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Abstract 

Solving Chemical Master Equation for Large Biological 

Networks: Novel State-Space Expansion Algorithm based on 

Artificial Intelligence and Bayesian Standards 

by 

Rahul Kosarwal 

Numerical solutions of the chemical master equation (CME) are gaining increasing attention 

with the need to understand the stochasticity of biochemical systems. In this thesis, we aim to 

develop the intelligent state projection (𝐼𝑆𝑃) method to use in the stochastic analysis of these 

systems. For any biochemical reaction network, it is important to capture more than one 

moment to describe the dynamic behaviour of the system. 𝐼𝑆𝑃 is based on a state-space search 

and the data structure standards of artificial intelligence (𝐴𝐼) to explore and update the states 

of a biochemical system. To support the expansion in 𝐼𝑆𝑃, we also develop a Bayesian 

likelihood node projection (𝐵𝐿𝑁𝑃) function to predict the likelihood of the states. The 

proposed algorithm systematically expands the projection space based on predefined inputs, 

which are useful in providing accuracy in the approximation (Ӕ) and an exact analytical 

solution at the time of interest. We also discuss the applications of the 𝐼𝑆𝑃 algorithm for 

realistic models and compare this with other existing, and latest, domain expansion methods 

based on the r-step reachability of the finite state projection (𝐹𝑆𝑃) and the stochastic 

simulation algorithm (𝑆𝑆𝐴). In all examples, our proposed methods perform better in terms of 

speed and accuracy of the expansion, accuracy of the solution, and provide a better 

understanding of the state-space of the system. 

Keywords: Biochemical reaction network, chemical master equation, stochastic, intelligent 

state projection, Bayesian likelihood node projection, mathematical modelling, ordinary 

differential equations. 



iv 

Acknowledgements 

Writing a significant scientific thesis is hard work and it would be impossible without support 

from various people, to only some of whom it is possible to give particular mention here. 

Above all, I would like to express my chasmic gratitude to my principal supervisor, Professor 

Don Kulasiri, for his constant encouragement, guidance and trust on me. Without his 

supervision, friendship and patience this thesis would not have been possible. I would also 

express my appreciation to my associate supervisor, Professor Sandhya Samarasinghe, for 

her insightful discussions, guidance and feedback. Their persistent supervison and guidance 

has been invaluable on both an academic and an personal level, for which I am extremely 

greatful to both of them. 

I would like to thank my friends of C-fACS (Centre for Advanced Computational Solutions) 

for their support and productive discussions. In particular, I would like to thank Dr. Yao He, 

Dr. Jingyi Liang for their support during initial year of my doctoral study. I would also like to 

thank Ms. Junwen Zhang, Dr. Hamish Bullmore for their support, friendship and being my 

sport companion. 

My special appreciation to Dr. Parul Tiwari, Mr. Vikas Tiwari and Dorothy Crosbie for all the 

affection, support and making my life in New Zealand very delightful. 

I would like to express my appreciation to Lincoln University, Health Centre and IT Services 

team for providing the support and facilities during my study. Also, I would like to 

acknowledge Lorraine Holmes and Robyn Wilson for their warm care and generous support. 

I would like to express my deepest appreciation to my brother, Mr. Anshul Kosarwal and 

sister-in-law, Ms. Meeta Kosarwal, for being my great source of inspiration and support 

throughout this study. 

Last but not least, I am most grateful to my parents, Mr. O. P. Kosarwal and Mrs. Anita 

Kosarwal, and my wife Dr. Shamayitri Ghosh for their unconditional love, support, trust and 

encouragement. Also, I would like to thank my in-laws Dr.(Prof) Samarendranath Ghosh and 

Mrs. Sagorika Ghosh for their invaluable support and patience. 



v 

Table of Contents

Abstract ............................................................................................................................... iii 

Acknowledgements ............................................................................................................. iv 

Table of Contents ................................................................................................................. v 

List of Tables ..................................................................................................................... viii 

List of Figures ...................................................................................................................... x 

Abbreviations .................................................................................................................. xviii 

Terminology .................................................................................................................... xviii 

Notations ............................................................................................................................. xx 

Key Factors and Outputs ................................................................................................ xxii 

Chapter 1 Introduction ..................................................................................................... 24 

1.1 Stochastic Chemical Kinetics ..................................................................................... 26 

1.2 Motivation and Main Research Questions ................................................................. 28 

1.3 Objectives for this study............................................................................................. 30 

1.4 Thesis structure .......................................................................................................... 32 

Chapter 2 Background and Literature Review .............................................................. 35 

2.1 Markov Processes – An Introduction for the Computational Biologist ..................... 36 

2.2 The Chemical Master Equation .................................................................................. 39 

2.2.1 Initial Value Problem ..................................................................................... 41 

2.2.2 Time Homogeneous Markov Processes ......................................................... 43 

2.3 Existing State-space Expansion Methods .................................................................. 44 

2.3.1 r-step Reachability Method ............................................................................ 45

2.3.2 Stochastic Simulation Methods ...................................................................... 49 

2.4 Existing Numerical Solution Methods ....................................................................... 53 

2.4.1 Uniformisation Method .................................................................................. 54 

2.4.2 Krylov Subspace ............................................................................................ 56 

2.5 Biological Examples .................................................................................................. 58 

2.6 Discussion and Conclusions ....................................................................................... 66 

Chapter 3 Markov Chain Tree and Graphs for Markov Process ................................. 68 

3.1 Introduction ................................................................................................................ 69 

3.1.1 Definitions and Preliminaries ......................................................................... 70 

3.2 Finite state Markov Chains as sample space .............................................................. 72 

3.2.1 Sample Space for Biochemical Systems ........................................................ 74 

3.2.2 States Classification of Markov Chain for Biochemical System ................... 76 

3.3 Markov Chain as a Markov Chain Tree ..................................................................... 79 

3.4 Problem State-Space Model of Biochemical networks .............................................. 86 

3.5 Intelligent Search and Tracking ................................................................................. 89 

3.5.1 Artificial Intelligence for CME ...................................................................... 89 

3.5.1.1 Infrastructure for Searching ............................................................... 91 

3.5.2 Bayesian Likelihood Node Projection Function ............................................ 97 

3.6 Complexity of Optimal Solutions ............................................................................ 104 

3.7 Discussion and Conclusions ..................................................................................... 106 



vi 

Chapter 4 Intelligent State Projection ........................................................................... 108 

4.1 Introduction .............................................................................................................. 108 

4.2 Derivation of the Method Conditions ...................................................................... 114 

4.2.1 Expansion Criterion for States Space! ......................................................... 114 

4.2.2 Cease of Criterion after Updating ................................................................ 119 

4.3 Latitudinal Search Strategy ...................................................................................... 120 

4.3.1 Expansion and Update .................................................................................. 125 

4.3.2 Biological Example ...................................................................................... 137 

4.4 Longitudinal Latitudinal Search ............................................................................... 146 

4.4.1 Expansion and Update .................................................................................. 151 

4.4.2 Biological Example ...................................................................................... 162 

4.5 Data Structure Complexity of Operations ................................................................ 170 

4.6 Discussion and Conclusion ...................................................................................... 171 

Chapter 5 Comparative Study And Analysis ................................................................ 173 

5.1 Study Overview ........................................................................................................ 173 

5.2 Comparison Based on Catalytic Reaction System ................................................... 174 

5.3 Comparsion Based on the Dual Enzymatic Reaction Network ............................... 178 

5.4 Discussion and Conclusion ...................................................................................... 183 

Chapter 6 Case study 1 - G1/S checkpoint involving the DNA-damage signal 

transduction pathway ...................................................................................................... 185 

6.1 Introduction .............................................................................................................. 185 

6.1.1 What Happens in Normal Conditions? ......................................................... 187 

6.1.2 What Happens in the Presence of a DNA-damage signal? .......................... 188 

6.2 Model Integration ..................................................................................................... 189 

6.3 Computational Experiments ..................................................................................... 198 

6.4 Discussion and Summary ......................................................................................... 212 

Chapter 7 Case study 2 – Oxidative stress adaptation in the Fungal Pathogen Candida 

albicans ............................................................................................................................. 214 

7.1 Introduction .............................................................................................................. 215 

7.1.1 Integrated Model Overview ......................................................................... 216 

7.2 Model Integration ..................................................................................................... 220 

7.2.1 Transporter Module ...................................................................................... 229 

7.2.2 Antioxidant Module ..................................................................................... 230 

7.2.3 Protein-thiol Module .................................................................................... 234 

7.2.4 Signalling and Gene Expression Module ..................................................... 235 

7.3 Computational Experiments ..................................................................................... 243 

7.4 Discussion and Summary ......................................................................................... 282 

Chapter 8 Conclusion and Future Directions ............................................................... 284 

8.1 Overview of the study .............................................................................................. 284 

8.2 Contributions ............................................................................................................ 287 

8.3 Future Directions ...................................................................................................... 288 

8.4 Conclusions .............................................................................................................. 289 



vii 

Appendix A . Probability Laws ...................................................................................... 291 

Appendix B . Derivation of the CME ............................................................................. 293 

Appendix C . Expression for Rate Laws ....................................................................... 296 

C.1 Mass Action Based Models ...................................................................................... 296 

C.2 Michaelis-Menten Model ......................................................................................... 298 

C.2.1 Equilibrium approximation .......................................................................... 298 

Appendix D . Dilemma in Selection ............................................................................... 300 

Appendix E . Complexity Based on Operations ........................................................... 304 

Appendix F . Implementation Details - Environment, Dependencies ......................... 308 

F.1 Environment ............................................................................................................. 308 

F.2 Dependencies and Libraries ..................................................................................... 309 

Appendix G . Replicate Experiments ............................................................................. 312 

G.1 Biological Experiments in Literature ....................................................................... 312 

G.2 Biological Experiments using 𝐼𝑆𝑃 ........................................................................... 313 

G.3 Biological Experiments in Comparative Study ........................................................ 315 

G.4 Output Data of Algorithms ...................................................................................... 316 

Appendix H . Case Study 2 Supporting Information ................................................... 317 

References......................................................................................................................... 321 



viii 

 

List of Tables 

Table 2.1. The r-step reachability steps. ............................................................................. 46 

 

Table 2.2. Step in the Stochastic Simulation Algorithm. .................................................... 50 

 

Table 3.1. Events with the likelihood of the future reactions. Where, True events define the 

expansion of nodes. ........................................................................................ 103 

 

Table 4.1. Modules/sub-modules, components of the comprehensive 𝐼𝑆𝑃 method.......... 111 

 

Table 4.2. Steps of 𝐼𝑆𝑃 Latitudinal Search (𝐿𝐴𝑆) Algorithm. .......................................... 123 

 

Table 4.3. 𝐿𝐴𝑆 nodes expansion strategy for the toy model. ............................................ 128 

 

Table 4.4. 𝐿𝐴𝑆 state update strategy for the toy model. .................................................... 130 

 

Table 4.5. 𝐿𝐴𝑆 expansion of the state-space and solution of the toy model at different time 

points. ............................................................................................................. 136 

 

Table 4.6. 𝐿𝐴𝑆 expansion response and solution at 𝑡𝑓
  for the catalytic system. ............... 142 

 

Table 4.7. Steps of 𝐼𝑆𝑃 Longitudinal Latitudinal Search (𝐿𝑂𝐿𝐴𝑆) Algorithm. ................ 150 

 

Table 4.8. 𝐿𝑂𝐿𝐴𝑆 nodes expansion strategy for the toy model......................................... 154 

 

Table 4.9. 𝐿𝑂𝐿𝐴𝑆 states update strategy for the toy model............................................... 156 

 

Table 4.10. 𝐿𝐴𝑆 expansion of the state-space and solution of the toy model at different 

time points. ..................................................................................................... 160 

 

Table 4.11. 𝐿𝑂𝐿𝐴𝑆 expansion response and solution at 𝑡𝑓
  for the dual enzymatic reaction 

network. .......................................................................................................... 166 

 

Table 5.1. Comparison of the solution of the catalytic reaction system based on 𝐼𝑆𝑃, 𝑂𝐹𝑆𝑃 

and 𝑆𝑆𝐴. .......................................................................................................... 174 

 

Table 5.2. Comparison of the solutions of the dual enzymatic reaction system based on 

𝐼𝑆𝑃, 𝑂𝐹𝑆𝑃 and 𝑆𝑆𝐴 ........................................................................................ 178 

 

Table 6.1. Description of model variables of the G1/S checkpoint involving proteins to 

create the state-space for 𝐼𝑆𝑃 𝐿𝑂𝐿𝐴𝑆. ............................................................ 191 

 

Table 6.2. Reactions in the G1/S model involving the DNA-damage signal transduction 

pathway ........................................................................................................... 192 

 

Table 6.3. Kinetic parameter values for reactions involved in the G1/S model ................ 193 

 

Table 6.4. Lower and upper Bounds of the domain for G1/S model given by 𝐼𝑆𝑃 𝐿𝑂𝐿𝐴𝑆 

trend based on bound limit ƃ𝑙𝑖𝑚𝑖𝑡
   .................................................................. 203 

 



ix 

 

Table 6.5. 𝐼𝑆𝑃 𝐿𝑂𝐿𝐴𝑆 expansion response and solution at 𝑡𝑓
  for the G1/S model. ......... 205 

 

Table 7.1. Modules and components of comprehensive network of the integrated 

model. ............................................................................................................. 217 

 

Table 7.2. The description of model variables of the oxidative stress response in C. 

albicans pathway involving chemical and biochemical species to create the 

state-space for 𝐼𝑆𝑃 𝐿𝐴𝑆 .................................................................................. 221 

 

Table 7.3. Auxiliary variables involved in the oxidative stress response in the C. albicans 

pathway ........................................................................................................... 222 

 

Table 7.4. Biochemical reactions involved in oxidative stress response in the C. albicans 

pathway ........................................................................................................... 225 

 

Table 7.5. Kinetic parameter values for the biochemical reactions involved in the oxidative 

stress response in the C. albicans pathway. .................................................... 227 

 

Table 7.6. Constants involved in the oxidative stress response in the C. albicans 

pathway. .......................................................................................................... 228 

 

Table 7.7. Lower and upper Bounds of the transporter module given by 𝐼𝑆𝑃 𝐿𝐴𝑆 trend. 257 

 

Table 7.8. Lower and upper Bounds of the cat1 pathway given by 𝐼𝑆𝑃 𝐿𝐴𝑆 trend. ......... 259 

 

Table 7.9. Lower and upper Bounds of the pentose pathway given by 𝐼𝑆𝑃 𝐿𝐴𝑆 trend .... 261 

 

Table 7.10. Lower and upper Bounds of the thioredoxin given by 𝐼𝑆𝑃 𝐿𝐴𝑆 trend ........... 263 

 

Table 7.11. Lower and upper Bounds of the protein-thiol given by 𝐼𝑆𝑃 𝐿𝐴𝑆 trend ......... 265 

 

Table 7.12. Lower and upper bounds of the cap1 pathway given by 𝐼𝑆𝑃 𝐿𝐴𝑆 trend........ 267 

 

Table 7.13. Lower and upper bounds of the hog1 pathway given by 𝐼𝑆𝑃 𝐿𝐴𝑆 trend. ...... 269 

 

Table 7.14. 𝐼𝑆𝑃 𝐿𝐴𝑆 expansion output and solution at 𝑡𝑓
  for the Integrated model based on 

its different modules. ...................................................................................... 270 

 

 



x 

 

List of Figures 

Figure 1.1. Solution methods to CME are a combination of state-space expansion methods 

and approximation (Ӕ) methods. ..................................................................... 30 

 

Figure 1.2. Flow chart showing organisation of thesis and major research points in the form 

of chapters. ........................................................................................................ 34 

 

Figure 2.1. Stochastic processes are categorised into different process. This study relates to 

the processes that are marked with black in the flowchart. .............................. 36 

 

Figure 2.2. Visualisation of generation-recombination process for the Master equation. .. 43 

 

Figure 2.3. Some existing state-space expansion methods used to create domain for the 

solution of CME. .............................................................................................. 44 

 

Figure 2.4. Types of numerical solution methods – Uniformisation and Krylov subspace 

methods. Each is categorised based on global and local solution. ................... 53 

 

Figure 2.5. CME solution of T-cell homoeostasis at different times (0, 1, 3, 5, 6, 10 secs) 

with 𝐴 (y-axis) and 𝐵 (x-axis). The significant part of the probability mass is 

initially located at t=0 sec as given in Fig (A), then shifted further, as given in 

Fig (F) at t =10 secs. ........................................................................................ 59 

 

Figure 2.6. SSA trajectories of m𝑅𝑁𝐴 and protein of a gene expression model upto 𝑡𝑓
 = 

2000 secs. .......................................................................................................... 61 

 

Figure 2.7. Probability distribution of species of gene expression model at 𝑡𝑓
 = 2000 secs. 

Fig (A) is the joint probability distribution of the species, Fig (B) is the 

stochastic versus deterministic response, Fig (C) and Fig (D) are the 

conditional probabilities of m𝑅𝑁𝐴 and protein respectively. .......................... 63 

 

Figure 2.8. Conditional probability of the Michaelis Menten reaction system species 

evaluated at 𝑡𝑓
 = 10.0 sec, using 𝑂𝐹𝑆𝑃........................................................... 65 

 

Figure 2.9. Change in molecular counts of the species of Michaelis Menten reaction system 

over 𝑡𝑓
 . .............................................................................................................. 65 

 

Figure 3.1. Representation of Markov chain with six states and a transition matrix [𝑃]. ... 74 

 

Figure 3.2. Representation of the Markov chain of biochemical network with reactions and 

relevant propensities and transition matrix [𝐴𝑖,𝑗
 ]. ............................................ 75 

 

Figure 3.3. Classification of transient and recurrent states.................................................. 77 

 

Figure 3.4. Markov chain graph showing forward and reversible reactions through four 

different states. .................................................................................................. 80 

 



xi 

 

Figure 3.5. Equivalent tree of Markov chain graph, as shown in Figure 3.4. It is a special 

form of graph that has no cycle, no self-loops and depicts the state-space of the 

system in the form of a tree (𝐷𝐴𝐺). ................................................................. 83 

 

Figure 3.6. Markov chain graph (𝐺𝑚𝑐
 ) with 𝐧𝐽

  nodes carrying ≈𝐗𝐽
  states and the arcs 

showing transitions between them while, together, they form a Markov 

process. ............................................................................................................. 88 

 

Figure 3.7. Equivalent tree Ѭ of 𝐺𝑚𝑐
  (see Figure 3.6) as 𝐷𝐴𝐺 representing the state-space 

of the system. .................................................................................................... 92 

 

Figure 3.8. Limits of our visibility in the state-space before expansion, visualised by a 

Markov chain graph, where  is the initial node and  nodes are directly 

reachable nodes from the initial node when exactly one 𝑅𝑀
  occurs. When a 

further 𝑅𝑀
  occur, the system jumps to other  nodes. ..................................... 95 

 

Figure 3.9. 𝐴 and 𝐵 with copy counts 50 and 20, respectively, creating a system of two 

species, 𝐴 and 𝐵 with 70, total copy counts. .................................................... 98 

 

Figure 3.10. Two states 𝑋1
  of 𝐴 and 𝑋2

  of 𝐵 with almost equal propensities. This creates a 

dilemma when choosing the direction for expansion. ...................................... 98 

 

Figure 3.11. Current 𝑠𝑡𝑎𝑡𝑒(𝑁2
 ) = 𝑋2

 , and future 𝑠𝑡𝑎𝑡𝑒𝑠(𝑁3,4,5
 ) = (𝑋3,4,5

 , 𝑑𝑙=3
 ) with 

corresponding reactions 𝑅1
 , 𝑅2

 , 𝑅5
  and assumed propensities 𝑎2,3

 = 38, 𝑎2,4
 =

39, 𝑎2,5
 = 40, respectively, at any time 𝑡, given 𝑏0,2

 = 0.4871, 𝑏6,2
 =

0.5128. ........................................................................................................... 100 

 

Figure 3.12. Node 𝑁 as a junction of forward and backward reactions 𝑅𝑀
 , where 

𝑎1,𝑁′
′ ,….,𝑎𝑁,𝑁′

′  are propensities of the prior reactions’ and 𝑏1,𝑁
′ ,….,𝑏𝑁′,𝑁

′  are the 

likelihood of the prior reactions. ..................................................................... 100 

 

Figure 4.1. Comprehensive 𝐼𝑆𝑃 method flow chart. A description of the modules (steps), 

sub-modules and the list of derived components considered in 𝐼𝑆𝑃 are provided 

briefly in Table 4.1. ........................................................................................ 110 

 

Figure 4.2. General framework of 2D pyramid domain showing the increase in the size of 

the domain with the increase in state with an increase in the bounds. 

𝐵𝑜𝑢𝑛𝑑𝑙𝑜𝑤𝑒𝑟
 (1) represents the initial condition, whereas 𝐵𝑜𝑢𝑛𝑑𝑢𝑝𝑝𝑒𝑟

 (𝑍) 
represents the final domain carrying explored set of states of the system...... 118 

 

Figure 4.3. Infrastructure of the Latitudinal Search strategy, showing 𝐺𝑚𝑐
 , the 𝑞𝑢𝑒𝑢𝑒 and 

the domain. ..................................................................................................... 121 

 

Figure 4.4. Toy model network. Showing three Ñ = 3 species, 𝐶, 𝐴, 𝑇 in a network 

defining reactions, as given in Eq. (85). ......................................................... 124 

 

Figure 4.5. Six stages of state exploration based on a 𝐿𝐴𝑆 search for the toy model, given 

an average transitioning factor of Ŧ = 2. Fig (A) is the first stage that denote 

the initial node carrying initial state of the system, Fig (B) is the second stage 

that denote all the nodes with new node at ƌ𝑙
 = 2, Fig (C) is the third stage that 

denote all the nodes with new node at ƌ𝑙
 = 3, Fig (D) is the fourth stage that 



xii 

 

denote all the nodes with new node at ƌ𝑙
 = 3, Fig (E) is the fifth stage that 

denote all the nodes with new node at ƌ𝑙
 = 4, Fig (F) is the sixth stage that 

denote all the nodes with new node at ƌ𝑙
 = 4. ............................................... 126 

 

Figure 4.6. Based on the 𝐿𝐴𝑆 strategy, the response shows how the size of the domain 

increases with addition of new states with time in the toy model. ................. 133 

 

Figure 4.7. Based on the 𝐿𝐴𝑆 strategy, the response shows the total bunked probability 

during the approximation of the toy model. ................................................... 133 

 

Figure 4.8. Time-Space complexity of the 𝐿𝐴𝑆 response shows the linear behaviour at 

different average transition factors and the depth of the end state. For cases like 

(Ŧ = 2, ƌ𝑙
 = 4), and (Ŧ = 5, ƌ𝑙

 = 10), 𝐿𝐴𝑆 has the same response. ............ 135 

 

Figure 4.9. Shows the set of states explored for the toy model after every 𝐿𝐴𝑆 iteration. 

Based on the reactions, 𝐿𝐴𝑆 unfolds the state-space pattern to update states in 

the domain and expands 66 probable states in 1.0 sec.  shows the time point 

where new set of states is explored and updated in the domain. .................... 135 

 

Figure 4.10. Catalytic reaction network having five Ñ = 5 species 𝑆, 𝐵, 𝐶, 𝑃, and 𝐸 in a 

network defining reactions, as given in Eq. (88). ........................................... 137 

 

Figure 4.11. Expansion and updation of the states for the catalytic reaction system based on 

the 𝐿𝐴𝑆 method. The state-space expansion increases the number of addition of 

new states in the domain. The size and colour of  shows the increase in the 

size of the domain with the states population. ................................................ 139 

 

Figure 4.12. Shows the set of states explored for the catalytic system after every 𝐿𝐴𝑆 

iteration. Based on network of reactions, 𝐿𝐴𝑆 unfolds the state-space pattern to 

update the states in the domain and expands 14666 probable states in 0.5 sec.  

shows the time point where new sets of states are explored and updated in the 

domain. ........................................................................................................... 141 

 

Figure 4.13. Conditional probability of the catalytic system evaluated at 𝑡𝑓
 = 0.5 sec, 

𝑡𝑠𝑡𝑒𝑝
 = 0.01 using 𝐿𝐴𝑆. Fig (A) is the probability of the species 𝑆 over 𝑡𝑓

 , Fig 

(B) is the probability of the species 𝐵 over 𝑡𝑓
 , Fig (C) is the probability of the 

species 𝐶 over 𝑡𝑓
 , Fig (D) is the probability of the species 𝑃 over 𝑡𝑓

 , Fig (E) is 

the probability of the species 𝐸 over 𝑡𝑓
 . ......................................................... 143 

 

Figure 4.14. Total probability of states bunked at 𝑡′ from the domain of catalytic system 

produced by 𝐼𝑆𝑃 𝐿𝐴𝑆 iteration while expansion and solving the CME. ........ 145 

 

Figure 4.15. Infrastructure of the Longitudinal Latitudinal Search strategy, showing the 

𝐺𝑚𝑐
 , the 𝑠𝑡𝑎𝑐𝑘 and the domain. ..................................................................... 147 

 

Figure 4.16. Six stages of state exploration based on 𝐿𝑂𝐿𝐴𝑆 search for the toy model, 

given average transitioning factor Ŧ = 2, assumed ƌ𝑠𝑡𝑒𝑝
 = 1, ƃ𝑙𝑖𝑚𝑖𝑡

 = 3. Fig 

(A) is the first stage that denote the initial node carrying initial state of the 

system, Fig (B) is the second stage that denote all the nodes with new node at 

ƌ𝑙
 = 2, Fig (C) is the third stage that denote all the nodes with new node at 

ƌ𝑙
 = 3, Fig (D) is the fourth stage that denote all the nodes with new node at 



xiii 

 

ƌ𝑙
 = 4, Fig (E) is the fifth stage that denote all the nodes with new node at ƌ𝑙

 = 

4, Fig (F) is the sixth stage that denote all the nodes with new node at ƌ𝑙
 = 

4. ..................................................................................................................... 152 

 

Figure 4.17. Based on 𝐿𝑂𝐿𝐴𝑆 strategy, the response shows how the size of the domain 

increases with the addition of new states with time in the toy model. ........... 159 

 

Figure 4.18. Based on 𝐿𝑂𝐿𝐴𝑆 strategy, the response shows the total bunked probability 

during the approximation of the toy model. ................................................... 159 

 

Figure 4.19. Shows the set of states explored for the toy model after every 𝐿𝑂𝐿𝐴𝑆 

iteration. Based on the reactions, 𝐿𝑂𝐿𝐴𝑆 unfolds the state-space pattern to 

update states in the domain and expands 66 probable states in 1.0 sec.  shows 

the time point where new set of states is explored and updated in the 

domain. ........................................................................................................... 161 

 

Figure 4.20. Coupled enzymatic reactions network. Showing six Ñ = 6 species, 𝑆, 𝐸1
 , 𝐶1

 , 
𝑃, 𝐸2

 , 𝐶2
 , in a network defining reactions, as given in Eqs. (95) and (96). .... 162 

 

Figure 4.21. Expansion and updation of states for the dual enzymatic reaction network 

based on the 𝐿𝑂𝐿𝐴𝑆 method. The state-space expansion increases the number 

of additions of new states in the domain. The size and colour of  shows the 

increase in size of the domain with the states’ population. ............................ 165 

 

Figure 4.22. Shows the set of states explored for the dual enzymatic reaction network after 

every 𝐿𝑂𝐿𝐴𝑆 iteration. Based on the network of reactions, 𝐿𝑂𝐿𝐴𝑆 unfolds the 

state-space pattern to update states in the domain and expands 8296 probable 

states in 2.0 sec.  shows the time point where new set of states is explored 

and updated in the domain. ............................................................................. 165 

 

Figure 4.23. Conditional probability of the dual enzymatic reactions system evaluated at 

𝑡𝑓
 = 2.0 sec, 𝑡𝑠𝑡𝑒𝑝

 = 0.01 using 𝐿𝑂𝐿𝐴𝑆. Fig (A) is the probability of the 

species 𝑆 over 𝑡𝑓
 , Fig (B) is the probability of the species 𝐵 over 𝑡𝑓

 , Fig (C) is 

the probability of the species 𝐶 over 𝑡𝑓
 , Fig (D) is the probability of the species 

𝑃 over 𝑡𝑓
 , Fig (E) is the probability of the species 𝐸 over 𝑡𝑓

 . ........................ 167 

 

Figure 4.24. Total probability of states bunked at 𝑡′ from the domain produced by dual 

enzymatic reactions system in 𝐼𝑆𝑃 𝐿𝑂𝐿𝐴𝑆 iteration while expansion and 

solving the CME ............................................................................................. 169 

 

Figure 4.25. Routines of operation of 𝐼𝑆𝑃 modules. The worst-case complexity is 

considered for 𝐿𝐴𝑆 and 𝐿𝑂𝐿𝐴𝑆 algorithm for the upper limit of the 

execution. ........................................................................................................ 170 

 

Figure 5.1. The comparison of 𝐼𝑆𝑃 (𝐿𝐴𝑆 and 𝐿𝑂𝐿𝐴𝑆) with 𝑂𝐹𝑆𝑃 based on the solution of 

the catalytic reaction system. .......................................................................... 176 

 

Figure 5.2. The comparison of 𝐼𝑆𝑃 (𝐿𝐴𝑆 and 𝐿𝑂𝐿𝐴𝑆) with 𝑂𝐹𝑆𝑃 and 𝑆𝑆𝐴 by 

computational time. All methods were applied to the catalytic reaction system 

that was previously integrated in section 4.3.2. .............................................. 176 

 



xiv 

 

Figure 5.3. AWS® CPU utilisation percentage, when the catalytic reaction system is 

solved up to 𝑡𝑓
 = 0.5 sec using 𝑂𝐹𝑆𝑃 and 𝐿𝑂𝐿𝐴𝑆. The performance analysis 

was carried out using CloudWatch® (Statistic: Average, Time Range: Hour, 

Period: 5 Minutes). ......................................................................................... 177 

 

Figure 5.4. Comparison of the 𝐼𝑆𝑃 (𝐿𝐴𝑆 and 𝐿𝑂𝐿𝐴𝑆) with 𝑂𝐹𝑆𝑃 based on the solution of 

the dual enzymatic reaction system. ............................................................... 179 

 

Figure 5.5. The comparison of 𝐼𝑆𝑃 (𝐿𝐴𝑆 and 𝐿𝑂𝐿𝐴𝑆) with 𝑂𝐹𝑆𝑃 and 𝑆𝑆𝐴 by 

computational time. All the methods were applied to the dual enzymatic 

reaction system previously integrated in section 4.4.2. .................................. 181 

 

Figure 5.6. AWS® CPU utilisation percentage, when dual enzymatic reaction system is 

solved up to 𝑡𝑓
 = 2.0 sec using 𝑂𝐹𝑆𝑃 and 𝐿𝑂𝐿𝐴𝑆. The performance analysis is 

done using CloudWatch® (Statistic: Average, Time Range: Hour, Period: 5 

Minutes). ......................................................................................................... 182 

 

Figure 6.1. 2D structure of the G1/S checkpoint model involving the DNA damage signal 

transduction pathway using model variables for 𝐼𝑆𝑃 𝐿𝑂𝐿𝐴𝑆. ....................... 190 

 

Figure 6.2. Markov chain graph given  as the initial node of the G1/S checkpoint 

involving the DNA damage signal transduction pathway  model. The  nodes 

are directly reachable nodes from the initial state when exactly one 𝑅𝑀
   occurs. 

The  nodes are reachable from the initial state when exactly two 𝑅𝑀
   occurs. 

When 𝑅𝑀
  occurs {3,4…….} times the system jumps to the  nodes, 

respectively. .................................................................................................... 196 

 

Figure 6.3. Showing the expansion and updating of the states for the G1/S model based on 

the 𝐼𝑆𝑃 𝐿𝑂𝐿𝐴𝑆 method. The state-space expansion increases the number of 

additions of new states in the domain. 𝐼𝑆𝑃 𝐿𝑂𝐿𝐴𝑆 quickly expands the state-

space up to ≈3.5 million states in 1.5 sec. ...................................................... 200 

 

Figure 6.4. Response of the 𝐼𝑆𝑃 𝐿𝑂𝐿𝐴𝑆 checkpoint for examining the G1/S checkpoint 

involving the DNA-damage signal transduction pathway’s initial state 

probability over time....................................................................................... 202 

 

Figure 6.5. The set of states explored for G1/S model using the 𝐼𝑆𝑃 𝐿𝑂𝐿𝐴𝑆 method. Based 

on network of reactions, 𝐼𝑆𝑃 𝐿𝑂𝐿𝐴𝑆 unfolds the state-space pattern to update 

states in the domain and expands 3409899 states up to 𝑡𝑓
 .  shows the time 

point where new set of states is explored and updated in the domain. ........... 204 

 

Figure 6.6. Total probability bunked at 𝑡′ from the domain in 𝐼𝑆𝑃 𝐿𝑂𝐿𝐴𝑆 iteration while 

expansion and solving the CME for G1/S model. .......................................... 206 

 

Figure 6.7. Conditional probability of the G1/S model evaluated at 𝑡𝑓
 = 1.5 sec,  

𝑡𝑠𝑡𝑒𝑝
 = 0.1 using 𝐼𝑆𝑃 𝐿𝑂𝐿𝐴𝑆. ........................................................................ 211 

 

Figure 7.1. Network of reactions involving 45 species, 6 auxiliary variables of the model of 

the adaptation to oxidative stress response in C. albicans (fungal pathogen) 

pathway using model variables for 𝐼𝑆𝑃 𝐿𝐴𝑆 .................................................. 224 

 



xv 

 

Figure 7.2. Expansion and updating trend of the states for transporter module in the 

integrative model of the fungal pathogen, C. albicans, based on the 𝐼𝑆𝑃 𝐿𝐴𝑆 

method. 𝐼𝑆𝑃 𝐿𝐴𝑆 quickly expands the state-space up to 78054 states for 3.01 

sec for transporter module. The state-space expansion of transporter module 

contributes in increasing the number of additions of new states to the 

domain. ........................................................................................................... 246 

 

Figure 7.3. Expansion and updating trend of the states for catalase (antioxidant) in the 

integrative model of the fungal pathogen, C. albicans, based on the 𝐼𝑆𝑃 𝐿𝐴𝑆 

method. 𝐼𝑆𝑃 𝐿𝐴𝑆 quickly expands the state-space up to 38235 states for 3.01 

sec for catalase. The state-space expansion of catalase contributes in 

increasing the number of additions of new states to the domain. ................... 246 

 

Figure 7.4. Expansion and updating trend of the states for pentose phosphate pathway in 

the integrative model of the fungal pathogen, C. albicans, based on the 

𝐼𝑆𝑃 𝐿𝐴𝑆 method. 𝐼𝑆𝑃 𝐿𝐴𝑆 quickly expands the state-space up to 20097 states 

for 5.1 sec for pentose phosphate pathway. The state-space expansion of 

pentose phosphate pathway contributes in increasing the number of additions 

of new states to the domain. ........................................................................... 247 

 

Figure 7.5. Expansion and updating trend of the states for thioredoxin (antioxidant) in the 

integrative model of the fungal pathogen, C. albicans, based on the 𝐼𝑆𝑃 𝐿𝐴𝑆 

method. 𝐼𝑆𝑃 𝐿𝐴𝑆 quickly expands the state-space up to 6641483 states for 

0.00062 sec for thioredoxin (antioxidant). The state-space expansion of 

thioredoxin (antioxidant) contributes in increasing the number of additions of 

new states to the domain. ................................................................................ 249 

 

Figure 7.6. Expansion and updating trend of the states for protein mono and di-thiols in the 

integrative model of the fungal pathogen, C. albicans, based on the 𝐼𝑆𝑃 𝐿𝐴𝑆 

method. 𝐼𝑆𝑃 𝐿𝐴𝑆 quickly expands the state-space up to 245701 states for 0.040 

sec for protein mono and di-thiols. The state-space expansion of protein mono 

and di-thiols contributes in increasing the number of additions of new states to 

the domain. ..................................................................................................... 249 

 

Figure 7.7. Expansion and updating trend of the states for cap1 pathway in the integrative 

model of the fungal pathogen, C. albicans, based on the 𝐼𝑆𝑃 𝐿𝐴𝑆 method. 

𝐼𝑆𝑃 𝐿𝐴𝑆 quickly expands the state-space up to 2367590 states for 8.46 sec for 

cap1 pathway. The state-space expansion of cap1 pathway contributes in 

increasing the number of additions of new states to the domain. ................... 251 

 

Figure 7.8. Expansion and updating trend of the states for hog1 pathway in the integrative 

model of the fungal pathogen, C. albicans, based on the 𝐼𝑆𝑃 𝐿𝐴𝑆 method. 

𝐼𝑆𝑃 𝐿𝐴𝑆 quickly expands the state-space up to 15980 states for 200.0 sec for 

hog1 pathway. The state-space expansion of hog1 pathway contributes in 

increasing the number of additions of new states to the domain. ................... 251 

 

Figure 7.9. Response of the 𝐼𝑆𝑃 𝐿𝐴𝑆 checkpoint for examining the integrative model of 

fungal pathogen C. albicans module’s (Figs (1) for transporter module’s, Figs 

(2) for catalase’s, Figs (3) for thioredoxin, Figs (4) for protein mono and di-

thiol, Figs (5) for cap1 pathway’s, Figs (6) for hog1 pathway’s), initial state 

and any random state probability over time 𝑡𝑓
 . .............................................. 254 

 



xvi 

 

Figure 7.10. The set of states explored for the transporter module using the 𝐼𝑆𝑃 𝐿𝐴𝑆 

algorithm. Based on network of reactions, 𝐼𝑆𝑃 𝐿𝐴𝑆 unfolds the state-space 

pattern to update states in the domain and expands 78054 states up to 𝑡𝑓
 .  

shows the time point where the new set of states are explored and updated in 

the domain. ..................................................................................................... 256 

 

Figure 7.11. The set of states explored for the cat1 pathway using 𝐼𝑆𝑃 𝐿𝐴𝑆 algorithm. 

Based on network of reactions, 𝐼𝑆𝑃 𝐿𝐴𝑆 unfolds the state-space pattern to 

update the states in the domain and expands 38235 states up to 𝑡𝑓
 .  shows the 

time point where the new set of states is explored and updated in the 

domain. ........................................................................................................... 258 

 

Figure 7.12. The set of states explored for the pentose pathway using the 𝐼𝑆𝑃 𝐿𝐴𝑆 

algorithm. Based on network of reactions, 𝐼𝑆𝑃 𝐿𝐴𝑆 unfolds the state-space 

pattern to update the states in the domain and expands 20097 states up to 𝑡𝑓
 .  

shows the time point where the new set of states are explored and updated in 

the domain. ..................................................................................................... 260 

 

Figure 7.13. The set of states explored for thioredoxin using the 𝐼𝑆𝑃 𝐿𝐴𝑆 algorithm. Based 

on network of reactions, 𝐼𝑆𝑃 𝐿𝐴𝑆 unfolds the state-space pattern to update 

states in the domain and expands 6641483 states up to 𝑡𝑓
 .  shows the time 

point where the new set of states are explored and updated in the domain. ... 262 

 

Figure 7.14. The set of states explored for protein-thiol using the 𝐼𝑆𝑃 𝐿𝐴𝑆 algorithm. 

Based on network of reactions, 𝐼𝑆𝑃 𝐿𝐴𝑆 unfolds the state-space pattern to 

update states in the domain and expands 245701 states up to 𝑡𝑓
 .  shows the 

time point where the new set of states are explored and updated in the 

domain. ........................................................................................................... 264 

 

Figure 7.15. The set of states explored for cap1 pathway using the 𝐼𝑆𝑃 𝐿𝐴𝑆 algorithm. 

Based on network of reactions, 𝐼𝑆𝑃 𝐿𝐴𝑆 unfolds the state-space pattern to 

update states in the domain and expands 2367590 states up to 𝑡𝑓
 .  shows the 

time point where new set of states are explored and updated in the domain.. 266 

 

Figure 7.16. The set of states explored for the hog1 pathway using the 𝐼𝑆𝑃 𝐿𝐴𝑆 method. 

Based on network of reactions, 𝐼𝑆𝑃 𝐿𝐴𝑆 unfolds the state-space pattern to 

update states in the domain and expands 15980 states up to 𝑡𝑓
 .  shows the 

time point where the new set of states are explored and updated in the 

domain. ........................................................................................................... 268 

 

Figure 7.17. Conditional probability of the species 𝑥0
   (extra-cellular 𝐻2

 𝑂2
 ), 𝑥1

   (intra-

cellular 𝐻2
 𝑂2
 ) evaluated at 𝑡 = 0.2 sec, 1.2 sec and 3.0 sec with 𝑡𝑠𝑡𝑒𝑝

 = 0.01 

using 𝐼𝑆𝑃 𝐿𝐴𝑆. ................................................................................................ 272 

 

Figure 7.18. Conditional probability of the species 𝑥2
  (𝐶𝑎𝑡1), 𝑥33

  (𝐶𝐴𝑇1 or 𝐶𝐴𝑇1 𝑚𝑅𝑁𝐴) 

evaluated at 𝑡 = 0.2 sec, 1.2 sec and 3.0 sec with 𝑡𝑠𝑡𝑒𝑝
 = 0.01 using 

𝐼𝑆𝑃 𝐿𝐴𝑆. ......................................................................................................... 272 

 

Figure 7.19. Conditional probability of the species 𝑥20
 , 𝑥41

  evaluated at 𝑡 = 1.5 sec, 3.2 

sec and 5.1 sec with 𝑡𝑠𝑡𝑒𝑝
 = 0.01 using 𝐼𝑆𝑃 𝐿𝐴𝑆. ......................................... 274 



xvii 

 

 

Figure 7.20. Conditional probabilities of species 𝑥12
 , 𝑥14

 , 𝑥15
 , 𝑥16

 , 𝑥17
 , 𝑥18

 , 𝑥19
 , 𝑥20

 , 𝑥37
 , 

𝑥38
 , 𝑥39

  evaluated at 𝑡 = 0.00028 sec, 0.00042 sec and 0.00062 sec with 

𝑡𝑠𝑡𝑒𝑝
 = 0.0001 using 𝐼𝑆𝑃 𝐿𝐴𝑆. ...................................................................... 275 

 

Figure 7.21. Conditional probability of the species 𝑥9
 , 𝑥12

  evaluated at 𝑡 = 0.014 sec, 

0.028 sec and 0.040 sec with 𝑡𝑠𝑡𝑒𝑝
 = 0.01 using 𝐼𝑆𝑃 𝐿𝐴𝑆. .......................... 277 

 

Figure 7.22. Conditional probability of the species 𝑥21
 , 𝑥22

 , 𝑥32
 , 𝑥34

 , 𝑥35
 , 𝑥36

 , 𝑥37
 , 𝑥38

 , 
𝑥39
 , 𝑥40

 , 𝑥41
 , evaluated at 𝑡 = 3.01 sec, 7.01 sec and 8.46 sec with 𝑡𝑠𝑡𝑒𝑝

 =

0.01 using 𝐼𝑆𝑃 𝐿𝐴𝑆. ....................................................................................... 278 

 

Figure 7.23. Conditional probability of the species 𝑥24
 , 𝑥26

 , 𝑥25
 , 𝑥27

 , 𝑥28
 , 𝑥29

 , 𝑥30
 , 𝑥31

 , 
𝑥42
 , 𝑥43

 , 𝑥44
 , evaluated at 𝑡 = 25.0 sec, 50.0 sec and 200.0 sec with 𝑡𝑠𝑡𝑒𝑝

 =

1.0 using 𝐼𝑆𝑃 𝐿𝐴𝑆. ......................................................................................... 281 
 

  



xviii 

 

Abbreviations 

Terminology 

 A 

AD Alzheimer's Disease 

AI Artificial Intelligence 

Algo Algorithm 

AWS Amazon Web Services 

 B 

BLNP Bayesian Likelihood Node Projection 

 C 

CK Chapman-Kolmogorov Equation 

CME Chemical Master Equation 

CPU Central Processing Unit 

CSR Compressed Row Format 

CTMC Continuous Time Markov Chain 

CTHMC Continuous Time Homogeneous Markov Chain 

 D 

DDR3 Double Data Rate Version 3 

DAGs Directed Acyclic Graphs 

 E 

EBS Elastic Block Storage 

EC2 Elastic Computing Version 2 

ECUs Electronic Controlling Units 

EFS Elastic File System 

 F 

FIFO First In, First Out 

FSP Finite State Projection 

  

 G 

GP2 General Purpose Version 2 (SSD) 

GORDE Gated One Reaction Domain Expansion 

 H 

HVM Hardware Virtual Environment 

 I 



xix 

 

IOPS Input Output per second 

ISP Intelligent State Projection Method 

 L 

LAS Latitudinal Search 

LIFO Last In, First Out 

LOLAS Longitudinal Latitudinal Search 

 M 

ML Machine Learning 

 O 

ODE or ODEs Ordinary Differential Equation(s) 

OFSP Optimal Finite State Projection 

 Q 

Queue Defines the temporary line-up of nodes for any iteration in LAS 

 S 

SSA Stochastic Simulation Algorithm 

SSD Solid State Drive 

Stack Defines the temporary storage of nodes for any iteration in 

LOLAS 

SW Sliding Windows Method 

 U 

URN Uniform Random Number Generator 

 

 

 

  



xx 

 

Notations 

𝑎𝑖,𝑗
  or 𝑎µ
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∆𝑎𝑖,𝑗
  Change in propensity 

𝑎1,𝑁′
′ ,….,𝑎𝑁,𝑁′

′  Propensities of the prior reactions 

𝑎𝑓𝑟
  Probability of a jump process from state 𝑋𝑖−1

  to 𝑋𝑖
  per unit 

time 

𝑎𝑟𝑣
  Probability of a jump process from state 𝑋𝑖

  to 𝑋𝑖−1
  per unit 

time 

𝐴 or 𝐴𝑖,𝑗
  Defines the transition between i, j and its weightage 

ƃ𝑙𝑖𝑚𝑖𝑡
  Exploration bound limit in 𝐿𝑂𝐿𝐴𝑆 

𝑏𝑁′,𝑁
′ (𝑋 − 𝑣µ

 )′ Prior Bayesian likelihood values {𝑏1,𝑁
′ , ……𝑏𝑁′,𝑁

′ } 

𝑏(𝑁𝑁1,..𝑁𝑀
 |𝑏1,𝑁….𝑁′,𝑁

′ ) Represents Bayesian likelihood value given prior 𝑏𝑁′,𝑁
′  

𝐵𝑜𝑢𝑛𝑑𝑙𝑜𝑤𝑒𝑟
  or 𝐵𝑜𝑢𝑛𝑑𝐿

  Define the set of states {𝑋1,2……𝑆
 , 𝑏1,2,3,….𝑙𝑖𝑚𝑖𝑡

 } at  

ƃ𝑙𝑖𝑚𝑖𝑡
  already present in the domain for current iteration 

𝐵𝑜𝑢𝑛𝑑𝑢𝑝𝑝𝑒𝑟
  or 𝐵𝑜𝑢𝑛𝑑𝑈

  Define the set of states {𝑋1,2……𝑆
 , 𝑏1,2,3,….𝑙𝑖𝑚𝑖𝑡

 } at  

ƃ𝑙𝑖𝑚𝑖𝑡
  added in the domain at the end of current iteration 

𝒄, 𝑐1
 , 𝑐2

  Constants 

Ͼ
𝑁𝑖
 ,𝑁𝑖
′ 

  Total transition/walk cost from node 𝑁𝑖
  to 𝑁𝑖

′  

𝐷𝑖𝑐𝑡 Dictionary of the model having transition records 

ƌ𝑙
  Exploration depth limit in 𝐿𝐴𝑆 

ƌ𝑠𝑡𝑒𝑝
  Exploration depth step in 𝐼𝑆𝑃 

𝑑𝑖𝑚 Dimension of sub-matrix in Sliding Windows Method 

𝑑𝑜𝑚𝑎𝑖𝑛 Defines the set of states of domain in current iteration that 

forms 𝐵𝑜𝑢𝑛𝑑𝑢𝑝𝑝𝑒𝑟
  

𝑑𝑜𝑚𝑎𝑖𝑛𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠
  Defines the set of states of domain in previous iteration that 

forms 𝐵𝑜𝑢𝑛𝑑𝑙𝑜𝑤𝑒𝑟
  

𝐷𝑗
  Diagonal matrix whose diagonal entries are one 

𝑒 Markov chain tree edge representing walk from 𝑁𝑖
  to 𝑁𝑖

′  

𝑒1
  First unit basis vector in Krylov Subspace Method 

𝑒𝑟𝑟𝑜𝑟
  Represents error value in calculation 

𝑒𝑥𝑝() Exponential function 

𝑒𝑝𝑠 Epsilon 

Έ𝑦
  Denote the sequence of events Έ1

 , Έ2
 …., 

𝑓(𝑦) Represent the positive real value function of 𝑦 

𝐺𝑚𝑐
  Represents graph associated with Markov chain tree 

�̅�𝑑𝑖𝑚
  Upper matrix (Hessenberg Matrix) 

𝐼𝑇 Identity matrix 𝐼 = 𝑑𝑖𝑎𝑔(1,1, … . .1)𝑇 

𝐼𝑡𝑟
  Denote the iterations in 𝐼𝑆𝑃 

𝑘𝑀
  Kinetic parameter of the chemical reaction where 𝑀 = 

{1,2… .∞} 
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𝑙 Used as subscript for Length of depth, for example ƌ𝑙
  

𝐧𝐽
  Set of node as {𝑁1

 , 𝑁2
 , …… .𝑁

𝑆Ñ
 } 

𝐧𝐾
  Set of nodes carrying set of 𝐗𝐾

  at any iteration 

𝐧𝐾
′  Set of nodes carrying set of 𝐗𝐾

′  at any iteration 

𝑁0
  Root node carrying initial state 𝑋0 

𝑁𝑖
  or 𝑁𝑖

  Any node 

Ñ or {𝑆1
 , …… . 𝑆Ñ

 } Number of different species 

𝑛𝑢𝑚1
 , 𝑛𝑢𝑚2

  Random number generated by uniform random number 

generator (URN) 

𝑃(𝑡0
 )(𝑋0

 ) Initial probability at 𝑡 = 0 

𝑃(𝑡)(𝐗𝐾
 ) Probability of set of states at time 𝑡 

𝑃𝑁,𝑁′
 (𝜔) Weighted probability of transition from 𝑁𝑖

   to 𝑁𝑖
′  

𝑅𝑀
  𝑀 elementary chemical reaction channels {𝑅1

 , 𝑅2
 …… .𝑅𝑀

 } 

𝑅𝑀
′  Prior 𝑀 elementary chemical reaction channels 

{𝑅1
′ , 𝑅2

′ …… . 𝑅𝑀
′ } 

𝑅𝑀(𝑓𝑠)
  𝑀 elementary chemical reaction channels of fast reactions 

𝑅𝑀(𝑠𝑟)
  𝑀 elementary chemical reaction channels of fast reactions 

Ꞧ𝑡𝑟𝑎𝑐𝑡
  Number of retraction in 𝐿𝑂𝐿𝐴𝑆 

𝑆Ñ Approximate number of states 

Ŝ Number of stages in expansion {1,2, …… . } 

𝑆𝑢𝑐
  Implicit successor or operator 

𝑠𝑞𝑟𝑡 Square root 

𝑡0
  Time at which initial conditions of system are defined 

𝑡′ Time at which 𝐗𝐾
′  is dropped from the domain 

𝑡 Any random time in seconds 

𝑡𝑑
  Time at which 𝐗𝐾

  is updated in the iteration 

𝑡𝑓
  Final time at which solution is required 

Ŧ Transitioning factor 

𝑈𝑋𝑖
 ,𝑋
𝑖′
 

  Set of all arborescences 

|𝑈| Define the cardinality of any set 

𝑣 Krylov Sub-space method - A column vector of a length 

equal to the number of different species present in the 

system 

𝑣µ
  or 𝑣𝑀

  Stoichiometric vector represents the change in the 

molecular population of the chemical species by the 

occurrence of one 𝑅𝑀
  reaction. It also defines the transition 

from state 𝑋𝑖
  to 𝑋𝑖′

  in Markov chain tree. 

𝑣µ
 (𝑋(𝑡)) or 𝑣𝑀

 (𝑋(𝑡)) Stoichiometric vector function, where 𝑋 is any random 

state 

𝑉µ
  or 𝑉𝑀

  Matrix of all the Stoichiometric vectors [𝑣1
 ; 𝑣2

 ; . . . . . . 𝑣µ
 ]  
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𝑊𝑦 Probability that is computed inductively by 𝑊(0) = 𝑃(0) in 

uniformisation method 

𝑥1
 , …… . 𝑥Ñ

  Number of counts of different species 

𝑋 or 𝑋𝑖
  or 𝑋𝑖′

  Any random state 

𝑋0
  Initial state or Initial condition 

𝐗𝐽
  ordered set of possible states {𝑋1

 , …… . 𝑋
𝑆Ñ
 } of the system 

𝐗𝐾
  Set of new states or domain at any iteration 

𝐗𝐾
′  Set of states dropped from domain at 𝑡′ at any iteration 

𝑦, 𝑦0
  Positive integers 

𝑌𝑦
  Poisson process given that 0 < 𝑦 ≤ 𝑀 

𝑍 Number of bounds in 𝐼𝑆𝑃 

𝜏𝑚 or 𝑡𝑜𝑙𝑚 Tolerance value 

𝜏𝑚(𝑙𝑒𝑎𝑘) 𝑃(𝑡)(𝐗𝐾
′ ) leakage point 

Ӕ Approximate solution of the CME 

𝜔 Weight or cost of single transition from 𝑋𝑖
  to 𝑋𝑖′

 . 

It is equivalent to 𝑎𝑖,𝑗
  

Ѫ𝑐
  Markov chain representing biochemical process 

Ѭ Markov chain tree with 𝐧𝐽
  

𝜆𝑡 Uniformisation rate 

ⱴ𝑗
  Number of nonzero elements in 𝑃𝑗

  

φ Sample space 

𝛺 Asymptotic lower bound 

𝑂 Asymptotic upper bound 

𝛩 Asymptotic tight bound 

{1,2…… . 𝐾} Indexing of set of states and set of nodes 

µ = {1,2, … .𝑀} Channels of chemical reaction propensity 

 

Key Factors and Outputs 

Dimension Indicating factor for knowing the difficulty level for 

solving the CME 

Run-time Time taken by the algorithm to expand the state-space 

and approximate the solution of CME 

Number of states Total number of states at any time 

Approximation Error Total error when states were simultaneously expanded 

and bunked 

Probabilities Conditional probabilities of the species 
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In systems biology, it is of great interest to understand the dynamics of large and complicated 

biochemical reaction networks based on recent advances in computing and mathematical 

techniques. These advances in techniques have made it easier for biologist to deal with  

enormous amounts of experimental data down to the level of a single molecule of a species. 

Such information reveals the presence of a high level of stochasticity in the networks of 

biochemical reactions. The establishment of stochasticity in biochemical reaction networks 

has made a significant contribution towards the field of cells (Kholodenko et al., 2000; 

Roberts et al., 2004), neuroscience (Ozer et al., 2009), and  drug modelling (Murray et al., 

2009), for example. For certain problems, the minimal domain grows polynomial in time; 

however, in an application, if the domain is not constructed adaptively by default, hyper-

rectangular support is established, which grows exponentially in high dimension biochemical 

systems. An example of diversity in biochemical systems is the discrepancy from species to 

species and from reaction to reaction in the biochemical networks of Alzheimer's disease 

(AD) (Hogervorst et al., 2003) where the behaviour of different pathogens in pathways is still 

largely unknown; and the biochemical networks of pathways in the fungal pathogen Candida 

albicans (Schulze et al., 2009). 

Biochemical reaction networks are widely used to describe typical biological processes within  

systems biology using deterministic models; however, deterministic models do not provide 

probabilistic descriptions of such systems. These biochemical processes can be captured by 

incoporating stochasticity into the biological networks via stochastic mathematical models. 

To do this, one approach to model a biochemical reaction network is to deduce a set of integro 

differential equations known as chemical master equations (CMEs) (Gillespie, 1977, 1992a). 

CMEs describe the evolution of the probability distribution over the entire state-space of a 

biochemical system that jumps from one set of states to other in continuous time; they are a 

continuous time version of Markov chains (CTMCs) (Gillespie, 1992a; Weber, 2012) with 

discrete states. By defining the Markov chain (Goutsias et al., 2013; Weber, 2012), we can 

consider the probability density associated with a system that changes over time. 

The distribution obtained from the solution of CMEs is very useful for scientists. For 

example, they can study the experimental data to amend the parameters underlying large 
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biochemical models or achieve a detailed perception about their molecular composition before 

proceeding to an expensive trial and error investigation programme. Accordingly, they can 

use the solution of CMEs as a reference guide for new investigations by solving them in a 

future time point where no investigations have been undertaken (Munsky et al., 2009; 

Shepherd et al., 2013). 

Despite these applications, solving CMEs is a formidable task due the nonlinear nature of the 

reactions and size of the networks that result in different realisations and, most importantly, 

the exponential growth of the size of the state-space with respect to the number of different 

species in the system. When the size of the biochemical system is very large in terms of the 

number of variables, the solution to the CME quickly becomes intractable. This is due to an 

explosion of the state-space, which is considered to be the curse of systems’ dimensions. 

Although, CMEs have been employed and solved explicitly by existing algorithms for 

relatively small biological systems (Burrage et al., 2006; Dinh et al., 2017; MacNamara et al., 

2008; Sidje et al., 2015; Sunkara et al., 2010; Wolf et al., 2010) computationally complaisant 

but accurate and efficient solutions are still unknown for most significant systems, 

particularly large biochemical systems. These are untouched when it comes to the expansion 

of state-space and solutions of CME. Also, the nature of information generated by the 

exisiting algorithms and computational platforms are also not sufficient to deeply understand 

and visualise the state-space and the process of domain formation. 

The aforementioned highlights the challenges and importance of exploring the state-space and 

having an efficient domain size for solving CMEs and the timeliness of our study. This study 

aims to solve the high demand for state-space expansion problems efficiently, particularly in 

large and integrated biochemical systems, by incorporating fresh ideas in applied computing 

and computational mathematics. 
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1.1 Stochastic Chemical Kinetics 

The great significance and application of reaction rate equations (𝑅𝑅𝐸𝑠), which are 

deterministic ordinary differential equations (𝑂𝐷𝐸𝑠) in chemical kinetics, cannot be 

challenged. This approach presumes that the time for the evolution of biochemical reaction 

networks is both deterministic and continuous because the species’ molecules are large in 

numbers and justify continuous concentrations but some species’ molecules may be present in 

either very small or very large numbers and their nonlinearity is not smoothed by statistical 

averaging. This contrasts, with the fact that molecule count levels apparently change only in a 

discrete fashion; moreover, when the time of their evolution is considered, it is not a 

determinstic process either.  

In such cases, the inability to define the nonlinearity at the molecule count level in 𝑅𝑅𝐸𝑠 can 

become very important, so mean values are measured by taking a set of possible values for 

probability distribution. Under the same configuration as for time evolution, the biochemical 

reaction network can then be defined in terms of the discrete state 𝑋 ≡ (𝑥1
 , …… . 𝑥Ñ

 )𝑇 vector 

of non-negative integers 𝑥Ñ
  given the initial conditions. 

Definition 1.1. The stochastic process is the time evolution of a collection of random 

variables, such that {𝑋(𝑡) ∶ 𝑡 ∈ 𝐾, φ} for a single variable and where 𝐾 is some indexing 

scheme and φ is a sample space. For each fixed 𝑡, 𝑋(𝑡) indicates one random variable defined 

in φ and correlated with a function defined for 𝐾 and this is what we define as process 

stochastic realisation. When we define a collection of more than one random variable then 

{𝑋𝑖
 (𝑡), 𝑋𝑖′

 (𝑡) ∶ 𝑡 ∈ 𝐾,φ}, where 𝑋𝑖
  and 𝑋𝑖′

  are two variables in sample space φ. 

Definition 1.2. The stochastic process {𝑋(𝑡) ∶ 𝑡 ∈ 𝐾,φ} is said to be a jump process that 

defines the jumps between different states in φ or the state-space with time. 

The focus of our study is only on stochastic processes of the continuous type; therefore, from 

here on the stochastic processes are considered to be continuous time stochastic processes 

fixed to [0,∞), based on our indexing scheme. The biochemical reactions are triggered based 

on the process of counting the species, then the change in molecular counts of the species is 

given by a jump process in the Markov process (discussed further in Chapter 3), which is 

basically a stochastic model based on Markov properties. For our problem domain, a 

continuous time jump process is a jump in the Markov process that is defined as a continuous 

time Markov chain (CTMC) with discrete states. The biochemical systems we are interested 

in are the systems whose changes in molecular population of species are defined by CTMC 
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discrete states (discussed further in Chapter 3). The process to describe the time evolution of 

the randomness of variable 𝑋 is the chemical master equation (CME) (as discussed in Chapter 

2). 

Based on the derivation of Gillespie (1977), for every reaction, 𝑅, there exists a reaction 

channel such that 𝑅𝑀
  determines the unique reaction in the system with constant 𝑘𝑀

 . The 

specific combinations of the reactant species, 𝑅𝑀
 , will react during an infinitesimal [𝑡, 𝑡 + 𝑑𝑡) 

time interval. Therefore, the average probability 𝑎µ
 (𝑋(𝑡))𝑑𝑡 at which a particular 𝑅𝑀

  will fire 

in [𝑡, 𝑡 + 𝑑𝑡) is the combination of the total number of reactant species times 𝑘𝑀
 , called the 

propensity function. For example, 

                                  𝑹𝟏
 :  𝐶 

𝑘1
 

→  𝐴, 

𝑹𝟐
 :  𝐴 + 𝐸

𝑘2
 

→  𝑇, 

                                  𝑹𝟑
 :  𝑇 

𝑘3
 

→  𝐶, 

       𝑎1
 :  𝑘1

 ([𝐶]) 

       𝑎2
 :  𝑘2

 ([𝐴]. [𝐸]) 

       𝑎3
 :  𝑘3

 ([𝑇]) 

 

In the case when the reactants are of the same type; for example 𝐴 + 𝐴
𝑘2
 

→  𝑇, then 

𝑎2
 :  𝑘2

 (
𝐴(𝐴−1)

2
), where 

𝐴(𝐴−1)

2
 denotes the individual pair of species 𝐴 molecules. 

Definition 1.3. The total number of reactions, 𝑅𝑀,
  present in the biochemical reaction 

network is the union of sets of fast reactions and slow reactions, and they are categorised into 

sets of 𝑅𝑀(𝑓𝑠)
  and 𝑅𝑀(𝑠𝑟)

  reactions, respectively, based on their propensity values. Therefore, 

 𝑅𝑀
 = 𝑅𝑀(𝑓𝑠)

 ⋃𝑅𝑀(𝑠𝑟)
 . (1) 

The reaction is considered to be faster than others if its propensity is of several orders of 

magnitude larger than the other reactions’ propensity values. 
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1.2 Motivation and Main Research Questions 

The difficulty of solving the CMEs (see Chapter 2) is exacerbated when the dimension of the 

model grows with the number of distinct species, and the size of a model with the number of 

states. The size of the model shows the complexity of the state-space and the ‘curse’ of 

system’s dimension. Under computational experimental conditions using existing algorithms, 

the results from small biochemical reaction networks are being studied. However,  they 

expand the state-space quickly so solving the CME with accuracy is still a challenging task 

for a significant number of biochemical reaction networks, especially large ones 

(Komalapriya et al., 2015; Ling et al., 2010). It is computationally expensive and challenging 

to study the complex behaviour of large biochemical reaction networks because of the 

limitations and behaviour of the existing algorithms. Controversial results of small 

biochemical sytems from different research groups may be due to the different experimental 

materials or the methods used. This undeveloped area provides great opportunities to study 

this kind of problem in systems biology, using mathematical modelling and recent computing 

advancements. Therefore, deep insights can be obtained by properly interpreting the state-

space of a biochemical system from thoughtfully designed de novo numerical computation 

algorithms. Through the experiments in this thesis, we aim to address the following questions 

about state-space, accuracy and computational time using the numerical algorithm we will 

develop in our study: 

(1) How would the state-space be visualised efficiently to understand its complexity? How 

would states be searched and state-space expanded for small and large biochemical 

systems? What would be the size of the domain created at any one time? What would be 

the state-space blueprint of the model? 

To answer these questions, we need to select key changes that have previously been suggested 

in the data structure of computer science to link them to the state-space. Based on that, a 

mathematical model based on the data’s structure then needs to be developed to represent the 

state-space, according to published experimental observations. The state-space of biochemical 

systems should also be able to adopt selected changes after including the relevant 

sophistication of the state-space structure. 

(2) How can potential new states in the state-space be identified? What would be the 

direction of the state-space search? What would be the accuracy of the solution based on 

the size of domain created by efficient searching for states in the state-space at different 

time points? How would domain produed affect the overall solution of the CME?  
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To answer these questions, we first need to develop an innovative method that treats state-

space as a sophisticated data structure. This can be achieved by putting new modules into 

suitable step locations to consider the space, apply the expansion technique and capture the 

exact size of the domain at particular time points. Certain parameters should then be 

calibrated or estimated according to published experimental observations. This setting will 

then be used to test the domain solution at different time points and the overall solution of the 

CME. The simulation results should provide information in terms of the state-space patterns, 

errors at different time points and predicitions based on conditional probabilities. 

(3) How long does it take to expand the state-space of a large biochemical reaction network 

up to the desired time. How is the new algorithm better than other existing algorithms? 

To answer these questions we need to choose and model large biochemical reaction networks 

based on the given parameters and variables. We then import the model into a new algorithm 

to investigate the effects of different reactions on the molecular population of the species, 

resulting in new states that lead to the expansion of the state-space. We will note the 

performance of the new algorithm in terms of computational time and relate the results to the 

key biological events leading to these complex formations wherever needed. Lastly, we will 

compare the new algorithm with the existing algorithms for accuracy and computational time. 
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1.3 Objectives for this study  

The solution methods to CMEs can broadly be classified as combination of: (a) state-space 

expansion methods; and (b) approximation methods, as shown in Figure 1.1. 

                 

Figure 1.1. Solution methods to CME are a combination of state-space expansion methods 

and approximation (Ӕ) methods. 

Significant improvements have already been made towards approximation methods (discussed 

in Chapter 2) to improve the solution of CMEs but far fewer for expansion methods. To 

achieve the best solution of CMEs, it is also important to use an efficient expansion strategy 

simultaneously before any efficient approximation method becomes feasible. Therefore, this 

study focuses on developing the expansion strategy to analyse the state-space of large 

biochemical reaction networks to create efficient domains for improved solutions of the CME 

in terms of accuracy and computational time. There are four major objectives in this study. 

(1) To develop a data structure to represent and investigate the class of state-space growth in 

terms of its objects, i.e. number of states for biochemical reaction networks. 

It is important to have a compatible data structure for the new algorithm to treat the model 

functions in the correct way. Therefore, we will use the Markov chain to extend our 

understanding of stochastic processes and interpret the formation of state-space by including 

the new components in the space. 

(2) To develop a platform-independent numerical algorithm based on recent trends in 

computing compatible with the structure of the data (1st objective) for the expansion of state-

space suitable for significant types of large biochemical reaction networks. 

We will develop a framework that accepts the new data structure for the characteristics of the 

vector form of the CME. This framework will integrate the parameters in the form of 

functions and track the major events of biochemical reaction networks from initialisation, to 

Numerical         Perturbation 

Simulation           Methods 

  (ex: SSA) 

+                     =    

State-space 

Expansion 

Methods 

Approximation 

Methods 

CME 

Solution 

Numerical 
Expansion 

(ex: r-step) 
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the expansion of the state-space, to the formation of domains. Using mathematical modelling 

for the biochemical system, the new framework will mimic the functions of the model 

reactions to expand the state-space. 

(3) To study the formation of domains at different time points during expansion to improve 

the accuracy of the solution while maintaining minimal computational expenses. 

We will closely analyse the addition of new states for the formation of domains at different 

time points to understand their contributions towards the solution of the CME. We will use 

state patterns called blueprints to investigate the time points for the explosion of states that 

should define the firing of reactions in the network. We will also investigate the total time 

taken by the new algorithm to expand the states and check the accuracy of the domain 

produced at different time points through the CME.  

(4) To study the application of the new algorithm on large biochemical reaction networks by 

mathematical modelling. 

We will investigate the application of the new algorithm on large biochemical reaction 

networks for its performance and the accuracy of the solution. To do this, we will first discuss 

the model in brief and integrate it using mathematical modelling. The results from the new 

algorithm should reveal the number of states, size of the domain produced, the explosion of 

states in space, conditional probabilities of the species involved, and the solution of the CME 

at the desired time. 
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1.4 Thesis structure 

This thesis consists of eight chapters. Figure 1.2 illustrates the organisation of the chapters 

and the main research questions to be answered in Chapters 3 and 5, respectively, followed by 

case studies using large biochemical systems, in Chapters 6 and 7. 

In the current chapter, Chapter 1, we introduce stochastic chemical kinetics and its challenges 

for solving the CME for large biochemical reaction networks. We also discuss the 

motivations, main research questions that need to be addressed and, based on these, we 

discuss the objectives of this thesis in brief.  

Chapter 2 reviews the background of the CME problem, its structure and experimental 

findings, including the latest publications. We also discuss, in detail, the existing numerical 

approaches that particularly focus on state-space expansion and its potential for understanding 

the underlying complexity in the state-space and its expansion (which is the primary focus of 

this thesis). Lastly, we will briefly discuss  the approximation methods of the CME. 

In Chapter 3, we discuss the definitions and preliminaries to create a data structure for 

representing the state-space. We then define the sample space and classify the type of states 

for Markov chains arising in biochemical reaction networks. We will then use this 

classification to layout the data structure to define the Markov chain as Markov chain graphs 

or trees to create a problem state-space model. Lastly, we will discuss the benefits of 

following the standards of artificial intelligence for the CME and develop an infrastructure for 

searching for problems in the state-space model. We will then develop a simple function to 

project the expansion strategy based on the new data structure.  

In Chapter 4, extends the idea discussed in previous chapters by adding the conditions for the 

expansion of the state-space, and how the states are treated based on its probability mass. 

Based on these conditions, we will layout the infrastructure of our 𝐼𝑆𝑃 algorithm (includes 

two variants – 𝐿𝐴𝑆 and 𝐿𝑂𝐿𝐴𝑆) and discuss the step–by–step expansion stages on a toy 

model and how it can be applied to real biochemical reaction networks. 

In Chapter 5, we compare our 𝐼𝑆𝑃 algorithm with the results from existing algorithms based 

on – domain size, accuracy and computational time. We will also compare the depth of our 

understanding of the state-space governed by these algorithms. 

In Chapter 6, we discuss the case study of the application of the  𝐼𝑆𝑃 𝐿𝑂𝐿𝐴𝑆 algorithm on the 

large biochemical reaction network at the G1/S checkpoint involving the DNA-damage signal 
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transduction pathway. 

In Chapter 7, we discuss the second case study for the application of the 𝐼𝑆𝑃 𝐿𝐴𝑆 algorithm 

on a large integrated biochemical reaction network of pathways in the oxidative stress 

adaptation in the fungal pathogen, Candida albicans. 

In final Chapter 8, we summarise the contribution and work of this thesis and discuss future 

directions that could be considered to extend the application of 𝐼𝑆𝑃, and also about solving the 

CME to understand the behaviour of the system itself. 
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Figure 1.2. Flow chart showing organisation of thesis and major research points in the 

form of chapters. 
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The Master equation is a first-order integro-differential equation, which relates any function 

with the derivatives (function value or dependent variable). The function usually represents 

the physical or chemical quantities, while the derivative represents the changes with respect to 

time. Collectively, the Master equation defines the relation between these two. Master 

equation play a vital role in many disciplines, including chemistry, physics, biology, 

engineering because such relationships are very common in today’s systems. The stochastic 

behaviour in biochemical reaction networks was coined by McQuarrie (McQuarrie, 1967) 

and, later, by Gillespie (Gillespie, 1992b), which came up with rigorous derivation of 

Chemical Master Equation (CME) to accommodate the intrinsic stochastic behaviour of a 

chemical system. It is important to note that according to the Master equation, the dimension 

of a problem can be classified into ‘D’ dimensions and network systems. In our study we only 

deal with the CME, which outlines the time evolution of a biochemical reaction network that 

can be modelled exactly for a given discrete set of states. The most favoured form of CME is 

written in the matrix form, which depicts the connections between the different states, and the 

way connections are made between the states decides the complexity of the state-space. 

In section 2.1, we first introduce the Markov process and the probability definition. In secton 

2.2, we introduce the Chemical Master Equation (CME), its initial value problem and 

structure. The derivation of the CME and the probability laws on which it depends is also 

discussed. Then, in section 2.3, we review the existing state-space expansion methods, discuss 

their limitations and give biological examples, including the latest publications, with an 

emphasis on finding scope for improvements in state-space expansion. In section 2.4, we 

review the existing approximation methods in brief. In section 2.5, we present some 

biological examples based on the existing methods to show the time evolution of the system. 

In section 2.6, we summarise this literature review that will be taken into consideration to 

broaden our understanding when developing a new method. 
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2.1 Markov Processes – An Introduction for the Computational Biologist 

The time evolution of a biochemical reaction system may be represented by the Markov 

process only if the system depends on the present state and, based on that, it changes state 

using transition rules. The Markov process describes all possible states of a biochemical 

reaction system and illustrates all possible walk from one state to another in time. 

Fundamentally, the Markov process is a type of stochastic process based on Markov property 

(Gillespie, 1992b). A tree of stochastic process in Figure 2.1 highlights the processes,  

considered in this study.  

 

Figure 2.1. Stochastic processes are categorised into different process. This study relates 

to the processes that are marked with black in the flowchart. 

Usually, the state-space of large biochemical reaction systems are considered infinite; 

however, to understand the behaviour of the system at any point it is crucial to approximate 

the CME. Therefore, the theory, conditions and methods that we develop in this thesis will be 

based on the Continuous Time Markov Chain (CTMC) to limit the infinite state-space to the 

finite state-space. To interpret the Markov process in detail, we first discuss the probability 

laws (see Appendix A) and define the conditional probability. If 𝑋1
  and 𝑋2

  are two state 

variables, then:  

Stochastic Process             

   Markov Process                                   Non-Markov Process           

                Discrete Time                                 Continuous Time          

Finite Discrete         Infinite Discrete        Infinite Discrete            Continuous State 

   state-space              state-space           state-space (CTMC)              space (SDE) 

Markov chain         Random walk on                 Poisson                Wiener          Gaussian 

    (DTMC)                 integers space                    process                process           process 

Markov        Hidden                             Compound              Geomertic                  Ornstein-Unlenbeck 

decision       Markov                               poisson                  Brownian 

Process        models                                process                    motion 

Birth & death                 Queuing                                        Diffusions          
    process                        process 
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𝑃2
 (𝑋1

 , 𝑡1
 ; 𝑋2

 , 𝑡2
 ) = 𝑃1|1

 (𝑋2
 , 𝑡2

  | 𝑋1
 , 𝑡1

 ) 𝑃1
 (𝑋1

 , 𝑡1
 ). (2) 

The joint probability of calculating 𝑋1
  at 𝑡1

  and 𝑋2
  at 𝑡2

  is equal to the probability of

calculating 𝑋1
  at 𝑡1

  times the probability of calculating 𝑋2
  at 𝑡2

  given 𝑋1
  at 𝑡1

 . The

conditional probability must fulfill the following criteria: 

 Criteria 1: 𝑃1|1
 ≥ 0

 Criteria 2: ∫ 𝑃1|1
 (𝑋2

 , 𝑡2
  | 𝑋1

 , 𝑡1
 ) 𝑑𝑋2

 = 1

 Criteria 3: 𝑃1
 (𝑋2

 , 𝑡2
 ) = ∫ 𝑃1|1

 (𝑋2
 , 𝑡2

  | 𝑋1
 , 𝑡1

 ) 𝑃1
 (𝑋1

 , 𝑡1
 ) 𝑑𝑋1

 

For example, if we assume that 𝑦 is a positive integer and 𝑡1
 < 𝑡1

 < …………  𝑡𝑦
 , then

Markov property justify the Markov process by the relation: 

𝑃1|𝑦−1
 (𝑋𝑦

 , 𝑡𝑦
  | 𝑋𝑦−1

 , 𝑡𝑦−1
 ; ……… . . . ; 𝑋1

 , 𝑡1
 ) =  𝑃1|1

 (𝑋𝑦
 , 𝑡𝑦

  | 𝑋𝑦−1
 , 𝑡𝑦−1

 ). (3) 

The transition probability at time 𝑡𝑦−1
  at value 𝑋𝑦−1

  to value 𝑋𝑦
  at time 𝑡𝑦

  will be conditional

only on 𝑋 
 at time 𝑡𝑦−1

  but not on the system’s history, so 𝑃1|1
  is called the transition

probability. For 𝑦 = 3, the Markov property relation can be formed as: 

𝑃3
 (𝑋1

 , 𝑡1
 ; 𝑋2

 , 𝑡2
 ; 𝑋3

 , 𝑡3
 ) =  𝑃2

 (𝑋1
 , 𝑡1

 ; 𝑋2
 , 𝑡2

 ) 𝑃1|2
 (𝑋3

 , 𝑡3
  | 𝑋1

 , 𝑡1
 ; 𝑋2

 , 𝑡2
 )

= 𝑃1
 (𝑋1

 , 𝑡1
 )𝑃1|1

 (𝑋2
 , 𝑡2

  | 𝑋1
 , 𝑡1

 )𝑃1|1
 (𝑋3

 , 𝑡3
  | 𝑋2

 , 𝑡2
 ) (4) 

If Eq (4) is integrated over 𝑋𝑦
  then divide both sides (left and right) by 𝑃1

 .

𝑃3
 (𝑋1

 , 𝑡1
 ; 𝑋2

 , 𝑡2
 ; 𝑋3

 , 𝑡3
 ) =  𝑃1

 (𝑋1
 , 𝑡1

 )𝑃1|1
 (𝑋2

 , 𝑡2
  | 𝑋1

 , 𝑡1
 )𝑃1|1

 (𝑋3
 , 𝑡3

  | 𝑋2
 , 𝑡2

 )

 ∫ 𝑃3
 (𝑋1

 , 𝑡1
 ; 𝑋2

 , 𝑡2
 ; 𝑋3

 , 𝑡3
 ) 𝑑𝑋2

 = ∫ 𝑃1
 (𝑋1

 , 𝑡1
 ) 𝑃1|1

 (𝑋2
 , 𝑡2

  | 𝑋1
 , 𝑡1

 ) 𝑃1|1
 (𝑋3

 , 𝑡3
  | 𝑋2

 , 𝑡2
 ) 𝑑𝑋2

 

𝑃2
 (𝑋1

 , 𝑡1
 ; 𝑋3

 , 𝑡3
 )  =  𝑃1

 (𝑋1
 , 𝑡1

 ) ∫ 𝑃1|1
 (𝑋2

 , 𝑡2
  | 𝑋1

 , 𝑡1
 ) 𝑃1|1

 (𝑋3
 , 𝑡3

  | 𝑋2
 , 𝑡2

 ) 𝑑𝑋2
 

𝑃1|1
 (𝑋3

 , 𝑡3
  | 𝑋1

 , 𝑡1
 ) 𝑃1

 (𝑋1
 , 𝑡1

 ) =  𝑃1
 (𝑋1

 , 𝑡1
 ) ∫ 𝑃1|1

 (𝑋2
 , 𝑡2

  | 𝑋1
 , 𝑡1

 ) 𝑃1|1
 (𝑋3

 , 𝑡3
  | 𝑋2

 , 𝑡2
 ) 𝑑𝑋2

 

𝑃1|1
 (𝑋3

 , 𝑡3
  | 𝑋1

 , 𝑡1
 )  =  ∫ 𝑃1|1

 (𝑋2
 , 𝑡2

  | 𝑋1
 , 𝑡1

 ) 𝑃1|1
 (𝑋3

 , 𝑡3
  | 𝑋2

 , 𝑡2
 ) 𝑑𝑋2

 (5) 

We will then have a C-K equation (Chapman Kolmogorov equation) (Gillespie, 1992b). This 

determines that a process starting at 𝑡1
  with 𝑋1

  reaches 𝑋3
  at time 𝑡3

  through any attainable
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value of 𝑋2
  in the transitional time 𝑡2

 . As we are dealing with large biochemical reaction 

networks, our focus will be on the Markov process, which is nonstationary in nature. In 

section 2.2, we will discuss the CME problem and the homogeneous Markov processes. 
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2.2 The Chemical Master Equation 

In this thesis, we will consider a network of biochemical reactions at a constant volume that 

consists of Ñ ≥ 1 different species {𝑆1
 , …… . 𝑆Ñ

 } that are spatially homogeneous and interact 

through 𝑀 ≥ 1 reaction channels in thermal equilibrium. The number of counts of each 

different species defines the state of the system. If all the species were bounded by 𝑆, then the 

approximate number of states present in the system would be 𝑆Ñ (Burrage et al., 2006). If we 

describe a different species, 𝑆Ñ
 , with model variables of 𝑥Ñ

 , then each state 𝑋 ≡

(𝑥1
 , …… . 𝑥Ñ

 )𝑇 is a vector of a non-negative integer, 𝑥Ñ
 , that denotes the number of counts of 

each species (negative populations of different species are not meaningful; hence, they are not 

considered). The dimension of the system is given by the length of the state vector which is 

also equal to the number of different species that react in the system. For every state, 𝑋, the 

probability satisfies the following CME (Gillespie, 1992a), 

 
𝜕𝑃(𝑡)(𝑋)

𝜕𝑡
=∑𝑎µ

 (𝑋 − 𝑣µ
 )

𝑀

µ=1

𝑃(𝑡)(𝑋 − 𝑣µ
 ) −∑𝑎µ

 (𝑋)

𝑀

µ=1

𝑃(𝑡)(𝑋) (6) 

where 𝑃(𝑡)(𝑋) = the probability function representing the time-evolution of the system, given 

that 𝑡 ≥  𝑡0
  and the initial probability is, 𝑃(𝑡0

 )(𝑋0
 ), 

𝑀 = elementary chemical reaction channels 𝑅1
 ,….. 𝑅𝑀

 , 

𝑎µ
  = chemical reaction propensity of channel µ = {1,2, … .𝑀}, and 

𝑣µ
  = stoichiometric vector – this is of the same dimension as the state vector but represents a 

change in the molecular population of the chemical species by the occurrence of one 𝑅𝑀
  

reaction. The system transitions to a new state by 𝑋 + 𝑣µ
  recording the changes in the number 

of counts of different species when the reactions occur. 

We note that 𝑎µ
 (𝑋 − 𝑣µ

 )𝑑𝑡 is the probability for state (𝑋 − 𝑣µ
 ) to transition to state 𝑋 

through chemical reaction, 𝑅𝑀
 , during [𝑡, 𝑡 + 𝑑𝑡), and ∑ 𝑎µ

 (𝑋)𝑑𝑡
𝑀

µ=1
 is the probability for 

the system to shift from state 𝑋 through any reaction during 𝑑𝑡. (refer to the Notations used in 

this thesis). Let 𝐗𝐽
 = {𝑋1

 , …… . 𝑋
𝑆Ñ
 } be the ordered set of possible states of the system 

indexed by {1,2…… .𝐾} having 𝑆Ñ elements, then Eq. (6) represents the set of ordinary 

differential equations (ODEs) that determines the changes in probability density 𝑃(𝑡)= 

(𝑃(𝑡)(𝑋1
 ),………. 𝑃(𝑡)(𝑋

𝑆Ñ
 ))𝑇. Once 𝐗𝐽

  is selected, the matrix-vector form of Eq. (6) is 
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described by an ODE: 

𝜕𝑃(𝑡)

𝜕𝑡
= 𝐴. 𝑃(𝑡), (7) 

where the transition rate matrix is 𝐴 = [𝑎𝑖,𝑗
 ]. If each reaction leads to a different state, 𝑋𝑖′

 ,

then the elements in submatrix 𝐴𝑖,𝑗
  are given as:

𝐴𝑖,𝑗
 =

{

−∑𝑎µ
 (𝑋𝑖

 )

𝑀

µ=1

, if 𝑖 = 𝑗

𝑎µ
 (𝑋𝑖

 ), if 𝑋𝑖′
 = 𝑋𝑖

 + 𝑣µ
 

0, otherwise

(8) 

This represents the infinitesimal generator of the Markov process (Gillespie, 1992b; Jones, 

2005; Weber, 2012), such that rows and columns are ordered according to lowercase, 𝑖 and 𝑗 

respectively. The entry of 𝑎𝑖,𝑗
  into the matrix gives the propensity for the chemical system to

transition from one state to another state, given that 𝑖 ≠ 𝑗, are non-negative. The diagonal 

terms of the matrix are defined by 𝑎𝑗𝑗
 , when 𝑖 = 𝑗 and has a zero column sum, so its

probability is conserved. From Eq. (7) we can derive the 𝑃(𝑡𝑓
 ) probability vector at the final

time, 𝑡𝑓
 , of interest given an initial density of 𝑃(𝑡0

 ):

𝑃(𝑡𝑓
 ) = 𝑒𝑥𝑝(𝑡𝑓

 𝐴). 𝑃(𝑡0
 ), (9) 

where the matrix exponential function is defined by the convergent Taylor series as (Eslahchi 

et al., 2011; Mouroutsos et al., 1985) 

𝑒𝑥𝑝(𝑡𝑓
 𝐴) = 𝐼 +∑

(𝑡𝑓
 𝐴)𝑛

𝑛!
.

∞

𝑛=1

 (10) 

However, algorithms, such as in (Burrage et al., 2006; Sidje et al., 2015; Sunkara et al., 2010; 

Wolf et al., 2010) truncate the Eq. (10) infinite summation to approximate Eq. (7) at the cost 

of an acute truncation error. For derivation of the CME, refer to the Appendix B. 
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2.2.1 Initial Value Problem 

If 𝑣µ
  or 𝑣𝑀

 , for µ or 𝑀 = {1,2, … .𝑀} be the stoichiometric vectors for 𝑅𝑀
  reaction channels, 

then we will define the stoichiometric matrix for the system by 𝑉µ
  or 𝑉𝑀

 = [𝑣1
 ; 𝑣2

 ; . . . . . . 𝑣µ
 ]𝑇. 

Let φ be the sample space and 𝑋0
 ∈ φ be the initial state of the system if 𝐗𝐽

  denotes the only 

set of states in φ. To solve 𝑃(𝑡)(𝑋) in Eq. (6) for 𝑋 ∈ φ, we define the 𝑃(𝑡) vector to be 

(𝑃(𝑡)(𝑋))𝑋 ∈ φ
  or (𝑃(𝑡)(𝑋))𝑋 ∈ 𝐗𝐽 

  for a finite set of states, then 
𝜕𝑃(𝑡)

𝜕𝑡
 be defined as a vector 

(
𝜕𝑃(𝑡)

𝜕𝑡
)𝑋 ∈ φ
 . Therefore, solving the CME is to find the solution of the initial value problem 

over a time period by the differential equation Eq. (7) when 𝑡 > 0, whereas, 𝑃(𝑡0
 ) is the initial 

distribution at 𝑡 = 0. Here, the sample space φ can be infinite for large biochemical systems, 

so finding the solution of Eq. (7) for the given parameters with finite set of states 𝐗𝐽
  is cited 

as the CME problem of large biochemical systems because the size of 𝐴 will be extremely 

large. 

For example, consider an enzymatic reaction network (Burrage et al., 2006) described by 

reactions 𝑅1
 : 𝑆 + 𝐸

𝑘1
 

→  𝐶, 𝑅2
 : 𝐶

𝑘2
 

→  𝑆 + 𝐸, 𝑅3
 : 𝐶 

𝑘3
 

→  𝑃 + 𝐸. This network of reactions 

involves four species: namely, 𝑆 − substrate, 𝐸 − enzyme, 𝐶 − complex and 𝑃 − product 

molecules. The 𝑋 ≡ (𝑥1
 , 𝑥2

 , 𝑥3
 , 𝑥4

 )𝑇 ≡ (𝑆, 𝐸, 𝐶, 𝑃)𝑇 represents any state of the system, given 

𝑋0
 ≡ (𝑆0

 , 𝐸0
 , 𝐶0

 , 𝑃0
 ) as the initial state. The stoichiometric vectors are given by 𝑣1

 =

(−1,−1,1,0), 𝑣2
 = (1,1, −1,0), 𝑣3

 = (0,1, −1,1). Therefore, for (𝑥1
 , 𝑥2

 , 𝑥3
 , 𝑥4

 ) 𝑥Ñ=4
 , the 

propensity functions are: 

𝑅1
 :    𝑎1

 ([𝑥1
 ], [𝑥2

 ], [𝑥3
 ], [𝑥4

 ]) = 𝑘1
  ×  𝑥1

 (𝑡) × 𝑥2
 (𝑡) 

𝑅2
 :    𝑎1

 ([𝑥1
 ], [𝑥2

 ], [𝑥3
 ], [𝑥4

 ]) = 𝑘2
  ×  𝑥3

 (𝑡)                 

𝑅3
 :    𝑎1

 ([𝑥1
 ], [𝑥2

 ], [𝑥3
 ], [𝑥4

 ]) = 𝑘3
  ×  𝑥3

 (𝑡)                 

The set of states reachable from 𝑋0
  is finite in number. With the multiple explosions of the 

number of states in a large model, the size of 𝐴 increases multiple folds. 

