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Abstract of a thesis submitted in partial fulfilment of the
requirements for the Degree of Doctor of Philosophy

Noise-limited scene-change detection in images

K. Irie

This thesis describes the theoretical, experimental, and practical aspects of a noise-
limited method for scene-change detection in images. The research is divided into three
sections: noise analysis and modelling, dual illumination scene-change modelling, and

integration of noise into the scene-change model.

The sources of noise within commercially available digital cameras are described,
with a new model for image noise derived for charge-coupled device (CCD) cameras.
The model is validated experimentally through the development of techniques that
allow the individual noise components to be measured from the analysis of output
images alone. A generic model for complementary metal-oxide-semiconductor (CMOS)
cameras is also derived. Methods for the analysis of spatial (inter-pixel) and temporal
(intra-pixel) noise are developed. These are used subsequently to investigate the effects
of environmental temperature on camera noise. Based on the cameras tested, the results
show that the CCD camera noise response to variation in environmental temperature

is complex whereas the CMOS camera response simply increases monotonically.

A new concept for scene-change detection is proposed based upon a dual illumi-
nation concept where both direct and ambient illumination sources are present in an
environment, such as that which occurs in natural outdoor scenes with direct sunlight
and ambient skylight. The transition of pixel colour from the combined direct and ambi-
ent illuminants to the ambient illuminant only is modelled. A method for shadow-free
scene-change is then developed that predicts a pixel’s colour when the area in the scene
is subjected to ambient illumination only, allowing pixel change to be distinguished as

either being due to a cast shadow or due to a genuine change in the scene. Experiments



vi

on images captured in controlled lighting demonstrate 91% of scene-change and 83%
of cast shadows are correctly determined from analysis of pixel colour change alone.
A statistical method for detecting shadow-free scene-change is developed. This is
achieved by bounding the dual illumination model by the confidence interval associated
with the pixel’s noise. Three benefits arise from the integration of noise into the scene-

change detection method:

1. The necessity for pre-filtering images for noise is removed;
2. All empirical thresholds are removed; and

3. Performance is improved.

The noise-limited scene-change detection algorithm correctly classifies 93% of scene-
change and 87% of cast shadows from pixel colour change alone. When simple post-

analysis size-filtering is applied both these figures increase to 95%.

Keywords: camera noise, image noise, noise models, scene-change detection,

object segmentation, shadow detection, illumination modelling.
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Preface

The ability of humans to process their surroundings using vision has been finely
crafted and refined over millions of years. At a mere glance, and with virtually no
conscious thought, we can extract details from our environment in a purely passive
manner, recreating and forming objects inside our mind to represent virtually the
physical objects around us. In addition, advancements by humans in the past 50 years
have given us computers that can process millions of instructions per second, eclipsing
the computing power of the human brain, and camera vision systems that routinely
check and count thousands of items without fail every second, far beyond the capability

of any living human.

Why then have we not developed robots, even slow ones, that can reproduce the
most basic human visual tasks, such as analysing its surroundings, in a robust and

reliable manner?

One answer may be due to the extreme complexity of the human brain, and its
ability to continually learn. Even if the brain-speed of a new-born child was increased
a million fold, it would not be able to perform a detailed analysis of its environment
— not until it learned what its environment was. If we are to use the advancements
in computing power provided to us today to replicate simple human abilities, then
perhaps we too have to start with baby steps — we have to understand what it is that

needs to be learned, and we need to implement them.

Scientists have been slowly unravelling the secrets of the human brain and in partic-
ular with regard to the study in this thesis, the understanding of the human vision
system (HVS) and the interaction between the optical system and the brain. We know
that the brain pre-processes the information captured by the retina prior to any high-
level processing functions including form, movement, stereo depth, and colour (Sekular
& Blacke 1988, Gregory 1988). This reduces the signals that are transmitted to the
brain through the optic nerves from the eye’s 120 million receptors to 1 million. Further-
more, Gregory states “No features determine depth or form; they can only increase the
probabilities of seeing in particular ways”. This suggests that an ‘unlearned’ image

processing algorithm cannot determine an object from features alone.

We know that shadows provide important cues for interpretation of images in the
HVS (Ramachandran 1998). This is demonstrated in Figure [I| which illustrates how
shadows alone can allow us to extract an object’s form. Aside from this function,
shadows enable a single eye to have something close to binocular vision. Our brain
continually measures the lengths of the shadows and deduces their heights and shapes,
helping to deduce distance. The world around us looks quite flat when the light is
directly behind us, for then there are no shadows, which makes for flat scenes and
dull pictures. Further, David Brewster (1781-1868) in his “Letters on natural magic”,

describes the changes in the elevations and depressions on a model depending upon
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whether the light is falling from above or below. In further experimentation of the

effect Brewster found that this was more marked in adults than with children.

ey )
- -
VI AMUNYD
Figure 1 An example of extracting an object’s form by shadow inference only.

In relation to robotics and their inability to accurately reproduce the simple human
visual task of object tracking, I speculate that we start at the very beginning with baby
steps, mimicking the pre-processing operations of the HVS, then allowing higher-level
functions to operate on the extracted detail. One area of extreme importance to any
image processing application is the way it treats image noise. For example, Figure
illustrates an image that we find easy to decouple from noise - we do not need to
evaluate the image for long before we can extract the detail of the word ‘Noise’. Yet
with no other input it is difficult to logically program an algorithm that could extract

the word ‘Noise’ alone.

Figure 2 An example of the ability of the HVS to extract an object’s form from within the presence
of random noise.

This study is targeted firstly at our understanding of noise within digital cameras,
and the ability to measure the noise content within captured images. Secondly, the
study of noise is validated by applying the knowledge gained to a scene-change detec-
tion application that attempts to segment objects from their shadows. By doing this,
features can be provided that could improve the probability that an algorithm will be

able to detect the correct form of an object.

Aims and achievements
The overall aim of this research is to contribute to science a greater understanding
of digital camera image noise and to demonstrate its application to increasing the
robustness of image processing applications. The pathway to this aim includes the

study and review of relevant background theory, the formulation of original ideas,
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implementation and execution of these ideas, analysis of experimental results, and
scrutiny of the work by the scientific community. Through this pathway the aim has

been met.

Achievements of this research, and directly related to the work, include:

e Construction of new comprehensive models for CCD and CMOS camera noise.

e Development of a new method for measuring the sources of CCD camera noise

from output images alone.

e Development of methods for measurement of spatial, temporal, and combined

noise in any type of digital camera.

e Analysis of the effect of environmental temperature on camera noise, with results

showing surprising noise variation both within and between cameras.

e Creation of a new model and method for scene-change detection in image sequences

based on dual-illumination and colour chromaticity.

e Integration of the image noise model into the scene-change detection shadow
model which creates a new method that is free from empirical thresholds and

demonstrates improved performance over the original method.

¢ Presentation of this work at four international conferences: Image and Vision
Computing New Zealand 2006 (Irie, McKinnon, Unsworth & Woodhead 2006),
International Conference on Sensing Technology 2007 (Irie, McKinnon, Unsworth
& Woodhead 2007a), Image and Vision Computing New Zealand 2007 (Irie,
McKinnon, Unsworth & Woodhead 2007b); Image and Vision Computing New
Zealand 2008 (Irie, McKinnon, Unsworth & Woodhead 2008a); with one under
review, Image and Vision Computing New Zealand 2009; and presentation of two

seminars at Lincoln University.

e Publication of papers in three refereed journals: Measurement, Science, and
Technology (Irie, McKinnon, Unsworth & Woodhead 2008c), IEEE Circuits and
Systems for Video Technology (Irie, McKinnon, Unsworth & Woodhead 2008d),
Sensors and Transducers (Irie, McKinnon, Unsworth & Woodhead 2008b), (JOSA-

A under review).

Thesis layout
The thesis is segmented into four parts. Part I presents an introduction and back-
ground pertinent to this research. Part II contains work related to the modelling and
measurement of camera noise, Part III contains work related to scene-change detection
based on dual-illumination and the integration of the noise model with the scene-change

detection process. Part IV finishes the thesis with some conclusions and suggestions



for future study. Each of parts II & III have their respective literature reviews clearly

delineated at the beginning of their chapters.

e Part I Introduction and background
Chapter 1 introduces the importance of noise in image processing and the need
for a deeper understanding of digital camera noise, as well as the necessity for

robust shadow-free scene-change detection.

Chapter 2 provides background on the the human vision system and its impor-
tance in digital imaging. Digital cameras are discussed, followed by the philosophy

behind lighting and shadows.

e Part IT Noise analysis
Chapter 3 discusses camera noise in detail, providing a review of the current
literature regarding sources of noise in digital cameras, particularly for the ubig-
uitous CCD- and CMOS-type devices. The formation of CCD and CMOS noise
models are presented, followed by methods developed for measuring camera noise
from output images alone. These methods are used to validate the CCD model
experimentally. The effects of environmental temperature on camera noise is also

investigated, which provides some surprising results.

e Part III Scene-change detection
Chapter 4 discusses scene-change detection based upon colour change only. It
presents a review of the current literature and methods for the shadow removal
and scene-change detection problem in general, followed by a new method for

detection of scene-changes in image sequences.

Chapter 5 details an enhanced method of scene-change detection that integrates

camera noise knowledge with the scene-change detection method.

e Part IV Conclusions and future work
The thesis finishes with a concluding discussion of the work presented, as well as

suggestions for future research.
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Glossary of terms

ADC

APS
Brightness
CCD

CFA
Chrominance
CMOS
Daylight
DSNU
DSP

FF

FT

GMB

HID

HVS

IC

IL
Intensity
LBR
Lightness
Luminance
Metamerism
PPS

Quincunx

Skylight
SNR
SPD
Sunlight
YCRrCp

Analogue-to-Digital Conversion

Active Pixel Sensor (CMOS)

The visual perception of light output

Charge-Coupled Device

Colour Filter Array

A 2D-space for representing colour

Complementary Metal-Oxide-Semiconductor

The combination of sunlight and skylight

Dark-Signal Non-Uniformity (also referred to as FPN)

Digital Signal Processor

Full-Frame Transfer (CCD)

Frame Transfer (CCD)

Gretag Macbeth colour chart

High Intensity Discharge

Human Visual System

Integrated Circuit

Interline Transfer (CCD)

The relative brightness of a portion of image or illumination
Log Band-Ratio

The perception response to brightness

Photometric measure of luminous intensity per unit area of light
The matching of apparent colour of objects with different SPDs
Passive Pixel Sensor (CMOS)

A geometric pattern consisting of five points, four of them forming
a square or rectangle and a fifth at its center

Solar radiation from the scattering of sunlight in the atmosphere
Signal-to-Noise Ratio

Spectral Power Distribution

Radiation given off by the sun

Digital luminance/chrominance colour space
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Symbol and variable definitions

PN

Standard deviation
Wavelength (of light)

Mean

Blue component of an item
Sensor response

Spectial energy of an illuminant source
Fixed-pattern noise

Green component of an item
Planck’s constant

Boltzmann’s constant
Lightness

Column noise

Demosaicing effect on noise
Filtering effects on image noise
Quantization noise

Readout noise

RGB pixel measurement
Photo-response non-uniformity
Red component of an item
Surface of an object
Dark-current shot noise
Photon shot noise
Temperature

Luminance

xiii
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Chapter 1

INTRODUCTION

Digital cameras have become ubiquitous sensors for automated technologies. Advance-
ments in both vision and electronic technologies have increased the applicability of
these sensors to almost every industry imaginable, as camera specification, sensitivity,
and computing power is increasing, while effective cost is decreasing. Consequently,
the expectations of the associated performance of image processing algorithms is also
increasing. It would be fair to say that machine vision applications are no longer
limited by optical hardware or processing power, but in the way that the image data

is interpreted.

One confounding yet compelling aspect of digital cameras is that the photo-sensors
themselves collect light in a passive manner. In uncontrolled environmental conditions,
such as in an outdoor setting, a camera has no absolute reference point in terms of the
data it is collecting. There is little use in analysing the absolute number of photons
captured by each pixel as the total photon flux will vary greatly depending upon how
much sunlight is available. Any subsequent image analysis must therefore be made on

the relative differences in the number of photons captured by the pixels.

Further, the problem of image analysis is hampered by the addition of noise to the
pixel data. Noise will always be present in any captured image, even in the perfect
camera, as photons are discrete entities and are subject to Poisson variations. Noise
becomes increasingly problematic as the contrast reduces between pixels being analysed
and as the pixel values approach noise levels. An image processing algorithm will then
be unable to distinguish true scene content from noise, and the algorithm may not
know when it is failing. Indeed, this is one of the reasons why cameras are used less
frequently in safety-critical applications — if the algorithm is reacting to noise then it
will be too sensitive and falsely react, yet if it is insufficiently sensitive to noise it may

not react to genuine scene changes when it should.

Somewhat surprisingly, most image processing algorithms do not adequately recog-
nize or handle noise; rather they rely on heuristic or empirical thresholds which can

directly affect algorithm robustness and applicability.

An unavoidable effect in any outdoor environment is shadowing, which can cause



large relative pixel differences depending upon the strength of the illumination source
and whether a pixel is in shadow or not. Consequently, this can make it very difficult
for an algorithm to distinguish whether changes in pixel values are caused by changes

in the scene or changes in shadow.

Object tracking applications in outdoor environments suffer from noise and shadow
effects. It has become more relevant in recent times due to the ubiquity of low-cost
cameras being used for security purposes in urban areas where algorithms are expected
to operate throughout the day and night. Object tracking, along with other outdoor
image processing applications, can gain significant robustness from incorporating noise

detail and shadow-free scene-change detection into their algorithms.

The human vision system (HVS) has an excellent ability to adapt to environmen-
tal conditions, filter noise, and segment shadows from objects. Applying this ability to
computer vision has not been a trivial task for engineers and scientists, and develop-

ment of completely autonomous vision systems has proven elusive.

The needs identified and addressed in this thesis are as follows:

¢ To understand image noise and its sources in standard off-the-shelf digital image

sensors.
e To model and measure image noise types from digital camera images.

e To research a method for application-independent scene-change detection, whose

performance is ideally limited only by image noise.



Chapter 2

BACKGROUND

This chapter provides a background to the principles of the human vision system,
cameras, lighting, and shadows. In explaining these fundamentals, issues that affect

computer vision applications will become apparent.

2.1 THE HUMAN VISION SYSTEM

2.1.1 The non-linear intensity response of the HVS

The human vision system (HVS) has a non-linear perception of intensity. Although
light intensity can be easily measured, brightness is a subjective phenomenon. Studies
show that there is a complex relationship between intensity and perceived brightness
that depends on several factors, including the level of surrounding light (Stone 2003),
but is often approximated as log intensity, or intensity powered to between 1/2 and
1/3 (Poynton 1996). The Commission Internationale de I'Eclairage (CIE) defines lumi-
nance, denoted Y, as radiant power weighted by a spectral sensitivity function that
is characteristic of the HVS (CIE 2009). Furthermore, the CIE defines lightness, L*
(scale 0-100), the perceptual response to brightness, as predominately a modified cube

root of luminance:

1
Y@ Y
L* =116 (Y) —16, o > 0.008856 (2.1)

n n

where Y}, is the luminance of the white reference. This response is graphed in Figure|2.1
where Y, is 100.

An example demonstrating the non-linearity of the HVS is demonstrated in
Figure The top bar is luminance, encoded linearly, where it appears that most of
the values are light. The bottom bar is lightness which is perceptually encoded such
that the photographic mid-grey appears at value 50, but is only 18% of the maximum

luminance value 100.
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Figure 2.1 The human perceptual response to luminance as defined by the CIE.
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Figure 2.2 Linearly encoded intensity values (top) and linearly encoded lightness (perceptual) values
(bottom).

2.1.2 Colour response of the HVS

Colour is what we see, and much more than just a physical attribute of the light our

eyes detect. Sir Isaac Newton describes it as follows (Newton 1730):

“For the Rays (of light) to speak properly are not coloured. In them there
is nothing else than a certain Power and Disposition to stir up a Sensation
of this or that Colour.”

An example of this process is given by the colour purple. Purple is not a hue listed
in the spectrum of colour (red, orange, yellow, green, cyan, blue, indigo (Gerritsen
1975)) but a combination of the red and blue/violet hues. This illustrates the difficulty
in developing machine vision systems capable of mimicking the HVS (Huang & Wu
1998). The eye captures light in the rods and cones of the retina. The rods are
highly light sensitive, and allow vision in dim lighting conditions. The reason we see

monochromatically at night is because we only have one type of rod. There are three
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varieties of cone: short, medium and long, which are sensitive to blue, green, and yellow-
green light respectively (Trussell, Saber & Vrhel 2005) giving colour. These sensitivities
form the basis for the trichromatic (R,G,B) colour primaries in digital imaging. The
relative populations of the short, medium and long cones are approximately 1:20:40.
The scarcity of short (blue) cones, which are absent entirely from the centre of the
fovea, limits the sharpness of intensely blue colours (Stone 2003). The eye’s colour

sensitivity curve peaks at 555 nm, in the green hue of the spectrum (Gerritsen 1975).

2.1.3 Chromatic adaptation and image display

Chromatic adaptation describes the ability of the HVS to adapt to the colour of the
light illuminating the scene (Stone 2003), helping to keep the perceived object colour
constant when viewed in different lighting conditions. For instance, an apple may look
green at midday when the sun is approximately white in colour, but also at sunset

when the illumination has a red cast. This helps the HVS identify objects.

Most consumer-grade digital cameras have an automatic white-balance mode that
is designed to adjust the captured images to appear as if illuminated by a pure white
illuminant. Virtually all output devices are calibrated to a white reference. For exam-
ple, the white used in standard monitors is defined as RGB(255,255,255), whereas the
white for a standard printer is the colour of the paper. The process of adjusting a
captured image so that it appears as if recorded under an ideal white illuminant is

known as colour constancy.

The process of achieving colour constancy in digital images is a non-trivial task
and is an active area of research (Funt, Barnard & Martin 1998, Barnard, Cardei &
Funt 2002). Shown in Figure is an example highlighting the difficulty of achieving
colour constancy. Each image was taken in different illumination conditions with the
camera set to full automatic mode. A perfect colour constancy process would adapt
the colouring of each image to an ideal white illuminant yet there remain significant
colour differences between the images. The differences would have been greater if the
automatic white balance in the camera had been disabled. The eye would adapt to
the colouring in each of the images if they totally encompassed the eye’s field of view,
but the images appear different when placed together on a background because the eye

adapts to the paper as a white reference.

2.2 IMAGE CAPTURE

This thesis uses the term ‘image’ to define pictorial content typically produced by an

optical or electronic device. The components required in capturing an image are:

e an object/scene
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(c) (d)

Figure 2.3 Images taken with a Canon Powershot A75 camera in different illumination conditions
with automatic white balance enabled: (a) ambient sunlight, (b) flash, (c¢) incandescent, and (d)
fluorescent lighting.

e an illuminant (light source)

e a sensing array

The sensing device, typically an eye or an electronic sensor, is limited in spectral
bandwidth and sensitivity and can be affected by metamerism (colour aliasing, see
Section and saturation. The sensor of a camera system usually modifies the image
non-linearly and digitizes the pixel data before export. The representation of an image

of the scene will change as it passes through the camera and display system.

Figure [2.4 shows the pathway of scene irradiance from capture to reproduction for
a digital imaging system. The scene to be imaged is subject to an illuminant such as
the sun or sources of artificial lighting. The reflected scene illumination passes through
the camera optics and the incident image falls upon the sensor. The sensor then
converts the incident image photons into an electronic signal. This signal is amplified
and is referred to as the captured image. Some form of processing typically occurs,
such as gamma, gain and white balance adjustment, before the captured image is non-
linearly encoded and the recorded image is available for export in a digital form (e.g.,
raw, JPEG, YCRCp). The recorded image is usually stored and/or transmitted to an
output device such as a monitor or printer, which creates a rendered image for visual

display.
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Figure 2.4 The image capture and reproduction pathway.

2.3 METAMERISM

The spectral energy P of an object recorded by a sensor is a function of the illumination

E, the object surface response S, and the sensor response C, such that:

P(X) =EN)SNC(N) (2.2)

where A is the wavelength of light (Funt & Finlayson 1995). The particular value
of P for a specific surface S7 and illuminant F7 is not unique, as other surfaces and

illuminants Sy and Fs will exist such that:

Ei(N) _ S(N)
Ey(A)  Si(N)

: (2.3)

This effect is known as metamerism, or colour aliasing. In practical terms it means that
the colour image of two objects with different surface colourants may appear identical
when placed under different illuminants. For standard colour imaging, the recorded

spectral energy is a combination of the responses of the R, G, and B wavelengths:

Piras = (POn). POha), POws) ). (24)

Metamerism can occur on any one or more of the R, G, and B colour primaries.
Multiple objects, having different spectral reflectance curves but the same measured

spectral response, are defined as metameric objects (Billmeyer & Saltzman 1966).
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2.4 DIGITAL CAMERAS

The purpose of digital imaging is to capture a scene in a digital format for accurate
scene reconstruction at a later time. Most digital cameras have the ability to alter
characteristics of the image such as white balance or contrast to visually improve the
quality of the image when reproduced for the HVS. These adjustments can have signif-
icant impact on the machine processing of digital images as the captured image is no

longer representative of the incident image.

Charge-coupled devices (CCDs) have traditionally been the dominant image-sensor
technology. However, recent advances in the design of complementary metal-oxide-
semiconductor (CMOS) technologies have led to its adoption in many consumer-grade
devices, as well as being a viable alternative to professional CCD systems (El Gamal &
Eltoukhy 2005). Both Nikon and Canon shifted to CMOS sensors in their professional
SLR cameras from the D3 (Nikon) and EOS-1Ds Mk-III (Canon) cameras onwards.

2.4.1 A brief history of digital imaging

The following section is summarized from Flory (Flory 1985), Fossum (Fossum 1997),
and El Gamal (El Gamal & Eltoukhy 2005).

The entire history of electronic image acquisition spans more than 80 years, starting
with the iconoscope which was invented around 1925. The period 1945-1965 saw the
era of the orthicon, which was a complex solution to the shortcomings of the iconoscope.
Both of these devices used scanning electron beams to scan a photosensitive element.
In 1965 the photoconductive sensor was developed, and it became the dominant image
sensor technology until 1970, when the CCD was developed. It has since been the

dominant sensor technology.

