
An Emergent Economics of Ecosystem Management 
Paper Presented at the New Zealand Agricultural and Resource Economics Society 

Conference 24-25 August 2006 
 

By Edward J. S. Hearnshaw1, R. Cullen2 and K. F. D. Hughey3

1Student, Commerce Division, Lincoln University 
2Professor of Resource Economics, Commerce Division, Lincoln University 

3Professor of Environmental Management, ESD Division, Lincoln University 
 

 
Abstract: Economics is an evolving and emerging filed of study, so is the management 
of ecosystems. As such, this paper delineates the co-evolution of economic evaluation 
that reflects the various recognized ecosystem management approaches of anticipative, 
adaptive and capacitive ecosystem management. Each management approach is 
critiqued and from this theoretical analysis an emergent approach for the management of 
ecosystem is put forward, which accordingly suggests an alternative methodological 
approach for economic evaluations.  
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1.0 Introduction 
We begin our understanding of ecosystems with a critical ecological insight; the 
development of ecosystems cannot be appropriately modeled in a linear manner, as 
depicted by overly mechanistic ‘succession-to-climax’ ecological models in which a 
global equilibrium prevails. Rather, we must utilize non-linear models for our 
understanding of the development of ecosystems, whereby multiple equilibria exist 
signifying that systems are not globally stable, but only locally so (see Figure 1).  
 

Figure 1: A simple graphical representation in discrete time of a dynamic non-linear 
model. The system is shown to have multiple equilibria demarked by x1, x2 and x3.  
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Importantly, this phenomenon of multiple equilibria is not simply a mathematical 
artifact as might be insinuated from Figure 1, as there exists an ever-growing array of 
empirical evidence depicting naturally occurring multiple equilibria (i.e. multiple system 
states) and transitions among them (e.g. Walker et al., 1981; Estes & Duggins, 1995; 
Perrings & Walker, 1995; Walker et al., 1997; Nyström et al., 2000; Carpenter, 2001; 
Gunderson, 2001; Scheffer et al., 2001; Walters & Kitchell, 2001; Danell et al., 2002; 
Peterson, 2002; Post et al., 2002).  
 
Now, given that multiple system states exist that are only ever locally stable, it 
immediately begs the question, as to which system state should actually be selected and 
managed for by the resource manager. Presumably, ecologists would contend that this 
problem is ‘elementary’ in that the most appropriate system state to select and manage 
for is that which is ecologically ‘superior’ to alternative systems states, by way of its 
keystone species, or its ecological stability, biodiversity, or maybe its ecological 
ascendancy (see Nielsen & Ulanowicz, 2000). However, previously, we have concluded 
that it is not possible to determine which system state is in fact ecologically superior 
(Hearnshaw et al., 2005). That is, categorical statements about a system state for a 
particular ecosystem cannot be determined by a value-free desire for a strictly ecological 
and ‘objective’ demarcation of the appropriate system state (Regier, 1993; Kay & 
Regier, 2000). As such, if scientific demarcations are not useful, then it would seem that 
the most suitable means of determining the appropriate system state for management is 
via economic evaluation. Selection of the managed system state, then, would be 
deciphered by its generation of utility, determined by the multi-attribute bundle of 
ecosystem goods and services that the system state supplies to society. Needless to say, 
economic systems are intimately linked with ecosystems, as society depends on its 
goods and services for its well-being and prosperity.  
 
But, of course, what remains is determining the most suitable approach for ecosystem 
management in deciphering the most desirable system state. In deciphering this 
ecosystem management approach, the reader is pre-empted for what might seem an 
undue deliberation of the very methodological foundations of economic evaluation itself. 
But, these issues found in these economic depths are of profound importance for the 
management of ecosystems, as ecosystems that resource managers administer provide 
the ‘economic-ecologic link’ to form what ecosystem management is genuinely founded 
upon.  
 
2.0 Anticipative Ecosystem Management  
The underlying premise of the one-time orthodox approach to the management of 
ecosystems, ‘anticipative ecosystem management’ (henceforth termed by acronym as 
ANEM), is that the resource manager, can anticipate or predict a priori the future system 
states of the ecosystem (Meffe et al., 1996). Accordingly, with the ability to predict the 
future, ANEM is said to be able to decipher by means of evaluation the most desirable 
system state, that which maximizes utility. 
 
Significantly, readers of economic literature would recognize that the predictive nature 
of ANEM is well modeled in economic expressions by neoclassical economic theory, 
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because like ANEM, neoclassical economics holds close the ‘Laplacean aspiration’ that 
the future can be predicted ‘categorically’. With such definitive convictions of predictive 
power, ex ante economic evaluations by neoclassical economics, and therefore ANEM, is 
said to deduce the optimal system state by equilibrium analysis, a method whereby the 
optimum where utility is maximized is determined with the ‘analytical equilibrium 
construct’.  
 
In its static form, analytical equilibrium is simply the determination of outcomes from 
‘timeless’ interactions of economic forces, whereby equilibrium acts as an ever-
motionless ‘stationary state’. Early theoretical economic work in deciphering the optimal 
management of ecosystems in such a manner was performed through static equilibrium 
analysis, most famously portrayed by Gordon (1954) on problems of ‘renewable 
resource harvesting’. However, with the advancement of economic theory, accounting 
for temporality and dynamism in the economic analysis of ecosystem management has 
since been analysed by Hamiltonian analysis and logical time, which effectively sees 
time as an ‘analytical clock’, so that solutions are run instantaneously through until 
optimality is established as if time were reversible (see Clark, 1973; 1990; Dasgupta & 
Heal, 1979; Krautkramer, 1985). Significantly, with dynamic analysis, equilibrium is 
identified by the ‘steady state’, so that configurations can be viewed as converging 
directly towards the equilibrium construct.  
 
For economic evaluations, however, economic analysis by logical time cannot be 
utilized. Instead, economic evaluations are made in the present under time conditions 
known as ‘historical time’, where time just goes on and on and never back. It is 
economic common sense, that the optimal rule of evaluation by equilibrium analysis is 
expected utility theory. Briefly, expected utility theory states that the resource manager 
‘chooses’ between ‘uncertain’ system states by evaluating their expected utilities, that is, 
their weighted sums obtained by adding the utility values of system states multiplied by 
their associated probabilities. Hence, the resource manager is assumed to have: one, a 
complete record of the exhaustive set of system states; two, the understanding to 
compute uncertainty as ‘risk’ by way of knowing state probabilities a priori; and three, 
the correct and identical beliefs about the utilities of each system state (Machina, 1987; 
Katzner, 1998).  
 
Of significance, the underlying epistemology of equilibrium analysis is ‘Cartesian 
rationalism’, which is a necessary position if the resource manager is to determine 
probabilities a priori, so that the optimal system state can be deciphered from deduction 
alone by various unwavering axioms of rational economic behaviour. Hence, from these 
very axioms the resource manager is said to be globally rational, endowed with 
boundless cognitive computational capabilities. Despite, global rationality the resource 
manager is not assumed to maintain ‘self-fulfilling expectations’, even probabilistically, 
but rather ‘rational expectations’. 
 
Specifically, the hypothesis of rational expectations contends that the expectations of the 
resource manager will be distributed about the prediction of the actual objective 
probability distribution of system states at any moment in time (Muth, 1961; Lucas & 
Prescott, 1971). Thus, the expected forecast error of the resource manager is assumed to 
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be zero. Importantly, correct expectations is the single unifying criterion essential with 
neoclassical economics, as this “appears to be an essential property of [an analytical] 
equilibrium” (Phelps, 1987; p. 177). As such, surprises defined as differences between 
that rationally expected and the actual outcomes are alleged to be the sole result of 
stochastic disturbance events that are exogenous to the ecosystem, which can be 
captured in the variance of the stochastic term ε, often represented as the ‘error term’ in 
the simple equation y = α + βx + ε. Hence, for economic evaluations to account for these 
disturbances, must conjoin expected utility theory with a mean stochastic error function.  
 
2.1 Command-and-Control 
Economic evaluations, it is said involves an explicit distinction between the 
‘epistemological uncertainties’ of the resource manager, which are absent, and 
disturbance events. Therefore, it is presupposed that resource managers have sufficient 
information to understand the model ecosystem. Hence, the managerial implications of 
ANEM can be limited to first, commanding the system to the desired system state, and 
secondly, controlling the disturbance function ε, so that the desired system states is 
managed into perpetuity (see Figure 2).  
 

Figure 2: The ‘command-and-control’ strategy. 
 

 
 
One means for accounting for control of the desired system state is to presume that the 
system state probabilities represent each state’s ecological resilience (Rj ≅ pj), a measure 
of the magnitude of disturbance the system state can absorb without transitioning to an 
alternative system state (Holling, 1973; 1986; Holling et al., 1995) (see Figure 3).  
 

Figure 3: ‘Stability profile’ depicting ecological resilience. The width of the system 
state ‘cup’ dictates the magnitude of the state’s resilience. 
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It is possible at this point to represent this simple ‘command-and-control’ problem 
formulaically. Indeed, let us assume that the ecological resilience Rj of the present 
system state j, requires a managerial shock εm commanded from equilibrium analysis to 
make a state transition to the desired system state k. Thus, the magnitude of εm needs to 
be greater than Rj. Once the transition is complete the system is controlled so that if a 
stochastic disturbance ε is greater than Rk, then further managerial input εm is made to 
make the transition back into the desired system state k, so as to allow the continuation 
of the system state k and hence, the maintenance of utility maximisation.  
 
2.2 Information and Bounded Rationality 
Despite its elegance the rational expectations hypothesis has come under much criticism. 
Specific criticism concerns that if the disturbance function ε was zero, then rational 
expectations would be no different to self-fulfilling expectations. Certainly, Poole (1976; 
p. 504) came to this assessment, when he surmised that: 

 “…rational expectations theory might be regarded … as only slightly amending [defunct] perfect 
certainty models. One needs only to substitute the assumption of perfect knowledge of probability 
distributions for the assumption of perfect knowledge of outcomes”.  

 
Nevertheless, rational expectations need not be criticized for its untenable claims as to 
the ‘knowability of the future’ only. As to assume that the epistemology of the resource 
manager to be free of systematic error, requires that the manager is, one, instantaneously 
endowed with a sufficient level of information prior to any acknowledged learning, 
which two, can be absorbed in its entirety. Moreover, rational expectations also makes 
the unsound assertion that information collection, deliberation, and managerial 
transitions εm between system states are not only timeless, but ‘costless’, so that the 
manager need not account for the magnitude of the gain in expected utility. Any gain, no 
matter how infinitesimal is considered worth having.  
 