As seen in Eq. (9), the difficulty of solving Eq. (6) is a problem when the dimension of the 

model grows with the number of species present in the system – especially for large 

biochemical models. The approximate estimate of 𝑆Ñ shows how the size of the problem 

increases and this explosion in size is known as the curse of dimensionality (Burrage et al., 

2006; Gillespie, 1977). In addition, the complete 𝑃(𝑡) distribution cannot be solved precisely 
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in the presence of nonlinear transition probabilities for CME. We presented the justification of 

the CME for large biochemical reaction network or biological system, where changes in 

molecular counts of the species are defined by the continuous time jump process in the 

Markov process (see section 1.1) results in the new states. We will now discuss the non-

stationary Markov process in section 2.2.2 with an example to show the forward and reverse 

reaction (i.e. one step birth-death process) and write its Master equation. 

We use these notations in further chapters and refer to these equations, above, and parameters 

frequently to define the finite sets of states and the CME problem in terms of the initial value 

problem. 
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2.2.2 Time Homogeneous Markov Processes 

In general, a homogeneous process is a nonstationary Markov process defined by probability 

values. For example, if any function is nonstationary and affected by the time shift, then it is 

defined as homogeneous process in  the Markov process, which is basically a stochastic 

model based on Markov property (Gillespie, 1992b). There is one key category of a Markov 

process, called a generation-recombination process that is broadly known as a birth-death 

process (Novozhilov et al., 2006). 

The theory of birth-death processes was coined early in the twentieth century in an effort to 

understand the growth of populations, by taking its stochasticity elements into consideration. 

Later, this study became more sophisticated when biologists understood the importance of 

stochastic process analysis (Jagers, 1991). The birth-death process can address most of the 

problems articulated by way of transitions or probabilities of the states of the process. The 

birth-death of species in biochemical reaction networks are continuous in time and their range 

is only defined by the non-negative integers 𝑋 ≡ (𝑥1
 , …… . 𝑥Ñ

 )𝑇, which enables the system to 

jump only to adjacent states when the molecular population changes. For example, if we 

assume that a forward reaction and its reverse reaction represent the birth and death of the 

species, respectively, and 𝑋𝑖
  be some state, then Figure 2.2 visualise this process as: 

 

Figure 2.2. Visualisation of generation-recombination process for the Master equation. 

and the Master equation of the process is given by: 

�̇�(𝑋𝑖
 ) = 𝑎𝑓𝑟

 (𝑋𝑖−1
 )𝑃(𝑋𝑖−1

 ) + 𝑎𝑟𝑣
 (𝑋𝑖+1

 )𝑃(𝑋𝑖+1
 ) − (𝑎𝑟𝑣

 (𝑋𝑖
 ) + 𝑎𝑓𝑟

 (𝑋𝑖
 ))𝑃(𝑋𝑖

 ) (11) 

where, �̇�(𝑋𝑖
 ) represents the derivative taken with respect to time, i.e. (

𝜕𝑃(𝑡)(𝑋)

𝜕𝑡
), 𝑎𝑟𝑣

 (𝑋𝑖
 ) is the 

probability of a jump process from state 𝑋𝑖
  to 𝑋𝑖−1

  per unit time and 𝑃𝑓𝑟
 (𝑋𝑖

 ) is the probability 

of a jump process from state 𝑋𝑖
  to 𝑋𝑖+1

 . Based on coefficients 𝑎𝑓𝑟
  and 𝑎𝑟𝑣

 , the generation-

recombination processes can be categorised as – linear (if the coefficients are linear), 

nonlinear (if the coefficients are nonlinear) and random walks (if the coefficients are 

constant). As we are dealing with the stochasticity of biochemical models, in further sections, 

we will keep our discussion to the non-linear generation-recombination processes. 
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2.3 Existing State-space Expansion Methods 

For most biochemical reaction networks the size of the state-space is usually in millions, 

when the number of different biochemical species interact in the system. On other hand, if the 

biochemical reaction network is large and has a large state-space, usually in billions, then the 

number of the most probable states which contribute to most of the probability mass, are far 

fewer. This makes it very challenging to expand the state-space and effectively select the 

states and approximate Eq. (7). These challenges are brought by the ubiquitousness of the 

events, which possess a stochastic process nature but, despite that, biologists have a keen 

interest in solving Eq. (7). Some existing state-space expansion methods such as in Figure 2.3 

are widely used to create the domain for the solution of CME. 

 

                                               

 

 

 

Figure 2.3. Some existing state-space expansion methods used to create domain for the 

solution of CME. 

One can use any state-space expansion method with a approximation method based on the 

requirements, their limitations and compatibility. For the expansion of the state-space, the 

Finite State Projection (𝐹𝑆𝑃) (Munsky et al., 2006) and Sliding Windows (𝑆𝑊) (Wolf et al., 

2010) are widely used to find the domain, which is based on r-step reachability and the 

Stochastic Simulation Algorithm (𝑆𝑆𝐴), respectively. Both methods are based on time 

stepping which adaptively finds the domain. The process of guessing the most probable set of 

states to be considered for the domain is known as the selection of domain. Whereas, methods 

like uniformization, krylov subspace (Burrage et al., 2006) and runge kutta (Mikeev et al., 

2013) are popularly used for approximation (of the selected domain) of the CME Eq. (7) and 

broadly fall in approximation methods. As most of the improved expansion methods are based 

on r-step reachability; therefore, we will first discuss the steps of r-step reachability followed 

by a detailed discussion of the algorithms based on r-step reachability. 

State-space Expansion Methods 

Sliding 
Windows 
(𝑆𝑊) 

r-step 
reachability 

Gated one  
Reaction Domain  
Expansion (𝐺𝑂𝑅𝐷𝐸) 

Optimal 
state-
space 
(𝑂𝐹𝑆𝑃) 

Stochastic 
Simulation 
(𝑆𝑆𝐴) 
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2.3.1 r-step Reachability Method 

The r-step reachability is a popular algorithm, which finds several subsets of the finite state-

space to create the domain. r-step reachability was originally suggested by (Munsky et al., 

2006) to approximate the solution using the 𝐹𝑆𝑃 algorithm. According to r-step reachability, 

a state should be considered for the selection of the domain if it is reachable from its present 

state. A system will enter into the end state, 𝑋𝑖′
 ∈ 𝐗𝐽

 , through a finite number of intermediate 

states from the initial state, 𝑋0
 ∈ 𝐗𝐽

 . Consequently, the r-step reachability, considers the 

initial domain and find reachable states through only one reaction at a time, then through 

another single reaction and so on. The final domain of an 𝐹𝑆𝑃 algorithm will be the union of 

all the subset of states obtained at different times. For example, if we call 𝑅1
 (𝐽) be the index 

of these subsets then: 

            𝐗𝑅1 (𝐽)
 ← 𝐗𝐽

  ⋃  {𝑋 + 𝑣µ
  ∈  φ;  𝑋 ∈  𝐗𝐽

 }

𝑀

µ=1

 (12) 

 

For all reactions, 𝐗𝐽
  can be defined as 𝐗𝑅𝑀 (𝐽)

 = 𝐗𝑅1 (𝑅𝑀−1 (𝐽))
  and the steps in Table 2.1. The 

r-step reachability takes 𝐗𝐽
  (state-space), 𝑅𝑀

  (𝑀 number of reactions) and stoichiometric 𝑣µ
  

vectors as inputs. 
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Table 2.1. The r-step reachability steps. 

Step 0: Initialise Inputs: 𝐗𝐽
 , 𝑀, {𝑅1

 , 𝑅2
 , …… . . 𝑅𝑀

 }, 𝑣µ
  

Step 1: Begin with given 𝐗𝐽
  

Step 2: For 𝑹𝑴
  repeat: 𝐗𝐽′

 ← ⋃  {𝑋 + 𝑣µ
  ∈  φ;  𝑋 ∈  𝐗𝐽

 }𝑀
µ=1  

Step 3: update 𝐗𝐽
 ← 𝐗𝐽′

  and go back to step 1 

 Output: 𝐗𝐽
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The number of new states that are reachable from the present state-space may have low 

probabilities, so the addition of these states does not show a significant breakthrough in the 

approximation error. To address this problem (Munsky et al., 2007) suggested that instead of 

collecting all the states only into 𝐗𝐽
 , it is better to divide them among multiple sink states Ĝ1

 , 

Ĝ2
 ,…….Ĝ𝐽

  and then calculate the probabilities 𝑔(𝑡)= (𝑔(𝑡)(𝑋1
 ),………. 𝑔(𝑡)(𝑋

𝑆Ñ
 ))𝑇 of the 

states that escape to a particular sink state. The system then follows the 𝑂𝐷𝐸𝑠 such that 

[
�̇�(𝑡)

�̇�(𝑡)
] = [

𝐴𝑖,𝑗
 

𝑄
   
0

0
] [
𝑃(𝑡)

𝑔(𝑡)
] 

(13) 

 

where, 𝑄 = {
𝑎µ
 (𝑋), if (𝑋 + 𝑣µ

 ) ∉ 𝐗𝐽
 

0,          otherwise          
.  

Although this provides knowledge about which Ĝ𝐽
  leaks the high probability and direction of 

the high probability mass drops but, from Eq. (13), we can see that these 𝑂𝐷𝐸𝑠 do not 

improve the expansion and interpretation of state-space and approximation of �̇�(𝑡), instead 

they simply decompose the 𝐴 matrix into a sub-matrix. 

The original 𝐹𝑆𝑃 based on the r-step reachability state-space expansion put into practice in 

(Munsky et al., 2006) and (Dinh et al., 2016) provides a logical solution for biochemical 

systems that have finite numbers of explicit population vectors of the species. However, if a 

biochemical system has an infinite or a very large number of population variations, then 𝐹𝑆𝑃 

uses a truncation point to limit the r-step reachability state-space to approximate the solution 

of the CME, but, on other side, this has some drawbacks. When any system has a certain 

finite state, 𝐹𝑆𝑃 is computationally expensive for the finite numbers of steps and the 

truncation of states affects the solution. The 𝐹𝑆𝑃 and its variants Krylov-𝐹𝑆𝑃 (Burrage et al., 

2006), Krylov-𝐹𝑆𝑃-𝑆𝑆𝐴 (Dinh et al., 2017), 𝑂𝐹𝑆𝑃 (Sunkara et al., 2010), 𝐹𝑆𝑃 𝐺𝑂𝑅𝐷𝐸 

(Sunkara, 2013) are also based on r-step reachability; however, 𝑂𝐹𝑆𝑃 and 𝐹𝑆𝑃 𝐺𝑂𝑅𝐷𝐸 

come with a variation of usage of r-step reachability for state-space expansion. On other 

hand, Krylov-𝐹𝑆𝑃 and Krylov-𝐹𝑆𝑃-𝑆𝑆𝐴 are based on the Krylov subspace (Fallis et al., 

2012) focused approximation of the domain created by 𝐹𝑆𝑃 through r-step reachability. 

Krylov-𝐹𝑆𝑃-𝑆𝑆𝐴 also differs in terms of generating the trajectories of the simulation similar 

to a Stochastic Simulation Algorithm (𝑆𝑆𝐴) (discussed in section 2.3.2). The main focus of 

improvement in both of these algorithms was on the approximation part but not on the 

expansion part; therefore, we will not discuss them in detail, instead, we keep our focus on r-

step reachability expansion part improvements. 
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To support a priori, functions like Gated One Reaction Domain Expansion (𝐺𝑂𝑅𝐷𝐸) and 

likelihood methods (Dinh et al., 2017) were introduced to improve the r-step reachability 

expansion strategy; however, instead of improving the state-space after the calculation of the 

probability vector, 𝑃(𝑡), it evaluates the likelihood of reachable states by a function. The result 

is that r-step reachability explores the states in the direction of states having a high 

probability mass but does not improve the interpretation of the state-space. It has been 

reported that 𝐹𝑆𝑃 𝐺𝑂𝑅𝐷𝐸 removes the states with small probabilities before calculation of 

Eq. (9) which saves omputational time and performs faster than conventional 𝐹𝑆𝑃 r-step 

reachability. However, removing the probabilities before the calculation of Eq. (9) increases 

the step error and affects the accuracy of the final solution at 𝑡𝑓
 . If one is interested in solving 

stiff and/or large systems, this will greatly affect the solution. It is also noted that a variant 

called the Optimal Finite State Projection (𝑂𝐹𝑆𝑃) (Sunkara et al., 2010) based on r-step 

reachability performs better in terms of producing an optimal order of a domain and is 

computationally faster than 𝐹𝑆𝑃 as well as 𝐹𝑆𝑃 𝐺𝑂𝑅𝐷𝐸, as seen in section 5.3 of (Sunkara, 

2013) but all – 𝑂𝐹𝑆𝑃, 𝐹𝑆𝑃 and 𝐹𝑆𝑃 𝐺𝑂𝑅𝐷𝐸 have error of order of 10−4. The 𝑂𝐹𝑆𝑃 

emphasies problems that Sliding Windows (𝑆𝑊) (discussed in following section 2.3.2) and r-

step reachability attempt to solve – which is state-space expansion without removing any 

states or by truncating those states, which have low probabilities and makes 𝐴 matrix 

excessively large. In contrast, 𝑂𝐹𝑆𝑃 uses a compression technique (Sunkara et al., 2010) to 

truncate the domain by removing some of the states with low probabilities to achieve 

computational performance. 

We will demonstrate the biological numerical experiments in section 2.5 and later in Chapter 

5, we compare the most efficient version of r-step reachability expansion method, i.e. 𝑂𝐹𝑆𝑃 

with our methods on the basis of computational efficiency and accuracy of the domain 

formed. 
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2.3.2 Stochastic Simulation Methods 

To approximate the solution of the CME, stochastic simulation methods are widely used. The 

approximation can be achieved by formulating and computing the number of realisations 

using stochastic simulation methods. The deprivation of closed-form solution has driven 

systems biology research towards Monte-carlo Algorithms (𝑀𝐶) (Harrison et al., 2010) to 

capture the dynamics. One such algorithm is the Stochastic Simulation Algorithm (𝑆𝑆𝐴), 

which was originally introduced by Gillespie (Gillespie, 1977) to be used for processes in the 

CME to construct empirical distributions. There are state-space expansion methods that build 

upon stochastic simulation methods for creating a domain or a projection and one of them is 

Sliding Windows (𝑆𝑊). The 𝑆𝑊 introduced by Wolf (Wolf et al., 2010), is also a 𝐹𝑆𝑃 based 

method but employs 𝑆𝑆𝐴 for finding the domain, which proves to be better than 𝐹𝑆𝑃 and 

suitable for stiff problems. Although, 𝑆𝑆𝐴 is a solution method due to its employability in 𝑆𝑊 

for state-space expansion, we are discussing 𝑆𝑆𝐴 under this section but not under solution 

methods in section 2.4. 

The improvements suggested by (Gillespie, 2001) such as the 𝜏–leap method, has enabled 

computation of hundreds of stochastic simulation particles. Due to its popularity, 𝑆𝑆𝐴 has 

been further improved by many others (Cao et al., 2005; Haseltine et al., 2002; Tian et al., 

2004; Weinan et al., 2007) for different applications. The efficiency of the 𝑆𝑆𝐴 has been 

greatly enchanced by researchers through various schemes such as the adaptive 𝜏–leap (Cao et 

al., 2006; Padgett et al., 2016). The empirical distribution type approximation can be obtained 

by the number of realisations that are not associated with each other. When the approximation 

converges in the direction of the expectation of distribution (explicit) then it is said to be 

converging weakly; however, if the differences in the expectation of the approximation and 

distribution (explicit) tends towards zero, then it said to be strongly converging. Most of the 

methods are formulated to converge weakly because this is facile to attend and computational 

time can be improved (Cao et al., 2005; Haseltine et al., 2002; Weinan et al., 2007). 

The 𝜏–leap method is based on the assumption that all reactions have constant propensities 

and fire according to a poisson distribution in the largest chosen time step. To hold this 

assumption, chosing the right time step is a difficult part in 𝜏–leap. The realisations are 

computed in this time step and, based on poisson distribution sampling, the reactions fired in 

this time step are identified. Table 2.2 shows the steps of 𝑆𝑆𝐴 that have been employed in 𝑆𝑊 

for state-space expansion.  
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The 𝑆𝑆𝐴 takes 𝑥Ñ
  (number of different species), 𝑋0

  (vector of initial population of 

species), 𝑅𝑀
  (𝑀 number of reactions), 𝑡0

  (start time), 𝑡𝑓
  (final time), 𝑣µ

  (stoichiometric 

vectors), 𝑎µ
  (propensity functions) and 𝑋 (final time realised state) as inputs. 

 

Table 2.2. Step in the Stochastic Simulation Algorithm. 

Step 0: Initialise Inputs: 𝑋0
 , 𝑡0

 , 𝑥Ñ
 , 𝐗𝐽

 , {𝑅1
 , 𝑅2

 , …… . . 𝑅𝑀
 }, {𝑣1

 , 𝑣2
 , …… . . 𝑣µ

 }, 

{𝑎1
 , 𝑎2

 , …… . . 𝑎µ
 }, 𝑡𝑓

 , 𝑋 

Step 1: Begin with given 𝑋 ← 𝑋0
  and 𝑡 ← 𝑡0

  

Step 2: When 𝑡 < 𝑡𝑓
 , calculate 𝑎0

 ← ∑ 𝑎µ
 (𝑋)𝑀

µ=1  

Step 2a:    if 𝑎0
 == 0 then 𝑡 ← 𝑡𝑓

 ; break and end 

Step 2b:    Generate two random numbers using uniform random number (URN)   

   generator say 𝑛𝑢𝑚1
 , 𝑛𝑢𝑚2

  and calculate 𝜏 ←
1

𝑎0
 log (

1

𝑛𝑢𝑚1
 ) 

Step 2c:    if 𝑡 + 𝜏 > 𝑡𝑓
  then 𝑡 ← 𝑡𝑓

 , break and end 

Step 2d:    𝑡 ← 𝑡 + 𝜏 
Step 2e:    select 𝑀′ such that ∑ 𝑎𝑦

 (𝑋)𝑀′−1
µ=1 < 𝑎0

 . 𝑛𝑢𝑚2
 ≤ ∑ 𝑎µ

 (𝑋)𝑀
µ=𝑀′  

Step 2f:    𝑋 ← 𝑋 + 𝑣𝑀′
  

Step 2g: end 

Step 3: Output: 𝑋 

Step 4: Go back to step 1 
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In Step 2e, we denote the number of poisson process by the positive integer, 𝑦. The 𝜏–leaping 

is also popularly known as the Euler approximation of the jump process, which is given by 

            𝑋𝑥Ñ
  (𝑡) = 𝑋𝑥Ñ

  (0) +∑𝑌𝑦
 (∫ 𝑎𝑦

 (𝑋𝑥Ñ
  (Ñ))

𝑡

0

𝑑Ñ)

𝑀

𝑦=1

𝑣𝑦
  , (14) 

where, 𝑌𝑦
  is a poisson process given that 0 < 𝑦 ≤ 𝑀. Let 𝜏0

 = 0,………, 𝜏𝑙𝑝
 = 𝑡𝑓

  be (𝑙𝑝 +

1) values between the interval of [0, 𝑡𝑓
 ] given 𝑋𝑥Ñ

  (𝜏0
 ) = 𝑋0

 , the initial state of the 

biochemical system. Therefore, the 𝜏–leap realisation can be determined by: 

            �̇�𝑥Ñ
  (𝜏𝑙𝑝

 ) = �̇�𝑥Ñ
  (𝜏0

 ) +∑𝑌𝑦
 (∑ 𝑎𝑦

 (�̇�𝑥Ñ
  (𝜏𝑙𝑝′

 ))

𝑙𝑝−1

𝑙𝑝′=1

(𝜏𝑙𝑝′+1
 − 𝜏𝑙𝑝′

 ))

𝑀

𝑦=1

𝑣𝑦
 . 

(15) 

For a detailed description of 𝑆𝑆𝐴, refer to (Gillespie, 1977). The 𝑆𝑊 uses 𝑆𝑆𝐴 as a function 

to extract the number of samples at time 𝑡. The 𝑆𝑊 is more suitable for biochemical systems 

that have few reactions with high propensities compared to the rest of the reactions in the 

network. Due to this non-uniformity in the firing of reactions, the shape of the domain 

becomes rectangular in terms of one co-ordinate being the largest and the second being the 

smallest. This formation of the domain is constructively captured by the 𝑆𝑆𝐴 function when it 

follows the direction of reactions firing at high rates which forms this shape. The 𝑆𝑊 by 

(Wolf et al., 2010) also demonstrated that it has better computing efficiency compared to r-

step reachability when it comes to stiff systems. 

On other hand, it is not feasible to use 𝑆𝑊 for large CME problems either, as creating hyper-

rectangles is an unattainable task. At least four-times the number of 𝑆𝑆𝐴 simulations are 

required to minimise the error to half. This is because the convergence rates of routines in 𝑀𝐶 

are very slow. The original 𝑆𝑆𝐴 takes a long time since one simulation may have a number of 

different 𝑅𝑀
 . It is important to note that the number of simulations of 𝑆𝑆𝐴 should increase 

with the growing domain in order to avoid the truncation of modes when approximating the 

solution of the CME. Currently, there is no standard rule mentioned anywhere in the literature 

for selecting the number of simulations. When approximating the solution of the CME, 

sufficient amount of the time is invested in finding the right domain, which is to be solved for 

the approximation. To differentiate the distribution solution of the approximation of the Eq. 

(7) and the stochastic simulations, several 𝑆𝑆𝐴 realisations are required to build the 

distribution for the required error, and appropriate states are required in domain to produce the 

approximate distribution with a similar error. 
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Once 𝑆𝑊 captures the states via 𝑆𝑆𝐴, solution methods like the Krylov subspace and global 

uniformisation can be employed (Wolf et a., 2010). The Krylov subspace has speed-up factor 

of 1.5 times and; therefore, the computational time of the Krylov subspace is superior to the 

global uniformisation method. The proficiency of global uniformisation for non-stiff 

biochemical network systems is better compared to the Krylov subspace, which makes it 

suitable for stiff systems.  

Before we move on to biological examples, in section 2.4.1, we will discuss these solution 

methods in brief in the following section, section 2.4. 
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2.4 Existing Numerical Solution Methods 

In this section we will briefly discuss two numerical solution methods; namely, the 

Uniformization and the Krylov subspace methods that are widely employed by most CME 

approximation algorithms (Burrage et al., 2006; Dinh et al., 2017; Fallis et al., 2012; Wolf et 

al., 2010). Some existing numerical solution methods such as in Figure 2.4 are used to 

approximate the solution of Eq. (9). 

        

Figure 2.4. Types of numerical solution methods – Uniformisation and Krylov subspace 

methods. Each is categorised based on global and local solution. 

Both methods are used to approximate the global solution Eq. (9) of the CME, as well as the 

local solution, Eq. (17). The general solution of Eq. (7), is given by: 

         𝑃(𝑡𝑓
 ) = 𝑃(𝑡0

 ). 𝑒𝐴𝑡𝑓
 

. (16) 

 

In 𝑆𝑊, the implementation only considers the finite submatrix of 𝐴𝑗
  that contains entries of 

the states present in 𝑆𝑊 window 𝑊(𝑗), where 𝑗 ϵ {1,2…… 𝑗′} and is defined as 

�̇�(𝑡) = �̇�(𝑡𝑗−1
 ). 𝐷𝑗

 . 𝑒𝐴𝑗
 𝑡𝑗
 

, (17) 

where, 𝐷𝑗
  is the diagonal matrix whose diagonal entries are one. 

  

Uniformisation 

Krylov Subspace 

Global Uniformisation 

Local Uniformisation 

Global Krylov Subspace 

Local Krylov Subspace 

Numerical 
Solution 

Methods 
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2.4.1 Uniformisation Method 

The uniformisation defines the discrete-time Markov chain (CTMC) and a Poisson process 

(Wolf et al., 2010). The Poisson distribution with parameter 𝜆𝑡 is given by: 

𝑃𝑟
 =𝑒−𝜆𝑡

(𝜆𝑡)𝑦

𝑦!
,  

(18) 

 

where 𝑦 ≥ 1 and 𝜆𝑡 is the uniformisation rate. The solution of transient state probabilities in 

Eq. (16), can be rewritten as: 

𝑃(𝑡) = 𝑃(0)∑𝑒−𝜆𝑡
(𝜆𝑡)𝑦

𝑦!
 𝑃𝑦  ,

∞

𝑦=0

  
(19) 

=∑𝑒−𝜆𝑡
(𝜆𝑡)𝑦

𝑘!
 𝑊𝑦 

∞

𝑦=0

 
(20) 

 

𝑊𝑦 can be computed inductively by 𝑊(0) = 𝑃(0),𝑊(𝑗) = 𝑊(𝑗−1)𝑃. If P is sparse, 𝑊𝑦 can 

be calculated even if the size of the state-space is large. The upper and lower summation 

bounds can be determined such that for each 𝑋 the error, 

𝑃(𝑡)(𝑋) −∑𝑒−𝜆𝑡
(𝜆𝑡)𝑦

𝑦!
 𝑊𝑦(𝑋)

𝑈

𝑦=𝐿

 =  ∑ 𝑒−𝜆𝑡
(𝜆𝑡)𝑦

𝑦!
 𝑊𝑦(𝑋) 

 

0≤𝑦˂𝐿,
𝑈˂𝑦˂∞

 (21) 

                                                ≤ ∑ 𝑒−𝜆𝑡
(𝜆𝑡)𝑦

𝑦!
  

 

0≤𝑦˂𝐿,
𝑈˂𝑦˂∞

 
 

where, 𝑋 is any state, 𝑈 is the upper summation bound, 𝐿 is the lower summation bound. 

Thus, 𝑃(𝑡) can be approximated with arbitrary accuracy by 

𝑃(𝑡) ≈∑𝑒−𝜆𝑡
(𝜆𝑡)𝑦

𝑦!
 𝑊(𝑦) 

𝑈

𝑦=𝐿

 (22) 

 

as long as the required number of summands is not extremely large. 

When uniformisation method is combined with the 𝑆𝑊 method it is called as local 

uniformisation. We invoke uniformisation method to approximate Eq. (17). 𝑃𝑗
 = 𝐼 +

1

𝜆𝑗
 𝐴𝑗
  is a 
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substochastic transition matrix and uniformization rate 𝜆𝑗
 = max

𝑋𝜖𝑊(𝑦)
 𝜆𝑋

 . By using the 

similar calculations as in Eq. (22), we get a substochastic vector, where: 

        𝑃(𝑡𝑗
 ) = 𝑃(𝑡𝑗−1

 )𝐷𝑗
 ∑𝑒−𝜆𝑗

 𝑡𝑗
 (𝜆𝑗

 𝑡𝑗
 )𝑦

𝑦!
  

𝑈

𝑦=𝐿

𝑃𝑗
𝑦

 (23) 

= ∑𝑒−𝜆𝑗
 𝑡𝑗
 (𝜆𝑗

 𝑡𝑗
 )𝑦

𝑦!
  

𝑈

𝑦=𝐿

𝑃𝑗
𝑦

 (24) 

 

L and U are the truncation points depending on uniformisation rate and 𝑊′𝑗
(𝑦)
=

 �̇�(𝑡𝑗−1
 ). 𝐷𝑗

 . 𝑃𝑗
𝑦

. In 𝑆𝑊, local uniformisation computation time is saved compared to global 

uniformisation, if computational complexity ∑ ⱴ𝑗
 𝜆𝑗
 𝑡𝑗
 ≪ ⱴ𝜆𝑡 

𝑗′

𝑗=1 , where 𝜆 = sup𝑋 𝑆
 𝜆𝑋

  and ⱴ𝑗
  

is the number of nonzero elements in 𝑃𝑗
 . 
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2.4.2 Krylov Subspace 

As discussed in section 2.2, the expansion of states results in repeatedly increase in the size of 

the 𝐴 matrix, which makes computing of the matrix exponential expensive with time. When 

the projection size increases with states having low probabilities then it wastes the 

computation; whereas, if the projection size is not sufficient to achieve good acurracy of the 

solution, then the whole process is repeated up to the desired time, 𝑡𝑓
 . The process of state-

space expansion and computing the matrix exponential can be done simultaneously. This is 

one of the improvements made by (Burrage et al., 2006) to 𝐹𝑆𝑃 approximation by employing 

the Krylov subspace method. 

We know that the global of solution of the CME is given by Eq. (7). Following this, we 

determine the approximation of 𝑒(𝑡𝐴)𝑣, where 𝑣 is a column vector of a length equal to the 

number of different species present in the system and 𝐴 is the square matrix. The 

approximation can be obtained by selecting 𝑣 = (𝑃(0))𝑇 and the large sparse matrix to be 

converted into a small matrix. The dimension, 𝑑𝑖𝑚, of the sub-matrix is usually small (for 

example in 𝑆𝑊, 𝑑𝑖𝑚 = 20 or 30 is usually chosen), which can be changed dynamically with 

the expansion. Therefore, the basis of the Krylov subspace is defined as: 

𝑆𝑝𝑎𝑛{𝑣, 𝐴𝑣,……𝐴(𝑑𝑖𝑚−1)𝑣}, (25) 

 

and approximate the solution for 𝑒(𝑡𝐴)𝑣 from this subspace. Working straight with this 

subspace is unsteady; therefore, an orthonormal basis {𝑣1
 , 𝑣2

 , ……𝑣𝑑𝑖𝑚
 } is established for the 

subspace by the application of the Arnoldi method (Burrage et al., 2006) to 

𝑣, 𝐴𝑣,……𝐴(𝑑𝑖𝑚−1)𝑣. If �̅�𝑑𝑖𝑚
  is the upper matrix (Hessenberg Matrix) solved by the Arnoldi 

method and ℎ̅𝑑𝑖𝑚+1,𝑑𝑖𝑚
  be the value of normalisation then: 

𝐴𝑉𝑑𝑖𝑚
 = 𝑉𝑑𝑖𝑚

 �̅�𝑑𝑖𝑚
 + (ℎ̅𝑑𝑖𝑚+1,𝑑𝑖𝑚

 )(𝑣𝑑𝑖𝑚+1
 )(𝑒𝑑𝑖𝑚

𝑇 ) (26) 

                  𝑉𝑑𝑖𝑚
𝑇 𝐴𝑉𝑑𝑖𝑚

 = �̅�𝑑𝑖𝑚
  (27) 

 

If 𝑒(𝑡𝐴)𝑣 is to be approximated for 𝑡 > 0, then the approximation error is controlled by 

calculating it in a step-wise manner such that 𝑒(𝑡𝑠𝑡𝑒𝑝(1)
 +𝑡𝑠𝑡𝑒𝑝(2)

 )𝐴𝑣 = 𝑒(𝑡𝑠𝑡𝑒𝑝(1)
 )𝐴. 𝑒(𝑡𝑠𝑡𝑒𝑝(2)

 )𝐴𝑣 

for 𝑡𝑠𝑡𝑒𝑝(1)
 , 𝑡𝑠𝑡𝑒𝑝(2)

 ≥ 0. For step 𝑡𝑠𝑡𝑒𝑝
 , if 𝛽 is the 2nd-norm of 𝑣 then approximation of 𝑒(𝑡𝐴)𝑣 

is given by 

             𝛽�̅�𝑑𝑖𝑚+1
 𝑒𝑥𝑝(𝑡𝑠𝑡𝑒𝑝

  𝐻𝑑𝑖𝑚+1
 ) 𝑒1

  (28) 
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where, 𝑒1
  is the first unit basis vector. The squaring and scaling of 𝑒𝑥𝑝(𝑡𝑠𝑡𝑒𝑝

  �̅�𝑑𝑖𝑚+1
 ) is 

computed using pade approximation (Moler et al., 2003). 

In following section, section 2.5, we discuss some examples based on the biological models 

for which the CME has been applied. 
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2.5 Biological Examples 

We discuss some numerical examples of the exisitng algorithms that have been applied to 

biochemical systems to solve for the CME solution. Every example illustrates ways about 

how probabilities of the species evolve over time; however, a key problem domain still 

remains in finding the optimum support for the efficient solution of the CME. 

Example 1: Solving T-cell homoeostasis (two participating clono-types species) for the CME 

solution using r-step reachability for the expansion and 𝐹𝑆𝑃 for the approximation. 

It is a network of four reactions defined by: 

             𝑹𝟏
 :  ⋆

 
→𝐴 𝑎1

 ([𝐴], [𝐵]) =
60[𝐴] ∗ 0.5

([𝐴] + [𝐵])
+
60[𝐴] ∗ 0.5

([𝐴] + 1000)
 

             𝑹𝟐
 :  𝐴

 
→ ⋆ 𝑎2

 ([𝐴], [𝐵]) = [𝐴] 

             𝑹𝟑
 :  ⋆

 
→𝐴 𝑎3

 ([𝐴], [𝐵]) =
60[𝐵] ∗ 0.5

([𝐴] + [𝐵])
+
60[𝐵] ∗ 0.5

([𝐵] + 1000)
 

             𝑹𝟒
 :  𝐵

 
→ ⋆ 𝑎4

 ([𝐴], [𝐵]) = [𝐵] 

 

with initial copy counts of 𝐴0
 = 20, 𝐵0

 = 20 and the reaction propensities are unusual, as 

they are time dependent. These species counts are used as a state-space to define the system. 

The r-step reachability is applied and the 𝐹𝑆𝑃 method is then used to find the solution of the 

CME upto 𝑡𝑓
 = 10 secs. Figs (A) to (F) in Figure 2.5 show the probability distributions at 

different time points. It is also seen in the Fig (F) of Figure 2.5, that it divides into non-

convergent subsets. 

      

         Fig (A). Joint Probability at 𝒕 = 0 sec               Fig (B). Joint Probability at 𝒕 = 1 sec 
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          Fig (C). Joint Probability at 𝒕 = 3 sec              Fig (D). Joint Probability at 𝒕 = 5 sec 

 

      

       Fig (E). Joint Probability at 𝒕 = 6 sec              Fig (F). Joint Probability at 𝒕 = 10 sec 

 

Figure 2.5. CME solution of T-cell homoeostasis at different times (0, 1, 3, 5, 6, 10 secs) 

with 𝑨 (y-axis) and 𝑩 (x-axis). The significant part of the probability mass is initially 

located at t=0 sec as given in Fig (A), then shifted further, as given in Fig (F) at t=10 secs. 
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Example 2: Solving a gene expression model involving m𝑅𝑁𝐴 and protein to: (a) generate 

𝑆𝑆𝐴 realisations, and (b) for the CME solution using r-step reachability for expansion and 

𝐹𝑆𝑃 for approximation. 

It is a network of four reactions defined by 

      𝑹𝟏
 :  ⋆

𝑘1
 

→m𝑅𝑁𝐴 𝑎1
 ([m𝑅𝑁𝐴], [𝑃𝑟𝑜𝑡𝑒𝑖𝑛]) = 𝑘1

 (1 + 𝑘𝑓𝑑
 [𝑃𝑟𝑜𝑡𝑒𝑖𝑛]) 

   𝑹𝟐
 :  m𝑅𝑁𝐴

𝑘2
 

→m𝑅𝑁𝐴 + 𝑃𝑟𝑜𝑡𝑒𝑖𝑛 
𝑎2
 ([m𝑅𝑁𝐴], [𝑃𝑟𝑜𝑡𝑒𝑖𝑛]) = 𝑘2

 ([m𝑅𝑁𝐴]) 

      𝑹𝟑
 :  m𝑅𝑁𝐴

𝑘3
 

→ ⋆ 
𝑎3
 ([m𝑅𝑁𝐴], [𝑃𝑟𝑜𝑡𝑒𝑖𝑛]) = 𝑘3

 ([m𝑅𝑁𝐴]) 

      𝑹𝟒
 :  𝑃𝑟𝑜𝑡𝑒𝑖𝑛

𝑘4
 

→ ⋆ 
𝑎4
 ([m𝑅𝑁𝐴], [𝑃𝑟𝑜𝑡𝑒𝑖𝑛]) = 𝑘4

 ([𝑃𝑟𝑜𝑡𝑒𝑖𝑛]) 

 

which represents the transcription, translation and degradation of m𝑅𝑁𝐴 and protein. The 

state of the system is defined by the (m𝑅𝑁𝐴, 𝑃𝑟𝑜𝑡𝑒𝑖𝑛). Where, 𝑘𝑓𝑑
 = 0 is the negative 

feedback value, 𝑘1
 = 0.1, 𝑘2

 = 0.1, 𝑘3
 = 0.1, 𝑘4

 = 0.002 and the initial point density is 

assumed to be (0,0). The 𝑆𝑆𝐴 is applied to generate the realisation upto 𝑡𝑓
 = 2000 secs as 

shown in Fig (A) and (B) of Figure 2.6 and, simulatenously, r-step reachability is also applied 

with 𝐹𝑆𝑃 method to find the solution of the CME at 𝑡𝑓
 = 2000 secs.  
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Fig (A). SSA trajectory of 𝐦𝑹𝑵𝑨 upto 𝒕𝒇
 = 2000 secs 

 

 

 

Fig (B). SSA trajectory of protein upto 𝒕𝒇
 = 2000 secs 

Figure 2.6. SSA trajectories of 𝐦𝑹𝑵𝑨 and protein of a gene expression model upto 𝒕𝒇
 = 

2000 secs. 
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Fig (A) of  Figure 2.7 is the joint probability distribution of the species (m𝑅𝑁𝐴 and protein); 

whereas, Fig (B) of Figure 2.7 shows the stochastic versus deterministic response at 𝑡𝑓
 . The 

conditional probability of the species (m𝑅𝑁𝐴 and protein) in Fig (C) and Fig (D) of  Figure 

2.7 determine that protein attain high probability at 𝑡𝑓
  as compared to m𝑅𝑁𝐴, when number 

of molecular counts of protein is between 40 and 50.  
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  Fig (A). Joint probability distribution at 𝒕𝒇
    Fig (B). Stochastic vs Deterministic upto 𝒕𝒇

  

 

 

 Fig (C). Probability distribution of 𝐦𝑹𝑵𝑨     Fig (D). Probability distribution of protein 

 

Figure 2.7. Probability distribution of species of gene expression model at 𝒕𝒇
 = 2000 secs. 

Fig (A) is the joint probability distribution of the species, Fig (B) is the stochastic versus 

deterministic response, Fig (C) and Fig (D) are the conditional probabilities of 𝐦𝑹𝑵𝑨 and 

protein respectively. 

  



64 

 

Example 3: Solving Michaelis Menten reaction system for the CME solution using the 𝑂𝐹𝑆𝑃 

algorithm. 

It is a network of three reactions defined by 

             𝑹𝟏
 :  𝑆 + 𝐸

𝑘1
 

→ 𝐶  𝑎1
 ([𝑆], [𝐸], [𝐶], [𝑃]) = 𝑘1

 
([𝑆], [𝐸]) 

             𝑹𝟐
 :  𝐶

𝑘2
 

→ 𝑆 + 𝐸 𝑎2
 ([𝑆], [𝐸], [𝐶], [𝑃]) = 𝑘2

 
([𝐶]) 

             𝑹𝟑
 :  𝐶

𝑘3
 

→ 𝑃 + 𝐸 𝑎3
 ([𝑆], [𝐸], [𝐶], [𝑃]) = 𝑘3

 
([𝐶]) 

 

with initial copy counts 𝑆0
 = 50, 𝐶0

 = 0, 𝑃0
 = 0, 𝐸0

 = 10, and reaction rate parameters 𝑘1
 = 

0.01, 𝑘2
 = 35, 𝑘3

 = 30. In this biochemical system, substrate 𝑆 will transform into product 𝑃 

via complex 𝐶 when enzyme 𝐸 acts as a catalyst for the reaction. The r-step reachability is 

applied and the 𝑂𝐹𝑆𝑃 method is used to find the solution of the CME upto 𝑡𝑓
 = 10 secs, with 

time step 0.1 and compression window of 1. Figs (A) to (D) in Figure 2.8 show the 

probability distribution of species at 𝑡𝑓
 = 10.0 sec. 

𝑂𝐹𝑆𝑃 explore 338 states at the end of 𝑡𝑓
 . The response of 𝑂𝐹𝑆𝑃 in Figure 2.9 show that, the 

copy counts of 𝑆 continuously decrease over time due to 𝑅1
  resulting in transformation into 

product 𝑃, which increase its copy counts; whereas, enzyme 𝐸 remains constant.  
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       Fig (A). Probability of species 𝑺 over 𝒕𝒇
          Fig (B). Probability of species 𝑬 over 𝒕𝒇

  

 

       Fig (C). Probability of species 𝑪 over 𝒕𝒇
          Fig (D). Probability of species 𝑷 over 𝒕𝒇

  

Figure 2.8. Conditional probability of the Michaelis Menten reaction system species 

evaluated at 𝒕𝒇
 = 𝟏𝟎. 𝟎 sec, using 𝑶𝑭𝑺𝑷. 

 

 

Figure 2.9. Change in molecular counts of the species of Michaelis Menten reaction system 

over 𝒕𝒇
 . 
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2.6 Discussion and Conclusions 

In this chapter, we first discussed the types of stochastic processes, particularly the Markov 

process, which is an homogeneous nonstationary process, that helps in understanding the 

stochastic behaviour of the biochemical reaction network and how it is affected by the time 

shift. To understand this time evolution behaviour of a system, the chemical master equation 

(CME) is used which is an oridinary differential equation (ODE) given by Eq. (6). Usually, 

the Eq. (7) vector form is used to approximate the solution of the CME; however, when the 

dimension of the system is large, then the size of 𝐴 matrix becomes large with time and this 

makes the numerical solution of the CME computationally expensive. Broadly, the solution to 

the CME is a combination of: (a) a state-space expansion followed by (b) an approximation of 

Eq. (7). This study focused on developing a state-space expansion method to create the 

optimum domain to improve the computational efficiency as well as the solution of the CME. 

There are several state-space expansion methods that have been developed such as the r-step 

reachability and 𝑆𝑆𝐴 (used for expansion by a sliding windows algorithm), as discussed in 

section 2.3. The r-step reachability has been developed for the 𝐹𝑆𝑃 approach to create the 

projection for the approximation; whereas, 𝑆𝑆𝐴, also called as Gillespie’s algorithm, was 

originally developed to generate stochastic simulations and comes under numerical solution 

methods. The 𝑆𝑊 algorithm is a 𝐹𝑆𝑃 based algorithm that uses 𝑆𝑆𝐴 for expansion of state-

space. In section 2.3, we discussed about the variants of these algorithms (such as Krylov-

𝐹𝑆𝑃, Krylov-𝐹𝑆𝑃-𝑆𝑆𝐴, 𝑂𝐹𝑆𝑃, 𝐹𝑆𝑃 𝐺𝑂𝑅𝐷𝐸 etc) that have been introduced to the literature 

over recent years. Most of these variants uses the r-step reachability method to expand the 

state-space with some variations introduced in 𝑂𝐹𝑆𝑃 (with compression), 𝐺𝑂𝑅𝐷𝐸 (weightage 

function for 𝐹𝑆𝑃) and, based on the literature, 𝑂𝐹𝑆𝑃 was proved to be most efficient among 

all other variants of expansion methods based on r-step reachability. 

On other hand, we have also briefly discussed the existing numerical solution methods (such 

as the Uniformisation method and the Krylov subspace method) in section 2.4 which are 

commonly employed to approximate the solution of the CME once the domain is formed. In 

section 2.5, through biological examples, we have seen how the probabilities of the species 

evolves with time. Example 1 of T-cell homoeostasis is based on r-step reachability for 

expansion and 𝐹𝑆𝑃 for approximation, Example 2 of the gene expression model is based on: 

(a) generating 𝑆𝑆𝐴 realisations; and (b) the solution of the CME using r-step reachability for 

expansion and 𝐹𝑆𝑃 for approximation, Example 3 of the Michaelis Menten reaction system is 

based on the 𝑂𝐹𝑆𝑃 method, which uses r-step reachability for an expansion with compression 
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and 𝐹𝑆𝑃 for approximation. 

Based on our literature discussion (see section 2.3, 2.4, 2.5) it is evident that CME has been 

employed and solved explicitly for relatively small biological systems, while computationally 

complaisant but accurate solutions are still unknown for most significant systems and also for 

large systems having infinite states. In addition, the 𝐹𝑆𝑃 (or more concretely r-step 

reachability) performance is better than 𝑆𝑆𝐴 in terms of computational efficiency and 

accuracy. Further, this is also due to the small numbers of population of species in these 

examples, where 𝐹𝑆𝑃 outperforms the 𝑆𝑆𝐴 or 𝜏 leaping method as it is based on the support 

size but not on realisations. It is also noted that 𝑂𝐹𝑆𝑃 is one of the most computionally 

efficient and optimum domain creation algorithm present in the literature. On the other hand, 

𝑆𝑆𝐴 employed in 𝑆𝑊 proved to be efficient for stiff problems compared to 𝐹𝑆𝑃 (r-step 

reachability for expansion). Therefore, we will compare the performance of 𝑂𝐹𝑆𝑃 and 𝑆𝑆𝐴 (𝜏 

leaps adaptive) with our methods in terms of finding the domain, accuracy and computational 

efficiency. In such cases, a crucial part of solving the CME remains in finding the right 

projection size (domain) for large models, which would then make the approximation 

efficient. 
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In this chapter we use the concept of a Markov chain and its process applications set out in 

Chapters 1 and 2 to define the stochastic process and broadly frame its fundamentals for our 

methods. Such processes associated with Markov chains are most important in biochemical 

networks for solving the CME. This chapter also introduces the key functions and theory that 

are used to describe these processes as Markov chain trees and graphs as well as deriving 

some conditions that must be followed by the functions. We quickly discovered that the state-

space problem can be simplified by characterisation of a Markov chain that requires the form 

what is called as graphs that adheres to the Markov chain tree properties. In this chapter we 

also show, how a Markov chain tree can be used to visualise stochastic processes, and we 

define that phenomenon fully as we can without following ourselves to the exact form of a 

Markov chain. 

In this chapter, in section 3.1, we first give an overview of Markov chains, and the important 

definitions and preliminaries associated with the events in the Markov chain processes. In 

section 3.2, we discuss the finite state Markov chains to create a sample space for searching. 

We also discuss the classification of the states in Markov chains that relate to the type of 

reactions. In section 3.3, we set the standards to visualise the Markov chain as a Markov chain 

graph or tree (a special type of graph). In section 3.4, we define the problem state-space 

model for biochemical reaction networks where the searching is to be done. Section 3.5, 

discusses the adoptation of 𝐴𝐼 search standards for states space expansion. Based on the 

standards we define the data structure that includes important elements required for efficient 

searches and a detailed visualisation of the state-space. To enforce the expansion towards a 

high probability mass we will develop a function based on Bayes’ theorem to support the 

expansion strategy. Section 3.6, provides important definitions for algorithm’s time and space 

complexity analysis. Lastly, in section 3.7, we give a brief discussion and conclusions of this 

chapter. 
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3.1 Introduction 

The behaviour of a biochemical system is often represented by describing the occupancy of 

different states and indicating how the system stays and moves between these states over time. 

A biochemical system is represented by a Markov process if the time spent by the system in 

any state is distributed exponentially. In particular, if the biochemical system does not have an 

exponential distritbution then it is possible to invoke the relevant representation implicitly. 

Because of this, the Markov process is used extensively for biochemical systems. 

Large biochemical systems possibly have infinite set of states associated with the Markov 

process, and this is assumed to occupy a single state at any moment of time. Once the system 

leaves the initial state, the new state becomes the initial state for future states. These 

transitions between the states in the Markov process define the evolution of the system. These 

transitions are instantaneous and consume zero time when moving from one state to another. 

If any biochemical system posseses this Markov property it is referred to as a Markovian 

system whose future evolution is based only on the present state and not on the past states. 

The information we are interested to draw from the biochemical system is the knowledge of 

the probabilities about remaining in the current state at a certain time after the system 

becomes active and jumps to a new state. Often the influence of the given initial state is 

erased as the time taken to remain in any particular state is sufficiently more. Another interest 

is the time taken to reach a certain state for the first time. 

For example, consider the response of a butterfly who flies from one flower to another, where 

all the flowers constitute the state of the system. This shift of the butterfly depends only on 

what information can be deduced from the current flower (state) as it has no memory to recall 

about previous states visited before the present state, nor the length of time spent on previous 

and present state. The time spent in the air while flying is negligible compared to the time 

spent stitting on flowers (state), which justifies the assumption of instantaneous transitions. If 

one flower is not a regular flower but one of those who eats flies, then we would be interested 

in knowing for how long the butterfly can survive before being devoured by the flower. 

In the theory of Markov chains, the subject of the tree indexed processes associated with its 

graphs did not exist before. The walk from the initial state to the new state and its stochastic 

processes are interesting problems and the results are usually represented in terms of the 

sample space and the paths between nodes in the graph. Contemporary, the aim of the study 

of walks on graphs to see the characteristics of the corresponding biochemical systems are 

reflected when the sample space is explored as the state changes. Typically, if the graph is 



70 

 

associated with a large biochemical system then the ordinary walk will be transitory and the 

sample space will only contain a tiny part of the states. As a result, the probablistic 

classification of the expander returns the probabilities involved with a low probability mass 

and rates of mixing, rather than the behaviour of the sample path. Here, associated tree 

indexed walks defines the processes by providing a sample paths in space that are sufficient to 

reflect most of the probabilities of a large graph while maintaining the Markov property of the 

processes. 

3.1.1 Definitions and Preliminaries 

In this section, we will provide some definitions and the preliminaries required to understand 

the concepts of graphs, probability mapping and associated events. We also define the 

building blocks of the stochastic processes of any biochemical system in which the Markov 

process is crucial. 

Principles of True events. Given φ is the sample space of any biochemical system, then 

class φ′ ⊂ φ contains all the events satisfying the following principles: 

1. φ is considered to be a system of events. 

2. For every event Έ1
 , Έ2

 …., sequence, the union ∪𝑦
  of all the events, Έ𝑦

 , is an event. 

3. Complement Έ𝑐 is an event for every Έ𝑦
 . 

then φ is called as Έ𝑦
  space of a biochemical system, where 𝑦 is a real positive integer. 

Principles of Probability in sample space. Given that φ is the sample space of any 

biochemical system and φ′ be any class of the event space, the probability function 𝑃(𝑡) maps 

each Έ𝑦
 ∈ φ′ to a finite number such that the following probability conditions match: 

1. 𝑃(𝑡)(φ) = 1 

2. 𝑃(𝑡)(Έ𝑦
 ) ≥ 0, for every Έ𝑦

 . 

3. Summation of individual probabilities of uncommon events are given by the 

probability of union of any Έ1
 , Έ2

 …., sequence 
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 𝑃(𝑡)(∪𝑦=1
∞ Έ𝑦

 ) = ∑𝑃(𝑡)(Έ𝑦
 )

∞

𝑦=1

 (29) 

defines the mapping of the sequence of events with the probability function, so we can now 

describe the random variable, which is an important concept in our study. 

Definition 3.1. Random variables are real value functions that convert the sample space of a 

biochemical system to a probability space; thus, it has possible outcomes from the sample space 

only if the probability distribution is properly defined. A stochastic process has an infinite group 

of random variables and such random processes in biochemical systems are usually indexed by 

time, so that each sample in the space gives rise to the path when each sample point maps to 

the real value functions and these paths vary with continuous time in Markov chains. In the 

following sections we will work with the Markov processes that are associated with continuous 

time Markov chain (CTMC) and discrete states. 
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3.2 Finite state Markov Chains as sample space 

In a finite state Markov chain, if the process changes its state at any moment in time and, if 

the states of a Markov process are discrete, then this type of stochastic process is a 

continuous-time Markov chain (CTMC).  

At every 𝑡 ≥ 0, the random variable 𝑋(𝑡) is the state at 𝑡 and the collection of these random 

variables forms CTMC, where {𝑋(𝑡); 𝑡 ≥ 0}. These continuous time processes consist of 

experimental probabilities 𝑃(𝑡)(𝑋) that are defined on φ and the set of functions assigning 

time function in φ for each outcome. In addition to these processes, the Markov chain strictly 

follows the Markov property as: 

Definition 3.2. A continuous time process {𝑋(𝑡); 𝑡 ≥ 0} is the property through which the 

values of variables, such as {𝑋(𝑡); 𝑡 ≥ 1}, stay in the finite set X𝐽
  and depend on the recent 

variable, 𝑋(𝑡 − 1). For all 𝑡 and {𝑖, …… 𝑖′} in 𝐗𝑱
 , 

 𝑃(𝑋𝑖′
 (𝑡) | 𝑋𝑖

 (𝑡 − 1) ; 𝑋(𝑡 − 2),……𝑋0
 ) = 𝑃(𝑋𝑖′

 (𝑡) | 𝑋𝑖
 (𝑡 − 1)). (30) 

Definition 3.3. A property of a Markov chain that is a continuous time process {𝑋(𝑡); 𝑡 ≥ 0} 

and is homogeneous for 0 < 𝑡1
 <.…… < 𝑡𝑦

 , and {𝑖0
 , 𝑖1

 , …… 𝑖𝑦
 } ∈ φ, 

𝑃(𝑋𝑖0 
 (0), 𝑋𝑖1 

 (𝑡1
 ), 𝑋𝑖𝑦 

 (𝑡𝑦
 )) = 𝜋(𝑖0

 )𝑃𝑖0 ,𝑖1 
 (𝑡1

 )𝑃𝑖1 ,𝑖2 
 (𝑡2

 − 𝑡1
 )……… 𝑃𝑖𝑦−1 ,𝑖𝑦

 
 (𝑡𝑦

 − 𝑡𝑦−1
 ) (31) 

Eq. (31) clearly shows that the distribution of CTHMC (homogeneous CTMC) is governed by 

the initial distribution 

                                                      𝜋(𝑖0
 ) = 𝑃(𝑋𝑖0 

 (0))         𝑖 ∈ φ 

and its transition probabilities depend on {𝑖0
 , 𝑖1

 ,….. 𝑖𝑛
 }  

𝑃(𝑡) = [𝑃𝑖,𝑖′
 (𝑡)]𝑖,𝑖′∈φ

  

where 𝑃(0) = 𝐼 or 𝐼𝑡 is the identity matrix. We note that for all 𝑠 > 0 

 𝑃(𝑋𝑖′
 (𝑡) | 𝑋𝑖

 (𝑡 − 1)) = 𝑃𝑖→𝑖′
  𝑜𝑟 𝑃𝑖,𝑖′

 = 𝑃(𝑋𝑖′
 (𝑡 + 𝑠) | 𝑋𝑖

 (𝑠)) (32) 

The transitional probabilities depend on the difference of 𝑡, 𝑠 and 𝑡 + 𝑠 but not on the actual 

times (𝑠, 𝑡 + 𝑠) that are responsible for the homogeneity in the Markov chains. We can see 

that Eq (32) equals to 
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𝑃{𝑋𝑖′
 (𝑡𝑦+1

 ) | 𝑋𝑖0 
 (0), 𝑋𝑖1 

 (𝑡1
 )………𝑋𝑖

 (𝑡𝑦
 )} = 𝑃{𝑋𝑖′

 (𝑡𝑦+1
 ) | 𝑋𝑖

 (𝑡𝑦
 )} = 𝑃𝑖,𝑗

 (𝑡𝑦+1
 −

𝑡𝑦
 ) 

(33) 

Therefore, CTMC has a Markov property alike DTMC (Discrete Time Markov Chain). 

Theorem 3.1. The Chapman-Kolmogorov (CK) equations for any 𝑠 ≤ 𝑠′ ≤ 𝑡 can be obtained 

through Markov property and are given by 

 𝑃𝑖,𝑖′
 (𝑠, 𝑡) = ∑ 𝑃𝑖,𝑘

 (𝑠, 𝑡)

𝑎𝑙𝑙 𝑘

𝑃𝑘,𝑗
 (𝑠′, 𝑡) (34) 

for all 𝑖, 𝑖′ = 0,1,……,. While going from state 𝑋𝑖
  at, 𝑠, to 𝑋𝑖′

  at 𝑡, it goes through transit 

state, 𝑋𝑘
 , at transit time, 𝑠′. In this case of CTHMC CK becomes 

 𝑃𝑖,𝑖′
 (𝛼) = ∑ 𝑃𝑖,𝑘

 (𝛼 − 𝛼′)

𝑎𝑙𝑙 𝑘

𝑃𝑘,𝑗
 (𝛼) (35) 

for 0 ≤ 𝛼′ ≤ 𝛼. If, 

            𝑃𝑖,𝑖′
 (𝑡 + 𝜕𝑡) − 𝑃𝑖,𝑖′

 (𝑡) = ∑ {𝑃𝑖,𝑘
 (𝑡 + 𝜕𝑡 − 𝛼) − 𝑃𝑖,𝑘

 (𝑡 − 𝛼)}𝑎𝑙𝑙 𝑘 𝑃𝑘,𝑖′
 (𝛼) (36) 

Dividing both sides of Eq. (36) by 𝜕𝑡 while taking 𝜕𝑡 ⟶ 0, 𝛼 ⟶ 𝑡 we get 

 
𝜕𝑃𝑖,𝑖′

 (𝑡)

𝜕𝑡
= ∑ 𝑄𝑖,𝑘

 (𝑡)𝑃𝑖,𝑘
 (𝑡)

𝑎𝑙𝑙 𝑘

 (37) 

Eq. (37) is also known as the Kolmogorov backward equation for all 𝑖, 𝑖′ = 0,1,……,. and in 

the matrix form it is 

 
𝜕𝑃(𝑡)

𝜕𝑡
= 𝑄(𝑡)𝑃(𝑡). (38) 

Similarly, the Kolmogorov forward equation for all 𝑖, 𝑖′ = 0,1,……,. can be deduced as 

 
𝜕𝑃𝑖,𝑖′

 (𝑡)

𝜕𝑡
= ∑ 𝑄𝑘,𝑖′

 (𝑡)𝑃𝑖,𝑘
 (𝑡)

𝑎𝑙𝑙 𝑘

 (39) 

and the matrix form is, 

 
𝜕𝑃(𝑡)

𝜕𝑡
= 𝑃(𝑡)𝑄(𝑡). (40) 
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3.2.1 Sample Space for Biochemical Systems 

For biochemical networks, we define the graphical representation of (A) in Figure 3.1 as a 

collection of states with arcs or straight lines as transitions to denote the reaction propensity 

values or transition probability. Each graph carries at least two states of the system and has a 

transition probability, as shown in (B) in Figure 3.1. 

                  

                         (A) Graphical                                                 (B) Matrix 

Figure 3.1. Representation of Markov chain with six states and a transition matrix [𝑷]. 

The transition or arc between state 𝑋𝑖
  and state, 𝑋𝑖+1

 , is ignored if 𝑃𝑖,𝑖+1
 = 0, otherwise the 

values between all other states are represented as transition matrix [𝑃] called a stochastic matrix 

or [𝐴𝑖,𝑗
  ] if the propensity values are considered and satisfy following conditions: 

𝑃 = {

 𝑃𝑖,𝑗
 ≥ 0 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖 𝑎𝑛𝑑 𝑗,                                            

∑ 𝑗, 𝑃𝑖,𝑗
 

𝑎𝑙𝑙
= 1 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖,                                         

At least one non zero element in each column.

 

Condition 1, implies that all 𝑃𝑖,𝑗
  values form non-negative matrix and the stochastic matrix is a 

subset of them. Condition 2, implies a guaranteed transition to at least one state and the elements 

in each row sum to 1. Condition 3 specifies that there will be at least one non zero element in 

each column as there are no states that last for a very short time (Gillespie, 1992b). If any 

Markov chain graph has 𝑆Ñ states, then the transition matrix will be of 𝑆Ñ x 𝑆Ñ dimension with 

𝑎𝑖,𝑗
  elements for any biochemical network. If 𝑎𝑖,𝑗

  represents the propensity of the reactions in 

biochemical networks as shown in (A) of Figure 3.2 then matrix 𝐴𝑖,𝑗
  represents the transition 

matrix of the network showing the states of the system, as in (B) of Figure 3.2. 

 

𝑃 = [

𝑃1,1
 

𝑃2,1
 

:
𝑃6,1
 

  

𝑃1,2
 

𝑃2,2
 

:
𝑃6,2
 

  

……
……
∷… . .
  

𝑃1,6
 

𝑃2,6
 

:
𝑃6,6
 

] 

condition (1) 

condition (2) 

condition (3) 
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                           (A) Graphical                                                 (B) Matrix 

Figure 3.2. Representation of the Markov chain of biochemical network with reactions 

and relevant propensities and transition matrix [𝑨𝒊,𝒋
 ]. 

Matrix 𝐴𝑖,𝑗
  is important as transition between 𝑋𝑖

  and 𝑋𝑖+1
  is given by element 𝑎𝑖,𝑖+1

  or 𝑎𝑖,𝑗
 . 

Every state in Fig (A) in Figure 3.2 retains only its most recent history due to the Markov 

property. Thus, the memory of the past is lost with the increasing transitions between the states. 

These sets of states and transitions, together, form the sample space φ of the biochemical 

systems. In terms of probability, φ is the combination of several events, Έ𝑦
 , that defines all 

possible outcomes. The number of Έ𝑦
  present in φ depends on the number of random processes 

connected through reactions in the system. The changes in the states are not fully predictable 

but are defined by probability distributions 𝜋  and kinectic parameters. The probability 

distribution has some type of dependency, where the conditional distribution 𝜋𝑐
  of future states 

of the system gives some knowledge about the previous states, depending on the most recent 

state of the system. 

The size of φ indirectly depends on the number of reactions and species in the system that 

create the processes and triggers Έ𝑦
 . For small biochemical systems having a small number of 

reactions (say ≤ 10), the size of φ is considerably smaller and the number of states can be 

identified easily within Έ𝑦
 . Any size of biochemical system defined by a number of states 

having Έ𝑦
  events should satisfy: 

 Έ𝑦
 ≤ 𝑠𝑡𝑎𝑡𝑒𝑠. (41) 

For our proposed methods it is important to classify the states in terms of nodes and 

transitions and how they are bound to φ. In the next section we discuss the classification of 

states of Markov chains for any size of biochemical system along with some definitions. 

  

𝐴𝑖,𝑗
 = [

𝑎1,1
 

𝑎2,1
 

:
𝑎6,1
 

  

𝑎1,2
 

𝑎2,2
 

:
𝑎6,2
 

  

……
……
∷… . .
  

𝑎1,6
 

𝑎2,6
 

:
𝑎6,6
 

] 
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3.2.2 States Classification of Markov Chain for Biochemical System 

A chain of nodes, {𝑁1
 , 𝑁2

 , …… .𝑁
𝑆Ñ
 } ≥ 1, where transitions arc from 𝑁𝑦−1

  to 𝑁𝑦
  for each 𝑦, 

1 ≤ 𝑦 ≤ 𝑆Ñ. If any biochemical system has 𝑅𝑀
  forward reactions then no nodes are repeated 

in the transition if it creates a simple path from one node to another in space. If any node is 

repeated, i.e. first and any intermediate node is the same, it creates a cycle and represents the 

backward reaction in the system. This also applies to the condition if the first and last node are 

the same and no other intermediate nodes are present in the system. 

Definition 3.4. For the forward reaction in a biochemical system, state 𝑋𝑖+1
  is accessible and 

reached from state 𝑋𝑖
  (abbreviated as 𝑋𝑖

 ⟶ 𝑋𝑖+1
  in 𝐷𝑖𝑐𝑡) by a transition denoted as an arc in 

the Markov chain graph from 𝑖 to 𝑖 + 1 in space. If there is a backward reaction, state 𝑋𝑖
  is 

accessible and reached from state 𝑋𝑖+1
  (abbreviated as 𝑋𝑖+1

 ⟶ 𝑋𝑖
  in 𝐷𝑖𝑐𝑡) by a transition 

denoted as an arc in the Markov chain graph from 𝑋𝑖+1
  to 𝑋𝑖

  in space. For example, in (A) in 

Figure 3.1, the path from node 3 to node 6 passes through node 5 and 2, so state 6 can be 

accessed from node 3. 

Definition 3.5. If state 𝑋𝑖
  is reachable from 𝑋𝑖+1

  and 𝑋𝑖+1
  is reachable from 𝑋𝑖

 , then both these 

states tend to communicate and this denotes the reversible reaction of the biochemical system 

by 𝑋𝑖
  ↔ 𝑋𝑖+1

 . 

Definition 3.6. If any finite state Markov chain representing biochemical system has transitions 

to a previous state 𝑋𝑖
 , and is accessible from other states of the system then 𝑋𝑖

  is recurrent state 

if 𝑋𝑖
 ⟶ 𝑋𝑖+1

  ⟹ 𝑋𝑖+1
  ⟶ 𝑋𝑖

 . If the initial state 𝑋𝑖
  is not a recurrent state then it has non zero 

probability and the system never returns to 𝑋𝑖
 . 

Definition 3.7. A class, φ′, of non empty set of states where every 𝑋𝑖
 ∈ φ′ have access to set 

of states 𝑋𝑖′
 ∈ φ′ but not to other set of states 𝑋𝑖′

 ∉  φ′. This property of accessibility to other 

states defines some characteristics of the states affiliated with the same class φ′. 
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                             (A)                                       (B)                                       (C) 

Figure 3.3. Classification of transient and recurrent states. 
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If a set of states in a Markov chain 𝑋𝑖
 , 𝑋𝑖′

 ∈  φ′ are accessible to each other, i.e., 𝑋𝑖
 ↔ 𝑋𝑖′

  (see 

Figure 3.3(A)). Now assume that if 𝑋𝑖
  is transient (𝑋𝑖

 → 𝑋𝑖′
  but 𝑋𝑖′

 ↛ 𝑋𝑖
 ) then 𝑋𝑘

 → 𝑋𝑖′
  if 

𝑋𝑘
 → 𝑋𝑖

  and 𝑋𝑖
 → 𝑋𝑖′

  (see Figure 3.3(B)). If 𝑋𝑖′
 → 𝑋𝑘

  (see Figure 3.3(C)), the transition from 

𝑋𝑖′
  to 𝑋𝑘

  could be extended to state 𝑋𝑖
  which will make 𝑋𝑖

  recurrent and would be 

contradictory; therefore, there should be no transition from 𝑋𝑖′
  to 𝑋𝑘

  as that makes state 𝑋𝑘
  

transient. This draws the conclusion that if one state in the φ′ is transient, then all the states 

will be transient otherwise they will all be recurrent.  

In section 3.3, we will discuss how a finite state Markov chain’s sample space and its states 

can be visualised in terms of a Markov chain tree. 
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3.3 Markov Chain as a Markov Chain Tree 

We define the Markov chain tree, Ѭ, (Anantharam et al., 1989) as infinite, locally finite, 

connected to a special type of graph with a prominent vertex is called a parent node without 

loops or cycles. Let graph 𝐺𝑚𝑐
  be a state-space of the finite state Markov chain with 

{𝑃(𝑋𝑖
 , 𝑋𝑖′

 ) | 𝑋𝑖
  , 𝑋𝑖′

 ∈  𝐺𝑚𝑐
 } transition probabilities meeting the condition ∑ 𝑃(𝑋𝑖

 , 𝑋𝑖′
 ) = 

𝑋
𝑖′
 

1, then the induced Markov chain tree is a combination of valued 𝐺𝑚𝑐
  random variables with 

distributions inductively defined from 𝑃(𝑋𝑖
 , 𝑋𝑖′

 ) and with an initial state, 𝑋𝑖
 ∈ 𝐺𝑚𝑐

 . That 

being the case, it is easy to expand this class of Markov random field through a Markov chain 

tree structuring for biochemical systems. Also, the Markov chain tree and Markov processes 

can be equated as explained by (Aldous et al., 1992) for the stochastic analysis. 

Since we are interested in aperiodic states in expansion of state-space, we shall assume the 

reducibility or simplification of the 𝐺𝑚𝑐
 ; namely for each 𝑋𝑖

  , 𝑋𝑖′
 ∈  𝐺𝑚𝑐

  through Ѭ. 

Therefore, the reader is urged to concentrate on the case where 𝐺𝑚𝑐
  is considered as a locally 

finite connected graph, but the transition probabilities of each state are not equal due to the 

propensities and parameters of different reactions in the biochemical system. Consequently a 

Markov chain tree, Ѭ, can used to visualise a biochemical system process to exhibit a 

transition matrix as directed trees of its associated graph (Goutsias et al., 2013; Weber et al., 

2012). In addition, the Markov chain tree, Ѭ, generates a sample space for the system to 

represent the Markov processes associated with the Markov chain and the transition matrices 

of biochemical reaction networks. Further in this section, we will discuss the details we will 

need during representing Markov models on trees and working with graphs for state-space. 

Let 𝐗𝐽
  be the finite set of cardinality {1,2…… .𝐾} of a Markov chain Ѫ𝑐

 , and 𝐴 be the 

transition probability matrix associated with 𝐗𝐽
 . A state-space is, substantially, a class of a set 

of states containing the unique state of the system, and the arcs between the states represent 

the transitions from the initial state to the end state. This transition defined as transient and 

communicating class in graphs. When all the transitions are combined, every state-space takes 

the form of a graph and creates the state-space of the system, as shown in Figure 3.4 below. 
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Figure 3.4. Markov chain graph showing forward and reversible reactions through four 

different states. 
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We can now associate chain Ѫ𝑐
  with the directed graph 𝐺𝑚𝑐

 = (𝐗𝐽
 , 𝑉µ

 ), where 𝑉µ
 =

[𝑣1
 ; 𝑣2

 ; . . . . . . 𝑣µ
 ] and 𝑣µ

  defines the transition from state 𝑋𝑖
  to 𝑋𝑖′

  and is denoted as 

𝑣µ
 = {(𝑋𝑖

 , 𝑋𝑖′
 );  𝑎𝑖,𝑗

 > 0}. For every transition (𝑋𝑖
 , 𝑋𝑖′

 ) ∈ 𝐗𝐽
 , then weight 𝜔(𝑋𝑖

 , 𝑋𝑖′
 ) is 𝑎𝑖,𝑗

 . 

Suppose 𝐺𝑚𝑐
  has a cycle, which starts and terminates at some state, 𝑋𝑖

 ∈ 𝐗𝐽
 . If there is a 

transition from 𝑋𝑖
  to 𝑋𝑖′

 , but we add a unique transition by creating a cycle from 𝑋𝑖
  back to 

itself and then consider the original transition from 𝑋𝑖
  to 𝑋𝑖′

 . This contradicts the uniqueness 

of the walk in tree (Diaconis et al., 1985). When relating this to the CTMC of a biochemical 

system process, the change in molecular population is defined by a stoichiometric vector, so, 

in 𝐺𝑚𝑐
 , there must be at least one intermediate state that will send the system back to the 

previous state to create the cycle. This process categorises the forward and backward 

reactions given the initial state, 𝑋0
 , of the system. The transient class of the transition leads 

the system to a unique state that defines the forward reaction in the system. Whereas, the 

communicating class of a transition defines the reversible reaction in the system. In this 

section, we will define such systems as transient class systems and communicating class 

systems. Large biochemical systems are usually a combination of both classes. 

Definition 3.8. If 𝑈 is any set, then cardinality is defined by the measure of number of 

elements in 𝑈, denoted by |𝑈|. For example, set 𝑈 = {5,7,8,10} contains 4 elements, then 

cardinality of |𝑈| is 4. 

A biochemical system is visualised as tree Ѭ (Anantharam et al., 1989) for the expansion of 

the state-space. A tree, Ѭ, is a special form of graph in data structure constituting set of 

nodes and a collection of edges (or arcs) that each connects with an ordered pair of nodes. 

𝐺𝑚𝑐
  is considered as a directed tree, Ѭ, and is rooted with 𝑁0

 = (𝑋0, ƌ𝑙
 ) if it contains a 

unique walk to 𝑁𝑖
 = (𝑋𝑖, ƌ𝑙

 + 1) and does not contain any cycles, while 𝑋𝑖
 ∈ 𝐗𝐽

 \{𝑋0
 } has 

exactly one outgoing transition away from 𝑋0
  – in which case, it is called an arborescence, or 

making its transition towards 𝑁0
 = (𝑋0, ƌ𝑙

 ) – in which case, it is called as anti-arborescence. 

An arborescence is a subset ⊆ 𝑉µ
  that has one edge out of every node containing no cycles, 

and having a maximum cardinality.  

If 𝑋𝑖
  and 𝑋𝑖′

  be the states other than the initial 𝑋0
  state. There is a transition from 𝑋𝑖

  to 𝑋𝑖′
 , so 

𝑋𝑖
  has at least one transition. Now, suppose 𝑋𝑖

  has two walks, (𝑋𝑖
 , 𝑋𝑖+1

 ) and (𝑋𝑖
 , 𝑋𝑖+2

 ). 

Concatenating these walks to the walks (𝑋𝑖+1
 , 𝑋𝑖′

 ) and (𝑋𝑖+2
 , 𝑋𝑖′

 ), respectively, we have two 

distinct changes in state from 𝑋𝑖
  to 𝑋𝑖′

  in 𝐺𝑚𝑐
  but in Ѭ, this concatenation is not considered, 

which makes them Directed Acyclic Graphs (𝐷𝐴𝐺) as shown in Figure 3.5. Most of the 
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biochemical models 𝐺𝑚𝑐
  can be visualised as 𝐷𝐴𝐺s irrespective of the nature of reactions 

present in the model. 
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Figure 3.5. Equivalent tree of Markov chain graph, as shown in Figure 3.4. It is a special 

form of graph that has no cycle, no self-loops and depicts the state-space of the system in 

the form of a tree (𝑫𝑨𝑮). 
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Figure 3.5 shows the equivalent tree of 𝐺𝑚𝑐
  as shown in Figure 3.4. The trees are less 

complex as they have no cycles, no self-loops, and are still connected to depict the state-

space. The weight of the tree containing all 𝑒 edges is defined by 𝜔(Ѭ) = ∏ 𝜔(𝑒)𝑒∈Ѭ , 

where 𝜔(𝑒) = 𝜔(𝑋𝑖
 , 𝑋𝑖′

 ) = 𝑎𝑖,𝑗
  is the weight of an edge starting from 𝑋𝑖

  and ending at 𝑋𝑖′
  

when 𝑒 ∈ Ѭ (Gursoy et al., 2012). For systems having both forward and backward reactions, 

if 𝐧𝐽
  is the total number of nodes indexed by {1,2…… . 𝐾} same as states, 𝐧𝐾

  be the set of 

nodes carrying 𝐗𝐾
 , and 𝐧𝐾

′  be the set of nodes carrying 𝐗𝐾
′  given 𝑁0

  root node of the tree Ѭ, 

then the walk from one node to another node is given by: 

 {𝑓(𝑁𝑖
 , 𝑁𝑖′

 ), 𝑓(𝑁𝑖′
 , 𝑁𝑖

 ) | 𝑁0
 } ∈ 𝐗𝐽

 , (42) 

and Ѭ is formed by superimposing the forward transitions between states 𝑋𝑖
  and 𝑋𝑖′

 , with the 

reverse orientation, 𝑋𝑖′
  and 𝑋𝑖

 , for backward reactions but these are graphically denoted as an 

individual edge from 𝑁𝑖
 = (𝑋𝑖, ƌ𝑙

 ) to 𝑁𝑖′
 = (𝑋𝑖′ , ƌ𝑙

 + 1) to 𝑁𝑖
 = (𝑋𝑖, ƌ𝑙

 + 2) in a tree. The 

𝑁𝑖
  of ƌ𝑙

 + 2 can be renamed to a new node, 𝑁𝑖+1
 , as it is at different depth from 𝑁𝑖

  of ƌ𝑙
  but 

storing the same state 𝑋𝑖. In the expansion repeated states are not considered in the domain; 

therefore, any node carrying a similar state will be considered the same regardless of the level 

and indexing. Consideration of trees for the state-space expansion in 𝐼𝑆𝑃 will not only help in 

reducing the complexity but also improve the accuracy of the solution of Eq. (9) by 

identifying nodes carrying probable states. If the Markov chain graph starts in state 𝑋𝑖
 ∈ 𝐗𝐽

 , 

then the mean number of transits to any state 𝑋𝑖′
  converging to 𝑎𝑋𝑖 ,𝑋𝑖′

 
 ̅̅ ̅̅ ̅̅ ̅ is given by the (𝑖, 𝑖′)th 

value of 

 Ā = 𝑙𝑖𝑚
𝑛→∞

 (
1

𝑛
)∑𝐴𝑘
𝑛−1

𝑘=0

. (43) 

Let 𝑈 be the set of all arborescences. Let 𝑈𝑋𝑖
 ,𝑋
𝑖′
 

  be the set of all arborescences which have a 

transition from 𝑋𝑖
  to 𝑋𝑖′

  and ‖𝑈𝑋𝑖
 ,𝑋
𝑖′
 

 ‖ be the sum of the weights of the arborescences in 

𝑈𝑋𝑖
 ,𝑋
𝑖′
   then according to Markov chain tree theorem (Anantharam et al., 1989), 

 
𝑎𝑋𝑖 ,𝑋𝑖′

 
 ̅̅ ̅̅ ̅̅ ̅ =

‖𝑈𝑋𝑖
 ,𝑋
𝑖′
  ‖

‖𝑈‖
 

(44) 

𝑎𝑋𝑖 ,𝑋𝑖′
 

 ̅̅ ̅̅ ̅̅ ̅ is probabilistic in nature. This nature is not only restricted to the systems having 

irreducible Markov chains in which graph 𝐺𝑚𝑐
  is strongly connected while carrying probable 

state-spaces but also for systems that can be simplified by converting to a Markov chain tree 
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and then reducing the tree by ignoring the states having low probabilities in space φ 

(Anantharam et al., 1989; Gursoy et al., 2012). However, before a search problem can be 

solved, it must be represented as a state-space in terms of the Markov chain tree. Therefore, in 

section 3.4, we will discuss the problem state-space model, problem instance, problem state-

space graph or tree and its objects where a searching technique is to be applied. 
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3.4 Problem State-Space Model of Biochemical networks 

The problem state-space of a biochemical network is the domain in which an exploration and 

search of the end state takes place. This problem of the state-space consists of set of states and 

operators that change the current state to a new state. The initial state and end state of the 

biochemical system together with problem space, brings into existance the problem instance 

where all the searching should take place. For example, in a puzzle of 16 blocks the states 

would be the different possible permutations of the tiles, where a function called operators 

slide a tile into the blank position within these blocks. Similarly, in biochemical systems, 

finding and applying operator sequences that map an initial state to the end state is the 

problem solving task. The end state is given explicitly or implicitly depending on the nature 

of the system, such as in a 16 block puzzle when the end state is given explicitly; whereas, in 

the Eight Queen problem (Bell et al., 2009) the end state is given implicitly, as described by 

properties satisfied by the end state. 

The problem state-space graph or converted to a tree is used to represent the Markov process 

of the biochemical systems in the problem space. The set of states in the state-space of the 

graph are represented by nodes, and the transition function (operator) by arcs between the 

nodes. All the arcs in the state-space are directed which defines a reaction with its rate 

constant irrespective of whether their corresponding transition function is invertible in the 

case of a reversible reaction. The task for this problem is to find the set of states in the path 

from initial state to end state that carry the majority of the probability mass of the system. 

In most of biochemical systems the Markov process corresponds to graphs with more than 

one directed arc between a pair of nodes having a set of states and, for simplicity, we visualise 

this in terms of trees, where the root (at level 1) of the tree represents the initial state of the 

system. In the tree visualisation, the multiple directed arcs connecting nodes are represented 

by duplicate nodes and this is the simplication cost of the graph. When any state in the nodes 

is reached by two different transitions then it will be represented by these duplicate nodes and 

a unique state of the biochemical system. The benefit of using trees is that it greatly simplifies 

the problem of searching in the state-space and, in the absence of cycles, visualisation of the 

biochemical systems remains an easy task. 

In terms of artificial intelligence (𝐴𝐼) (Barr et al., 1983; Chijindu et al., 2012; Korf et al., 

1985, Korf et al., 1996) search standards, for a real-world example, in case of chess game, the 

corresponding graph has more than 1040 nodes, whereas a twenty four block puzzle has more 

than 1025 nodes. In both cases, the estimated minimum number of states are 1040 and 1025 
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respectively. As a result of this explosion, the problem state-space graph of a biochemical 

system is never defined explicitly by a set of states, but implicitly by the initial state of the 

system, and the set of functions that generate new states from the current states. The function 

depends on the conditions, as discussed in section 4.2, and applied only on the states that do 

not produce any negative stoichiometric indexing. For example, in any biochemical system, if 

state A and B have stoichiometric indexing leading to [2 5 1 0] and [2 -1 0 6], respectively, 

then state B will not be considered for expansion as it does not satisfy the function conditions 

(discussed further in section 4.2). 

The size of a biochemical system is not expressed in terms of the number of nodes in the 

problem space graph but by the number of states stored by these nodes. The ratio of the total 

number of walks between different nodes and the total number of nodes explored defines the 

average transitioning factor (Ŧ). Together with Ŧ, the depth of states determine the efficiency 

of the expansion algorithm.  

 Ŧ =
Total no. of walk between different nodes 

Total no. of nodes explored
 (45) 

As Ŧ defines the average number of child of a given node, then the end state of the problem 

instance is the cost of transition, (Ͼ
𝑁𝑖
 ,𝑁𝑖
′ 

 ), from state 𝑋𝑖
  to 𝑋𝑖′

  in space, where 𝑋𝑖′
  is the end 

state. If the end state (𝑋10
 ) of a system were in the last row (i.e. depth 4) of Figure 3.6, then 

the depth of the problem state-space graph is represented by the 𝑋𝑖
  (from node 𝑁1

  at depth 1) 

at the root would have three moves (𝑁1
 → 𝑁7

 → 𝑁8
 → 𝑁10

 ). 

In section 3.5, we will extend our discussion to 𝐴𝐼 standards for Markov chain trees or graphs 

(𝐺𝑚𝑐
 ) and derive a function (a.k.a operator) that can define the next step (i.e. state) and other 

information in expansion implicitly. 
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Figure 3.6. Markov chain graph (𝑮𝒎𝒄
 ) with 𝐧𝑱

  nodes carrying ≈𝐗𝑱
  states and the arcs 

showing transitions between them while, together, they form a Markov process. 
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3.5 Intelligent Search and Tracking 

Much of 𝐴𝐼 is about searching that can be applied to many areas, such as systems biology, 

biochemical networks for representing knowledge as well as to study the biochemical 

systems. Over recent years, awareness has greatly increased the understanding of large 

biochemical systems by solving the CME. Similarly, the expansion of state-space for large 

biochemical systems can be formulated as a problem search in 𝐴𝐼. For this purpose, we will 

employ a Markov chain as a Markov chain trees or graph (𝐺𝑚𝑐
 ) (as discussed in section 3.3) 

as a state-space for biochemical systems. Factors, such as type of state-space search problem 

and how this problem knowledge can be represented, decides the structure of the search 

algorithm. 

3.5.1 Artificial Intelligence for CME 

Although not common yet, 𝐴𝐼 standards can be adopted and applied to explore the state-space 

for large biochemical systems to solve the CME. 𝐴𝐼 is the field of study of the intelligent 

agents (Rudowsky, 2004) of a system that perceives and take actions to successfully achieve 

goals. Most of the problems can be formulated as searches and solved by reducing to one of 

searching a graph or a tree. 𝐴𝐼 techniques (Alan Bundy, 1997; Nelson et al., 1992) set the 

standard for treating the data structures (trees or graphs) to find the goal state. However, in 

our stochastic problem state-space there is no single overall goal state (or end state) that 

defines the solution of the CME because the size of the state-space of large biochemical 

systems are usually considered as infinite. Furthermore, the explosion of state-space is still a 

major issue in biochemical systems; especially in large models. To visualise the Markov chain 

graph or tree as a problem state-space in biochemical systems, for the solution of the CME, 

we must specify the successor operator 𝑆𝑢𝑐
 , in detail to define the sequence of actions leading 

from the initial to the multiple goal states at different time intervals that then lead to the 

solution at the required time. 

Definition 3.8. A tuple (𝑋0
 , Action, 𝑆𝑢𝑐

 , 𝐗𝐽
 ) defines the transition in the system, where 𝑋0

 ∈

𝐗𝐽
  is the initial state, 𝐴𝑐𝑡𝑖𝑜𝑛 is a finite set of labels (action) for operator 𝑆𝑢𝑐

  that maps the 

present state with the future state, 𝑆𝑢𝑐
 ⊆ 𝐗𝐽

 × 𝐴𝑐𝑡𝑖𝑜𝑛 × 𝐗𝐽
  is the relation of transition and 𝐗𝐽

  

is a finite set of states, which is unknown a priori. A transition (𝑋𝑖
 , 𝑎µ

 , 𝑋𝑖′
 ) ∈ 𝑆𝑢𝑐

 , denotes 

𝑋𝑖
 
𝑎µ
 

→𝑋𝑖′
 , specifies that biochemical system can move from state 𝑋𝑖

  to 𝑋𝑖′
  by performing 

𝐴𝑐𝑡𝑖𝑜𝑛 𝑎µ
 . Here, 𝑎µ

  denotes the propensity of 𝑅𝑀
  reaction leaving state 𝑋𝑖

  at depth ƌ𝑙
  in 𝐺𝑚𝑐

 . 
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In terms of 𝐴𝐼, we will now define the state-space as a set of states in the system we can get 

to by applying 𝑆𝑢𝑐
  to explore new states of a biochemical network. 𝑆𝑢𝑐

  can be applied 

explicitly, which maps the current state to the output states or defined implicitly that act on 

current state and transform into a new state. In the problem state-space graph for biochemical 

networks, we will not define the goal state (or end state) explicitly but it is required to be 

defined by 𝑆𝑢𝑐
  implicitly in intervals based on nature (fast, slow, reversible and irreversible) 

of reactions in the system and duration of expansion to introduce the stochasticity of the 

system. This should systematically expand the state-space from 𝐗𝐾
  at 𝑡 to 𝐗𝐾+1

  at 𝑡 + 1 by 

going through each node 𝐧𝐽
  at depth ƌ𝑙

  of the Markov chain graph to evaluate the Markov 

processes, which aims to occupy most of the probability mass during [𝐗𝐾
 + 𝐗𝐾+1

 ], and can 

be solved for probability distribution at 𝑡 + 1. 

Let 𝐗𝐽
  be the finite set of states and 𝐺𝑚𝑐

 = (𝐗𝐽
 , 𝑉µ

 ) be the Markov chain graph on 𝐗𝐽
  

associated with 𝐴 = [𝑎𝑖,𝑗
 ], given 𝑋0

  as the initial state and 𝐗𝐾
  as the set of the explored state, 

where 𝑋0
 ∈ 𝐗𝐾

  then implicit successor is defined as, 

 𝑆𝑢𝑐
 ⟶ 𝑉µ

 (𝐗𝐾
 (𝑡)), (46) 

defines the new states of the system, where, 𝑉µ
  is the set of stoichiometric vectors 𝑣µ

  function 

defining the state transitions from any present state 𝑋𝑖
 ∈ 𝐗𝐾

  to a new state 𝑋𝑖′
 ∉ 𝐗𝐾

 . The 

sample space in the graph contains the unique state of the system stored in a transition matrix, 

which satisfies the conditions in Eq. (42). This transition matrix is a compressed row format 

(CSR) (Koza et al., 2012; Lawlor et al., 2013) based on the index of row ⟶ column delimited 

by commas generating the dictionary 𝐷𝑖𝑐𝑡 of the model that defines the transitions between 

nodes in the state-space and mapping of states. Through 𝑆𝑢𝑐
 , we can know nothing more than 

the neighbours (child nodes) of the current node (states reachable through a single reaction), 

then we consider these neighbours (child nodes) as our only goal states and there can be many 

in numbers. In such a situation, we call our search trails as blind or uninformed search. In 

next section 3.5.1.1 , we will work on the infrastructure of an uninformed search to define the 

type of data structure we will be dealing with. 
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3.5.1.1 Infrastructure for Searching 

A data structure is required to retain the search track in the graph for problem state-space 

expansion. For each node, 𝑁𝑖
 , of the tree, we create a structure consisting of five elements: 

(1) 𝑁𝑖
 .State: represents state 𝑋𝑖

  in the state-space corresponding to 𝑁𝑖
 ; 

(2) 𝑁𝑖
 .Parent: represents the parent node of child node 𝑁𝑖

 ; 

(3) 𝑁𝑖
 .Depth: represents the depth of state state 𝑋𝑖

 ; 

(4) 𝑁𝑖
 .Cost: represents the cost Ͼ

𝑁𝑖
 ,𝑁𝑖
′ 

  of the transition from 𝑁𝑖
  to 𝑁𝑖

′  in the state-space; 

(5) 𝑁𝑖
 .Action: represents the action applied via 𝑆𝑢𝑐

  on parent node to reach 𝑁𝑖
 . 