MOS photodiodes were developed in the late 1960s, but MOS image sensors started
arriving only in the early 1980s. The arrival of CMOS passive-pixel sensors happened
in the mid-1980s, where they were the technology of choice for only a very few scientific
fields due to low dynamic range and low signal-to-noise ratios (SNR). In the early 1990s
work began on the modern CMOS active-pixel sensor, originally conceived in 1968. It
was quickly realized that adding an amplifier to each pixel significantly increases sensor
speed and SNR, overcoming the limitations of passive-pixel CMOS. With the recent
advent of deep submicron CMOS and integrated microlens technologies, active-pixel
CMOS sensors have become viable alternatives to CCD image sensors. CMOS image
sensors remain in an active state of research and development, and are likely to be the

choice of imaging sensor in the future.
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2.4.2 CCD/CMOS image capture

The CCD and CMOS sensor architectures share many similarities. Photons are
captured and converted to charge in the photo detection process, the charge is
conditioned/sampled, and the samples are digitally enhanced for output. This
process is described comprehensively in the literature (El Gamal & Eltoukhy 2005,
Flory 1985, Litwiller 2001, Blanc 2001, Kremens 2001, El Gamal, Fowler, Min &
Liu 1998b, Catrysse, Wang & El Gamal 1999, Costantini & Siisstrunk 2004, Anaxago-
ras, Guerrini, Turchetta & Allinson 2005). Figure details a typical digital image
sensor for a CCD/CMOS digital camera system.

Colour filter array

Microlens spacer l Colour filter planarization layer
Microlens overcoat / Semiconductor elements
Microlenses $/ (CMOS)
\‘Q [ ] Photodetectors
( I I I-I I
Sensor Q 1 ITI
optics "" |
( )
e | ]

Figure 2.5 The layout of a typical digital image sensor.

Light passing through the optics falls onto the imaging sensor. Some image sensors
use microlenses to increase the amount of light incident on the photodetectors (El Gamal
& Eltoukhy 2005, Chen, Catrysse, E1 Gamal & Wandell 2000). This helps reduce the
problem of vignetting, where light entering the sensor in a direction that is not parallel
to the optical axis does not reach the photodetectors due to the optical tunnel formed by
the sensor manufacturing process. For consumer grade colour cameras the light passes
through a colour filter array (CFA) to generate trichromatic images. The filtered light
then enters the photodetectors, where approximately half of the photons are converted
to charge (Brouk & Nemirovsky 2004).

The CCD and CMOS fabrication technologies are significantly different. Specifi-
cally, CCDs are manufactured with technologies solely optimized for imaging and charge
transfer, whereas CMOS devices are manufactured with mostly standard technologies
and have the ability to incorporate logic and analogue processing on the same die as
the photodetectors. Apart from the ability to integrate the sensor, control logic, and
processing on the same chip, CMOS sensors enable each individual pixel to have its
own transistors, amplifiers, charge-to-voltage conversion, or even digital signal proces-

sors (DSPs). The drawback is that the pixel fill rate, or the area that can be used to

capture photons, is reduced when logic is added alongside each pixel.
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Figure (left) shows a typical interline CCD readout architecture. The charge
from each pixel is read sequentially, with each charge moving along a column or row in
a conveyer-type fashion. Analogue-to-digital conversion (ADC), storage, and enhance-
ment are performed on supporting integrated circuits (ICs). There are three major
readout architectures used for CCD sensors: full-frame (FF), frame-transfer (FT), and
interline-transfer (IL). FF has a fill rate of up to 100% of the pixel area, but is prone to
smearing during charge readout. FT shifts the image to a second image buffer at high
speed prior to readout, thereby reducing image smear. IL CCD is the most popular
image sensor for camcorders and digital still cameras, but suffers from a reduced fill rate
due to charge storage buffers located beside each pixel (Nakamura 2006, Kodak CCD
Primer KCP-001 1999). This reduction in fill rate varies, but fill rates between 20 and
50% are not uncommon. A microlens is often used to compensate for this reduction by

increasing the effective area of incident light collection.

CCD’s  Photodetectors Photodiodes

v

’
i Output

) Column amplifiers
Output
Charge transfer
Column ADC/MUX [ >

Figure 2.6 Typical architectures of interline CCD (left) and passive-pixel CMOS (right).

Charge transfer
Row decoders

Do = =] —

Current CMOS sensors can be divided into two main architectural types: passive-
pixel sensors (PPS) and active-pixel sensors (APS) (Nakamura 2006, Yadid-Pecht &
Fish 2004, El Gamal & Eltoukhy 2005). Figure (right) shows a typical readout
architecture for a CMOS PPS. Each pixel contains a photodiode and one MOS tran-
sistor. As in most CMOS image sensors, row and/or column decoders are used for
addressing the pixels in the array. Although they have relatively high fill rates due to
having only a single transistor, PPS devices suffer from high noise due to large capaci-
tive bus loads during pixel readout. They are also prone to column fixed-pattern noise
(FPN) from variations in the manufacturing process of the column amplifiers, which

can result in objectionable vertical stripes in the recorded image.

CMOS APS can be divided into three main subtypes: photodiode, photogate, and
pinned photodiode, where in each type three or more transistors are used in each pixel.
APS devices typically have a fill rate of 50-70%, but the reduced capacitive bus load
during readout due to the transistor amplifiers leads to lower readout noise, which
increases the signal-to-noise ratio (SNR) and sensor dynamic range (DR). The pinned-

photodiode APS has currently been reported as the most popular implementation for
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CMOS image sensors (Nakamura 2006).

There are other types of APS available but they are currently not in widespread
use. The logarithmic photodiode sensor (Loose, Meier & Schemmel 2001) operates
continuously and provides increased dynamic range from logarithmic encoding of the
photocurrent. However, low output sensitivity during low illumination and significant
temperature dependence are serious drawbacks limiting the use of this method. Fowler
et al. describe a ‘digital-pixel sensor’ that has 22 transistors and ADC functionality at
each pixel (Fowler, El Gamal & Yang 1994).

2.5 LIGHT & SHADOWS

Light is a small component of the electromagnetic spectrum, consisting of two perpen-
dicular oscillating magnetic and electric waves (Parisi, Sabburg & Kimlin 2004).
However, light can exhibit properties of both waves and particles. This property is
referred to as wave-particle duality, with references found in many textbooks, such as
(Ditchburn 1976).

In this thesis light is referred to using both wave properties and as individual
photons (light carriers). For example, in Section light is discussed in spectral
wavelengths, yet in Section it is treated as an individual unit of energy that
generates an electron, which itself exhibits wave-particle duality, in the photosensitive

wells of a camera.

2.5.1 Colour temperature

An illuminant’s colour can be described loosely by its colour temperature (Stone 2003),
which is based on the colour output of a black-body radiator at a specific temperature.
In general, low colour temperatures represent a reddish-yellow illuminant and high
colour temperatures represent bluish-white illuminants. For example, candle flames
have a relatively low colour temperature of 2,000 K. The tungsten in incandescent
lighting has a colour temperature ranging from 2,500-2,800 K. Halogen lights range
from 2,800 K to around 3,200 K, and fluorescent lamps typically operate between 2,500—
6,500 K. Sunlight at midday light is approximated by a 6,500 K colour temperature.

The CIE-defined daylight spectrum for midday light is labelled D65. This term is
sometimes used interchangeably with 6,500 K but the colours defined by the CIE are
different from black-body radiators because they simulate not only the colour of the
sun (a black body radiator of approximately 5,800 K) but also the scattering effect of
the atmosphere.

The spectral emission of high-intensity discharge (HID) and fluorescent lamps are
not appropriately described by colour temperature alone when used in photography, as

their spectrum is composed of specific descrete wavelengths.
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Figure [2.7 shows the CIE 1931 chromaticity space which is often used to approxi-
mately describe colours. The Planckian locus describes the colour emitted by a black-
body radiator at increasing temperature. Colours falling in the vicinity of the lines
crossing the locus can be described as a correlated colour temperature of the associ-

ated line’s intersection with the locus.
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Figure 2.7 The CIE 1931 x,y chromaticity space, also showing the chromaticities of black-body light
sources of various temperatures (Planckian locus), and lines of constant correlated colour temperature.
(Image PlanckianLocus.png from http://www.wikipedia.org. Permission to freely distribute this image
under the GNU Free Documentation license, Version 1.2 or later).

2.5.2 Sunlight, skylight, and daylight

The sun emits radiation that roughly approximates a black-body radiator from 5750—
5800 K (Henderson 1977, Igbal 1983). The intensity and spectrum of daylight changes
primarily with atmospheric conditions (ignoring changes in the solar constant). The
earth’s albedo is roughly 40% (approximately 40% of the incoming solar radiation is
reflected back into space). About 15% is absorbed in the atmosphere, and around 45%
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reaches the earth’s surface, where it is absorbed and re-radiated at infra-red wavelengths
(Henderson 1977). The atmospheric filtering process is non-linear, hence the apparent
colour of sunlight when viewed from Earth is typically yellow depending upon the

number and size of particles in the atmosphere.

According to Rayleigh’s theory of molecular scattering, the probability that a single
photon of sunlight will be scattered from its original direction by an air molecule is
inversely proportional to the fourth power of the wavelength (Lynch & Livingston 1995).
That is, the shorter the wavelength of light (i.e., the bluer the light), the higher its
chances of being scattered. This causes the sky to appear to irradiate a blue colour,
called skylight, which is the Rayleigh-scattered component of the sun’s light passing
through the atmosphere. Figure [2.8|illustrates the illumination of earth from the sun,

and the colouring of cast shadows from skylight.

On earth, daylight is a combination of sunlight and skylight. The colour of the
daytime sky in clear conditions changes with the viewing angle. The sky viewed directly
upwards is typically deep blue in appearance, with a ‘fading’ to a lighter shade of blue or
even white when looking towards the horizon. Each molecule in the atmosphere can be
considered a source of Rayleigh-scattered light. Looking towards the horizon increases
the quantity of air mass that is viewed when compared to looking directly upwards,
increasing the amount of scattered light seen by the observer. The maximum viewing
distance before all light is scattered and the view becomes opaque is dependent upon
wavelength. The shorter the wavelength, the shorter the distance until the transmitting
medium becomes optically thick. As the view of the sky is shifted from directly above
the observer towards the horizon, the blue end of the spectrum is the first to become
opaque (i.e, maximum brightness from Rayleigh scattering), followed by green then
red, until all wavelengths become opaque and the skylight illumination appears white.
The red or yellow sky at dawn and dusk is primarily from the added scattering of light
from dust, smoke, and water particles in the air. These particles attenuate the sunlight
after the Rayleigh scattering has removed the shorter wavelengths of light (Lynch &
Livingston 1995).

2.5.3 Artificial illumination

Incandescent and halogen light bulbs are essentially black-body radiators that use
heated filaments to produce light, and compared to more modern methods of light-
ing are relatively crude and inefficient as a large amount of energy is lost as heat. They

emit light over a broad spectrum extending beyond the 350-700 nm range of the HVS.
Fluorescent and high-energy discharge (HID) lamps emit light efficiently but only

at specific wavelengths. Monochromatic LEDs are narrow band, and the increasingly

popular white LEDs have spectral emission curves closer to that of the HVS.

The effect of the significant differences in spectral emission curves of the different
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Rayleigh-scattered light

Sunlight

Atmosphere

Figure 2.8 The generation of daylight illumination on earth.

forms of artificial illuminants is in part negated by the band-pass filtering of light into

the three primary colours in the eye and in standard digital cameras.

2.5.4 Shadow classification

Shadows are a natural and common occurrence in almost every environment, and are
caused by the occlusion of light. Shadows are typically categorised as being either
‘cast’ or ‘self’ shadows. Cast shadows are generated by objects partially or completely
occluding the illuminating light sources, whereas self-shadows describe the shading that
occurs on an object from the object itself, e.g., the side of a box on the opposite side

from the illuminating source.

Cast shadows can contain areas of umbra, or ‘hard’ shadows, and penumbra or
‘soft” shadows. The umbra is the area completely occluded from the light source. The
penumbra is the area that is partially occluded from the light source because the light
source (non-point) is only a finite distance away. In reality, all natural images will
contain shadows with both umbra and penumbra shadows, although the size of the
penumbra in an image may be very small depending upon the resolution, field-of-view

of the imaging device, and the size and distance of the light source.
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2.5.5 Shadows and imaging

The digital image capture of any non-trivial scene introduces several complexities that

can confound the shadow identification and/or removal process:

e Imaging devices have limited dynamic range and may not be able to capture

enough scene information to allow shadow algorithms to perform robustly.

e Many imaging devices automatically adjust settings and parameters so that the
device’s response to the given scene is maximized. Hence colour balance, focus,

gain etc., may be used to alter the content and quality from image to image.

e The image noise may change from image to image, as it is highly dependent upon

camera settings, parameters, temperature and scene content.
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Chapter 3

CAMERA NOISE

Digital cameras are commonly used as a data source in many image processing applica-
tions. The algorithms in these applications operate on the contrast differences between
pixels, either across an image or between images. Fundamentally, the detectable differ-
ence in contrast between one pixel and another is limited by the signal-to-noise ratio
(SNR) within the captured images. This chapter contains a detailed investigation into
camera noise, particularly for the common CCD- and CMOS-based devices. On the
path to a deeper understanding of camera noise, a comprehensive CCD noise model
has been developed, along with methods to analyse and measure camera noise from

the output images alone.

The chapter is organised as follows. Section [3.1] reviews the existing literature
on camera noise and states the resulting objectives of the camera noise research.
Section [3.2] presents a new CCD noise model, and Section [3.3] describes a process for
measuring the CCD noise components from analysis of output images alone. Section|[3.4
shows the resulting calibration of the noise model from the measurement of the noise
components, and Section [3.5|presents a new CMOS noise model. Section [3.6]describes a
process for measuring spatial, temporal, and combined noise for any set of images. The
effect of temperature on camera noise is investigated in Section and a discussion

in Section |3.8 completes the chapter.

3.1 LITERATURE REVIEW

While most individual sources of camera noise are well understood the complete noise
path from photon capture to digital image has not been extensively investigated.
Section[3.1.1]describes the individual noise sources present in images captured with digi-
tal cameras, and Section provides a review of the camera noise models presented
to date. This is followed by a discussion and a set of objectives in Sections [3.1.3] and
The terminology used for sources of image sensor noise varies and is inconsis-
tent. It depends upon the author and the approach used. Multiple terminology will be

provided where appropriate.
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3.1.1 Sources of noise in images captured with digital cameras
3.1.1.1 Offset fixed-pattern noise

Offset fixed-pattern noise (FPN) arises from changes in dark currents caused by device
mismatches and variations in pixel geometry during sensor fabrication. Dark currents
are leakage currents produced by surface generation and minority carriers thermally
generated in the sensor well (El Gamal & Eltoukhy 2005). The expected value for a
pixel’s dark current is constant for a given operating condition although it increases
with exposure time (Nakamura 2006). FPN is the pixel-to-pixel variations that occur
across an image sensor, and is alternatively referred to as Dark Signal Non-Uniformity
or DSNU (Costantini & Siisstrunk 2004, Chen et al. 2000, Kremens 2001). It increases
exponentially with temperature and can be measured in dark conditions. Furthermore,
CMOS image sensors have additional offset FPN caused by variations in pixel-level

transistor characteristics.

3.1.1.2 Photo response non-uniformity

Photo response non-uniformity (PRNU) describes the difference in pixel responses
(gain) to uniform light sources. In uniform illumination conditions, each photodetector
cell of an image sensor should exhibit the same output voltage. However, this is not
the case due to variations in pixel geometry, substrate material, and microlenses. Since
PRNU is caused by the physical properties of a sensor, it is nearly impossible to elimi-
nate and is therefore usually considered a normal characteristic of the sensor array used
in any CCD or CMOS camera. The effect of PRNU is proportional to illumination, and
is prominent under high illumination levels (El Gamal & Eltoukhy 2005). Variations
in gain between transistors in CMOS image sensors generate additional illumination-
dependent fixed-pattern noise. PRNU is sometimes referred to as gain fixed-pattern

noise.

3.1.1.3 Shot noise

Shot noise is a Poisson process that arises from random fluctuations in sampling when
discrete quanta are measured. Significant shot noise sources in an image sensor are in
the capturing of photons in the photon-detection stage, in the temporal variation of
dark currents, and in transistor semiconductors. Any electronic conductor exhibits shot
noise when charges act independently when moving, e.g., when charges cross a barrier in
a semiconductor. However, the current movement in a metallic conductor exhibits long-
range correlations and therefore far less noise than within semiconductors (Horowitz &
Hill 1989), so shot noise due to current flow through simple conductors is not considered

a significant source of noise within an image sensor.
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Dark current shot noise occurs due to leakage currents in each pixel of an image
sensor. The number of dark-current shot noise electrons doubles with every 8°C rise
in temperature (Nakamura 2006, Healey & Kondepudy 1994), and is proportional to
the pixel integration time. Photon shot noise is dependent upon the mean number of

captured photons, and therefore increases with sensor irradiance.

3.1.1.4 Readout noise

Readout or read noise is generally defined as the combination of the remaining circuitry
noise sources between the photoreceptor and the analogue-to-digital conversion (ADC)
circuitry. Readout noise varies only in the temporal domain, and includes pixel reset
noise, thermal noise sources (Johnson—Nyquist), and other minor contributors like the

frequency-dependent 1/f (flicker) noise sources and conductor shot noise.

Reset noise in CCDs is a specific type of thermal noise arising from the kT/C
fluctuations when resetting the charge sense capacitor to a reference voltage (Hynecek
1990). A commonly used method called correlated double sampling (CDS) is used to
reduce the effect of reset noise (Nakamura 2006, Dalsa 2006). CDS samples the noise
value on the sensing capacitor after reset, and subtracts it from the sample of pixel

data after charge transfer.

Thermal, or Johnson—-Nyquist noise, arises from fluctuations of an electric current
inside an electrical conductor due to the random thermal motion of the charge carriers.
It is independent of illumination and occurs regardless of any applied voltage (Horowitz

& Hill 1989, Ott 1988).
1/f or flicker noise is generated in the photo-diodes and in the low-bandwidth

analogue operation of MOS transistors due to imperfect contacts between two mate-
rials (Ott 1988, Nakamura 2006). It is pink-coloured (the power spectral density is
inversely proportional to the frequency), and the level of noise is dependent upon the
frequency of the pixel sampling rate. Flicker noise is not completely understood, and
is still a subject of analysis and debate (Tian & El Gamal 2000).

3.1.1.5 Column noise

CCD sensors usually have two column amplifiers, one for odd columns and one for even
columns (Diwa 2007). Imperfect manufacturing can result in different gains for the two

amplifiers, which may result in column-to-column variations.

In CMOS image sensors, the column parallel readout architecture is reported to be
used most commonly (Nakamura 2006). Pixels are read out in a row simultaneously and
processed in parallel allowing for faster processing (or reduction in power consumption

by using lower clock frequencies) and to reduce the number of bus lines going to each
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pixel. Variation in the performance of the parallel segments introduces offset and gain

fixed-pattern noise that cause vertical stripes to appear in the image.

3.1.1.6 Demosaicing

Many single-sensor colour cameras use colour filter arrays (CFAs) to restrict the pixel
bandwidths to a particular range in the optical spectrum. A commonly used CFA is
the Bayer matrix shown in Figure [3.]] that reduces each pixel’s bandwidth to approx-
imately 1/3 of the visible wavelengths of light. A method of colour interpolation
called demosaicing is then employed to generate full-colour values at each pixel in an
image (Gunturk, Glotzbach, Altunbasak, Schafer & Mersereau 2005). The demosaicing
process used to interpolate the colour data for each pixel can be application dependent,
with the methods used in consumer-grade digital cameras (for example general purpose
personal cameras, web cameras and cell phone cameras) to create visually pleasing
images often being different from those in industrial-grade cameras which try to recre-
ate accurate colour data. A common method used in industrial-grade cameras and in
lower cost cameras in general is the relatively simple bilinear interpolant, which has
low computational requirements. Figure illustrates bilinear-interpolation of green
pixels of the Bayer matrix. Pixel G, is calculated as the mean of the four surrounding

green pixel values:

Ga=G1 + Go + Gg + Gy. (3.1)

The bilinear interpolation of the red and blue channels is slightly more complex, due
to the relatively sparse number of red and blue samples on the quincunx grid shown
in Figure B.2pb. Pixels Ra, Ry, Rqg, and Re are interpolated from their two nearest

neighbour red pixels:

R, =Ri+Ro
Ry, =R:+ R
b 1 3 (3.2)
Rqg=R2+Ry
Re =R3z + Ry
whereas R, is interpolated as the mean of the 4 closest red pixels:
R. =Ri + Ro + R3s + Ry. (3.3)

Bilinear interpolation of the blue channel is performed using the same process as the

red channel.
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Figure 3.1 The Bayer colour filter matrix.

R,
IEIE

(a) (b)

Figure 3.2 The demosaicing of the green (a) and red (b) channel of the Bayer matrix, where
numbered pixel-subscripts represent captured pixel data, and lettered pixel-subscripts represent pixels
that require estimation.

There are many other methods for demosaicing, e.g., (Gunturk et al. 2005), but
they are often computationally expensive and designed to optimise the resulting inter-

polated image for the human vision system.

3.1.1.7 Quantization

Digital images are often quantized to 8-16 bits per colour channel for export from the
camera. Where the quantization step is very small compared to variations within the
image, the quantization process adds noise (o) to the image (Baher 1990):

o2="L (3.4)

where ¢ is the quantizing step (dimensionless).

3.1.1.8 Summary

The noise sources described above can be segmented into illumination independent,

illumination dependent, and digital processing categories. A summary is given in

Tables B.1H3.3l
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Table 3.1 The illumination-independent noise types.

Noise type Origin Manifestation Dependencies
Nyead, readout noise (thermal | CCD  Sensor | Additive tempo- | Temperature,
noise  Niperm, reset mnoise | and CCD | ral and spatial | CCD readout
Nyeset, and other minor | support ICs variance rate

contributors Notper)

SNyurk, dark-current shot | CCD sensor Additive tempo- | Temperature,

noise ral and spatial | exposure time
variance

FPN, offset fixed-pattern | CCD sensor Additive spatial | Temperature,

noise variance only exposure time

Table 3.2 The illumination-dependent noise types.

Noise type Origin Manifestation Dependencies

PRNU, photo-response non- | CCD support | Multiplicative Incident pixel

uniformity ICs spatial  variance | illumination
only

S Npp,, photon shot noise CCD sensor Additive tempo- | Incident pixel
ral and spatial | illumination
variance

3.1.2 Existing camera noise models

The literature reveals several noise models for camera sensors, both partial and full,
that attempt to explain the sources and their relevance to the output from the camera.
Very few models were experimentally validated, and no model was found that included
all sources and effects. Many of the earlier noise models are based upon analogue-
output television cameras, and were either incomplete or were unable to be validated
due to limitations in digital image capture technology. A list of each of these camera
noise models follows in chronological order. Noise types denoted with an asterisk are
described in the existing literature using different terminology than that used in this

thesis.

