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ABSTRACT of a thesis submitted in partial fulfilment of the 

requirements for the Degree of Doctor of Philosophy 

 

DIET EFFECT ON NITROGEN PARTITIONING AND ISOTOPIC 

FRACTIONATION (δ15N) IN RUMINANTS 

 

by L. Cheng 

 

The main objective of this PhD study was to investigate the relationship between nitrogen 

(N) partitioning and isotopic fractionation (δ15N) in ruminants consuming diets with 

varying levels of N and/or water soluble carbohydrate (WSC). Nitrogen balance studies 

were conducted for all studies with measuring δ15N from various N sinks (e.g., milk, 

plasma, urine and faeces). Concentrations of blood (BUN) or milk urea N (MUN) and 

urinary excretion of purine derivative (PD) were also measured to provide indications to 

N metabolism in the whole body and rumen levels. Treatment effects were tested using 

ANOVA; the relationships between measured variables were analysed by linear 

regression analysis.  

 

Studies of lactating cows (Chapter 4) and lactating goats (Chapter 5) explored the 

manipulation of WSC/N effect on N-use efficiency (NUE; milk N output/N intake), whilst 

studies of non-lactating sheep (Chapter 3) and lactating goats (Chapter 5) explored the 

manipulation of WSC/N effect on urinary N output proportion to N intake (UN/NI) and 

urinary N output proportion to faecal N output (UN/FN).  

 

The increase in WSC/N increased NUE of lactating cows by 56 % through increasing 

energy intake and milk N output (MN), and decreasing N intake. On the other hand, the 

increase in NUE and MN were not shown in lactating goats study. It is believed the lack 

of response was mainly due to the high dietary N concentration and very high dietary 

WSC concentration in conjunction with unchanged DMI, compared with lactating cows 

study. No change in MCP was detected in lactating goats study; but a possibility of rumen 

acidosis resulted from excessive WSC intake should not be excluded. No change in 
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UN/NI was observed from both the non-lactating sheep and lactating goats studies. Little 

dietary effect on UN/NI in lactating goats may be explained by similar reasons (i.e., high 

dietary N and WSC concentration and fixed DMI) led to lack of N partitioning response 

to dietary treatment. Calculated microbial crude protein production per unit of 

fermentable ME (MCP/FME) and PD analysis suggested no improvement in MCP was 

achieved in non-lactating sheep study. No change in UN/FN was observed in both 

lactating goats and non-lactating sheep studies. The opposite effect from dry matter 

digestibility (increased) and N digestibility (decreased) resulted in little changes in non-

lactating sheep FN when WSC/N increased. On the other hand, lack of changes in MCP 

synthesis resulted in no changes in UN in lactating goats study. 

 

Plasma, milk, faeces, muscle, wool and liver were enriched in δ15N compared with feed, 

while urine was depleted in δ15N relative to feed. It is suggested that the main reason for 

the enrichment of δ15N in faeces is the presence of enriched endogenous material. The 

majority of N in wool, liver, muscle, milk and plasma exists as true protein, which has 

been reported to be enriched in δ15N. In contrast, urea is the main N source of urine and is 

reported to be depleted in δ15N. Regression analysis demonstrated that urine and faecal 

δ15N were related to feed δ15N (Chapter 5), milk δ15N and plasma δ15N were related to 

each other (Chapter 4), and muscle δ15N - feed δ15N was related to urine δ15N - feed δ15N 

(Chapter 3). It is believed that these observed relationships related to N isotopic 

fractionation during digestion and absorption of feed components, such as WSC and N or 

a possible common effect of the endogenous N contribution to various N sinks from feed 

N. 

 

A major observation from this PhD project was the linear relationship between N isotopic 

fractionation and N partitioning from both non-lactating sheep (Chapter 3) and lactating 

cows studies (Chapter 4). Two plausible sites (i.e., liver and rumen) of N isotopic 

fractionation that may be related to N partitioning were discussed in Chapter 6. Overall, 

under the condition of these studies (high dietary N); the relationships between N isotopic 

fractionation and N partitioning was believed to be mainly driven by deamination or 

transamination in the liver, rather than MCP synthesis in the rumen. 

 

Results confirmed there is a potential of using N isotopic fractionation as an easy to 

conduct indicator of N partitioning. However, further research on the accuracy of using N 
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isotopic fractionation predicting N partitioning at different feeding system (e.g., low vs 

high N intake); animal variations contribute to changes in N isotopic fractionation; and 

the contribution from different body parts (e.g., rumen, liver and intestines) are needed.  

 

Keywords: sustainability, nitrogen use efficiency, stable isotope, water soluble 

carbohydrate, nitrogen metabolism, urea nitrogen, purine derivatives, microbial protein 

synthesis, rumen  
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CHAPTER 1 

  

INTRODUCTION 

 

It has been reported that temperate pasture fed to ruminant generally contains a high 

concentration of nitrogen (N) relative to energy supply (Litherland and Lambert, 2007). 

This can lead to a low efficiency of incorporating feed N into usable N (e.g., milk, meat); 

and large outputs of surplus N to the environment (Pacheco and Waghorn, 2008). Any 

investigation into factors affecting N partitioning, such as dry matter intake, dietary 

composition, energy/N ratio in feed, physiological status of the animal, individual animal 

genetic differences, requires a simple, cheap and non-invasive method of determining N 

partitioning between the various N sinks (e.g., milk, meat, urine and faeces). 

 

The classic approach to establish N partitioning has been an N balance study. However, it 

is subject to large experimental errors and difficult to conduct with grazing animals 

(Spanghero and Kowalski, 1997; Cheng et al., 2011). Milk or blood urea N has also been 

widely used to indicate N partitioning. However, it is susceptible to diurnal variations and 

limited in its use when dietary N is high (Geerts et al., 2004). Therefore, a novel and 

simple method is needed to give a good indication of N partitioning from large groups of 

grazing animals. Wattiaux and Reed (1995) suggested that N isotopic fractionation could 

potentially be used to quantify N partitioning of ruminants. However, there is limited 

information on the utility of this technique and it is not known how dietary changes affect 

N isotopic fractionation.  

 

This thesis presents a series of studies which measured the N partitioning of a range of 

ruminants (lactating goats, lactating cows and non-lactating sheep) offered various levels 

of energy and N intake; and these data sources were also used to test the value of using N 

isotopic fractionation as a simple indicator of N partitioning.  
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The objectives of thesis were: 

 

1.  Examine the N partitioning among feed, urine and faeces of non-lactating sheep 

offered three levels of N to water soluble carbohydrate ratio in the diet, and 

evaluate the use of N isotopic fractionation as a simple indicator of N partitioning. 

  

2.  Evaluate the effects of supplying additional urea as a source of rumen degradable 

nitrogen on N isotopic fractionation in pasture-fed dairy cows. At the same time, 

evaluate the usefulness of using N isotopic fractionation to indicate N-use 

efficiency (milk N output/N intake) of lactating cows. 

 

3.  Examine the N partitioning among milk, urine and faeces of lactating goats offered 

a consistently high N diet with increasing levels of water soluble carbohydrate; 

and further evaluate the use of N isotopic fractionation as a simple indicator of N 

partitioning.  
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CHAPTER 2 

 

LITERATURE REVIEW 

 

2.1. The importance of studying nitrogen metabolism and partitioning in ruminants 

 

Nitrogen (N) is an essential feed component of ruminant’s diets and thus farm 

profitability (Pfeffer and Hristov, 2005). Compared with other animal species, ruminants 

are unique for having a forestomach (i.e., three compartments – the rumen, reticulum and 

omasum) before the true stomach (i.e., abomasum). Therefore, they can utilise relatively 

poor quality feed (e.g., straw) to synthesis usable energy and protein in order to support 

metabolism and production. On the other hand, N related-substrates that would be better 

absorbed directly in the small intestine, such as essential amino acids may be converted to 

ammonia which can cause major environmental concern (Litherland and Lambert, 2007). 