To explore the new states in the system, we will consider the initial state 𝑠𝑡𝑎𝑡𝑒(𝑁1
 ) =

(𝑋0
 , ƌ𝑙

 ) as input to the successor, 𝑆𝑢𝑐
 . Once the expansion is initiated, the 𝐷𝑖𝑐𝑡 will 

temporarily (in run-time) store the information for the transition from one node to another in 

the state-space that binds to the reaction propensities 𝑎µ
 . This shift is denoted by an arrow ⟶, 

which shows multiple transitions from the parent nodes to child nodes containing the end 

state. The set of nodes 𝐧𝐽
 = {𝑁1, 𝑁2, … . . 𝑁𝑆Ñ} is a data structure that incorporates the Markov 

chain graph 𝐺𝑚𝑐
 . We will explore all the nodes that store the set of states 𝐗𝐾 as well as some 

additional information about the state, such as depth and transition cost, from one state to 

another in the system. If a set of 𝑠𝑡𝑎𝑡𝑒𝑠(𝐧𝐽
 ) = 𝐗𝐽

 , then Ͼ
1,𝑁𝑖

′ 
  is the transition cost to reach 

𝑠𝑡𝑎𝑡𝑒(𝑁𝑖
′ ) = 𝑋𝑖′

  from 𝑠𝑡𝑎𝑡𝑒(𝑁1) = 𝑋1
  and 𝑑𝑒𝑝𝑡ℎ(𝐧𝐽

 ) = ƌ𝑙
  defines the depth of the set of 

nodes in 𝐺𝑚𝑐
 , then the standard relation between a set of nodes and a set of states is given by 

𝐧𝐽
 = (𝐗𝐽

 , ƌ𝑙
 ) or 𝐧𝐽

 = (𝐗𝐽
 , ƌ𝑙

 , Ͼ
𝑁𝑖
 ,𝑁𝑖
′ 

 ) and the standard relation between a single node and a 

single state is given by 𝑁𝑖
 = (𝑋𝑖

 , ƌ𝑙
 ) or 𝑁𝑖

 = (𝑋𝑖
 , ƌ𝑙

 , Ͼ
𝑁𝑖
 ,𝑁𝑖
′ 

 ) if the transition cost is 

considered. 

For example, Figure 3.6 shows the Markov chain graph, 𝐺𝑚𝑐
 , with 𝐧𝐽

 = 10, ƌ𝑙
 = 4 and its 

equivalent tree Ѭ is shown in Figure 3.7 with n𝐽
 = 15, ƌ𝑙

 = 5. In the tree nodes 𝑁1
 = 𝑁11

 =

𝑁12
  carries the same state, 𝑋1

  at ƌ𝑙
 = 1, 2 and 3, respectively, where walk 𝑁2

 → 𝑁11
  and 

𝑁7
 → 𝑁12

  represents the backward reaction of the forward reaction represented by walk 𝑁1
 →

𝑁2
  and 𝑁1

 → 𝑁7
 , respectively. 
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Figure 3.7. Equivalent tree Ѭ of 𝑮𝒎𝒄
  (see Figure 3.6) as 𝑫𝑨𝑮 representing the state-space 

of the system. 
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The set of nodes with states are represented as 

 𝐧1,2,….10
 = (𝐗1,2……𝐾

 , ƌ1,2,3,4
 ) or (47) 

 𝐧1,2,….10
 = (𝐗1,2……𝐾

 , ƌ1,2,3,4
 , Ͼ

𝑁𝑖
 ,𝑁𝑖
′ 

 (𝑚𝑖𝑛)) (48) 

In general, the transition cost, Ͼ
𝑁𝑖
 ,𝑁𝑖
′ 

 , is defined as: 

 

 Ͼ
𝑁𝑖
 ,𝑁𝑖
′ 

 = 𝑎1,2
 + 𝑎2,3

 +⋯+ 𝑎𝑁−1,𝑁
 . (49) 

Ͼ
𝑁𝑖
 ,𝑁𝑖
′ 

  is the summation of all the propensities 𝑎µ
  of the 𝑅𝑀

  reactions that takes the system to 

its final state. For example, Ͼ𝑁1 ,𝑁10 
  to expand to 𝑠𝑡𝑎𝑡𝑒(𝑁10

 ) = 𝑋10
  of Figure 3.6 is given by 

 

Ͼ𝑁1 ,𝑁10 
 =

{
 
 

 
 

 

𝑷𝒂𝒕𝒉 𝟏:  𝑎1,2
 + 𝑎2,3

 + 𝑎3,4
 + 𝑎4,6

 + 𝑎6,8
 + 𝑎8,10

  

𝑷𝒂𝒕𝒉 𝟐:  𝑎1,2
 + 𝑎2,3

 + 𝑎3,5
 + 𝑎5,6

 + 𝑎6,8
 + 𝑎8,10

  

𝑷𝒂𝒕𝒉 𝟑:  𝑎1,2
 + 𝑎2,5

 + 𝑎5,6
 + 𝑎6,8

 + 𝑎8,10
               

𝑷𝒂𝒕𝒉 𝟒:  𝑎1,7
 + 𝑎7,8

 + 𝑎8,10
                                        

𝑷𝒂𝒕𝒉 𝟓:  0, if not reachable                                       

 

 

If these are the possible paths for the expansion that expands 𝐗𝐾
  at every iteration then 

Ͼ𝑁1 ,𝑁10 
 (𝑚𝑖𝑛) will be defined by the only path that has the lowest 𝑃(𝑡)(𝐗𝐾

′ ). This can be 

generalised as follows: 

 Ͼ
𝑁𝑖
 ,𝑁𝑖
′ 

 (𝑚𝑖𝑛) ∝
1

𝑃(𝑡)(𝐗𝐾
 )
, (50) 

which means that in order to have a minimum cost of the expansion for the optimal domain 

𝐗𝐾
  at least one path should have states with high probabilities for 𝐗𝐾

  and; therefore, it is 

beneficial to follow the path with Ͼ
𝑁𝑖
 ,𝑁𝑖
′ 

 (𝑚𝑖𝑛), which leaks the minimum probabilities of the 

system. 

For large biochemical models there exists infinite cases when the node is unreachable from 

the initial or another node, and such cases are ignored when Ͼ
𝑁𝑖
 ,𝑁𝑖
′ 

 (𝑚𝑖𝑛) = {𝑃𝑎𝑡ℎ: 0} 

because some probabilities are always dropped in the approximation. Therefore, Ͼ
𝑁𝑖
 ,𝑁𝑖
′ 

 (𝑚𝑖𝑛) 

as defined by the lowest 𝑃(𝑡)(𝐗𝐾
′ ) is strictly limited to, 
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 𝑃(𝑡)(𝐗𝐾
 ) > Ͼ

𝑁𝑖
 ,𝑁𝑖
′ 

 (𝑚𝑖𝑛) > 0, (51) 

Upon expanding the root node 𝑁1
 , we expand the child nodes carrying new states, and then 

the child-child nodes are explored. The walk between nodes 𝑁𝑖
  
𝑉µ
 (𝐗𝐾

 (𝑡))
→       𝑁𝑖+1

  is defined by 

dictionary 𝐷𝑖𝑐𝑡 and this represents the occurrence of 𝑅𝑀
  reactions through 𝑀 elementary 

channels. For Figure 3.6, the typical form of dictionary is given below: 

𝐷 = ([1 ⟶ 2,7], [2 ⟶ 1,3,5], [3 ⟶ 4,5], [4 ⟶ 6], [5 ⟶ 6], [6 ⟶ 8],  

          [7 ⟶ 1,8,9], [8 ⟶ 10], [9 ⟶ 𝑁𝑖𝑙], [10 ⟶ 9]), 

(52) 

and is indexed with the propensities, [𝑎𝑖,𝑗
 ], for all the 𝑅𝑀

  reactions. As the propensities are 

changing by ∆𝑎𝑖,𝑗
 , we will consider the recent values of 𝑎𝑖,𝑗

  in every iteration of 𝐼𝑆𝑃 that 

corresponds to the reactions involved. To make the Ͼ
𝑁𝑖
 ,𝑁𝑖
′ 

 (𝑚𝑖𝑛) feasible for any type of 

biochemical system (stiff, non-stiff) for capturing probable states, it is important to consider 

the cost of expansion for small 𝑡𝑠𝑡𝑒𝑝
  (time step). This may be because there are some cases 

when Ͼ
𝑁𝑖
 ,𝑁𝑖
′ 

 (𝑚𝑖𝑛) to reach two or more different child nodes are equal or very close to each 

other. In addition, we intend to expand the state-space in the direction of carrying states with 

high probability mass. To achieve this, we need some provision made to treat or convert our 

uninformed search to an informed search infrastructure at run-time to have intuitive 

knowledge beyond our reach. Figure 3.8 shows the limits of our visibility in the state-space. 
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Figure 3.8. Limits of our visibility in the state-space before expansion, visualised by a 

Markov chain graph, where  is the initial node and  nodes are directly reachable nodes 

from the initial node when exactly one 𝑹𝑴
  occurs. When a further 𝑹𝑴

  occur, the system 

jumps to other  nodes. 
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Consequently, it is important to track the reactions having high propensity function values. In 

such, cases it is difficult to determine the direction of the expansion; therefore, in following 

section 3.5.2, we first develop the post successor function on Bayes’ theorem (Fahidy, 2011; 

Schlecht, 2014) to priortise the expansion direction based only on those reactions that can be 

triggered at a particular time point and then, in Chapter 4, we will layout the direction strategy 

with the depth and bounds of the expansion. 
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3.5.2 Bayesian Likelihood Node Projection Function 

Bayesian methods (Fahidy, 2011; Manoukian, 1986) are based on the principle of linking 

prior with the posterior probability through Bayes’ theorem (Fahidy, 2011; Schlecht, 2014). 

For an event, the posterior probability is the improved form of the prior probability, via the 

likelihood of finding factual support for a valid fundamental hypothesis. Therefore, we will 

employ the standards of Bayes’ theorem to develop a function targeted to advocate the quality 

of the expansion based on 𝑅𝑀
  reactions active in the network at any particular moment. For a 

concise definition for the purpose of fundamentals, refer to Appendix D. 

To improve the quality of expansion through a projection function, one may find useful to 

remove the set of states having low probabilities before calculation of Eq. (7); however, this 

will compromise the accuracy as the step error will increase at every 𝑡. Moreover, it will 

greatly affect the solution, as defined at 𝑡𝑓
  (at which solution is required), for large dimension 

systems having large state-spaces, as the step error will be much higher due to dropping of 

probabilities without solving Eq. (7). In large systems, any species may change its behaviour 

after a certain number of firing of reactions triggering inactive reactions in the network that 

will affect the probabilities of the states. If the change in behaviour increases the probabilities 

of certain states, then removing them in an earlier stage is not suitable. 

Through the Bayesian Likelihood Node Projection (𝐵𝐿𝑁𝑃) function, we seek to predict the 

posterior probability based on the parent state’s probability and calculate the likelihood of the 

occurance of reactions that will take the system from the present state to the future state. 

Through 𝐵𝐿𝑁𝑃 we can capture a sense of knowledge about the situation of the system that 

will help us to make better predictions about the future state and still keep good accuracy of 

the solution with optimal domain. 

Statement of the Problem: Assume that 𝑠𝑡𝑎𝑡𝑒(𝑁0
 ) = 𝑋0

  is the present state of the system, 

and further we have two choices to make among 𝑠𝑡𝑎𝑡𝑒(𝑁1
 ) = 𝑋1

  and 𝑠𝑡𝑎𝑡𝑒(𝑁2
 ) = 𝑋2

  based 

on reactions and copy counts (as shown in Figure 3.9) for the future state of the system. 

It is clear that species with higher copy counts will interact quickly compared to other species 

with lower copy counts. Depending upon the association of higher copy count species within 

reactions 𝑅1
  or 𝑅2

 , the system will jump to 𝑋1
  or 𝑋2

  respectively. Now we make an 

assumption that there are almost equal propensities of reactions, as shown in Figure 3.10, at 

any time 𝑡 of the expansion phase. 
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Figure 3.9. 𝑨 and 𝑩 with copy counts 𝟓𝟎 and 𝟐𝟎, respectively, creating a system of two 

species, 𝑨 and 𝑩 with 70, total copy counts. 

 

 

 

 

 

Figure 3.10. Two states 𝑿𝟏
  of 𝑨 and 𝑿𝟐

  of 𝑩 with almost equal propensities. This creates 

a dilemma when choosing the direction for expansion. 
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In such a situation it is important to decide the direction of the expansion when choosing the 

future state of the system as any reaction can occur and take the system to any new state. To 

understand this situation more closely on a node level, we assume a Markov chain graph as 

shown in Figure 3.11 of this system having almost the same number of species count. In 

Figure 3.11, the expansion is at intermediate position as the initial state 𝑠𝑡𝑎𝑡𝑒(𝑁0
 ) = 𝑋0

  is 

already expanded and now the expansion of 𝑠𝑡𝑎𝑡𝑒(𝑁2
 ) = 𝑋2

  is to be undertaken. To calculate 

the likelihood of the occurrence of reactions 𝑅1
 , 𝑅2

 , 𝑅5
 , we consider the propensities 𝑎𝑖,𝑗

  as a 

parameter and ∆𝑎𝑖,𝑗
  depends on the kinetic parameter of the reaction. To assign weight to our 

belief, we deduce a function that will calculate the probability of occurrence of reactions and 

prioritise the expansion in order from reactions resulting in states with high probabilities to 

reaction giving states with low probabilities. It is important to note that none of the 

probabilities will be removed before the calculation of Eq. (9). With this function the 

likelihood of occurance of 𝑅𝑀
  can be computed. 

We consider each node as a junction of the prior reactions {𝑅1
′ …… .𝑅𝑀

′ } with propensities 

{𝑎1,𝑁
′ …… . 𝑎𝑁′𝑁

′ } having prior likelihood values {𝑏1,𝑁
′ …… . 𝑏𝑁′,𝑁

′ } and future reactions  

{𝑅1
 …… .𝑅𝑀

 } with propensities {𝑎1,𝑁′
 …… . 𝑎𝑁,𝑁′

 } having likelihood values {𝑏1,𝑁′
 …… . 𝑏𝑁,𝑁′

 }, 

as given in Figure 3.12  
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Figure 3.11. Current 𝒔𝒕𝒂𝒕𝒆(𝑵𝟐
 ) = 𝑿𝟐

 , and future 𝒔𝒕𝒂𝒕𝒆𝒔(𝑵𝟑,𝟒,𝟓
 ) = (𝑿𝟑,𝟒,𝟓

 , 𝒅𝒍=𝟑
 )  with 

corresponding reactions 𝑹𝟏
 , 𝑹𝟐

 , 𝑹𝟓
  and assumed propensities 𝒂𝟐,𝟑

 = 𝟑𝟖, 𝒂𝟐,𝟒
 = 𝟑𝟗, 𝒂𝟐,𝟓

 =

𝟒𝟎, respectively, at any time 𝒕, given 𝒃𝟎,𝟐
 = 𝟎. 𝟒𝟖𝟕𝟏, 𝒃𝟔,𝟐

 = 𝟎. 𝟓𝟏𝟐𝟖. 

 

 

 

Figure 3.12. Node 𝑵  as a junction of forward and backward reactions 𝑹𝑴
 , where 

𝒂𝟏,𝑵′
′ ,….,𝒂𝑵,𝑵′

′  are propensities of the prior reactions’ and 𝒃𝟏,𝑵
′ ,….,𝒃𝑵′,𝑵

′  are the likelihood 

of the prior reactions. 
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To calculate the likelihood of the reactions, it is important to have prior information about the 

occurrence of reactions. If the expansion is to be done at initial node 𝑠𝑡𝑎𝑡𝑒(𝑁0
 ) = 𝑋0

  (at level 

1) then the prior likelihood value 𝑏𝑁,𝑁′
′  is considered as the initial probability or as ≈1. Once 

the initial node is explored, we can calculate the likelihood of the reactions inductively. To 

calculate the probabilities 𝑏1,𝑁′
 , … . , 𝑏𝑁,𝑁′

  of the occurrence of 𝑅1
 , … . , 𝑅𝑀

 , we first calculate 

the weighted probabilities 𝑃𝑁,1
 (𝜔),…….,𝑃𝑁,𝑁′

 (𝜔) of a system leaving any state by: 

 
𝑎µ
 (𝑋 − 𝑣µ

 ) 

∑ 𝑎µ (𝑋 − 𝑣µ )
𝑀
µ=1

=
Propensity of 𝑅𝑀

  reaction leaving state 𝑋𝑖
  at ƌ𝑙

 

Sum of propensities of all the reactions
leaving state 𝑋𝑖

  at ƌ𝑙
 

 (53) 

 

and multiply with the prior probability 𝑏1,𝑁
′ …… . 𝑏𝑁′,𝑁

′  of the system. This will calculate the 

likelihood inductively in exactly 𝑅𝑀
  that is responsible to shift the system to present 

𝑠𝑡𝑎𝑡𝑒(𝑁𝑖
 ) = 𝑋𝑖

  at 𝑡, leading to a function, 

 𝑏(𝑁𝑁1,..𝑁𝑀
 |𝑏1,𝑁….𝑁′,𝑁

′ ) =
𝑎µ
 (𝑋 − 𝑣µ

 ) 

∑ 𝑎µ (𝑋 − 𝑣µ )
𝑀
µ=1

∗ 𝑏𝑁′,𝑁
′ (𝑋 − 𝑣µ

 )′  (54) 

where, 

 𝑃𝑁,1….𝑁,𝑁′
 (𝜔) =

𝑎µ
 (𝑋 − 𝑣µ

 ) 

∑ 𝑎µ (𝑋 − 𝑣µ )
𝑀
µ=1

 , (55) 

 

 𝑏(𝑁𝑁1,..𝑁𝑀
 |𝑏1,𝑁….𝑁′,𝑁

′ ) = 𝑃𝑁,1….𝑁,𝑁′
 (𝜔) ∗ 𝑏𝑁′,𝑁

′ (𝑋 − 𝑣µ
 )′. (56) 

 

Once 𝑏(𝑁𝑁1,..𝑁𝑀
 |𝑏1,𝑁….𝑁′,𝑁

′ ) is calculated for all the adjacent nodes, the values are arranged in 

descending order. Every value is bound to one reaction and represents the likelihood of the 

occurance of that reaction that takes the system from the present node to the child nodes. 

Based on likelihood values (highest to lowest) the corresponding reactions are considered one 

by one and labelled as true events for expansion. For example, if system has 𝑅1
 , 𝑅2

 , 𝑅3
  

reactions that bound to 𝐵𝐿𝑁𝑃 likelihood values in order from highest to lowest, respectively, 

then it is considered as three events of the system that takes the system to new state. When 𝑅1
  

is considered for expansion, 𝑅2
  and 𝑅3

  are labelled as false events and 𝑅1
  as the true event. 

When second highest 𝐵𝐿𝑁𝑃 likelihood value is considered, which is for 𝑅2
 , then it is labelled 

as a true event and the others, 𝑅1
 , 𝑅3

  are labelled as false. Similarly, the last and lowest 



102 

 

𝐵𝐿𝑁𝑃 likelihood value is for 𝑅3
 , which is labelled as a true event and the others as false 

events. All states are added in the domain in order from the 1st true event to the 3rd true event. 

The Eq. (56) of probabilities 𝑏(𝑁𝑁1,..𝑁𝑀
 |𝑏1,𝑁….𝑁′,𝑁

′ ) is what we call a 𝐵𝐿𝑁𝑃 function. 

In Figure 3.11 Markov chain tree, for selection (see Appendix D for example) present at level 

2 (assuming that the initial node is already expanded), we calculate the weighted probability 

of a system leaving 𝑠𝑡𝑎𝑡𝑒(𝑁2
 ) = 𝑋2

  by: 

𝑃2,3
 (𝜔) =

𝑎µ
 (𝑋 − 𝑣µ

 ) 

∑ 𝑎µ (𝑋 − 𝑣µ )
3
µ=1

= 0.3247 

similarly, 𝑃2,4
 (𝜔) = 0.3333 and 𝑃2,5

 (𝜔) = 0.3418. 

At level 2, the conditional probability of the occurrence of reaction 𝑅1
  given the probability of 

occurrence of reaction 𝑅1
  at level 1 is given by: 

𝑏(𝑁2,3
 |𝑏0,2

′ ) =
𝑎µ
 (𝑋 − 𝑣µ

 ) 

∑ 𝑎µ (𝑋 − 𝑣µ )
3
µ=1

∗ 𝑏0,2
′ (𝑥 − 𝑣µ

 )′, 

and, similarly, the occurrence of reaction 𝑅1
  at level 2 given the probability of occurrence of 

reaction 𝑅6
  at level 1, is given by: 

𝑏(𝑁2,3
 |𝑏6,2

′ ) =
𝑎µ
 (𝑋 − 𝑣µ

 ) 

∑ 𝑎µ (𝑋 − 𝑣µ )
3
µ=1

∗ 𝑏6,2
′ (𝑥 − 𝑣µ

 )′. 

If at level 1, 𝑠𝑡𝑎𝑡𝑒(𝑁1
 ) = 𝑋1

  and at level 2, 𝑠𝑡𝑎𝑡𝑒(𝑁2
 ) = 𝑋2

  are explored through 𝑅1
  then we 

say that this is a true event and temporarily consider other events false events with respect to 

the other reactions. Such a condition holds true for the other two cases, when, at level 1, 

𝑠𝑡𝑎𝑡𝑒(𝑁1
 ) = 𝑋1

  is explored through 𝑅1
  followed by an exploration of 𝑠𝑡𝑎𝑡𝑒(𝑁2

 ) = 𝑋2
  

through either by 𝑅2
  or 𝑅5

 . Given 𝑏0,2
′ (𝑋 − 𝑣µ

 )′ and 𝑏6,2
′ (𝑋 − 𝑣µ

 )′, we will calculate the 

likelihood of all the 𝑅𝑀
  events, as given in Table 3.1. The likelihood values of future 

reactions cannot be equal as they are based on the probabilities of occurrance of prior 

reactions. 
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Table 3.1. Events with the likelihood of the future reactions. Where, True events define 

the expansion of nodes. 

𝒃𝑵,𝑵′
  𝑵𝟎,𝟐

  𝑵𝟔,𝟐
  𝒃𝑵,𝑵′

 (Value) 𝑹𝒏𝒆𝒙𝒕
  

𝑏(𝑁2,3
 |𝑏0,2

′ ) True False 0.1581 𝑅1,1
  

𝑏(𝑁2,3
 |𝑏6,2

′ ) False True 0.1665 𝑅6,1
  

𝑏(𝑁2,4
 |𝑏0,2

′ ) True False 0.1623 𝑅1,2
  

𝑏(𝑁2,4
 |𝑏6,2

′ ) False True 0.1709 𝑅6,2
  

𝑏(𝑁2,5
 |𝑏0,2

′ ) True False 0.1664 𝑅1,5
  

𝑏(𝑁2,5
 |𝑏6,2

′ ) False True 0.1752 𝑅6,5
  

 

From Figure 3.11 and Table 3.1, we can infer, based on the prior reactions for 𝑅𝑀
 , where 

𝑀 = {1,6} as such that: 

Case 1 (𝑹𝟏
 ): At level 2, if the prior reaction is 𝑅1

  and holds a True event for 𝑁0
 ⟶𝑁2

  then: 

𝑏(𝑁2,5
 |𝑏0,2

′ ) >  𝑏(𝑁2,4
 |𝑏0,2

′ ) > 𝑏(𝑁2,3
 |𝑏0,2

′ ) 

as per 𝑏𝑁,𝑁′
  and likelihood of occurrence of reactions will be in the order 𝑅5

 > 𝑅2
 > 𝑅1

 . 

Case 2 (𝑹𝟔
 ): At level 2, if the prior reaction is 𝑅6

  and holds a True event for 𝑁6
 ⟶𝑁2

  then  

𝑏(𝑁2,5
 |𝑏6,2

′ ) > 𝑏(𝑁2,4
 |𝑏6,2

′ ) > 𝑏(𝑁2,3
 |𝑏6,2

′ ) 

as per 𝑏𝑁,𝑁′
  and likelihood of occurrence of reactions will be in the order 𝑅5

 > 𝑅2
 > 𝑅1

 . 

There will be 𝑀 number of cases (equal to elementary chemical reaction channels) if there are 

𝑅𝑀
′  prior reactions in the system that bring the system to the current node and the value of the 

likelihood will change based on 𝑏𝑁′,𝑁
′ (𝑋 − 𝑣µ

 )′. The 𝐵𝐿𝑁𝑃 function cannot be used 

standalone for expansion because it only assign weightage to direction for expansion. 

Therefore, in Chapter 4, we will derive the condition for our expansion strategies to work with 

the Markov chain graph state-space and define the criteria for the formation of bounds 

(domain formed at anytime 𝑡) with time. The 𝐵𝐿𝑁𝑃 function with expansion strategies will 

choose the probable states in large biochemical systems where it is important to capture the 

moments at time 𝑡 that define the behaviour of a system. 𝐵𝐿𝑁𝑃 will be useful in identifying 

the most active reactions in the system while guiding the expansion towards the set of states 

with high probability mass. 
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3.6 Complexity of Optimal Solutions 

Computational complexity, such as Time and Space, depend on the size of the Markov chain 

tree and quantifies the amount of time and memory required to run the algorithm as a function 

of the length and weight of the input that is measured together in the Order of growth. The 

space complexity is the summation of static (constants and instructions) and variable (run-

time variables, recursion) parts of the solution. Computing speed and memory has been 

greatly improved by recent advancements in computer systems (Devi et al., 2011; Nasar, 

2016). Therefore, for the algorithm performance review, our prime focus will be on Time 

(run-time) first and then Space (memory). 

The total amount of time required in problem solving is equivalent to the summation of 

compilation and run-time. It is also not necessary that routines should be compiled before 

running. The time complexity will be the focus in our study when it comes to measuring 

computational performance. To interpret the actions of the algorithm for inputs (particularly 

large values) it is important to discuss the theory of asymptote analysis (𝛺, 𝑂, 𝛩) as 

preliminary. The asymptote is the curve (or a line) that a graph proceeds towards but never 

converges with. The asymptote of a curve is particularly a line, such that the interspace 

between line-curve tends to 0, while approaching ∞ (or higher value). 

For the Order of growth we have lower limit which is indicated by 𝛺(𝐴𝑙𝑔𝑜(𝑦)), where 𝛺 is 

Big-omega; therefore, definition: 

Definition 3.4. Let 𝑓(𝑦) and 𝐴𝑙𝑔𝑜(𝑦) be the positive real value functions, where 𝑓(𝑦) is a 

function of integer 𝑦, 𝑦0
 , with positive constant 𝑐. Then 𝑓(𝑦) is 𝐴𝑙𝑔𝑜(𝑦) such that 

𝛺(𝐴𝑙𝑔𝑜(𝑦)) defines the asymptotic lower limit and a set of functions,  

 𝛺(𝐴𝑙𝑔𝑜(𝑦)) = {0 ≤ 𝑐 ∗ 𝐴𝑙𝑔𝑜(𝑦) ≤ 𝑓(𝑦)         𝑓𝑜𝑟 𝑎𝑙𝑙 𝑦 ≥  𝑦0
 }. (57) 

Similarly, for the Order of growth we have an upper limit, which is indicated by 𝑂(𝐴𝑙𝑔𝑜(𝑦)), 

where 𝑂 is a Big-oh; therefore, definition: 

Definition 3.5. Let 𝑓(𝑦) and 𝐴𝑙𝑔𝑜(𝑦) be the positive real value functions, where 𝑓(𝑦) is a 

function of integers 𝑦, 𝑦0
 , with a positive constant 𝑐. Then 𝑓(𝑦) is 𝐴𝑙𝑔𝑜(𝑦) such that 

𝑂(𝐴𝑙𝑔𝑜(𝑦)) defines the asymptotic lower limit and a set of functions, 

 𝑂(𝐴𝑙𝑔𝑜(𝑦)) = {0 ≤ 𝑓(𝑦) ≤ 𝑐 ∗ 𝐴𝑙𝑔𝑜(𝑦)         𝑓𝑜𝑟 𝑎𝑙𝑙 𝑦 ≥  𝑦0
 }. (58) 

Lastly, for the Order of growth we have a tight limit, which is indicated by 𝛩(𝐴𝑙𝑔𝑜(𝑦)), 
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where 𝛩 is Big-theta; therefore, definition: 

Definition 3.6. Let 𝑓(𝑦) and 𝐴𝑙𝑔𝑜(𝑦) be the positive real value functions, where 𝑓(𝑦) is a 

function of integers 𝑦, 𝑦0
 , with positive constants 𝑐1

 , 𝑐2
 . Then 𝑓(𝑦) is 𝐴𝑙𝑔𝑜(𝑦) such that 

𝛩(𝐴𝑙𝑔𝑜(𝑦)) defines the asymptotic tight limit and a set of functions, 

𝛩(𝐴𝑙𝑔𝑜(𝑦)) = {0 ≤ 𝑐1
 ∗ 𝐴𝑙𝑔𝑜(𝑦) ≤ 𝑓(𝑦)  ≤ 𝑐2

 ∗ 𝐴𝑙𝑔𝑜(𝑦)           𝑓𝑜𝑟 𝑎𝑙𝑙 𝑦 ≥  𝑦0
 }. (59) 

𝛩(𝐴𝑙𝑔𝑜(𝑦)) provides more information than  𝛺(𝐴𝑙𝑔𝑜(𝑦)) and 𝑂(𝐴𝑙𝑔𝑜(𝑦)); however, the 

later two provide a specific idea about the amount of time (minimum for 𝛺 and maximum for 

𝑂) required to run the algorithm. The lower value order transitions between the nodes in the 

tree are relatively insignificant for large biochemical models and will generally ignored in the 

Order of growth. Therefore, while working with our algorithm, mostly 𝑂(𝐴𝑙𝑔𝑜(𝑦)) will be 

considered because it gives the upper limit of the execution time (Woeginger, 2004).  
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3.7 Discussion and Conclusions 

In this chapter, we have defined the principles of true events and their probabilities in the 

sample space. Further, the phenomenon of random variables as objects of a class called 

stochastic processes were defined for the sample space. This sample space is associated with  

finite state Markov chains based on Markov property to create a sample space for biochemical 

reaction networks. Large biochemical reaction networks usually have 𝑅𝑀(𝑓𝑠)
  and 𝑅𝑀(𝑠𝑟)

  types 

of forward and reversible reactions, which further categorises the states into transient and 

communicating states. The transient state usually represents the forward reaction if it is 

shifting the system to a unique state; whereas, the communicating state represents the 

reversible reaction of the system which shifts the system to a non-unique state. 

As we were interested in unique states while expansion of the state-space we assumed the 

reducibility or simplification of the finite state Markov chain by visualising it as Markov 

chain tree to define the biochemical system procesess to exhibit the transition matrix as a 

directed tree of its associated graph. The transition between different nodes of the graph is 

represented by forward and reversible reactions. When concatenation is done in walks 

between the nodes, this represents the set of biochemical reactions of the system. However, 

when this concatenation is not considered it makes them directed acyclic graphs (𝐷𝐴𝐺), 

called as Markov chain tree – a special type of graph that still represents the set of 

biochemical reactions even when there are no cycles between the nodes.  

The initial state and end state of the biochemical system, together with the problem space, 

bring into existence the problem instance where all the searching should take place. This 

creates the problem state-space graph for large biochemical systems where functions or 

operators are applied to search for the new state of the system by going to new nodes in the 

graph. To deal with the problem instance, we have introduced the standards of artificial 

intelligence (𝐴𝐼) into the state-space expansion of biochemical systems for the solution of the 

CME. Recent trends in 𝐴𝐼 have motivated us to utilise the benefits of its searching standards 

architecture to treat problem state-space graph as sample space. To make it compatible for 

searching, we first defined the implicit successor, which takes the action on present state to 

reach future state. To retain the search track in the graph, we have defined the new data 

structure for the state-space of a biochemical system. 

Consequently, to enforce the direction of expansion based on reactions that are firing at high 

rates at a particular time point, we have developed the post successor Bayesian Likelihood 
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Node Projection (𝐵𝐿𝑁𝑃) function (Eq. (56)) based on Bayes’ theorem to support the implicit 

successor movement of the expansion. The 𝐵𝐿𝑁𝑃 will be useful in identifying the most active 

reactions in the system based on propensity values while guiding the expansion towards the 

set of states with high probability mass. Lastly, we have discussed about the time and space 

complexity for algorithm analysis to understand important definitions. 
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In this chapter we present various algorithms and methods that assist in the systematic 

expansion of the domain arising in biochemical network problems. The curse of 

dimensionality usually makes it too challenging to solve the CME directly and so it is 

important to choose the right strategy for updating the state-space for the best approximation 

that contributes to the most of the probability mass of the system. A large state-space results 

in a massive size of the transition rate matrix 𝐴 and the time complexity of the evaluation of 

the matrix exponential increases. Therefore, we propose Intelligent State Projection (𝐼𝑆𝑃) 

algorithm, which aims to improve the strategy of the state-space expansion and computing 

efficiency. 

In this chapter, we first give an overview of the methods in section 4.1 in terms of the 

modules and sub-modules. In section 4.2, we derive and discuss the expansion conditions in 

detail and the complexity of the data structure. In sections 4.3 and 4.4, we give the details of 

the 𝐼𝑆𝑃 variants - Latitudinal Search and Longitudinal Latitudinal Search of Intelligent State 

Projection method including expansion, updation, and its performance under different 

conditions. We also demonstrate the application of these variants on biological systems in the 

respective sections. In section 4.5, we will give a brief discussion and the chapter conclusions. 

4.1 Introduction 

A number of aspects need to be taken into consideration when developing a method to 

represent, explore and update the state-space of biochemical systems. The aspects that must 

be addressed are: what is the end state of the system at particular moment, what are the 

actions required to reach the end state, and what details need to be represented in the state-

space description of the biochemical system that compliments its Markov process. We laid the 

foundation of these aspects previously in Chapter 3, and we will now define the infrastructure 

of our comprehensive method and derive the conditions for expansion. 

To understand and predict the dynamics of state-space responses in biochemical systems, we 

developed an analytical method called Intelligent State Projection (𝐼𝑆𝑃) that integrates the 

reactions propensities and parameters describing the Markovian processes through nodes that 

govern the states of the system. The 𝐼𝑆𝑃 states expansion strategy is based on fundamentals 
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(as discussed in section 3.5), and the relative successor operator or function that perform 

operations on its inputs. In 𝐼𝑆𝑃, most of the biochemical network state-space problems can be 

formulated as searches and solved by reducing them to one of searching a graph or a tree. To 

use this approach, we will consider the successor operator 𝑆𝑢𝑐
  together with 𝐵𝐿𝑁𝑃, which 

defines the sequence of actions, leading from the initial state to the end state at different time 

interval, that lead to the solution. The number of successive steps required for the solution of 

a problem are not known a priori in 𝐼𝑆𝑃, but they are often determined through an exploration 

of the alternatives using a systematic trial and error strategy. 

The 𝐼𝑆𝑃 method can be classified into two subroutines − Latitudinal Search (𝐿𝐴𝑆) and 

Longitudinal Latitudinal Search (𝐿𝑂𝐿𝐴𝑆) consisting of several modules that incorporates a 

set of inputs and functions within eight compartments. Figure 4.1 depicts the modules of the 

𝐼𝑆𝑃, and its integrated form is discussed later in sections 4.3 and 4.4. The 𝐼𝑆𝑃 has six major 

modules (steps): (i) state module; (ii) explore module; (iii) sort module; (iv) dictionary 

module; (v) update module; and (vi) queue/stack module, (see Table 4.1). First, the input 

condition components are identified in the model, which are then input into different 

functions within the modules. In addition to the modules that are marked in Figure 4.1, the 

steps of both the 𝐼𝑆𝑃 variants are presented separately in Table 4.2 and Table 4.7. 

  



110 

 

 

 

 

 

 

 

 

Figure 4.1. Comprehensive 𝑰𝑺𝑷 method flow chart. A description of the modules (steps), 

sub-modules and the list of derived components considered in 𝑰𝑺𝑷 are provided briefly in 

Table 4.1. 
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Table 4.1. Modules/sub-modules, components of the comprehensive 𝑰𝑺𝑷 method. 

Module 

(Steps) 

Sub-module (Steps) Components 

Input 

module 
− 𝑁0

 , 𝑎µ
 , 𝑉µ

 , 𝜏𝑚, 𝑡𝑓
 , 𝑡𝑠𝑡𝑒𝑝

  

Provide inputs to the sub-modules at 𝑡𝑑
  

State 

module 
𝑁𝑖
 = (𝑋0

 , ƌ𝑙
 ) 𝑁𝑖

 , 𝑋0
 , ƌ𝑙

 , 𝑡𝑑
  

Describes the graph initial node and corresponding set of states at 𝑡𝑑
  

Explore 

module 
1 − 𝐼𝑇𝑒𝑥𝑝(𝑡. 𝐴𝑗

 ). 𝑃(𝑡)(𝑋0
 ) ≥  𝜏𝑚(𝑙𝑒𝑎𝑘) 

or 

1 − 𝐼𝑇𝑒𝑥𝑝(𝑡𝑓
 𝐴𝑗
 ). 𝑃(𝑡)(𝑋0

 ) ≥  𝜏𝑚 ∗
(no.of 𝑅𝑀(𝑠𝑟)

 )

(no.of 𝑅𝑀(𝑓𝑠)
 )

  

or 

1 − 𝐼𝑇𝑒𝑥𝑝(𝑡𝑓
 𝐴𝑗
 ). 𝑃(𝑡)(𝑋0

 ) ≥  𝜏𝑚 ∗
(no.of 𝑅𝑀(𝑓𝑠)

 )

(no.of 𝑅𝑀(𝑠𝑟)
 )

  

𝐴𝑗
 , 𝑒𝑥𝑝, 𝑋𝑖

 , 𝑋0
 , 𝜏𝑚, 𝑡, 𝐼𝑇 

Defines the validation functions for exploration at 𝑡 

Sort module  𝑒𝑥𝑝(𝑡. 𝐴𝑗
 ). 𝑃(𝑡)(𝑋0

 ) 

 𝑃(𝑡)(𝐗𝐾
 ) ≥ 𝜏𝑚(𝑙𝑒𝑎𝑘) > 𝑃

(𝑡)(𝐗𝐾
′ ) 

 𝐗𝐾
 ⟵ 𝐗𝐾

 − 𝐗𝐾
′  

𝐴𝑗
 , 𝑒𝑥𝑝, 𝑋𝑖

 , 𝑋0
 , 𝜏𝑚(𝑙𝑒𝑎𝑘), 

𝑡, 𝐗𝐾
 , 𝐗𝐾

′  

Follows the sorting and bunking of 𝑃(𝑡)(𝐗𝐾
′ ) 

Dictionary 

module 
 𝐷𝑖𝑐𝑡 

 𝐧𝐾
 = (𝐗𝐾

 , ƌ𝑙
 , Ͼ

𝑁𝑖
 ,𝑁𝑖
′ 

 (𝑚𝑖𝑛)) 

𝐷𝑖𝑐𝑡, 𝐗𝐾
 , ƌ𝑙

 , 𝐧𝐾
 , 𝑅𝑀

 , 

Ͼ
𝑁𝑖
 ,𝑁𝑖
′ 

 (𝑚𝑖𝑛) 

Accounts for mapping of nodes by keeping the track of transitions at 𝑡. 

Update 

module 
 𝐧𝐾

 = (𝐗𝐾
 , ƌ𝑙

 , Ͼ
𝑁𝑖
 ,𝑁𝑖
′ 

 (𝑚𝑖𝑛)) ∈ 𝑑𝑜𝑚𝑎𝑖𝑛,  

 𝑑𝑜𝑚𝑎𝑖𝑛 ⟵ 𝑑𝑜𝑚𝑎𝑖𝑛𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠
 ∪ 𝑑𝑜𝑚𝑎𝑖𝑛, 

 𝐧𝐾
 = (𝐗𝐾

 , ƌ𝑙
 , Ͼ

𝑁𝑖
 ,𝑁𝑖
′ 

 (𝑚𝑖𝑛)) ∉ 𝑑𝑜𝑚𝑎𝑖𝑛, 

 𝑏(𝑁𝑁1,..𝑁𝑀
 |𝑏1,𝑁….𝑁′,𝑁

′ ) 

 𝑞𝑢𝑒𝑢𝑒 or 𝑠𝑡𝑎𝑐𝑘. 

𝐗𝐾
 , ƌ𝑙

 , 𝐧𝐾
 , 𝑅𝑀

 , 

Ͼ
𝑁𝑖
 ,𝑁𝑖
′ 

 (𝑚𝑖𝑛), 𝑃𝑁,𝑁′
 (𝜔), 

𝑏𝑁′,𝑁
′ , 𝑞𝑢𝑒𝑢𝑒 or 𝑠𝑡𝑎𝑐𝑘, 

𝑑𝑜𝑚𝑎𝑖𝑛𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠
 . 

Responsible for updating the states in the domain; and pre-conditioning at 𝑡. 

Queue or 

stack 

module 

 𝐧𝐾
 = (𝐗𝐾

 , ƌ𝑙
 , Ͼ

𝑁𝑖
 ,𝑁𝑖
′ 

 (𝑚𝑖𝑛)), 

 𝑞𝑢𝑒𝑢𝑒 or 𝑠𝑡𝑎𝑐𝑘 

𝐗𝐾
 , ƌ𝑙

 , 𝐧𝐾
 , 𝑅𝑀

 , 

Ͼ
𝑁𝑖
 ,𝑁𝑖
′ 

 (𝑚𝑖𝑛), 𝑞𝑢𝑒𝑢𝑒 or 

𝑠𝑡𝑎𝑐𝑘, 𝑑𝑜𝑚𝑎𝑖𝑛𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠
 . 
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Consider new 𝐧𝐾
  unique set of nodes for addition in the domain. 

Bound 

module 
 𝑐𝑜𝑢𝑛𝑡(ƃ𝑙𝑖𝑚𝑖𝑡

 ) = ƃ𝑙𝑖𝑚𝑖𝑡
 , 

 𝐵𝑜𝑢𝑛𝑑𝑢𝑝𝑝𝑒𝑟
 = {𝑑𝑜𝑚𝑎𝑖𝑛}, 

 𝐵𝑜𝑢𝑛𝑑𝑙𝑜𝑤𝑒𝑟
 ← 𝐵𝑜𝑢𝑛𝑑𝑢𝑝𝑝𝑒𝑟

 ,  

 𝑐𝑜𝑢𝑛𝑡(ƃ𝑙𝑖𝑚𝑖𝑡
 ) < ƃ𝑙𝑖𝑚𝑖𝑡

 . 

𝑐𝑜𝑢𝑛𝑡(ƃ𝑙𝑖𝑚𝑖𝑡
 ), ƃ𝑙𝑖𝑚𝑖𝑡

 , 

𝐵𝑜𝑢𝑛𝑑𝑙𝑜𝑤𝑒𝑟
 , 𝐵𝑜𝑢𝑛𝑑𝑢𝑝𝑝𝑒𝑟

 . 

Defines 𝐵𝑜𝑢𝑛𝑑𝑙𝑜𝑤𝑒𝑟
  for next iteration and conditions if 𝑐𝑜𝑢𝑛𝑡(ƃ𝑙𝑖𝑚𝑖𝑡

 ) reaches 

the ƃ𝑙𝑖𝑚𝑖𝑡
 . 

(see Notations and section 4.2, 4.3 and 4.4 for details) 
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The state module describes the initial node of the graph and maps with the corresponding set 

of states at any time, 𝑡𝑑
 . It takes the initial values of the components from the input module 

and stores the information of a number of nodes, sets of states, depth of nodes in the state-

space or the bound limit in every iteration. 

The explore module defines the validation functions for exploration. At 𝑡 it flags the current 

node to be explored, and looks for a set of child nodes carrying a set of states, as long as the 

validation Eq. (82) (or Eq. (80) or (81) based on section 4.2.2 conditions) holds true; 

otherwise it stops the exploration. The cease of validation defines the stopping criteria of the 

exploration (see section 4.2). 

The sort module organises the probabilities based on the conditions of the sub-module (as 

shown in Table 4.1) and bunks the probabilities that provide minimal weightage in the 

approximation as it is computationally expensive to re-compute these probabilities up to 𝑡𝑓
 . 

The dictionary module keeps track of adjacent sets of 𝐧𝐾
 ∈ 𝐧𝐽

  nodes in real-time and walks 

between them. The dictionary 𝐷𝑖𝑐𝑡 is a compressed row format that records different nodes in 

a single transition, but uses a similar 𝐧𝐾
  set of nodes in all possible transitions. 

The update module is responsible for pre-conditioning and updating the domain with the new 

set of new states and validating it for duplicate states as a result of the previous iterations. The 

corresponding set of nodes carrying a set of states are not considered if the states are already 

present in the domain; however the changes in propensity values are updated. 

The queue and stack module provides a unique node to the successor operator Eq. (46) to 

consider new states by pulling the node out from the queue in 𝐿𝐴𝑆 or by popping the top node 

from the stack in 𝐿𝑂𝐿𝐴𝑆. In 𝐿𝐴𝑆, these new states act as an input to the state module for the 

next iteration, as well as for approximation methods (Dinh et al., 2016; Fallis et al., 2012; 

Huy D.Vo et al., 2017; Wolf et al., 2010) while, in 𝐿𝑂𝐿𝐴𝑆, it goes through a bound module, 

which defines the upper and lower bounds of the iteration and the bound limit that satisfies 

the sub-module conditions. 

These modules and sub-modules constitute the 𝐼𝑆𝑃 method, such that they track key changes 

in the components that follows the changes in the reaction propensities by population and 

activation of the species and describes the dynamics of the biochemical system. This method 

also permits the time form quantification of the state-space based on the size and dimensions 

of the model. Further details of the method conditions are discussed in the following sections. 
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4.2 Derivation of the Method Conditions 

In this section we derive the conditions and theory in substantial detail to prove the efficiency 

of our 𝐼𝑆𝑃 method and test them by computing real biochemical models separately in the 

following chapters. We also compare the computation at different times points to study the 

state-space expansion. The 𝐼𝑆𝑃 infrastructure gives the facility to employ the data structure 

(as discussed in Chapter 3) to visualise the state-space and the expansion of states built upon 

an intelligent search and tracking (as discussed in 3.5). To design the time stepping expansion 

criteria, we first consider the probability exponential form of the CME, given by Eq. (9), to 

construct the domain closest to the optimum (small as possible) sized domain by being able to 

cheaply find the minimum number of states with a maximum probability mass. 

4.2.1 Expansion Criterion for States Space! 

The states are indexed by {1,2…… .𝐾} in the domain denoted by set 𝐗𝐽
 . To derive the time 

based on the state-space expansion conditions, the probability exponential form of the CME 

Eq. (9) is evaluated for approximation up to the desired final time 𝑡𝑓
  in steps. To focus on the 

probable states that contribute most to the probability mass in the domain, we first define the 

set of non-probable states (having the least probability mass) as 𝐗𝐾
′ , which are to be bunked. 

A number of the states will usually be infinite without selecting probable states for the 

domain. By doing this we can avoid unnecessary recalculation of probabilities and decrease 

the computational efforts by keeping the domain small. This bunking can also be applied to 

the initial distribution of the system at 𝑡0
 . If submatrix 𝐴𝑗

′  contains the non-probable set 𝐗𝐾
′  of 

states, then probability of set will be, 

 𝑃(𝑡)(𝐗𝐾
′ ) = 𝑒𝑥𝑝(𝑡. 𝐴𝑗

′ ). 𝑃(𝑡)(𝑋0
 ). (60) 

The criterion for defining the non-probable states is determined by the 𝜏𝑚 tolerance value. 

𝐴𝑗
′ will only be considered to have non-probable states if, 

 𝐴𝑗
′ = {

nonprobable states, if 𝑃(𝑡)(𝐗𝐾
′ ) < 𝜏𝑚

else,                                                                       

probable states,                if 𝑃(𝑡)(𝐗𝐾
′ ) ≥ 𝜏𝑚 

 (61) 

Similarly, submatrix 𝐴𝑗
  has a probable set 𝐗𝐾

  of states if 𝑃(𝑡)(𝐗𝐾
 ) ≥ 𝜏𝑚 otherwise, the states 

from 𝐗𝐾
  are bunked to 𝐗𝐾

′  if 𝑃(𝑡)(𝐗𝐾
 ) < 𝜏𝑚. For any iteration, if 𝑃(𝑡)(𝐗𝐾

′ ) ≥ 𝜏𝑚 then (from 

Eq. (61)) some states from 𝐗𝐾
′  return to 𝐗𝐾

  in the next iteration to increase the accuracy of the 

approximate solution (Ӕ). The column sum of the approximate solution (Ӕ) of these states is 
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defined as: 

 Ӕ = 𝐼𝑇𝑒𝑥𝑝(𝑡𝑓
 𝐴𝑗
 ). 𝑃(𝑡)(𝑋0

 ), (62) 

where, 𝐼 = (1, … 1)𝑇 is of an appropriate length. Declaring some states as non-probable and 

removing them before calculation of the probabilities as seen in (Sunkara, 2013) will decrease 

the accuracy of Ӕ with the cumulative step errors. This can be validated from the state 

probabilities that have been ignored in the domain: 

 Ӕ = 1 − 𝑃(𝑡)(𝐗𝐾
′ ). (63) 

We define the step error in terms of the probabilities bunked. If 𝑒𝑟𝑟𝑜𝑟
 ∝ 𝑃(𝑡)(𝐗𝐾

′ ) then, 

 𝑒𝑟𝑟𝑜𝑟
 = 1 − 𝐼𝑇𝑒𝑥𝑝(𝑡𝑓

 𝐴𝑗
 ). 𝑃(𝑡)(𝑋0

 ) (64) 

                                𝑒𝑟𝑟𝑜𝑟
 = 1 −Ӕ (65) 

Every expansion step explores at least one new state and change {𝐗𝐾
 } but not necessarily 

{𝐗𝐾
′ } as long as: 

 𝑃(𝑡)(𝐗𝐾
 ) ≥ 𝜏𝑚 > 𝑃

(𝑡)(𝐗𝐾
′ ), (66) 

is satisfied. For ideal systems with a given initial probability of 𝑃(𝑡0
 )(𝑋0

 ), the {𝐗𝐾
′ } should be 

null and so 𝑃(𝑡𝑓
 )(𝐗𝐾

′ ) = 0. For such systems {𝐗𝐾
 }, {𝐗𝐾

′ } 𝜖 {𝐗𝐽
 } for final projection and, 

 𝑃(𝑡𝑓
 )(𝐗𝐽

 ) = 𝑃(𝑡𝑓
 )(𝐗𝐾

 ) + 𝑃(𝑡𝑓
 )(𝐗𝐾

′ ), (67) 

 𝑃(𝑡𝑓
 )(𝐗𝐽

 ) = 𝑃(𝑡𝑓
 )(𝐗𝐾

 ) + 0. (68) 

𝑃(𝑡𝑓
 )(𝐗𝐽

 ) in Eq. (68) is the solution of Eq. (7) after the state-space is expanded to 𝐗𝐾
 . 

However, for large biochemical systems, Eq. (68) may not hold completely true due to the 

nature (fast (𝑅𝑀(𝑓𝑠)
 ) and slow (𝑅𝑀(𝑠𝑟)

 )) of some reactions present in the system; therefore, the 

condition in Eq. (61) will pass the states from 𝐗𝐾
′  to 𝐗𝐾

  and then the states with lowest 

probabilities will be bunked when: 

 𝑃(𝑡)(𝐗𝐾
′ ) <<  𝑃(𝑡𝑓

 )(𝐗𝐾
 ), (69) 

which improve the solution. Removing without calculating the probabilities of some states is 

one of the lag, current methods (Dinh et al., 2016, Dinh et al., 2017; Munsky et al., 2006, 
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Munsky et al., 2007; Sunkara, 2013; Sunkara et al., 2010; Wolf et al., 2010) are facing over 

the cost of achieving the truncated domain and saving computation time. To address this, we 

set a 𝑃(𝑡)(𝐗𝐾
′ ) leakage point based on: 

 𝑃(𝑡)(𝐗𝐾
 ) ≥ 𝜏𝑚(𝑙𝑒𝑎𝑘) > 𝑃

(𝑡)(𝐗𝐾
′ ), (70) 

where, 𝜏𝑚(𝑙𝑒𝑎𝑘) for systems will reform the Eq. (66) as: 

 𝑃(𝑡)(𝐗𝐾
 ) ≥ 𝜏𝑚 ∗ 0.4 > 𝑃

(𝑡)(𝐗𝐾
′ ), (71) 

which would then zip the 𝐗𝐾
′  further by leaking the highest probabilities to 𝐗𝐾

  so the 

probability sum is no longer conserved. The motivation of setting this ration is to reconsider 

(up to 40% of 𝐗𝐾
′ ) the bunked states to improve the Ӕ solution and decrease the expansion 

step error. While modelling the biochemical system, if slow and fast reaction criterion is 

considered during expansion, then 𝜏𝑚(𝑙𝑒𝑎𝑘) will be defined as, 

 

=

{
 
 
 

 
 
 𝜏𝑚 ∗

(no. of 𝑅𝑀(𝑠𝑟)
 )

(no. of 𝑅𝑀(𝑓𝑠)
 )

 , if no. of 𝑅𝑀(𝑠𝑟)
 < no. of 𝑅𝑀(𝑓𝑠)

 

else,                                                                                                  

𝜏𝑚 ∗
(no. of 𝑅𝑀(𝑓𝑠)

 )

(no. of 𝑅𝑀(𝑠𝑟)
 )

 , if no. of 𝑅𝑀(𝑠𝑟)
 > no. of 𝑅𝑀(𝑓𝑠)

  

else,                                                                                                  
𝜏𝑚 ∗ 0.4,                                if no. of 𝑅𝑀(𝑓𝑠)

 = no. of 𝑅𝑀(𝑠𝑟)
 .

 

 

 

(72) 

We consider Eq. (71) criterion throughout the experiments in this study. The conditions in 

Eqs. (71) and (72) will then lead to an optimal set of states as, 

 𝐗𝐾
 ⟵ 𝐗𝐾

 − 𝐗𝐾
′ , (73) 

at 𝑡𝑑
  in the domain. When 𝐗𝐾

  is updated at every 𝑡𝑠𝑡𝑒𝑝
  before reaching 𝑡𝑓

 , it creates several 

intermediate domains which we define as 𝐵𝑜𝑢𝑛𝑑. At 𝑡0
 , the domain only has the initial state 

of the system; therefore, we define the 𝐵𝑜𝑢𝑛𝑑 as: 

 𝐵𝑜𝑢𝑛𝑑𝑙𝑜𝑤𝑒𝑟
 = {𝑑𝑜𝑚𝑎𝑖𝑛, ƌ𝑙=1

 }. (74) 

After a single 𝑡𝑠𝑡𝑒𝑝
  of expansion, if 𝐗𝐾

  is updated with a new state or set of states, it creates:  

 𝐵𝑜𝑢𝑛𝑑𝑢𝑝𝑝𝑒𝑟
 = {𝑑𝑜𝑚𝑎𝑖𝑛, ƌ𝑙

 } (75) 

at 𝑡𝑑
 . Here, ƌ𝑙

  denotes the depth level of the latest state or set of states that has been added in 



117 

 

the domain to form 𝐵𝑜𝑢𝑛𝑑𝑢𝑝𝑝𝑒𝑟
 . Further, this 𝐵𝑜𝑢𝑛𝑑𝑢𝑝𝑝𝑒𝑟

  is re-labelled and considered as 

𝐵𝑜𝑢𝑛𝑑𝑙𝑜𝑤𝑒𝑟
  for the next 𝑡𝑠𝑡𝑒𝑝

  of the expansion. If the expansion is to be limited in the 

number of 𝐵𝑜𝑢𝑛𝑑𝑠, then every 𝑐𝑜𝑢𝑛𝑡(ƃ𝑙𝑖𝑚𝑖𝑡
 ) leads to: 

 𝑐𝑜𝑢𝑛𝑡(ƃ𝑙𝑖𝑚𝑖𝑡
 ) = ƃ𝑙𝑖𝑚𝑖𝑡

 , (76) 

where, ƃ𝑙𝑖𝑚𝑖𝑡
  is the bound limit. For example, if ƃ𝑙𝑖𝑚𝑖𝑡

 = 2, then 𝑐𝑜𝑢𝑛𝑡(ƃ𝑙𝑖𝑚𝑖𝑡
 ) will be from 

0
to
→1

to
→2. If the 𝑐𝑜𝑢𝑛𝑡(ƃ𝑙𝑖𝑚𝑖𝑡

 ) is increased up to ƃ𝑙𝑖𝑚𝑖𝑡
  for 𝐼𝑡𝑟

 th iterations, then 𝐵𝑜𝑢𝑛𝑑𝑢𝑝𝑝𝑒𝑟
  

in the current iteration will be 𝐵𝑜𝑢𝑛𝑑𝑙𝑜𝑤𝑒𝑟
  for the next iteration. Every 𝐵𝑜𝑢𝑛𝑑𝑙𝑜𝑤𝑒𝑟

  state will 

be the strict subset of every consecutive 𝐵𝑜𝑢𝑛𝑑𝑢𝑝𝑝𝑒𝑟
  given as: 

 𝐵𝑜𝑢𝑛𝑑𝑙𝑜𝑤𝑒𝑟
 (𝑍) ⊂ 𝐵𝑜𝑢𝑛𝑑𝑢𝑝𝑝𝑒𝑟

 (𝑍). (77) 

and the upper bound as: 

 𝐵𝑜𝑢𝑛𝑑𝑢𝑝𝑝𝑒𝑟
 (𝑍) = {𝑑𝑜𝑚𝑎𝑖𝑛 𝑎𝑡 𝑍𝑡ℎ 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛, ƌ𝑙

 }, (78) 

where 𝑍 is the number of 𝐵𝑜𝑢𝑛𝑑𝑠 (or intermediate domains). The 2D pyramid domain in 

Figure 4.2 showcases the increase in the population of states in the domain with the increase 

in iterations (𝐼𝑡𝑟
 ). The apex of the pyramid represents the initial state 𝑋0

  of the system at 

𝐵𝑜𝑢𝑛𝑑𝑙𝑜𝑤𝑒𝑟
 (1) at 𝑡0

 , whereas the base represents the deepest level where the system ends 

with the final domain carrying set 𝐗𝐾
  with maximum probability mass. 

For large biochemical systems, the number of 𝐵𝑜𝑢𝑛𝑑𝑠 created are based on 𝐼𝑡𝑟
  and have 

million/billions of states. The expansion can be terminated by defining time 𝑡𝑓
  at which the 

solution is required. In order to have auto break-off point in the expansion, it is important to 

define the criteria that limits 𝐼𝑡𝑟
  when no more new states can be searched. Therefore, in the 

section 4.2.2, we define this criteria which also fits biochemical systems having fast and slow 

reactions. 
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Figure 4.2. General framework of 2D pyramid domain showing the increase in the size of 

the domain with the increase in state with an increase in the bounds. 𝑩𝒐𝒖𝒏𝒅𝒍𝒐𝒘𝒆𝒓
 (𝟏) 

represents the initial condition, whereas 𝑩𝒐𝒖𝒏𝒅𝒖𝒑𝒑𝒆𝒓
 (𝒁)  represents the final domain 

carrying explored set of states of the system. 
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4.2.2 Cease of Criterion after Updating 

In every expansion step, the domain is validated by Eq. (71) and new states are added in 𝐗𝐾
  

as long as: 

 1 − 𝐼𝑇𝑒𝑥𝑝(𝑡𝑓
 𝐴𝑗
 ). 𝑃(𝑡)(𝑋0

 ) ≥  𝜏𝑚, (79) 

is satisfied for probable states and stops if it is not. This led to a point at 𝑡𝑓
  where 𝑒𝑟𝑟𝑜𝑟

 < 𝜏𝑚, 

but the expansion can be extended further to meet the accuracy by re-considering the criteria 

as: 

 
1 − 𝐼𝑇𝑒𝑥𝑝(𝑡𝑓

 𝐴𝑗
 ). 𝑃(𝑡)(𝑋0

 ) ≥  𝜏𝑚 ∗
(no. of 𝑅𝑀(𝑠𝑟)

 )

(no. of 𝑅𝑀(𝑓𝑠)
 )

 , 
(80) 

 
1 − 𝐼𝑇𝑒𝑥𝑝(𝑡𝑓

 𝐴𝑗
 ). 𝑃(𝑡)(𝑋0

 ) ≥  𝜏𝑚 ∗
(no. of 𝑅𝑀(𝑓𝑠)

 )

(no. of 𝑅𝑀(𝑠𝑟)
 )

 , 
(81) 

 1 − 𝐼𝑇𝑒𝑥𝑝(𝑡𝑓
 𝐴𝑗
 ). 𝑃(𝑡)(𝑋0

 ) ≥  𝜏𝑚(𝑙𝑒𝑎𝑘) , (82) 

before steps to 𝑡𝑓
 . However, the size of 𝐗𝐾

  obtained through Eqs. (80), (81) and (82) at 𝑡𝑓
  will 

be greater compared to the size of 𝐗𝐾
  obtained by Eq. (79) at 𝑡𝑓

 , as the latter will have fewer 

number of states. In Eqs. (80), (81) and (82), with the increase in size of 𝐴𝑗
 , the value of the 

left-hand side also increases resulting in an improvement in Ӕ. When considering any 

Markov process of a biochemical system of any size in which the probability density expands 

according to Eq. (7) then Eqs. (80), (81) and (82) will approximate the solution within 𝜏𝑚 ∗

(no.  of 𝑅𝑀(𝑠𝑟)
 )

(no.  of 𝑅𝑀(𝑓𝑠)
 )

, 𝜏𝑚 ∗
(no.  of 𝑅𝑀(𝑓𝑠)

 )

(no.  of 𝑅𝑀(𝑠𝑟)
 )

 and 𝜏𝑚(𝑙𝑒𝑎𝑘), respectively, of the true solution of the CME, 

which is Eq. (7). 

In section 4.3, we use the principles and conditions discussed in Chapter 3, sections 4.2.1 and 

4.2.2, and introduce the first subroutine of 𝐼𝑆𝑃 called the Latitudinal Search. 
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4.3 Latitudinal Search Strategy 

In this section, we delve deeper into the first subroutine of 𝐼𝑆𝑃 called the Intelligent State 

Projection Latitudinal Search (𝐼𝑆𝑃 𝐿𝐴𝑆). Figure 4.3 manifest the infrastructure of the 𝐿𝐴𝑆 

strategy, showing 𝐺𝑚𝑐
 , the 𝑞𝑢𝑒𝑢𝑒 and the domain. The 𝑞𝑢𝑒𝑢𝑒 data structure of 𝐿𝐴𝑆 is based 

on 𝐹𝐼𝐹𝑂 (First In, First Out) method. It assume that oldest state added to the 𝑞𝑢𝑒𝑢𝑒 is 

considered first. In particular, we will define and exploit the direction of expansion step-by-

step based on intuitive knowledge (as discussed in section 3.5) gained from probability of 

future reaction events and follow the conditions (as discussed in Section 4.2). Furthermore, 

we show step-by-step how the nodes are explored and states updated in the domain in 𝐼𝑡𝑟
  

iterations. To give a broader perspective, we compare this class of subroutine in Chapter 5 

with the existing techniques discussed in Chapter 2. Finally, we demonstrate the 𝐼𝑆𝑃 𝐿𝐴𝑆 

application on a large biochemical system in Case study 2 - Chapter 7. We also provide some 

practical guidelines for setting up 𝐼𝑆𝑃 𝐿𝐴𝑆 for the experiment. 

The states at level ƌ𝑙
  are expanded only after all the states at level ƌ𝑙

 − 1 have been 

expanded, i.e. the search is undertaken level-by-level and depth ƌ𝑙
  increases in every 𝐼𝑡𝑟

  

iteration. In the case of networks with reversible reactions, the 𝐼𝑆𝑃 condition will prevent 

𝐿𝐴𝑆 from returning to the state it came from and also prevent transitions containing cycles 

resulting in 𝐷𝐴𝐺 with no repetition of any state whatsoever; however, the changes in 

propensities 𝑎𝑖,𝑗
  are validated. Verifying the explored states in 𝐗𝐾

  in iterations ensures that 

the algorithm completes and a deadlock in the state transition cycles cannot occur. The time 

complexity of 𝐿𝐴𝑆 depends on the average transitioning factor Ŧ and depth ƌ𝑙
  and is given by 

(see Appendix E for detailed discussion), 

 1 + Ŧ1 + Ŧ2 +⋯+ Ŧƌ𝑙
 
+ (Ŧƌ𝑙

 +1 − Ŧ)  =  𝑂(Ŧƌ𝑙
 +1), (83) 

where, 

 
Ŧ =

Total no. of walk between different nodes 

Total no. of nodes explored
 

(84) 
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Figure 4.3. Infrastructure of the Latitudinal Search strategy, showing 𝑮𝒎𝒄
 , the 𝒒𝒖𝒆𝒖𝒆 and 

the domain. 
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For the nodes at the deepest level ƌ𝑙
 , all walks are valid except for the very last node which 

stores the end state of the system. Therefore, once the end state is found, based on Eq. (70), 

𝐿𝐴𝑆 will zip 𝐗𝐾
′  further leaking the highest probabilities to 𝐗𝐾

  for the solution of Eq. (7) 

which includes the end state of the system. As no state is ever repeated in the domain, space 

complexity will decrease when the set of states 𝐗𝐾
′  is bunked at 𝑡′seconds in iterations if Eqs. 

(69) and (70) are satisfied. In Eq. (63), 𝑃(𝑡)(𝐗𝐾
′ ) is computed according to Eq. (9) 

(exponential form of the CME), where 𝜏𝑚 is the tolerance and 𝐼 is the identity matrix. Due to 

this stepping bunking of 𝐗𝐾
′  from 𝐗𝐾

 , the time complexity 𝑂(Ŧ𝑑+1) reduces to 

𝑂(𝑚𝑖𝑛(Ŧƌ𝑙
 +1, Ŧ|𝐗𝐽

 |)), where |𝐗𝐽
 | is the size of the state-space (Burrage et al., 2006). In 

contrast, the expansion of new nodes carrying similar states tends to increase 

𝑂(𝑚𝑖𝑛(Ŧƌ𝑙
 +1, Ŧ|𝐗𝐽

 |)); however, repetitive states are ignored. 

If the input 𝜏𝑚 is too small, the default value of 𝑠𝑞𝑟𝑡(𝑒𝑝𝑠) is automatically used by the 

algorithm. Where, 𝑠𝑞𝑟𝑡 is the square root and 𝑒𝑝𝑠 is the default value of the epsilon on 

machine. The expansion of child nodes containing 𝑠𝑡𝑎𝑡𝑒(𝑁𝑖
 ) = 𝑋𝑖

  stops if the condition of 

Eq. (82) is not satisfied. If criterion of slow and fast reaction is considered, then condition of 

Eq. (81) or (82) is used depending on number of 𝑅𝑀(𝑠𝑟)
  and 𝑅𝑀(𝑓𝑠)

 . The Table 4.2 shows the 

steps of the 𝐿𝐴𝑆 method with embedded 𝐵𝐿𝑁𝑃 function from step 4a to 5b. 
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Table 4.2. Steps of 𝑰𝑺𝑷 Latitudinal Search (𝑳𝑨𝑺) Algorithm. 

Step 0:  
Inputs: Initial node 𝑁0

 , 𝑎µ
 , 𝑣µ

 , tol 𝜏𝑚, 𝑡𝑓
 , 𝑡𝑠𝑡𝑒𝑝

  

Initialise: 𝐵𝑜𝑢𝑛𝑑𝑙𝑜𝑤𝑒𝑟
 = 𝐗𝐾

 , 𝑏𝑁′,𝑁
′ (𝑋 − 𝑣µ

 )
′
= 𝑃(𝑡)(𝑋0

 ), 𝐴 = [ ] 

Step 1: Start from parent node 𝑁𝑖
 = (𝑋0

 , ƌ𝑙
 ) ⟵ Current State of the system at 𝑡𝑑

 , 

Step 2:  Flag the current node as explored, update 𝐴 and add the state 𝑋𝑖
  in the domain 

so that; if 1 − 𝐼𝑇𝑒𝑥𝑝(𝑡. 𝐴𝑗
 ). 𝑃(𝑡)(𝑋0

 ) ≥  𝜏𝑚(𝑙𝑒𝑎𝑘) holds true go to Step 3; else 

stop the algorithm 

Step 3:  Sort 𝑒𝑥𝑝(𝑡. 𝐴𝑗
 ). 𝑃(𝑡)(𝑋0

 ) and shift the set of states in 𝐗𝐾
′  at 𝑡′ having smallest 

probabilities, if 𝑃(𝑡)(𝐗𝐾
 ) ≥ 𝜏𝑚(𝑙𝑒𝑎𝑘) > 𝑃

(𝑡)(𝐗𝐾
′ )  and at 𝑡𝑑

  update 𝐗𝐾
 ⟵

𝐗𝐾
 − 𝐗𝐾

′  

Step 4a:  Extend the graph dictionary 𝐷𝑖𝑐𝑡 by 𝑣µ
 (𝑋𝑖

 (𝑡)) by 1 level to check all the 

nodes 𝐧𝐽
 = (𝐗𝐽

 , ƌ𝑙
 , Ͼ

𝑁𝑖
 ,𝑁𝑖
′ 

 (𝑚𝑖𝑛)) adjacent to 𝑁𝑖
 : 𝐵𝑜𝑢𝑛𝑑𝑢𝑝𝑝𝑒𝑟

 ←

𝑅𝑀
 (𝐵𝑜𝑢𝑛𝑑𝑙𝑜𝑤𝑒𝑟

 ) reachable by exactly 𝑅𝑀
  reactions (from fast to slow) 

having Ͼ
𝑁𝑖
 ,𝑁𝑖
′ 

 (𝑚𝑖𝑛). If 𝐧𝐾
 = (𝐗𝐾

 , ƌ𝑙
 , Ͼ

𝑁𝑖
 ,𝑁𝑖
′ 

 (𝑚𝑖𝑛)) be the set of adjacent 

nodes such that 𝐧𝐾
 ∈  𝐧𝐽

  then go to next Step, 

Step 4b: Compute the 𝐵𝐿𝑁𝑃 function for 𝐧𝐾
 ∈ 𝐵𝑜𝑢𝑛𝑑𝑢𝑝𝑝𝑒𝑟

 : 

𝑏(𝑁𝑁1,..𝑁𝑀
 |𝑏1,𝑁….𝑁′,𝑁

′ ) = 𝑃𝑁,1….𝑁,𝑁′
 (𝜔) ∗ 𝑏𝑁′,𝑁

′ (𝑋 − 𝑣𝑖
 )′ 

Step 5a:  If 𝐧𝐾
 = (𝐗𝐾

 , ƌ𝑙
 , Ͼ

𝑁𝑖
 ,𝑁𝑖
′ 

 (𝑚𝑖𝑛)) ∈ 𝑑𝑜𝑚𝑎𝑖𝑛, then update the values of the set of 

states 𝐗𝐾
  present in 𝑑𝑜𝑚𝑎𝑖𝑛  and take 𝑑𝑜𝑚𝑎𝑖𝑛 ⟵ 𝑑𝑜𝑚𝑎𝑖𝑛𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠

 ∪

𝑑𝑜𝑚𝑎𝑖𝑛  and go back to Step 1; else If 𝐧𝐾
 = (𝐗𝐾

 , ƌ𝑙
 , Ͼ

𝑁𝑖
 ,𝑁𝑖
′ 

 (𝑚𝑖𝑛)) ∉

𝑑𝑜𝑚𝑎𝑖𝑛, then add it to the 𝑞𝑢𝑒𝑢𝑒 in order, according to reachability and go 

to the next Step, 

Step 5b:  sort 𝑏(𝑁𝑁1,..𝑁𝑀
 |𝑏𝑁1,..𝑁𝑀

′ ) in descending order and update 𝑞𝑢𝑒𝑢𝑒 ⟵ (𝑞𝑢𝑒𝑢𝑒 ; 

𝑏(𝑁𝑁1,..𝑁𝑀
 |𝑏1,𝑁….𝑁′,𝑁

′ )) 

Step 6:  Pull out the nodes 𝐧𝐾
 = (𝐗𝐾

 , ƌ𝑙
 , Ͼ

𝑁𝑖
 ,𝑁𝑖
′ 

 (𝑚𝑖𝑛)) from the 𝑞𝑢𝑒𝑢𝑒 in order and 

add the set of states 𝐗𝐾
  in the domain as 𝑑𝑜𝑚𝑎𝑖𝑛 ⟵ 𝑑𝑜𝑚𝑎𝑖𝑛 + 𝐗𝐾

  and take 

𝑑𝑜𝑚𝑎𝑖𝑛𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠
 ∪  𝑑𝑜𝑚𝑎𝑖𝑛, then go back to Step 1, 

 Output: 𝑑𝑜𝑚𝑎𝑖𝑛 with probable states 
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𝐿𝐴𝑆 will be optimal if the transitions between all the states are uniform, i.e., all the 𝑅𝑀
  

reactions have the same propensity values; however, in real biochemical models this condition 

is unusual. To demonstrate the 𝐼𝑆𝑃 𝐿𝐴𝑆 algorithm, let us assume a system with three species, 

𝐶, 𝐴, 𝑇, with initial molecular counts of 5, 0, 0, respectively, undergoing reactions as 

 𝑹𝟏
 : 𝐶 

𝑘1
 

→  𝐴,          𝑹𝟐
 : 𝐴 

𝑘2
 

→  𝑇,            𝑹𝟑
 : 𝑇 

𝑘3
 

→  𝐶 
(85) 

with 𝑘1
 = 𝑘2

 = 𝑘3
 = 1 and depicted as a network in Figure 4.4, 

 

Figure 4.4. Toy model network. Showing three Ñ = 𝟑  species, 𝑪 , 𝑨 , 𝑻  in a network 

defining reactions, as given in Eq. (85). 

These species counts are used as a state-space to define the toy model and these copy counts 

are tracked as ([𝐶], [𝐴], [𝑇]) ∈  Ñ ∶= (𝑥0
 , 𝑥1

 , 𝑥2
 ). In reaction 𝑅1

 , the copy counts of 𝐶 are 

reduced by 1, which increases the copy count of 𝐴 by 1. Whereas, reaction 𝑅2
  decreases the 

count of 𝐴 by 1 and increases the counts of 𝑇 by 1. In 𝑅3
 , the counts of 𝑇 are decreased by 1, 

which increases the counts of 𝐶 by 1. We can now define the transitions associated with 

𝑅1
 , 𝑅2

 , 𝑅3
  in stoichiometric vector 𝑉𝑀

  matrix as: 

 𝑉𝑀
 = [

𝑣1
 

𝑣2
 

𝑣3
 
] = [

−1
   0
   1
   
   1
−1
   0
      
0
1
1
 ]. (86) 

We express the propensity functions of the three reactions in terms of the states 

([𝐶], [𝐴], [𝑇]) ∈  Ñ as: 

𝑹𝟏
 :      𝑎1

 ([𝑆], [𝐵], [𝐶], [𝑃], [𝐸]) = 𝑘1
 ([𝑆]), 

𝑹𝟐
 :      𝑎2

 ([𝑆], [𝐵], [𝐶], [𝑃], [𝐸]) = 𝑘2
 ([𝐵]), 

     𝑹𝟑
 :     𝑎3

 ([𝑆], [𝐵], [𝐶], [𝑃], [𝐸]) = 𝑘3
 ([𝐵][𝑃]). 

Let, 𝐺𝑚𝑐
  be the discrete-state continuous time Markov chain graph and Ѭ be the equivalent 

tree of 𝐺𝑚𝑐
  as 𝐷𝐴𝐺 representing state-space of the system. In growing Markov chain tree, the 

transition between the nodes: 
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 𝑁𝑖
  
𝑣µ
 (𝑋0

 (𝑡),𝑋1
 (𝑡),….,𝑋𝐾

 (𝑡))
→                  𝑁𝑖+1

  , (87) 

is defined in the typical form of a dictionary 𝐷𝑖𝑐𝑡 (for example Eq. (52)). In the following 

section 4.3.1, we now demonstrate the 𝐿𝐴𝑆 expansion and update strategy on the toy model. 

4.3.1 Expansion and Update 

Nodes 𝐧𝐽
 = (𝐗𝐾

 , ƌ𝑙
 , Ͼ

𝑁𝑖
 ,𝑁𝑖
′ 

 (𝑚𝑖𝑛)) carrying states are expanded, as shown by 𝐺𝑚𝑐
  in number 

of stages (Ŝ). From Figs (A) to (F) in Figure 4.5 represent the systematic exploration of the 

nodes carrying states based on 𝐿𝐴𝑆 and as depicted up to six stages (Ŝ = 6), and the walk 

represents 𝑅𝑀
  reactions with propensities 𝑎𝑖,𝑗

 . This shows the change in state from 

𝑠𝑡𝑎𝑡𝑒(𝑁𝑖
 ) = 𝑋𝑖

  and 𝑠𝑡𝑎𝑡𝑒(𝑁𝑖
′ ) = 𝑋𝑖′

  of the system at any time 𝑡. 
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   Fig (A). Stage 1, ƌ𝑙
 = 1              Fig (B). Stage 2, ƌ𝑙

 = 2              Fig (C). Stage 3, ƌ𝑙
 = 3 

                          

                     Fig (D). Stage 4, ƌ𝑙
 = 3                               Fig (E). Stage 5, ƌ𝑙

 = 4               

 

Fig (F). Stage 6, ƌ𝑙
 = 4 

Figure 4.5. Six stages of state exploration based on a 𝑳𝑨𝑺 search for the toy model, given 

an average transitioning factor of Ŧ = 𝟐. Fig (A) is the first stage that denote the initial 

node carrying initial state of the system, Fig (B) is the second stage that denote all the 

nodes with new node at ƌ𝒍
 = 2, Fig (C) is the third stage that denote all the nodes with new 

node at ƌ𝒍
 = 3, Fig (D) is the fourth stage that denote all the nodes with new node at ƌ𝒍

 = 

3, Fig (E) is the fifth stage that denote all the nodes with new node at ƌ𝒍
 = 4, Fig (F) is the 

sixth stage that denote all the nodes with new node at ƌ𝒍
 = 4. 



127 

 

According to 𝐿𝐴𝑆 strategy in Table 4.2, step 0 defines the inputs based on the model and 

some are initialised with the given values. The model is solved for 𝑡𝑓
 = 1.0 𝑠𝑒𝑐 by taking 

𝑡𝑠𝑡𝑒𝑝
 = 0.01𝑠𝑒𝑐, 𝜏𝑚 = 1𝑒 − 6 with the initial state 𝑠𝑡𝑎𝑡𝑒(𝑁1

 ) = 𝑋0
 . In step 1, 𝐼𝑆𝑃 starts with 

the given initial node and this carries the initial state of the system. The initial state is also 

called the parent state of the system. In step 2, the current node is flagged as explored, and the 

relevant state is added to the domain if Eq. (82) is satisfied otherwise stop the algorithm if it 

does not. 

Step 3 sorts the probabilities of 𝑒𝑥𝑝(𝑡𝑓
 𝐴). 𝑃(𝑡)(𝑋𝑗

 ) and bunks them from the domain at 𝑡′ and 

stores them in the bunker 𝐗𝐾
′  such that 𝑃(𝑡)(𝐗𝐾

′ ) < 𝜏𝑚(𝑙𝑒𝑎𝑘), resulting in a domain with 

unique probable states at 𝑡𝑑
 . Step 4a and 4b, extend the graph dictionary 𝐷𝑖𝑐𝑡 by a successor 

function to check all nodes 𝐧𝐽
 = (𝐗𝐽

 , ƌ𝑙
 , Ͼ

𝑁𝑖
 ,𝑁𝑖
′ 

 (𝑚𝑖𝑛)) that are adjacent to the current node 𝑁𝑖
  

and are reachable by exactly 𝑅𝑀
  reactions such that 𝐵𝑜𝑢𝑛𝑑𝑢𝑝𝑝𝑒𝑟

 ← 𝑅𝑀
 (𝐵𝑜𝑢𝑛𝑑𝑙𝑜𝑤𝑒𝑟

 ) having 

Ͼ
𝑁𝑖
 ,𝑁𝑖
′ 

 (𝑚𝑖𝑛). Let 𝐧𝐾
 = (𝐗𝐾

 , ƌ𝑙
 , Ͼ

𝑁𝑖
 ,𝑁𝑖
′ 

 (𝑚𝑖𝑛)) be the set of adjacent nodes such that 𝐧𝐾
 ⊂ 𝐧𝐽

 . 

Once the adjacent nodes are found the 𝐵𝐿𝑁𝑃 function calculates 𝑏(𝑁𝑁1,..𝑁𝑀
 |𝑏1,𝑁….𝑁′,𝑁

′ ) for 

𝐧𝐾
 ∈ 𝐵𝑜𝑢𝑛𝑑𝑢𝑝𝑝𝑒𝑟

 . 

Steps 5a and 5b validate if the set of states of set 𝐧𝐾
  is a part of the domain. Following that, it 

updates the values of the set of states present in the domain and applies a check to reassure the 

uniqueness of the states in the domain and resume the algorithm from step 1. Otherwise, if the 

set of states of set 𝐧𝐾
  is not part of the domain then nodes are added in the 𝑞𝑢𝑒𝑢𝑒. Further, 

𝑞𝑢𝑒𝑢𝑒 is then updated according to sorted 𝑏(𝑁𝑁1,..𝑁𝑀
 |𝑏𝑁1,..𝑁𝑀

′ ). Step 6, will pull the nodes 

from the 𝑞𝑢𝑒𝑢𝑒 in order and add the set of states 𝐗𝐾
  in the domain followed by a check to 

reassure the uniquness of the states in the domain. Nodes 𝐧𝐽
 = (𝐗𝐾

 , ƌ𝑙
 , Ͼ

𝑁𝑖
 ,𝑁𝑖
′ 

 (𝑚𝑖𝑛)) are then 

expanded, as given in Table 4.3. 
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Table 4.3. 𝑳𝑨𝑺 nodes expansion strategy for the toy model. 

Iterations Queue Domain 

1 {𝑁1
 } [Empty] 

2 {𝑁2
 , 𝑁7

 } [𝑁1
 ] 

3 {𝑁3
 , 𝑁7

 } [𝑁2
 , 𝑁1

 ] 

4* {𝑁7
 , 𝑁4

 , 𝑁8
 } [𝑁3

 , 𝑁2
 , 𝑁1

 ] 

5 {𝑁4
 , 𝑁8

 } [𝑁7
 , 𝑁3

 , 𝑁2
 , 𝑁1

 ] 

6* {𝑁8
 , 𝑁5

 , 𝑁10
 } [𝑁4

 , 𝑁7
 , 𝑁3

 , 𝑁2
 , 𝑁1

 ] 

7* {𝑁5
 , 𝑁10

 , 𝑁9
 } [𝑁8

 , 𝑁4
 , 𝑁7

 , 𝑁3
 , 𝑁2

 , 𝑁1
 ] 

8* {𝑁10
 , 𝑁9

 , 𝑁6
 , 𝑁13

 } [𝑁5
 , 𝑁8

 , 𝑁4
 , 𝑁7

 , 𝑁3
 , 𝑁2

 , 𝑁1
 ] 

9* {𝑁9
 , 𝑁6

 , 𝑁13
 , 𝑁11

 } [𝑁10
 , 𝑁5

 , 𝑁8
 , 𝑁4

 , 𝑁7
 , 𝑁3

 , 𝑁2
 , 𝑁1

 ] 

10 {𝑁6
 , 𝑁13

 , 𝑁11
 } [𝑁9

 , 𝑁10
 , 𝑁5

 , 𝑁8
 , 𝑁4

 , 𝑁7
 , 𝑁3

 , 𝑁2
 , 𝑁1

 ] 

11* {𝑁13
 , 𝑁11

 , 𝑁17
 } [𝑁6

 , 𝑁9
 , 𝑁10

 , 𝑁5
 , 𝑁8

 , 𝑁4
 , 𝑁7

 , 𝑁3
 , 𝑁2

 , 𝑁1
 ] 

12* {𝑁11
 , 𝑁17

 , 𝑁14
 } [𝑁13

 , 𝑁6
 , 𝑁9

 , 𝑁10
 , 𝑁5

 , 𝑁8
 , 𝑁4

 , 𝑁7
 , 𝑁3

 , 𝑁2
 , 𝑁1

 ] 

13* {𝑁17
 , 𝑁14

 , 𝑁12
 } [𝑁11

 , 𝑁13
 , 𝑁6

 , 𝑁9
 , 𝑁10

 , 𝑁5
 , 𝑁8

 , 𝑁4
 , 𝑁7

 , 𝑁3
 , 𝑁2

 , 𝑁1
 ] 

14* {𝑁14
 , 𝑁12

 , 𝑁18
 } [𝑁17

 , 𝑁11
 , 𝑁13

 , 𝑁6
 , 𝑁9

 , 𝑁10
 , 𝑁5

 , 𝑁8
 , 𝑁4

 , 𝑁7
 , 𝑁3

 , 𝑁2
 , 𝑁1

 ] 

15* {𝑁12
 , 𝑁18

 , 𝑁15
 } [𝑁14

 , 𝑁17
 , 𝑁11

 , 𝑁13
 , 𝑁6

 , 𝑁9
 , 𝑁10

 , 𝑁5
 , 𝑁8

 , 𝑁4
 , 𝑁7

 , 𝑁3
 , 

𝑁2
 , 𝑁1

 ] 

16* {𝑁18
 , 𝑁15

 } [𝑁12
 , 𝑁14

 , 𝑁17
 , 𝑁11

 , 𝑁13
 , 𝑁6

 , 𝑁9
 , 𝑁10

 , 𝑁5
 , 𝑁8

 , 𝑁4
 , 𝑁7

 , 
𝑁3
 , 𝑁2

 , 𝑁1
 ] 

17* {𝑁15
 , 𝑁19

 } [𝑁18
 , 𝑁12

 , 𝑁14
 , 𝑁17

 , 𝑁11
 , 𝑁13

 , 𝑁6
 , 𝑁9

 , 𝑁10
 , 𝑁5

 , 𝑁8
 , 𝑁4

 , 
𝑁7
 , 𝑁3

 , 𝑁2
 , 𝑁1

 ] 

18* {𝑁19
 , 𝑁16

 } [𝑁15
 , 𝑁18

 , 𝑁12
 , 𝑁14

 , 𝑁17
 , 𝑁11

 , 𝑁13
 , 𝑁6

 , 𝑁9
 , 𝑁10

 , 𝑁5
 , 𝑁8

 , 
𝑁4
 , 𝑁7

 , 𝑁3
 , 𝑁2

 , 𝑁1
 ] 

19* {𝑁16
 , 𝑁20

 } [𝑁19
 , 𝑁15

 , 𝑁18
 , 𝑁12

 , 𝑁14
 , 𝑁17

 , 𝑁11
 , 𝑁13

 , 𝑁6
 , 𝑁9

 , 𝑁10
 , 𝑁5

 , 
𝑁8
 , 𝑁4

 , 𝑁7
 , 𝑁3

 , 𝑁2
 , 𝑁1

 ] 

20* {𝑁20
 } [𝑁16

 , 𝑁19
 , 𝑁15

 , 𝑁18
 , 𝑁12

 , 𝑁14
 , 𝑁17

 , 𝑁11
 , 𝑁13

 , 𝑁6
 , 𝑁9

 , 
𝑁10
 , 𝑁5

 , 𝑁8
 , 𝑁4

 , 𝑁7
 , 𝑁3

 , 𝑁2
 , 𝑁1

 ] 

21* {𝑁21
 } [𝑁20

 , 𝑁16
 , 𝑁19

 , 𝑁15
 , 𝑁18

 , 𝑁12
 , 𝑁14

 , 𝑁17
 , 𝑁11

 , 𝑁13
 , 𝑁6

 , 
𝑁9
 , 𝑁10

 , 𝑁5
 , 𝑁8

 , 𝑁4
 , 𝑁7

 , 𝑁3
 , 𝑁2

 , 𝑁1
 ] 

22 {Empty} [𝑁21
 , 𝑁20

 , 𝑁16
 , 𝑁19

 , 𝑁15
 , 𝑁18

 , 𝑁12
 , 𝑁14

 , 𝑁17
 , 𝑁11

 , 𝑁13
 , 

𝑁6
 , 𝑁9

 , 𝑁10
 , 𝑁5

 , 𝑁8
 , 𝑁4

 , 𝑁7
 , 𝑁3

 , 𝑁2
 , 𝑁1

 ] 
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To avoid repetition of the states, a check is done at every level as shown by * in Table 4.3. 

For example, when child node is explored, the state is validated and added to the domain, 

however if child node is carrying the state which is already in the queue for exploration then 

the node is not considered. For the toy model, the average number of walk between the nodes 

is Ŧ ≈ 2. 