Not surprisingly, the extremeness of the assumptions of rational expectations have not 
been vindicated empirically, as there is a large body of evidence that indicates that 
rational expectations and the axioms of global rationality are in direct disagreement to 
how actual economic agents actually behave when left to their own economic devices 
(Allais, 1953; Abbot, 1955; Lichtenstein & Slovic, 1971; 1973; Tversky & Kahneman, 
1971; Kahneman & Tversky, 1973; 1979; 1982; Kahneman et al., 1982; 1990; Machina, 
1982; 1987; Smith et al., 1988; Thaler, 1992; 1994; Ramon et al., 1993; Hey, 1994; 
Bateman et al., 1997; Gintis, 2000). From this of empirical evidence, Starmer (1999; p. 
F8) concludes that:  

“One thing we have learned … is that [expected utility theory] is descriptively false. Mountains of 
experimental evidence reveal systematic violations of the axioms of [expected utility theory], and the 
more we look, the more we find”. 

 
The numerous empirical violations of expected utility theory have led to the emergence 
of several ‘modified theories of expected utility’, such as Loomes and Sugden’s (1982) 
‘regret theory’, and ‘prospect theory’ developed by Kahneman and Tversky (1979). 
However, while these modifications are improvements, these attempts have not gone far 
enough. For while these modified theories appear to be consistent with empirical 
behaviour, this is only when the resource manager is already given the necessary 
information on the probabilities with which to choose the appropriate system state in the 
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economic evaluation. In fact, it is this very problem of ‘information’ that seems to be an 
underlying problem with equilibrium analysis. After all, for the axioms of global 
rationality to hold true the resource manager must be able to know and process all 
relevant information. 
 
It seems that unlike theories developed in the natural sciences, where the underlying 
assumptions are developed from empirical evidence of the phenomena, the underlying 
assumptions of equilibrium analysis is founded on what seems to be contradicted by 
empirical evidence. Indeed, deductive economic analysis with a rationalist epistemology 
sets such a large requirement for notions of perfect information and knowledge that it is 
an impossible requirement for any realistic notion of what could be expected of the 
resource manager.  
 
What is more, when rationality is axiomatized, choice is illusory and reduced to an 
instantaneous operation of deduction. The main limitation is that deductive inferences do 
not allow the resource manager the real ability to learn because all logical arguments 
depend on given axioms. As Loasby (1976; p. 5) recognized: “if knowledge is perfect, 
and the logic of choice complete and compelling, then choice disappears; nothing is left 
but stimulus and response”. Nevertheless, if choice is to be considered ‘real’ in an 
economic evaluation, then knowledge must not be complete (Lawson, 1997; Loasby, 
1999). Quite simply, the failure of equilibrium analysis is that it has not engendered a 
plausible account of economic agency (Georgescu-Roegen, 1971).  
 
Of course, these failures of global rationality were first fully expressed by Simon (1955; 
1959) who in doing so exposed the ‘cognitive dimension’ of the economic agent, and by 
implication the unrealistic notion of utility maximization. There is a reason as to why 
global rationality breaks down for economic evaluations involving ecosystems, as 
beyond a certain level of information the computational capacity of economic agents 
ceases to cope. In the presence of this so-called ‘computational complexity’, it is 
extremely difficult to calculate optimal solutions (see Leijonhufvud, 1993). Indeed, 
Simon (1988; p. 71) further stipulates that: 

“A theory of rationality that does not give an account of problem solving in the face of complexity is 
sadly incomplete. It is worse than incomplete; it can be seriously misleading by providing ‘solutions’ 
to economic questions that are without operational significance”.  

 
We can surmise that equilibrium analysis might be able to generate optimal solutions 
where the problem evaluated is so profoundly simple, that the information requirements 
and deliberation time in the economic evaluation are truly minimal (Dasgupta & Heal, 
1974; Dasgupta, 1982; Clark, 1990). Needless to say, but these simplistic problems are 
not observed with ecosystems, which require a significant abundance of information in 
their modeling, so that if ANEM were implemented for ecosystem management the 
potential for gross systematic error is significant.  
 
Indeed, in requiring simplicity in the ecosystem investigated so as to command-and-
control these systems, resource managers have sought to simplify them by stabilizing 
ecosystem outputs, reducing system state alternatives, minimizing disturbance events 
and sustaining utility patterns (Ludwig et al., 1993; Holling & Meffe, 1996; Carpenter & 
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Gunderson, 2001). These attempts to simplify ecosystems have inevitably led to 
compromising the capacity of ecosystems to buffer disturbances because of the 
reduction in diversity within the system, ultimately leading to ecological catastrophe 
(Meffe et al., 1996). Holling and Meffe (1996; p. 329) conclude that: 

“The command-and-control approach, when extended uncritically to the treatment of [ecosystems], 
often results in unforeseen and undesirable consequences. A frequent, perhaps universal result of 
command-and-control… is reduction of the range of natural variation of systems [i.e. biodiversity] – 
their structure, function, or both – in an attempt to increase their predictability” (Holling & Meffe, 
1996; p. 329).  

 
Despite these difficulties, we have an alternative to global rationality in the form of 
‘bounded rationality’, which is not to be confused with irrationality (March, 1994), but 
rather contends that economic behaviour is “intendedly rational but only limitedly so” 
(Simon, 1961; p. xxiv). Specifically, bounded rationality explicitly recognizes the 
cognitive constraints on the resource manager during the process of economic 
evaluation. These constraints on the capabilities of the manager are according to Simon 
(1955; 1959), the result of inadequately being able to process sufficient information, 
which thus places bounds on the resource manager’s capabilities to know the extent of 
their alternatives.  
 
2.3 Learning and Heuristics 
In light of our present limits to our epistemological understanding of nature, we must 
improve the basis of our knowledge and information of ecosystems by focusing on 
learning. Learning arises from immediate experience, which requires a different mode of 
inference from that of deduction. After all, why should one be required to learn if one is 
already assumed to have perfect knowledge? Seeing as learning must begin from where 
we are in a descriptive sense, our learning processes is best exemplified through the 
logic of induction developed by the epistemology of ‘Cartesian empiricism’, the other 
side of the Cartesian coin. Thus, with inductive inferences, we infer in the opposite 
manner to deduction, that is, we infer from particular experiences and move towards 
more general claims.  
 
Nonetheless, with equilibrium analysis seemingly rejected because of our bound 
rationality, where does one begin with induction? After all, with the application of 
deductive inference, which requires the fixity of its axioms, neoclassical economists 
have neglected the means that gave rise to optimal rules of evaluation, such as expected 
utility theory (Foster, 2004). That is, resource managers are not just to ‘choose’ the 
system state, but must also ‘choose how to choose’. So, learning and bounded rationality 
are not simply about information, but rather first and foremost it is about the 
determination of a means for processing and analysing information, which is indecently 
what knowledge actually is. However, with equilibrium analysis, knowledge is 
considered perfect and is assumed to be of the same nature as information. But, when 
bounded rationality is properly acknowledged, knowledge and information become quite 
distinct projects.  
 
For these reasons, at least at the initial stages of learning, one must begin by simply 
choosing a system state by trial-and-error. However, over time, as learning persists it is 
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assumed that more utilizable general statements about the means of choosing can be 
deciphered (Staddon & Simmelhag, 1971; Einhorn, 1982). These generalizations 
develop in the form of heuristics, that is, ‘fast and frugal evaluation rules’, which are 
held on too, until new knowledge is obtained and better heuristics are devised in this 
evolutionary process of learning (Arthur, 1994). However, it is noteworthy that there 
must be heuristics behind heuristics, so to speak, as while inductive inference brings 
together many observations from which a generalized pattern can be made, it is first 
required that the economic agent in order to obtain the pattern, must be able to recognize 
that a pattern exists. Thus, data never induces generalizations, only the economic agent 
does, whether cognizant or not.  
 
Of further importance, the evaluation mechanisms to which heuristics for economic 
evaluation hold are not governed by methods of optimization, but seem to be by Simon’s 
(1955) ‘satisficing hypothesis’, whereby evaluations are performed by momentary and 
presumably rudimentary information searches, rather than through an expansive and 
fully cognizant analysis (Tversky & Kahneman, 1974; Gigerenzer et al., 1999; 
Gigerenzer & Selten, 2001). Moreover, given that heuristics evolve inductively from 
particularities, it suggests that heuristics while knowledge-increasing are extremely 
context dependent and thus, unlikely to provide a lot of generalizability for evaluating an 
array of ecosystems (Lichtenstein & Slovic, 1971; Tversky & Kahneman, 1980). 
Consequently, heuristics would seem like an unwise methodology for ecosystem 
management, because their inherently low cognitive control and low processing 
awareness would result in ongoing biases resulting in the maintenance of systematic 
error (Kahneman et al., 1982; Hammond et al., 1987; Kahneman, 2000).  
 
Significantly and somewhat surprisingly, both critics and advocates of global rationality 
and optimal rules of evaluation whereby trajectories lead unwaveringly towards 
equilibrium, agree on the empirical evidence observed and the subsequent descriptive 
utilization of heuristics. But, whereas critics see this as overwhelming evidence that 
utility maximization and equilibrium analysis is flawed, advocates of equilibrium 
analysis interpret these findings quite differently. As a matter of fact, advocates believe 
that this empirical evidence is the most convincing rationalization for utilizing 
equilibrium analysis, as where such analysis is not used the resource manager will 
evaluate poorly by way of heuristics. Therefore, equilibrium analysis allows the resource 
manager to evaluate in a globally rational manner, rather than wallow simply in 
descriptive empiricism (Dyer et al., 1990). Hence, with knowledge of both modeling by 
optimal rules of evaluation available (which needless to say, are also inductively inferred 
in the sense of inducing the deciphering the best mathematical models, so as to be used 
in a deductive fashion), it thus seems appropriate to utilize these methods of economic 
evaluation so as to progress towards optimality (Baron, 2000). In doing so, we relieve 
ourselves of the problems of knowledge and can focus on the problems of information 
alone. 
 
