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Abstract of a thesis submitted in partial fulfilment of the 

requirements for the Degree of Doctor of Philosophy. 

Abstract 

Rhizosphere competence of selected Trichoderma species 

by 

Natalia Cripps-Guazzone 

Trichoderma is a genus of fungi commonly used as biological control agents and growth promoters of 

plants. The ability of these fungi to become rhizosphere competent has been linked to their biological 

control capabilities. However, the extent of rhizosphere competence and  factors that affect it are 

poorly defined in the literature. Rhizosphere competence (RC) is defined as the ability of an organism 

to colonise, grow and develop in the rhizosphere soil.  The aim of this research was to determine RC 

across a range of Trichoderma species and isolates. A series of experiments were conducted to (1) rank 

RC, (2) determine if RC is plant species specific, (3) test RC under a range of abiotic conditions, and (4) 

evaluate RC over time.  All experiments were carried out by coating seeds of test plants with 

Trichoderma spore suspensions and sowing seeds in non-sterile Wakanui silt-loam soil. The ranking of 

RC was assessed for 22 isolates of 11 of the most common Trichoderma species used for biological 

control in a non sterile sweetcorn expermental system in which plants were typically grown for 7 days 

(Chapter 2). Results showed that 82% of the Trichoderma isolates had populations that were 

significantly higher than the control indicating that rhizosphere competence was widespread within 

the selected species. The least and most rhizosphere competent isolates belonged to the same species, 

indicating that RC was not species specific. The three least and most RC isolates from the ranking 

experiment were tested on six plant species (sweetcorn, ryegrass, cauliflower, carrots, onion and white 

clover) in Chapter 3. Ryegrass and cauliflower were the most receptive plants to Trichoderma species, 

and clover was the least receptive. The least rhizosphere competent isolate on sweetcorn was the only 

one able to colonise onion roots and had significantly higher RC than all the other isolates, suggesting 

host plant specificity of RC. On average, Trichoderma atroviride LU132 was the most rhizosphere 

competent isolate across the six plant species. Rhizosphere competence of T. atroviride LU132 was 

assessed under a range of three soil moistures (16, 20 and 24% gravimetric water content, GWC), three 

pH levels (5.5, 6.5 and 7.5), and three soil available nitrogen concentrations (75, 150 and 300 kg N/ha) 

(Chapter4). This isolate was rhizosphere competent on sweetcorn and ryegrass, regardless of the 

abiotic conditions. Trichoderma atroviride LU132 also endophytically colonised sweetcorn and 

ryegrass shoots and roots in all test conditions.  
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Rhizosphere competence over time was assessed for a strong (T. atroviride LU132) and weak (T. virens 

LU556) sweetcorn coloniser at 7, 21, 35 and 56 days post planting (Chapter 5). The influence of both 

isolates on the rhizosphere microbial communities was assessed by denaturing gradient gel 

electrophoresis (DGGE). Trichoderma atroviride LU132 was more RC than T. virens LU556 at every 

assessment point. Whilst T. virens LU556 populations continued to increase over time, T. atroviride 

LU132 populations reached a maximum after 35 days. Shoots and roots of sweetcorn were 

endophytically colonised by both isolates regardless of harvest time. Trichoderma atroviride LU132 

and T. virens LU556 changed the bacterial, fungal and arbuscular mycorrhizal fungal communities of 

the rhizosphere compared to untreated plants. Rhizosphere competence and endophytic colonisation 

of sweetcorn was also assessed at different root depths on 35 day old plants (Chapter 6). Results 

showed that regardless of the isolate, the top portion of sweetcorn roots had significantly higher 

Trichoderma populations than the middle and bottom parts. Trichoderma atroviride LU132 was more 

rhizosphere competent than T. virens LU556 regardless of the root portion. More endophytic 

Trichoderma colonies were isolated from plants treated with T. atroviride LU132, further indicating the 

greater RC of this isolate.  

Overall, this research showed that the relationship between Trichoderma and the plant is dependant 

on the Trichoderma isolate and the plant species. However, some isolates are more broadly RC than 

others, and may have greater utility as plant protection agents.  Greater RC appeared to be associated 

with enhanced endophytic colonisation. 

Keywords:  Trichoderma species, rhizosphere competence, maize, sweet corn, soil pH, soil GWC, soil 

available nitrogen, growth promotion, temporal and spatial distribution, endophyte, population 

dynamics, root depth. 
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Microbes that can establish and proliferate in the rhizosphere as the seed germinates and the roots 

develop stand a good chance of forming a long-term relationship with the plant. Brimecombe and co-

workers reported that the recruitment of microorganisms to the rhizosphere and root surface requires 

stimulation of the microbes by the growing root tip (Brimecombe et al. 2001). The stimulation of 

microbial activity arises as a result of the release of root exudates from plant roots. The ability of an 

organism to proliferate and function in the rhizosphere of developing roots is referred to as 

rhizosphere competence.  

Root colonising microbes may cause plant disease (phytopathogenic) (Hawes 1990), or may confer 

beneficial effects (Gregory 2006), such as mycorrhiza and plant growth promoting rhizobacteria 

(PGPR). The interaction of the plant with the suite of phytopathogens and beneficial microorganisms 

it interacts with ultimately determines plant nutrition and health (Brimecombe et al. 2001).  

Rhizosphere organisms can release compounds (enzymes, toxins, growth regulators etc.) that cause 

diseases in plants by disrupting plant cell metabolism and by absorbing nutrients from host cells for 

their own use (Agrios 2005). In severe cases, pathogenic microorganisms can infect plant roots, causing 

the roots to rot and consequently stopping them from absorbing water and nutrients from the soil. 

Some examples of soil-borne phytopathogens that disrupt cultivation of the world’s most important 

edible crop plants include Rhizoctonia solani, Sclerotinia species, several genera of the Oomycota 

group such as Phytophthora and Pythium, species of Xanthomonas bacteria and genera of nematodes 

such as Meloidogyne and Heterodera (Strange and Scott 2005). 

A well-studied class of beneficial rhizosphere microorganisms are mycorrhizal fungi. These fungi form 

symbiotic associations with an estimated 80% of existant plants including most angiosperm, 

gymnosperm, fern and bryophyte families. Mycorrhizae aid the plant by assisting it in the absorption 

of nutrients from the soil, and are well known for increasing acquisition of soil phosphorus (Kuhad et 

al. 2004). For example, Stribley and co-workers grew leek seedlings in soils amended with various levels 

of added phosphorus and found that shoot growth and tissue phosphorus concentrations were 

increased by the mycorrhiza Glomus mosseae (Stribley et al. 1980). Many authors have reported that 

arbuscular mycorrhizal symbiosis can reduce root disease caused by several soil-borne pathogens. For 

instance, Pozo et al. (2002) studied the impact of colonisation by the arbuscular mycorrhizal fungus 

(AMF) G. mosseae on tomato root necrosis caused by the soil-borne pathogen Phytophthora 

parasitica. After 7 and 16 days of inoculation with zoospores of the pathogen, roots of plants colonised 

by the AMF had 39% and 30% (respectivel) fewer infection loci than those that were not colonised. At 

harvest, 61% of roots of non-colonised plants were necrotic compared with only 31% in AMF-colonised 

plants. 
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Plant growth promoting rhizobacteria (PGPR) is a collective term for beneficial plant-associated 

bacteria that are able to colonize and persist in the rhizosphere. Some PGPR provide the plant with 

fixed nitrogen and other compounds mobilised from the soil. Strains from the genera Rhizobium, 

Sinorhizobium, Mesorhizobium, Bradyrhizobium and Azorhizobium are the most efficient nitrogen 

fixers, which form host-specific symbioses with leguminous plants (Paul and Clark 1998).  

PGPR may also control plant diseases, promote growth and yield. For instance, Nayaka et al. (2009) 

applied different formulations of a Pseudomonas fluorescens to maize seeds. They observed that P. 

fluorescens was often effective in reducing the incidence of the phytopathogen Fusarium verticillioides. 

The same formulations were used under field conditions and the results demonstrated that P. 

fluorescens improved field emergence and grain yield. 

Living organisms that reduce the impact of pests and pathogens on plants when introduced into an 

environment or agricultural setting are known as biocontrol agents. Fungi and bacteria in the 

rhizosphere that are able to control the growth or activity of plant pathogens and promote plant 

growth and development have the potential to be used as biocontrol agents of soil borne diseases. 

Many strains belonging to the fungal genus Trichoderma are used as biocontrol agents for 

phytopathogens. Nearly all temperate and tropical soils contain 101–103 culturable Trichoderma 

propagules per gram (Harman et al. 2004a). The same authors have shown that a strain selected for 

its bioncontrol and plant growth promoting ability, T. harzianum T22, increased root development in 

maize and numerous other plants. Harman (2000) focused on this particular strain of Trichoderma, 

because T. harzianum T22, a protoplast fusant that had been proven to be the more rhizosphere 

competent than its parental strains. Harman (2000) grew maize plants in the field from T. harzianum 

T22 treated and untreated seeds. When plants were 2 m tall, the frequencies of root intercepts were 

determined. T. harzianum T22 induced twice as many deep-root intercepts (25-75 cm below the soil 

surface) resulting in increased drought tolerance for the plant. Furthermore, T. harzianum T22 was 

proven to be successful in the control of plant diseases in laboratory tests, caused by a range of 

pathogens that included Fusarium graminearum, Rhizoctonia solani, Pythium ultimum and Sclerotium 

rolfsii (Harman 2000). The strain T. harzianum T22 has subsequently been commercialized and is 

largely sold to the greenhouse, row crop, and turf industries.  
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Trichoderma species have been shown to control several soil borne plant pathogens in field and glass 

house conditions. Some of the pathogens Trichoderma species can control include for example 

Pythium sp., Fusarium sp., Rhizoctonia solani, and Sclerotium rolfsii (Benhamou and Chet 1993, Sivan 

and Chet 1993). McLean and Stewart (2000) demonstrated in glasshouse trials that fungal species such 

as T. atroviride, T. koningii and T. virens could control the pathogen Sclerotium cepivorum causing 

white rot in onions. The same authors showed that the application of T. atroviride LU132 as a soil 

additive decreased the disease incidence from 39.8% (control) to 7.7%. In a series of field experiments, 

Rabeendran et al. (2006) found that T. hamatum LU593 applied to lettuce plants in different ways 

(spore suspension, soil amendment or transplant treatement) could reduce the disease incidence of 

Sclerotinia minor.  

Trichoderma is one the most studied genus of fungi. Species belonging to this genus are used 

worldwide as bio-pesticides, biofertilizers, growth enhancers and stimulants of resistance. Species 

such as T. asperellum, T. atroviride, T. gamsii, T. hamatum, T. harzianum, T.polysporum, T. virens, and 

T.viride are used as main ingredients, alone or in combination with other biological control agents, for 

commercial products across the world (Table 1-1). Example of Trichoderma biocontrol products 

commercialized in New Zealand include: Trichopel, Trichodry, Trichospray, Vinevax, Biodowel/Pruning, 

Sentinel, Tenet (Woo et al. 2014). 

Table 1-1 Worlwide distribution of Trichoderma commercial products used in agriculture. 
Adapted from (Woo et al. 2014) 

Region Number of countries 

per region 

Number of commercial 

products 

Number of products 

registered 

Africa 5 9 9 

Asia 8 100 8 

Europe 17 57 21 

North America 2 29 19 

Pacific 2 22 10 

South and Central America 14 40 22 
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The difference in the ability of Trichoderma species to colonise the rhizosphere of plants in early and 

more recent studies, can be explained by the methods used to identify species. In former studies, the 

species-level identification of Trichoderma/Hypocrea isolates was based on morphological 

characteristics which would lead to incorrect diagnosis. In more recent studies, the difficulties of 

speices morphological characterisation were overcome by the use of biochemical and molecular 

methods,  which are more reliable (Kredics et al. 2014). Currently, several isolates of Trichoderma have 

been shown to be rhizosphere competent. 

Tsahouridou and Thanassoulopoulos (2002) treated tomato seeds with a T. koningii isolate and found 

that the isolate could colonise the rhizosphere of tomato in sterile potting compost and inhibit 

Sclerotium rolfsii. Rabeendran et al. (2006) showed that T. hamatum LU593 colonised the rhizosphere 

of lettuce in potting mix. Hohmann et al. (2011) studied the colonisation of pine roots by two 

Trichoderma isolates (T. hamatum LU592 and T. atroviride LU132). They discovered that both isolates 

could colonise pine roots grown in potting mix, however, T. hamatum LU592 was a better coloniser 

than LU132.  

In other work Hohmann et al. (2012) showed that T. hamatum LU592 zone of activity went beyond the 

rhizosphere up to 1 cm away from pine roots in non-sterile potting mix. Bourguignon (2008) found that 

Trichoderma strains isolated from the rhizosphere of onion, potato, wheat and brassica, and belonging 

to T. asperellum, T. atroviride, T. hamatum, T. harzianum and T. koningii could colonise the roots of 

onion at different depths in gamma irradiated soil.  

A well-known example of a rhizosphere competent Trichoderma strain is T. harzianum T22. 

Trichoderma harzianum T22 was extensively tested on a variety of crops including ferns, beans, corn 

and ornamental flowering plants and was found to colonise all parts of the root systems (Harman 

2000). Moreover, high populations of T. harzianum T22 (around 105 CFU/g dry weight of roots) were 

found on rye grain cover crop roots six months after inoculation. When the cover crop was killed and 

sweet corn was planted in the same fields, it was noticed that plants in the plots treated with T. 

harzianum T22 were taller and had 1.7 times greater weight of ears compared to the plants grown on 

untreated plots. This demonstrated that T. harzianum T22 could persist and proliferate in the soils and 

on roots for a long time. Only a few studies in the literature have assessed rhizosphere competence of 

multiple isolates in non-sterile soil (Ahmad and Baker 1987a, Sivan and Harman 1991). In studies where 

multiple isolates were assessed, rhizosphere competence was addressed as an explanation for 

biological control but it was not the main focus of the study (Hoyos-Carvajal et al. 2009a). 
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Scope of PhD thesis 

There are limited and conflicting reports of rhizosphere competence in the genus Trichoderma. Many 

authors suggest that rhizosphere competence is a trait associated with biocontrol ability. However, 

the literature is biased in that most accounts of rhizosphere competence are instances in which isolates 

have been selected and investigated for their biocontrol ability in the first instance. Demonstration of 

rhizosphere competence is then done on a cohort of isolates already selected for their biological 

activity.  The aim of this project was to study rhizosphere competence in the genus Trichoderma using 

a representative range of species and isolates. The isolates were chosen to represent species from 

which known biocontrol agents have been derived (as these are the most abundantly described in the 

literature). 

Objective 1:  To determine whether rhizosphere competence is widespread in the Trichoderma 

genus.  

Objective 2:  To determine whether the rhizosphere competence status of a particular strain is 

host plant specific.  

Objective 3: To determine whether key soil abiotic factors can influence the rhizosphere 

competence of a particular Trichoderma isolate  

Objective 4: To determine whether rhizosphere competence changes over time 

Objective 5:  To assess the ability of rhizosphere competent Trichoderma isolates to colonise the 

rhizosphere and root cortex 
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Table 2-1 Details of the Trichoderma spp. isolates tested for rhizosphere competence 

LU # Species  Host and Origin 

945 T. asperelloides1 Bamboo clump, Sarawak, Malaysia 

150 T. asperellum Soil, NZ 

699 T. asperellum Pinus radiata, Woodhill, Auckland, NZ 

132 T. atroviride Onion growing soil, Pukekohe, Auckland, NZ 

140 T. atroviride Onion growing soil, Pukekohe, Auckland, NZ 

298 T. atroviride Kiwifruit leaves, Tauranga, NZ 

592 T. hamatum Vegetable cropping soil, Preston Rd, Christchurch, NZ 

595 T. hamatum Vegetable cropping soil, Marshlands, NZ 

740 T. hamatum Unknown, Rylstone Orchards, Wainui, Auckland, NZ 

T22 T. harzianum USA 

151 T. harzianum2 Unknown, NZ 

571 T. harzianum2 Ciborinia camelliae infected Camellia petals, Wellington botanical 

garden, NZ 

669 T. harzianum2 Kiwifruit leaves, Auckland, NZ 

626 T. harzianum3  Unknown, Wombat lake track, Franz Josef National Parks, NZ 

672 T. harzianum3 Unknown, Beltsville, USA 

673 T. harzianum3 Sclerotium rolfsii sclerotia, Beltsville, USA 

547 T. virens Soil, Christchurch, NZ 

556 T. virens Onion growing soil, Pukekohe, Auckland, NZ 

555 T. crassum1 Soil, Christchurch, NZ 

570 T. viride Ciborinia camelliae sclerotia, Wellington botanical gardens, NZ 

817 T. viride Soil, Kaingaroa pine plantation forest, NZ 

761 T. viridescens1 Soil under grass, Arable and Forage Cropping farm, LU, NZ   

1 Isolates reclassified by sequencing of the Tef1 gene: LU945 T. asperellum →T. asperelloides; 
LU555 T. virens → T. crassum; LU761 T. viride → T. viridescens 
2 T. harzianum group I as defined by the BPRC phylogenetic tree 
3 T. harzianum group II as defined by the BPRC phylogenetic tree 
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Table 2-2 Trichoderma CFU/g dry rhizosphere soil (DRS) and log10 CFU/g DRS recovered 
from 7 day old sweet corn seedling roots grown in non sterile soil and treated 
with 22 Trichoderma isolates. Results are means of three experiments. 
Untreated controls were bare seed (BS) and methyl cellulose coated seed (CS). 
Values with the same letters are not significantly different at P ˂ 0.05. 