The states, 𝑠𝑡𝑎𝑡𝑒(𝑁𝑖
 ) = 𝑋𝑖

  is updated in the domain in every iteration given in Table 4.4 

based on the 𝐿𝐴𝑆 update trend. For example, in step 4, nodes 𝑁4
  and 𝑁8

  were added to the 

queue when the state of 𝑁3
  was considered for the domain, but in the next step 5 when the 

state of 𝑁7
  was considered for the domain, no new node was added in the queue because node 

𝑁8
  was already in the queue, this was the neighbour of both 𝑁3

  and 𝑁7
 . The corresponding 

state in node 𝑁8
  will be added to the domain once and will not be repeated in the domain 

through 𝑁7
  but the changes in propensity ∆𝑎𝑖,𝑗

  will be validated. When the nodes are pulled 

from the queue, the states are updated according to occurrence of reaction. 
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Table 4.4. 𝑳𝑨𝑺 state update strategy for the toy model. 

Iterations Depth of exploration Corresponding propensities ∆𝒂𝒊,𝒋
   

1 1   Empty 

2 1 ∆𝑎1,2
  

3 1 ⟶ 2 ∆𝑎2,7
 , ∆𝑎2,3

 , ∆𝑎1,2
  

4* 2 ⟶ 3 ∆𝑎3,8
 , ∆𝑎3,4

 , ∆𝑎2,7
 , ∆𝑎2,3

 , ∆𝑎1,2
  

5 3 ∆𝑎7,8
 , ∆𝑎7,1

 , ∆𝑎3,8
 , ∆𝑎3,4

 , ∆𝑎2,7
 , ∆𝑎2,3

 , ∆𝑎1,2
  

6* 3 ⟶ 4 ∆𝑎4,10
 , ∆𝑎4,5

 , ∆𝑎7,8
 , ∆𝑎7,1

 , ∆𝑎3,8
 , ∆𝑎3,4

 , ∆𝑎2,7
 , ∆𝑎2,3

 , ∆𝑎1,2
  

7* 4 ∆𝑎8,10
 , ∆𝑎8,9

 , ∆𝑎8,2
 , ∆𝑎4,10

 , ∆𝑎4,5
 , ∆𝑎7,8

 , ∆𝑎7,1
 , ∆𝑎3,8

 , 

∆𝑎3,4
 , ∆𝑎2,7

 , ∆𝑎2,3
 , ∆𝑎1,2

  

8* 4 ⟶ 5 ∆𝑎5,13
 , ∆𝑎5,6

 , ∆𝑎8,10
 , ∆𝑎8,9

 , ∆𝑎8,2
 , ∆𝑎4,10

 , ∆𝑎4,5
 , ∆𝑎7,8

 , 

∆𝑎7,1
 , ∆𝑎3,8

 , ∆𝑎3,4
 , ∆𝑎2,7

 , ∆𝑎2,3
 , ∆𝑎1,2

  

9* 5 ∆𝑎10,13
 , ∆𝑎10,11

 , ∆𝑎10,3
 , ∆𝑎5,13

 , ∆𝑎5,6
 , ∆𝑎8,10

 , ∆𝑎8,9
 , ∆𝑎8,2

 , 

∆𝑎4,10
 , ∆𝑎4,5

 , ∆𝑎7,8
 , ∆𝑎7,1

 , ∆𝑎3,8
 , ∆𝑎3,4

 , ∆𝑎2,7
 , ∆𝑎2,3

 , ∆𝑎1,2
  

10 5 ∆𝑎9,11
 , ∆𝑎9,7

 , ∆𝑎10,13
 , ∆𝑎10,11

 , ∆𝑎10,3
 , ∆𝑎5,13

 , ∆𝑎5,6
 , 

∆𝑎8,10
 , ∆𝑎8,9

 , ∆𝑎8,2
 , ∆𝑎4,10

 , ∆𝑎4,5
 , ∆𝑎7,8

 , ∆𝑎7,1
 , 

∆𝑎3,8
 , ∆𝑎3,4

 , ∆𝑎2,7
 , ∆𝑎2,3

 , ∆𝑎1,2
  

11* 5 ⟶ 6 ∆𝑎6,17
 , ∆𝑎9,11

 , ∆𝑎9,7
 , ∆𝑎10,13

 , ∆𝑎10,11
 , ∆𝑎10,3

 , ∆𝑎5,13
 , 

∆𝑎5,6
 , ∆𝑎8,10

 , ∆𝑎8,9
 , ∆𝑎8,2

 , ∆𝑎4,10
 , ∆𝑎4,5

 , ∆𝑎7,8
 , ∆𝑎7,1

 , 

∆𝑎3,8
 , ∆𝑎3,4

 , ∆𝑎2,7
 , ∆𝑎2,3

 , ∆𝑎1,2
  

12* 6 ∆𝑎13,17
 , ∆𝑎13,14

 , ∆𝑎13,4
 , ∆𝑎6,17

 , ∆𝑎9,11
 , ∆𝑎9,7

 , ∆𝑎10,13
 , 

∆𝑎10,11
 , ∆𝑎10,3

 , ∆𝑎5,13
 , ∆𝑎5,6

 , ∆𝑎8,10
 , ∆𝑎8,9

 , ∆𝑎8,2
 , ∆𝑎4,10

 , 

∆𝑎4,5
 , ∆𝑎7,8

 , ∆𝑎7,1
 , ∆𝑎3,8

 , ∆𝑎3,4
 , ∆𝑎2,7

 , ∆𝑎2,3
 , ∆𝑎1,2

  

13* 6 ∆𝑎11,14
 , ∆𝑎11,12

 , ∆𝑎11,8
 , ∆𝑎13,17

 , ∆𝑎13,14
 , ∆𝑎13,4

 , ∆𝑎6,17
 , 

∆𝑎9,11
 , ∆𝑎9,7

 , ∆𝑎10,13
 , ∆𝑎10,11

 , ∆𝑎10,3
 , ∆𝑎5,13

 , ∆𝑎5,6
 , 

∆𝑎8,10
 , ∆𝑎8,9

 , ∆𝑎8,2
 , ∆𝑎4,10

 , ∆𝑎4,5
 , ∆𝑎7,8

 , ∆𝑎7,1
 , ∆𝑎3,8

 , 

∆𝑎3,4
 , ∆𝑎2,7

 , ∆𝑎2,3
 , ∆𝑎1,2

  

14* 6 ⟶ 7 ∆𝑎17,18
 , ∆𝑎17,5

 , ∆𝑎11,14
 , ∆𝑎11,12

 , ∆𝑎11,8
 , ∆𝑎13,17

 , ∆𝑎13,14
 , 

∆𝑎13,4
 , ∆𝑎6,17

 , ∆𝑎9,11
 , ∆𝑎9,7

 , ∆𝑎10,13
 , ∆𝑎10,11

 , ∆𝑎10,3
 , 

∆𝑎5,13
 , ∆𝑎5,6

 , ∆𝑎8,10
 , ∆𝑎8,9

 , ∆𝑎8,2
 , ∆𝑎4,10

 , ∆𝑎4,5
 , ∆𝑎7,8

 , 

∆𝑎7,1
 , ∆𝑎3,8

 , ∆𝑎3,4
 , ∆𝑎2,7

 , ∆𝑎2,3
 , ∆𝑎1,2

  

15* 7 ∆𝑎14,18
 , ∆𝑎14,15

 , ∆𝑎14,10
 , ∆𝑎17,18

 , ∆𝑎17,5
 , ∆𝑎11,14

 , ∆𝑎11,12
 , 

∆𝑎11,8
 , ∆𝑎13,17

 , ∆𝑎13,14
 , ∆𝑎13,4

 , ∆𝑎6,17
 , ∆𝑎9,11

 , ∆𝑎9,7
 , 

∆𝑎10,13
 , ∆𝑎10,11

 , ∆𝑎10,3
 , ∆𝑎5,13

 , ∆𝑎5,6
 , ∆𝑎8,10

 , ∆𝑎8,9
 , 

∆𝑎8,2
 , ∆𝑎4,10

 , ∆𝑎4,5
 , ∆𝑎7,8

 , ∆𝑎7,1
 , ∆𝑎3,8

 , ∆𝑎3,4
 , ∆𝑎2,7

 , 

∆𝑎2,3
 , ∆𝑎1,2

  

16* 7 ∆𝑎12,15
 , ∆𝑎12,9

 , ∆𝑎14,18
 , ∆𝑎14,15

 , ∆𝑎14,10
 , ∆𝑎17,18

 , ∆𝑎17,5
 , 

∆𝑎11,14
 , ∆𝑎11,12

 , ∆𝑎11,8
 , ∆𝑎13,17

 , ∆𝑎13,14
 , ∆𝑎13,4

 , ∆𝑎6,17
 , 

∆𝑎9,11
 , ∆𝑎9,7

 , ∆𝑎10,13
 , ∆𝑎10,11

 , ∆𝑎10,3
 , ∆𝑎5,13

 , ∆𝑎5,6
 , 

∆𝑎8,10
 , ∆𝑎8,9

 , ∆𝑎8,2
 , ∆𝑎4,10

 , ∆𝑎4,5
 , ∆𝑎7,8

 , ∆𝑎7,1
 , ∆𝑎3,8

 , 

∆𝑎3,4
 , ∆𝑎2,7

 , ∆𝑎2,3
 , ∆𝑎1,2
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17* 7 ⟶ 8 ∆𝑎18,19
 , ∆𝑎18,13

 , ∆𝑎12,15
 , ∆𝑎12,9

 , ∆𝑎14,18
 , ∆𝑎14,15

 , ∆𝑎14,10
 , 

∆𝑎17,18
 , ∆𝑎17,5

 , ∆𝑎11,14
 , ∆𝑎11,12

 , ∆𝑎11,8
 , ∆𝑎13,17

 , ∆𝑎13,14
 , 

∆𝑎13,4
 , ∆𝑎6,17

 , ∆𝑎9,11
 , ∆𝑎9,7

 , ∆𝑎10,13
 , ∆𝑎10,11

 , ∆𝑎10,3
 , 

∆𝑎5,13
 , ∆𝑎5,6

 , ∆𝑎8,10
 , ∆𝑎8,9

 , ∆𝑎8,2
 , ∆𝑎4,10

 , ∆𝑎4,5
 , ∆𝑎7,8

 , 

∆𝑎7,1
 , ∆𝑎3,8

 , ∆𝑎3,4
 , ∆𝑎2,7

 , ∆𝑎2,3
 , ∆𝑎1,2

  

18* 8 ∆𝑎15,19
 , ∆𝑎15,16

 , ∆𝑎15,11
 , ∆𝑎18,19

 , ∆𝑎18,13
 , ∆𝑎12,15

 , ∆𝑎12,9
 , 

∆𝑎14,18
 , ∆𝑎14,15

 , ∆𝑎14,10
 , ∆𝑎17,18

 , ∆𝑎17,5
 , ∆𝑎11,14

 , ∆𝑎11,12
 , 

∆𝑎11,8
 , ∆𝑎13,17

 , ∆𝑎13,14
 , ∆𝑎13,4

 , ∆𝑎6,17
 , ∆𝑎9,11

 , ∆𝑎9,7
 , 

∆𝑎10,13
 , ∆𝑎10,11

 , ∆𝑎10,3
 , ∆𝑎5,13

 , ∆𝑎5,6
 , ∆𝑎8,10

 , ∆𝑎8,9
 , 

∆𝑎8,2
 , ∆𝑎4,10

 , ∆𝑎4,5
 , ∆𝑎7,8

 , ∆𝑎7,1
 , ∆𝑎3,8

 , ∆𝑎3,4
 , ∆𝑎2,7

 , 

∆𝑎2,3
 , ∆𝑎1,2

  

19* 8 ⟶ 9 ∆𝑎19,20
 , ∆𝑎19,14

 , ∆𝑎15,19
 , ∆𝑎15,16

 , ∆𝑎15,11
 , ∆𝑎18,19

 , 

∆𝑎18,13
 , ∆𝑎12,15

 , ∆𝑎12,9
 , ∆𝑎14,18

 , ∆𝑎14,15
 , ∆𝑎14,10

 , ∆𝑎17,18
 , 

∆𝑎17,5
 , ∆𝑎11,14

 , ∆𝑎11,12
 , ∆𝑎11,8

 , ∆𝑎13,17
 , ∆𝑎13,14

 , ∆𝑎13,4
 , 

∆𝑎6,17
 , ∆𝑎9,11

 , ∆𝑎9,7
 , ∆𝑎10,13

 , ∆𝑎10,11
 , ∆𝑎10,3

 , ∆𝑎5,13
 , 

∆𝑎5,6
 , ∆𝑎8,10

 , ∆𝑎8,9
 , ∆𝑎8,2

 , ∆𝑎4,10
 , ∆𝑎4,5

 , ∆𝑎7,8
 , ∆𝑎7,1

 , 

∆𝑎3,8
 , ∆𝑎3,4

 , ∆𝑎2,7
 , ∆𝑎2,3

 , ∆𝑎1,2
  

20* 9 ∆𝑎16,20
 , ∆𝑎16,12

 , ∆𝑎19,20
 , ∆𝑎19,14

 , ∆𝑎15,19
 , ∆𝑎15,16

 , 

∆𝑎15,11
 , ∆𝑎18,19

 , ∆𝑎18,13
 , ∆𝑎12,15

 , ∆𝑎12,9
 , ∆𝑎14,18

 , ∆𝑎14,15
 , 

∆𝑎14,10
 , ∆𝑎17,18

 , ∆𝑎17,5
 , ∆𝑎11,14

 , ∆𝑎11,12
 , ∆𝑎11,8

 , ∆𝑎13,17
 , 

∆𝑎13,14
 , ∆𝑎13,4

 , ∆𝑎6,17
 , ∆𝑎9,11

 , ∆𝑎9,7
 , ∆𝑎10,13

 , ∆𝑎10,11
 , 

∆𝑎10,3
 , ∆𝑎5,13

 , ∆𝑎5,6
 , ∆𝑎8,10

 , ∆𝑎8,9
 , ∆𝑎8,2

 , ∆𝑎4,10
 , ∆𝑎4,5

 , 

∆𝑎7,8
 , ∆𝑎7,1

 , ∆𝑎3,8
 , ∆𝑎3,4

 , ∆𝑎2,7
 , ∆𝑎2,3

 , ∆𝑎1,2
  

21* 9 ⟶ 10 ∆𝑎20,21
 , ∆𝑎20,15

 , ∆𝑎16,20
 , ∆𝑎16,12

 , ∆𝑎19,20
 , ∆𝑎19,14

 , 

∆𝑎15,19
 , ∆𝑎15,16

 , ∆𝑎15,11
 , ∆𝑎18,19

 , ∆𝑎18,13
 , ∆𝑎12,15

 , ∆𝑎12,9
 , 

∆𝑎14,18
 , ∆𝑎14,15

 , ∆𝑎14,10
 , ∆𝑎17,18

 , ∆𝑎17,5
 , ∆𝑎11,14

 , ∆𝑎11,12
 , 

∆𝑎11,8
 , ∆𝑎13,17

 , ∆𝑎13,14
 , ∆𝑎13,4

 , ∆𝑎6,17
 , ∆𝑎9,11

 , ∆𝑎9,7
 , 

∆𝑎10,13
 , ∆𝑎10,11

 , ∆𝑎10,3
 , ∆𝑎5,13

 , ∆𝑎5,6
 , ∆𝑎8,10

 , ∆𝑎8,9
 , 

∆𝑎8,2
 , ∆𝑎4,10

 , ∆𝑎4,5
 , ∆𝑎7,8

 , ∆𝑎7,1
 , ∆𝑎3,8

 , ∆𝑎3,4
 , ∆𝑎2,7

 , 

∆𝑎2,3
 , ∆𝑎1,2

  

22 10 ⟶ 11 ∆𝑎21,16
 , ∆𝑎20,21

 , ∆𝑎20,15
 , ∆𝑎16,20

 , ∆𝑎16,12
 , ∆𝑎19,20

 , 

∆𝑎19,14
 , ∆𝑎15,19

 , ∆𝑎15,16
 , ∆𝑎15,11

 , ∆𝑎18,19
 , ∆𝑎18,13

 , 

∆𝑎12,15
 , ∆𝑎12,9

 , ∆𝑎14,18
 , ∆𝑎14,15

 , ∆𝑎14,10
 , ∆𝑎17,18

 , ∆𝑎17,5
 , 

∆𝑎11,14
 , ∆𝑎11,12

 , ∆𝑎11,8
 , ∆𝑎13,17

 , ∆𝑎13,14
 , ∆𝑎13,4

 , ∆𝑎6,17
 , 

∆𝑎9,11
 , ∆𝑎9,7

 , ∆𝑎10,13
 , ∆𝑎10,11

 , ∆𝑎10,3
 , ∆𝑎5,13

 , ∆𝑎5,6
 , 

∆𝑎8,10
 , ∆𝑎8,9

 , ∆𝑎8,2
 , ∆𝑎4,10

 , ∆𝑎4,5
 , ∆𝑎7,8

 , ∆𝑎7,1
 , ∆𝑎3,8

 , 

∆𝑎3,4
 , ∆𝑎2,7

 , ∆𝑎2,3
 , ∆𝑎1,2
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The response of 𝐿𝐴𝑆 for the state-space expansion is shown in Figure 4.6. It clearly shows 

how the size of the domain (as 2D pyramids) increases with the addition of new probable 

states. The model is solved for 𝑡𝑓
 = 1.0𝑠𝑒𝑐 by taking 𝑡𝑠𝑡𝑒𝑝

 = 0.01𝑠𝑒𝑐, 𝜏𝑚 = 1𝑒 − 6. 

The probability bunked during the expansion and approximation of the model is shown in 

Figure 4.7. There were no reversible reaction in the model and all 𝑅𝑀
  have similar kinetic 

parameters, so the bunking error became constant from 𝑡 = 0.05 𝑠𝑒𝑐 after losing 2.21𝑒 − 02 

of probability in the approximation until 𝑡𝑓
 . 
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Figure 4.6. Based on the 𝑳𝑨𝑺 strategy, the response shows how the size of the domain 

increases with addition of new states with time in the toy model. 

 

 

Figure 4.7. Based on the 𝑳𝑨𝑺 strategy, the response shows the total bunked probability 

during the approximation of the toy model. 
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The time-space complexity of 𝐿𝐴𝑆 for this model has a linear behaviour as shown in Figure 

4.8, for cases like (Ŧ = 2, ƌ𝑙
 = 4), and (Ŧ = 5, ƌ𝑙

 = 10). 

The stochastic behaviour of biochemical systems are such that the state-space depends on the 

propensity of each 𝑅𝑀
  reaction, and the size of the domain depends upon the number of state 

explored. 𝐿𝐴𝑆 successfully creates the domain of an optimum order with 66 states at 𝑡𝑓
  by 

introducing new states to the domain with time, as shown in the Figure 4.9. 
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Figure 4.8. Time-Space complexity of the 𝑳𝑨𝑺 response shows the linear behaviour at 

different average transition factors and the depth of the end state. For cases like (Ŧ =

𝟐, ƌ𝒍
 = 𝟒), and (Ŧ = 𝟓, ƌ𝒍

 = 𝟏𝟎), 𝑳𝑨𝑺 has the same response. 

 

 

Figure 4.9. Shows the set of states explored for the toy model after every 𝑳𝑨𝑺 iteration. 

Based on the reactions, 𝑳𝑨𝑺 unfolds the state-space pattern to update states in the domain 

and expands 66 probable states in 1.0 sec.  shows the time point where new set of states 

is explored and updated in the domain. 
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The computational expense estimation for exploring this system is given at different time 

points in Table 4.5. For large biochemical systems, the expense and state-space will vary with 

the number of states explored. Ideally, if the species present in the model decay with time or 

because no new states are found in the expansion, then the size of the domain remains the 

same even if it is solved for a higher 𝑡𝑓
 . 

Table 4.5. 𝑳𝑨𝑺 expansion of the state-space and solution of the toy model at different time 

points. 

Time 

(sec) 

No. of states 

explored 

Exploration 

performance time (sec) 

Probability lost Approximation 

(probability) 

0.0 0 0.0 0 0 

0.01 3 0.00332 0.0175 0.982 

0.05 27 0.02082 0.0221 0.977 

0.1 53 0.03842 0.0221 0.977 

1.0 66 0.00910 0.0221 0.977 

 

Similarly, in section 4.3.2, we apply the 𝐼𝑆𝑃 𝐿𝐴𝑆 on the real biological model of the catalytic 

reaction system to study the expansion of the state-space and its solution. 
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4.3.2 Biological Example 

Validation of the 𝐼𝑆𝑃 𝐿𝐴𝑆 on the biochemical model - catalytic reaction system (Mastny et 

al., 2007) is shown below. To demonstrate the 𝐼𝑆𝑃 𝐿𝐴𝑆 algorithm, we first consider the model 

defined by the reactions: 

 𝑆 
𝑘1
 

→  𝐵
𝑘2
 

→  𝐶,     𝐵 + 𝑃 
𝑘3
 

→  𝐵 + 𝐸 (88) 

depicted as a network in Figure 4.10 as: 

 

Figure 4.10. Catalytic reaction network having five Ñ = 𝟓 species 𝑺, 𝑩, 𝑪, 𝑷, and 𝑬 in a 

network defining reactions, as given in Eq. (88). 

In this biochemical system (dimension = 5), reactant 𝑃 will transform into product 𝐸 via 

complex 𝐵 when reactant 𝑆 acts as a catalyst for the reaction and produces 𝐶. We rewrite this 

catalytic reaction system as a network of three reactions: 

                                                𝑹𝟏
 :       𝑆

𝑘1
 

→𝐵, (89) 

                                                𝑹𝟐
 :      𝐵

𝑘2
 

→ 𝐶, (90) 

 
                                         𝑹𝟑

 :      𝐵 + 𝑃
𝑘3
 

→𝐵 + 𝐸 ; (91) 

 

with initial copy counts 𝑆0
 = 50, 𝑃0

 = 80, 𝐵0
 = 𝐶0

 = 𝐸0
  and reaction rate parameters 𝑘1

 = 1, 

𝑘2
 = 1000, 𝑘3

 = 100. These species counts are used as a state-space to define the model and 

these copy counts are tracked as: 

([𝑆], [𝐵], [𝐶], [𝑃], [𝐸]) ∈  Ñ ∶= (𝑥0
 , 𝑥1

 , 𝑥2
 , 𝑥3

 , 𝑥4
 ). 

In reaction 𝑅1
 , the copy count of 𝑆 is reduced by 1, which increases the copy count of 𝐵 by 1. 

In reaction 𝑅2
  the copy count of 𝐵 is reduced by 1, which increases the copy count of 𝐶 by 1. 

Whereas, reaction 𝑅3
  decreases the count of 𝐵 and 𝑃 by 1 and increases the counts of 𝐵 and 𝐸 

by 1. As in 𝑅3
 ,  𝐵 act as a catalyst to convert 𝑃 to 𝐸 and 𝐵 is retained in the same reaction. 

𝑃 

𝐵 

𝐸 

𝐶 𝑆 

+ 
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We can now define the transitions associated with 𝑅1
 , 𝑅2

 , 𝑅3
  in stoichiometric vector 𝑉𝑀

  

matrix as: 

 𝑉𝑀
 = [

𝑣1
 

𝑣2
 

𝑣3
 
] = [

−1
   0
   0
   
   1
−1
   0
      
0
1
0
  
   0
   0
−1
     
0
0
1
]. (92) 

For 𝐿𝐴𝑆 method compatibility, the associated Markov chain of this model is converted into a 

Markov chain tree, and the states in terms of the nodes with additional information such as the 

number of 𝑅𝑀
  reactions required to reach the state. In the growing Markov chain tree, the 

transition between the nodes: 

 𝑁𝑖
  
𝑣µ
 (𝑋0

 (𝑡),𝑋1
 (𝑡),….,𝑋𝐾

 (𝑡))
→                  𝑁𝑖+1

  , (93) 

is defined in the typical form of the dictionary 𝐷𝑖𝑐𝑡. We express the propensity functions of 

the three reactions in terms of the states ([𝑆], [𝐵], [𝐶], [𝑃], [𝐸]) ∈  Ñ as: 

𝑹𝟏
 :      𝑎1

 ([𝑆], [𝐵], [𝐶], [𝑃], [𝐸]) = 𝑘1
 ([𝑆]), 

𝑹𝟐
 :      𝑎2

 ([𝑆], [𝐵], [𝐶], [𝑃], [𝐸]) = 𝑘2
 ([𝐵]), 

     𝑹𝟑
 :      𝑎3

 ([𝑆], [𝐵], [𝐶], [𝑃], [𝐸]) = 𝑘3
 ([𝐵][𝑃]). 

Node 𝑁1
 = (𝑋0

 , ƌ1
 ) carries the initial state 𝑋0

  of the system at an initial depth of level 1. 

Further 𝐧𝐽
 = (𝐗𝐾

 , ƌ1,2,……
 ) is expanded and the states updated by following the order of 𝐿𝐴𝑆. 

The corresponding propensities ∆𝑎𝑖,𝑗
  are updated in 𝐴𝑖,𝑗

  matrix in every iteration based on the 

𝐿𝐴𝑆 updating trend (see Table 4.4). Initially, the system started with 𝑆0
 = 50, 𝑃0

 = 80  and 

gradually all of the rectants are transformed to products, 𝐸 and 𝐵, resulting in the system 

ending in 𝐧𝐽
 = (𝑋1,2,……14666

 , ƌ𝑙
 ). 

Figure 4.11 shows the response of the 𝐿𝐴𝑆 method when solved with 𝜏𝑚 = 1𝑒 − 6 for 𝑡𝑓
 =

0.5 sec. Due to the nature of the model reaction rates, small steps 𝑡𝑠𝑡𝑒𝑝
 = 0.01 sec are taken 

to capture the moments based on non-negative non-zero states for the domain. 𝐿𝐴𝑆 

successfully creates the domain of an optimum order with 14666 states at 𝑡𝑓
  by introducing 

the new states to the domain with time, as shown in Figure 4.11. 
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Figure 4.11. Expansion and updation of the states for the catalytic reaction system based 

on the 𝑳𝑨𝑺 method. The state-space expansion increases the number of addition of new 

states in the domain. The size and colour of  shows the increase in the size of the domain 

with the states population. 
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This pattern also depicts that the frequency (number of states at any time 𝑡) of expansion 

increases in depth when number of active reactions increase in the system. With the addition 

of probable states, the domain contains enough probability mass to approximate the solution 

up to 𝑡𝑓
 . The states are updated in sets as seen in Figure 4.12, for the catalytic system after 

every iteration. 
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Figure 4.12. Shows the set of states explored for the catalytic system after every 𝑳𝑨𝑺 

iteration. Based on network of reactions, 𝑳𝑨𝑺 unfolds the state-space pattern to update 

the states in the domain and expands 14666 probable states in 0.5 sec.  shows the time 

point where new sets of states are explored and updated in the domain. 
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The state-space pattern in Figure 4.12 can be used as a blueprint of the catalytic systems’ 

state-space to compare with other model’s blueprints for their characteristics and occurrence 

of the reactions. Such a pattern is considered to predict the behaviour of large network state-

space expansions when the set of occurrences of the initial reactions are similar in different 

systems. The solution of Eq. (9) up to 𝑡𝑓
 , for the domain created by 𝐿𝐴𝑆 is shown in Table 4.6 

and the system’s conditional probabilities based on its species are, as shown in Figure 4.13. 

Table 4.6. 𝑳𝑨𝑺 expansion response and solution at 𝒕𝒇
  for the catalytic system. 

𝑡𝑓
 = 0.5, 

𝑡𝑠𝑡𝑒𝑝
 = 0.01 

Run-time 

(sec) 

Domain Expansion time 

(sec) 
Error at 𝑡𝑓

  

𝐼𝑆𝑃 𝐿𝐴𝑆 4677 14666 0.5 1.865e − 05 

 

In three test runs, the run time of 𝐼𝑆𝑃 𝐿𝐴𝑆 for the catalytic system was 4677 secs when 

solving the Eq. (9) with 14666 states. The probability of the species in Figure 4.13 shows the 

nature of the reactions affecting the counts of each species in the system. The involvement of 

species 𝐵 in all the reactions results in its highest probability at 𝑡𝑓
 . Species 𝐵 also acts as a 

catalyst for 𝑅3
 , converting species 𝑃 to 𝐸; therefore, both have equal probabilities at the time 

of solution. 
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                   Fig (A). Probability of 𝑺 over 𝒕𝒇
                       Fig (B). Probability of 𝑩 over 𝒕𝒇

  

 

 

                  Fig (C). Probability of 𝑪 over 𝒕𝒇
                       Fig (D). Probability of 𝑷 over 𝒕𝒇

  

 

 

                    Fig (E). Probability of 𝐄 over 𝒕𝒇
                          

 

Figure 4.13. Conditional probability of the catalytic system evaluated at 𝒕𝒇
 = 𝟎. 𝟓 sec, 

𝒕𝒔𝒕𝒆𝒑
 = 𝟎. 𝟎𝟏 using 𝑳𝑨𝑺. Fig (A) is the probability of the species 𝑺 over 𝒕𝒇

 , Fig (B) is the 

probability of the species 𝑩 over 𝒕𝒇
 , Fig (C) is the probability of the species 𝑪 over 𝒕𝒇

 , Fig 

(D) is the probability of the species 𝑷 over 𝒕𝒇
 , Fig (E) is the probability of the species 𝑬 

over 𝒕𝒇
 . 
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Figure 4.14 shows the total probability bunked at 𝑡′ while progressing with the expansion. 

Bunking produces an error (w.r.t approximation) with time when the number of states 

increased with the expansion and provided that 𝐿𝐴𝑆 produces minimal error of order 10−5, as 

given in Table 4.6. 

The comparative study of 𝐿𝐴𝑆 with other methods such as 𝑆𝑆𝐴 and r-step reachability used in 

𝑆𝑊 and 𝑂𝐹𝑆𝑃, respectively, are discussed further in section 5.1. In section 4.3.2, we use the 

principles and conditions discussed in Chapter 3, section 4.2.1 and 4.2.2, and introduce the 

second sub-routine of 𝐼𝑆𝑃 called Longitudinal Latitudinal Search. 
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Figure 4.14. Total probability of states bunked at 𝒕′ from the domain of catalytic system 

produced by 𝑰𝑺𝑷 𝑳𝑨𝑺 iteration while expansion and solving the CME. 
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4.4 Longitudinal Latitudinal Search  

In this section, we delve deeper into the second sub-routine of 𝐼𝑆𝑃 called the Intelligent State 

Projection Longitudinal Latitudinal Search (𝐼𝑆𝑃 𝐿𝑂𝐿𝐴𝑆). Figure 4.15 manifest the 

infrastructure of the 𝐿𝑂𝐿𝐴𝑆 strategy, showing the 𝐺𝑚𝑐
 , 𝑠𝑡𝑎𝑐𝑘 and the domain. The 𝑠𝑡𝑎𝑐𝑘 

data structure of 𝐿𝑂𝐿𝐴𝑆 is based on 𝐿𝐼𝐹𝑂 (Last In, First Out) method. It assume that newest 

state added to the 𝑠𝑡𝑎𝑐𝑘 is considered first. In particular, we define the bound limit (as 

discussed in section 4.2.1) and exploit the direction of the expansion step-by-step based on 

intuitive knowledge (as discussed in section 3.5) gained from the probability of future 

reaction events and follow the conditions (as discussed in section 4.2). Furthermore, we will 

show step-by-step how nodes carrying states are explored in bidirectional way and how these 

states were updated in the domain in 𝐼𝑡𝑟
  iterations. To give a broader perspective, we compare 

this class of subroutine in Chapter 5 with the existing techniques, as discussed in Chapter 2. 

Finally, we demonstrate the 𝐼𝑆𝑃 𝐿𝑂𝐿𝐴𝑆 application on a large biochemical system in case 

study 1 - Chapter 6. We will also provide some practical guidelines for setting up 𝐼𝑆𝑃 𝐿𝑂𝐿𝐴𝑆 

for the experiment. 

The states at level ƌ𝑙
  are expanded only after the neighbouring states at level ƌ𝑙

 − 1 have 

been expanded for 𝑅𝑀
 , i.e., the search is undertaken level-by-level and depth ƌ𝑙

  increases in 

the same 𝐼𝑡𝑟
  iteration up to a certain ƃ𝑙𝑖𝑚𝑖𝑡

  (bound limit). The limit of the expansion is set by 

ƃ𝑙𝑖𝑚𝑖𝑡
 , ƌ𝑠𝑡𝑒𝑝

  (depth step) but not by the depth ƌ𝑙
 , as in 𝐿𝐴𝑆. The 𝐿𝑂𝐿𝐴𝑆 search updates the 

dictionary 𝐷𝑖𝑐𝑡 of 𝐺𝑚𝑐
  by the stoichiometric vector function, 𝑣µ

 (𝑋(𝑡)) on state at level ƌ𝑙
  to 

explore the child nodes carrying states on levels ƌ𝑙
 + 1, ƌ𝑙

 + 2 ….. ƌ𝑙
 + 𝑙, where 𝑙 =

{1,2… .∞} and then retracts to level ƌ𝑙
  at which new state exploration decisions can be made. 

In case of networks with reversible reactions, the 𝐼𝑆𝑃 conditions will prevent the 𝐿𝑂𝐿𝐴𝑆 to 

return to the state it came from and prevent transitions containing cycles resulting in 𝐷𝐴𝐺 

with no repetition of any state whatsoever; however, the change in propensities 𝑎𝑖,𝑗
  is 

validated. Verifying the explored states in 𝐗𝐾
  in iterations ensures that the algorithm 

completes and deadlocks in the state transition cycles cannot occur. 
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Figure 4.15. Infrastructure of the Longitudinal Latitudinal Search strategy, showing the 

𝑮𝒎𝒄
 , the 𝒔𝒕𝒂𝒄𝒌 and the domain. 
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In the absence of ƃ𝑙𝑖𝑚𝑖𝑡
 , the algorithm will not retract and will persist to explore 

longitudinally by tracking only one 𝑅𝑀
  reaction. In addition, the algorithm will not terminate 

with an optimal order domain carrying a maximum probability mass, leading to an increase in 

the approximation error. Instead, it will terminate when carrying only those set of states as a 

result of tracking for only a few 𝑅𝑀
 , creating an insufficient domain for approximation. 

Therefore, by default, the value of ƃ𝑙𝑖𝑚𝑖𝑡
 ≥ 1 is kept for large systems and can be increased 

depending upon the dimension of the model and the availability of the random access memory 

(𝑅𝐴𝑀) of the testing environment. The worst-case time complexity of 𝐿𝑂𝐿𝐴𝑆 depends on the 

average transitioning factor Ŧ and depth ƌ𝑙
  is given by (see Appendix E for a detailed 

discussion): 

(Ŧ + 1)Ŧ0 + (Ŧ)Ŧ1 + (Ŧ − 1)Ŧ2 +⋯…+ 3Ŧƌ𝑙
 −2 + 2Ŧƌ𝑙

 −1 + 1Ŧƌ𝑙
 
=  𝑂(Ŧƌ𝑙

 
). (94) 

𝐿𝑂𝐿𝐴𝑆 only stores the transition path to the end state besides the neighbours of each relevant 

node in the exploration and then discards the node from the domain (explored) once all 

descendants are updated with the relevant propensities in the projection, ready for the 

approximation. 𝐿𝑂𝐿𝐴𝑆 first considers the 𝑅1
  reaction and the corresponding stoichiometric 

vector 𝑣1
  of the system, to explore all the neighbouring states up to bound limit ƃ𝑙𝑖𝑚𝑖𝑡

 , and 

then considers 𝑅2
 , 𝑅3

 ,…..,𝑅𝑀
  for same ƃ𝑙𝑖𝑚𝑖𝑡

  and the corresponding 𝑣2
 , 𝑣3

 ,….. , 𝑣𝑀
  to 

explore the states. For 𝑐𝑜𝑢𝑛𝑡(ƃ𝑙𝑖𝑚𝑖𝑡
 ), 𝐿𝑂𝐿𝐴𝑆 retracts to 𝑅1

  reaction and explores the new 

neighbouring states longitudinally and then reconsiders 𝑅2
 , 𝑅3

 ,….. , 𝑅𝑀
  to explore the other 

states in a similar fashion. Provided with this pattern of tracking the reactions, the 𝐵𝐿𝑁𝑃 

function alters this trend and guides this tracking by considering reactions in different order 

based on their propensities and number of probable states of the system. 

If the system is ending in a set of state 𝐗𝐾
  carried by 𝐧𝐾

  at 𝑡𝑓
 , then 𝐿𝑂𝐿𝐴𝑆 will explore the 

states efficiently as long as 𝑐𝑜𝑢𝑛𝑡(ƃ𝑙𝑖𝑚𝑖𝑡
 ) ≤ ƃ𝑙𝑖𝑚𝑖𝑡

 , otherwise 𝑐𝑜𝑢𝑛𝑡(ƃ𝑙𝑖𝑚𝑖𝑡
 ) is reset for 

further expansion. Choosing the appropriate ƃ𝑙𝑖𝑚𝑖𝑡
  and ƌ𝑠𝑡𝑒𝑝

  depends on the type of 

biochemical reaction network and the computing configuration.  

Starting with depth 1 ⟶ ƃ𝑙𝑖𝑚𝑖𝑡
 , 𝐿𝑂𝐿𝐴𝑆 explores all the states until they return 𝑛𝑢𝑙𝑙, and then 

it resets the 𝑐𝑜𝑢𝑛𝑡(ƃ𝑙𝑖𝑚𝑖𝑡
 ) and retracts to explore again. In most cases, fewer states are 

positioned at the lower level and increase at a higher level when the number of active 𝑅𝑀
  

reactions increases, so retracting gives the freedom to track all the reactions simulatenously. 

Due to the nature of the 𝐿𝑂𝐿𝐴𝑆 expansion, this finds more states at any time 𝑡 compared to 

𝐿𝐴𝑆 and also at the deepest level of the graph. The states at depth ƌ𝑙
  are explored once, the 
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states at depth ƌ𝑙
 − 1 are explored twice, states at depth ƌ𝑙

 − 2 are explored three times and 

so on, until it has explored all the states of the system. If the input 𝜏𝑚 is too small, the default 

value of 𝑠𝑞𝑟𝑡(𝑒𝑝𝑠) is automatically used by the algorithm. Where, 𝑠𝑞𝑟𝑡 is the square root and 

𝑒𝑝𝑠 is the default value of the epsilon on machine. The expansion of child nodes containing 

𝑠𝑡𝑎𝑡𝑒(𝑁𝑖
 ) = 𝑋𝑖

  stops if the condition of Eq. (82) is not satisfied. If criterion of slow and fast 

reaction is considered, then condition of Eq. (81) or (82) is used depending on number of 

𝑅𝑀(𝑠𝑟)
  and 𝑅𝑀(𝑓𝑠)

 . Table 4.7 shows the steps of the 𝐿𝑂𝐿𝐴𝑆 method with an embedded 𝐵𝐿𝑁𝑃 

function from step 4a to 5b. 
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Table 4.7. Steps of 𝑰𝑺𝑷 Longitudinal Latitudinal Search (𝑳𝑶𝑳𝑨𝑺) Algorithm. 

 

Step 0: 

Inputs: Initial node 𝑁0
 , ƌ𝑠𝑡𝑒𝑝

 , ƃ𝑙𝑖𝑚𝑖𝑡
 , 𝑎µ

 , 𝑣µ
 , tol 𝜏𝑚, 𝑡𝑓

 , 𝑡𝑠𝑡𝑒𝑝
  

Initialise: 𝐵𝑜𝑢𝑛𝑑𝑙𝑜𝑤𝑒𝑟
 = 𝐗𝐾

 , 𝑏𝑁′,𝑁
′ (𝑋 − 𝑣µ

 )
′
= 𝑃(𝑡)(𝑋0

 ), 𝐴 = [ ] 

Step 1: Initialise 𝑐𝑜𝑢𝑛𝑡(ƃ𝑙𝑖𝑚𝑖𝑡
 ) and start from parent node 𝑁𝑖

 = (𝑋0
 , ƌ𝑙

 ) ⟵ Current 

State of the system at 𝑡𝑑
 , 

Step 2: Flag the current node as explored, update 𝐴 and add the state 𝑋𝑖
  in the domain 

so that; if 1 − 𝐼𝑇𝑒𝑥𝑝(𝑡. 𝐴𝑗
 ). 𝑃(𝑡)(𝑋0

 ) ≥  𝜏𝑚(𝑙𝑒𝑎𝑘) holds true go to Step 3; else 

stop the algorithm. 

Step 3: Sort 𝑒𝑥𝑝(𝑡. 𝐴𝑗
 ). 𝑃(𝑡)(𝑋0

 ) and shift the set of states in 𝐗𝐾
′  at 𝑡′ having smallest 

probabilities, if 𝑃(𝑡)(𝐗𝐾
 ) ≥ 𝜏𝑚(𝑙𝑒𝑎𝑘) > 𝑃

(𝑡)(𝐗𝐾
′ )  and at 𝑡𝑑

  update 𝐗𝐾
 ⟵

𝐗𝐾
 − 𝐗𝐾

′  

Step 4a: For ƌ𝒔𝒕𝒆𝒑
 , extend the graph dictionary 𝐷𝑖𝑐𝑡 by 𝑣µ

 (𝑋𝑖
 (𝑡)) for 𝑐𝑜𝑢𝑛𝑡(ƃ𝑙𝑖𝑚𝑖𝑡

 ) 

to check all the nodes 𝐧𝐽
 = (𝐗𝐽

 , ƌ𝑙
 , Ͼ

𝑁𝑖
 ,𝑁𝑖
′ 

 (𝑚𝑖𝑛)) adjacent to 𝑁𝑖
 : 

𝐵𝑜𝑢𝑛𝑑𝑢𝑝𝑝𝑒𝑟
 ← 𝑅𝑀

 (𝐵𝑜𝑢𝑛𝑑𝑙𝑜𝑤𝑒𝑟
 ) reachable by exactly 𝑅𝑀

  reactions (from 

fast to slow) having Ͼ
𝑁𝑖
 ,𝑁𝑖
′ 

 (𝑚𝑖𝑛). If 𝐧𝐾
 = (𝐗𝐾

 , ƌ𝑙
 , Ͼ

𝑁𝑖
 ,𝑁𝑖
′ 

 (𝑚𝑖𝑛)) be the set 

of adjacent nodes such that 𝐧𝐾
 ∈  𝐧𝐽

 , then go to the next Step, 

Step 4b: Compute the 𝐵𝐿𝑁𝑃 function for 𝐧𝐾
 ∈ 𝐵𝑜𝑢𝑛𝑑𝑢𝑝𝑝𝑒𝑟

 : 

𝑏(𝑁𝑁1,..𝑁𝑀
 |𝑏1,𝑁….𝑁′,𝑁

′ ) = 𝑃𝑁,1….𝑁,𝑁′
 (𝜔) ∗ 𝑏𝑁′,𝑁

′ (𝑋 − 𝑣𝑖
 )′ 

Step 5a: If 𝐧𝐾
 = (𝐗𝐾

 , ƌ𝑙
 , Ͼ

𝑁𝑖
 ,𝑁𝑖
′ 

 (𝑚𝑖𝑛)) ∈ 𝑑𝑜𝑚𝑎𝑖𝑛, then update the values of the set of 

states 𝐗𝐾
  present in 𝑑𝑜𝑚𝑎𝑖𝑛  and take 𝑑𝑜𝑚𝑎𝑖𝑛 ⟵ 𝑑𝑜𝑚𝑎𝑖𝑛𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠

 ∪

𝑑𝑜𝑚𝑎𝑖𝑛  and go back to Step 1; else If 𝐧𝐾
 = (𝐗𝐾

 , ƌ𝑙
 , Ͼ

𝑁𝑖
 ,𝑁𝑖
′ 

 (𝑚𝑖𝑛)) ∉

𝑑𝑜𝑚𝑎𝑖𝑛, then add it to the 𝑠𝑡𝑎𝑐𝑘 in order, according to reachability and go to 

next Step, 

Step 5b: sort 𝑏(𝑁𝑁1,..𝑁𝑀
 |𝑏𝑁1,..𝑁𝑀

′ ) in descending order and update 𝑠𝑡𝑎𝑐𝑘 ⟵ (𝑠𝑡𝑎𝑐𝑘 ; 

𝑏(𝑁𝑁1,..𝑁𝑀
 |𝑏1,𝑁….𝑁′,𝑁

′ )) 

Step 6: Pop of the top nodes 𝐧𝐾
 = (𝐗𝐾

 , ƌ𝑙
 , Ͼ

𝑁𝑖
 ,𝑁𝑖
′ 

 (𝑚𝑖𝑛)) from the 𝑠𝑡𝑎𝑐𝑘 and add the 

set of states 𝐗𝐾
  in the domain as 𝑑𝑜𝑚𝑎𝑖𝑛 ⟵ 𝑑𝑜𝑚𝑎𝑖𝑛 + 𝐗𝐾

  and take 

𝑑𝑜𝑚𝑎𝑖𝑛𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠
 ∪  𝑑𝑜𝑚𝑎𝑖𝑛, and go to next Step, 

Step 7: If 𝑐𝑜𝑢𝑛𝑡(ƃ𝑙𝑖𝑚𝑖𝑡
 ) = ƃ𝑙𝑖𝑚𝑖𝑡

  creates 𝐵𝑜𝑢𝑛𝑑𝑢𝑝𝑝𝑒𝑟
 = {𝑑𝑜𝑚𝑎𝑖𝑛} 𝑢𝑝 𝑡𝑜 ƃ𝑙𝑖𝑚𝑖𝑡

  

then label 𝐵𝑜𝑢𝑛𝑑𝑙𝑜𝑤𝑒𝑟
 ← 𝐵𝑜𝑢𝑛𝑑𝑢𝑝𝑝𝑒𝑟

  and go back to Step 1; else if 

𝑐𝑜𝑢𝑛𝑡(ƃ𝑙𝑖𝑚𝑖𝑡
 ) < ƃ𝑙𝑖𝑚𝑖𝑡

  creates {𝑑𝑜𝑚𝑎𝑖𝑛} 𝑢𝑝 𝑡𝑜 𝑐𝑜𝑢𝑛𝑡(ƃ𝑙𝑖𝑚𝑖𝑡
 ) then go to 

next Step, 

Step 8: 𝑐𝑜𝑢𝑛𝑡(ƃ𝑙𝑖𝑚𝑖𝑡
 ) ← 𝑐𝑜𝑢𝑛𝑡(ƃ𝑙𝑖𝑚𝑖𝑡

 ) + 1 and go to Step 4a 
 Output: 𝑑𝑜𝑚𝑎𝑖𝑛 with probable states 
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To demonstrate the 𝐼𝑆𝑃 𝐿𝑂𝐿𝐴𝑆 algorithm, we assume the same toy model system as 

discussed in section 4.3. In section 4.4.1, we demonstrate the 𝐿𝑂𝐿𝐴𝑆 expansion and update 

strategy on the toy model. 

4.4.1 Expansion and Update 

Nodes 𝐧𝐽
 = (𝐗𝐾

 , ƌ𝑙
 , Ͼ

𝑁𝑖
 ,𝑁𝑖
′ 

 (𝑚𝑖𝑛)) carrying states are expanded, as shown by 𝐺𝑚𝑐
  in number 

of stages (Ŝ), assuming ƌ𝑠𝑡𝑒𝑝
 = 1, ƃ𝑙𝑖𝑚𝑖𝑡

 = 2. From Figs (A) to (F) in Figure 4.16 represent 

the systematic exploration of the nodes carrying states based on 𝐿𝑂𝐿𝐴𝑆 and as depicted up to 

six stages (Ŝ = 6), and walk representing 𝑅𝑀
  reactions with propensities 𝑎𝑖,𝑗

 . This shows the 

change in state from 𝑠𝑡𝑎𝑡𝑒(𝑁𝑖
 ) = 𝑋𝑖

  and 𝑠𝑡𝑎𝑡𝑒(𝑁𝑖
′ ) = 𝑋𝑖′

  of the system at time, 𝑡. 
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 Fig (A). Stage 1, ƌ𝒍
 = 1             Fig (B). Stage 2, ƌ𝒍

 = 2              Fig (C). Stage 3, ƌ𝒍
 = 3 

                                      

                      Fig (D). Stage 4, ƌ𝒍
 = 4                                  Fig (E). Stage 5, ƌ𝒍

 = 4               

 

Fig (F). Stage 6, ƌ𝒍
 = 4 

Figure 4.16. Six stages of state exploration based on 𝑳𝑶𝑳𝑨𝑺 search for the toy model, 

given average transitioning factor Ŧ = 𝟐, assumed ƌ𝒔𝒕𝒆𝒑
 = 𝟏, ƃ𝒍𝒊𝒎𝒊𝒕

 = 𝟑. Fig (A) is the first 

stage that denote the initial node carrying initial state of the system, Fig (B) is the second 

stage that denote all the nodes with new node at ƌ𝒍
 = 2, Fig (C) is the third stage that 

denote all the nodes with new node at ƌ𝒍
 = 3, Fig (D) is the fourth stage that denote all the 

nodes with new node at ƌ𝒍
 = 4, Fig (E) is the fifth stage that denote all the nodes with new 

node at ƌ𝒍
 = 4, Fig (F) is the sixth stage that denote all the nodes with new node at ƌ𝒍

 = 4. 
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According to 𝐿𝑂𝐿𝐴𝑆 strategy in Table 4.7, for 𝑅1
 , explores the states up to ƌ𝑙

 = 4 as shown in 

Fig (D) of Figure 4.16 and retracts to initial node 𝑁1
  to track 𝑅2

 . However, 𝑅2
  only occurs when 

the system is at 𝑁2
 . Therefore, the system will consider the expansion from 𝑁2

  for 𝑅2
  and 

explore until ƌ𝑙
 = 4. It retracts continuously for all the 𝑅𝑀

  reactions’ up to ƃ𝑙𝑖𝑚𝑖𝑡
 = 2 and once 

all the states are explored up to ƌ𝑙
 = 4 for all the reactions, it reconsider 𝑅1

  and other reactions 

to further explore and retract. 

The toy model is solved for 𝑡𝑓
 = 1.0 𝑠𝑒𝑐 by taking 𝑡𝑠𝑡𝑒𝑝

 = 0.01𝑠𝑒𝑐, 𝜏𝑚 = 1𝑒 − 6 with the 

initial state, 𝑠𝑡𝑎𝑡𝑒(𝑁1
 ) = 𝑋0

 , ƃ𝑙𝑖𝑚𝑖𝑡
 = 3. In step 1, the count of ƃ𝑙𝑖𝑚𝑖𝑡

  is initialised and starts 

from the given initial state, 𝑠𝑡𝑎𝑡𝑒(𝑁𝑖
 ) = 𝑋𝑖

 . In step 2, matrix 𝐴 is created by flagging the 

current node as visited and the state is added in the domain if 𝑒𝑟𝑟𝑜𝑟 ≥ 𝜏𝑚; otherwise, it will 

stop the algorithm if it does not. In step 3, it sorts the probabilities of the expanded states and 

shifts the set of states in 𝐗𝐾
′  at 𝑡′ having smallest probabilities, if 𝜏𝑚(𝑙𝑒𝑎𝑘) > 𝑃

(𝑡)(𝐗𝐾
′ ) which 

leads to an optimal 𝐗𝐾
 ⟵ 𝐗𝐾

 − 𝐗𝐾
′  set. 

In step 4, 𝐺𝑚𝑐
  is extended for a count of ƃ𝑙𝑖𝑚𝑖𝑡

  to check all the nodes 𝐧𝐽
 =

(𝐗𝐽
 , ƌ𝑙

 , Ͼ
𝑁𝑖
 ,𝑁𝑖
′ 

 (𝑚𝑖𝑛)) adjacent to 𝑁𝑖
  reachable exactly by 𝑅𝑀

  reactions having Ͼ
𝑁𝑖
 ,𝑁𝑖
′ 

 (𝑚𝑖𝑛). 

In step 5, the values of the set of states 𝐗𝐾
  present in the 𝑑𝑜𝑚𝑎𝑖𝑛 is updated if 𝐧𝐽

 ∈ 𝑑𝑜𝑚𝑎𝑖𝑛 

and unique states was chosen from the 𝑑𝑜𝑚𝑎𝑖𝑛 (current iteration) and 𝑑𝑜𝑚𝑎𝑖𝑛𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠
  

(previous iteration); otherwise 𝐧𝐽
  is added to the 𝑠𝑡𝑎𝑐𝑘 and moves to the next step. In step 6, 

the nodes are popped out from the 𝑠𝑡𝑎𝑐𝑘 one-by-one and the corresponding set of states 𝐗𝐾
  

are added to the domain, followed by creating a 𝑑𝑜𝑚𝑎𝑖𝑛 comprising unique states. The nodes 

𝐧𝐽
 = (𝐗𝐾

 , ƌ𝑙
 , Ͼ

𝑁𝑖
 ,𝑁𝑖
′ 

 (𝑚𝑖𝑛)) are then expanded as given in Table 4.3. 
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Table 4.8. 𝑳𝑶𝑳𝑨𝑺 nodes expansion strategy for the toy model. 

Iterations Stack Domain 

1 {𝑁1
 } [Empty] 

2 {𝑁2
 } [𝑁1

 ] 

3 {𝑁3
 , 𝑁7

 } [𝑁2
 , 𝑁1

 ] 

4 {𝑁4
 , 𝑁8

 , 𝑁7
 } [𝑁3

 , 𝑁2
 , 𝑁1

 ] 

5 {𝑁5
 , 𝑁10

 , 𝑁8
 , 𝑁7

 } [𝑁4
 , 𝑁3

 , 𝑁2
 , 𝑁1

 ] 

6* {𝑁9
 } [𝑁7

 , 𝑁8
 , 𝑁10

 , 𝑁5
 , 𝑁4

 , 𝑁3
 , 𝑁2

 , 𝑁1
 ] 

7* {𝑁13
 , 𝑁11

 } [𝑁9
 , 𝑁7

 , 𝑁8
 , 𝑁10

 , 𝑁5
 , 𝑁4

 , 𝑁3
 , 𝑁2

 , 𝑁1
 ] 

8* {𝑁17
 , 𝑁14

 , 𝑁11
 } [𝑁13

 , 𝑁9
 , 𝑁7

 , 𝑁8
 , 𝑁10

 , 𝑁5
 , 𝑁4

 , 𝑁3
 , 𝑁2

 , 𝑁1
 ] 

9* {𝑁18
 , 𝑁14

 , 𝑁11
 } [𝑁17

 , 𝑁13
 , 𝑁9

 , 𝑁7
 , 𝑁8

 , 𝑁10
 , 𝑁5

 , 𝑁4
 , 𝑁3

 , 𝑁2
 , 𝑁1

 ] 

10* {𝑁19
 , 𝑁14

 , 𝑁11
 } [𝑁18

 , 𝑁17
 , 𝑁13

 , 𝑁9
 , 𝑁7

 , 𝑁8
 , 𝑁10

 , 𝑁5
 , 𝑁4

 , 𝑁3
 , 𝑁2

 , 𝑁1
 ] 

11* {𝑁20
 , 𝑁14

 , 𝑁11
 } [𝑁19

 , 𝑁18
 , 𝑁17

 , 𝑁13
 , 𝑁9

 , 𝑁7
 , 𝑁8

 , 𝑁10
 , 𝑁5

 , 𝑁4
 , 𝑁3

 , 𝑁2
 , 𝑁1

 ] 

12* {𝑁15
 , 𝑁11

 } [𝑁14
 , 𝑁20

 , 𝑁19
 , 𝑁18

 , 𝑁17
 , 𝑁13

 , 𝑁9
 , 𝑁7

 , 𝑁8
 , 𝑁10

 , 𝑁5
 , 𝑁4

 , 𝑁3
 , 

𝑁2
 , 𝑁1

 ] 

13* {𝑁16
 , 𝑁11

 } [𝑁15
 , 𝑁14

 , 𝑁20
 , 𝑁19

 , 𝑁18
 , 𝑁17

 , 𝑁13
 , 𝑁9

 , 𝑁7
 , 𝑁8

 , 𝑁10
 , 𝑁5

 , 
𝑁4
 , 𝑁3

 , 𝑁2
 , 𝑁1

 ] 

14* {𝑁11
 } [𝑁16

 , 𝑁15
 , 𝑁14

 , 𝑁20
 , 𝑁19

 , 𝑁18
 , 𝑁17

 , 𝑁13
 , 𝑁9

 , 𝑁7
 , 𝑁8

 , 𝑁10
 , 

𝑁5
 , 𝑁4

 , 𝑁3
 , 𝑁2

 , 𝑁1
 ] 

15* {𝑁12
 } [𝑁11

 , 𝑁16
 , 𝑁15

 , 𝑁14
 , 𝑁20

 , 𝑁19
 , 𝑁18

 , 𝑁17
 , 𝑁13

 , 𝑁9
 , 𝑁7

 , 𝑁8
 , 

𝑁10
 , 𝑁5

 , 𝑁4
 , 𝑁3

 , 𝑁2
 , 𝑁1

 ] 

16* {𝑁21
 } [𝑁12

 , 𝑁11
 , 𝑁16

 , 𝑁15
 , 𝑁14

 , 𝑁20
 , 𝑁19

 , 𝑁18
 , 𝑁17

 , 𝑁13
 , 𝑁9

 , 𝑁7
 , 

𝑁8
 , 𝑁10

 , 𝑁5
 , 𝑁4

 , 𝑁3
 , 𝑁2

 , 𝑁1
 ] 

17 {Empty} [𝑁21
 , 𝑁12

 , 𝑁11
 , 𝑁16

 , 𝑁15
 , 𝑁14

 , 𝑁20
 , 𝑁19

 , 𝑁18
 , 𝑁17

 , 𝑁13
 , 

𝑁9
 , 𝑁7

 , 𝑁8
 , 𝑁10

 , 𝑁5
 , 𝑁4

 , 𝑁3
 , 𝑁2

 , 𝑁1
 ] 
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To avoid the repetition of states, a check is carried out at every level, as shown by * in Table 

4.3. The algorithm rechecks the explored nodes and validates the propensities of the 

corresponding nodes, 𝑁1
 , 𝑁2

 , 𝑁3
 , 𝑁5

 , and then explores the new states through 𝑣𝑚
  to the same 

bound limit. In general, the algorithm prolongs the retraction until it explores all possible 

ways to update the states up to a certain ƃ𝑙
 . If Ꞧ𝑡𝑟𝑎𝑐𝑡

  is the number of retraction, then 

condition Ꞧ𝑡𝑟𝑎𝑐𝑡
 ≈ 𝑅𝑀

  holds true for 𝐿𝑂𝐿𝐴𝑆 for any biochemical system having 𝑅𝑀
  

reactions. The states, 𝑠𝑡𝑎𝑡𝑒(𝑁𝑖
 ) = 𝑋𝑖

  are updated in the domain in every iteration as given in 

Table 4.4, based on the 𝐿𝑂𝐿𝐴𝑆 update trend. 
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Table 4.9. 𝑳𝑶𝑳𝑨𝑺 states update strategy for the toy model. 

Iteration Depth of exploration Corresponding propensities ∆𝒂𝒊,𝒋
  

1 1   Empty 

2 1 ∆𝑎1,2
  

3 1 ⟶ 2 ∆𝑎2,7
 , ∆𝑎2,3

 , ∆𝑎1,2
  

4 2 ⟶ 3 ∆𝑎3,8
 , ∆𝑎3,4

 , ∆𝑎2,7
 , ∆𝑎2,3

 , ∆𝑎1,2
  

5 2 ⟶ 4 ∆𝑎4,10
 , ∆𝑎4,5

 , ∆𝑎3,8
 , ∆𝑎3,4

 , ∆𝑎2,7
 , ∆𝑎2,3

 , ∆𝑎1,2
  

6* 4 ⟶ 5, 

5 ⟶ 4, 

4 ⟶ 3 

∆𝑎7,8
 , ∆𝑎7,1

 , ∆𝑎8,9
 , ∆𝑎8,10

 , ∆𝑎8,2
 , ∆𝑎10,11

 , ∆𝑎10,13
 ,  

∆𝑎10,3
 , ∆𝑎5,13

 , ∆𝑎5,6
 , ∆𝑎4,10

 , ∆𝑎4,5
 , ∆𝑎3,8

 , ∆𝑎3,4
 , 

∆𝑎2,7
 , ∆𝑎2,3

 , ∆𝑎1,2
  

7* 3 ⟶ 5 ∆𝑎9,11
 , ∆𝑎9,7

 , ∆𝑎7,8
 , ∆𝑎7,1

 , ∆𝑎8,9
 , ∆𝑎8,10

 , ∆𝑎8,2
 , 

∆𝑎10,11
 , ∆𝑎10,13

 , ∆𝑎10,3
 , ∆𝑎5,13

 , ∆𝑎5,6
 , ∆𝑎4,10

 , ∆𝑎4,5
 , 

∆𝑎3,8
 , ∆𝑎3,4

 , ∆𝑎2,7
 , ∆𝑎2,3

 , ∆𝑎1,2
  

8* 5 ⟶ 6 ∆𝑎13,14
 , ∆𝑎13,17

 , ∆𝑎13,4
 , ∆𝑎9,11

 , ∆𝑎9,7
 , ∆𝑎7,8

 , ∆𝑎7,1
 , 

∆𝑎8,9
 , ∆𝑎8,10

 , ∆𝑎8,2
 , ∆𝑎10,11

 ,∆𝑎10,13
 , ∆𝑎10,3

 , ∆𝑎5,13
 , 

∆𝑎5,6
 , ∆𝑎4,10

 , ∆𝑎4,5
 , ∆𝑎3,8

 , ∆𝑎3,4
 , ∆𝑎2,7

 , ∆𝑎2,3
 , ∆𝑎1,2

  

9* 6 ⟶ 7 ∆𝑎17,18
 , ∆𝑎17,5

 , ∆𝑎13,14
 , ∆𝑎13,17

 , ∆𝑎13,4
 , ∆𝑎9,11

 , ∆𝑎9,7
 ,

∆𝑎7,8
 , ∆𝑎7,1

 , ∆𝑎8,9
 , ∆𝑎8,10

 , ∆𝑎8,2
 , ∆𝑎10,11

 ,∆𝑎10,13
 , 

∆𝑎10,3
 , ∆𝑎5,13

 ,∆𝑎5,6
 , ∆𝑎4,10

 , ∆𝑎4,5
 , ∆𝑎3,8

 , ∆𝑎3,4
 , ∆𝑎2,7

 , 

∆𝑎2,3
 , ∆𝑎1,2

  

10* 7 ⟶ 8 ∆𝑎18,19
 , ∆𝑎18,13

 , ∆𝑎17,18
 , ∆𝑎17,5

 , ∆𝑎13,14
 , ∆𝑎13,17

 , 

∆𝑎13,4
 ,∆𝑎9,11

 , ∆𝑎9,7
 , ∆𝑎7,8

 , ∆𝑎7,1
 , ∆𝑎8,9

 , ∆𝑎8,10
 , ∆𝑎8,2

 , 

∆𝑎10,11
 , ∆𝑎10,13

 , ∆𝑎5,13
 , ∆𝑎5,6

 , ∆𝑎4,10
 , ∆𝑎4,5

 , ∆𝑎3,8
 , 

∆𝑎3,4
 , ∆𝑎2,7

 , ∆𝑎2,3
 , ∆𝑎1,2

  

11* 8 ⟶ 9 ∆𝑎19,20
 , ∆𝑎19,14

 , ∆𝑎18,19
 , ∆𝑎18,13

 , ∆𝑎17,18
 , ∆𝑎17,5

 , 

∆𝑎13,14
 , ∆𝑎13,17

 , ∆𝑎13,4
 , ∆𝑎9,11

 , ∆𝑎9,7
 , ∆𝑎7,8

 , ∆𝑎7,1
 , 

∆𝑎8,9
 , ∆𝑎8,10

 , ∆𝑎8,2
 , ∆𝑎10,11

 , ∆𝑎10,13
 , ∆𝑎5,13

 , ∆𝑎5,6
 , 

∆𝑎4,10
 , ∆𝑎4,5

 , ∆𝑎3,8
 , ∆𝑎3,4

 , ∆𝑎2,7
 , ∆𝑎2,3

 , ∆𝑎1,2
  

12* 9 ⟶ 10, 

10 ⟶ 7 

∆𝑎14,15
 , ∆𝑎14,18

 , ∆𝑎14,10
 , ∆𝑎20,21

 , ∆𝑎20,15
 ,  ∆𝑎19,20

 , 

∆𝑎19,14
 , ∆𝑎18,19

 , ∆𝑎18,13
 , ∆𝑎17,18

 , ∆𝑎17,5
 , ∆𝑎13,14

 , 

∆𝑎13,17
 , ∆𝑎13,4

 , ∆𝑎9,11
 , ∆𝑎9,7

 , ∆𝑎7,8
 , ∆𝑎7,1

 , ∆𝑎8,9
 , 

∆𝑎8,10
 , ∆𝑎8,2

 , ∆𝑎10,11
 , ∆𝑎10,13

 , ∆𝑎5,13
 , ∆𝑎5,6

 , ∆𝑎4,10
 , 

∆𝑎4,5
 , ∆𝑎3,8

 , ∆𝑎3,4
 , ∆𝑎2,7

 , ∆𝑎2,3
 , ∆𝑎1,2

  

13* 7 ⟶ 8 ∆𝑎15,16
 , ∆𝑎15,19

 , ∆𝑎15,11
 , ∆𝑎14,15

 , ∆𝑎14,18
 , ∆𝑎14,10

 , 

∆𝑎20,21
 , ∆𝑎20,15

 , ∆𝑎19,20
 , ∆𝑎19,14

 , ∆𝑎18,19
 , ∆𝑎18,13

 , 

∆𝑎17,18
 , ∆𝑎17,5

 ,∆𝑎13,14
 , ∆𝑎13,17

 , ∆𝑎13,4
 , ∆𝑎9,11

 , ∆𝑎9,7
 , 

∆𝑎7,8
 , ∆𝑎7,1

 , ∆𝑎8,9
 ,∆𝑎8,10

 , ∆𝑎8,2
 , ∆𝑎10,11

 , ∆𝑎10,13
 , 

∆𝑎5,13
 , ∆𝑎5,6

 , ∆𝑎4,10
 , ∆𝑎4,5

 , ∆𝑎3,8
 , ∆𝑎3,4

 , ∆𝑎2,7
 , ∆𝑎2,3

 , 

∆𝑎1,2
  

14* 8 ⟶ 9 ∆𝑎16,20
 , ∆𝑎16,12

 , ∆𝑎15,16
 , ∆𝑎15,19

 , ∆𝑎15,11
 , ∆𝑎14,15

 ,  

∆𝑎14,18
 , ∆𝑎14,10

 , ∆𝑎20,21
 , ∆𝑎20,15

 ,  ∆𝑎19,20
 , ∆𝑎19,14

 , 

∆𝑎18,19
 , ∆𝑎18,13

 , ∆𝑎17,18
 , ∆𝑎17,5

 , ∆𝑎13,14
 , ∆𝑎13,17

 , 

∆𝑎13,4
 , ∆𝑎9,11

 , ∆𝑎9,7
 ,∆𝑎7,8

 , ∆𝑎7,1
 , ∆𝑎8,9

 , ∆𝑎8,10
 , 
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∆𝑎8,2
 , ∆𝑎10,11

 , ∆𝑎10,13
 , ∆𝑎5,13

 , ∆𝑎5,6
 , ∆𝑎4,10

 , ∆𝑎4,5
 , 

∆𝑎3,8
 , ∆𝑎3,4

 , ∆𝑎2,7
 , ∆𝑎2,3

 , ∆𝑎1,2
  

15* 9 ⟶ 6 ∆𝑎11,12
 , ∆𝑎11,14

 , ∆𝑎11,8
 , ∆𝑎16,20

 , ∆𝑎16,12
 , ∆𝑎15,16

 , 

∆𝑎15,19
 , ∆𝑎15,11

 , ∆𝑎14,15
 , ∆𝑎14,18

 , ∆𝑎14,10
 , ∆𝑎20,21

 , 

∆𝑎20,15
 , ∆𝑎19,20

 , ∆𝑎19,14
 , ∆𝑎18,19

 , ∆𝑎18,13
 , ∆𝑎17,18

 , 

∆𝑎17,5
 , ∆𝑎13,14

 , ∆𝑎13,17
 , ∆𝑎13,4

 , ∆𝑎9,11
 , ∆𝑎9,7

 , ∆𝑎7,8
 , 

∆𝑎7,1
 , ∆𝑎8,9

 , ∆𝑎8,10
 , ∆𝑎8,2

 , ∆𝑎10,11
 , ∆𝑎10,13

 , ∆𝑎5,13
 , 

∆𝑎5,6
 , ∆𝑎4,10

 , ∆𝑎4,5
 , ∆𝑎3,8

 , ∆𝑎3,4
 , ∆𝑎2,7

 , ∆𝑎2,3
 , ∆𝑎1,2

  

16* 6 ⟶ 7 ∆𝑎12,15
 , ∆𝑎12,9

 , ∆𝑎11,12
 , ∆𝑎11,14

 , ∆𝑎11,8
 , ∆𝑎16,20

 , 

∆𝑎16,12
 , ∆𝑎15,16

 , ∆𝑎15,19
 , ∆𝑎15,11

 , ∆𝑎14,15
 , ∆𝑎14,18

 , 

∆𝑎14,10
 , ∆𝑎20,21

 , ∆𝑎20,15
 , ∆𝑎19,20

 , ∆𝑎19,14
 , ∆𝑎18,19

 , 

∆𝑎18,13
 , ∆𝑎17,18

 , ∆𝑎17,5
 , ∆𝑎13,14

 , ∆𝑎13,17
 , ∆𝑎13,4

 , 

∆𝑎9,11
 , ∆𝑎9,7

 , ∆𝑎7,8
 , ∆𝑎7,1

 , ∆𝑎8,9
 , ∆𝑎8,10

 , ∆𝑎8,2
 , 

∆𝑎10,11
 , ∆𝑎10,13

 , ∆𝑎5,13
 , ∆𝑎5,6

 , ∆𝑎4,10
 , ∆𝑎4,5

 , 

∆𝑎3,8
 , ∆𝑎3,4

 , ∆𝑎2,7
 , ∆𝑎2,3

 , ∆𝑎1,2
  

17 7 ⟶ 11 ∆𝑎21,16
 , ∆𝑎12,15

 , ∆𝑎12,9
 , ∆𝑎11,12

 , ∆𝑎11,14
 , ∆𝑎11,8

 , 

∆𝑎16,20
 , ∆𝑎16,12

 , ∆𝑎15,16
 , ∆𝑎15,19

 , ∆𝑎15,11
 , ∆𝑎14,15

 , 

∆𝑎14,18
 , ∆𝑎14,10

 , ∆𝑎20,21
 , ∆𝑎20,15

 , ∆𝑎19,20
 , ∆𝑎19,14

 , 

∆𝑎18,19
 , ∆𝑎18,13

 , ∆𝑎17,18
 , ∆𝑎17,5

 , ∆𝑎13,14
 , ∆𝑎13,17

 , 

∆𝑎13,4
 , ∆𝑎9,11

 , ∆𝑎9,7
 , ∆𝑎7,8

 , ∆𝑎7,1
 , ∆𝑎8,9

 , ∆𝑎8,10
 , 

∆𝑎8,2
 , ∆𝑎10,11

 , ∆𝑎10,13
 , ∆𝑎5,13

 , ∆𝑎5,6
 , ∆𝑎4,10

 , 

∆𝑎4,5
 , ∆𝑎3,8

 , ∆𝑎3,4
 , ∆𝑎2,7

 , ∆𝑎2,3
 , ∆𝑎1,2
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The response of 𝐿𝑂𝐿𝐴𝑆 for the state-space expansion is shown in Figure 4.17. It clearly 

shows how the size of the domain (as 2D pyramids) quickly increases with the addition of 

new probable states as compared to 𝐿𝐴𝑆.  

The probability bunked during the expansion and approximation of model is shown in Figure 

4.18. There were no reversible reactions in the model and all 𝑅𝑀
  have similar kinetic 

parameters, so the error becomes a constant from 𝑡 = 0.56 𝑠𝑒𝑐 after losing 1.03𝑒 − 05 of 

probability in the approximation up until 𝑡𝑓
 . 
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Figure 4.17. Based on 𝑳𝑶𝑳𝑨𝑺 strategy, the response shows how the size of the domain 

increases with the addition of new states with time in the toy model. 

 

 

 

Figure 4.18. Based on 𝑳𝑶𝑳𝑨𝑺 strategy, the response shows the total bunked probability 

during the approximation of the toy model. 
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𝐿𝑂𝐿𝐴𝑆 successfully creates the domain of an optimum order with 66 states at 𝑡𝑓
  by 

introducing new states to the domain with time, as shown in Figure 4.19. The response of 

𝐿𝑂𝐿𝐴𝑆 in Figure 4.19 is different from the 𝐿𝐴𝑆 response in Figure 4.9, which shows that 

𝐿𝑂𝐿𝐴𝑆 is much faster than 𝐿𝐴𝑆 in finding states. Such behaviour of 𝐿𝑂𝐿𝐴𝑆 is more suitable 

for large models having large state-space. In addition, the 𝐼𝑆𝑃 state-space patterns in Figure 

4.9 and Figure 4.19 can be used as a blueprint of the model’s state-space to compare it with 

other model blueprints for the characteristics and occurrence of reactions. Such a pattern is 

considered to predict the behaviour of large network state-space expansion when the set of 

occurrence of initial reactions are similar in different systems. 

 

The computational expense estimation for exploring this system is given in Table 4.10 for 

different time points. Overall, the number of states explored by 𝐿𝐴𝑆 and 𝐿𝑂𝐿𝐴𝑆; however, the 

time at which different states are explored changed the bunked probabilities of the states at 

time points. At 𝑡 = 0.05 sec, 𝐿𝑂𝐿𝐴𝑆 explores 50 states while 𝐿𝐴𝑆 explores 27 states taking 

0.00882 sec and 0.02082 sec respectively. This shows that even though the number of states 

explored by both the variants do not change at 𝑡𝑓
 , the number of states present at the time 

points may change the solution of the CME, as seen for the system like the toy model. 

 

Table 4.10. 𝑳𝑨𝑺 expansion of the state-space and solution of the toy model at different 

time points. 

Time 

(sec) 

No. of states 

explored 

Exploration 

performance time (sec) 

Probability lost Approximation 

(probability) 

0.0 0 0.0 0 0 

0.01 50 0.04473 3.42e-14 ≈0.99 

0.05 50 0.00882 2.89e-08 0.9999999711 

0.1 66 0.01854 1.18e-06 0.99999882 

1.0 66 0.00210 1.03e-05 0.9999897 

 

Similarly, in the following section 4.4.2, we will apply the 𝐼𝑆𝑃 𝐿𝑂𝐿𝐴𝑆 on real biological 

model of a coupled enzymatic reaction system to study the expansion of state-space and its 

solution. 
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Figure 4.19. Shows the set of states explored for the toy model after every 𝑳𝑶𝑳𝑨𝑺 

iteration. Based on the reactions, 𝑳𝑶𝑳𝑨𝑺 unfolds the state-space pattern to update states 

in the domain and expands 66 probable states in 1.0 sec.  shows the time point where 

new set of states is explored and updated in the domain. 
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4.4.2 Biological Example 

Validation of the 𝐼𝑆𝑃 𝐿𝑂𝐿𝐴𝑆 on biochemical model – coupled enzymatic reactions network is 

shown below. To demonstrate the 𝐼𝑆𝑃 𝐿𝑂𝐿𝐴𝑆 algorithm, we first consider the model defined 

by the reactions, 

                       𝑆 + 𝐸1
 
𝑘1
 

→ 𝐶1
  
𝑘2
 

→  𝑆 + 𝐸1
 ,         𝐶1

  
𝑘3
 

→  𝑃 + 𝐸1
  (95) 

                      𝑃 + 𝐸2
 
𝑘4
 

→ 𝐶2
 
𝑘5
 

→  𝑃 + 𝐸2
 ,         𝐶2

  
𝑘6
 

→  𝑆 + 𝐸2
  (96) 

depicted as a network in Figure 4.11 as: 

 

Figure 4.20. Coupled enzymatic reactions network. Showing six Ñ = 𝟔 species, 𝑺, 𝑬𝟏
 , 𝑪𝟏

 , 

𝑷, 𝑬𝟐
 , 𝑪𝟐

 , in a network defining reactions, as given in Eqs. (95) and (96). 

This biochemical system (dimension = 6) describes two sets of enzymatic reactions 

transforming species 𝑆 into species 𝑃 and transforming species 𝑃 back into 𝑆. We rewrite this 

enzymatic reactions system as a network of six reactions: 

 𝑹𝟏
 :   𝑆 +  𝐸1

 
𝑘1
 

→ 𝐶1
 ,   𝑹𝟐

 :  𝐶1
  
𝑘2
 

→  𝑆 + 𝐸1
   

 𝑹𝟑
 :   𝐶1

  
𝑘3
 

→  𝑃 + 𝐸1
 ,   𝑹𝟒

 :  𝑃 + 𝐸2
 
𝑘4
 

→ 𝐶2
  (97) 

   𝑹𝟓
 :   𝐶2

  
𝑘5
 

→  𝑃 + 𝐸2
 ,   𝑹𝟔

 :  𝐶2
  
𝑘6
 

→  𝑆 + 𝐸2
   

 

with initial copy counts 𝑆 = 50, 𝐸1
 = 20, 𝐸2

 = 10, 𝐶1
 = 𝐶2

 = 𝑃 = 0 and reaction rate 

parameters of 𝑘1
 = 𝑘4

 = 4, 𝑘2
 = 𝑘5

 = 5, 𝑘3
 = 𝑘6

 = 1. These species counts are used as a 

state-space to define the model and these copy counts are tracked as: 

([𝑆], [𝐸1
 ], [𝐶1

 ], [𝑃], [𝐸2
 ], [𝐶2

 ]) ∈  Ñ ∶= (𝑥0
 , 𝑥1

 , 𝑥2
 , 𝑥3

 , 𝑥4
 , 𝑥5

 ). 

𝑆 

𝐶1
  

𝐸1
  

𝐸2
  

𝐶2
  

𝑃 + 

+ 

+ 

+ 

+ 

+ 
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In reaction 𝑅1
 , the copy count of 𝑆 and 𝐸1

  is reduced by 1, which increases the copy count of 

𝐶1
  by 1. Reaction 𝑅2

  is the backward reaction of 𝑅1
 ; therefore, the copy count of 𝐶1

  is 

reduced by 1 and this increases the copy count of 𝑆 and 𝐸1
  by 1. Then, reaction 𝑅3

  again 

reduces the count of 𝐶1
  and increase the counts of 𝑃 and 𝐸1

  by 1. Similarly, in reaction 𝑅4
 , the 

copy counts of 𝑃 and 𝐸2
  are reduced by 1, which increases the copy count of 𝐶2

  by 1. 

Reaction 𝑅5
  is the backward reaction of 𝑅4

 ; therefore, the copy count of 𝐶2
  is reduced by 1 

and this increases the copy count of 𝑃 and 𝐸2
  by 1. Then, reaction 𝑅6

  again reduces the count 

of 𝐶2
  and increases the counts of 𝑆 and 𝐸2

  by 1. We can now define the transitions associated 

with 𝑅1
 , 𝑅2

 , 𝑅3
 , 𝑅4

 , 𝑅5
 , 𝑅6

  in stoichiometric vector 𝑉𝑀
  matrix as: 

 𝑉𝑀
 =

[
 
 
 
 
 
𝑣1
 

𝑣2
 

𝑣3
 

𝑣4
 

𝑣5
 

𝑣6
 ]
 
 
 
 
 

=

[
 
 
 
 
 
−1
   1
   0
   
−1
   1
   1
   
   1
−1
−1
  
   0
   0
   1
     
0
0
0
    
0
0
0

    0
    0
    1
   
  0
  0
   0
      
0
0
0
  
−1
   1
   0
  
−1
   1
   1

    1
 −1
 −1]
 
 
 
 
 

. (98) 

For the 𝐿𝑂𝐿𝐴𝑆 method for compatibility, the associated Markov chain of this model is 

converted to a Markov chain tree, and the states in terms of nodes with additional information, 

such as number of 𝑅𝑀
  reactions required to reach the state. In growing Markov chain tree, the 

transition between the nodes: 

 𝑁𝑖
  
𝑣µ
 (𝑋0

 (𝑡),𝑋1
 (𝑡),….,𝑋𝐾

 (𝑡))
→                  𝑁𝑖+1

  , (99) 

is defined in the typical form of the dictionary 𝐷𝑖𝑐𝑡. We express the propensity functions of 

the six reactions in terms of the states ([𝑆], [𝐸1
 ], [𝐶1

 ], [𝑃], [𝐸2
 ], [𝐶2

 ]) ∈  Ñ as: 

                            𝑹𝟏
 :      𝑎1

 ([𝑆], [𝐸1
 ], [𝐶1

 ], [𝑃], [𝐸2
 ], [𝐶2

 ]) = 𝑘1
 ([𝑆][𝐸1

 ]), 

                            𝑹𝟐
 :      𝑎2

 ([𝑆], [𝐸1
 ], [𝐶1

 ], [𝑃], [𝐸2
 ], [𝐶2

 ]) = 𝑘2
 ([𝐶1

 ]), 

                            𝑹𝟑
 :      𝑎3

 ([𝑆], [𝐸1
 ], [𝐶1

 ], [𝑃], [𝐸2
 ], [𝐶2

 ]) = 𝑘3
 ([𝐶1

 ]), 

                            𝑹𝟒
 :      𝑎4

 ([𝑆], [𝐸1
 ], [𝐶1

 ], [𝑃], [𝐸2
 ], [𝐶2

 ]) = 𝑘4
 ([𝑃][𝐸2

 ]), 

                            𝑹𝟓
 :      𝑎5

 ([𝑆], [𝐸1
 ], [𝐶1

 ], [𝑃], [𝐸2
 ], [𝐶2

 ]) = 𝑘5
 ([𝐶2

 ]), 

                            𝑹𝟔
 :      𝑎6

 ([𝑆], [𝐸1
 ], [𝐶1

 ], [𝑃], [𝐸2
 ], [𝐶2

 ]) = 𝑘6
 ([𝐶2

 ]), 

Node 𝑁1
 = (𝑋0

 , ƌ1
 ) carries the initial state 𝑋0

  of the system at initial depth level 1. Then 𝐧𝐽
 =

(𝐗𝐾
 , ƌ1,2,……

 ) is further expanded and the states updated by following the order of 𝐿𝑂𝐿𝐴𝑆. The 



164 

 

corresponding propensities ∆𝑎𝑖,𝑗
  are updated in the 𝐴𝑖,𝑗

  matrix in every iteration based on the 

given 𝐿𝑂𝐿𝐴𝑆 updation trend (see Table 4.9). Initially, the system started with 𝑆 = 50, 𝐸1
 = 

20, 𝐸2
 = 10 and gradually all reactant species are transformed to products resulting in the 

system ending in 𝐧𝐽
 = (𝑋1,2,……8296

 , ƌ𝑙
 ). 

Figure 4.21 shows the response of the 𝐿𝑂𝐿𝐴𝑆 method when solved with 𝜏𝑚 = 1𝑒 − 6 for 

𝑡𝑓
 = 2.0 sec. Due to the nature of the model reaction rates, small steps 𝑡𝑠𝑡𝑒𝑝

 = 0.01 sec are 

taken to capture the moments based on non-negative non-zero states for the domain. 𝐿𝑂𝐿𝐴𝑆 

successfully creates the domain of an optimum order with 8296 states at 𝑡𝑓
  by introducing the 

new states to the domain with time, as shown in Figure 4.21. 

This pattern also depicts that the frequency (number of states at any time 𝑡) of expansion 

increases in depth when the number of active reactions increases in the system. With the 

addition of probable states, the domain contains enough probability mass to approximate the 

solution up to 𝑡𝑓
 . The states are updated in sets as seen in Figure 4.22, for the catalytic system 

after every iteration.  
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Figure 4.21. Expansion and updation of states for the dual enzymatic reaction network 

based on the 𝑳𝑶𝑳𝑨𝑺 method. The state-space expansion increases the number of additions 

of new states in the domain. The size and colour of  shows the increase in size of the 

domain with the states’ population. 

 

Figure 4.22. Shows the set of states explored for the dual enzymatic reaction network after 

every 𝑳𝑶𝑳𝑨𝑺 iteration. Based on the network of reactions, 𝑳𝑶𝑳𝑨𝑺 unfolds the state-space 

pattern to update states in the domain and expands 8296 probable states in 2.0 sec.  

shows the time point where new set of states is explored and updated in the domain. 
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The state-space pattern in Figure 4.22 can be used as a blueprint of the dual enzymatic 

reaction network state-space to compare with other model blueprint for their characteristics 

and the occurrence of reactions. Such a pattern is considered to predict the behaviour of a 

large network state-space expansion when the set of occurrences of the initial reactions are 

similar in different systems. The solution of Eq. (9) up to 𝑡𝑓
  for the domain created by 𝐿𝑂𝐿𝐴𝑆 

is shown in Table 4.6 and the system’s conditional probabilities based on species is shown in 

Figure 4.13. 

Table 4.11. 𝑳𝑶𝑳𝑨𝑺 expansion response and solution at 𝒕𝒇
  for the dual enzymatic reaction 

network. 

𝑡𝑓
 = 2.0, 

𝑡𝑠𝑡𝑒𝑝
 = 0.01 

Run-time 

(sec) 

Domain Expansion time 

(sec) 
Error at 𝑡𝑓

  

𝐼𝑆𝑃 𝐿𝑂𝐿𝐴𝑆 1614.22 8296 2.0 5.953e − 05 

 

In three test runs, the run time of 𝐼𝑆𝑃 𝐿𝑂𝐿𝐴𝑆 for the dual enzymatic reaction network was 

≈1614 secs when solving the Eq. (9) with 14666 states. The probability of the species in 

Figure 4.23 shows the nature of the reactions affecting the counts of each species in the 

system. At 𝑡𝑓
 , the probabilities of 𝐸2

  and 𝐶2
  remain high compared to 𝐸1

  and 𝐶1
  at different 

molecular counts, which results in a low probability of 𝑃 compared to 𝑆. We know that this 

network transforms species 𝑆 into species 𝑃 and then transforms the species 𝑃 back into 𝑆. 

Therefore, based on the current probabilities of the species at 𝑡𝑓
 , the future probability of 𝑃 

will increase and, for 𝑆, it will remain same or decrease. With this change, the probabilities of 

𝐸2
  and 𝐶2

  decreased compared to 𝐸1
  and 𝐶1

 . 
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                   Fig (A). Probability of 𝑺 over 𝒕𝒇
                     Fig (B). Probability of 𝑬𝟏

  over 𝒕𝒇
  

 

 

                 Fig (C). Probability of 𝑪𝟏
  over 𝒕𝒇

                       Fig (D). Probability of 𝑷 over 𝒕𝒇
  

 

 

                  Fig (E). Probability of 𝑬𝟐
  over 𝒕𝒇

                      Fig (F). Probability of 𝑪𝟐
  over 𝒕𝒇

  

 

Figure 4.23. Conditional probability of the dual enzymatic reactions system evaluated at 

𝒕𝒇
 = 𝟐. 𝟎 sec, 𝒕𝒔𝒕𝒆𝒑

 = 𝟎. 𝟎𝟏 using 𝑳𝑶𝑳𝑨𝑺. Fig (A) is the probability of the species 𝑺 over 

𝒕𝒇
 , Fig (B) is the probability of the species 𝑩 over 𝒕𝒇

 , Fig (C) is the probability of the 

species 𝑪  over 𝒕𝒇
 , Fig (D) is the probability of the species 𝑷  over 𝒕𝒇

 , Fig (E) is the 

probability of the species 𝑬 over 𝒕𝒇
 . 
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Figure 4.24 shows the total probability bunked at 𝑡′ while progressing with the expansion. 

The bunking produces an error (w.r.t approximation) with time when the number of states 

increases with the expansion and provided that, 𝐿𝑂𝐿𝐴𝑆 produces a minimal error of order, 

10−5, as given in Table 4.11. 

A comparative study of 𝐿𝑂𝐿𝐴𝑆 with other methods, such as 𝑆𝑆𝐴 and r-step reachability used 

in 𝑆𝑊 and 𝑂𝐹𝑆𝑃, respectively, is discussed further in Chapter 5. 
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Figure 4.24. Total probability of states bunked at 𝒕′ from the domain produced by dual 

enzymatic reactions system in 𝑰𝑺𝑷 𝑳𝑶𝑳𝑨𝑺 iteration while expansion and solving the CME 
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4.5 Data Structure Complexity of Operations 

As discussed in section 3.6, one of the effective ways to understand the complexity of the 

algorithm is to calculate the tight bound (average case) and upper bound (worst case) cases of 

the operations. General routines of the operation of 𝐼𝑆𝑃 elements are given in Figure 4.25 

which define the complexity of the operations independently. 

 

Figure 4.25. Routines of operation of 𝑰𝑺𝑷  modules. The worst-case complexity is 

considered for 𝑳𝑨𝑺 and 𝑳𝑶𝑳𝑨𝑺 algorithm for the upper limit of the execution. 

A comparison of the 𝐼𝑆𝑃 𝐿𝐴𝑆 and 𝐼𝑆𝑃 𝐿𝑂𝐿𝐴𝑆 average-case 𝛩 and worst-case 𝑂 Time-Space 

complexity based on operations (access, search, update, and remove) on the elements (array, 

queue, and tree) is given in Appendix E. 

