
Pragmatic Data Modelling and Design for End Users.

Clare Churcher, Theresa McLennan and Alan McKinnon
Applied Computing, Mathematics and Statistics Group

Lincoln University
P.O. Box84, Lincoln University

Canterbury
New Zealand

email:churchec/mclennan/mckinnon@lincoln.ac.nz

Abstract

Many people are dependent on desktop end user tools
such as spreadsheets and databases to manage their data.
While they may have the technical skills to set up data
repositories, many end users lack the analysis skills to
design data models which reflect their ojten deceptively
complex requirements. We advocate that a
comprehensive data model should always be developed,
with expert help, so that the end user can feel conjldent
the subtleties of the data arefUlly understood. We then
suggest that some pragmatic decisions can be made to
simplify the model so that the end user can retain control
over setting up and maintaining the application.

1. Introduction

Data modelling has evolved considerably since the
early entity-relationship models [l]. A number of
methodologies and notations have been proposed as the
transition has been made to more object oriented models
[2-41. There has also been considerable work in
identifying patterns of data models and in applying these
to a variety of problems [5,6].

Nevertheless much data is still kept in poorly designed
systems. The news media regularly have stories of costly
and damaging failures of large database projects. We do
not wish to address the causes of these large failures,
however the difficulty in successfully implementing
corporate wide systems often results in frustrated end
users developing numerous small systems themselves.
These applications are seldom carefully designed and
problems inevitably arise: data becomes inconsistent,
queries can't be answered, statistics and analyses have
errors. These types of problems occur in many databases
and are well documented for spreadsheets [7].

A precise understanding of the data is critical to
making any decision about how to store it. Most data is

'

deceptively complex and producing a comprehensive and
accurate data model is a valuable exercise to gain insight
and understanding. We would encourage any keeper of
data to seek expert advice in producing a comprehensive
data model for their problem.

Many end users have neither the time, the resources
nor the skill to fully and faithfully implement a complex
data model. We advocate taking the most critical features
of the comprehensive data model and producing a simpler
design for a database or even, in some cases, a
spreadsheet. This relies on a very clear understanding of
what the user requires as the most important outputs of the
system; specific reports, statistics and so on. Some of the
less important constraints on the data may be removed
from the design and the responsibility placed at the
interface or even with the user of the application. This
needs to be done with the user fully aware of the
compromises he or she is making and how they will affect
the output. We advocate that a simple (but accurate)
system can be developed which can grow in a controlled
way to include extra features as time and resources
become available.

2. Who are the end users?

More and more users are now being required to
construct their own solutions to computing problems using
application software. Typically these people would not
regard themselves as computer professionals. This is the
concept of end user computing and has been well
discussed in the literature [8 - 101.

There is a considerable variety of people who depend
on end user tools for handling their data requirements. For
example small businesses who do not have the resources
to employ database professionals make considerable use
of spreadsheets and databases which they construct
themselves. Even within large institutions many
employees will value the independence and immediacy
afforded by constructing their own data repositories [ll].
The end user focus is typically narrow and immediate.

1530-1362/00 $10.00 0 2000 IEEE
120

This is common in research institutions. Of necessity
individual researchers have very specific requirements and
the data they collect is often kept in spreadsheets designed
to meet their most immediate analytical needs [12].
Valuable data can be stored in such La way that much
information is lost or is susceptible to erroneous analysis.
It takes time and very specific skills to design a useful
database for scientific data but the pressure to store the
data and perform some quick calculations usually takes
precedence over the longer term view.

3. Strategies for creating end user
applications

A common scenario for an end user application is that
the user takes full control of the design, implementation
and maintenance of the system as in Figure la. At the
other extreme an expert can be employed to take over the
whole job as in Figure IC. This scenario is unlikely in that

the major benefits of end user tools, immediacy,
cheapness and control, are likely to be lost.

While many end users have the ability to undertake the
mechanics of setting up a spreadsheet or database with
desktop tools, analysis and design skills are much scarcer.
The scenario in Figure l b shows that an expert can be
used to work with the end user to gain a complete
understanding of the data, and then produce a simplified
model that is within the user’s capabilities to implement.
In this way the end user has a much greater understanding
of the problem, is aware of the constraints of the system
under construction and, most importantly, retains control
of the system.