LU No. Trichoderma species CFU/g DRS* 
Log10  

CFU/g DRS 

673 T. harzianum group II 3.09 x 105 5.490  a 

151 T. harzianum group I 2.45 x 105 5.389  a 

132 T. atroviride  2.26 x 105 5.355  a 

740 T. hamatum 1.96 x 105 5.292  ab 

140 T. atroviride  1.92 x 105 5.283  ab 

150 T. asperellum 1.91 x 105 5.281  ab 

298 T. atroviride  1.76 x 105 5.245  abc 

571 T. harzianum group I 1.73 x 105 5.238  abc 

570 T. viride 1.67 x 105 5.223  abc 

945 T. asperelloides 1.40 x 105 5.145  abcd 

817 T. viride 1.14 x 105 5.057  abcde 

592 T. hamatum 1.13 x 105 5.053  abcde 

699 T. asperellum 7.21 x 104 4.858  bcdef 

761 T. viridescens 6.78 x 104 4.831  bcdef 

T22 T. harzianum  6.14 x 104 4.788  cdef 

595 T. hamatum 4.86 x 104 4.687  defg 

547 T. virens 3.91 x 104 4.592  efg 

626 T. harzianum group II 3.12 x 104 4.494  fg 

669 T. harzianum group I 1.92 x 104 4.284  gh 

556 T. virens 1.90 x 104 4.279  gh 

672 T. harzianum group II 1.73 x 104 4.238  gh 

555 T. crassum 1.63 x 104 4.213  gh 

BS Bare seed 8.43 x 103 3.926  hi 

CS MC coated seed 4.75 x 103 3.677  i 

LSD 5%   0.479 

*backtransformed mean 
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Table 2-4 Means of growth promotion parameters measured for sweet corn seedlings 
grown in non sterile soil for 7 days and treated with 22 Trichoderma isolates. 
Means were calculated across the three experiments. Controls = bare seed (BS) 
and MC coated seed (CS). Within a column, values with the same letters are not 
significantly different at P ˂ 0.05.  

LU No. Species Emergence (%) Shoot Length 
(cm) 

Shoot Dry 
Weight 

(mg) 

945 T. asperelloides 91.7 ab 5.1  ab 12.2  a 

150 T. asperellum 75.0 abc 4.9  ab 11.5  a 

699 T. asperellum 75.0 abc 6.3  a 16.0  a 

132 T. atroviride 91.7 ab 6.9  a 17.9  a 

140 T. atroviride 91.7 ab 6.2  a 13.3  a 

298 T. atroviride 100.0 a 6.0  a 12.7  a 

555 T. crassum 100.0 a 6.1  a 13.4  a 

592 T. hamatum 83.3 ab 6.4  a 13.2  a 

595 T. hamatum 91.7 ab 5.8  ab 12.9  a 

740 T. hamatum 91.7 ab 5.7  ab 11.8  a 

151 T. harzianum GI 83.3 ab 6.6  a 15.5  a 

571 T. harzianum GI 83.3 ab 5.0  ab 10.7  a 

669 T. harzianum GI 91.7 ab 6.9  a 17.7  a 

672 T. harzianum GII 83.3 ab 6.3  a 16.1  a 

673 T. harzianum GII 100.0 a 6.2  a 14.1  a 

626 T. harzianum GII  66.7 bc 6.2  a 16.0  a 

547 T. virens 83.3 ab 6.9  a 14.7  a 

556 T. virens 75.0 abc 5.9  a 11.8  a 

570 T. viride 91.7 ab 5.8  ab 15.4  a 

817 T. viride 83.3 ab 3.8  b 9.8  a 

761 T. viridescens 83.3 ab 5.5  ab 10.9  a 

T22 T. harzianum 72.2 bc 6.1  a 15.7  a 

BS  50.0 c 5.5  ab 15.7  a 

CS  80.6 ab 5.1  ab 9.9  a 

LSD 5%  25.55 2.12 8.53 
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Table 2-5 Percentage of 7 day old sweet corn plants positive for endophytic Trichoderma 
for each of the three experiments. Plants’ seeds had been coated with one of 22 
Trichoderma isolates and were grown in unsterilised Wakanui silt loam soil. 

Isolate Species Experiment 1 Experiment 2 Experiment 3 

132 T. atroviride 25 75 0 

140 T. atroviride 0 67 0 

150 T. asperellum 0 100 33 

  151* T. harzianum GI 25 67 67 

298 T. atroviride 25 100 50 

547 T. virens 25 33 0 

555 T. crassum 25 50 0 

556 T. virens 0 67 0 

570 T. viride 33 75 25 

571 T. harzianum GI 33 100 0 

592 T. hamatum 0 67 33 

595 T. hamatum 0 100 0 

626 T. harzianum GII 0 0 0 

669 T. harzianum GI 0 50 0 

672 T. harzianum GII 25 33 0 

673 T. harzianum GII 25 75 75 

699 T. asperellum 0 25 0 

740 T. hamatum 0 75 100 

761 T. viridescens 25 67 0 

817 T. viride 0 33 0 

945 T. asperelloides 33 50 50 

T22 T. harzianum 0 40 0 

Coated seed  0 33 0 

Bare seed  0 0 0 

 
*Shaded rows represent isolate treatments where endophytic Trichoderma colonies were 
recovered in all three experiments. 
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Table 2-6 Presence of Trichoderma colonies in the roots of 7 day old swet corn seedlings grown in non sterile soil and coated with 22 different Trichoderma 
isolates. The number of segments and Trichoderma colonies refer to the total number of segments and colonies counted for plants that were 
positive for Trichoderma isolations across the three experiments. No. = number. 

LU 
No. 

Species No. of plants 
assessed 

No. of plants 
positive for 

Trichoderma 

No. of 
Trichoderma 

colonies 

% of plants colonised 
by Trichoderma 

Trichoderma 
colonies per root 

945 T. asperelloides 11 5 16 45 3 

150 T. asperellum 9 4 21 44 5 

699 T. asperellum 9 1 8 11 8 

298 T. atroviride 12 7 18 58 3 

132 T. atroviride 11 4 10 36 3 

140 T. atroviride 11 2 6 18 3 

555 T. crassum 12 3 8 25 3 

740 T. hamatum 11 6 18 55 3 

595 T. hamatum 11 4 5 36 1 

592 T. hamatum 10 3 10 30 3 

T22 T. harzianum 26 4 8 15 2 

151 T. harzianum GI 10 5 15 50 3 

571 T. harzianum GI 10 5 12 50 2 

669 T. harzianum GI 11 2 3 18 2 

673 T. harzianum GII 12 7 17 58 2 

672 T. harzianum GII 10 2 3 20 2 

626 T. harzianum GII 8 0 0 0 0 

556 T. virens 9 2 5 22 3 

547 T. virens 10 2 8 20 4 

570 T. viride 11 5 20 45 4 

817 T. viride 10 1 6 10 6 

761 T. viridescens 10 3 8 30 3 

CS  29 4 9 14 2 

BS  6 0 0 0 0 
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The two reports of (Mehrabi-Koushki et al. 2012) and (Singh and Kumar 2012a), differ substantially 

from the work described here as they assessed rhizosphere competence in sterile soil and with isolates 

that had been proven to be biological control agents. In these conditions, the assessment could have 

inflated the number of rhizosphere competent isolates beyond what would be seen in soil. In sterile 

soil, Trichoderma isolates would have not encountered other microorganisms that may have competed 

for the rhizosphere as a niche and, in the absence of these other microbial communities, they would 

have been able to develop without having to compete for space or nutrients exuded by the plant 

creating therefore a favourable and easy environment to colonise. Nevertheless, in Singh and Kumar 

(2012) study, the authors assessed rhizosphere competence by studying the growth of the selected 

Trichoderma species on the rhizoplane of Chrysanthemum plants. The seven isolates could colonise 

the rhizoplane of Chrysanthemum plants to different depths, showing a close relationship between the 

fungus and the plant and a form of rhizosphere competence.  

In the literature, a strong link is made between biological control and rhizosphere competence 

(Harman et al. 2004a, Harman 2006, Sala et al. 2007, Roberti et al. 2012). Thus, it would be unsurprising 

that those studies that have chosen to test biocontrol isolates would contain a high number of 

rhizosphere competent isolates. However, the mechanism by which the isolate exerts biological 

control could explain the need for an isolate to be able to colonise the plant rhizosphere. In that sense 

for example, mycoparasitic isolates may not need to be as rhizosphere competent as those isolates 

whose primary mechanism for biocontrol is competitive exclusion. For example, in this study, T22 was 

in the middle of the list for rhizosphere competence and it is a well-known mycoparasite (Lo et al. 

1998).  This was illustrated in Singh and Kumar (2012a) where they showed that there was no 

correlation between the ability of the Trichoderma isolates to inhibit Fusarium oxysporum and to 

colonise the roots of Chrysanthemum. In the present study only 12 isolates (55% of the population 

tested) had some prior demonstration of biological control activity against different pathogens in 

glasshouse trials but 92% were rhizosphere competent, including three isolates each from the T. 

atroviride and T. hamatum species and one isolate from each of the T. asperellum, T. harzianum GI, T. 

harzianum GII and T. virens species. The ten remaining isolates that had no evidence of biocontrol 

activity despite being included in screening assays against pathogens, 70% were rhizosphere 

competent which still represented a large majority of the Trichoderma isolates. 

Affokpon et al. (2011) is one of the few studies in which isolates were selected randomly and not 

because of their ability as biocontrol agents. In their study, the ability of 17 Trichoderma strains, 

encompassing five species, were assessed to colonize the roots of tomato plants in unsterilized potting 

soil.  
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The Trichoderma species had been isolated from root-knot nematode egg masses or from nematode 

infested vegetable fields located in Benin. The majority of their isolates were T. asperellum (n=9), with 

four other species, T. harzianum, T. brevicompactum, T. hamatum and T. erinaceum represented 

respectively by four, three and one individual isolates for each of the last two species. Three species 

were common with the current study.  After 8 weeks, the authors recovered populations for the 18 

isolates ranging from 7 x 103 to 6.8 x 104 CFU/gram root showing that all of the Trichoderma isolates 

could colonize the rhizosphere of tomato plants to different degrees. The saprophytic nature of 

Trichoderma species could explain the survival of Trichoderma isolates in the soil and especially in the 

rhizosphere soil where many organic compounds are exuded by plant roots. The present study agrees 

with this report demonstrating that rhizosphere competence is widespread within the genus. 

In the present study, the best and the second least rhizosphere competent isolates (LU673 and LU672) 

belonged to the same species (T. harzianum GII) and isolates within other species also showed variable 

rhizosphere competence. This showed that rhizosphere competence, for a particular plant host, is 

variable within a Trichoderma species and is isolate dependant. This is in agreement with the literature. 

Similarly, in the Affokpon et al. (2011) study, nine isolates from the species T. asperellum showed 

different abilities to colonise the roots of 8 week old tomato plants in non-sterile potting soil. The 

researchers found that Trichoderma densities ranged from 106 to 5.6 x 108 CFU/mL of soil amongst the 

isolates and the nine isolates were classified in six statistically different groups according to their 

rhizosphere competence. Another Trichoderma species, T. virens, was studied by Mehrabi-Koushki et 

al. (2012). They compared the ability of four T. virens isolates to colonize the rhizosphere of 15 day old 

tomato seedlings in sterile soil. They found significant differences between the isolates’ populations in 

the top of the root rhizosphere and these ranged from 1.6 to 3.6 x 107 CFU/g root, again dividing the 

isolates into statistically different groups. In another study, Sivan and Harman (1991) assessed the level 

of rhizosphere competence of three Trichoderma harzianum strains on 7 day old maize seedlings 

grown in unsterilized sandy loam soil. They found that T22, with populations varying from 103 to 105, 

was able to colonize the entire length of plant roots (22 cm), whereas, the other two isolates were 

unable to colonize the middle and bottom parts. The present study agrees with the literature in 

showing that isolates within the same Trichoderma species are different. Whether the rhizosphere 

competence of the isolates used in this study showed different colonization patterns along the length 

of the root is unknown as the entire root system was used for the assessment of rhizosphere 

competence. However, it would be interesting to know to what depth isolates with different 

rhizosphere competence ability can colonize young and old sweet corn roots.  
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In the present study, T. harzianum T22 was chosen as a positive control because it is a well-studied 

organism known to be rhizosphere competent, a mycoparasite, and a growth promoter. T22 is the 

main ingredient of commercial biopesticides such as RootShield®, T22 HC and Plant Shield®, used for 

the control of different pathogens on different crops (Harman 2000, Harman et al. 2004a, Harman 

2006). Isolate T22 had been used as a control in other studies and is proven to be rhizosphere 

competent in many plant species especially sweet corn, hence the choice of host and control for this 

study. In the present study, Trichoderma populations of sweet corn plants inoculated with T22 reached 

6.14 x 104 CFU/g DRS 7 days post planting therefore the isolate was considered to be rhizosphere 

competent. Similarly, (Sivan and Harman 1991) concluded that T22 was rhizosphere competent and 

the best among two other isolates when they coated it onto maize seeds and grew them for 7 days in 

unsterilized soil. In that study T22 averaged 1.17 x 104 CFU/g DRS (average between the 11 values 

found for different depths). In the present study, isolate T22 was more rhizosphere competent than 

four isolates from four different species, but it was not the most rhizosphere competent which was 

unexpected given its high profile as a biocontrol agent. Six isolates from five different species were 

more rhizosphere competent than T22.  

The poorer performance of T22 than expected may be due to the soil used. Bennett and Whipps (2008) 

applied T22 to carrot and onion seeds and sowed them in three different unsterilized soil types 

comprising a light sandy loam, a peat soil and a sandy clay loam. The authors found that for onion 

plants, there were higher numbers of T22 recovered from the light sandy loam soil compared to the 

sandy clay loam soil. For carrot, they recovered higher populations from the light sandy loam and peat 

soils compared to the sandy clay loam soil.  The physical and chemical properties of Wakanui silt loam 

soil may have had an influence on the colonisation by T22. It would have been interesting to assess 

rhizosphere competence of T22 on onion and carrot in Wakanui silt loam soil to see whether the soil 

was the main component influencing the fungus’ development or the combination of plant and soil as 

demonstrated in the Bennett and Whipps (2008) study.  

Another reason that may have explained why T22 did not perform as expected, may be the 

microorganisms present in the New Zealand unsterilized Wakanui silt loam soil which may have been 

suppressive to T22. Six isolates performed better than T22 in the present study, all of them except for 

LU672 had been isolated from New Zealand soils and may have had an advantage in being able to 

suppress microorganisms, leading to better colonisation of the sweet corn rhizosphere than T22.  
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However, only five isolates (22%) were consistently recovered from surface sterilised roots in the three 

experiments. These isolates belonged to the species T. harzianum GI (LU151), T. atroviride (LU298), T. 

viride (LU570), T. harzianum GII (LU673) and T. asperelloides (LU945) and were in the top 10 most 

rhizosphere competent isolates. Two of these isolates were the most rhizosphere competent in the 

study. The present study’s results were similar to Hoyos-Carvajal et al. (2009a) who assessed the ability 

of nine Trichoderma isolates to endophytically colonise the shoots and roots of bean seedlings. Using 

scanning electron microscopy, the authors observed two out of nine isolates (22%) in the cortex and 

vascular tissues of bean seedlings.  

Trichoderma isolates are known to colonise internal root tissues of many plants species (Harman et al. 