The data operations performed in steps of 𝐿𝐴𝑆 (Table 4.2) and 𝐿𝑂𝐿𝐴𝑆 (Table 4.7) have 

different complexities, as given in Tables E.1 and E.2 of Appendix E, respectively. For 𝐿𝐴𝑆 

and 𝐿𝑂𝐿𝐴𝑆, the worst-case 𝑂 complexity of a tree is considered as we visualise the Markov 

chain of biochemical systems through graphs, whereas the individual complexities are 

considered for operations in algorithm steps. For 𝐿𝐴𝑆, 𝑂(𝐴𝑙𝑔𝑜(𝑦)) the Time and Space 

complexity is 𝑂(Ŧƌ𝑙
 +1), as seen in Figure 4.8 when showing linearity. For 𝐿𝑂𝐿𝐴𝑆, 

𝑂(𝐴𝑙𝑔𝑜(𝑦)) the time and space complexity is 𝑂(Ŧƌ𝑙
 
) and 𝑂(Ŧƌ𝑙

 ), respectively. 

  

Access ⟶ Array 

Update ⟶ Queue 

or Stack (Nodes) 

Access ⟶ Queue 

or Stack (Nodes) 

Search ⟶ Array 

(Expanded states) 

Remove ⟶ Array 

(Domain) 

 𝐿𝐴𝑆 and 𝐿𝑂𝐿𝐴𝑆 Algorithm Operations 
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4.6 Discussion and Conclusion 

In this chapter, we first derived the expansion criterion and break-off point in the expansion of 

state-space by using a vector form (see Eq. (7)) of the CME. These criterion changes (as given 

by Eqs. (72), (80), (81), (82)) when fast and slow reactions are considered for any model for 

state-space expansion. Based on these conditions, we introduced an analytical method called 

the Intelligent State Projection (𝐼𝑆𝑃) that integrates the reactions propensity, parameters 

describing the Markovian processes through nodes that govern the states. The purpose of 

using 𝐼𝑆𝑃 was to understand and predict the dynamics of the state-space response in 

biochemical systems for the solution of the CME. 

The 𝐼𝑆𝑃 has two sub-routines; namely – 𝐿𝐴𝑆 (see section 4.3) and 𝐿𝑂𝐿𝐴𝑆 (see section 4.4). 

They treat the Markov chain of a biochemical system as a Markov chain tree structure and 

state as objects of the class node. The search was performed in a latitudinal way using the 

𝐼𝑆𝑃 𝐿𝐴𝑆 method. Whereas, a bidirectional (Longitudinal-Latitudinal Search) search was 

applied using 𝐼𝑆𝑃 𝐿𝑂𝐿𝐴𝑆, which quickly expanded the state-space up to a specified bound 

limit. To support the expansion strategy, the 𝐵𝐿𝑁𝑃 function of Eq. (56) was joined with 𝐼𝑆𝑃 

variants to follow the events (firing of reactions) at any interval at the molecular population 

level (through propensities). 𝐵𝐿𝑁𝑃 provided confidence to the expansion strategy by 

considering the weighted probability values on the occurrence of future reactions and by 

prioritising the direction of expansion. Both variants of the 𝐼𝑆𝑃 embedding node projection 

inductively expanded the multiple states with time. They also defined the complexity of the 

system by predicting the pattern (called a blueprint) of the state-space updation and the 

formation of bounds at different time points.  

Based on the complexity of the data structure, the 𝐼𝑆𝑃 𝐿𝐴𝑆 speed (rate of searching the states 

per time step) of expansion was low compared to 𝐼𝑆𝑃 𝐿𝑂𝐿𝐴𝑆; however, the computational 

time depends on the nature of the model and size of the time step. At any point, the amount of 

memory in use was directly proportional to the neighboring states reachable through a single 

𝑅𝑀
  reaction. In addition, the 𝐼𝑆𝑃 𝐿𝑂𝐿𝐴𝑆 retraction to the initial node to track firing of new 

reaction was followed by revisiting the depth many times did not affect the computational 

time. The results of our application of 𝐼𝑆𝑃 on toy models showed that both 𝐿𝐴𝑆 and 𝐿𝑂𝐿𝐴𝑆 

have different patterns of expansion but the number of states in the domain were same at 𝑡𝑓
 . 

However, in real biological models the number of states in a domain may not be same at 𝑡𝑓
  

for 𝐿𝐴𝑆 and 𝐿𝑂𝐿𝐴𝑆 and we have discussed this in Chapter 5 through application of 𝐿𝐴𝑆 and 

𝐿𝑂𝐿𝐴𝑆 on the same biological reaction system.  
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The application on real biological models in sections 4.3.2 and 4.4.2 highlight the 

effectiveness of the 𝐼𝑆𝑃 and the differences between two variants. Upon implementation, the 

performance of the 𝐼𝑆𝑃 method was compared with other efficient methods discussed in the 

literature. Therefore, in Chapter 5, we have compared the 𝐼𝑆𝑃 variants with the r-step 

rechability (used in 𝑂𝐹𝑆𝑃) and 𝑆𝑆𝐴 (used in 𝑆𝑊) by applying it to biological models to 

ascertain the number of states in the domain at 𝑡𝑓
 , the computational time and the accuracy of 

the solution. 
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In this chapter, we investigate and compare the performance of the numerical 𝐼𝑆𝑃 𝐿𝐴𝑆, 

𝐼𝑆𝑃 𝐿𝑂𝐿𝐴𝑆, 𝑂𝐹𝑆𝑃, 𝑆𝑆𝐴 expansion methods based on biochemical reaction networks – the 

catalytic reaction network (as discussed in section 4.3.2) and dual enzymatic reaction network 

(as discussed in section 4.4.2). We compared 𝐼𝑆𝑃 with the r-step reachability strategy used by 

several methods (see section 2.3), such as 𝐹𝑆𝑃, 𝑂𝐹𝑆𝑃, and the 𝑆𝑆𝐴 used by 𝑆𝑊 for the 

expansion of the state-space on the basis of computational time, domain size and the accuracy 

of the solution at 𝑡𝑓
 . The 𝐼𝑆𝑃 harnesses the functions that are building blocks of the fast 

numerical computation used in Intel® and AMD® microprocessors. They also use the 

advanced vector extensions, universal functions, compilers and the vector math library to 

provide benefit in making the routines efficient. The dependencies and workloads employed 

in the performance test were implemented on Amazon® Web Services with distribution by 

the Python library (see Appendix F). 

In this chapter, in section 5.1, we first give an overview of the comparative study that we will 

conduct in following sections. Sections 5.2 and 5.3, present a comparison of 𝐼𝑆𝑃 with other 

methods based on biological models. In section 5.4, we will give a brief discussion and the 

chapter’s conclusions. 

5.1 Study Overview 

One is generally interested in the evolution of the probability density over time (as seen in 

Figure 4.14, Figure 4.24) and this requires the solution of Eq. (9) at 𝑡𝑓
  (as seen in Table 4.6, 

Table 4.11). To compare the solution of the 𝐼𝑆𝑃 𝐿𝐴𝑆, 𝐼𝑆𝑃 𝐿𝑂𝐿𝐴𝑆, 𝑂𝐹𝑆𝑃, 𝑆𝑆𝐴 methods, we 

computed the biochemical models: 

(a) The catalytic reaction network up to 𝑡𝑓
 = 0.5 sec with the initial condition point density 

at (50, 0, 0, 80, 0), and the propensities of the reactions, as given in Eq. (89), (90), (91) 

and the network as in Figure 4.10. The time step for the 𝐼𝑆𝑃 and 𝑂𝐹𝑆𝑃 methods was set 

to 𝑡𝑠𝑡𝑒𝑝
 = 0.01, and the compression step for 𝑂𝐹𝑆𝑃 was set to 10. 

(b) The dual enzymatic reaction network of up to 𝑡𝑓
 = 2.0 sec with the initial condition point 

density at (50, 20, 0,  0, 10, 0), and the propensities of the reactions as given in Eq. (97) 
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and the network, as in Figure 4.11. The time step for the 𝐼𝑆𝑃 and 𝑂𝐹𝑆𝑃 methods was set 

to 𝑡𝑠𝑡𝑒𝑝
 = 0.01, and the compression step for the 𝑂𝐹𝑆𝑃 was set to 1. 

We performed these experiments on the carbon-neutral platform of Amazon® Web Service 

Elastic Computing (EC2) instance type large (m5a) running on HVM (hardware virtual 

environment) virtualisation with variable ECUs, multicore environment 16vCPU @ 2.2GHz, 

AMD EPYC 7571 running Ubuntu 16.04.1 with the relevant dependencies, 64GB memory 

with 8GB Elastic Block Storage (EBS) type General Purpose SSD (GP2) formatted with 

Elastic File System (EFS). The performance mode was set to General Purpose with input-

outputs per second (IOPS = 100/3000) and the throughput mode of type bursting was set. 

(also see Appendix F and Appendix G). 

5.2 Comparison Based on Catalytic Reaction System 

An approximation of 10−5 is considered to find the approximate number of realisations 

required by the 𝑆𝑆𝐴 for 10−4 global error. Realisations were computed until the difference is 

less than 10−4 between the known distribution and the empirical distribution. Therefore, 

approximately 106 runs were required to obtain the right distribution for this model. In Table 

5.1, we observe that both versions of 𝐼𝑆𝑃 are faster than the 𝑂𝐹𝑆𝑃 of r-step reachability and 

the 𝑆𝑆𝐴 of sliding windows, and the improvement was attributed to the 𝐿𝑂𝐿𝐴𝑆 having fewer 

states and less computational time than the 𝑂𝐹𝑆𝑃 method and with better accuracy at 𝑡𝑓
 . 

Similary, the 𝐼𝑆𝑃 was much faster than the 𝑆𝑆𝐴 as the total number of realisations required to 

have an empirical distribution while the error at 𝑡𝑓
  was ≈10 times more than the domain 

produced by the 𝐼𝑆𝑃. 

Table 5.1. Comparison of the solution of the catalytic reaction system based on 𝑰𝑺𝑷, 𝑶𝑭𝑺𝑷 

and 𝑺𝑺𝑨. 

𝑡𝑓
 = 0.5, 

𝑡𝑠𝑡𝑒𝑝
 = 0.01 

𝐼𝑆𝑃 𝑂𝐹𝑆𝑃 𝑆𝑆𝐴 

𝐿𝐴𝑆 𝐿𝑂𝐿𝐴𝑆 

Run-time (sec) 4677 2706 8767 17428 

Domain at 𝑡𝑓
  14666 13089 14665 106 Runs 

Expansion time 0.5 0.5 0.5 - 

Error at 𝑡𝑓
  1.865e − 05 1.532e − 05 1.917e − 05 ≈ 9.81 x 10−3 

 

We also compared the error at 𝑡𝑓
  to note the efficiency of the solution. As seen in the results 

the increase in step error in 𝑂𝐹𝑆𝑃 affected the solution at 𝑡𝑓
 . Figure 5.1, shows a comparison 
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of the 𝐼𝑆𝑃 (𝐿𝐴𝑆 and 𝐿𝑂𝐿𝐴𝑆) with 𝑂𝐹𝑆𝑃 on the basis of the approximation error at 𝑡 during 

the expansion of the catalytic reaction system. Addressing the step error in 𝐼𝑆𝑃 and the 

selection of the probable states results in an efficient solution at 𝑡𝑓
  as compared to 𝑂𝐹𝑆𝑃. 

The typical firing nature of reactions in catalytic system makes them stiff and; therefore, the 

selection of states becomes difficult for approximation. This is due to some species in the 

system tending to increase abruptly in the population while others do so very slowly because 

the kinetic parameters (𝑘1
 = 1, 𝑘2

 = 1000, 𝑘3
 = 100) have large differences and this triggers 

the reactions at different rates. Reaction 𝑅1
 , is categorised as a slow reaction in the network 

and that affects the fast reaction, 𝑅2
 . In the computation results of Table 5.1, the 𝐼𝑆𝑃 

identified that only 13089 probable states were required to solve the system up to 𝑡𝑓
 , this 

saves computational time (see Figure 5.2) compared to 𝑂𝐹𝑆𝑃 and 𝑆𝑆𝐴, as well as improves 

the accuracy of the solution. In 𝑂𝐹𝑆𝑃, applying the compression at every step or after a few 

steps is still computationally expensive for small models (like the catalytic reaction system), 

as seen in Table 5.1 and Figure 5.1. This also leads to the justification that the total 

computation effort required at every step when compressing the number of states up to 𝑡𝑓
  is 

approximately equal to the total computation effort required when the compression is applied 

in the gaps in some steps on a set of states up to 𝑡𝑓
 . Moreover, the state-space will remain the 

same, at 𝑡𝑓
  regardless of when the compression is applied. 
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Figure 5.1. The comparison of 𝑰𝑺𝑷 (𝑳𝑨𝑺 and 𝑳𝑶𝑳𝑨𝑺) with 𝑶𝑭𝑺𝑷 based on the solution 

of the catalytic reaction system. 

 

                 

Figure 5.2. The comparison of 𝑰𝑺𝑷  (𝑳𝑨𝑺  and 𝑳𝑶𝑳𝑨𝑺)  with 𝑶𝑭𝑺𝑷  and 𝑺𝑺𝑨  by 

computational time. All methods were applied to the catalytic reaction system that was 

previously integrated in section 4.3.2. 
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A comparison of the computational times in Table 5.1 shows that both versions of 𝐼𝑆𝑃 are 

significantly faster than the other methods. Figure 5.3 shows the CPU utilisation (%) of 

𝐿𝑂𝐿𝐴𝑆 and 𝑂𝐹𝑆𝑃 with respect to run-time (minutes). The dedicated throughput (see 

Appendix F) between EC2 and EBS was not used for solving the model. The average CPU 

exertion is about 60%, which is a considerable workload for such a configuration for a given 

model. The expansion and approximation, started when CPU use was at ≈1.6422% at 𝑡 = 0 

sec and increases up to 60.0% and then goes down to zero at 𝑡𝑓
 . 

 

Figure 5.3. AWS® CPU utilisation percentage, when the catalytic reaction system is solved 

up to 𝒕𝒇
 = 0.5 sec using 𝑶𝑭𝑺𝑷 and 𝑳𝑶𝑳𝑨𝑺. The performance analysis was carried out 

using CloudWatch® (Statistic: Average, Time Range: Hour, Period: 5 Minutes). 
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5.3 Comparsion Based on the Dual Enzymatic Reaction Network 

An approximation of 10−5 is considered to find the approximate number of realisations 

required by the 𝑆𝑆𝐴 for a 10−4 global error. Realisations were computed until the difference 

was less than 10−4 between the known distribution and the empirical distribution. Therefore, 

approximately 105 runs were required to obtain the correct distribution for this model. In 

Table 5.2, we observe that both versions of 𝐼𝑆𝑃 are faster than 𝑂𝐹𝑆𝑃 of r-step reachability 

and the 𝑆𝑆𝐴 of sliding windows; the improvement is attributed to both the variants of 𝐼𝑆𝑃 

having an efficient domain with a small approximation error and less computational time than 

that of 𝑂𝐹𝑆𝑃 method and with better accuracy at 𝑡𝑓
 . Similarly, both variants of 𝐼𝑆𝑃 were 

much faster than 𝑆𝑆𝐴 as the total number of realisations required to have an empirical 

distribution with the error at 𝑡𝑓
  is ≈12 times more than the domain produced by 𝐼𝑆𝑃. 

Table 5.2. Comparison of the solutions of the dual enzymatic reaction system based on 

𝑰𝑺𝑷, 𝑶𝑭𝑺𝑷 and 𝑺𝑺𝑨 

𝑡𝑓
 = 2.0, 

𝑡𝑠𝑡𝑒𝑝
 = 0.01 

𝐼𝑆𝑃 𝑂𝐹𝑆𝑃 𝑆𝑆𝐴 

𝐿𝐴𝑆 𝐿𝑂𝐿𝐴𝑆 

Run-time (sec) 2386 1614 2804 6374 

Domain at 𝑡𝑓
  8282 8296 8266 105 Runs 

Expansion time 2.0 2.0 2.0 - 

Error at 𝑡𝑓
  7.470e − 05 5.953e − 05 1.060e − 04 ≈ 9.94 x 10−3 

 

We also compared the error at 𝑡𝑓
  to note the efficiency of the solution. As seen in the results, 

the increase in the step error in 𝑂𝐹𝑆𝑃 affects the solution at 𝑡𝑓
 . Figure 5.4, shows the 

comparison of the 𝐼𝑆𝑃 (𝐿𝐴𝑆 and 𝐿𝑂𝐿𝐴𝑆) with 𝑂𝐹𝑆𝑃 on the basis of the approximation error 

at 𝑡 during the expansion of the dual enzymatic reaction system. Addressing the step error in 

𝐼𝑆𝑃 and the selection of the probable states results in an efficient solution at 𝑡𝑓
  compared to 

𝑂𝐹𝑆𝑃. 
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Figure 5.4. Comparison of the 𝑰𝑺𝑷 (𝑳𝑨𝑺 and 𝑳𝑶𝑳𝑨𝑺) with 𝑶𝑭𝑺𝑷 based on the solution of 

the dual enzymatic reaction system. 
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The network consists of two enzymatic reaction system interlinked that transforms species 𝑆 

and 𝑃 into each other via the other species, making the system stiff in nature and; therefore, 

the selection of states becomes difficult for approximation. This is due to some species (𝑆 and 

𝐸1
 ) in the system tending to increase in population abruptly while others very slowly, because 

some of the kinetic parameters (𝑘1
 = 𝑘4

 = 4, 𝑘2
 = 𝑘5

 = 5) have large differences from other 

kinetic parameters (𝑘3
 = 𝑘6

 = 1) and this triggers the reactions at different rates.  

Reaction 𝑅1
 , categorised as the fastest reaction of the network that affects species 𝑆, 𝐶1

  and 

𝐸1
  is followed by other reactions involving other species. From the computation results in 

Table 5.2, the 𝐼𝑆𝑃 𝐿𝐴𝑆 identified that only 8282 probable states and 𝐼𝑆𝑃 𝐿𝑂𝐿𝐴𝑆 identified 

that only 8296 probable states are required to solve the system up to 𝑡𝑓
  which saves the 

computational time (see Figure 5.5), compared to 𝑂𝐹𝑆𝑃 and 𝑆𝑆𝐴, as well as improves the 

accuracy of the solution. In 𝑂𝐹𝑆𝑃, applying the compression at a defined step or after a few 

steps is still computationally expensive for models like the dual enzymatic reaction system, as 

seen in Table 5.2 and Figure 5.4. This also leads to the justification that the total computation 

effort required at each step in compressing the number of states up to 𝑡𝑓
  is approximately 

equal to the total computation effort required when compression is applied in the gaps 

between some of the steps on the set of states up to 𝑡𝑓
 . Moreover, the state-space will remain 

the same at 𝑡𝑓
  regardless of when the compression is applied. 
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Figure 5.5. The comparison of 𝑰𝑺𝑷  (𝑳𝑨𝑺  and 𝑳𝑶𝑳𝑨𝑺)  with 𝑶𝑭𝑺𝑷  and 𝑺𝑺𝑨  by 

computational time. All the methods were applied to the dual enzymatic reaction system 

previously integrated in section 4.4.2. 
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Comparison of the computational times in Table 5.2 shows that both versions of 𝐼𝑆𝑃 were 

significantly faster than the other methods. Figure 5.3 shows the CPU utilisation (%) of 

𝐿𝑂𝐿𝐴𝑆 and 𝑂𝐹𝑆𝑃 with respect to run-time (minutes). The dedicated throughput (see 

Appendix F) between EC2 and EBS has not been used for solving the model. The average 

CPU exertion is about 60%, which is a considerable workload for such a configuration for the 

given model. The expansion and approximation started when CPU use was at ≈1.23% at 𝑡 = 0 

sec and increased up to 60.0% before going down to zero at 𝑡𝑓
 . 

 

Figure 5.6. AWS® CPU utilisation percentage, when dual enzymatic reaction system is 

solved up to 𝒕𝒇
 = 2.0 sec using 𝑶𝑭𝑺𝑷 and 𝑳𝑶𝑳𝑨𝑺. The performance analysis is done using 

CloudWatch® (Statistic: Average, Time Range: Hour, Period: 5 Minutes). 
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5.4 Discussion and Conclusion 

In this chapter, we have compared 𝐼𝑆𝑃 𝐿𝐴𝑆, 𝐼𝑆𝑃 𝐿𝑂𝐿𝐴𝑆 with 𝑂𝐹𝑆𝑃 and 𝑆𝑆𝐴 based on the 

number of states present in the domain at 𝑡𝑓
 , error at 𝑡𝑓

  and their computational times (run-

time). All the methods were applied to the biological model of a catalytic reaction system (in 

section 5.1), and the dual enzymatic reaction system (in section 5.3), to expand the state-space 

and solve the CME up to the desired 𝑡𝑓
  and to check the precision of the domain formed. 

During method settings, we tested their ability to reproduce the model to measure the 

dynamics of the system’s key components, as discussed in section 4.3.2 and 4.4.2. We found 

that the 𝐼𝑆𝑃 method is a novel easy-to-integrate and use technique to model and expand the 

state-space of biochemical systems, which also show several improvements in modelling and 

computational efficiency. 

The results of the comparative study in sections 5.1 and 5.3 leads to important conclusions 

based on the performance and accuracy of the 𝐼𝑆𝑃 methods compared to the other methods. 

The results in Table 5.1 show that the 𝐼𝑆𝑃 𝐿𝐴𝑆 is much faster than 𝑂𝐹𝑆𝑃 and 𝑆𝑆𝐴. Although, 

the number of states (14666 states) present in the domain created by 𝐼𝑆𝑃 𝐿𝐴𝑆 is almost the 

same as that of the 𝑂𝐹𝑆𝑃 domain (14665 states); however, the accuracy shows that the 

domain created by 𝐼𝑆𝑃 𝐿𝐴𝑆 has more probable states compared to the domain created by 

𝑂𝐹𝑆𝑃 and the number of 𝑆𝑆𝐴 realisations. Similarly, 𝐼𝑆𝑃 𝐿𝑂𝐿𝐴𝑆 is much faster and the 

domain (13089 states) produced by 𝐼𝑆𝑃 𝐿𝑂𝐿𝐴𝑆 is the smallest compared to the 𝑂𝐹𝑆𝑃 domain 

and the number of 𝑆𝑆𝐴 realisations. 

The results in Table 5.2 also show that the 𝐼𝑆𝑃 𝐿𝐴𝑆 is faster than 𝑂𝐹𝑆𝑃 and 𝑆𝑆𝐴. Although, 

the number of states (8282 states) present in the domain created by 𝐼𝑆𝑃 𝐿𝐴𝑆 is more similar to 

that of the 𝑂𝐹𝑆𝑃 domain (8266 states); however, the accuracy shows that the domain created 

by 𝐼𝑆𝑃 𝐿𝐴𝑆 has more probable states compared to the domain created by 𝑂𝐹𝑆𝑃 and the 

number of realisations of 𝑆𝑆𝐴. Similarly, 𝐼𝑆𝑃 𝐿𝑂𝐿𝐴𝑆 is much faster and has better accuracy 

than other methods. 

The domain formed in the initial steps acts as training information for the 𝐼𝑆𝑃 methods and, 

gradually, when the training improves with the addition of new states in the domain and state-

space blueprint, it enchances the solution by providing better accuracy with time while 

keeping the domain (with most probable states) of optimal order as possible. The experiments 

discussed here show the improvement in the expansion methods through 𝐼𝑆𝑃 and how the 

performance of it can be analysed. The computational superiority of both the 𝐼𝑆𝑃 techniques 
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over methods that use r-step reachability and 𝑆𝑆𝐴 for expansion of state-space, is evident. 

The dynamic nature of biological systems and their domain size demonstrates the importance 

of chosing the probable states for improving the solution of the CME. 

Although, 𝑂𝐹𝑆𝑃 successfully creates the optimum support for some experiments and makes 

the problem smaller to compute; however, the selection of states and truncation (compression 

of domain) of state-space in every few set of steps (compression after every 10 steps is chosen 

in the catalytic reaction system) or for every step (compression in every step is chosen in the 

dual enzymatic reaction system) does not ensure that the domain created will have the most 

probable states and nor does it guarantee the computational efficiency, as seen in sections 5.1 

and section 5.3 in the results. This is an important guideline that states the selection for 

domain should be strategic and adaptive to achieve better accuracy in the solution for the 

CME. For replication of this experiment, refer to G.3 in Appendix G. 
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The main objective of this chapter is to investigate the performance of the 𝐼𝑆𝑃 𝐿𝑂𝐿𝐴𝑆 

algorithm on a large biochemical system. We analyse the state-space and probabilities of the 

species by implementing and integrating the mathematical model of the G1/S cell-cycle 

checkpoint involving the DNA-damage signal transduction pathway. The mathematical model 

is based on chemical kinetic principles for simulating pathways to show the dynamic behaviour 

of a cell cycle checkpoint pathway having reactive components. The cell cycle checkpoint 

pathways involve interactions between different enzymes and proteins in linked reactions. Most 

models developed for cell cycle checkpoints are quantitative, notably the G1/S checkpoint, 

which involves interactions between different proteins. They provide important information 

about the internal mechanisms and complex behaviour of cell cycle checkpoints. 

In this chapter, we will briefly introduce the robustness of critical proteins of G1/S checkpoint 

involving the DNA-damage signal transduction pathway model in section 6.1. In section 6.2, 

we will prepare and integrate the model to our 𝐼𝑆𝑃 𝐿𝑂𝐿𝐴𝑆 algorithm and, in section 6.3, we 

analyse the state-space of the model and the performance of the 𝐼𝑆𝑃 𝐿𝑂𝐿𝐴𝑆 algorithm using 

computational experiments. In section 6.4, we provide a brief discussion and summary of the 

study and its results. 

6.1 Introduction 

In the biological system of G1/S checkpoint transitions, maintaining the stability of the cell 

cycle is governed by the DNA-damage signal transduction pathway (Iwamoto et al., 2008; Ling 

et al., 2010). Therefore, interpreting the association between the G1/S checkpoint and DNA-

damage signal transduction is a important issue that affects support for life sciences (H. Ling et 

al., 2010). It is complex to understand the network of the G1/S checkpoint with DNA-damage 

signal only by using experiments (in vitro); therefore, studying a mechanistic mathematical 

model of the network and performing computational simulations for the different peturbation 

levels using the chemical kinetics of the model is followed by an analysis of the results. 
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When the DNA-damage signal transduction and cell cycle checkpoint pathways manage the cell 

cycle, the genomic DNA (Dasika et al., 1999) components are directly or indirectly damaged by 

various endogenous and exogenous elements (Ling et al., 2011). DNA damage occurs when 

regular cells undergo stress (physical or chemical) and, as soon as the DNA damage signal 

transduction pathway senses this it activates a “damage” signal to the cell cycle. The cell cycle 

checkpoints provide adequate time for the DNA repair process by blocking the progression of 

the cell cycle (Geva-Zatorsky et al., 2006; Iwamoto et al., 2008). The complete process is divided 

into five steps: (1) Mdm2 cannot supervise the stability of protein p53 strictly, so the DNA-

damage signal propagates p53 protein; (2) p53 advocates Mdm2 and p21 activity sequentially; 

(3) p21, a CDK [CDK4/6, CDK2] (cyclin-dependent kinase) inhibitor binds to Cyc/CDK 

(cyclin/cyclin-dependent kinase), which controls cell cycle progression and has a vital role in 

the cell cycle checkpoint pathway; (4) cell cycle progression is blocked when complex 

p21/Cyc/CDK restrains the activity of Cyc/CDK; and (5) the DNA-damage repair pathway can 

also be activated by p53 triggering its cellular mechanisms (Ling et al. 2011). The cells’ 

abnormal and faulty genomes pass through a progression of cell cycles to future cellular 

generations when the cell cycle checkpoint loses the capability to detect the DNA-damage signal. 

This inability makes the genome unstable and normal cells prone to malicious modifications, 

which result in invasive diseases like cancers. 

Cell cycle progression is controlled by distinct mechanisms of different cell cycle checkpoints; 

for example, G1/S, G2/M and the G05/G1 phase transition. The cell moves to the G1 phase after 

staying in the G0 phase for a long time where it first gathers growth factors, nutrients and then 

communicates the signal (proliferation) for the development of the cell (Iliakis et al. 2003). 

Once they sense the signal, cells enter the G1 phase and initiate the process of DNA replication. 

Losing the capability to detect the damage-signal and the interruption of the G1/S checkpoint 

leads to further problems in cell cycle progression. In the absence of the DNA-damage signal, 

the transition begins through  E2F (Helin, 1998) and that contributes to the production of vital 

proteins that enable DNA replication (Dyson, 1998; Ikeda et al., 1996; Leone et al., 1999). In 

the case of DNA damage, this activity ceases until the damage is repaired. In following sub-

sections we discuss more about  DNA-damage signals. 
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6.1.1 What Happens in Normal Conditions?  

When there is no signal for DNA damage, cells remain in the G0 phase for a long time, as 

mentioned earlier in section 6.1. When a cell enters the G1 phase it senses the signal 

(proliferation) that activates CycD synthesis and increases its concentration (Ling et al., 2010).  

The CycD produced forms the complexes CycD/CDK6, CycD/CDK4 by combining with 

CDK6 or CDK4, which keeps them activated. According to a study discussed in (Hong Ling, 

2011), CycD/CDK6 and CycD/CDK4 have similar physiological functions; therefore, 

CycD/CDK4/CDK6 represents these two complex proteins. One of the task of 

CycD/CDK4/CDK6 is to instigate Rb phosphorylation (related to E2F) to obtain Rb-PP/E2F 

(hypophosphorylated form) and another task is to keep CycE/CDK2 activated. Further, 

hypophosphorylation of Rb-PP/E2F is carried out by activated CycE/CDK2 releasing E2F by 

the dissociation of Rb-PPPP and E2F. The excessive level of free E2F activates CycE synthesis 

in the G1 phase, which promotes the association of CycE and CDK2 to form the CycE/CDK2 

complex. This task of E2F then forms a positive feedback loop between CycE and E2F, and 

this allows the cell to enter the S phase transition (Hiebert et al., 1992). 

In the mid-phase of G1, CycD degrades with the release of p27 bound to CycD/CDK4/6 and 

p27 is then further passed to new complexes (CycA/CDK2 or CycE/CDK2). While p27 

hampers the activity of these new complexes, the increased numbers of CycE/CDK2 can trigger 

the degradation of p27 by phosphorylation (p27 binds to CycE/CDK2) (Coqueret, 2003). This 

collection of CycE/CDK2 in cells results in p27 degradation. At the G1/S transition, CycA 

expression is supported by E2F with a noteworthy increase in the S phase. CycA is the principal 

protein in transition through the S phase and DNA replication. Once CycA is sythesised, it 

combines with CDK2 to form the CycA/CDK2 complex in the S phase. This CycA/CDK2 

complex manages the negative feedback loop to phosphorylate E2F for degradation and also 

hampers its activities. When the cell settles in the G1/S transition progression, E2F recombines 

with Rb when Rb-PPPP is dephosphorylated to restrict the activity of E2F in the S phase and 

maintain the inactive form of Rb/E2F. 
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6.1.2 What Happens in the Presence of a DNA-damage signal? 

In this section, we see how cells regulate in the presence of the DNA-damage signal. p53 is 

responsible for preserving cell genome fidelity and has an important part in response to the 

DNA-damage signal (as mentioned in section 6.1). In the absence of the DNA-damage signal, 

p53 remains at low concentrations due to a negative feedback loop with Mdm2, which keeps 

p53 in a stable steady-state where its activity is restrained and this improves its degradation rate 

(Barak et al., 1993; Kubbutat et al., 1997). DNA-damage occurs (Ling et al., 2010) when this 

negative feedback loop fails to strictly control the p53 level. In such a situation, p53 

accumulation leads the nucleus to hamper the cell cycle progression, where DNA damage repair 

is impossible. The activity of p53 in the cell cycle (Geva-Zatorsky et al., 2006; Lahav et al., 

2004; Li & Ho, 1998; Hong Ling, 2011) is different depending on level of the DNA_damage. 

The DNA-damage signal (low) supports p53 activation and p53 supports p21 sythesis and 

transcription. When the level of p21 increases, it forms two complexes, p21/CycA/CDK2-P and 

p21/CycE/CDK2-P, that then combine with CycA/CDK2-P and CycE/CDK2-P to impede their 

activation. The loss of both these complexes impedes Rb-PP/E2F hypophosphorylation and 

E2F release and, as a result, this initiates the synthesis of CycA and CycE, which are necessary 

for progression to the S phase (Ling et al., 2010; Hong Ling, 2011). This step temporarily 

suspends cell cycle progression and initiates the cell cycle repair pathway to support cells to 

repair the DNA damage. As soon as the repair is complete, p53 returns to a low level and the 

negative feedback loop between Mdm2 and p53 is re-established. The level of p21 is reduced 

with the decrease in p53 and the cell cycle returns to its normal condition when the 

CycA/CDK2-P and CycE/CDK2-P complexes are released. When the DNA damage is high, 

the apoptosis pathway is triggered when the DNA-damage signal activates p53. 

In following section 6.2, we will combine the situations discussed in section 6.1.1 and section 

6.1.2 to obtain the complex structure of G1/S checkpoint that embeds the DNA-damage signal 

transduction pathway to create the compatible model for  the  𝐼𝑆𝑃 algorithm. We also discuss 

the modelling and integration of the model for 𝐼𝑆𝑃 𝐿𝑂𝐿𝐴𝑆 (as discussed in section 4.4), as well 

as the hypothesis and assumptions underlying this method. 
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6.2 Model Integration 

To demonstrate the numerical 𝐼𝑆𝑃 𝐿𝑂𝐿𝐴𝑆 algorithm on a large model, we consider the G1/S 

checkpoint involving the DNA-damage signal transduction pathway, as discussed section 6.1 

concentrate on the dynamic behaviour of the model. The system is a network of 28 species (see 

Table 6.1) reacting based on linked reactions (see Table 6.2) with 75 kinetic parameters (𝑘𝑀=75
 ) 

(see Table 6.3). These parameters and 28 mass balance ODEs charaterise the robustness and 

dynamic behaviour of the network. 

The 𝐼𝑆𝑃 method is initialised and parameterised using initial conditions (given in Table 6.1, 

Table 6.2, Table 6.3) of the model and integrated as a function. Due to large number of maths 

operations and equations, simultaneous parameter predictions with limited numbers of 

experimental values at any instance are often complicated for dynamic systems. Therefore, 

consistency with the available experimental data and assumptions was ensured at each step of 

𝐼𝑆𝑃 𝐿𝑂𝐿𝐴𝑆, as this method has led to the successful development of several functions that 

integrate large numbers of processes supporting the extensive expansion of the state-space. 

Considering all the protein species denoted by Ñ = 𝑥0
 , 𝑥1

 , …… . . 𝑥26
 , 𝑥27

  then, for 𝐼𝑆𝑃 𝐿𝑂𝐿𝐴𝑆, 

the network (Iwamoto et al., 2008; Ling et al., 2010; Hong Ling, 2011) was redesigned using 

model variable as Figure 6.1. 

The presence of agitation in the DNA damage signal and kinetic parameters affects various 

critical proteins species, as mentioned in section 6.1. Therefore, we will track the most critical 

proteins (see Table 6.1) of this network. The dynamic behaviour of the system depends on 

how these proteins and their probabilities change with time and increase the domain size over 

time as that will give us information about the robustness of the network. It is sufficient to 

track the number of copies of the proteins in order, as given in Table 6.1.  
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Figure 6.1. 2D structure of the G1/S checkpoint model involving the DNA damage signal 

transduction pathway using model variables for 𝑰𝑺𝑷 𝑳𝑶𝑳𝑨𝑺. 
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Table 6.1. Description of model variables of the G1/S checkpoint involving proteins to 

create the state-space for 𝑰𝑺𝑷 𝑳𝑶𝑳𝑨𝑺. 

Biochemical species 

 

Initial condition Model variable 

CycD/CDK4/6 2 𝑥5
  

p27/CycD/CDK4/6 1 × 10−3 𝑥11
  

E2f 0 𝑥21
  

Rb 5 × 𝑒−2 𝑥23
  

Rb/E2f 1.95 𝑥19
  

p21/CycD/CDK4/6 0 𝑥15
  

CycD 3 × 10−2 𝑥0
  

CDK4/6 5 𝑥3
  

p21 0 𝑥14
  

p27 6.3 𝑥10
  

p16 1 × 10−3 𝑥18
  

Rb − PP/E2f 1 × 10−3 𝑥20
  

CycE 1 × 10−3 𝑥1
  

CycE/CDK2 − P 1 × 10−3 𝑥7
  

CycA/CDK2 − P 1 × 10−4 𝑥9
  

′X′ 1 × 10−4 𝑥26
  

Rb − PPPP 1 × 10−2 𝑥22
  

p21/CycE/CDK2 − P 0 𝑥16
  

p21/CycA/CDK2 − P 0 𝑥17
  

p27/CycE/CDK2 − P 1 𝑥12
  

p27/CycA/CDK2 − P 1 × 10−4 𝑥13
  

CDK2 13.5 𝑥4
  

CycE/CDK2 1 × 10−3 𝑥6
  

p53 2.65 × 10−2 𝑥24
  

CycA/CDK2 4 × 10−4 𝑥8
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Table 6.2. Reactions in the G1/S model involving the DNA-damage signal transduction 

pathway 

𝑹𝟏
 :  ⋆

𝑘1
 

→𝑥0
  𝑹𝟐𝟔

 : 𝑥7
 + 𝑥4

 
𝑘26
 

→ 𝑥16
  𝑹𝟓𝟏

 : 𝑥21
 
𝑘51
 

→ 𝑥21
  

𝑹𝟐
 :  𝑥0

 
𝑘2
 

→ ⋆ 𝑹𝟐𝟕
 : 𝑥16

 
𝑘27
 

→ 𝑥14
 + 𝑥7

  𝑹𝟓𝟐
 : ⋆

𝑘52
 

→ 𝑥21
  

𝑹𝟑
 :  𝑥0

 + 𝑥3
 
𝑘3
 

→𝑥5
  𝑹𝟐𝟖

 : 𝑥8
 + 𝑥9

 
𝑘28
 

→ 𝑥9
  𝑹𝟓𝟑

 : 𝑥21
 
𝑘53
 

→ ⋆ 

𝑹𝟒
 :  𝑥5

 
𝑘4
 

→𝑥0
 + 𝑥3

  𝑹𝟐𝟗
 : 𝑥9

 
𝑘29
 

→ 𝑥8
  𝑹𝟓𝟒

 : 𝑥21
 + 𝑥9

 
𝑘54
 

→ ⋆ 

𝑹𝟓
 :  𝑥21

 
𝑘5
 

→𝑥1
  𝑹𝟑𝟎

 : 𝑥9
 + 𝑥10

 
𝑘30
 

→ 𝑥13
  𝑹𝟓𝟓

 : 𝑥22
 
𝑘55
 

→ 𝑥23
  

𝑹𝟔
 :  𝑥1

 
𝑘6
 

→ ⋆ 𝑹𝟑𝟏
 : 𝑥13

 
𝑘31
 

→ 𝑥10
 + 𝑥9

  𝑹𝟓𝟔
 : ⋆

𝑘56
 

→ 𝑥23
  

𝑹𝟕
 :  𝑥1

 + 𝑥4
 
𝑘7
 

→𝑥6
  𝑹𝟑𝟐

 : 𝑥9
 + 𝑥14

 
𝑘32
 

→ 𝑥17
  𝑹𝟓𝟕

 : 𝑥23
 
𝑘57
 

→ ⋆ 

𝑹𝟖
 :   𝑥6

 
𝑘8
 

→𝑥1
 + 𝑥4

  𝑹𝟑𝟑
 : 𝑥17

 
𝑘33
 

→ 𝑥14
 + 𝑥9

  𝑹𝟓𝟗
 : 𝑥18

 
𝑘59
 

→ 𝑥23
  

𝑹𝟗
 :  𝑥26

 
𝑘9
 

→𝑥2
  𝑹𝟑𝟒

 : ⋆
𝑘34
 

→ 𝑥10
  𝑹𝟔𝟎

 : ⋆
𝑘60
 

→ 𝑥24
  

𝑹𝟏𝟎
 : 𝑥2

 
𝑘10
 

→ ⋆ 𝑹𝟑𝟓
 : 𝑥7

 + 𝑥10
 
𝑘35
 

→ ⋆ 𝑹𝟔𝟏
 : Signal 

𝑘61
 

→ 𝑥24
  

𝑹𝟏𝟏
 : 𝑥2

 + 𝑥4
 
𝑘11
 

→ 𝑥8
  𝑹𝟑𝟔

 : 𝑥9
 + 𝑥10

 
𝑘36
 

→ ⋆ 𝑹𝟔𝟐
 : 𝑥24

 
𝑘62
 

→ ⋆ 

𝑹𝟏𝟐
 : 𝑥8

 
𝑘12
 

→ 𝑥2
 + 𝑥4

  𝑹𝟑𝟕
 : ⋆

𝑘37
 

→ 𝑥14
  𝑹𝟔𝟑

 : ⋆
𝑘63
 

→ 𝑥25
  

𝑹𝟏𝟑
 : 𝑥5

 
𝑘13
 

→ 𝑥3
  𝑹𝟑𝟖

 : 𝑥24
 
𝑘38
 

→ 𝑥14
  𝑹𝟔𝟒

 : 𝑥25
 
𝑘64
 

→ ⋆ 

𝑹𝟏𝟒
 : 𝑥9

 
𝑘14
 

→ 𝑥4
  𝑹𝟑𝟗

 : 𝑥14
 
𝑘39
 

→ ⋆ 𝑹𝟔𝟓
 : 𝑥27

9
𝑘65
 

→ 𝑥25
  

𝑹𝟏𝟓
 : 𝑥8

 
𝑘15
 

→ 𝑥4
  𝑹𝟒𝟎

 : ⋆
𝑘40
 

→ 𝑥18
  𝑹𝟔𝟔

 : 𝑥27
9
𝑘66
 

→ 𝑥25
  

𝑹𝟏𝟔
 : 𝑥6

 
𝑘16
 

→ 𝑥4
  𝑹𝟒𝟐

 : 𝑥23
 
𝑘42
 

→ 𝑥18
  𝑹𝟔𝟕

 : 𝑥27
 
𝑘67
 

→ ⋆ 

𝑹𝟏𝟕
 : 𝑥7

 . 𝑥7
 
𝑘17
 

→ 𝑥4
  𝑹𝟒𝟑

 : 𝑥18
 
𝑘43
 

→ ⋆ 𝑹𝟔𝟖
 : 𝑥21

 
𝑘68
 

→ 𝑥26
  

𝑹𝟏𝟖
 : 𝑥5

 + 𝑥14
 
𝑘18
 

→ 𝑥15
  𝑹𝟒𝟒

 : 𝑥18
 + 𝑥5

 
𝑘44
 

→ ⋆ 𝑹𝟔𝟗
 : 𝑥26

 
𝑘69
 

→ ⋆ 

𝑹𝟏𝟗
 : 𝑥15

 
𝑘19
 

→ 𝑥14
 + 𝑥5

  𝑹𝟒𝟓
 : 𝑥21

 + 𝑥23
 
𝑘45
 

→ 𝑥19
  

𝑹𝟕𝟎
 : 𝑥24

 + Signal 
𝑘70
 

→ 𝑥27
  

𝑹𝟐𝟎
 :  𝑥5

 + 𝑥10
 
𝑘20
 

→ 𝑥11
  𝑹𝟒𝟔

 : 𝑥19
 + 𝑥5

 
𝑘46
 

→ 𝑥20
  𝑹𝟕𝟏

 : 𝑥24
 + 𝑥25

 
𝑘71
 

→ 𝑥27
  

𝑹𝟐𝟏
 : 𝑥11

 
𝑘21
 

→ 𝑥10
 + 𝑥5

  𝑹𝟒𝟕
 : 𝑥11

 + 𝑥19
 
𝑘47
 

→ 𝑥20
  𝑹𝟕𝟐

 : 𝐷𝐷𝑆
𝑒𝑥𝑝 (−𝑘72

 .𝑡)
→         

Signal 

𝑹𝟐𝟐
 : 𝑥6

 + 𝑥7
 
𝑘22
 

→ 𝑥7
  𝑹𝟒𝟖

 : 𝑥19
 + 𝑥15

 
𝑘48
 

→ 𝑥20
  𝑹𝟕𝟑

 : 𝑥24
 + 𝑥25

 
𝑘73
 

→ ⋆ 

𝑹𝟐𝟑
 : 𝑥7

 
𝑘23
 

→ 𝑥6
  𝑹𝟒𝟗

 : 𝑥7
 + 𝑥20

 
𝑘49
 

→ 𝑥21
  𝑹𝟕𝟒

 : 𝑥24
 
𝑘74
 

→ ⋆ 

𝑹𝟐𝟒
 : 𝑥7

 + 𝑥10
 
𝑘24
 

→ 𝑥12
  𝑹𝟓𝟎

 : 𝑥9
 + 𝑥20

 
𝑘50
 

→ 𝑥21
  

𝑹𝟕𝟓
 : 𝑥24

 

+ 𝐷𝐷𝑆𝑖𝑛𝑖𝑡𝑖𝑎𝑙
 

𝑘75
 

→ ⋆ 

𝑹𝟐𝟓
 : 𝑥12

 
𝑘25
 

→ 𝑥10
 + 𝑥7
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Table 6.3. Kinetic parameter values for reactions involved in the G1/S model 

Parameter Value Parameter Value Parameter Value 

𝒌𝟏
  5 x 10−3 𝒌𝟐𝟔

  2.25 x 10−2 𝒌𝟓𝟏
  5 x 10−8 

𝒌𝟐
  5 x 10−4 𝒌𝟐𝟕

  1.75 x 10−4 𝒌𝟓𝟐
  5 x 10−7 

𝒌𝟑
  5 x 10−3 𝒌𝟐𝟖

  1.9 x 10−2 𝒌𝟓𝟑
  5 x 10−5 

𝒌𝟒
  2.5 x 10−3 𝒌𝟐𝟗

  5 x 10−4 𝒌𝟓𝟒
  1 x 10−2 

𝒌𝟓
  7.5 x 10−2 𝒌𝟑𝟎

  2.5 x 10−3 𝒌𝟓𝟓
  5 x 10−8 

𝒌𝟔
  2.5 x 10−3 𝒌𝟑𝟏

  1.75 x 10−4 𝒌𝟓𝟔
  5 x 10−5 

𝒌𝟕
  1.25 x 10−3 𝒌𝟑𝟐

  2.5 x 10−3 𝒌𝟓𝟕
  5 x 10−3 

𝒌𝟖
  2.5 x 10−4 𝒌𝟑𝟑

  1.75 x 10−4 𝒌𝟓𝟖
  5 x 10−5 

𝒌𝟗
  8 x 10−4 𝒌𝟑𝟒

  5 x 10−8 𝒌𝟓𝟗
  5 x 10−4 

𝒌𝟏𝟎
  5 x 10−4 𝒌𝟑𝟓

  1 x 10−2 𝒌𝟔𝟎
  1 x 10−4 

𝒌𝟏𝟏
  1 x 10−3 𝒌𝟑𝟔

  1.5 x 10−3 𝒌𝟔𝟏
  1.5 

𝒌𝟏𝟐
  2 x 10−4 𝒌𝟑𝟕

  5 x 10−5 𝒌𝟔𝟐
  1 x 10−3 

𝒌𝟏𝟑
  5 x 10−4 𝒌𝟑𝟖

  1 x 10−2 𝒌𝟔𝟑
  9.4 x 10−4 

𝒌𝟏𝟒
  5 x 10−4 𝒌𝟑𝟗

  5 x 10−3 𝒌𝟔𝟒
  2 x 10−2 

𝒌𝟏𝟓
  5 x 10−4 𝒌𝟒𝟎

  2 x 10−3 𝒌𝟔𝟓
  9.5 

𝒌𝟏𝟔
  5 x 10−4 𝒌𝟒𝟏

  5 x 10−5 𝒌𝟔𝟔
  10 

𝒌𝟏𝟕
  2 x 10−3 𝒌𝟒𝟐

  1 x 10−4 𝒌𝟔𝟕
  5 x 10−3 

𝒌𝟏𝟖
  5 x 10−4 𝒌𝟒𝟑

  5 x 10−4 𝒌𝟔𝟖
  5 x 10−2 

𝒌𝟏𝟗
  5 x 10−3 𝒌𝟒𝟒

  5 x 10−4 𝒌𝟔𝟗
  8 x 10−4 

𝒌𝟐𝟎
  5 x 10−4 𝒌𝟒𝟓

  5 x 10−5 𝒌𝟕𝟎
  6 

𝒌𝟐𝟏
  5 x 10−3 𝒌𝟒𝟔

  2.5 x 10−3 𝒌𝟕𝟏
  4 x 10−3 

𝒌𝟐𝟐
  2.5 x 10−2 𝒌𝟒𝟕

  2.5 x 10−3 𝒌𝟕𝟐
  1 x 10−8 

𝒌𝟐𝟑
  1.75 x 10−3 𝒌𝟒𝟖

  2.5 x 10−3 𝒌𝟕𝟑
  7.72 x 10−1 

𝒌𝟐𝟒
  2.25 x 10−2 𝒌𝟒𝟗

  4 x 10−2 𝒌𝟕𝟒
  5.56 x 10−2 

𝒌𝟐𝟓
  1.75 x 10−4 𝒌𝟓𝟎

  2.5 x 10−3 𝒌𝟕𝟓
  2 x 10−2 
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These protein species counts and reactions (see Table 6.2) propensities will be used to define 

the state-space of the model for 𝐼𝑆𝑃 𝐿𝑂𝐿𝐴𝑆 and they are also responsible for changes in the 

number of states. Therefore, we track the copy counts of these species as: 

 ([𝐶ℎ𝑒𝑚𝑖𝑐𝑎𝑙 𝑠𝑝𝑒𝑐𝑖𝑒𝑠]) ∈ Ñ ≡ (𝑀𝑜𝑑𝑒𝑙 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠). (100) 

In reaction 𝑅3
 , the copy count of 𝑥5

  is increased by the rate of association of CycD  and 

CDk4/6; however, the dissociation rate will decrease the copy count of 𝑥5
  through 𝑅4

 . In 

reaction 𝑅13
 , 𝑥5

  is decreased by 1, producing CDk4/6, which increases the copy counts of 𝑥3
 . 

The copy counts of 𝑥15
  are increased by the rate of association of p21 and CyCD/CDk4/6, 

which decreases 𝑥5
  by 1, through 𝑅18

 , and in the reversible reaction, 𝑅19
 , it disassociates both 

proteins at the rate of 5 x 10−3 while increasing the copy counts of 𝑥5
 , which are 10 times faster 

compared to the forward reaction. Similarly, 𝑅20
  and 𝑅21

  are a set of forward and backward 

reactions resulting in changes in the copy counts of 𝑥5
  and 𝑥11

 . In reaction 𝑅51
  the synthesis of  

𝑥21
  is promoted by itself at the rate of 5 x 10−8 in 𝑅50

  and 𝑅51
 ; whereas, in reaction  𝑅52

  the 

synthesis 𝑥21
  is at the rate of 5 x 10−5. 

Similarly, by noting the changes in the counts of all the proteins, as given in Table 6.1, we can 

now define the transitions associated with 𝑅𝑀
  (as given in Table 6.2) in a stoichiometric 

vector 𝑉𝑀
  matrix for all Ñ species involved in the reactions. Based on interactions of the 

proteins in Figure 6.1 (Iwamoto et al., 2008; Ling et al., 2010), we have 𝑅𝑀
  channels {3, 4, 

13, 18, 19, 20, 21, 44, 45, 49, 50, 51, 52, 53, 54, 55, 56, 57, 59, 46, 47, 48, 1, 2, 37, 39, 27, 26, 

33, 32, 38, 34, 24, 25, 30, 31, 35, 36, 40, 42, 43, 5, 6, 7, 8, 22, 23, 27, 26, 17, 28, 14, 29, 68, 

69} and Ñ species affecting the proteins - CycD/CDK4/6, Rb, E2f, CycE/CDK2, p53 and p21 

- through a given number of reaction channels. By tracking the changes in the species, we will 

now define the transitions associated with 𝑅𝑀=3,4,13,18,19,20,21,,.........................2,23,27,26,17,28,14,29,68,69
  

and Ñ in the stoichiometric vector matrix as: 
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(1, 0, 0, 0, 0, 0, -1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) 

(-1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) 

(-1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) 

(-1, 0, 0, 0, 0, 1, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) 

(1, 0, 0, 0, 0, -1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) 

(-1, 1, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) 

(1, -1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) 

(-1, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) 

(0, 0, -1, -1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) 

(0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) 

(0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) 

(0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) 

(0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) 

(0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) 

(0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) 

(0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0) 

(0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) 

(0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) 

(0, 0, 0, 1, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) 

(-1, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) 

(0, -1, 0, 0, -1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) 

(0, 0, 0, 0, -1, -1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) 

(0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) 

(0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) 

(0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) 

(0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) 

(0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0) 

(0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, -1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0) 

(0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0) 

(0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, -1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0) 

(0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0) 

(0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) 

(0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, -1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0) 

(0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0) 

(0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0) 

(0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0) 

(0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) 

(0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) 

(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) 

(0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) 

(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) 

(0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) 

(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) 

(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, -1, 1, 0, 0) 

(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0) 

(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0) 

(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0) 

(0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0) 

(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 1, 0, 0, 0, -1, 0, 0, 0) 

(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0) 

(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1) 

(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0) 

(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1) 

(0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0) 

(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0) 

 

𝑉𝑀
 = 
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Figure 6.2. Markov chain graph given  as the initial node of the G1/S checkpoint involving the DNA damage signal transduction pathway  

model. The  nodes are directly reachable nodes from the initial state when exactly one 𝑹𝑴
  occurs. The  nodes are reachable from the initial 

state when exactly two 𝑹𝑴
  occurs. When 𝑹𝑴

  occurs {3,4…….} times the system jumps to the  nodes, respectively. 
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For method compatibility, the associated Markov chain of the model is treated as a Markov 

chain graph, as given in Figure 6.2, and stated in terms of the nodes with additional information, 

such as the number of 𝑅𝑀
  reactions required to reach the state. If Figure 6.2 is equivalent to the 

growing graph tree of the model, the transition between the nodes is defined by the typical form 

of the growing dictionary for this model, as given, below:  

𝐷𝑖𝑐𝑡 =

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

[1 ⟶ 2, 8, 14, 20, 26, 32, 38, 44, 50, 56, 62,68, 69, 76, 82, 88, 94, 100],

[2 ⟶ 1, 106,113, 120, 126, 132, 138, 144, 150, 156,162, 163, 169, 175, 181, 187, 193],

[8 ⟶ 199,205, 211, 217, 223, 229, 235, 241,247, 253, 259, 260, 266, 272, 278,284,290],

[14 ⟶ 1, 296, 302, 308, 314, 320,326, 332, 338, 344, 350, 351, 357, 363,369, 375, 381, 387],

[20 ⟶ 1, 393, 399,405, 411, 417,423, 429, 435, 441, 447,453, 454, 460, 466, 472, 478, 484],

[26 ⟶ 495, 501, 507, 513, 519, 525,531, 537, 543, 549, 555, 556, 562,568,574, 580, 586, 592],

[32 ⟶ 599, 605,611, 617, 623, 629, 635, 641, 647, 653,659,660, 666, 672, 678, 684, 690, 696,702],

[38 ⟶ 709, 715, 721, 727, 733,739, 745, 751,757, 763, 769, 770, 776,782, 788, 794, 800, 806],

[44 ⟶ 813,819, 825, 831, 837, 843, 849, 855, 861,867, 873, 874, 880, 886, 892,898, 904,910],

[50 ⟶ 917, 923, 929, 935, 941,947,953, 959, 965, 971, 977, 978, 984,990,996, 1002, 1008, 1014],

[56 ⟶ 1021,1027,1033, 1039, 1045, 1051, 1057,1063,1069, 1075, 1081, 1082, 1088, 1094,1100,
1106, 1112, 1118], [62 ⟶ 1125,1131, 1137, 1143, 1149, 1155, 1161,1167, 1173, 1179, 1185,

 1186, 1192,1198, 1204,1210, 1216, 1222], [68 ⟶ 1,1229, 1235, 1241, 1247, 1253, 1259,1265,

1271, 1277, 1283, 1289, 1290,1296, 1302,1308, 1314, 1320], [69 ⟶ 1,1327, 1333, 1339, 1345,

1351, 1357,1363, 1369, 1375, 1381, 1387, 1388,1394, 1400,1406, 1412, 1418], [76 ⟶ 1425,

1431, 1437, 1443, 1449,1455, 1461, 1467, 1473, 1479, 1485,1486, 1492, 1498,1504, 1510, 1516],

[82 ⟶ 1523, 1529, 1535, 1541, 1547,1553, 1559, 1565, 1571, 1577, 1583,1584, 1590, 1596,

1602, 1608, 1614], [88 ⟶ 1, 1621, 1627, 1633, 1639, 1645,1651, 1657, 1663, 1669, 1675, 1681,

1682, 1688, 1694, 1700, 1706, 1712], [94 ⟶ 1719, 1725, 1731, 1737, 1743,1749, 1755, 1761,

1767,1773, 1779,1780, 1786, 1792,1798, 1804, 1810,1816], [100 ⟶ 1, 1823, 1829, 1835,

1841, 1847, 1853, 1859, 1865, 1871,1877, 1883, 1884, 1890,1896, 1902,1908, 1914], . . . . . . . . . . . )

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

Further, we express the propensity functions of all the 𝑅𝑀
  reactions (see Table 6.2) involved in 

the model for selective 𝑀 as follows: 

𝑅𝑀
 :    𝑎𝑀

 ([𝐶ℎ𝑒𝑚𝑖𝑐𝑎𝑙 𝑠𝑝𝑒𝑐𝑖𝑒𝑠 𝑣𝑒𝑐𝑡𝑜𝑟]) = 𝑘𝑀
 ([𝑃𝑟𝑜𝑑𝑢𝑐𝑡 𝑜𝑓 𝑟𝑒𝑎𝑐𝑡𝑎𝑛𝑡 𝑠𝑝𝑒𝑐𝑖𝑒𝑠]) (101) 

Figure 6.2 is used to visualise the Markov process of the model with 𝐧𝐽
 = (𝐗𝐾

 , ƌ𝑙
 ) number of 

states stored in all the nodes that are directly reachable from the initial node, 𝑁1
 = (𝑋0

 , ƌ𝑙=1
 ) 

via 𝑅𝑀
  reactions. In the next section, we will discuss the results of the computational 

experiments and visualise the state-space and conditional probabilities of the species. 
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6.3 Computational Experiments  

In this section, we tested the ability of 𝐼𝑆𝑃 𝐿𝑂𝐿𝐴𝑆 to produce a large model to measure the 

dynamics of the key components, as discussed in sections 6.1 and 6.2. We performed the 

experiment on the carbon-neutral platform of Amazon® Web Service Elastic Computing (EC2) 

instance type large (m5a) running on HVM (hardware virtual environment) virtualisation with 

variable ECUs, a multicore environment 16vCPU @ 2.2GHz, AMD EPYC 7571 running 

Ubuntu 16.04.1 with its relevant dependencies, a 64GB memory with 8GB Elastic Block 

Storage (EBS) type General Purpose SSD (GP2) formatted with the Elastic File System (EFS). 

The performance mode was set to General Purpose with input-outputs per second (IOPS = 

100/3000) and a throughput mode of type bursting is set (see Appendix F). 

After 𝐼𝑆𝑃 𝐿𝑂𝐿𝐴𝑆 simulation, we collected the outputs from the events, as follows: 

(1) Dimension of the G1/S checkpoint involving the DNA-damage signal transduction 

pathway. This is the indicating factor for knowing the difficulty level for solving the CME.  

(2) Time taken by 𝐼𝑆𝑃 𝐿𝑂𝐿𝐴𝑆 to run the G1/S checkpoint involving the DNA-damage signal 

transduction pathway for CME approximation of up to 𝑡𝑓
 . This is a determining factor for 

the run-time performance and, subsequently, the total time required to solve the CME. 

(3) Number of states at the time steps. Once the states are expanded, the domain size shows 

persistent increase in spite of bunking some states. This is critical for algorithm performance 

and maintenance of the accuracy of the solution, which requires a much longer time course 

in comparison with the expansion. 

(4) Adaptive approximation error when states were simultaneously expanded and bunked. 

(5) Conditional probabilities of the protein species at 𝑡𝑓
  and an approximate solution of the 

CME for the system in terms of probability. 

The G1/S model (dimension = 28) with a DNA-damage signal transduction pathway is 

considered to be very stiff in nature, so molecular counts of certain proteins increase very 

quickly and some do so slowly (as discussed in section 6.1), which makes it tough to solve, 

even for a short time. The model is solved for 𝑡𝑓
 = 1.5 sec with ƃ𝑙𝑖𝑚𝑖𝑡

 = 1, 𝜏𝑚 = 1𝑒 − 6, 

𝑡𝑠𝑡𝑒𝑝
 = 0.1. The systematic exploration of nodes carrying probable states are undertaken in a 

similar way, as discussed previously in Table 4.8 and depicted in Figure 4.16 in six stages 

(denoted as Ŝ), representing 𝑅𝑀
  reactions with propensity, 𝑎µ

 , with the arcs as transitions. 
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The nodes are expanded up to 𝑡𝑓
  for the identifying the reaction channels responsible for 

variations in the proteins. It is observed from the transitioning factor of the 2nd-tier that every 

node has an average of at least ≈97 possible child nodes carrying states and; further, 𝐷𝑖𝑐𝑡 is 

expanded for n-tiers of child nodes to add more states to the domain. Further, 𝐧𝐽
 =

(𝐗𝐾
 , ƌ𝑙=1,2,……

 ) is expanded and updated as per the trend of 𝐼𝑆𝑃 𝐿𝑂𝐿𝐴𝑆 (see section 4.4). 

The repsonse from the  𝐼𝑆𝑃 𝐿𝑂𝐿𝐴𝑆 method between a number of states in the domain and time, 

𝑡, is shown in Figure 6.3. The initial response suggests that only a few reactions were active 

until 𝑡 = 0.4 sec and after that more reactions triggered that explosively take the exploration 

above 0.5 million states in 0.5 sec. For such a large model this combination of explosion states 

was expected because proteins undergo a number of excursions due to the number of reactions 

in fractions of time, 𝑡. The second explosion of states occurs after 1.0 sec when almost all the 

reactions (involving the species given in Table 6.1) become active in the network. The size and 

colour of the 2D pyramid in Figure 6.3 shows the increase in size of the domain with the state 

explosions. 
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Figure 6.3. Showing the expansion and updating of the states for the G1/S model based on 

the 𝑰𝑺𝑷 𝑳𝑶𝑳𝑨𝑺 method. The state-space expansion increases the number of additions of 

new states in the domain. 𝑰𝑺𝑷 𝑳𝑶𝑳𝑨𝑺 quickly expands the state-space up to ≈3.5 million 

states in 1.5 sec. 
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The corresponding propensities, ∆𝑎𝑖,𝑗
 , are updated in the 𝐴𝑖,𝑗

  matrix in every iteration, based 

on the 𝐼𝑆𝑃 𝐿𝑂𝐿𝐴𝑆 update trend (for example see Table 4.9). The system started with the initial 

state of the protein species and gradually, when protein level changes in the system, it exploits 

the copy counts that shift the system to a new state. We have set the checkpoint to examine the 

initial state probability over time. The response in Figure 6.4 indicate that the probability of the 

system to remain in the initial (normal) state decrease with indicates that the probability of the 

system remaining in the initial (normal) state decreases with time in the presence of DNA 

damage, which triggers the change in protein levels. 

The change in protein levels causes the system to shift to new states, which manifest the Markov 

process of the system. The 𝐼𝑆𝑃 𝐿𝑂𝐿𝐴𝑆 captures this process and defines several bounds of the 

domain at different time intervals, as defined by Figure 4.2 pyramid. To investigage the 

expansion of states closely, the order of bounds at different time intervals, and the number of 

states present in the bounds, are given in Table 6.4. The size of bound created in each duration 

reveals that, for every step, the growth of the domain is eight-to-ten times the previous size of 

the domain. 
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Figure 6.4. Response of the 𝑰𝑺𝑷 𝑳𝑶𝑳𝑨𝑺 checkpoint for examining the G1/S checkpoint 

involving the DNA-damage signal transduction pathway’s initial state probability over 

time. 
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Table 6.4. Lower and upper Bounds of the domain for G1/S model given by 𝑰𝑺𝑷 𝑳𝑶𝑳𝑨𝑺 

trend based on bound limit ƃ𝒍𝒊𝒎𝒊𝒕
  

𝒁 𝑩𝒐𝒖𝒏𝒅(𝑍)𝒍𝒐𝒘𝒆𝒓
  𝑩𝒐𝒖𝒏𝒅(𝑍)𝒖𝒑𝒑𝒆𝒓

  States Duration 

1 𝐵𝑜𝑢𝑛𝑑(1)𝑙𝑜𝑤𝑒𝑟
 = {𝑋0

 } 

formed at 𝑡 = 0.0 sec 

𝐴𝑝𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑡𝑖𝑜𝑛 = 1 

𝐵𝑜𝑢𝑛𝑑(1)𝑢𝑝𝑝𝑒𝑟
 = {𝑋0,1,2…..9808

 } 

formed at 𝑡 = 0.1 sec 

𝐴𝑝𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑡𝑖𝑜𝑛 = 0.999999867 

9808 0.0 – 0.1 sec 

ƃ𝑙𝑖𝑚𝑖𝑡
 = 1, 𝑐𝑜𝑢𝑛𝑡(ƃ𝑙𝑖𝑚𝑖𝑡

 ) = 0,1,  

2 𝐵𝑜𝑢𝑛𝑑(2)𝑙𝑜𝑤𝑒𝑟
 = 𝐵𝑜𝑢𝑛𝑑(1)𝑢𝑝𝑝𝑒𝑟

  

formed at 𝑡 = 0.1 sec 

𝐴𝑝𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑡𝑖𝑜𝑛 = 0.999999847 

𝐵𝑜𝑢𝑛𝑑(2)𝑢𝑝𝑝𝑒𝑟
 = {𝑋0,1,2…..87393

 } 

formed at 𝑡 = 0.2 sec 

𝐴𝑝𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑡𝑖𝑜𝑛 = 0.999999173 

87393 0.1 – 0.2 sec 

ƃ𝑙𝑖𝑚𝑖𝑡
 = 1, 𝑐𝑜𝑢𝑛𝑡(ƃ𝑙𝑖𝑚𝑖𝑡

 ) = 0,1 

3 𝐵𝑜𝑢𝑛𝑑(3)𝑙𝑜𝑤𝑒𝑟
 = 𝐵𝑜𝑢𝑛𝑑(2)𝑢𝑝𝑝𝑒𝑟

  

formed at 𝑡 = 0.4 sec 

𝐴𝑝𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑡𝑖𝑜𝑛 = 0.999999157 

𝐵𝑜𝑢𝑛𝑑(3)𝑢𝑝𝑝𝑒𝑟
 = {𝑋0,1,2…..604677

 } 

formed at 𝑡 = 0.5 sec 

𝐴𝑝𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑡𝑖𝑜𝑛 = 0.99999701 

604677 0.4 – 0.5 sec 

ƃ𝑙𝑖𝑚𝑖𝑡
 = 1, 𝑐𝑜𝑢𝑛𝑡(ƃ𝑙𝑖𝑚𝑖𝑡

 ) = 0,1 
4 𝐵𝑜𝑢𝑛𝑑(4)𝑙𝑜𝑤𝑒𝑟

 = 𝐵𝑜𝑢𝑛𝑑(3)𝑢𝑝𝑝𝑒𝑟
  

formed at 𝑡 = 1.1 sec 

𝐴𝑝𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑡𝑖𝑜𝑛 = 0.99999699 

𝐵𝑜𝑢𝑛𝑑(4)𝑢𝑝𝑝𝑒𝑟
 = {𝑋0,1,2…..3409899

 } 

formed at 𝑡 = 1.5 sec 

𝐴𝑝𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑡𝑖𝑜𝑛 = 0.99999648 

3409899 1.1 – 1.5 sec 

ƃ𝑙𝑖𝑚𝑖𝑡
 = 1, 𝑐𝑜𝑢𝑛𝑡(ƃ𝑙𝑖𝑚𝑖𝑡

 ) = 0,1 
 

The number of set of states that create the bounds at 𝑡 are shown in Figure 6.5. In Figure 6.5, 

with the exploration of the set of 517584 states, the 𝐵𝑜𝑢𝑛𝑑(3)𝑢𝑝𝑝𝑒𝑟
 = {𝑋0,1,2…..604677

 }  is 

formed at 0.5 sec carrying 604677 states. Some states were bunked at 0.5 sec resulting in 

approximation errors that reach 2.42e − 06 at 0.6 sec. At 𝑡𝑓
 , the 𝐿𝑂𝐿𝐴𝑆 ends up with a domain 

defined by 𝐵𝑜𝑢𝑛𝑑(4)𝑢𝑝𝑝𝑒𝑟
 = {𝑋0,1,2…..3409899

 }  carrying 3409899 states with  3.52e − 06 

approximation errors. 
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Figure 6.5. The set of states explored for G1/S model using the 𝑰𝑺𝑷 𝑳𝑶𝑳𝑨𝑺 method. Based 

on network of reactions, 𝑰𝑺𝑷 𝑳𝑶𝑳𝑨𝑺 unfolds the state-space pattern to update states in 

the domain and expands 3409899 states up to 𝒕𝒇
 .  shows the time point where new set of 

states is explored and updated in the domain. 
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The set of nodes 𝑁1
 , 𝑁2

 , . . . . . 𝑁3409900
  carries unique states representing the set of 

𝑠𝑡𝑎𝑡𝑒(𝑛3409900
 ) = (𝑋0,1,2,…3409899

 ) that forms the state-space of the model. It is important to 

note that some proteins are synthesised and promoted by the network itself, as evidenced by 

some reactions of the pathway, which increase the frequency of the repeated states. However, 

𝐼𝑆𝑃 𝐿𝑂𝐿𝐴𝑆 validation does not consider them for the domain. The solution of Eq. (9) up to 𝑡𝑓
  

for the domain created by 𝐼𝑆𝑃 𝐿𝑂𝐿𝐴𝑆 is shown in Table 6.5. 

Table 6.5. 𝑰𝑺𝑷 𝑳𝑶𝑳𝑨𝑺 expansion response and solution at 𝒕𝒇
  for the G1/S model. 

𝑡𝑓
 = 1.5 sec, 

𝑡𝑠𝑡𝑒𝑝
 = 0.1 

Run-time 

(sec) 

Domain Expansion time 

(sec) 
Error at 𝑡𝑓

  

𝐼𝑆𝑃 𝐿𝑂𝐿𝐴𝑆 1372 3409899 1.5 3.52e − 06 

 

Over three test runs, the run time of 𝐼𝑆𝑃 𝐿𝑂𝐿𝐴𝑆 for the G1/S model was 1372 secs in solving 

the Eq. (9) with the optimal domain having 3409899 states. The response of 𝐼𝑆𝑃 𝐿𝑂𝐿𝐴𝑆 given 

in Figure 6.6, shows the system’s probabilities bunked at 𝑡′  while expansion (w.r.t 

approximation) when the number of states increases with the expansion and provided that, 

𝐼𝑆𝑃 𝐿𝑂𝐿𝐴𝑆 produces minimal errors of the order of 10−6, as given in Table 6.5 and Figure 6.6. 
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Figure 6.6. Total probability bunked at 𝒕′ from the domain in 𝑰𝑺𝑷 𝑳𝑶𝑳𝑨𝑺 iteration while 

expansion and solving the CME for G1/S model. 
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The conditional probabilities of the species’ systems are given in Figure 6.7. In the case of the 

DNA-damage situation, large numbers of the most notable parameters (as mentioned in section 

6.1) increase compared with the normal condition (in cell cycle progression). The increase is 

predominantly related to 𝑥14
  (p21) having a high initial probability, see Fig(14) in Figure 6.7, 

and the feedback (negative) of 𝑥24
  (p53) increases its probability, see Fig(24) in Figure 6.7, 

such as association rate of 𝑥16
  (p21/CycE/CDK2 − P), rate of synthesis of 𝑥14

  (p21) by 𝑥24
  

(p53), rate of degradation of 𝑥14
  (p21), rate of synthesis of 𝑥24

  (p53) by DNA-damage signal. 

The conditional probabilities of the two key proteins, 𝑥10
  (p27) and 𝑥1

  (CycE), are affected by 

the change in the response of cells to the level of the DNA-damage signal, see Fig (10) and Fig 

(3) in Figure 6.7. The parameters related to 𝑥10
  (p27) as well as 𝑥1

  (CycE) greatly affect the 

probability of 𝑥21
  (E2f) with time, see Fig (21) in Figure 6.7. The impact of 𝑥1

  (CycE) involves 

additional parameters related to CycA because the release of supplementary 𝑥21
  (E2f) depends 

on 𝑥20
  (Rb − PP/E2f) hyperphosphorylation by the activation 𝑥7

  (CycE/CDK2 − P), which 

affects the probability of 𝑥21
  (E2f). 

When the release of 𝑥21
  (E2f) is affected, the probability of 𝑥1

  (CycE) increases, see Fig (3) in 

Figure 6.7, that leads to progression to the S-phase followed by the temporary suspension of 

cell cycle progression. The increase in probability of 𝑥24
  (p53) shows support to cells to repair 

the DNA damage. 

The parameters and its probabilities relating to 𝑥14
  (p21) and 𝑥24

  (p53) become important in 

the case of DNA damage. When combined, the conditional probability of these parameters 

indicates the involvement of the DNA-damage signal in the transition of G1/S. 
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    Fig (1). Probability of 𝐂𝐲𝐜𝐀/𝐂𝐃𝐊 − 𝐏 over 𝒕𝒇
            Fig (2). Probability of 𝐂𝐲𝐜𝐃 over 𝒕𝒇

  

            

 

 

 

 

 

                 Fig (3). Probability of 𝐂𝐲𝐜𝐄 over 𝒕𝒇
                  Fig (4). Probability of 𝐂𝐃𝐊𝟒/𝟔 over 𝒕𝒇

  

 

 

 

 

 

           Fig (5). Probability of 𝐂𝐃𝐊𝟐 over 𝒕𝒇
          Fig (6). Probability of 𝐂𝐲𝐜𝐃/𝐂𝐃𝐊𝟒/𝟔 over 𝒕𝒇
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      Fig (7). Probability of 𝐂𝐲𝐜𝐄/𝐂𝐃𝐊𝟐 over 𝒕𝒇
             Fig (8). Probability of 𝐂𝐲𝐜𝐄/𝐂𝐃𝐊𝟐 − 𝐏  

                                                                                          over 𝒕𝒇
  

 
 

 

 

 

      Fig (9). Probability of 𝐂𝐲𝐜𝐀/𝐂𝐃𝐊𝟐 over 𝒕𝒇
                 Fig (10). Probability of 𝐩𝟐𝟕 over 𝒕𝒇

  

          

 

 

 

 

  Fig (11). Probability of 𝐩𝟐𝟕/𝐂𝐲𝐜𝐃/𝐂𝐃𝐊𝟒/𝟔    Fig (12). Probability of 𝐩𝟐𝟕/𝐂𝐲𝐜𝐄/𝐂𝐃𝐊𝟐 − 𝐏          

  over 𝒕𝒇
                                                                    over 𝒕𝒇
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Fig (13). Probability of 𝐩𝟐𝟕/𝐂𝐲𝐜𝐀/𝐂𝐃𝐊𝟐 − 𝐏                Fig (14). Probability of 𝐩𝟐𝟏 over 𝒕𝒇
  

over 𝒕𝒇
  

 
 
 

 

 

 Fig (15). Probability of 𝐩𝟐𝟏/𝐂𝐲𝐜𝐃/𝐂𝐃𝐊𝟒/𝟔     Fig (16). Probability of 𝐩𝟐𝟏/𝐂𝐲𝐜𝐄/𝐂𝐃𝐊𝟐 − 𝐏            

 over 𝒕𝒇
                                                                     over 𝒕𝒇

  

 
 
 

 

 

Fig (17). Probability of 𝐩𝟐𝟏/𝐂𝐲𝐜𝐀/𝐂𝐃𝐊𝟐 − 𝐏              Fig (18). Probability of 𝐩𝟏𝟔 over 𝒕𝒇
  

over 𝒕𝒇
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         Fig (19). Probability of 𝐑𝐛/𝐄𝟐𝐟 over 𝒕𝒇
        Fig (20). Probability of 𝐑𝐛 − 𝐏𝐏/𝐄𝟐𝐟 over 𝒕𝒇

  

                                                                                                 

 

 

 

              Fig (21). Probability of 𝐄𝟐𝐟 over 𝒕𝒇
           Fig (22). Probability of 𝐑𝐛 − 𝐏𝐏𝐏𝐏 over 𝒕𝒇

  

                                                                                                   

  

 

 

                   Fig (23). Probability of 𝐑𝐛 over 𝒕𝒇
                    Fig (24). Probability of 𝐩𝟓𝟑 over 𝒕𝒇

  

 

 

 

             Fig (25). Probability of ′𝐗′ over 𝒕𝒇
  

Figure 6.7. Conditional probability of the G1/S model evaluated at 𝒕𝒇
 = 𝟏. 𝟓 sec, 𝒕𝒔𝒕𝒆𝒑

 =

𝟎. 𝟏 using 𝑰𝑺𝑷 𝑳𝑶𝑳𝑨𝑺. 
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6.4 Discussion and Summary 

In this chapter, we extended the application of our 𝐼𝑆𝑃 method to a large model,  compared to 

application presented on models in the previous chapter, to investigate the performance of  

𝐼𝑆𝑃 𝐿𝑂𝐿𝐴𝑆 for the expansion of the state-space and an approximate solution of the CME based 

on produced bounds. We simulate the G1/S model under the condition of the DNA-damage 

signal to study the number of states at different time points. 𝐼𝑆𝑃 also predicts the conditional 

probabilities of the protein species (see Figs (1) to (25) of Figure 6.7) based on events leading 

to the formation of different complexes in the system. 

The simulation results of the expansion of states show that the explosion of states does not take 

place at every time step but with gaps of several time steps. The first explosion took the system 

to 0.5 million states and the second the explosion to 3.5 million states (see Figure 6.3 and Figure 

6.5). This sudden explosion is due to changes in the levels of proteins in the presence of DNA-

damage signals, which are useful to gaining insights into the different complexes probabilities 

over time. Both the explosions were also captured in Figure 6.5, which shows the time points 

where the new set of states is explored and updated in the domain. 

This also helps us to better understand the potential outcomes of the domain in terms of 

bounds defined at different time durations. Although the number of states increased with the 

rate of 8-10 times per bound, the accuracy of the approximate solution was not greatly 

affected (see Table 6.4). The solution in Table 6.5 clearly reflect the pros of 𝐼𝑆𝑃 𝐿𝑂𝐿𝐴𝑆 in 

terms of performance (run-time), number of states (domain size) and the error at 𝑡𝑓
  for a large 

model. In addition, the checkpoint response of 𝐼𝑆𝑃 in Figure 6.4 shows the decline in the 

initial state probability over time. In Figure 6.6, the adaptive approximation error marked by 

𝐼𝑆𝑃 𝐿𝑂𝐿𝐴𝑆 shows a major change after 𝑡 = 0.4 sec and 𝑡 = 1.0 sec at the first and second 

explosion of the states, respectively. This suggests that both explosions bring states with 

lower probabilities that were bunked from the domain for approximation.  

Overall, these results provide a clearer picture about the performance of the 𝐼𝑆𝑃 𝐿𝑂𝐿𝐴𝑆 on a 

large model and the expansion of the state-space of the G1/S model in the presence of DNA-

damage and how the probabilities of different protein species change over time. Collectively, 

the behaviour of these protein species defines the dynamic nature of the G1/S model. For 

replication of this experiment, refer to Appendix F and Appendix G. 
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The main objective of this chapter is to investigate the performance of the numerical 𝐼𝑆𝑃 𝐿𝐴𝑆 

algorithm on a very large biochemical system. We analyse the state-space, domain formation 

and probabilities of important species by implementing and integrating the mathematical model 

of oxidative stress adaptation in the fungal pathogen, Candida albicans. 

With the advances in healthcare systems, as the number of immunocompromised patients has 

increased, they are vulnerable to various infections caused by pathogenic microbes. Candida 

albicans is well-known among fungal pathogens. The infection caused by Candida albicans is 

called candidiasis, which is categorised based on the extreme effects of the disease (Kabir et 

al., 2012). Cardiovascular and bloodstream infections are caused by Candida species but 

bloodstream infections are the most persistent of the two. Because of this, Candida albicans 

has gained significance as a pathogen in humans. Candida albicans has a vigorous feedback to 

oxidative stress that is important in its ability to infect (Komalapriya et al., 2015). This response 

prevents the reactive oxygen species produced by the hosts’ immune cells attempting to kill the 

fungal infection. To understand the interactions between host and fungus, it is important to have 

good knowledge of the dynamic processes that initiate Candida albicans oxidative stress. 

Oxidation that occurs in human bodies is a conventional and essential process. Stress occurs 

when there is a disparity between its activities and radicals cannot help fight off pathogens, 

which leads to infections. When more radicals are present, this creates an imbalance between 

antioxidants and this damages the tissues causing oxidative stress. 

In this chapter, in section 7.1, we will briefly introduce the dynamic nature of an integrative 

model of oxidative stress adaptation in the fungal pathogen Candida albicans. In section 7.2, 

we will prepare and integrate the model with our 𝐼𝑆𝑃 𝐿𝐴𝑆 algorithm and, in section 7.3, we will 

analyse the state-space of the model and the performance of the 𝐼𝑆𝑃 𝐿𝐴𝑆  algorithm using 

computational experiments. In section 7.4, we give a brief discussion and summary of the study 

and its results. 
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7.1 Introduction 

The mathematical model of oxidative stress adaptation in the fungal pathogen, Candida 

albicans, as proposed in (Komalapriya et al., 2015), is a combination of several pathways and 

systems. It has 𝐶𝑎𝑝1 and 𝐻𝑜𝑔1  pathways (oxidative stress signalling pathways) and three 

antioxidant systems - catalase, thioredoxin and glutathione. It also has a pentose phosphate 

pathway (𝑃𝑃𝑃), which is important for oxidative stress adaption in reducing equivalents. C. 

albicans exists in about 70% of individuals in their urogenital and gastrointestinal tracts, oral 

cavities and as commensals on skin. There are also about 5% patients who have recurring 

vaginal and oral infections caused by C. albicans. However, in the case of 

immunocompromised patients, C. albicans infections can be life-threatening (Schulze et al., 

2009) and the mortality rates related to candidiasis in transplant and chemotherapy patients are 

between 45% - 75%. 

C. albicans survives in human hosts when they outlast phagocytes attacks or successfully avoid  

recognition by the immune system. Phagocytic attacks kill the microorganisms with the help of 

toxic chemicals, together with H2
 O2
  (reactive oxygen species), which has toxic as well as 

cytostatic effects (Brown, 2011). The potential of C. albicans to survive submitting to reactive 

oxygen species is noteworthy in terms of pathogen-host interactions because oxidative stress 

response inactivation reduces the effect of the severity from fungus attack and its ability to act 

against phagocytic killing (Arana et al., 2007; Brown et al., 2012). In fungal cells low level 

reactive oxygen species act as messengers to promote development and growth (Rinnerthaler 

et al., 2012) and, at higher levels, apply cytotoxic effects by damaging proteins, DNA, lipids 

and altering cellular redox homeostasis. 

Similar to other yeasts, C. albicans responds by triggering the reactive oxygen species 

detoxification procedure, introducing antioxidant systems (thioredoxin and glutathione 

systems) and restoring the oxidative damage done by reactive oxygen species to groups of 

protein-thiols (Brown et al., 2012). In C. albicans, the detoxification of H2
 O2
  is moderated by 

these antioxidants. Catalase acts as a catalyst for the dismutation of H2
 O2
  and the 

detoxification of H2
 O2
  is moderated by the glutathione system. 𝐺𝑆𝑆𝐺 (glutathione disulphide) 

is formed when 𝐺𝑆𝐻 (glutathione) is oxidised, which is then reduced through 𝐺𝑙𝑟1 

(glutathione reductase) using 𝑁𝐴𝐷𝑃𝐻. The protein-thiols, which are damaged oxidatively, are 

repaired by the glutathione system via 𝑇𝑡𝑟1, 𝐺𝑟𝑥3, 𝑜𝑟𝑓19.4150 and Grx1 glutaredoxins. The 

reductant Trx1 (thioredoxin) is used by Tsa1 (peroxiredoxin) when H2
 O2
  is detoxified by the 

thioredoxin system. Further, 𝑁𝐴𝐷𝑃𝐻 reduces the oxidised Trx1 through Trr1 (thioredoxin 
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reductase) action. C. albicans introduces the main components of the thioredoxin, catalase 

and glutathione antioxidant systems, including the production of 𝑁𝐴𝐷𝑃𝐻 through PPP 

(pentose phosphate pathway) when exposed to H2
 O2
 . This action is contributed to by 𝐶𝑎𝑝1 

and partially supported by 𝐻𝑜𝑔1 signalling (Enjalbert et al., 2006). 

While significant efforts have been made to understand the oxidative stress response at the 

molecular level, the dynamics of antioxidant systems and some signalling systems, such as 

hog1 and cap1, are yet be to explored. The collection of these systems, pathways and their 

components would help in understanding the dynamics and mechanisms of the system in 

better ways as well as their individual contributions to the system. The comprehensive model 

constructed by (Komalapriya et al., 2015) is the first model for medically-related 

microorganisms that unites 𝑁𝐴𝐷𝑃𝐻 production through PPP, antioxidant systems 

(thioredoxin, glutathione and catalase) and signalling (𝐻𝑜𝑔1 and 𝐶𝑎𝑝1). 

7.1.1 Integrated Model Overview 

The comprehensive model is a combination of several modules that includes a: (i) transporter 

module; (ii) antioxidant module; (iii) protein-thiol module; and (iv) signalling and gene 

expression module, as shown in Table 7.1. This model can be used to: (i) anticipate the presence 

of extra types of the key oxidative pressure controllers (𝐻𝑜𝑔1 and 𝐶𝑎𝑝1); (ii) spotlight the 

duties of antioxidant systems in the maintenance of damage repair and cellular redox potentials; 

(iii) evaluate the impacts of key mutations on the capacity of C. albicans cells to react to 

oxidative stress; (iv) feature the part of catalase in the principle detoxification system under the 

conditions inspected; and (v) explain the aggregate time-and-portion determined responses of 

oxidative stress response system under various stress situations. 
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Table 7.1. Modules and components of comprehensive network of the integrated model. 

Module Description Components 

Transporter Based on diffusion of H2
 O2
  (external and 

internal) it represents the dynamics of 

peroxide. 

𝐻2
 𝑂2
 𝐸𝑥, 𝐻2

 𝑂2
 𝐼𝑛 

Antioxidant Through enzyme catalase it specifies the 

𝐻2
 𝑂2
  detoxification pathway.  

Under different conditions (stress and non-

stress) it keeps the track of the maintenance 

of NADPH. 

During oxidative stress, it is responsible for 

repairing protein mono-thiols and protein di-

thiols. 

In the elimination of 𝐻2
 𝑂2
 , it demonstrates 

the role of the thioredoxin and glutathione 

pathways in maintaining cellular redox 

potential. 

𝐶𝑎𝑡1, 𝐺𝑆𝐻, 𝐺𝑆𝑆𝐺, 𝐺𝑝𝑥, 

𝐺𝑙𝑟1, 𝑇𝑡𝑟1𝑅𝑒𝑑, 𝑇𝑡𝑟1𝑂𝑥, 

𝑇𝑠𝑎1𝑅𝑒𝑑, 𝑇𝑠𝑎1𝑂𝑥, 

𝑇𝑟𝑥1𝑅𝑒𝑑, 𝑇𝑟𝑥1𝑂𝑥, 

𝑇𝑟𝑟1𝑅𝑒𝑑, 𝑇𝑟𝑟1𝑂𝑥, 

𝑁𝐴𝐷𝑃𝐻, 𝑁𝐴𝐷𝑃 

Protein-thiol During oxidative stress, it tracks the damage 

and repair the protein mono-thiols 

𝑃𝑟. 𝑆𝐻, 𝑃𝑟. 𝑆𝑂𝐻, 

𝑃𝑟. 𝑆𝑆𝐺, 𝑃𝑟. (𝑆𝐻)2
 , 

𝑃𝑟. 𝑆𝑆 

Signalling and 

gene expression 

During oxidative stress, it describes the 

dynamics of the protein kinase pathway and 

activation of factors like AP-1 transcription. 

Describes antioxidant gene regulation under 

different conditions. 

