by the upper and 

lower lethal thermal thresholds of the warmest and coldest months was rescaled into a 

suitability layer with values ranging between zero and one. The most optimum temperature 

(15 ◦C - Koehler & Geisenhoffer, 2012)  found to be the most conducive to P. brassicae was set 

to 1, while all other values that were greater or lesser than the optimum value were rescaled 

towards 0.  

6.2.2 Correlative species distribution modelling 

6.2.2.1 Biotic data 

Global occurrence points for Pieris brassicae were accessed from the GBIF30 (www.gbif.net) 

database. There were 103,059 available geo-referenced data points, however, only 2,241 were 

spatially unique with respect to the resolution of the predictor datasets available. Additional 

1,079 occurrence points from the newly introduced New Zealand range were obtained 

(Craig Phillips, pers. Comm., 23, September 2013). From the New Zealand presences, only 

two presences were spatially unique for the 10 arc minute resolution of the environmental 

dataset used for species distribution modelling.  The total number of spatially unique 

presence points used in this analysis was 2,243 points. Four different potential distribution 

predictions were made according to the following specifications.  

The first three predictions were based on three presence datasets that account for varying 

historical geographic distribution of Pieris brassicae. These were used to investigate if the 

predictive power of the correlative models increase as additional information about the 

                                                      
30 The list of institutions that provided the occurrence points is given in the appendix 7.1 

http://www.gbif.net/
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range of the species is incorporated (Tale 6.4). The fourth31 prediction was a combination of 

two sub-predictions that were based on presences from the aestivating and non-aestivating 

populations of P. brassicae respectively (Table 6.4). 

Table 6.4 Presence data specification for the correlative models  

Correlative 

predictions 

Code No. of 

presences 

used 

Presence data classification and definition 

1 pbP 2233 Prediction based on Palearctic presences 

2 pbPS 2241 Prediction based on Palaearctic + South Africa presences 

3 pbPSN 2243 Prediction based on Palaearctic + South Africa + New Zealand 

presences 

4* pbPSNbt - - Prediction based on the complete presence data from PbPSN (n=2243), 

but first independently modelled according to aestivating and non-

aestivating populations of P. brassicae and combined to produce a 

mixed model prediction (described in Chapter 5) 

- - 4.1 pbPSNAes 35 Prediction based on aestivating populations of P. brassicae 

- - 4.2 pbPSNNaes 2208  Prediction based on non-aestivating populations of P. brassicae 

*The fourth correlative model prediction was made using two subsets of the pbPSN presence dataset. 

The first subset (pbPSNAes, n= 35) included presences from the aestivating population in Spain and 

Portugal only, while the second subset (pbPSNNaes, n= 2,208) contained the remaining presence points 

from the non-aestivating populations. These two subset predictions were combined to produce a 

fourth potential species distribution that considered the intraspecific environmental variation in the 

P. brassicae presence data (Discussed in Chapter 5). The combined prediction was labelled as P. 

brassicae-Palaearctic-South Africa – New Zealand with biological trait variation (pbPSNbt, n= 

2,243). Since the procedure of how to combine such subset predictions was described in chapter 5, 

only the prediction output of pbPSNbt compared with the other correlative model scenarios is 

discussed in this chapter. 

Five sets of pseudo-absence points were generated for the three main models and two sub-

models defined in Table 6.4 according to the method developed in Chapter 3. The five sets of 

presence and pseudo-absence points (including subsets of pbPSNbt) were combined to 

make up the training and test data used to predict potential species distribution of Pieris 

brassicae. 

6.2.2.2 Environmental data and model parameterization 

The predictors listed Table 6.7 were used to model the potential species distribution of Pieris 

brassicae. The dataset included 35 bioclimatic variables downloaded from the CLIMOND 

(Kriticos et al., 2012b) website and four topographic variables derived from the SRTM global 

                                                      
31 The fourth model was used to account for environmental variation within presence data due to biotic traits 

unique to some populations of a species as discussed in Chapter 5. 
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digital elevation model dataset (NASA-GSFC, 2000) accessed through the WORLDCLIM 

data portal (Hijmans et al., 2005b). A random forest classifier was used to select variables.  

6.2.2.3 Potential species distribution prediction 

The multi-model framework developed by Worner et al. (2014) was used to predict the 

potential distribution of Pieris brassicae both at a global and New Zealand extent. Five species 

distribution models were used for comparison. The models were quadratic discriminant 

analysis (QDA), Logistic regression (LOG), classification and regression trees (CART), 

support vector machines (SVM) and artificial neural networks (NNET). Five-fold cross 

validation with ten repetitions was performed to measure model performance. Model Kappa 

scores were used to select the best model for each scenario. The predictions from the best 

models that represent the aestivating (pbPSNaes) and non-aestivating (pbPSNnaes) P. brassicae 

population were combined using a map query given in eq.6.2. The rule to combine these 

component predictions was set, so that the prediction from the majority class (non-

aestivating presences) was taken whenever a presence is predicted, if not, the prediction 

from the minor class is assigned. If both clusters did not predict a location, the average of the 

component predictions was assigned to the combination prediction pbPSNbt.  

𝐶𝑜𝑛 ( (PbPSNnaes  >=   0.5), 𝑃𝑏𝑃𝑆𝑁𝑛𝑎𝑒𝑠 ,   𝐶𝑜𝑛 ((𝑃𝑏𝑃𝑆𝑁𝑛𝑎𝑒𝑠 <  0.5) &  (𝑃𝑏𝑃𝑆𝑁𝑎𝑒𝑠 >=   0.5), 𝑃𝑏𝑃𝑆𝑎𝑒𝑠,
𝑃𝑏𝑃𝑆𝑁𝑛𝑎𝑒𝑠 + 𝑃𝑏𝑃𝑆𝑎𝑒𝑠

2
)) − − − 𝑒𝑞 6.2 

Model predictions across all four scenarios were compared to investigate if there is any 

convergence in prediction between correlative and mechanistic niche models as more 

presence information becomes available.  

The best correlative model scenario to be used for the hybrid prediction was selected by 

comparing the percentage of correctly predicted presences for the target study area, New 

Zealand, within the potential niche characterised by the mechanistic model.  

 

6.2.3 Hybrid model prediction 

Hybrid prediction was produced using the potential Pieris brassicae distribution prediction 

from the best correlative model and the physiological suitability layer derived from the 

generalized mechanistic niche model. The probabilistic suitability predictions from the two 
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models were combined using a simple “either or” logical classifier specified for this study 

(Eq. 6.3).  The rules followed to hybridize the predictions and their justification are given 

below. 

1. The correlative model prediction that best filled the potential thermal niche identified by the 

mechanistic model was selected.  An overlay analysis was performed to discard any areas 

predicted by the correlative model outside the potential thermal range of P. brassicae.  

 

2. When the probability of the correlative model is >= 0.5, the hybrid prediction was given the 

correlative model prediction. The correlative model value was chosen over the mechanistic 

one, because it was derived from more environmental covariates, which has the advantage of 

differentiating the level of suitability of isothermal cells over the landscape giving better 

spatial detail.  

 

3. When the probability of the correlative model is < 0.5 but when the mechanistic model > 0.5 

the hybrid was assigned the values of the mechanistic prediction. In such cases, the correlative 

model has not picked up these sites, in spite that they are physiologically suitable. That could 

be because a representative environmental condition was not provided in the form of 

occurrence points and that is usually when the mechanistic model complements the 

correlative model. 

 

4. When both predictions were not suitable then the area was confirmed by the two models as 

unsuitable and was given the average of the two predictions. 

 𝐶𝑜𝑛 (Corr ≥  0.5,Corr, 𝐶𝑜𝑛 ((Corr <  0.5 )&( Mech ≥  0.5),Mech,
𝐶𝑜𝑟𝑟 + Mech

2
)) − − − − − −𝑒𝑞6.3 

 

Where Corr = the potential suitability prediction from the selected correlative model & Mech = the 

physiological suitability prediction from the mechanistic model. Con is the function call in ®Spatial 

Analyst extension of ArcGIS to perform conditional operations on raster data.  

6.3 Results and discussion 

6.3.1 Physiological suitability - generalized mechanistic niche model prediction 

The fundamental niche of Pieris brassicae bounded according to its lethal upper and lower 

temperatures, is shown in the two dimensional thermal feature space of the minimum 

coldest month against the maximum warmest month (Figure 6.5-A). The geographic 

projection of the potential niche identified extensive areas (Figure 6.5-B) due to the rather 



184 

 

high upper lethal temperature (ULt) and low lower lethal temperature (LLt) thresholds of P. 

brassicae. 

In reality the fundamental niche of any species is defined by an n dimensional hyper-volume 

where n stands for the number of variables that physiologically affect the species (Colwell & 

Rangel, 2009).  Although, it is not possible to account for all variables and their interactions 

that affect a species in the real world, additional variables to temperature should better 

characterise the potential niche of a species, especially if the species has extreme lethal 

thresholds.   

Table 6.5 Pieris brassicae niche fraction estimates based on lethal temperature thresholds. 

Fractions of 

Climate/niche space 

Fraction (%) Remark 

PN/FN 43.76 Note: WORLDCLIM (50 yr. average data) was used to define the current 

climate space, based on which the potential niche was approximated. ∴ 

any predictions are likely to show the global long term thermal 

limitations to P. brassicae distribution (Monahan, 2009). 

RD'/PN 4.48 

RTR/PN 41.22 

HSTR/PN  1.03 

 

The projected realized distribution (RD’) which was characterised by the current presence 

points of P. brassicae on the thermal feature space, show that P. brassicae is not at equilibrium 

with its thermal niche as there are areas that are not filed by its current presence records 

(Table 6.5). However, it is difficult to estimate exactly how much of its niche is vacant 

because not all presence points of P. brassicae in reality were accounted for by the GBIF 

database. The term “vacant” here is hypothetical and only refers to being vacant of P. 

brassicae, as other organisms share this thermal niche. Nevertheless, the fact that the RD’ is 

located in the middle of the PN shows that the species is currently not in areas that are at its 

thermal limit, meaning it can successfully invade new habitats if other factors like host 

availability and means of dispersal are fulfilled.  
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Figure 6.5: The potential niche (PN) and projected realized distribution (RD’) of Pieris brassicae (A) 

in the thermal feature space (B) in the geographic space 

Arrow shows a presence point found outside the potential thermal niche of the species, the outlier is a 

presence point recorded in Algeria. This outlier can be the result of inaccuracy in the interpolated 

WORLDCLIM grid due to inadequate weather stations in the area.  
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The geographic projection of the thermal range defined as RTR using the mechanistic niche 

model showed a very good agreement with the native Palearctic distribution of Pieris 

brassicae and has successfully predicted all the introduced ranges of Pieris brassicae in Chile, 

South Africa and New Zealand. All areas in New Zealand were found to be thermally 

suitable for P. brassicae. 

The HSTR portions of the potential niche, when projected onto the geographical space, 

identified areas that have similar thermal conditions as those found optimal in empirical 

studies (thermal values and reference given in Table 6.1). The geographical projection of the 

HSTR (Figure 6.5 –B) were far removed from the core population distribution in Europe. The 

fact that most of these were located close to the tropics seems strange. However, a closer 

investigation of these locations show that they are all located in high altitude where the 

temperature is kept between the most suitable ranges (15◦C -26◦C) all year round. Such 

conditions remove the need for longer diapauses and could maximize the number of 

generations P. brassicae can have per year (Spieth & Sauer, 1991).  

HSTR covers a very small percentage of the global area (0.24%) compared to the potential 

niche (PN), this highlights an interesting fact that, optimal conditions obtained from 

empirical experiments like the HSTR can be very rare in the field (Table 6.6). This can create 

an uncertainty around some mechanistic predictions based on parameters from a laboratory 

experiment with controlled environmental conditions  

Table 6.6 Global coverage of the potential thermal niche and various important thermal 

ranges estimated for Pieris brassicae.  

Climate/Niche space  Variable 

space (◦C2) 

Global geographical 

coverage (%) 

Total available  thermal current  climatic space (CCS) 1492.70 100* 

Fundamental niche space (FN) 2204.48 --** 

Potential (PN) 964.75 67.90 

Projected realized distribution (RD’) 43.18 0.38 

Realized thermal range (RTR) 397.74 17.53 

Highly suitable  thermal range (HSTR)  10.02 0.24 

 * The available climate space represents all thermal climates realized in the world thus 100% of the global area 

** The fundamental niche space is conceptual and only a portion of it is realized in the current climate space as PN 

Coincidentally, even if photoperiod was not used as a variable to define the HSTR, the 

relatively low variation in day length in areas identified by the HSTR also mean, 
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deactivation of facultative diapauses for P. brassicae, increasing the number of generations 

due to less time spent while in diapause. As shown in the map these areas are highly 

isolated from where the core distribution is and thus the chance of the species getting there 

might be limited.  The availability of host plants is of course a basic criterion for P. brassicae 

to establish in these areas, but considering its host species are the Cruciferae family that are 

grown all over the world for agriculture purposes, host plant presence is unlikely to be a 

limiting factor to P. brassicae. South Africa is the only area from the globally identified HSTR 

regions where P. brassicae is confirmed to be established. 

According to the physiological suitability surface (Figure 6.6), the North Island of New 

Zealand generally looks thermally more suitable than the South Island. However, it is 

important to note that most of New Zealand is already within the potential niche and the 

RTR range identified in the thermal feature space. Therefore, the whole country is within P. 

brassicae thermal tolerance except for the north-western tip of the North Island that are not 

coloured in Figure 6.6, which are unsuitable to P. brassicae. The physiological surface in 

Figure 6.6 shows levels of thermal suitability throughout the country.  

 
Figure 6.6: The New Zealand extent physiological suitability surface based on thermal thresholds of 

P. brassicae derived from the mechanistic niche model. 

The black circle shows the area where P. brassicae is recently introduced. Warmer shades show 

higher level of suitability. All areas in New Zealand except the not coloured areas at the tip of the 

North Island were however identified as thermally suitable for P. brassicae as they fall within the 

realized thermal range. 
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6.3.2 Environmental suitability - correlative species distribution model prediction 

The variables selected for the first two correlative model scenarios that have the native range 

presence points (pbP) and additional points from the South African P. brassicae population 

(pbPS) were identical (Table 6.7). That suggests that the introduced South African range 

does not vary much environmentally from the native range. However, when the third 

scenario that has presences from the New Zealand population (pbPSN) was compared with 

the previous two scenarios, different variables were selected. Four of the original variables 

did not explain the pbPSN dataset as a whole and were omitted, and one new variable that 

was not originally selected was added (Table 6.7). The discrepancy in variable selection 

shows that there was a considerable environmental variation introduced from the newly 

added New Zealand points. The fourth scenario (pbPSNbt) is a combination prediction of 

two separately modelled subset populations. The variables from pbPSNbt were different 

from the first three scenarios (Table 6.7).  

 
Figure 6.7: Model performance for the four scenarios, (A) Kappa scores, (B) AUC scores, (predictions 

from pbPSNNaes and pbPSNaes are subsets of the pbPSNbt scenario). 

 

The best model for each scenario was selected using model Kappa scores (Figure 6.7- A). 

NNET, SVM and SVM were selected for the first three scenarios respectively. The fourth 

scenario was a combination of two subset predictions; SVM was selected for the non-

aestivating population prediction while LOG was selected for the aestivating population 

prediction. All models performed well (Kappa score > 0.81), except for models based on the 

aestivating population training dataset. The performance of models using presences from 

the aestivating population were disadvantaged by the small sample size of the data (n = 70, 

for both presence and pseudo-absences). The performance of the best model (LOG, Kappa 
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score = 0.7) for the aestivating population prediction had an acceptable Kappa (Figure 6.7- 

A). It is important to note that AUC usually gives inflated values for models using small 

sample size for training (Figure 6.7-B), therefore Kappa scores were used for model 

selection.  

Table 6.7: Variables selected for the four different training datasets 

* In the pbPSNbt column red ticks show variables chosen for the aestivating population model 

(pbPSNaes) and black ticks show variables chosen for the non-aestivating model (pbPSNaes) 

The effect of the different training datasets is also shown by the predictions for the four 

scenarios (Figure 6.8). The total predicted suitable area has generally increased as more 

presence points from newly introduced ranges were used in the training dataset (Table 6.8). 

Var. No  Variable Name pbPA pbPS pbPSN pbPSNbt* 

01  Annual mean temperature (°C)      

02  Mean diurnal temperature range (mean(period max-min)) (°C)      

03  Isothermality (Bio02 ÷ Bio07)      

04  Temperature seasonality (C of V)      

05  Max temperature of warmest week (°C)      

06  Min temperature of coldest week (°C)      

07  Temperature annual range (Bio05-Bio06) (°C)      

08  Mean temperature of wettest quarter (°C)      

09  Mean temperature of driest quarter (°C)      

10  Mean temperature of warmest quarter (°C)      

11  Mean temperature of coldest quarter (°C)      

12  Annual precipitation (mm)      

13  Precipitation of wettest week (mm)      

14  Precipitation of driest week (mm)      

15  Precipitation seasonality (C of V)      

16  Precipitation of wettest quarter (mm)      

17  Precipitation of driest quarter (mm)      

18  Precipitation of warmest quarter (mm)      

19  Precipitation of coldest quarter (mm)      

20  Annual mean radiation (W m-2)      

21  Highest weekly radiation (W m-2)      

22  Lowest weekly radiation (W m-2     

23  Radiation seasonality (C of V)      

24  Radiation of wettest quarter (W m-2)      

25  Radiation of driest quarter (W m-2)      

26  Radiation of warmest quarter (W m-2)      

27  Radiation of coldest quarter (W m-2)      

28  Annual mean moisture index      

29  Highest weekly moisture index      

30  Lowest weekly moisture index      

31  Moisture index seasonality (C of V)      

32  Mean moisture index of wettest quarter      

33  Mean moisture index of driest quarter      

34  Mean moisture index of warmest quarter      

35  Mean moisture index of coldest quarter      

36 Elevation (m)     

37 Slope (deg)     

38 Aspect (deg)     

39 Hillshade     
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The predictions from all scenarios agree with respect to the native distribution of P. brassicae. 

The area of predicted presences increased in the last three scenarios (pbPS, pbPSN & 

pbPSNbt) when compared with the first scenario (pbP) that had presence points only from 

the native range of Pieris brassicae. This result is supported by other studies that concluded 

using presences from the introduced range of invasive species, gives high predictive power 

to correlative models (Urban et al., 2007; Beaumont et al., 2009; Rodda et al., 2011). 

 
Figure 6.8: The global potential P. brassicae distribution for the different training dataset scenarios. 

The boundary of the realized thermal range (RTR) identified by the mechanistic niche model is 

overlaid here for comparison. The black arrow shows the direction of increasing predictions in the 

geographic range for the four scenarios given in the legend. 

The high resolution (30’) New Zealand extent potential P. brassicae distributions projected 

from the best models for the global prediction of the four scenarios were compared. The first 

scenario pbP, with a training data that only represents the typical Palearctic distribution of 

the species completely missed the newly introduced range in New Zealand (Figure 6.9-A). 

The second dataset pbPS had an extra eight presence points from the introduced range in 

South Africa. This prediction gave the higher predicted prevalence than pbP. However it did 

not identify the newly introduced population in New Zealand (Figure 6.9-B). 



191 

 

The third dataset pbPSN, that included all available presence points including the presences 

in New Zealand, as expected predicted the core established population in New Zealand 

(Figure 6.9-C). The last dataset, pbPSNbt, which was the combination of the subset 

predictions for the aestivating and non-aestivating P. brassicae populations, gave similar 

predictions with pbPSN but identified more suitable areas in the North Island of New 

Zealand (Figure 6.9-D).  

 
Figure 6.9: The potential P. brassicae distribution predicted for New Zealand, according to the four 

varying training data scenarios. The green circles show P. brassicae presences in New Zealand. 

6.3.3 Hybrid potential species distribution prediction  

6.3.3.1 Comparison between correlative and mechanistic predictions 

Predictions that are common among correlative models were within the realized thermal 

range (RTR) that was reported in the literature about P. brassicae distribution in the 80’s 

(Figure 6.8). The filling of the potential niche by the correlative model predictions generally 

increased as more presences from newly invaded areas were added to the presence datasets.  

 Figure 6.10: Percentage of 

predicted presences that are 

outside the potential niche 

(PN) by the different 

correlative model scenarios  

Based on geographical areas 

calculated in decimal degrees 
(◦2) 
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The correlative model predictions that were outside the potential thermal niche identified by 

the generalized mechanistic model were considered over-predictions. The first three 

scenarios (pbP, pbPS & pbPSN) were all well within the potential niche, whereas the fourth 

scenario (pbPSNbt) which was a combination of two subset predictions, identified areas that 

are outside the potential niche (Figure 6.10 & Figure 6.11).  

The geographic locations of the identified over-predictions of the four correlative models is 

given in Figure 6.11, the geographical boundary of the potential niche is also shown for 

comparison. 

 
Figure 6.11: Areas of over-predicted thermal ranges identified as suitable by the four correlative 

predictions. 

The over-predicted areas were removed from the correlative predictions as they were 

outside the thermal limits of P. brassicae. However, one cannot be completely be sure about 

labelling the areas that fell outside the potential niche projection as “over-predicted”. It is 

also possible that these areas are included in the different snapshots of the potential niche 

from the varying seasons because the geographical realization of the potential niche is 

dynamic depending on seasonal changes (Tingley et al., 2009). Therefore, it is important to 

investigate a number of annual thermal events and their geographical projection to see if 

these novel areas are not included in any timeline of the mechanistic niche model 

predictions. 

With respect to the correlative models, additional to the error caused from internal model 

calibrations, inclusion of seasonal presences in correlative models could create such over-

predictions. Some areas where P. brassicae is recorded might be from areas where transient 
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populations are found. For example, there are a number of presences in the GBIF record that 

show P. brassicae presence at the northern coast of Norway, where P. brassicae is present only 

during the warm months (Feltwell, 1982). Because of the static nature of most correlative 

SDMs, their predictions lack the power to distinguish between areas where the species is 

always present and those it occupies only certain months of a year (Franklin, 2010b). A 

possible method to deal with this staticity is implementing the use of stacked species 

distribution models (s-SDMs) (Calabrese et al., 2014). Previous studies have proposed 

stacking SDMs to estimate species richness and to carry out community level niche 

modelling. However, it is possible to use s-SDMS to produce a dynamic potential species 

distribution by modelling monthly suitability of an area based on monthly climatic data and 

matching presences, and stacking the predictions for 12 months of the year. Such tracking of 

habitat suitability throughout the year will provide an improved representation of potential 

distribution of species and reduce under- or over-predictions from SDMs.  

From the correlative scenarios, pbPSNbt was the model that filled the potential niche and 

other identified important thermal ranges of P. brassicae the most (Table 6.8).  Therefore it 

was selected as the best correlative model to proceed with the hybrid correlative-

mechanistic prediction.  