2004a) and several reports emphasize the importance of endophytism for biological control, growth 

promotion, induced systemic resistance and other beneficial effects (Shoresh et al. 2010), however, 

few studies have compared multiple isolates.  Prisa et al. (2013) screened 162 Trichoderma isolates on 

the plant species Limonium sinuatum and Cupressus sempervirens and 202 isolates on Camelia 

sinensis. They found that, respectively, 6, 5.5 and 4% of the isolates were endophytic on the plants 

tested. Only three isolates were found to be endophytic in all three plant species. A larger number of 

Trichoderma isolates were found to be endophytic in the present study compared to Prisa et al. (2013) 

report. The reason for this difference may have been the plant. Perhaps sweet corn roots are more 

easily penetrated by Trichoderma species or the isolates from this study were better at colonising the 

cortex of sweet corn roots compared to the ability of the isolates at colonising Limonium sinuatum, 

Cupressus sempervirens and Camelia sinensis in Prisa et al. (2013) study. It would be interesting to test 

whether Trichoderma isolates are generalists for endophytic colonisation or whether this attribute is 

plant host specific. Many endophytes are not generalists and have evolved with the plant. In the case 

of opportunistic organisms such as Trichoderma, other factors such as the environmental conditions, 

the presence of a pathogen in the soil or the plant phenology could more significantly affect the 

establishment of this relationship with the host. It would be interesting to assess the endophytic 

colonisation of Trichoderma in a different host and under different environmental conditions. 

The difference may have also been explained by the methodology for the assessment. In the present 

study, there was a difference between the results for the percentage of plants positive for Trichoderma 

across the three experiments and for each individual experiment. When assessing endophytic 

colonisation, it is important to take into consideration: the consistency of the isolate at being 

endophytic across a set of experiments, the percentage of plants positive for endophytic colonisation 

and the number of colonies per root or per cm of root, the latter illustrates if a large root depth is 

covered by the endophyte. In this study, most of the endophytic isolates were recovered from the 

same root zones and in similar quantities. 
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Nevertheless, all the reports agreed in showing that Trichoderma isolates differ in their relative ability 

to endophytically colonise plants. In the present study the most endophytic isolates were also the most 

rhizosphere competent suggesting a link between both attributes. This is in agreement with the 

literature (Harman 2006). However, endophytic colonisation in this study was measured only after 7 

days. It would be interesting to know if the relationship between Trichoderma and its host, changes 

over time. Hoyos-Carvajal et al. (2009a) have shown that some isolates take more time to colonise the 

aerial parts of bean seedlings and become endophytic only at flowering stage. 

In the last 26 years, there have been more than 64 publications addressing rhizosphere competence. 

Most of those papers agree in saying that rhizosphere competence is important for biological control. 

This study supports these published accounts that rhizosphere competence is widespread within the 

genus Trichoderma and is isolate specific. Although no growth promotion was detected, isolates 

showed different levels of endophytic colonisation for sweet corn. Some of the isolates tested in this 

study are the main ingredients of commercial biopesticides used to control various pathogens on 

multiple crops. Given that the performance of those isolates was variable for the three traits measured 

on sweet corn plants, whether changing the host plant alters their ability to colonise the rhizosphere 

would be interesting to know, and is investigated in the next chapter. 













 
 

42 

On carrot, Trichoderma populations from plants inoculated with T. virens LU556 were significantly 

lower than those recovered from plants treated with T. atroviride LU132, T. harzianum LU151 and T. 

harzianum LU673 (Table 3-1). 

Table 3-1  Combined analysis: Mean number of Trichoderma CFU/g dry rhizosphere soil 
(DRS) (log10 values are indicated between brackets) from selected plant species 
treated with six different Trichoderma isolates. Mean CFU/g DRS followed by the 
same letter do not differ significantly within each column. 

 Sweet corn Ryegrass Onion Clover Cauliflower Carrot 

T. harzianum 
LU673 

8.05 x 104 

(4.906) a 

2.06 x 105 

(5.314) ab 

2.47 x 104 

(4.392) b 

2.00 x 104 

(4.3) a 

1.78 x 104 

(4.25) d 

4.27 x 104 

(4.63) a 

T. harzianum 
LU151 

6.53 x 104 

(4.815) a 

2.61 x 105 

(5.417) ab 

3.37 x 104 

(4.528) b 

1.64 x 104 

(4.214) a 

2.24 x 105 

(5.35) ab 

3.56 x 104 

(4.551) a 

T. atroviride  
LU132 

1.42 x 105 

(5.152) a 

5.90 x 105 

(5.771) a 

2.01 x 104 

(4.303) b 

9.44 x 103 

(3.975) a 

3.62 x 105 

(5.559) a 

3.94 x 104 

(4.596) a 

T. virens          
LU556 

8.32 x 103 

(3.92) b 

1.35 x 105 

(5.13) b 

1.62 x 104 

(4.21) b 

1.08 x 104 

(4.035) a 

6.73 x 104 

(4.828) c 

1.07 x 104 

(4.031) b 

T. harzianum 
LU672 

6.75 x 103 

(3.829) b 

1.57 x 105 

(5.196) b 

1.22 x 105 

(5.086) a 

1.37 x 104 

(4.136) a 

1.08 x 105 

(5.035) bc 

1.94 x 104 

(4.288) ab 

T. crassum       
LU555 

9.35 x 103 

(3.971) b 

1.11 x 105 

(5.046) b 

1.79 x 104 

(4.254) b 

1.89 x 104 

(4.276) a 

1.13 x 105 

(5.052) bc 

1.76 x 104 

(4.246) ab 

Control* 9.16 x 103 

(3.962) 

6.65 x 103 

(3.823) 

1.16 x 104 

(4.065) 

4.98 x 103 

(3.697) 

5.21 x 103 

(3.717) 

9.16 x 103 

(3.962) 

LSD 5% 0.4756 

* Control data was not included in the ANOVA analysis. Note-LU132, LU673, LU151 selected as highly 
rhizosphere competent on sweet corn in chapter 2; LU556, LU555, LU672 selected as weakly 
rhizosphere competent on sweet corn in Chapter 2.  
 
For all Trichoderma isolates except T. harzianum LU673, ryegrass and cauliflower had the highest 

Trichoderma populations (Table 3-2). In the case of plants treated with T. harzianum LU672, the 

highest Trichoderma populations were equally isolated from ryegrass, cauliflower and onion. For 

plants treated with T. harzianum LU673, Trichoderma populations isolated from cauliflower were the 

lowest (Table 3-2). For plants inoculated with isolates T. virens LU556, T. harzianum LU672 and T. 
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crassum LU555, Trichoderma populations recovered from sweet corn plants were significantly lower 

than for other isolates (Table 3-2).  

Trichoderma populations isolated from clover plants treated with the six isolates were equivalent. 

Trichoderma populations isolated from onion plants treated with all isolates were equal except for 

those of plants treated with T. harzianum LU672 whose populations were significantly higher (Table 

3-2). 

Table 3-2 Combined analysis: Performance of six Trichoderma isolates across selected 
plant species. Mean CFU/g dry rhizosphere soil (DRS) followed by the same letter 
do not differ significantly within each column. Log10 values are indicated 
between brackets. 

 T. harzianum 
LU673 

T. harzianum 
LU151 

T. atroviride 
LU132 

T. virens    
LU556 

T. harzianum 
LU672 

T.crassum  
LU555 

Sweet corn 8.05 x 104 

(4.906) ab 

6.53 x 104 

(4.815) b 

1.42 x 105 

(5.152) bc 

8.32 x 103 

(3.92) b 

6.75 x 103 

(3.829) b 

9.35 x 103 

(3.971) b 

Ryegrass 2.06 x 105 

(5.314) a 

2.61 x 105 

(5.417) a 

5.90 x 105 

(5.771) a 

1.35 x 105 

(5.13) a 

1.57 x 105 

(5.196) a 

1.11 x 105 

(5.046) a 

Onion 2.47 x 104 

(4.392) bc 

3.37 x 104 

(4.528) bc 

2.01 x 104 

(4.303) de 

1.62 x 104 

(4.21) b 

1.22 x 105 

(5.086) a 

1.79 x 104 

(4.254) b 

Clover 2.00 x 104 

(4.3) c 

1.64 x 104 

(4.214) c 

9.44 x 103 

(3.975) e 

1.08 x 104 

(4.035) b 

1.37 x 104 

(4.136) b 

1.89 x 104 

(4.276) b 

Cauliflower 1.78 x 104 

(4.25) c 

2.24 x 105 

(5.35) a 

3.62 x 105 

(5.559) b 

6.73 x 104 

(4.828) a 

1.08 x 105 

(5.035) a 

1.13 x 105 

(5.052) a 

Carrot 4.27 x 104 

(4.63) bc 

3.56 x 104 

(4.551) bc 

3.94 x 104 

(4.596) cd 

1.07 x 104 

(4.031) b 

1.94 x 104 

(4.288) b 

1.76 x 104 

(4.246) b 

LSD 5% 0.5219 

Note – LU132, LU673, LU151 selected as highly rhizosphere competent on sweet corn in chapter 2; LU556, 

LU555, LU672 selected as weakly rhizosphere competent on sweet corn in chapter 2. 

Ryegrass and cauliflower were the plant species with the highest Trichoderma populations regardless 

of the isolate that had been used to treat plants. Trichoderma populations reached 2.05 x 105 and 

1.03 x 105 CFU/g DRS for ryegrass and cauliflower respectively. Clover plants had the lowest 

populations (1.43 x 104 CFU/g DRS) and were similar to those of carrot, sweet corn and onion plants 

(Table 3-3). 
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Table 3-3 Combined analysis: Log 10 values and mean number of Trichoderma CFU/g dry 
rhizosphere soil (DRS) of six plant species. Mean CFU/g DRS followed by the 
same letter do not differ significantly within the column. 

Plant 
Log10 

CFU/g DRS 

Mean 

CFU/g DRS 

Ryegrass 5.312 2.05 x 105 a 

Cauliflower 5.012 1.03 x 105 a 

Onion 4.462 2.90 x 104 b 

Sweet corn 4.432 2.70 x 104 b 

Carrot 4.39 2.45 x 104 b 

Clover 4.156 1.43 x 104 b 

LSD 5% 0.5219  

 

Irrespective of plant species, the highest Trichoderma populations were isolated from plants treated 

with T. atroviride LU132 and T. harzianum LU151 equally (Table 3-4). Both were significantly higher 

than the populations isolated from all plants species treated with T. crassum LU555 and T. virens 

LU556. The lowest Trichoderma populations were isolated from plants treated with T. virens LU556 

(Table 3-4). 

Table 3-4 Combined analysis: Log 10 values and mean number of Trichoderma CFU/g dry 
rhizosphere soil (DRS) recovered from six plant species for six different isolates. 
Mean CFU / g DRS followed by the same letter do not differ significantly within 
the column. 

Isolate 
Log10 

CFU / g DRS 

Mean 

CFU / g DRS 

T. atroviride LU132 4.892 7.80 x 104 a 

T. harzianum LU151 4.813 6.50 x 104 ab 

T. harzianum LU673 4.632 4.29 x 104 bc 

T. harzianum LU672 4.595 3.94 x 104 c 

T. crassum  LU555 4.474 2.98 x 104 cd 

T. virens    LU556 4.359 2.29 x 104 d 

LSD 5% 0.5219 
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The present study agrees with these findings in that isolates will behave differently according to the 

plant species and their inherent ability to colonise roots. However, it would be interesting to know, as 

per (Sivan and Harman 1991), to what depths isolates can colonise roots of each plant species. Perhaps 

for plant species with pivot roots, Trichoderma isolates can grow vertically alongside the root 

penetrating deeper in the soil, whereas for plant species forming early branching roots, Trichoderma 

isolates follow new roots spreading more horizontally rather than vertically suggesting that root 

structure could be playing a role in Trichoderma colonisation.  

Similar work, showing differences among the root colonisation of plant species by Trichoderma 

isolates, was done by Ahmad and Baker (1987a). In unsterilized soil, they compared the ability of four 

Trichoderma isolates belonging to the species T. koningii, T. viride and T. harzianum (n = 2), to colonise 

the roots of cucumber, bean, tomato and maize plants. Eight days post planting, they found that T. 

harzianum T95 could colonise the upper and middle parts of maize rhizosphere soil better than the 

same parts in cucumber plants. They also found that T. harzianum T95 colonized bean and tomato 

roots similarly. As the main focus of their study was isolate T. harzianum T95, the results for the other 

three isolates on all four plant species were not presented.  Nevertheless, the results did show that 

isolate T-8 was isolated more frequently from the upper parts of cucumber roots (until 3 cm depth) 

than isolate T-S-1 which was, in turn, better than T12. These results demonstrated the propensity for 

isolate level variation amongst Trichoderma harzianum as has been shown here.   

Isolate variation in root colonisation is not unique to Trichoderma and has been shown for other soil 

borne fungi such as the biocontrol agent Pythium oligandrum. Al-Rawahi and Hancock (1997) studied 

rhizosphere competence of P. oligandrum on 11 plant species representing seven different plant 

families and found that not only the plant family, but also the plant cultivar were different in their 

receptivity to the fungus. 

Root exudates may explain the differences found in root colonisation patterns across the isolates in 

this study. Trichoderma isolates are genetically different from each other and as saprophytes can 

degrade different carbon sources. Trichoderma strains are known to secrete several enzymes and the 

ability to produce these enzymes is variable and inherent to each strain. For example, Ahmad and 

Baker (1987b) measured the production of cellulase for six different Trichoderma isolates (species T. 

harzianum, T. koningii and T. viride) in a broth with different sources of carbon. They found that T-12 

could not produce cellulase in the presence of carboxymethyl cellulose whereas T-95 had produced 

high amounts. The authors found that the most rhizosphere competent isolates were those that had 

the highest production of cellulase.   
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Cumagun et al. (2009) reported that the cellulose adequacy indices (CAI) of the 41 isolates tested, 

varied between 0.091 and 0.921 showing 10 fold differences in the decomposition of the straw’s 

cellulose. The authors linked the CAI with the saprophytic ability of Trichoderma strains and showed 

that strains with higher CAI colonised and degraded more straw. These results indicated that 

Trichoderma isolates are different in their ability to metabolize different chains of carbon making them 

different in their ability to survive in the rhizosphere soil of different plant species. However plants, by 

modifying the secretion of root exudates and by naturally producing different compounds intra and 

inter specifically can also select microbial communities in the rhizosphere which may further affect 

Trichoderma populations.  

There is some literature on similar studies with Trichoderma isolates on the plant hosts used in this 

chapter. Celar (2002) studied the influence of several plant root exudates on four Trichoderma isolates: 

T. longibrachiatum, T. harzianum, T. viride and T. koningii by collecting the root exudates after growing 

the plants in sterile distilled water for 10 to 20 days and using this liquid to make growing media to 

which the isolates were added in the form of an agar plug. The results of Celar’s (2002) study showed 

that onion root exudates inhibited T. longibrachiatum and T. harzianum and those of cabbage inhibited 

T. longibrachiatum and T. harzianum as well as T. viride. Maize root exudates stimulated T. 

longibrachiatum and T. harzianum. None of the root exudates had an effect on isolate T. koningii. 

These findings could be applied to the present study and explain for example the preference of T. 

harzianum LU672 for onion roots. It would have been interesting to assess the production of root 

exudates for each of the plant species in this study and relate it to the colonisation by different 

Trichoderma isolates however collecting the root exudates would have represented a significant 

challenge (Neumann et al. 2009). In the rhizosphere, not only exudates but also other microorganisms 

that are attracted to those same compounds exuded by the plant will influence how a Trichoderma 

isolate colonises roots.  

In this study, because plants were harvested at different times, they may have been at different 

vegetative or phenological stages, influencing the Trichoderma populations found in the rhizosphere. 

For example, Gransee and Wittenmayer (2000) found that younger maize plants exuded higher 

amounts of organic substances per g root dry weight matter than older ones. They also found that 

during plant development the amounts of exuded sugars decreased. Similarly, Groleau-Renaud et al. 

(1998) studied the root exudation of maize plants in axenic conditions at 4, 8, 12 and 16 days and found 

that after a peak at 8 days, exudation decreased regularly from 8 to 16 days. Butler et al. (2004) used 

13C pulse-chase labelling to assess the temporal flow of photosynthetically fixed 13C into the 

rhizosphere soil microbial biomass of ryegrass plants. They found that the flow of 13C through microbial 

biomass was faster in rhizosphere soil than in bulk soil and that it was also faster at the first stage of 

growth development during the transition between active root growth and rapid shoot growth.  
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For example Clouston et al. (2010) screened 62 Trichoderma isolates for their potential to promote 

growth in the species Impatiens walleriana. They found that LU556 (IT160) increased root length and 

root dry weight compared to the control, but isolate IT167 was better at increasing shoot dry weight. 