𝐶𝑎𝑝1𝑁, 𝐶𝑎𝑝1𝐴, 𝐶𝑎𝑝1𝐼,  

𝑆𝑠𝑘2, 𝑆𝑠𝑘2. 𝑃, 𝑃𝑏𝑠2, 

𝑃𝑏𝑠2. PP, 𝐻𝑜𝑔1𝑁, 

𝐻𝑜𝑔1𝐼, 𝐻𝑜𝑔1𝑁 . 𝑃𝑃, 

𝐻𝑜𝑔1𝐼 . 𝑃𝑃, 𝐶𝐴𝑇1, 

𝐶𝐴𝑃1, 𝐺𝑃𝑋, 𝐺𝐿𝑅1, 

𝑇𝑇𝑅1, 𝑇𝑆𝐴1, 𝑇𝑅𝑅1, 

𝑇𝑅𝑋1, 𝐺𝑆𝐻, 𝑁𝐴𝐷𝑃𝐻, 

𝑆𝑆𝐾2, 𝑃𝐵𝑆2, 𝐻𝑂𝐺1 
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Through the C. albicans plasma membrane, the chemical kinetics of diffusion of 𝐻2
 𝑂2
  and 

chemical degradation are described by the transporter module. Here, catalase degrades the 

externally introduced 𝐻2
 𝑂2
  that enters the cell through diffusion (Bienert et al., 2006; Branco 

et al., 2004). In addition, the cells of C. albicans produce the base level of external H2
 O2
  and, 

in spite of the absence of externally introduced 𝐻2
 𝑂2
 , 𝐶𝑎𝑡1 removal results in the deposition 

of intracellular reactive oxidant species (Komalapriya et al., 2015). 

The repairing of damage and elimination of H2
 O2
  is tracked in antioxidant system through its 

components (see Table 7.1). This also includes PPP (pentose phosphate pathway), which is 

the source of NADPH. The 𝐶𝑎𝑡1 (catalase) represents the H2
 O2
  degradation to form H2

 𝑂 and 

O2
 . According to a study by (Komalapriya et al., 2015), the 𝐶𝑎𝑡1 plays vital role in the 

elimination of H2
 O2
  because the single locus of 𝐶𝑎𝑡1 negatively affects the decay rate of 

extracelluar H2
 O2
 . Under experimental conditions (Kaloriti et al., 2012), the rate of 

degradation of extracelluar H2
 O2
  remains the same even after Trx1 or Glr1 inactivation but 

that does not diminish the significance of the roles of the thioredoxin and glutathione systems 

in the pathway. GSH (glutathione) signifies the place of abundant tripeptides in the response; 

however, Gpx (single glutathione peroxidase) entity was examined in this model. Through 

Glr1 (glutathione reductase), oxidised GSSG is recycled to form GSH relying upon NADPH 

(Dickinson et al., 2002). 

Thioredoxin is responsible for repairing protein damage and decribing H2
 O2
  detoxification. 

Thioredoxin is a class of thiol disulphide oxidoreductases having low molecular weights. In C. 

albicans, out of the two genes for thioredoxin, only TRX1 has a role in the stress response. 

Hence, we are only considering Trx1 for its role in stress response. With  H2
 O2
  disclosure, the 

model also defines Tsa1  (peroxiredoxin) oxidation through peroxide. Further, Tsa1𝑂𝑥  is 

decreased by Trx1𝑅𝑒𝑑  to produce Trx1𝑂𝑥 , and the action of Trr1  (thioredoxin reductase), 

together with reductant NADPH , reconverts Trx1𝑂𝑥  to its native form. The PPP  (pentose 

phosphate pathway) depicts the NADPH production that happens when exposed to oxidative 

stress to assist the detoxification of H2
 O2
  through major antioxidant modules (thioredoxin and 

glutathione systems). PPP gene expression increases the production of NADPH via Yap1-based 

induction (Chechik et al., 2008; Godon et al., 1998; Lee et al., 1999). In addition, the shift of 

the metabolic flux via the PPP oxidative stream increases the production of NADPH. The PPP 

sub-module in our model does not detail the pathway in full, but describes these two phases in 

an abstract fashion. 

Protein mono- and di-thiol reactions during oxidative stress are described by the protein thiol 
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module (Komalapriya et al., 2015). The mono- and di-thiols manage the repair of protein 

sulfenic acid and protein disulphides, respectively. The last module in the model of 

(Komalapriya et al., 2015) accounts for 𝐶𝑎𝑝1 and 𝐻𝑜𝑔1 signalling pathways as well as the 

procedure for genes under different conditions (normal and oxidative stress). In this module, 

the mRNA of genes were changed under normal condition at base rates and then influence the 

response to oxidative stress. Gene expression is modelled through the Hill function and the 

this increase is moderated by the 𝐶𝑎𝑝1 and 𝐻𝑜𝑔1 pathways. The increase in the levels of 

protein are used as inputs for the antioxidant modules and protein repair. However, during 

oxidative stress response, the production rates of 𝐻𝑜𝑔1, 𝑃𝑏𝑠2 and 𝑆𝑠𝑘2 remain constant.  

In section 7.2, we will consider the systems and pathways discussed in section 7.1 to understand 

the complex structure of the integrative model to create a compatible model for the 𝐼𝑆𝑃 

algorithm. We also discuss the modelling and integration of the model for 𝐼𝑆𝑃 𝐿𝐴𝑆 , as 

discussed in section 4.3, as well as the hypothesis and assumptions underlying this method. 
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7.2 Model Integration 

To demonstrate the numerical 𝐼𝑆𝑃 𝐿𝐴𝑆 algorithm on a large model, we considered the 

reactions involved in the systems and pathways (see section 7.1.1) to understand the dynamic 

behaviour of the model through state-space and species probabilities. The system is a network 

of 45 chemical and biochemical species (see Table 7.2) reacting based on 121 biochemical 

reactions (see Table 7.4) with 121 kinetic parameters (𝑘𝑀=121
 ) (see Table 7.5), 3 auxiliary 

variables (see Table 7.3). These parameters, variables and 45 mass balance ODEs characterise 

the robustness and dynamic behaviour of the network. 

The 𝐼𝑆𝑃 method is initialised and had its parameters set using the initial conditions (given in 

Table 7.2, Table 7.3, Table 7.4 and, Table 7.5) of the model and integrated as a function. Due 

to the large number of mathematical operations and equations in framing the pathway, 

simultaneous parameter predictions with limited number of sub-module experimental values 

at any instance is often complicated for dynamic systems. Therefore, the consistency of the 

available experimental data and assumptions was ensured at each step of the 𝐼𝑆𝑃 𝐿𝐴𝑆. This 

method has led to successful development of several functions for each module that integrates 

large numbers of processes supporting the extensive expansion of the state-space. 

The presence of stress signals and kinetic parameters affects various critical species as 

discussed in section 7.1. We will track these critical species based on different modules in the 

integrated model of this network. The dynamic behaviour of the whole system depends on 

how these species and their probabilities change with time and the increasing size of the 

domain over time that will provide information about the robustness of the network. We will 

now assign model variables to all the chemical and, biochemical species present in the 

system, as given in the Table 7.2, which also shows the initial condition values (in M) 

(Komalapriya et al., 2015) in terms of the concentration of the species present in the system. 

 

 

  



221 

 

 

Table 7.2. The description of model variables of the oxidative stress response in C. albicans 

pathway involving chemical and biochemical species to create the state-space for 𝑰𝑺𝑷 𝑳𝑨𝑺 

Species Initial condition 

(in M) 

Model 

variable 

Species Initial condition 

(in M) 

Model 

variable 

𝐻2
 𝑂2
 𝐸𝑥 0 𝑥0

  𝑆𝑠𝑘2. 𝑃 0 𝑥25
  

𝐻2
 𝑂2
 𝐼𝑛 1 x 10−9 𝑥1

  𝑃𝑏𝑠2 9.2870 x 10−8 𝑥26
  

𝐶𝑎𝑡1 6.4493 𝑥 10−6 𝑥2
  𝑃𝑏𝑠2. 𝑃𝑃 0 𝑥27

  

𝐺𝑆𝐻 4.708 𝑥 10−3 𝑥3
  𝐻𝑜𝑔1𝑁 2.9151 x 10−7 𝑥28

  

𝐺𝑆𝑆𝐺 2.485 𝑥 10−3 𝑥4
  𝐻𝑜𝑔1𝑁 . 𝑃𝑃 0 𝑥29

  

𝐺𝑝𝑥 1.7284 x 10−7 𝑥5
  𝐻𝑜𝑔1𝐼  0 𝑥30

  

𝐺𝑙𝑟1 3.2676 x 10−7 𝑥6
  𝐻𝑜𝑔1𝐼 . 𝑃𝑃 0 𝑥31

  

𝑇𝑡𝑟1𝑅𝑒𝑑 2.5578 x 10−6 𝑥7
  𝐶𝐴𝑃1 4.9367 x 10−11 𝑥32

  

𝑇𝑡𝑟1𝑂𝑥 0 𝑥8
  𝐶𝐴𝑇1 3.5894 x 10−10 𝑥33

  

𝑃𝑟. 𝑆𝐻 1.22 x 10−4 𝑥9
  𝐺𝑃𝑋 2.7250 x 10−10 𝑥34

  

𝑃𝑟. 𝑆𝑂𝐻 0 𝑥10
  𝐺𝐿𝑅1 3.3723 x 10−10 𝑥35

  

𝑃𝑟. 𝑆𝑆𝐺 0 𝑥11
  𝑇𝑇𝑅1 8.1088 x 10−10 𝑥36

  

𝑃𝑟. (𝑆𝐻)2
  1 x 10−3 𝑥12

  𝑇𝑆𝐴1 4.0247 x 10−9 𝑥37
  

𝑃𝑟. 𝑆𝑆 0 𝑥13
  𝑇𝑅𝑋1 1.6183 x 10−9 𝑥38

  

𝑇𝑠𝑎1𝑅𝑒𝑑 1.7429 x 10−5 𝑥14
  𝑇𝑅𝑅1 3.7187 x 10−10 𝑥39

  

𝑇𝑠𝑎1𝑂𝑥 0 𝑥15
  𝐺𝑆𝐻.𝑚𝑅𝑁𝐴 3.5894 x 10−10 𝑥40

  

𝑇𝑟𝑟1𝑅𝑒𝑑 1.2572 x 10−5 𝑥16
  𝑁𝐴𝐷𝑃𝐻.𝑚𝑅𝑁𝐴 3.5894 x 10−10 𝑥41

  

𝑇𝑟𝑟1𝑂𝑥 0 𝑥17
  𝑆𝑆𝐾2 8.3999 x 10−11 𝑥42

  

𝑇𝑟𝑥1𝑅𝑒𝑑 1.1518 x 10−6 𝑥18
  𝑃𝐵𝑆1 4.8373 x 10−11 𝑥43

  

𝑇𝑟𝑥1𝑂𝑥 0 𝑥19
  𝐻𝑂𝐺1 3.1587 x 10−10 𝑥44

  

𝑁𝐴𝐷𝑃𝐻 150 x 10−6 𝑥20
  𝐻2

 𝑂 0 𝑥48
  

𝐶𝑎𝑝1𝑁 6.9652 x 10−8 𝑥21
  𝐻+ 1 𝑥49

  

𝐶𝑎𝑝1𝐴 0 𝑥22
  𝑂2

  0 𝑥50
  

𝐶𝑎𝑝1𝐼 0 𝑥23
  𝑁𝐴𝐷𝑃+ 0 𝑥51

  

𝑆𝑠𝑘2 1.1738 x 10−8 𝑥24
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Further, we will assign model variables to all the auxiliary variables involved in the system, as 

given in Table 7.3, with the definition and conditional values of the variable. The stress signal 

𝑆(𝑡), intracellular oxidative stress 𝑋𝑆𝐼𝑛 and critical threshold value 𝑋𝑆𝐶 present in the system 

varies based on conditions shown in Table 7.3. 

 

Table 7.3. Auxiliary variables involved in the oxidative stress response in the C. albicans 

pathway 

Variable Definition and conditional values Details 

 Stress signal 𝑆(𝑡) = { 
𝑆1
 , 𝑖𝑓 𝑡 = 𝑡1

 

0,         𝑖𝑓 𝑒𝑙𝑠𝑒 
 

Stress signal at time 𝑡1
 . 

Model variable as 𝑥45
  

𝑋𝑆𝐼𝑛 𝑋𝑆𝐼𝑛(𝑡) = { 
𝐻2
 𝑂2
 𝐼𝑛(𝑡)  −  10−9 , 𝑖𝑓 > 0

0,                                            𝑖𝑓 𝑒𝑙𝑠𝑒 
 
10−9𝑀 is the steady state 

value of 𝐻2
 𝑂2
 𝐼𝑛. Model 

variable as 𝑥46
 . 

𝑋𝑆𝐶 𝑋𝑆∗(𝑡) = { 
𝐻2
 𝑂2
 𝐼𝑛(𝑡)  −  3.2 x 10−5 , 𝑖𝑓 > 0

0,                                            𝑖𝑓 𝑒𝑙𝑠𝑒 
 
3.2 x 10−5𝑀 is the 

𝐻2
 𝑂2
 𝐼𝑛 threshold value. 

Model variable as 𝑥47
 . 
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Now consider all the species denoted by Ñ = 𝑥0
 , 𝑥1

 , 𝑥2
 , …… . . 𝑥50

 , 𝑥51
 , then for 𝐼𝑆𝑃 𝐿𝐴𝑆 the 

integrated model of (Komalapriya et al., 2015) is redesigned as network of reactions using 

model variable as shown in Figure 7.1, where the auxiliary variables (see Table 7.3) are 

denoted by 𝑥45
 , 𝑥46

 , 𝑥47
  and the others by 𝑥48

 , 𝑥49
 , 𝑥50

 , 𝑥51
  (see Table 7.2). 

The presence of the stress signal 𝑆, (denoted by green circle in Figure 7.1) triggers the 

following reactions (see Table 7.4) in the network. The types of reaction (slow and fast) 

triggered are defined by the kinetic parameters (see Table 7.5), which are responsible for 

changes in the concentration of the biochemical species. There are 76-biochemical reactions 

assigned to the modules (see Table 7.1) and the remaining 45 reactions describe the decay 

rates of the 45 biochemical species. In addition to the reactions shown in Figure 7.1, all the 

species go through first order decay.
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Figure 7.1. Network of reactions involving 45 species, 6 auxiliary variables of the model of the adaptation to oxidative stress response in C. 

albicans (fungal pathogen) pathway using model variables for 𝑰𝑺𝑷 𝑳𝑨𝑺
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Table 7.4. Biochemical reactions involved in oxidative stress response in the C. albicans 

pathway 

𝑹𝟏
 :  ⋆

𝑘1
 

→𝑥0
  𝑹𝟔𝟏

 : 𝑥22
 
𝑘61
 

→ 𝑥40
  

𝑹𝟐
 :  𝑥0

 
𝑘2
 

→𝑥1
  𝑹𝟔𝟐

 : 𝑥22
 
𝑘62
 

→ 𝑥41
  

𝑹𝟑
 :  𝑥46

 
𝑘3
 

→𝑥0
  𝑹𝟔𝟑

 : 𝑥29
 
𝑘63
 

→ 𝑥33
  

𝑹𝟒
 :  ⋆

𝑘4
 

→𝑥1
  𝑹𝟔𝟒

 : 𝑥33
 
𝑘64
 

→ 𝑥2
  

𝑹𝟓
 :  2𝑥1

 
𝑘5
 

→2𝑥48
 + 𝑥49

  𝑹𝟔𝟓
 : 𝑥32

 
𝑘65
 

→ 𝑥21
  

𝑹𝟔
 :  2𝑥3

 
𝑘6
 

→𝑥4
  𝑹𝟔𝟔

 : 𝑥34
 
𝑘66
 

→ 𝑥5
  

𝑹𝟕
 :  𝑥4

 + 𝑥20
 + 𝑥50

 
𝑘7
 

→2𝑥3
 + 𝑥51

  𝑹𝟔𝟕
 : 𝑥35

 
𝑘67
 

→ 𝑥6
  

𝑹𝟖
 :   𝑥46

 + 2𝑥3
 
𝑘8
 

→𝑥48
 + 𝑥4

  𝑹𝟔𝟖
 : 𝑥36

 
𝑘68
 

→ 𝑥7
  

𝑹𝟗
 :  ⋆

𝑘9
 

→𝑥9
  𝑹𝟔𝟗

 : 𝑥37
 
𝑘69
 

→ 𝑥14
  

𝑹𝟏𝟎
 : 𝑥9

 + 𝑥46
 
𝑘10
 

→ 𝑥10
 + 𝑥48

  𝑹𝟕𝟎
 : 𝑥38

 
𝑘70
 

→ 𝑥18
  

𝑹𝟏𝟏
 : 𝑥10

 + 𝑥3
 
𝑘11
 

→ 𝑥11
 + 𝑥48

  𝑹𝟕𝟏
 : 𝑥39

 
𝑘71
 

→ 𝑥16
  

𝑹𝟏𝟐
 : 𝑥11

 + 𝑥7
 
𝑘12
 

→ 𝑥9
 + 𝑥8

  𝑹𝟕𝟐
 : 𝑥40

 
𝑘72
 

→ 𝑥3
  

𝑹𝟏𝟑
 : 𝑥8

 + 𝑥3
 
𝑘13
 

→ 𝑥7
 + 𝑥4

  𝑹𝟕𝟑
 : 𝑥41

 
𝑘73
 

→ 𝑥20
  

𝑹𝟏𝟒
 : ⋆

𝑘14
 

→ 𝑥12
  𝑹𝟕𝟒

 : 𝑥42
 
𝑘74
 

→ 𝑥24
  

𝑹𝟏𝟓
 : 𝑥12

 + 𝑥46
 
𝑘15
 

→ 𝑥13
 + 2𝑥48

  𝑹𝟕𝟓
 : 𝑥43

 
𝑘75
 

→ 𝑥26
  

𝑹𝟏𝟔
 : 𝑥13

 + 𝑥18
 
𝑘16
 

→ 𝑥12
 + 𝑥19

  𝑹𝟕𝟔
 : 𝑥44

 
𝑘76
 

→ 𝑥28
  

𝑹𝟏𝟕
 : 𝑥14

 
𝑘17
 

→ 𝑥15
  𝑹𝟕𝟕

 : 𝑥0
 
𝑘77
 

→ ɸ 

𝑹𝟏𝟖
 : 𝑥46

 + 𝑥14
 
𝑘18
 

→ 𝑥15
 + 𝑥48

  𝑹𝟕𝟖
 : 𝑥1

 
𝑘78
 

→ ɸ 

𝑹𝟏𝟗
 : 𝑥15

 + 𝑥18
 
𝑘19
 

→ 𝑥14
 + 𝑥19

  𝑹𝟕𝟗
 : 𝑥2

 
𝑘79
 

→ ɸ 

𝑹𝟐𝟎
 :  𝑥19

 + 𝑥16
 
𝑘20
 

→ 𝑥18
 + 𝑥17

  𝑹𝟖𝟎
 : 𝑥3

 
𝑘80
 

→ ɸ 

𝑹𝟐𝟏
 : 𝑥17

 + 𝑥20
 + 𝑥50

 
𝑘21
 

→ 𝑥16
 + 𝑥51

  𝑹𝟖𝟏
 : 𝑥4

 
𝑘81
 

→ ɸ 

𝑹𝟐𝟐
 : 𝑥51

 
𝑘22
 

→ 𝑥20
  𝑹𝟖𝟐

 : 𝑥5
 
𝑘82
 

→ ɸ 

𝑹𝟐𝟑
 : 𝑥21

 
𝑘23
 

→ 𝑥22
  𝑹𝟖𝟑

 : 𝑥6
 
𝑘83
 

→ ɸ 

𝑹𝟐𝟒
 : 𝑥22

 
𝑘24
 

→ 𝑥23
  𝑹𝟖𝟒

 : 𝑥7
 
𝑘84
 

→ ɸ 

𝑹𝟐𝟓
 : 𝑥23

 
𝑘25
 

→ 𝑥22
  𝑹𝟖𝟓

 : 𝑥8
 
𝑘85
 

→ ɸ 

𝑹𝟐𝟔
 : 𝑥22

 
𝑘26
 

→ 𝑥21
  𝑹𝟖𝟔

 : 𝑥9
 
𝑘86
 

→ ɸ 

𝑹𝟐𝟕
 : 𝑥22

 
𝑘27
 

→ 𝑥21
  𝑹𝟖𝟕

 : 𝑥10
 
𝑘87
 

→ ɸ 

𝑹𝟐𝟖
 : 𝑥24

 
𝑘28
 

→ 𝑥25
  𝑹𝟖𝟖

 : 𝑥11
 
𝑘88
 

→ ɸ 

𝑹𝟐𝟗
 : 𝑥25

 
𝑘29
 

→ 𝑥24
  𝑹𝟖𝟗

 : 𝑥12
 
𝑘89
 

→ ɸ 

𝑹𝟑𝟎
 : 𝑥26

 
𝑘30
 

→ 𝑥27
  𝑹𝟗𝟎

 : 𝑥13
 
𝑘90
 

→ ɸ 

𝑹𝟑𝟏
 : 𝑥27

 
𝑘31
 

→ 𝑥26
  𝑹𝟗𝟏

 : 𝑥14
 
𝑘91
 

→ ɸ 

𝑹𝟑𝟐
 : 𝑥28

 
𝑘32
 

→ 𝑥29
  𝑹𝟗𝟐

 : 𝑥15
 
𝑘92
 

→ ɸ 

𝑹𝟑𝟑
 : 𝑥29

 
𝑘33
 

→ 𝑥28
  𝑹𝟗𝟑

 : 𝑥18
 
𝑘93
 

→ ɸ 
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𝑹𝟑𝟒
 : 𝑥30

 
𝑘34
 

→ 𝑥28
  𝑹𝟗𝟒

 : 𝑥19
 
𝑘94
 

→ ɸ 

𝑹𝟑𝟓
 : 𝑥28

 
𝑘35
 

→ 𝑥30
  𝑹𝟗𝟓

 : 𝑥16
 
𝑘95
 

→ ɸ 

𝑹𝟑𝟔
 : 𝑥30

 
𝑘36
 

→ 𝑥31
  𝑹𝟗𝟔

 : 𝑥17
 
𝑘96
 

→ ɸ 

𝑹𝟑𝟕
 : 𝑥31

 
𝑘37
 

→ 𝑥30
  𝑹𝟗𝟕

 : 𝑥20
 
𝑘97
 

→ ɸ 

𝑹𝟑𝟖
 : 𝑥31

 
𝑘38
 

→ 𝑥29
  𝑹𝟗𝟖

 : 𝑥21
 
𝑘98
 

→ ɸ 

𝑹𝟑𝟗
 : 𝑥29

 
𝑘39
 

→ 𝑥31
  𝑹𝟗𝟗

 : 𝑥22
 
𝑘99
 

→ ɸ 

𝑹𝟒𝟎
 : ⋆

𝑘40
 

→ 𝑥33
  𝑹𝟏𝟎𝟎

 : 𝑥23
 
𝑘100
 

→  ɸ 

𝑹𝟒𝟏
 : ⋆

𝑘41
 

→ 𝑥32
  𝑹𝟏𝟎𝟏

 : 𝑥24
 
𝑘101
 

→  ɸ 

𝑹𝟒𝟐
 : ⋆

𝑘42
 

→ 𝑥34
  𝑹𝟏𝟎𝟐

 : 𝑥25
 
𝑘102
 

→  ɸ 

𝑹𝟒𝟑
 : ⋆

𝑘43
 

→ 𝑥35
  𝑹𝟏𝟎𝟑

 : 𝑥26
 
𝑘103
 

→  ɸ 

𝑹𝟒𝟒
 : ⋆

𝑘44
 

→ 𝑥36
  𝑹𝟏𝟎𝟒

 : 𝑥27
 
𝑘104
 

→  ɸ 

𝑹𝟒𝟓
 : ⋆

𝑘45
 

→ 𝑥37
  𝑹𝟏𝟎𝟓

 : 𝑥28
 
𝑘105
 

→  ɸ 

𝑹𝟒𝟔
 : ⋆

𝑘46
 

→ 𝑥38
  𝑹𝟏𝟎𝟔

 : 𝑥29
 
𝑘106
 

→  ɸ 

𝑹𝟒𝟕
 : ⋆

𝑘47
 

→ 𝑥39
  𝑹𝟏𝟎𝟕

 : 𝑥30
 
𝑘107
 

→  ɸ 

𝑹𝟒𝟖
 : ⋆

𝑘48
 

→ 𝑥40
  𝑹𝟏𝟎𝟖

 : 𝑥31
 
𝑘108
 

→  ɸ 

𝑹𝟒𝟗
 : ⋆

𝑘49
 

→ 𝑥41
  𝑹𝟏𝟎𝟗

 : 𝑥33
 
𝑘109
 

→  ɸ 

𝑹𝟓𝟎
 : ⋆

𝑘50
 

→ 𝑥42
  𝑹𝟏𝟏𝟎

 : 𝑥32
 
𝑘110
 

→  ɸ 

𝑹𝟓𝟏
 : ⋆

𝑘51
 

→ 𝑥43
  𝑹𝟏𝟏𝟏

 : 𝑥34
 
𝑘111
 

→  ɸ 

𝑹𝟓𝟐
 : ⋆

𝑘52
 

→ 𝑥44
  𝑹𝟏𝟏𝟐

 : 𝑥35
 
𝑘112
 

→  ɸ 

𝑹𝟓𝟑
 : 𝑥22

 
𝑘53
 

→ 𝑥33
  𝑹𝟏𝟏𝟑

 : 𝑥36
 
𝑘113
 

→  ɸ 

𝑹𝟓𝟒
 : 𝑥22

 
𝑘54
 

→ 𝑥32
  𝑹𝟏𝟏𝟒

 : 𝑥37
 
𝑘114
 

→  ɸ 

𝑹𝟓𝟓
 : 𝑥22

 
𝑘55
 

→ 𝑥34
  𝑹𝟏𝟏𝟓

 : 𝑥38
 
𝑘115
 

→  ɸ 

𝑹𝟓𝟔
 : 𝑥22

 
𝑘56
 

→ 𝑥35
  𝑹𝟏𝟏𝟔

 : 𝑥39
 
𝑘116
 

→  ɸ 

𝑹𝟓𝟕
 : 𝑥22

 
𝑘57
 

→ 𝑥36
  𝑹𝟏𝟏𝟕

 : 𝑥42
 
𝑘117
 

→  ɸ 

𝑹𝟓𝟖
 : 𝑥22

 
𝑘58
 

→ 𝑥37
  𝑹𝟏𝟏𝟖

 : 𝑥43
 
𝑘118
 

→  ɸ 

𝑹𝟓𝟗
 : 𝑥22

 
𝑘59
 

→ 𝑥38
  𝑹𝟏𝟏𝟗

 : 𝑥44
 
𝑘119
 

→  ɸ 

𝑹𝟔𝟎
 : 𝑥22

 
𝑘60
 

→ 𝑥39
  𝑹𝟏𝟐𝟎

 : 𝑥40
 
𝑘120
 

→  ɸ 

 𝑹𝟏𝟐𝟏
 : 𝑥41

 
𝑘121
 

→  ɸ 
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Table 7.5. Kinetic parameter values for the biochemical reactions involved in the oxidative 

stress response in the C. albicans pathway. 

Parameter Value Parameter Value Parameter Value 

𝒌𝟏
  Stress signal 𝒌𝟒𝟏

  5.3601 x 10−14 𝒌𝟖𝟏
  1.2836 x 10−4 

𝒌𝟐
  3.5 x 10−5 𝒌𝟒𝟐

  2.3805 x 10−13 𝒌𝟖𝟐
  1.4991 x 10−4 

𝒌𝟑
  3.5 x 10−5 𝒌𝟒𝟑

  1.0792 x 10−13 𝒌𝟖𝟑
  3.3007 x 10−4 

𝒌𝟒
  2.1928 x 10−7 𝒌𝟒𝟒

  4.4390 x 10−13 𝒌𝟖𝟒
  1.0394 x 10−4 

𝒌𝟓
  3.4 x 107 𝒌𝟒𝟓

  1.8694 x 10−12 𝒌𝟖𝟓
  1.0394 x 10−4 

𝒌𝟔
  2.4266 x 10−2 𝒌𝟒𝟔

  5.4929 x 10−13 𝒌𝟖𝟔
  2.6866 x 10−4 

𝒌𝟕
  9 x 10−1 𝒌𝟒𝟕

  3.0006 x 10−13 𝒌𝟖𝟕
  2.6866 x 10−4 

𝒌𝟖
  578 𝒌𝟒𝟖

  2.9619 x 10−13 𝒌𝟖𝟖
  2.6866 x 10−4 

𝒌𝟗
  3.2777 x 10−8 𝒌𝟒𝟗

  2.9619 x 10−13 𝒌𝟖𝟗
  2.6866 x 10−4 

𝒌𝟏𝟎
  1 x 104 𝒌𝟓𝟎

  1.0161 x 10−13 𝒌𝟗𝟎
  2.6866 x 10−4 

𝒌𝟏𝟏
  1.2 x 105 𝒌𝟓𝟏

  8.2790 x 10−14 𝒌𝟗𝟏
  9.8793 x 10−5 

𝒌𝟏𝟐
  9.1 x 104 𝒌𝟓𝟐

  1.7012 x 10−13 𝒌𝟗𝟐
  9.8793 x 10−5 

𝒌𝟏𝟑
  3.7 x 104 𝒌𝟓𝟑

  4.2398 x 10−11 𝒌𝟗𝟑
  2.0111 x 10−4 

𝒌𝟏𝟒
  2.6866 x 10−7 𝒌𝟓𝟒

  2.9009 x 10−12 𝒌𝟗𝟒
  2.0111 x 10−4 

𝒌𝟏𝟓
  5 x 101 𝒌𝟓𝟓

  5.1062 x 10−11 𝒌𝟗𝟓
  3.1484 x 10−4 

𝒌𝟏𝟔
  1 x 105 𝒌𝟓𝟔

  2.0353 x 10−11 𝒌𝟗𝟔
  3.1484 x 10−4 

𝒌𝟏𝟕
  0 𝒌𝟓𝟕

  5.1271 x 10−11 𝒌𝟗𝟕
  1.155 x 10−4 

𝒌𝟏𝟖
  4 x 107 𝒌𝟓𝟖

  2.8041 x 10−10 𝒌𝟗𝟖
  5.0228 x 10−4 

𝒌𝟏𝟗
  1 x 101 𝒌𝟓𝟗

  3.9549 x 10−11 𝒌𝟗𝟗
  5.0228 x 10−4 

𝒌𝟐𝟎
  2 x 101 𝒌𝟔𝟎

  6.8863 x 10−11 𝒌𝟏𝟎𝟎
  5.0228 x 10−4 

𝒌𝟐𝟏
  1 x 102 𝒌𝟔𝟏

  1.9252 x 10−11 𝒌𝟏𝟎𝟏
  2.6866 x 10−4 

𝒌𝟐𝟐
  2.9619 x 10−8 𝒌𝟔𝟐

  2.3695 x 10−11 𝒌𝟏𝟎𝟐
  2.6866 x 10−4 

𝒌𝟐𝟑
  2.3258 x 106 𝒌𝟔𝟑

  4.2398 x 10−11 𝒌𝟏𝟎𝟑
  3.2090 x 10−4 

𝒌𝟐𝟒
  1.1629 x 109 𝒌𝟔𝟒

  6.4929 𝒌𝟏𝟎𝟒
  3.2090 x 10−4 

𝒌𝟐𝟓
  5 x 10−4 𝒌𝟔𝟓

  7.0867 x 10−1 𝒌𝟏𝟎𝟓
  4.2317 x 10−5 

𝒌𝟐𝟔
  5 𝒌𝟔𝟔

  9.5085 x 10−2 𝒌𝟏𝟎𝟔
  4.2317 x 10−5 

𝒌𝟐𝟕
  1 x 103 𝒌𝟔𝟕

  3.1983 x 10−1 𝒌𝟏𝟎𝟕
  4.2317 x 10−5 

𝒌𝟐𝟖
  1.1629 x 104 𝒌𝟔𝟖

  3.2786 x 10−1 𝒌𝟏𝟎𝟖
  4.2317 x 10−5 

𝒌𝟐𝟗
  1.359 x 10−2 𝒌𝟔𝟗

  4.2782 x 10−1 𝒌𝟏𝟎𝟗
  8.2518 x 10−4 

𝒌𝟑𝟎
  2.19 x 106 𝒌𝟕𝟎

  1.4314 x 10−1 𝒌𝟏𝟏𝟎
  1.0858 x 10−3 

𝒌𝟑𝟏
  2.007 x 10−2 𝒌𝟕𝟏

  1.0644 x 101 𝒌𝟏𝟏𝟏
  8.7358 x 10−4 

𝒌𝟑𝟐
  6.493 x 106 𝒌𝟕𝟐

  1.9626 x 103 𝒌𝟏𝟏𝟐
  3.2001 x 10−4 

𝒌𝟑𝟑
  5.906 x 10−2 𝒌𝟕𝟑

  6.5801 x 102 𝒌𝟏𝟏𝟑
  5.4743 x 10−4 

𝒌𝟑𝟒
  5 x 10−5 𝒌𝟕𝟒

  3.7541 x 10−2 𝒌𝟏𝟏𝟒
  4.6448 x 10−4 

𝒌𝟑𝟓
  5 x 102 𝒌𝟕𝟓

  6.1608 x 10−1 𝒌𝟏𝟏𝟓
  3.3942 x 10−4 

𝒌𝟑𝟔
  6.493 x 106 𝒌𝟕𝟔

  3.9053 x 10−2 𝒌𝟏𝟏𝟔
  8.0689 x 10−4 

𝒌𝟑𝟕
  5.906 x 10−2 𝒌𝟕𝟕

  3.8508 x 10−5 𝒌𝟏𝟏𝟕
  1.2097 x 10−3 

𝒌𝟑𝟖
  6.493 x 106 𝒌𝟕𝟖

  3.8508 x 10−5 𝒌𝟏𝟏𝟖
  1.7115 x 10−3 

𝒌𝟑𝟗
  5.906 x 10−2 𝒌𝟕𝟗

  3.6137 x 10−4 𝒌𝟏𝟏𝟗
  5.3858 x 10−4 

𝒌𝟒𝟎
  2.9619 x 10−13 𝒌𝟖𝟎

  1.2836 x 10−4 𝒌𝟏𝟐𝟎
  8.2518 x 10−4 

    𝒌𝟏𝟐𝟏
  8.2518 x 10−4 
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The initial condition values in Table 7.2 and Table 7.3 were available in the form of 

concentrations; therefore, we will calculate the number of molecules for all species according 

to the following formula: 

 𝑀𝑜𝑙𝑒𝑐𝑢𝑙𝑒𝑠 = 𝑐𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛 × 𝐴𝑉
 × 𝑉𝑜𝑠

 , (102) 

where 𝐴𝑉
  is the Avogadro constant (6.022140857×1023 mol−1) and 𝑉𝑜𝑠

  is the active volume 

(osmotically) obtained from the solid base volume 𝑉𝑏
  (41%) and total volume 𝑉𝑡

  of the C. 

albicans cell (Schaber et al., 2012). All the constants related to the C. albicans cells used in the 

model integration are given in Table 7.6. 

Table 7.6. Constants involved in the oxidative stress response in the C. albicans pathway. 

Constant Value Details 

𝐴𝑉
  6.023 ×  1023 Avogadro number 

𝑎 1 ×  10−3 Factor of the volume conversion 

𝑉𝑡
  6.545 ×  10−14 L Total volume of C. albicans cells having a radius of 

5𝜇𝑚 

𝑉𝑏
  2.683 ×  10−14 L Solid base volume of C. albicans cells (Schaber et 

al., 2012) 

𝑉𝑜𝑠
  3.862 ×  10−14 L Active volume (osmotically) 

𝑉𝑚
  2.805 ×  10−11 L Media volume 726.74 ×  𝑉𝑜𝑠

  

𝐴 7.854 ×  10−7 𝑐𝑚2 Cells surface area of C. albicans 

 

These protein species counts and reaction propensities will be used to define the state-space of 

the model for 𝐼𝑆𝑃 𝐿𝐴𝑆 and will be responsible for changes in the number of states. Therefore, 

we track the copy counts of these species as: 

 ([𝐶ℎ𝑒𝑚𝑖𝑐𝑎𝑙 𝑠𝑝𝑒𝑐𝑖𝑒𝑠]) ∈ Ñ ≡ (𝑀𝑜𝑑𝑒𝑙 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠), (103) 

for all the modules in Table 7.1. From section 7.2.1 to section 7.2.4, we will discuss about the 

nature of the reactions and transitions in different modules and their integration in 𝐼𝑆𝑃 𝐿𝐴𝑆. 
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7.2.1 Transporter Module 

In reactions 𝑅1
  and 𝑅3

 , the copy counts of 𝑥0
  (extra-cellular H2

 O2
 ) increased in the presence 

of stress signal (𝑆) and intra-cellular oxidative stress respectively. 𝑅3
  also respresents the 

diffusion of 𝑥1
  (intra-cellular hydrogen peroxide) into the medium. The intra-cellular 

oxidative stress 𝑥46
  is given by 𝑥46

 = 𝑥1
 − 10−9 (see Table 7.2), where, under normal 

conditions, the steady state value is 10−9. Reaction 𝑅3
  is modelled as the diffusion of 𝑥1

  

(intra-cellular H2
 O2
 ) based on the surface area of the cell. In reaction 𝑅2

 , 𝑥0
  is diffused into 

the cytosol and, similarly, the reaction is modelled as the diffusion of 𝑥0
  (extra-cellular H2

 O2
 ) 

based on the surface area of the cell. Reaction 𝑅4
  is a zero-order mass action reaction that 

represents 𝑥1
  production that maintains the steady state value of 𝑥1

 . In reaction 𝑅5
 , the 

excessive 𝑥1
  (intra-cellular hydrogen peroxide) is detoxified by 𝑥2

  (catalase) enzymatically 

and the reaction is based on mass action kinetics. Reactions 𝑅77
  and 𝑅78

 , represent the decay 

rates of 𝑥0
  (extra-cellular) and 𝑥1

  (intracellular) hydrogen peroxide biochemical species. 

It is important to track the number of copies of the species through these reactions. Therefore, 

we note the changes in the counts of all the biochemical species (see transporter module in 

Table 7.1) and define the transitions associated with 𝑅𝑀
  (Table 7.4) in the stoichiometric 

vector 𝑉𝑀
 , matrix for all the Ñ species involved in the transporter module reactions. Based on 

interactions of the species in Figure 7.1, we have 𝑅𝑀
  channels {1, 2, 3, 4, 5, 77, 78} and Ñ 

species - 𝑥0
 , 𝑥1

 , 𝑥46
 , 𝑥48

  and 𝑥49
  through the given number of reaction channels. The 

transitions associated with 𝑅𝑀=1,2,3,4,5,77,78
  and Ñ in stoichiometric vector matrix is given as:  

 

The associated Markov chain of the transporter module network is treated as a Markov chain 

graph as discussed in section 3.3, and the states in terms of the nodes with additional 

information such as the number of 𝑅𝑀
  reactions required to reach the state. In the equivalent 

growing graph tree, the transition between the nodes is defined by the typical form of the 

growing dictionary of transporter module. Further, we express the propensity functions of all 

the 𝑅𝑀=1,2,3,4,5,77,78
  reactions (see Table 7.4) involved in the model for selective 𝑀 as: 

(1, 0, 0, 0, 0) 

(-1, 1, 0, 0, 0) 

(1, 0, -1, 0, 0) 

(0, 1, 0, 0, 0) 

(0, -1, 0, 1, 1) 

(-1, 0, 0, 0, 0) 

(0, -1, 0, 0, 0) 

 

𝑉𝑀
 = 
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𝑅1
 :    𝑎1

 ([𝑥0
 ], [𝑥1

 ], [𝑥46
 ], [𝑥48

 ], [𝑥49
 ]) = 𝑆(𝑡) (104) 

𝑅2
 :    𝑎2

 ([𝑥0
 ], [𝑥1

 ], [𝑥46
 ], [𝑥48

 ], [𝑥49
 ]) = 𝑘2

  ×  𝑥0
 (𝑡) (105) 

𝑅3
 :    𝑎3

 ([𝑥0
 ], [𝑥1

 ], [𝑥46
 ], [𝑥48

 ], [𝑥49
 ]) = 𝑘3

  ×  𝑥46
 (𝑡) (106) 

𝑅4
 :    𝑎4

 ([𝑥0
 ], [𝑥1

 ], [𝑥46
 ], [𝑥48

 ], [𝑥49
 ]) = 𝑘4

  (107) 

𝑅5
 :    𝑎5

 ([𝑥0
 ], [𝑥1

 ], [𝑥46
 ], [𝑥48

 ], [𝑥49
 ]) = 𝑘5

  ×  𝑥1
 (𝑡)  × 𝑥1

 (𝑡) (108) 

𝑅77
 :    𝑎77

 ([𝑥0
 ], [𝑥1

 ], [𝑥46
 ], [𝑥48

 ], [𝑥49
 ]) = 𝑘77

  ×  𝑥0
 (𝑡) (109) 

𝑅78
 :    𝑎78

 ([𝑥0
 ], [𝑥1

 ], [𝑥46
 ], [𝑥48

 ], [𝑥49
 ]) = 𝑘78

  ×  𝑥1
 (𝑡) (110) 

The associated Markov chain graph can now be used to visualise the Markov process of the 

transporter module with 𝐧𝐽
 = (𝐗𝐾

 , ƌ𝑙
 ) number of states stored in all the nodes and directly 

reachable from the initial node 𝑁1
 = (𝑋0

 , ƌ𝑙=1
 ) via 𝑅𝑀

  reactions. The transition weightage 

between the different states in transporter module is defined by their propensity values at a 

particular time in the process. In next section 7.2.2, we will discuss about the nature of the 

reactions and transitions in Antioxidant module and its integration in 𝐼𝑆𝑃 𝐿𝐴𝑆. 

7.2.2 Antioxidant Module 

Catalase specifies the 𝐻2
 𝑂2
  detoxification pathway through the enzyme catalase. Here, 

reaction 𝑅40
  is a zero-order reaction that produces 𝑥33

  (𝐶𝐴𝑇1 𝑚𝑅𝑁𝐴) at basal rates, whereas, 

the mass action law based reaction 𝑅64
 , translate this 𝑥33

  (𝐶𝐴𝑇1 𝑚𝑅𝑁𝐴) into 𝑥2
  (𝐶𝑎𝑡1). 

Lastly, reactions 𝑅79
  and 𝑅109

  represents the first order decay of species 𝑥2
  and 𝑥33

 , 

respectively, in catalase. 

During oxidative stress, Thioredoxin is responsible for repairing protein di-thiols and this 

demonstrates their role in the elimination of H2
 O2
 . Here, reaction 𝑅16

  is based on the law of 

mass action, where 𝑥18
  (local thioredoxin) is reduced by 𝑥13

  (protein di-sulphides) and this 

increased the counts of 𝑥12
  and 𝑥19

 . Reaction 𝑅17
  is a cellular redox reaction based on the law 

of mass action, responsible for the oxidation of 𝑥14
  (peroxiredoxin), and increase the copy 

counts of oxidised 𝑥15
 . Reaction 𝑅18

  is based on the law of mass action where excessive 𝑥1
  

(intra-cellular hydrogen peroxide) is detoxified by 𝑥14
  to produce the oxidised 𝑥15

 . In reaction 

𝑅19
 , 𝑥15

  (oxidised peroxiredoxin) is reduced by the action of 𝑥18
  to produce 𝑥19

  (oxidised 

thioredoxin) and 𝑥14
  (reduced peroxiredoxin). In reaction 𝑅20

 , 𝑥19
  (oxidised thioredoxin) is 

reduced by 𝑥16
  (thioredoxin reductase) to produce 𝑥17

  (oxidised thioredoxin reductase) and 
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𝑥18
 . In reaction 𝑅21

 , 𝑥17
  (oxidised thioredoxin reductase) is reduced by 𝑥20

  (𝑁𝐴𝐷𝑃𝐻) to 

produce 𝑥16
  (thioredoxin reductase) and release the 𝑁𝐴𝐷𝑃+. In reactions 𝑅69

 , 𝑅70
  and 𝑅71

 , 

species 𝑥37
 , 𝑥38

  and 𝑥39
  are translated and it is assumed (Komalapriya et al., 2015) that this 

produces reduced forms of 𝑥14
 , 𝑥18

  and 𝑥16
  proteins. Reactions 𝑅89

 , 𝑅90
 , 𝑅91

 , 𝑅92
 , 𝑅93

 , 𝑅94
 , 

𝑅95
 , 𝑅96

 , 𝑅97
 , 𝑅114

 , 𝑅115
  and 𝑅116

  represent the first order decay of 𝑥12
 , 𝑥13

  (protein di-

sulphides), 𝑥14
  (reduced peroxiredoxin), 𝑥15

 , 𝑥16
 , 𝑥17

 , 𝑥18
 , 𝑥19

 , 𝑥20
 , 𝑥37

 , 𝑥38
 , 𝑥39

 .  

The pentose phosphate pathway (𝑃𝑃𝑃) keeps the track of the maintenance of 𝑁𝐴𝐷𝑃𝐻 under 

different conditions (stress and non-stress). Reaction 𝑅7
  is modelled based on the Michaelis-

Menten reaction (see C.2 of Appendix C) where 𝑥4
  is reduced by enzyme 𝑥20

 . Reaction 𝑅21
  is 

again considered in this pathway as 𝑥20
  (𝑁𝐴𝐷𝑃𝐻) and plays a role in reducing 𝑥17

  (oxidised 

thioredoxin reductase). In reaction 𝑅22
 , the metabolic flux is redirected under oxidative stress 

to produce 𝑥20
 . This induction of 𝑥20

  is done terms of Hill function (Santillán et al., 2008). 

Reaction 𝑅73
  is based on the law of mass action that translate the 𝑥41

  (hypothetical) into 𝑥20
 . 

The last reaction 𝑅97
  involved in 𝑃𝑃𝑃 represents the first order decay of 𝑥20

  (𝑁𝐴𝐷𝑃𝐻).  

It is important to track the number of copies of the biochemical species through the reactions 

in the catalase, thioredoxin and pentose phosphate pathway. Therefore, we note the changes 

in the counts of critical biochemical species (see the antioxidant module in Table 7.1) and 

define the transitions associated with 𝑅𝑀
  (associated with antioxidant module) in the 

stoichiometric vector 𝑉𝑀
  matrix for all Ñ species involved in the catalase, thioredoxin and 

pentose phosphate pathway that defines the antioxidant module. Based on interactions of the 

species in Figure 7.1, we have: 

 

1) 𝑅𝑀
  channels for catalase as {40, 64, 79, 109} and Ñ species - 𝑥2

 , 𝑥33
  through the given 

number of reaction channels 

2) 𝑅𝑀
  channels for thioredoxin as {16, 17, 18, 19, 20, 21, 69, 70, 71, 89, 90, 91, 92, 93, 94, 

95, 96, 97, 114, 115, 116} and Ñ species - 𝑥12
 , 𝑥13

 , 𝑥14
 , 𝑥15

 , 𝑥16
 , 𝑥17

 , 𝑥18
 , 𝑥19

 , 𝑥20
 , 𝑥37

 , 

𝑥38
 , 𝑥39

 , 𝑥46
  through the given number of reaction channels  

3) 𝑅𝑀
  channels for pentose phosphate pathway as {7, 21, 22, 73, 97} and Ñ species - 𝑥4

 , 

𝑥20
 , 𝑥50

 , 𝑥51
 , 𝑥17

 , 𝑥41
  through given number of reaction channels. 

 

To examine the stiffness of the modules it is important to consider the stoichiometric vectors 

individually for the catalase, thioredoxin and pentose phosphate pathway within the 
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antioxidant module as they define the sub-modules of the Integrated model and contribute to 

the different number of states in the domain.  

 

 

The transitions associated with 𝑅𝑀
  channels and Ñ  in the stoichiometric vector matrix for 

catalase are given as: 

 

 

 

The transitions associated with 𝑅𝑀
  channels and Ñ  in the stoichiometric vector matrix for 

thioredoxin is given as: 

 

 

 

The transitions associated with 𝑅𝑀
  channels and Ñ  in the stoichiometric vector matrix for 

pentose phosphate pathway are given as: 

 

(0, 1) 

(1, 1)  

(-1, 0)  

(0, 1) 

 

(1, -1, 0, 0, 0, 0, -1, 1, 0, 0, 0, 0, 0) 

(0, 0, -1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0) 

(0, 0, -1, 1, 0, 0, 0, 0, 0, 0, 0, 0, -1) 

(0, 0, 1, -1, 0, 0, -1, 1, 0, 0, 0, 0, 0) 

(0, 0, 0, 0, -1, 1, 1, -1, 0, 0, 0, 0, 0) 

(0, 0, 0, 0, 1, -1, 0, 0, -1, 0, 0, 0, 0) 

(0, 0, 1, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0) 

(0, 0, 0, 0, 0, 0, 1, 0, 0, 0, -1, 0, 0) 

(0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, -1, 0) 

(-1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) 

(0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) 

(0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) 

(0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0) 

(0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0) 

(0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0) 

(0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0) 

(0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0) 

(0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0) 

(0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0) 

(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0) 

(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0) 

 

for catalase,  𝑉𝑀
 = 

for thioredoxin,  𝑉𝑀
 = 
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The associated assembly of Markov chains of the catalase, thioredoxin and Pentose phosphate 

pathway network is treated as a Markov chain graph for antioxidant module, as shown in Figure 

7.1, and states in terms of the nodes with additional information such as the number of 𝑅𝑀
  

reactions required to reach the state. In the equivalent growing graph tree, the transition between 

the nodes is defined by the typical form of the growing dictionary. 

Further, we express the propensity functions of all the 𝑅𝑀=40,64,79,109
 , 𝑅𝑀=7,21,22,73,97

  and 

𝑅𝑀=16,17,18,19,20,21,69,70,71,89,90,91,92,93,94,95,96,97,114,115,116
  reactions (see Table 7.4) involved 

in the catalase, thioredoxin and pentose phosphate pathway, respectively for selective 𝑀 as: 

𝑅𝑀
 :    𝑎𝑀

 ([Ñ 𝑠𝑝𝑒𝑐𝑖𝑒𝑠 𝑣𝑒𝑐𝑡𝑜𝑟 𝑖𝑛 𝐶𝑎𝑡𝑎𝑙𝑎𝑠𝑒]) = 𝑘𝑀
 ([𝑃𝑟𝑜𝑑𝑢𝑐𝑡 𝑜𝑓 𝑟𝑒𝑎𝑐𝑡𝑎𝑛𝑡 𝑠𝑝𝑒𝑐𝑖𝑒𝑠]) (111) 

𝑅𝑀
 :    𝑎𝑀

 ([Ñ 𝑠𝑝𝑒𝑐𝑖𝑒𝑠 𝑣𝑒𝑐𝑡𝑜𝑟 𝑖𝑛 𝑇ℎ𝑖𝑜𝑟𝑒𝑑𝑜𝑥𝑖𝑛]) = 𝑘𝑀
 ([𝑃𝑟𝑜𝑑𝑢𝑐𝑡 𝑜𝑓 𝑟𝑒𝑎𝑐𝑡𝑎𝑛𝑡 𝑠𝑝𝑒𝑐𝑖𝑒𝑠]) (112) 

𝑅𝑀
 :    𝑎𝑀

 ([Ñ 𝑠𝑝𝑒𝑐𝑖𝑒𝑠 𝑣𝑒𝑐𝑡𝑜𝑟 𝑖𝑛 𝑃𝑃𝑃]) = 𝑘𝑀
 ([𝑃𝑟𝑜𝑑𝑢𝑐𝑡 𝑜𝑓 𝑟𝑒𝑎𝑐𝑡𝑎𝑛𝑡 𝑠𝑝𝑒𝑐𝑖𝑒𝑠]) (113) 

The associated Markov chain graph can now be used to represent the Markov process of the 

antioxidant module with 𝐧𝐽
 = (𝐗𝐾

 , ƌ𝑙
 ) number of states stored in all the nodes directly 

reachable from the initial node 𝑁1
 = (𝑋0

 , ƌ𝑙=1
 ) via 𝑅𝑀

  reactions. In section 7.3, we will 

discuss the results of the computational experiment and visualise the state-space and 

conditional probabilities of the species. The transition weightage between different states in 

the antioxidant module is defined by the propensity values at a particular time in the three 

processes (the catalase, thioredoxin and pentose phosphate pathways). In the next section 

7.2.3, we will discuss the nature of reactions and transitions in the protein-thiol module and its 

integration in 𝐼𝑆𝑃 𝐿𝐴𝑆. 

  

(-1, -1, -1, 1, 0, 0) 

(0, -1, -1, 1, -1, 1) 

(0,  1,  0, -1, 0, 0) 

(0,  1,  0, 0, 0, -1) 

(0, -1,  0, 0, 0,  0) 

 

 

 

 

 

for PPP,  𝑉𝑀
 = 
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7.2.3 Protein-thiol Module 

During oxidative stress the, protein-thiol module tracks the damage and repairs the protein 

mono-thiols. Here, reaction 𝑅9
  is a zero-order mass action reaction responsible for production 

of 𝑥9
  (protein mono-thiols). In reaction 𝑅10

 , through 𝑥46
  (excessive intra-cellular hydrogen 

peroxide) 𝑥9
  (protein mono-thiols) is oxidised to form 𝑥10

  (protein sulfenic acid). Further in 

reaction 𝑅11
 , this 𝑥10

  (protein sulfenic acid) is translated to 𝑥11
  (disulphide) through S-

glutathionylation. This reaction is also based on the law of mass action. In reaction 𝑅12
 , 𝑥11

  

(disulphide) de-glutathionylation takes place through the action of 𝑥7
  (glutaredoxin) to 

produce 𝑥9
  (protein mono-thiols). Reaction 𝑅14

  is a zero-order mass action reaction that 

produces 𝑥12
  (protein di-thiols). Further, in reaction 𝑅15

 , this 𝑥12
  (protein di-thiols) is 

oxidised by 𝑥46
  (excessive intra-cellular hydrogen peroxide) to produce 𝑥13

  (protein 

disulphide). In reaction 𝑅16
 , 𝑥13

  (protein disulphide) is reduced by 𝑥18
  (thioredoxin) to 

produce 𝑥12
  (protein di-thiols) and 𝑥19

  (oxidised thioredoxin). In further, reactions 𝑅86
 , 𝑅87

 , 

𝑅88
 , 𝑅89

 , 𝑅90
  represent the first order decay of the biochemical species 𝑥9

 , 𝑥10
 , 𝑥11

 , 𝑥12
 , 𝑥13

 , 

respectively. 

It is important to track the number of copies of the species through these reactions. Therefore, 

we note the changes in the counts for of all the biochemical species (see protein-thiol in Table 

7.1) and define the transitions associated with 𝑅𝑀
  (associated with protein-thiol module) in 

stoichiometric vector 𝑉𝑀
  matrix for all Ñ species involved in the protein-thiol module’s 

reactions. Based on interactions of the species in Figure 7.1, we have 𝑅𝑀
  channels {9, 10, 11, 

12, 14, 15, 16, 86, 87, 88, 89, 90} and Ñ species - 𝑥9
 , 𝑥46

 , 𝑥10
 , 𝑥11

 , 𝑥7
 , 𝑥3

 , 𝑥12
 , 𝑥13

  and 𝑥18
  

through the given number of reaction channels. The transitions associated with 

𝑅𝑀=9,10,11,12,14,15,16,86,87,88,89,90
  and Ñ in stoichiometric vector matrix is given as: 

 

  

(1, 0, 0, 0, 0, 0, 0, 0, 0) 

(-1, -1, 1, 0, 0, 0, 0, 0, 0) 

(0, 0, -1, 1, 0, -1, 0, 0, 0) 

(1, 0, 0, -1, -1, 0, 0, 0, 0) 

(0, 0, 0, 0, 0, 0, 1, 0, 0) 

(0, -1, 0, 0, 0, 0, -1, 1, 0) 

(0, 0, 0, 0, 0, 0, 1, -1, -1) 

(-1, 0, 0, 0, 0, 0, 0, 0, 0) 

(0, 0, -1, 0, 0, 0, 0, 0, 0) 

(0, 0, 0, -1, 0, 0, 0, 0, 0) 

(0, 0, 0, 0, 0, 0, -1, 0, 0) 

(0, 0, 0, 0, 0, 0, 0, -1, 0) 

 

𝑉𝑀
 = 
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The associated Markov chain of the protein-thiol module network is treated as a Markov 

chain graph and states in terms of the nodes with additional information, such as the number 

of 𝑅𝑀
  reactions required to reach the state. In the equivalent growing graph tree, the transition 

between the nodes is defined by the typical form of the growing dictionary. 

Further, we express the propensity functions of all the 𝑅𝑀=9,10,11,12,14,15,16,86,87,88,89,90
  

reactions (see Table 7.4) involved in protein-thiols for the selected 𝑀 as: 

𝑅𝑀
 :   𝑎𝑀

 ([Ñ 𝑠𝑝𝑒𝑐𝑖𝑒𝑠 𝑣𝑒𝑐𝑡𝑜𝑟 𝑖𝑛 𝑃𝑟𝑜𝑡𝑒𝑖𝑛 − 𝑡ℎ𝑖𝑜𝑙]) = 𝑘𝑀
 ([𝑃𝑟𝑜𝑑𝑢𝑐𝑡 𝑜𝑓 𝑟𝑒𝑎𝑐𝑡𝑎𝑛𝑡 𝑠𝑝𝑒𝑐𝑖𝑒𝑠]) (114) 

An associated Markov chain graph can now be used to represent the Markovian process of the 

protein-thiol module with 𝐧𝐽
 = (𝐗𝐾

 , ƌ𝑙
 ) number of states stored in all the nodes directly 

reachable from the initial node, 𝑁1
 = (𝑋0

 , ƌ𝑙=1
 ), via 𝑅𝑀

  reactions. In section 7.3, we will 

discuss the results of the computational experiments and visualise the state-space and 

conditional probabilities of the species. The transition weightage between the different states 

in the protein-thiol module is defined by the propensity value at a particular time in the 

process. In next section 7.2.4, we discuss the nature of the reactions and transitions in the 

signalling and gene expression module and its integration in 𝐼𝑆𝑃 𝐿𝐴𝑆. 

7.2.4 Signalling and Gene Expression Module 

This module is a combination of two major pathways - cap1 and hog1 pathways, which are 

responsible for the major dynamics of the system. During oxidative stress, they describe the 

dynamics of the protein kinase pathway as well as activation of factors like AP-1 transcription 

and antioxidant gene regulation under different conditions (stress and non-stress).  

In the cap1 pathway, reaction 𝑅23
  is based on the law of mass action and is responsible for the 

oxidation and activation of 𝑥21
  (native transcription) into 𝑥22

 . Under normal conditions it is 

assumed that no 𝑥22
  exists in the oxidised state (active) and, hence, it is considered as 0 

initially. Reaction 𝑅24
  is based on Hill type kinetics, where during a high value of 𝑥47

 , the 

activated 𝑥22
  is converted into its inactive form, 𝑥23

 . Under normal conditions it is assumed 

that no 𝑥22
  exists in oxidised state (in-active) and hence considered as 0 initially. Reaction 

𝑅25
  is based on the law of mass action, where 𝑥23

  is converted to 𝑥22
 . Further, reaction 𝑅26

  

organises the reduction of 𝑥22
  into 𝑥21

  (native transcription). This reduction is also moderated 

by 𝑥18
  (native thioredoxin). However, it is not consumed during the reaction but used as a 

conditioner for the reduction. In reactions 𝑅53
 , 𝑅54

 , 𝑅55
 , 𝑅56

 , 𝑅57
 , 𝑅58

 , 𝑅59
 , 𝑅60

 , 𝑅61
 , 𝑅62

 , the 

active 𝑥22
  induces 𝑥33

 , 𝑥32
 , 𝑥34

 , 𝑥35
 , 𝑥36

 , 𝑥37
 , 𝑥38

 , 𝑥39
 , 𝑥40

 , 𝑥41
  respectively, and the 



236 

 

reactions are based on the Hill function (Santillán et al., 2008). In reaction 𝑅65
 , 𝑥32

  is 

translated to produce the 𝑥21
  protein (native form). This reaction is also based on the law of 

mass action. Reactions 𝑅98
 , 𝑅99

 , 𝑅100
  represent the first order decay of 𝑥21

  (native), 𝑥22
  

(active) and 𝑥23
  (in-active) proteins. 

In the hog1 pathway, reaction 𝑅28
  is based on the law of mass action and is responsible for 

phosphorylation, as well as activation, of 𝑥25
 . Under normal conditions it is assumed that no 

of the 𝑥25
  exists in the phosphorylated form (active) and, hence, it is considered as 0 initially. 

Further, reaction 𝑅29
 , carries out de-phosphorylation as well as de-activation of 𝑥24

  via 

phosphatases. Reaction 𝑅30
  organises the phosphorylation, as well as activation of 𝑥27

 . This 

activation is also moderated by 𝑥25
 ; however, this is not consumed during the reaction but 

used as a conditioner for activation. Further, reaction 𝑅31
  carries out de-phosphorylation, as 

well as de-activation of 𝑥26
  via phosphatases. Reaction 𝑅32

  organises phosphorylation as well 

as the activation of native 𝑥28
 . This activation is also moderated by 𝑥27

 ; however, it did not 

consumed during the reaction but used as a conditioner for activation. Further, reaction 𝑅33
  

carries out de-phosphorylation, as well as de-activation of 𝑥29
  via phosphatases. In reaction 

𝑅34
 , the 𝑥30

  oxidised, de-phosphorylated form (in-active) is converted to 𝑥28
 . This conversion 

is supported by 𝑥18
 , which does not change itself into the 𝑥19

  (oxidised thioredoxin form) 

during this procedure. Reaction 𝑅35
  is the backward reaction of 𝑅34

  where, under oxidative 

stress, 𝑥28
  (native) inactivation takes place and, in this process, 𝑥46

  is used as a conditioner. 

In reaction 𝑅36
 , the phosphorylation of 𝑥30

  oxidised de-phosphorylated form (in-active) takes 

place. Here, 𝑥27
  is used as a conditioner and is not consumed during the procedure. Reaction 

𝑅37
  is the backward reaction of 𝑅36

 , where de-phosphorylation of 𝑥31
  takes place via 

phosphatases. In reaction 𝑅38
 , 𝑥31

  is converted to 𝑥29
  when moderated by 𝑥18

  (native 

thioredoxin) and is not consumed in the procedure. Reaction 𝑅39
  is the backward reaction of 

𝑅38
  where 𝑥29

  is, again, converted to 𝑥31
  during oxidative stress. Lastly, reactions 𝑅74

 , 𝑅75
 , 

𝑅76
  translate the 𝑥42

 , 𝑥43
 , 𝑥44

  into 𝑥24
 , 𝑥26

 , 𝑥28
 , respectively. It is supposed that these 

translations only result in the un-phosphorylated forms of 𝑥24
 , 𝑥26

 , 𝑥28
 . All the reactions in 

the hog1 pathway are based on the law of mass action. 

It is important to track the number of copies of the biochemical species through reactions in 

the cap1 and hog1 pathways. Therefore, we note the changes in the counts of critical 

biochemical species (see signalling and gene expression in Table 7.1) and define the 

transitions associated with 𝑅𝑀
  (associated with signalling module) in the stoichiometric 
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vector 𝑉𝑀
  matrix for all the Ñ species involved in the cap1 and hog1 pathways that will define 

the signalling part of the module. Based on interactions of the species in Figure 7.1, we have: 

 

1) 𝑅𝑀
  channels for the cap1 pathway as {23, 24, 25, 26, 53, 54, 55, 56, 57, 58, 59, 60, 61, 

62, 65, 98, 99, 100} and Ñ species - 𝑥21
 , 𝑥22

 , 𝑥23
 , 𝑥32

 , 𝑥33
 , 𝑥34

 , 𝑥35
 , 𝑥36

 , 𝑥37
 , 𝑥38

 , 𝑥39
 , 

𝑥40
 , 𝑥41

 , 𝑥46
 , 𝑥47

  through the given number of reaction channels, 

2) 𝑅𝑀
  channels for the hog1 pathway as {28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 74, 

75, 76} and Ñ species - 𝑥24
 , 𝑥25

 , 𝑥26
 , 𝑥27

 , 𝑥28
 , 𝑥29

 , 𝑥30
 , 𝑥31

 , 𝑥42
 , 𝑥43

 , 𝑥44
 , 𝑥46

  through 

the given number of reaction channels. 

 

To examine the stiffness of the module it is important to consider the stoichiometric vectors 

individually for the cap1 and hog1 pathways within the signalling and gene expression 

module as they define the sub-modules of the integrated model and contribute different 

numbers of states in the domain. 

The transitions associated with 𝑅𝑀
  channels and Ñ in stoichiometric vector matrix for the cap1 

pathway are given as:  

 

 

  

(-1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) 

(0, -1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) 

(0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) 

(1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) 

(0, -1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) 

(0, -1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) 

(0, -1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0) 

(0, -1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0) 

(0, -1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0) 

(0, -1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0) 

(0, -1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0) 

(0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0) 

(0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0) 

(0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0) 

(1, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) 

(-1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) 

(0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) 

(0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) 

 

for cap1,  𝑉𝑀
 = 
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The transitions associated with 𝑅𝑀
  channels and Ñ in the stoichiometric vector matrix for the 

hog1 pathway are given as: 

 

 

 

The associated assembly of Markov chains of the cap1 and hog1 pathway networks is treated 

as a Markov chain graph for the signalling and gene expression module and the states in terms 

of the nodes, with additional information such as the number of 𝑅𝑀
  reactions required to reach 

the state. In the equivalent growing graph tree, the transition between the nodes is defined by 

the typical form of the growing dictionary. 

Further, we express the propensity functions of all 

𝑅𝑀=23,24,25,26,53,54,55,56,57,58,59,60,61,62,65,98,99,100
  and 𝑅𝑀=28,29,30,31,32,33,34,35,36,37,38,39,74,75,76

  

reactions (see Table 7.4) involved in the cap1 and hog1 pathways, respectively, for a selected 

𝑀 as: 

𝑅𝑀
 :   𝑎𝑀

 ([Ñ 𝑠𝑝𝑒𝑐𝑖𝑒𝑠 𝑣𝑒𝑐𝑡𝑜𝑟 𝑖𝑛 𝐶𝑎𝑝1 𝑝𝑎𝑡ℎ𝑤𝑎𝑦]) = 𝑘𝑀
 ([𝑃𝑟𝑜𝑑𝑢𝑐𝑡 𝑜𝑓 𝑟𝑒𝑎𝑐𝑡𝑎𝑛𝑡 𝑠𝑝𝑒𝑐𝑖𝑒𝑠]) (115) 

𝑅𝑀
 :   𝑎𝑀

 ([Ñ 𝑠𝑝𝑒𝑐𝑖𝑒𝑠 𝑣𝑒𝑐𝑡𝑜𝑟 𝑖𝑛 𝐻𝑜𝑔1 𝑝𝑎𝑡ℎ𝑤𝑎𝑦]) = 𝑘𝑀
 ([𝑃𝑟𝑜𝑑𝑢𝑐𝑡 𝑜𝑓 𝑟𝑒𝑎𝑐𝑡𝑎𝑛𝑡 𝑠𝑝𝑒𝑐𝑖𝑒𝑠]) (116) 

The associated Markov chain graph can now be used to represent the Markov process of the 

signalling and gene expression module with 𝐧𝐽
 = (𝐗𝐾

 , ƌ𝑙
 ) number of states stored in all the 

nodes directly reachable from the initial node 𝑁1
 = (𝑋0

 , ƌ𝑙=1
 ) via 𝑅𝑀

  reactions. In section 

7.3, we will discuss the results of the computational experiment and visualise the state-space 

and conditional probabilities of the species. The transition weightage between different states 

in the signalling and gene expression module is defined by the propensity values at particular 

time in the two processes (cap1 and hog1 pathways). 

(-1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) 

(1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) 

(0, 0, -1, 1, 0, 0, 0, 0, 0, 0, 0, 0) 

(0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0) 

(0, 0, 0, 0, -1, 1, 0, 0, 0, 0, 0, 0) 

(0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0) 

(0, 0, 0, 0, 1, 0, -1, 0, 0, 0, 0, 0) 

(0, 0, 0, 0, -1, 0, 1, 0, 0, 0, 0, 0) 

(0, 0, 0, 0, 0, 0, -1, 1, 0, 0, 0, 0) 

(0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0) 

(0, 0, 0, 0, 0, 1, 0, -1, 0, 0, 0, 0) 

(0, 0, 0, 0, 0, -1, 0, 1, 0, 0, 0, 0) 

(1, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0) 

(0, 0, 1, 0, 0, 0, 0, 0, 0, -1, 0, 0) 

(0, 0, 0, 0, 1, 0, 0, 0, 0, 0, -1, 0) 

 

for hog1,  𝑉𝑀
 = 
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Combining all the 𝑅𝑀
  channels, as discussed in sections 7.2.1, 7.2.2, 7.2.3, 7.2.4 of the 

modules (see Table 7.1), respectively, as {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 

18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 

43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 

68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 

93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 

113, 114, 115, 116, 117, 118, 119, 120, 121} and Ñ species – 𝑥0
 , 𝑥1

 , 𝑥2
 , 𝑥3

 , 𝑥4
 , 𝑥5

 , 𝑥6
 , 𝑥7

 , 𝑥8
 , 

𝑥9
 , 𝑥10

 , 𝑥11
 , 𝑥12

 , 𝑥13
 , 𝑥14

 , 𝑥15
 , 𝑥16

 , 𝑥17
 , 𝑥18

 , 𝑥19
 , 𝑥20

 ,  𝑥21
 , 𝑥22

 , 𝑥23
 , 𝑥24

 , 𝑥25
 , 𝑥26

 , 𝑥27
 , 𝑥28

 , 

𝑥29
 , 𝑥30

 , 𝑥31
 , 𝑥32

 , 𝑥33
 , 𝑥34

 , 𝑥35
 , 𝑥36

 , 𝑥37
 , 𝑥38

 , 𝑥39
 , 𝑥40

 , 𝑥41
 , 𝑥42

 , 𝑥43
 , 𝑥44

 , 𝑥45
 , 𝑥46

 , 𝑥47
 , 𝑥48

 , 

𝑥49
 , 𝑥50

 , 𝑥51
  through the given number of reaction channels. The transitions associated with 

𝑅𝑀
  channels and Ñ in stoichiometric vector matrix for integrated model will be, 
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(1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) 

(-1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) 

(1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0) 
(0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) 

(0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0) 

(0, 0, 0, -1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) 
(0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 1) 

(0, 0, 0, -1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 1, 0, 0, 0) 

(0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) 
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(0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) 

(0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) 
(0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) 

(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) 

(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) 
(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) 

(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) 

(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) 
(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) 

(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) 

(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) 
(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) 

(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) 

(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) 
(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) 

(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) 

(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) 
(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) 

(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) 

(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) 
(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) 

(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) 

(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) 
(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) 

(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) 

(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) 
(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) 

(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) 

(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) 
(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) 

(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) 

(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) 
(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) 

(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0) 

(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0) 
(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0) 

(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) 

(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) 
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In section 7.3, we will discuss the results of the computational experiments and visualise the 

state-space of the different modules, the time taken to solve the CME and the conditional 

probabilities of the biochemical species. 
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7.3 Computational Experiments 

In this section, we tested the ability of the 𝐼𝑆𝑃 𝐿𝐴𝑆 to reproduce the integrated model of the 

fungal pathogen, C. albicans, through its modules to measure the dynamics of the key 

biochemical species, as discussed in sections 7.1 and 7.2. We performed the experiment on 

the carbon-neutral platform of Amazon® Web Service Elastic Computing (EC2) instance type 

large (m5a) running on HVM (hardware virtual environment) virtualisation with variable 

ECUs, a multicore environment of 16vCPU @ 2.2GHz, AMD EPYC 7571 running Ubuntu 

16.04.1 with the relevant dependencies, a 64GB memory with 8GB Elastic Block Storage 

(EBS) type General Purpose SSD (GP2) formatted with Elastic File System (EFS). The 

performance mode was set to general purpose with inputs-outputs per second (IOPS = 

100/3000) and a throughput mode of type bursting is set (see Appendix F). 

After 𝐼𝑆𝑃 𝐿𝐴𝑆 simulation, we collected the outputs from the events as follows: 

1) Dimensions of the integrated model of the fungal pathogen, C. albicans, involving its 

systems and pathways as modules. This is the indicating factor for knowing the difficultly 

level for solving the CME. 

2) Time taken by 𝐼𝑆𝑃 𝐿𝐴𝑆 to run the modules for CME approximations up to 𝑡𝑓
 . This is a 

determining factor for the run-time performance and, subsequently, the total time 

required to solve the CME. 

3) Number of states at the time steps. Because once states are expanded, the domain size 

shows persistent increase in spite of bunking some states. This is critical for algorithm 

performance and the maintenance of accuracy in the solution, which requires a much 

longer time course in comparison with the expansion. 

4) Adaptive approximation errors when the states were simultaneously expanded and 

bunked in different modules of the integrated model. 

5) Conditional probabilities of the biochemical species at 𝑡𝑓
  and the approximate solution of 

the CME for the modules in terms of probability. 

The integrative model (dimension = 45) of the fungal pathogen, C. albicans, in the presence 

of oxidative stress, is considered to be really stiff in nature, so that some of the molecular 

counts of certain biochemical species increase very quickly and some slowly (as discussed in 

section 7.1) in different modules, which makes it difficult to choose 𝑡𝑠𝑡𝑒𝑝
  or even, solve for 
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small durations of time. To expand the state-space and measure the stiffness of modules in the 

system and time to solve the CME, we will consider the modules (see Table 7.1) of the model 

individually and solve them for different 𝑡𝑓
  and 𝑡𝑠𝑡𝑒𝑝

  with 𝜏𝑚 = 1𝑒 − 6. 

To capture the dynamic nature of the integrative model of the fungal pathogen C. albicans in 

the presence of oxidative stress, the transporter module and catalase modules are considered 

up to 𝑡𝑓
 = 3.01 sec with 𝑡𝑠𝑡𝑒𝑝

 = 0.01. Due to the number of reactions and the wide spectrum 

of variation in the propensities involved in the thioredoxin, it is considered to be very stiff in 

nature; therefore, it is considered with 𝑡𝑠𝑡𝑒𝑝
 = 0.0001 and solved up to 𝑡𝑓

 = 0.00062 sec. 

Lastly, the pentose phosphate pathway (𝑃𝑃𝑃) is considered up to 𝑡𝑓
 = 5.2 sec with 𝑡𝑠𝑡𝑒𝑝

 =

0.01. Further, the protein-thiol module is also considered stiff in nature due to the nature of its 

reactions; therefore, it is solved up to 𝑡𝑓
 = 0.04 sec with same 𝑡𝑠𝑡𝑒𝑝

 = 0.0001 as that of 

thioredoxin. In signalling and gene expression module, the cap1 and hog1 pathways are 

considered and solved for 𝑡𝑓
 = 8.46 sec with 𝑡𝑠𝑡𝑒𝑝

 = 0.01 and 𝑡𝑓
 = 70.0 sec with 𝑡𝑠𝑡𝑒𝑝

 = 1.0 

respectively. A single 𝑡𝑓
  cannot be assigned to all the modules or for the whole integrated 

system because its modules have different stiffnesses defined by a variety of reactions so, to 

capture the dynamic nature, it is important to consider for different 𝑡𝑓
 . 

The systematic exploration of nodes carrying probable states for this model are undertaken in 

similar ways, as discussed previously in Table 4.3, and depicted in Figure 4.5 in several 

stages (denoted as Ŝ), representing 𝑅𝑀
  reactions with propensities 𝑎µ

  with arcs as transitions. 

The nodes 𝐧𝐽
 = (𝐗𝐾

 , ƌ𝑙=1,2,……
 ) carrying states are expanded and updated as per 𝐼𝑆𝑃 𝐿𝐴𝑆 

trend (see section 4.3) up to 𝑡𝑓
  for 𝑅𝑀

  channels {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 

16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 

41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 

66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 

91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 

112, 113, 114, 115, 116, 117, 118, 119, 120, 121} that are responsible for variation in the 

molecular counts of the species. 

The 𝐼𝑆𝑃 𝐿𝐴𝑆 responses between the number of states contributed to by the individual modules 

in the domain and time 𝑡 is shown in Figure 7.2 to Figure 7.8. The change in size and colour of 

the 2D pyramid in Figure 7.2 to Figure 7.8 shows the increase in size of the domain with state 

explorations. 
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In Figure 7.2 and Figure 7.3, for 𝑡𝑠𝑡𝑒𝑝
 = 0.01, the initial response at 𝑡 = 0.2 sec (1726 states) 

and 𝑡 = 1.2 sec (18169 states) in the transporter module, and at 𝑡 = 0.2 sec (1011 states) and 

𝑡 = 1.2 sec (9169 states) in catalase, suggests that only a few reactions were active and, 

gradually, after 𝑡 = 1.2 sec more reactions trigger that take the exploration up to 78054 and 

38235 states at 𝑡𝑓
 , respectively. This response also shows that both the transporter module and 

catalase make steady contributions of the states in the domain without going through a number 

of excursions in a fraction of time, 𝑡. In both modules some species (𝑥0
 , 𝑥1

 , 𝑥33
 ) undergo birth 

and death at very similar rates, which prevent any sudden explosion of states throughout 𝑡𝑓
  

even when all the reactions 𝑅𝑀=1,2,3,4,5,77,78
  (involving species of transporter module), 

𝑅𝑀=40,64,79,109
  (involving species of catalase) (see section 7.2.1) become active in the network. 

Similarly in Figure 7.4, for 𝑡𝑠𝑡𝑒𝑝
 = 0.01, the initial response at 𝑡 = 1.5 sec (6426 states) and 

𝑡 = 3.2 sec (12960 states) in the pentose phosphate pathway suggests that there were no 

sudden explosions of states and the domain size shows a steady increase when all reactions 

𝑅𝑀=7,21,22,73,97
  (involving species of pentose phosphate pathway) become active in the 

network and even when only one species (𝑥20
 ) undergoes birth and death.  
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Figure 7.2. Expansion and updating trend of the states for transporter module in the 

integrative model of the fungal pathogen, C. albicans, based on the 𝑰𝑺𝑷 𝑳𝑨𝑺 method. 

𝑰𝑺𝑷 𝑳𝑨𝑺 quickly expands the state-space up to 78054 states for 3.01 sec for transporter 

module. The state-space expansion of transporter module contributes in increasing the 

number of additions of new states to the domain. 

 

Figure 7.3. Expansion and updating trend of the states for catalase (antioxidant) in the 

integrative model of the fungal pathogen, C. albicans, based on the 𝑰𝑺𝑷 𝑳𝑨𝑺 method. 

𝑰𝑺𝑷 𝑳𝑨𝑺 quickly expands the state-space up to 38235 states for 3.01 sec for catalase. The 

state-space expansion of catalase contributes in increasing the number of additions of new 

states to the domain. 
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Figure 7.4. Expansion and updating trend of the states for pentose phosphate pathway in 

the integrative model of the fungal pathogen, C. albicans, based on the 𝑰𝑺𝑷 𝑳𝑨𝑺 method. 

𝑰𝑺𝑷 𝑳𝑨𝑺  quickly expands the state-space up to 20097 states for 5.1 sec for pentose 

phosphate pathway. The state-space expansion of pentose phosphate pathway contributes 

in increasing the number of additions of new states to the domain. 
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However, in the case of thioredoxin in Figure 7.5, the initial response at 𝑡 = 0.0002 sec 

(136916 states) is itself, considered as the first explosion of states followed by a second at 𝑡 = 

0.0006 sec (6641483 states). The thioredoxin part of the network is very stiff in nature due to 

the typical behaviour of its reactions that undergo birth and death of species (𝑥12
 , 

𝑥13
 , 𝑥14

 , 𝑥15
 , 𝑥18

 , 𝑥19
 , 𝑥16

 , 𝑥17
 , 𝑥20

 ,) having a high number of molecule counts of certain 

species (𝑥12
 , 𝑥14

 , 𝑥16
 , 𝑥18

  and 𝑥20
 ) going through a number of excursions in fractions of time, 

𝑡, that make it difficult to capture the dynamic nature with high 𝑡𝑠𝑡𝑒𝑝
 . 

The response of the protein-thiol module in Figure 7.6 is quite similar to that of catalase; but 

due to its stiff nature (like thioredoxin) some of its species (𝑥9
 , 𝑥10

 , 𝑥11
 , 𝑥12

 , 𝑥13
 ) that have a 

high number of molecule counts go through a number of excursions in a fraction of time, 𝑡, 

that leads to more new states per 𝑡𝑠𝑡𝑒𝑝
  = 0.0001. The domain size also shows a steady increase 

when all the reactions 𝑅𝑀=9,10,11,12,14,15,16,86,87,88,89,90
  (involving species of protein-thiol) 

become active in the network leading to 41185 states at 𝑡 = 0.014 sec, 132613 states at 𝑡 = 

0.028 sec and 245701 states at 𝑡 = 0.040 sec. 
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Figure 7.5. Expansion and updating trend of the states for thioredoxin (antioxidant) in the 

integrative model of the fungal pathogen, C. albicans, based on the 𝑰𝑺𝑷 𝑳𝑨𝑺 method. 

𝑰𝑺𝑷 𝑳𝑨𝑺  quickly expands the state-space up to 6641483 states for 0.00062 sec for 

thioredoxin (antioxidant). The state-space expansion of thioredoxin (antioxidant) 

contributes in increasing the number of additions of new states to the domain. 

 

Figure 7.6. Expansion and updating trend of the states for protein mono and di-thiols in 

the integrative model of the fungal pathogen, C. albicans, based on the 𝑰𝑺𝑷 𝑳𝑨𝑺 method. 

𝑰𝑺𝑷 𝑳𝑨𝑺 quickly expands the state-space up to 245701 states for 0.040 sec for protein mono 

and di-thiols. The state-space expansion of protein mono and di-thiols contributes in 

increasing the number of additions of new states to the domain. 
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In Figure 7.7, for 𝑡𝑠𝑡𝑒𝑝
  = 0.01, the initial response at 𝑡 = 3.01 sec (73220 states) in the cap1 

pathway suggests that only one reaction was most active (𝑅𝑀=23
 ) in the network and, as the 

number of active reactions increases, the number of steps formed in Fig (6) decrease with time 

as a single new step adds sufficient new states in the domain. The size of the steps tends to 

increase from 𝑡 = 3.01 sec and continues to explore new states at 𝑡 = 7.01 sec (1536188 states) 

until 𝑡 = 8.46 sec (2367590 states). Species 𝑥21
 , 𝑥22

 , 𝑥23
  were most active in the network that 

leads to antioxidant gene regulation under the condition of oxidative stress. The number of 

excursions these species go through decides the size of the step formed in Figure 7.7. 

Lastly, in Figure 7.8, for 𝑡𝑠𝑡𝑒𝑝
  = 1.0, the initial and intermediate responses at 𝑡 = 25.0 sec (3102 

states) and 𝑡 = 50.0 sec (9716 states) in the hog1 pathway suggest that it has the lowest stiffness 

among all the modules in the integrated model. The active nature of the reactions 

𝑅𝑀=28,29,30,31,32,33,34,35,36,37,38,39,74,75,76
  at the initial level leads to steady responses until 9716 

states while the domain size remains constant until 6.0 sec (9716 states). No species (𝑥24
 , 𝑥25

 , 

𝑥26
 , 𝑥27

 , 𝑥28
 , 𝑥29

 , 𝑥30
 , 𝑥31

 , 𝑥42
 , 𝑥43

 , 𝑥44
 , 𝑥46

 ) in the hog1 pathway go through the death 

process, instead they are phosphorylated, de- phosphorylated or activated, de-activated 

throughout the reactions and, hence, they do not have number of excursions, leading to a 

constant number of states from 𝑡 = 7.0 sec (15980 states) to 𝑡 = 200.0 sec (15980 states). 
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Figure 7.7. Expansion and updating trend of the states for cap1 pathway in the integrative 

model of the fungal pathogen, C. albicans, based on the 𝑰𝑺𝑷 𝑳𝑨𝑺  method. 𝑰𝑺𝑷 𝑳𝑨𝑺 

quickly expands the state-space up to 2367590 states for 8.46 sec for cap1 pathway. The 

state-space expansion of cap1 pathway contributes in increasing the number of additions 

of new states to the domain. 

 

Figure 7.8. Expansion and updating trend of the states for hog1 pathway in the integrative 

model of the fungal pathogen, C. albicans, based on the 𝑰𝑺𝑷 𝑳𝑨𝑺  method. 𝑰𝑺𝑷 𝑳𝑨𝑺 

quickly expands the state-space up to 15980 states for 200.0 sec for hog1 pathway. The 

state-space expansion of hog1 pathway contributes in increasing the number of additions 

of new states to the domain. 
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The transporter module started with the initial state of the involved species 𝑥0
 , 𝑥1

 , 𝑥46
 , 𝑥48

  

and 𝑥49
 . In the antioxidant module, the catalase, thioredoxin and pentose phosphate pathway 

started with the initial state of the species involved, 𝑥2
 , 𝑥33

  and 𝑥12
 , 𝑥13

 , 𝑥14
 , 𝑥15

 , 𝑥16
 , 𝑥17

 , 

𝑥18
 , 𝑥19

 , 𝑥20
 , 𝑥37

 , 𝑥38
 , 𝑥39

 , 𝑥46
  and 𝑥4

 , 𝑥20
 , 𝑥50

 , 𝑥51
 , 𝑥17

 , 𝑥41
 , respectively. The protein-thiol 

module started with the initial state of the involved species 𝑥9
 , 𝑥46

 , 𝑥10
 , 𝑥11

 , 𝑥7
 , 𝑥3

 , 𝑥12
 , 𝑥13

  

and 𝑥18
 , whereas, the cap1 and hog1 pathways started with the initial state of the species 

involved, 𝑥21
 , 𝑥22

 , 𝑥23
 , 𝑥32

 , 𝑥33
 , 𝑥34

 , 𝑥35
 , 𝑥36

 , 𝑥37
 , 𝑥38

 , 𝑥39
 , 𝑥40

 , 𝑥41
 , 𝑥46

 , 𝑥47
  and 𝑥24

 , 𝑥25
 , 

𝑥26
 , 𝑥27

 , 𝑥28
 , 𝑥29

 , 𝑥30
 , 𝑥31

 , 𝑥42
 , 𝑥43

 , 𝑥44
 , 𝑥46

  respectively (see Table 7.2). Then, gradually, 

when the protein level changes in the system, it exploits the copy counts of other species 

leading to a new state. A checkpoint has been set in 𝐼𝑆𝑃 𝐿𝐴𝑆 for all the modules to examine 

the initial state of probability over time 𝑡𝑓
 . The response in Figs (1) to (6) of Figure 7.9 

indicate that the probability of the system to remain in the initial (normal) state decreases with 

time when more reactions become active in the network and this affects the counts of the 

species. It also shows that for some other states (Figs (1), (2) and (3) of Figure 7.9) (marked 

with green) the probability increases simulatenously when initial state probability decreases 

and at a certain time point the system shifts to another state that has a high probability. 

This change in probability in the modules enforces the system to shift to new states, which 

manifest the Markov process of the integrated model. The 𝐼𝑆𝑃 𝐿𝐴𝑆 captures this process and 

defines several bounds of the domain at different time intervals, as defined by Figure 4.2 

pyramid. To investigate the expansion of states closely, the order of bounds at different time 

intervals, and the number of states present in the bounds, are given in Table 7.7 to Table 7.13 

for all the modules. The size of the bound created at each duration reveals that for every step, 

the growth of the domain in the transporter module is ≈1/4th times the previous size of the 

domain. Whereas, in the cat1 pathway, the growth of the domain is ≈8% of the previous size 

of the domain. This rate is also incremental (by 0.40 to 0.70 units) in every 𝑡𝑠𝑡𝑒𝑝
 = 0.01 of 

cap1 pathway. Initially, the growth of the domain is variable in the pentose pathway; 

however, after 𝑡 = 200.0 sec the domain is updated with 36 or 45 states alternatively for every 

𝑡𝑠𝑡𝑒𝑝
 = 0.01. In thioredoxin, the growth of the domain is variable and falls between 1.5 to 10 

times the previous size of the domain. Due to its stiff nature, it also has the least number of 

bounds but they are the largest in size, among all the modules’ bounds.  
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Fig (1). Response of 𝑰𝑺𝑷 𝑳𝑨𝑺 checkpoint for     Fig (2). Response of 𝑰𝑺𝑷 𝑳𝑨𝑺 checkpoint  

examining the transporter module’s initial         for examining the catalase’s (antioxidant)    

state and any random state probability over     initial state and any random state   

time 𝒕𝒇
 = 𝟑. 𝟎 𝒔𝒆𝒄.                                                probability over time 𝒕𝒇

 = 𝟑. 𝟎 𝒔𝒆𝒄.     

                                                    

                                              

  

Fig (3). Response of 𝑰𝑺𝑷 𝑳𝑨𝑺 checkpoint for    Fig (4). Response of 𝑰𝑺𝑷 𝑳𝑨𝑺 checkpoint    

examining the thioredoxin (antioxidant)            for examining the protein mono and  

initial state and any random state probability  di-thiol  initial state over time 𝒕𝒇
 = 

over time 𝒕𝒇
 = 𝟎. 𝟎𝟎𝟎𝟔𝟐 𝒔𝒆𝒄.                              𝟎. 𝟎𝟒 𝒔𝒆𝒄. 