Methods that potentially lead to improvement in economic evaluation from descriptive 
evaluation rules to normative optimal rules of evaluation are called prescriptive 
methods. Hence, while normative evaluations tell us how the resource manager ought to 
behave and descriptive evaluations tell us how the resource manager actually behaves; it 
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is prescriptive evaluations which tell us how the resource manager can significantly 
improve their process of economic evaluation. Thus, despite the presence of gross 
violations of expected utility theory and the fact that economic agents do not actually 
think in the terms of probabilities, this does not invalidate the methodology of its 
prescriptive possibilities, but only of its descriptive potential (Kahneman & Tversky, 
1972; 1978; Manski, 2004). Indeed, Friedman (1953) once argued that assumptions of 
global rationality should not be taken literally, because economic agents should behave 
‘as-if’ they were globally rational, so as to make better economic evaluations. Thus, we 
should not reject the use of expected utility theory as long as we recognize that 
economic agents do not actually follow these axioms of rational economic behaviour, 
but can merely act as-if they have in a prescriptive sense.  
 
3.0 Adaptive Ecosystem Management  
Whilst learning to some degree will almost always occur, it is the proposition of a 
method that is truly cognizant, prescriptive and analytical to its process of learning that 
is often considered the ‘panacea’ to problems of ecosystem management. It is this 
differentiable process of learning then that brings into being a meaningfully different 
approach to ecosystem management, coined ‘adaptive ecosystem management’ (ADEM) 
(Holling, 1978; Walters, 1986).  
 
Naturally, ADEM accepts uncertainty generated from bounded rationality, and thus 
treats management failure and surprises as ‘opportunities for learning’ through a need 
for further discovery (Dempster, 1997; Stankey & Shindler, 1997). This is of course in 
stark contrast to ANEM, which focuses solely on procedures of efficient allocation and 
envisages any deviations from that expected as random anomalies from disturbance 
events. Hence, rather than using existing information, which is assumed wishfully to be 
perfect and complete, so as to predict the optimum system state, ADEM explicitly 
recognizes the existence of systematic error and constraints on information explicitly, 
which while a source of economic inefficiency, can it is believed be resolved through 
this process of analytical learning (Holling, 1978; Walters, 1986). Thus, “in theory, 
[ADEM] recapitulates the promise that Francis Bacon articulated four centuries ago: to 
control nature one must understand her” (Lee, 1999; p. 9).  
 
Accordingly, to learn in an analytical manner, and in turn reduce uncertainty and 
develop theories, we must engage in scientific experimentation by describing 
information in meticulous detail, which over time it is hoped can generate model 
representations (Lee, 1993; Berkes & Folkes, 1998; Walker et al., 2002; Norton, 2005). 
Indeed, models are important where bounded rationality is prevalent, because “the usual 
experience with ecosystem data is that there is not enough to define the biology with any 
confidence, but far too much for a single human mind to assimilate” (Lee, 1993; p. 61).  
Sargent (1993; p. 3) confers these sentiments of scientific experimentation by stating:   

“Rational expectations imposes two requirements on economic models: individual rationality, and 
mutual consistency of perceptions about the environment… I interpret a proposal to build a model 
with boundedly rational agents as a call to retreat from the second piece of rational expectations 
(mutual consistency of perceptions) by expelling rational agents from our model environments and 
replacing them with artificially intelligent agents who behave like ‘econometricians’. These 
econometricians theorize, estimate and adapt in attempting to learn about probability distributions 
which, under rational expectations they already know”. 
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There are two distinguishable strategies of scientific experimentation for model building 
to which ADEM may be undertaken, termed ‘active’ and ‘passive’ ADEM (Holling, 
1978; Walters, 1986). Active ADEM is considered a ‘learning-by-doing’ approach 
whereby the resource manager designs experiments so as to deliberately perturb and 
manipulate the ecosystem in order to decipher its ecological response in accordance with 
the hypothetico-deductive method of research. Briefly, the hypothetico-deductive 
method states that the resource manager is required to test a hypothesis (i.e. a system 
state) indirectly by deriving from it predictions. These predictions are amenable to 
empirical examination, and if the predictions are borne out by the data, then that result is 
taken as a confirming instance of the hypothesis (see Figure 4).  
 
 
 
 
 
 
 
 
 

Figure 4: The hypothetico-deductive method that underpins active ADEM. 
 

 
 
Whilst the hypothetico-deductive method is utilized by active ADEM, it is not the 
precise process of performing scientific experiments as observed in controlled laboratory 
conditions. A critical difference between science and active ADEM modeling is the type 
and degree of ‘risk in interpretation’ that each is willing to accept (Lee, 1993). 
Accordingly, while in science the burden of proof is tilted toward highly reliable 
findings with p values of less than ‘0.05’, this is not the case with active ADEM 
modeling where even p values of less than ‘0.5’ are considered of use (Lee, 1999). After 
all, as Lee (1993; p. 53) rightly states:  

“If the policy succeeds, the hypothesis is affirmed. But if the policy fails, an adaptive design still 
permits learning, so that future [evaluations] can proceed from a better base of understanding”. 
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Passive ADEM, quite unlike active ADEM, is best considered a ‘learning-by-observing’ 
approach because it does not involve any experimental manipulation. Instead, passive 
ADEM maintains its scientific rigour by administering what has been described as 
‘natural experiments’ through careful observation, which enable the resource manager to 
come to fruitful generalizations without intervening directly themselves. Thus, passive 
ADEM is underpinned by a quantitative inductive research method in that it makes 
inferences about the whole ecosystem from the quantitative properties of the sample 
data. 
 
To that end, Holling (1978) proclaims that active ADEM should guide ecosystem 
management because it is likely to provide more reliable results leading to greater levels 
of learning than passive ADEM. This argument is reasonable as to overcome the well-
known problems of induction; we might well focus on ‘Popperian falsification’ by 
utilizing the hypothetico-deductive method. However, in reality which ADEM strategy is 
utilized depends on the economic payoffs involved as there is always trade-offs between 
the ‘costs of deliberation and information’ and ‘precision’ (Pitz & Sachs, 1984; Conlisk, 
1996). Hence, active ADEM which is inherently more costly because of direct 
experimentation (Walters et al., 1993; Lee, 1999), would only be considered an 
economically viable strategy if both the probability of gaining information and the 
expected benefits of the information were deemed substantial (Failing et al., 2004). 
 
Regardless of whether active or passive ADEM is utilized, systematic errors are retained 
in the model building process in either strategy (Fitzgibbons, 1995; Walters, 1997; 
Norton, 1999; 2005). Thus, model building is not a once off process, but is a process of 
continuous iterative learning (see Figure 5), whereby models are built, refined and 
adapted as updated localized information is gleaned from ongoing research (Lempert et 
al., 1996).  
 

Figure 5: The continuous iterative process of learning (Adapted from Margoluis & 
Salafsky, 1998). 

 

 
 
3.1 Ambiguity and Ignorance 
Given the differing strategies of experimentation of active and passive ADEM, it is 
intuitive to envisage that active and passive ADEM are dispositioned for economic 
evaluation towards von Neumann and Morgenstern’s (1944; 1953) expected utility 
theory and Savage’s (1954) subjective expected utility theory, respectively. 
Comprehending these methodological connections is straightforward, as von Neumann 
and Morgenstern expected utility theory like active ADEM assumes that objectively 
determined statistical probabilities or relative frequencies, are determined from random 
sample experiments. Evidently then, learning can occur as the number of experiments 
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are repeated over time, allowing relative frequencies to presumably converge towards 
the limiting relative frequencies of system state space (see Figure 6).  
 

Figure 6: Von Neumann and Morgenstern expected utility theory for active ADEM. 
 

 
 
Similarly, passive ADEM is appropriately modeled by subjective expected utility theory 
because the theory attempts to convey probabilities of system states not in any objective 
sense, but rather by the resource manager’s own subjective plausibility of events 
developed from observation. Hence, these subjective probabilities depict the resource 
manager’s degrees of ‘belief’ of the likelihood of a system state occurring, even when no 
random sampling process of any kind is involved (Savage, 1954). Hence, because 
probabilities are subjective, it is likely that there will be different elicited subjective 
probabilities given by different resource managers for the same system states and 
information available. This phenonmena occurs in part because when resource managers 
are faced with the task of determining subjective probabilities, they employ the quite 
personalized method of heuristics (Tversky & Kahneman, 1973; 1974). Nevertheless, 
despite these differences of subjectivity over time subjective probabilities with 
adjustment and refinement resultant from learning as the number of observations 
increases, in the inductive Bayesian statistics tradition, will it is reasoned see subjective 
probabilities converge onto objective probabilities, if only asymptotically (see Figure 7).  
 
 

Figure 7: Subjective expected utility theory for passive ADEM. 
 

 
 

Fishburn (1970; p. 191) interestingly once described subjective expected utility theory as 
“the most brilliant axiomatic theory of utility ever developed”. Such praise might be 
warranted if one considers that with subjective probabilities, the ‘bane of neoclassical 
economics’, Knight’s (1921) famous division of risk and ambiguity as neoclassical 
economists understand Knightian uncertainty, could once and for all be laid to rest. This 
is because ambiguity (see Ellsberg, 1961), defined as “uncertainty about probability, 
created from missing information that is relevant and could be known” (Camerer & 
Weber, 1992; p. 330), could now be unraveled in that an ill-defined relative frequency 
could instantly be assigned a quantifiable subjective probability instead. Hence, 
subjective probabilities allow ambiguity or the ‘hypothetical risk of risk’, to be collapsed 
back into the mathematically tractable terms of mere risk.  
 
This neoclassical resolution of Knightian uncertainty can be characterized as the 
difference between the actions of ‘prevention’ and ‘precaution’, which are terms of 
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importance to ecosystem management. This is reasoned because subjective probabilities 
permit the ‘precautionary principle’, which states that a lack of full scientific certainty 
should not be used as a reason to postpone ecosystem management, to be quantitatively 
determined. It is this ability to measure the precautionary principle through subjective 
probabilities, which permits not only the use of meaningful economic analysis, but 
prevents a series of seemingly perverse economic consequences from occurring, 
whereby the costs of acting on precautionary measures well exceed the costs of waiting 
until the hypothetical risks of precaution are resolved (Prato, 1998).  
 
However, where no probabilities exist a posteriori, Bayesian statisticians would argue 
that a priori probabilities can still be elicited, despite them being criticized because such 
probabilities often have no scientific standing (Schmeidler, 1989). Fortunately, even 
where ambiguity of the probability distribution of outcomes remains persistent, it is still 
possible to evaluate through the principle of insufficient reason or more effectively 
through the utilization of the ‘safe minimum standard’ (Ciriacy-Wantrap, 1952; 1968). 
Of economic importance, the safe minimum standard replicates the same problems faced 
within the game theoretic ‘minimax’ criterion, which states that the resource manager 
should ‘choose’ the system state that minimizes the maximum loss (Bishop, 1978).  
 