Thus an understanding of N metabolism and its net effect on N partitioning within the 

ruminant body is crucial in order to maximise production and minimise environmental 

pollution. Ruminant nutritionists agree that N metabolism and partitioning within the 

ruminant can be divided into two components; ruminal N metabolism and whole body N 

metabolism. These two components of N metabolism and major factors influencing N 

partitioning are discussed separately. 

 

2.1.1. Nitrogen metabolism in the rumen 

 

Ruminants differ from other animals in that they can use complex carbohydrates in the 

rumen. Simply speaking, the rumen is a fermenter that turns feed energy into volatile fatty 

acids (VFAs); which is needed for maintenance and production. Furthermore, microbial 

protein synthesis in the rumen provides the majority of protein supplied to the small 

intestine, accounting for 50-80 % of total absorbable protein (Storm and Ørskov, 1983). 

Energy and protein metabolism in the rumen is the result of metabolic activity of ruminal 

microorganisms, such as bacteria, fungi and protozoa (Pfeffer and Hristov, 2005). 

 

In the rumen, microbes degrade and ferment carbohydrates and protein to VFAs, methane 

(CH4), carbon dioxide (CO2) and ammonia (NH3) to support their maintenance and 
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growth. Figure 2.1.2 shows that crude protein (CP) is degraded by rumen microbes and 

70-90 % of CP is rumen degradable protein (RDP). The RDP consists of two fractions: 

the quickly degradable protein (QDP) and the slowly degradable protein (SDP), according 

to their rates of degradation in the rumen. Both QDP and SDP can be synthesised given 

sufficient energy to produce microbial crude protein (MCP). Around 70-80 % of MCP is 

microbial true protein (MTP), and the rest is microbial non-protein nitrogen (MNPN; 

mostly in the form of nucleic acids). Nitrogen (i.e., in the form of NH3) that is not 

synthesised into MCP builds up in the rumen then overflows into blood stream and finally 

being converted into urea in the liver. However, some of the urea can be recycled back to 

the gut in saliva or across the intestinal mucosa for metabolisable protein (MP) production 

(Pacheco and Waghorn, 2008). Urea recycling acts as a survival mechanism to support 

ruminant production, particularly when N intake is insufficient compared with the 

maintenance requirement (Reynolds and Kristensen, 2008). Un-degradable dietary protein 

(UDP) is also known as “bypass” protein, and it does not contribute to the growth of 

microbes in the rumen but if digestible it can be absorbed from the small intestine as MP. 

As a result of this, MP supply is a combination of digestible MTP and digestible UDP.    

 

Ruminant nutritionist believes the availability of RDP and fermentable metabolisable 

energy (FME; ME less the ME contained in fat and fermentation acids) largely determines 

the MCP yield or the utilisation of N in the rumen (AFRC, 1993). When the RDP supply 

is not limiting, the yield of MCP is considered to be dependent on FME supply and vice 

versa. The estimated values for MCP yield ranges from 8-12 g MCP/MJ FME depending 

on intake level, it increases as the feeding level increases (AFRC, 1993). There is some 

evidence that MCP yield can be manipulated by changing the synchrony of RDP and 

FME supply in the rumen. Supplementation with fermentable energy significantly 

increased MCP flow to the duodenum, and also increased the efficiency of MCP synthesis 

in sheep (Chamberlain et al., 1993). In comparison, Henning et al. (1993) indicated that 

synchronisation between RDP and FME release in the rumen did not affect the MCP flow 

and microbial growth in sheep given wheat-straw based diets. There is a big debate about 

whether animal itself has ability to cope with dietary imbalance and make the best use of 

diet to synthesis MCP (Cabrita et al., 2006). It has been reported that temperate pasture 

contains relatively high ratio of RDP to FME, which generally results in N in excess to 

ruminal microorganism and animal requirements (Litherland and Lambert, 2007). 

Therefore, the excessive N in the rumen is absorbed across the rumen wall and converted 
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into urea in the liver, then excreted in the urine. This excretion of urine with high urea 

level may cause environmental pollution (Edwards et al., 2007). 

 

2.1.2. Nitrogen metabolism and partitioning in ruminant body 

 

Nitrogen metabolism in the ruminant body is based on the amino acids absorbed from the 

small intestine as MP to support maintenance and production need of the host animal. 

Digestible UDP passes through the rumen to abomasums and is absorbed into 

bloodstream through the small intestine wall; contributing to MP production together with 

digestible MTP. The utilisation of MP by the animal is depending on two major factors, 

namely MP-use efficiency (kn) and MP supply. AFRC (1993) suggested the kn values for 

growth, lactation and pregnancy are 0.59, 0.68 and 0.85 respectively which is mainly 

driven by the amino acid profiles of the MP. When MP supply from the feed is excess of 

requirement of the animal (maintenance + production; as determined by genetic potential 

and ME for production), excess MP has to be detoxified in the liver and excreted in the 

urine mainly as urea. This detoxification process of excess N come from rumen ammonia 

or MP is associated with an energy cost (30 KJ ME/g of N) in converting excess N to urea 

in the liver (Tyrrell et al., 1970).  

 

The result of N metabolism is N being partitioned to different body sinks (i.e., fetus, 

muscle, wool, milk, faece and urine). It has been recognised that product N (i.e., fetus, 

muscle, wool and milk) is derived from MP; the more MP supplied, and the more usable 

product can be produced given sufficient energy available (Fox et al., 2004). Faecal N 

consists of undigested N from UDP, MTP and endogenous N. Urinary N can cause 

environmental pollution through nitrate leaching and green house gas (e.g., ammonia and 

nitrous oxide) emission (Edwards et al., 2007). Urinary N is mainly generated by liver 

detoxification of un-captured ammonia from microbial protein catabolism in the rumen 

and also the excessive MP that cannot be used for metabolism in the body. Eisemann et al. 

(1989) suggested that the protein synthesis in the liver accounts for 9-13 % of whole body 

protein synthesis in sheep and cattle. In temperate pasture feeding system, the facts of 

relatively high level of N to available ME in the feed is the major cause of high urinary N 

excretion. A pasture feeding based trial indicated when the effective CP degradability in 

the rumen increased (from 0.55 to 0.85), the proportion of effective RDP in excess as the 

total protein in excess to animal needs also increased dramatically (from 4 to 90 %; Rusdi 
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and van Houtert, 1997). Furthermore, Pacheco and Waghorn (2008) reported that the 

dietary N requirements (% of DM) for grazing animals are about 1.8, 2.2 and 3.0 % for 

maintenance, growing and lactation respectively. When dietary N concentration matches 

animal requirements, it is no longer limiting for production and further N intake will not 

benefit performance and simply excreted in urine.  
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Figure 2.1.2. Flow chart of the metabolisable protein system (base on AFRC, 1993 and 

Pacheco and Waghorn, 2008). (Intestine N absorption: grey solid box; Ruminal N 

utilisation: grey broken box; Liver N metabolism: broken black box; Urea recycling: 

black broken arrow) 
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nitrogen 



 

8 
 

2.1.3. Major factors influencing nitrogen partitioning 

 

Nitrogen partitioning is the distribution of N among feed, urine, faeces, milk, body gain, 

fetus and wool. There are number of factors which influence N partitioning, they are both 

dietary and animal based and will be discussed here. 