LU132 was also included in their study but did not show any significant growth effect on impatiens 

cuttings. In the present study, LU555 and LU556 which were the least rhizosphere competent isolates 

on sweet corn increased seedling emergence. In contrast, Hohmann et al. (2011) showed that two 

Trichoderma isolates with different root colonisation behaviour on Pinus radiata had different abilities 

to promote growth. They showed that the most rhizosphere competent isolate LU592 could reduce 

seed mortality by up to 29%, promoted shoot height up to 16% and increased dry root weights by 31%. 

LU132, the least rhizosphere competent one did not show any growth promotion. 

Interestingly, in the present study, sweet corn seedlings’ emergence was improved by the application 

of isolates LU555 and LU556. In chapter two, none of the isolates, including LU555 and LU556 had 

measurable plant growth effects. The plant growing conditions may have explained the differences in 

growth promotion between the two experiments. In chapter two, each sweet corn seedling was grown 

alone in a 50 mL plastic tube, whereas in this study up to ten seedlings were grown together in a 500 

mL pot. Plants may have been stressed by other plants growing in these conditions. Plants can produce 

allelochemicals in the exudates that can either be beneficial or detrimental to the neighbouring plants 

(Bertin et al. 2003). Trichoderma isolates have been shown to have a positive effect when plants are 

stressed (Mastouri et al. 2010), therefore, the growth promotion found in this experiment would have 

to be confirmed in an experiment where stress conditions could be ruled out. 

In the previous chapter, it was shown that Trichoderma isolates have different ability to colonise the 

rhizosphere of sweet corn plants. The aim of this chapter was to assess the rhizosphere competence 

ability of Trichoderma isolates on six different plant species. The colonisation of sweet corn was similar 

in both chapters, which reinforces the robustness of the assays and sweet corn as a model plant for 

the study, however isolates colonised other plant hosts differently. This indicated that rhizosphere 

competence is plant host specific at least for the isolates tested in this study. The rhizosphere 

competence assessment was performed with the entire root system and at different harvest times for 

each of to the plant species. As plants select microorganisms by exuding carbon compounds, it would 

be interesting to know whether rhizosphere competent Trichoderma isolates interact with other 

microbial populations selected by the plant roots.   
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For sweet corn, inoculated plants grown at 24% GWC had significantly higher Trichoderma populations 

than plants grown at 16% GWC (3.24 x 104 compared to 2.24 x 105 CFU/g DRS, respectively) with the 

Trichoderma population level of plants grown at 20% GWC not differing significantly from either that 

at 16 or 24% GWC. For ryegrass, plants grown at 16% GWC did not emerge. The highest Trichoderma 

populations were also found in plants grown at 24% GWC, however these were not different to the 

populations recovered from plants grown at 20% GWC. 

Similarly to experiment 1, in experiment 2 (Table 4-2), control populations for both plant species were 

lower than those of Trichoderma inoculated seeds. For ryegrass seeds grown at 16%, Trichoderma 

rhizosphere colonisation was not included in the analysis as emergence was low. As was seen in 

experiment 1, the highest Trichoderma populations for both plant species was found for plants grown 

at 24%, however in this second experiment there were no significant differences between Trichoderma 

populations for sweet corn plants grown at 16 and 24%. 

Table 4-1 Moisture content experiment 1: Colony forming units CFU (Log10)/g dry 
rhizosphere soil  (DRS) counts for sweet corn and ryegrass grown in non-sterile 
soil at three different Gravimetric Water Content levels (16, 20 and 24% w/w) 
from seeds either uncoated (control) or coated with Trichoderma atroviride 
LU132. Log10 values followed by the same letter in a consecutive series (column) 
are not significantly different. 

 Sweet corn Ryegrass 

 CFU/ g DRS 

(log10) 

CFU/ g DRS 

(log10) 

Gravimetric 

Water Content 
Control LU132 Control LU132 

16% 1.36 x 103 

(3.133)* 

3.24 x 104 

(4.51) b 

# 

# 

# 

# 

20% 6.35 x 102 

(2.803)* 

1.05 x 105 

(5.02) ab 

1.75 x 103 

(3.243)* 

6.32 x 105 

(5.801) a 

24% 1.03 x 103 

(3.014)* 

2.24 x 105 

(5.35) a 

3.94 x 103 

(3.596)* 

7.08 x 105 

(5.85) a 

LSD (5%) - 0.703 - 0.337 

* data for untreated controls not included in the analysis, # no plant emergence 
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In experiment 1, ryegrass plants did not emerge at 16% GWC (Table 4-3). No significant differences 

between treatments were detected either for any of the parameters analysed, however, for T. 

atroviride LU132 treatments, ryegrass plants at 24% GWC had taller shoots than those grown at 20% 

GWC (Table 4-3). In experiment 2, field emergence of ryegrass treated and untreated plants was 

significantly higher at 20 and 24% GWC compared to 16% GWC. In general ryegrass plants grown at 

20% GWC had higher growth parameters excluding seelding emergence than plants grown at 16 and 

24% GWC but no differences were detected between treated and untreated plants. For T. atroviride 

LU132 treated ryegrass plants however, root lengths and shoot dry weights were significantly higher 

at 20% GWC compared to 24%. No root dry weights were carried out for ryegrass plants due to the 

small size of the plants. 

Table 4-3 Moisture content experiment 1: growth parameters including seedling 
emergence, shoot and root length and shoot and root dry weight measured for 
sweet corn and ryegrass seedlings grown in non-sterile soil at three different 
Gravimetric Water Content levels (16%, 20% and 24%) from seeds either 
uncoated (control) or coated with Trichoderma atroviride LU132. Means for 
seedling emergence determined for 10 seeds. Values followed by the same letter 
in a consecutive series (row) are not significantly different. 

Sweet corn 

Parameters 
GWC 16 % GWC 20 % GWC 24 %  

Control LU132 Control LU132 Control LU132 LSD 5% 

Emergence /10 seeds 2.8 b 1.6 b 6.0 a 5.6 a 6.6 a 7.8 a 2.214 

Shoot Length (cm) 4.07 c 5.22 bc 7.57 ab 8.36 a 8.35 a 8.30 a 2.462 

Root Length (cm) 13.20 b 15.20 ab 16.56 ab 18.6 a 14.95 b 15.75 ab 3.605 

Shoot Dry Weight (mg) 7.34 b 9.5 b 13.7 ab 18.8 a 17.8 a 19.0 a 6.689 

Root Dry Weight (mg) 5.9 b 12.7 a 11.1 ab 14.7 a 9.7 ab 13.6 a 6.258 

Ryegrass 

Parameters 
GWC 16 % GWC 20 % GWC 24 %  

Control LU132 Control LU132 Control LU132 LSD 5% 

Emergence /10 seeds # # 8.0 a 6.6 ab 6.4 b 6.8 ab 1.482 

Shoot Length (cm) # # 18.01 ab 17.74 b 18.64 ab 19.66 a 1.659 

Root Length (cm) # # 16.20 a 17.05 a 15.25 a 15.35 a 4.726 

Shoot Dry Weight (mg) # # 6.1 a  5.7 a 6.9 a 6.2 a 2.309 

Root Dry Weight (mg) # #  -*  -  -  -  - 

# no plant emergence for ryegrass at 16% GWC; * roots too small to be recorded  
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In other ryegrass shoots and roots, Trichoderma colonies were isolated from the base of the shoot and 

sparsely from roots but from no specific region. In experiment 2, no Trichoderma colonies were 

isolated from the control plants. Trichoderma colonies were more often isolated from sweet corn 

shoots compared to roots (Table 4-6). Trichoderma colonies were also equally isolated from plants 

grown at 16% GWC. 

Other fungal species than Trichoderma were isolated from shoots and roots in higher numbers than 

for experiment 1. In the case of ryegrass plants, fewer plants were endophytically colonised at 24% 

GWC compared to the first experiment with Trichoderma colonies isolated from 50% of shoots and 

20% of roots (Table 4-6). Ryegrass shoots and roots pieces were not all colonised by Trichoderma 

species as in experiment 1. Trichoderma colonies were isolated from the base of shoots and the top 3 

cm of roots. 

Table 4-5 Soil moisture experiment 1: Isolation of Trichoderma from shoot and root pieces 
(2 cm pieces) from sweet corn and ryegrass plants treated with Trichoderma 
atroviride LU132 or untreated assessed 7 or 21 days, respectively after sowing. 
Plants were grown in non-sterile soil at three Gravimetric Water Content levels: 
16, 20 and 24% w/w. Percentage colonisation indicated in brackets. 

Gravimetric 
Water Content 

Number of 
plants assessed 

 
Number of plants positive for 

Trichoderma 

 Control LU132 

Sweet corn Control LU132  Shoot Root Shoot Root 

16% 3* 1*  0 0 1 (100) 1 (100) 

20% 10 10  0 1 9 (90) 7 (70) 

24% 10 10  0 0 8 (80) 8 (80) 

Ryegrass Control LU132  Shoot Root Shoot Root 

20% 10 10  0 0 8 (80) 10 (100) 

24% 10 10  0 0 10 (100) 10 (100) 

* Low emergence  
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Table 4-7 pH experiment 1: CFU (Log10)/g DRS counts for sweet corn and ryegrass grown in 
soil at three different pH levels (5.5, 6.5 and 7.5) from seeds either uncoated 
(control) or coated with Trichoderma atroviride LU132. Log10 values followed by 
the same letter in a consecutive series (column) are not significantly different. 

 Sweet corn Ryegrass 

 CFU/ g DRS  

(log10) 

CFU/ g DRS  

(log10) 

pH Control LU132 Control LU132 

5.5 6.03 x 102 

(2.78)* 

4.17 x 104 

(4.62) a 

5.36 x 101 

(1.729)* 

7.26 x 105 

(5.861) a 

6.5 6.92 x 102  

(2.84)* 

7.24 x 104  

(4.86) a 

5.31 x 101  

(1.725) 

5.89 x 105  

(5.77) a 

7.5 7.59 x 101 

(1.88)* 

1.86 x 105 

(5.27) a 

1.22 x 102 

(2.085) 

1.22 x 106 

(6.087) a 

LSD (5%) - 0.902 - 0.346 

* data for untreated controls not included in the analysis 
 

Table 4-8 pH experiment 2: CFU (Log10)/g DRS counts for sweet corn and ryegrass grown in 
soil at three different pH levels (5.5, 6.5 and 7.5) from seeds either uncoated 
(control) or coated with Trichoderma atroviride LU132. Log10 values followed by 
the same letter in a consecutive series (column) are not significantly different. 

 Sweet corn Ryegrass 

 CFU/ g DRS  

(log10) 

CFU/ g DRS  

(log10) 

pH Control LU132 Control LU132 

5.5 1.07 x 102 

(2.03)* 

1.36 x 105 

(5.133) a 

1.07 x 102 

(2.03*) 

1.13 x 106 

(6.052) a 

6.5 1.23 x 102  

(2.09)* 

2.60 x 105  

(5.415) a 

1.07 x 102 

(2.03) 

1.47 x 106  

(6.167) a 

7.5 1.07 x 102 

(2.03)* 

3.50 x 105 

(5.544) a 

1.07 x 102 

(2.03) 

1.22 x 106 

(6.087) a 

LSD (5%) - 1.101 - 0.382 

* data for untreated controls not included in the analysis 
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Table 4-9 pH experiment 1: growth parameters including seedling emergence, shoot and 
root length and shoot and root dry weight measured for sweet corn and ryegrass 
seedlings grown  in non-sterile soil at three different pH levels (5.5, 6.5 and 7.5) 
from seeds either uncoated (control) or coated with Trichoderma atroviride 
LU132. Values followed by the same letter in a consecutive series (row) are not 
significantly different. 

Sweet corn 

Parameters 
pH 5.5 pH 6.5 pH 7.5  

Control LU132 Control LU132 Control LU132 LSD 5% 

Emergence /10 seeds 4.4 bc 6.6 a 3.4 c 5.8 ab 4.6 bc 5.2 bc 1.739 

Shoot Length (cm) 6.43 a 4.76 b 4.39 b 5.25 ab 4.08 b 4.29 b 1.524 

Root Length (cm) 14.40 a 13.40 a 11.40 ab 13.20 ab 8.20 c 10.25bc 3.031 

Shoot Dry Weight (mg) 14.1 a 10.4 ab 8.1 b 10.7 ab 9.9 ab 8.0 b 4.633 

Root Dry Weight (mg) 8.2 a 6.9 ab 4.9 bc 5.6 abc 3.8 bc 3.6 c 3.173 

Ryegrass 

Parameters 
pH 5.5 pH 6.5 pH 7.5  

Control LU132 Control LU132 Control LU132 LSD 5% 

Emergence /10 seeds 7.4 a 6.4 a 7.4 a 7.4 a 6.8 a 5.8 a 2.167 

Shoot Length (cm) 18.00 a 16.35 a 17.41 a 16.50 a 10.30 b 9.08 b 2.455 

Root Length (cm) 13.35 ab 12.85 ab 14.41 a 11.9 abc 11.7 bc 9.55 c 2.611 

Shoot Dry Weight (mg) 7.1 a 5.3 ab 7.4 a 5.7 ab 4.8 b 3.8 b 2.212 

Emergence /10 seeds 2.8 a 2.4 a 2.1 a 2.4 a 3.0 a 2.8 a 1.203 
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Fewer shoots and roots of sweet corn plants were endophytically colonised by Trichoderma species 

compared to experiment 1. Ryegrass shoots in experiment 2 had more Trichoderma colonies than in 

experiment 1. 

Table 4-11 pH experiment 1: Isolation of Trichoderma from shoot and root pieces (2 cm) 
from sweet corn and ryegrass plants treated with Trichoderma atroviride LU132 
or untreated assessed 7 or 21 days respectively, after sowing. Plants were grown 
in non-sterile soil at three soil pH levels: 5.5, 6.5 and 7.5. Percentages 
colonisation indicated in brackets. 

pH 
Number of plants 

assessed 

 
Number of plants positive for 

Trichoderma 

 Control LU132 

Sweet corn Control LU132  Shoot Root Shoot Root 

5.5 9 9  0 0 7 (78) 5 (56) 

6.5 6 10  0 0 8 (80) 6 (60) 

7.5 10 7  0 0 6 (86) 6 (86) 

Ryegrass Control LU132  Shoot Root Shoot Root 

5.5 10 9  0 2 (20) 3 (33) 9 (100) 

6.5 8 10  0 0 1 (10) 8 (80) 

7.5 10 10  0 0 4 (40) 10 (100) 
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Table 4-13 Nitrogen experiment 1: CFU (Log10)/g dry rhizosphere soil (DRS) counts for sweet 
corn and ryegrass grown in soil at three different nitrogen concentrations (75, 
150 and 300 kg N/ha) from seeds either uncoated (control) or coated with 
Trichoderma atroviride LU132. Log10 values followed by the same letter in a 
consecutive series (column) are not significantly different. 

 Sweet corn Ryegrass 

 CFU/g DRS  

(log10) 

CFU/g DRS  

(log10) 

Nitrogen Control LU132 Control LU132 

75 kg/ha 9.77 x 102 

(2.99)* 

1.65 x 105 

(5.218) a 

2.06 x 103 

(3.313)* 

5.12 x 105 

(5.709) b 

150 kg/ha 9.64 x 102  

(2.984)* 

1.41 x 105  

(5.149) a 

3.61 x 103  

(3.557)* 

1.22 x 106  

(6.087) a 

300 kg/ha 7.06 x 102 

(2.849)* 

1.27 x 105 

(5.103) a 

2.79 x 103 

(3.446)* 

1.42 x 106 

(6.152) a 

LSD (5%) - 0.764 - 0.325 

* data for untreated controls not included in the analysis 
 

Table 4-14 Nitrogen experiment 2: CFU (Log10)/g dry rhizosphere soil (DRS) counts for sweet 
corn and ryegrass grown in soil at three different nitrogen concentrations (75, 
150 and 300 kg N/ha) from seeds either uncoated (control) or coated with 
Trichoderma atroviride LU132. Log10 values followed by the same letter in a 
consecutive series (column) are not significantly different. 