Table 6.8: Areas predicted by the four correlative models in comparison with the 

mechanistic niche characterizations 

Scenario/ best model Tot. predicted area (◦2) % of PN % of RTR % of HSTR 

pbP/NNET 1,126.9 9.78 44.36 7.48 

pbPS/SVM 1,342.6 11.68 41.72 0.50 

pbPSN/SVM 1,272.6 11.07 41.02 0.72 

pbPSNbt/LOG&SVM 2,550.5 17.15 46.99 9.06 

The fact that the best correlative model to fill the potential niche the most is also the model 

that over-predicted the most warrants some discussion. The fourth scenario (pbPSNbt) 

combined predictions from the two sub-predictions of models trained on the aestivating and 

non-aestivating populations of P. brassicae. The rule used to combine these two predictions 

was set such that maximum sensitivity is obtained from the combined prediction (Eq. 6.2). A 

choice of maximizing sensitivity, specificity or optimizing between the two is a decision that 

depends on the underlying objective of the study. Optimizing between sensitivity and 

specificity is usually undertaken to calibrate models that are used for further projections 
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using independent data. Also it is the logical choice when either sensitivity or specificity are 

not explicitly required due to the objective of the research (Pearson et al., 2004) as discussed 

below. 

Maximizing specificity reduces error of commission and is desirable to identify areas for 

conservation and especially for relocation of endangered species. Prediction for conservation 

studies need to be specific due to the pressure to prioritize conservation areas either because 

of budget constraints or increasing demand of land for productive industries. Whereas 

maximizing sensitivity reduces error of omission, and mostly required when predicting 

potential species distribution for invasive species (Araújo & Peterson, 2012). The latter was 

appropriate for this study because the aim was to identify areas suitable to P. brassicae in its 

newly invaded ranges, especially in New Zealand.  

Model pbPSNbt identified most of the areas within the PN (Table 6.8) and also correctly 

predicted potential suitable areas in New Zealand (Figure 6.9) as identified by the 

generalized mechanistic model. The increased predictive power from individually 

accounting for variation in the presence data was clearly shown by the filling of the potential 

niche by this model more than the predictions from the other three models. The maximized 

sensitivity in the pbPSNbt prediction resulted from the way its two sub-predictions are 

combined, which was at the cost of minimized specificity that resulted in predictions outside 

the geographic projection of the potential niche of P. brassicae. Referring to the mechanistic 

model outputs in this case was beneficial, as it enabled the discrimination of potential false 

positives in the prediction of the pbPSNbt model. The pbPSNbt prediction was therefore 

corrected by removing predicted areas that fell outside the geographic projection of the 

potential niche identified by the generalized mechanistic niche model.  

The most straightforward way to benefit from the predictions of correlative and mechanistic 

models is to compare the outputs (Kearney et al., 2008) as done here. The level of consensus 

between the correlative and the mechanistic predictions, could be used to test a number of 

hypotheses about the species distribution. For example, agreement in prediction shows high 

probability of accuracy of the potential distribution for the species. It is important to note 

however, that the species might not actually be present even in sites predicted by both 

mechanistic and correlative models, as the realized distribution of a species is affected by 
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more than abiotic factors. Nevertheless, agreement between the mechanistic and the 

correlative model gives higher confidence in the predicted distribution. At least, agreement 

between the two predictions shows that the area predicted by the correlative model is within 

the physiological limit of the species.  

Disagreement between predictions however can have more than one explanation. When the 

correlative model falls short of filling the areas identified as physiologically suitable by the 

mechanistic model it could be because representative presence points were not available to 

cover the area. Or if the mechanistic model did not cover areas predicted by correlative 

models, it could either be the biological parameters used to calibrate the mechanistic model 

do not account for complex environmental interactions that might alter the conditions set for 

suitability, or the correlative model has over-predicted. Usually the latter is assumed when 

there is a disagreement between mechanistic and correlative models, however this has to be 

determined case by case depending on how well the mechanistic model was parameterized 

and whether the correlative model has extrapolated.   

6.3.3.2 Correlative-mechanistic prediction 

A hybrid map was produced by combining the corrected pbPSNbt prediction with the 

mechanistic physiological suitability surface. The correlative model typically predicts the 

habitat suitability of an area for a species based on occurrence data and the associated 

underlying environmental variables (Sillero, 2011).  On the other hand, the physiological 

suitability surface from the mechanistic model can be used to identify areas that are within 

the thermal tolerance of the species even if these areas were never occupied before. Hence, 

complementing areas the correlative model might have missed simply because no 

occurrence data was provided from these suitable ranges.  

The potential P. brassicae distribution for New Zealand, according to the pbPSNbt prediction 

(correlative model), the physiological suitability surface (mechanistic model) and their 

hybrid prediction is given in Figure 6.12 - A, B and C respectively. The most important 

observation was that the correlative model did not identify all locations that were suitable 

for P. brassicae in the North Island of New Zealand based on thermal tolerance. It was 

apparent from Figure 6.9 that the predictive power of the correlative models increased with 

the increasing information on the environmental range of P. brassicae, as the area predicted 
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in New Zealand kept on increasing with every model that used more presence points from 

outside the native range of P. brassicae. Because the mechanistic model showed New Zealand 

as generally suitable for P. brassicae, these increasing predictions from the correlative models 

are less likely to be over-predictions. Considering that P. brassicae is still invading new 

habitats, it is difficult to summarise the correlative model chosen in this study also had the 

complete information on P. brassicae environmental range. Therefore, the additional areas 

identified as suitable by the hybrid prediction are especially informative.  

A hybrid prediction can be more informative than the individual correlative and 

mechanistic models. For example, the areas identified as highly suitable by the mechanistic 

model (p > 0.9) in the north-eastern part of the North Island of New Zealand (Figure 6.12-B), 

had reduced suitability in the hybrid prediction (Figure 6.12-C). From investigation of the 

three moisture based variables selected by the pbPSNbt model, it was apparent that this area 

was too dry for P. brassicae. Therefore, the additional information from the multiple 

environmental variables used by the correlative model was useful in providing spatial detail 

to the hybrid prediction.   

The hybrid global prediction incorporated areas that were not predicted by the correlative 

model. For example, an extensive area in the eastern North America that was not predicted 

by the correlative model (Figure 6.12-D) was predicted as thermally suitable for P. brassicae 

(Figure 6.12-F).  
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Figure 6.12: Comparison between global and New Zealand extent predictions of the correlative, mechanistic and hybrid models 

Potential distribution of P. brassicae in New Zealand as illustrated by the (A) Correlative distribution prediction (B) the physiological thermal suitability 

surface and (C) the hybrid prediction. (D), (E) and (F) give the global distribution in the same order. The arrow shows areas that were found thermally highly 

suitable but were given less overall suitability because the correlative model identified that other important variables are less favourable in that location. That 

area was found to be too dry for P. brassicae even if the temperature was suitable. 
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Figure 6.13: Global hybrid potential P. brassicae distribution prediction 

Enlarged map of the global hybrid prediction of the potential distribution of P. brassicae. Novel predictions found outside the potential niche of the species 

are discarded to avoid overestimation of the geographical distribution of P. brassicae.  

The arrow points to the general location where P. brassicae has established in S. America, presence points from this area in Chile were not used both in model 

training or testing as there were no geographically referenced  data available to this study. 
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6.4.3.3 Implications on the future dispersal of Pieris brassicae in New Zealand 

According to thermal requirement of P. brassicae almost all of New Zealand is within the 

RTR identified by the mechanistic niche model. Therefore, it is possible to conclude that the 

species will not encounter any thermal zones that are outside its tolerance in New Zealand 

and we can eliminate temperature gradient as deterrent to its future dispersal within New 

Zealand.  

The hybrid prediction showed that the western side of the North Island and the eastern side 

of the South Island are more suitable than the rest of the country. Nelson city, the area where 

P. brassicae was first detected in 2010 has a generally lower thermal suitability than the 

surrounding districts like Tasman and Marlborough where considerable highly suitable 

areas were identified.  

 
Figure 6.14: Hybrid suitability prediction for P. brassicae in New Zealand. Inset maps show close up 

view of the area where P. brassicae is currently present. All coloured areas are suitable (predicted 

value >=0.5). Variation shows level of suitability. 

 

Although, the hybrid prediction represents only climatic suitability it can at least inform 

decision makers where climatic factors can aid to exacerbate P. brassicae dispersion 

additional to other factors. These factors include the availability of host plants especially 
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those of the Cruciferae family which were found to be the primary food preference of P. 

brassicae larvae (Ansari et al., 2012) and proximity to urban landmarks, as private gardens 

and untended communal green areas that have any of the alternative host species of P. 

brassicae can facilitate the establishment of P. brassicae populations even in the middle of an 

unsuitable landscape. Urban structures often condition the environment for invasive species 

to be favourable either by providing host plants or warmer climate (Lizée et al., 2011).  

The decision to eradicate P. brassicae by the New Zealand department of conservation (DOC) 

was perhaps a very timely one as it would be more difficult to contain the spread of the 

species once it gets to the more suitable areas identified in Marlborough and Tasman 

districts that surround the Nelson city. Other highly suitable areas identified in the South 

Island include Buller, Grey, Westland, Selwyn and Waimakariri districts. Although, the 

suitable areas in these districts are further from where the species is established currently, 

the possibility of long distance dispersal through human aided transportation could put 

these areas at high risk. More suitable areas were identified in the North Island, some of the 

highest suitable areas were found in Franklin, Waikato, Waitomo, New Plymouth, 

Manawatu, Tararua, Taupo and Whakatane Districts. Even though, these areas are 

geographically well isolated from the P. brassicae population in Nelson, there might be a risk 

of introduction into North Island probably from human aided transport of diapausing 

pupae, as P. brassicae pupae are known to pupate on artificial substrates away from their 

host plants (Hagstrum & Subramanyam, 2010). 

However, an in depth dispersal study that addresses multiple possibilities of P. brassicae 

movement by simulating different scenarios is needed to obtain more information on the 

future possible movements of the species. An additional study on the associated economic 

damage of P. brassicae is also necessary to determine if intervention is worth undertaking. 

On the other hand, if ecological implications are considered eradicating P. brassicae is most 

probably worth the cost as such aggressive invader is likely to be a great threat to the native 

butterfly community (Worner & Gevrey, 2006).  

The potential distribution of P. brassicae produced in this study can be effectively used to 

produce a realistic landscape through a spatial analysis that considers factors like host 
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availability, species competition, physical barriers and landuse to further identify areas that 

cannot be occupied by the species for reasons other than environmental unsuitability. 

6.4 Summary 

6.4.1 Considerations about the SDMs used in this study 

A major drawback in generalized simple mechanistic niche models is that seasonal 

variations of a given location cannot easily be incorporated  (but see Monahan & Tingley, 

2012 for their niche tracking study involving multiple seasonal niche projections using 

generalized niche models). In this study, a maximum mobility distance of 200 km was used 

to unify the geographic projections of two seasonal niches identified by the coldest and 

warmest months of the year respectively (Figure 6.3). Creating such connectivity between 

geographic areas that are seasonally suitable for invasive species allows identification of 

areas that might be under risk of invasion, even if they are not suitable all year round. A 

good example of such cases, is the migrant populations of P. brassicae that seasonally occupy 

the northern areas of the Scandinavian countries (Feltwell, 1982; Spieth & Cordes, 2012). 

Accounting for areas that could support such transient populations of an invasive species, 

because of their proximity to more suitable areas, have implication on the accuracy with 

which the potential distribution of the species is predicted (Sinclair et al., 2010).  

In generalized mechanistic models, varying limiting thresholds for the different life stages of 

the same species cannot easily be separately considered. When using simplified and 

generalized mechanistic niche models for an insect as employed in this study, it is important 

to investigate biological traits such as diapause or migration that could explain the 

persistence of the species in the environmental conditions that are close to the species lethal 

thermal limits. If valid assumptions based on an understanding of such traits can be made, 

using the upper and lower most lethal thresholds found in the literature allows the 

construction of a fundamental niche that is most likely to include all possible thermal 

combinations in which the species may persist (Monahan, 2009). 

Regarding correlative models, the different scenarios showed that the models that are based 

on presences from the invaded ranges of P. brassicae predicted more suitable areas that are 

within the potential niche identified by the mechanistic model. Clearly, if the additional 

presence points from New Zealand were not included most of the areas in the North Island 
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of New Zealand would not have been predicted. Therefore, it is essential to report areas that 

are not predicted by correlative models as “no data” or “no information” instead of showing 

them as predicted absences which could be misleading for decision makers. Alternatively, if 

additional data like true absences, or a prediction from a mechanistic model is available, one 

can discriminate between under-predicted areas and actually unsuitable areas. For example, 

one can actually be confident about the northern parts of the Russian federation which was 

predicted unsuitable as it was outside the thermal thresholds of P. brassicae, more than other 

areas that were not predicted by the correlative model but were within the thermal 

threshold of P. brassicae (Figure 6.12). 

One of the reasons the hybrid prediction was undertaken was to validate the combined 

prediction method introduced in Chapter 5. The New Zealand presence points of P. brassica 

have not been used in any of the models in Chapter 5. Yet, the prediction from the model 

that accounted for variation within presence data by modelling the aestivating and non-

aestivating presences of P. brassicae separately, had identified most of the suitable areas 

predicted by the correlative model using the New Zealand points in this Chapter (Figure 

5.12-B Vs. Figure 6.12-A). The central parts of the North Island, that were not predicted by 

the model in Chapter 5, show that the additional New Zealand points used in the pbPSNbt 

model in this chapter enabled identifying more suitable areas as discussed in the previous 

paragraph.  

6.4.2 Predictability of a species 

Prediction errors are usually associated with data inaccuracy, lack of model robustness, 

research design, validation errors or other numerous shortcomings of the ecological 

modelling processes (Elith et al., 2002). While for the most part this is true, it is also 

important to consider the predictability of the species involved. It is very difficult to come 

up with a systematic standard index that measures predictability of a species. This difficulty 

is partially because there is not enough information on failed invasions to investigate if the 

target habitat has ever been invaded, not suitable enough or not occupied despite being 

suitable due to inadequate fitness of the invasive species. Even if such data exists, it is 

difficult to parameterize complex models that deal with such big data at a large scale. One 

way predictability of a species could be measured is by assessing the environmental distance 
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between where the species is currently present and its physiological limits in niche space 

(Miller & Stillman, 2012). It is easier to predict the potential distribution of a species that 

exists in the climate space closer to its physiological limits rather than a species that has 

large potential environmental range to fill before it hits its physiological limits. For example, 

the characterization the different fractions of the P. brassicae potential niche, showed that the 

current presences of the species are located far from its lethal thresholds in the thermal 

feature space. Such characterizations can be a general precursor to the invasion ability of the 

species. Characterizing uncertainty in potential species distribution predictions from biotic 

aspects will complement the on-going effort to account for sources of uncertainties in SDM 

predictions (Hartley et al., 2006; Dormann et al., 2008; Buisson et al., 2010). Information on the 

predictability of a species will also help in the decision of whether to continue improving 

species distribution models or spend time in gathering more biotic information (Diamond et 

al., 2012) to inform the models better on a case by case basis.   

6.4.3 Setting rules to for hybrid correlative-mechanistic predictions 

In previous studies, different methods have been used to combine mechanistic and 

correlative model outputs as hybrid models. The most used method is to incorporate the 

mechanistic model output along with other environmental covariates in the training datasets 

used for correlative models. (Buckley et al., 2010; Elith et al., 2010; Nabout et al., 2012). The 

less explored method is using areas outside the potential niche as pseudo-absences for 

correlative models. This however, has the disadvantage of providing overly discriminated 

presence/pseudo-absence training datasets that leads to overfitting of models (Lobo et al., 

2010). If using such method is necessary it is better to take a portion of the pseudo-absences 

from outside the potential niche, and use additional pseudo-absence points that are in close 

proximity of presence points but are environmentally dissimilar from presence points. Such 

stratified sampling method was demonstrated by Elith et al. (2011) for sampling background 

data in MAXENT(presence-only model), however the principle behind the recommendation 

can be applied for selection of pseudo-absence points for presence-absence models.  

In this study, a slightly different method was used to combine the correlative and 

mechanistic results. Instead of integrating the mechanistic output in the correlative 
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modelling process, the final predictions from the two models were combined using a simple 

rule.  

Hybrid predictions that approximate the realized distribution are useful to manage species 

that are already in equilibrium with their realized niche. Such species usually have had time 

to uniformly occupy all areas that are suited to their requirement except in cases where they 

are excluded because of unfavourable biotic interactions or physical barriers (Gallien et al., 

2012). These interactions could be competition, host unavailability or parasitism. In such 

cases it is appropriate to take a model consensus approach to combine the outcomes of the 

mechanistic and correlative models, and extract only predictions that match. This method is 

more suited to conservation studies where higher specificity is required to identify best sites 

for relocation of endangered species. 

On the contrary, a newly invading species is far from being at equilibrium with its available 

potential niche in the new habitat therefore it is important to identify the maximum possible 

boundaries of its potential distribution. This is important especially for a species like P. 

brassicae that is known for its ability to adapt to harsh environments. Such an invasive 

species can often occupy marginal habitats with environmental conditions that are outside 

their optimal thermal requirements (Beest et al., 2013). Taking this into account the rule to 

hybridize the two outputs was set to maximize the probability of identifying all sites in 

which P. brassicae could establish. Even better hybrid models can be constructed by writing 

more complicated rules to consider positional and temporal uncertainties associated with 

the correlative and mechanistic models. Better hybrid predictions could also be achieved if 

the potential niche defined by the mechanistic niche model is based on an n-dimensional 

hyper volume constructed out of more environmental variables that directly affect the 

physiology of the species instead of only a two dimensional thermal feature space.  

6.4.4 Concluding remarks 

It is difficult to generalize mechanistic models, and that is the reason why more ways of 

improving correlative models will always be beneficial especially in cases where we do not 

have species specific information. However, if there is some physiological information on 

the target species, it is beneficial to at least construct a simple representation of the potential 

niche using generalized mechanistic niche models such as the ones in this study in order to 
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increase the confidence of species distribution predictions (Kearney et al., 2010). This is 

essential when model outputs are to be directly used to plan surveillance and eradication 

programmes. Such projects often have significant costs and decision makers require a clear 

understanding of the varying risk of invasive species establishment so that they can 

prioritize their actions accordingly.  

Generally, there are parts of a potential species distribution a correlative model might not 

predict even when it is optimized and improved because a portion of that environmental 

range is not represented in the training dataset (Diamond et al., 2012). While correlative 

models can extrapolate outside the environmental range of the data they are trained on, the 

predictions cannot be taken at a face value due to lack of appropriate external validation 

data. 

It is preferable to compare model results with mechanistic predictions to make sure all 

portions of the potential distribution are captured when possible. However, availability of 

biotic information on emergent invading species is not always readily available as species 

that are only important either economically or ecologically are studied more. In the event a 

new invasive species arrive at a new habitat it is less likely to find information in the 

literature especially if this species have not been found to be invasive in other areas. 

Therefore, It is important to continue to use improved and well specified correlative models 

where complete absence of biotic information about a species is encountered (Rowland et al., 

2011).  It is also important to prepare a modelling framework that later incorporates 

physiological limits and requirements as such information becomes available to increase the 

level of confidence from correlative predictions. 

  



206 

 

  



207 

 

 

 

Chapter 7 

 

 

7. Landscape mapping for spatially explicit species dispersal models 

7.1 Introduction 

7.1.1 New Zealand invasion of Pieris brassicae  

Pieris brassicae was introduced to the South Island of New Zealand in 2010 (MAF, 2012; 

DOC, 2013b). It was first reported by a home gardener in Nelson, and has since been 

detected in most parts of Nelson city. The butterfly also established outlying populations 

about 12 km south of central Nelson at Richmond, and also about 12 km north at Glenduan 

(Phillips et al., 2013). An eradication campaign was initiated by the Department of 

Conservation (DOC) in September 2012. The eradication programme collects presence 

records through both passive and active surveillance (Phillips et al., 2013).  

Invasive species are generally unwanted and are rarely welcomed in any scenario. The 

introduction of P. brassicae in New Zealand, however, was especially alarming as the 

impacts of such destructive invasive species is even more pronounced on islands. This is 

because highly competitive invasive species could seriously damage island based 

ecosystems due to the fragility and uniqueness of the native fauna and flora found in Islands 

(Mooney & Cleland, 2001). The native cress species in New Zealand are potential hosts for P. 

brassicae and therefore are considered threatened.  There are 79 native cress species in New 

Zealand and 57 of these are already at risk of extinction due to habitat loss and impacts from 

other pests (Phillips et al., 2013). Even though DOC’s focus is to protect native species, P. 

brassicae could also cause great economic damage as it feeds on commercially grown Brassica 

species. There are about 4,000 ha of brassica vegetable plantations in New Zealand and 
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250,000 ha of brassica forage crops, which is estimated to be worth 80 million New Zealand 

dollars (DOC, 2013a; Phillips et al., 2013). 

Following New Zealand’s national Biosecurity Act, P. brassicae was deemed a threat soon 

after its discovery. A number of studies were quickly launched by the Plant and Food 

Crown Research Institute in collaboration with the Department of Conservation (DOC) and 

the Ministry of Primary Industries (MPI) (Kean & Phillips, 2013d- & references therein; 

Phillips et al., 2013). These studies focussed on the biology and more specifically the 

phenology of P. brassicae, and provided a better understanding of how P. brassicae behaves in 

its new invaded range. These studies were also instrumental in designing surveillance and 

undertaking eradication programmes (Phillips et al., 2013). 

However, there are no studies of P. brassicae dispersal in New Zealand. Therefore, P. 

brassicae was chosen as a model species to investigate the effects of landscape mapping on 

results from spatially explicit species dispersal models.  P. brassicae was also used as an 

example species in the previous two chapters, which produced global and New Zealand 

extent habitat suitability maps for the species. In contrast with the previous two chapters, 

the suitability layer constructed in this study has a much higher resolution and is composed 

of more than climate variables; this makes it suitable for local surveillance and eradication 

planning. I also characterised the dispersal dynamics of P. brassicae using data from the 

United Kingdom, which I chose both because of the availability of long time occurrence 

data, and due to the similar spatial extents of the United Kingdom and New Zealand. The 

resulting landscape map was used to test for the efficacy of the current eradication regime.  

7.1.2 Invasive species-landscape interaction 

Species distribution models based on climate variables are instrumental for understanding 

the habitats of invasive species at the global or regional scale. However, higher resolution 

and better detailed maps that adequately represent the landscape are necessary to inform 

invasive species surveillance and eradication operations at a local scale. One of the most 

obvious uses of such landscape data is characterising the heterogeneous surface over which 

spatially explicit dispersal models are used to simulate invaders movement (Pulliam et al., 

1992; Ruckelshaus et al., 1997).  
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Species dispersal models have been used to design surveillance and eradication processes, 

evaluate outcomes of invasive species control and estimate damage caused by invasive 

species (Gilbert et al., 2003; BenDor et al., 2006; Lippitt et al., 2008; Epanchin-Niell & Hastings, 

2010; Økland et al., 2010; Keith & Spring, 2013). Some dispersal models have also been used 

to generate various hypotheses regarding dispersal dynamics, species equilibrium and 

reconstructing past dispersal events (Keeling et al., 2001; Acosta, 2002). There are different 

types of species dispersal models ranging from the early reaction-diffusion models that 

model uniform spread rate using partial differential equations as used by Fisher (1937) and 

Skellam (1951) to individual based models (IBMs) that simulate dispersal over either a 

homogeneous or heterogeneous landscape in a spatially explicit manner (UchmaDski & 

Grimm, 1996; Pitt et al., 2009). In-depth reviews of types of species dispersal models 

including historical accounts and comparative studies are given by (Higgins et al., 1996; 

Grimm, 1999; Hastings et al., 2005; Pitt, 2008).  