 

Dietary effects 

 

AFRC (1993) suggested differences in protein degradability affect the amount of N which 

is available for digestion and absorption in the small intestine, thus influencing MP supply 

to the body and N partitioning (Rusdi and van Houtert, 1997). Figure 2.1.2 shows the 

level of RDP from fresh pasture is between 70 to 90 % of CP, which is high compared 

with the animal requirement (60-70 % of CP; Brookes and Nicol, 2007). Other forage 

based product such as Lucerne pellet/cube is produced through dehydration process, 

which has a slightly reduced RDP level (between 65 to 70 % of CP; Mustafa et al., 2001) 

compared with fresh pasture, it better matches animal’s requirement. However, it is 

important to note that high RDP intake is generally associated with high total N intake in 

pasture based feeding system and they are the major factors lead to change in N 

partitioning. Castillo et al. (2000) illustrated that as N intake increased regardless of ME 

intake, the proportion of dietary N converted into milk or faecal N declined, but that into 

urine increased (Figure 2.1.3). Quantitatively, it has been reported that increasing total N 

intake by a factor of four increased N excretion in faeces and milk by similar proportions, 

but urinary N excretion increased over 12 times (Hof et al., 1994). Cheng et al. (2011) 

illustrated that when N intake increased from 359 g/day to 626 g/day across nine dietary 

treatments, urinary N output and faecal N output increased linearly as N intake increased. 

A N intake of 410 g/day was recommended as the maximum for dairy cow before 

excessive urinary N output could be a potential cause of environmental pollution. Low N-

use efficiency (NUE; milk N output/N intake) in grazing dairy cows is mainly due to the 

supply of N exceeding the supply of ME available to the animal. Furthermore, Dewhurst 

et al. (2003a) emphasised that dietary difference, particularly in N concentration of the 

feed, is the main source of variation in N partitioning by dairy cows.  
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It has been documented that the synchronisation of the available N and ME is crucial to 

both rumen function and N partitioning. Altering the feeding frequency or the feeding 

patterns was proposed to manipulate rumen function and N partitioning of dairy cows 

(Oldham, 1984). Diurnal changes in grass WSC concentrations mean that concentrations 

are higher in the afternoon than in the morning, when the plant has had time for 

photosynthesis. Orr et al. (2001) showed positive milk N output benefits from allocating 

fresh grass after afternoon milking, rather than after morning milking, using a strip 

grazing system. Although DMI was not different between animals offered fresh grass 

morning or afternoon, milk yield was 5 % higher from animals offered fresh grass after 

afternoon milking, probably as a result of increased DM % and WSC concentration of the 

grass. Similarly, Bryant et al. (2010) showed feed cows on longer regrowth pasture with 

afternoon allocation reduced urinary N concentration and increased milk N output, which 

potentially has its positive effect on reducing environmental pollution. However, Henning 

et al. (1991) in an in vitro study looked at synchrony effect on rumen function. They 

found synchrony decreased rumen ammonia concentration but no effect on microbial 

protein synthesis and microbial growth. Cabrita et al. (2006) reviewed the effects of 

synchronisation by changing dietary ingredients, feeding pattern or feeding frequency on 

dairy cows. They concluded that the evidence of synchronising N and ME supply to the 

rumen benefits on animal production is contradictory, both for efficient microbial protein 

synthesis and for maximising milk production. 
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Figure 2.1.3. The relationship between total nitrogen intake and nitrogen excretion in 

milk, urine and faeces of lactating cows (Castillo et al., 2000) 

 

Animal effects 

 

Animal variation in N partitioning has long been recognised. Animal age, breed, lactation 

status, as well as health condition all contribute to utilisation of feed N. Dillon et al. 

(2003; 2006) observed the variation in milk production from four different European dairy 

cow breeds that were fed on seasonal grass based system and suggested that milk yield, 

feed intake and energy balance are heritable traits. Berry et al. (2003) used 8591 

multiparous Holstein-Friesian cows to establish the genetic relationships among body 

condition score (BSC), body weight, milk yield, and fertility in dairy cows. The results 

from the study indicated that it is possible to select animals with increased milk 

production and NUE without any adverse effects on fertility or average BSC. Results with 

high genetic merit dairy cows (over 10000 kg milk/lactation) showed the efficiency of N 

utilisation and specifically the excretion of N in urine; were higher and lower respectively 

compared with average yielding herds respectively (Castillo et al., 2000). A recent pasture 



 

11 
 

fed experiment showed cows with higher genetic merit converted feed N into milk N 

more efficiently and also increased its N partition from urine to faeces (Woodward et al., 

2011). Genotype of animal affects NUE by determining the partitioning of N among 

maintenance, milk production and other metabolic functions in the body. The animal 

variations reported may relate to the difference in eating pattern, digestibility, tissue 

metabolism and nutrient absorption.  
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2.2. Current methods for measuring and predicting nitrogen partitioning 

 

Nitrogen balance study is a direct approach to measure N partitioning, but it is subject to 

large experimental errors and difficult to be conducted in grazing animals. Urea N is 

widely used to indicate N partitioning. However, it is susceptible to diurnal variations and 

limited in its use when dietary N is high. 

 

2.2.1. Nitrogen balance  

 

The best known technique for measuring N partitioning is a N balance (NB) study. It has 

traditionally been used all over the world in order to investigate N metabolism in human 

and animals. It is also used in ruminant to evaluate feedstuffs and study how to reduce N 

excretion. A complete NB involves measuring the partitioning of total N intake into N 

outputs in faeces, milk, urine, weight change, fetus (quantitatively important only in the 

last two months of lactation or after the sixth month of gestation) and scurf and dermal 

(DSN) losses. Kristensen et al. (1998) explained that most of the time, DSN losses are 

ignored, since they are difficult to collect and relatively small when compare with other 

losses. The NB is a quantitative analysis that is used to define ruminant N requirements, at 

the same time considers environmental problems in relation to ruminant production 

(MacRae et al., 1993). 

 

There are four limitations encountered with the NB method. Firstly, to complete a NB 

study in ruminant requires a large amount of labour. A total recording of the N intake, and 

collection of the N outputs in faeces, milk, urine, weight change, fetus and DSN losses 

must be carried out over a week. This is almost impossible in a grazing situation. 

Secondly, throughout the procedures from faeces collection to measurement of N content, 

incomplete collection of material, volatile losses of ammonia and final drying of the 

samples can contribute significantly to the underestimation of faecal N output. Spanghero 

and Kowalski (1997) pointed out that dried faecal samples have a significantly lower N 

concentration than the wet samples, regardless they were dried in an oven or a freeze-

drier. Thirdly, volatile N losses from urine collections can also add to the underestimation 

of N outputs. Lastly, the actual feed wastage is often higher than measured in both indoor 

and grazing systems, which results in an overestimation of N intake. Spanghero and 

Kowalski (1997) reviewed NB calculations from 125 different diets, to address the 
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experimental errors (i.e., underestimation of the N outputs and the overestimation of the N 

intake) of the NB technique. Their review showed that on average an early lactating dairy 

cow retained almost 40 g N/day, which converted to a total lean tissue gain of around 

1000 g/d (by adopting a coefficient of 6.25, assuming a body protein content of 16 % and 

a ratio of 1 part protein: 3 parts water in the body). This estimation appears to be too high, 

especially for high yielding dairy cows in their early lactation, which are likely to be 

losing weight, rather than gaining. The results from conventional NB measurements were 

compared with slaughter measurements (SM) in growing lambs; it showed a net protein 

overestimation of about 24 % using NB in comparison with SM (MacRae et al., 1993). In 

New Zealand context, the grazing based ruminant industry is ideally to develop methods 

that can indicate N partitioning on large number of animals or herds. The methods should 

be easy to use, requiring as few samples as possible and minimal labour for analysis, so 

this rules out NB, although it is a useful method to calibrate against. 