 Sweet corn Ryegrass 

 CFU/g DRS  

(log10) 

CFU/g DRS  

(log10) 

Nitrogen Control LU132 Control LU132 

75 kg/ha 3.18 x 102 

(2.502)* 

3.36 x 105 

(5.526) a 

6.41 x 101 

(1.81)* 

2.32 x 106 

(6.366) a 

150 kg/ha 3.18 x 102 

(2.502)* 

4.26 x 105  

(5.629) a 

2.88 x 101 

(1.46)* 

1.75 x 106  

(6.243) a 

300 kg/ha 7.82 x 102 

(2.893)* 

2.11 x 105 

(5.325) a 

2.88 x 101 

(1.46)* 

2.97 x 106 

(6.473) a 

LSD (5%) - 0.803 - 0.559 

* data for untreated controls not included in the analysis 
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Table 4-15 Nitrogen experiment 1: growth parameters including seedling emergence, shoot 
and root length and shoot and root dry weight measured for sweet corn and 
ryegrass seedlings grown in non-sterile soil at three different nitrogen 
concentrations (75, 150 and 300 kg N/ha) from seeds either uncoated (control) 
or coated with Trichoderma atroviride LU132. Values followed by the same letter 
in a consecutive series (row) are not significantly different. 

Sweet corn 

Parameters 
75 kg N/ha 150 kg N/ha 300 kg N/ha  

Control LU132 Control LU132 Control LU132 LSD 5% 

Emergence /10 seeds 6.4 b 7.8 ab 7.8 ab 8.6 a 8.8 a 8.4 a 1.539 

Shoot Length (cm) 7.90 a 7.52 ab 7.50 ab 8.25 a 6.64 ab 5.82 b 1.724 

Root Length (cm) 16.55 a 16.35 a 16.15 a 16.05 a 13.75 ab  12.20 b 2.82 

Log10 Shoot Dry Weight 1.25 a 1.16 a 1.18 a 1.28 a 1.13 a 1.09 a 0.187 

Log10 Root Dry Weight 1.04 a 1.04 a 0.99 a 1.03 a 0.85 a 0.88 a 0.092 

Ryegrass 

Parameters 
75 kg N/ha 150 kg N/ha 300 kg N/ha  

Control LU132 Control LU132 Control LU132 LSD 5% 

Emergence /10 seeds 6.2 a 6.0 a 6.4 a 7.0 a 7.4 a 6.8 a 1.931 

Shoot Length (cm) 15.80 a 16.80 a 16.41 a 16.30 a 16.75 a 15.05 a 2.367 

Root Length (cm) 13.15 a 13.05 a 12.75 a 10.90 a 12.60 a 12.40 a 2.262 

Log10 Shoot Dry Weight 0.73 a 0.80 a 0.83 a 0.75 a 0.80 a 0.72 a 0.12 

Log10 Root Dry Weight 0.33 a 0.40 a 0.39 a 0.36 a 0.48 a 0.41 a 0.216 
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Table 4-17 Nitrogen experiment 1: Isolation of Trichoderma from shoot and root pieces (2 
cm) from sweet corn and ryegrass plants treated with Trichoderma atroviride 
LU132 or untreated assessed 7 or 21 days, respectively after sowing. Plants were 
grown in non-sterile soil at three nitrogen concentrations: 75, 150 and 300 kg 
N/ha. Percentage colonisation indicated in brackets. 

Nitrogen 
concentration 

Number of 
plants assessed  

Number of plants positive for 
Trichoderma 

  Control LU132 

Sweet corn Control LU132  Shoot Root Shoot Root 

75 kg N/ha 10 10  0 1 (10) 7 (70) 5 (50) 

150 kg N/ha 10 10  0 4 (40) 7 (70) 6 (60) 

300 kg N/ha 10 10  0 0 6 (60) 3 (30) 

Ryegrass Control LU132  Shoot Root Shoot Root 

75 kg N/ha 10 10  0 0 5 (50) 10 (100) 

150 kg N/ha 10 10  0 2 (20) 4 (40) 9 (90) 

300 kg N/ha 10 10  0 0 6 (60) 9 (90) 
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This result is in agreement with (Huang and Erickson 2008) who studied the effects of soil moisture (9, 

16, and 24% w/w) on the biological control of Sclerotinia sclerotiorum by T. virens (LRC 2425) in sterile 

and unsterile soils. The authors found that T. virens reduced the viability of the pathogen’s sclerotia in 

sterile soil at 9 and 24%, however in unsterile soil T. virens was ineffective. They concluded that in the 

presence of other microorganisms soil moisture was not the main factor influencing the bioactivity of 

T. virens. Similarly, Wong et al. (2002) tested the effect of moisture on the survival of Fusarium 

pseudograminearum in buried wheat straw sprayed with the isolate T. koningii (BM1) in a red duplex 

soil (pH 5.2). They found that in wet (-0.03 MPa) and moist (-0.3 MPa) soils the survival of the pathogen 

was significantly reduced compared to the non-Trichoderma control at 25°C. Trichoderma populations 

were not directly assessed by Wong and coworkers, indeed the authors concluded that T. koningii 

(BM1) was developing because they isolated less pathogen from the sprayed straws compared to the 

controls. Moreover, the temperatures at which the experiment was conducted were different 

compared to this study which makes comparison with this work difficult, as temperature is an 

important parameter for fungal development (Palanna et al. 2005).  Eastburn and Butler (1991) 

measured the saprophytic ability of Trichoderma harzianum on alfalfa stem pieces in non-sterile soil 

(Rincon silty clay loam) with matric potentials varying from 0.0 (flooding) to -15 bar. Results showed 

that Trichoderma was more active at soil matric potentials from -0.5 to -1.0 bar corresponding to soil 

moistures of 18 to 24% and at temperatures ranging from 15 to 21°C. They showed that the 

saprophytic ability of Trichoderma declined at matric potentials of 0.0 (flooded soil), -7.5 (14% soil 

moisture), and -15.0 bars (13% soil moisture). The water holding capacity of the Wakanui silt loam soil 

used for this work was 30%. A Wakanui silt loam soil at 15% and 28% GWC corresponded to soil 

moistures of -1.0 and -0.1 bar, respectively. Although there was an indication in the present study, 

from the results of experiment 1, that rhizosphere colonisation by T. atroviride LU132 declined at soil 

moisture content less than 15%, the isolate was still able to colonise the rhizosphere to appreciable 

and greater levels at 13% GWC than in the corresponding control. In general the results are similar to 

those in Eastburn and Butler’s study, however their assessment was done on alfalfa stems which will 

differ in terms of composition and exudates to growing roots of sweet corn or ryegrass. 

Only one isolate of one species, T. atroviride LU132, was assessed in this study. Different Trichoderma 

species and isolates within and across species are likely to vary in their response to soil moisture. Two 

Trichoderma isolates (T. asperellum LU687 and T. harzianum LU698) were reported to vary in the soil 

water potential range at which they parastised sclerotia of S. sclerotiorum in non-sterile soil (Jones et 

al. 2014).  

Although no colonisation of sclerotia was observed by either isolate in dry soils (-5.0 MPa), T. 

asperellum LU697 was active over a wider water potential range (-0.01 – -1.5 MPa) compared with T. 

harzianum LU698 (-0.1 – -0.3 MPa).  
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 The experiments were carried out in conditions where both the plants chosen and the fungus could 

survive, which constrained the ranges for each of the abiotic factors tested. Future work could include 

the study of rhizosphere competence of T. atroviride LU132 on plants that are more tolerant to a wider 

range of water stress levels and soil pH for example.  
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Figure 5-3 Growth promotion parameters assessed on sweet corn plants untreated and 
treated with Trichoderma atroviride LU132 and Trichoderma virens LU556  
harvested at 7, 21, 35 and 56 days after sowing. (A) Shoot length. LSD 5% = 5.666 
(B) Root length. LSD 5% = 10.7 (C) Log10 Shoot dry weight LSD 5% = 0.198 (D) Log10 
Root dry weight. LSD 5% = 0.245 

The shoot ratio increased significantly throughout the whole experiment (Figure 5-4A). At 35 days, the 

shoot ratio for plants treated with T. atroviride LU132 was significantly lower than the ratio of plants 

treated with LU556. At 35 days the shoot ratio of plants treated with T. virens LU556 was significantly 

higher than the ratio for untreated plants. For all plants, the root ratio increased significantly from day 

7 to day 56 (Figure 5-4B). From day 35 to 56, the root ratio of control and T. virens LU556 plants did 

not increase significantly. In contrast, the root ratio of T. atroviride LU132 treated plants increased 

significantly from 35 to 56 days. At day 35, T. virens LU556 plants’ root ratios were significantly 

different to root ratios of control and T. atroviride LU132 treated plants. At 56 days, T. virens LU556 
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Table 5-1 Number of Trichoderma atroviride LU132 and Trichoderma virens LU556 treated 
and untreated sweet corn plants assessed at different times for endophytic 
colonisation, and the number and percentage (in brackets) of shoots and roots 
from which endophytic Trichoderma was isolated. 

 Number of plants assessed Number of plants positive for Trichoderma (%) 

Days Control LU132 LU556 

Control LU132 LU556 

Shoot Root Shoot Root Shoot Root 

7 2 5 2 1 (50) 1 (50) 4 (80) 3 (60) 2 (100) 2 (100) 

21 2 7 6 0 (0) 0 (0) 6 (86) 7 (100) 2 (33) 4 (67) 

35 4 5 5 0 (0) 3 (75) 2 (40) 5 (100) 1 (20) 4 (80) 

56 4 6 9 0 (0) 3 (75) 6 (100) 6 (100) 5 (56) 6 (67) 

 

 

Figure 5-5 Endophytic Trichoderma recovered from 35 day old sweet corn plants untreated 
or treated with Trichoderma atroviride LU132 and Trichoderma virens LU556. 
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For all treatments, including the control, Trichoderma colonisation was shown to increase over time. 

This was expected as Trichoderma species are known to have many ecological niches but are mainly 

known to be biotrophic and saprotrophic (Atanasova 2014).  Trichoderma species are also stimulated 

by the presence of plants, due to the release of exudates as previously discussed. Thus, it is likely that 

as the plants grew and produced a greater surface area, this ecological niche was then occupied by 

Trichoderma species. 

 

In the early stages of plant growth there was isolate variability, with T. atroviride LU132 demonstrating 

more rhizosphere competence than T. virens LU556. This was consistent with previous experiments. 

Trichoderma atroviride LU132 populations rapidly increased in the rhizosphere compared to T. virens 

LU556 which showed a much slower colonisation pattern. Trichoderma atroviride LU132 is known to 

be an early and abundant coloniser of the rhizosphere and in doing so is likely to displace the native 

microbial population both by utilising soil nutrients/plant exudates making them unavailable to other 

microorganisms and also by secreting compounds that influence soil microbial communities. 

Trichoderma species and isolates are known to produce different chemical compounds, such as 

pyrones, polyketides and mycotoxins with antimicrobial and antifungal properties. 

 

The Wakanui silt loam soil used for the assessment in this chapter was collected from the same 

paddock where soil for previous experiments had been collected. However, soil collection for this 

experiment was done in winter time compared to summer time for other work in this thesis. 

Soils collected in different seasons may have harboured different populations of microorganisms that 

could have affected the two Trichoderma isolates. Elnaghy et al. (2014) reported seasonality for 

Pythium species with higher number of isolates recorded in spring followed by winter and summer. 

Nevertheless, T. atroviride LU132 was more rhizosphere competent than T. virens LU556 and both had 

populations similar to those found in previous experiments. This showed that T. atroviride LU132 was 

consistently more rhizosphere competent than T. virens LU556 on sweet corn at 7 days, up to 56 days, 

and in soils collected at different times of the year. 

 

One of the interesting observations was that populations of T. virens LU556 increased in the 

rhizosphere over time. It is possible that growing plants inoculated with T. atroviride LU132 and T. 

virens LU556 for longer periods (>56 days) may have produced different results. Although still 

significantly different at 56 days it was clear that T. virens LU556 populations were still growing and 

may have eventually matched T. atroviride LU132 populations.  
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It would be interesting to determine the colonisation pattern of T. atroviride LU132 versus T. virens 

LU556 in planta. Trichoderma atroviride LU132 may produce more colonisation as hyphal networks 

internally and have a continuous distribution throughout the tissue. This would allow it to travel 

throughout the root and emerge into the soil at different sites. This intimate connection with the plant 

may improve its access to nutrients. In contrast the less frequent colonisation by T. virens LU556 may 

be demonstrated by a more discontinuous presence within the plant. Trichoderma atroviride LU132 

may also have an advantage over T. virens LU556 in occupying the rhizosphere by being an endophyte 

hence higher rhizosphere competence.  

Colonies of Fusarium species were observed in roots of plants inoculated with both isolates. Fusarium 

species are known to be highly competitive with Trichoderma species (El-Hassan et al. 2013, Kim and 

Knudsen 2013, Marzano et al. 2013). In this work, it was observed that more Fusarium colonies were 

isolated from plant roots that had been treated with T. virens LU556 and fewer colonies were isolated 

from those that had been treated with T. atroviride LU132. The improved rhizosphere and endophytic 

colonisation by T. atroviride LU132 may have reduced internal root colonisation by Fusarium soil 

inoculum. Alternatively, there is the possibility that T. atroviride LU132 has mycoparasitic activity 

compared with T. virens LU556 and is able to coil around and feed on the endophytic Fusarium as both 

species were colonising the internal parts of roots.  

This could also explain why more Trichoderma colonies were isolated from the shoots of plants treated 

with T. atroviride LU132 compared to shoots of plants that had been treated with T. virens LU556. In a 

review, Bailey and Melnick (2013) indicated that, with respect to stem colonisation, endophytic 

Trichoderma species preferred to colonise woody trees and rarely had Trichoderma been isolated from 

shoots or stems of other plants under non-sterile conditions. Nevertheless, Trichoderma has been 

shown to be able to colonise shoots and stems. For example, Harvey and Hunt (2006) showed that T. 

harzianum penetrated pruning-wounded grape canes being recovered 23.4 mm down the cane 4 days 

after inoculation. Similarly, Sobowale et al. (2011) studied the ability of 10 Trichoderma isolates from 

four species (T. pseudokoningii, T. harzianum, T. hamatum and T. longibrachiatum) to persist within  

maize stems after inoculation using  a toothpick method. Results showed that all species moved up 

and down from the inoculation point after 2, 3, 4, 5 and 6 weeks of inoculation. Among those strains, 

two were more endophytic than the others. In another study Sobowale et al. (2007) examined the 

ability of four Trichoderma isolates (species T. pseudokoningii and T. harzianum) to colonize maize 

stem and persist in the presence of Fusarium verticilloides. The work showed that all strains could 

endophytically colonise the stem of maize when inoculated on their own, however simultaneous 

inoculations of both pathogen and antagonist improved endophytic growth by Trichoderma.  
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However, T. harzianum inoculation had no effect on the total population size of two specific microbial 

groups, actinomycetes or β-proteobacteria. In the current study, the rhizosphere microorganisms’ 

populations were not sequenced, therefore it is difficult to interpret the result and conclude on a 

positive or negative influence of Trichoderma. Depending on the microorganisms living in the sweet 

corn rhizosphere, synergistic, mycoparasitic or competitive relationships may have been established 

by the Trichoderma isolates.  

The results also showed that the inoculum rather than time had an influence on rhizosphere microbial 

populations. Although for both Trichoderma isolates, populations increased in the rhizosphere with 

time, their effect on the rhizosphere microbial community was seen after the first assessment (7 days) 

and did not change thereafter. In contrast, incorporation of a Trichoderma atroviride isolate into two 

soils was reported by Cordier and Alabouvette (2009) to slightly alter the soil microbial community 

initially, but microbial communities did not differ at later sampling dates. However, the assessments 

were not based on changes in rhizosphere community as no plants were included in their study. The 

results of the current study indicated that the minimum antagonist level resulting in influences on the 

rhizosphere microbial community was achieved early in the growth of sweet corn plants for both 

Trichoderma isolates. 

Richness of bacterial and fungal populations in the bulk and rhizosphere soils of untreated and treated 

plants did not differ between each other. In contrast the richness of arbuscular mycorrhizal 

populations in bulk and rhizosphere soils of untreated and treated plants were different. This result 

suggested competition between arbuscular mycorrhizal fungi and Trichoderma isolates. Arbuscular 

mycorrhizal fungi colonise the space in and around the rhizosphere producing hyphae which radiate 

out into the surrounding soil. They also penetrate the plant through infection sites in the root surface 

in the same way as Trichoderma isolates are believed to do. Both Trichoderma and arbuscular 

mycorrhizal fungi occupy the same niche in the rhizosphere and it is expected that they would compete 

for nutrients. There are reports of synergistic and negative interactions between the two fungi 

(Brimmer and Boland 2003, McLean et al. 2014, Cordier and Alabouvette 2009). 