 



254 

 

    

Fig (5). Response of 𝑰𝑺𝑷 𝑳𝑨𝑺 checkpoint for   Fig (6). Response of 𝑰𝑺𝑷 𝑳𝑨𝑺 checkpoint    

examining the cap1 pathway’s initial state        for examining the hog1 pathway’s initial  

over time 𝒕𝒇
 = 𝟖. 𝟒𝟔 𝒔𝒆𝒄.                                    state over time 𝒕𝒇

 = 𝟐𝟎𝟎. 𝟎 𝒔𝒆𝒄. 

                                                   

Figure 7.9. Response of the 𝑰𝑺𝑷 𝑳𝑨𝑺 checkpoint for examining the integrative model of 

fungal pathogen C. albicans module’s (Figs (1) for transporter module’s, Figs (2) for 

catalase’s, Figs (3) for thioredoxin, Figs (4) for protein mono and di-thiol, Figs (5) for cap1 

pathway’s, Figs (6) for hog1 pathway’s), initial state and any random state probability over 

time 𝒕𝒇
 . 
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In the protein-thiol module, the growth of the domain is variable until 𝑡 = 0.0025 sec, and 

after that it increases at the rate of 3.0% of the previous size of the domain. This rate is also 

incremental (by 0.50 units) in every 𝑡𝑠𝑡𝑒𝑝
 = 0.0001. In the cap1 pathway, the growth of the 

domain is also variable throughout 𝑡𝑓
 = 8.46 𝑠𝑒𝑐; however, after several 𝑡𝑠𝑡𝑒𝑝

 = 0.01 the 

explosion of states updates the domain with a large number of states. The number of unique 

states added in the domain increases with 𝑡, together with the number of explosions in the 

expansion process. In the hog1 pathway, the growth of the domain is also variable until 𝑡 =

7.0 sec and, after this, the size of the domain remains constant until 𝑡𝑓
 = 200.0 𝑠𝑒𝑐 as there 

are no new states added in the domain. 

The number of sets of states that created the several bounds at 𝑡 are shown in Figure 7.10 to 

Figure 7.16 for all modules of the integrated model. In the transporter module in Figure 7.10, 

with the exploration of the set of 99 states, 𝐵𝑜𝑢𝑛𝑑(1)𝑢𝑝𝑝𝑒𝑟
 = {𝑋0,1,2…..99

 } is formed at 0.01 sec 

carrying 100 states. Some states were bunked after 0.3 sec resulting in approximation error 

reaching to 2.48e − 05  at 0.4 sec. At 𝑡𝑓
 , the 𝐿𝐴𝑆  ends with a domain defined by 

𝐵𝑜𝑢𝑛𝑑(301)𝑢𝑝𝑝𝑒𝑟
 = {𝑋0,1,2…..78053

 } carrying 78054 states with a 1.99e − 04 approximation 

error. A set of nodes 𝑁1
 , 𝑁2

 , . . . . . 𝑁78054
  carries these unique states representing the set of 

𝑠𝑡𝑎𝑡𝑒(𝑛78054
 ) = (𝑋0,1,2,…78053

 ) forming the state-space of the transporter module up to 𝑡𝑓
 . 
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Figure 7.10. The set of states explored for the transporter module using the 𝑰𝑺𝑷 𝑳𝑨𝑺 

algorithm. Based on network of reactions, 𝑰𝑺𝑷 𝑳𝑨𝑺 unfolds the state-space pattern to 

update states in the domain and expands 78054 states up to 𝒕𝒇
 .  shows the time point 

where the new set of states are explored and updated in the domain. 
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Table 7.7. Lower and upper Bounds of the transporter module given by 𝑰𝑺𝑷 𝑳𝑨𝑺 trend. 

𝒁 𝑩𝒐𝒖𝒏𝒅(𝑍)𝒍𝒐𝒘𝒆𝒓
  𝑩𝒐𝒖𝒏𝒅(𝑍)𝒖𝒑𝒑𝒆𝒓

  States Duration 

1 𝐵𝑜𝑢𝑛𝑑(1)𝑙𝑜𝑤𝑒𝑟
 = {𝑋0

 } 
formed at 𝑡 = 0.0 sec 

𝐴𝑝𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑡𝑖𝑜𝑛 = 1 

𝐵𝑜𝑢𝑛𝑑(1)𝑢𝑝𝑝𝑒𝑟
 = {𝑋0,1,2…..99

 } 

formed at 𝑡 = 0.01 sec 

𝐴𝑝𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑡𝑖𝑜𝑛 = 0.9989841635 

100 0.0 – 0.01 

sec 

2 𝐵𝑜𝑢𝑛𝑑(2)𝑙𝑜𝑤𝑒𝑟
 = 𝐵𝑜𝑢𝑛𝑑(1)𝑢𝑝𝑝𝑒𝑟

  

formed at 𝑡 = 0.01 sec 

𝐴𝑝𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑡𝑖𝑜𝑛 = 0.998984163 

𝐵𝑜𝑢𝑛𝑑(2)𝑢𝑝𝑝𝑒𝑟
 = {𝑋0,1,2…..168

 } 

formed at 𝑡 = 0.02 sec 

𝐴𝑝𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑡𝑖𝑜𝑛 = 0.9971932273 

169 0.01 – 0.02 

sec 

3 𝐵𝑜𝑢𝑛𝑑(3)𝑙𝑜𝑤𝑒𝑟
 = 𝐵𝑜𝑢𝑛𝑑(2)𝑢𝑝𝑝𝑒𝑟

  

formed at 𝑡 = 0.02 sec 

𝐴𝑝𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑡𝑖𝑜𝑛 = 0.997193227 

𝐵𝑜𝑢𝑛𝑑(3)𝑢𝑝𝑝𝑒𝑟
 = {𝑋0,1,2…..224

 } 

formed at 𝑡 = 0.03 sec 

𝐴𝑝𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑡𝑖𝑜𝑛 = 0.9917109929 

225 0.02 – 0.03 

sec 

4 𝐵𝑜𝑢𝑛𝑑(4)𝑙𝑜𝑤𝑒𝑟
 = 𝐵𝑜𝑢𝑛𝑑(3)𝑢𝑝𝑝𝑒𝑟

  

formed at 𝑡 = 0.03 sec 

𝐴𝑝𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑡𝑖𝑜𝑛 = 0.991710992 

𝐵𝑜𝑢𝑛𝑑(4)𝑢𝑝𝑝𝑒𝑟
 = {𝑋0,1,2…..288

 } 

formed at 𝑡 = 0.04 sec 

𝐴𝑝𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑡𝑖𝑜𝑛 = 0.9955283311 

289 0.03 – 0.04 

sec 

5 𝐵𝑜𝑢𝑛𝑑(5)𝑙𝑜𝑤𝑒𝑟
 = 𝐵𝑜𝑢𝑛𝑑(4)𝑢𝑝𝑝𝑒𝑟

  

formed at 𝑡 = 0.04 sec 

𝐴𝑝𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑡𝑖𝑜𝑛 = 0.995528331 

𝐵𝑜𝑢𝑛𝑑(5)𝑢𝑝𝑝𝑒𝑟
 = {𝑋0,1,2…..360

 } 

formed at 𝑡 = 0.05 sec 

𝐴𝑝𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑡𝑖𝑜𝑛 = 0.9931313777 

361 0.04 – 0.05 

sec 

6 𝐵𝑜𝑢𝑛𝑑(6)𝑙𝑜𝑤𝑒𝑟
 = 𝐵𝑜𝑢𝑛𝑑(5)𝑢𝑝𝑝𝑒𝑟

  

formed at 𝑡 = 0.05 sec 

𝐴𝑝𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑡𝑖𝑜𝑛 = 0.993131377 

𝐵𝑜𝑢𝑛𝑑(6)𝑢𝑝𝑝𝑒𝑟
 = {𝑋0,1,2…..440

 } 

formed at 𝑡 = 0.06 sec 

𝐴𝑝𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑡𝑖𝑜𝑛 = 0.9909475971 

441 0.05 – 0.06 

sec 

7 𝐵𝑜𝑢𝑛𝑑(7)𝑙𝑜𝑤𝑒𝑟
 = 𝐵𝑜𝑢𝑛𝑑(6)𝑢𝑝𝑝𝑒𝑟

  

formed at 𝑡 = 0.06 sec 

𝐴𝑝𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑡𝑖𝑜𝑛 = 0.990947597 

𝐵𝑜𝑢𝑛𝑑(7)𝑢𝑝𝑝𝑒𝑟
 = {𝑋0,1,2…..528

 } 

formed at 𝑡 = 0.07 sec 

𝐴𝑝𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑡𝑖𝑜𝑛 = 0.9891430655 

529 0.06 – 0.07 

sec 

8 𝐵𝑜𝑢𝑛𝑑(8)𝑙𝑜𝑤𝑒𝑟
 = 𝐵𝑜𝑢𝑛𝑑(7)𝑢𝑝𝑝𝑒𝑟

  

formed at 𝑡 = 0.07 sec 

𝐴𝑝𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑡𝑖𝑜𝑛 = 0.98914306 

𝐵𝑜𝑢𝑛𝑑(8)𝑢𝑝𝑝𝑒𝑟
 = {𝑋0,1,2…..623

 } 

formed at 𝑡 = 0.08 sec 

𝐴𝑝𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑡𝑖𝑜𝑛 = 0.987747528 

624 0.07 – 0.08 

sec 

9 𝐵𝑜𝑢𝑛𝑑(9)𝑙𝑜𝑤𝑒𝑟
 = 𝐵𝑜𝑢𝑛𝑑(8)𝑢𝑝𝑝𝑒𝑟

  

formed at 𝑡 = 0.08 sec 

𝐴𝑝𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑡𝑖𝑜𝑛 = 0.987747528 

𝐵𝑜𝑢𝑛𝑑(9)𝑢𝑝𝑝𝑒𝑟
 = {𝑋0,1,2…..722

 } 

formed at 𝑡 = 0.09 sec 

𝐴𝑝𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑡𝑖𝑜𝑛 = 0.9867138883 

723 0.08 – 0.09 

sec 

10 𝐵𝑜𝑢𝑛𝑑(10)𝑙𝑜𝑤𝑒𝑟
 

= 𝐵𝑜𝑢𝑛𝑑(9)𝑢𝑝𝑝𝑒𝑟
  

formed at 𝑡 = 0.09 sec 

𝐴𝑝𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑡𝑖𝑜𝑛 = 0.986713888 

𝐵𝑜𝑢𝑛𝑑(10)𝑢𝑝𝑝𝑒𝑟
 = {𝑋0,1,2…..825

 } 

formed at 𝑡 = 0.1 sec 

𝐴𝑝𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑡𝑖𝑜𝑛 = 0.9859677839 

826 0.09 – 0.1 

sec 

: : : : 

301 𝐵𝑜𝑢𝑛𝑑(301)𝑙𝑜𝑤𝑒𝑟
 

= 𝐵𝑜𝑢𝑛𝑑(300)𝑢𝑝𝑝𝑒𝑟
  

formed at 𝑡 = 2.9 sec 

𝐴𝑝𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑡𝑖𝑜𝑛 = 0.96371671 

𝐵𝑜𝑢𝑛𝑑(301)𝑢𝑝𝑝𝑒𝑟
 = {𝑋0,1,2…..78053

 } 

formed at 𝑡 = 3.0 sec 

𝐴𝑝𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑡𝑖𝑜𝑛 = 0.9635885099 

78054 2.9 – 3.0 sec 

(See section G.4 in Appendix G for details of bounds for transporter module). 
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In the cat1 pathway, Figure 7.11, with the exploration of the set of 112 states, the 

𝐵𝑜𝑢𝑛𝑑(1)𝑢𝑝𝑝𝑒𝑟
 = {𝑋0,1,2…..112

 } is formed at 0.01 sec carrying 113 states. Some states were 

bunked after 0.22 sec, resulting in the approximation error reaching 1.37e − 05 at 0.24 sec. 

At 𝑡𝑓
 , the 𝐿𝐴𝑆 ends with the domain defined by 𝐵𝑜𝑢𝑛𝑑(301)𝑢𝑝𝑝𝑒𝑟

 = {𝑋0,1,2…..38234
 } carrying 

38235 states with 1.418e − 04 approximation error. The set of nodes 𝑁1
 , 𝑁2

 , . . . . . 𝑁38235
  

carries these unique states representing the set of 𝑠𝑡𝑎𝑡𝑒(𝑛38235
 ) = (𝑋0,1,2,…38234

 ) forming the 

state-space of the cat1 pathway up to 𝑡𝑓
 . 

 

 

Figure 7.11. The set of states explored for the cat1 pathway using 𝑰𝑺𝑷 𝑳𝑨𝑺 algorithm. 

Based on network of reactions, 𝑰𝑺𝑷 𝑳𝑨𝑺 unfolds the state-space pattern to update the 

states in the domain and expands 38235 states up to 𝒕𝒇
 .  shows the time point where the 

new set of states is explored and updated in the domain. 
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Table 7.8. Lower and upper Bounds of the cat1 pathway given by 𝑰𝑺𝑷 𝑳𝑨𝑺 trend. 

𝒁 𝑩𝒐𝒖𝒏𝒅(𝑍)𝒍𝒐𝒘𝒆𝒓
  𝑩𝒐𝒖𝒏𝒅(𝑍)𝒖𝒑𝒑𝒆𝒓

  States Duration 

1 𝐵𝑜𝑢𝑛𝑑(1)𝑙𝑜𝑤𝑒𝑟
 = {𝑋0

 } 
formed at 𝑡 = 0.0 sec 

𝐴𝑝𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑡𝑖𝑜𝑛 = 1 

𝐵𝑜𝑢𝑛𝑑(1)𝑢𝑝𝑝𝑒𝑟
 = {𝑋0,1,2…..112

 } 

formed at 𝑡 = 0.01 sec 

𝐴𝑝𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑡𝑖𝑜𝑛 = 0.9989549833 

113 0.0 – 0.01 

sec 

2 𝐵𝑜𝑢𝑛𝑑(2)𝑙𝑜𝑤𝑒𝑟
 = 𝐵𝑜𝑢𝑛𝑑(1)𝑢𝑝𝑝𝑒𝑟

  

formed at 𝑡 = 0.01 sec 

𝐴𝑝𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑡𝑖𝑜𝑛 = 0.998954983 

𝐵𝑜𝑢𝑛𝑑(2)𝑢𝑝𝑝𝑒𝑟
 = {𝑋0,1,2…..171

 } 

formed at 𝑡 = 0.02 sec 

𝐴𝑝𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑡𝑖𝑜𝑛 = 0.9969707281 

171 0.01 – 0.02 

sec 

3 𝐵𝑜𝑢𝑛𝑑(3)𝑙𝑜𝑤𝑒𝑟
 = 𝐵𝑜𝑢𝑛𝑑(2)𝑢𝑝𝑝𝑒𝑟

  

formed at 𝑡 = 0.02 sec 

𝐴𝑝𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑡𝑖𝑜𝑛 = 0.997193227 

𝐵𝑜𝑢𝑛𝑑(3)𝑢𝑝𝑝𝑒𝑟
 = {𝑋0,1,2…..227

 } 

formed at 𝑡 = 0.03 sec 

𝐴𝑝𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑡𝑖𝑜𝑛 = 0.9958099024 

228 0.02 – 0.03 

sec 

4 𝐵𝑜𝑢𝑛𝑑(4)𝑙𝑜𝑤𝑒𝑟
 = 𝐵𝑜𝑢𝑛𝑑(3)𝑢𝑝𝑝𝑒𝑟

  

formed at 𝑡 = 0.03 sec 

𝐴𝑝𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑡𝑖𝑜𝑛 = 0.991710992 

𝐵𝑜𝑢𝑛𝑑(4)𝑢𝑝𝑝𝑒𝑟
 = {𝑋0,1,2…..258

 } 

formed at 𝑡 = 0.04 sec 

𝐴𝑝𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑡𝑖𝑜𝑛 = 0.9919955001 

259 0.03 – 0.04 

sec 

5 𝐵𝑜𝑢𝑛𝑑(5)𝑙𝑜𝑤𝑒𝑟
 = 𝐵𝑜𝑢𝑛𝑑(4)𝑢𝑝𝑝𝑒𝑟

  

formed at 𝑡 = 0.04 sec 

𝐴𝑝𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑡𝑖𝑜𝑛 = 0.995528331 

𝐵𝑜𝑢𝑛𝑑(5)𝑢𝑝𝑝𝑒𝑟
 = {𝑋0,1,2…..290

 } 

formed at 𝑡 = 0.05 sec 

𝐴𝑝𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑡𝑖𝑜𝑛 = 0.9958406538 

291 0.04 – 0.05 

sec 

6 𝐵𝑜𝑢𝑛𝑑(6)𝑙𝑜𝑤𝑒𝑟
 = 𝐵𝑜𝑢𝑛𝑑(5)𝑢𝑝𝑝𝑒𝑟

  

formed at 𝑡 = 0.05 sec 

𝐴𝑝𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑡𝑖𝑜𝑛 = 0.993131377 

𝐵𝑜𝑢𝑛𝑑(6)𝑢𝑝𝑝𝑒𝑟
 = {𝑋0,1,2…..359

 } 

formed at 𝑡 = 0.06 sec 

𝐴𝑝𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑡𝑖𝑜𝑛 = 0.995439096 

360 0.05 – 0.06 

sec 

7 𝐵𝑜𝑢𝑛𝑑(7)𝑙𝑜𝑤𝑒𝑟
 = 𝐵𝑜𝑢𝑛𝑑(6)𝑢𝑝𝑝𝑒𝑟

  

formed at 𝑡 = 0.06 sec 

𝐴𝑝𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑡𝑖𝑜𝑛 = 0.990947597 

𝐵𝑜𝑢𝑛𝑑(7)𝑢𝑝𝑝𝑒𝑟
 = {𝑋0,1,2…..396

 } 

formed at 𝑡 = 0.07 sec 

𝐴𝑝𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑡𝑖𝑜𝑛 = 0.9946508528 

397 0.06 – 0.07 

sec 

8 𝐵𝑜𝑢𝑛𝑑(8)𝑙𝑜𝑤𝑒𝑟
 = 𝐵𝑜𝑢𝑛𝑑(7)𝑢𝑝𝑝𝑒𝑟

  

formed at 𝑡 = 0.07 sec 

𝐴𝑝𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑡𝑖𝑜𝑛 = 0.98914306 

𝐵𝑜𝑢𝑛𝑑(8)𝑢𝑝𝑝𝑒𝑟
 = {𝑋0,1,2…..434

 } 

formed at 𝑡 = 0.08 sec 

𝐴𝑝𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑡𝑖𝑜𝑛 = 0.9935874681 

435 0.07 – 0.08 

sec 

9 𝐵𝑜𝑢𝑛𝑑(9)𝑙𝑜𝑤𝑒𝑟
 = 𝐵𝑜𝑢𝑛𝑑(8)𝑢𝑝𝑝𝑒𝑟

  

formed at 𝑡 = 0.08 sec 

𝐴𝑝𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑡𝑖𝑜𝑛 = 0.987747528 

𝐵𝑜𝑢𝑛𝑑(9)𝑢𝑝𝑝𝑒𝑟
 = {𝑋0,1,2…..474

 } 

formed at 𝑡 = 0.09 sec 

𝐴𝑝𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑡𝑖𝑜𝑛 = 0.992328262 

475 0.08 – 0.09 

sec 

10 𝐵𝑜𝑢𝑛𝑑(10)𝑙𝑜𝑤𝑒𝑟
 

= 𝐵𝑜𝑢𝑛𝑑(9)𝑢𝑝𝑝𝑒𝑟
  

formed at 𝑡 = 0.09 sec 

𝐴𝑝𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑡𝑖𝑜𝑛 = 0.986713888 

𝐵𝑜𝑢𝑛𝑑(10)𝑢𝑝𝑝𝑒𝑟
 = {𝑋0,1,2…..515

 } 

formed at 𝑡 = 0.1 sec 

𝐴𝑝𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑡𝑖𝑜𝑛 = 0.9909426395 

516 0.09 – 0.1 

sec 

: : : : 

301 𝐵𝑜𝑢𝑛𝑑(301)𝑙𝑜𝑤𝑒𝑟
 

= 𝐵𝑜𝑢𝑛𝑑(300)𝑢𝑝𝑝𝑒𝑟
  

formed at 𝑡 = 2.9 sec 

𝐴𝑝𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑡𝑖𝑜𝑛 = 0.96371671 

𝐵𝑜𝑢𝑛𝑑(301)𝑢𝑝𝑝𝑒𝑟
 = {𝑋0,1,2…..38234

 } 

formed at 𝑡 = 3.0 sec 

𝐴𝑝𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑡𝑖𝑜𝑛 = 0.9740284241 

38235 2.9 – 3.0 sec 

(See section G.4 in Appendix G for details of bounds for cat1 pathway). 
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In the pentose pathway in Figure 7.12, with the exploration of the set of 197 states, the 

𝐵𝑜𝑢𝑛𝑑(1)𝑢𝑝𝑝𝑒𝑟
 = {𝑋0,1,2…..197

 } is formed at 0.01 sec carrying 198 states. Some states were 

bunked after 0.07 sec resulting in the approximation error reaching 5.11e − 05 at 0.729 sec. 

At 𝑡𝑓
 , the 𝐿𝐴𝑆 ends with a domain defined by 𝐵𝑜𝑢𝑛𝑑(510)𝑢𝑝𝑝𝑒𝑟

 = {𝑋0,1,2…..20096
 } carrying 

20097 states with 3.90e − 04 approximation error. The set of nodes, 𝑁1
 , 𝑁2

 , . . . . . 𝑁20097
  

carries these unique states representing the set of 𝑠𝑡𝑎𝑡𝑒(𝑛20097
 ) = (𝑋0,1,2,…20096

 ) forming the 

state-space of the pentose pathway up to 𝑡𝑓
 . 

 

 

Figure 7.12. The set of states explored for the pentose pathway using the 𝑰𝑺𝑷 𝑳𝑨𝑺 

algorithm. Based on network of reactions, 𝑰𝑺𝑷 𝑳𝑨𝑺 unfolds the state-space pattern to 

update the states in the domain and expands 20097 states up to 𝒕𝒇
 .  shows the time point 

where the new set of states are explored and updated in the domain. 
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Table 7.9. Lower and upper Bounds of the pentose pathway given by 𝑰𝑺𝑷 𝑳𝑨𝑺 trend 

𝒁 𝑩𝒐𝒖𝒏𝒅(𝑍)𝒍𝒐𝒘𝒆𝒓
  𝑩𝒐𝒖𝒏𝒅(𝑍)𝒖𝒑𝒑𝒆𝒓

  States Duration 

1 𝐵𝑜𝑢𝑛𝑑(1)𝑙𝑜𝑤𝑒𝑟
 = {𝑋0

 } 
formed at 𝑡 = 0.0 sec 

𝐴𝑝𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑡𝑖𝑜𝑛 = 1 

𝐵𝑜𝑢𝑛𝑑(1)𝑢𝑝𝑝𝑒𝑟
 = {𝑋0,1,2…..197

 } 

formed at 𝑡 = 0.01 sec 

𝐴𝑝𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑡𝑖𝑜𝑛 = 0.9975105622 

198 0.0 – 0.01 

sec 

2 𝐵𝑜𝑢𝑛𝑑(2)𝑙𝑜𝑤𝑒𝑟
 = 𝐵𝑜𝑢𝑛𝑑(1)𝑢𝑝𝑝𝑒𝑟

  

formed at 𝑡 = 0.01 sec 

𝐴𝑝𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑡𝑖𝑜𝑛 = 0.998954983 

𝐵𝑜𝑢𝑛𝑑(2)𝑢𝑝𝑝𝑒𝑟
 = {𝑋0,1,2…..269

 } 

formed at 𝑡 = 0.02 sec 

𝐴𝑝𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑡𝑖𝑜𝑛 = 0.9939852266 

270 0.01 – 0.02 

sec 

3 𝐵𝑜𝑢𝑛𝑑(3)𝑙𝑜𝑤𝑒𝑟
 = 𝐵𝑜𝑢𝑛𝑑(2)𝑢𝑝𝑝𝑒𝑟

  

formed at 𝑡 = 0.02 sec 

𝐴𝑝𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑡𝑖𝑜𝑛 = 0.996970728 

𝐵𝑜𝑢𝑛𝑑(3)𝑢𝑝𝑝𝑒𝑟
 = {𝑋0,1,2…..333

 } 

formed at 𝑡 = 0.03 sec 

𝐴𝑝𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑡𝑖𝑜𝑛 = 0.9972461063 

333 0.02 – 0.03 

sec 

4 𝐵𝑜𝑢𝑛𝑑(4)𝑙𝑜𝑤𝑒𝑟
 = 𝐵𝑜𝑢𝑛𝑑(3)𝑢𝑝𝑝𝑒𝑟

  

formed at 𝑡 = 0.03 sec 

𝐴𝑝𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑡𝑖𝑜𝑛 = 0.995809902 

𝐵𝑜𝑢𝑛𝑑(4)𝑢𝑝𝑝𝑒𝑟
 = {𝑋0,1,2…..386

 } 

formed at 𝑡 = 0.04 sec 

𝐴𝑝𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑡𝑖𝑜𝑛 = 0.9952259233 

387 0.03 – 0.04 

sec 

5 𝐵𝑜𝑢𝑛𝑑(5)𝑙𝑜𝑤𝑒𝑟
 = 𝐵𝑜𝑢𝑛𝑑(4)𝑢𝑝𝑝𝑒𝑟

  

formed at 𝑡 = 0.04 sec 

𝐴𝑝𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑡𝑖𝑜𝑛 = 0.991995500 

𝐵𝑜𝑢𝑛𝑑(5)𝑢𝑝𝑝𝑒𝑟
 = {𝑋0,1,2…..440

 } 

formed at 𝑡 = 0.05 sec 

𝐴𝑝𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑡𝑖𝑜𝑛 = 0.9929107688 

441 0.04 – 0.05 

sec 

6 𝐵𝑜𝑢𝑛𝑑(6)𝑙𝑜𝑤𝑒𝑟
 = 𝐵𝑜𝑢𝑛𝑑(5)𝑢𝑝𝑝𝑒𝑟

  

formed at 𝑡 = 0.05 sec 

𝐴𝑝𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑡𝑖𝑜𝑛 = 0.995840653 

𝐵𝑜𝑢𝑛𝑑(6)𝑢𝑝𝑝𝑒𝑟
 = {𝑋0,1,2…..494

 } 

formed at 𝑡 = 0.06 sec 

𝐴𝑝𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑡𝑖𝑜𝑛 = 0.9907666481 

495 0.05 – 0.06 

sec 

7 𝐵𝑜𝑢𝑛𝑑(7)𝑙𝑜𝑤𝑒𝑟
 = 𝐵𝑜𝑢𝑛𝑑(6)𝑢𝑝𝑝𝑒𝑟

  

formed at 𝑡 = 0.06 sec 

𝐴𝑝𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑡𝑖𝑜𝑛 = 0.995439096 

𝐵𝑜𝑢𝑛𝑑(7)𝑢𝑝𝑝𝑒𝑟
 = {𝑋0,1,2…..548

 } 

formed at 𝑡 = 0.07 sec 

𝐴𝑝𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑡𝑖𝑜𝑛 = 0.9890067341 

549 0.06 – 0.07 

sec 

8 𝐵𝑜𝑢𝑛𝑑(8)𝑙𝑜𝑤𝑒𝑟
 = 𝐵𝑜𝑢𝑛𝑑(7)𝑢𝑝𝑝𝑒𝑟

  

formed at 𝑡 = 0.07 sec 

𝐴𝑝𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑡𝑖𝑜𝑛 = 0.994650852 

𝐵𝑜𝑢𝑛𝑑(8)𝑢𝑝𝑝𝑒𝑟
 = {𝑋0,1,2…..602

 } 

formed at 𝑡 = 0.08 sec 

𝐴𝑝𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑡𝑖𝑜𝑛 = 0.9876657292 

603 0.07 – 0.08 

sec 

9 𝐵𝑜𝑢𝑛𝑑(9)𝑙𝑜𝑤𝑒𝑟
 = 𝐵𝑜𝑢𝑛𝑑(8)𝑢𝑝𝑝𝑒𝑟

  

formed at 𝑡 = 0.08 sec 

𝐴𝑝𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑡𝑖𝑜𝑛 = 0.993587468 

𝐵𝑜𝑢𝑛𝑑(9)𝑢𝑝𝑝𝑒𝑟
 = {𝑋0,1,2…..647

 } 

formed at 𝑡 = 0.09 sec 

𝐴𝑝𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑡𝑖𝑜𝑛 = 0.9853233084 

648 0.08 – 0.09 

sec 

10 𝐵𝑜𝑢𝑛𝑑(10)𝑙𝑜𝑤𝑒𝑟
 

= 𝐵𝑜𝑢𝑛𝑑(9)𝑢𝑝𝑝𝑒𝑟
  

formed at 𝑡 = 0.09 sec 

𝐴𝑝𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑡𝑖𝑜𝑛 = 0.992328262 

𝐵𝑜𝑢𝑛𝑑(10)𝑢𝑝𝑝𝑒𝑟
 = {𝑋0,1,2…..701

 } 

formed at 𝑡 = 0.1 sec 

𝐴𝑝𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑡𝑖𝑜𝑛 = 0.9839872609 

702 0.09 – 0.1 

sec 

: : : : 

510 𝐵𝑜𝑢𝑛𝑑(510)𝑙𝑜𝑤𝑒𝑟
 

= 𝐵𝑜𝑢𝑛𝑑(509)𝑢𝑝𝑝𝑒𝑟
  

formed at 𝑡 = 5.08 sec 

𝐴𝑝𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑡𝑖𝑜𝑛 = 0.928770480 

𝐵𝑜𝑢𝑛𝑑(510)𝑢𝑝𝑝𝑒𝑟
 = {𝑋0,1,2…..20096

 } 

formed at 𝑡 = 5.1 sec 

𝐴𝑝𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑡𝑖𝑜𝑛 = 0.9286239553 

20097 5.08 – 5.1 

sec 

(See section G.4 in Appendix G for details of bounds for pentose pathway). 
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In the thioredoxin in Figure 7.13, with the exploration of the set of 14452 states, the 

𝐵𝑜𝑢𝑛𝑑(1)𝑢𝑝𝑝𝑒𝑟
 = {𝑋0,1,2…..14452

 } is formed at 0.0001 sec carrying 14453 states. Some states 

were bunked before 0.0001 sec resulting in approximation error that quickly reaches 6.92e −

07 at 0.0001 sec. At 𝑡𝑓
 , the 𝐿𝐴𝑆 ends with a domain defined by 𝐵𝑜𝑢𝑛𝑑(6)𝑢𝑝𝑝𝑒𝑟

 =

{𝑋0,1,2…..6641482
 } carrying 6641483 states with 2.14𝑒 − 06 approximation error. The set of 

nodes 𝑁1
 , 𝑁2

 , . . . . . 𝑁6641483
  carries these unique states representing the set of 

𝑠𝑡𝑎𝑡𝑒(𝑛6641483
 ) = (𝑋0,1,2,…6641482

 ) forming the state-space of the thioredoxin up to 𝑡𝑓
 . 

 

 

Figure 7.13. The set of states explored for thioredoxin using the 𝑰𝑺𝑷 𝑳𝑨𝑺 algorithm. Based 

on network of reactions, 𝑰𝑺𝑷 𝑳𝑨𝑺 unfolds the state-space pattern to update states in the 

domain and expands 6641483 states up to 𝒕𝒇
 .  shows the time point where the new set of 

states are explored and updated in the domain. 
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Table 7.10. Lower and upper Bounds of the thioredoxin given by 𝑰𝑺𝑷 𝑳𝑨𝑺 trend 

𝒁 𝑩𝒐𝒖𝒏𝒅(𝑍)𝒍𝒐𝒘𝒆𝒓
  𝑩𝒐𝒖𝒏𝒅(𝑍)𝒖𝒑𝒑𝒆𝒓

  States Duration 

1 𝐵𝑜𝑢𝑛𝑑(1)𝑙𝑜𝑤𝑒𝑟
 = {𝑋0

 } 
formed at 𝑡 = 0.0 sec 

𝐴𝑝𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑡𝑖𝑜𝑛 = 1 

𝐵𝑜𝑢𝑛𝑑(1)𝑢𝑝𝑝𝑒𝑟
 = {𝑋0,1,2…..14452

 } 

formed at 𝑡 = 0.0001 sec 

𝐴𝑝𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑡𝑖𝑜𝑛 = 0.9936943362 

14453 0.0 – 

0.0001 sec 

2 𝐵𝑜𝑢𝑛𝑑(2)𝑙𝑜𝑤𝑒𝑟
 = 𝐵𝑜𝑢𝑛𝑑(1)𝑢𝑝𝑝𝑒𝑟

  

formed at 𝑡 = 0.0001 sec 

𝐴𝑝𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑡𝑖𝑜𝑛 = 0.993694336 

𝐵𝑜𝑢𝑛𝑑(2)𝑢𝑝𝑝𝑒𝑟
 = {𝑋0,1,2…..136915

 } 

formed at 𝑡 = 0.0002 sec 

𝐴𝑝𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑡𝑖𝑜𝑛 = 0.9917237593 

136916 0.0001 – 

0.0002 sec 

3 𝐵𝑜𝑢𝑛𝑑(3)𝑙𝑜𝑤𝑒𝑟
 = 𝐵𝑜𝑢𝑛𝑑(2)𝑢𝑝𝑝𝑒𝑟

  

formed at 𝑡 = 0.0002 sec 

𝐴𝑝𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑡𝑖𝑜𝑛 = 0.991723759 

𝐵𝑜𝑢𝑛𝑑(3)𝑢𝑝𝑝𝑒𝑟
 = {𝑋0,1,2…..484636

 } 

formed at 𝑡 = 0.0003 sec 

𝐴𝑝𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑡𝑖𝑜𝑛 = 0.9971271262 

484637 0.0002 – 

0.0003 sec 

4 𝐵𝑜𝑢𝑛𝑑(4)𝑙𝑜𝑤𝑒𝑟
 = 𝐵𝑜𝑢𝑛𝑑(3)𝑢𝑝𝑝𝑒𝑟

  

formed at 𝑡 = 0.0003 sec 

𝐴𝑝𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑡𝑖𝑜𝑛 = 0.997127126 

𝐵𝑜𝑢𝑛𝑑(4)𝑢𝑝𝑝𝑒𝑟
 = {𝑋0,1,2…..1495428

 } 

formed at 𝑡 = 0.0004 sec 

𝐴𝑝𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑡𝑖𝑜𝑛 = 0.9967032596 

1495429 0.0003 – 

0.0004 sec 

5 𝐵𝑜𝑢𝑛𝑑(5)𝑙𝑜𝑤𝑒𝑟
 = 𝐵𝑜𝑢𝑛𝑑(4)𝑢𝑝𝑝𝑒𝑟

  

formed at 𝑡 = 0.0004 sec 

𝐴𝑝𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑡𝑖𝑜𝑛 = 0.996703259 

𝐵𝑜𝑢𝑛𝑑(5)𝑢𝑝𝑝𝑒𝑟
 = {𝑋0,1,2…..2517580

 } 

formed at 𝑡 = 0.0005 sec 

𝐴𝑝𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑡𝑖𝑜𝑛 = 0.9952184871 

2517581 0.0004 – 

0.0005 sec 

6 𝐵𝑜𝑢𝑛𝑑(6)𝑙𝑜𝑤𝑒𝑟
 = 𝐵𝑜𝑢𝑛𝑑(5)𝑢𝑝𝑝𝑒𝑟

  

formed at 𝑡 = 0.0005 sec 

𝐴𝑝𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑡𝑖𝑜𝑛 = 0.995218487 

𝐵𝑜𝑢𝑛𝑑(6)𝑢𝑝𝑝𝑒𝑟
 = {𝑋0,1,2…..6641482

 } 

formed at 𝑡 = 0.0006 sec 

𝐴𝑝𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑡𝑖𝑜𝑛 = 0.9946855553 

6641483 

 

0.0005 – 

0.0006 sec 

(See section G.4 in Appendix G for details of bounds for thioredoxin pathway). 
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In the protein thiol in Figure 7.14, with the exploration of the set of 112 states, the 

𝐵𝑜𝑢𝑛𝑑(1)𝑢𝑝𝑝𝑒𝑟
 = {𝑋0,1,2…..112

 } is formed at 0.0001 sec, carrying 113 states. Some states 

were bunked since the formation of first bound resulting in approximation error that quickly 

reaches 3.68e − 05 at 0.0067 sec. At 𝑡𝑓
 , the 𝐿𝐴𝑆 ends with a domain defined by 

𝐵𝑜𝑢𝑛𝑑(401)𝑢𝑝𝑝𝑒𝑟
 = {𝑋0,1,2…..245700

 } carrying 245701 states with 1.92e − 04 approximation 

error. The set of nodes 𝑁1
 , 𝑁2

 , . . . . . 𝑁245701
  carries these unique states representing the set of 

𝑠𝑡𝑎𝑡𝑒(𝑛245701
 ) = (𝑋0,1,2,…245700

 ) forming the state-space of protein thiol up to 𝑡𝑓
 . 

 

 

Figure 7.14. The set of states explored for protein-thiol using the 𝑰𝑺𝑷 𝑳𝑨𝑺 algorithm. 

Based on network of reactions, 𝑰𝑺𝑷 𝑳𝑨𝑺 unfolds the state-space pattern to update states 

in the domain and expands 245701 states up to 𝒕𝒇
 .  shows the time point where the new 

set of states are explored and updated in the domain. 
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Table 7.11. Lower and upper Bounds of the protein-thiol given by 𝑰𝑺𝑷 𝑳𝑨𝑺 trend 

𝒁 𝑩𝒐𝒖𝒏𝒅(𝑍)𝒍𝒐𝒘𝒆𝒓
  𝑩𝒐𝒖𝒏𝒅(𝑍)𝒖𝒑𝒑𝒆𝒓

  States Duration 

1 𝐵𝑜𝑢𝑛𝑑(1)𝑙𝑜𝑤𝑒𝑟
 = {𝑋0

 } 
formed at 𝑡 = 0.0 sec 

𝐴𝑝𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑡𝑖𝑜𝑛 = 1 

𝐵𝑜𝑢𝑛𝑑(1)𝑢𝑝𝑝𝑒𝑟
 = {𝑋0,1,2…..112

 } 

formed at 𝑡 = 0.0001 sec 

𝐴𝑝𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑡𝑖𝑜𝑛 = 0.992908294 

113 0.0 – 

0.0001 sec 

2 𝐵𝑜𝑢𝑛𝑑(2)𝑙𝑜𝑤𝑒𝑟
 = 𝐵𝑜𝑢𝑛𝑑(1)𝑢𝑝𝑝𝑒𝑟

  

formed at 𝑡 = 0.0001 sec 

𝐴𝑝𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑡𝑖𝑜𝑛 = 0.998954983 

𝐵𝑜𝑢𝑛𝑑(2)𝑢𝑝𝑝𝑒𝑟
 = {𝑋0,1,2…..220

 } 

formed at 𝑡 = 0.0002 sec 

𝐴𝑝𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑡𝑖𝑜𝑛 = 0.997449364 

221 0.0001 – 

0.0002 sec 

3 𝐵𝑜𝑢𝑛𝑑(3)𝑙𝑜𝑤𝑒𝑟
 = 𝐵𝑜𝑢𝑛𝑑(2)𝑢𝑝𝑝𝑒𝑟

  

formed at 𝑡 = 0.0002 sec 

𝐴𝑝𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑡𝑖𝑜𝑛 = 0.997193227 

𝐵𝑜𝑢𝑛𝑑(3)𝑢𝑝𝑝𝑒𝑟
 = {𝑋0,1,2…..312

 } 

formed at 𝑡 = 0.0003 sec 

𝐴𝑝𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑡𝑖𝑜𝑛 = 0.9967082171 

313 0.0002 – 

0.0003 sec 

4 𝐵𝑜𝑢𝑛𝑑(4)𝑙𝑜𝑤𝑒𝑟
 = 𝐵𝑜𝑢𝑛𝑑(3)𝑢𝑝𝑝𝑒𝑟

  

formed at 𝑡 = 0.0003 sec 

𝐴𝑝𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑡𝑖𝑜𝑛 = 0.991710992 

𝐵𝑜𝑢𝑛𝑑(4)𝑢𝑝𝑝𝑒𝑟
 = {𝑋0,1,2…..420

 } 

formed at 𝑡 = 0.0004 sec 

𝐴𝑝𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑡𝑖𝑜𝑛 = 0.9961975942 

421 0.0003 – 

0.0004 sec 

5 𝐵𝑜𝑢𝑛𝑑(5)𝑙𝑜𝑤𝑒𝑟
 = 𝐵𝑜𝑢𝑛𝑑(4)𝑢𝑝𝑝𝑒𝑟

  

formed at 𝑡 = 0.0004 sec 

𝐴𝑝𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑡𝑖𝑜𝑛 = 0.995528331 

𝐵𝑜𝑢𝑛𝑑(5)𝑢𝑝𝑝𝑒𝑟
 = {𝑋0,1,2…..480

 } 

formed at 𝑡 = 0.0005 sec 

𝐴𝑝𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑡𝑖𝑜𝑛 = 0.9943881051 

481 0.0004 – 

0.0005 sec 

6 𝐵𝑜𝑢𝑛𝑑(6)𝑙𝑜𝑤𝑒𝑟
 = 𝐵𝑜𝑢𝑛𝑑(5)𝑢𝑝𝑝𝑒𝑟

  

formed at 𝑡 = 0.0005 sec 

𝐴𝑝𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑡𝑖𝑜𝑛 = 0.993131377 

𝐵𝑜𝑢𝑛𝑑(6)𝑢𝑝𝑝𝑒𝑟
 = {𝑋0,1,2…..612

 } 

formed at 𝑡 = 0.0006 sec 

𝐴𝑝𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑡𝑖𝑜𝑛 = 0.9937262782 

613 0.0005 – 

0.0006 sec 

7 𝐵𝑜𝑢𝑛𝑑(7)𝑙𝑜𝑤𝑒𝑟
 = 𝐵𝑜𝑢𝑛𝑑(6)𝑢𝑝𝑝𝑒𝑟

  

formed at 𝑡 = 0.0006 sec 

𝐴𝑝𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑡𝑖𝑜𝑛 = 0.990947597 

𝐵𝑜𝑢𝑛𝑑(7)𝑢𝑝𝑝𝑒𝑟
 = {𝑋0,1,2…..684

 } 

formed at 𝑡 = 0.0007 sec 

𝐴𝑝𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑡𝑖𝑜𝑛 = 0.992028333 

685 0.0006 – 

0.0007 sec 

8 𝐵𝑜𝑢𝑛𝑑(8)𝑙𝑜𝑤𝑒𝑟
 = 𝐵𝑜𝑢𝑛𝑑(7)𝑢𝑝𝑝𝑒𝑟

  

formed at 𝑡 = 0.0007 sec 

𝐴𝑝𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑡𝑖𝑜𝑛 = 0.98914306 

𝐵𝑜𝑢𝑛𝑑(8)𝑢𝑝𝑝𝑒𝑟
 = {𝑋0,1,2…..840

 } 

formed at 𝑡 = 0.0008 sec 

𝐴𝑝𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑡𝑖𝑜𝑛 = 0.9915177101 

841 0.0007 – 

0.0008 sec 

9 𝐵𝑜𝑢𝑛𝑑(9)𝑙𝑜𝑤𝑒𝑟
 = 𝐵𝑜𝑢𝑛𝑑(8)𝑢𝑝𝑝𝑒𝑟

  

formed at 𝑡 = 0.0008 sec 

𝐴𝑝𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑡𝑖𝑜𝑛 = 0.987747528 

𝐵𝑜𝑢𝑛𝑑(9)𝑢𝑝𝑝𝑒𝑟
 = {𝑋0,1,2…..924

 } 

formed at 𝑡 = 0.0009 sec 

𝐴𝑝𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑡𝑖𝑜𝑛 = 0.9903551753 

925 0.0008 – 

0.0009 sec 

10 𝐵𝑜𝑢𝑛𝑑(10)𝑙𝑜𝑤𝑒𝑟
 

= 𝐵𝑜𝑢𝑛𝑑(9)𝑢𝑝𝑝𝑒𝑟
  

formed at 𝑡 = 0.0009 sec 

𝐴𝑝𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑡𝑖𝑜𝑛 = 0.986713888 

𝐵𝑜𝑢𝑛𝑑(10)𝑢𝑝𝑝𝑒𝑟
 = {𝑋0,1,2…..1012

 } 

formed at 𝑡 = 0.001 sec 

𝐴𝑝𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑡𝑖𝑜𝑛 = 0.9885308137 

1013 0.0009 – 

0.001 sec 

: : : : 

401 𝐵𝑜𝑢𝑛𝑑(401)𝑙𝑜𝑤𝑒𝑟
 

= 𝐵𝑜𝑢𝑛𝑑(400)𝑢𝑝𝑝𝑒𝑟
  

formed at 𝑡 = 0.039 sec 

𝐴𝑝𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑡𝑖𝑜𝑛 = 0.965035445 

𝐵𝑜𝑢𝑛𝑑(401)𝑢𝑝𝑝𝑒𝑟
 = {𝑋0,1,2…..245700

 } 

formed at 𝑡 = 0.04 sec 

𝐴𝑝𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑡𝑖𝑜𝑛 = 0.9648706046 

245701 0.039 – 0.04 

sec 

(See section G.4 in Appendix G for details of bounds for protein-thiol).    

  



266 

 

 

In the cap1 pathway in Figure 7.15, with the exploration of the set of 19 states, the 

𝐵𝑜𝑢𝑛𝑑(1)𝑢𝑝𝑝𝑒𝑟
 = {𝑋0,1,2…..19

 } is formed at 0.01 sec and carryies 20 states. Some states were 

bunked since the formation of first bound resulting in approximation error reaching to 

3.64e − 05 at 1.209 sec. At 𝑡𝑓
 , the 𝐿𝐴𝑆 ends with a domain defined by 𝐵𝑜𝑢𝑛𝑑(847)𝑢𝑝𝑝𝑒𝑟

 =

{𝑋0,1,2…..2367589
 } carrying 2367590 states with 3.348𝑒 − 04 approximation error. A set of 

nodes 𝑁1
 , 𝑁2

 , . . . . . 𝑁2367589
  carries these unique states represent the set of 𝑠𝑡𝑎𝑡𝑒(𝑛2367590

 ) =

(𝑋0,1,2,…2367589
 ) forming the state-space of the protein thiol up to 𝑡𝑓

 . 

 

 

Figure 7.15. The set of states explored for cap1 pathway using the 𝑰𝑺𝑷 𝑳𝑨𝑺 algorithm. 

Based on network of reactions, 𝑰𝑺𝑷 𝑳𝑨𝑺 unfolds the state-space pattern to update states 

in the domain and expands 2367590 states up to 𝒕𝒇
 .  shows the time point where new set 

of states are explored and updated in the domain. 
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Table 7.12. Lower and upper bounds of the cap1 pathway given by 𝑰𝑺𝑷 𝑳𝑨𝑺 trend. 

𝒁 𝑩𝒐𝒖𝒏𝒅(𝑍)𝒍𝒐𝒘𝒆𝒓
  𝑩𝒐𝒖𝒏𝒅(𝑍)𝒖𝒑𝒑𝒆𝒓

  States Duration 

1 𝐵𝑜𝑢𝑛𝑑(1)𝑙𝑜𝑤𝑒𝑟
 = {𝑋0

 } 

formed at 𝑡 = 0.0 sec 

𝐴𝑝𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑡𝑖𝑜𝑛 = 1 

𝐵𝑜𝑢𝑛𝑑(1)𝑢𝑝𝑝𝑒𝑟
 = {𝑋0,1,2…..19

 } 

formed at 𝑡 = 0.01 sec 

𝐴𝑝𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑡𝑖𝑜𝑛 = 0.9970856252 

20 0.0 – 0.01 

sec 

2 𝐵𝑜𝑢𝑛𝑑(2)𝑙𝑜𝑤𝑒𝑟
 = 𝐵𝑜𝑢𝑛𝑑(1)𝑢𝑝𝑝𝑒𝑟

  

formed at 𝑡 = 0.01 sec 

𝐴𝑝𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑡𝑖𝑜𝑛 = 0.997085625 

𝐵𝑜𝑢𝑛𝑑(2)𝑢𝑝𝑝𝑒𝑟
 = {𝑋0,1,2…..58

 } 

formed at 𝑡 = 0.02 sec 

𝐴𝑝𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑡𝑖𝑜𝑛 = 0.9970053796 

59 0.01 – 

0.02 sec 

3 𝐵𝑜𝑢𝑛𝑑(3)𝑙𝑜𝑤𝑒𝑟
 = 𝐵𝑜𝑢𝑛𝑑(2)𝑢𝑝𝑝𝑒𝑟

  

formed at 𝑡 = 0.02 sec 

𝐴𝑝𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑡𝑖𝑜𝑛 = 0.997005379 

𝐵𝑜𝑢𝑛𝑑(3)𝑢𝑝𝑝𝑒𝑟
 = {𝑋0,1,2…..186

 } 

formed at 𝑡 = 0.08 sec 

𝐴𝑝𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑡𝑖𝑜𝑛 = 0.9947475241 

187 0.02 – 

0.08 sec 

4 𝐵𝑜𝑢𝑛𝑑(4)𝑙𝑜𝑤𝑒𝑟
 = 𝐵𝑜𝑢𝑛𝑑(3)𝑢𝑝𝑝𝑒𝑟

  

formed at 𝑡 = 0.08 sec 

𝐴𝑝𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑡𝑖𝑜𝑛 = 0.994747524 

𝐵𝑜𝑢𝑛𝑑(4)𝑢𝑝𝑝𝑒𝑟
 = {𝑋0,1,2…..458

 } 

formed at 𝑡 = 0.21 sec 

𝐴𝑝𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑡𝑖𝑜𝑛 = 0.985246467 

459 0.08 – 0.21 

sec 

5 𝐵𝑜𝑢𝑛𝑑(5)𝑙𝑜𝑤𝑒𝑟
 = 𝐵𝑜𝑢𝑛𝑑(4)𝑢𝑝𝑝𝑒𝑟

  

formed at 𝑡 = 0.21 sec 

𝐴𝑝𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑡𝑖𝑜𝑛 = 0.985246467 

𝐵𝑜𝑢𝑛𝑑(5)𝑢𝑝𝑝𝑒𝑟
 = {𝑋0,1,2…..1160

 } 

formed at 𝑡 = 0.42 sec 

𝐴𝑝𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑡𝑖𝑜𝑛 = 0.991476497 

1161 0.21 – 

0.42 sec 

6 𝐵𝑜𝑢𝑛𝑑(6)𝑙𝑜𝑤𝑒𝑟
 = 𝐵𝑜𝑢𝑛𝑑(5)𝑢𝑝𝑝𝑒𝑟

  

formed at 𝑡 = 0.42 sec 

𝐴𝑝𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑡𝑖𝑜𝑛 = 0.991476497 

𝐵𝑜𝑢𝑛𝑑(6)𝑢𝑝𝑝𝑒𝑟
 = {𝑋0,1,2…..2512

 } 

formed at 𝑡 = 0.7 sec 

𝐴𝑝𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑡𝑖𝑜𝑛 = 0.985122613 

2513 0.42 – 0.7 

sec 

7 𝐵𝑜𝑢𝑛𝑑(7)𝑙𝑜𝑤𝑒𝑟
 = 𝐵𝑜𝑢𝑛𝑑(6)𝑢𝑝𝑝𝑒𝑟

  

formed at 𝑡 = 0.7 sec 

𝐴𝑝𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑡𝑖𝑜𝑛 = 0.985122613 

𝐵𝑜𝑢𝑛𝑑(7)𝑢𝑝𝑝𝑒𝑟
 = {𝑋0,1,2…..5515

 } 

formed at 𝑡 = 1.05 sec 

𝐴𝑝𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑡𝑖𝑜𝑛 = 0.9766664895 

5516 0.7 – 1.05 

sec 

8 𝐵𝑜𝑢𝑛𝑑(8)𝑙𝑜𝑤𝑒𝑟
 = 𝐵𝑜𝑢𝑛𝑑(7)𝑢𝑝𝑝𝑒𝑟

  

formed at 𝑡 = 1.05 sec 

𝐴𝑝𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑡𝑖𝑜𝑛 = 0.976666489 

𝐵𝑜𝑢𝑛𝑑(8)𝑢𝑝𝑝𝑒𝑟
 = {𝑋0,1,2…..10884

 } 

formed at 𝑡 = 1.45 sec 

𝐴𝑝𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑡𝑖𝑜𝑛 = 0.966943632 

10885 1.05 – 1.45 

sec 

9 𝐵𝑜𝑢𝑛𝑑(9)𝑙𝑜𝑤𝑒𝑟
 = 𝐵𝑜𝑢𝑛𝑑(8)𝑢𝑝𝑝𝑒𝑟

  

formed at 𝑡 = 1.45 sec 

𝐴𝑝𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑡𝑖𝑜𝑛 = 0.966943632 

𝐵𝑜𝑢𝑛𝑑(9)𝑢𝑝𝑝𝑒𝑟
 = {𝑋0,1,2…..21622

 } 

formed at 𝑡 = 1.91 sec 

𝐴𝑝𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑡𝑖𝑜𝑛 = 0.9554756462 

21623 1.45 – 

1.91 sec 

10 𝐵𝑜𝑢𝑛𝑑(10)𝑙𝑜𝑤𝑒𝑟
 

= 𝐵𝑜𝑢𝑛𝑑(9)𝑢𝑝𝑝𝑒𝑟
  

formed at 𝑡 = 1.91 sec 

𝐴𝑝𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑡𝑖𝑜𝑛 = 0.955475646 

𝐵𝑜𝑢𝑛𝑑(10)𝑢𝑝𝑝𝑒𝑟
 = {𝑋0,1,2…..39731

 } 

formed at 𝑡 = 2.42 sec 

𝐴𝑝𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑡𝑖𝑜𝑛 = 0.9423703393 

39732 1.191 – 

2.42 sec 

: : : : 

401 𝐵𝑜𝑢𝑛𝑑(847)𝑙𝑜𝑤𝑒𝑟
 

= 𝐵𝑜𝑢𝑛𝑑(846)𝑢𝑝𝑝𝑒𝑟
  

formed at 𝑡 = 7.69 sec 

𝐴𝑝𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑡𝑖𝑜𝑛 = 0.944723401 

𝐵𝑜𝑢𝑛𝑑(847)𝑢𝑝𝑝𝑒𝑟
 = {𝑋0,1,2…..2367589

 } 

formed at 𝑡 = 8.46 sec 

𝐴𝑝𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑡𝑖𝑜𝑛 = 0.938679241 

2367590 7.69 – 8.46 

sec 

(See section G.4 in Appendix G for details of bounds for cap1 pathway). 
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In the hog1 pathway in Figure 7.16, with the exploration of the set of 1595 states, the 

𝐵𝑜𝑢𝑛𝑑(1)𝑢𝑝𝑝𝑒𝑟
 = {𝑋0,1,2…..1595

 } is formed at 1.0 sec carryies 1596 states. Some states were 

bunked since the formation of the first bound resulting in approximation error reaching 

3.79e − 07 at 2.0 sec and, after 8.0 sec, no new states are added in the domain until 𝑡𝑓
 . At 𝑡𝑓

 , 

the 𝐿𝐴𝑆 ends with a domain defined by 𝐵𝑜𝑢𝑛𝑑(200)𝑢𝑝𝑝𝑒𝑟
 = {𝑋0,1,2…..15979

 } carrying 15980 

states with 1.162e − 06 approximation error. A set of nodes 𝑁1
 , 𝑁2

 , . . . . . 𝑁15980
  carries these 

unique states representing the set of 𝑠𝑡𝑎𝑡𝑒(𝑛15980
 ) = (𝑋0,1,2,…15979

 ) to form the state-space of 

the hog1 pathway up to 𝑡𝑓
 . 

 

 

Figure 7.16. The set of states explored for the hog1 pathway using the 𝑰𝑺𝑷 𝑳𝑨𝑺 method. 

Based on network of reactions, 𝑰𝑺𝑷 𝑳𝑨𝑺 unfolds the state-space pattern to update states 

in the domain and expands 15980 states up to 𝒕𝒇
 .  shows the time point where the new 

set of states are explored and updated in the domain. 
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Table 7.13. Lower and upper bounds of the hog1 pathway given by 𝑰𝑺𝑷 𝑳𝑨𝑺 trend. 

𝒁 𝑩𝒐𝒖𝒏𝒅(𝑍)𝒍𝒐𝒘𝒆𝒓
  𝑩𝒐𝒖𝒏𝒅(𝑍)𝒖𝒑𝒑𝒆𝒓

  States Duration 

1 𝐵𝑜𝑢𝑛𝑑(1)𝑙𝑜𝑤𝑒𝑟
 = {𝑋0

 } 

formed at 𝑡 = 0.0 sec 

𝐴𝑝𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑡𝑖𝑜𝑛 = 1 

𝐵𝑜𝑢𝑛𝑑(1)𝑢𝑝𝑝𝑒𝑟
 = {𝑋0,1,2…..1595

 } 

formed at 𝑡 = 1.0 sec 

𝐴𝑝𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑡𝑖𝑜𝑛 = 0.9990242863 

1596 0.0 – 1.0 

sec 

2 𝐵𝑜𝑢𝑛𝑑(2)𝑙𝑜𝑤𝑒𝑟
 = 𝐵𝑜𝑢𝑛𝑑(1)𝑢𝑝𝑝𝑒𝑟

  

formed at 𝑡 = 1.0 sec 

𝐴𝑝𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑡𝑖𝑜𝑛 = 0.999024286 

𝐵𝑜𝑢𝑛𝑑(2)𝑢𝑝𝑝𝑒𝑟
 = {𝑋0,1,2…..3101

 } 

formed at 𝑡 = 2.0 sec 

𝐴𝑝𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑡𝑖𝑜𝑛 = 0.9965421436 

3102 1.0 – 2.0 

sec 

3 𝐵𝑜𝑢𝑛𝑑(3)𝑙𝑜𝑤𝑒𝑟
 = 𝐵𝑜𝑢𝑛𝑑(2)𝑢𝑝𝑝𝑒𝑟

  

formed at 𝑡 = 2.0 sec 

𝐴𝑝𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑡𝑖𝑜𝑛 = 0.996542143 

𝐵𝑜𝑢𝑛𝑑(3)𝑢𝑝𝑝𝑒𝑟
 = {𝑋0,1,2…..5641

 } 

formed at 𝑡 = 3.0 sec 

𝐴𝑝𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑡𝑖𝑜𝑛 = 0.9954889199 

5642 2.0 – 3.0 

sec 

4 𝐵𝑜𝑢𝑛𝑑(4)𝑙𝑜𝑤𝑒𝑟
 = 𝐵𝑜𝑢𝑛𝑑(3)𝑢𝑝𝑝𝑒𝑟

  

formed at 𝑡 = 3.0 sec 

𝐴𝑝𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑡𝑖𝑜𝑛 = 0.995488919 

𝐵𝑜𝑢𝑛𝑑(4)𝑢𝑝𝑝𝑒𝑟
 = {𝑋0,1,2…..9715

 } 

formed at 𝑡 = 4.0 sec 

𝐴𝑝𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑡𝑖𝑜𝑛 = 0.9953457544 

9716 3.0 – 4.0 

sec 

5 𝐵𝑜𝑢𝑛𝑑(5)𝑙𝑜𝑤𝑒𝑟
 = 𝐵𝑜𝑢𝑛𝑑(4)𝑢𝑝𝑝𝑒𝑟

  

formed at 𝑡 = 6.0 sec 

𝐴𝑝𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑡𝑖𝑜𝑛 = 0.995345754 

𝐵𝑜𝑢𝑛𝑑(5)𝑢𝑝𝑝𝑒𝑟
 = {𝑋0,1,2…..15979

 } 

formed at 𝑡 = 7.0 sec 

𝐴𝑝𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑡𝑖𝑜𝑛 = 0.99711969 

15980 6.0 – 7.0 

sec 

: : : : : 

200 𝐵𝑜𝑢𝑛𝑑(200)𝑙𝑜𝑤𝑒𝑟
 

= 𝐵𝑜𝑢𝑛𝑑(4)𝑢𝑝𝑝𝑒𝑟
  

formed at 𝑡 = 6.0 sec 

𝐴𝑝𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑡𝑖𝑜𝑛 = 0.985246467 

𝐵𝑜𝑢𝑛𝑑(200)𝑢𝑝𝑝𝑒𝑟
 = {𝑋0,1,2…..15979

 } 

formed at 𝑡 = 200.0 sec 

𝐴𝑝𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑡𝑖𝑜𝑛 = 0.99711969 

15980 6.0 – 

200.0 sec 

(See section G.4 in Appendix G for details of bounds for hog1 pathway). 
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The solution of the CME up to 𝑡𝑓
  for the domain created by 𝐼𝑆𝑃 𝐿𝐴𝑆 for the modules of the 

integrated model is shown in Table 7.14. In three test runs, the total run time of 𝐼𝑆𝑃 𝐿𝐴𝑆 for 

solving the integrated model comprising several modules takes an average of ≈10722.708 sec 

(2 hours 59 minutes 11 sec) based on the duration of the expansion (see Table 7.14) chosen 

for the modules, giving average error of 0.034057 at 𝑡𝑓
 . 

Table 7.14. 𝑰𝑺𝑷 𝑳𝑨𝑺 expansion output and solution at 𝒕𝒇
  for the Integrated model based 

on its different modules. 

Modules of the 

integrated model 

Run-time 

(sec) 

Domain 

(states) 

Duration of 

expansion 

(sec) 

Error at 𝑡𝑓
  

Transporter, 

𝑡𝑠𝑡𝑒𝑝
 = 0.01 

189.252 78054 3.01 1.988e − 04 

Cat1 pathway, 

𝑡𝑠𝑡𝑒𝑝
 = 0.01

26.360 38235 3.01 1.418e − 04 

Pentose pathway, 

𝑡𝑠𝑡𝑒𝑝
 = 0.01

1065.755 20097 5.09 3.897e − 04 

Thioredoxin, 

𝑡𝑠𝑡𝑒𝑝
 = 0.0001

5450.078 6641483 0.0006 2.144e − 06 

Protein-thiol, 

𝑡𝑠𝑡𝑒𝑝
 = 0.0001

1351.363 245701 0.04 1.918e − 04 

Cap1 pathway, 

𝑡𝑠𝑡𝑒𝑝
 = 0.01

2625.657 2367590 8.46 3.348e − 04 

Hog1 pathway, 

𝑡𝑠𝑡𝑒𝑝
 = 1.0

14.243 15980 200 1.162e − 06 
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The response of 𝐼𝑆𝑃 𝐿𝐴𝑆 given in Figure H. 1 to Figure H. 7 of Appendix H for all the 

modules is the probabilities of the system bunked at 𝑡′ while expansion (w.r.t approximation) 

when number of states increases with the expansion and with that, 𝐼𝑆𝑃 𝐿𝐴𝑆 produce minimal 

average error of order 10−4, as given in Table 7.14 and Figure H. 1 to Figure H. 7 of 

Appendix H. 

The conditional probabilities of the system’s species at different times are given in Figure 

7.17 to Figure 7.23 describes the dynamic nature of the system. At 𝑡 = 0.2 sec in Fig (1) of 

Figure 7.17, the probability of 𝑥0
  (extra-cellular H2

 O2
 ) remains high (0.09112), which tends 

to decrease with time 0.03655 (at 𝑡 = 1.2 sec) and 0.023028 (at 𝑡 = 3.0 sec) and shifts to the 

right when catalase degrades this extra-cellular H2
 O2
  through diffusion into cytosol. 

However, the rate of decrease of the 𝑥1
  (intra-cellular H2

 O2
 ) probability over time is less than 

𝑥0
  (extra-cellular H2

 O2
 ) because its rate of diffusion into the medium is based on the surface 

area of the cell and at the same time, 𝑅4
  produces 𝑥1

  which partially maintains its steady state 

value throughout 𝑡𝑓
  as seen in Fig (2) of Figure 7.17. 

At 𝑡 = 0.2 sec, the probability of 𝑥2
  (𝐶𝑎𝑡1) remains at 0.1156 which decreases to 0.04972 at 

1.2 sec and tends to shift to right as seen in Fig (1) of Figure 7.18. However, a further decline 

in the probability shifts the distribution to the left at 3.0 sec. The continouous decline in 

probability shows that the production of 𝑥2
  (𝐶𝑎𝑡1) decreases its contribution of states to the 

domain over time. The high probability in Fig (2) of Figure 7.18 shows that the 𝑥33
  (𝐶𝐴𝑇1) is 

produced at a high basal rate (see Table 7.5) initially and, eventually, this rate decreases with 

time, as evident by the decreasing probability distribution in Fig (2) of Figure 7.18. It is 

important to note that as 𝑅64
  translates this 𝑥33

  into 𝑥2
 , the rate of production of 𝑥2

  also 

decreases with time, as seen in Fig (1) of Figure 7.18. The distribution in Fig (2) of Figure 

7.18 tends to remain at the left, which also suggests that the 𝑥33
  death process quickly 

degrades its counts but has a high probability of the states. 
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           Fig (1). Probability of 𝑯𝟐
 𝑶𝟐

 𝑬𝒙 over 𝒕𝒇
             Fig (2). Probability of 𝑯𝟐

 𝑶𝟐
 𝑰𝒏 over 𝒕𝒇

  

 

Figure 7.17. Conditional probability of the species 𝒙𝟎
  (extra-cellular 𝐇𝟐

 𝐎𝟐
 ), 𝒙𝟏

  (intra-

cellular 𝐇𝟐
 𝐎𝟐

 ) evaluated at 𝒕 = 𝟎. 𝟐  sec, 𝟏. 𝟐  sec and 𝟑. 𝟎  sec with 𝒕𝒔𝒕𝒆𝒑
 = 𝟎. 𝟎𝟏  using 

𝑰𝑺𝑷 𝑳𝑨𝑺. 

 

 

             Fig (1). Probability of 𝑪𝒂𝒕𝟏 over 𝒕𝒇
                  Fig (2). Probability of 𝑪𝑨𝑻𝟏 over 𝒕𝒇

  

 

Figure 7.18. Conditional probability of the species 𝒙𝟐
  ( 𝑪𝒂𝒕𝟏 ), 𝒙𝟑𝟑

  ( 𝑪𝑨𝑻𝟏  or 

𝑪𝑨𝑻𝟏 𝒎𝑹𝑵𝑨 ) evaluated at 𝒕 = 𝟎. 𝟐  sec, 𝟏. 𝟐  sec and 𝟑. 𝟎  sec with 𝒕𝒔𝒕𝒆𝒑
 = 𝟎. 𝟎𝟏  using 

𝑰𝑺𝑷 𝑳𝑨𝑺. 

  



273 

 

 

At 𝑡 = 1.5 sec, the probability of 𝑥20
  (𝑁𝐴𝐷𝑃𝐻) remains at 0.1628, which then decreases to 

0.0115 at 𝑡 = 3.2 sec and the distribution tends to shift to the right as seen in Fig (1) of Figure 

7.19, when 𝑥20
  is used to reduce the 𝑥4

  (𝐺𝑆𝑆𝐺) and 𝑥17
  (𝑇𝑟𝑟1𝑂𝑥). Simultaneously, the 

probability of 𝑥20
  further declines when it moves through first order decay in 𝑅97

 . The 

distribution of 𝑥41
  in Fig (2) of Figure 7.19 tends to remain at the left with almost similar 

probabilities for all time points. 

Figs (1) to (11) of Figure 7.20 show the dynamic nature of the species in thioredoxin. At 𝑡 =

0.00028 sec, the species 𝑥12
 , 𝑥14

 , 𝑥16
 , 𝑥20

 , 𝑥39
  has the highest probability but this tends to 

decrease over time as it approaches 𝑡 = 0.00042 sec and then it further decreases at 𝑡 =

0.00062 sec, as seen in Figs (1), (2), (4), (8), (9) of Figure 7.20. When 𝑥18
  is reduced, 

initially it increases the counts of 𝑥12
  and 𝑥19

 , and keeps the 𝑥19
  probability distribution 

constant over time; however, the probability of 𝑥12
  declines. Here, 𝑅17

  and 𝑅18
  oxidise 𝑥14

  

and detoxifies 𝑥1
 , respectively, keeping the 𝑥15

  probability high over time. Further, the 

probability distribution of 𝑥17
  slightly declines through 𝑥20

  via 𝑅21
 , which releases 𝑁𝐴𝐷𝑃+ 

from the system. The individual species, 𝑥15
 , 𝑥17

 , 𝑥18
 , 𝑥19

 , 𝑥20
 , 𝑥38

  have quite similar 

distributions with high probabilities for all time points, 𝑡 = 0.00028 sec, 0.00042 sec, 

0.00062 sec. Moreover, the dynamic nature of thioredoxin is described by 𝑥12
 , 𝑥14

 , 𝑥16
 , 𝑥20

 , 

𝑥39
  due to their variable probabilities. 
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            Fig (1). Probability of 𝑵𝑨𝑫𝑷𝑯 over 𝒕𝒇
        Fig (2). Probability of 𝑵𝑨𝑫𝑷𝑯.𝐦𝐑𝐍𝐀  

                                                                                 over 𝒕𝒇
  

 

Figure 7.19. Conditional probability of the species 𝒙𝟐𝟎
 , 𝒙𝟒𝟏

  evaluated at 𝒕 = 𝟏. 𝟓 sec, 𝟑. 𝟐 

sec and 𝟓. 𝟏 sec with 𝒕𝒔𝒕𝒆𝒑
 = 𝟎. 𝟎𝟏 using 𝑰𝑺𝑷 𝑳𝑨𝑺. 

 

 

      Fig (1). Probability of 𝑷𝒓. (𝑺𝑯)𝟐
  over 𝒕𝒇

            Fig (2). Probability of 𝑻𝒔𝒂𝟏𝑹𝒆𝒅 over 𝒕𝒇
  

 

 

 

          Fig (3). Probability of 𝑻𝒔𝒂𝟏𝑶𝒙 over 𝒕𝒇
             Fig (4). Probability of 𝑻𝒓𝒓𝟏𝑹𝒆𝒅 over 𝒕𝒇
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          Fig (5). Probability of 𝑻𝒓𝒓𝟏𝑶𝒙 over 𝒕𝒇
             Fig (6). Probability of 𝑻𝒓𝒙𝟏𝑹𝒆𝒅 over 𝒕𝒇

  

 

 

           Fig (7). Probability of 𝑻𝒓𝒙𝟏𝑶𝒙 over 𝒕𝒇
              Fig (8). Probability of 𝑵𝑨𝑫𝑷𝑯 over 𝒕𝒇

  

 

 

              Fig (9). Probability of 𝑻𝑺𝑨𝟏 over 𝒕𝒇
               Fig (10). Probability of 𝑻𝑹𝑿𝟏 over 𝒕𝒇

  

 

 

            Fig (11). Probability of 𝑻𝑹𝑹𝟏 over 𝒕𝒇
         

            

Figure 7.20. Conditional probabilities of species 𝒙𝟏𝟐
 , 𝒙𝟏𝟒

 , 𝒙𝟏𝟓
 , 𝒙𝟏𝟔

 , 𝒙𝟏𝟕
 , 𝒙𝟏𝟖

 , 𝒙𝟏𝟗
 , 𝒙𝟐𝟎

 , 

𝒙𝟑𝟕
 , 𝒙𝟑𝟖

 , 𝒙𝟑𝟗
  evaluated at 𝒕 = 𝟎. 𝟎𝟎𝟎𝟐𝟖 sec, 𝟎. 𝟎𝟎𝟎𝟒𝟐 sec and 𝟎. 𝟎𝟎𝟎𝟔𝟐 sec with 𝒕𝒔𝒕𝒆𝒑

 =

𝟎. 𝟎𝟎𝟎𝟏 using 𝑰𝑺𝑷 𝑳𝑨𝑺. 
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Fig (1) and (2) of Figure 7.21 shows the dynamic nature of the species 𝑥9
 , 𝑥12

  present in the 

protein-thiol module. At 𝑡 = 0.014 sec, the probability distributions of both the species, 𝑥9
 , 

𝑥12
 , were 0.123 and 0.04279, respectively, due to zero order mass action reactions 𝑅9

  and 𝑅14
  

which increase the counts of the species. Further, at 𝑡 = 0.028 sec, the probability decreases 

in spite of an increase in the copy counts because 𝑥9
  (protein mono-thiols) is oxidised to form 

the protein, sulfenic acid, whereas, 𝑥12
  (protein di-thiols) is oxidised to form protein 

disulphide. The probability distribution of both the species tends to shift to the right with an 

increase in copy counts seen at 𝑡 = 0.040 sec. This behaviour of the distribution reveals the 

dynamic nature of the protein-thiol module in the integrated model. 

The oxidation and activation of 𝑥21
  into 𝑥22

  decreases its counts and tends to shift the 

probability distribution to the left, as seen in Fig (1) of Figure 7.22. Initially, none of the 𝑥22
  

exists in the active oxidised state but once it is activated through 𝑥21
 , it is reduced to 𝑥21

  

which, ultimately, decreases its probability over time. 𝑥23
  is converted to 𝑥22

  through the law 

of mass action reaction; however, the probability still decreases over time. Because of the 

reversible nature of the reactions (𝑅23
 , 𝑅24

 , 𝑅25
 , 𝑅26

 , 𝑅27
 ), species 𝑥21

 , 𝑥22
 , 𝑥23

  remains most 

active in the cap1 pathway. When 𝑥22
  is activated, it quickly induces the other species (𝑥33

 , 

𝑥32
 , 𝑥34

 , 𝑥35
 , 𝑥36

 , 𝑥37
 , 𝑥38

 , 𝑥39
 , 𝑥40

 , 𝑥41
 ) and this results in a similar probability distribution, 

as seen in Figs (3) and (4) of Figure 7.22 and the probability of 𝑥22
  declines over time, as seen 

in Fig (2) of Figure 7.22. 
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             Fig (1). Probability of 𝑷𝒓. 𝑺𝑯 over 𝒕𝒇
         Fig (2). Probability of 𝑷𝒓. (𝑺𝑯)𝟐

  over 𝒕𝒇
         

 

Figure 7.21. Conditional probability of the species 𝒙𝟗
 , 𝒙𝟏𝟐

  evaluated at 𝒕 = 𝟎. 𝟎𝟏𝟒 sec, 

𝟎. 𝟎𝟐𝟖 sec and 𝟎. 𝟎𝟒𝟎 sec with 𝒕𝒔𝒕𝒆𝒑
 = 𝟎. 𝟎𝟏 using 𝑰𝑺𝑷 𝑳𝑨𝑺. 

 

 

             Fig (1). Probability of 𝑪𝒂𝒑𝟏𝑵 over 𝒕𝒇
               Fig (2). Probability of 𝑪𝒂𝒑𝟏𝑨, 𝑪𝒂𝒑𝟏𝑰  

                                                                                       over 𝒕𝒇
  

 

 

             Fig (3). Probability of 𝑪𝑨𝑷𝟏 over 𝒕𝒇
                  Fig (4). Probability of 𝑮𝑷𝑿 over 𝒕𝒇
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             Fig (5). Probability of 𝑮𝑳𝑹𝟏 over 𝒕𝒇
                  Fig (6). Probability of 𝑻𝑻𝑹𝟏 over 𝒕𝒇

  

 

 

              Fig (7). Probability of 𝑻𝑺𝑨𝟏 over 𝒕𝒇
                Fig (8). Probability of 𝑻𝑹𝑿𝟏 over 𝒕𝒇

  

 

 

             Fig (9). Probability of 𝑻𝑹𝑹𝟏 over 𝒕𝒇
        Fig (10). Probability of 𝑮𝑺𝑯.𝐦𝐑𝐍𝐀 over 𝒕𝒇

  

 

 

   Fig (11). Probability of 𝑵𝑨𝑫𝑷𝑯.𝐦𝐑𝐍𝐀 over 𝒕𝒇
  

 

Figure 7.22. Conditional probability of the species 𝒙𝟐𝟏
 , 𝒙𝟐𝟐

 , 𝒙𝟑𝟐
 , 𝒙𝟑𝟒

 , 𝒙𝟑𝟓
 , 𝒙𝟑𝟔

 , 𝒙𝟑𝟕
 , 𝒙𝟑𝟖

 , 

𝒙𝟑𝟗
 , 𝒙𝟒𝟎

 , 𝒙𝟒𝟏
 , evaluated at 𝒕 = 𝟑. 𝟎𝟏 sec, 𝟕. 𝟎𝟏 sec and 𝟖. 𝟒𝟔 sec with 𝒕𝒔𝒕𝒆𝒑

 = 𝟎. 𝟎𝟏 using 

𝑰𝑺𝑷 𝑳𝑨𝑺. 
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Regardless of the de-activation and de-phosphorylation of 𝑥24
  through phosphatases, its 

probability distribution increases with time (at 𝑡 = 25.0 sec, 50.0 sec and 200.0 sec), as seen 

in Fig (1) of Figure 7.23. Similarly, 𝑥26
  is de-activated and de-phosphorylated through 

phosphatases but its probability distribution remains the same and does not shift over time, as 

seen in Fig (2) of Figure 7.23. Initially, the probability distribution of 𝑥28
  remains at 0.288 at 

𝑡 = 25.0 sec and, with the increase in the number of copy counts, its probability distribution 

increases and tends to shift to the right, as seen in Fig (3) of Figure 7.23. The probability 

distribution of 𝑥42
  (𝑆𝑆𝐾2) and 𝑥44

  (𝐻𝑂𝐺1) at 𝑡 = 25.0 sec remains at 0.4824 and 0.288, 

respectively, but decreases with the number of copy counts while tending to shift to the left. It 

is interesting to see that both 𝑥28
  (𝐻𝑜𝑔1𝑁) and 𝑥44

  (𝐻𝑂𝐺1) have similar peak probability 

distributions. However, the shifts in these distributions are different for both species 

depending upon the changes in copy counts. The species, 𝑥25
 , 𝑥27

 , 𝑥28
 , 𝑥29

 , 𝑥30
 , 𝑥31

  involved 

in reversible reactions have similar probability distributions at 𝑡 = 25.0 sec, 50.0 sec and 

200.0 sec, as seen in Figs (5), (7), (8), (9), (10), (11) of Figure 7.23, respectively.  

The parameters of the modules, involving the probabilities of species in Figure 7.17 to Figure 

7.23 become important for the case of oxidative stress as well as under normal conditions. 

Unitedly, the conditional probabilities of these parameters indicate the stochastic behaviour of 

the network.  
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             Fig (1). Probability of 𝑺𝒔𝒌𝟐 over 𝒕𝒇
                  Fig (2). Probability of 𝑷𝒃𝒔𝟐 over 𝒕𝒇

  

 

 

             Fig (3). Probability of 𝑯𝒐𝒈𝟏𝑵 over 𝒕𝒇
               Fig (4). Probability of 𝑺𝑺𝑲𝟐 over 𝒕𝒇

  

 

 

              Fig (5). Probability of 𝑷𝑩𝑺𝟐 over 𝒕𝒇
                Fig (6). Probability of 𝑯𝑶𝑮𝟏 over 𝒕𝒇

  

 

 

           Fig (7). Probability of 𝑺𝒔𝒌𝟐. 𝑷 over 𝒕𝒇
            Fig (8). Probability of 𝑷𝒃𝒔𝟐. 𝐏𝐏 over 𝒕𝒇
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    Fig (9). Probability of 𝑯𝒐𝒈𝟏𝑵. 𝑷𝑷 over 𝒕𝒇
            Fig (10). Probability of 𝑯𝒐𝒈𝟏𝑰 over 𝒕𝒇

  

 

 

       Fig (11). Probability of 𝑯𝒐𝒈𝟏𝑰. 𝑷𝑷 over 𝒕𝒇
  

 

Figure 7.23. Conditional probability of the species 𝒙𝟐𝟒
 , 𝒙𝟐𝟔

 , 𝒙𝟐𝟓
 , 𝒙𝟐𝟕

 , 𝒙𝟐𝟖
 , 𝒙𝟐𝟗

 , 𝒙𝟑𝟎
 , 𝒙𝟑𝟏

 , 

𝒙𝟒𝟐
 , 𝒙𝟒𝟑

 , 𝒙𝟒𝟒
 , evaluated at 𝒕 = 𝟐𝟓. 𝟎 sec, 𝟓𝟎. 𝟎 sec and 𝟐𝟎𝟎. 𝟎 sec with 𝒕𝒔𝒕𝒆𝒑

 = 𝟏. 𝟎 using 

𝑰𝑺𝑷 𝑳𝑨𝑺. 
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7.4 Discussion and Summary 

In this chapter, we extended the application of our 𝐼𝑆𝑃 method to a very large model with 

multi-modules compared to applications presented on models in the previous chapter (see 

Chapter 1) to investigate the performance of 𝐼𝑆𝑃 𝐿𝐴𝑆 for the expansion of the state-space and 

for an approximate solution of the CME based on bounds produced. We simulated the 

integrated model for the oxidative stress adaptation in the fungal pathogen, Candida albicans, 

modules under the condition of oxidative stress signals to study the number of states 

contributed by the different modules at different time points. The 𝐼𝑆𝑃 also predicted the 

conditional probabilities of the protein species (see Figure 7.17 to Figure 7.23) based on the 

events leading to different complex formation in the modules of the system. 

The simulation results from the expansion of states shows that the large explosion of states 

(Figure 7.5, Figure 7.7, Figure 7.8) does not take place at every time step but in the gaps in 

several time steps. However, small continuous explosion of states (Figure 7.2, Figure 7.3, 

Figure 7.4, Figure 7.6) may take place at every time step depending upon the nature of the 

model. These sudden explosions are due to changes in the level of counts of the species in the 

presence of an oxidative stress signal, which is useful in gainig insights into the different 

species’ conditional probabilities over time. This response also reveals that the modules 

Thioredoxin, Cap1 pathway and Hog1 pathway have fewer number of bounds compared to the 

other modules. The large explosions of states in the modules captured in Figure 7.5, Figure 7.7, 

Figure 7.8 show the time points where new set of states are explored and updated in the domain. 

The modules that are more stiff in nature have lower numbers of bounds as well as fewer 

numbers of explosions (large) in states. 

The response of 𝐼𝑆𝑃 𝐿𝐴𝑆 also helps us to better understand the potential outcomes of the 

domains in terms of the bounds defined at different durations of time. Although, the number 

of states contributed to by the different modules of the integrated model have different 

domain growth rates at ≈1/4th times of the previous size of the domain in the transporter 

module, ≈8% of the previous size of the domain in the cat1 pathway, ≈1.5 to 10 times the 

previous size of the domain in thioredoxin, 3.0% of the previous size of the domain in the 

protein-thiol module; whereas, for other modules the growth is variable. 

The solution in Table 7.14 clearly reflects the pros of 𝐼𝑆𝑃 𝐿𝐴𝑆 in terms of performance (run-

time), number of states (domain size) and the error at 𝑡𝑓
  for very large integrated model 

having variable stiffness due to modules. In addition, the checkpoint response of 𝐼𝑆𝑃 in Figs 

(1) to (6) of Figure 7.9 shows a decline in the initial state probability over time, while the 
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probabilities of the other states tend to increase over time. In Figure H. 1 to Figure H. 7 of 

Appendix H, the adaptive approximation error marked by the 𝐼𝑆𝑃 𝐿𝐴𝑆 show the major points 

when the set of states were explored. This also suggests that different modules in the 

integrated model explosions bring states with lower probabilities that are bunked from the 

domain for approximation. 

Overall, these results provide a clearer picture about the performance of the 𝐼𝑆𝑃 𝐿𝐴𝑆 on very 

large models and the expansion of the state-space of the modules present in the model in 

presence of oxidative stress signals and how the probabilities of different biochemical species 

evolve over time. Collectively, the behaviour of the biochemical species present in the 

different modules defines the dynamic nature of the fungal pathogen Candida albicans model. 

For replication of this experiment, refer to Appendix F and Appendix G. 
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In this thesis, we introduced a novel state-space expansion method, called the intelligent state 

projection (𝐼𝑆𝑃) method, to enhance expansion and to advance our understanding of the state-

space of biochemical reaction networks for the solution of the CME. We also extended the 

application of 𝐼𝑆𝑃 to large biochemical reaction networks for state-space expansion. In this 

chapter, we give a general overview of our study in section 8.1, review the major 

contributions based on the objectives, in section 8.2 and in section 8.3, we provide future 

work that can follow on from this study. 

8.1 Overview of the study 

The first objective was to propose a data structure to represent and investigate the classes of 

state-space growth in terms of the number of states. To accomplish this target, we first 

considered the finite state as a continuous time Markov chain of an homogenous nature to 

depict the stochastic process of biochemical reaction systems. This finite state Markov chain 

is then considered as a sample space where we classified the states (transient and 

communicating) into two types based on their biochemical reactions (forward and backward 

reactions). Further, we visualised this homogenous Markov chain process as equivalent to a 

Markov chain tree which is a special type of graph (𝐷𝐴𝐺) that represents the transient and 

communicating classes of states without cycles but only when the concactenation of cyclic 

transitions between the set of states is not considered, making them 𝐷𝐴𝐺𝑠. Most biochemical 

models of 𝐺𝑚𝑐
  can be visualised as a 𝐷𝐴𝐺 irrespective of the nature of reactions present in the 

model. This visualisation of the process creates the problem state-space model of biochemical 

reaction networks where searching is to be done. 

To retain the search track in the graph (or tree) for a problem state-space expansion, for each 

node (carrying states), 𝑁𝑖
 , of the tree, we created a structure consisting of five elements (state, 

parent state, depth, cost, action) where the state, parent state or node and action are essential 

elements in the structure for the expansion, while, depth and cost are optional. To deal with 

the search using such structures, we have adopted the search standards of 𝐴𝐼. The expansion 

of state-space for biochemical systems is then formulated as a problem of an uninformed 

search in 𝐴𝐼. For this purpose we employed Markov chains as Markov chain trees or graphs 

(𝐺𝑚𝑐
 ) as state-space for biochemical systems. We then developed a Bayesian likelihood node 
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projection (𝐵𝐿𝑁𝑃) function based on the Bayes’ theorem for the projection of nodes carrying 

probable states to improve the quality and exploit the direction for expansion accordingly. 

This function enforces the expansion in the direction of reactions that are firing at high rates. 

The second objective was to develop a new method for the expansion of the state-space 

suitable for significant types of biochemical reaction networks. To perform a search 

considering the data structure (1st objective), we have derived the expansion criteria and 

ceasing criteria based on the vector form of the CME. When the search is performed, the goal 

state (or end state) is defined by the action (applied via 𝑆𝑢𝑐
  on parent node to reach 𝑁𝑖

 ) 

implicitly in intervals based on nature (fast, slow, reversible and irreversible) for reactions in 

the system and duration of expansion. Based on the direction of the search and logic, we have 

categorised our methods of intelligent State Projection (𝐼𝑆𝑃) into latitudinal search (𝐿𝐴𝑆) 

and longitudinal-Latitudinal search (𝐿𝑂𝐿𝐴𝑆) where nodes carrying probable states are 

managed by a queue and stack, respectively. The steps of both variants were defined 

separately by embedding the 𝐵𝐿𝑁𝑃 function to exploit expansion towards a high probability 

mass. When 𝐼𝑆𝑃 was tested using toy model, it was observed that both variants have different 

time complexities and frequency of expansion, as seen in the states’ blueprints (shows the 

addition of new sets of states in the domain). We have also applied 𝐼𝑆𝑃 on different sizes of 

biological models to show the acceptability of both variants. 

The third objective was to study the formation of domains at different time points during 

expansion and note the accuracy of the domain by solution of the CME, while maintaining 

minimum computational expense. To achieve this objective, we applied the 𝐼𝑆𝑃 and other 

existing efficient methods r-step reachability (𝑂𝐹𝑆𝑃) and 𝑆𝑆𝐴 (used by 𝑆𝑊) on two 

biological models – catalytic reaction network and dual enzymatic reaction network – to 

compare the projection size, accuracy and computational expense. In these experiments, the 

states selected by the 𝐼𝑆𝑃 to create the optimum domain have high probabilities compared to 

other methods, domains or number of realisations required in 𝑆𝑆𝐴, as suggested by the 

accuracy of solution for the CME. In addition, the computational expense of both variants of 

𝐼𝑆𝑃 is much less than in other methods. Based on the overall results, both variants of 𝐼𝑆𝑃 

performs better than r-step reachability (𝑂𝐹𝑆𝑃) and 𝑆𝑆𝐴. The response from 𝐼𝑆𝑃 provided a 

great deal of information to understand state-space expansion through blueprints, formation of 

domains at different time steps, as well as the accuracy of the solution. 

The fourth objective was to study the application of 𝐼𝑆𝑃 on large biochemical reaction 

networks. To achieve this objective, we considered: (i) G1/S model involving DNA-damage 
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signal transduction pathway; (ii) Candida albicans model with oxidative stress feedback. The 

𝐼𝑆𝑃 𝐿𝑂𝐿𝐴𝑆 was employed for the G1/S model for state-space expansion. The dimension of 

this model is 28 (the number of biochemical species), which is the factor that defines the 

difficulty level for solving the CME. 𝐼𝑆𝑃 𝐿𝑂𝐿𝐴𝑆 successfully expanded the G1/S model’s 

state-space (with 3409899 states) upto 𝑡𝑓
  in just 1372 secs, while giving the blueprint of the 

states and the formation of bounds at different time intervals. The probabilities of the species 

plot by 𝐼𝑆𝑃 𝐿𝑂𝐿𝐴𝑆 determines the stochastic nature of the G1/S model. The successful 

application of 𝐼𝑆𝑃 𝐿𝑂𝐿𝐴𝑆 on G1/S model shows its acceptability for large, stiff, biochemical 

reaction networks. 