Flory (Flory 1985) describes the primary electronic sensor noise as a combination
of shot and amplifier noise. This relatively early paper does not describe camera noise

in detail.

Boie and Cox (Boie & Cox 1992) analyze camera noise for CCD and vidicon
cameras. Their model includes photon shot and electronic shot noise, column noise,

dark-current, and readout noise, and results suggest noise is localized and stationary.

Healey and Kondepudy (Healey & Kondepudy 1994) model camera noise for measur-
ing scene variation, and include FPN*, photon and dark-current shot noises, PRNU*,
a read-noise equivalent, and quantization noise. They produce a general estimate of

spatial and temporal noise which were measured, though the effect of quantization
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Table 3.3 The digital processing noise types.

Noise type Origin Manifestation Dependences
Np, demosaicing noise | CCD Multiplicative Demosaicing implemen-
support IC | noise amplifica- | tation, combined sensor
tion or attenua- | noise
tion
Ny, digital filter noise | CCD Multiplicative Gain parameters for
support IC | noise effect enhancement, combined
sensor noise
Ng, quantization noise | CCD Additive  noise. | Variance of image data.
support IC | Image content | Sets lower noise limit
dependent for non-trivial image
content

noise was not actually included in the process. Individual noise components were not
evaluated. Their analysis was in part restricted by the use of analogue frame-grabbers

in the 1990s, which reduced the integrity of the signals after export from the camera.

Mendoza (Mendoza 1997) developed a model to analyze intrinsic CCD noise for
application in pressure sensitive paint instrumentation systems, and includes thermal

noise, reset noise, photon shot noise, and PRNU.

El Gamal et al. (El Gamal, Fowler, Min & Liu 1998a) model FPN noise components
in CMOS image sensors. Though they do not model the whole noise path from photon

integration to image output, their work is included for completeness.

Catrysse et al. (Catrysse et al. 1999) developed a CMOS image sensor noise model
to measure colour reproduction errors and analyze the contributions of different sources
to the error. Their model includes photon and electronic shot noise, readout noise, offset

FPN, and quantization.
Tsin et al. (Tsin, Ramesh & Kanade 2001) reference and use Healey and

Kondepudy’s noise model and add a colour-balance term to it. They group several noise
sources together for experimental measurement, much like Healey and Kondepudy.
They do not validate their model, but provide the estimated results of noise from a
series of images. This is the only method that uses an iterative technique to estimate

parameters of their model.

Tian et al. (Tian, Fowler & Gamal 2001) analyze temporal noise only in CMOS
photodiode APS sensors, and model reset noise as dark current, photon and electronic

shot noise in the reset transistor.

Farrell et al. (Farrell, Xiao, Catrysse & Wandell 2004) describe a digital camera
simulation tool which includes optics, sensor, and processor modules. The sensor
module models sources of noise including readout noise, dark-current, offset FPN*,

PRNU, and photon shot noise.

Costantini and Siisstrunk (Costantini & Siisstrunk 2004) developed an image noise
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model for simulations that include readout noise, photon and electronic shot noise,
FPN* PRNU, and dark-current shot noise.

Finally, El Gamal and Eltoukhy (El Gamal & Eltoukhy 2005) describe sensor noise
at the end of charge integration as the sum of electronic shot noise, reset noise, readout
noise, offset FPN, and PRNU*. They do not provide a model, but are included for

completeness.

The noise models described above are summarised in Table 3.4
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3.1.3 Discussion

None of the models described in Table [3.4]incorporates all of the noise sources described
in Section [3.1.1] Further, no models were validated. Several of the existing models take
some measurement data and then apply their parameters as a ‘best fit’, though usually
with grouped noise types (e.g., all temporal noise, or all spatial noise). In these cases
either high-end professional cameras (Costantini & Siisstrunk 2004, Tsin et al. 2001)

or custom-fabricated sensors (Tian et al. 2001) were used.

The models referenced in Table cover both CCD and CMOS technologies that
have been developed over the past 20 years, and the more comprehensive papers discuss
the prominent noise sources at various illumination levels and arrive at similar conclu-
sions (El Gamal & Eltoukhy 2005, Flory 1985, Mendoza 1997): low-illumination level
noise is dominated by read noise and dark current; medium-illumination level noise
is dominated by photon and electronic shot noise; and high-illumination level noise is
dominated by PRNU.

3.1.4 Objectives

The goal of this section of work is to provide a greater understanding of image noise in
standard commercially available cameras. There are no existing models that include
all of the noise sources present in digital cameras. Consequently, analysis of individual
noise components is not possible without measurement of noise sources in the electronic
circuitry, and methods for measuring individual or combined noise components from the
output images alone cannot be developed until complete noise models, from photon-to

digital image, have been defined.

The objectives for noise-related camera research are:

e To develop comprehensive noise models for the commonly available CCD and
CMOS cameras.

e To develop a non-invasive method to validate the model(s), if possible, using only

the output images from the cameras.

¢ To develop methods for measuring combined total sources of noise for any camera,

in a form suitable for use in image processing applications.

Further, many sources of camera noise are dependent upon temperature, and given
that successful methods are developed to measure combined sources of noise, a further

objective is:

e To investigate the effect of temperature on camera noise.
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3.2 CCD NOISE MODEL

A new model based on the physical characteristics in the acquisition and sampling of
photons through the image capture process in a digital CCD camera is developed by
integrating the effect of each noise source as photons pass through the CCD camera,
from the CFA through to digital output. Although blooming and smearing in CCDs are
destructive to images, they are artefacts of charge overflow and are avoidable. Hence

they are not considered as part of this noise model.

After passing through the sensor optics, the photons are usually filtered through
the CFA to allow colour information to be captured by the photodetectors. The photon
to electron conversion is linear (Nakamura 2006), so after passing through the CFA,

the captured image I becomes:

ICFA,k:,t:IX CFAk, k}:l,...,n (3.5)

where CF Ay, is the kth colour filter on the image sensor, and t is time.

The photons captured in the image Icpa are subject to variations in gain as a
result of PRNU. The noisy image, Iprnv, after incorporating the effect of PRNU (and

dropping the subscript k& from hereon for clarity) for each colour channel becomes:

Ippnu = Icra + Iorpa x PRNU. (3.6)

The capture of photons is a Poisson process, with noise variance equalling the mean
sample photon count. The image captured after photon conversion, I, in the wells of

the photodetectors includes photon shot noise SNpy,:

Ipn = Iprnu + SNpn(IcFa)- (3.7)

In addition to the signal I, dark currents in the well sensor generate additive

electrons that vary from pixel-to-pixel. The noisy image captured, I[rpy, after inclusion
of FPN is:

Ippy = Ipn + FPN. (3.8)

The dark currents that generate FPN themselves also contain shot-noise variations
in the number of electrons generated. The noisy image capture model, I,,k, after the

addition of dark current shot noise, SNy, is:

Idark = IFPN + SNdm‘k- (39)

The electrons stored in the well of each pixel are then read out and amplified. The
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noisy image model, I,.qq , after the addition of read noise, N;cqq (reset noise, thermal
noises, and other minor contributors), is:
Iread = Liark + Nread- (310)
Variations in column amplifiers can result in different gains, adding column noise
Ne:
IN = Ireqq ¥ NC7 (311)

where Iy is the noisy image after incorporation of column noise. Following read out of
pixel data the camera may demosaic the image and apply filtering. The demosaicing
effect, Np, of the the commonly-used bilinear method is proportional to image content

and multiplies the noise as follows:

ID:INXND, (312)

where Ip is the noisy image captured after demosaicing.

The effects of digital modification such as image gain and colour balance multiply
image content and therefore image noiseﬂ The equation for noisy image capture, I,

after digital filtering is:

Itiyy = Ip X Nyyy. (3.13)

Finally, the image is quantized for export out of the system. For a quantization

step of ¢ = 1, Equation [3.4] becomes

O quantization — 0.29. (314)

The result is an additive noise source dependent upon image content, Ng, that completes

the noisy image capture model, I.4):

Leap = Tgie + No(L pire)- (3.15)

Unwrapping each of the noise source stages gives the full equation for a noisy image:

Icap = (ICFA + IC’FA x PRNU + SNph (ICFA) + FPN + SNdark + Nread)

(3.16)
X Nc x Np x Ny + N (Lriae)

!The common brightness or black level adjustment simply alters the DC offset of the image and
does not affect its noise detail.
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for each colour channel defined by the CFA. A diagram of the model is given in

Figure [3.3]

Sensor
irradiance

Figure 3.3 The noise model for image capture in a standard CCD digital camera.

3.3 MEASUREMENT OF CCD CAMERA NOISE

The second objective for Part II is to develop methods of validation for the defined noise
models. This section attempts to validate the CCD noise model defined in Section |3.2
by use of measurements made on output images from a camera. The measurement
of image noise requires a series of static images containing areas of constant detail.
The Gretag Macbeth Color Checker (GMB chart), shown in Figure provides a
useful series of colour patches suitable for noise measurement. The lower portion of the
chart consists of grey-scale panels that provide a range of reflectances (3.1 to 90.0 CIE
Y values) that can be used for analysis of both colour and monochromatic cameras.

Sample sets of images were captured for noise measurement analysis.

3.3.1 Sample requirements

Standard statistical methods can determine an appropriate number of samples
required to achieve a desired confidence interval and error for the observed sample
mean (Bhattacharyya & Johnson 1977).

For a population with an unknown mean g and unknown standard deviation o,
the confidence interval for the population mean, based on a random sample of size n,
is:

X +tx (3.17)

NG
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qmb ColorChecker® Color Rendition Chart

Figure 3.4 The Gretag Macbeth colour chart.

where X is the mean of the sample population, s is the estimated standard deviation
derived from the sample population, and ¢ is the (1 — C')/2 critical value for the ¢-
distribution with n — 1 degrees of freedom with C' as the desired confidence interval.

A standard confidence interval of 95% is used for this research. It was observed that
s is rarely greater than five in most digital video images (with cameras in ‘auto’ mode,
data values 0-255) in canonical lighting conditions. A suitable measurement or error
is the quantization step in the digital data, which is a value of one. From expression
above, this yields the following upper bound for the error in the mean:

5
1>tx ——. 3.18
>t x NG (3.18)

The t-distribution is a function of n and C. Using standard t-distribution tables
and choosing n = 100 gives a value of 1.962. Substituting these values into the right
hand side of gives a value of 0.981 and inequality is satisfied. Note that
this holds only for estimated standard deviations less than or equal to 5. Therefore an
appropriate sample size to achieve a 95% confidence interval for noise measurement is

100 samples.

3.3.2 Measurement process

Experiments were conducted to validate the CCD noise model using a Unibrain Fire-
400 colour camera (Table , defocused to reduce the effect of high-frequency scene

content in the observed image that could affect the noise analysis. All digital camera
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effects such as colour balance and gamma were disabled in the experiments and images

were transferred to a computer in the RGB format, so that Ny = 1.

Video images of a GMB chart were taken with controlled fluorescent and incandes-
cent lighting and the chart was positioned to fill the image frame. The experimental
setup is shown in Figure [3.5] where the illumination sources were positioned above the
camera and directed towards the chart such that the image was free from direct spec-
ular reflection. Simulated images were generated for the analysis of quantization and
demosaicing effects (discussed ahead in Section [3.3.3)).

Table 3.5 Unibrain Fire i400 camera details.

Parameter Value

Sensor type Sony Wfine ICX098BQ 1/4” colour
CCD (Bayer colour filter)

Native resolution CCD 640 x 480

Video mode 24-bit RGB (8-bits per colour chan-
nel)

Interface IEEE-1394a (Firewire)

Operating temperature | —10°C to 50°C

Stuck or ’hot’ pixels were identified by taking long exposure images, increasing
gain, and detecting saturated pixel values. The pixel data at hot-pixel locations were

removed from any subsequent processing.

An area of 50 x 50 pixels was extracted from the centre of the image of each
GMB grey-scale panel for analysis. An example panel extraction image is shown in
Figure [3.6] and the resulting extracted panels are shown in Figure Experiments
were performed at an ambient temperature of approximately 22°C. The CCD temper-
ature was measured using a thermistor placed on the CCD sensor surface, and was
found to be consistently 7°C above the ambient temperature.

Methods for analysis of temporal noise, spatial noise, and combined noise were
formulated for each row and column of image data. The standard deviation (o) was
chosen as the measure of image noise as it can be easily related to the magnitude of
pixel variations. The mean value of each panel, u,, taken as the mean of the extracted
50 x 50 panel, was used as a measure of I. The following describes the method used

to calculate each noise value:

(i) Temporal noise, p(oy):
1. o of temporal data, o, for each pixel was calculated over the set of 100 images.

2. oy for all pixels were then averaged, giving a value p(o;) for the mean temporal

variation for the panel.

(ii) Spatial (fixed-pattern) noise, o (u):
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Figure 3.5 The experimental setup for capture of GMB chart images. The fluorescent lights are
behind the white panel at the top of the image.

1. The mean of the temporal data, p;, for each pixel was calculated over the set of

100 images.

2. A second-order polynomial fit for each column of y; was calculated and subtracted
from the data to remove optical effects such as vignetting and 1/R? illumination

fall-off expected from the use of a discrete illumination source.
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Figure 3.6 An image of a GMB chart with calibration lines overlaid showing the approximate bound-
aries of each panel (outer squares) and the area used for panel extraction (inner squares). The magenta
pluses on the chart are manually selected centre-points for geometric calibration.
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Figure 3.7 The extracted centre panels of the GMB chart shown in Figure [3.6]
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3. The residuals after subtraction of the polynomial-fitted data were concatenated
and o calculated to determine a value of o () for the mean spatial variation for

the panel.
(iii) Total image noise for each row and column, u(o;), p(oe):

1. A second-order polynomial fit was calculated for each data row and column of
an image of a GMB panel, and the fitted line was subtracted from the data to

remove optical effects.

2. The residuals after subtraction of each fitted line were concatenated and o of
the concatenated data calculated to give row and column noise values o, and o,

respectively.

3. 0, and o, for the panel were averaged over 100 test images to derive the final

noise figures p(o,) and p(o.) for the panel for each image set.

3.3.3 Quantization noise

From Equation [3.14] any data with significant variation will exhibit quantization noise
up to o = 0.29. A tool was created using MATLAB that generated images of the GMB
chart that included point-source illumination. Images generated using the tool allowed
experiments to be conducted to measure the effect of quantization using simulated
images both with and without significant variations in the form of lighting gradients

across the image. Example images are shown in Figure [3.8

Figure|3.9|shows the results of quantization error from analysis of simulated images
with increasing additive Gaussian noise in dark conditions, and Figure [3.10] shows the
resultant error due to quantization from the actual noise value. The methods for
measuring spatial and temporal image noise described in Section were used (100
images generated for each batch in steps of o = 0.05). As there is no significant
variation in the image data (e.g., no lighting gradient, or visible scene data) there is
an initial dip in the error curves caused by the rounding of noise to zero. Both spatial
and temporal curve errors then peak at o,44e.q = 0.5. For ¢ > 0.5 the temporal curve
approaches zero and the spatial curve continues a downward trend below zero due to

the polynomial fitting to noise.

Figures & [B:12] shows the same analysis as for Figures [3.9) & [3.10] but with the
addition of simulated point-source lighting. This increases the dynamic range of the
data by creating a gradient across the measured panel, reducing the significance of the
quantization step for low additive noise values. This lighting gradient clearly affects
measured noise values as the non-trivial image data now exhibit a minimum spatial

noise level of o = 0.29, as calculated in Equation Temporal noise measurement is
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(b)

Figure 3.8 Synthetic image of the GMB chart for use in analysis of quantization noise with (a) no
lighting gradient; (b) point-source lighting.

also affected with continual over-estimation of the real noise level. Both curves exhibit
similar responses to those in Figures[3.9] & for added noise values o > 0.5.

For each experiment utilizing quantization noise, Ng, the appropriate quantization
noise curve illustrated in Figures [3.10] and [3.12] was used to estimate the true noise by

subtracting the error from the measured value.

3.3.4 Demosaicing

The effect of demosaicing on image noise was analyzed by measuring noise levels on
simulated sets of GMB color chart images. The Bayer array measures the green image
on a quincunx grid and the red and blue images on a rectangular grid. Half of the green
pixels and three quarters of the red and blue pixels are interpolated. There are many

methods for demosaicing the Bayer array (Ramanath, Snyder & Bilbro 2002) with the
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Figure 3.9 Measured spatial and temporal quantization noise for noisy, simulated images without a

lighting source.
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Figure 3.10 Measured error due to quantization for noisy, simulated images without a lighting source.
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Figure 3.12 Measured error due to quantization for noisy, simulated images with point-source light-

ing.
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bilinear method (BL) being commonly used due to its simplicity. For BL demosaicing
the interpolated green pixels are derived from four surrounding measured green pixels.
Assuming that individual pixel noise values are independent, the resultant noise in the

interpolated green pixel is given by:

roern = (72 4 (7)o (T) (T 3.19)

and since o for each of pixels G1—Gy is identical:

oG
Ointerp,G = 7 (320)
The effect of BL. demosaicing on the entire green channel noise (50% interpolated)

is given by:

1
Odemosaic,G = 5 (UG + 0-7G) = 0.750¢. (321)

In each BL demosaiced image one quarter of red and blue pixels are interpolated
from four surrounding measured pixels, and half of the red and blue pixels are interpo-
lated from two surrounding pixels, depending on their location within the Bayer matrix
(see Section [3.1.1.6]). For the entire red channel:

1 O’R
Odemosaic,R = Z (UR =+ \/§O-R =+ ?) = 0.730R. (322)

Similarly, for the entire blue channel:

Odemosaic,B — 0.730p. (323)

To verify the above, a series of noisy simulated images was generated with added
Gaussian noise levels from ¢ = 0 to 5, a range empirically determined by observation of
noise levels across several cameras. Figure shows measured blue-channel spatial-
noise characteristics on simulated, noisy, GMB images. The removal of quantization
effects result in approximately linear noise response, and measurement of the gradients

of the demosaiced noise curves provides the following BL demosaicing values:

Udemosaic,R(Spatial) =0.7lop
Udemosaic,G(Spatial) =0.7T0¢ (324)

Udemosaic,B(Spatial) =0.7l0p.

Figure shows the analysis of temporal noise on the blue channel of simulated,
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Figure 3.13 Measurement of the effects of bilinear demosaicing on spatial noise analysis on simulated
noisy images (blue channel).

noisy, GMB images, and as with the spatial analysis the removal of quantization effects
provides an approximately linear noise response. The results for temporal noise analysis

give the following:

Udemosaic,R(temPOTal) =0.730r
Odemosaic, (temporal) = 0.750¢ (3.25)

Udemosaic,B(temPOTal) = 0.730p.

The temporal results match the values given in Equations|3.21H3.23} with measured

spatial results varying by no more than 0.02 from the theoretical values.

3.3.5 Column noise

Noise for the i400 was measured by column and by row to observe any variances in
column amplifier gain. Figure [3.15 shows virtually identical responses of noise whether

measured by column or row, giving No = 1, in the i400 camera.

3.3.6 Offset FPN

FPN was measured by analyzing a set of images taken in dark conditions with no
illumination (n.i.). Equation becomes:

an = (FPN+ SNda’/‘k +Nread) X NC S ND + NQ(Ifth) (326)



3.3 MEASUREMENT OF CCD CAMERA NOISE 41

2

I
[e]
Q.
€
L 15¢
=
Q
B . Original measured
2 1f P 1| = — — Demosaiced measured
= e Demosaiced calculated
| p

32 051 R

g .-/

E o
)
3 o z

0 L L L
0 0.5 1 1.5 2
Cadded

Figure 3.14 Measurement of the effects of bilinear demosaicing on temporal noise analysis on simu-
lated noisy images (blue channel).

The temporal averaging of images effectively removes the terms SNyt and Nyeqq

giving:

Npiavg = FPN x No x Np + No(Lfi). (3.27)

Subtracting Ng(Ify), the quantization noise from rounding of data, derived in
Section from Equation and dividing by Np and N¢ (1 for the i400) leaves
FPN, shown in Figure [3.16] The measured FPN noise for the i400 camera was taken
as being the mean measured value of (o (u:) — Ng (Ifi1:)) /Np for each channel:

FPNp = 0.300
FPN¢ = 0.123 (3.28)
FPNp = 0.247.

3.3.7 Dark current shot noise and readout noise

SNyqri, 18 generated within the photodetector and is dependent upon the leakage
photocurrent. The value of dark-current shot noise voltage can be sampled at the end of
photocurrent integration, where the mean square value of noise voltage is proportional
to the integration (exposure) time (Tian et al. 2001).

Equation [3.26] gives the measurable noise component given no illumination. Taking

the temporal variations over the set of images removes FPN, giving combined dark-shot
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Figure 3.15 Graph of row noise vs column noise for the 1400 camera.

0.4

—6— Red
{ —%&— Green
—+&— Blue

(o(n temp )-NQ (smooth,spatial))/N b

0 5 10 15 20 25 30
Exposure (ms)

Figure 3.16 Measured fixed-pattern noise for the i400 camera.
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and read noise:

Nn.i.,t = (SNdark + Nread) X NC X ND + NQ(If’th) (329)

where Ny, ; ; is the temporal noise without illumination. Subtracting Ng(If;;) and
dividing by Np and N¢ gives SNgygrk + Nyead, as shown in Figure As SNygri is
a function of exposure, a value of N,..,q can be determined by extrapolation to zero
of the temporal noise curve. Like FPN, the shape of each SNy 1 + Nyeaq noise curve
is approximately flat showing no apparent trend of increasing noise with exposure,
suggesting that SNy, is swamped by readout noise, effectively removing SNy, from
the noise model for the 1400 camera. With Ng = 1 for the camera, the measured Nyeqq

was taken as the mean measured value of (1 (0s) — Ng (Itiit)) /Np for each channel:

Nread,R = 1.61
Nread,G =0.613 (330)
Nyeaas = 1.24.
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Figure 3.17 Measured dark-current shot-noise and read noise for the i400 camera.

3.3.8 Photon shot noise

For a given illumination, measurement of temporal values only in Equation |3.16|removes

I along with spatial noise terms FPN and PRNU giving;:

Nt = (SNph(I) =+ SNdark =+ Nread) X NC X ND + NQ(Ifilt)- (331)
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Photon shot noise, SNy, can be measured by subtracting Ng(f;), dividing by
Np and N¢, then subtracting the previously measured SNy, (zero for the measured
camera) and N,.qq. Figure shows photon shot-noise for images captured at maxi-
mum exposure (32.68 ms) with different illumination intensities for the 1400 camera.
A trend can be seen in each of the colour channels which has noise consistent with
o x /i, the relationship between noise and sample mean for the Poisson sampling of
discrete quanta. A square-root curve was fitted for each colour giving the equations for

measured SNyp:

SNph,R = 0.212, /Ip, R + 0.468
SNy = 0.515,/fipG + 0.009
SNpp,p = 0.215,/p, g + 0.040

(3.32)

O Red
A Green
O Blue

(u(cl)—NQ(smooth temporal))/ND—Nread(32.68 ms)

0 50 100 150

Figure 3.18 Measured photon shot-noise for the 1400 camera.