There were more arbuscular mycorrhizal species in the bulk soil of T. atroviride LU132 treated plants 

than in the bulk soil of untreated and T. virens LU556 treated plants. This is likely to be linked to the 

higher rhizosphere colonisation by T. atroviride LU132 compared to T. virens LU556 which limited 

colonisation of the roots by arbuscular mycorrhizal excluding these to the bulk soil. 

The results in this chapter indicated that temporal colonisation dynamics of T. atroviride LU132 and T. 

virens LU556 in the rhizosphere of sweetcorn differed, with T. atroviride population levels plateauing 

after 35 days whilst T. viride population appeared to be increasing. Whether this was related to 

differences in spatial colonisation by the two isolates, with T. viride preferentially colonising more 

mature roots or roots at different soil depths compared with T. atroviride was not investigated and will 

be determined in the next chapter.   
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Three pipes per block, one per isolate and one untreated control treatment, were harvested 35 days 

after sowing and used for rhizosphere competence and endophytic colonisation assessments. Four 

plants were also harvested to assess the effect of rhizosphere soil processing method on subsequent 

endophytic colonisation. The remaining plants were harvested at 40 days after sowing and used for 

microscopic observations.   

 

Figure 6-1 A: Pipes (70 cm long) with 35 days old sweet corn plants grown in non-sterile soil 
in a growth room. B: Cut open pipe showing the top part of a 35 day old sweet 
corn root system. 

Two roots per plant were cut from the crown (Figure 6-1B). Adhering soil was shaken off. Each root 

was divided into three segments of equal length irrespective of the root length. The majority of plants’ 

roots used for this assessment were 60 cm long. A 16 to 17 cm long portion from the top of each 

segment was collected, weighed and placed in a sterile 50 mL plastic tube and stored at 4°C until 

further processing. The following day, 10 to 20 mL of a 0.5% Triton X 100 solution was added to each 

plastic tube. Tubes were subsequently shaken for 30 min at 94 rpm in an orbital shaker (Ratek EOM5, 

Ratek Intruments PTY Ltd, Boronia, Australia). As in previous experiments, the suspensions were 

serially diluted to 10-1, 10-2 and 10-3. Aliquots (200 µL) of the initial suspension and each dilution were 

plated onto each of three replicate Trichoderma selective medium (TSM) plates. After the plating, the 

left over Triton X 100 solution containing the rhizosphere soil was stored at -80°C for DGGE analysis. 

Plates were incubated at 20˚C in the dark. The number of Trichoderma colonies was counted at 10 to 

13 days after incubation and the number of Trichoderma colony forming units (CFU)/gram of dry 

rhizosphere soil (DRS) was calculated. 
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For LU556 treated plants, the highest number of Trichoderma CFU/g DRS was recovered from the 

rhizosphere of the top part of roots (1.62 x 105 CFU/g DRS) and was significantly higher than the middle 

(1.58 x 103 CFU/g DRS) and bottom (2.09 x 103 CFU/g DRS). Significantly higher Trichoderma 

populations were recovered from the rhizosphere soil at all root depths for T. atroviride LU132 treated 

plants compared with LU556.   

Table 6-1 Trichoderma population (log10 CFU/g dry rhizosphere soil (DRS)) recovered from 
the top, middle and bottom root portions of 35 days old sweet corn plants 
untreated and treated with T. atroviride LU132 and T. virens LU556. Values with 
the same letter are not significantly different within the same column. T. 
atroviride LU132 and T. virens LU556 populations were significantly different at 
all depths. 

 CFU/g DRS 

Segment Control LU132 LU556 

Top 1.07 x 104 

(4.03) 

2.45 x 106 

(6.39) a 

1.62 x 105 

(5.21) a 

Middle 4.79 x 103  

(3.68) 

2.14 x 104 

(4.33) b 

1.58 x 103 

(3.20) b 

Bottom 1.41 x 103 

(3.15) 

9.77 x 104 

(4.99) b 

2.09 x 103 

(3.32) b 

LSD 5% 1.082 
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For the bottom root portion for control and plants treated with T. atroviride LU132 and T. virens LU556 

(Appendix E2), Trichoderma colonies were isolated from two root pieces in one control plant.  Fusarium 

colonies were isolated from two pieces of one control plant. No Trichoderma colonies were isolated 

from the roots of either T. atroviride LU132 or T. virens LU556 treated plants. Colonies of Fusarium 

were isolated from one plant inoculated with T. virens LU556 (one piece only). 

Table 6-2 Isolation of Trichoderma (green), Fusarium (yellow) and both (blue) from root 
pieces (1 cm pieces) from the top root segment from plants treated with T. 
atroviride LU132, T. virens LU556 or untreated assessed 35 days after sowing. Six 
plants per treatment were assessed with a maximum 16 root pieces per plant 
with piece 1 corresponding to the top portion of the root at the crown level. x = 
0 colony recovered. 

Isolate  Plant 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 

Control 

1 x x x x x x x x x x x x x x x x  

2 x x x x x x x x x x x x x x x x  

3                                

4      x x  x x  x  x x x x x x x  

5 x x x x x x x x x x x x x x x x  

6 x x x x x x x x x x x x x x x x  

LU 132 

1   x x   x x   x x x x   x x   x  

2 x   x    x  x   x           x x  

3   x x x                      

4 x x x x x x x x x x x x x x x   

5     x x x x x   x     x   x    

6   x       x   x x                

LU 556 

1   x         x x   x   x          

2   x   x x x x x x             

3   x x x    x x  x  x x x x x x x x 

4 x   x   x x   x x   x x         

5 x x x x x x x x x   x     x   x  

6 x x x x x x x x x x x x x x x x  
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Table 6-3 Isolation of Trichoderma (green), Fusarium (yellow) and both (blue) from root 
pieces (1 cm pieces) from the middle root segment from plants treated with T. 
atroviride LU132, T. virens LU556 or untreated assessed 35 days after sowing. Six 
plants per treatment were assessed with a maximum 16 root pieces per plant 
with piece 1 corresponding to the top portion of the root segment. x = 0 colony 
recovered. 

Isolate  Plant 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

Control 

1 x x x x x x x x x x x x x x x x 

2 x x x x x x x x x x x x x x x x 

3   x x x x x x x x x x x x x   

4 x x x x x x x x   x     x x x x 

5 x x x x x x x x x x x x x x x x 

6           x x x   x x x x x x x 

LU 132 

1 x x x x x x x x x x x x x x   

2 x x x x x x x x x x x x x    

3 x x x x x x x x x x x x x x   

4 x x x x x x x x x x x x     

5 x x x x x x x x x x x x x x x  

6 x x x x x x x x x x x x x x     

LU 556 

1   x x x x   x x     x x x x   

2   x x x x x x x x x   x x x x  

3 x x x x x x x x x x x x x x x  

4 x x x x x x x x   x x x x x   x 

5 x   x x x x x x x x x x x x x  

6 x x x x x x x x x x x x x x x x 
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This result agrees with (Mehrabi-Koushki et al. 2012) who conducted an assay on the ability of different 

species of Trichoderma to colonise the rhizosphere of 15 day old tomato seedlings. They showed that, 

of the 13 isolates tested, higher Trichoderma populations were isolated from the rhizosphere of upper 

root parts compared to the middle and bottom parts with populations ranging from 1.6 x 107 to 4 x 107 

CFU/g root for top-root, 1.7 x 105 to 5.7 x 106 CFU/g root for middle-root and 1.7 x 104 to 2.5 x 106 

CFU/g root for tip-root. However, this work was carried out in sterile soil where there would not have 

been any competition from other microorganism to stop Trichoderma isolates to grow and proliferate 

in the rhizosphere of plants. The lack of competition might have explained the higher populations 

numbers for the upper, middle and tip root segments compared to this study where Trichoderma 

populations isolated from top, middle and bottom segments averaged respectively: 1.62 x 105 to 2.45 

x 106, 1.58 x 103 to 2.14 x 104 and 2.09 x 103 to 9.77 x 104 CFU/g DRS.  

 In this experiment, both Trichoderma isolates responded similarly to increasing root depth. In other 

work some researchers have shown that there is isolate variation in the depth to which Trichoderma 

isolates can colonise. For example Ahmad and Baker (1987a) studied rhizosphere competence of four 

isolates on cucumber plants and found that three of the isolates (T. koningii T-8, T. viride T-S-1 and T. 

harzianum WT) were able to colonise the first 3 cm of cucumber roots compared to isolate T. 

harzianum T-95 which colonised the entire cucumber root. Similarly, Sivan and Harman (1991) showed 

that isolate T. harzianum T22 was better than isolates T. harzianum T-95 and T-12 at colonising the 

entire rhizosphere of 7 day old maize plants. McLean et al. (2005) assessed the ability of T. atroviride 

LU132 (C52) to colonise the rhizosphere of onion plants in a mix of Wakanui silt loam soil and potting 

mix. They found that after 4, 8, 12 and 16 weeks, T. atroviride LU132 could equally colonise the 

proximal and distal segments of onion roots with populations reaching 7.8 x 101 (proximal segment at 

16 weeks) and 1.3 x 102 (distal segment at 16 weeks).  However, the root length of plants analysed in 

these assays varied between 9, 15 and 22 cm which would correspond to the top part only of the sweet 

corn roots in this work which were up to 60 cm long. Isolate variability was also shown by  Singh and 

Kumar (2012a) who found that only four out of seven T. harzianum could colonize the entire rhizoplane 

(12 cm) of 15 day old Chrysanthemum plants while the three other Trichoderma isolates were only 

able to colonise the first four cm from the crown of examined roots.  There are no similar assays 

comparing the ability of different Trichoderma isolates to colonise roots to 60 cm depth.  

The root structure could explain the vertical distribution of both Trichoderma isolates T. atroviride 

LU132 and T. virens LU556 on sweet corn. Trichoderma species are known to be recruited by the plant 

to assist with water uptake and help with water deficit (Mastouri et al. 2010, 2012).  
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During harvest, it was noticed that top, middle and bottom roots had different structures that may 

have served different purposes during plant development and therefore supported different microbial 

populations. When the pipes were cut open, the top soil (first 40 cm) had nodal and seminal roots. 

Nodal roots were thick and woody and seminal roots were numerous, thin, woody and had multiple 

thin lateral roots. There were no nodal roots in the middle soil and the lateral roots were less abundant 

than in the top soil. In the bottom soil, fewer roots were present, these were seminal roots that had 

become thick and turgescent and did not have lateral roots. The watering was done from the bottom 

mainly and caused the soil in the pipes to be dryer and lighter at the top, humid in the middle and wet 

and compact at the bottom. Sweet corn plants may have recruited Trichoderma to help with water 

uptake in the top and middle parts where the soil was dryer, by producing multiple lateral roots 

exuding carbon sources for microorganisms. However at the bottom parts of the pipes, the soil was 

compacted and wet and resulted in low oxygen availability. Therefore, the few roots present that were 

gorged with water may have been searching for oxygen instead (most of the plants’ turgescent roots 

had pierced the cheesecloth and were growing in spirals against it outside the pipe) which may have 

explained why Trichoderma was not as present in the bottom roots as it was in the top and middle 

root parts. 

Nevertheless, studies addressing the vertical distribution of Trichoderma in soil without the presence 

of plants have shown that the colonisation pattern is similar to the colonisation of roots presented 

here. For example, Sariah et al. (2005) assessed the abundance of Trichoderma species from different 

fields in different oil palm ecosystems. They found that across all fields and ecosystems, the two upper 

soil horizons (A1 and Be, 0-30 cm and 30 to 60 cm, respectively) harboured the highest Trichoderma 

populations ranging from 2.1 x 103 to 10.2 x 103 CFU/g DS between 0-30 cm and 0.8 x 103 to 13.4 x 103 

CFU/g DS between 30 to 60 cm depth. Similarly, Longa et al. (2009) studied the horizontal and vertical 

distribution of Trichoderma in Italian vineyards and found that the population numbers decreased with 

depth. This means that depth wise, not only the root and its exudates and competition with other 

microorganisms for nutrients will have an effect on Trichoderma colonisation but the physical 

properties of the soil will also play a role and factors affected by soil depth such as CO2 levels, oxygen 

and pH influence the spore germination and hyphal growth of Trichoderma species (Danielson and 

Davey 1973a, Verma et al. 2006).  

 

 

 







 
 

121 

The AMF populations of the remaining samples from the two Trichoderma treatments were more 

similar to each other than to the control. This indicated that inoculation with Trichoderma was able to 

change AMF populations in the rhizosphere. Wyss et al. (1992) investigated the effect of a Trichoderma 

harzianum strain on the formation of vesicular-arbuscular mycorrhizae in soybean. Their results 

showed that the presence of Trichoderma significantly reduced the formation of Glomus mosseae 

mycorrhizal formation. In contrast, McLean et al. (2014) analysed the effect of a commercial 

Trichoderma bio pesticide on the AMF populations of two ecosystems (a podocarp forest and 

grassland) and found that native AMF populations were not affected by the strain in either of the 

ecosystems. There are other reports showing positive and negative effects (Paulitz and Linderman 

1991, Rousseau et al. 1996a). In this experiment, AMF populations were changed but it is unknown if 

the effect of Trichoderma was positive or negative. Arbuscular mycorrhizal fungi are known to be 

beneficial to plants. The relationship between other beneficial microorganism and the antagonist 

should be tested before it is applied as a biological control agent. 

Overall inoculation with Trichoderma does affect microbial communities. This was irrespective of 

differences in the CFU at each depth. Although Brimmer and Boland (2003)indicated that it is 

important to consider the potential non target impacts of Trichoderma use, there has been relatively 

few studies in the literature regarding the impacts of these antagonists on non-target species (Purin 

and Rillig 2008). Additionally none have compared the effect of different Trichoderma isolates on soil 

microbial communities at different depths. 
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7  

General discussion 

The aim of this thesis was to investigate the rhizosphere competence of selected Trichoderma species. 

Rhizosphere competence is the ability of a microorganism to colonise, grow and reproduce in the 

rhizosphere of growing roots. The study of rhizosphere competence has been suggested as an 

important trait for growth promotion, induction of systemic resistance and biocontrol activity of 

Trichoderma strains. However, in the literature, there is a lack of ecological studies addressing the 

ability of Trichoderma as a genus to establish a relationship with the plant in the rhizosphere. 

Understanding this relationship and the factors affecting it, will generate knowledge that may improve 

the selection, application and establishment of Trichoderma in agricultural systems. 

This is the first study to assess the rhizosphere competence of multiple Trichoderma isolates (22) from 

11 species in non-sterile soil in a single experiment. The results showed that rhizosphere competence 

is widespread within Trichoderma species and is isolate specific, confirming the reports in the literature 

on biological control by Trichoderma species. Of the isolates tested, six had greater populations than 

the well described positive control (T. harzianum isolate T22) and 18 had greater populations than the 

negative controls, representing the majority (82%) of the isolates tested. The 18 isolates exhibited 

significant variation in the degree of rhizosphere competence ranging from 3.12 x 104 to 3.09 x 105 

CFU/g dry rhizosphere soil and the relative levels did not correlate with particular species nor with 

biocontrol potential.  

The majority of previous work that examined rhizosphere competence in this genus was carried out in 

sterile soil or inert sterile media, such as vermiculite, sand, potting mix and hydroponics, and usually 

with fewer isolates. Non-sterile soil has presented a challenge because there is the need to assess the 

background levels of Trichoderma in order to evaluate the effectiveness of inoculation. An accurate 

assessment of background levels requires a high number of controls and high replication for 

treatments which is labour intensive and time consuming. As highlighted in Chapter 2, comparison 

with the control may also underestimate numbers for highly competent isolates which are likely to 

displace the natural soil population. Most often the goal has been to test rhizosphere competence to 

understand the mechanism by which an isolate is exerting biological control or promoting growth and 

was not therefore assessed in comparison with isolates that did not show these biological activities 

(Sivan and Harman 1991, Carvalho et al. 2011, Mehrabi-Koushki et al. 2012, Roberti et al. 2012). The 

measurement of rhizosphere competence in sterile soil is also misleading as it does not take into 

account the impact other rhizosphere microorganisms could have on Trichoderma species.  
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Non-sterile soil is the most appropriate environment in which to evaluate the effectiveness of 

Trichoderma especially if this trait is required by a biocontrol agent. The present research is one of four 

published accounts in non-sterile soil. The research further demonstrated that relative rank for 

rhizosphere competence obtained in one plant system was not necessarily applicable to another plant 

system. For example, T. harzianum LU672 unlike other isolates, colonised onion roots indicating that 

rhizosphere competence is plant host specific. This was supported by two previous studies that 

investigated the relative rhizosphere competence of Trichoderma isolate on more than one host in a 

single experimental system. The results on sweet corn were consistent, demonstrating the robustness 

of the assay. Moreover results showed that some isolates were capable of colonising most of the plant 

species, while others were more host selective, and some plants were more receptive to Trichoderma 

than others.  