The resource manager under ignorance can nevertheless, despite contravening the 
demands of the precautionary principle, adopt Hick’s (1974) neoclassical interpretation 
of Keynes’s liquidity preference, which contends that it is rational to postpone the 
economic evaluation and the system state adoption until further learning has 
subsequently taken place (Pasinetti, 1981; Kreps, 1988; Abadi-Graham & Pannell, 
2001). For example, let us assume two periods of discrete time, with ignorance in period 
t1, which is resolved in period t2. If the economic evaluation takes place in t1, then public 
funds K is used to manage the system into the preferred system state before the 
resolution of the ignorance, which results in a loss of economic flexibility. However, if 
K is used for the preferred system state in t2, then the resource manager retains the 
flexibility to cope with surprises.  
 
3.2 Adaptive Expectations and Ergodicity 
In acknowledging the foundations of ADEM, we can suggest a model of the expectations 
of the resource manager. In doing this, we immediately can ask some fundamental 
questions. In particular, what are the expectations of those who behave like an 
econometrician, and what would the consequences of the model of expectations be when 
extended to its logical end? Now, to answer these questions we need to recapitulate that 
rational expectations as presumed in ANEM restricts evaluation rules by adopting the 
assumptions of optimization and the consistency of perceptions. However, in descriptive 
environments bounded rationality results in both assumptions being dropped, while in 
the prescriptive environment of ADEM, we need only drop the second assumption, and 
replace it with a model for representing and updating rules of evaluation (Sargent, 1993).  
 
To that end, there have been various attempts to incorporate the expectations of 
econometricians, including the use of computational adaptive algorithms (see Arifovic, 
1994). However, despite this the most prominent approach is the relatively simple 
adaptive expectations hypothesis, which while showing only marginal explanatory 
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success (Lawson, 1994), has some empirical support for it in controlled environments 
(Smith et al., 1988; Ramon et al., 1993; Hey, 1994). 
 
Explicitly, adaptive expectations states that the resource manager’s forecast, should be 
adjusted and revised approximately by the amount proportional to the previous 
evaluation’s observed forecast error. Thus, adaptive expectations maintains that 
forecasts of the probabilities of the set of system states are based on historical 
information, indicating that unlike rational expectations a measure of learning is 
incorporated explicitly. After all, unlike rational expectations, adaptive expectations are 
assumed to be a statistical shadow of past and present signals. Moreover, employing the 
use of historical information makes the adaptive expectations hypothesis structurally 
sound, since epistemologically speaking, forecasts and expectations can only be based 
from actual experience (Palley, 1993).  
 
As we know, the resource manager is prevented from using existing information to fully 
obtain short-term knowledge regarding the probabilities of future system states. 
However, over time as systematic error is reduced because of learning it is envisaged to 
converge onto the ecosystem’s objective probability distribution (see Figure 8). This 
supposed convergence towards objective probabilities is “a kind of foreshadowing of the 
rational expectations theory that assumes an ultimate validity to the concept of objective 
probability” (Rosser, 2001; p. 13).  
 
 
 

Figure 8: ADEM is theorized to lead towards the convergence onto an objective 
probabilities asymptote.  

 

 
 
Whilst some economists remain cautious about claiming support for rational 
expectations on the grounds of learning by adaptive expectations (see Blume & Easley, 
1982; Bray & Kreps, 1987), at least theoretically, it is reasonable to argue that in the 
long-term utility optimization in logical time as found in ANEM could take the place of 
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ADEM. Accordingly, if this were so then, “[ADEM] offers the hope that by learning 
from experience we can reach and maintain a managed equilibrium” (Lee, 1993; p. 58).  
 
One can conclude then that the focus of ADEM is on the process of equilibration towards 
the equilibrium of rational expectations, which may be lengthy because of our bounded 
rationality, while ANEM focuses solely around this equilibrium horizon. As a 
consequence, unlike equilibrium analysis underpinning ANEM, ADEM is best 
underpinned by disequilibrium analysis in that present information is imperfect and 
some of it wrong that modelling may proceed on a non-steady state path. However, over 
time as learning occurs, the steady state path may be revealed allowing for convergence. 
 
The temporary nature of a problematic environment not only exists where learning is 
outwardly present, as with ADEM, but it is theorized by neoclassical economists that 
even where learning is far less cognizant and analytical the same result will follow. 
Indeed, even ‘learning’ based on the random evolutionary mechanisms of Darwinian 
natural selection, such as that found with trial-and-error and descriptive heuristics, will 
presumably in the very long-term also show convergence towards global rationality 
(Todd & Hammerstein, 2001). It seems that natural selection is a powerful optimizing 
force (see Friedman, 1953). For that reason, it is not that ADEM allows the elimination 
of uncertainty that is so advantageous, but rather it is the increased equilibration rate of 
convergence that truly differentiates the approach. The rate of convergence is crucial 
because for optimization to hold, the rate of convergence must be higher than the 
ecological rate of change from disturbance events (Dosi et al., 1999).  
 
An immediate ramification of this convergence onto objective probabilities is that the 
environment must be considered ergodic, because the system is shown to have a unique 
long-term equilibrium independent of initial conditions, hence indicating that even 
where stochasticity is present the system is in fact ‘predetermined’ (Davidson, 1991; 
1996). Hence, ergodicity is not confined simply to those unproblematic deductions made 
by the globally rational resource manager, but include also bounded rationality, as once 
epistemic problems are solved, an unproblematic ergodic environment is revealed 
exhibiting only objective probabilities subject to stochastic variation. This means that all 
change to the system originates exogenous to the system investigated. As a result, 
knowledge of the future involves projecting averages based on past or present 
realizations. The future is merely the statistical reflection of the past. 
 
Importantly, the acceptance of ergodicity is rationalized by neoclassical economists in 
particular, because it allows for the ‘necessity’ of developing economics as a science 
based on certain generalizable laws or event regularities (Samuelson, 1969; Lucas & 
Sargent, 1981; Solow, 1985). In turn, these generalizable laws of nature justify the use 
of equilibrium (and disequilibrium) analysis by allowing its presentation by a single 
formal model that can be subsequently tested by time-series econometrics. Of 
importance, equilibrium analysis is reductionistic, whereby the all variables and 
interactions among them in the models built are assumed to be stable and knowable. It is 
this assumption that provides equilibrium analysis its predictive power in determining 
future system states. Hence, the underlying ontology in this ergodic environment is that 
of ecological atomism, often referred to as methodological individualism, whereby an 
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ecosystem is thus a mere epistemic phenomenon generated from additive upward 
causality of its constituent units (species or even genes). 
 
3.3 Chaos and Complexity 
Probability theory is not the ‘last word’ when modeling uncertainty for economic 
evaluations and analysis irrespective of the claims by neoclassical economists that with 
the advent of subjective probabilities all hurdles involving Knightian uncertainty had 
been laid to rest. However, “it is safe to say that … Knight is more widely quoted than 
read on his eponymous distinction between risk and uncertainty” (Runde, 1998; p. 539).  
 
Importantly, we have stated previously that ecosystems are governed by non-linear 
dynamics. Interestingly, non-linearities modeled in Hamiltonian systems, render a ‘sea 
of chaos’, within its equilibrium construction (see Lorenz, 1993). The presence of so-
called ‘Hamiltonian chaos’ obtained within systems that are computationally complex 
(i.e. first order complexity), indicates that no matter how rational the resource manager 
might be, they cannot have perfect knowledge of the ecosystem, for the same reason that 
Gödel (1931) identified that no axiomatic system of deductive logic can be perfectly 
complete within itself. However, if this finding is not devastating enough to the 
entertainment of rational expectations (see Grandmont, 1985) and ANEM; ecosystems 
cannot be modeled as energy-conserving Hamiltonian systems either, as they are fully 
dissipative systems in accordance with the second law of thermodynamics. Indeed, not 
only must there be a linear and non-linear differentiation in system dynamics, but there 
must also be a thermodynamic differentiation between systems near and far from 
equilibrium. As Nicolis and Prigogine (1989; p.59) put it “without the maintenance of an 
appropriate distance from equilibrium, nonlinearity cannot by itself give rise to multiple 
[system states]”. 
 
The dissipative nature of ecosystems it seems would lead us to rather pessimistic 
conclusions of decay and degradation. However, we observe that decay towards 
thermodynamic equilibrium is in stark contrast to ecosystem development. But, one is 
left wondering how do ecosystems build up and maintain complex structures in the face 
of the second law of thermodynamics? It would appear there is a paradox of nature.  
 
This paradox can be unraveled, nonetheless, because ecosystems are not characterized 
by non-existent or weak and fixed connections between its constituent units, but instead 
by strong, non-linear connections, so that ecosystem behaviour can in no way be 
obtained from simply summing up constituent behaviour (Costanza, 1992; Rastetter et 
al., 1992; Holland, 1998; Kay & Regier, 2000; Potts, 2000a). Thus, while it might be 
reasonable to assemble a mechanical system from its various constituent units, with 
ecosystems its units are so inter-related that they are expressions of the whole system. 
For example, a river is not made from ‘glued’ water and vortices, but rather, the vortex, 
while ‘stable’ is an aspect of the river in its entirety (Peat, 2002).  
 
Now, these connective non-linearities develop emergent higher formed structures 
through a process of self-organization, which progresses the system far-from-
equilibrium, so that the system itself must be considered complex not just 
computationally, but structurally (i.e. second order complexity). The dynamics of self-
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organization is largely a function of internal causality, so that the system is dominated 
by non-Newtonian positive and negative feedback loops. Hence, downward causation is 
real (Kauffman, 2000). Thus, philosophically speaking, decay is avoided, as the dynamic 
stability of an emergent ecosystem is guaranteed by a ‘balance’ between processes of 
dissipation and non-linearity.  
The only analogous concept to that of equilibrium found in structurally complex systems 
is the ‘attractor’, the basin of attraction for which the system self-organizes about within 
the actualized system state. But, the conception of the attractor does away with the 
notion of an equilibrium construct with an ecosystem, because while there are some 
metaphorical similarities, with an attractor there is no structural stability found at these 
conditions.  
 