3.3.9 PRNU

Measurement of spatial variations removes I and any temporal terms from Equation

m giving the value for spatial noise without filtering (s,n.f.):

Nyps = (I x PRNU + FPN) x Ne x Np + No(Ipi)- (3.33)

The amplitude of PRNU for a particular irradiance can be calculated by measuring

along the columns of pixel data to remove N¢, subtracting Ng (/s ), dividing by Np,
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and subtracting FPN. Figure shows the measured PRNU for the i400 camera,
which increases approximately linearly with pixel value. PRNU noise for the sensor is
defined as the best-fit line for PRNU noise values:

PRNUR = 0.0104pp,z + 0.0746
PRNUg = 0.0063p,c; + 0.122 (3.34)
PRNUp = 0.0128p, + 0.0235.

LN
N A O
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O Blue

(o(ut )—NQ(smooth, spatial))/ND—FPN
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Figure 3.19 Measured photo-response non-uniformity for the 1400 camera.

3.4 CCD NOISE MODEL CALIBRATION

The camera noise model in Equation was calibrated from the measured data
described in Section [3.3] where sensor irradiance becomes a function of measured pixel
value. Figure shows measured total image noise, and noise curves generated from
the calibrated noise model. The values of total image noise u(o,) and p(o.) are highly
correlated, hence only the row analysis is shown. The measured noise data supports
the validity of the model in Equation Maximum values for p, are restricted to
below 150 as this was the maximum value the i400 camera would output on the green

channel when all digital effects were disabled or set to neutral.

Figure shows the relative magnitudes of the individually measured noise
components on the blue channel for the 400 camera. Ng represents the maximum
potential contribution of quantization noise to overall noise and is dependent only upon
final image content. Bilinear-interpolative demosaicing results in a scaling factor and is

not included in the graph, and SNy, is insignificant and is not shown as a contributor
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to noise in the i400 camera. Image noise for this camera is clearly dominated by Nyeqd,
PRNU, and SNp,.

3
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2 O  Red measured
A Green measured
5 15 O Blue measured
= Red modelled
Green modelled
1 — — — Blue modelled
0.5
0 ‘ ‘
0 50 100

Figure 3.20 Measured 1400 camera noise and the predicted noise curve from the calibrated noise
model.
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Pixel magnitude

Figure 3.21 The relative magnitudes of noise components for the blue channel of the i400 CCD
camera at 22°C environmental temperature. Ng denotes the maximum potential quantization noise
value, and S Ngqrk iS zero.

3.5 CMOS NOISE MODEL

The design of a CMOS image sensor, and in particular the layout and number of
transistor elements surrounding each pixel, are manufacturer dependent and generally
unknown. However, a generalised noise model can be developed that extends the CCD

model by incorporating the expected additional CMOS noise sources. In effect, each
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transistor around a CMOS pixel will have its own characteristics in terms of an offset
and gain. The extra noise sources of active gain FPN (AFPNgyiy), active offset FPN
(AFPN,yy5), column gain FPN (CFPNyqp), and column offset FPN (CFPN,f¢) can
therefore be defined. These sources can be incorporated into the CCD noise model

after Nyeqdq, as shown in Figure [3.22

| AFPN,,, |

Sensor
irradiance
[ No | [ N | [ N, ||[ CFPN, | [ CFPN,, | | AFPN,, |

Noisy
G0

Figure 3.22 The noise model for image capture in a standard CMOS digital-video camera.

Active-pixel noise sources (CMOS only)

From Figure the full equation for a noisy CMOS image is therefore:

Ieapcvios = ((Icra + Ipca X PRNU + SNy (Icpa) + FPN + SNyark + Nyead)
X Np X Npgi + No(Ipay).
(3.35)

Due to the added complexity of the CMOS model when compared to the CCD
model, it is difficult to differentiate between the individual noise components from
analysis of output images alone. Hence the general CMOS noise model was not exper-

imentally validated.

3.6 MEASUREMENT OF COMBINED NOISE

The analysis of modelled image noise becomes more difficult with increasing camera
complexity, so a method of noise analysis was developed that does not require a specific

model and is dependent only upon output images from a camera.

3.6.1 Measurement of image noise

The sources of noise can be segmented into three general categories for the purpose of

noise measurement: spatial noise, temporal noise, and total image noise (see Tables
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for the list of noise types). Measurement of spatial noise is calculated along the

rows of an image to ensure that any column noise is included.

3.6.1.1 Spatial noise

Spatial noise is exhibited as variations between the pixels in an image given a constant
illumination across the sensor. Knowledge of spatial noise is useful in applications
where images are averaged prior to analysis (e.g., low-light applications where multiple
images may be captured to increase effective exposure time). Images of spatial noise
can be achieved by averaging a series of images containing smooth areas of constant
reflectance (e.g., the panels of a colour chart) and removing the temporal variations.
The generation of an image of spatial noise, m , is given by:
_ ZZ:l Pk(za])

image(i, j) = =rF———"—"= (3.36)
n

where n is the number of images and Py(7,j) is the pixel value for row i, column j
in the k" image. A second-order polynomial can be fitted to each row of W
to describe any optical effects such as shadowing or vignetting. The residuals after
subtraction of the polynomial-fitted data can be concatenated for each row and the

standard deviation (o) calculated, giving the value of the spatial noise ospatiai-

3.6.1.2 Temporal noise

Temporal noise varies between images and is dependent on illumination. Knowledge
of temporal noise is useful in applications where images are compared or subtracted
before analysis (e.g., in a subtraction-based motion detection algorithm). Temporal
noise can be measured by taking the average value of the variations exhibited by a
pixel over a series of images of the same scene. The equation for temporal noise o¢epmp

for a given sensor irradiance is therefore:

53 (i)
i=1j5=1

Utemp = T (337)

where z and y are the number of rows and columns respectively and o(7,j) is the

standard deviation of the pixel value at (7, j) over n images.

3.6.1.3 Combined noise

The combined noise in an image is the combined effect of all spatial and temporal noise
present in an image. A measure of the combined noise is useful in applications where a

single image is used for processing (e.g., in an edge detection algorithm). To measure
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total image noise, the process of fitting a second-order polynomial to each of the n
images is applied in the same fashion as the calculation of spatial image noise opqtial
in image(i,j). A series of standard deviations for each row of the k" image of the n

image set is calculated, giving 0. The average of g over all n images gives oyotal-

3.6.2 Experimental results for a CCD camera

Figure [3.23) illustrates the spatial, temporal, and combined noise measurements for
the 1400 CCD camera (specifications in Table . Experiments found that the green
channel of the CCD camera was limited to values below approximately 150 when all
digital effects were disabled, hence the illumination was set to ensure the green channel

measurements were below this value.

3.6.3 Experimental results for a CMOS camera

Figure illustrates the spatial, temporal, and combined noise measurement for the
uEye CMOS camera (Table , with each of the three colour channels showing similar

noise responses.

Table 3.6 uEYE UI1210-C camera details.

Parameter Value

Sensor type 1/2” Zoll colour CMOS (Bayer
colour filter)

Native resolution CCD 640 x 480

Video mode 24-bit RGB (8-bits per colour chan-
nel)

Interface USB 2.0

Operating temperature | 0°C to 50°C

3.7 THE EFFECT OF TEMPERATURE

One of the major contributors to image noise is heat within the sensor, where varia-
tions in thermally generated currents results in a fluctuation of measured pixel values.
To help better understand the effect that temperature has on image noise, the noise

characteristics of 4 different industrial cameras were measured from 21°C to 55°C.

The effect of temperature can be significant, with some noise sources (such as dark
current shot noise) doubling with every 8°C rise in temperature (Nakamura 2006). If
image noise is to be appropriately managed within an image-processing application,
then the effect of temperature on spatial and/or temporal camera noise must be clearly

understood.
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3.7.1 Experimental setup

The total spatial and temporal noise characteristics for 4 different industrial cameras
(specifications given in Tables & were measured using the method
described in Section where 100 images were captured across a range of envi-
ronmental temperatures for each camera. The resulting analysis returns the standard
deviation of temporal noise o¢epmy, and spatial noise ogpqriq- The 4 cameras were placed
in a sealed, temperature-controlled thermal chamber, as shown in Figure [3.25] Each
camera lens aperture was covered to prevent any light entering the sensor. The cameras
were powered on and the temperature of the chamber was allowed 10 minutes to settle
between experiments. Temperature measurements using thermistors placed inside the
cameras demonstrated that this was ample time for the image sensors to reach thermal
equilibrium. Multiple computers then captured a series of images at approximately the
same time for each of the four cameras from 21.1°C to 55.2°C in steps of approximately
1—2°C.

Table 3.7 AVT Guppy F044C camera details.

Parameter Value

Sensor type Sony ICX419AKL 1/2” colour
CCD, (CMYG colour filter)

Native resolution 752 x 580

Video mode RAW 8-bits (binned pairs)

Interface IEEE-1394a (Firewire)

Operating temperature | 5°C to 45°C

Table 3.8 AVT Guppy FO80C camera details.

Parameter Value

Sensor type Sony ICX204AK 1/3” colour CCD
(Bayer colour filter)

Native resolution 1032 x 778

Video mode RAW 8-bits

Interface IEEE-1394a (Firewire)

Operating temperature | 5°C to 45°C

All cameras had filtering disabled (e.g., gamma turned off, neutral colour balance)
with all options set to manual mode. Exposure time was set to 33+1 ms for all cameras,

and all images were captured in an uncompressed format.

3.7.2 Results

Patches of 500 x 150 pixels that were identified free from ‘hot pixels’ were extracted

from the captured images for subsequent noise analysis. Values of oiemp and ogpatial
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Figure 3.25 The temperature-controlled thermal chamber with the 4 cameras under test.

were calculated, and the results are shown in Figures Each camera was
pushed beyond its specified operational temperature range, which is indicated by the
dashed lines in the figures. The spatial noise results demonstrate reasonable consistency
with an expected increase in noise with temperature for the F044C (CCD), F080C
(CCD) and 1210-C (CMOS) cameras, at least up to their maximum rated operating
temperatures. The CMOS camera results exhibit a classical exponential increase, up to
and beyond the maximum operating temperature, although its overall spatial noise is
up to an order of magnitude higher than that of the CCD cameras. The i400’s spatial

noise response demonstrates an unexplained bump between 37°C and 50°C.

Temporal noise results demonstrate a higher consistency of values across the
cameras, though more unexplained trends are present. The F044C’s temporal noise
decreases with temperature, while the FO80C’s noise increases semi-exponentially up
to the maximum rated temperature before exhibiting substantial amounts of oscilla-
tion. The 1210-C has a slight exponential trend with increasing temperature while
the 1400 demonstrates very low temporal noise for the red channel, with very high

relative temporal noise for the blue channel. Again, from 37°C and upwards the 1400



3.8 SUMMARY 54

demonstrates an unexpected bump, followed by a sudden jump when operating above

its recommended operating temperature.

3.7.3 Discussion

Each camera measured has a unique noise response to temperature, with only the
uEye 1210-C CMOS camera (Figure demonstrating what could be described as a
‘classical’ increase in noise with temperature. It is likely that the electronic circuitry
required for charge transfer and readout of CCD image sensors contributes significantly
to the noise characteristics displayed by them. The FO080C and i400 CCD cameras
demonstrated unexpected behaviour when operated in an environment beyond their
rated temperature. Further, all CCD cameras exhibited lower temporal noise responses
at 51°C than at 41°C. The 1400 shows a significant jump in both thermal and spatial
noise when in a 55°C environment — just 5°C higher than its rated maximum operating
temperature.

These experiments highlight that noise can vary significantly between different
models of camera, with some cameras demonstrating unpredictable noise characteristics

when running beyond their maximum rated temperature.

3.8 SUMMARY

This chapter has provided a comprehensive study of camera noise in several standard
industrial digital cameras. Noise sources and existing noise models have been reviewed,
and new noise models for CCD and CMOS cameras derived. Methods to analyse the
individual components of CCD noise from output images alone were developed, along
with general methods of measuring spatial and temporal noise in images. The effects

of temperature on image noise were measured using four different cameras.

A technique for measuring noise in a CCD camera has been developed that includes
noise sources from the CCD and supporting ICs, colour processing, and quantization.
The noise components were grouped into measurable quantities and measured on a
commercially available CCD camera. The derived CCD noise model was then calibrated
with the measured data, generating a noise response which was dependent only upon
pixel value. The modelled response compares favorably with the measured total image
noise. The CMOS model was not validated experimentally due to the complexity of
the model, which makes it difficult to ‘unwrap’ each noise layer by analysis of output
images alone.

The camera temperature has a significant effect on the quantity and quality of
base-line noise in a camera. Further, significant variances in the noise characteristics

were found when four different cameras were analysed.
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Figure 3.26 The effect of temperature on 1400 CCD camera noise: (a) spatial, (b) temporal.
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Figure 3.27 The effect of temperature on F044C CCD camera noise: (a) spatial, (b) temporal.
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Figure 3.28 The effect of temperature on FO80C CCD camera noise: (a) spatial, (b) temporal.
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Figure 3.29 The effect of temperature on 1210C CMOS camera noise: (a) spatial, (b) temporal.
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The noise information gathered by the methods developed in this chapter can be
used in image processing applications to tune an algorithm to a particular image or
images from a digital video camera. For example an edge-detection algorithm could
benefit from knowledge of the spatial noise content, or an object tracking function could
utilize knowledge of the temporal noise to improve its reliability. A natural applica-
tion for this technique is in the design of noise removal filters for images and video,
where a priori knowledge of noise content could increase accuracy and robustness.
It is important to ensure that any noise analysis that is used for the purpose of an
image processing application occurs at the camera temperature that the camera will
be operating in. The results of this work have shown considerable differences in noise

characteristics between the CCD and CMOS cameras analysed.
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Scene-change detection is commonly used to detect moving objects in image
sequences. However, the process of detecting scene change suffers from the effect of cast
shadows on the background. In all natural environments and almost every artificially
illuminated environment there will be shadows cast by any non-trivial object, changing
the quality and quantity of light being integrated and measured by a camera. The shad-
ows will darken the apparent surface of other objects within the scene to various levels,
depending upon the strength and direction of the illumination sources. These reduc-
tions in surface intensities can appear as objects to a scene-change detection algorithm,

causing errors in the object detection and identification process.

The use of user-defined thresholds in the scene-change detection process allows the
segmentation between shadows and objects to be empirically set to tune an algorithm’s
performance. However, the values of these thresholds usually relate to an esoteric inter-
nal parameter that have no direct relation to anything meaningful, and are dependent
upon what objects are present in the scene and how important the false-positive or

true-negative detection of objects is.

The goal for Part [[T]] of the thesis is to research a robust method for shadow-
free scene-change detection that is ideally free from any arbitrary or empirical thresh-
olds, and can potentially lend itself to automated machine-vision applications. Chap-
ter [] defines a new method of scene-change detection that is based on colour-change
only, whilst Chapter [5] integrates the fundamental concept of image noise into the new

method, allowing for the development of a novel algorithm for scene-change detection.

Chapter 4

COLOUR-BASED SCENE-CHANGE DETECTION

Automated scene surveillance and monitoring is an important tool for both data analy-
sis and security applications. Camera-based solutions are attractive due to their relative
low cost and maintenance, and potential for minimal operator interaction during oper-
ation. However, robust image analysis techniques are difficult to develop as not only
is the image-capture process imperfect but object segmentation of real-world images
is a challenging problem. Many camera-based applications attempt to interpret pixel
information so that decisions can be made from the images. However, many important
tasks such as object identification and tracking suffer from the detrimental effects of

shadowing. Shadow and scene-change detection can play a vital role in helping these
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tasks perform robustly and accurately, by identifying or removing the shadowed areas

of an image.

In images, shadows appear to extend the shape of objects or merge multiple objects
together, and many shadow detection or removal algorithms use edges to classify scene
changes as either objects or shadows. The draw-back with these methods is that they
rely on distinct boundary conditions, which limits the type of shadow they are trying
to detect: methods that look for shadow gradients on soft shadows will be unable to
locate the sharp edges of hard shadows, and vice versa. Further, arbitrary or empirical
thresholds are almost invariably required to ensure a good level of segmentation perfor-
mance. This can severely limit the applicability of an algorithm, as a threshold set for

one scenario may not be suitable for another without experienced user-intervention.

This chapter describes the development of a method for scene-change detection
that can operate in both indoor and outdoor environments by classifying pixel change
as either due to genuine scene change or as a new shadow cast by an object onto the

scene.

4.1 OBJECTIVES

The objectives for Part [[I]] are to investigate techniques for scene-change detection with

the intention of deriving a more robust method that:

e is independent of object shape;

e is independent of additional shadows cast upon a scene;
e operates in both indoor and outdoor environments;

e does not require manual interaction;

e is free from arbitrary internal thresholds;

e does not require significant training.

4.2 LITERATURE REVIEW

Object tracking and identification in outdoor scenes can be difficult when cast shadows
from an object fall on to the surrounding terrain. The shadows can grossly extend the
apparent shape of the object due to the reduction in illumination intensity, and objects
in close proximity can appear joined. A large proportion of the literature on scene-
change detection is focused upon the detection or removal of shadows, highlighting
the significance of the problem. Hence this literature review covers both the areas of
scene-change and shadow detection. It applies to both Chapters [ & [5] of this thesis.
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Scene-change, by definition, requires a reference image which a changed image is
compared to. Some of the algorithms discussed in the literature review are not specific
to scene-change, and may only use a single image for shadow detection or removal.
The outputs of these algorithms could conceivably be used as input to a scene-change
detection method, and in the review no distinction is made between the methods that

use reference images or not.

Recent state-of-the-art advancements in shadow detection have been made by a
core group of researchers that includes Graham Finlayson, Steven Hordley, and Mark
Drew. The scene-change detection algorithm developed in Part III of the thesis uses
an extension of their work as a basis for detection of shadows in image sequences. This
literature review starts with a discussion of prior work in shadow detection for scene-
change analysis, followed by a more in-depth review of the works by the Finlayson,

Hordley and Drew group.

4.2.1 Beginnings

Early research on shadows in images was centred around adding shadows to computer-
generated scenes to add realism. One of the earliest literature reviews of these algo-
rithms is by Crow in 1977 (Crow 1977), with another by Woo et al. in 1990 (Woo,
Poulin & Fournier 1990). Most algorithms reviewed dealt with generation of cast
shadows, i.e., shadows with sharp boundaries that are caused by objects partially or
completely occluding the illuminating light sources. Woo et al. also describe algorithms
for creating shadows from other objects such as glass. Elementary image analysis for
shadows started appearing around the 1980s, where the target was removing shadows

from aerial photographs.

4.2.2 Intrinsic methods of shadow removal

Intrinsic methods of shadow removal attempt to develop an underlying ‘intrinsic scene’
(usually by using a long series of images for training), which by its nature is shadow-
free. The performance of these methods typically improves with increasing exposure
to different illumination conditions.

Weiss’ paper, entitled ‘Deriving intrinsic images from image sequences’ (Weiss
2001) attempts to recover intrinsic images from a sequence of images by using edge
filters to locate detail in the image, which are averaged over a period of time where
there is substantial shadow change (e.g., over the course of a day). The edge-image
details from temporally changing objects such as shadows and moving objects are
reduced in intensity by the averaging function, whereas constant edges, such as at the
boundaries of fixed objects in the scene, are retained. Weiss’ method for scene-change

detection is limited in its application as a long series of images is required to derive the
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intrinsic scene (in outdoor conditions), and it does not take into account objects which
may be stationary for intermediate periods of time. Also, by definition, intrinsic scenes

do not differentiate possible scene-change as being due to either objects or shadows.

Matsushita et al. (Matsushita, Nishino, Ikeuchi & Sakauchi 2004) uses Weiss’
method as an input to an algorithm for a video surveillance application for tracking
vehicles in a city. Their method is specifically looking to remove the effects of strong
cast shadows from the likes of large buildings, which they calibrate prior to processing
for vehicle detection. Their method inherits the restrictions of Weiss’ method, and
also requires a-priori information on cast-shadows that are to be removed. Hence cast-
shadows from temporal objects (such as long shadows thrown by vehicles themselves)

are not handled.

Porikli and Thornton (Porikli & Thornton 2005) use background subtraction and a
video stream of images to recursively update a shadow model and intrinsic scene which,
for the most part is parameter-free, but requires a substantial number of images over
the course of a day. Their system does not address dynamically changing illumination
within the video stream, and assumes that shadows are simply a reduction in intensity,

and that the hue of a shadow is unchanged from the underlying scene.

Methods of intrinsic scene recovery by Eiseman and Durand (Eisemann & Durand
2004) and Lu et al. (Lu, Drew & Finlayson 2006) use a pair of flash/no-flash images
to provide distinct and controlled illumination conditions from which to extract the
underlying scene content. By subtracting the images a ‘flash only’ or ‘ambient shadow’
image can be obtained. In the majority of both outdoor and indoor environments it
is not pragmatic to use flash-lighting for continual object tracking and scene-change

detection.

4.2.3 Methods based on illumination colour-change

Many recent methods have used illumination colour change to assist in the detection of
shadowed areas, particularly for outdoor environments where shadows are blue-coloured

due to skylight illumination.

Withagen, Groen and Shutte (Withagen, Groen & Schutte 2007) provide an inter-
esting method for shadow detection that uses band-ratios (e.g., values of red/green
and blue/green) to move pixels into a plane for segmentation of shadowed regions of an
image. They make a significant assumption in that the colour response of the camera
is flat across each colour band. In practice, colour cameras have non-linear spectral
responses that cause the band-ratio plane to warp into a curved 3D surface. This in
turn causes the accuracy of the system to depend upon the camera being used. Their
method also uses various empirical thresholds to segment shadow regions, potentially

limiting a set of hand-tuned thresholds to a particular set of images.
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Marchant and Onyango (Marchant & Onyango 2000) use a CIE black-body approx-
imation of daylight to create a grey-scale image from a colour camera that is effectively
independent of the illumination intensity. This is done by determining which black-
body curve a pixel falls on in chromaticity space, and assigning a value to that pixel
based upon the number of the black-body curve. As the reflectance of each object
in the scene is constant whether it is illuminated by daylight or skylight, the theory
is that the pixel will always lie on that one specific curve. Their method assumes
that the camera’s spectral response is narrow, and that skylight can be modelled by a
black-body radiator. In reality, the majority of cameras are wide-band, and skylight
is not always well approximated by a black-body radiator (Hernandez-Andres, Lee &
Romero 1999). Their research is applied to distinguishing the difference between plants
and soil, and their results show that a distinction can be made between a particular

colour of plant and soil when shadows were present.