In this study, a spatially explicit modular dispersal model was chosen to investigate the use 

of selectively recoded landscape in dispersal predictions. To understand dispersal dynamics 

of a species, it is important to accurately estimate the species’ dispersal capability (Okubo & 

Simon, 1989; Higgins & Richardson, 1999; Barney, 2006a). Additionally, it is also important 

to characterise the effect of the landscape on these capabilities. Spatially explicit models 

designed over heterogeneous landscapes have the advantage of accounting for the effect of 

the landscape on species dispersal dynamics (Higgins et al., 1996). This is due to the effect of 

landscape characteristics on the mobility and survival of invading species (Ewers & Didham, 

2006). The appropriate specification of spatio-temporal aspects of species’ dispersal 

characteristics, improves the characterization of dispersal patterns (patchiness) (Cavanaugh 

et al., 2014) and the accuracy of dispersal rate estimates (Hastings et al., 2005).  

It is sometimes possible to model patchy dispersal even without a landscape input. For 

example, Morozov et al. (2008) modelled a patchy distribution in a non-spatial model of a 

multi species dispersal system. However, their system was a multi-species scenario where 

interactions between varying inter-species dispersal parameters can facilitate patchy 

dispersal (Neubert et al., 1995). Thus, it is possible to have patchy distributions regardless of 
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environmental inputs, though landscape will still have additional influences on dispersal 

dynamics (Morozov et al., 2008).  

Apart from realistically representing dispersal patterns, spatially explicit models reveal the 

mechanics of dispersal dynamics better than non-spatial models. This means in addition to 

better definition of a dispersal pattern at the end of any given discrete time, t, the effect of 

the landscape on the rate, direction and success of future dispersal could also be easily 

represented. For example, suitable patches in the middle of unsuitable areas can act as 

continuous sources of propagules, replenishing unsuitable sites where the species would 

otherwise be extinct (Pitt et al., 2009).  

For studies that aim to inform invasive species management plans, the most important 

factors to consider for dispersal model choice are the landscape and the species to be 

modelled. If the spread of an invasive species is modelled for monoculture plantations or 

crops or greenhouse experiments the mathematical models which assume a homogeneous 

environment, but can incorporate complex assumptions about the effect of competition and 

other factors on dispersal dynamics, might be preferable (Pitt et al., 2009). On the other hand 

if the area for which the study is being designed is heterogeneous, and especially if it is 

interdispersed with indigenous fauna and flora then a spatially explicit modelling approach 

that considers heterogeneity is appropriate to prioritize intervention sites, and assess the 

possible effect of an invasive species as well as the eradication effort on local fauna and 

flora. Species specific information also affects the type of landscape to consider. For 

example, dispersal parameters of species that actively seek their suitable environment over a 

long distance might be more influenced by the configuration of the landscape, than those 

that strictly depend on  another agent for their long distance dispersal (Schellhorn et al., 

2014). While modelling such a species it is important to understand the configuration of the 

landscape to understand its possible effect on the spread rate of the species. One such 

species is the large white butterfly (Pieris brassicae). The female adult is known to fly over 

200-400 km after emergence (Spieth & Cordes, 2012), actively seeking Brassica spp or other 

alternate host plants (Chew & Renwick, 1995).  
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7.2 Methods 

“That there is no single correct scale or level at which to describe a system does not mean that all 

scales serve equally well or that there are not scaling laws.” 

Simon A. Levin in his MacArthur address, 1992 

The last objective of this thesis, to investigate recoding heterogeneous landscapes with a 

varying degree of composition across space to improve dispersal rate and pattern 

predictions, is investigated based on methods provided in the following sections.  

7.2.1 Study area  

Determining the landscape extent and resolution for insect dispersal studies is a subject of 

ongoing research (Turner et al., 2001; Skelsey et al., 2013). There is no spatial extent and/or 

resolution that are known to universally optimize dispersion for all species (Levin, 1992; 

Chave & Levin, 2004). It is important to consider specific species biotic parameters especially 

the local spread rate, dispersal pathways, and the type of the landscape when setting spatial 

resolution for a dispersal model (Higgins et al., 1996).  Spatial extent is usually defined by 

the research aims, the available computation power, spatial resolution, and abiotic 

information. While the factors given above relate to the scope of this study, the choice of 

spatial scale and extent spans many more spatio-temporal factors than discussed here (Saura 

& Martinez-Millan, 2001).   

Figure 7.1: Study area of the P. 

brassicae dispersal modelling study 

To avoid the edge effect in processing 

data all available datasets that were 

selected for the dispersal modelling 

were first clipped to cover the five 

administrative districts in the South 

Island that were either in contact 

with- or nearby the locations invaded 

by P. brassicae. These districts were 

Buller, Tasman, Nelson City, 

Marlbourgh and Kaikoura. This 

greater extent area of interest was 

used to process the various inputs for 

the dispersal model before clipping all 

the necessary input data to the final 

extent of the study area which was 12, 

466 sq. km bounded by the blue box in Figure 7.1. The approximate location of the initial introduction 

point of P. brassicae is located near the middle of the study area.  
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7.2.2 Biological aspects 

P. brassicae is a known migratory species that is reported to be capable of flying up to 400 km 

(Spieth & Cordes, 2012). Although wind could assist insects in their long flights (Pasek, 

1988), P. brassicae has been observed flying upwind (Williams, 1958). This suggests that wind 

is not necessarily the cause for P. brassicae long distance dispersal, and that it may simply 

take advantage of wind when its direction is suitable (Feltwell, 1982). Adult P. brassicae tend 

to fly in one direction after emerging and the fact that there are usually no return flights to 

their starting point increases the possibility of travelling long distances. However, it is 

reported that the offspring usually find their way back to where their parents originated 

(Spieth & Cordes, 2012) allowing panmictic populations across their range and providing 

reinforcement in areas P. brassicae populations are already present (Hansen & Merivee, 

1971). A female adult P. brassicae will only alight and rest either to wait out a strong wind 

blowing against her direction (Williams, 1958), to feed or to lay eggs if she detects a suitable 

host under her flight path (Feltwell, 1982).  

P. brassicae is reported to have a proportional (1:1) sex ratio during migratory long flights 

(Feltwell, 1982), which can reduce the Allee effect on migrating P. brassicae groups. This has 

important implications for characterising the long distance dispersal of P. brassicae, as 

reduced survival consideration to account for an Alee effect can lead to under-estimation of 

dispersal capability for this species.  

It has been reported that P. brassicae detects hosts using a combination of visual and 

biochemical mechanisms. A P. brassicae in flight, whether in a group or alone, will first detect 

a host using colour cues (Rothschild & Schoonhoven, 1977; Jolivet, 1992). Upon nearing the 

vegetation, they use various hormonal and biochemical mechanisms (Debarma & Firake, 

2013) to check the suitability of the plant for oviposition. As P. brassicae does not tend its 

offspring, the female must optimise the survival of her offspring by selecting appropriate 

host plants.  

Even though P. brassicae can disperse long distances on its own, humans are responsible for 

transferring P. brassicae across oceans or other large areas of unsuitable habitat. The life 

stages that are mostly associated with human assisted dispersal are eggs and pupae. This is 

because P. brassicae pupates on artificial substrates like walls, cargo containers, fence and 
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posts. rather than on host plants. This creates the possibility that pupae are accidentally 

transported through industrial, commercial or public transportation networks. There was an 

unconfirmed report where 400 pupae were discovered off containers shipped from Spain at 

the Colorado port (NAPPO, 2002). P. brassicae pupae have also been intercepted at the New 

Zealand border by the MPI, one on a caravan and another on a car (Craig Phillips, Pers. 

Comm. March 14, 2014). It is suspected that P. brassicae could have been introduced to 

Nelson with shipping containers off-loaded at the Nelson port. While transportation of 

pupae seems to be the major pathway for cross-border introduction, eggs can also be moved 

with host plants such as commercial brassicae species; this is probably more important for 

national rather than international dispersal.   

7.2.3 Spatially explicit dispersal model- MDiG 

In this study the Modular Dispersal in GIS32 (MDiG) model developed by Pitt (2008) was 

used. MDiG is an open source program that is developed within the framework of another 

open source GIS program GRASS (Geographic Resources Analysis Support System) (Neteler 

et al., 2012). This has the advantage that users can adapt the program to their needs, and that 

it is fully integrated with a powerful GIS system makes it easy to export any outputs in the 

form of GIS maps or database for subsequent spatial analysis or reporting.  

MDiG was developed to handle different kinds of dispersal mechanisms in a step by step 

manner. This enables accounting for the most important dispersal parameters like 

population growth, long distance dispersal and species-landscape interactions through its 

various modules. This design actually mimics the natural way of species dispersal, as 

individuals spread by one mode of dispersal at a time, but the same individual can use more 

than one mode of dispersal in their life time (Mader et al., 1990; Bilton et al., 2001; Pitt, 2008). 

While MDiG is a spatially explicit individual based population model that is capable both of 

characterising different life stages with different parameters and of estimating abundance-

related dispersal, in this study the presence/absence option was used. This kept the model 

simple so the effect of landscape on dispersal could be more easily studied.  

Here, only the modules used in the present study are described. However, MDiG is a much 

more powerful model and has other functionalities beyond the modules described here. A 

                                                      
32 Geographic information systems 
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detailed description can be found on the official site for the program 

(http://fruitionnz.com/mdig/ ) and Pitt’s (2008) doctoral thesis. 

7.2.3.1 Local spread through the neighbourhood module 

The neighbourhood module given as “r.mdig.neighbour” is designed to represent local 

spread from contagious cells. The two parameters that affect local dispersal dynamics are 

shape and range (Pitt, 2008). Shape is the pre-determined direction and order of cells an 

occupied cell can infest in its locality at any one time step. The Von Neumann and the Moore 

neighbourhood are the shapes used in most neighbourhood analysis computations, 

including cellular automata and other raster based focal analysis (Figure 7.2).  

 
Figure 7.2: Local dispersal neighbourhoods, (A) Von Neumann shape with range = 1 (B) Von 

Neumann shape with range = 2 (C) Moore shape with range = 1 (D) Moore shape with range = 2 

7.2.3.2 Kernel dispersal 

The kernel module, given as “r.mdig.kernel” addresses long distance dispersal. It 

stochastically generates long distance events, hence there is no explicit method to integrate 

different dispersal pathways separately. For example, a species could disperse by wind, 

through human transport or by active flight or by walking. Although, representing such 

pathways explicitly would generate more realistic long distance dispersals, it is usually very 

difficult to find such detailed information on dispersal pathways for understudied species. If 

such information was available, then dispersal kernels characterised by mixed probability 

distributions could be used to generate such events (Gilbert et al., 2004). The MDiG kernel 

module samples a Poisson distribution to determine the number of dispersal events that are 

(A) (C)

r=1 r=1
(B) (D)

r=2 r=2

http://fruitionnz.com/mdig/
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generated from an occupied site. Once the number of events is determined, a user defined 

probability distribution is sampled to determine the distances of the events generated from 

the occupied site. The options of probability distributions included are, Cauchy, exponential, 

logarithmic and a general kernel that users can characterise by defining the shape and scale 

parameter (Pitt, 2008).  Finally, a uniform distribution in the range of [0,2π] is sampled to 

determine the direction of each generated long distance events (Pitt et al., 2009).  

7.2.3.3 Survival module 

The survival module given as “r.mdig.survival” in the program allows a species-

landscape interaction to be incorporated. The user specifies a habitat suitability index in the 

form of survival probability map ranging from 0-100. The individuals modelled through the 

local and kernel modules are passed through the survival module to determine the ones that 

survive based on the underlying suitability value. It is also possible to provide a single 

survival value if the landscape is homogeneous such as with a monoculture glasshouse (Pitt, 

2008). 

7.2.4 Parameterizing P. brassicae dispersal 

P. brassicae exhibits both local and long distance dispersal (Feltwell, 1982), which were 

parameterized as follows.  

7.2.4.1 Local dispersal 

The neighbourhood module of MDiG was used to define the local dispersal of P. brassicae. 

Unlike long distance dispersal, there is no evidence that P. brassicae exhibits directional bias 

during local dispersal (Davies & Gilbert, 1985). Thus, the Von Neumann shape (Figure 7.2) 

with range = 1 was chosen to represent the neighbourhood for spread within one time step 

because it has a more or less uniform direction. Although, the Moore shape has a more 

uniform direction, it can lead to over-estimation of local dispersal because it has more 

number of cells that expand within one time step.  

I chose a cell resolution of 100 m to approximate local movements of larvae and adults. A 

number of estimates including 7 m, 88 m and 350 m were reported as the distance P. 

brassicae larvae cover while looking for pupation sites, as reviewed by Feltwell (1982), with 

the latter reported as unusual. I took the median value of the distances reported for larval 
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movement above, and rounded it to the nearest hundred meters to make area calculations 

straightforward. I refrained from using spread rates reported at large scales, which included 

long distance dispersals, as these are dealt with by the kernel module. Also, estimating local 

spread rates using long-distance aided dispersal estimates is misleading as it does not give 

reliable local scale information (Neubert & Parker, 2004). The initial dispersal site was set in 

a cell close to Nelson port which is suspected to be the site of P. brassicae introduction.   

7.2.4.2 Source data for long distance dispersal parameters  

The dispersal history of P. brassicae in the United Kingdom has been characterised, and the 

resulting estimates were used to parameterize the long distance dispersal module in this 

study. P. brassicae has a Palearctic distribution. The reasons why United Kingdom is chosen 

to parameterize long distance dispersal are: 

1) Surface area: the United Kingdom is an island territory with a similar land surface area to 

New Zealand. The kernel module does not address each long distance dispersal pathway 

separately, but represents the overall dispersal pattern in terms of distance, frequency and 

direction. Therefore, obtaining dispersal parameters from an area similar to the study area 

improves predictions. For example, a factor that affects dispersal simulations is spatial extent; 

with limited spatial extent, some long distance dispersal events are lost because they fall 

outside the study area. Some of these lost events could have been sources of dispersals back 

into the study area, and this introduces error in terms of both the final predictions as well as 

the dispersal dynamics (Pitt, 2008). While error is inevitable as one can only model a limited 

area at a given resolution provided the time, data and computation resource limitations, it is 

possible to reduce it (Baker et al., 1995). Here, I reduced error arising from spatial extent by 

using a source area (United Kingdom) for parameter estimation similar to the study area 

(New Zealand).  

2) Data availability: It is usually difficult to find geographically accurate species occurrence 

data, and it is even more difficult to find species occurrence data complete with temporal 

information. There are over 103,059 geographically referenced high resolution global 

occurrence points for P. brassicae on the GBIF database. However, only a few contain dates 

of introduction of P. brassicae at the locality it was recorded.  

Some P. brassicae data from the United Kingdom was well referenced in terms of temporal 

records. Additional information on pre-1960 distribution of P. brassicae was obtained from 

Feltwell (1982) and Heath (1970). 

7.2.4.3 Distance estimation for long distance dispersal events 

A map of P. brassicae distribution in the United Kingdom (Feltwell, 1982) was scanned and 

rectified using the ArcGIS® software according to the UTM Zone 30 projection information 
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given in the legend. The provisional version of the original atlas Heath (1970) was 

downloaded from the Open Research Archive of Natural Environment Research Council 

website because it had clear map ticks that could be used for the geo-rectifying process. The 

atlas described the sampling scheme used to collect the distribution data and indicated that 

each occurrence point represented a 10 km sq. grid on the map. Accordingly, a cell size of 10 

km was used as the standard data processing resolution for dispersal parameter estimation. 

The P. brassicae occurrence points were then digitized from the rectified image for the pre-

1960 (n=57) and post-1960 (n= 294) time periods given in the legend.  

Both the pre-1960 and the post-1960 occurrence datasets, and the United Kingdom boundary 

traced from the rectified scanned image, were projected to the British National Grid 

coordinate system. National grids give the most accurate planar distances locally. 

The boundary traced from the rectified image was overlaid with a standard national 

boundary dataset obtained from the United Kingdom Ordinance Survey website. The total 

area of the spatial difference between the boundary of the rectified image and the standard 

boundary data was estimated after the overlay operation by extracting non-conforming 

areas.  The area of the difference-data was divided by the area of the standard UK boundary 

to obtain the approximate uncertainty per km sq. from the rectification process.  

From the GBIF database, 56,913 P. brassicae occurrence points were found for the United 

Kingdom. Most of the points conformed to the sampling grid of 10 km sq. used in Heath 

(1970). This suggests continuity of the survey as well as overlap between Heath (1970) and 

the GBIF database. However, a high density of occurrence points that were tightly localized 

in the counties of Cumbria, Shropshire, Bath and North East Somerset, North Somerset, 

South Gloucestershire and City of Bristol conformed to high resolution (1 km sq. grid) 

sampling units. These highly localized urban surveys inflated the number of occurrences 

(Appendix 7.2). To remove bias due to intensive surveying in for these areas, the GBIF data 

were resampled using 10 km sq. intervals, and were projected into the British national grid 

coordinate system. The resampled GBIF P. brassicae occurrence data (n=505) along with the 

points digitized from Heath (1970) (n = 351) were used to estimate dispersal parameters for 

P. brassicae.  
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A total of 856 points were used for parameter estimation. Information on dates of records of 

P. brassicae occurrences from Feltwell (1982) and GBIF database was used to characterise the 

856 points with a year of introduction into their respective localities. For example, for the 

pre-1960 dataset the occurrence points were characterised by the year of their first sighting 

to give the data further temporal resolution. 

Two distance measurement methods are usually used to estimate the distances travelled 

during long distance (jump) dispersal of invading species; either a nearest neighbour 

method, or a distance from the origin method (Robinet et al., 2009). The distance-from-the-

origin method, measures distances from each occurrence point to the site of estimated origin 

of introduction of the species into the study area. While this works best for small scale 

studies, it over-estimates the dispersal distances in cases where the dispersal behaviour of 

the species is expected to be stratified (local plus long distance dispersal), long distance 

dispersers could possibly arise both from the front as well as the core of the invading 

population (Nathan & Muller-Landau, 2000). The dispersal distance for P. brassicae was 

parameterized by producing the nearest neighbour distance vector between occurrence 

points for each period to account for the stratified nature of P. brassicae dispersal. A random 

uniform noise within a range of [-146 m, 146 m] was applied to the nearest neighbour 

distance vector extracted from the occurrence points with many replications (n=1000) to 

account for uncertainty from the digitized points (Pitt et al., 2011).   

P. brassicae dispersal was characterized by a stratified dispersal where a population invades 

an area and locally spreads. As the density of the population within an area increases P. 

brasscae females fly away to find host plants that are not already burdened by eggs or larvae; 

this implies density dependent long distance dispersal (Rothschild & Schoonhoven, 1977; 

Debarma & Firake, 2013). Such dispersal is characterized by a high number of small distance 

dispersals followed by rare long distance dispersals as adults look for additional suitable 

hosts once pre-existing sites are over-populated. The Cauchy distribution was chosen to fit 

the long distance dispersal data due to the fat-tailed characteristics of the distribution that 

allows for rare long distance events (Kot et al., 1996; Higgins & Richardson, 1999; Cain et al., 

2000). The Cauchy probability density function is given below. 
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𝑓(𝑥|𝑥𝑜,𝛾) =  
1

𝜋
 [

𝛾

(𝑥 − 𝑥𝑜)2 + 𝛾2
 ] − − − − − − − − − − − − − − − − − − − − − − − − 𝐸𝑞. 7.1 

Where xo is the location parameter and γ is the scale parameter of the Cauchy distribution.  

The location (xo) and scale (γ) parameters were estimated by fitting the noised distance data 

(n=1000) to the Cauchy distribution using the maximum likelihood estimator with the trust-

region-reflective optimization algorithm (Conn et al., 2000) using MatLab® software. The 

mean and standard deviation of the parameter estimates over the 1000 replicates was used 

to assess the stability of the estimated Cauchy location and scale parameters.  

The New Zealand distance data were also analysed to compare the parameters from the two 

locations. However, P. brassicae was introduced to New Zealand only in 2010, so New 

Zealand dispersal data cannot fully represent the species dispersal dynamics. Additionally, 

New Zealand data will be biased towards short distances due to intensive surveillance and 

eradication conducted in 2012 and 2013. The New Zealand data, however was used to 

validate simulated eradication on dispersal results for New Zealand.  

7.2.4.4 Frequency estimation 

The frequency of the dispersal events was estimated from the United Kingdom temporal 

occurrence data. The historical P. brassicae presence data was first classed into periods. The 

ratio of the number of new P. brassicae sites to the number of existing sites was calculated for 

each period. The resulting vectors of ratios that reflect the minimum number of dispersal 

events that needed to be generated from each cell to achieve the number of occupied cells in 

the next time period were then weighted by the number of sites for each period as described 

by Pitt et al. (2011) (see Eq. 7.2). 

R =  
∑ 𝑁𝑡   

𝑇
𝑡=𝑡0+1

− 𝑁𝑡−1

∑ 𝑁𝑡−1
𝑇
𝑡=𝑡0+1

 − − − − − − − − − − − − − − − − − − − − − − − − − − −  𝐸𝑞. 7.2 

Where R  is the vector of average weighted ratios calculated by dividing the number of newly invaded 

cells to the number of existing cells, t0 is the first year with occurrence data, T is the last year, and Nt 

is the number of cells that are occupied within time t (Pitt et al., 2011).   

The vector R which was made up of the estimations of the number of dispersal events per 

cell per year from the historical occurrence data was obtained from Eq. 7.2 and was fitted to 
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the Poisson distribution where the expected mean frequency of the distribution (λ) was 

estimated. The Poisson discrete probability function is given in Eq. 7.3. 

𝑓(𝑘|𝜆) =  
𝜆𝑘𝑒−𝜆

𝑘!
 − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − −  𝐸𝑞. 7.3 

Where k is a vector of discrete integers [0, 1, 2, …] that correspond to the a discrete random variable 

X whose probability mass function is given by Eq. 7.3., and λ is the expected mean of the distribution 

with λ > 0 condition. The λ in this case is estimated by fitting the vector R from Eq.7.2 to a Poisson 

distribution.  

The obtained expected mean (λ) was used to parameterize the Poisson distribution used by 

the MDiG kernel module to determine the number of events generated from each occupied 

cell. The number of dispersal events from each existing cell per year was also calculated for 

New Zealand to compare with the United Kingdom data. 