Secondly, the 𝐼𝑆𝑃 𝐿𝐴𝑆 was employed for the Candida albicans model for state-space 

expansion. This is an integrated model comprising of several pathways and sub-networks. The 

dimension of this model is 45 (number of main biochemical species), which is an indicating 

factor that defines the difficulty level for solving the CME. To understand the complexity of 

the integrated model, we studied the pathways one-by-one. The 𝐼𝑆𝑃 𝐿𝐴𝑆 successfully 

expanded the Candida albicans’ model pathway state-space upto 𝑡𝑓
  giving the blueprints of 

the states and the formation of bounds at different time interval. The probabilities of the 

species plot by 𝐼𝑆𝑃 𝐿𝐴𝑆 determines the stochastic nature of the Candida albicans’ model. The 

successful application of 𝐼𝑆𝑃 𝐿𝐴𝑆 on Candida albicans’ model shows its acceptability for 

stiff, integrated, and large biochemical reaction networks. 
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8.2 Contributions 

The major contributions of this thesis are: 

 Visualisation of state-space of a biochemical reaction network as a Markov chain graph 

or tree with compatible (to elements of graph or tree) infrastructure (data structure) for 

searching. 

 Defining state-space expansion as a problem state-space model of biochemical reaction 

network to adopt the artificial intelligence searching standards to improve the precision 

of the domain and its solution.  

 Development of Bayesian Likelihood Node Projection (𝐵𝐿𝑁𝑃) function based on Bayes’ 

theorem to enforce the direction of expansion towards states having high probability 

mass. 

 Development of 𝐼𝑆𝑃 𝐿𝐴𝑆 and 𝐼𝑆𝑃 𝐿𝑂𝐿𝐴𝑆 search strategies based on conditions derived 

from the vector form of the CME. Both the variants have different time complexities and 

can be used according to the availability of the experimental platform’s random access 

memory. 

 Advance our understanding about the expansion of the state-space process and formation 

of domain to improve the selection of states at different time points through 𝐼𝑆𝑃. 

 Application (on high performance computing [HPC] clusters) and acceptability of the 

𝐼𝑆𝑃 for small (for example: catalytic reaction network, dual enzymatic reaction network) 

and large (for example: G1/S model, Candida albicans model) biochemical reaction 

networks and prediction of the conditional probabilities of the species present in the 

network. 
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8.3 Future Directions 

We suggest several future directions to follow the current work: 

 The proposed 𝐼𝑆𝑃 method can be extended to the development of the approximation part 

of the CME. For instance, the Krylov subspace is one of the methods available that can 

be joined with the 𝐼𝑆𝑃 to approximate the solution of the large biochemical system for 

probabilities. Alternatively, new approximation methods can be developed for 𝐼𝑆𝑃. 

 The parallel intelligent state projection (𝑃𝐼𝑆𝑃) method can be introduced to allocate 

computation jobs to multiple cores by bringing into service the linearity of the CME 

problem and employ high performance computing (𝐻𝑃𝐶) clusters. In addition, parallel 

guiding functions can be developed to further improve the efficiency. 

 Based on the 𝐼𝑆𝑃 blueprints of the set of states, machine learning (𝑀𝐿) techniques can be 

used to predict future patterns of the state-space expansion to select probable states to 

quickly create the projection and approximate the solution directly. The first few sets of 

states at different time steps can be used as training data for the 𝑀𝐿 techniques. 

 A cache memory system can be implemented for 𝐼𝑆𝑃 to introduce the feature that will re-

initiate the expansion process from where (any intermediate time between 𝑡 = 0 sec and 

𝑡𝑓
 ) it was interrupted or stopped. This feature will be useful when solving large 

biochemical models (high dimension) for large 𝑡𝑓
  and can stop (terminate the program) 

the process of the expansion and the approximation of the series and resume from the 

same time point without repeating the whole experiment from 𝑡 = 0 sec. 

 Advanced guiding function similar to the Bayesian Likelihood Node Projection (𝐵𝐿𝑁𝑃) 

can be developed to embed with 𝐼𝑆𝑃 to further improve the accuracy and computational 

time. 
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8.4 Conclusions 

This thesis introduced a novel approach 𝐼𝑆𝑃 to model biochemical systems that address the 

performance as well as the accuracy problems for the solution of the CME. Variants of 𝐼𝑆𝑃 

(𝐿𝐴𝑆 and 𝐿𝑂𝐿𝐴𝑆) provide systematic ways of expanding the state-space as long as all 

probable states are not added into the domain, up to the desired 𝑡𝑓
 . We have effectively 

demonstrated the effectiveness of our methods with a number of experiments using real 

biological models: the catalytic reaction system (small model), dual enzymatic reaction 

system (small model) and G1/S model (large model), and Candida albicans (large model with 

modules). The results and the response of the algorithm shows improvements in the way how 

different size of biological networks can be modelled (see section 4.3.2, 4.4.2 and Chapter 6, 

Chapter 7) and even state-space of 3409900 nodes (see Table 6.4) carrying states up to ≈3.5 

million can be explored in a reasonable time. The results also show that the domain laid out 

by 𝐼𝑆𝑃 had an optimal order and was successful in finding probable states of the system while 

maintaining good accuracy and computational timing. 

We compared the results of the two popular methods: 𝑂𝐹𝑆𝑃 (r-step rechability) and 𝑆𝑆𝐴 (𝜏 

leaps adaptive) based on their accuracy and efficiency. In the comparative study results, we 

have seen that 𝐼𝑆𝑃 outperformed the other methods, in case of computational expense, 

accuracy as well as projection size. The 𝐼𝑆𝑃 was more effective in terms of predicting the 

behaviour of the state-space of the system and in performance management, which is a vital 

step towards modelling large biochemical systems. Unlike other methods, the 𝐼𝑆𝑃 keeps the 

lowest states probabilities in the bunker without removing (as removed in 𝑂𝐹𝑆𝑃) them before 

its calculation (as removed without calculation in 𝐹𝑆𝑃 𝐺𝑂𝑅𝐷𝐸) and then computes the 

probabilities at 𝑡 without computing large numbers of realizations (as done in 𝑆𝑆𝐴). 

The diverging nature of the 𝐼𝑆𝑃 response with respect to 𝑂𝐹𝑆𝑃 in Figure 5.1 and Figure 5.4 

also showed that the solution improved with 𝑡 and at a higher 𝑡𝑓
 . For example, in the large 

model in case study 2, the computation time was 1372 sec and the solution was 3.52e − 06 at 

𝑡𝑓
 , which was lower compared to the results from the small model (catalytic reaction system). 

This also shows the compatibility of 𝐼𝑆𝑃 with the distinct size of the biochemical models. 

These examples showed that the 𝐼𝑆𝑃 is a very promising technique for system’s biology. For 

stiff models, such as the G1/S and Candida albicans models, the nature of the 𝐼𝑆𝑃 yielded 
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plenty of information and opened opportunity for stochastic analysis of large models. It was 

often sufficient to employ the 𝐼𝑆𝑃 to compute the probabilities of the species up to the 

required time. One could also use 𝐼𝑆𝑃 to effectively conduct robustness and sensitivity 

analysis on the dynamics of biochemical systems and to keep track of what reactions were 

more active in the system at a particular time. It also determines the complexity of the system 

by defining the bounds with number states and keep track of the nested state-space patterns 

(called as 𝐼𝑆𝑃 model blueprint) that were updated at the end of each step. Outlining the 

patterns (Figure 4.12, Figure 4.22, Figure 6.5, Figure 7.10(1) to Figure 7.10(7)) of expansion 

of states to predict the projection folds can be used for updating of the new states. 

We anticipate that the current structure of the 𝐼𝑆𝑃 variants can be efficiently used for different 

classes and varieties of biological systems, and for computing the configurations with many 

reactions, as long as the notable part of the state-space density was present between 

𝐵𝑜𝑢𝑛𝑑(𝑍)𝑙𝑜𝑤𝑒𝑟
  and 𝐵𝑜𝑢𝑛𝑑(𝑍)𝑢𝑝𝑝𝑒𝑟

 . When there was a high probability of the molecular 

population of the species undergoing a number of excursions in a fraction of time, then 𝐼𝑆𝑃 

use small 𝑡𝑠𝑡𝑒𝑝
  to capture the moments. Such computations were still challenging in the 

expansion phase for typical models but can be addressed more closely in combination with 

the second part of the solution to the CME, i.e. the approximation phase. There are several 

methods available to address these challenges. 

Approximation methods, such as the Krylov sub-space, can be used to effectively compute the 

matrix exponential times of a vector. It was mathematically attractive to aggregate the states 

or decompose the large sparse matrix into a small dense matrix using the Krylov sub-space 

but they may not be computationally efficient for many in the absence of an efficient domain. 

On other hand, the performance can also be enhanced by employing the fast math functions 

compatible with the multicore environment. We have clearly outlined the core ideas behind 

the 𝐼𝑆𝑃 variants by highlighting the differences and similarities between them and other 

methods that cover the computational and theoretical considerations that are essential before 

any of the approximation methods becomes feasible for an efficient CME solution. 
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Appendix A. Probability Laws 

To deduce the solution of the CME, it is important to have self-evident parameters and then 

making a series of self-evident deductions that leads to the desired conclusion/result. To 

address the problem, we shall begin by considering a simple physical experiment that can 

introduce us the principal rules of the deduction, which we can use it later for the derivation 

of the Master Equation for chemically reacting system. It will also provide the indication of 

the environment that we shall use for our derivation. 

The three laws of probability will be our self-evident principals of inference (as shown in 

figure A.1) not only for our present physical experiment but also for the derivation of the 

CME (see Appendix B). For self-evident premises (Figure A.1. for the dice tossing problem, 

we shall assume “the fair tossing of the pair of the dice”. 

        

Figure A.1. Self-evident principals of inference showing three laws of probability – 

range law, addition law, and multiplication law. 

Range Law:  Probability of occurrence of event E satisfying 0 ≤ 𝑃𝑟
 (E) ≤ 1. 

a) Circumstance 𝑃𝑟
 (E) = 0, corresponds to E as never occurring. 

b) Circumstance 𝑃𝑟
 (E) = 1, corresponds to E as always occurring. 

Addition Law:  Probability of occurrence of two events E and F are 𝑃𝑟
 (E) and 𝑃𝑟

 (F) 

respectively, then according to addition law – both the events are mutually exclusive (i.e., 

they never occur together). The probability of event either E or F will be 𝑃𝑟
 (E) or 𝑃𝑟

 (F) =

 𝑃𝑟
 (𝐸) + 𝑃𝑟

 (𝐹), where 𝑃𝑟
 (F|E) = 0. 

Multiplication Law:  Probability of occurrence of event E and 𝑃𝑟
 (F|E) is the probability of 

event F given that event E occurs. The probability of event of both “E & F” is 𝑃𝑟
 (E & F) =

0 ≤ 𝑃𝑟
 (E) ≤ 1 

 

Self-evident 
Inference  

Addition Law 

Multiplication Law 

Range Law 

𝑃𝑟
 (E) + 𝑃𝑟

 (F) 
 

𝑃𝑟
 (E)  ×  𝑃𝑟

 (E|F) 
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𝑃𝑟
 (E)  ×  𝑃𝑟

 (F | E). 

1) Each face of each dice has the same probability of occurrence which is 1/6. 

2) Up-face of one dice tells nothing about the up-face of another dice. 

                

Figure A.2. Self-evident premises for dice experiment showing the probability of event E 

and F. The occurance of each face of each dice has the same probability, which is 1/6, 

and the up-face of one dice tells nothing about up-face of another dice. 

Some might object that these two premises are not “self-evident” and they need to be proved 

by solving the appropriate equation for tossing dice experiment. For instance, to deduce the 

probability of an event in which up-face of dice A plus the up-face of dice B equals to 4. The 

occurrence of both the events is the occurrence of both the events, either (A = 1 and B = 3) or 

(A = 2 and B = 2) or (A = 3 and B = 1). By addition law: 

𝑃𝑟
 (A + B = 4) = 𝑃𝑟

  (A = 1 & B = 3) + 𝑃𝑟
  (𝐴 = 2 & B = 2) + 𝑃𝑟

  (A = 3 & B = 1) 

The first term on the right can be written using multiplication law as: 

𝑃𝑟
 (A = 1 & 𝐵 = 3) = 𝑃𝑟

  (A = 1) x 𝑃𝑟
  (𝐵 = 3 | A = 1) 

Since 𝑃𝑟
 (A = 1) = 1/6                                                                                         (by premise 1) 

And 𝑃𝑟
 (B = 3 | A = 1) =  𝑃𝑟

  (B = 3) = 1/6                                                (by premise 1 & 2) 

Putting the above values in 

𝑃𝑟
  (A = 1 & B = 3) =

1

6
×
1

6
=
1

3
 

For 𝑃𝑟
 (𝐴 = 2 and 𝐵 = 2) and 𝑃𝑟

 (𝐴 = 3 & 𝐵 = 1), we will get the same values, so we 

conclude that, 𝑃𝑟
 (𝐴 + 𝐵 = 4) =

1

36
+

1

36
+

1

36
=

1

12
. 

Self-evident 
Premises  

Up-face of one dice tells 
nothing about the up-face of 

another dice 

 

Each face of each dice has 
same probability, which is 1/6 
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Appendix B. Derivation of the CME 

To describe the dynamics of stochastic systems, the chemical master equation is used to 

describe the time evolution of the probability distribution of the population of stochastic 

systems. For species molecules’ geometry level discussion refer to (Gillespie, 1992a). The 

biochemical system is assumed to be at constant volume and at thermal equilibrium, then  

1) The probability of occurrence of only one 𝑅µ
  reaction in the system in time interval (𝑡, 

𝑡 + 𝜕𝑡) equals to 𝐶µ
  ℎµ

 (𝑛)𝜕𝑡 +  𝑜(𝜕𝑡), where 𝑜(𝜕𝑡) denote the terms that go to zero with 

𝜕𝑡 faster than 𝜕𝑡. 𝐶µ
  denote the probability, when randomly chosen combination of the 

reactant species molecules at 𝑡 will react consistently in next time interval and, ℎµ
  is the 

number of different combinations of reactant species molecules when there are 𝑛𝑖
  (where 

𝑖 = 1,…….N) number of molecules of species in the system. 

Every molecule of reactant species at 𝑡 is assigned with a unique tag. Then considering any 

particular combination of the reactant molecules is analogous to the random selection. Based 

on 𝜕𝑡, the probability of selecting different combination of reactant species molecules at 𝑡, 

that will react in next 𝑡 + 𝜕𝑡 will be 

 𝐶µ
  𝜕𝑡 (1 − 𝐶µ

  𝜕𝑡)ℎµ
 (𝑛)−1 = 𝐶µ

  𝜕𝑡 +  𝑜(𝜕𝑡), (B. 1) 

By range and addition law (see Appendix A), each has probability 1 − 𝐶µ
  𝜕𝑡 of not reacting at 

time 𝑡 + 𝜕𝑡. While as per multiplication law (see Appendix A), probability that particular of 

the ℎµ
 (𝑛)𝑅µ

  reactant combinations react at interval 𝑡 + 𝜕𝑡 

 ℎµ
 (𝑛) [𝐶µ

 𝜕𝑡 + 𝑜(𝜕𝑡)] = 𝐶µ
 ℎµ
 (𝑛)𝜕𝑡 +  𝑜(𝜕𝑡), (B. 2) 

Using addition law, we will now calculate the probability such that any of the ℎµ
 (𝑛) distinct 

𝑅µ
  reactants combinations at time 𝑡 will react alone at 𝑡 + 𝜕𝑡. These reactions will be 

mutually exclusive, so probability of the event will be the sum of the separate probabilities. 

2) The probability that no 𝑅𝑗
  reaction will occur in the system at time interval (𝑡 + 𝜕𝑡) is 

equals to  1 − ∑µ
  𝐶µ

 ℎµ
 (𝑛)𝜕𝑡  +  𝑜(𝜕𝑡). 

In above theorem we noted that each of the distinct ℎµ
 (𝑛) reactants combination of 𝑅µ

  

reactant molecules of the system at time t has probability of 1 − 𝐶µ
 𝜕𝑡 that it does not react 
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according to 𝑅µ
  at time 𝑡 + 𝜕𝑡. So according to multiplication law, we can write this as 

 (1 − 𝐶µ
  𝜕𝑡)ℎµ

 (𝑛) = 1 − ℎµ
 (𝑛)𝐶µ

  𝜕𝑡 +  𝑜(𝜕𝑡), (B. 3) 

Probability that no 𝑅1
  reaction, no 𝑅2

  reaction ……. and no 𝑅µ
  reaction will occur at time 

interval 𝑡 + 𝜕𝑡, can be written as 

 

∏ 

𝑀

µ=1

[1 − ℎµ
 (𝑛) 𝐶µ

  𝜕𝑡 +  𝑜(𝜕𝑡)] = 1 − ∑ℎµ
 (𝑛) 𝐶µ

 𝜕𝑡 +  𝑜(𝜕𝑡)

𝑀

µ=1

, (B. 4) 

3) The probability of occurrence of more than one 𝑅µ
  reaction at a given time interval 𝑡 +

𝜕𝑡 is 𝑜(𝜕𝑡). 

We are now in position to develop the analytical description of the behaviour of the species 

population vector. If we fix any initial state at some time to  

 𝑋(𝑡0
 ) = 𝑛0

 , (B. 5) 

the deterministic time-evolution equation for 𝑋(𝑡) cannot be developed. Instead we shall try 

to derive the deterministic time-evolution equation for the probability function. 

Our strategy to derive the deterministic time-evolution equation for the probability function is 

to use the three theorems along with addition and multiplication laws of the probability to 

define. 

𝑃(𝑛, 𝑡 | 𝑛0
 , 𝑡0

 ) = probability that 𝑋(𝑡)= 𝑛, 
 given that 𝑋(𝑡0

 )  = 𝑛0
  

In the following paragraph we shall prove by such reasoning that the probability 

𝑃(𝑛, 𝑡 + 𝜕𝑡 | 𝑛0
 , 𝑡0

 ) can be written as 

𝑃(𝑛, 𝑡 + 𝜕𝑡 | 𝑛0
 , 𝑡0

 ) = 𝑃(𝑛, 𝑡 | 𝑛0
 , 𝑡0

 )  ×  ( 1 − ∑ℎµ
 (𝑛) 𝐶µ

 𝜕𝑡 +  𝑜(𝜕𝑡) )

𝑀

µ=1

 

 

+  ∑𝑃(𝑛 − 𝑉µ
 , 𝑡 | 𝑛0

 , 𝑡0
 )  ×  [ 𝐶µ

  ℎµ
 (𝑛 − 𝑉µ

 ) 𝑑𝑡 +  𝑜(𝜕𝑡) ]

𝑀

µ=1

 +  𝑜(𝜕𝑡) (B. 6) 

 

                                             

(22) 



295 

 

We now subtract 𝑃(𝑛, 𝑡 | 𝑛0
 , 𝑡0

 ) from both sides of the above equation and divide through by 

𝜕𝑡, and then take the limit 𝜕𝑡 ↓ 0. Since all 𝑜(𝜕𝑡) / 𝜕𝑡 terms vanish in this limit, we evidently 

obtain,  

𝜕

𝜕𝑡
 𝑃(𝑛, 𝑡 | 𝑛0

 , 𝑡0
 ) =∑ [ 𝐶µ

  ℎµ
  (𝑛 − 𝑉µ

 ) 𝑃(𝑛 − 𝑉µ
 , 𝑡 | 𝑛0

 , 𝑡0
 )

𝑀

µ=1

  
 

−𝐶µ
  ℎµ
  (𝑛) 𝑃(𝑛, 𝑡 | 𝑛0

 , 𝑡0
 ) ], (B. 7) 

where 𝑀 =  Elementary chemical reaction channels 𝑅1,……….
 , 𝑅𝑀

 . CME can also be written as 

 
𝜕𝑃(𝑡)(𝑋)

𝜕𝑡
=∑𝑎µ

 (𝑋 − 𝑣µ
 )

𝑀

µ=1

𝑃(𝑡)(𝑋 − 𝑣µ
 ) −∑𝑎µ

 (𝑋)

𝑀

µ=1

𝑃(𝑡)(𝑋) (B. 8) 

where 𝑃(𝑡)(𝑋) = the probability function representing the time-evolution of the system, given 

that 𝑡 ≥  𝑡0
  and the initial probability is, 𝑃(𝑡0

 )(𝑋0
 ), 𝑎µ

  = chemical reaction propensity of 

channel µ = {1,2, … .𝑀}, and 𝑣µ
  = stoichiometric vector. 

Both the equations (B. 7) and (B. 8) represent the CME. It is a time-evolution equation for the 

function 𝑃(𝑛, 𝑡 | 𝑛0
 , 𝑡0

 ), for fixed  𝑛0
  and 𝑡0

 , and it is to be solved using initial conditions, 

𝑃(𝑛, 𝑡 =  𝑡0
  | 𝑛0

 , 𝑡0
 ) =  {

1, 𝑖𝑓 𝑛 =  𝑛0
 ,

0, 𝑖𝑓 𝑛 =  𝑛0
 ,

 

as required by Chemical Master Equation. 
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Appendix C. Expression for Rate Laws 

C.1 Mass Action Based Models 

The rate of 𝑅𝑀
  is proportional to the product of all the reactant concentration (number of 

molecules). A single step 𝑅𝑀
  is an elementary reaction if it follows the mass action kinetics. 

The number of species (only reactants) categorise the type of reaction – monomolecular, 

bimolecular and trimolecular reactions. For example, 

 𝐴 + 𝐵
   𝑘   
→  𝐶, (C. 1) 

is a bimolecular reaction. Where, 𝐴 and 𝐵 are reactant species, 𝐶 is the product and 𝑘 is the 

reaction rate parameter. According to mass action law, the rate 𝑎𝑀
  is proportional to [𝐴][𝐵], 

and therefore, 

  𝑎𝑀
 = 𝑘[𝐴][𝐵], (C. 2) 

where [𝐴][𝐵] represents the product of concentrations of reactant 𝐴 and 𝐵, respectively. (In 

the following section, we use [species] to denote the concentration of species). The change in 

concentration of the species 𝐴, 𝐵, 𝐶 with time is described by the ordinary differential 

equations (𝑂𝐷𝐸𝑠): 

 
𝑑[𝐴]

𝑑𝑡
= −𝑘[𝐴][𝐵] = −𝑎𝑀

 , (C. 3) 

 
𝑑[𝐵]

𝑑𝑡
= −𝑘[𝐴][𝐵] = −𝑎𝑀

 , (C. 4) 

 
𝑑[𝐶]

𝑑𝑡
= 𝑘[𝐴][𝐵] = 𝑎𝑀

 . (C. 5) 

An elementary reaction can be reversible, if product 𝐶 transforms into 𝐴 and 𝐵 with rate 𝑘′, 

such as the following reaction 

 𝐶
     𝑘 ,   𝑘′     
↔      𝐴 + 𝐵 (C. 6) 

can be treated as two reactions (forward and backward), where 𝑘 and 𝑘′ denote the reaction 

rate constants, respectively. According to the law of mass action, the forward reaction rate, 

𝑎1, is  
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 𝑎1 = 𝑘[𝐴][𝐵], (C. 7) 

and the backward reaction rate, 𝑎2, is  

 𝑎2 = 𝑘
′[𝐶]. (C. 8) 

The change in concentration of these species with time is given by 𝑂𝐷𝐸𝑠: 

 
𝑑[𝐴]

𝑑𝑡
= −𝑘[𝐴][𝐵] + 𝑘′[𝐶] = −𝑎1 + 𝑎2 (C. 9) 

 
𝑑[𝐵]

𝑑𝑡
= −𝑘[𝐴][𝐵] + 𝑘′[𝐶] = −𝑎1 + 𝑎2, (C. 10) 

 
𝑑[𝐶]

𝑑𝑡
= 𝑘[𝐴][𝐵] − 𝑘′[𝐶] = 𝑎1 − 𝑎2. (C. 11) 

If any reaction has more than one step, then each step will be considered as an elementary 

reaction. For instance, 

 𝐴
𝑘1
→𝐵

𝑘2
→𝐶, (C. 12) 

are two elementary reactions 𝑅1: 𝐴
𝑘1
→𝐵 and 𝑅2: 𝐵

𝑘2
→𝐶, with 𝑘1 and 𝑘2 reaction rate constants  

respectively. In 𝑅1, the reactant 𝐴 converts into 𝐵, then the 𝑎1, is 

 𝑎1 = 𝑘1[𝐴]. (C. 13) 

In 𝑅2, the species 𝐵 converts into product 𝐶, then the 𝑎2, is 

 𝑎2 = 𝑘2[𝐵]. (C. 14) 

Then the change in concentration is given by 𝑂𝐷𝐸𝑠: 

 
𝑑[𝐴]

𝑑𝑡
= −𝑘1[𝐴] = −𝑎1, (C. 15) 

 
𝑑[𝐵]

𝑑𝑡
= 𝑘1[𝐴] − 𝑘2[𝐵] = 𝑎1 − 𝑎2, (C. 16) 

 
𝑑[𝐶]

𝑑𝑡
= 𝑘2[𝐵] = 𝑎2. (C. 17) 
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C.2 Michaelis-Menten Model 

C.2.1 Equilibrium approximation 

The Michaelis-Menten model is a exemplary example for enzyme kinetic reactions. In these 

reactions:  

 𝐴 + 𝐵
𝑘1; 𝑘2
↔   𝐴𝐵

  𝑘3  
→  𝐴 + 𝑃, (C. 18) 

where, substrate 𝐵 combines with enzyme 𝐴 to form the complex 𝐴𝐵 which represent the 

forward reaction with 𝑘1 rate constant. The backward reaction will convert this complex 𝐴𝐵 

to substrate 𝐵 and enzyme 𝐴 with 𝑘2 rate constant. Further 𝐴𝐵 forms the product 𝑃, which 

represent the third reaction with 𝑘3 rate constant. 

Based on the law of mass action, the change in concentration of these species are given by the 

𝑂𝐷𝐸𝑠: 

 
𝑑[𝐵]

𝑑𝑡
= −𝑘1[𝐴][𝐵] + 𝑘2[𝐴𝐵], (C. 19) 

 
𝑑[𝐴]

𝑑𝑡
= −𝑘1[𝐴][𝐵] + (𝑘2 + 𝑘3)[𝐴𝐵], (C. 20) 

 
𝑑[𝐴𝐵]

𝑑𝑡
= 𝑘1[𝐴][𝐵] − (𝑘2 + 𝑘3)[𝐴𝐵], (C. 21) 

 
𝑑[𝑃]

𝑑𝑡
= 𝑘2[𝐴𝐵]. (C. 22) 

The total concentration of enyzme 𝐴0 is constant and given by 

 [𝐴0] = [𝐴] + [𝐴𝐵]. (C. 23) 

𝐴𝐵 reaches to equilibrium quickly (𝑘1[𝐴][𝐵] = 𝑘2[𝐴𝐵]) according to Michaelis-Menten 

(1913) model. Then concentration of the complex is given by 

 [𝐴𝐵] =
𝑘1
𝑘2
[𝐴][𝐵]. (C. 24) 

Substituting Eq. (C. 23) in Eq. (C. 24) gives, 
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 [𝐴𝐵] =
𝑘1
𝑘2
[𝐵]([𝐴0] − [𝐴𝐵]). (C. 25) 

If dissociation constant of the complex 𝐴𝐵 is represented by 𝑘𝑑𝑐 =
𝑘2

𝑘1
, then Eq. (C. 25) can be 

rewritten as, 

 [𝐴𝐵] =
[𝐵][𝐴0]

𝑘𝑑𝑐 + [𝐵]
. (C. 26) 

Then reaction rate of the production of 𝑃 (from Eq. (C. 22)) is given by 

 𝑉𝐿 =
𝑑[𝑃]

𝑑𝑡
= 𝑘3[𝐴𝐵] = 𝑘3

[𝐵][𝐴0]

𝑘𝑑𝑐 + [𝐵]
. (C. 27) 

If 𝑉𝐿𝑚𝑎𝑥 = 𝑘3[𝐴0] determine the reaction rate (maximum rate) the biochemical system can 

reach, then, Eq. (C.27) is rewritten as 

 𝑉𝐿 = 𝑉𝐿𝑚𝑎𝑥
[𝐵]

𝑘𝑑𝑐 + [𝐵]
. (C. 28) 

When [𝐵] = 𝑘𝑑𝑐, 𝑉𝐿 =
1

2
𝑉𝐿𝑚𝑎𝑥. When 𝑘2 ≫ 𝑘3, then reaction rate of production of 𝑃 is 

negatively affected by limits of irreversible reaction. 
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Appendix D. Dilemma in Selection 

Real life example: Suppose a person walking from the car park to the entrance of the fifa 

world cup stadium and accidently dropped their ticket in a hurry. From behind we can see that 

the person has long hairs but we are not sure whether they are man or women and what to call 

out "Excuse me ma'am!" or "Excuse me Sir!". In such situation we have to make a guess. 

Now imagine instead this person has reached the entrance and standing in the queue of men’s. 

Knowing this piece of extra information we might make a different guess. 𝐵𝐿𝑁𝑃 is a way to 

capture the sense of knowledge about the situation to make better guesses as it treats the 

probability as beliefs, not frequencies. Now we put numbers to our dilemma at the queue as 

shown in the Figure D.1. Let us assume that out of 1000 women in the queue 500 have short 

hair and 50 have long and out of 1000 men in the queue 940 have short hair and 60 have long. 

In this case we can see that definitely there are more women with long hair than men with 

long hair, so it is a safe bet to assume it is a women. 

 

Figure D.1. Showing the ratio of distribution of men and women 

Now we just made a subtle assumption that there are about the same number of women and 

men in the queue of a stadium. This assumption no longer holds when we move to the men's 

queue. Here let's say there are 20 women out of every 1000 people and 980 are men, as maybe 

women keeping their partners company. Figure D.2 shows that, there still ten with short hairs 

and 10 with long hairs, it's still half and half long and short hair but now there are six times as 

many men with long hair than women. 
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Figure D.2. Showing the distribution of men and women with short and long hairs 

Now how we can make safe bet that this person is a man? So to draw this little differently, out 

of thousand people at the stadium queue overall, we make this assumption explicit that 500 of 

them are women and 500 of them are men as shown in Figure D.3 (left and right). It shows 

how different categories break down in the queue for the men's queue then they break down 

little differently as shown in Figure D.3. 

 

Figure D.3. Showing different distribution fig 42 (left), fig 42 (right) of men and women 

in a queue of 1000 members 

From Figure D.3, the probability that person is a woman and men are given by 𝑃(𝑤) = 0.5 

and 𝑃(𝑚𝑒𝑛) = 0.5 respectively, whereas 𝑃(𝑤𝑜𝑚𝑒𝑛) = 0.02 and 𝑃(𝑚𝑒𝑛) = 0.98. 

Conditional probability: If we know that a person is a woman that is the condition, then the 

probability that the person has long hair is given by 𝑃(𝑙𝑜𝑛𝑔 ℎ𝑎𝑖𝑟|𝑤𝑜𝑚𝑒𝑛) = 0.5. Similarly, 
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for men the conditional probability that person has long hair is given by 

𝑃(𝑙𝑜𝑛𝑔 ℎ𝑎𝑖𝑟|𝑚𝑒𝑛) = 0.06. For Figure D.2, the conditional probability 

𝑃(𝑙𝑜𝑛𝑔 ℎ𝑎𝑖𝑟|𝑤𝑜𝑚𝑒𝑛) = 0.5 and 𝑃(𝑙𝑜𝑛𝑔 ℎ𝑎𝑖𝑟|𝑚𝑒𝑛) = 0.12. 

Joint probability: From Figure D.2, the probability that a person is both a woman and has 

short hair is given by 

𝑃(𝑤𝑜𝑚𝑒𝑛 𝑤𝑖𝑡ℎ 𝑠ℎ𝑜𝑟𝑡 ℎ𝑎𝑖𝑟) = 𝑃(𝑤𝑜𝑚𝑒𝑛) ∗  𝑃(𝑠ℎ𝑜𝑟𝑡 ℎ𝑎𝑖𝑟|𝑤𝑜𝑚𝑒𝑛) 

                                                                   = 0.5 ∗ 0.5 = 0.25. 

Similarly, the probability that a person is both woman and has long hair is given by 

                     𝑃(𝑤𝑜𝑚𝑒𝑛 𝑤𝑖𝑡ℎ 𝑙𝑜𝑛𝑔 ℎ𝑎𝑖𝑟) = 𝑃(𝑤) ∗  𝑃(𝑙𝑜𝑛𝑔 ℎ𝑎𝑖𝑟|𝑤𝑜𝑚𝑒𝑛) 

                                                                   = 0.5 ∗ 0.5 = 0.25. 

The probability that a person is both man and has short hair is given by 

                        𝑃(𝑚𝑒𝑛 𝑤𝑖𝑡ℎ 𝑠ℎ𝑜𝑟𝑡 ℎ𝑎𝑖𝑟) = 𝑃(𝑚𝑒𝑛) ∗ 𝑃(𝑠ℎ𝑜𝑟𝑡 ℎ𝑎𝑖𝑟|𝑚𝑒𝑛)                                                        

                                                                   = 0.5 ∗ 0.94 = 0.47. 

Similarly, the probability that a person is both man and has long hair is given by 

                          𝑃(𝑚𝑒𝑛 𝑤𝑖𝑡ℎ 𝑙𝑜𝑛𝑔 ℎ𝑎𝑖𝑟) = 𝑃(𝑚𝑒𝑛) ∗  𝑃(𝑙𝑜𝑛𝑔 ℎ𝑎𝑖𝑟|𝑚𝑒𝑛) 

                                                                   = 0.5 ∗ 0.06 = 0.03. 

 From Figure D.3, the probability that a person is both a woman and has short hair is given by 

                   𝑃(𝑤𝑜𝑚𝑒𝑛 𝑤𝑖𝑡ℎ 𝑠ℎ𝑜𝑟𝑡 ℎ𝑎𝑖𝑟) = 𝑃(𝑤𝑜𝑚𝑒𝑛) ∗  𝑃(𝑠ℎ𝑜𝑟𝑡 ℎ𝑎𝑖𝑟|𝑤𝑜𝑚𝑒𝑛) 

                                                                   = 0.02 ∗ 0.5 = 0.01. 

Similarly, the probability that a person is both woman and has long hair is given by 

                     𝑃(𝑤𝑜𝑚𝑒𝑛 𝑤𝑖𝑡ℎ 𝑙𝑜𝑛𝑔 ℎ𝑎𝑖𝑟) = 𝑃(𝑤𝑜𝑚𝑒𝑛) ∗  𝑃(𝑙𝑜𝑛𝑔 ℎ𝑎𝑖𝑟|𝑤𝑜𝑚𝑒𝑛) 

                                                                   = 0.02 ∗ 0.5 = 0.01. 

The probability that a person is both man and has short hair is given by 
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                        𝑃(𝑚𝑒𝑛 𝑤𝑖𝑡ℎ 𝑠ℎ𝑜𝑟𝑡 ℎ𝑎𝑖𝑟) = 𝑃(𝑚𝑒𝑛) ∗ 𝑃(𝑠ℎ𝑜𝑟𝑡 ℎ𝑎𝑖𝑟|𝑚𝑒𝑛)             

                                                                   = 0.98 ∗ 0.94 = 0.9212. 

Similarly, the probability that a person is both man and has long hair is given by 

                          𝑃(𝑚𝑒𝑛 𝑤𝑖𝑡ℎ 𝑙𝑜𝑛𝑔 ℎ𝑎𝑖𝑟) = 𝑃(𝑚𝑒𝑛) ∗  𝑃(𝑙𝑜𝑛𝑔 ℎ𝑎𝑖𝑟|𝑚𝑒𝑛) 

                                                                   = 0.98 ∗ 0.12 = 0.1176. 

Marginal probability: From Figure D.3, the probability that someone has long hair is given 

by 

𝑃(𝑙𝑜𝑛𝑔 ℎ𝑎𝑖𝑟) = 𝑃(𝑤𝑜𝑚𝑒𝑛 𝑤𝑖𝑡ℎ 𝑙𝑜𝑛𝑔 ℎ𝑎𝑖𝑟) + 𝑃(𝑚𝑒𝑛 𝑤𝑖𝑡ℎ 𝑙𝑜𝑛𝑔 ℎ𝑎𝑖𝑟)  

                                        =  0.01 + 0.1176 = 0.1276 

and for short hair 

𝑃(𝑠ℎ𝑜𝑟𝑡 ℎ𝑎𝑖𝑟) = 𝑃(𝑤𝑜𝑚𝑒𝑛 𝑤𝑖𝑡ℎ 𝑠ℎ𝑜𝑟𝑡 ℎ𝑎𝑖𝑟) + 𝑃(𝑚𝑒𝑛 𝑤𝑖𝑡ℎ 𝑠ℎ𝑜𝑟𝑡 ℎ𝑎𝑖𝑟)  

                                       =  0.01 + 0.9212 = 0.9312 

If someone has long hairs the probability that they are a man can be calculated by the function 

               𝑃(𝑚𝑒𝑛 | 𝑙𝑜𝑛𝑔 ℎ𝑎𝑖𝑟) =
𝑃(𝑚𝑒𝑛) ∗ 𝑃(𝑙𝑜𝑛𝑔 ℎ𝑎𝑖𝑟 | 𝑚𝑒𝑛)

𝑃(𝑙𝑜𝑛𝑔 ℎ𝑎𝑖𝑟)
 

                                                =  0.9216 or 92.16%. 

Similarly if someone has long hairs the probability that they are a women can be calculated as 

         𝑃(𝑤𝑜𝑚𝑒𝑛 | 𝑙𝑜𝑛𝑔 ℎ𝑎𝑖𝑟) =
𝑃(𝑤𝑜𝑚𝑒𝑛) ∗ 𝑃(𝑙𝑜𝑛𝑔 ℎ𝑎𝑖𝑟 | 𝑤𝑜𝑚𝑒𝑛)

𝑃(𝑙𝑜𝑛𝑔 ℎ𝑎𝑖𝑟)
 

                                               =  0.0783 or 07.83%. 

It is clear from the probability that the ticket dropped by the person is a man. Similarly, such 

function can be applied to the state-space to choose the probable states carrying most of the 

probability density and track the active reactions in the biochemical systems. 
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Appendix E. Complexity Based on Operations 

The time complexity of 𝐼𝑆𝑃 can be evaluated for the worst-case scenario by considering the 

steps as given in Table 4.2, Table 4.7 and operations as shown in Figure 4.25 by making some 

simplified assumptions based on size of state-space and operations. To execute each of these 

steps instructions machine takes discrete amount of time as, 

1) In step 1, as the initial values are given for the first iteration, it will access the array inputs 

as: 

for 1st iteration it runs for 1 time, 

for 2nd iteration it will again run for 1 time, 

for 𝐼𝑡𝑟
 th iteration it will run for 1 time. 

Total number of times this step will run is the sum of all the run from 1st to 𝐼𝑡𝑟
 th iteration as 

1 + 1 + 1……… . . +(𝐼𝑡𝑟
 − 1) = 𝐼𝑡𝑟

 , so the time complexity will simply be 𝑂(𝐼𝑡𝑟
 ). If 𝐼𝑡𝑟

  is 

equal to the set of nodes in the graph then complexity will become 𝑂(𝐧𝐾
 ) with the condition 

that all the nodes are considered as initial node at some point of any iteration, which is true in 

most of the cases. 

2) In step 2, for initial node one-time flagging is done for set of states and updates the queue 

for 1 time as a set. It will continue to flag for other nodes expanded in iterations as: 

for 2nd iteration it will again run for 1 time having random number of states, 

for 𝐼𝑡𝑟
 th iteration it will run for 1 time having end state of the system within final set of states. 

Total number of times this step will run is the sum of all the iterations up to 𝐼𝑡𝑟
 th. On an 

average if 𝐧𝐾
  are carrying 𝑆Ñ states upto ƌ𝑙

  level then number of states added to the domain 

will be (𝐧𝐾
 (𝑆Ñ)) and complexity will be 𝑂(𝐧𝐾

 (𝐗𝐾
 )). The calculation of Eq. (46) will add 

constant factor to the complexity, so 𝐧𝐾
  carrying set of 𝐗𝐾

  will have complexity of 

𝑂(𝐧𝐾
 (𝐗𝐾

 )). Most of the time, the condition of Eq. (46) will be true as long as 𝐗𝐾
  is getting 

new states. 
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3) In step 3, sorting the probabilities in every iteration when number of states is growing with 

exploration leads to the time complexity which depends only on size of 𝐗𝐾
 , whereas 

bunking of states with low probabilities from the 𝑞𝑢𝑒𝑢𝑒 done conditionally in selective 

iteration at 𝑡′, so for 

for 1st iteration sorting 𝐗𝐾
  and bunking of states is done 0 times, so the complexity will be 0, 

for 2nd iteration sorting 𝐗𝐾
  is done 1 time but bunking is based on Eq. (71), so the complexity 

will be 𝑂(12) + 0 = 𝑂(1), 

for 𝐼𝑡𝑟
 th iteration sorting is done 𝐼𝑡𝑟

  times; so complexity will be 𝑂(𝐼𝑡𝑟
 2) and if the bunking is 

done it will add 𝑂(𝐼𝑡𝑟
 𝑙𝑜𝑔𝐼𝑡𝑟

 ) of complexity. So the complexity of 𝐼𝑡𝑟
 th iteration will become 

𝑂(𝐼𝑡𝑟
 2) + 𝑂(𝐼𝑡𝑟

 𝑙𝑜𝑔𝐼𝑡𝑟
 ). 

The total complexity of the step is the sum of 0 + 𝑂(12) + 0 +,…………….,+ 𝑂(𝐼𝑡𝑟
 2) + 

𝑂(𝐼𝑡𝑟
 𝑙𝑜𝑔𝐼𝑡𝑟

 ). If any biochemical system has 𝐗𝐾
  set of states then the complexity 𝑂(𝐼𝑡𝑟

 𝑙𝑜𝑔𝐼𝑡𝑟
 ) 

becomes negligible as the size of set of states 𝐗𝐾
′  is smaller than the size of the 𝐗𝐾

  when Eq. 

(71) applied conditionally. Therefore, the complexity of the step reduce to 𝑂(𝐼𝑡𝑟
 2) if 

𝑂(𝐼𝑡𝑟
 𝑙𝑜𝑔𝐼𝑡𝑟

 ) is ignored for most of the cases. 

4) In step 4, searching adjacent set of nodes 𝐧𝐾
  to current node 𝑁𝑖

  to extend the dictionary 

𝐷𝑖𝑐𝑡 will incur 𝑂(1) for single reaction for one step as one new node is added carrying new 

states every time, so complexity for every node for 𝐼𝑡𝑟
  iterations will be 𝑂(𝐧𝐾

 ) and further 

computing the 𝐵𝐿𝑁𝑃 function for 𝐧𝐾
  will add 𝑂(𝐧𝐾

 ) to the complexity. Overall, it will 

give the complexity of Ѭ for complete search. 

5) In step 5, accessing the array (domain) in 𝐼𝑡𝑟
  iterations will cost 𝑂(𝐼𝑡𝑟

 ) or 𝑂(𝐧𝐾
 ) = 𝑂(𝐗𝐾

 ). 

To commit the updates of propensities of set of states will cost 𝑂(1) per value, i.e. for 

𝑂(𝑋0
 , 𝑋1

 , …… ..) = 𝑂(𝐗𝐾
 ) if 𝐧𝐾

 = (𝑋0,1,2……
 , ƌ𝑙

 ) ∉ 𝑑𝑜𝑚𝑎𝑖𝑛 then complexity will be 𝑂(1) 

per value in the queue or stack, so for 𝐗𝐾
  it will run 𝑍 times, 𝑂(𝐼𝑡𝑟

 ). 

6) In step 6, accessing 𝐧𝐾
 = (𝑋0,1,2……

 , ƌ𝑙
 ) for each value from the queue or stack will have 

same complexity of 𝑂(𝐧𝐾
 ) for each 𝑁𝑖

  for 𝐼𝑡𝑟
  iterations, whereas adding the new set of 

states in the domain will be 𝑂(|𝐧𝐾
 (𝐗𝐾

 )|). 

 

 



306 

 

Combining all the steps complexity, 

 

ignoring 𝑂(𝐼𝑡𝑟
 𝑙𝑜𝑔𝐼𝑡𝑟

 ) as it becomes negligible when no states were bunked from the domain 

or number of states bunked from domain were much lesser than the number of states present 

in the domain. If estimated number of states 𝑆Ñ creates the perfect domain with set 𝐗𝐾
  then 

total complexity will reduce to 

   = 3 × 𝑂(𝐧𝐾
 ) + 2 x 𝑂(𝐧𝐾

 (𝐗𝐾
 )) + 𝑂(𝐼𝑡𝑟

 2)  + 𝑂(𝐼𝑡𝑟
 ) + 𝑂(𝐗𝐾

 ),  

therefore, 𝑂(𝐴𝑙𝑔𝑜(𝑦)) = {0 ≤ 𝑓(𝑦) ≤ 𝑐 ∗ 𝐴𝑙𝑔𝑜(𝑦) 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑦 ≥  𝑦0
 }, 

where 𝑦, 𝑦0
  are positive integers. When working with biochemical networks graphs that are 

large to store explicitly, it is pragmatic to define the overall complexity of the 𝐼𝑆𝑃 in terms of 

states and depth of the explored states. As we are interested in end state, so for any iteration if 

the end state of the system is at ƌ𝑙
  from initial node 𝑁0

  state 𝑋0
  then for 𝐼𝑡𝑟

  iterations 

𝑂(𝐧𝐾
 (𝐗𝐾

 )) = 𝑂(Ŧƌ𝑙
 
), where Ŧ is the average transitioning factor that defines the average 

number of transition from 𝑁1
  to 𝑁𝑁′

 . For small biochemical models every state in the system 

is crucial as there will be a smaller number of variables that may greatly affect the state-space 

of the system. In 𝐼𝑆𝑃, we increase the depth level by one after the end node has been found to 

track any reversible reaction that may take the system to previous state and add the end state 

present with end node, therefore the time complexity of the 𝐼𝑆𝑃 𝐿𝐴𝑆 becomes 𝑂(Ŧƌ𝑙
 +1). The 

complexity of the operations carried out in 𝐼𝑆𝑃 variants for Markov chain tree of a 

biochemical network is discussed below:  

  

= 𝑂(|𝐧𝐾
 |) + 𝑂(|𝐧𝐾

 (𝐗𝐾
 )|) + 𝑂(|𝐼𝑡𝑟

 2|) + 𝑂(|𝐼𝑡𝑟
 𝑙𝑜𝑔𝐼𝑡𝑟

 |) + 𝑂(|𝐧𝐾
 |) + 𝑂(|𝐗𝐾

 |) + 𝑂(|𝐼𝑡𝑟
 |) + 𝑂(|𝐧𝐾

 |) + 𝑂(|𝐧𝐾
 (𝐗𝐾

 )|) 

 
     Step 1             Step 2                           Step 3                           Step 4                   Step 5                               Step 6         
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Table E.1. Comparison of the 𝑰𝑺𝑷 𝑳𝑨𝑺 average-case 𝜣 and worst-case 𝑶 Time-Space 

complexity based on operations (Access, Search, Update, and Remove) on elements 

(Array, Queue, and Tree). 

𝑳𝑨𝑺   Array  Queue          Tree 

Time complexity: Average case 

Access 𝛩(1) 𝛩(Ŧƌ𝑙
 +1) 𝛩(𝑙𝑜𝑔(Ŧƌ𝑙

 +1)) 

Search 𝛩(Ŧƌ𝑙
 +1) 𝛩(Ŧƌ𝑙

 +1) 𝛩(𝑙𝑜𝑔(Ŧƌ𝑙
 +1)) 

Update 𝛩(Ŧƌ𝑙
 +1) 𝛩(1) 𝛩(𝑙𝑜𝑔(Ŧƌ𝑙

 +1)) 

Remove 𝛩(Ŧƌ𝑙
 +1) 𝛩(1) 𝛩(𝑙𝑜𝑔(Ŧƌ𝑙

 +1)) 

Time complexity: Worst case 

Access 𝑂(1) 𝑂(Ŧƌl
 +1) 𝑂(Ŧƌl

 +1) 
Search 𝑂(Ŧƌl

 +1) 𝑂(Ŧƌl
 +1) 𝑂(Ŧƌl

 +1) 
Update 𝑂(Ŧƌl

 +1) 𝑂(1) 𝑂(Ŧƌl
 +1) 

Remove 𝑂(Ŧƌl
 +1) 𝑂(1) 𝑂(Ŧƌl

 +1) 
Space complexity: Worst case 

Space 𝑂(Ŧƌl
 +1) 𝑂(Ŧƌl

 +1) 𝑂(Ŧƌl
 +1) 

 

Table E.2. Comparison of the 𝑰𝑺𝑷 𝑳𝑶𝑳𝑨𝑺 average-case 𝜣 and worst-case 𝑶 Time-Space 

complexity based on operations (Access, Search, Update, and Remove) on elements 

(Array, Stack, and Tree). 

𝑳𝑶𝑳𝑨𝑺 Array Stack Tree 

Time complexity: Average case 

Access 𝛩(1) 𝛩(Ŧƌ𝑙
 
) 𝛩(𝑙𝑜𝑔(Ŧƌ𝑙

 
)) 

Search 𝛩(Ŧƌ𝑙
 
) 𝛩(Ŧƌ𝑙

 
) 𝛩(𝑙𝑜𝑔(Ŧƌ𝑙

 
)) 

Update 𝛩(Ŧƌ𝑙
 
) 𝛩(1) 𝛩(𝑙𝑜𝑔(Ŧƌ𝑙

 
)) 

Remove 𝛩(Ŧ𝑑) 𝛩(1) 𝛩(𝑙𝑜𝑔(Ŧƌ𝑙
 
)) 

 Time complexity: Worst case 

Access 𝑂(1) 𝑂(Ŧƌ𝑙
 
) 𝑂(Ŧƌ𝑙

 
) 

Search 𝑂(Ŧƌ𝑙
 
) 𝑂(Ŧƌ𝑙

 
) 𝑂(Ŧƌ𝑙

 
) 

Update 𝑂(Ŧƌ𝑙
 
) 𝑂(1) 𝑂(Ŧƌ𝑙

 
) 

Remove 𝑂(Ŧƌ𝑙
 
) 𝑂(1) 𝑂(Ŧƌ𝑙

 
) 

Space complexity: Worst case 

Space 𝑂(Ŧƌ𝑙
 ) 𝑂(Ŧƌ𝑙

 ) 𝑂(Ŧƌ𝑙
 ) 
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Appendix F. Implementation Details - Environment, 

Dependencies 

F.1 Environment 

In this section we discuss about the perquisites, dependencies, and libraries given in following 

section F.2, must be installed to create the proper environment that enables easier testing and 

implementation of the presented algorithm(s). The ssh cmod with key pair is used with shell 

to connect with the server using Intel®-i3-4005U microprocessor @ 1.70Ghz (2 cores per 

socket), 4GB DDR3, Ubuntu 16.04.1 desktop 64-bits platform. Files were transferred to 

AWS® server using commands, as well as PuTTy. Before uploading the files using PuTTy, 

the ssh key pair isp was generated using PuTTygen (supports RSA, DSA, ECDSA, and 

Ed25519 keys) to authenticate user through PuTTy and maintain the integrity of the files 

while transfer. The computing configuration we have used as follows: 

Configuration Description 

Amazon® Elastic 

File System (EFS) 

 Configure file system access 

 Create mount targets 

 Configure optional settings 

a) Performance mode – General Purpose or (2nd option: Max 

I/O) 

b) Throughput mode – Bursting or (2nd option: Provisioned) 

c) Enable encryption – Optional (No) 

Storage Volume type: EBS (1GB memory with 8GB Elastic Block Storage 

(EBS) type General Purpose SSD (GP2)). 

Instance Type large-m5a (variable ECUs, 16 vCPUs, 2.GHz, AMD EPYC 7571, 

64GB memory, EBS only) 

Ubuntu 16.04.1 Desktop version running perquisites, dependencies, and essentials 
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F.2 Dependencies and Libraries 

Name Version / Description 

Python v2.7, v3.7 [1,2] 

ppa:fkrull/deadsnakes 

Python Dev package Contains header files for the python C - API 

GCC Python Runs code inside GCC as it compiles, exposing internal data 

structures as a collection of functions and classes [3] 

Dependencies and Perquisites 

Date-util Powerful extension which provides date, time functions [4] 

Pyparsing Used to extract information from textual data (structured) [5] 

Libpng-dev Library of function to create and manipulate image format files 

like PNG [6] 

Pytz Library allows cross platform time zone calculations accurately 

[7] 

Freetype Library used to render fonts [8] 

Cycler Provides function to create base cycler objects, and class takes 

care of the iteration logic and composition [9] 

Six Provides function that smoothens the differences between python 

versions that is compatible with different versions [10] 

back ports functools lru 

cache 

Function handles caching mechanism [11] 

subprocess 32 Standard library module for python allows you to release new 

processes [12] 

Zlib1g-dev Library that implements the deflate compression method (as 

found in gzip etc formats) [13] 

Kiwisolver An efficient C++ implementation of the Cassowary constraint 

solving algorithm that ranges 10x to 500x faster than original 

solver typically gaining 40x improvement. Memory savings are 

greater than 5x times [14] 

Intel distribution for 

python (optional) 

package used to boost the computing and operations on elements 

(optional) [15] 

Essentials 

Scipy V1.1.0 (Builds on Numpy, and used for scientific and technical 

computing) [16] 

Numpy v1.16.3 (It is a numeric python library which provides fast and 

efficient operations) [17] 

Setuptools v1.4.2 (Enhance python standard distribution utilities to support 

projects packaging) [18] 

Pip v19.1.1 (Management system of packages that helps in 

installation, and management of packages written in python), 

[for Py2.4, Pip v1.1 is used] [19] 

Matplotlib v1.5.1 (Is a library used for plotting whose numerical extension 

is Numpy) [20] 

Libraries 

Libamd v2.2.0 [21] 

Libblas3gf shared library that provides basic linear algebra reference 

implementations [22] 

Libc6 C library that contains standard functions that are required to run 

on Linux/Ubuntu machines [23] 

Libgcc1 a library of internal subroutines [24] 
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Liblapack3gf library of linear algebra routines 3 [25] 

Libumfpack v5.4.0 [26] 

Libstdc++6 Runtime library built with GNU compiler to support C++ 

programs [27] 

Cmepy Distribute wheels/eggs that includes py libraries to solve cme [28] 

gfortan Invoke Fortran routines like C-code into Python with support for 

Numeric arrays [29] 

Libatlas-sse2-dev Needed for processors that use sse2 instructions [30] 

Python-all-dev used as a build dependency for other packages to avoid 

dependencies which are hardcoded (optional) [31] 

Pyme Optimal finite state projection package [32] 

Optional 

-U scikit-learn Analysis, machine learning library [33] 

Pandas library written for the programming (in Python) for analysis and 

data manipulation [34] 

Numba v0.39.0 High performance python compiler (dependencies: zlib, 

sqlite, tcl, tk, openssl, mkl, xz, openmp, icc_rt (vs_2015runtime)) 

[35] 

Numexpr v2.6.5 (dependencies: zlib, sqlite, tcl, tk, openssl, xz, mkl, 

openmp, icc_rt, numpy) [36] 

 

Links to packages: 

[1]. Python 2.7 https://www.python.org/download/releases/2.7/ 

[2]. Python 3.7 https://www.python.org/download/releases/3.7.0/ 

[3]. GCC https://gcc-python-plugin.readthedocs.io/en/latest/basics.html 

[4]. Dateutil https://pypi.org/project/python-dateutil/ 

[5]. Pyparsing https://pypi.org/project/pyparsing/ 

[6]. Libpng-dev http://www.libpng.org/pub/png/libpng.html 

[7]. Pytz https://pypi.org/project/pytz/ 

[8]. Freetype https://pypi.org/project/freetype-py/ 

[9]. Cycler https://pypi.org/project/Cycler/ 

[10]. Six https://pypi.org/project/six/ 

[11]. Backports.functools_lru_cache  

https://pypi.org/project/backports.functools_lru_cache/ 

[12]. Subprocess32 https://pypi.org/project/subprocess32/ 

[13]. Zlib1g-dev https://packages.ubuntu.com/trusty/zlib1g-dev 

[14]. Kiwisolver https://pypi.org/project/kiwisolver/ 

[15]. Intel distribution for python https://software.intel.com/ 

[16]. Scipy https://docs.scipy.org/doc/scipy-1.1.0/reference/release.1.1.0.html 

[17]. Numpy https://docs.scipy.org/doc/numpy-1.16.3/user/whatisnumpy.html 

[18]. Setuptools https://pypi.org/project/setuptools/ 

[19]. Pip https://pypi.org/project/pip/ 

[20]. Matplotlib https://sourceforge.net/projects/matplotlib/files/matplotlib/matplotlib-1.5.1/ 

[21]. Libmad https://packages.ubuntu.com/source/trusty/libmad 

[22]. Libblas3gf https://packages.ubuntu.com/search?keywords=libblas3gf 
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[23]. Libc6 https://packages.ubuntu.com/xenial/libc6-dev-i386 

[24]. Libgcc1 https://packages.ubuntu.com/xenial/libgcc1 

[25]. Lapack https://launchpad.net/ubuntu/xenial/+source/lapack 

[26]. Libumfpack https://packages.ubuntu.com/search?arch=armhf&keywords=umfpack 

[27]. Libstdc++6 https://packages.ubuntu.com/xenial/libstdc++6 

[28]. Cmepy https://github.com/fcostin/cmepy 

[29]. Gfortran https://packages.ubuntu.com/gfortran 

[30]. Libatlas-sse2-devel https://pkgs.org/download/libatlas-sse2-devel 

[31]. Python-all-dev https://packages.ubuntu.com/trusty/python-all-dev 

[32]. Pyme https://github.com/fcostin/cmepy 

[33]. Scikit-learn http://scikit-learn.org/stable/documentation.html 

[34]. Pandas https://pandas.pydata.org/ 

[35]. Numba http://numba.pydata.org/ 

[36]. Numexpr https://pypi.org/project/numexpr/2.4.6/ 

[37]. Pyssa https://pyssa.readthedocs.io/en/latest/ 

  



312 

 

Appendix G. Replicate Experiments 

G.1 Biological Experiments in Literature 

Experiments in section 2.5 were performed on:  

For example 1: Intel®-i3-4005U microprocessor @ 1.70Ghz (2 cores per socket), 4GB 

DDR3, Ubuntu 16.04.1 desktop 64-bits platform with python 2.7 for cmepy (see F.2). The 

model file (tcellhomo.py) can be downloaded from the directory: 

 
https://github.com/rkosarwal/ispy/others  

 

 

For example 2: Intel®-i5-7500 CPU microprocessor @ 3.40Ghz, 8GB RAM, Windows 10 

desktop 64-bits platform with MATLAB R2018b using high resolution FSP (Munsky et al., 

2006) toolkit: 

 
http://cbe.colostate.edu/~munsky/  

 

 

For example 3: Intel®-i3-4005U microprocessor @ 1.70Ghz (2 cores per socket), 4GB 

DDR3, Ubuntu 16.04.1 desktop 64-bits platform with python 2.7 for pyme (see F.2). The 

model file (mich.py) can be downloaded from the directory: 

 
https://github.com/rkosarwal/ispy/others  
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G.2 Biological Experiments using 𝑰𝑺𝑷 

Once environment is setup according to Appendix F, one can now replicate the experiments 

of 𝐼𝑆𝑃 for the models discussed in section 4.3, 4.4, 5.2, 5.3, 6.3, 7.3 by following the steps: 

Step 1: Getting 𝑰𝑺𝑷 

Elementary way to get the 𝐼𝑆𝑃 is to download the TAR or ZIP achieve from GitHub 

repository: 

 
https://rkosarwal.github.io/ispy  

 

 

The repository can be uploaded to the Amazon Web Server in similar way as discussed in 

section F.1. 

Otherwise, 𝐼𝑆𝑃 can be directly forked into Amazon Web Server if Git version control is 

installed: 

 
git clone git://github.com/rkosarwal/ispy.git  

 

 

Step 2: Running the models 

All the biochemical system model files are included in the cloned 𝐼𝑆𝑃 directory. To run the 

model or module use the following command: 

 
import ispy.biomodels.<file_name>  

 

 

where, <file_name> should be replaced by the model or module file name without .py 

extension. 

For example, if toy_model.py be the model file for toy model (discussed in Chapter 4) then to 

run this model: 

 
import ispy.biomodels.toy_model  

 

 

https://rkosarwal.github.io/ispy
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Optional Step: Changing the 𝑶𝑫𝑬 solver 

𝐼𝑆𝑃 integrate two types of 𝑂𝐷𝐸 solver – VODE [1] and LSODA [2]. To change the 

configuration of the solver based on stiff and non-stiff problems, refer to line 82 and 83 of: 

 
ispy/routines/ode.py                                                                  

 

 

[1].   http://www.netlib.org/ode/vode.f 

[2].   http://www.netlib.org/odepack 
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G.3 Biological Experiments in Comparative Study 

In Chapter 5, we performed the comparative study of algorithms on the carbon-neutral 

platform of Amazon® Web Service Elastic Computing (EC2) instance type large (m5a) 

running on HVM (hardware virtual environment) virtualisation with variable ECUs, a 

multicore environment of 16vCPU @ 2.2GHz, AMD EPYC 7571 running Ubuntu 16.04.1 

with the relevant dependencies, a 64GB memory with 8GB Elastic Block Storage (EBS) type 

General Purpose SSD (GP2) formatted with Elastic File System (EFS). The performance 

mode was set to general purpose with inputs-outputs per second (IOPS = 100/3000) and a 

throughput mode of type bursting is set. 

For sections 5.2 and 5.3 study: To run the experiments using 𝐼𝑆𝑃, refer to section G.2 of 

Appendix G. To run the experiment using 𝑂𝐹𝑆𝑃, install the package Pyme (see [32] in 

section F.2). Model files (catalytic_sys.py) and (dual_enzy.py), respectively, can be 

downloaded from the directory: 

 
https://github.com/rkosarwal/ispy/others  

 

 

and must be placed inside the directory: 

 
pyme/Tutorial/  

 

 

of pyme package. To run the experiment using 𝑆𝑆𝐴, install the package Pyssa (see [37] in 

section F.2 under Links to packages). Model files (catalytic_sys_ssa.py) and 

(dual_enzy_ssa.py), respectively, can be downloaded from the directory: 

 
https://github.com/rkosarwal/ispy/others  
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G.4 Output Data of Algorithms 

The output data of algorithms can be downloaded from the directory: 

 
https://github.com/rkosarwal/ispy/data  

 

 

Data file (.txt format) contains the run-time output of 𝐼𝑆𝑃 𝐿𝐴𝑆 and 𝐼𝑆𝑃 𝐿𝑂𝐿𝐴𝑆 for models. It 

particularly show the details of formation of bounds with number of states at different time 

points. It also show the probability bunked while expansion and approximation of the Eq. (9).  
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Appendix H. Case Study 2 Supporting Information 

The response of 𝐼𝑆𝑃 𝐿𝐴𝑆 given in Figure H. 1 to Figure H. 7 for all the modules is the total 

probabilities of states bunked at 𝑡′ from the domain produced by different modules of 

Candida albicans model, when number of states increases with the expansion and with that, 

𝐼𝑆𝑃 𝐿𝐴𝑆 produce minimal average error of order 10−4, as given in Table 7.14. 

 

 

Figure H. 1. Total probability of states bunked at 𝒕′ from the domain of transporter module 

produced by 𝑰𝑺𝑷 𝑳𝑨𝑺 iteration while expansion and solving the CME. 
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Figure H. 2. Total probability of states bunked at 𝒕′  from the domain of catalase 

(antioxidant) produced by 𝑰𝑺𝑷 𝑳𝑨𝑺 iteration while expansion and solving the CME. 

 

 

Figure H. 3. Total probability of states bunked at 𝒕′ from the domain of pentose phosphate 

pathway produced by 𝑰𝑺𝑷 𝑳𝑨𝑺 iteration while expansion and solving the CME. 
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Figure H. 4. Total probability of states bunked at 𝒕′  from the domain of thioredoxin 

(antioxidant) produced by 𝑰𝑺𝑷 𝑳𝑨𝑺 iteration while expansion and solving the CME. 

 

 

Figure H. 5. Total probability of states bunked at 𝒕′ from the domain of protein mono and 

di-thiols produced by 𝑰𝑺𝑷 𝑳𝑨𝑺 iteration while expansion and solving the CME. 
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Figure H. 6. Total probability of states bunked at 𝒕′ from the domain of cap1 pathway 

produced by 𝑰𝑺𝑷 𝑳𝑨𝑺 iteration while expansion and solving the CME. 

 

 

Figure H. 7. Total probability of states bunked at 𝒕′ from the domain of hog1 pathway 

produced by 𝑰𝑺𝑷 𝑳𝑨𝑺 iteration while expansion and solving the CME. 

 



321 

 

 

References 

Alan Bundy. (1997). Artificial Intelligence Techniques. (A. Bundy, Ed.). Berlin, Heidelberg: 

Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-60359-4 

Aldous, D. (1992). The Continuum random tree II: an overview. In M. T. Barlow & N. H. 

Bingham (Eds.), Stochastic Analysis (pp. 23–70). Cambridge: Cambridge University 

Press. https://doi.org/10.1017/CBO9780511662980.003 

Alistair J. P. Brown, Ken Haynes, Neil A. R. Gow, J. Q. (2012). Candida and Candidiasis, 

Second Edition. (R. A. Calderone & C. J. Clancy, Eds.). American Society of 

Microbiology. https://doi.org/10.1128/9781555817176 

Anantharam, V., & Tsoucas, P. (1989). A proof of the Markov chain tree theorem. Statistics 

and Probability Letters, 8(2), 189–192. https://doi.org/10.1016/0167-7152(89)90016-3 

Arana, D. M., Alonso-Monge, R., Du, C., Calderone, R., & Pla, J. (2007). Differential 

susceptibility of mitogen-activated protein kinase pathway mutants to oxidative-

mediated killing by phagocytes in the fungal pathogen Candida albicans. Cellular 

Microbiology, 9(7), 1647–1659. https://doi.org/10.1111/j.1462-5822.2007.00898.x 

Barak, Y., Juven, T., Haffner, R., & Oren, M. (1993). Mdm2 Expression Is Induced By Wild 

Type P53 Activity. The EMBO Journal, 12(2), 461–468. https://doi.org/10.1002/j.1460-

2075.1993.tb05678.x 

Barr, A., & Feigenbaum, E. (1983). The handbook of artificial intelligence vol. I. 

Mathematical Social Sciences, 4, 320–324. https://doi.org/10.1016/0165-4896(83)90037-

9 

Bell, J., & Stevens, B. (2009). A survey of known results and research areas for n-queens. 

Discrete Mathematics, 309(1), 1–31. https://doi.org/10.1016/j.disc.2007.12.043 

Bienert, G. P., Schjoerring, J. K., & Jahn, T. P. (2006). Membrane transport of hydrogen 

peroxide. Biochimica et Biophysica Acta (BBA) - Biomembranes, 1758(8), 994–1003. 

https://doi.org/10.1016/j.bbamem.2006.02.015 

Branco, M. R., Marinho, H. S., Cyrne, L., & Antunes, F. (2004). Decrease of H 2 O 2 Plasma 

Membrane Permeability during Adaptation to H 2 O 2 in Saccharomyces cerevisiae. 

Journal of Biological Chemistry, 279(8), 6501–6506. 

https://doi.org/10.1074/jbc.M311818200 

Brown, G. D. (2011). Innate antifungal immunity: the key role of phagocytes. Annual Review 

of Immunology, 29, 1–21. https://doi.org/10.1146/annurev-immunol-030409-101229 

Brown, G. D., Denning, D. W., Gow, N. A. R., Levitz, S. M., Netea, M. G., & White, T. C. 

(2012). Hidden killers: human fungal infections. Science Translational Medicine, 4(165), 

165rv13. https://doi.org/10.1126/scitranslmed.3004404 

Burrage, K., Hegland, M., Macnamara, S., & Sidje, R. (2006). A Krylov-based finite state 

projection algorithm for solving the chemical master equation arising in the discrete 

modelling of biological systems. Proceedings of the Markov Anniversary Meeting, 1–18. 

Cao, Y., Gillespie, D. T., & Petzold, L. R. (2005). The slow-scale stochastic simulation 

algorithm. The Journal of Chemical Physics, 122(1), 014116. 

https://doi.org/10.1063/1.1824902 

Cao, Y., Gillespie, D. T., & Petzold, L. R. (2006). Efficient step size selection for the tau-

leaping simulation method. Journal of Chemical Physics, 124(4), 1–11. 

https://doi.org/10.1063/1.2159468 

Chechik, G., Oh, E., Rando, O., Weissman, J., Regev, A., & Koller, D. (2008). Activity 

motifs reveal principles of timing in transcriptional control of the yeast metabolic 

network. Nature Biotechnology, 26(11), 1251–1259. https://doi.org/10.1038/nbt.1499 

Chijindu, E. V. C. (2012). Search in Artificial Intelligence Problem Solving, 5(5), 37–42. 

Coqueret, O. (2003). New roles for p21 and p27 cell-cycle inhibitors: a function for each cell 



322 

 

compartment? Trends in Cell Biology, 13(2), 65–70. https://doi.org/10.1016/S0962-

8924(02)00043-0 

Dasika, G. K., Lin, S. C. J., Zhao, S., Sung, P., Tomkinson, A., & Lee, E. Y. H. P. (1999). 

DNA damage-induced cell cycle checkpoints and DNA strand break repair in 

development and tumorigenesis. Oncogene, 18(55), 7883–7899. 

https://doi.org/10.1038/sj.onc.1203283 

Devi, S. G., Selvam, K., & Rajagopalan, S. P. (2011). An Abstract to Calculate Big O Factors 

of Time and Space Complexity of Machine Code. International Conference on 

Sustainable Energy and Intelligent System (SEISCON), (Seiscon), 844–847. 

https://doi.org/10.1049/cp.2011.0483 

Diaconis, P., & Efron, B. (1985). Markov Chains Indexed by Trees. Annals of Statistics, 

13(3), 845–874. 

Dickinson, D. A., & Forman, H. J. (2002). Cellular glutathione and thiols metabolism. 

Biochemical Pharmacology, 64(5–6), 1019–1026. https://doi.org/10.1016/s0006-

2952(02)01172-3 

Dinh, K. N., & Sidje, R. B. (2016). Understanding the finite state projection and related 

methods for solving the chemical master equation. Physical Biology, 13(3). 

https://doi.org/10.1088/1478-3975/13/3/035003 

Dinh, K. N., & Sidje, R. B. (2017). An application of the Krylov-FSP-SSA method to 

parameter fitting with maximum likelihood. Physical Biology, 14(6), 065001. 

https://doi.org/10.1088/1478-3975/aa868a 

Dyson, N. (1998). The regulation of E2F by pRB-family proteins. - PubMed - NCBI, (617), 

2245–2262. 

Enjalbert, B., Smith, D. A., Cornell, M. J., Alam, I., Nicholls, S., Brown, A. J. P., & Quinn, J. 

(2006). Role of the Hog1 Stress-activated Protein Kinase in the Global Transcriptional 

Response to Stress in the Fungal Pathogen Candida albicans. Molecular Biology of the 

Cell, 17(2), 1018–1032. https://doi.org/10.1091/mbc.e05-06-0501 

Eslahchi, M. R., & Dehghan, M. (2011). Application of Taylor series in obtaining the 

orthogonal operational matrix. Computers & Mathematics with Applications, 61(9), 

2596–2604. https://doi.org/10.1016/j.camwa.2011.03.004 

Fahidy, T. Z. (2011). Some Applications of Bayes’ Rule in Probability Theory to 

Electrocatalytic Reaction Engineering. International Journal of Electrochemistry, 

2011(1), 1–5. https://doi.org/10.4061/2011/404605 

Fallis, A. ., Jorg Liesen, Z. S., Liesen, J., & Strakos, Z. (2012). Krylov Subspace Methods: 

Principles and Analysis. Journal of Chemical Information and Modeling (Vol. 53). 

https://doi.org/10.1017/CBO9781107415324.004 

Geva-Zatorsky, N., Rosenfeld, N., Itzkovitz, S., Milo, R., Sigal, A., Dekel, E., … Alon, U. 

(2006). Oscillations and variability in the p53 system. Molecular Systems Biology, 2, 1–

13. https://doi.org/10.1038/msb4100068 

Gillespie, D. T. (1977). Exact Stochastic Simulation of Coupled Chemical Reactions. The 

Journal of Physical Chemistry, 81(1), 2340–2361. Retrieved from 

https://www.ncbi.nlm.nih.gov/pubmed/17411109 

Gillespie, D. T. (1992a). A rigorous derivation of the chemical master equation. Physica A: 

Statistical Mechanics and Its Applications, 188(1–3), 404–425. 

https://doi.org/10.1016/0378-4371(92)90283-V 

Gillespie, D. T. (1992b). Markov Processes - An Introduction for Physical Scientists. 

Elsevier. https://doi.org/10.1016/C2009-0-22215-X 

Gillespie, D. T. (2001). Approximate accelerated stochastic simulation of chemically reacting 

systems. The Journal of Chemical Physics, 115(4), 1716–1733. 

https://doi.org/10.1063/1.1378322 

Godon, C., Lagniel, G., Lee, J., Buhler, J. M., Kieffer, S., Perrot, M., … Labarre, J. (1998). 

The H2O2 stimulon in Saccharomyces cerevisiae. The Journal of Biological Chemistry, 



323 

 

273(35), 22480–22489. https://doi.org/10.1074/jbc.273.35.22480 

Goutsias, J., & Jenkinson, G. (2013). Markovian dynamics on complex reaction networks. 

Physics Reports, 21218(2), 199–264. https://doi.org/10.1016/j.physrep.2013.03.004 

Gursoy, B. B., Kirkland, S., Mason, O., & Sergeev, S. (2012). On the markov chain tree 

theorem in the max algebra. Electronic Journal of Linear Algebra, 26(12), 15–27. 

https://doi.org/10.13001/1081-3810.1636 

Harrison, R. L., Granja, C., & Leroy, C. (2010). Introduction to Monte Carlo Simulation (pp. 

17–21). https://doi.org/10.1063/1.3295638 

Haseltine, E. L., & Rawlings, J. B. (2002). Approximate simulation of coupled fast and slow 

reactions for stochastic chemical kinetics. The Journal of Chemical Physics, 117(15), 

6959–6969. https://doi.org/10.1063/1.1505860 

Helin, K. (1998). Regulation of cell proliferation by the E2F transcription factors. Current 

Opinion in Genetics & Development, 8(1), 28–35. https://doi.org/10.1016/S0959-

437X(98)80058-0 

Hiebert, S. W., Chellappan, S. P., Horowitz, J. M., & Nevins, J. R. (1992). The interaction of 

RB with E2F coincides with an inhibition of the transcriptional activity of E2F. Genes & 

Development, 6(2), 177–185. https://doi.org/10.1101/gad.6.2.177 

Hogervorst, E., Bandelow, S., Combrinck, M., Irani, S. R., & Smith, A. D. (2003). The 

Validity and Reliability of 6 Sets of Clinical Criteria to Classify Alzheimer’s Disease 

and Vascular Dementia in Cases Confirmed Post-Mortem: Added Value of a Decision 

Tree Approach. Dementia and Geriatric Cognitive Disorders, 16(3), 170–180. 

https://doi.org/10.1159/000071006 

HUY D. VO. (2017). Krylov approximation and model reduction methods for solving the 

Chemical Master Equation. The University of Alabama. 

Ikeda, M. A., Jakoi, L., & Nevins, J. R. (1996). A unique role for the Rb protein in controlling 

E2F accumulation during cell growth and differentiation. Proceedings of the National 

Academy of Sciences, 93(8), 3215–3220. https://doi.org/10.1073/pnas.93.8.3215 

Iliakis, G., Wang, Y., Guan, J., & Wang, H. (2003). DNA damage checkpoint control in cells 

exposed to ionizing radiation. Oncogene, 22(37 REV. ISS. 3), 5834–5847. 

https://doi.org/10.1038/sj.onc.1206682 

Iwamoto, K., Tashima, Y., Hamada, H., Eguchi, Y., & Okamoto, M. (2008). Mathematical 

modeling and sensitivity analysis of G1/S phase in the cell cycle including the DNA-

damage signal transduction pathway. Biosystems, 94(1–2), 109–117. 

https://doi.org/10.1016/j.biosystems.2008.05.016 

Jagers, P. (1991). The Growth and Stabilization of Populations. Statistical Science, 6(3), 269–

274. https://doi.org/10.1214/ss/1177011694 

Jones, M. T. (2005). Estimating Markov Transition Matrices Using Proportions Data: An 

Application to Credit Risk. IMF Working Papers, 05(219), 1. 

https://doi.org/10.5089/9781451862386.001 

Kabir, M. A., Hussain, M. A., & Ahmad, Z. (2012). Candida albicans : A Model Organism for 

Studying Fungal Pathogens. ISRN Microbiology, 2012, 1–15. 

https://doi.org/10.5402/2012/538694 

Kaloriti, D., Tillmann, A., Cook, E., Jacobsen, M., You, T., Lenardon, M., … Brown, A. J. P. 

(2012). Combinatorial stresses kill pathogenic Candida species. Medical Mycology, 

50(7), 699–709. https://doi.org/10.3109/13693786.2012.672770 

Kholodenko, B. N. (2000). Negative feedback and ultrasensitivity can bring about oscillations 

in the mitogen-activated protein kinase cascades. European Journal of Biochemistry, 

267(6), 1583–1588. https://doi.org/10.1046/j.1432-1327.2000.01197.x 

Komalapriya, C., Kaloriti, D., Tillmann, A. T., Yin, Z., Herrero-de-Dios, C., Jacobsen, M. D., 

… Romano, M. C. (2015). Integrative Model of Oxidative Stress Adaptation in the 

Fungal Pathogen Candida albicans. PLOS ONE, 10(9), e0137750. 

https://doi.org/10.1371/journal.pone.0137750 



324 

 

Korf, R. E. (1985). Depth-first iterative-deepening. An optimal admissible tree search. 

Artificial Intelligence, 27(1), 97–109. https://doi.org/10.1016/0004-3702(85)90084-0 

Korf, R. E. (1996). Artificial Intelligence Search Algorithms. In Algorithms and Theory of 

Computation Handbook. 

Koza, Z., Matyka, M., Szkoda, S., & Mirosław, Ł. (2012). Compressed Multi-Row Storage 

Format for Sparse Matrices on Graphics Processing Units, 1–26. 

https://doi.org/10.1137/120900216 

Kubbutat, M. H. G., Jones, S. N., & Vousden, K. H. (1997). Regulation of p53 stability by 

Mdm2. Nature, 387(6630), 299–303. https://doi.org/10.1038/387299a0 

Lahav, G., Rosenfeld, N., Sigal, A., Geva-Zatorsky, N., Levine, A. J., Elowitz, M. B., & 

Alon, U. (2004). Dynamics of the p53-Mdm2 feedback loop in individual cells. Nature 

Genetics, 36(2), 147–150. https://doi.org/10.1038/ng1293 

Lawlor, O. S. (2013). In-memory Data Compression for Sparse Matrices. Proceedings of the 

3rd Workshop on Irregular Applications: Architectures and Algorithms, (December), 

6:1--6:6. https://doi.org/10.1145/2535753.2535758 

Lee, J., Godon, C., Lagniel, G., Spector, D., Garin, J., Labarre, J., & Toledano, M. B. (1999). 

Yap1 and Skn7 control two specialized oxidative stress response regulons in yeast. The 

Journal of Biological Chemistry, 274(23), 16040–16046. 

https://doi.org/10.1074/jbc.274.23.16040 

Leone, G., DeGregori, J., Jakoi, L., Cook, J. G., & Nevins, J. R. (1999). Collaborative role of 

E2F transcriptional activity and G1 cyclindependent kinase activity in the induction of S 

phase. Proceedings of the National Academy of Sciences, 96(12), 6626–6631. 

https://doi.org/10.1073/pnas.96.12.6626 

Li, G., & Ho, V. C. (1998). p53-dependent DNA repair and apoptosis respond differently to 

high- and low-dose ultraviolet radiation. The British Journal of Dermatology, 139(1), 3–

10. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/9764141 

Ling, H., Kulasiri, D., & Samarasinghe, S. (2010). Robustness of G1/S checkpoint pathways 

in cell cycle regulation based on probability of DNA-damaged cells passing as healthy 

cells. BioSystems, 101(3), 213–221. https://doi.org/10.1016/j.biosystems.2010.07.005 

Ling, Hong. (2011). Investigation of Robustness and Dynamic Behaviour of G1/S 

Checkpoint/DNA-damage Signal Transduction Pathway based on Mathematical 

Modelling and a Novel Neural Network Approach. Thesis. PhD Thesis. Lincoln 

University. 

MacNamara, S., Bersani, A. M., Burrage, K., & Sidje, R. B. (2008). Stochastic chemical 

kinetics and the total quasi-steady-state assumption: Application to the stochastic 

simulation algorithm and chemical master equation. Journal of Chemical Physics, 

129(9). https://doi.org/10.1063/1.2971036 

Manoukian, E. B. (1986). Modern Concepts and Theorems of Mathematical Statistics. New 

York, NY: Springer New York. https://doi.org/10.1007/978-1-4612-4856-9 

Mastny, E. A., Haseltine, E. L., & Rawlings, J. B. (2007). Two classes of quasi-steady-state 

model reductions for stochastic kinetics. The Journal of Chemical Physics, 127(9), 

094106. https://doi.org/10.1063/1.2764480 

McQuarrie, D. A. (1967). Stochastic approach to chemical kinetics. Journal of Applied 

Probability, 4(3), 413–478. https://doi.org/10.2307/3212214 

Mikeev, L., Sandmann, W., & Wolf, V. (2013). Numerical approximation of rare event 

probabilities in biochemically reacting systems. Lecture Notes in Computer Science 

(Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in 

Bioinformatics), 8130 LNBI, 5–18. https://doi.org/10.1007/978-3-642-40708-6_2 

Moler, C., & Van Loan, C. (2003). Nineteen dubious ways to compute the exponential of a 

matrix, twenty-five years later. SIAM Review, 45(1), 3–49. 

https://doi.org/10.1137/S00361445024180 

Mouroutsos, S. G., & Sparis, P. D. (1985). Taylor series approach to system identification, 



325 

 

analysis and optimal control. Journal of the Franklin Institute, 319(3), 359–371. 

https://doi.org/10.1016/0016-0032(85)90056-0 

Munsky, B., & Khammash, M. (2006). The finite state projection algorithm for the solution of 

the chemical master equation. Journal of Chemical Physics, 124(4), 1–13. 

https://doi.org/10.1063/1.2145882 

Munsky, B., & Khammash, M. (2007). A multiple time interval finite state projection 

algorithm for the solution to the chemical master equation. Journal of Computational 

Physics, 226(1), 818–835. https://doi.org/10.1016/j.jcp.2007.05.016 

Munsky, B., Trinh, B., & Khammash, M. (2009). Listening to the noise: random fluctuations 

reveal gene network parameters. Molecular Systems Biology, 5(1), 318. 

https://doi.org/10.1038/msb.2009.75 

Murray, J. M., Fanning, G. C., Macpherson, J. L., Evans, L. A., Pond, S. M., & Symonds, G. 

P. (2009). Mathematical modelling of the impact of haematopoietic stem cell-delivered 

gene therapy for HIV. The Journal of Gene Medicine, 11(12), 1077–1086. 

https://doi.org/10.1002/jgm.1401 

Nasar, A. A. (2016). The history of Algorithmic complexity. The Mathematics Enthusiast, 

13(3), 217–242. Retrieved from 

http://proxy1.ncu.edu/login?url=http://search.ebscohost.com/login.aspx?direct=true&db=

a9h&AN=119320485&site=eds-live 

Nelson, P. C., & Toptsis, A. A. (1992). Unidirectional and bidirectional search algorithms. 

IEEE Software, 9(2), 77–83. https://doi.org/10.1109/52.120605 

Novozhilov, A. S., Karev, G. P., & Koonin, E. V. (2006). Biological applications of the 

theory of birth-and-death processes. Briefings in Bioinformatics, 7(1), 70–85. 

https://doi.org/10.1093/bib/bbk006 

Ozer, M., Uzuntarla, M., Perc, M., & Graham, L. J. (2009). Spike latency and jitter of 

neuronal membrane patches with stochastic Hodgkin–Huxley channels. Journal of 

Theoretical Biology, 261(1), 83–92. https://doi.org/10.1016/j.jtbi.2009.07.006 

Padgett, J. M. A., & Ilie, S. (2016). An adaptive tau-leaping method for stochastic simulations 

of reaction-diffusion systems. AIP Advances, 6(3). https://doi.org/10.1063/1.4944952 

Rinnerthaler, M., Büttner, S., Laun, P., Heeren, G., Felder, T. K., Klinger, H., … Breitenbach, 

M. (2012). Yno1p/Aim14p, a NADPH-oxidase ortholog, controls extramitochondrial 

reactive oxygen species generation, apoptosis, and actin cable formation in yeast. 

Proceedings of the National Academy of Sciences of the United States of America, 

109(22), 8658–8663. https://doi.org/10.1073/pnas.1201629109 

Roberts, R. M., Cleland, T. J., Gray, P. C., & Ambrosiano, J. J. (2004). Hidden Markov 

Model for Competitive Binding and Chain Elongation. The Journal of Physical 

Chemistry B, 108(20), 6228–6232. https://doi.org/10.1021/jp036941q 

Rudowsky, I. (2004). Intelligent agents. Communications of the Association for Information 

Systems, 14(August), 275–290. https://doi.org/10.1016/j.compbiomed.2006.06.016 

Santillán, M. (2008). On the Use of the Hill Functions in Mathematical Models of Gene 

Regulatory Networks. Mathematical Modelling of Natural Phenomena, 3(2), 85–97. 

https://doi.org/10.1051/mmnp:2008056 

Schaber, J., Baltanas, R., Bush, A., Klipp, E., & Colman-Lerner, A. (2012). Modelling reveals 

novel roles of two parallel signalling pathways and homeostatic feedbacks in yeast. 

Molecular Systems Biology, 8, 622. https://doi.org/10.1038/msb.2012.53 

Schlecht, V. (2014). How to predict preferences for new items. Investment Management and 

Financial Innovations, 5(4), 7–24. https://doi.org/10.1287 

Schulze, J., & Sonnenborn, U. (2009). Yeasts in the Gut. Deutsches Aerzteblatt Online. 

https://doi.org/10.3238/arztebl.2009.0837 

Shepherd, D. P., Li, N., Micheva-Viteva, S. N., Munsky, B., Hong-Geller, E., & Werner, J. H. 

(2013). Counting Small RNA in Pathogenic Bacteria. Analytical Chemistry, 85(10), 

4938–4943. https://doi.org/10.1021/ac303792p 



326 

 

Sidje, R. B., & Vo, H. D. (2015). Solving the chemical master equation by a fast adaptive 

finite state projection based on the stochastic simulation algorithm. Mathematical 

Biosciences, 269, 10–16. https://doi.org/10.1016/j.mbs.2015.08.010 

Sunkara, V. (2013). Analysis and Numerics of the Chemical Master Equation, 1–134. 

Retrieved from http://www.math.kit.edu/ianm3/~sunkara/media/thesis_sunkara.pdf 

Sunkara, V., & Hegland, M. (2010). An optimal finite state projection method. Procedia 

Computer Science, 1(1), 1579–1586. https://doi.org/10.1016/j.procs.2010.04.177 

Tian, T., & Burrage, K. (2004). Binomial leap methods for simulating stochastic chemical 

kinetics. The Journal of Chemical Physics, 121(21), 10356–10364. 

https://doi.org/10.1063/1.1810475 

Weber, R. (2012). Markov Chains. Statslab.Cam.Ac.Uk, 28–49. 

https://doi.org/10.1017/CCOL0521534283.010 

Weinan, E., Liu, D., & Vanden-Eijnden, E. (2007). Nested stochastic simulation algorithms 

for chemical kinetic systems with multiple time scales. Journal of Computational 

Physics, 221(1), 158–180. https://doi.org/10.1016/j.jcp.2006.06.019 

Woeginger, G. J. (2004). Space and Time Complexity of Exact Algorithms: Some Open 

Problems (Invited Talk). Iwpec, 281–290. 

Wolf, V., Goel, R., Mateescu, M., & Henzinger, T. (2010). Solving the chemical master 

equation using sliding windows. BMC Systems Biology, 4(1), 42. 

https://doi.org/10.1186/1752-0509-4-42 

 