What we have yet to be fully aware of about complex systems, is that beyond a point of 
self-organized criticality, that is, a threshold value poised at the ‘edge of chaos’ 
(Kauffman, 1993), the organizational connective capacity of the system can be 
overwhelmed and the behaviour of the system becomes highly unstable, whereby the 
system state can ‘endogenously’ leave its present basin of attraction. To appreciate this 
notion of self-organized criticality, another appealing analogy is that of a sand pile, 
which may represent the development of an ecosystem (see Bak et al., 1993; 1996).  
 
Imagine if you will that a thin stream of sand particles is being trickled onto a dish-like 
object, which represents thermodynamic equilibrium. Over time, a sand pile will steadily 
develop as the system moves away from equilibrium. As the sand continues to be 
trickled, a low pile of sand will form, which will gradually get higher and higher in a 
canonical fashion, until suddenly more sand may trigger a small sand slide, and then say 
a catastrophic one. Thus, we observe that the same magnitude of disturbance (another 
grain of sand) may lead to a response of all size ranges. Hence, the distribution of these 
sand slides effectively follows a power law; that is, even when the pattern of the sand 
dropping is random and normally distributed the distribution of the sand slides will 
exhibit greater variance than the distribution of the sand dropping itself. This clarifies 
why some innocuous ecological changes lead to minor events, while at other times the 
similar ecological changes lead to major catastrophes.  
 
We now know that as the density of connections increases, so too does the dynamic 
instability of the system, which is generated internally from the greater extent of positive 
and negative feedback. Hence, as a system moves towards its attractor and as the 
number of connections concurrently increases so does its potential towards catastrophic 
endogenous change towards an alternative system state. Needless to say, but the state 
attractor can never be reached, because by that stage the state conditions would have 
changed, so that a state transition would have occurred (Jorgensen, 1997). Therefore, 
connections which make complex systems stable and robust, at least initially, are also 
exactly what make them ever so susceptible to change ultimately. Accordingly, as 
expressed by Ulanowicz (1997), there is a ‘window of vitality’ or minimum and 
maximum level in which self-organization can occur. Too much or too little of each of 
these opposing internal and external forces generate an imbalance which will upset 
system efficiency. Thus, an optimal operating point exists where environmental 
disorganizing forces and ecosystem organizing forces are balanced (Kay, 1991).  
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The dynamic process of state transitions has been captured by bifurcation theory. The 
general approach of bifurcation theory is to construct symmetry-breaking transitions, 
that is, bifurcations, which are critical points whereby the system trajectory is divided 
into alternative pathways. There is a sequence, for example (see Figure 9), that begins 
with a point attractor which, at a critical value of a control parameter, becomes unstable 
and bifurcates into another two such attractors, or it may bifurcate into a periodic 
attractor. It may then at another critical value undergo a sequence of instabilities which 
transform it into strange chaotic attractor. Importantly, this cascade of symmetry-
breaking bifurcations is not just a metaphor, as it is observed empirically in the well-
studied patterns of hydrodynamic flow experiments. 
 

Figure 9: A typical non-linear logistic map of the behaviour of complex systems, 
illustrating the cascade of symmetry-breaking bifurcations leading to chaos. 

 

 
Where 1 and 2 represent a steady state trajectory;  

b1 represents a bifurcation point at the ‘edge of chaos’; 
b2 represents the region of multiple bifurcations; 

b3 region of chaos; and 
1 + 2 √2 (‘white stripe’) represents a chaotic attractor. 

 
Interestingly, the presence of chaotic attractors highlights two important points. First, 
chaos is not simply the presence of stochastic occurrences, as these random forms have 
no attractors, whatsoever. Secondly, and ironically, not only is chaos behind the depths 
of order, but remarkably there is within the depths of chaos, an intricate ‘order’. Chaos 
and order are thus intimately entwined (Prigogine & Stengers, 1984; Kauffman, 1991; 
Peat, 2002).  
 
3.4 Chaotic Uncertainty 
Despite chaos revealing an intricate order, the behaviour of a complex system at the 
point of bifurcation has elements of historical happenstance, so as to be quantitatively 
unpredictable. This is because complex systems in the presence of chaos are very 
dependent upon initial conditions, so that even infinitesimal differences over time 
between two system states will evolve exponentially from one another, so that over time 
they are no more alike than any two states selected at random. This is chaotic 
uncertainty. 
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Consequently, the prediction of system states in the future certainly cannot be quantified 
into probabilities, because no matter how rational we might believe we are or how much 
information we accrue, even the slightest difference generates unpredictability. Thus, in 
the vicinity of a bifurcation, structural fluctuations with a distinct ‘chance-like’ character 
play a dominant role in determining the future system state, so that there is no means in 
determining near the point of bifurcation, which new system state will be actualized 
prior to the actual selection occurring. From what we now know, we can only conclude 
that chaotic behaviour obviates any usefulness of probability and the equilibrium 
construct for economic evaluations. As such, the aspiration that underlies neoclassical 
economics of being able to quantitatively predict the system states of the future would 
appear to be irreconcilable with the modeling of complex systems (Kay et al., 1999; Kay 
& Regier, 2000).  
 
But, is this truly so, after all, what is the ultimate source of chaotic uncertainty? Is 
chaotic uncertainty simply the result of difficulties in discerning precise values when 
gathering data and limits on the resource manager’s computational capacity, or is it a 
function of the ecosystem structure itself derived from ontological foundations. The 
implication of the latter, of course, is that the epistemological problem cannot ultimately 
be overcome; it is inherent in the very nature of complex systems. However, if it is 
epistemological, then it is possible that through improvements in ADEM by presumably 
better theory construction, data gathering, or computational capacity that the 
uncertainties that accrue from chaos can unravel back into problems specific of 
ignorance, learning and bounded rationality in general (Rosser, 2004).  
 
Whilst there have numerous opinions on this matter (e.g Davidson, 1996; McIntyre, 
1997; Rosser, 1998; 1999; 2004; Dupuy, 2004), we can now evaluate this discussion in 
some detail. What is generally agreed upon is that chaotic uncertainty has no ontological 
foundation, and is merely a problem of epistemology caused because of a lack of 
computational capacity (see Davidson, 1996). While this conclusion is not a given, it 
would seem reasonable as if chaotic uncertainty were a truly ontological phenomenon, 
then at the very least we would need considerable evidence of such phenomena 
occurring empirically beyond say what has been observed in experiments of 
hydrodynamic flow (McIntyre, 1997; Delanda, 2002). So, given that chaotic uncertainty 
is considered an epistemological uncertainty, it could be easy to conclude that overtime 
these problems of being unable to quantitatively predict can be resolved. However, 
resolve chaotic uncertainty would require truly exact and perfect information of the 
investigated complex system, which would in turn require an infinitely high information 
cost, because no matter how precise the resource manager’s measurements and data 
collection are, even a slight error could lead to completely inaccurate predictions.  
 
As a result, whilst chaotic uncertainty is an epistemological problem, it is reasonable to 
interpret it as an ontological phenomenon, because chaotic uncertainty can only be 
solved by an ‘infinite economic agent’ because an infinite exactness of knowledge, 
which is problematic in itself (see Gödel, 1931), is required to understand the system 
(Rosser, 1998; 1999; 2004; Dupuy, 2004). That is, we can construe then that 
“ecosystems are not only more complex than we think, but more complex than we can 
think” (Egler, 1977; p. 11). Thus, we should treat chaotic uncertainty as a quasi-
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ontological uncertainty, even though this uncertainty can in theory vanish, if not in 
practice. Hence, we should not confuse ignorance with chaotic uncertainty despite their 
similar economic implications of, to some degree, rejecting utility maximization and 
considering choice real (Potts, 2000b; Dunn, 2001; Rosser, 2001).  
 
But, even if we do not solve our bounded rationality analytically, what about the notion 
that natural selection is an optimizing force? Needless to say to any ecologist or 
biologist, but this conception that natural selection leads to optimization is an erroneous 
neoclassical interpretation of Darwinian evolution (Sober, 1993), which in fact actually 
better  resembles the defunct Lamarckian position of evolutionary perfectionism. Indeed, 
this optimizing notion of natural selection was appropriated we suspect simply to justify 
as-if optimization and convergence onto rational expectations. Yet, it is apparent that 
natural selection is far from an optimizing force (Hodgson, 1993; 1994; Vromen, 1995), 
and thus, the definition of the long-term as an asymptotic end state of a process of 
equilibration requires immediate revision.  
 
As a consequence, the true failure of ADEM is not as often proclaimed in its diagnosis 
that there is a need to merely educate resource managers of its processes of analytical 
learning (e.g. Halbert, 1993; McLain & Lee, 1996; Roe, 1996; Walters, 1997, Johnson, 
1999). Rather, the underlying failure of ADEM is its inability to acknowledge and 
manage the complexities of ecosystems, despite superfluous claims stating otherwise 
(e.g. Meffe et al., 1996; Dempster, 1997; Lee, 1999).  
 
Neoclassical economics, thus, maybe beneficial at prediction of future system states 
where the system itself is ‘simple’. This is because, inevitably, models are for pragmatic 
reasons simple, as they attempt to develop a simpler caricature of the system 
investigated, by removing extraneous information while retaining the essential system 
characteristics. It is then hoped that the model will predict what the future system states 
are likely to be. But, this process of model building is not seen as useful when modeling 
complex systems, as one cannot simplify complex systems into simple models so as to 
allow for quantitative prediction.  
 
Yet, despite these findings, neoclassical economists continue to place importance on 
constituent units and equilibrium and not on the importance of connections between the 
constituent units and far-from-equilibrium phenomena, as they insist on making very 
strong and unrealistic assumptions about systems so as to allow for deductive 
equilibrium analysis and mathematical tractability to hold (Lawson, 1997; Foster, 2004). 
There is obviously an irresistible attraction and deep psychological need for neoclassical 
economists to only utilize methodological perspectives that are consistent with the 
notion of an equilibrium construct (Kaldor, 1972), that “silent hum of a perfectly 
running machine” (Robinson, 1962; p. 77). But, this undue fascination with equilibrium 
has unfortunately been devastating to economics, as it has lead economists to be 
loathsome to investigate alternative methodologies of economic evaluation.  
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4.0 Capacitive Ecosystem Management  
We can duly surmise that the interpretation of the dynamics of complex systems is an 
activity in ‘double-dealing’, in that attempting to manage complex systems demands 
foreknowledge, but, which is unfortunately precluded because of the chaotic behaviour 
of complex systems. Indeed, we must it seems forever forgo the belief of prediction, the 
‘canon’ of neoclassical economic theory. Hence, we need to turn to an alternative post-
classical economic analysis, in which the analytical foundations of equilibrium and 
probability are not utilized. After all, the ramifications of complexity and chaos have led 
us to re-examine how we might undertake economic evaluations and manage our 
ecosystems.  
 