 

2.2.2. Urea nitrogen  
 

Ammonia in the body originates from ruminal ammonia not incorporated into MCP 

(Section 2.1.1) and from the metabolism of amino acids in various organs and tissues 

(Pacheco and Waghorn, 2008). In the ruminant, urea is synthesised from ammonia in the 

liver and then enters circulatory system through hepatic sinuses, which drains into the 

hepatic vein and become part of the pool of blood urea before it is filtered by the kidneys 

and excreted in urine. Because of the constant urea filtration rate in the kidneys, the total 

volume of blood that is cleared by the kidneys for detoxification remains similar, thus 

urinary urea (major form of urinary N) excretion is expected to be proportional to blood 

urea N concentration (BUN) (Hof et al., 1997). Urea equilibrates in aqueous solutions 

through diffusion; therefore, milk urea N concentration (MUN) is highly correlated with 

BUN. As a result of this correlation, MUN and BUN are proposed to be good indicators 

of changes in N metabolism and N partitioning within the ruminant body. However, 

because it is more practical and less invasive to obtain milk for wide scale testing than 

blood; MUN is becoming a convenient management tool for monitoring protein status and 

urinary N output (UN) (Broderick and Clayton 1997; Jonker et al., 1998).   

 

Milk urea N was found to be correlated with rumen ammonia concentration, which in turn 

is affected by dietary changes in N and ME (Section 2.1.1). Increased N intake was 



 

14 
 

reported to be related to increased MUN (Tas, 2006), but Oltner et al. (1985) and 

Broderick and Clayton (1997) suggested that MUN is more related to N and ME ratio 

(N/ME) and N concentrations rather than absolute N intake. Furthermore, Nousiainen et 

al. (2004) used RDP concentration in excess of predicted requirement as a single predictor 

of MUN, but it did not explain more of the variation in MUN than dietary N. Use and 

interpretation of MUN in relation to nutritional management is not easy, because some 

studies showed a positive relationship between MUN and milk production (Oltner et al., 

1985), while others demonstrated a negative relationship or no relationship (Carroll et al., 

1988; Baker et al., 1995). Despite this controversy, Frank and Swensson (2002) 

demonstrated that cows offered diets which resulted in highest NUE (up to about 43 %) 

had the lowest concentrations of MUN. Jonker et al. (1998) recommended producers 

should aim for a concentration between 100 to 160 mg/l. Bulk tank values above 160 mg/l 

indicate that either dietary N concentration is too high, rumen FME supply is too low, or a 

combination of the two. Bulk tank values below 100 mg/l indicate that N concentration is 

too low, the balance of RDP and UDP is incorrect, or rumen FME supply is too high.  

 

The variations in measured MUN may be due to dietary factors including N intake, ME 

intake, types of N and energy from diet; animal factors including parity, milk production, 

days in milk and body weight; and other factors such as water intake and methodologies 

used for measuring. Reynolds and Kristensen (2008) suggested when animals are fed on 

high level of CP, the possible reason for MUN not proving to be a consistent indicator of 

N status was because MUN production reaches a maximum level when dietary CP 

concentration exceeds 20 %. Gustafsson and Palmquist (1993) reported that a lower 

proportion of total urea excretion in milk was observed in the morning sampling than 

afternoon sampling which is supported by Broderick and Clayton (1997). This is 

inconsistent with the finding of Cheng et al. (2010), possibly due to variation in feed 

composition at the different periods of the day. Regardless the diurnal variations in MUN 

concentration, the afternoon MUN was found to be well correlated with morning MUN 

(Geerts et al., 2004; Cheng et al., 2010). Subsequently, Broderick (2003) recommended 

that for evaluation of a herd’s feeding program, samples should be collected at the similar 

time of the day to eliminate the diurnal variations. Furthermore, De Campeneere et al. 

(2006) mentioned that the consumption of water by dairy cows may contribute to the 

variation in concentration of urea in the body fluids.  
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Broderick (2003) compared different methods for analysing MUN (i.e., infrared scanning 

vs colorimetric essay vs urease hydrolysis). He concluded that there was a big difference 

in results and warned researchers to be consistent with analytical methods. Overall, 

Schepers and Meijer (1998) suggested that the fundamental problem in using MUN is that 

it provides no detail about actual rumen processes; it is only a reflector of overall N 

metabolism. In general, a high MUN indicates high N losses in the N metabolism and 

hence a low efficiency in N utilisation.  

 

2.2.3. Prediction of urinary nitrogen output 

 

Urinary N output (UN) is associated with a risk of environmental pollution (Pacheco and 

Waghorn, 2008). In general, UN contributes to nitrate leaching and greenhouse gas 

emissions, which may cause ground water contamination and global warming respectively 

(Di and Cameron, 2002). The formation of UN has been discussed in Section 2.2.2, by 

assuming constant blood urea clearance rate in a group of animal; UN prediction 

equations have been established using MUN and urinary excretion of creatinine 

(Broderick et al., 2003; Pacheco et al., 2007). Furthermore, more complex prediction 

equations using dietary factors (e.g., dry matter intake (DMI) and crude protein (CP) 

intake) and animal factors (e.g., milk yield and body weight) have been established by 

Fox et al. (2004) based on Cornell net carbohydrate and protein system. However, Carroll 

et al. (1988) and Tas (2006) found the relationship between MUN and UN was poor, 

because MUN is useful in indicating N loss from rumen fermentation but not absorbed N 

utilisation. In addition, Jonker et al. (1998) suggested the majority of unexplained 

prediction error of MUN is due to animal variation (e.g., blood urea clearance rate). 

Recent publications showed large variation in predicting UN from varies published 

equations in dairy cows with genetic difference and dietary difference (Cheng et al., 

2012a  and 2012b). 
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2.3. Use of nitrogen isotopic fractionation to indicate nitrogen partitioning 

 

Current methods for measuring and predicting N partitioning (Section 2.2) either require 

large labour inputs or do not provide consistent results. Therefore, it is important to 

develop simpler approaches to evaluate N partitioning, based on sampling that could be 

conducted without the need to house animals in metabolism stalls. An alternative 

approach proposed is to characterise N partitioning based on N isotopic fractionation (δ 

15N).  

 

2.3.1. The principle of nitrogen isotopic fractionation 

 

Wattiaux and Reed (1995) stated that in a natural environment, 14N and 15N, known as 

stable isotopes, are the two components of air N. The 15N content of atmospheric N is 

0.3663 %, and the rest of N is 14N (99.6337 %). The 15N abundance is measured as 

described by Yoneyama et al. (1983) and expressed as δ15N value by deviation relative to 

atmospheric N2:   

 

δ15N (‰) = [(15N /14N) sample - (15N /14N) air] / [15N /14N] air × 1000 

 

δ15N is not an absolute measurement; it is only a relative measurement (i.e., proportion). A 

negative δ15N value indicates depletion in 15N and a positive δ15N value indicates 

enrichment in 15N, relative to the natural abundance of the atmospheric N. 

 

The tiny mass difference between 15N and 14N cause the isotopes to behave differently in 

both physical and chemical reactions. In general, the lighter isotope (14N) tends to form 

weaker bonds and to react faster than the heavier isotope (15N). Macko et al. (1987) 

suggested as the reaction (Glutamic acid + Oxalacetic acid = α-Ketoglutaric acid + 

Aspartic acid) progressed, glutamic acid in the origin became enriched in δ 15N relative to 

aspartic acid in the product, due to the deposition of stronger bonded/slower reacting 15N 

in the glutamic acid. As a consequence of these bond energy and reaction rate differences, 

the abundance of 15N and 14N vary between chemical processes. Therefore, over the last 

few decades, δ15N has been widely used for studying plant and soil interaction (Wade et 

al., 1975); ecology (Hobson et al., 1993); human physiology (O’Connell and Hedges, 

1999) and more recently, mammalian nutrition and N metabolism (Parker et al., 1995; 
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MacAvoy et al., 2005). Arguably this tiny mass difference (‰ or per thousands) may not 

be precisely measured to quantify the level of fractionation from various body organs. 