The cost, in both time and money, of employing an
expert must be weighed against the problems likely to be
incurred with a poorly designed data repository which
may produce inaccurate results and be difficult to
maintain.

I Description of I

Expert +
end user

Expert +
end user

Model

1

I Implementation I
Implementation r-lv

(a)
Figure 1. Possible

I I

(b)
strategies for creating a database repository

System

Expert

(c)

with end user tools

121

O..* 1 ..l
- - - - - - -

I I I I

Figure 2. A simple data model

4. A simple example

Most small businesses require a repository for data
about their customers and products or services. The
customer - order - product model is a standard text book
example. Orders are for a product (possibly many) and
each order is related to a customer. It can be extended to
cope with backorders and so on (but most elementary
texts don’t bother).

A variant of this problem could be adopted by a small
business wanting to invoice customers for credit purchases
and keep track of the number of products it sells. Rather
than orders we can consider transactions and obtain a data
model as in Figure 2. To keep it simple we will define a
transaction as being for only one type of product.

The real world is never quite so simple and a good
data analyst will ask “what about cash sales for which (by
definition) you don’t want to record the customer?’

There are a number of possibilities.

remove the compulsory requirement at the
customer end of the relationship

0 have a customer object called cash customer.
have different specialisations of transaction.

The most comprehensive solution is the last one,
which accurately reflects the fact that there are two types
of transaction: an account transaction which must have a
customer associated with it for invoicing purposes, and a
cash sale that by definition does not have any associated
customer details. This model, which can be arrived at
together by the end user and an expert data modeller, is
shown in Figure 3.

Users will, quite reasonably, argue that the other
solutions “will work” and “are easier”. It is unlikely that
any end user would actually implement anything as
complex as Figure 3 for what is only a small part of the
system (we haven’t yet included payments, or stock on
hand, or deliveries).

I I I

1..l

0. .*

Figure 3. A comprehensive data model

122

So why bother to construct the comprehensive model
at all?

The comprehensive model is useful because it
describes the situation fully (well at least as fully as we
have described it here). If this model is implemented we
can be confident of doing all of the following:

Ensure all non-cash transactions have customer
details included
Produce invoices for non-cash transactions
Report the number of each product sold grouped
by date (for seeing trends)
Report the income from different products
Provide statistics about how much of each
product a typical non-cash customer buys in a
Year

With an implementation following this model it will
also be possible to make the following types of
extensions to the transactions with relatively little impact
on the existing data.

Record if cash sales are by cheque or E R P O S
or cash or card (and maintain any extra
information that might be needed for some of
these types of sales)
Include a subset of non-cash sales which might
be paid in instalments (time payment etc)

5. Solutions and repercussions

specialisations. Even in a relational database we can
capture most of the features of the model although some
of the responsibility for correct maintenance shifts from
the database software to the developer of the application
software. A possible relational schema is shown in
Figure 4.

Every transaction will have a record in the
transaction table and also one in either the cash or
noncash transaction tables (with the TranID referencing
the transaction table). Having two records for each
transaction is not as “nice” as having one object in an
00 schema, but a good user interface can help to make
it transparent to the user. The developer has to take the
responsibility to join the three transaction tables
appropriately. Unlike the 00 implementation this
relational design allows for transactions to be both cash
and non cash. This multiple inheritance type behaviour
may or may not be useful depending on the type of
problem. In either case it is the developer’s
responsibility to ensure it is handled correctly.

If it is an essential aspect of the system to maintain
different information about cash and noncash
transactions then a model such as the one in Figure 3 is
necessary. This model will also allow for extra classes
to be added should the system need to be extended to
recording a series of payments for each transaction. In
the relational schema in Figure 4 this could be handled
quite readily by the addition of another relation.

Payments [(TranID), date, amount,I.