7.2.5 Building the survival layer 

A survival layer was used in the dispersal procedure to determine whether dispersing P. 

brassicae will survive in newly occupied cells. Two survival layers were developed to 

investigate the effect of landscape on the initial condition of invasive species dispersal. The 

first survival layer (Surv_1) was prepared using four data sources: climate suitability, degree 

days, land cover and high resolution remotely sensed data. The second survival layer 

(Surv_2) included all components used in Surv_1, except the high resolution remotely 

sensed data. Brief explanations of these datasets are given below.   

7.2.5.1 Climate suitability 

The hybrid climate suitability layer (Figure 7.3-A) produced in Chapter 6 was used as a 

component to construct a survival layer for the MDiG dispersal model. This layer was 

produced by combining correlative and mechanistic model results to obtain climate 

suitability prediction for P. brassicae. The data were projected to New Zealand Geographic 

Datum 2000 coordinate system, which was used throughout the study in this Chapter. The 

hybrid climate suitability layer had a resolution of 30’ (converts to ~ 0.8 km at latitudes 40◦ - 

50◦). Therefore, it was resampled at 100 m which was the raster resolution set for the 

dispersal model.  
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7.2.5.2 Growing degree days 

A 30 year daily minimum and maximum temperature data obtained from NIWA (2005) was 

used to prepare the growing degree days map for P. brassicae in New Zealand. The base 

development temperature for the various life stages of P. brassicae were obtained from Kean 

and Phillips (2013c), which has detailed records of the individual life stages and total degree 

day requirement by P. brassicae to complete a generation in New Zealand. Their study 

developed a phenological model, partly parameterized by field data obtained observations 

of P. brassicae in New Zealand. These results based on local information were the 

appropriate input for a dispersal study aimed at the same locality. Base temperatures (lower 

threshold for development) of 8.2 ◦C, 17.9 ◦C, 10 ◦C and 11 ◦C were reported for the 

development of P. brassicae eggs, larvae, pupae and adults respectively. Because a 

presence/absence scheme rather than a detailed life stage dispersal was used in this study, it 

was necessary to choose one base temperature. The pupal development threshold was 

selected as a base temperature because: 1) pupa has the highest temperature development 

threshold of all the life stages. Thus, it’s impossible for GWB to complete its lifecycle unless 

temperatures exceed this threshold (Craig Philips, Pers. Comm. March 14, 2014), 2) it is a 

stationary stage which is important as mobile life stages can move to more suitable 

locations, 3) it is close to the average baseline temperature for all the life stages compared to 

the other stationary life stage which is the egg.  

The growing degree day (GDD) surface was produced by interpolating grid data from the 

accumulated GDD point dataset calculated using the base temperature 10 ◦C based on the 30 

years daily minimum and maximum temperature data for New Zealand.  There are a 

number of methods to calculate degree days and each method depends on the kind of 

temperature data available (Worner, 1988, 1992). The Barlow (Barlow & Dixon, 1980) or 4-

step method was used to calculate the daily degree day value in this study as it was reported 

to be one of the methods that gave the least error when validated with real data (Kean, 

2013). The daily average for the Barlow calculation was made by taking the average of daily 

maximum and minimum temperatures as true daily mean temperature data was not 

available. The degree day data calculated for 509 points was interpolated into a raster 

surface using spline interpolation (Schoenberg, 1971) (Figure 7.3-C).   
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𝑑𝑑 =
([ 𝑇𝑚𝑎𝑥 − 𝑏] + [ 𝑇𝑚𝑖𝑛 − 𝑏] + 2[ 𝑚 − 𝑏])

4
− − − − − − − − − − − − − − − − − − −  𝐸𝑞. 7.4 

Where Tmax is the daily maximum temperature, Tmin is the daily minimum temperature, b is the base 

temperature and m is the daily mean temperature given by (Tmax-Tmin/2) or given by a true daily mean 

calculated from hourly or higher temporal resolution temperature measurements.  

Table 7.1 Land cover re-classification according suitability for P. brassicae 

Land cover name Code  description 

Built-up Area* 1  Very high suitability 

Orchard and Other Perennial Crops 1  Very high suitability 

Short-rotation Cropland 1  Very high suitability 

Urban Parkland/ Open Space 1  Very high suitability 

Alpine Grass-/Herbfield 2  high suitability 

Depleted Tussock Grassland 2  high suitability 

High Producing Exotic Grassland 2  high suitability 

Low Producing Grassland 2  high suitability 

Tall Tussock Grassland 2  high suitability 

Broadleaved Indigenous Hardwoods 3  moderate suitability 

Deciduous Hardwoods 3  moderate suitability 

Manuka and or Kanuka 3  moderate suitability 

Matagouri 3  moderate suitability 

Gorse and Broom 4  low suitability 

Herbaceous Freshwater Vegetation 4  low suitability 

Herbaceous Saline Vegetation 4  low suitability 

Indigenous Forest 4  low suitability 

Major Shelterbelts 4  low suitability 

Mixed Exotic Shrubland 4  low suitability 

Sub Alpine Shrubland 4  low suitability 

Vineyard 4  low suitability 

Afforestation (imaged post LCDB 1) 5  very low suitability 

Afforestation (not imaged) 5  very low suitability 

Fernland 5  very low suitability 

Flaxland 5  very low suitability 

Forest Harvested 5  very low suitability 

Grey Scrub 5  very low suitability 

Other Exotic Forest 5  very low suitability 

Pine Forest - Closed Canopy 5  very low suitability 

Pine Forest - Open Canopy 5  very low suitability 

Alpine Gravel and Rock 6  not suitable 

Coastal Sand and Gravel 6  not suitable 

Dump 6  not suitable 

Estuarine Open Water 6  not suitable 

Lake and Pond 6  not suitable 

Landslide 6  not suitable 

Permanent Snow and Ice 6  not suitable 

River 6  not suitable 

River and Lakeshore Gravel and Rock 6  not suitable 

Surface Mine 6  not suitable 

Transport Infrastructure 6  not suitable 

* “Built-up Area” in the LCDB2 land cover dataset generally refers to urban areas or settlements and 

as it is a large scale data, it does generalize inner city gardens or small green spaces.    
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7.2.5.3 Land cover/land use maps 

The New Zealand Land Cover Dataset, LCBD2 (MFE, 2004) was accessed from the data 

portal Koordinates.com to extract land cover data for the study area. The land cover data 

was produced by Landcare Research based on SPOT imagery (resolution 15 m) and the pan-

sharpened Landsat 7 ETM+ imagery (resolution 15 m). The dataset has 43 types of land 

covers. These were grouped and re-classed into six classes according to their suitability for 

P. brassicae (Table 7.1). The re-classed ESRI® polygon dataset was then converted to raster 

using 100 m resolution (Figure 7.3-B). 

7.3.5.4 Selective enhancement of landscape detail using remotely sensed data 

Remote sensing data is used for a wide array of agricultural and ecological research (Kerr & 

Ostrovsky, 2003). Satellite images are one form of remotely sensed data that are becoming 

increasingly available and affordable. The types of information extracted from satellite 

images differ based on the spectral and spatial range and resolutions of the image 

(Schaepman et al., 2009).  The objective of using remotely sensed data in this study was to 

characterise specific attributes of the urban areas within the study area including Nelson city 

where P. brassicae was first reported in New Zealand.  

Here I carried out selective recoding of the landscape using image derived data out of the 

necessity to define a better initial dispersal condition for P. brassicae in Nelson. The need for 

such landscape arose because the land cover dataset available has classified all urban areas 

as built-up area (Table 7.1) which combined the highly suitable home gardens, public parks 

and untended green spaces with the houses, roads, buildings and other urban structures. 

And because P. brassicae is spreading in Nelson by breeding in home gardens that are 

available in residential blocks, a homogeneous landscape (Figure 7.4-A) within urban areas 

will over-estimate its dispersal. The remotely sensed data was used to characterise the 

geographical detail in urban areas in the study area. A single layer labelled “man-made 

structures” (Figure 7.4-C) was generated from the satellite image to update the 

homogeneous “built-up” (Figure 7.4-A) class in the land cover data.  
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Figure 7.3: Suitability maps used to build the survival layer:(A) Hybrid climate suitability, (B) Land cover suitability and (C) Accumulated growing degree 

days 
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The chosen satellite image for this purpose was the SPOT33 Maps® 2.5 m resolution satellite 

imagery. The image had a pseudo-colour band and three layers in the visible band, from 

which vegetation and man-made structures could easily be identified. The 2.5 m spatial 

resolution also enabled to identify patches of unsuitable land within urban areas with high 

precision.  

Unsupervised image classification was first undertaken to roughly identify spectral 

reflectance associated with man-made structures like houses, buildings, roads and dams. All 

reflectance that identified such features were then merged to form one class for man-made 

structures (Figure 7.4-C). Ground truth data points (n=200) were collected from various GIS 

datasets including New Zealand road centre lines, New Zealand Rivers and land cover data 

to validate the unsupervised SPOT image classification.  

The image classification result is briefly discussed here and is not presented in the results 

section. The accuracy of the classification was assessed using a confusion matrix and was 

92.5%. This high level of accuracy was expected as the features being classified were 

spectrally very distinct and the focus was on getting precision in only one class (man-made 

structures) which has features very distinctly separated from the other land covers like 

crops, water and vegetation. The few miss-classifications associated with the commission 

error were heavily logged or deforested patches that had similar signatures to open roads. 

The omission errors occurred where side vegetation obscured the view of roads on the 

satellite image, were classified as non- man-made class. 

7.2.5.5 Survival layer combining scheme 

The method to combine these different components of the survival layer was designed so 

that the most limiting factor to P. brassicae dispersal had the highest weight. The climate 

suitability dataset was downscaled from its original 0.8 km resolution to 100 m which means 

change in value is not expected at least for eight cells (pixels).  Therefore, the least weight 

was given for the climate suitability dataset. In Chapter 6, it was shown that temperature 

                                                      
33 Satellite Pour l’Observation de la Terre 
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throughout New Zealand are generally suitable for P. brassicae, though some areas are more 

suitable than others. Hence, the growing degree day data was given medium weighting.  

 
Figure 7.4: Comparison of geographic detail for urban areas between the land cover dataset (A) the 

high resolution SPOT Map® imagery (B) and the classified man-made structure layer (C). 
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The land cover data was derived from a 15 m resolution image and showed the highest 

longitudinal variation of all the layers, so was given the highest weight. The land cover data 

was used as the base on which extra values from the above two suitability layers was either 

added or subtracted depending on their assigned suitability value (Table 7.2).  The final 

survival layer was then clipped to the study area extent set for the dispersal model.  

Two survival layers were produced. The first one included the climate suitability, degree-

day suitability, land cover and the man-made structure extracted from the satellite image 

and was labelled as Surv_1. The second survival layer included all layers except in Surv_1 

except the man-made structure layer and was labelled Surv_2.  

 

Table 7.2: scheme used to combine different survival layer components 

Land cover Climate suitability (%) Accumulated degree day Man-made structure (Boolean) 

code Survival 

probability 

Value Contribution

* 

Value Contribution Value Contribution 

6 0 <  10 - 10 < 471 - 10 If   1 Set survival to zero 

5 10 10 - 20 - 8 471 - 942 + 4 If  0 No input 

4 30 20 - 30 - 6 942 - 1413 + 6 - - 

3 50 30 - 40 - 4 1413 - 1884 + 8 - - 

2 80 40 - 50 - 2 > 1884 +10 - - 

1 90 50 - 60 + 2 - - - - 

- - 60  - 70 + 4 - - - - 

- - 70 -80 + 6 - - - - 

- - 80 – 90 + 8 - - - - 

- - >  90 + 10 - - - - 

*Contribution here refers to the percentage that gets added or subtracted to/from the survival layer 

depending on the level of suitability of each component. Land cover was taken as the base survival 

layer on which the effect of the other components is added and is given in the first column.  

 

In case of the first survival layer (surv_1) the final combined survival layer was recoded 

with the man-made structures data identified from the SPOT image classification where all 

areas that were overlaid by the man-made structure data were set to a survival of zero 

probability (Figure 7.5-A). For the second survival layer (surv_2) the dataset that contained 

the combination of the three different suitability datasets was used without the SPOT image 

data input (Figure 7.5-B). 
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Figure 7.5: Survival layers used in the P. brassicae dispersal model. 

(A) Survival layer 1(surv_1) composed of climate, land cover and growing degree day suitability 

layers with high resolution man-made structures layer used to increase geographic detail of urban 

areas. (B) Survival layer 2 (surv_2) composed of all suitability layers included in the first survival 

layer except the man-made structure layer from the high resolution satellite image. (C) & (D) show a 

close up map of Nelson city for Surv_1 and Surv_2 respectively, and (E) & (F) show a close up map 

of Blenheim town for Surv_1 and Surv_2 respectively. 

 

7.2.6 Assessing the effect of eradication carried out during the years 2012-2013 

The Department of Conservation’s eradication programme against P. brassicae officially 

began in November 2012, but was not fully operational until early 2013. Mortality due to the 

eradication programme was simulated separately, then compared with the control 

simulation that used the survival layer, surv_1. The detection scheme given below was used 

in the field as a systematic strategy to eradicate P. brassicae, and the same method was used 

in the simulated eradication for the year 2012 and 2013 in this study. The detection and 

eradication team had delineated operational management blocks that encompass Nelson city 

and surrounding areas (Figure 7.6).  The management blocks were generally classified as 

outlier areas, satellite areas and core areas. Four types of surveillance were carried out in 
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these management blocks. These were passive, active, general and follow-up surveillance 

(Phillips et al., 2013).  

Passive surveillance, was undertaken in response to reports of P. brassicae sightings by the 

public. Most of P. brassicae detection were recorded through passive surveillance. 

Active surveillance is undertaken whenever there is a P. brassicae detection, including in 

response to a passive surveillance report of P. brassicae, and covers a pre-defined distance 

around the new detection. The radius of search depends on the management block the 

detection occurs in.  Active surveillance is conducted within 200 m radius when the new 

detection is in the outlier management block, within 150 m when the detection is within the 

satellite areas block. If the new detection is within the core areas management block, no 

search is conducted as these areas are covered under the second surveillance scheme 

referred as the general surveillance. However, in case no general surveys is undertaken in 

that part of the core area, a 150 m radius is searched after new detection. In all cases of active 

surveillance if additional detection is encountered a new extended search radius is set up 

with the location of the new detection as the centre. This is repeatedly carried out until no 

new finds were made. 

General surveillance refers to planned searches that are not in response to any positive 

finds, rather this strategy served as a reconnaissance survey to establish the general 

distribution of P. brassicae and make sure any P. brassicae eggs found do not progress to 

pupation. General surveillance was frequent in core areas, but was also carried out in 

historical hot spot areas in the satellite blocks that had been eradicated, to provide 

confidence that the invasion front did not expand into outlier areas. 

Follow-up surveillance is undertaken when there is a specific visit to a property and P. 

brassicae was removed. This was designed to increase confidence other P. brassicae eggs, 

larvae or pupae do not remain in the area (Craig Phillips – Pers. Comm., 23 September 2013). 

 
Figure 7.6: Eradication management blocks used by the department of conservation in Nelson city 

and surrounding areas. 



230 

 

The arrow indicates a number of P. brassicae detections that are covered by surveillance in an outlier 

area management block. The block is not shown here as GIS data was not available. However, virtual 

eradications in that area were conducted as per the radii set for the outlier management block.  

Passive surveillance, was not simulated in this study; because it was undertaken in response 

to reports of P. brassicae sightings by the public, it could not have been replicated without 

the time and location of the public reports. Because, all the detections from follow-up and 

general surveillance methods were included in the occurrence data, they were treated with 

the same radii defined for search eradication under the active surveillance scheme (more 

description is given in Section 7.2.7).   

7.2.7 Simulation 

Sixteen years of simulations were undertaken representing dispersal from the year 2010, the 

first year of introduction of P. brassicae to New Zealand, to 2025. The simulation was 

replicated 1000 times to produce an occupancy envelope for dispersal at the end of each time 

step. Three thresholds [5, 10, 50] that corresponded to the number of times a cell was 

occupied during dispersal for all the replications was used to estimate probability of 

dispersal into a cell (Pitt et al., 2009). A single site from which P. brassicae is thought to be 

introduced was used as an initial dispersal point in all the simulations.  

According to the above simulation framework, three simulations were undertaken:  

1) Dispersal of P. brassicae on the Surv_1 landscape 

2) Dispersal of P. brassicae on the Surv_2 landscape 

3) Dispersal of P. brassicae on the Surv_1 landscape with a virtual eradication on year 2012 

and 2013 using the detection and eradication buffers specified under the active surveillance 

method.  

The active surveillance details were used to apply the virtual eradication on the simulated 

dispersal maps of year 2012 and 2013. Eradication buffers were constructed according to the 

specifications of the active surveillance radii for the different management blocks. The 

different buffers representing the different radii within different management blocks were 

then merged to create an area of virtual eradication (Figure 7.7). All dispersers within the 

buffer of eradicated areas in 2012 were removed from the year 2012 simulation before 

simulating the dispersal for the next year. This was also carried out for the year 2013. From 



231 

 

2013 onwards the dispersal was simulated until year 2025 without any eradication. The 

dispersal pattern, area and final state was compared with the control simulation that had no 

eradication (simulation with Surv_1).  

The simulation was run on a quad core PC with 3.40GHz Intel i7 processors, and each 

simulation of 16 years by 1000 replicates took 32.5 hours. Total area covered at each time 

step by the predicted P. brassicae dispersal was compared for dispersal generated based on 

surv_1 and surv_2 survival layers, and for simulation based on Surv_1 with eradication.  

 
Figure 7.7: Virtual eradication buffers specified according to the active surveillance –eradication 

scheme currently used on the ground in the years (A) 2012 and (B) 2013 

The occupancy probability envelopes are shown to give the overall view of the dispersal at the year 

2012 & 2013 over the 1000 simulations. The virtual eradiation was carried out om each of the 

replicates separately. Because, a separate detection method was not designed, the buffers were drawn 

around the real detections for each year and were applied on the simulated dispersal.  
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The New Zealand data set of P. brassicae detections and absences obtained from the 

Department of Conservation (Phillips et al., 2013). were used to compare the first three years 

of the dispersal occupancy envelopes of both Surv_1 and Surv_2 dispersal model outputs 

with field data. Even though the original data was collated with higher temporal resolution, 

the data is presented here by year as the simulation is set up for yearly parameters. 

Table 7.3:  Geographically refernced P. brassicae survey data points available for validation 

Year Presence Absence Total 

2010 19 - 19 

2011 26 - 26 

2012 199 614 813 

2013 835 26498 27333 

 

7.3 Results 

7.3.1 Dispersal parameters 

The estimated dispersal parameters based on P. brassicae occurrence points in the United 

Kingdom were used to calibrate the kernel module to generate long distance dispersals 

(Table 7.3). Parameters estimated using New Zealand spatio-temporal occurrence records 

are also reported just for comparison, they were not used to calibrate the model. However, 

the limited occurrence points in New Zealand were used to validate the simulated 

eradication.  

Dispersal parameters were extracted based on the distances between successive dispersal 

events and their frequency. The P. brassicae dispersal events in the United Kingdom showed 

a typical fat tailed distribution where most dispersals were near existing sites, with a few 

rare dispersals located further from the invading front (Figure 7.8-A). Such rare long 

distance events however were found to be essential for the rapid advancement of an 

invading species as these colonisers could disperse even more locally where numerous 

unoccupied sites could be accessed compared to sites that are within the main invasion front 

(Higgins & Richardson, 1999; Cain et al., 2000).  
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Figure 7.8: distances between pre-existing and newly occupied P. brassicae sites fitted to the Cauchy 

probability density function of the user defined parameter values for United Kingdom data (A), and  

New Zealand data (B). 

 

The New Zealand dispersal distances data was not used to calibrate the model however the 

graph is shown here (Figure 7.8-B) to compare the result with the dispersal distances in the 

United Kingdom. Even though P. brassicae was only introduced in New Zealand in 2010 a 

similar trend of a stratified dispersal can be seen from the dispersal distances.  

The error introduced due to the digitization of the occurrence data from the scanned and 

rectified image was estimated at ± 146 m. The distance parameter estimation of the shape 

and scale parameters of the Cauchy distribution was averaged from a thousand runs of 

noised data to account for the uncertainty from the digitized occurrence points in the UK. 

The estimated values from the un-noised data (Figure 7.9) had very little variation to the 

average of the noised data and the standard deviation as a whole was very low (Table 7.4.). 

This was expected as the survey points in the UK were representative of 10 km2 which was a 

larger area than the estimated uncertainty introduced from the digitized points (145 m2). 

Additionally, as explained by Pitt et al. (2011), the parameters were more affected by 

variation in the tail of the Cauchy distribution, where the distances associated with this part 

of the distribution are very large, which requires high location uncertainty to affect the 

parameters. 
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Figure 7.9: Maximum likelihood iterations to optimize distance parameter estimation. Black triangles 

indicate the initial values at the top and the best values at the bottom. 

 

The frequency of dispersal events was more in agreement between the two datasets than the 

distance of the events. The average number of events that were estimated to occur per each 

existing site was 0.41 in case of the United Kingdom dataset and 0.48 in case of the New 

Zealand dataset. The estimated distance (xo, γ) and frequency (λ) parameters for both United 

Kingdom and New Zealand are given in Table 6.3. 

Table 7.4:  Dispersal parameter estimates used to calibrate the MDiG model for the P. 

brassicae dispersal simulation. 

Data Cauchy - xo (location) Cauchy -  γ (scale) Poisson – λ (expected mean) 

United Kingdom 24 752  ± 5.22 11 894  ± 3.23 0.41 [LCI=0.02, UCI=1.99, α=0.05]  

New Zealand 154.22 99.43 0.48 [LCI=0.05, UCI=1.77, α=0.05]  

* The Xo and γ estimates were used to characterise the Cauchy distribution used by the kernel module 

to determine dispersal distances for the stochastic dispersal events generated from all occupied cells. 

The λ parameter was used to characterise the Poisson distribution for the kernel module to determine 

the number of dispersal events generated from occupied cells. The direction of the generated dispersal 

events was not user parameterised and the MDiG (Pitt et al., 2009) default setting of random 

selection of directions between the range of 0 - 2π radians from a uniform distribution was used.   
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7.3.2 Comparison of occupancy envelopes  

7.3.2.1 Comparison based on field data (year 2010 – 2013) 

The occupancy envelopes from both dispersal simulations based on the two survival layers 

described in the method section were validated using the New Zealand P. brassicae temporal 

occurrence data obtained from DOC. Even though the New Zealand invasion of P. brassicae 

was well surveyed from the time it was detected in 2010, insufficient years have elapsed to 

use this data for validating different occupancy thresholds. This is because initial dispersal 

simulations differ due to stochasticity of the dispersal process (Pitt et al., 2009).  