However, isotope ratio mass spectrometer is generally used for measuring δ15N values of 

the sample. For a well homogenised sample, the reproducibility for δ15N measurement is 

high and the standard deviation is within ±0.2 ‰. In most cases, either the depletion or 

enrichment of the measured biological samples compared with its feed is more than 0.5 

‰, which should provide sufficient level of fractionation for mass spectrometer to detect. 

Sample preparation is considered as one of the most important steps to ensure obtaining a 

representative tiny sample. The suitability of using dried or liquid sample is also to be 

determined prior to conduct each experiment.  

 

2.3.2. Nitrogen isotopic fractionation in animal body      

 

DeNiro and Epstein (1980) investigated the influence of diet on the distribution of N 

isotopes in animals (fly, snail, mouse, shrimp, nematode and weevil) grown in the 

laboratory. They discovered that the N isotopic composition of the diet was reflected in 

the N isotopic composition of an animal body parts. They also pointed out that in most 

cases; it is more practical to measure the δ15N of a part of an animal rather than its whole 

body. Honbson and Clark (1992) published similar findings that δ15N was elevated in 

body tissues compared with that in the diet, and it varied among tissues and biological 

compounds.  

 

In general, the explanation for these differences in natural abundance of δ15N in animal 

body is the kinetic isotope fractionation during biochemical reactions in the animal body 

(Macko et al., 1987). Studies with Ross’ geese indicated that a primary source of N 

isotopic fractionation occurs during processes of deamination and transamination of 

amino acids. This resulted in amino acid enrichment during anabolism, and N waste 

products depleted in 15N relative to diet. Sick et al. (1997) found as N intake increased 

(above minimum requirement intake for optimum growth), plasma protein and urea were 

more enriched and less depleted in δ15N respectively compared with feed. It is believed 

that changes in δ15N values in animal tissues could offer important information about N 

metabolism (Hobson et al., 1993). Moreover, Balter et al. (2006) suggested for a given 

body mass and diet 15N, the isotopic fractionation is mainly controlled by the dietary N 
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intake and composition. Consequently, δ15N was proposed to be used as a simple indicator 

of N partitioning of ruminants (Cheng et al., 2011). 

 

2.3.3. Nitrogen isotopic fractionation in ruminant body 

 

In general, faeces, milk and plasma are enriched in δ15N compared with feed (Koyama et 

al., 1985). On the other hand, urine is depleted in δ15N compared with feed (Sutoh et al., 

1987; Figure 2.3.3). The majority of N exists as true protein in milk and plasma, which 

has been reported to be enriched in δ15N (Cheng et al., 2010). Sponheimer et al. (2003) 

suggested that the main reason for the enrichment of δ15N in faeces is the presence of 

enriched endogenous N. In contrast, urea is the main N source of urine and is reported to 

be heavily depleted in δ15N (Steele and Daniel, 1978). 

 

 

Figure 2.3.3. Nitrogen isotopic fractionation in ruminant body 

 

The protein (from precursor amino acids) and urea (amino N mainly incorporated into 

urea) synthesised in the ruminant liver mainly lead to the separation of usable protein 

(e.g., milk, meat and wool) and waste N (e.g., urinary N) in terms of their δ15N (Koyama 

et al., 1985; Sponheimer et al., 2003). As a result of synthesis, the 15N content relative to 
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precursor amino acids was depleted in the urea, whilst it was enriched in the protein 

(Steele and Daniel, 1978; Cheng et al., 2010). It is believed that due to deamination and 

transamination processes in the liver; the more protein is synthesised relative to urea (e.g., 

higher milk N output/urinary N output), the less the protein is enriched while urea under 

these conditions is depleted more compared with the diet (Macko et al., 1986; Parker et 

al., 1995). Sponheimer et al. (2003) provided preliminary evidence of increased 

enrichment of 15N in hair protein when ruminants were fed high protein diets. The 

situation is likely to be more complex in ruminants, since synthesis of protein by rumen 

micro-organisms is an additional potential site of isotopic fractionation (Sutoh et al., 

1993). Dietary protein is synthesised into microbial protein in the rumen by the microbes, 

at the same time ammonia is produced. Wattiaux and Reed (1995) reported that 

incorporation of ammonia into bacterial protein resulted in a depletion of 15N in microbial 

protein, which was not observed when microbial protein was synthesised from amino 

acids. In contrast, little is known about how UDP fractionates in the body and its impact 

on MP 15N value. 

 

2.3.4. Nitrogen isotopic fractionation in relation to nitrogen partitioning  

 

According to Cheng et al. (2011), there are two major plausible sites (liver and rumen) of 

N isotopic fractionation that may be related to N partitioning in ruminant body; through 

major biochemical reactions, namely deamination/transamination and microbial protein 

synthesis. Plasma N pool is the combination of plasma amino acid pool and plasma urea 

pool. They are the precursors of body protein pool (e.g., milk nitrogen, muscle nitrogen) 

and urinary nitrogen pool respectively. Liver is a major site for plasma N metabolism. 

When transamination/deamination processes take place for plasma N in the liver, lighter 

mass 14N reacts faster compared with heavier mass 15N, therefore 14N became abundant in 

plasma urea pool (i.e., 15N depleted) and later the urinary nitrogen. On the other hand, 

when more protein is derived from amino acids pool in the liver (e.g., high in NUE) 

through deamination/transamination processes; the more similar is the isotope pattern of 

the protein to that of the precursor amino acids (i.e., less 15N enrichment in the protein; 

Sick et al., 1997). Microbial protein synthesised in the rumen from ammonia results in a 

depletion of 15N in microbial protein (Wattiaux and Reed, 1995). This implies that when 

ruminant is fed on high level of N (excess maintenance requirement), ammonia forms 

microbial protein which is depleted in 15N and also the major source of milk protein. 
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Therefore a depleted 15N in milk protein in turn is expected from increasing microbial 

protein synthesis.  
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CHAPTER 3 

THE EFFECT OF DIETARY NITROGEN TO WATER SOLUBLE 

CARBOHYDRATE RATIO ON NITROGEN PARTITIONING AND 

ISOTOPIC FRACTIONATION OF NON-LACTATING SHEEP 

 

3.1. Introduction 

 

Ruminant production systems are based on grazing temperate pasture which generally 

provides nitrogen (N) in excess of animal requirements (Litherland and Lambert, 2007). 

This leads to a low efficiency of incorporating feed N into milk or meat N, and outputs of 

surplus N (mainly urine) to the environment (Di and Cameron, 2002). It has been 

proposed that production and N partitioning (i.e., the distribution of feed N to urine, 

faeces, milk and retains in the body) can be manipulated through changing the N to water 

soluble carbohydrate (WSC) ratio in the diet (Miller et al., 2001). More N is expected to 

be partitioned to milk and faeces rather than urine with a decrease of N/WSC. However, a 

meta-data analysis and an in vitro study demonstrated that there may be an optimum 

concentration of N and WSC that will optimise rumen fermentation and animal 

production regardless of changes in N/WSC (Pacheco et al., 2007; Burke et al., 2011). 