Nadimi and Bhanu (Nadimi & Bhanu 2004) propose a physical model for moving-
shadow and object detection in video. They essentially define all moving objects in an
image, and test whether the change has a blue tint to it. It requires an initial collection
of frames to calculate mean pixel values, and then uses manually defined areas of shadow
for which to determine the ‘blue tint’. The problem with this method is the requirement
for manual interaction, the requirement for an initial sequence of image frames, and

the reliance upon motion detection rather than scene-change detection.

4.2.4 Manually-guided methods

Many algorithms utilise human input to help guide the shadow-removal process. These
methods are mainly utilised in removing visually distracting shadows in images, and
are not typically suitable for machine-vision applications. For example, Finlayson et
al. (Finlayson, Hordley & Drew 2002b) manually specify where the boundary of a
shadow is within in image so that a process of ‘re-lighting’ can be implemented in an
attempt to remove the shadow. Chuang et al. (Chuang, Goldman, Curless, Salesin &
Szeliski 2003) use blue-screen images to easily identify and extract shadowed regions
from an object, and overlay them onto another natural scene (for special effects in
films). Wu and Tang (Wu & Tang 2005) use a Bayesian technique where the user
selects four different areas of the image: shadow regions; shadow-free regions; items
to be excluded; or unknown items, for a specific image. The algorithm then uses the
shadow smoothness to determine the extent of the shadow, and provides a bound region

for it.

4.2.5 Edge-based methods

The majority of scene-change methods use some form of edge detection, including

many that are described in the previous sections of the literature review. Some use



4.2 LITERATURE REVIEW 66

shadow direction to try to isolate shadows from objects, such as in the work by Wang et
al. (Wang, Chung, Chang & Chen 2004) which attempts to determine the location of the
sun from edges of shadows cast by cars. Most, however, use edges to determine objects
within scenes and then subsequently process the objects for classification as either
genuine objects or cast shadows. The disadvantage with these types of edge-based
methods is that they rely on distinct contrasts between shadowed and non-shadowed
areas. This creates a problem with soft shadows, as the performance of the algorithm
is dependent upon sensitivity thresholds set in the edge-detection algorithm. Another
example is given by Xiao, Han, and Zhang (Xiao, Han & Zhang 2007), who detect
outlines of vehicles and shadows on highways and subsequently attempt to determine
whether the components causing the outlines are vehicles or shadows. Only images with
hard shadows are present in the paper. Similarly, Javed and Shah (Javed & Shah 2002)
use a threshold-based gradient method to determine regions of detail in a surveillance

application, which are then analysed for shadow/object segmentation.

Conversely, the method presented by Stauder et al. (Stauder, Mech & Ostermann
1999) requires a significant penumbra for detection of shadow edges. They state that
the light sources must be of ‘nonnegligible’ size. All of the examples in their paper are
from indoor environments where artificial lighting creates a large visible penumbra, and
their method would not be suitable for outdoor images where the penumbra is often
negligible in size. Similarly, Xu et al. (Xu, Liu, Li & Tang 2005) use gradient filters
to detect a smooth reduction in intensity across the penumbra for images captured
in indoor environments. Their method also presents results from images captured
in environments with artificial lighting and shadows with large penumbra. Further,
they require the setting of edge-detection parameters for their scene-change detection
process.

Funka-Lea and Bajcsy (Funka-Lea & Bajcsy 1995) use a known probe in the image
to recover shadow direction and detail within an image. Their method attempts to
recover the umbra and penumbra shadow components separately, and requires simple
scenes with plain-coloured backgrounds only. Their method would likely perform poorly

in natural or cluttered environments.

Complex scenes containing shadows cast on detailed surfaces can cause a perfor-
mance reduction with edge-based methods, as multifaceted shadows will increase the

number and diversity of shadow edges detected in the image.

4.2.6 Texture-based methods

Texture-based methods utilise complex and predictable areas of the image as a cue
for identification of areas with similar properties. While edge-based methods are best
served by plain, uncomplicated image content for robust operation, texture-based meth-

ods perform best on structured, detailed scenes.
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Leone, Distante and Buccolieri (Leone, Distante & Buccolieri 2006) use a multi-
layered approach to remove shadows from objects in a surveillance application. They
initially create a difference image and then threshold it to remove noise (a fixed-
threshold filter for the whole image), then define scene-change and shadow regions
which are segmented using a 2D-Gabor texture analysis. Their algorithm requires the
setting of four empirical parameters. The method was trialled only on a single test from
an indoor environment with very soft shadows on a wooden floor, with the parameters

tuned to optimise performance for their image set.

Liu and Gleicher (Liu & Gleicher 2008) use a human-guided method to select
areas of shadow before re-lighting the shadow areas using a texture-based method.
Though the results presented are visually acceptable, the necessity for complete human
segmentation of shadow regions makes it impractical for use in an automated scene-

change detection system.

4.2.7 Other methods

Methods exist that use only grey-scale images for shadow and scene-change detection,
such as the method by Ibrahim and Rajagopal (Ibrahim & Rajagopal 2007). Although
these methods could be applied to colour images by treating each colour channel inde-
pendently, they are not discussed in detail in this literature review as their performance

would be severely limited by metamerism when colour images are used.

Similarly, many papers describe shadow-detection research based upon the intensity-
reduction principle that shadows are simply darker pixels of their underlying scene.
These elementary methods typically require several user-set thresholds for shadow-
detection and scene-change detection, such as in that by Horprasert, Harwood and
Davis (Horprasert, Harwood & Davis 1999). These pure intensity-based methods of

scene-change detection are not discussed in detail in this review.

Salvador, Cavallaro and Ebrahimi (Salvador, Cavallaro & Ebrahimi 2001) use a
colour-invariant method to compare the edge maps of original and colour-invariant
images to detect shadow regions. They use plain, non-textured backgrounds in their
research, and the results cannot be applied to real-world scenarios without a significant

reduction in performance due to these limitations.

Chang et al. (Chang, Hu, Hsieh & Chen 2002) describe a method based on Gaussian
models to segment shadows from people in an image that has already been successfully
subtracted from a reference image of the background. This method uses the angle
between an object and its cast shadow to determine which part of the detected blob is
a shadow. This algorithm requires a flat surface and large, strongly-cast shadows.

Arbel and Hel-Or (Arbel & Hel-Or 2007) describe a method for removing shadows
on curved surfaces. Their method requires the shadow regions to be detected prior to

analysis, after which they detect the penumbra region and re-light the shadowed region
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accordingly. They are specifically looking to relight soft shadows on curved surfaces
only.
The methods discussed in this section are not considered to be appropriate for

automated scene-change detection, and are therefore not discussed in further detail.

4.2.8 The work of Finlayson, Hordley, and Drew

Finlayson, Hordley, and Drew have published many articles in the area of shadow-
detection since 2002 (Finlayson et al. 2002b, Finlayson, Hordley & Drew 2002a, Drew,
Chen, Hordley & Finlayson 2002, Jiang & Drew 2003b, Jiang & Drew 2003a, Finlayson,
Drew & Lu 2004), with others extending their work (Erbou, Sorensen & Stage 2005).
In 2006, they presented a landmark paper entitled ‘On the removal of shadows from
Images’ (Finlayson, Hordley, Lu & Drew 2006) that was a significant advance in the
area of shadow removal in images. They used a method of illumination invariance that
maps an RGB colour space onto a 2D chromaticity plane, which can then be reduced
to a 1D line for Planckian illumination changes (i.e., for illumination changes that run
along the Planckian locus in Figure . They showed that a particular surface colour
in the scene will reduce to the same point on the 1D line, as long as the illuminant is

Planckian in colour. A more detailed explanation follows.

The equation for a camera RGB pixel measurement, P, is described by the prod-
uct of illumination, surface reflectance, and camera sensitivities (Gershon, Jepson &

Tsotsos 1987) giving:

P :/E()\)S(A)Cl()\)d)\, l € {R,G,B} (4.1)

where FE is the illumination spectral power distribution (SPD), S is the surface spectral
reflectance function, C} is the camera response, [ is an RGB colour band of the camera,
and A the wavelength of light.

If the camera sensitivities are Dirac delta functions, C;(A\) = ¢d0(A — N;), and
Equation [4.1] simply becomes

P =EM\)S(N)e. (4.2)

A Planckian illuminant is described by Plank’s law:

1

EN) =TI\ —M——
() ! exp(kg?)\)—l

(4.3)

where c; is a constant, h is Planck’s constant, v the frequency, k£ Boltzmann’s constant,

T the temperature of the body, ¢ is the speed of light, and [ is a variable controlling
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the overall intensity of light. Finlayson et al. use an approximation of Plank’s law

known as Wien’s approximation, which holds when hc > kT'A so that

1
E\) m Ie A ————. (4.4)
xp(zrx)
With this approximation, the pixel measurement becomes
P = Tenh P exp(— )5 (A)e (4.5)
1 =1ciA P(=77 5y - :

Forming the band-ratios defines the two-vector X chromaticities for an RGB image:
P:
Xj = ) ] = RaBa (46)
P

i.e., Xp = Pr/Pgs and Xp = Pp/Pg. Substituting the expressions for P, from into
forms the chromaticity coordinates:

)\;5 exp(— k:}FLi] )S(Aj)e;

X;= j=R,B. (4.7)
’ /\(;5 exp(— kj}“lf\G )S(Aa)ea
Taking the logarithm X7 of X gives
X’-:logﬁle(e-—eg) j=R,B (4.8)
7 SG T ] ) 9 9 .

where s; = A;SS()\]')C]‘ and e; = —%. Putting 4.8 into vector form gives:

e, (4.9)

Nl

X =s+

where s is a two-vector which depends on the surface and camera, and e is a two-
vector which depends upon the camera. As illumination temperature changes, the

log-chromaticity vector for a particular surface moves along a straight line.

Finlayson et al. then discuss the process of creating a grey-scale illumination invari-
ant image, which is used to ‘re-colour’ areas of an image detected to be in shadow, by
using edges found in the colour image to define shadow boundaries. The results in
their papers demonstrate good shadow removal for strong shadows, but recreating
their experiments raised some differences between their results and the results reported
in this thesis. This can be demonstrated by referring to the measured points ahead in
Figure[4.6] The figure shows the log-chromaticity points on a GMB chart when under-
going illumination change from daylight to skylight. If Finlayson et al.’s assumptions
are valid, then the lines connecting each pair of start and end points should be parallel.

Even though their data is noisy, it is clear that the lines would not be parallel, even if
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the noise was removed. This is likely due to three assumptions made in their paper,

each of which are described below:

1) The camera sensitivities are Dirac-delta functions. Finlayson et al. acknowledge
that cameras do not have Dirac-delta colour sensitivities, and that this can reduce the

accuracy of their model.

2) Skylight is well-represented as a Planckian black-body radiator. In outdoor
scenes the colour temperature of sunlight is approximately Planckian (Henderson 1977)
whereas the blue skylight that colours outdoor shadows is primarily caused by Rayleigh
scattering of sunlight in the atmosphere (Lynch & Livingston 1995), a process which
is not modelled by black-body radiation. However, the colour temperatures of skylight
can (but not always) closely match the colour temperatures of a black-body radia-
tor (Hernandez-Andres et al. 1999).

3) Wien’s approzimation is a good fit to the Planckian representation of wvisible
light. Wien’s approximation is valid when hv > kT, and Finlayson et al. state that the
approximation is valid for the range of canonical lights between 2,500K and 10,000K.
Using the wavelength for green light (550 nm), the wavelength that human vision is

most sensitive to, and a standard daylight colour temperature of 6500K:

3 x 108
hw=66x10"x ——""— _=36x10""J. 4.10
v % " 550 x 109 % (4.10)
and
ET =1.38 x 1072 x 6500 = 0.9 x 1079 J. (4.11)

From Equations & hv is only 4 times larger than kT, i.e., hv > kT is not valid.
This effectively makes the use of Wien’s assumption a relatively poor approximation
for the black-body radiation for visible light.

The combination of wideband colour filters, the associated errors arising from
Wien’s approximation and variation of skylight from the Planckian curve can result
in varying degrees of curvature and angle in the log-chromaticity plot of the camera
band ratios for outdoor illumination (as can be seen in Figure . Despite these
approximations, Finlayson et al. demonstrate reasonable shadow removal results when

this process is integrated with their edge-based method of shadow detection.

4.2.9 Summary

The methods described above for scene-change and shadow-detection are summarised
in Table along with their respective restrictions, based on the objectives given
in Section [£1l No method has been found in the literature that meets all of these

objectives.
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Aside from the requirements outlined in the objectives, there are specific challenges

that an algorithm must handle to obtain robust performance:

e Variable ground planes that complicate the shape, size, and intensity of shadows.
e Interacting shadows from different objects.

e Changing shadow colour, depending upon the strength of the direct and ambient
light sources and the colour of the surfaces under the shadow area. Ambient
light-source colour is affected by atmospheric conditions (including cloud cover)

and surface reflectance and colour of neighbouring objects and the ground.

e Colour gradients across the penumbra/umbra areas of a shadow, from colour

differences between direct and ambient light sources.

e Anti-aliasing of shadow edges by the integration effect of a pixel area, merging

true scene detail with shadow.
¢ Changing of shadow intensity with direct lighting intensity.

e Multiple shadows cast by multiple light sources (e.g., artificial lighting at a sports

stadium, or street lighting in traffic applications).

4.3 SCENE-CHANGE DETECTION BASED ON DUAL
ILLUMINATION

A generalized method of shadow detection is now developed by extending the Planckian-
restricted method of Finlayson et al. to incorporate pairs of differently coloured illu-
minants that do not necessarily fall upon the Planckian locus, and by using cameras
with broadband colour filter responses. This increases the applicability of illumination
invariance to incorporate artificial illumination and standard commercially available

cameras.

Two illuminants are defined: an ambient source E, that illuminates all surfaces
in a scene (including cast shadows) and a directional source E; that only illuminates
surfaces in its direct line of sight. Let n represent the proportion of added illuminant

E4, where 0 <n < 1. E(n,\), the illumination function, may now be defined:

E(n,\) = Eo(\) + nEg()), nel0,1]. (4.12)

Substituting into defines the generalized model for dual illumination, where

the camera’s pixel response becomes:

P = / (BN + nEa0)SOVCNVAN, 1€ {R.G,BY, nel0,1].  (4.13)
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Table 4.1 A list of relevant scene-change and related shadow-detection algorithms and their perfor-
mance requirements with regards to the objectives of Part III. ‘User input’ indicates whether any
manual interaction is required for the operation of the algorithm (excluding calibration). ‘Arb. thresh’
indicates that setting of arbitrary or empirical thresholds is required for operation of the algorithm.
‘Signif. training reqd.” indicates that the method requires substantial amounts of training (e.g., images

taken over the course of a day) for operation of the algorithm.

Authors

Uses
object
shape

Uses
edges

User
input

Arb.
thresh.

Indoor &
Outdoor
operation

Signif.
training
reqd.

Bhattacharyya &
Johnson

Y

Y

<

Y

Chuang et al.

Y

Eisemann & Durand

Erbou et al.

Finlayson et al.
2002a

<|

=)=

Finlayson et al.
2002b

=<

Finlayson et al.
2004

=

Finlayson et al.
2006
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Javed & Shah

Jiang & Drew
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Leone et al.

Liu & Gleicher

Levine &
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Lu, Drew &
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Lu, Xin, Kong, Li &
Wang
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Matsushita, Nishino,
Ikeuchi & Sakauchi

Nadimi & Bhanu
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Porikli & Thornton
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Stauder et al.

Wang et al.

<

Weiss

Withagen et al.

Wu & Tang

Xiao et al.

Y

Xu et al.

Y
Y

Y

R ] ]
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(1) Assumes shadows are a reduction in intensity only.
(2) Yes, though restricted to Planckian lighting.
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Section has shown that the green channel in standard colour cameras with
the commonly used Bayer colour filter array (CFA) can exhibit less noise than the red
or blue channels. As the effect of pixel noise is compounded with small denominators
when forming band ratios, the green channel has been chosen as the denominator,

resulting in x = Pr/Pg and y = Pg/Pg, so that:

J(Ea(A) + nEg(A)S(A)Cr(A)dA

T T(Ba(N) + nEaM)SNCa(Ndr € [0,1] (4.14)
and
_ J(Ea(N) +1Eg(N)S(N)Cr(A\)dA
Y= T(Ba(N) + nEa(N)SNCa(hyax € [0,1] (4.15)
so that
_J(BaN) +nEg(V)SN)Cp(N)dA
YV (B + nEa)) SN CrVaN " E [0,1] (4.16)

log(y) = log(x) + log ( [ () +nEa) S<A>OB<A>dA)
(4.17)

~tog ([ (Bah) + nEAN) SICRVN) . me 0.1

which defines a space that distributes the colour data relatively evenly, enabling easier
colour segmentation. Each different surface will have a characteristic shadow curve in
the band-ratio or log band-ratio (LBR) spaces defined in Equation dependent upon
the illuminants and the colour response of the camera. One restriction on this model
is that the green pixel response, Pz, must be greater than zero to avoid singularities in
2 and y. Singularities are unlikely to occur given canonical illumination, as most RGB
cameras have relatively broadband colour filters (Nakamura 2006) and will therefore

exhibit some response in the green channel if the blue or red channels are illuminated.

An experiment was conducted using artificial illumination in controlled conditions
to test the validity of the generalized dual-illuminant model. A fluorescent tube (8W
ZhaoGuang F8T5/D 6500K) was used to approximate the ambient light source E, and
a halogen bulb (12V 50W Bi—globe[l) was used to approximate the point source Fjg.
The halogen source was rotated around a GMB chart and a series of images of the
chart recorded, using the setup shown in Figure to simulate the effect of changing
n from one (halogen perpendicular to the chart) to zero (halogen behind the chart). 27

'No specifications were available for colour temperature, but it is expected to be near the typical
colour temperature of 3,000K for halogen lighting.
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Figure 4.1 The camera and GMB chart setup for measuring the characteristic shadow curves of
dual-illuminant environments. The camera records images of the GMB chart as the direct illumination
that falls upon the chart varies.
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Images were captured as the light was moved at a constant angular speed around the
chart. The absolute angle of the light is not important to the analysis due to the use
of band-ratios to calculate the chromatic position in z/y space, providing there is an
adequate number of images captured. The measured n = 0 and n = 1 points are used
as an input into the model in Equation which allows the z and y points for any

value of n to be calculated.

Figure demonstrates the close agreement between modelled curves using Equa-
tion[4.17)and the measured data points. Note that Finlayson et al.’s method for shadow
detection would be expected to fail in this environment as the curves are neither straight
or parallel. This would be due to one or a combination of the narrow-band camera
assumption, Wien’s black-body approximation error, or the non-Planckian colour of

the fluorescent lighting.

Measured
Modelled
—— Linear

0.21

log(y)
S
a
/)

-0.5 I I I I I I I I )

log(x)

Figure 4.2 The measured and modelled characteristic shadow curves (changes in band ratios) for
changing intensities of halogen lighting on a GMB chart in an environment with ambient fluorescent
lighting (only panels 1-14 shown for clarity). The linear band-ratio changes are also shown for compar-
ison.

4.3.1 Scene-change detection

The dual-illumination model can be used to detect scene-changes from a sequence of
images containing variations in cast shadows. A reference image is used as a basis
for comparing subsequent images’ details to identify whether a pixel’s change is due
to a change in the scene or to a cast shadow. A shadow-free image is constructed by
selecting pixels from either the reference or a comparison image, as determined by the

scene-change detection algorithm.
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4.3.1.1 Assumptions

It is assumed that changes between images of a scene are due to either cast shadows or a
physical object that has entered the scene. It is also assumed that all cast shadows are
illuminated in part by at least the ambient illumination source, and that the illuminants

are constant between the reference image and the image being processed.

4.3.1.2 Model calibration

The illumination-invariant camera model requires calibration prior to shadow removal
for a given pair of illuminants. This can be achieved with the use of a colour chart
such as a GMB chart that contains multiple coloured patches: two images can then
be recorded, one with ambient illumination only and one with combined ambient and
direct illuminants, for each of the panels in the chart. The average value of the centre
50 x 50 pixels in each panel (as per Figure is used to calibrate the start and
end points only of the characteristic shadow curves (shown in Figure [4.2)). The curve

between the points arises from the model.

4.3.1.3 Pixel invariance and shadow removal

Pixel P,y in the reference image has a curve in LBR space (L Prey (n)) that is associated
with it. This curve is given by Equation with the endpoint Lp, (1) obtained
directly from the reference image. The curve represents the pixel colour change that
would occur for the pixel Py as the illuminant changes from E, + Ey to E,.
Suppose Py is a pixel in the calibration image, and Lp,, (n) is its closest character-
istic shadow curve in LBR space. Given the limited number of unique colour panels in

the illumination model calibration, we must approximate Lp,,, (n) by Lp., ; (n) where

f’Pref (n) = Lp,, (n)+d (4.18)

and

d= LP'ref (1) - LPcal (1> (4'19)

and P,y is chosen so that |d| is minimized amongst all the possible choices of P.y.
In effect the closest calibration curve end-point to Lp,, (1) is selected by means of
mimimal Euclidean distance in LBR space. The value of n = 1 is used as the reference
image as it is the base from which shadows are detected in subsequent images, and is
likely to be fully illuminated.

A threshold distance t defines an area around each characteristic shadow curve

to enable segmenting of shadowed pixels. Consider a pixel Peomp in the comparison
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image. Let p be its point in LBR space. Thus p = (log (z),log (y)) where x and y are
calculated using Equations & respectively. Then Py, is defined as being
in a cast shadow if it has intensity less than that of P..; and if p lies inside P..y’s
threshold area, defined as any point within a fixed distance of L p,.; (set by value t).

A pixel P can be defined that is free of changes in cast shadows between P,y and

P comp by:

P.. if pe Lp .(n)®circ(t) AND V(Peomp) < V(Pre
Ppree — f p€Lp,(n) (t) (Peomp) (Pref) (4.20)

Peomp otherwise

where cire(t) is a disc of radius ¢, ® is the convolution operator, and V' is pixel intensity.
Therefore a full colour image free of changes in cast shadows between the reference and

comparison images can be created from independently analyzed pixels.

Examples of three threshold-bound regions in LBR space are given in Figure

(a) (b) ()

Figure 4.3 Examples of fixed-value shadow regions in LBR space of panels from the GMB chart: (a)
red, (b) orange, (c¢) purplish-blue.