 
Figure 7.10: Percentage of correctly represented presences/absences by the occupancy envelopes of 

dispersal model with the first survival layer (A) dispersal model with the second survival layer (B). 

 

In my study higher threshold percentage occupancies were not reached until the simulation 

year 2015, therefore the “> 0 %” threshold was used to evaluate the dispersal outputs.  The 

unique opportunity gained from this validation dataset was that absence data was collected 

during P. brassicae surveillance, which allowed me to assess the mean yearly specificity of 

the dispersal model. Accurate temporal absence data are often very difficult to obtain 

because detections often rely on passive finds, where only positive sites are recorded as 

opposed to sites where the species was not present.   

The percentage of presence sites that were correctly contained within the occupancy 

envelopes increased for both dispersal models with Surv_1 and Surv_2 layers from year 

2010-2012 (Figure 7.10). However, the percentage decreased for the model with a survival 

layer of added geographic detail at urban areas (Surv_1) for the year 2012-2013, while the 
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model with the Surv_2 layer increased. For absence sites that were correctly left out of the 

occupancy envelopes, the model using Surv_1 layer showed an increasing trend from 2012 

to 2013 (two years when absence data were available), but the model based on the survival 

layer Surv_2 showed a steep decline in the number of correct absences. 

Three measures were used to estimate the mean yearly performance of the dispersal models 

(Table 7.5). Even though the Surv_2 model scored more correctly predicted presence sites for 

the year 2010-2013, further examination of its accuracy and specificity showed it was not a 

superior model.  

Table 7.5: Performance scores for the dispersal model based on two different survival layers 

Scores (%) Surv_1 Surv_2 Remark 

Accuracy 68.07 27.27 𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 

Sensitivity 48.29 83.31 𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

Specificity 68.86 25.04 𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 

TP=True positive, TN=True negative, FP=False positive and FN=False negative 

The Surv_1 model gave higher overall mean yearly accuracy and specificity (about three 

times that of Surv_2), but a lower sensitivity score. This could be due to inaccuracy from 

dispersal parameters. But more importantly it could be the result of up scaling of the 2.5m 

resolution man-made structure layer from the remotely sensed image to a 100m resolution 

survival dataset. The up-scaling may have resulted in some garden and park spaces being 

included within the man-made structure layer. If the latter is the case, it will only affect 

urban locations, as the man-made structure layer was used to re-code areas of the landscape 

where there are man-made structures. The high sensitivity obtained from model Surv_2 was 

due to the high survival value given to all urban areas. However, unsuitable sites were also 

incorrectly labelled as suitable, so specificity was low.   

Both models closely simulated the progression of the Nelson inner city invasion as per the 

pattern observed from the occurrence data except for the first simulation year (2011). For 

2011, there were more actual occurrences compared to the simulated dispersal. That is 

clearly due to not enough source cells when the dispersal phase started.  We assume that P. 
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brassicae was first introduced into New Zealand in 2010 based on the year of detection. 

(Reference map for place names in the study area are given in Appendix 7.4) 

 
Figure 7.11: Dispersal maps overlaid with P. brassicae presences from field survey data  
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Figure 7.12: Dispersal maps overlaid with P. brassicae absences from field survey data 

Note: There was no absence data available for the year 2011. 

However, it is quite possible that the species might have completed a generation or two 

before it was detected, which might explain the more dispersed surveillance data compared 
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to the few cells predicted by the models for the year 2011. Most importantly, the discrepancy 

could result because it is difficult to approximate realistic dispersal patterns early on the 

simulation.  

In general The Surv_2 model contained more absence areas within the occupancy envelope 

than the Surv_1 model. When comparing the number of satellite populations that were 

correctly predicted through 2010-2013, both models predicted the satellite populations 

detected in Atawhai with the Surv_1 model being more spatially precise. In 2012 both 

models predicted the village Stoke where another population was detected further from the 

front close to port of Nelson. However, with the Surv_2 model more spatially precise (Figure 

7.11). In 2013, both models predicted the satellite population found in the towns of 

Richmond and Atawhai.  

7.3.2.2 Area covered (year 2010 – 2025) 

Different probability thresholds [5, 10, 50] were used to analyse the area covered at different 

time steps of the simulation. Accordingly, four probability of < 5%, 5-10%, 10 -50 % and > 50 

% occupancy envelopes were assessed. The  area of the “<5%” occupancy envelope has 

increased until around 2018 and 2019 in case of Surv_2 and Surv_1 models respectively 

before declining consistently until the end of the simulation year 2025. This trend shows less 

agreement among replicates in the beginning of simulation which is the effect of the 

stochastic nature of the dispersal. However as the years pass the effect of the landscape 

shaping dispersal becomes apparent with more replicates agreeing, hence the increase of the 

area of the “>50 %” envelope right after years 2022 and 2021 for Surv_1 and Surv_2 dispersal 

models respectively. The time gap with respect to the filling in the higher percentage 

occupancy envelopes between the two models shows delayed dispersal caused by higher 

percentage unsuitable cells within highly suitable neighbourhoods for the Surv_1 model. 

The exponential relationship between dispersal events and the number of occupied sites was 

truncated due to small study area extent forming a logarithmic relationship as shown in the 

case of both dispersal models. The model with Surv_2 layer however (Figure 7.13-B) reached 

equilibrium more quickly, i.e. all suitable areas were saturated.  
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Figure 7.13: Area covered by the simulation occurrence envelopes for various thresholds. (A) 

Dispersal using the first survival layer with added geographic detail from satellite images in urban 

areas, (B) survival layer without the higher resolution geographic detail in urban areas. 

The comparison between the cumulative probability envelopes for threshold > 0% 

(accounting for all sites predicted at least once) of the two dispersal models showed that 

more dispersal sites were covered by the model using Surv_2 at all of the time steps (Figure 

7.14-A). This is expected as the first survival layer (Surv_1) with more unsuitable cells had 

fewer suitable cells compared to the surv_2 layer because man-made structures within 

urban areas were set to a survival probability of zero. However, when the difference in 

predicted dispersal area was weighted with the number of high survival cells (survival 

probability > 90%), for both models, there was still a difference in the area covered by the 

dispersal as well as fluctuations in the increase in area over time (Figure 7.14-B). This 

suggests that the higher precision in mapping unsuitable patches among highly suitable 

areas slowed dispersal, hence, lowering the rate at which suitable cells were occupied in 
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addition to the cells that could not be occupied simply because they were recoded to zero 

survival probability.  

 
Figure 7.14: Comparison between the dispersal models using the survival layers tested in this study. 

(A) The number of sites covered under the “> 5%” occupancy envelope threshold. (B) The percentage 

of area covered by the “>5%” envelope by the two models after correcting for the difference in the 

available high survival probability sites.  

The greater spatial detail within highly suitable areas as in Surv_1, meant local dispersal was 

slowed as dispersers took more time to spread through a neighbourhood of highly variable 

survival probability than the time it takes to spread through a neighbourhood of uniformly 

high survival probability.  

When the actual dispersal maps are compared there is an apparent delay in occupation of 

suitable areas when the first survival layer (Surv_1) is used. For example, by 2020 the Surv_2 
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dispersal envelope of higher thresholds reached Renwick and Blenheim and covered 

extensive areas beyond the Wairau valley in the Marlborough district. Whereas, the Surv_1 

dispersal model did not have any high percentage threshold envelopes that reached 

Renwick or Blenheim and only limited dispersal within the 10 -50 % envelope reached 

beyond Wairau valley (Figure 7.15).  It is also notable that by the end of 2025 the Surv_2 

dispersal model  > 50% threshold envelope, covered extensive areas  in the bays,  islands and 

peninsulas of Marlborough Sounds, while these areas were still not covered by the high 

percentage envelope generated by Surv_1 (Figure 7.15).  

 
Figure 7.15: Dispersal coverage for the year 2015, 2020 and 2025 based on survival layer one (left 

panel) and survival layer two (Right panel) 
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7.3.3 Effects of current eradication scheme on dispersal dynamics 

The dispersal area covered by Surv_1 (the control dispersal model with no eradication) and 

the model with a portion of dispersers virtually eradicated on year 2012 and 2013 were 

compared. 

The difference in area covered showed that the eradication successfully suppressed long 

distance dispersal for four years (until 2016), before it slowly starts to climb steadily to 2025 

(Figure 7.16).  At the end of the simulation it is apparent that the eradication model does not 

reach equilibrium with large areas still unoccupied in 2025 (Figure 7.17).  

 

Figure 7.16: Comparison between the control dispersal model and the eradication model replicating 

the current eradication scheme. Left axis: logarithm of site counts, Right axis: Area (km2) 

The site count and area comparisons given for the control model and the eradication model based on 

the > 0 % probability threshold which includes all sites that were predicted at least once within the 

occupancy envelop of 1000 replicates.  
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Figure 7.17: Dispersal coverage for the year 2015, 2020 and 2025 based on survival layer 1 with no 

virtual eradication (left panel) and after eradication in the years 2012 and 2013 (Right panel) 
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7.4 Discussion 

Mapping and predicting species distributions is subject to uncertainty due to insufficient 

biotic and abiotic data (Pearson et al., 2006); predicting dispersal in a spatio-temporally 

explicit manner is even more uncertain (Dunning Jr et al., 1995). This is because uncertainties 

from early time steps get compounded into subsequent time steps, which adds error to 

estimates of both space and time (Pitt et al., 2011). However the increasing threat from 

invasive species and the need for integrated surveillance and eradication schemes calls for 

some sort of decisions and ideally, input from species distribution and dispersal models. The 

alternative is to cover all possible areas the species under surveillance could invade. That 

often leads to a program that is far too costly and unmanageable (Hulme, 2006).   

In this study, the simulation time frame was limited to 16 years to keep any dispersal pattern 

or rate predictions within a reasonable time frame that are only likely to be affected by the 

initial conditions and dispersal parameters provided. While discussing the temporal 

limitations of species dispersal models, Pitt et al. (2011) argued that over time, dispersal 

realizations at future time steps begin deviating from the pattern that is associated with 

initial conditions because of increasing uncertainties that build up over the years of the 

simulations to a point where the realizations will no longer be informative. In part, such 

uncertainty results from the inherent random nature of the long-distance kernel used in the 

dispersal model. While  there is an  alternative to use a  deterministic model that estimates 

distance and frequency of dispersal based on pre-set conditions or landscape types, such 

kernels usually require extensive  parameterization that is only suitable  for a species that 

has been  studied over a long time rather than a newly arriving species about which  

information is limited.  

Regarding spatial extent, the modelling framework was kept within a limited spatial extent 

(12,466 km2) so that it is easy to understand or interpret the dispersal pattern once the 

species reaches equilibrium with respect to the available area. The limited extent gives 

insight into which unsuitable areas get occupied due to propagule pressure despite having a 

relatively lesser survival probability assigned in the model. Such understanding of the 

dispersal dynamics is important from the management aspect where vulnerable areas even 
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within a seemingly unsuitable environment can be identified. A good example is the 

recurrent occupation of Rabbit Island despite having quite unsuitable land cover. In such 

cases, one might expect a transient population that can only populate the area in single time-

steps without having a permanent population. Such, interpretation of dispersal results can 

be used to prioritize a within border quarantine system so that invasive species can be 

deterred from spreading further within a country as discussed by Paini et al. (2010) who 

suggest that management of invasive species within borders should be part of a larger 

biosecurity framework.    

7.4.1 Improved representation of species-landscape interaction 

It is already been well established that the heterogeneous landscape affects species 

distribution (Dunning Jr et al., 1995; Higgins et al., 1996; Pitt et al., 2009) and that species 

dispersal realizations at later time steps of dispersal simulations usually follow the 

landscape pattern (Pitt et al., 2009). Despite the fact that it is difficult to get high confidence 

in terms of spatial specificity from stochastic dispersal models such as used in this study, 

Gilbert et al. (2005) suggested that it should be possible to achieve a certain level of 

confidence in the spatially explicit results of such models, if precise landscape data that 

specifies areas where the landscape could exacerbate and/or limit species mobility are used.  

Since accurate landscape information is important for spatially explicit dispersal models 

(Baker, 1993), the next step is to work out an optimum resolution as well as an optimum 

level of detail to represent the area of interest for dispersal studies. Recommending 

generalized optimum landscape measures is outside the scope of this study as it requires 

extensive research design involving factorial experiments to test multiple landscape types 

(Saura & Martinez-Millan, 2001). Instead, what is shown in this study is a method where the 

major part of the landscape is constructed from a lower resolution data with specific areas 

enhanced with high resolution data.  

Recoding the homogeneous urban area was necessary (as done in Surv_1), as otherwise the 

whole area would have to be labelled as suitable (Surv_2 model) to facilitate dispersal 

through urban areas. Because there would be no unsuitable patches in such an area the 

dispersal predictions would overestimate the dispersal rate throughout urban areas 
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providing more occupied cells that could give rise to multiple long distance dispersal. The 

most important implication of such a result is that overestimating future dispersal might 

incorrectly discourage an eradication attempt.  

There are many situations where selective recoding of the landscape could be applied.  For 

example, in the case of P. brassicae, only the geographic detail in urban areas that highlights 

unsuitable manmade structures was needed therefore a visible band image was used. 

However, if the target species was a forest pest with a specific host, and a diverse forest 

landscape is available, then, keeping all other land cover data constant, a medium resolution 

but hyper-spectral image of forest areas could be used to map the particular host species by  

giving host trees higher survival probability than other tree species. The result will be more 

accurate dispersal estimation through forest areas compared with labelling all forest cover 

with high survival probability.  

7.4.2 Dispersal parameters and model choice 

Prediction science often considers that the best model is the most parsimonious. In such a 

study as this one,  that would mean the model which can explain  most of the species spread 

and dispersal dynamics while allowing a high level of abstraction (Andow et al., 1990). 

According to this study, it is extremely difficult to parameterize species dispersal even when 

working with a species that has been well studied in the past, such as P. brassicae.   The 

difficulty of parameterising species dispersal is a view also shared by many important 

dispersal researchers (Shigesada et al., 1995; Higgins & Richardson, 1999; Cain et al., 2000). 

The difficulty is due to the countless alternatives a disperser can take especially if it uses a 

combination of both active and passive dispersal and the inherent stochastic nature of 

species dispersal in general. Parameter estimation becomes even more complicated when 

known dispersal mechanisms can manifest a different pattern when realized over a new 

landscape. Nonetheless, no matter what model is used (either data driven or expert driven) 

we try to characterize the most likely mode of dispersal and behaviour of the target species 

which allows   the pattern and rate of a new invasion to be approximately predicted.   

The particular advantage of using MDiG is the relatively simple assumption associated with 

the kernel module that represents long distance dispersal. The kernel represents the 
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outcome of a complicated interplay of factors that are not represented individually in the 

module but are characterised by an overall pattern formed as a result of these factors. This 

assumption simplified the long distance dispersal estimation process while explaining the 

dispersal pattern of the target species if the distance and frequency parameters are obtained 

from a carefully analysed empirical dispersal data.  

Pitt et al. (2009) found the MDiG simulation model did better in later time steps than a radial 

diffusion model but was weaker in earlier time steps. Savage and Renton (2014) called for a 

generalized model for biological invasion, and suggested, that MDiG is the closest to a 

generalized model for biological invasions but remarked that “ [M]DiG is more of a regional 

model that simulates spread over many years over regional or national scale”. In my opinion 

both of the above statements may have overlooked the role of the powerful 

“neighbourhood” module to fine tune spread at local scale, which means MDiG may have 

increased precision in capturing initial dispersal conditions and early spread as well as its 

effective portrayal of invasions at a later stage of simulation. However, further studies need 

to be conducted to confirm this assertion.  

Finally, it is important to highlight that in this study the dispersal parameters xo, γ and λ 

were assumed to represent a combination of different factors that derive P. brassicae long 

distance dispersal. As well, while great care was taken to use a similar source landscape and 

representative historical data to estimate the parameters, it is possible different factors might 

be important in the study area in New Zealand compared to the source area in the United 

Kingdom from which the parameters were estimated. Testing variation around the 

parameters instead of using the mean as done in this study would increase  understanding 

about the effect of the parameter error  on dispersal and help fine tune simulations (Pitt et 

al., 2009). More  important  is the need  to re-calibrate dispersal models as more field 

information becomes available  to minimize uncertainty in dispersal outputs that may be  

compounded as a result of propagation of  error  through  time.        

7.4.3 The future of P. brassicae in New Zealand  

The dispersal pattern of P. brassicae according to the models used in this study is 

characterised by a rapidly moving front that has numerous advancing satellite populations. 
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When these satellite populations are not too far from the advancing front the rate of total 

area covered by the main front increased significantly as individuals in the satellite 

population disperse back into the main front. The P. brassicae dispersal pattern can be 

described as a short rotation of advance and coalesce (Shigesada et al., 1995) sequence as 

observed from the occupancy envelopes as well as the actual surveillance data collected by 

DOC from 2010 to 2013. 

Previous studies have reported that a female P. brassicae adult embarks on a long distance 

flight to look for a suitable host if the current site is overloaded with larvae. In the case of P. 

brassicae long distance dispersal can therefore be density dependent where the density of 

larvae on host plants provide the stimulus to initiate active flights. The dispersal scheme 

used in this model represents this process. Long distance events were generated from 

existing or occupied sites in the earlier time steps compared with  long distance events 

occurring independently from already occupied sites as in  Robinet et al. (2009). This 

relationship between occupied sites and future dispersal events can readily be demonstrated 

by the suppression of dispersal events due to the intervention undertaken in 2012 and 2013, 

where the removal of possible dispersal source sites set back the dispersal a few years when 

compared to the control dispersal model. A report by Phillips et al. (2013) showed that the 

current eradication scheme was successful in suppressing P. brassicae outliers in Glenduan 

and Richmond; if this trend extends for all populations of P. brassicae in and around Nelson, 

it may facilitate the elimination of P. brassicae from New Zealand (Phillips et al., 2013).  

The timing of the intervention by DOC was probably the most critical factor that led to the 

predicted suppression of P. brassicae dispersal in the simulation. Based on the phenological 

model by Kean and Phillips (2013c), 2-3 P. brassicae generations per year are expected in 

Nelson. The intervention was started within two years of first detection of P. brassicae. That 

means only about P. brassicae 4-6 generations elapsed after its introduction, which meant 

greater success for possible eradication or containment. Any adult P. brassicae that were not 

eradicated in 2013 would likely be laying eggs back in the core invaded area, as it will not be 

overburdened by larvae and there would be enough host plants as a result of the earlier 

eradication, eliminating the need for density dependent long distance active flights. It is also 
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important to note only the eradication that was preceded by active surveillance was assessed 

in this study and the effect from the intervention could have been be more pronounced if an 

eradication as a result of the follow-up, and passive surveillance, were considered.  

Eradication in the core area and elimination of satellites is shown to suppress the dispersal 

of P. brassicae according to the virtual eradication simulation (Section 7.3.3) based on the 

assessment of the current surveillance and eradication scheme. However, because external 

factors like parasitism and competition were not included in this study, further study that 

investigates alternative optimum detection and eradication schemes is necessary to ascertain 

the most efficient intervention.  

There are a number of factors that are unaccounted for in this study. One is further 

introduction of additional P. brassicae to New Zealand. This is a very important factor as any 

success in P. brassicae eradication depends on keeping the density of the invading 

population to a minimum. Any top up from undiscovered introduction pathways could 

compromise the eradication effort. This is especially important for P. brassicae as it is known 

to effectively synchronize mating between generations from different source populations 

and that is the reason for its persistence in some parts of the British Isles as well as most of 

its range above the Arctic Circle (Feltwell, 1982).  Even if this particular introduction into 

New Zealand might be a one off accidental incursion, identifying the pathway is important 

to prevent recurring introductions.  

The other important factor is identification of possible hosts that might sustain P. brassicae in 

the event of heavy eradication campaigns in home gardens and farm lands. The native New 

Zealand cress species has already been identified as a possible target but more studies need 

to be undertaken to quantify possible alternate hosts of P. brassicae in the region. For 

example, the invasive sea rocket (both Cakile maritima and Cakile edentula) which was first 

reported in New Zealand in the 1940’s (Cousens & Cousens, 2011) is also known to be an 

alternate host for P. brassicae (Feltwell, 1982) and could play an important role in the spread 

of P. brassicae.  
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7.5 Summary 

Developing realised dispersal models is critical to inform a biosecurity eradication and 

surveillance team. Pitt et al. (2009) and Worner (1994) mentioned that dispersal models need 

to be realistically designed to represent the heterogeneous landscape.  Realistic landscape 

representation of invaded ranges increases the accuracy of dispersal model results 

delivering precise information for policy makers and technical taskforces assigned to deal 

with invasive species surveillance and eradication (Dunning Jr et al., 1995).   

However, the optimum spatial extent, resolution and composition (level of detail) one 

should use for species dispersal models has usually been dependent on the species 

modelled, their dispersal pathways and the available data (Andow et al., 1990). Essentially it 

is not possible to recommend a set of optimum landscape characteristics that could be 

generalized across multiple species due to multiple variations both in landscapes and in the 

dispersal behaviour among species (Levin, 1992). The approach of using a selectively re-

coded landscape in this study gives the option of focusing on areas where the landscape has 

the most effect on dispersal dynamics enabling users to spend less time and money on areas 

that do not require high resolution data.  

Even though P. brassicae is in the early stage of its invasion in New Zealand and the pattern 

observed from the surveillance data could be less dependable for this reason, the closeness 

of the simulation results to the observed invasion pattern of P. brassicae in Nelson is a good 

indication that such simulation based dispersal models could be very useful. Moreover, 

careful and detailed accounting of assumptions as well as estimation of dispersal parameters 

are important to replicate the dispersal pattern and dynamics of an invasive species which 

can be used to draw useful conclusions regarding future regional movements of the species. 

Last but not least, it is very important to re-calibrate dispersal models with current dispersal 

data which can be used to check for deviations from the original model allowing researchers 

to correct for any location and temporal errors compounded through earlier time-steps.  
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Chapter 8 

 

 

8. General discussion 

In this chapter, the major results from the previous chapters are discussed in relation to the 

aims and objectives of the thesis. Also, a number of recommendations are given for future 

research regarding species distribution and dispersal models. Finally, concluding remarks 

are given.  

8.1 Uncertainty in species distribution modelling 

The primary aim of this thesis was to develop methods that could address particular sources 

of uncertainty in correlative distribution model predictions. Seven specific objectives were 

studied under this aim. As a result, some new and some improved methods that reduce 

uncertainty in these models have been proposed in Chapters 3, 4 and 5.  