Since complex systems thwart the resource manager from ever knowing, even 
probabilistically, what system state in the future will actually transpire, it at once appears 
that an approach for ecosystem management should not be focused on deciphering the 
most desirable system state per se, but rather on progressing the ability to ‘react’ and 
‘adapt’ to ecologies that are forever-changing (e.g. Reid, 1994; Lempert et al., 1996; 
Levin, 1999; Anderies, 2002; Berkes et al., 2003; Olsson et al., 2004). In other words, 
the only appropriate means to proceed in an environment that is chaotically uncertain is 
to provide it capacity to adapt to change. This approach has been articulated as ‘adaptive 
capacity’, and is the underlying strategy to what we express as ‘capacitive ecosystem 
management’ (CAEM). 
 
In view of the fact that change in complex systems lessens the effectiveness of being 
well-adapted to present ecological conditions so as to fully exploit them, it makes 
economic sense to strategize for change by improving adaptive capacity. To improve 
adaptive capacity, we need flexibility in our institutions (see North, 1995). Thus, once 
the adaptation state space is understood, society can build institutional flexibility by 
preparing and developing the necessary managerial responses and contingencies under 
the various perceived ecological challenges considered. This will allow the greatest 
possible adaptation to the myriad of potential ecological changes, so as to minimize the 
possibilities of surprise and ecological catastrophe (Fankhauser et al., 1999; Walker et 
al., 2002).  
 
Successful adaptation resultant from ecological change requires three attributes to 
develop institutional flexibility: first, the timely recognition of the need to adapt; 
secondly, the economic incentive to adapt; and thirdly, the institutional ability to adapt. 
Effectively then, the existence of institutions that learn and store knowledge and 
information while developing flexibility, so that institutional structures match the 
processes of ecosystems in a ‘co-evolutionary’ fashion (see Norgaard, 1990; 1994; 
Erickson, 1999; Gowdy & Erickson, 2005), is critical to the successful undertaking of an 
adaptive capacity strategy (Folke et al., 1998; Scheffer et al., 2000; Berkes et al., 2002). 
Without a doubt, an error of ecosystems that equals that of the erroneous assumption of 
prediction is the mistaken assumption that ecosystems can be treated independently from 
economic systems that utilize and analyse these ‘natural’ systems. In fact, there is now 
much evidence to suggest that ADEM failed repeatedly because the existing institutional 
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structures utilized had not allowed it to function effectively under ever-changing 
ecological conditions (Folke et al., 2002; Walker et al., 2004).  
 
At this juncture, it is feasible to state the requisites required for CAEM (see Hollick, 
1993). These are: one, that institutional flexibility is maximised; two, that knowledge 
and understanding is sort concerning the non-linear dynamics of endogenous change of 
complex systems; three, that practices that interpret and respond to ecological feedback 
(positive and negative) are incorporated to modelling protocols; and four, that frequent 
incremental adjustments are made to the complex system rather than a few major 
managerial shocks, so as to potentially ‘humble’ the believed ‘negative’ effects of chaos 
by forestalling lets say ‘ecosystem pressure’, and to avoid large catastrophic 
bifurcations, which might lead from flipping into one chaotic attractor to the next 
(Folkes et al., 1998; 2003). 
 
Interestingly, a closer inspection of adaptive capacity reveals the legitimacy of this 
strategy, because in advancing flexibility we seem to be emulating how nature-itself 
combats the ‘problems’ of unpredictability ensuing from chaotic uncertainty. Indeed, 
while ecology as a field of study has had a controversial history in postulating the 
underlying functionality of biodiversity, it seems that a plausible explanation is that 
where co-dependencies are not overwhelming, diversity may well afford the 
maintenance of adaptive capacity within the ecosystem-itself (e.g. Risser, 1995; Tilman, 
1996; Grime, 1998; Peterson et al., 1998; Naeem et al., 2000; Lehman & Tilman, 2000; 
Carpenter et al., 2001a; Bengtsson et al., 2002; Folke et al., 2003). This explanation for 
the role of diversity certainly would rationalize the excess or functional redundancy of 
species that exists. Indeed, there seem to be a positive correlation between diversity and 
redundancy, so that diversity can be considered an ‘uncertainty-diffusion mechanism’ 
(Folke et al., 2003). 
 
Nevertheless, regardless of these valid ecological arguments, some neoclassical 
economists might further criticize adaptive capacity on evolutionary grounds in that 
economic inefficiencies resultant from institutional flexibility will in the long-term lead 
to an inability to ‘endure’, in keeping with the evolutionary conception of ‘natural 
selection’ and the memorable aphorism of the ‘survival of the fittest’, which presumably 
demonstrates that ‘efficient’ utility-driven strategies will ultimately out last ‘inefficient’ 
strategies relating to flexibility. However, this evolutionary inference is a (somewhat) 
mistaken assessment of how Darwin (1859) himself wished his theory of natural 
selection to be interpreted. It is not in fact the strongest that survive according to 
Darwinian evolutionary theory, but rather it is those that adapt to change that ‘survive’. 
Indeed, Darwin (1869) did not simply imply these sentiments, but stated them explicitly: 
“It is not the strongest of the species that survives, not the most intelligent, but the most 
responsive to change”. As such, those that actually struggle to survive are not the 
weakest per se, but those unable to adapt to change. Thus, it is little wonder that natural 
selection is not an optimizing force, as understood previously, as it is not ‘survival of the 
fittest’ that matters, but rather, adaptive capacity.   
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4.1 Exploration and Simulation 
To recapitulate, economically speaking, CAEM is not about focusing on the most 
desirable system states at a single point in time, but rather, it is about focusing our 
attention on possible ‘economic efficiencies’ at future points in time. Consequently, 
what we are effectively looking to achieve is to maximize flexibility through 
contingency building across the exhaustive set of system states, rather than maximize 
utility for a particular system state. Thus, we are shifting focus from an analytical 
equilibrium construct, which focused on the need for efficient allocation, to a post-
classical analytical construct, here termed ‘analytical multiplicity’ that effectively 
incorporates the processes of adaptation and not equilibration, and the need for excess 
capacity.  
 
We now know that economic evaluations by CAEM must commence with the 
recognition that associated probabilities for system states are indeterminable. Likewise, 
while the set of system states is considered determinable, because of bounded rationality 
we cannot assume that the resource manager has access to this exhaustive set a priori. 
Thus, the resource manager guided by CAEM must first and foremost ‘explore’ state 
space (Bradbury, 2002). Through exploration it is hoped that we can replicate the 
dynamics of complex systems by utilizing multi-agent simulations, which are able to 
model the non-linear dynamics of ecosystems. Hence, these simulations allow the 
resource manager to explore computationally the various possible trajectories so as to 
establish the exhaustive set of system states.  
 
Again, we need to iterate, that it is imperative to recognize that simulations utilized for 
exploration, are certainly not intended as a proxy for prediction. On the contrary, 
exploration is not about a meager attempt to predict and then gamble on the likelihood of 
future system states at all. Rather, exploration is only about enhancing ecological 
understanding of the set of system states available. Thus, adaptive capacity does not 
attempt to predict the actualized outcome of adaptation, rather it “in effect gives a 
picture of the adaptation space within which adaptation is feasible” (Adger & Vincent, 
2005; p. 400).  
 
As a consequence, in theories of economic change we can make a distinction between 
‘exploitation’ and ‘exploration’ (Holland, 1975; March, 1991), which are to all intents 
and purposes associated with first-order and second-order learning, respectively (see 
Bateson, 1973; 1987; Fiol & Lyles, 1985). Therefore, whereas ADEM is about first-
order learning by way of improving the processes of equilibration towards complete 
exploitation, CAEM and adaptive capacity are about second-order learning by improving 
processes of adaptation for exploration in determining state space.  
 
4.2 Analytical Complexity  
Despite adaptive capacity as a management strategy attempting to maximize flexibility, 
it might well be criticized amongst other things by neoclassical economists for resulting 
in the significant accumulation of sunk costs involved in a seemingly excess-driven and 
inefficient approach to ecosystem management. After all, in designing a strategy that 
spreads its scope and its responsiveness potentially to all system states in state space, 
there is an immediate resignation towards economic sub-optimality because of the 
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necessary neglect for the present actualized system state.  Indeed, while we know that 
the more we invest in a particular system state, the less the system might be suited to 
changes in the future. All the same, we also know that the converse must also be true. 
That is, the more we prepare for future contingences, the less we have devoted ourselves 
to the present. Thus, while maintaining flexibility may allow the system to adapt and 
allow for ‘survival’, ecosystem management is more than mere caution for survival, but 
also the production of utility.  
 
Consequently, there is an economic trade-off between the maximization of flexibility 
and utility. But, how does one decide the ‘dynamic balance’ between the known present 
and the exhaustive set of system states of the future, when the actuality of future system 
states remain unknowable? It is this economic problem that neoclassical economic 
theory has never acknowledged and yet this very problem of a dynamic balance seems 
critical to economic evaluations (Potts, 2000a). Therefore, what we do know is that 
when undertaking economic evaluations we should never be overly cautious through 
flexibility maximization or risk-taking through utility maximization, because this is 
neither sound economically or ecologically.  
 
Economic efficiency of the genuine kind, must be viewed as an economic efficiency in 
the context of historical time, and as such, is the dynamic balance between these 
mutually opposing expressions of economic efficiency (i.e. analytical equilibrium and 
multiplicity), which we refer to through the naturalistic metaphor as ‘analytical 
complexity’ (see Figure 10). One can construe then that while analytical equilibrium is 
the manifestation of a ‘static balance’ in a linear neoclassical environment, analytical 
complexity can be considered as the manifestation of ‘dynamic balance’ in a non-linear 
post-classical environment. 
 

Figure 10: The analytical constructs of economic analysis. 
 

 
 
Significantly, and by no means coincidently, the workings of analytical complexity in an 
optimal range of utility and flexibility, may well be exactly the minimum and maximum 
levels required for the processes of self-organizing to be made possible, so as to allow 
complexity in an ecosystem to arise.  It is reasonable to presume that complexity exists 
in nature for this very reason, as nature itself faces this very problem, in that it must keep 
its options open, yet it must maintain some efficiency to gain ‘utility’. One might even 
suggest that states of complexity poised at the edge of chaos are ‘naturalistic economic 
evaluators’, as only in states of complexity reflected by the analytical complexity 
construct are systems attempting to ‘optimize’ dynamically both utility and flexibility.  
 