It was also demonstrated in Chapter 5 that Trichoderma populations can change over time.  Although 

this was only monitored on two strains it suggested that the rhizosphere is a dynamic environment 

and can play a strong role in recruiting Trichoderma isolates. This might be due to variation in 

compatibility with changing root exudates and/or root architecture. As different lengths of time were 

required for each plant species to reach a sufficient size for harvest and the recovery of enough 

rhizosphere soil for assessment, each plant species was harvested at different times and maturity. 

Previous research has shown that the ability of Trichoderma to produce carbon degrading enzymes is 

inherent to each isolate and, therefore, would determine the type of root exudates a specific isolate 

can assimilate. The compatibility between the suite of carbon degrading enzymes and the specific 

composition of plant exudates will ultimately determine the success of the isolate in the rhizosphere 

at any given point in time. Although the different plant species were of similar size at harvest they will 

have produced different root exudates and had different root structures which may provide variable 

surface area and harbour different quantities of Trichoderma. Root structure has been shown to have 

an effect on natural populations of Trichoderma (Bourguignon 2008).  

The consistency of the results for rhizosphere competence across Chapters 2, 3, 5 and 6 demonstrated 

that the sweet corn plant assay (7 days) was robust and a good method to detect early rhizosphere 

colonisers. However, it was demonstrated that rhizosphere competence changed overtime for two 

isolates. Although the results showed that T. atroviride LU132 was consistently more rhizosphere 

competent, the T. atroviride LU132 growth curve had reached an asymptote at 35 days which would 

suggest that it had reached maximum establishment potential in the rhizosphere. It is possible that the 

amount of rhizoplane available for it to colonise became saturated. Thus, it would be interesting to 

determine the maximum load of Trichoderma that a plant root can host and what the time required 

for this to be attained is. In contrast T. virens LU556 did not reach an asymptote at 56 days and it is 

unclear whether it would have reached the same saturation point.  
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This also raises the relationship between early and late rhizosphere colonisers. In this work it was clear 

that these two isolates had contrasting colonisation patterns but what the outcome of co-inoculating 

these two species may be is unknown. In many other fungal communities such as ectomycorrhizae and 

leaf litter degradation (Deacon 2006, Walbert 2008) succession is observed. There are no reports of 

succession for Trichoderma and this concept would be interesting to investigate. It is possible that if 

co-inoculated T.virens LU556 could displace or match T. atroviride LU132 as root exudates changed to 

become more optimal for the slower colonising isolate. In the genus this may be at a species or isolate 

level. This would have major implications for the long term success of a biological control isolate 

following soil application. 

Trichoderma atroviride LU132 stood out as the best isolate as it could colonise most of the plant 

species. Thus it was chosen as the isolate on which to test abiotic factors with the reasoning that 

differences would most easily be observed using this isolate. In the present study, the rhizosphere 

competence of T. atroviride LU132 was assessed on two plants under a range of different soil moisture 

content (16, 20 and 24% gravimetric water content), soil pH (5.5, 6.5 and 7.5) and available nitrogen 

concentrations (75, 150 and 300 kg N/ha). These particular factors were chosen because they are the 

most important factors for plant growth. The range for each factor was set at extremes that would still 

allow plant growth. None of these conditions affected the rhizosphere competence of T. atroviride 

LU132 indicating that the host plant was a much more significant factor (Chapter 3) than these. A 

reason for the lack of differences might have been that the conditions were not extreme enough but 

moving beyond this range severely compromised plant growth and, therefore, the experiment. Indeed, 

when the soil became very dry in the first soil moisture content experiment, a difference in root 

colonisation was observed with higher populations at higher moisture levels. However, there was no 

emergence of ryegrass at this level and there was a high mortality of sweet corn, lowering the 

statistical power. Collectively, these results showed that T. atroviride LU132 remained highly 

rhizosphere competent under a wide range of conditions. Further investigation could look at the 

interaction between these factors rather than single iterations such as is presented here. More data 

could also be generated using systems that investigate respiration changes, such as MicroResp™, with 

carbon sources and these could be linked to exudates, however this would need to be adapted to a 

sterile soil system. 

In Chapters 5 and 6, rhizosphere competence as well as endophytic colonisation were examined. 

Results consistently showed that more endophytic Trichoderma colonies were isolated from plant 

shoots and roots that had been treated with the most rhizosphere competent isolate (T. atroviride 

LU132). This suggested a link between rhizosphere competence and endophytism, however, only a 

single highly competent and poorly competent isolates were examined in great detail.  
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This link was investigated further in Chapter 6. Chapter 6 was the first study to have analysed 

rhizosphere competence and endophytic colonisation of Trichoderma at a root depth below 60 cm. 

Results showed that the rhizosphere and the internal cortex cells of the top parts of the roots were 

more colonised by Trichoderma than middle and bottom parts regardless of the isolate. This and the 

fact that the most rhizosphere competent isolate was more endophytic than the least rhizosphere 

competent one suggested that endophytic colonisation is related to rhizosphere competence. To 

establish a strong link between the two, a greater number of isolates with contrasting rhizosphere 

competence should be compared. This should be accompanied by molecular tools such as isolates 

transformed with fluorescent markers or isolate specific PCR and qPCR techniques which can confirm 

the presence of a particular isolate, visualise the internal colonisation (by hyphae or conidia) and 

quantify the biomass. Confocal and scanning electron microscopy could also add support to these 

observations. 

The exact molecular mechanisms by which Trichoderma becomes endophytic is poorly understood but 

is an area of intense research.  It has also been strongly linked with beneficial traits such as growth 

promotion, induction of systemic resistance, biocontrol efficacy and alleviation of abiotic stress. 

Strongly rhizosphere competent isolates may have an advantage as they are able to colonise two 

niches, both the rhizosphere and the interior of the plant. By being able to develop and grow inside 

the plant, an isolate will be protected from competition from soil microorganisms and potentially be 

able to emerge to “seed” new colonies along the length of the root. As endophytism is known to trigger 

defence pathways in the plant, it would be interesting to know exactly which genetic features of an 

isolate make it most compatible with plants. As seen in Chapter 5 it is unclear whether stressed plants 

are simply more susceptible to colonisation by Trichoderma or whether they actively secrete molecules 

to recruit Trichoderma during times of need. To investigate this more closely endophytism in stressed 

and non-stressed plants should be examined separately with a consistent cohort of Trichoderma with 

variable colonisation abilities.  

In Chapter 5 plant shoots were more colonised by both Trichoderma isolates than in Chapter 6 where 

no shoot colonisation was observed. Assessment of shoot colonisation is not commonly done in 

experiments looking at rhizosphere competence and it was an unexpected result.  Plants in Chapter 5 

were much smaller than (~50%) plants in Chapter 6. The reasons may have been that in Chapter 5 

plants may have been under the stress due to the close proximity of other plants. The shoots were less 

woody in Chapter 5 and this may have made them more susceptible to colonisation by Trichoderma 

especially if they are actively attempting to recruit Trichoderma due to a stress response. It is well 

established that stressed plants attracted more Trichoderma. 
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Given the lack of effect of abiotic factors on rhizosphere competence some exploration of the effect 

on biotic parameters was undertaken. DGGE was used to investigate the influence of Trichoderma 

application on the microbial populations in the rhizosphere. Although only the presence/absence of 

species was assessed the results showed that bacterial, fungal and arbuscular mycorrhizal populations 

in the rhizosphere of plants treated with Trichoderma isolates changed, compared to the control 

plants. Of these populations, AMF were the most affected. Interestingly, AMF richness in the 

rhizosphere was decreased and was increased in the bulk soil in the presence of the most rhizosphere 

competent isolate. This suggests there is some exclusion of AMF proliferation in the rhizosphere by T. 

atroviride LU132. The increase in the bulk soil could be the result of AMF seeking unexploited niches 

in the bulk soil. However, because sequencing of bands was not done for any of the microbial groups 

there is no way to know specifically what species and functions were affected. It is likely given the 

results of Chapter 3 that these effects may also be plant host and soil specific. Overall, this facet of 

rhizosphere competence and its relationship to the success or failure of an isolate to colonise the 

rhizosphere warrants more investigation. There are several new technologies that may allow greater 

exploration of these microbial relationships in the rhizosphere. DNA technology such as next 

generation sequencing and GeoChip can identify and determine the relative functions of microbial 

communities in the rhizosphere. The application of these to understanding the effect of Trichoderma 

on the ecology of the rhizosphere could generate significant new understanding of all of the factors 

addressed in this thesis.  

Perhaps multiple points of colonisation are necessary for effective protection against a pathogen or to 

promote some of the effects Trichoderma is known to cause through endophytism such as growth 

promotion or induced systemic resistance. Perhaps the entire root needs to be colonised to benefit 

from Trichoderma actions. Also it would be easy to think that for an isolate it would be less difficult to 

colonise the plant if it travels inside and it is protected from the attack of other microorganisms in the 

rhizosphere, but the roots are also colonised by other fungi like micorrhizae or other organism that 

can compete with Trichoderma for the niche.   

This thesis has not addressed the linkage between rhizosphere competence and biocontrol.  

Rhizosphere competence is clearly not a prerequisite for a biological control agent, for example, the 

well characterised biocontrol agent T. harzianum T22 did not perform as well as many other isolates 

that have not demonstrated any biocontrol ability. Although some good biocontrol agents like T. 

atroviride LU132 appear to be highly rhizosphere competenct. Perhaps it is this aggressive early 

colonisation by T. atroviride LU132 on multiple plant hosts (ie. it is not fussy) that makes it good. It has 

been used against Rhizoctonia solani damping off (early plant disease) in ryegrass and other pasture 

species, Sclerotium cepivorum (onion white rot; infects through soil mycelia) and some foliar diseases. 
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The mechanism by which these soil borne pathogens infect could be suppressed by a strongly 

Trichoderma presence in the rhizosphere especially early in seedling establishment. 

In summary, this research has generated data showing that rhizosphere competence is widespread in 

Trichoderma species, is isolate specific and does not correlate with biocontrol ability. The results 

showed that Trichoderma isolates and the plant species appeared to be the main drivers of the 

establishment of the relationship between Trichoderma and the host plant. There was some indication 

that microbial communities in the soil may also play a role but this was not fully explored. In this study, 

soil moisture content, soil pH and soil nitrogen concentrations did not have a significant effect on 

rhizosphere competence. Further work that more closely examines C sources, their relationship to root 

exudates and the breadth and quantity of enzymes and antimicrobial substances secreted by isolates 

is likely to be useful to extend the work presented here. Rhizosphere competence changes over time 

although Trichoderma isolates regardless of their ability to colonise roots will colonise the rhizosphere 

of the upper root portion better. These results suggested a link between rhizosphere competence and 

endophytism but that should be more fully explored with an accompanying suite of molecular tools. 

Although these findings are separate from the biocontrol ability of an isolate they do have some 

implications for a better understanding of the mechanisms underlying root colonisation  
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A.2  Trichoderma selective medium  recipe 

For 1 L 

20.0 g Agar 

3.0 g  Glucose 

0.2 g Terrachlor 75WP fungicide 

0.15 g Rose Bengal  

1 mL iron/manganous/zinc solution  

1 mL  magnesium sulphate solution  

5 mL  ammonium/dipotassium/potassium solution  

Make up to 1 L and autoclave at 121°C for 15 minutes. Cool to about 60°C then add 

1 mL chloramphenicol stock solution  

Trichoderma selective media (TSM stock solutions)  

 Ammonium/dipotassium/potassium solution: 

In 500 mL of nanopure H2O dissolve 100 g ammonium nitrate; 90 g dipotassium hydrogen 

orthophosphate trihydrate (K2HPO4.3H2O); 15 g potassium chloride (KCl). 

 Magnesium sulphate solution: 

20 g magnesium sulphate 7 hydrate (MgSO4.7H2O) in 100 mL nanopure H2O. 

 Iron/manganous/zinc solution: 

In 100 mL of nanopure H2O dissolve 0.01 g iron sulphate (Ferrous sulphate) 7 hydrate (FeSO4.7H2O); 

0.065 g manganous sulphate tetrahydrate (MnSO4.4H2O); 0.09 g zinc sulphate (ZnSO4.7H2O). 

 Chloramphenicol stock solution: 

Weigh 2.5 g of chloramphenicol into a 100 mL volumetric flask. Add approx. 80 mL absolute (96%) 

ethanol, and swirl to dissolve. Make up the volume in the flask to 100 mL with absolute ethanol. 

Store at -20°C. 
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A.3 Trichoderma CFU/g dry rhizosphere soil (DRS) and log10 values obtained in three experiments for 7 old sweet corn seedlings grown in non-
sterile soil. Min = minimum replication (isolates). Max = maximum replication (methyl-cellulose coated seed and T. harzianum T22) 

Experiment 1 Experiment 2 Experiment3 

LU No. Log10 CFU CFU/g DRS LU No. Log10 CFU CFU/g DRS LU No. Log10 CFU CFU/g DRS 

132 5.7 4.81 x 105 a 150 5.6 4.36 x 105 a 740 5.9 7.11 x 105 a 

298 5.5 3.52 x 105 ab 151 5.6 3.60 x 105 ab 673 5.8 5.71 x 105 ab 

673 5.5 3.51 x 105 ab 132 5.5 3.28 x 105 ab 151 5.7 5.25 x 105 abc 

571 5.4 2.64 x 105 abc 817 5.3 2.07 x 105 abc 140 5.6 3.70 x 105 abcd 

570 5.2 1.58 x 105 abcd 673 5.2 1.75 x 105 abc 595 5.5 2.94 x 105 abcde 

740 5.2 1.45 x 105 abcd 140 5.2 1.74 x 105 abc 570 5.4 2.52 x 105 abcde 

150 5.1 1.29 x 105 abcde 571 5.2 1.67 x 105 abc 298 5.4 2.40 x 105 abcde 

817 5.1 1.28 x 105 abcde 945 5.1 1.35 x 105 abcd 945 5.4 2.29 x 105 abcde 

140 5.1 1.15 x 105 abcde 592 5.1 1.24 x 105 abcde 699 5.3 2.20 x 105 abcde 

592 5.0 1.02 x 105 abcde 570 5.1 1.18 x 105 abcde 150 5.2 1.60 x 105 abcdef 

945 5.0 9.12 x 104 abcde 761 5.1 1.16 x 105 abcde 592 5.1 1.18 x 105 bcdefg 

761 4.9 8.61 x 104 abcde 740 5.0 9.06 x 104 abcdef 571 5.0 1.11 x 105 cdefg 

626 4.9 8.36 x 104 abcde T22 4.9 7.24 x 104 cdefg 817 4.9 7.93 x 104 defgh 

151 4.9 7.76 x 104 abcde 298 4.8 6.78 x 104 bcdefgh 132 4.8 6.92 x 104 efghi 

T22 4.8 6.35 x 104 abcde 699 4.8 6.52 x 104 bcdefgh T22 4.8 5.86 x 104 fghij 

547 4.6 3.78 x 104 abcdef 547 4.6 4.46 x 104 cdefghi 547 4.6 3.61 x 104 fghijk 

669 4.6 3.68 x 104 bcdef 672 4.4 2.69 x 104 defghi 761 4.5 3.54 x 104 fghijk 

555 4.5 2.91 x 104 bcdef 626 4.4 2.32 x 104 efghi 556 4.4 2.77 x 104 ghijkl 

699 4.4 2.81 x 104 bcdef 595 4.4 2.29 x 104 efghi 669 4.4 2.71 x 104 ghijkl 

595 4.3 2.07 x 104 cdef 669 4.3 1.87 x 104 fghij 672 4.2 1.74 x 104 hijkl 

556 4.2 1.70 x 104 def 555 4.2 1.76 x 104 fhij 626 4.2 1.51 x 104 ikl 

672 4.0 1.09 x 104 ef 556 4.2 1.63 x 104 fhij BS 4.1 1.30 x 104 kl 

CS 3.8 6.98 x 103 f BS 4.0 9.16 x 103 ij 555 4.1 1.19 x 104 kl 

BS 3.7 5.04 x 103 f CS 3.7 5.51 x 103 j CS 3.9 8.75 x 103 l 

LSD 5% Min-min Max-min Max-max LSD 5% Min-min Max-min Max-max LSD 5% Min-min Max-min Max-max 

 1.114 0.909 0.643  0.747 0.610 0.431  0.695 0.568 0.401 
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B.2 Rhizosphere competence result tables for experiment 1 

B2 1               Mean number of Trichoderma CFU/g dry rhizosphere soil (DRS) (log10 values are 
indicated between brackets) from selected plant species treated with six 
different Trichoderma isolates. Mean log10 CFU/g DRS followed by the same 
letter do not differ significantly within each column. 