8.1.1 Pseudo-absence data generation (Chapter 3) 

One of the main components that introduces uncertainty to presence-absence correlative 

species distribution models is the method used (or lack thereof) to select pseudo-absences 

for SDMs (Lobo et al., 2010). The first objective of this study (addressed in Chapter 3) was to 

evaluate the effect of pseudo-absence selection methods on individual model performance 

as well as model consensus. Accordingly, three widely used pseudo-absence selection 

methods and a new method developed in this study were compared. The results showed 

that the pseudo-absence selection method had a significant effect on the performance of 

individual models. Simple random selection of pseudo-absence points was heavily reliant 

on the prevalence of presence points and had an inconsistent effect on the models. 
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Therefore, simple random selection was not found to be a reliable pseudo-absence selection 

method, as discussed by Lobo et al. (2010). The second pseudo-absence selection method, 

which is based on simple random selection within a constrained geographical space, had a 

negative effect on both individual model performance and model consensus. Both the 

widely used two-step pseudo-absence selection method, which is based on environmental 

profiling followed by random sampling, and the three-step method developed in this study 

resulted in high individual model performance scores, however the latter resulted in 

improved consensus among model predictions.   

The second objective of this study covered in Chapter 3 was to develop an improved pseudo-

absence selection method that balances the geographical and environmental space when 

selecting pseudo-absence points.  The proposed three-step pseudo-absence selection method 

resulted from an  investigation of  the  most used pseudo-absence selection methods and the  

recommendations made from previous studies regarding the need for an improved  method 

(Lobo et al., 2010; Sinclair et al., 2010). The methods reviewed in Chapter 3 either optimize 

pseudo-absence selection for the geographical space or the environmental space. Therefore, 

achieving a balance between environmental and geographical space was missing in existing 

methods. The two-step pseudo-absence selection method is the most used method and 

resulted in good model performance. However, because environmental profiling in this 

method is performed without geographical constraint, environmentally extreme pseudo-

absences may be included in the pseudo-absences selected. Selection of extreme 

environmental pseudo-absences leads to an overly discriminated species distribution 

prediction where local variation is ignored. Moreover, models using highly discriminated 

presence/pseudo-absence points can easily overfit and therefore lose their generality (Lobo 

et al., 2010).  

The three-step method provides a way of balancing the information in geographic space 

with environmental space while selecting pseudo-absence points. This means the method 

allows ecologically meaningful boundaries to be set thus removing irrelevant geographical 

areas that are far distant from the occurrence points (VanDerWal et al., 2009; Lobo et al., 

2010), thereby excluding extreme environmental points. The method still provides high 
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environmental discrimination between presence and pseudo-absence points based on  

robust classifiers as recommended by Chefaoui and Lobo (2008).   

When compared with the two-step model, the three-step method resulted in comparable 

model performance. Additionally, and equally important, model predictions showed better 

consensus when trained with the three-step pseudo-absences.  

8.1.2 Data, dimension reduction and model type (Chapter 4) 

“Models are not like religion. You can have more than one… and you don’t have to believe them” 

Daniel Pauly and Villy Christensen 

Discrepancy among model results is one of the factors behind the reluctance to use 

correlative species distribution models for species distribution projections for future climates 

(Buisson et al., 2010; Guisan et al., 2013). Kriticos et al. (2013) suggest that if models cannot 

agree when predicting for current conditions, then the confounding errors generated  by 

climate projections will make  future species distribution predictions even more unreliable. 

Clearly, there is a fundamental need to further our understanding of all factors that cause 

model discrepancy. While, the differences in the algorithms used for SDM’s is an  obvious 

reason for differences between predictions as shown in Chapter 4, the issue becomes   

further complicated when the predictions of different models vary with different modelling 

scenarios based on different  species, variable type, and dimension reduction method.  

Objective three of this study was aimed at studying the effect of using climatic and 

topographic variables additional to the usual temperature and precipitation derived 

variables for global species distribution studies. The analysis of the frequency of variables 

selected for the factorial study in Chapter 4 showed that variables from P2, the dataset with 

35 variables, were selected as often as the variables from the P1 dataset that contains the 19 

Bioclim variables usually used in global and regional SDM studies. Moreover, elevation 

from the predictor dataset P3 was also frequently selected for the different scenarios for the 

five species studied in that Chapter. Provided that a data-based variable selection method 

rather than expert knowledge is used, it is recommended to use BIOCLIM35 variables plus 

elevation for global species distribution studies.  
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The fourth objective of this study was to investigate the use of linear and non-linear dimension 

reduction methods on model performance of SDMs. In Chapter 4, it was shown that 

dimension reduction had a significant effect on model performance depending on the data 

and model used. The random forest variable selection method, where no feature 

construction was involved and raw variables were used for model training, gave a superior 

result compared with the principal component analysis (PCA) and non-linear principal 

component analysis (NLPCA) methods. Models trained on PCA transformed data had a 

generally low performance as reported by Dormann et al. (2008). However, the optimum 

model prediction for D. v. virgifera out of the different combinations in the factorial study 

was based on PCA transformed data. That prediction was able to identify the original native 

range of D. v. virgifera in Central America, which was not identified in the study in Chapter 3 

as well as the studies carried out by Dupin et al. (2011) and Aragón et al. (2010), nor by using 

a fitted process-based modelling prediction (Kriticos et al., 2012a). Such results show that, 

even though untransformed variables with a robust variable selection method like random 

forest, may give good model performance most of the time, but sometimes there may be 

cases where dimension reduction methods that involve feature construction (e.g. PCA) are 

needed to bring out the underlying pattern in the variables used to appropriately 

characterise the potential distribution of a species. Therefore, it is necessary to work with 

multiple scenarios of dimension reduction for species that are undergoing geographical and 

host range expansion as was the case with D. v. virgifera in Chapter 4.  

To my knowledge, the factorial study in Chapter 4 is the first time the h-NLPCA has been 

used as a dimension reduction method for species distribution models. Unfortunately, the 

method resulted in over-prediction of most models trained on NLPCA transformed data. 

This was because the pseudo-absence points selected from the NLPCA data were highly 

localized/marginalized and discriminated on the environmental feature space which led to 

models over-fitting the pseudo-absence points. The models that over-fit the pseudo-absence 

points did not appropriately generalize the unsuitable habitat with extensive areas predicted 

as suitable for the target species. However, the good discriminatory power of the h-NLPCA 

is a quality that can be well utilized by SDMs that incorporate some regularization scheme 
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with model training to avoid over-fitting models (Dormann et al., 2013). Additionally, I 

suggest that the h-NLPCA could probably be a robust method to perform feature selection 

for presence-only models like MAXENT due to the high discriminatory power obtained in 

results from Chapter 4. Alternatively, it could also be used with an OCSVM classifier to 

directly predict species distribution into a binary presence/absence output. This 

recommendation is made for presence-only models because these models predict species 

distribution based on information from occurrence data only and depend on a good 

characterization of the pattern of the occurrence data against the background data which 

they later classify into levels of suitability for the species. However further study is needed 

to confirm these assertions. 

The fifth objective of this study was closely related to objectives three and four, as it was 

aimed at investigating the interactions between different modelling components on model 

performance. As shown in Chapter 4, variation in model performance was explained by 

differences in model type (MT), species data (SP), and dimension reduction methods (DR). 

Model type (MT) was found to be the major source of variation in line with previous studies 

by (Dormann et al., 2008; Buisson et al., 2010). In addition, the assessment of spatial standard 

errors of model predictions showed that, variation between model predictions according to 

model type (MT) was uniform across species, whereas the prediction variability according to 

other modelling components differed by species. This result supports the results of the 

multivariate analysis performed on model performance scores by confirming that model 

type has an important and consistent role in the accuracy of species’ distribution predictions 

through a secondary analysis.  Furthermore, the standard error of predictions according to 

model type show a distinct spatial variability that is independent of occurrence locations. 

This observation may explain why species’ distribution predictions differ for the same 

species and location, as it shows that the capability of models to predict for areas away from 

occurrence points differ. However, in depth study that quantifies the level of spatial 

autocorrelation between occurrence points and spatial standard error patterns is needed to 

confirm this observation.  
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In Chapter 4, it was shown that it was possible to improve model performance by changing 

predictors or dimension reduction method within a multiple scenario modelling framework. 

This result shows, that even if model type is the major source of variation in model 

performance, by using the appropriate dimension reduction and predictor data (sets of 

climatic/environmental variables) it is possible to improve model performance. This has 

implication for model consensus, where using appropriate dimension reduction methods for 

the respective models in a multi-model setting can result in models giving comparable 

performance and prediction (Section 4.3.4). 

To summarise, working within a multi-model and multi-scenario framework as suggested 

by Dormann et al. (2008) and Buisson et al. (2010) rather than performing a single model 

prediction will ensure that the most important modelling component, given the available 

data, is identified even in exceptional cases. The results from Chapter 4 also suggest that 

constituting species distribution models using some kind of framework that tests at least 

basic combinations of different predictor data and dimension reduction methods along with 

multiple models, is required to identify optimum conditions in which models perform best 

given the available species and environmental data. 

The sixth objective of the study, also addressed in Chapter 4, was aimed at developing 

measures that could be used for model selection to complement confusion matrix based 

model performance measures.  The analysis in Chapter 4 supported previous cautions by 

Allouche et al. (2006),  Jiménez-Valverde et al. (2008) and Lobo et al. (2008) about complete 

reliance on confusion matrix based validation measures, such as  Kappa and AUC to 

evaluate  model performance.  A major result from the research in Chapter 4 showed clearly 

that using the highest Kappa or AUC scores as a criterion for model selection is not always 

reliable (Section 4.3.7). Their unreliability is specifically because those models with highest 

Kappa or AUC may have over-fitted. There is no real way of knowing if a model has over-

fitted other than a subjective assessment of model predictions. For this reason, cross-

validation is performed to test both how well the model fit the data and to control for model 

over-fitting. However, in reality, test data often lack the power to identify over-fitting 

models because of low sample size, such that the test data may not be representative of the 
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whole environmental space in the case of large scale studies (global, regional). Moreover, 

even if models with the highest Kappa and AUC scores do not over-fit, it does not 

necessarily mean the highest score models are the only ones that can best predict the 

distribution of the target species. This result is shown in Chapter 4 where for all five species 

the models with maximum Kappa score did not have a significantly different Kappa from 

the next 3-5 high performing models, depending on the species. To overcome this problem, 

model cross-validation error was used to discriminate among models with similar Kappa for 

best model selection. It is worth noting that cross-validation error can be easily adapted for 

other multi-model species distribution prediction frameworks.  

Clearly, measures of model performance like Kappa and AUC are important because they 

show how well a model fits the training data, and how well a model can generalize to new 

data. However, species distribution models trained and tested on limited data are often used 

to project species distribution over a much larger spatial extent and environmental domain. 

The relative cover indicators (RCIs) developed in Chapter 4 provide complementary 

validation methods to Kappa and AUC.  The RCIs are independent of the models. The RCIs 

evaluate how well the data used for training and testing the models have covered the 

background data which the models are supposed to classify. The RCIs work for research 

designs where multiple scenarios of model components are involved in a modelling 

framework. This means, it will be possible to specify which dimension reduction method 

will work best based on the occurrence data and predictors used to provide an optimum 

medium for the models. This also means the RCIs can effectively evaluate modelling 

procedures before model training. Other studies have suggested using additional methods 

to confusion matrix based model performance measures. One study in particular by Engler 

et al. (2004) suggested using the minimum predicted area (MPA), to avoid models from over-

predicting. The MPA is a similar method to the RCI approach in that it does not depend on 

how well the models trained on the sample data, rather it evaluates the final prediction of 

the models. Ideally one can use the RCIs as a pre-modelling test where the appropriate 

variables, and dimension reduction are chosen given the data available for the study. Then, 

use confusion matrix based methods to evaluate the model training performance, and finally 
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use a method like the MPA for post-modelling performance in which the prediction itself is 

assessed. Such holistic performance measures should give better confidence in correlative 

model results as the different levels of the modelling process could be evaluated using the 

set of performance measures mentioned above.  

8.1.3 Multi-modality in occurrence data (Chapter 5) 

The seventh objective of this thesis was to investigate the effect of variation within occurrence 

data on prediction accuracy and specify methods that enable improved species distribution 

prediction when using such occurrence data. One of the frustrations within prediction 

science is not being able to achieve the required accuracy with respect to predictions despite 

careful model specification practices. An area that could be investigated to address this 

problem is to examine the nature of the input data itself (presence data set) (Stockwell & 

Peterson, 2002; Dupin et al., 2011; Chapter 5). In Chapter 5, I have shown using two case 

studies that accounting for the multi-modality of the ecological dataset, increases prediction 

accuracy.  

The first case study was atypical in that it involved failure of all models to predict suitability 

of an area even when presence points were sampled from the same area. The original native 

range (in Central America) of D. v. virgifera was not predicted by the model that had the best 

Kappa, AUC as well as the other model performance methods presented  in Chapter 3. The 

native Central American range of D. v. virgifera  was also not predicted by two other studies 

using a similar modelling framework as that used in this research (Aragón et al., 2010; Dupin 

et al., 2011). Furthermore, another study using a fitted process-based prediction (CLIMEX) 

has also reported the Central American range as not suitable for D. v. virgifera (Kriticos et al., 

2012a).   

In Chapter 4, the Central American range for D. v. virgifera, was predicted by the optimum 

model (SVM). The model in Chapter 4 was based on  predictor data transformed using  PCA 

as a dimension reduction method, which enabled the selected optimum model (SVM) to 

access better constructed feature data that can explain the variation within the D. v. virgifera 

presence data. However, most studies do not use any kind of dimension reduction method, 

therefore, why the native range (Central America) was not predicted using untransformed 
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variables was investigated in Chapter 5. Subsequently, basic statistical bimodality tests 

showed that the D. v. virgifera occurrence data had two distinct components (presences from 

the Central American range and presences from North America and Europe). I hypothesised 

that the variation between these sets of presences could be the reason why the original 

native range of D. v. virgifera was under-predicted in the study conducted in Chapter 3 as 

well as the other external studies mentioned above. By separately predicting the potential 

species distribution of D. v. virgifera according to presences from the two distinct 

components of the D. v. virgifera occurrence data and combining the predictions, it was 

possible to predict the Central American range of D. v. virgifera. This first case study of 

Chapter 5 showed that bimodality (multi-modality) in presence data could lead to under-

prediction of the potential species distribution and that by using a combination of models to 

address the individual components within an occurrence data set, it is possible to better 

characterize the potential distribution of a species.  

Identifying multi-modality is often very difficult and computationally intensive as the 

presence and/or absence of a species is affected by multiple factors that go beyond a few 

environmental variables used in the models. In other words, investigations for multi-

modality might need to be based in a hyper-dimensional space instead of a low dimensional 

environmental space of few environmental variables.  An alternative method,   was 

demonstrated for cases where multi-modality might exist in the second case study on Pieris 

brassicae in Chapter 5.  In that study, the investigation of specific biological traits that might 

create multi-modality in a presence dataset resulted in the identification of unique data 

components that needed to be modelled separately.  Before P. brassicae was selected as the 

second case study of Chapter 5, a number of preliminary modelling exercises undertaken as 

a preparation for the study in Chapter 6, showed that all models failed to predict the newly 

invaded locality of P. brassicae in New Zealand. Further investigation about the species 

revealed that a particular population of P. brassicae in South Spain and Portugal undergoes 

summer diapause (aestivation) in addition to the winter diapause that is common to all P. 

brassicae populations.  
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The assumption was that, if a particular population of a species has a local adaptation, it 

might reflect on the geographical occurrences of those populations. Indeed, the aestivating 

population of P. brassicae is described as having a permanent geographical cline, where their 

population is limited to south of the Pyrenees (Spieth et al., 2011), despite a recurrent 

immigration of populations coming from Central and Northern Europe. If there are such 

distinct presences in an occurrence data, the variables selected based on the complete 

presence points, might not necessarily reflect the variables that best explain the presence 

points recorded from the locally adapted populations. Based on the analysis in Chapter 5, 

the variables selected based on the complete set of presence points and the non-aestivating 

presences were similar, but different variables were selected for the aestivating presences. 

Such a result might be expected, because a small set of localized presences are expected to be 

explained by fewer variables. Therefore, a method used in geographical data analysis, 

namely, the directional standard deviational ellipse (Gong, 2002) was adapted to determine 

if the variation between the aestivating and non-aestivating populations of P. brassicae led to 

under-prediction of its potential distribution in the newly invaded locality in New Zealand. 

The results, showed that the variables selected based on all presence points, or the larger 

component (non-aestivating presences) did not explain the aestivating presences well, which 

led to masking of their contribution towards the potential global distribution of P. brassicae. 

Separately modelling these two different classes of presences of P. brassicae, led to correctly 

identifying the newly invaded range of P. brassicae in New Zealand.  

The results of the research presented in Chapter 5 confirmed that modellers need to be alert 

to the possibility that biological traits that differ between populations of the same species 

may indicate different components in a presence dataset that should be modelled using 

mixed models for better prediction and increased accuracy. It is important to recognise, that 

such biological variation within the same species is likely to have some kind of associated 

geographical restriction that might affect species distribution models. Although, some 

biological variation can be independent of geographical variation, for example, genetic 

variation caused by change of  hosts rather than geography as discussed by Phillips et al. 

(2008). In summary, it is recommended   that the modeller needs to understand as much 
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about the biology of the species modelled as possible, so that any multi-modality in the 

presence dataset can be identified. This is an obvious requirement but has not been strongly 

suggested compared with the recommendation in  many previous studies to use  

geographical variation   to assess genetic variation and morphological differentiation 

(Escudero et al., 2003; Dlugosch & Parker, 2008; Eckert et al., 2008; Zapata & Jiménez, 2012).  

8.2 Hybrid Correlative-Mechanistic Modelling (Chapter 6) 

“If the only tool you have is a hammer, you tend to see every problem as a nail.” 

Abraham Maslow 

The second aim and eighth objective of this thesis was to investigate the use of simple 

mechanistic models to reduce uncertainty about correlative model predictions by 

hybridising the results from the mechanistic and correlative modelling approaches.  

Correlative models primarily depend on large samples of species occurrence data for sound 

species distribution predictions.  As Diamond et al. (2012) noted, there comes a time when 

one should draw a line on whether to collect more data as opposed to using more complex 

models or improving the models being used.  Essentially, there is a limit to the accuracy 

with which the unknown data can be inferred using correlative species distribution models.  

However, decisions have to be made about the potential for species establishment in new 

areas. When there is inadequate  occurrence data to  represent  the whole environmental 

range of a species  the use of mechanistic models to complement correlative model 

predictions have been recommended repeatedly (Buckley et al., 2010; Elith et al., 2010; 

Dormann et al., 2012- & references within).  

While this might seem to be a straightforward recommendation, there is often a lack of 

physiological data and functional relationships of a species response to its environment and 

hence one of the main reasons for using correlative models. In Chapter 6 it was 

demonstrated that a minimally parameterized mechanistic model can be used to 

complement correlative models when data is sparse, by  adapting  the method developed by 

Monahan (2009) and Tingley et al. (2009).  The generalized simple mechanistic model was 

parameterized using lethal thermal thresholds of the species studied (P. brassicae). Even if 
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this model was not complex, the simple mechanistic model was instrumental for defining 

the potential thermal niche of the species, which allowed over-prediction by the correlative 

species distribution model to be identified (Section 6.3.3.1).   

The over-prediction by the correlative models was identified by simply overlaying the 

results from the simple mechanistic model and the correlative models. However, to fill in 

areas that were under-predicted by the correlative model with predictions from the 

mechanistic model, it was necessary to hybridize the outputs of the two approaches (Section 

6.3.3.2). The hybrid suitability map, identified more suitable areas for P. brassicae in the 

North Island of New Zealand. In Section 6.3.2, it was shown that correlative model 

predictions improve as more presence points that better represent the environmental range 

of the species, are included. The newly identified suitable areas in the Northern Island of 

New Zealand and the correction for over-predicted areas globally, gives a good example of 

the use of hybrid predictions to complement correlative species distribution models in case 

of under- and over-prediction respectively.  

8.3 Species-landscape interactions (Chapter 7) 

The third aim of this thesis was to investigate multi-scale integration of global, regional and 

local data for characterization of the landscape on which dispersal studies are carried out. 

As part of this aim, the ninth objective was to specifically investigate if recoding of 

heterogeneous landscapes with varying degrees of composition across space could result in 

better dispersal rate and pattern prediction. The great white butterfly (Pieris brassicae) was 

used as a case study, and its  spread,  since it established  in New Zealand in 2010 was 

modelled using an individual based spatially explicit population model (MDiG) (Pitt et al., 

2009). 

The determination of an optimum landscape resolution, configuration and composition is a 

subject of ongoing discussion, so it was decided to use a simple approach comprising 

selective recoding of the landscape for areas that need more detailed configuration (Chapter 

7, Section 7.3.5.4).  P. brassicae, was introduced in an urban area (Nelson), and has spread 

throughout home gardens and green spaces within the city (Phillips et al., 2013). However, 
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in the land use data available for New Zealand, all landscape details in urban areas are 

currently generalised into one class. A high resolution satellite image was used to recode the 

generalized urban areas for a better representation of the urban landscape in terms of the 

survival probability of the P. brassicae. Dispersal that was modelled on the recoded 

landscape resulted in a slower dispersal rate compared with the generalized landscape. It 

was also shown that the dispersal model had higher specificity on the recoded landscape 

than the landscape based on the generalized land use data. That result is important  because 

achieving high specificity in species dispersal models is crucial and has direct implications 

in decision making (Pitt et al., 2011). For example, dispersal patterns obtained from a low 

specificity model can give an unwarranted pessimistic view in terms of the cost of 

eradicating an invasive species that could lead to eradication attempts being abandoned. 

The longer an invasive species stays in its newly invaded habitat the more likely they re-

structure interactions in the eco-system to the point they may replace functional roles of 

native species (Beggs & Rees, 1999; Gardner-Gee & Beggs, 2013). Sometimes when species 

reach such a stage any eradication effort may potentially  be more of a disadvantage to the 

ecosystem (Zavaleta et al., 2001).  

Selective recoding of a landscape can also be used to better utilise available land use data 

that may not be up to the standard for a given dispersal study. Most national data sources 

used for high resolution spatial modelling such as vegetation indices, land cover, and soil 

maps are scaled to match the national spatial data framework. Even though the data may 

have originated from high resolution data sources, if they are generalized to match the 

common scale used in the country, it will not be possible to access the required level of 

detail for the specific species being modelled. For such cases, recoding certain landuse types 

that have strong species-landscape interaction can be a cost-effective way of utilizing 

available landscape data for species dispersal modelling.  

In Chapter 7, data from multiple scales were used to produce the landscape on which the P. 

brassicae dispersal was carried out. These layers were, the hybrid climatic suitability layer 

(global scale), the land cover and growing degree data (regional scale) and the high 

resolution satellite imagery (local scale). Such integration of various information about the 
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landscape is useful for characterising a particular landscape. To ensure the most detailed 

dataset was not influenced by the global scale inputs, a weighted scoring scheme (Section 

7.2.5.5) was employed. That scheme could be used in similar studies to easily incorporate 

data from different scales into the landscape. Perhaps an even better outcome could be 

obtained by multiplying these different layers instead of using the additive scheme shown in 

this study, if the explicit effect of the different layers on species’ survival probability is 

known (Kean & Phillips, 2013a). 