 

The most widespread method used to measure N partitioning is an N balance study (NB; 

MacRae et al., 1993). The utilisation of N can be indicated by urea N concentration in 

blood or milk (Broderick and Clayton, 1997). However, NB is difficult to conduct, 

particularly with large numbers of grazing animals (MacRae et al., 1993) and urea N is 

subject to substantial diurnal variation (Gustafsson and Palmquist, 1993). Earlier studies 

identified that fractionation of N isotopes occurs during digestion and metabolism, 

notably during utilisation of N by ruminal bacteria fermenting carbohydrates (Wattiaux 

and Reed, 1995) and metabolism of amino acids in the liver (Sick et al., 1997). Therefore, 

Cheng et al. (2011) suggested that N isotopic fractionation could potentially be used to 

quantify N partitioning of ruminants. The first objective of this study was to examine the 

N partitioning of non-lactating sheep offered three levels of N/WSC in the diet, which 

should exclude milk as an extra N sink for N partitioning and fractionation. The second 
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objective was to evaluate the use of N isotopic fractionation as a simple indicator of N 

partitioning.  

 

3.2. Material and methods  

 

Six non-lactating sheep aged between 1.5 to 2 years old and weighing 65.0 (SD = 3.9), 

61.8 (SD = 4.4) and 62.5 (SD = 3.5) kg at the start of the three collection periods were 

used. Three dietary treatments (N/WSC) were evaluated in a 3 × 3 Latin square design 

with three periods of 3 weeks (2 weeks dietary adaptation and 1 week animal 

measurement in each period). Two sheep were allocated to each treatment in each period. 

 

Diets  

 

All sheep grazed on ryegrass/white clover based pasture prior to the study. Lucerne pellets 

and straw were gradually introduced to the sheep 10 days before the study commenced. 

Four days prior to period 1, sheep were consuming a 100 % lucerne pellet diet and housed 

in metabolism crates individually. Throughout the study, fresh water was available ad 

libitum.  

 

The diets were designed to provide three levels of N/WSC (Low, Medium and High), and 

expected to generate variations in both N partitioning and isotopic fractionation. The diets 

were produced by adding sucrose and urea to lucerne pellets (Winslow Ltd; New Zealand) 

(Table 3.1). Additional WSC and N were provided by sprinkling white cane sugar 

(Chelsea; New Zealand; 1700 KJ/100g) or spraying liquid urea (Biolab; Australia; 46.7 % 

N) onto the pellets. Due to the variation of chemical composition of purchased lucerne 

pellet, each batch of pellet was analysed for N and WSC concentrations pre experiment. 

The amount of sucrose and urea that were needed to achieve three levels of dietary 

treatments was calculated based on analytical results. 

 

Animal measurements 

 

This study was undertaken at the Johnstone Memorial Laboratory, Lincoln University, 

New Zealand, under the authority of Lincoln University Animal Ethics Committee 

(approval No. 339). Sheep were housed separately in metabolism crates with feed offered 
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once a day at 10.00 am. One sheep in period 2 (on the Medium N/WSC treatment) had to 

be taken out from the study due to metabolic disorders, at the start of period 2 adaptation. 

All sheep were weighed on the day before and after each NB period. 

 

Each sheep was offered 1.5 kg fresh weight (aimed to deliver 14 MJME intake/day/head 

with 50-100 g of LWG/d) of pellets daily and feed refusals were recorded to calculate 

DMI. Feed samples from each treatment were collected for seven days. Faeces and urine 

output were measured and sampled during days 2 - 7 of each NB period (last six days). A 

plastic bucket with a layer of metal mesh was placed under the drainage channel of each 

metabolism crate to allow urine to drain through the mesh and faeces stay on top of the 

mesh. To keep urine pH between 2 and 3, 250 ml of sulphuric acid (10 % vol/vol) was 

added into each bucket daily prior to collection. 

 

Blood samples were collected from the jugular vein into 10 ml Li-heparinised evacuated 

tubes at 11.30 am on days 3 and 6 of each NB period. Plasma was immediately harvested 

by centrifugation at 4 °C at 1200 ×g for 15 min.  Gluteal muscle and liver biopsy samples 

(0.5 g) were taken from each animal at 9.00 am on the last day of each period (Miller-

Graber et al., 1991). A 30 cm × 30 cm patch of wool from each sheep was shaved off at 

the beginning of period 1. The regrowth of wool from this patch was harvested 14 days 

after each NB period (Rogers and Schlink, 2010). All samples were stored at -20 °C and 

pooled per sheep per period prior to chemical analysis. Retained N (RN) was calculated 

using the equation of [RN (g/d) = N intake (g/d) - faecal N output (g/d) - urinary N output 

(g/d)]. 

 

Analytical methods 

 

All samples were freeze dried and analysed for δ15N follow the procedure described by 

Cheng et al. (2011). In vitro digestibility of organic matter on DM basis (DOMD) was 

measured follow the procedure described by Clarke et al. (1982). The ME content of feed 

was calculated using the equation of [MJME/kg DM = DOMD (g/kg DM) × 0.016]. DM 

digestibility was calculated using the equation of [DM digestibility (%) = 1 – (faecal 

output (g/d) / (DMI (g/d)) × 100]. The apparent N digestibility was calculated using the 

equation of [N digestibility (%) = 1 – (faecal N output (g/d) / N intake (g/d)) × 100]. The 

concentration of WSC in feed samples was analysed following the method described by 
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Rasmussen et al. (2007). Feed, urine and faeces were analysed for N concentration using a 

Variomax CN Analyser (Elementar Analysensysteme GmbH, Hanau, Germany). Blood 

urea N was analysed using an enzymatic kinetic method on a COBAS MIRA clinical 

analyser (Roche Diagnostics, Switzerland). Urinary excretion of purine derivative (PD) 

was analysed follow the method described by George et al. (2006) using high-

performance liquid chromatography (Agilent 1100 series, Germany). 

 

Statistical analysis 

 

The Genstat statistical package (Version 13.3; VSN International Ltd) was used for 

ANOVA and linear regression analysis. All measured data were combined into single 

mean values for each animal per period. One sheep had metabolic disorders in period 2, 

was taken out from the study and treated as missing value in the statistical analysis. The 

significance of linear and quadratic effects was determined using ANOVA with N/WSC 

as treatment factor and period + sheep as block. P-value less than 0.05 was considered as 

statistically significant.  
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 3.3. Results   

 

Feed intake and composition 

 

Table 3.1 shows DMI was not affected by treatment and ranged between 1.27 and 1.35 

kg/d when N/WSC (g/g) ranged between 0.11 to 0.27. Both feed N concentration (% of 

DM) and apparent N digestibility (% of N) increased, while apparent DM digestibility 

(DMD) (%) and feed WSC concentration (% of DM) decreased with increased N/WSC. 

Feed ME ranged between 10.4 and 11.5 MJ/kg DM. 

 

Nitrogen partitioning, blood urea nitrogen and purine derivative 

 

Nitrogen intake (NI) increased from 30.9 to 42.3 g/d as N/WSC increased (Table 3.2). 