 Sweet corn Ryegrass Onion Clover Cauliflower Carrot 

T. harzianum 
LU673 

6.52 x 104 

(4.81) a 

2.30 x 105 

(5.36) ab 

2.24 x 104 

(4.35) b 

1.10 x 104 

(4.04) a 

1.06 x 104 

(4.03) c 

5.13 x 104 

(4.71) a 

T. harzianum 
LU151 

6.01 x 104 

(4.78) a 

3.53 x 105 

(5.55) ab 

1.85 x 104 

(4.27) b 

8.38 x 103 

(3.92) a 

2.81 x 105 

(5.45) ab 

4.80 x 104 

(4.68) a 

T. atroviride  
LU132 

1.08 x 105 

(5.03) a 

7.74 x 105 

(5.89) a 

2.58 x 104 

(4.41) b 

5.75 x 103 

(3.76) a 

9.79 x 105 

(5.99) a 

4.05 x 104 

(4.61) a 

T. virens          
LU556 

5.05 x 103 

(3.70) b 

1.55 x 105 

(5.19) b 

7.46 x 103 

(3.87) b 

6.27 x 103 

(3.80) a 

6.43 x 104 

(4.81) b 

7.85 x 103 

(3.90) b 

T. harzianum 
LU672 

5.82 x 103 

(3.77) b 

2.33 x 105 

(5.37) ab 

2.13 x 105 

(5.33) a 

1.57 x 104 

(4.20) a 

1.13 x 105 

(5.05) b 

1.21 x 104 

(4.08) ab 

T. crassum       
LU555 

7.78 x 103 

(3.89) b 

1.44 x 105 

(5.16) b 

2.06 x 104 

(4.31) b 

1.26 x 104 

(4.10) a 

6.07 x 104 

(4.78) b 

1.40 x 104 

(4.15) ab 

Control* 1.25 x 104 

(3.764) 

4.86 x 103 

(3.660) 

3.42 x 103 

(4.187) 

1.54 x 104 

(3.534) 

4.57 x 103 

(3.687) 

5.81 x 103 

(4.097) 

LSD 5% 0.6981 

* Data for untreated controls not included in the analysis. Note-LU132, LU673, LU151 selected as 

highly rhizosphere competent on sweet corn in chapter 2; LU556, LU555, LU672 selected as weakly 

rhizosphere competent on sweet corn in Chapter 2. 
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B2 2  Log10 values and mean number of Trichoderma CFU/g DRS of six plant species. 
Mean CFU/g DRS followed by the same letter do not differ significantly within 
the column. 

Plant 
Log10 

CFU/g DRS 

Mean 

CFU/g DRS 

Ryegrass 5.419 2.62 x 105 a 

Cauliflower 5.018 1.04 x 105 b 

Onion 4.424 2.65 x 104 c 

Carrot 4.353 2.25 x 104 c 

Sweet corn 4.331 2.14 x 104 c 

Clover 3.969 9.31 x 103 d 

LSD 5% 0.6968  

B2 3  Log10 values and mean number of Trichoderma CFU/g dry rhizosphere soil 
(DRS) recovered from six plant species for six different isolates. Mean CFU/g DRS 
followed by the same letter do not differ significantly within the column. 

Isolate 
Log10 

CFU/g DRS 

Mean 

CFU/g DRS 

T. atroviride LU132 4.948 8.87 x 104 a 

T. harzianum LU151 4.775 5.96 x 104 ab 

T. harzianum LU672 4.632 4.29 x 104 bc 

T. harzianum LU673 4.55 3.55 x 104 bc 

T.crassum  LU555 4.399 2.51 x 104 cd 

T. virens    LU556 4.211 1.63 x 104 d 

LSD 5% 0.6968 
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B.3 Rhizosphere competence result tables for experiment 2 

B3 1  Mean number of Trichoderma CFU/g dry rhizosphere soil (DRS) (log10 values 
are indicated between brackets) from selected plant species treated with six 
different Trichoderma isolates. Mean CFU/g DRS followed by the same letter do 
not differ significantly within each column. 

 Sweet corn Ryegrass Onion Clover Cauliflower Carrot 

T. harzianum 
LU673 

9.95 x 104 

(5.00) a 

1.85 x 105 

(5.27) a 

2.71 x 104 

(4.43) a  

3.63 x 104 

(4.56) a 

2.98 x 104 

(4.47) b 

2.59 x 104 

(4.41) a 

T. harzianum 
LU151 

7.11 x 104 

(4.85) ab 

1.93 x 105 

(5.29) a 

6.14 x 104 

(4.79) a 

3.20 x 104 

(4.51) 

1.78 x 105 

(5.25) a 

2.64 x 104 

(4.42) a 

T. atroviride  
LU132 

1.87 x 105 

(5.27) a 

4.49 x 105 

(5.65) a 

1.57 x 104 

(4.20) a 

1.55 x 104 

(4.19) a 

1.34 x 105 

(5.13) ab 

3.84 x 104 

(4.58) a 

T. virens          
LU556 

1.37 x 104 

(4.14) bc 

1.17 x 105 

(5.07) a 

3.52 x 104 

(4.55) a 

1.87 x 104 

(4.27) a 

7.03 x 104 

(4.85) ab 

1.47 x 104 

(4.17) a 

T. harzianum 
LU672 

7.82 x 103 

(3.89) c 

1.06 x 105 

(5.02) a 

7.00 x 104 

(4.85) a 

1.19 x 104 

(4.08) a 

1.04 x 105 

(5.02) ab 

3.13 x 104 

(4.50) a 

T. crassum       
LU555 

1.12 x 104 

(4.05) c 

8.55 x 104 

(4.93) a 

1.57 x 104 

(4.20) a 

2.83 x 104 

(4.45) a 

2.10 x 105 

(5.32) a 

2.21 x 104 

(4.35) a 

Control* 4.83 x 103 

(3.684)  

9.71 x 103 

(3.987)  

8.77 x 103 

(3.943)  

7.26 x 103 

(3.861)  

5.57 x 103 

(3.746)  

7.91 x 103 

(3.898)  

LSD 5% 0.7650 

* Data for untreated controls not included in the analysis. Note-LU132, LU673, LU151 selected as 

highly rhizosphere competent on sweet corn in chapter 2; LU556, LU555, LU672 selected as weakly 

rhizosphere competent on sweet corn in Chapter 2. 
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B3 2  Log10 values and mean number of Trichoderma CFU/g dry rhizosphere soil 
(DRS) of six plant species. Mean CFU/g DRS followed by the same letter do not 
differ significantly within the column. 

Plant 
Log10 

CFU/g DRS 

Mean 

CFU/g DRS 

Ryegrass 5.205 1.60 x 105 a 

Cauliflower 5.006 1.01 x 105 a 

Sweet corn 4.533 3.41 x 104 b 

Onion 4.501 3.17 x 104 b 

Carrot 4.405 2.54 x 104 b 

Clover 4.343 2.20 x 104 b 

LSD 5% 0.7742  

 

B3 3  Log 10 values and mean number of Trichoderma CFU/g dry rhizosphere soil 
(DRS) recovered from six plant species for six different isolates. Mean CFU/g DRS 
followed by the same letter do not differ significantly within the column. 

Isolate 
Log10 

CFU/g DRS 

Mean 

CFU/g DRS 

T. harzianum LU151 4.850 7.08 x 104 a 

T. atroviride LU132 4.836 6.85 x 104 a 

T. harzianum LU673 4.691 4.91 x 104 a 

T. harzianum LU672 4.558 3.61 x 104 a 

T. crassum  LU555 4.549 3.54 x 104 a 

T. virens    LU556 4.507 3.21 x 104 a 

LSD 5% 0.7742 
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B.4 Growth promotion tables 

B4 1  Seedling emergence experiment 1 (out of 10) 

Plant Control 132 151 555 556 672 673 

carrots 5 5 4.67 7 4 8.33 4.67 

cauliflower 8.89 9 9.67 6.67 9.67 8.67 8 

clover 4.77 4.67 5.33 5.33 6 5.33 5 

onion 6.22 7.33 8.33 5 8 7 7.33 

ryegrass 8.33 8.33 8 8.67 8.33 7.67 8.33 

s. corn 5.55 7 6.67 5.67 8 6.67 7.33 

LSD 5% 2.343 

 

B4 2  Seedling emergence experiment 2 (out of 10) 

Plant Control 132 151 555 556 672 673 

carrots 1.78 2.33 1.33 4 5.33 3 2.33 

cauliflower 9.11 9 8 8.67 7.67 9 6.67 

clover 4.44 5 3.33 4.67 4 4.67 1.67 

onion 4 4.33 4.67 5.67 5.33 4 2.33 

ryegrass 7 7.33 7 8 8 6.67 6 

s. corn 5.78 7.67 7.33 8.67 6.33 6.33 6.33 

LSD 5% 2.181 

 

B4 3  Shoot and root lengths (cm) for experiment 1  

 
Shoot length (cm) 

Plant Control 132 151 555 556 672 673 

carrots 6.33 7.25 9.33 6.92 6.67 7.58 7.08 

ryegrass 21.67 20.75 22.33 21.92 18.17 20.17 18.33 

LSD 5% 3.238 

 
 Root length (cm) 
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Plant Control 132 151 555 556 672 673 

onion 7.56 9.17  13.33  5.17  9.33  8.33  6.67 

LSD 5% 3.489 

 

B4 4  Log10 shoot and root dry weights in experiment 1 

 Log10 shoot weight 

Plant Control 132 151 555 556 672 673 

carrot 0.787 0.953 1.072 0.872 0.852 0.949 0.949 

clover 0.672 0.350 0.600 0.945 0.796 0.698 0.798 

LSD 5% 0.2267 

 
 

 Log10 root weight  

Plant Control 132 151 555 556 672 673 

clover 1.95 0.77 2.08 2.8 2.2 3 1.95 

sweet corn 20.18 43.02 32.2 38.17 61.08 47.63 41.53 

LSD 5% 9.203 
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C.2 Pilot study to check the stability of Wakanui silt loam soil modified by 
the addition of Na2CO3 

Six zip lock bags with 500 g of Wakanui silt loam soil at 20% GWC and at pH5 were prepared. Na2CO3 

was added as a powder or as a solution to achieve three different pH levels: 5.5 (bags 1 and 2), 6.5 

(bags 3 and 4) and 7.5 (bags 5 and 6). Bags were stored in an incubator at the following conditions: 16 

hour day at 18°C and 8 hour night at 20°C. The pilot study was set up on the 2nd November 2011. pH 

was measured at four different dates. 

Soil bags Method 
pH on the 
18th Nov. 

pH on the  
29th Nov. 

pH on the 
12th Dec. 

pH on the 
19th Dec. 

1 Powder 5.5 5.5 5.5 5.5 

2 Solution 5.5 5.6 5.4 5.3 

3 Powder 7.2 6.9 6.7 6.5 

4 Solution 7 6.7 6.5 6.5 

5 Powder 7.7 7.5 7.2 7.5 

6 Solution 7.6 7.5 7 7.2 

pH of Wakanui silt loam soil, measured at several time points during incubation, after the addition of 
Na2CO3 either as a powder or as a solution. 
 

C.3 Soil nutrient analysis of Wakanui silt loam samples corrected to three 
pHs. Analysis conducted by Hills Laboratories. 

 pH soil experiment  1 

pH at start measured in Lincoln University 5.5 6.5 7.5 

pH (pH Units) at start measured by Hill 5.7 7 8.3 

    

Olsen Phosphorus (mg/L) 23 23 20 

    

Potassium (me/100g) 0.48 0.46 0.44 

Calcium (me/100g) 4.6 4.5 4.0 

Magnesium (me/100g) 0.67 0.63 0.47 

Sodium (me/100g) 0.14 2.12 4.56 

    

CEC (me/100g) 11 11 10 

Total Base Saturation (%) 53 71 96 

Volume Weight (g/mL) 1.03 1.10 1.16 

    

Available Nitrogen (15cm Depth) (kg/ha) 70 68 81 

Anaerobically Mineralisable N (µg/g) 45 41 47 
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C.4 Soil pH analysis of bulk soils collected from each treatment pot at the 
end of pH experiments 1 and 2. Values are a mean of all pots for each 
treatment. 

  
Bulk soil pH at the end of 

experiments 

Plant Soil pH at start experiment 1 experiment 2 

Ryegrass 5.5 5.5 5.5 

Ryegrass 6.5 5.5 5.6 

Ryegrass 7.5 7.2 6.9 

Sweet corn 5.5 7 6.7 

Sweet corn 6.5 7.7 7.5 

Sweet corn 7.5 7.6 7.5 

 

C.5 Soil nutrient analysis of Wakanui silt loam samples corrected to three 
available nitrogen contents. Ananlysis conducted by Hills Laboratories. 

 

 Experiment  1 

Desired nitrogen level (kg N/ha) 75 150 300 

pH (pH Units) 5.7 5.6 5.4 

    

Olsen Phosphorus (mg/L) 23 23 23 

    

Potassium (me/100g) 0.43 0.48 0.48 

Calcium (me/100g) 4.7 4.4 4.6 

Magnesium (me/100g) 0.63 0.60 0.62 

Sodium (me/100g) 0.11 0.12 0.12 

    

CEC (me/100g) 11 10 11 

Total Base Saturation (%) 51 56 55 

Volume Weight (g/mL) 0.98 1.14 1.04 

    

Available Nitrogen (15cm Depth) (kg/ha) 65 50 65 

Anaerobically Mineralisable N (µg/g) 44 29 44 
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Rhizosphere soil analysis: 
AMF 

df SS MS Pseudo-F P(perm) 

Isolate 2 15295 7647.3 2.4411 0.0002 

Days 3 6433 2144.3 0.68448 0.9684 

Isolate.Days 6 14214 2369 0.7562 0.9704 

Residual 22 
 

68921 3132.8   

Total 33 104830    

Pair wise test: Isolate t P(perm)    

Control, LU132 
1.6724 0.0007    

Control, LU556 
1.8021 0.0003    

LU 132, LU 556 
1.1733 0.1452    

 

D.3 Bacteria PERMANOVA analysis 

Main soil analysis: 
Bacteria 

df SS MS Pseudo-F P(perm) 

Soil type 2 13262 6631.1 2.6983 0.0001 

Residual 56 137620 2457.5   

Total 58 150880    

Pair wise test: Soil t P(perm)    

Rhizosphere, Bulk 2.0467 0.0001    

Rhizosphere, Set-up 1.1274 0.0927    

Bulk, Set-up 1.1966 0.0853    
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Rhizosphere soil analysis: 
Bacteria 

df SS MS Pseudo-F P(perm) 

Isolate 2 7054.8 3527.4 1.4175 0.0142 

Days 3 6545 2181.7 0.87669 0.8188 

Isolate.Days 6 10781 1796.9 0.72207 0.9997 

Residual 20 
 

49771 2488.5   

Total 31 74282    

Pair wise test: Isolate t P(perm)    

Control, LU132 
1.3027 0.0047    

Control, LU556 
1.2093 0.0666    

LU132, LU556 
1.0754 0.2259    

 

D.4 Fungi PERMANOVA analysis 

 

Main soil type: Fungi df SS MS Pseudo-F P(perm) 

Soil type 2 13903 6951.4 2.7278 0.0001 

Residual 58 147800 2548.4   

Total 60 161710    

Pair wise test: Soil t P(perm)    

Rhizosphere, Bulk 1.8607 0.0001    

Rhizosphere, Set-up 1.4074 0.0009    

Bulk, Set-up 1.4762 0.0086    
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Rhizosphere soil analysis: 
Fungi 

df SS MS Pseudo-F P(perm) 

Isolate 2 8994.2 4497.1 1.5846 0.007 

Days 3 5020.6 1673.5 0.58969 0.9997 

Isolate.Days 6 12144 2024.1 0.7132 0.999 

Residual 22 
 

62436 2838   

Total 33 88488    

Pair wise test: Isolate t P(perm)    

Control, LU132 
1.4017 0.0038    

Control, LU556 
1.1722 0.0919    

LU132, LU556 
1.1972 0.0856    
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