8.4. Future research  

8.4.1 Pseudo-absence generation 

The procedure used to determine the geographical boundary for the pseudo-absence 

selection method developed in Chapter 3, gives a better method for identifying ecologically 

meaningful geographical boundary than any currently used methods.  

However, the procedure could be made more objective if a change detection algorithm that 

works on continuous data is employed to demark the appropriate boundary distance. In its 

current form, discrete distance intervals are investigated to detect a change in variable 

contribution.  

The merits and demerits of true absences for species distribution modelling have been 

discussed in previous studies (Stockwell & Peters, 1999; Wisz & Guisan, 2009). A study by 

Hanberry et al. (2012) reported that model performance increased with the additional use of 

true (surveyed) absences along with environmentally profiled pseudo-absence points. 

Indeed, since their model was based on tree species their confidence in the surveyed absence 

points can be very high. However, the use of true absence points cannot readily generalize 

to all species distribution models, especially to those constructed for mobile species. Some 

insect species are too small and probably cryptic, therefore limiting the accuracy of surveyed 

true absence points (Hirzel et al., 2002). If high confidence in true absence points could be 

achieved by repeated surveys or other monitoring techniques, then applying Hanberry et al. 

(2012)’s  proposed method with the thee-step pseudo-absence method presented in Chapter 

3 might also have a positive outcome of giving more consensus among model predictions.  
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8.4.2 Research design for species distribution models 

A number of studies including this one have established that variation in model results for 

the same species depend on the data, the model specification and model type (Elith et al., 

2006; Pearson et al., 2006; Dormann et al., 2008; Elith & Graham, 2009; Buisson et al., 2010; 

Senay et al., 2013). Additionally, in this study it was shown that some models could perform 

better with specific environmental variables, pre-processing methods or a unique 

combination of both (Chapter 4 & Chapter 5). Therefore, the development of modelling 

frameworks that not only facilitate the use of multiple models, but also allow for multiple 

data pre-processing techniques is recommended. More important, only a few of the 

available data mining and pre-processing methods are currently being used for species 

distribution modelling. As the number of variables that become available for correlative 

studies increase, it will be important to adapt powerful data pre-processing methods to 

identify meaningful data for models, for a robust species distribution prediction. 

8.4.3 Hybrid modelling 

There are a number of opportunities to use hybrid correlative-mechanistic models as well as 

other combinations of hybrid models to improve accuracy of species distribution 

predictions. Similarly, such opportunity means greater challenges as with all new 

approaches there are gaps in our knowledge required to obtain robust predictions from 

environmental or physiological data.  

An area that requires more research is to define generalized rules where   physiological 

suitability obtained from mechanistic models can be made comparable to suitability values 

obtained from correlative models. Such rules will promote robust methods for hybridizing 

results of different models. This is a difficult challenge as the assumptions on which 

mechanistic and correlative models are based are completely different.  However, 

standardized results from such models should be possible, if an output rather than process 

orientated method is used. An output orientated hybridizing method approach develops 

frameworks that standardize the different outputs of these models in terms of suitability for 

the species instead of standardizing the procedure by which the different modelling 

approaches predict species distributions. For this to work, the individual models have to be 
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individually validated and their predictions accepted when it is within a pre-determined 

level of uncertainty. Once the output of the individual models are already rated in terms of 

suitability to the species, it will be easier to work out a criteria based on which, results from 

correlative and mechanistic models could be hybridized.  

If there is a spatial uncertainty layer for both the correlative and mechanistic models, for 

instance, results could be combined based on the magnitude of the positional uncertainty, 

leading to a hybridized prediction that has less spatial uncertainty compared with the input 

correlative and mechanistic predictions.   

8.4.4 Species dispersal modelling 

Individual based models are increasingly becoming the model of choice for species dispersal 

simulations (Chapter 7;  Grimm, 1999; Pitt, 2008 - & references within; Savage & Renton, 

2014).  In the ecological implementation of individual based models, the spatial position of 

the individual at each time step is as important as the final stable pattern (equilibrium). 

Equilibrium in reality is an elusive concept, we almost never see a species in equilibrium 

with its niche because of complex interactions within the landscape. For example, 

availability of host species, biotic competition, human impact etc. Determining an 

equilibrium state for a species is even more difficult when modelling is undertaken for non-

pristine ecosystems where continued disturbance changes key parameters (Boyd, 2012).  

However, equilibrium is adequately defined in classical ecology (UchmaDski & Grimm, 

1996) and while the understanding is there, we just lack the actual models and associated 

assumptions that could prescribe the optimum level of landscape heterogeneity, level of 

complexity of species-landscape and species-species interactions to accurately predict when 

a species could be at an equilibrium with its niche at a future point in time. The capability to 

accurately estimate the spatial pattern of an alien species invasion at any time in the future 

including the time it takes to reach equilibrium within its new habitat is paramount for 

planning eradication strategies or to even decide whether any eradication effort is necessary 

or possible.  
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While selective re-coding of certain areas of the landscape based on species attributes as 

demonstrated in Chapter 7 could greatly benefit studies case by case, a generalized and 

exhaustive study that could elucidate a possible relationship between species attributes and 

mode of dispersal with optimum landscape resolution, configuration and composition is 

greatly needed.  

8.5 Concluding remarks 

“Errors using inadequate data are much less than those using no data at all.” 

Charles Babbage 

Finally, if model discrepancy is taken as a measure of uncertainty in correlative model 

predictions (Kriticos et al., 2013), then their consensus (Chapter 3 & 4) within reason could 

indicate improved accuracy within a modelling framework (within reason because there is a 

chance models could wrongly agree). Additionally, hybrid modelling that focuses on 

maximising the advantages from correlative and mechanistic modelling while minimizing 

the compounded error from the individual limitations of the models (as in Chapter 6) can be 

one way of increasing confidence in predictions of current species distribution. Modelling 

frameworks should at least be valid for the current situation in order to discuss their use for 

future species distribution predictions. I believe the improvements recommended in this 

thesis as well as other recent studies involving species distribution models have merits 

refining such models for use in future climate predictions (Sinclair et al., 2010). 

Some researchers have consistently suggested that different ecological models fit into a 

continuum or a gradient based on their different attributes, instead of being simply 

dichotomized into classes of correlative and mechanistic models (Hirzel & Le Lay, 2008; 

Jiménez-Valverde et al., 2008; Sillero, 2011; Dormann et al., 2012). Such definition has a 

practical implication for improving current and future modelling attempts. First, modellers 

can discard the idea of the need to specialize in any of the classified modelling camps. 

Second, while the different species distribution model approaches are based on different 

assumptions, by hybridizing these different models, it is possible to model data considered 

inadequate according to one type of modelling approach.  
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Finally, it is imperative that ecological models whether they are static, like the species 

distribution models discussed in Chapter 3-6 or dynamic dispersal models as demonstrated 

in Chapter 7 are specified in a such a way that the associated uncertainty associated with 

model results is clearly presented so that end-users could make informed decisions about 

the potential for invasive species establishment.  
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10. Appendices 

Appendix 3.1 Pseudo-absence generation for D. v. virgifera case study 

 

Above: Variable importance analysis for D. v. virgifera background data delimitation. Graph labels 

show the coefficients of the three most important variables for D. v. virgifera over the given distances 

from presence points 

 

 

 

Left:  

Pseudo-absence points 

from the four pseudo-

absence selection 

methods for D. v. 

virgifera data. Pseudo-

absence points plotted 

with presence points on 

the first three principal 

components of the 

training dataset (A) 

SM1, (B) SM2, (C) 

SM3, and (D) SM4  
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Appendix 3.2 Model consensus maps based on different pseudo-absence methods 

 
Sub -maps A-D show model agreement on predictions for A. albopictus according to the four 

pseudo-absence selection methods (Sub -maps E-H correspond to D. v. virgifera predictions) 
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Appendix 4.1 Automated framework to detect change in variable importance over 

distance 

 

 

Description: Extracts background datasets around presence points according to the specified sequence 

of distances. Internally convert coordinate systems to enable converting  projected coordinate systems 

into geographic coordinate systems after the background is extracted using plane circular buffers. 

Finally, exports extracted buffers using database files [txt, csv, ascii,  dbf, info]  for further PCA 

analysis using statistical software.  
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Appendix 4.2 Slope, Aspect and Hillshade data derivation 

Slope is an inclination of or deviation of a surface from a horizontal or vertical line. It can be 

an important eco-geographical factor specially for characterizing access to a certain habitat 

both for plants and animals (Richards-Zawacki, 2009).  

Slope dataset: slope is calculated by finding the ratio of the vertical (rise or descent) change 

divided by the horizontal (run) change between any two points on the terrain. Slope can be 

calculated by the equation given below. 

𝑆𝑙𝑜𝑝𝑒(𝑑𝑒𝑔) =
𝑟𝑖𝑠𝑒

𝑟𝑢𝑛
= 𝑡𝑎𝑛𝜃 − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − (𝐸𝑞. 3.1) 

A GIS layer of slope can be calculated from a digital elevation model (DEM) using the 

equation 3.1 using spatial data analysis. Spatial modelling allows new attribute data 

derivation at any spatially explicit location by using a function of nearby pixels (using 

neighbourhood calculations) (Burrough & McDonell, 1998). In any given DEM the x, y and z 

values that correspond to the longitude, latitude and altitude of the dataset respectively can 

be used to generate slope using eq. 3.1. The slope is derived using the rates of change of the 

surface in the horizontal (dz/dx) and vertical (dz/dy) directions from the centre pixel. The 

ATAN function in ArcInfo which gives the inverse tangent of spatial grids is used to 

calculate the slope as follows the conversion rate 57.29578 is used to convert ATAN’s radian 

calculations into degrees by using the 180/p conversion.  

𝑆𝑙𝑜𝑝𝑒𝑑𝑒𝑔𝑟𝑒𝑒𝑠 = 𝐴𝑇𝐴𝑁 (√((𝑑𝑧
𝑑𝑥⁄ )2 + (𝑑𝑧

𝑑𝑥⁄ )
2

)) ∗ 57.29578 − − − − − − − − − − − − − − − − − − − − − − − − − −(𝐸𝑞. 3.2) 

Aspect is the horizontal orientation of any given slope on a terrain. Variation in aspect, for 

example the variation between north facing versus south facing slopes, was found to affect 

species composition of vegetation gradients along a given terrain (Astrom et al., 2007). This 

variation is usually associated with the amount of sunlight the differently orientated slopes 

get where north facing slopes are moister than south facing slopes.  

Aspect dataset: Aspect in a spatial dataset gives the downslope orientation of the maximum 

rate of change along each cell compared to its neighbouring pixels. The same representation 
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of x, y and z values of a spatial elevation data are used in calculating this layer.  The value of 

an aspect dataset is given between 0-360. It is measured clockwise 0◦ degrees due north 

through Northeast (NE), East (E),Southeast (SE) etc… coming full circle to due north at 360◦ . 

A value of -1 signifies a flat surface.  

𝑎𝑠𝑝𝑒𝑐𝑡 =  57.29578 ∗  𝐴𝑇𝐴𝑁 (

𝑑𝑧
𝑑𝑦⁄

− (𝑑𝑧
𝑑𝑥⁄ )

) − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − −(𝐸𝑞. 3.3) 

Where the pixel being processed will be 90.0 – aspect, if aspect <0; 360.0 – aspect + 90.0, if 

aspect > 90; and 90.0 – aspect, if aspect is between 0 and 90. 

Hill shade is a geographic factor that can affect distribution of species, especially those that 

require a certain amount of shade or its absence to survive and/or thrive; for instance the 

highly invasive weed Purple loosestrife (Lythrum salicaria) is found to thrive in areas of little 

or no shade  (Weihe & Neely, 1997). 

Hillshade dataset: Hill shade is calculated in a GIS environment by simulating illumination 

from the sun over a terrain and map which part of the terrain is shaded and which part gets 

illuminated. This layer is calculated from a DEM. High values in this layer represent eastern 

slopes with high exposure to the sun while lower values represent shaded areas of western 

slopes. Two parameters are used in calculating the hillshade; these are the illumination 

angle and the illumination direction. Illumination angle is calculated by changing the 

altitude into a zenith angle (see equation 3.4) and illumination direction is calculated by 

converting the azimuth angle from geographic to mathematic angle (se equation 3.5). 

𝑍𝑒𝑛𝑖𝑡ℎ𝑟𝑎𝑑 = (90 − 𝐴𝑙𝑡𝑖𝑡𝑢𝑑𝑒) ∗ 𝜋
180.0⁄ − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − −(𝐸𝑞. 3.4) 

Where altitude refers to the illumination source which is given in degrees above horizontal 

orientation, the altitude used in this study is 45◦.   

𝐴𝑧𝑖𝑚𝑢𝑡ℎ𝑟𝑎𝑑 = (360.0 − 𝐴𝑧𝑖𝑚𝑢𝑡ℎ + 90.0) ∗ 𝜋
180.0⁄ − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − (𝐸𝑞. 3.5) 

If azimuth < 360.0 and  

𝐴𝑧𝑖𝑚𝑢𝑡ℎ𝑟𝑎𝑑 = ((360.0 − 𝐴𝑧𝑖𝑚𝑢𝑡ℎ + 90.0) − 360.0) ∗ 𝜋
180.0⁄ − − − − − − − − − − − − − − − − − − − − − − − − − −(𝐸𝑞. 3.6) 

If azimuth ≥ 360.0, the azimuth used in this study was 315◦ therefore equation 3.5 applied. 
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The slope and aspect values needed to calculate the hillshade along with the zenith and 

azimuth of the illumination source are derived from equation 3.2 and .3.3 without the 

conversion rate that converts the slope and aspect values into degrees in order to calculate 

the hillshade. 

𝑆𝑙𝑜𝑝𝑒𝑟𝑎𝑑 = 𝐴𝑇𝐴𝑁 (𝑍𝑓𝑎𝑐𝑡𝑜𝑟 ∗ √((𝑑𝑧
𝑑𝑥⁄ )2 + (𝑑𝑧

𝑑𝑥⁄ )
2

)) − − − − − − − − − − − − − − − − − − − − − − − − − − − −(𝐸𝑞. 3.7) 

𝐴𝑠𝑝𝑒𝑐𝑡𝑟𝑎𝑑  =  𝐴𝑇𝐴𝑁 (𝑑𝑧
𝑑𝑦⁄ /(− 𝑑𝑧

𝑑𝑥⁄ )) − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − (𝐸𝑞. 3.8) 

Where aspect in radians is defined in the range of 0-2p with 0 orienting towards the east and 

the following conditions are given, if dz/dx in equation 3.8 is non-zero and aspect(rad) < 0 then 

the resulting aspect(rad) = 2 * p + aspect (rad); if dz/dx=0 and dz/dy > 0 then aspect(rad) < p/2; if 

dz/dx=0 and dz/dy <0 then aspect(rad) < 2 * p - p/2; in all other cases aspect(rad) takes the value 

equation 3.8 solves to.  

𝐻𝑖𝑙𝑙𝑠ℎ𝑎𝑑𝑒 = 255 ∗ ((cos(𝑍𝑒𝑛𝑖𝑡ℎ𝑟𝑎𝑑) ∗ cos(𝑆𝑙𝑜𝑝𝑒𝑟𝑎𝑑) + (sin(𝑍𝑒𝑛𝑖𝑡ℎ𝑟𝑎𝑑) ∗ sin(𝑆𝑙𝑜𝑝𝑒𝑟𝑎𝑑) ∗ cos(𝐴𝑧𝑖𝑚𝑢𝑡ℎ𝑟𝑎𝑑 − 𝐴𝑠𝑝𝑒𝑐𝑡𝑟𝑎𝑑)))(𝐸𝑞. 3.9) 

The hillshade values are between 0-255 where a value < 0 is set to 0. The higher the value of 

a hillshade grid the darker it gets due to shading effect due to the elevation, slope and aspect 

conditions of the pixels in the model as well as its relative location from the source of 

illumination in this case the sun.  
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Appendix 4.3 Background on h-NLPCA dimension reduction method 

The description of the h-NLPCA by Scholz and Vigario (2002) is adapted here to give a brief 

background. The h-NLPCA (Figure 7.4.3-C) is built upon a pre-existing form of a multilayer 

perceptron (Bishop, 1995) network (sub figure A, next page) with an auto-associative neural 

network topology also known as bottleneck or hour glass topology (Marivate et al., 2007).  

The auto-associative network is a linear multilayer perceptron auto-encoder that has the 

same number of inputs (nodes) as outputs and have a hidden layer with fewer nodes. The 

weights in the network change while learning to minimize the mean square error. Due to 

this bottleneck architecture, the equivalent number of inputs and outputs, and the algorithm 

that minimizes the mean square error it was possible to converge the n features to the nth 

dimension in the linear PCA feature space for a given n x m matrix (Baldi & Hornik, 1989). 

Kramer (1991) then expanded the above auto-associative encoder into a non-linear PCA by 

adding two layers of nodes with non-linear functions at the start and end of the auto-

associative encoder (sub figure B, next page). The extension enabled the linear auto-

associative network to extract principal components from non-linear feature subspace.  

 In a nutshell, what Scholz and Vigario (2002) have done was extend the s-NLPCA into a 

hierarchical auto-associative neural network (non-linear PCA encoder) by superimposing an 

extra non-linear network with a function that applies hierarchy constraints to the feature 

space in the same way as the linear PCA does (Scholz & Vigario, 2002). This gave rise to the 

h-NLPCA (sub figure C, next page). The symmetrical NLPCA (s-NLPCA) has similarity to h-

NLPCA in mapping data into a non-linear feature sub-space but it lacks the capability to 

discriminate features. Generally, an s-NLPCA (Figure 7.4.3-B)  is sufficient if the problem 

involves only reducing dimensions and does not require feature selection (Scholz & Vigario, 

2002; Gorban, 2007). However, in the context of this study a method that does dimension 

reduction as well as is capable of identifying features in the non-linear feature space is 

preferable as there is no subsequent feature selection step specified for datasets that are 

treated with dimension reduction, hence h-NLPCA was the appropriate choice because the 
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hierarchical learning algorithm allows for feature identification as well as dimension 

reduction.  

Topologies of the linear auto-

encoder (A)34, the s-NLPCA (B) 

and the h-NLPCA (C) auto-

associative neural networks.   

The illustrations for the 

topologies of  (B) s-NLPCA [3-

4-4-4-3]35and (C) h-NLPCA ([3-

4-2-4-3] + [3-4-1-4-3]) networks 

were taken from Scholz et al. 

(2008, pp. 49,50). The 

illustration for (A) the auto-

encoder [4-1-4] was adapted 

from Marivate et al. (2007, p. 2) 

Both s-NLPCA and h-NLPCA 

are extensions of the linear auto-

encoder. In both cases the left 

side of the red line in the middle 

show the first part of the 

dimension reduction process 

where data are extracted non-

linearly from the inputs in [x1, 

x2, x3 …..] and linearly decoded 

at [z1, (z2)] (function Φextr); the 

right side of the red line shows 

where data is linearly decoded 

from [z1, (z2)] and are non-

linearly generated at the output 

[x1, x2, x3…] (function Φgen). 

For the h-NLPCA an additional 

of 3-4-1-4-3 topology network is 

transposed on top of the s-NLPCA topology so that learning error is separately computed 1) for the 

sub-network (E1) and 2) on the sub-network + the whole network (E1,2), and later added to produce the 

total hierarchic error (E=E1+E1,2) which is used to update the weights through the whole network. This 

hierarchic learning enables the h-NLPCA to do feature extractions as well as dimension reductions. 

Refer Scholz and Vigario (2002) and Scholz et al. (2008) for detail model specification the above 

description was also consulted from the same references.   