While Low et al. (2003) recently equivocated that little is known about the exact level of 
system excess or ‘redundancy’ that should exist in a complex system, we know that the 
resolution of the amount of redundancy we allow for at the time of the economic 
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evaluation must be at the very least be some component between the two extremes found 
at the analytical equilibrium and the analytical multiplicity. However, we might be able 
to do better than this because despite the impossibilities of quantitative prediction, or 
relevance of defining the many system states available (Capra, 1996), we might be better 
off by an alternative means of inference, as after all, we know that even the behaviour of 
a complex system in a chaotic regime is not completely erratic. The ‘white windows’ in 
the ‘black veil’ of a chaotic future depicted in Figure 6 indicate localized phases of order 
within the sea of chaos. Thus, whilst our ability to predict complex systems is inherently 
limited quantitatively, it may be possible to develop a metaphorical portrait of the 
dynamic movements of complex systems through qualitative induction (Rosser, 2004). 
 
Qualitative induction consists in assembling certain qualitative features of a sample of 
state space in such a way that this combination of features resembles others in certain 
essential characteristics. Thus, whilst quantitative induction makes inferences about a 
totality from the quantitative properties of a sample, qualitative induction, in contrast, 
supplements the observed features of a sample with others that are not perceived. In fact 
generalized qualitative inductions form into nothing other than heuristics, which thus, 
indicates qualitative induction as only a weak probabilistic form of inference (see 
Dequech, 2001).  
 
Of note, given the heuristic nature of determining the optimal range encountered with 
analytical complexity, one can conclude that this finding solidifies Simon’s (1957) 
satisficing evaluation rule rather than the neoclassical rules of point-like optimization 
into perpetuity. Needless to say, but satisficing certainly makes sense as an ever-
changing ecological and economic environment leaves exact optimization constructs 
redundant. After all, economic agents must forever face up to their problems of bounded 
rationality and ecological change. 
 
Nevertheless, despite the satsficing elements for economic evaluation and its weak mode 
of inference, qualitative induction is still a useful method for recognizing complex 
phenomena. Indeed, analysis in the bounds of complexity, while needing to utilize 
models of qualitative data, and build extensively on case study research, will it is 
foreseen be able to decipher undesirable system states and pathways that should be 
avoided as much as possible (Berkes et al., 2003). In terms of avoiding undesirable 
system states, much in the manner of the safe minimum standard, it is worth highlighting 
that the supply of ecosystem goods and services depends more on which configuration 
the ecosystem is in than on the particular combination of the state variables. Hence, 
there is likely to be many system states that will provide a satisficing supply of 
ecosystem goods and services (Walker et al., 2002).  
 
A post-classical economic evaluation under the guidance of CAEM, thus, would proceed 
as follows. First, the resource manager would adopt a designated ‘payoff period’ 
criterion, based possibly on the notion of economic resilience, a measure of the 
speculated time taken for a system state to converge towards its attractor. This payoff 
period will act as a time frame in which the cost of the ecosystem management must be 
covered by the expected gains in utility that the resource manager believes can be 
reasonably met. That is, while it cannot know the future system states with any certainty, 
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the resource manager should endeavour to manage system states that provide a 
reasonable assurance of generating satisficing utility within this time frame of the payoff 
period. Secondly, the resource manager will attempt to structure itself so that it avoids 
system states that are surely undesirable (Penrose, 1995; Shapiro, 1997; McKenna & 
Zannoni, 2000; Walker et al., 2002; Berkes et al., 2003).  
 
4.3 Open Systems 
We know that ecosystems can receive information so that it can translate this 
information into a sort of ‘knowledge structure’ if you will, allowing the ecosystem to 
have some power over the acquisition of energy. This ecological knowledge is of course, 
nothing other than the capacity to make connections between its constituent units. But, 
what is now so very important and even striking, is that this knowledge itself is subject 
to the evolutionary forces of natural selection. Thus, these systems are not just 
determined by non-linear dynamics as defined by CAEM, but by non-linear 
combinatorics as well, so that these systems are complex adaptive systems (i.e. third 
order complexity), capable of surprising us through creative forces. From our 
perspective, a major contribution to understanding the processes that occur with 
complex adaptive system is Holling’s (1986; 1992) meta-model, the adaptive cycle, 
which incorporates implicitly principles of emergence, complexity, evolution, self-
organization and creativity, as it mimics the processes of ‘creative destruction’ coined by 
Schumpeter (1950). 
 
In an attempt to account for the forces of Darwinian evolution that impose on complex 
adaptive systems, evolutionary computation has been developed, which contains 
algorithmically the underlying natural selection mechanisms of random mutation and 
selection specifically in their computational models. The most well-known of these 
evolutionary algorithms is the ‘genetic algorithm’ (Mitchell, 1996). Nevertheless, the 
task of identifying the myriad of possible system states created by natural selection, even 
with the help of genetic algorithms, might well seem insurmountable. Nevertheless, even 
where the number of system states is likely to be vast for the ecosystem investigated, it 
is still possible to utilize the method of exploration by utilizing ‘Monte Carlo analysis’, 
which randomly samples the set of system states by generating random values for 
unknown system rules, so that a representation of system states are defined. 
 
However, despite the potential usefulness of computationally modeling evolutionary 
developments in ecosystems artificially, complex adaptive systems previously modeled 
by genetic algorithms while initially being able to produce a rich diversity, ultimately 
peter out losing there ability to be truly creative (Standish, 2006). This is because these 
artificially generated systems developed algorithmically seem to lack the ability to 
imitate the open-endedness of evolution when creativity is possible. This is conjectured 
to happen because with any algorithm we need first to pre-state the initial rules of the 
game. Thus, we cannot compute and pre-state configuration space, because in an open-
ended evolution inevitably new rules of the game are created.  
 
Ecosystems as complex adaptive systems, are not algorithmic at all, and hence are 
outside our capacity to not only ever predict, but even outside the possibility to explore, 
even if only in a limited way. This inability to explore is not because of chaotic 
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uncertainty or evolution alone, but because of reasons of emergence and creativity in 
that complex adaptive ecosystems seem to seek to expand their ‘adjacent possible’ 
(Kauffman, 2000).  As a result, we must stress that while CAEM captures post-classical 
economic sentiments by integrating non-linear dynamics into its far-from-equilibrium 
analysis, this still does not go far enough; as we can never determine the exhaustive set 
of system states available in a complex adaptive system, because we can never finitely 
determine all possible adaptations that might arise. That is, no matter now much 
exploration is done to ascertain the exhaustive set of system states, the fact remains that 
the ecosystem is evolving its very own possibilities. Thus, the future state space of an 
ecosystem is not finite, but infinite and forever open-ended. 
 
An open-ended future, which reflects an open systems ontology (see Lawson, 1997; 
2003) is one where the future can never be logically derived from the observations of the 
past and the present, because the future “has not yet been created” (Capek, 1971; p. 106-
111). Hence, the future does not reflect the past and as such, complex adaptive systems 
are not ergodic systems at all, but rather non-ergodic systems that create structural 
changes (see Davidson, 1991; 1994; 1996; Lewis & Runde, 1999). Instead, as Bergson 
(1910) articulated many years ago, to model a truly open-ended future found with non-
ergodic systems, we must assume that the past and the present are best imagined as 
‘charged’ with an infinite array of creative possibilities creating virtual ecologies of the 
future, that may or may not become actualized system states. Thus, nature cannot be 
considered simply the constant change of ‘being’, but instead it must be considered an 
unfolding evolutionary process of ‘becoming’. An ecosystem is an emerging story 
(Kauffman, 2000).  
 
Beyond the relations of actualized forces, virtual ecology will not simply attempt to 
preserve the system state actualized, but will equally want to engender conditions for the 
creation of unprecedented system state configurations that have never been 
contemplated whatsoever (Guattari, 1992). Indeed, what we seem to be suggesting is 
effectively an open-ended analytical complexity is where ecosystems wish to lie, as “all 
systems of value… install themselves at this … interface between the necessary actual 
and the possibilist virtual” (Guattari, 1992; p. 54-55). The virtual would be as much 
open to revision or transformation as the actual, such that each time a possibility passed 
into actuality, the whole domain of the possible would be re-figured.  
 
Accordingly, with this ‘historical continuous passage’ of forever becoming and 
emergence, we might well wish to abandon the conception of the long-term in economic 
evaluations, as it somehow presupposes a sort of steady state of an adjustment process, 
rather than a future which is categorically non-equilibrium (Dunn, 2001). Moreover, 
although chaos theory relinquished the usage of equilibrium and probabilities for 
economic evaluations of complex systems, an open systems ontology not only reinforces 
this position, but provides an even more fault-finding critique of these neoclassical 
theories of economic evaluation, as they fundamentally depend on a closed system 
ontology, that is, an exhaustive set of system states (Keynes, 1937; Shackle, 1955; 1969; 
Lawson, 1993; 1999; 2003). Indeed, if we remain assuming that ecosystems are only 
confined to the problems of epistemology, then we must charge this position with what 
Bhaskar (1978) considers the fundamental mistake of positive ergodic science, termed 
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the ‘epistemic fallacy’, whereby an unconditional failure has been made in adequately 
sustaining the distinction between ‘phenomena’ relating to epistemology and those of 
ontology (Lawson, 1997).  
 
4.4 Genuine Uncertainty 
We can surmise that the future cannot be known prior to its creation, not even in 
principle. The future is forever non-ergodic in accordance with an open systems 
ontology. Therefore, even if the informational processing power and rationality of the 
resource manager was infinite, and thus was able to solve all problems of complexity, 
the future direction of nature could still never be known (Dequech, 2001). Thus, 
knowledge becomes intrinsically incomplete, fallible and remains forever problematic, 
providing justification for the continuous management of ecosystems. That is, resource 
managers will remain forever ‘ignorant’ of the extent of the possibilities of the future, 
because of the irreversible and open-ended nature of the future, which is transmutable 
and creative. As a result, we must accept another form of uncertainty into economic 
evaluations, that of genuine uncertainty. The presence of genuine uncertainty, which 
exists in all ‘crucial’ economic evaluations of any reasonable time period (see Shackle, 
1955; Davidson, 1994), should present the resource manager with the belief that during 
the time between the moment of economic evaluation and the designated payoff period, 
unforeseeable changes will inevitably occur, no matter the circumstances (see Table 1).   
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Table 1: The various forms of uncertainty. 
 