4.3.1.4 Noise

Section demonstrated that noise within images is exhibited as temporal and spatial
variations in pixel values, which can cascade into the resultant shadow-removed images
if left unfiltered. Image noise is particularly detrimental to analysis of shadows due
to the division by small green pixel colours in the formation of the colour band ratios
in Equations & A series of filters was applied to the images during shadow

removal to improve the performance of the algorithm in the presence of noise:

e A 2-D Gaussian filter was used to reduce temporal and spatial variations due to

noise in the reference and comparison images.

e Small isolated areas set to Peomp from Equation were considered erroneous

and removed.
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e Morphological opening (using a 3x3 unity structuring element) was applied to the
resultant areas set to Promyp in Equation to fill small gaps left by the shadow

detection algorithm.

Values for parameters were empirically determined by trial and error for the size
of the kernel used for Gaussian filtering (9x9, 2 standard deviations) and the minimum
size for isolated areas of the size of P,y in Equation (0.25% of the total image

area).

4.3.2 Results

The method of shadow removal described in Section [:3.1.3] was applied to images
captured in controlled artificial lighting conditions and also to daylight-illuminated
outdoor images. A standard commercially available colour camera (specifications in
Table was used. All digital effects such as gamma and colour balance were disabled,
and the black-level output of the camera was calibrated to ensure an RGB output of
(0,0,0) for dark conditions. Saturated pixels in the reference image were removed from
processing as they would generate false colour band ratios. The value t was empirically
determined by varying t, processing a batch of images captured in both indoor and
outdoor conditions for each ¢, and choosing the value that provided approximately
equal responses to false-positive shadow and true-negative object detection. ¢ was
fixed to 0.05 for all subsequent processing (results given ahead in Tables &
justify the selection of ¢ = 0.05).

4.3.2.1 Artificial illumination

An environment using fluorescent ambient and directional halogen illuminants was used
to generate coloured shadows for objects on textured backgrounds. The calibration data
for this environment is shown in Figure [£.2] The processes described in Section [£.3.1
was applied to the images of fruit added to a highly-textured background shown in
Figures & [E4p. To allow the application of the noise filters, a mask was created
using Equation where black represents areas in shadow or areas not affected by
the insertion of objects into the image. The raw mask is shown in Figure [f.4k, created
from the reference image in Figure [{.4h and comparison image in Figure [f.4p. Post-
processing filters were applied to the raw mask and the resultant filtered mask is shown
in Figure[£.4d. By using the black areas of the mask to indicate pixels from the reference
image and the white parts to indicate pixels from the comparison image, the final cast-
shadow free image in Figure [f.4p was created.

All cast shadows from the halogen light illuminating the fruit have been removed in

Figure [4.4p, along with a significant proportion of ‘dark’ shadows underneath the fruit.

The remaining shadowed areas in the final image are areas in the umbra of both the
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Figure 4.4 The shadow removal from objects on a textured surface with artificial illumination. (a)
reference image; (b) image containing objects and cast shadows; (c¢) raw mask created using Equa-
tion showing pixels from the shadow-containing image (white) to be fused with pixels from the
reference image (black); (d) filtered mask used to create the final image in (e) with shadows removed.
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Figure 4.5 Shadow removal from a cup on a textured surface. (a) Reference image; (b) image with
objects and cast shadows; (c) image with cast-shadows removed.
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halogen and ambient fluorescent tube, effectively creating colourless voids whose pixel
colour does not fall on the approximated shadow curve of Py, L Prey (n), for a given
pixel. The fruit objects have almost completely been detected as valid scene objects,

with only a specular glint near the top of the apple wrongly detected as a cast shadow.

Figure [4.5] illustrates another shadow-removal example using a coloured textured
scene. The comparison image contains cast shadows as well as a purple cup and a
hand. Almost all of the cast-shadow region has been successfully removed except the
area underneath the fingers and handle where the ambient fluorescent lighting was
unable to illuminate the background. Several small patches on the cup and hand, on
areas in the textured background that were of a similar hue, were wrongly detected as

cast shadows due to metamerism.

4.3.2.2 Natural illumination

Nature presents its own form of dual-illumination in outdoor environments in the form
of sunlight and ambient skylight. Figure shows the shadow curves for the 18 colours
and a neutral panel of the GMB chart measured in an open field (grass) using the
method described in Section Panels 4 and 13-15 in particular exhibit curves
that are not modelled accurately. This is due to a third illumination source of reflected
light from the grass that strikes the GMB chart when it is directed toward the sun.
Panels 13-15 are the vivid red, green, and blue panels of the chart that will have
the spectral bandwidths most likely to correlate with the Bayer-array colour filters,
increasing their sensitivity in Equations[4.14] & [4.15|to changes in the illumination SPD.
Similarly, panel 4 is foliage coloured and will therefore have a spectral reflectance close
to that of the grass-coloured reflected light, increasing its sensitivity in Equations &
to changes in the illumination SPD to foliage-coloured spectra. Ideally, calibration
would occur without any reflective objects causing changes in the illuminants’ SPD.
The impact of the modelled errors in Figure is likely to be small for cast shadows,
as the model is calibrated with the start and end points of the shadow curves (n=0

and n=1) where this third light source is either absent or swamped by sunlight.
Figures [£.7] and [4.§] show the results of shadow removal on outdoor images using

the calibration data shown in Figure [£.6] The shadows have been removed on the
red bricks and grey-coloured decking in Figure [£.7¢, with occasional incorrect detec-
tion of cast-shadows on the person. The black shoe and dark grey-brown pants on
grey-decking, and the brown shirt and skin tone on yellow leaves are occasionally regis-
tered as cast shadows due to metamerism. The outdoor scene shown in Figures [4.8h
& incorporates objects and cast shadows on highly variable surfaces, including
autumnal leaves, grass, brick, and concrete. The resultant image shown in Figure 4.8
demonstrates almost complete shadow removal and object integrity, with only occa-

sional missed shadow removal around the fringe of the light-blue coloured cushion, and
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Figure 4.6 Measured and modelled changes in characteristic shadow curves for changing intensities
of outdoor lighting on panels of a GMB colour chart (14 panels shown for clarity) using the colour
space described in Equation [£:16]

an almost imperceptible border of misclassified cast-shadows between the cushion and
the box.

4.3.2.3 Discussion

Using regions around the shadow-curves to threshold shadows affects the metamerism
of genuine objects appearing as shadows. The threshold ¢ was empirically set to a fixed-
value (t = 0.05) which provided an even balance between shadow and object detection.
The pre-filtering of images using a Gaussian kernel creates a thin blurred boundary
around objects that subsequently causes an outline of wrongly-detected areas of cast
shadow, effectively increasing their size. Further, the post-filtering of the scene-change
detection masks reduces the sensitivity detection of small shadows. An improved noise
filter and thresholding technique that has parameters tuned to the noise characteristics
of a pixel would likely further improve the performance of the shadow algorithm by

targeting the required noise filtering.

The analyses of shadows within a scene are specific to the camera calibration for
a particular pair of direct and ambient illuminants. This affects the application of
the technique to automated shadow removal in outdoor images where the atmospheric
conditions can change. For example, the ambient SPD of an overcast day will be
different from a clear day as the amount of Rayleigh scattered light is reduced due to
the occlusion of light by the cloud. In this instance a method of identifying the SPD of

the ambient illuminant will be required so that an appropriate illumination-invariant
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calibration can be selected for shadow removal.

Effects such as image saturation, specular reflections, or errors in image registration

between the reference and comparison images are likely to cause misclassified areas
when Equation is applied.

The colour-based scene-change detection algorithm that has been developed addresses
several of the challenges identified in Section [4.2.9}

e Shadows on non-flat ground planes can be detected.

o Interacting shadows from different objects do not affect performance, as the

method is not object-based.

e Changing shadow colour due to variations in the relative strengths of the direct
and ambient light sources and the colour of the surfaces under the shadow area

are inherently addressed in the design of the algorithm.

e Colour gradients across the penumbra/umbra areas of a shadow, from colour
differences between direct and ambient light sources, are also inherently addressed

in the algorithm design.

e The use of the dual-illumination concept for shadow detection allows the algo-
rithm to detect anti-aliasing of shadow edges due to integration of pixel area in

the camera.

e Any shadow intensity (below the saturation level of the image sensor) can be

detected as the algorithm is chromaticity based, not intensity based.

e The direction and number of cast-shadows from an object is not limited, as no

assumption is made about the position of the direct illumination source.
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Figure 4.7 Shadow-free scene-change detection from ‘Outdoor scene 1’. (a) Reference image; (b)
image with objects and cast shadows; (c) image with cast-shadows removed.
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Figure 4.8 Shadow-free scene-change detection from ‘Outdoor scene 2’. (a) Reference image; (b)
image with objects and cast shadows; (c¢) image with cast-shadows removed.
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4.3.2.4 Conclusion

A colour-based method for scene-change detection has been developed based on two
arbitrarily coloured illuminants. It does not require edge detection or manual guidance,

and removes cast shadows from objects within a scene.

The new method has been demonstrated on images illuminated with artificial light-
ing and on naturally illuminated outdoor scenes. It uses the characteristics of a direct
and an ambient illuminant to classify scene changes as shadow on a pixel-by-pixel
basis. Experiments conducted with a standard commercially-available colour camera
have shown that a straightforward calibration procedure is required to characterize
the camera’s response to the illumination spectra. The robustness of the method is
primarily dependent on levels of image noise that become increasingly prominent for
small-valued pixels. Revisiting the objectives laid out in Section shows that 5 out

of 6 of the objectives for scene-change detection have been met. The method:

¢ is independent of object shape;

e identifies and removes cast-shadows;

¢ is able to operate in both indoor and outdoor environments;
e does not require manual interaction;

e does not require a significant number of images for training.

The algorithm requires the setting of thresholds for the pre-processing filters (Gaus-
sian convolution, morphological operators, particle filtering) and for the value of ¢, and
therefore fails to meet the last objective of being free from arbitrary internal thresholds.

This is addressed in the following chapter.



Chapter 5

NOISE-LIMITED SCENE-CHANGE DETECTION

A major drawback of the scene-change algorithm described in Chapter []is the need for
arbitrary or empirically determined thresholds, the values of which can have a signif-
icant impact on the performance of the algorithm. It is very common for thresholds
to be used in image processing applications; sometimes their relation to performance
is obvious, such as when a simple threshold is used to segment high-valued pixels from
low-valued pixels, but they are usually embedded deeply into the algorithm and have
no obvious connection to performance. The threshold ¢ in the scene-change algorithm
described in Chapter [4]is a good example of this, as it defines an area of relative hue-
change around a curve on a 2-D chromaticity plane. This makes it difficult to determine
an optimal value of ¢ other than by experimentation. Furthermore, changes in cameras
or environment may adversely affect the performance of the algorithm for a given value
of t.

One reason why thresholds are commonly used for attenuating the effects of noise
in images could be due to the unavailability of suitable methods and processes for
easily measuring image noise, hence the application of fixed-value, global thresholds to
dichotomize data into ‘probably genuine’ and ‘probably noise’ categories (as demon-
strated by the use of ¢ in Chapter [4]). From the experimental results in Chapter [3| this
is a non-optimal approach as noise is complex and is highly dependent upon pixel value

and the context of how the data is being used.

This chapter of work is targeted at integrating the knowledge developed in Chap-
ters [3] & [M] to complete the objectives defined in Section Sections &
describe the noise-limited method, with results comparing the original fixed-threshold
and noise-limited methods given in Section The interpolation of calibration data is
discussed in Section [5.6] with experimental results using the interpolated data given in
Section The chapter is completed with a discussion and conclusion in Sections
& B9
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5.1 INTRODUCTION

Many image processing applications are confounded by sensor noise and shadows cast
upon the scene. All image sensors add noise to a captured image that can reduce
algorithm sensitivity and performance, and global filters or fixed thresholds are often
applied to limit their effects. Cast shadows can appear as scene changes and are difficult
to adequately detect and remove from images and image sequences. In this chapter
image noise statistics are coupled with the dual-illumination scene-change algorithm
developed in Chapter [4] to provide a novel colour-based method for shadow-free scene-

change detection, whose performance is bound by metamerism and image noise.

5.2 OBJECTIVE

The objective of this chapter is to extend the method of scene-change detection devel-
oped in Chapter [4] so that it is free from arbitrary internal thresholds. If this is accom-
plished then all of the objectives in Section [4.1] will have been met.

5.3 MODIFIED BAND-RATIO SPACE

The model presented in Section uses a fixed-threshold region (bound by t) for
scene-change detection. The value of this threshold (0.05) was determined empirically,
with the intention of balancing the performance of genuine scene-change detection
versus shadow detection. A logarithmic band-ratio space was used in previous work by
Finlayson et al. (Finlayson et al. 2006), that demonstrated that the use of logarithms
assisted in linearising black-body illumination change in this space, as do the results

from the scene-change method developed in Chapter

By integrating camera noise into the dual-illumination method for scene-change
detection, the logarithmic space used in Equation is no longer necessary as t will
be calculated using the statistical noise model.

The calibration data used in Figure 4.2| can be remapped to the non-logarithmic
x/y band ratio space shown in Equation The resulting measured and modelled
characteristic shadow curves in the non-logarithmic band-ratio space are shown in

Figure [5.1

5.4 NOISE-LIMITED SCENE-CHANGE DETECTION REGIONS

A change in scene content can be modelled by any variation in a pixel’s colour from
its band-ratio line (or from the n = 1 point for single-illuminant scenes). Image noise

adds regions of uncertainly around the lines, that vary with pixel intensity.
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Figure 5.1 Measured and modelled changes in characteristic shadow curves for changing intensities
of halogen lighting on panels of a colour chart in an environment with ambient fluorescent lighting (14
panels shown for clarity) using the colour space described in Equation

The fixed threshold value ¢ can be replaced by a value determined by pixel noise,
which was found to vary with pixel value (see Section . Full knowledge of the
temporal noise characteristics present at each pixel for a particular camera allows the

use of standard propagation of errors to determine the noise characteristics, o, and o,

() ()

for each point in z/y space:

and

oy = \/(g)z + (;g)z . (5.2)

Confidence intervals can then be used to determine noise thresholds for the desired
application. A standard value of 20 was used to provide a 95.45% confidence interval
for categorization of scene change. Values of Pr and Pg can be calculated for any value
of Pg on any given calibration line in x/y space (from the band-ratios x = Pr/Pg and
y = Pp/Pg). This allows o, and oy to be calculated for any position on the calibration
line, resulting in a region in x/y space that can be used to statistically determine if a
pixel change is likely to be caused by noise or a change in the scene content. Using
the measured temporal noise data for the uEye CMOS camera (Figure [3.24p) a series
of scene-change regions for an example calibration line from Figure is shown in
Figure [5.2]

Note that the scene-change detection areas vary with the green value of the pixel
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Figure 5.2 Scene-change detection regions for a line in z/y space (direct halogen and fluorescent
ambient lighting) for given values of Pg, on a calibration line from Figure Regions for larger values
of Pg (brighter intensity) are smaller, showing that temporal image noise has a smaller effect on bright
pixels and a greater effect on darker pixels.

(Pg). As shown in Figure [3.24p, pixel SNR is greater at high pixel values, which is
consistent with the shapes shown in Figure The scene-change regions for all values
of Pg can be combined to create a composite mask, where each shade of grey defines
the mask for its Pg-value (O=black, 255=white). Every RGB combination has its own
unique scene-change detection mask for a given illumination, and several example masks
are given in Figure A pixel from the comparison image is classified as a change
in scene if it falls outside the shadow-region determined by the initial Pg value of the
corresponding pixel from the original reference image. The masks provide a convenient
implementation for scene-change detection as they can be easily pre-calculated for each
calibration curve, significantly reducing the number of processing operations required
for the operation of the scene-change algorithm.

One significant benefit from using a noise-limited method for detecting the scene-
change boundary is that the need for image pre-processing is removed. The Gaussian

filtering and morphological operations performed by the fixed-threshold method of
scene-change detection (see Section [4.3.1.4]) are no longer required.
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(a) (b) (c)

Figure 5.3 Examples of overlaid noise-limited scene-change detection regions from Figure Each
shade of grey represents the Pg-value of the original pixel (gamma of 1.5 applied to the images to
improve visual clarity). Figure (c) is the single overlaid region for the regions given in Figure
Images are to scale with each other.

5.5 SCENE-CHANGE METHOD COMPARISON USING
INITIAL CALIBRATION DATA

Eight image sets were collected that contained a variety of different objects placed
in front of one of four backgrounds. Two of the backgrounds were large printed
photographs of natural scenes (a castle on a hill, and a beach scene), the third was
a coloured pattern on material, and the fourth was the same as the third background
with a GMB chart included. The objects included a pencil sharpener, cup, a colourful

stuffed toy, a GMB colour chart, and an arm with a wristwatch or ring.

The new noise-limited method for scene-change detection was tested on the 8 image
sets and the results are compared to the output from the fixed-threshold algorithm.
Both algorithms used the same calibration data from Section[£.3] Shown in Figure [5.4h
is the original background image for the image set ‘Castle 2’, which is used to provide
a coloured and textured background against which scene changes and cast shadows are
to be identified.

Figure shows the scene of with the addition of the GMB chart that
is casting a strong shadow onto the right side of the image. A perfect scene-change
detection algorithm would identify only the GMB chart as genuine scene change. The
method of scene-change detection taken by the fixed-threshold algorithm is to threshold
all pixel colour changes an equal distance away from the characteristic shadow curve
in the log band-ratio space. The threshold was empirically chosen so that the majority
of shadowed pixels are removed, balanced against the undesirable metameric effect
of genuine scene change being incorrectly detected as shadow. The resultant scene-
change mask from processing the images with the fixed-threshold method is shown
in Figure . The majority of the shadows are removed but consequently there are

significant portions of scene-change that have been incorrectly detected as shadowed
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Figure 5.4 Threshold and noise-limited scene-change detection for image set ‘Castle 2’: (a) original
scene with background; (b) A GMB colour chart with cast shadows placed in front of the background;
the masks from (c) fixed-threshold scene-change detection; and (d) noise-limited scene-change detection.
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Figure 5.5 The reconstructed shadow-free images from Figureusing (a) the fixed-threshold mask
and (b) the noise-limited mask.

pixels, including panels 3 and 22 of the GMB chart and substantial portions of the
black regions between and around the GMB colour panels. It is not unexpected that
pixels with very small RGB values are classified as shadows, as the signal-to-noise ratio

approaches unity making it difficult to distinguish black objects from dark shadows.

Figure shows the resultant scene-change mask from processing the images
with the noise-limited scene-change algorithm. There are 3 substantial differences
between the output masks from the fixed-threshold and noise-limited methods: 1)
The shadow-removed areas from the noise-limited algorithm show speckle, whereas the
fixed-threshold algorithm tends to have groups of misclassified pixels. 2) The integrity
of the GMB chart is substantially improved when the noise-limited algorithm is used.
Panels 3, 22, and the black regions around the panels are better detected than by the
fixed-threshold algorithm, although there is minor speckle in some areas of the objects.
3) The right-hand column of the castle has been incorrectly detected as shadow by the
noise-limited algorithm.

Figure [5.5] shows the resultant shadow-free images when the scene-change masks
are used to recombine the original and comparison images. Similar results can be seen
when the algorithms are applied to the test set ‘Castle’ shown in Figures &

The large areas of castle that were incorrectly determined as shadows by the noise-

limited algorithm were analysed further, and the errors can be attributed to the limited
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Figure 5.6 Threshold and noise-limited scene-change detection for image set ‘Castle’: (a) Part of
the background image in Figure with a pencil sharpener and purple cup casting their shadows
onto the background; the masks from (b) fixed-threshold scene-change detection; and (c) noise-limited
scene-change detection.
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Figure 5.7 The reconstructed shadow-free images from Figure using (a) the fixed-threshold mask
and (b) the noise-limited mask.

number of calibration shadow lines obtained from the GMB chart, where every pixel’s
shadow-line is required to be approximated by one of the 18 differently coloured panels.
This is illustrated graphically in Figure Suppose the true scene-change line for a
pixel is given by the solid line in Figure [5.8h, and its two nearest-neighbour lines are
given by the dashed and dotted lines (shifted to the n = 1 point of the true scene-change
line). Both of the fixed-threshold scene-change regions for the nearest-neighbour curves
significantly overlap the true scene-change line, as shown in Figure[5.8b. Similarly, the
scene-change regions for the low Pg-value noise-limited regions significantly overlap, as
shown in Figure [5.8c. However, for high Pg values the noise-limited scene-change
regions shrink substantially, significantly reducing the amount of overlap of either
nearest-neighbour region on the true scene-change line. Therefore any high-intensity
pixels whose true scene-change line is not well approximated by its nearest-neighbour
line would receive a poor scene-change region, resulting in a high likelihood of error.
This effect was observed with other experiments. Figure illustrates an example
where a shadow is cast over a coloured cloth background. The fixed-threshold method
eliminates shadows from below the elephant whereas the noise-limited method performs
poorly. In both the castle and the elephant examples, Feomp fell inside the fixed-

threshold scene-change region, but outside of the noise-limited scene-change region.

Table lists the results from the 8 test sets comparing the fixed-threshold and

scene-change detection algorithms for each image set. Areas of genuine scene change
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True scene-change line
******** Approximation ‘A’
----- Approximation ‘B’

Figure 5.8 Diagram illustrating the effective areas of approximated scene-change regions: (a) the true
and approximated scene-change lines, shifted to the n = 1 point of the true line, (b) the significantly
overlapping regions using the fixed-threshold method, (c) the significantly overlapping regions for low-
values of reference pixel Pg using the noise-limited method, and (d) the insignificant overlapping regions
for high-values of reference pixel Pg using the noise-limited method, that will lead to misclassification
of shadow as scene-change for all but the lightest of shadows.

(a) (b) (c) (d)

Figure 5.9 Example of differences in performance of the fixed-threshold and noise-limited shadow
removal algorithms: (a) original image without shadow, (b) image with cast shadow, (c) shadowed
image processed with fixed-threshold algorithm, and (d) shadowed image processed with the noise-
limited algorithm.
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and areas of shadow were masked by hand so that the performance of the algorithms
could be quantified. Two performance criteria were calculated: percentage correct
for object detection (the number of genuine scene-change pixels that were correctly
classified) and percentage correct for shadow detection (the number of shadowed pixels
that were correctly classified). The noise-limited algorithm performed better in 6 of
the 8 experiments for detecting scene change, with an overall average of 93.20% correct
detection, compared to 91.33% for the fixed-threshold method. Conversely, only 1
out of 8 tests using the noise-limited method demonstrated an improvement in the
classification of shadows, with an overall detection rate of 77.65% for the noise-limited
method and 83.70% for the fixed-threshold method. The reduction in shadow detection
performance can be attributed to the quantization of the true scene-change curves to

one of the limited number of curves available from the GMB calibration chart.