Dietary manipulation had a significant effect on urinary output (UO, kg/d), urinary N 

output (UN, g/d), faecal N concentration (%) and BUN (mM/l), but not on urinary N 

concentration (%), faecal output (g DM/d), faecal N output (FN, g/d) and PD (mM/d) 

(Table 3.2). On average, RN was 0.16 g/d; the range was -1.7 to 2.1 g/d. Both the 

proportion of UN per unit of NI and FN were not significantly different among dietary 

treatments. However, a significant treatment effect was detected for FN/NI (P < 0.01) 

(Table 3. 2).   
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Table 3.1. Feed intake and diet composition for the three diets varying in formulated 

N/WSC1 

 

 Low Medium High N SED L2  Q3 

ME, MJ/kg DM 11.5 10.6 10.4 17 - - - 

WSC concentration, % 

of DM 

22.7 13.2 12.2 17 - - - 

N concentration, % of 

DM 

2.44 2.76 3.25 17 - - - 

N/ME, g/MJ 2.12 2.60 3.12 17 - - - 

N/WSC, g/g 0.11 0.22 0.27 17 - - - 

        

DMI, kg/d 1.27 1.35 1.30 17 0.054 NS NS 

ME intake, MJ/d 14.6 14.4 13.5 17 0.58 NS NS 

Apparent DM 

digestibility, % of DM 

61.6 60.8 57.8 17 0.91 ** NS 

Apparent N digestibility, 

% of N 

56.1 63.6 64.6 17 1.90 ** NS 

1 Diets based on: Low (0.11g N/1g WSC); Medium (0.22g N/1g WSC); High (0.27g N/1g 

WSC) 
2 Linear effects 
3 Quadratic effects 

**P < 0.01; NS = non-significant 
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Table 3. 2. Nitrogen partitioning, blood urea N and urinary excretion of purine derivatives 

for sheep offered one of three diets varying in N/WSC1 

 

 Low Medium High N SED L2 Q3 

N intake, g/d 30.9 37.4 42.3 17 1.55 *** NS 

Urinary N output, g/d 18.9 21.7 27.2 17 1.06 *** NS 

Urine output, kg/d 1.48 1.76 1.98 17 0.106 ** NS 

Urinary N concentration, 

% 

1.30 1.24 1.42 17 0.080 NS NS 

Faecal N output, g/d 13.7 13.6 15.0 17 1.09 NS NS 

Faecal output, g/d 488 531 549 17 30.1 NS NS 

Faecal N concentration, 

% of DM 

2.78 2.56 2.71 17 0.088 NS * 

Retained N, g/d -1.7 2.1 0.1 17 1.44 NS * 

        

Urinary N/faecal N, g/g 1.47 1.59 1.86 17 0.216 NS NS 

Urinary N/N intake, g/g 0.62 0.58 0.65 17 0.057 NS NS 

Faecal N/N intake, g/g 0.44 0.36 0.35 17 0.019 ** NS 

Retained N/N intake, g/g -0.06 0.06 0.00 17 0.042 NS * 

        

BUN, mM/L 6.60 7.95 9.24 17 0.410 *** NS 

Urinary purine 

derivatives, mM/d 

32.8 32.4 33.0 17 2.63 NS NS 

1 Diets based on: Low (0.11g N/1g WSC); Medium (0.22g N/1g WSC); High (0.27g N/1g 

WSC) 
2 Linear effects 
3 Quadratic effects 

*P < 0.05; **P < 0.01; ***P < 0.001; NS = non-significant 
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Nitrogen isotopic fractionation and its relationship with nitrogen partitioning 

 

Dietary treatments had no significant effects on N isotopic fractionation apart from a 

quadratic effect that was detected in muscle δ15N - feed δ15N (Tables 3.3 and 3.4). Wool, 

muscle, liver, plasma and faeces were enriched in 15N compared with feed; and urine was 

depleted in 15N relative to feed (Table 3.3). Significant linear relationships were found 

between: muscle δ15N - feed δ15N and urine δ15N - feed δ15N ([Equation 1]); urine δ15N - 

feed δ15N and UN/NI ([Equation 2]); muscle δ15N - feed δ15N and RN/NI ([Equation 3]); 

and plasma δ15N - feed δ15N and RN/NI ([Equation 4]) by regression analysis. 

 

Muscle δ15N - feed δ15N (‰) = 0.81 × (urine δ15N - feed δ15N) (‰) + 6.92  [1] 

(n = 17; r2 = 0.44; P = 0.002; SE = 0.54) 

 

Urine δ15N - feed δ15N (‰) = 4.03 × UN/NI (g/g) - 3.94     [2] 

(n = 17; r2 = 0.43; P = 0.002; SE = 0.17) 

 

Muscle δ15N - feed δ15N (‰) = - 4.30 × RN/NI (g/g) + 5.73    [3] 

(n = 17; r2 = 0.43; P = 0.003; SE = 0.55).  

 

Plasma δ15N - feed δ15N (‰) = - 1.92 × RN/NI (g/g) + 5.64    [4] 

(n = 17; r2 = 0.20; P = 0.04; SE = 0.39).  
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Table 3.3. N isotopic fractionation (‰) in sheep offered one of three diets varying in 

N/WSC1 

 Low Medium High n SED L2 Q3 

Feed δ15N 0.00 0.13 0.01 17 0.077 NS NS 

Urine δ15N -1.46 -1.36 -1.39 17 0.297 NS NS 

Faecal δ15N 3.47 3.04 3.13 17 0.274 NS NS 

Wool δ15N 3.94 3.78 3.91 17 0.385 NS NS 

Plasma δ15N 5.62 5.76 5.69 17 0.067 NS NS 

Liver δ15N 5.81 5.89 6.00 17 0.115 NS NS 

Muscle δ15N 5.87 5.54 5.86 17 0.205 NS NS 
1 Diets based on: Low (0.11g N/1g WSC); Medium (0.22g N/1g WSC); High (0.27g N/1g 

WSC) 
2 Linear effects 
3 Quadratic effects 

NS = non-significant 
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Table 3.4. N isotopic fractionation (‰) of different body N sinks for sheep offered one of 

three diets varying in N/WSC1 

 

 Low Medium High n SED L2 Q3 

Urine δ15N - feed δ15N -1.46 -1.49 -1.40 17 0.288 NS NS

Faecal δ15N - feed δ15N 3.47 2.91 3.12 17 0.295 NS NS

Plasma δ15N - feed δ15N 5.62 5.63 5.68 17 0.094 NS NS

Liver δ15N - feed δ15N 5.81 5.76 6.04 17 0.137 NS NS

Wool δ15N - feed δ15N 3.95 3.65 3.90 17 0.430 NS NS

Muscle δ15N - feed δ15N 5.87 5.41 5.85 17 0.202 NS * 

Plasma δ15N - urine δ15N

  

7.08 7.12 7.08 17 0.275 NS NS

Liver δ15N - urine δ15N 7.27 7.30 7.41 17 0.201 NS NS

Plasma δ15N/urine δ15N -4.75 -4.52 -4.95 17 0.934 NS NS

Plasma δ15N /faecal δ15N 1.72 1.97 1.85 17 0.144 NS NS

Faecal δ15N/urine δ15N -2.75 -2.32 -2.73 17 0.464 NS NS

        
1 Diets based on: Low (0.11g N/1g WSC); Medium (0.22g N/1g WSC); High (0.27g N/1g 

WSC) 
2 Linear effects 
3 Quadratic effects 

*P < 0.05; NS = non-significant 
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3.4. Discussions 

 

Nitrogen metabolism 

 

A similar amount of DM was consumed by the sheep at all three levels of N/WSC, which 

eliminated variation in DMI as a factor influencing the dietary effect on N partitioning 

(Ellis et al., 2011). The changes in N partitioning and microbial protein synthesis are thus 

expected to be solely a result of the different diet composition. The proportion of NI 

excreted in urine (UN/NI) in the current study (0.58 to 0.65 g/g) was comparatively higher 

than that reported (55 %) by Brand et al. (1992). The dietary effect on UN/NI contrasted 

with Edwards et al. (2007) who concluded that a reduction in UN/NI of dairy cows should 

be expected when N/WSC (g/g) decreased from 0.27 to 0.12. It is reasoned that the low 

fermentable metabolisable energy (FME) relative to high ruminal degradable protein 

limited microbial protein synthesis in the rumen on current diets and resulted in a lack of 

treatment effect on N partitioning (van Vuuren et al., 1993). This argument is supported 

by PD results (Table 3.2). Dietary treatments had little effect on PD in the study (Table 

3.2), which implies no differences in rumen microbial protein synthesis (Dewhurst et al., 

1996; Cheng et al., 2011). Furthermore, the calculation of the yield of MCP per MJ of 

FME based on AFRC (1993); MCP/FME (g/MJ) = 7 + 6 × [1 - e (-0.35L)] suggests an 

average 9.15 g of MCP was synthesised from per MJ of FME (SED = 0.072; P > 0.05) 

irrespective of N/WSC ratio in the diets. 