The foreign key would reference the
NonCashTransaction table and the developer would

5.1. Schema representing the comprehensive
data model

have to ensure that all the joins were correctly
implemented. In an Object Oriented database the model in Figure 3

can be represented faithfully. Each transaction would be
represented by one object of either the cash or noncash

Product 1
Customer [CustomerID, customer info: address, . . .]
Transaction [TranID, (ProductID), Quantity, Date, . . .]

NonCashTransaction [(TranID), (CustomerID), interest rate,. . .. 3

[ProductID, product info: price,.

CashTransaction [(TranID), chequeno, . . . 1

(primary keys are underlined, foreign keys are in (brackets))

Figure 4. Relational representation of the comprehensive data model

Product [ProductID, product info: price etc, 1
Customer [CustomerID, customer info: address etc 1
Transaction [TranID, (ProductID), (CustomerID), Quantity, Date, . . .I

Figure 5. Simplified relational schema

123

5.2. Simplified schema

If the problem does not require the system to
maintain data or behaviour specific to the different types
of transaction, we can simplify the schema considerably
by including a foreign key CustomerID for all
transaction records as in Figure 5. However the
developer or user will have to take on board some extra
responsibilities.

It is possible to distinguish a cash or non cash
payment using the schema in Figure 5 in two ways.

We can leave the CustomerID field, in the
transactions table, empty for cash sales. The problem in
this case is that a null in the CustomerID field could
indicate either that there is no customer (ie a cash
transaction) or that it is a non cash transaction for which
the customer is unknown or whose details have not yet
been recorded. The responsibility has now shifted to
the user to make sure that all non cash transactions have
an associated customer. The analyst should ask “Is it
crucial that the system determines which transactions
must be billed?” If yes then having a null default
implying a cash sale is an unsatisfactory solution. For a
small business however, the user may be quite happy to
be responsible for checking which transactions are non
cash and so require billing.

Another way to identify cash sales is to have an entry
in the Customer Table called “Cash” or similar. The
user now has to consciously specify that the transaction
is a cash transaction rather than that being assumed if the
field is left blank. There are a number of potential
problems. The “Cash” customer record will have to
have a CustomerID number. This needs to be chosen
carefully so that it doesn’t eventually turn into a
“Customer 2000 Bug”. All the reporting and analysis
facilities will have to take this dummy customer into

account. Reports on number of customers or average
sales for a customer and so on will all be distorted by the
dummy record. While it is possible to work around
these problems it is ugly and potentially dangerous. The
analyst should ask “Is analysing statistics about your
customers’ transactions a crucial part of this system”. If
the statistics are important then the dummy record will
be an unsatisfactory solution.

5.3. Representing the model in a spreadsheet

End users are more likely to feel they are competent
users of spreadsheets than they are of databases [13].
Certainly, until recently users were more likely to have
access to spreadsheet than database software. Even now
only the professional versions of the popular office
suites (eg Microsoft Office and Wordperfect Office)
include a relational database. Informal discussions with
user support managers [14] suggest that it is not
uncommon for end users in a large organisation to be
denied access to a relational database when developing
their own applications. For these reasons it may well be
pragmatic for an end user to store their data in a
spreadsheet.

It is not practical to try to capture the complexities of
a comprehensive data model such as Figure 3 in a
spreadsheet. However for a simplified schema such as
in Figure 5 we can capture many of the features.
Certainly there are improvements which can be made
over the simple flat design with all the information on a
single sheet as depicted in Figure 6. This design has
significant problems with information being stored
several times with the potential to become inconsistent
(e.g. a customer’s name and address).

Figure 6. A flat spreadsheet design

124

Figure 7. Simulating referential integrity with a Lookup in Excel

Some of the techniques that can be used to represent
a schema such as that in Figure 5 are described below
and shown in Figure 7.

Use separate sheets for each table. This enables
rows to be added and deleted to one set of data
(customer say) with the least disruption to any
other information (transactions or products). It
also simplifies later extraction to a database
when resources become available.