In summary, a noise-limited scene-change algorithm has been developed that is
free from any empirical internal threshold. The statistically generated scene-change
regions show that using a simple fixed-threshold boundary is sub-optimal, as the size
and shape of the scene-change regions vary with the specific colour and intensity of the
reference pixel. However, experiments using noise-limited regions exposed a deficiency
in the limited number of measured shadow lines used in the new method. For the fixed-
threshold algorithm, small changes in the angle and length of the line caused by the
nearest-neighbour line-selection were hidden by the relatively large fixed radius of the
threshold. The noise-limited regions often closely followed the shadow line, especially
for higher intensity pixels, that resulted in an increased sensitivity to errors in the
approximation of the shadow line by the nearest-neighbour selection method.

Overall, the performances of both the fixed-threshold and noise-limited algorithms
are similar, which validates the noise-limited method as a potential alternative to the

fixed-threshold method, even with the limitations described above.

Table 5.1 Results of the noise-limited scene-change detection algorithm, showing the percentage
areas of scene-change correctly classified as objects or shadows.

Scene % Object | % Object | % Shadow | % Shadow
(noise- (threshold | (noise- (threshold
limited method) limited method)
method) method)

Set ‘Castle’ 93.74 95.86 72.80 82.18

Set ‘Hawaii’ 96.16 95.25 85.36 72.92

Set ‘Castle 2’ 95.66 89.10 85.74 95.02

Set ‘Hand’ 99.79 99.66 86.42 90.6

Set ‘Stitch’ 95.90 94.43 76.10 84.84

Set ‘Stitch 2’ 84.67 76.19 78.65 89.91

Set ‘GMB’ 89.96 89.87 69.08 76.10

Set ‘Mattress’ | 89.73 90.24 67.04 78.01

Average 93.20 91.33 77.65 83.70
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5.6 INTERPOLATED CALIBRATION DATA

To overcome the limitations of the restricted number of scene-change lines available
to the noise-limited scene-change detection algorithm when the GMB chart is used
for calibration, an expanded set of lines was created to increase the number of lines

available for nearest-neighbour selection.

Delaunay triangulation (Delaunay 1934) was used to generate natural sets of trian-
gles from the n = 1 points from the calibration data (shown in F igure. Interpolated
calibration lines were positioned at the centroid of each triangle. The angle and length
of each interpolated calibration line was calculated by taking the average of the angles
and lengths of the lines located at the triangles vertices. This process was repeated
using the expanded calibration set from the first iteration, and an extra 112 calibra-
tion lines were generated. This was empirically determined to be a sufficient number
to provide satisfactory shadow detection results in our experiments (i.e., a substantial
reduction in clusters of misclassified pixels, such as those shown in Figure ) The
full set of 131 lines is shown in Figure [5.10, For each pixel in a reference image the
calibration line of the n = 1 point closest to the pixel in x/y space of the expanded
calibration set (by Euclidean distance measurement) was used to approximate the true
scene-change line for the pixel. Though the lines appear cluttered in Figure [5.10] each
calibration line is used in isolation from any other line as each RGB triplet has a unique

and independent calibration line.

1.8¢

O n=1point
Measured
— — — Interpolated

161

1.4r

1.2¢

0.81

0.61

0.4¢

0.2 . . . ,
0 0.5 1 15 2 25

Figure 5.10 The full calibration line data set, generated from the 18 original calibration lines using
Delaunay triangulation.
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5.7 EXPERIMENTAL RESULTS USING INTERPOLATED
CALIBRATION DATA

The 8 image sets listed in Table were processed by the noise-limited scene-change
detection method using the expanded calibration set. To allow a comparison with the
fixed-threshold method which post-filters its scene-change mask, a filter was applied to
the resultant scene-change masks of the noise-limited method that assumes small areas
of detected scene-change or shadow are erroneous (areas less than that of a 3x3 pixel
block). The images for all 8 test sets, their scene-change masks, and reconstructed

shadow-free images (filtered) are given in Figures [5.11H5.26

The experimental results for the fixed-threshold and noise-limited methods are
given in Tables & The performances for scene-change detection is relatively
consistent across all methods, with averages ranging from 91.33% to 93.22%, increasing
to 95.17% when the size filtering is applied. There are substantial performance differ-
ences between the methods for shadow detection however, which ranges from 77.65%
to 87.13%, increasing to 95.61% with the filtering. The noise-limited methods used a
standard confidence interval value of 20 for the scene-change detection threshold, which
defines a maximum theoretical shadow-detection performance of 95.45% (prior to filter-
ing). The best scene-change and shadow-change detection method is the noise-limited

algorithm with interpolated calibration lines.
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Table 5.2 Results of the scene-change detection algorithm, showing the percentage areas of image

correctly classified as scene-change.

Scene Threshold | Noise-bound | Noise-bound Noise-bound
method (19-point (131-point (131-point
calibration) | calibration) calibration)
filtered*
‘Castle’ | 95.86% 93.74% 93.73% (96.72%)
‘Hawaii’ | 95.25% 96.16% 96.09% (97.99%)
‘Castle 2’ | 89.10% 95.66% 95.74% (97.77%)
‘Hand’ 99.66% 99.79% 99.82% (99.91%)
‘Stitch’ 94.43% 95.90% 96.23% (98.22%)
‘Stitch 2’ | 76.19% 84.67% 84.33% (86.43%)
‘GMDB’ 89.87% 89.96% 89.86% (91.22%)
‘Mattress’ | 90.24% 89.73% 89.94% (93.06%)
Average | 91.33 93.20 93.22 (95.17)

*areas < 9 pixels in the expanded-calibration set images that were detected as
shadows removed, or holes < 9 pixels in objects filled.

Table 5.3 Results of the scene-change detection algorithm, showing the percentage areas of image

correctly classified as shadow.

Scene Threshold | Noise-bound | Noise-bound Noise-bound
method (19-point (131-point (131-point
calibration) | calibration) calibration)
filtered*
‘Castle | 82.18% 72.80% 82.24% (92.14%)
‘Hawaii’ 72.92% 85.36% 91.34% (98.87%)
‘Castle 27 | 95.02% 85.74% 90.17% (98.30%)
‘Hand’ 90.65% 86.42% 90.81% (97.63%)
‘Stitch’ 84.84% 76.10% 87.08% (96.25%)
‘Stitch 2” | 89.91% 78.65% 87.43% (95.66%)
‘GMB’ 76.10% 69.08% 85.38% (93.79%)
‘Mattress’ | 78.01% 67.04% 82.57% (92.23%)
Average | 83.70% 77.65% 87.13% (95.61%)

*areas < 9 pixels in the expanded-calibration set images that were detected as
shadows removed, or holes < 9 pixels in objects filled.
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Figure 5.11 Images from image set ‘Castle’. (a) the background image - a large printed photograph
on a desk; (b) the comparison image with the added objects (pencil sharpener and cup) and their
respective cast shadows; (c¢) a difference mask showing any change in pixel value greater than 2 standard
deviations of the reference pixel noise value, highlighting changes between the two images.
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Figure 5.12 The shadow-detection masks for image set ‘Castle’. (a) the result of the noise-limited
scene-change algorithm, (b) a filtered mask of (a) with arbitrary-sized small holes filled and small
objects removed (< 9 pixels), demonstrating an example final mask that could be used for further
processing in an object detection process, (¢) reconstructed shadow-free image obtained by combining

the images from Figures [5.11h & [6.11p using the mask in .
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Figure 5.13 Images from image set ‘Hawaii’. (a) is the background image - a large printed photo-
graph on a desk; (b) is the comparison image with the added objects (arm and colour chart) and its
associated cast shadow; (c) a difference mask showing changes in pixel value greater than 2 standard
deviations of the reference pixel noise value, highlighting changes between the two images.
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Figure 5.14 The shadow-detection masks for image set ‘Hawaii’. (a) the result of the noise-limited
scene-change algorithm, (b) a filtered mask of (a) with arbitrary-sized small holes filled and small
objects removed (< 9 pixels), demonstrating an example final mask that could be used for further
processing in an object detection process, (c¢) reconstructed shadow-free image obtained by combining
the images from Figures & using the mask in [5.13k.
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Figure 5.15 Images from image set ‘Castle 2’. (a) is the background image - a large printed photo-
graph on a desk; (b) is the comparison image with the added objects (GMB colour chart) and its
associated cast shadow; (c) a difference mask showing changes in pixel value greater than 2 standard
deviations of the reference pixel noise value, highlighting changes between the two images.
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Figure 5.16 The shadow-detection masks for image set ‘Castle 2. (a) the result of the noise-limited
scene-change algorithm, (b) a filtered mask of (a) with arbitrary-sized small holes filled and small
objects removed (< 9 pixels), demonstrating an example final mask that could be used for further
processing in an object detection process, (c) reconstructed shadow-free image obtained by combining

the images from Figures [5.15h & [5.15p using the mask in .
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Figure 5.17 Images from image set ‘Hand’. (a) is the background image - a large printed photograph
on a desk; (b) is the comparison image with the added object (arm) and its associated cast shadow; (c)
a difference mask showing changes in pixel value greater than 2 standard deviations of the reference
pixel noise value, highlighting changes between the two images.
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Figure 5.18 The shadow-detection masks for image set ‘Hand’. (a) the result of the noise-limited
scene-change algorithm, (b) a filtered mask of (a) with arbitrary-sized small holes filled and small
objects removed (< 9 pixels), demonstrating an example final mask that could be used for further
processing in an object detection process, (¢) reconstructed shadow-free image obtained by combining

the images from Figures [5.17h & using the mask in .



5.7 EXPERIMENTAL RESULTS USING INTERPOLATED CALIBRATION DATA 109

Figure 5.19 Images from image set ‘Stitch’. (a) is the background image - a large printed photograph
on a desk; (b) is the comparison image with the added objects (coloured stuffed toy) and its associated
cast shadow; (c) a difference mask showing changes in pixel value greater than 2 standard deviations
of the reference pixel noise value, highlighting changes between the two images.
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Figure 5.20 The shadow-detection masks for image set ‘Stitch’. (a) the result of the noise-limited
scene-change algorithm, (b) a filtered mask of (a) with arbitrary-sized small holes filled and small
objects removed (< 9 pixels), demonstrating an example final mask that could be used for further
processing in an object detection process, (c) reconstructed shadow-free image obtained by combining

the images from Figures[5.19h & [5.19pb using the mask in .
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Figure 5.21 Images from image set ‘Stitch 2’. (a) is the background image - a large printed photo-
graph on a desk; (b) is the comparison image with the added objects (coloured stuffed toy) and its
associated cast shadow; (c) a difference mask showing changes in pixel value greater than 2 standard
deviations of the reference pixel noise value, highlighting changes between the two images.
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Figure 5.22 The shadow-detection masks for image set ‘Stitch 2’. (a) the result of the noise-limited
scene-change algorithm, (b) a filtered mask of (a) with arbitrary-sized small holes filled and small
objects removed (< 9 pixels), demonstrating an example final mask that could be used for further
processing in an object detection process, (c) reconstructed shadow-free image obtained by combining

the images from Figures [5.2Th & [5.21p using the mask in .
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Figure 5.23 Images from image set ‘GMB’. (a) is the background image - a large coloured and
patterned background with a GMB chart; (b) is the comparison image with the added object (coloured
stuffed toy) and its associated cast shadow; (c) a difference mask showing changes in pixel value
greater than 2 standard deviations of the reference pixel noise value, highlighting changes between the
two images.
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Figure 5.24 The shadow-detection masks for image set ‘GMB’. (a) the result of the noise-limited
scene-change algorithm, (b) a filtered mask of (a) with arbitrary-sized small holes filled and small
objects removed (< 9 pixels), demonstrating an example final mask that could be used for further
processing in an object detection process, (c) reconstructed shadow-free image obtained by combining

the images from Figures [5.23h & [5.23p using the mask in .
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Figure 5.25 Images from image set ‘Mattress’. (a) is the background image - a large coloured and
patterned background; (b) is the comparison image with the added objects (hand and coloured stuffed
toy) and their associated cast shadows; (c) a difference mask showing changes in pixel value greater
than 2 standard deviations of the reference pixel noise value, highlighting changes between the two
images.
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Figure 5.26 The shadow-detection masks for image set ‘Mattress’. (a) the result of the noise-limited
scene-change algorithm, (b) a filtered mask of (a) with arbitrary-sized small holes filled and small
objects removed (< 9 pixels), demonstrating an example final mask that could be used for further
processing in an object detection process, (c) reconstructed shadow-free image obtained by combining

the images from Figures [5.25h & [5.25p using the mask in .
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5.8 DISCUSSION

The theoretical maximum performance of 95.45% for shadow detection arises from
the statistical variations in image noise, for a value of 20. However, object detection
performance is dependent upon the colouring of objects, illumination, and backgrounds.
There will be instances where the colours of objects will be similar to the shadowed
background, which will cause a reduction in performance of scene-change detection. For
example, in set ‘Stitch 2’ (Figure the blue colouring of the added object appears
to be the same colour as the white clouds and sky when in shadow, and is detected as
such, resulting in an object integrity of just 84%. Conversely, conditions can arise when
there are significant colour differences resulting in much higher performance such as in
set ‘Hand’ (Figure which saw a 99.82% correct detection of scene change. This
is not a surprising result as the hand is highly reflective and has a substantial colour-
difference from the background. Another interesting observation in the results of set
‘Hand’ (Figure , is that there are thin lines of apparent scene-change extending
from the tips of several fingers, as well as an apparent growth in the webbing of the
hand between the thumb and forefinger. Closer inspection of the source images show
that there is in fact a change in colour underneath those areas due to obscuring of
the ambient light from the hand, colouring the background with a red tinge. This
demonstrates a limitation of the experimental conditions where the approximation of
ambient light by a fluorescent tube fails. However, it does illustrate the effectiveness

of the noise-limited method for detecting very small changes in illumination.

Shadow boundaries are well detected and removed using the noise-limited method
of shadow removal, as illustrated in the experimental results. Unlike many of the
existing methods of shadow removal, this method is purely colour-based and has no

reliance on the detection of edges.

The shadow-detection performances of the algorithms vary considerably more than
the scene-change detection performances, with the initial 19-point calibration for the
noise-limited method performing worse than the fixed-threshold method. The reasoning
for this, provided in Section [5.5] is because of the limited number of calibration lines
derived from the original GMB chart data. The expanded calibration set increases
the performance to beyond that of the fixed-threshold method with a 26% relative
improvement in shadow detection, reducing the shadow-detection error from 16.3% to
12.8%.

It is not surprising that there is very little improvement in the object detection
performances when the expanded calibration set is used, as the error in object detec-
tion arises from the incorrect classification of genuine scene-change as shadows due to
metamerism. Given a constant illumination, the likelihood of an object being cate-
gorised as shadow is solely dependent on the relative colour of an object compared to

the background, and so a significant reduction in metamerism was not expected from
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using an increased number of calibration lines.

It is possible that the fixed-threshold method could provide an improvement in
performance if the expanded calibration set was used. However, the aim of the work
described in this chapter was to develop a robust and viable method whose perfor-
mance was described by the objectives; specifically, improvements were required to the
original fixed-threshold method to remove the necessity for arbitrary thresholds. This
was achieved by integrating knowledge of noise into the algorithm, and the same initial
calibration data that was available to the fixed-threshold method (the original 19 cali-
bration lines) was used. The use of interpolated calibration points in the noise-limited
method does not affect the performance of the fixed-threshold algorithm described in
Chapter 4.

The scene-change detection performances for the fixed-threshold method are set by
the parameters inside the noise filter and in the value of . The value of ¢ was empir-
ically determined by observation of the scene-change masks, which resulted in a very
close match to the performances of scene-change detection by the noise-limited method,
where performance is characterised by the scene-change confidence interval (20) used.
The reduction in performances of the noise-limited method from the theoretical maxi-
mum shadow-detection of 94.95% can in part be attributed to the approximation of
the true calibration line by its nearest-neighbour. A slight variation in angle or length

could result in misclassifications of shadowed areas.

The application of simple filtering for small blobs (areas less than that of a 3-by-3
block) improved the scene-change detection performance, at the expense of detecting
scene-changes smaller than the size of the removed blobs. This leveraging of non-colour
based information increases the performance of the scene-change detection (to 95.17%)
and shadow detection (to 95.61%) for the image sets tested.

There are three approaches which could further improve the performance of the
noise-limited scene-change method: extended interpolation of the calibration set; cali-
bration with a larger number of colour panels; and modelling of the calibration lines
which could be used to accurately generate the true shadow line for any pixel in the

reference image. These could form the basis for future work.

The noise-limited method for scene-change detection has been applied to outdoor
images, but the limited dynamic range of the two cameras trialled could not capture
sufficient shadow information without saturation of pixel data for non-shadowed areas.

High dynamic-range cameras would provide a solution to the saturation problem.

All objectives described in Section [£.1] have been met by the new scene-change
detection algorithm. Table compares the new algorithm and Finlayson et al.’s
algorithm with the objectives. The significant difference between the methods is not
in their performance, but in their properties: Finlayson et al.’s method will simply not

work without the objective conditions in Table[5.8 being met, hence there is no benefit
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in providing a direct comparison of performance between them.

Table 5.4 A comparison between the new scene-change detection algorithm and Finlayson et al.’s
shadow removal algorithm, with regard to the objectives outlined in Section [4.1

Objective Finlayson et al.’s | Noise-bound
method method

Independent of object shape X v

Independent of additional shadows | v/ v

cast on the scene

Operates on both indoor and | X v
outdoor environments

Does not require manual interaction | x

Free of arbitrary internal thresholds

X
SNENEN

Does not require significant training | x

5.9 CONCLUSION

A novel method of scene-change detection has been presented that is independent of
object shape or any other a priori scene information, and only requires the setting of
one parameter (the confidence interval for noise separation). It is the first that is based
upon two arbitrarily coloured illuminants, with subsequent integration of camera noise
to remove dependencies on empirical thresholds. This is a significant advance in image
preparation for machine processing, as there are few methods in any branch of image

processing that are independent of arbitrary or empirical thresholds.

With calibrated information on camera noise and a confidence interval of 20
(94.45%), an average object detection of 93% percent and shadow detection of 87%
was achieved on experiments with 8 image sets (a posteriori simple filtering raised
these figures to 95%). The scene-change detection method is based on colour change
only, and therefore requires careful calibration of illumination change for the direct plus
ambient to ambient illumination only. For application to outdoor images a camera with
a high dynamic range is required, as the intensity of the sun can be several orders of
magnitude greater than the intensity of cast shadows, resulting in loss of colour infor-

mation with the majority of currently available cameras.
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Part IV

Discussion and conclusions



Chapter 6

CONCLUSION AND FUTURE WORK

6.1 CONCLUSIONS AND ACHIEVEMENTS

This thesis investigates the composition of noise in standard industrial digital cameras,
develops methods for measuring camera noise, and integrates noise characterstics into a
new scene-change detection algorithm. Each is discussed in the following noise analysis

and scene-change sections.

The results of this work provide a step forward in the area of vision processing. The
understanding and measurement of noise is critical for developing highly robust vision-
processing algorithms, as the signal-to-noise ratios are fundamentally limiting what
information that can be extracted from any data. The output from the scene-change
detection methods developed in this thesis can be used for higher level processing of

image content.

6.1.1 Noise analysis

New models for commercial CCD- and CMOS-based cameras have been developed.
By analysing the image capture process, new comprehensive noise models have been
created that incorporate all known sources of noise for both CCD and CMOS cameras.
Subsequently, a method to validate the CCD model by analysis of output images alone
has been developed. The CMOS model is more complex and is difficult to validate

solely from output images due to the extra circuitry surrounding each pixel.

Methods for measuring spatial, temporal, and combined noise have been developed
that are applicable to any imaging device. Using these methods an investigation into
the effect of environmental temperature on base-line camera noise has been completed,
with results showing surprising variation in noise with temperature. All objectives
outlined in Section [3.1.4l have been achieved:

e Comprehensive models for commonly available CCD and CMOS cameras have

been developed;
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e A method of validating the CCD model using the camera’s output images only
has been derived and tested experimentally, with results demonstrating a good

fit between the measured and modelled data;

e Methods for measuring the combined noise for any camera, for use in subsequent

image processing applications, have been developed; and

e An investigation into the effects of environmental temperature on camera noise

has been completed.

The outputs from the noise analysis section of work have provided interesting obser-
vations. Firstly, quantization is frequently acknowledged by researchers but normally
unaccounted for during analysis of noise in image data; there are no reported experi-
ments on real image data that have incorporated the effects of quantization. The effect
of including quantization noise into each component in the validation of the CCD noise
model (Section is significant, as the model fit is poor without it. Secondly, the
CCD cameras’ noise-response to temperature variation is not predictable (Section .
It is assumed that the supporting electronics required for driving the CCD element
is responsible for this unpredictability, as measurements show that the CMOS sensor

responds in a more predictable manner.

6.1.2 Scene-change detection

Part III describes the development of a new scene-change detection model, the first
of its kind that is based upon two arbitrarily coloured illuminants, with subsequent
integration of camera noise to remove dependencies upon empirical thresholds. This in
itself is an achievement, as there are few methods in any branch of image processing

that are independent of arbitrary or empirical thresholds.

The development of the scene-change detection method was a two-part process.
The initial dual-illuminant model was developed to meet the majority of objectives
in [4.1] and the experimental results validated the dual illuminant approach. The inte-
gration of the noise research from Part II followed, which highlighted deficiencies in the
original number of calibration curves due to the increased sensitivity of the algorithm.
Once this was overcome by interpolation of the calibration data, the noise-integrated
method completed the list of objectives by removing the necessity for empirical thresh-
olds, and also showed improved results compared to the initial method. The noise-
limited scene-change detection algorithm correctly classifies 93% of scene-change pixels
and 87% of cast-shadow pixels using colour change alone. When simple post-analysis
size-filtering is applied these figures increase to 95%. Therefore, all objectives outlined

in Section [4.1] have been met. In summary:



6.2 SUGGESTIONS FOR FUTURE WORK 123

e A method of scene-change detection was developed using a dual-illuminant model
for illumination change, that classified areas of image changes as scene-change or

shadow;

e The scene-change detection method is independent of object shape, suitable for
operating in both indoor and outdoor environments, and does not require manual

interaction or significant training;

¢ Integration of noise knowledge into the method removed the need for empirical
thresholds.

One unanticipated side-effect of the developed scene-change detection method is
that it can be used to remove all cast shadows from stationary outdoor scenes. By
analysing a series of images captured over the course of a day, integration of shadow-
free regions of a scene will effectively eliminate cast shadows and will eventually result

in an intrinsic image of the scene.

6.2 SUGGESTIONS FOR FUTURE WORK

There are several avenues for research that can follow the work presented in this thesis
that could potentially improve the results and methods presented. Future work is split

into camera-noise and scene-change detection sections.