Form of 
Uncertainty

Knowledge of 
System states 

Objective 
probability 
Function 

Risk All states in set 
Known 

Probabilities 
known 

Ambiguity All states in set  
Known 

Probabilities 
unknown, but 
knowable 

Ignorance All states 
unknown, but 
knowable 

Probabilities 
unknown, but 
knowable 

Chaotic 
uncertainty 

All states 
unknown; but 
knowable 

Probabilities 
unknowable 

Genuine 
uncertainty 

All states in set 
Unknowable 

Probabilities 
unknowable 

 
The presence of genuine uncertainty in an open systems ontology, seems to lead to 
immediate problems of indeterminism, and thus leaving in turn economic evaluations in 
a state of analytical nihilism (see Coddington, 1982). Reid (1994) also drew these 
nihilistic conclusions for economic evaluations where genuine uncertainty is present, but 
unlike Coddington (1982) who dismissed genuine uncertainty out of hand, he argues that 
genuine uncertainty must be respected because it is an inherent facet of nature. Thus, 
does this then mean we should forever retire into a pessimistic attitude of ‘Heideggerian 
resignation of nihilism’, and accept our seemingly nihilistic fate, and relinquish any 
attempt to ‘manipulate’ ecosystems through the findings of economic evaluations?  
 
4.5 Causality and Methodology 
Despite the nihilistic foray and ignorance of the resource manager, this does not mean 
that the resource manager should not at least attempt “… to defeat the dark forces of 
time and ignorance which envelop… [the] future” (Keynes, 1936; p. 155). After all, 
while it is true that in evaluating complex adaptive systems we are faced with genuine 
uncertainty, this does not mean that creativity is opposed to deterministic causality, 
whereby the creativity derives from nothing other than spontaneous processes and 
chance. Indeed, we must rule this possibility out, as if creativity does not follow 
scientific laws of causality, we will must accept the quite unsatisfactorily notion of the 
‘uncaused cause’, which would leave scientific projects utterly meaningless, as 
‘anything goes’. Quite simply, we are obliged to attempt to understand ecosystems and 
search for causal explanations and determinacy (Hodgson, 2002; 2004). 
 
Interestingly, while it is impossible to disprove the uncaused cause, Kauffman (1993) 
makes a powerful argument that natural selection alone cannot explain the origin of 
complex adaptive systems. Systems involving non-linear interactions involve a large 
number of possible system states, most of which would have little survival value. 
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Kauffman argues that processes of self-organization found in states of complexity 
channel systems into more restrictive possibilities, some of which can have evolutionary 
benefits. Kauffman (1993; p. 644) goes on by stating: 

“I have tried to take steps toward characterizing the interaction of selection and self-organization. … 
Evolution is not jus ‘chance caught on the wing’. It is not just tinkering of the ad hoc, of bricolage, 
of contraption. It is emergent order [honoured] and honed by selection”. 

 
Indeed, whilst it seems that creativity is a random combinatorial process, this is because 
of too many uncertainties and chaotic influences enter the creative process (Simonton, 
2004). In fact, one should be careful not to assume that chaos is a negative phenomenon, 
as would be insinuated where creativity and complex adaptive systems are not 
considered. This is because in states of chaos, a very necessary function is provided, by 
way of much experimentation at creating possibilities within the potential pool of 
resources. Nevertheless, while chaos should not be seen negatively, nor should it be seen 
positively either, as despite its prospective ability for creativity, it is unable to actualize 
any of these creative forms to allow for utility generation. Needless to say, but the 
opposite effect occurs in states of order, where utility is maximized, but experimentation 
of the ecological structure is minimized. Thus, ‘utilizable creativity’ only emerges in 
complex adaptive systems in states at the edge of chaos, where there is a balance 
between utility generation and creativity. Here, this differs in the analytical complexity 
described previously, as the bounds between future creativity and present exploitation 
are a ‘smudge’, rather than a point-like optimum (Potts, 2000a). 
 
Now, given the origins of creativity it seems reasonable to investigate causal 
explanations and determinisms. However, we have already observed that deterministic 
causality in the form which allows predictability is an unwarrantable type of 
determinism.  These deductive methods of economic evaluation that embrace 
predictability are founded on intrinsic conditions of closure, so that not only does this 
presume that the system is closed, but it implies that the ecological cause will always 
produce the same system state. But, even if the determinism involved simply links one 
set of ecological causes with one set of systems states, described as ‘regularity 
determinism’, there still results in objections to its use. After all, this form of 
determinism, which is based in inductive logic, involves extrinsic conditions of closure 
so while the system need not be considered closed, it is methodologically assumed to be 
closed. It is important to recognize that even when integrating non-linear dynamics into 
the modeling of ecosystems, that regularity determinism remains present, as it still 
nevertheless follows that given the exact same initial conditions that the same system 
state will invariably be the outcome. It follows therefore, that we must reject these forms 
of deterministic causality as they result in closure and ergodicity, yet, in open systems, 
the processes involved are always irreversible and therefore forever historical (see 
Lawson, 1997; Hodgson, 2002).  
 
Despite the open-endedness of complex adaptive systems, we can however acknowledge 
causal processes through the principle of universal causation, which states simply that 
‘every system state has a cause’ or more precisely, everything is determined in 
accordance with the laws by something else (Hodgson, 2004).  Nevertheless, regardless 
of the problems of causality in open systems economic evaluations, given the processes 
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involved in spatio-temporal dynamisms governed by attractors are completely 
deterministic, we may well have to go beyond the deterministic-indeterministic 
dichotomy, and introduce more advanced determinisms, which lie between these 
dichotomous extremes. Indeed, Lawson (1997; 2003) has postulated the existence of 
what might be described as an advanced determinisms, which he coined ‘demi-
regularities’. Demi-regularities are similar to event regularities found in closed systems, 
but are only form partial closures. Nevertheless, the existence of demi-regularities would 
allow scientific investigation and useful economic evaluations to take place. 
 
To pursue an understanding of demi-regularities and hence, causal explanations in open 
systems, we require a mode of reasoning that embodies know-how, accepts creativity 
and is capable of delving deeper into the causal nature of things. This can be achieved by 
intuition alone (see Keynes, 1937; Kauffman, 2000). However, it leaves economic 
evaluations locked into the inaccessible realms of economic psychology, like that 
observed with heuristics, and not to a cognizant form of analysis.  
 
On the other hand, there is a long forgotten alternative described as abduction, which is a 
weak possibilistic form of inference and is concerned with the creative, but scientific 
process of forming, probing and fishing for causal explanatory hypotheses. Indeed, 
according to Peirce (1934; p. 90), induction “never can originate any idea whatever. No 
more than can deduction. All the ideas of science come to it by the way of abduction”. 
Indeed, abduction is creative, because it infers after the resource manager is genuinely 
surprised and required a novel explanation to make sense of it all (Reichertz, 2004). 
Thus, because abduction acts to be creative, and because ecosystems are creative, then 
despite the claims by Gigerenzer (2004) that descriptive heuristics embodies an 
‘ecological rationality’ this must be erroneous. As while heuristics are adapted to their 
environment, so still impose inductive logic not only in their development, but in their 
reasoning, and this then assumes a closed system ontology. Only, abduction and 
intuition embody an ecological rationality and thus only these methods of economic 
evaluation should be utilized to determining the pathways of ecosystems in the future 
(see Table 2) 
 

Table 2: The various modes of inference. 
 

 
 
5.0 Creative Ecosystem Management 
We can finish with another critical ecological insight; given that nature is itself creative, 
it immediately becomes into reckoning that we as a society need not simply co-evolve 
with ecosystems, but we maybe able to transform the ecosystem and create entirely 
novel system states (Folke et al., 2002; Walker et al., 2004). That is, whilst ignorance 
and chaotic uncertainty lead the resource manager to discover (ADEM) and explore 
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(CAEM) ecosystems, it is the presence of genuine uncertainty that provides the 
possibilities to create (Dunn, 2000; 2001). Genuine uncertainty, while leading some 
economists to beliefs of analytical nihilism, allow also for a new degree of optimism and 
vigour in economic evaluations in that it allows for creativity. Thus, should be asking; 
“what kind of ecological garden do we as a society want?” And, “what kind of 
ecological garden can we as a society get?” It is this process of creative ecological 
engineering, that we coin ‘creative ecosystem management’ (CREM) (see Table 3). 

 
Table 3: Various approaches to ecosystem management. 

 
Approach Ontology Uncertainty Causality Analysis 

ANEM Closed 
system 

Risk Predictive Equilibrium 

ADEM Closed 
system 

Ambiguity 
& ignorance

Towards 
predictive 

Dis-equilibrium 

CAEM Closed 
system 

Chaotic 
uncertainty 

Regularity Far-from 
equilibrium 

CREM Open 
system 

Genuine 
uncertainty 

Universal Non-
equilibrium 

 
If we accept the transformability of nature, and consequently the approach of CREM, we 
can now speak of another form of complexity where a complex adaptive system not only 
interacts with its environment, but also through the creative imaginings of the resource 
manager of possible systems states (i.e. fourth order complexity) (Foster, 2004). 
Therefore, there is both feedback from nature to the resource manager and feed forward 
to nature form the creative imagination of the resource manager.  
 
This approach towards ecosystem management of CREM, is in direct disagreement with 
those that favour the conception of naturalness and natural capital, where it is considered 
that there are no substitutes whatsoever other than that which is occurred, and evolved 
naturally by the creative processes of the complex adaptive system itself. Indeed, the 
implication of this is that we must always maintain the stock of natural capital, 
regardless of the opportunity costs of doing so (Van Kooten & Bulte, 1999). But, in 
restoration ecology investigations the restoration of ecosystem functioning is often best 
achieved through the addition of non-native species (Aronson et al., 1993; Lockwood & 
Pimm, 2001). The implications of this finding would seem to be that there is no 
scientific basis for ‘natural’ ecosystems to be considered better than created ecosystems. 
 
But, this arcadian thinking of naturalness results in one adhering to the ‘naturalistic 
fallacy’; the unjustified assumption that what exists in nature must inherently be good in 
itself (Moore, 1908). But, presuming this naturalness belief enshrines a dichotomy 
between society and nature, a metaphysical separation between the ‘vices’ of humans 
from the ‘virtues’ of nature, which is simply incorrect. After all, since Darwin (1859; 
1871) we know we are a ‘part of’ and not ‘apart from’ nature, and we already know that 
we co-evolve with nature, so why not co-create!  
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