0 Use exact match LOOKUPS to simulate
referential integrity between sheets and to verify

0

0

CustomerID is valid and also prevents any

complication is that in most common
spreadsheets, forms are, by default, only for one
sheet at a time.
Combine information from several sheets onto a
single sheet (by using lookups as in Figure 7).
This is analogous to performing a join in the
relational model and helps overcome the
limitations of many spreadsheets that make
querying across multiple sheets difficult.

tampering with the calculated fields. A

that, for example, the customer number in the
transaction sheet exists in the customer sheet. In
Figure 7 both columns C and D are calculated
using lookups to the customer sheet. If a
customer is deleted from the customer sheet the
rows in the transaction sheet for that customer
will reflect the change. This gives some
measure of referential integrity although there is
no facility for cascade updates and deletes.
Tools such as Data Validation in Excel would be
another way of achieving a similar result.
Set up default input forms such as in Figure 8
which give feedback as to whether a

The repercussions of the design in Figure 7 are that
the user is much more responsible for the validation of
the data input, and complex queries (equivalent to a self
join for example) are impractical. However the
advantages over a single flat sheet are that redundant and
therefore inconsistent data can be avoided and that it can
be more easily exported to a well designed database.

A database is clearly a more suitable tool for this
type of data, but users who do not have the appropriate
skills, confidence or access to a relational database can,
after receiving help with the design, set up a useful data
repository in a spreadsheet.

Figure 8. Input form for a transaction

125

6. Discussion
A good understanding of the data is critical if any

data repository is going to yield accurate results. An
expert data modeller can provide the skills to produce a
comprehensive data model. If, as is usually the case for
an end user, the necessity to develop and keep control of
their small applications is important, then a simplified
model can be constructed which captures the crucial
aspects of the system accurately. This means that some
responsibility for maintaining and manipulating the data
accurately may be shifted to the interface or the user.
Once again an expert data modeller can determine the
repercussions of the simplifications and alert the end
user to how they can be most effectively managed.

The pragmatic data model will produce results whose
accuracy is well understood. More importantly, the
crucial aspects of the data will be maintained correctly
so that subsequent extension to a more complete model
can be carried out.

References
Chen, P. P. The entity-relationship model - toward
a unified view of data. ACM Transactions on
Database Systems, Vol. 1, No.1, pp 9-36. 1976.
Shlaer, S., and Mellor, S. Object-Oriented Systems
Analysis: Modelling the World in Data. Prentice
Hall. 1988.
Martin, J., and Odell, J. Object-Oriented methods:
A Foundation. Prentice Hall. 1998.
Booch, G., and Rumbaugh, 3. Unified Method for
Object-Oriented Development. Rational Software
Corporation. 1995.

[5] Hay, D. Data Model Patterns: Conventions of

[6] Fowler, M. Analysis Patterns: Resusable Object

[7] Panko, R. R. http://panko.cba.hawaii.edu/ssr/
[8]

Thought. New York, Dorset House. 1996.

Models. Addison-Wesley. 1997.

Panko, R. R. “Directions and Issues in End User
Computing.” INFOR, vol 5, no. 3, 1987, pp 181-
197.
Delligatta, A. “Managing End User Computing:
Empowering the User Community. A Guide for IS
Managers.” Information Systems Management,
Summer 1992, pp 63-64.

[101 Halloran, J. P. “Redefining End-User Computing:
Achieving World-Class End User Computing.
Making IT Work and Using IT Effectively.”
Information Systems Management, Fall 1993, pp

[ll] Gunton, T. End User Focus. Prentice Hall. 1988.
[12] Churcher, C. and McNaughton, P. There are bugs

in our spreadsheet: Designing a database for
scientific data. Research Report No 98/02 Centre
for Computing and Biometrics, Lincoln University
1998.
http://www.lincoln.ac.nz/amac/publish/acms/9802a
bst.htm

[13] McLennan, T., Churcher C. and Clemes S. Should
End User Computing be in the Computing
Curriculum? pp 346-352, Proceedings of SEE&P,
Dunedin, New Zealand 1998.

[14] Minutes of the Lincoln University Computer
Industry Liaison Group 1999 (unpublished).

[9]

7-12.

126

http://panko.cba.hawaii.edu/ssr
http://www.lincoln.ac.nz/amac/publish/acms/9802a