6.2.1 Further camera-noise research

Further research into quantization noise effects in images is warranted, as its effect
is neither simple nor linear. Ideally, a parameterised model of quantization noise for
increasing pixel-data variation would provide more accurate quantization noise error

compared with using measured data, as was done in this work.

The analysis of the impact of environmental temperature on camera noise provides
a measure of the base-line noise response for several cameras. However, image noise
increases with increased image-sensor irradiation, and an investigation into the effects
of environmental temperature on illumination-dependent noise (PRNU and photon

shot-noise) would reveal new insights into the dynamics of these cameras.

The development of a stand-alone program that could capture and analyse image
noise would result in a useful tool. At present the capture of images is separate from
the analysis, which uses MATLAB code and manually programmed calibration points
on a GMB colour chart. Such a tool would allow for a fast and easy method for camera

calibration that would be useful to both application developers and users.

The integration of temperature into the camera noise models would significantly

broaden the application of the models to environments susceptible to temperature
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changes. For example, an application could use a thermocouple or other simple temper-
ature sensor as an input to the model to provide an accurate estimation of the noise
present at a specific pixel within a particular image. This would also allow the stability

of noise characteristics over the life of the camera to be analysed.

Validation of the CMOS model is difficult due to the potential manufacturer-specific
design of the active pixel elements. However, further research could uncover new meth-
ods for measurement of noise components by developing iterative techniques to predict-

ing the likely magnitudes of the noise components.

Other image processing applications could benefit from integration of noise knowl-
edge into their algorithms. Chapter |5| of this thesis has demonstrated that the benefits
can be significant as empirical or arbitrary thresholds can be removed, as well as other
broad noise filtering that an algorithm may employ to overcome the detrimental effects
of image noise. The integration of noise knowledge may also increase performance
and robustness of the algorithm, as demonstrated with the new scene-change removal

algorithm discussed in the next section.

6.2.2 Further scene-change detection research

As a camera’s SNR improves, the amount of allowed error in calibration of the illumi-
nant colours for scene-change detection is reduced, as the scene-change regions reduce
in size making them more sensitive to error. Small changes in skylight colour can
occur over the course of a day, with potentially large changes at sunrise and sunset. In
these conditions a dynamic method of calibration would be required to track changes

in illumination colour to ensure the dual-illumination model was accurate.

Similarly, the error due to the selection of calibration curves by nearest-neighbour
interpolation will increase as SNR improves. The changes in calibration line angle and
length could be modelled for a particular pair of illuminants, which could then be used
to generate accurate scene-change regions for any pixel colour. This would require
a new approach for generating the regions: the MATLAB code used in this thesis to
generate the 131 scene-change regions in Chapter 5 took over 20 hours of computational

time on a 2.33 GHz Core 2 Duo processor.

A natural extension to the dual-illuminant scene-change detection method is to
apply the process to outdoor images taken with a high dynamic range camera. The
standard 8-bit intensity per colour channel used in the cameras tested is not of sufficient
dynamic range to capture shadow detail while retaining detail of objects in direct
sunlight. Hence all experiments were performed on images captured in an environment

with controlled lighting.

As the noise-bound method is dependent upon image noise statistics, it inherits

the noises dependence upon temperature. An extension of the noise-bound method to
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dynamically update its noise model with temperature would increase the robustness of

the method in applications where environmental temperature is expected to change.

An analysis of the effect of varying of the single parameter o using a variety of
cameras and illumination conditions and scenes would provide an objective measure

for optimising a value for o, for a given environment.

An interesting application of the scene-change detection method is that it could be
used to dynamically update a background image over the course of a day. In principle,
this would provide a background image that is free from any cast shadow, resulting in

an intrinsic image of the scene.

One of the constraints for the scene-change detection method is that the camera
must be stationary, which is an acceptable condition in many industrial image process-
ing tasks (e.g., traffic monitoring or process line monitoring). It would be interesting
to see a research project attempt to incorporate camera motion into the scene-change
detection method. A direct pixel-to-pixel mapping would be difficult unless accurate
camera movement is provided to the algorithm, but an approach that allowed for slight
misalignment of the background and comparison images may result in an acceptable

solution, with little reduction in accuracy.



REFERENCES

Anaxagoras, T., Guerrini, N., Turchetta, R. & Allinson, N. M. (2005). High dynamic
range sensor active pixel sensor, Proc. of the First International Conference on

Sensing Technology pp. 448-453.

Arbel, E. & Hel-Or, H. (2007). Texture-preserving shadow removal in color images
containing curved surfaces, IEEE Conference on Computer Vision and Pattern

Recognition pp. 1-8.
Baher, H. (1990). Analog and digital signal processing, John Wiley & Sons Ltd.

Barnard, K., Cardei, V. & Funt, B. (2002). A comparison of computational color
constancy algorithms. i: Methodology and experiments with synthesized data,
IEEE Trans. Image Processing 11(9): 972-984.

Bhattacharyya, G. K. & Johnson, R. A. (1977). Statistical concepts and methods, Wiley

series in probability and methematical statistics, John Wiley & Sons, Inc.

Billmeyer, Fred W., J. & Saltzman, M. (1966). Principles of Color Technology, John
Wiley & Sons.

Blanc, N. (2001). CCD versus CMOS - has CCD imaging come to an end?, Photogram-
metric Week 01 .

Boie, R. & Cox, I. (1992). An analysis of camera noise, IEEE Trans. on Pattern
Analysis and Machine Intelligence 14(6): 671-674.

Brouk, L. & Nemirovsky, Y. (2004). CMOS SOI image sensor, Proc. of the IEEE

International Conference on Electronics, Circuits and Systems 11: 156-159.

Catrysse, P. B., Wang, M. & El Gamal, A. (1999). Comparative analysis of color
architectures for image sensors, Proc. of SPIE Sensors, Cameras, and Applications
for Digital Photography 3650: 26-35.

Chang, C.-J., Hu, W.-F., Hsieh, J.-W. & Chen, Y.-S. (2002). Shadow elimination for
effective moving object detection with gaussian models, Proc. 16th International

Conference on Pattern Recognition 2: 540-543.



REFERENCES 127

Chen, T., Catrysse, P. B., El Gamal, A. & Wandell, B. A. (2000). How small should
pixel size be?, Proc. of SPIE Sensors and Camera Systems for Scientific, Indus-
trial, and Digital Photography Applications 3965: 451-459.

Chuang, Y.-Y., Goldman, D., B., Curless, B., Salesin, D. H. & Szeliski, R. (2003).
Shadow matting and compositing, ACM Transactions on Graphics pp. 494-500.

CIE (2009). http://www.cie.co.at.

Costantini, R. & Siisstrunk, S. (2004). Virtual sensor design, Proc. of SPIE Sensors and
Camera Systems for Scientific, Industrial, and Digital Photography Applications
V. 5301: 408-419.

Crow, F. C. (1977). Shadow algorithms for computer graphics, Proc. 4th Annual
Conference on Computer Graphics and Interactive Techniques pp. 242-248.

Dalsa (2006). CCD technology primer, dalsa inc, available: http://www.dalsa. com.

Delaunay, B. (1934). Sur la sphere vide, Izvestia Akademii Nauk SSSR, Otdelenie
Matematicheskikh i Estestvennykh Nauk 7: 793-800.

Ditchburn, R. W. (1976). Scattered and filtered solar UV measurements, third edn,

Academic Press, London.
Diwa (2007). Row and column noise. http://www.diwa-labs.com.

Drew, M. S., Chen, C., Hordley, S. D. & Finlayson, G. D. (2002). Sensor transforms

for invariant image enhancement, 10th Color Imaging Conference pp. 325-329.

Eisemann, E. & Durand, F. (2004). Flash photography enhancement via intrinsic
lighting, ACM Trans. Graphics pp. 673-678.

El Gamal, A. & Eltoukhy, H. (2005). CMOS image sensors, IEEE Clircuits and Devices
Magazine 21(3): 6-20.

El Gamal, A., Fowler, B. A., Min, H. & Liu, X. (1998a). Modeling and estimation of
FPN components in CMOS image sensors, Solid State Sensor Arrays: Develop-
ment and Applications 11 3301: 168-177.

El Gamal, A., Fowler, B., Min, H. & Liu, X. (1998b). Modeling and estimation of FPN
components in CMOS image sensors, Proc. of SPIE .

Erbou, S. G., Sorensen, H. B. D. & Stage, B. (2005). Detection of cast shadows in
surveillance applications, Den 14. Danske Konference i Monstergenkendelse og

Billedanalyse .



REFERENCES 128

Farrell, J. E., Xiao, F., Catrysse, P. B. & Wandell, B. A. (2004). A simulation tool for
evaluating digital camera image quality, Image Quality and System Performance
5294: 124-131.

Finlayson, G. D., Hordley, S. D. & Drew, M. S. (2002a). Removing shadows from
images, Proc. 7th European Conference on Computer Vision-Part IV pp. 823-836.

Finlayson, G., Drew, M. & Lu, C. (2004). Intrinsic images by entropy minimization,
Proc. 8th FEuropean Conference on Computer Vision pp. 582-595.

Finlayson, G., Hordley, S. & Drew, M. (2002b). Removing shadows from images using
retinex, Proc. 10th Color Imaging Conference: Color Science and Engineering

Systems, Technologies, Applications .

Finlayson, G., Hordley, S., Lu, C. & Drew, M. (2006). On the removal of shadows from
images, IEEE Trans. Pattern Analysis and Machine Intelligence 28(1): 59-68.

Flory, R. (1985). Image acquisition technology, Proc. of the IEEE 73(4): 613-637.

Fossum, E. (1997). CMOS image sensors: electronic camera-on-a-chip, IEEE Trans.
Electron Devices 44(10): 1689-1698.

Fowler, B., El Gamal, A. & Yang, D. (1994). A CMOS area image sensor with pixel-
level A/D conversion, 1994 IEEE International Solid-State Circuits Conference
pp. 226-227.

Funka-Lea, G. & Bajcsy, R. (1995). Combining color and geometry for the active, visual
recognition of shadows, Proc. IEEFE 5th International Conference on Computer
Vision pp. 203-2009.

Funt, B., Barnard, K. & Martin, L. (1998). Is machine colour constancy good enough?,
5th European Conference on Computer Vision pp. 445-459.

Funt, B. & Finlayson, G. (1995). Color constant color indexing, IEEE Trans. on
Pattern Analysis and Machine Intelligence 17(5): 522-529.

Gerritsen, F. (1975). Theory and Practice of Color, Studio Vista.

Gershon, R., Jepson, A. D. & Tsotsos, J. K. (1987). From [R, G, B] to surface
reflectance: Computing color constant descriptors in images, Proc. International

Joint Conference on Artificial Intelligence pp. 755-758.
Gregory, R. L. (1988). Eye and brain, fifth edn, Oxford University Press, Oxford.

Gunturk, B. K., Glotzbach, J., Altunbasak, Y., Schafer, R. W. & Mersereau, R. M.
(2005). Demosaicking: Color filter array interpolation (exploring the imag-
ing process and the correlations among three color planes in single-chip digital
cameras), IEEE Signal Processing 22(1): 44-54.



REFERENCES 129

Healey, G. & Kondepudy, R. (1994). Radiometric CCD camera calibration and
noise estimation, IFEE Trans. on Pattern Analysis and Machine Intelligence
16(3): 267-276.

Henderson, S. T. (1977). Daylight and its spectrum, second edn, Adam Hilger Ltd,
Bristol.

Hernandez-Andres, J., Lee, R. L. & Romero, J. (1999). Calculating correlated color
temperatures across the entire gamut of daylight and skylight chromaticities,
Applied Optics 38(27): 5703-5709.

Horowitz, P. & Hill, W. (1989). The Art of Electronics, second edn, Melbourne.

Horprasert, T., Harwood, D. & Davis, L. S. (1999). A statistical approach for real-time
robust background subtraction and shadow detection, Proc. IEEE ICCV pp. 1-19.

Huang, W.-C. & Wu, C.-H. (1998). Adaptive color image processing and recogni-
tion for varying backgrounds and illumination conditions, IEEE Trans. Industrial
FElectronics 45(2): 351-357.

Hynecek, J. (1990). Spectral analysis of reset noise observed in CCD charge-detection
circuits, IEEE Trans. on Electron Devices 37(3): 640-647. 0018-9383.

Ibrahim, M. M. & Rajagopal, A. (2007). Shadow detection in images. US Patent No.
2007/0110309 Al.

Igbal, M. (1983). An Introduction to Solar Radiation, Academic Press Canada, Ontario.

Irie, K., McKinnon, A. E., Unsworth, K. & Woodhead, I. M. (2006). A comparison of
noise in CCD and CMOS image sensors, Proc. Image and Vision Computing New
Zealand pp. 43-48.

Irie, K., McKinnon, A. E., Unsworth, K. & Woodhead, I. M. (2007a). Measuring digital

camera image noise, Proc. 2nd International Conference on Sensing Technology .

Irie, K., McKinnon, A. E., Unsworth, K. & Woodhead, I. M. (2007b). Shadow removal
for object tracking in complex outdoor scenes, Proc. Image and Vision Computing
New Zealand pp. 25-30.

Irie, K., McKinnon, A. E., Unsworth, K. & Woodhead, I. M. (2008a). An investi-
gation into noise-bound shadow detection and removal, Proc. Image and Vision

Computing New Zealand pp. 1-6.

Irie, K., McKinnon, A. E., Unsworth, K. & Woodhead, I. M. (2008b). Measurement
of digital camera image noise for imaging applications, Sensors and Transducers
90: 185—-194.



REFERENCES 130

Irie, K., McKinnon, A. E., Unsworth, K. & Woodhead, I. M. (2008c). A model for
evaluation of noise in CCD digital-video cameras, Measurement, Science, and
Technology 19.

Irie, K., McKinnon, A. E., Unsworth, K. & Woodhead, I. M. (2008d). A technique
for evaluation of CCD video-camera noise, IEEFE Trans. Circuits and Systems for
Video Technology 18(2): 280-284.

Javed, O. & Shah, M. (2002). Tracking and object classification for automated surveil-
lance, Proc. 7th European Conference on Computer Vision-Part IV pp. 343-357.

Jiang, H. & Drew, M. (2003a). Shadow-resistant tracking in video, Proc. 2003 Inter-
national Conference on Multimedia and Ezpo 3: I1I-77-80 vol.3.

Jiang, H. & Drew, M. S. (2003b). Shadow-resistant tracking in video, Proc. IEEE

International Conference on Multimedia and Exzpo 3: 7T7-80.

Kodak CCD Primer KCP-001 (1999). Technical report, Eastman Kodak Company -

Microelectronics Technology Division.

Kremens, R. (2001). Image processing system applications: from barbie cams to space

telescopes, Technical report.

Leone, A., Distante, C. & Buccolieri, F. (2006). A shadow elimination approach in
video-surveillance context, Pattern Recognition Letters 27(5): 345-355.

Litwiller, D. (2001). CCD vs. CMOS: Facts and fiction, Photonics Spectra pp. 154-158.

Liu, F. & Gleicher, M. (2008). Texture-consisten shadow removal, Proc. European

Conference on Computer Vision pp. 437-450.

Loose, M., Meier, K. & Schemmel, J. (2001). A self-calibrating single-chip
CMOS camera with logarithmic response, IEEE Journal of Solid-State Circuits
36(4): 586-596.

Lu, C., Drew, M. & Finlayson, G. (2006). Shadow removal via flash/noflash illumina-~
tion, 8th IEEE Workshop on Multimedia Signal Processing pp. 198-201.

Lynch, D. K. & Livingston, W. (1995). Color and Light in Nature, Press Syndicate of
the University of Cambridge, Cambridge.

Marchant, J. A. & Onyango, C. (2000). Shadow-invariant classification for scenes
illuminated by daylight, Journal of the Optical Society of America A 17: 1952—
1961.

Matsushita, Y., Nishino, K., Ikeuchi, K. & Sakauchi (2004). Illumination normalization
with time-dependent intrinsic images for video surveillance, IEEE Trans. Pattern
Analysis and Machine Intelligence 26(10): 1336-1347.



REFERENCES 131

Mendoza, D. (1997). An analysis of CCD camera noise and its effect on pressure
sensitive paint instrumentation system signal-to-noise ratio, Record International

Congress on Instrumentation in Aerospace Simulation Facilities pp. 22-29.

Nadimi, S. & Bhanu, B. (2004). Physical models for moving shadow and object detec-
tion in video, IEEFE Trans. Pattern Analysis and Machine Intelligence 26(8): 1079—
1087.

Nakamura, J. (2006). Image Sensors and Signal Processing for Digital Still Cameras,
CRC Press.

Newton, 1. (1730). Opticks or a treatise of the reflections, refractions, inflections and

colours of light, fourth edn, Oxford University Press, London.

Ott, H. W. (1988). Noise Reduction Techniques in FElectronic Systems, second edn,

Canada.

Parisi, A. V., Sabburg, J. & Kimlin, M. G. (2004). Scattered and filtered solar UV

measurements, Kluwer Academic publishers, Netherlands.

Porikli, F. & Thornton, J. (2005). Shadow flow: a recursive method to learn moving
cast shadows, Proc. IEEE 10th International Conference on Computer Vision
1: 891-898.

Poynton, C. (1996). A Technical Introduction to Digital Video, John Wiley & Sons.

Ramachandran, V. S. (1998). Perceiving shape from shading, Scientific American
259: 76-83.

Ramanath, R., Snyder, W. E. & Bilbro, G. L. (2002). Demosaicking methods for bayer
color arrays, Journal of Electronic imaging 11(3): 306-315.

Salvador, E., Cavallaro, A. & Ebrahimi, T. (2001). Shadow identification and classifi-
cation using invariant color models, Proc. International Conference on Acoustics,
Speech, and Signal Processing 3: 1545-1548.

Sekular, R. & Blacke, R. (1988). Eye and brain, second edn, McGraw-Hill, New York.

Stauder, J., Mech, R. & Ostermann, J. (1999). Detection of moving cast shadows for
object segmentation, Proc. of IEEE Trans. on Multimedia 1: 65-76.

Stone, M. C. (2003). A Field Guide to Digital Color, A K Peters Ltd.

Tian, H. & El Gamal, A. (2000). Analysis of 1/f noise in CMOS aps, Proc. SPIE
3965: 168-176.

Tian, H., Fowler, B. & Gamal, A. (2001). Analysis of temporal noise in CMOS photo-
diode active pixel sensor, IEEE Journal of Solid-State Circuits 36(1): 92-101.



REFERENCES 132

Trussell, H. J., Saber, E. & Vrhel, M. (2005). Colour image processing (basics and
special issue overview), IEEE Signal Processing 22(1): 14-22.

Tsin, Y., Ramesh, V. & Kanade, T. (2001). Statistical calibration of CCD imaging
process, Proc. IEEFE 8th International Conference on Computer Vision 1: 480—487.

Wang, J., Chung, Y., Chang, C. & Chen, S. (2004). Shadow detection and removal for
traffic images, Proc. IEEE International Conference on Networking, Sensing and
Control 1: 649-654.

Weiss, Y. (2001). Deriving intrinsic images from image sequences, Proc. 8th IEEE

International Conference on Computer Vision 62: 68-75.

Withagen, P., Groen, F. & Schutte, K. (2007). Ias technical report ias-uva-07-02
shadow detection using a physical basis, Technical report, Intelligent Autonomous

Systems, University of Amsterdam.

Woo, A., Poulin, P. & Fournier, A. (1990). A survey of shadow algorithms, Computer
Graphics and Applications, IEEE 10(6): 13-32.

Wu, T.-P. & Tang, C.-K. (2005). A bayesian approach for shadow extraction from
a single image, Proc. IEEE 10th International Conference on Computer Vision
1: 480-487.

Xiao, M., Han, C.-Z. & Zhang, L. (2007). Moving shadow detection and removal for

traffic sequences, International Journal of Automation and Computing 4: 38—46.

Xu, D., Liu, L., Li, Z. & Tang, X. (2005). Insignificant shadow detection for video
segmentation, IEEFE Trans. Circuits and Systems for Video Technology 15: 1058
1064.

Yadid-Pecht, O. & Fish, A. (2004). Active Pizel Sensor Design - from pizels to systems,

Kluwer.



	Declaration
	Abstract & Keywords
	Preface
	Aims and achievements
	Thesis layout
	Acknowledgements

	Glossary of terms
	Symbol definitions
	Contents
	List of Figures
	List of Tables
	I Introduction and background
	Introduction
	Background
	The human vision system
	The non-linear intensity response of the HVS
	Colour response of the HVS
	Chromatic adaptation and image display

	Image capture
	Metamerism
	Digital cameras
	A brief history of digital imaging
	CCD/CMOS image capture

	Light & shadows
	Colour temperature
	Sunlight, skylight, and daylight
	Artificial illumination
	Shadow classification
	Shadows and imaging



	II Noise analysis
	Camera Noise
	Literature review
	Sources of noise in images captured with digital cameras
	Offset fixed-pattern noise
	Photo response non-uniformity
	Shot noise
	Readout noise
	Column noise
	Demosaicing
	Quantization
	Summary

	Existing camera noise models
	Discussion
	Objectives

	CCD noise model
	Measurement of CCD camera noise
	Sample requirements
	Measurement process
	Quantization noise
	Demosaicing
	Column noise
	Offset FPN
	Dark current shot noise and readout noise
	Photon shot noise
	PRNU

	CCD noise model calibration
	CMOS noise model
	Measurement of combined noise
	Measurement of image noise
	Spatial noise
	Temporal noise
	Combined noise

	Experimental results for a CCD camera
	Experimental results for a CMOS camera

	The effect of temperature
	Experimental setup
	Results
	Discussion

	Summary


	III Shadow-free scene-change detection
	Colour-based scene-change detection
	Objectives
	Literature review
	Beginnings
	Intrinsic methods of shadow removal
	Methods based on illumination colour-change
	Manually-guided methods
	Edge-based methods
	Texture-based methods 
	Other methods 
	The work of Finlayson, Hordley, and Drew
	Summary

	Scene-change detection based on dual illumination
	Scene-change detection
	Assumptions
	Model calibration
	Pixel invariance and shadow removal
	Noise

	Results
	Artificial illumination
	Natural illumination
	Discussion
	Conclusion



	Noise-limited scene-change detection
	Introduction
	Objective
	Modified band-ratio space
	Noise-limited scene-change detection regions
	Scene-change method comparison using initial calibration data
	Interpolated calibration data
	Experimental results using interpolated calibration data
	Discussion
	Conclusion


	IV Discussion and conclusions
	Conclusion and future work
	Conclusions and achievements
	Noise analysis
	Scene-change detection

	Suggestions for future work
	Further camera-noise research
	Further scene-change detection research


	REFERENCES