                                                      
34 The auto-encoder can have more than one nodes as long as the number of nodes at the hidden layer are fewer 

than the nodes at the input and the output which have equal number of nodes (Marivate et al., 2007).  
35 Network topology description that gives the number of nodes in input, any hidden layers and output layers in 

that order. 
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Appendix 4.4 Ranks of variables as per proportions of their use in the tested models    

No. Variables Rank Proportion 

1 Annual mean temperature (°C)  5 0.36 

2 Mean diurnal temperature range (mean(period max-min)) (°C)  6 0.33 

3 Isothermality (Bio02 ÷ Bio07)  16 0.04 

4 Temperature seasonality (C of V)  9 0.27 

5 Max temperature of warmest week (°C)  6 0.33 

6 Min temperature of coldest week (°C)  8 0.29 

7 Temperature annual range (Bio05-Bio06) (°C)  12 0.16 

8 Mean temperature of wettest quarter (°C)  4 0.38 

9 Mean temperature of driest quarter (°C)  10 0.24 

10 Mean temperature of warmest quarter (°C)  8 0.29 

11 Mean temperature of coldest quarter (°C)  8 0.29 

12 Annual precipitation (mm)  1 0.67 

13 Precipitation of wettest week (mm)  11 0.22 

14 Precipitation of driest week (mm)  10 0.24 

15 Precipitation seasonality (C of V)  10 0.24 

16 Precipitation of wettest quarter (mm)  1 0.67 

17 Precipitation of driest quarter (mm)  2 0.44 

18 Precipitation of warmest quarter (mm)  3 0.40 

19 Precipitation of coldest quarter (mm)  4 0.38 

20 Annual mean radiation (W m-2)  13 0.11 

21 Highest weekly radiation (W m-2)  12 0.16 

22 Lowest weekly radiation (W m-2 7 0.31 

23 Radiation seasonality (C of V)  14 0.09 

24 Radiation of wettest quarter (W m-2)  18 0.00 

25 Radiation of driest quarter (W m-2)  12 0.16 

26 Radiation of warmest quarter (W m-2)  8 0.29 

27 Radiation of coldest quarter (W m-2)  14 0.09 

28 Annual mean moisture index  15 0.07 

29 Highest weekly moisture index  13 0.11 

30 Lowest weekly moisture index  15 0.07 

31 Moisture index seasonality (C of V)  15 0.07 

32 Mean moisture index of wettest quarter  17 0.02 

33 Mean moisture index of driest quarter  14 0.09 

34 Mean moisture index of warmest quarter  18 0.00 

35 Mean moisture index of coldest quarter  16 0.04 

36 Elevation (m) 10 0.24 

37 Slope (deg) 17 0.02 

38 Aspect (deg) 18 0.00 

39 Hillshade 15 0.07 
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Appendix 4.5 Comparison of prediction accuracy for different species, dimension 

reduction, model result combinations  

No. Combination means   

1 aa.dr3.svm 0.986 a  

2 vv.dr3.svm 0.981 a  

3 aa.dr2.svm 0.980 ab  

4 aa.dr3.cart 0.977 ab  

5 vv.dr3.cart 0.969 abc  

6 vv.dr2.svm 0.964 abc  

7 dvv.dr3.svm 0.954 abc  

8 aa.dr2.cart 0.947 abc  

9 dvv.dr2.svm 0.943 abc  

10 aa.dr1.svm 0.928 abc  

11 vv.dr1.svm 0.924 abc  

12 vv.dr2.cart 0.917 abc  

13 ag.dr3.svm 0.914 abc  

14 vv.dr3.qda 0.914 abc  

15 aa.dr1.cart 0.903 abc  

16 aa.dr3.qda 0.900 abc  

17 dvv.dr3.cart 0.887 abcd  

18 vv.dr2.qda 0.880 abcd  

19 aa.dr1.qda 0.876 abcd  

20 vv.dr1.cart 0.871 abcd  

21 vv.dr1.qda 0.867 abcd  

22 ag.dr3.qda 0.837 abcd  

23 ag.dr2.svm 0.835 abcd  

24 aa.dr2.qda 0.830 abcd  

25 ag.dr3.cart 0.827 abcd  

26 vv.dr1.log 0.825 abcd  

27 ag.dr2.qda 0.808 abcde  

28 dvv.dr3.qda 0.789 abcdef  

29 ag.dr1.svm 0.788 abcdef  

30 aa.dr3.log 0.788 abcdef  

31 dvv.dr2.cart 0.784 abcdef  

32 vv.dr3.log 0.782 abcdef  

33 dvv.dr3.log 0.779 abcdef  

34 vv.dr2.log 0.777 abcdef  

35 ag.dr2.cart 0.777 abcdef  

36 ag.dr1.log 0.772 abcdef  

37 ag.dr1.qda 0.765 abcdef  

38 tp.dr3.svm 0.764 abcdef  

39 ag.dr3.log 0.755 abcdef  

40 ag.dr1.cart 0.736 abcdef  
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No. Combination means   

41 ag.dr2.log 0.733 abcdef  

42 aa.dr1.log 0.723 abcdef  

43 tp.dr1.svm 0.699 abcdef  

44 dvv.dr1.svm 0.683 abcdef  

45 tp.dr3.cart 0.674 abcdef  

46 tp.dr2.svm 0.673 abcdef  

47 tp.dr2.cart 0.665 abcdef  

48 dvv.dr2.qda 0.663 abcdef  

49 tp.dr1.qda 0.652 abcdef  

50 dvv.dr1.cart 0.622 abcdef  

51 tp.dr1.cart 0.613 abcdef  

52 tp.dr3.qda 0.600 abcdef  

53 tp.dr2.qda 0.589 abcdef  

54 dvv.dr1.qda 0.569 abcdef  

55 dvv.dr2.log 0.526 bcdef  

56 dvv.dr1.log 0.517 cdef  

57 tp.dr1.log 0.436 def  

58 tp.dr2.log 0.367 ef  

59 tp.dr3.log 0.350 f  

60 aa.dr2.log 0.338 f  

Variation in model mean Kappa scores according to different species data (SP), dimension reduction 

methods (DR) and model types (MT) combinations.  Bars with different letters are significantly 

different (Tukey’s HSD test, HSD = 0.45, α = 0.05).   
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Appendix 4.6 Presence and pseudo-absence points in the environmental space  

 

Presence and pseudo-absence points for A. albopictus (above) and A. gracilipes (below) 
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Presence and pseudo-absence points for T. pityocampa (above) and V. vulgaris (below) 
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Appendix 4.7 Ensemble mean predictions and uncertainty maps 

 
Average prediction (A) and uncertainty map (B) for A. gracilipes (above) and D. v. virgifera 

(below) 
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Average prediction (A) and uncertainty map (B) for T. pityocampa (above) and V. vulgaris (below) 
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Appendix 4.8 Map of uncertainty by modelling components 

 

 
 

Standard error of predictions according to predictor data (A) model type (B) and dimension reduction 

(C) for A. gracilipes (above) and D. v. virgifera (below) 
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Standard error of predictions according to predictor data (A) model type (B) and dimension reduction 

(C) for T. pityocampa (above) and V. vulgaris (below) 
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Appendix 4.9 External validation data for V. vulgaris in New Zealand 

 

 

Geographic locations of V. vulgaris presences in New Zealand. Source: AgResearch Research Centre, 

New Zealand.  
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Appendix 5.1 Individual component model predictions based on different clusters of 

presence points. 

1. D. v. virgifera component predictions   

 
The individual prediction from the native range presences identified limited areas with the Central 

American range identified uniquely by the native range presence predictions. While most of the 

prediction from the native range scenario was also predicted by the model trained on the invaded 

range presences. More areas in East and Central Africa were predicted using the native range 

presence model. It is possible to notice on the global map that there were no native or invaded range 

based predictions for Australia and only limited predictions for New Zealand. However on the high 

resolution (30’) prediction for New Zealand large areas were predicted in conformation with the other 

studies on potential distribution of D. v. virgifera (Aragón et al., 2010; Dupin et al., 2011; Senay et 

al., 2013).  Regarding the prediction in Australia, it might be the case that the combined prediction 

led to the under estimation of the potential prediction in the Australian continent even though it 

accurately described the native Central American range as well as all the other areas in N. America 

and Europe and also identified more areas in Central and East Africa. Hence, it might be important to 

consider the choice of modelling with split predictions if the target areas were in Central and East 

Africa or Central America, otherwise go with the usual direct prediction methods for other study 

areas.  

2. P. brassicae component predictions   
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Note that the global prediction in New Zealand showed less areas as suitable when compared to the 

high resolution prediction for the New Zealand extent. This shows the effect of scale on prediction 

outcomes and should be considered in comparing predictions from different studies (Austin & Van 

Niel, 2011). 
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Appendix 6.1 Rescaling the potential niche surface into a physiological suitability surface 

# --------------------------------------------------------------------------- 
# RescaleMechModel.py 
# Created on: 2013-10-29 by Senait D. Senay 
# Description: Rescales a fundamental thermal (or any other scenopoetic variable) niche surface 
#between 0 and 1 provided that an optimum temperature value is given 
# --------------------------------------------------------------------------- 
# Import arcpy module 
import arcpy 
# Check out any necessary licenses 
arcpy.CheckOutExtension("spatial") 
# Script arguments 
mov = arcpy.GetParameterAsText(0) 
if mov == '#' or not mov: 
    mov = "15" # provide an optimum temperature- (mov) most optimum value 
 
PhySuitability = arcpy.GetParameterAsText(1) 
if PhySuitability == '#' or notPhySuitability: 
    PhySuitability = "Path\to\output" # provide output filename 
# Local variables: 
MechInput = "GlobAvgTemp" 
globniche1 = mov 
SN1 = globniche1 
min_gn1 = SN1 
rescaled1 = min_gn1 
GN1zone = SN1 
max_gn1 = GN1zone 
globniche2 = mov 
globnich2r = globniche2 
SN2 = globnich2r 
GN2zone = SN2 
min_gn2 = GN2zone 
rescaled2 = min_gn2 
max_gn2 = GN2zone 
reverser = "path\to\output" # output file name for a -1 file to reverse assort the grid for val > mov           
# 1 SplitRaster  
arcpy.gp.RasterCalculator_sa("Con(( \"%MechInput%\"<  %mov%), \"%MechInput%\" , -9999)", globniche1) 
# 2 DiscardNoDataValues 
arcpy.gp.RasterCalculator_sa("Pick(\"%globniche1%\" != -9999,\"%globniche1%\")", SN1) 
# 3 CreateZone for ZoneStatistics 
arcpy.gp.CreateConstantRaster_sa(GN1zone, "1", "INTEGER", SN1, SN1) 
# 4 create a MinimumRaster value 
arcpy.gp.ZonalStatistics_sa(GN1zone, "VALUE", SN1, min_gn1, "MINIMUM", "DATA") 
# 5 create a MaximumRaster value 
arcpy.gp.ZonalStatistics_sa(GN1zone, "VALUE", SN1, max_gn1, "MAXIMUM", "DATA") 
# 6 rescale the first half of the raster 
arcpy.gp.RasterCalculator_sa("(\"%SN1%\"-\"%min_gn1%\")/Float(\"%max_gn1%\"-\"%min_gn1%\")", 
rescaled1) 
# 7 SplitRaster 2 
arcpy.gp.RasterCalculator_sa("Con((\"%MechInput%\"  > %mov%) ,\"%MechInput%\" , -9999)", globniche2) 
# 8 create a -1 value raster to reverse assort the raster with < optimum temp. values 
arcpy.gp.CreateConstantRaster_sa(reverser, "-1", "INTEGER", "0.166666675359011", "GlobAvgTemp") 
# 9 multiply the reverser raster with the raster < Mov values 
arcpy.gp.Times_sa(globniche2, reverser, globnich2r) 
# 10 DiscardNoDataValues 2 
arcpy.gp.RasterCalculator_sa("Pick(\"%globnich2r%\" != 9999,\"%globnich2r%\")", SN2) 
# 11 CreateZone for ZoneStatistics 2 
arcpy.gp.CreateConstantRaster_sa(GN2zone, "1", "INTEGER", SN2, SN2) 
# 12 create a MinimumRaster value 2 
arcpy.gp.ZonalStatistics_sa(GN2zone, "VALUE", SN2, min_gn2, "MINIMUM", "DATA") 
# 13 create a MaximumRaster value 2 
arcpy.gp.ZonalStatistics_sa(GN2zone, "VALUE", SN2, max_gn2, "MAXIMUM", "NODATA") 
# 14 rescale the second half of the raster 2 
arcpy.gp.RasterCalculator_sa("(\"%SN2%\"-\"%min_gn2%\")/Float(\"%max_gn2%\"-\"%min_gn2%\")", 
rescaled2) 
# 15 Combine the two rescaled rasters 
arcpy.gp.RasterCalculator_sa("Con((\"%rescaled1%\"!=-9999),\"%rescaled1%\",\"%rescaled2%\")", 
PhySuitability) 
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Appendix 7.1 Data extracted from the Atlas of the Insects of The British Isles 

 

Data description given on the first page of the “Atlas of the Insects of The British Isles” (Heath, 1970) 

used to assess areas where P. brassicae was absent within the time frame of the survey.   
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Map of P. brassicae distribution survey data extracted from the “Atlas of the Insects of The British 

Isles” (Heath, 1970). 
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Appendix 7.2 Occurrence data accessed from the GBIF database 
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Appendix 7.3 Data sources 

1) Description of data sources 

P. brassicae occurrence data for New Zealand and the current surveillance methodology used 

for its eradication in New Zealand were accessed from agresearch (Phillips et al., 2013). 

P. brassicae occurrence data for United Kingdom from the GBIF36 database were provided by 

various institutions that uploaded data to the GBIF portal and their list is given in the next 

page.  

Additional occurrence data dating from early 1940’s has been extracted from the atlas of 

insects of the British Isles prepared by Heath (1970) atlas, both the provisional atlas 

downloaded from the Open Research Archive of Natural Environment Research Council37 

website as well as the final version printed in Feltwell’s (1982) book has been used to digitize 

P. brassicae occurrence points.  

The standard United Kingdom boundary data38 used to rectify the scanned P. brassicae atlas 

was downloaded from the United Kingdom Ordnance Survey website according to the 

license agreement given here http://www.ordnancesurvey.co.uk/docs/licences/os-opendata-

licence.pdf.   

 The United Kingdom provincial data used to highlight administrative boundaries where 

unusual high resolution sampling of P. brassicae was undertaken were downloaded from 

Natural Earth39 open source GIS data portal 

                                                      
36 http://www.gbif.org/  
37 NERC Open Access Research Archive (NORA) Available: http://nora.nerc.ac.uk/ 
38 Contains UK Ordnance Survey data © Crown copyright and database right 2013 
39 Natural Earth© 2014, http://www.naturalearthdata.com/downloads/10m-cultural-vectors/  

http://www.ordnancesurvey.co.uk/docs/licences/os-opendata-licence.pdf
http://www.ordnancesurvey.co.uk/docs/licences/os-opendata-licence.pdf
http://www.gbif.org/
http://nora.nerc.ac.uk/
http://www.naturalearthdata.com/downloads/10m-cultural-vectors/
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2) List of GBIF data sources 

Data publisher Dataset 

UK National Biodiversity Network Bristol Regional Environmental Records Centre - BRERC October 2009 

UK National Biodiversity Network BTCV Scotland - BTCV wildlife counts recording workshops 

UK National Biodiversity Network Cambridgeshire & Peterborough Environmental Records Centre - CPERC Recorders day at Waterbeach barracks and airfield 

UK National Biodiversity Network Countryside Council for Wales - Welsh Invertebrate Database (WID) 

UK National Biodiversity Network Countryside Council for Wales - Welsh Peatland Invertebrate Survey (WPIS) 

UK National Biodiversity Network Cumbria Biodiversity Data Centre - Cumbria Biodiversity Data Centre. Lepidoptera Observation Records. Pre-2010 for Cumbria 

UK National Biodiversity Network Dorset Environmental Records Centre - Dorset SSSI Species Records 1952 - 2004 (Natural England) 

UK National Biodiversity Network Hertfordshire Biological Records Centre - Hertfordshire Wildlife Site Monitoring Surveys (incomplete) 

UK National Biodiversity Network Highland Biological Recording Group - HBRG Insects Dataset 

UK National Biodiversity Network Humber Environmental Data Centre - Humber Environmental Data Centre - Non Sensitive Records from all taxonomic groups 

UK National Biodiversity Network Lothian Wildlife Information Centre - Lothian Wildlife Information Centre Secret Garden Survey 

UK National Biodiversity Network Merseyside BioBank - Merseyside BioBank Active Naturalists (verified) 

UK National Biodiversity Network Merseyside BioBank - North Merseyside Insects (verified) 

UK National Biodiversity Network National Trust - Anglesey Abbey wildlife species data held by The National Trust. 

UK National Biodiversity Network National Trust - Hatfield Forest species data held by The National Trust. 

UK National Biodiversity Network National Trust - Ickworth species data held by The National Trust. 

UK National Biodiversity Network National Trust - Sutton Hoo species data held by The National Trust. 

UK National Biodiversity Network National Trust - Wicken Fen nature reserve species data held by The National Trust 

UK National Biodiversity Network National Trust for Scotland - NTS Properties Species Records 1800-2013 

UK National Biodiversity Network Natural England - Invertebrate Site Register - England. 

UK National Biodiversity Network 

North & East Yorkshire Ecological Data Centre - North and East Yorkshire Ecological Data Centre - Non-sensitive Records from all 

taxonomic groups. 

UK National Biodiversity Network North Ayrshire Countryside Ranger Service - Species within North Ayrshire from 1984 - Present 

UK National Biodiversity Network 

Nottinghamshire Biological and Geological Records Centre - UK abstract from Nottingham City Museums & Galleries (NCMG) Insect 

Collection Baseline database 

UK National Biodiversity Network Open Mosaic Habitat Survey Group - Invertebrates recorded during Open Mosaic Habitat survey in England and Wales (2012) 
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Data publisher Dataset 

UK National Biodiversity Network Outer Hebrides Biological Recording Project - OHBRP Insects Dataset - Outer Hebrides 

UK National Biodiversity Network Record the Biodiversity Information System for Cheshire Halton Warrington and the Wirral - RECORD Butterfly data up to current day 

UK National Biodiversity Network Rotherham Biological Records Centre - Rotherham Biological Records Centre - Non-sensitive Records from all taxonomic groups 

UK National Biodiversity Network Royal Horticultural Society - RHS monitoring of native and naturalised plants and animals at its gardens and surrounding areas 

UK National Biodiversity Network Scottish Borders Biological Records Centre - SWT Scottish Borders Local Wildlife Site Survey data 1996-2000 - species information 

UK National Biodiversity Network Seil Natural History Group - SNHG Biological Records Dataset 

UK National Biodiversity Network Sheffield Biological Records Centre - Sheffield Biological Records Centre- Non-sensitive Records from all taxonomic groups. 

UK National Biodiversity Network Shire Group of Internal Drainage Boards - Shire Group IDB species data 2004 to present 

UK National Biodiversity Network Shropshire Ecological Data Network - Shropshire Ecological Data Network Database 

UK National Biodiversity Network South East Wales Biodiversity Records Centre - CCW Regional Data : South East Wales Non-sensitive Species Records 

UK National Biodiversity Network Staffordshire Ecological Record - SER Site-based Surveys 

UK National Biodiversity Network Suffolk Biological Records Centre - Suffolk Biological Records Centre (SBRC) dataset 

UK National Biodiversity Network Thames Valley Environmental Records Centre - Local Wildlife Site Surveys Berkshire 

UK National Biodiversity Network Tullie House Museum - Tullie House Museum Natural History Collections. 

UK National Biodiversity Network Wiltshire and Swindon Biological Records Centre - Wiltshire & Swindon Site-based Survey Records 

UK National Biodiversity Network Yorkshire Wildlife Trust - Yorkshire Wildlife Trust - Non-sensitive records from all taxonomic groups 
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Appendix 7.4 Reference map of place names in the study area (Chapter 7) 
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Appendix 8.1 Research outputs 

8.1.1 Conference abstracts and oral presentations 

Senay, S. D. (2014). Progress using SDM’s for biosecurity decision making. Presented at the 

Tripartite International Collaborative Research Initiative  Knowledge Engineering 

and Discovery  Research Institute (KEDRI) Auckland University of Technology, 

Shanghai Jao Tong &  Xinjiang Universities China, Bio-Protection Research Centre, 

Lincoln, New Zealand.  

Senay, S. D., Worner, S. P., & Ikeda, T. (2013). Improved pseudo-absence selection technique for 

species distribution models. Presented at the Bio-Protection Research Seminar Series, 

Lincoln University, Lincoln.  

Senay, S. D., & Worner, S. P. (2013). Why do models predict differently for the same 

species/location? (Awarded 2nd prize). Presented at the Lincoln University Post- 

Graduate Conference, Lincoln University, Lincoln.  

Senay, S. D., & Worner, S. P. (2013). Correlative species distribution models-issues and solutions. 

Presented at the B3 Pest risk modelling and mapping workshop for biosecurity. Plant 

& Food CRI, Lincoln.  

Worner, S. P., Senay, S. D., Khandan, H. A. N., & Lustig, A. (2013). Characterizing the 

likelihood of establishment and spread on invasive pests on the post border pathway: current 

issues challenges and potential for hybrid or integrated models. Paper presented at The 

Second International Congress on Biological Invasions, Qingdao, China.   

Senay, S. D., Worner, S. P., & Ikeda, T. (2012). A novel three-step pseudo-absence generation 

method with ecological, spatial and environmental aspects of species requirements considered. 

Paper presented at the 8th International Conference on Ecological Informatics: 

Ecological Informatics for Biodiversity and conservation Biodiversity and 

Conservation., Brasilia, Brazil.  

Senay, S. D., Worner, S. P., & Ikeda, T. (2012). A novel three-step pseudo-absence selection 

method that balances environmental and geographical spaces. Paper presented at the Pest 

Risk Modelling and Mapping workshop VI, Tromsoe, Norway.  

Senay, S. D., Worner, S. P., & Ikeda, T. (2012). Species distribution models and risk assessment. 

Presented at the On Campus  Event Relative risk of Augmented Pest Control, Bio-

Protection Research Centre, Lincoln. The Australian and New Zealand organisation 

of the Society for Risk. 

Senay, S. D., & Worner, S. P. (2012). Spatial distribution models from the truth to the whole truth. 

(Invited) Presented at the Canterbury statistics Open day, Canterbury University, 

Christchurch, New Zealand.  

Senay, S. D. (2012). Modelling alien invasive species-landscape interactions using high resolution 

spatially explicit models. Presented at a Collaboration meeting between  the Bio-

Protection Research Centre and Plant and Food Research Centre, Te Puke, New 

Zealand.  
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Senay, S. D. (2011). Species distribution models used in biosecurity. Insect invasion team research 

presentation. Presented at the Tripartite International Collaborative Research Initiative  

Knowledge Engineering and Discovery Research Institute (KEDRI) Auckland 

University of Technology, Shanghai Jao Tong &  Xinjiang Universities China, Bio-

Protection Research Centre, Lincoln, New Zealand.  

Senay, S. D. (2011). Winning the war against alien bugs: new tools and tactics (Thr3sis 

competition). Presented at the Thr3sis competition, Lincoln, New Zealand.  

Senay, S. D., & Worner, S. P. (2011). Using non-linear dimension reduction methods for multi-

sourced, multi-format and multi-temporal geo-environmental predictors. Paper presented 

at the Pest Risk Modelling and Mapping workshop V: Pest risk in a changing world, 

Fort Collins, USA.  

Senay, S. D., & Worner, S. P. (2011). Using non-linear dimension reduction methods for multi-

sourced, multi-format and multi-temporal geo-environmental predictors. Presented at the 

Lincoln University Post Graduate Conference, Lincoln, New Zealand.  

Worner, S. P., Ikeda, T., Wang, D., Senay, S. D., & Khandan, H. A. N. (2011). Computational 

Intelligence and modelling in applied ecology. Paper presented at the Computational 

Intelligence: methods systems and applications for ecological and environmental 

modelling in China and New Zealand, Auckland, New Zealand.  

 

8.1.2 Publication and Research reports (Internal & external) 

Journal publications and conference proceedings 

Senay, S. D., Worner, S. P., & Ikeda, T. (2013). Novel Three-Step Pseudo-Absence Selection 

Technique for Improved Species Distribution Modelling. PLoS ONE, 8(8), e71218. 

doi:10.1371/journal.pone.0071218 

Worner, S.P., Lankin, G., Lustig, A., Narouei Khandan, H.A., 1 Senay, S.D. (in Press) Being 

better than average: the application of computational intelligence in pest 

management and biosecurity. Pp xx-xx In RM Beresford, KJ Froud, JM Kean and SP 

Worner (Eds). Proceedings of New Zealand Plant Protection Society Symposium, 

The plant protection data toolbox: On beyond t, F and χ.  New Zealand Plant 

Protection Society Inc., New Zealand  

Internal & external reports 

Logan, D., Senay, S. D., & Khandan, H. A. N. (2013). Habitat suitability predictions for selected 

glasshouse biological control agents using Maxent and Multi Modelling. (SPTS No.8061) 

Senay, S. D. (2010). Modelling alien invasive species-landscape interactions using high resolution 

spatially explict models (15th month report). Lincoln, New Zealand.  

Senay, S. D. (2010). Modelling alien invasive species-landscape interactions using high resolution 

spatially explict models (Research proposal). Lincoln, New Zealand. 
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Appendix 8.2 Author contributions to the manuscripts associated with chapter 3 of this 

thesis 

Results of Chapter 3 – published as: 

Senay, S. D., Worner, S. P., & Ikeda, T. (2013). Novel Three-Step Pseudo-Absence Selection 

Technique for Improved Species Distribution Modelling. PLoS ONE, 8(8), e71218.  

doi:10.1371/journal.pone.0071218 

 

Senay, S. D. – developed the methodology, designed and performed the research, collected 

data, analysed and interpreted the data, wrote the manuscript, prepared figures and table, 

submit the manuscript and addressed the revisions. 

Worner, S.P. – advised on the use of the multi-model framework used in the research, 

provided research advices, provided assistance with manuscript preparation, helped to 

address the revisions, ensured the funding and provided editorial help.  

Ikeda, T. - advised on the use of the multi-model framework used in the research, provided 

statistical advice.  
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