 

Partitioning surplus N away from urine to faeces may contribute to reduced nitrate 

leaching to the ground water, and ammonia volatilization to atmosphere as this is 

primarily related to urine (Varel et al., 1999). Similar to results reported from a study with 

dairy cows (Moorby et al., 2006). The current study showed UN/FN decreased by around 

27 % when WSC was added to the diet (Table 3.2). This change of N excretion was 

achieved through decreasing NI, UN and UO rather than increasing rumen microbial 

protein synthesis as Miller et al. (2001) concluded. The minor change in FN was the net 

effect of opposite effects on apparent DM digestibility (decreased) and N digestibility 

(increased; Table 3.1 and 3. 2).  

 

An increase in UN (g/d) and UO (kg/d) by 44 and 34 %, combined with no change in 

urinary N concentration (%) was observed as NI increased from treatment Low to High. 
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Calculations based on Brookes and Nicol (2007) showed the average NI of sheep was at 

least 1.8 times the maintenance N requirement (assuming 50 % of CP is metabolisable 

protein and that there was no significant RN).  In general, UO is a function of dietary 

minerals (e.g., Na and K), with higher mineral intakes leading to higher UO (Nennich et 

al., 2006). Urea is a waste product of N metabolism; sheep excreted excessive N through 

higher UO for urea detoxification purpose (Cocimano and Leng, 1967).  

 

Blood urea N (BUN) is used as an indicator of N utilisation in ruminants (Kohn et al., 

2005). In this study, mean BUN increased significantly (P < 0.001) as N/WSC increased 

across the treatments. The results were within the range previously reported (Cocimano 

and Leng, 1967; Kohn et al., 2005). However, contrary to the findings of Oltner and 

Wiktorsson (1985), urea N concentration was not closely related to the ratio of dietary 

energy to protein. Regression analysis indicated only 19 % (P < 0.05) of the treatment 

(N/WSC) variation explained by changes in individual BUN. Moreover, the linear 

relationship between BUN and UN/NI was significant, but weak (r2 = 0.26; P < 0.05). 

This poor relationship may be due to the diurnal variation of urea in the body (Broderick 

and Clayton, 1997; Cheng et al., 2010).  

 

Nitrogen isotopic fractionation and its relationship with nitrogen partitioning 

 

Nitrogen isotopic fractionation between different N sinks in the body is normally 

expressed by subtracting feed δ15N, as this is usually a function of dietary composition 

(Hobson et al., 1993; Sutoh et al., 1993). The average feed δ15N in current study was 0.05 

‰ (Table 3.3), which is similar to the value reported for lucerne (0.00 ‰) by Steele et al. 

(1983). Faeces, wool, plasma, muscle and liver were on average enriched in δ15N by 3.17, 

3.83, 5.64, 5.71 and 7.33 ‰ compared with feed, and urine was depleted in δ15N by 1.45 

‰ (Table 3.4). These findings agree with the results of others (Koyama et al., 1985; Sutoh 

et al., 1993; Sponheimer et al., 2003). In addition, the enrichment of wool in current study 

was comparable to that previously reported by Männel et al. (2007) with sheep grazing 

pure C3 sward. Some ecology studies (Hobson et al. (1993) and Sponheimer et al. (2003)), 

suggested that body tissues with slower N turnover rates (e.g., muscle and wool) are less 

likely to reflect N metabolic changes; compared with active tissues (e.g., liver and 

plasma) when feeding studies have short periods. This finding is supported by the low 

correlation between δ15N of wool and plasma (r2 = 0.22; P < 0.05); but was not the case 
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for muscle δ15N which was well correlated with plasma δ15N (r2 = 0.70; P < 0.001). This 

might due to the enzymatic reactions involved in capture N in wool discriminated 

differently from the enzymatic reactions involved in muscle synthesis. 

  

Sick et al. (1997) demonstrated preliminary evidence in their study with rats that urea and 

protein from plasma were respectively less depleted and more enriched in δ15N compared 

with feed when NI increased. In general, UN/NI is positively related to NI of the animal 

(Castillo et al., 2001; Cheng et al., 2011). Furthermore, body protein (e.g., plasma or 

muscle) and urinary N are mainly derived from plasma protein and plasma urea pools 

respectively (Young, 1970; Sick et al., 1997). Consequently, negative relationships 

between plasma enrichment (plasma δ15N - feed δ15N) and RN/NI; and muscle enrichment 

(muscle δ15N - feed δ15N) and RN/NI were participated. Similarly, it was predicted 

positive relationship between UN/NI and urine depletion (urine δ15N - feed δ15N). The 

data provided support for these relationships (Equations 2 to 4), with all relationships 

being statistically significant. It is notable that these relationships occurred even with 

animals in negative NB (i.e., losing body N) ([Equations 3 and 4]). Retained N is the 

balance of protein synthesis and degradation within the body and N turnover is expected 

to be high even when animals lose weight (McCarthy et al., 1983). Wattiaux and Reed 

(1995) reported that incorporation of ammonia into bacterial protein results in depletion 

and enrichment of 15N in microbial protein and ruminal ammonia respectively, which 

should lead to opposite relationships as described above (Cheng et al., 2011). Since both 

urinary PD excretion (Table 3.2) and calculations of the yield of microbial protein 

(AFRC, 1993) suggested no change in microbial protein synthesis across treatments, it 

was expected little changes in N isotopic fractionation in the rumen. However, possibility 

of N turnover leads to ruminal N isotopic fractionation without altering microbial protein 

synthesis cannot be excluded. The level of urea recycling from dietary N is expected to be 

low when NI is greater than requirements (Reynolds and Kristensen, 2008). Thus, under 

the condition of this study, the relationship between N isotopic fractionation and N 

partitioning were mainly driven by deamination or transamination in the liver, as 

suggested by other works (Macko et al., 1986; Parker et al., 1995), and similar to the 

fractionation reported by Sick et al. (1997) for rats fed on a range of protein sources. 
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3.5. Conclusion 

 

Varying the N/WSC ratio of diets had only limited effects on N partitioning, and no 

significant effect on N isotopic fractionation. However, moderately strong relationships 

were found between N partitioning and N isotopic fractionation when considering 

between-animal variation. Urinary N output per unit of faecal N output increased by 27 % 

when N/WSC increased 2.5-fold. The BUN from spot sampling was poorly correlated 

with N utilisation. The linear correlations found in this study confirmed the potential to 

use N isotopic fractionation as an indicator of N partitioning in non-lactating sheep. 

However, the rate of N and 15N turnover of different body N sinks needs to be determined 

in order to confirm the most appropriate tissue to use. 



 

35 
 

CHAPTER 4 

THE EFFECT OF SUPPLEMENTING UREA ON NITROGEN-USE 

EFFICIENCY AND ISOTOPIC FRACTIONATION OF PASTURE-

FED DAIRY COWS 

 

4.1. Introduction 

 

Chapter 3 provided some support on the use of N isotopic fractionation to indicate N 

utilisation (UN/NI) in non-lactating sheep without involving milk as a sink for N isotopic 

fractionation. Cheng et al. (2011) found little evidence of relationship between N 

partitioning and isotopic fractionation in lactating dairy cows offered a range of forages. It 

was suggested that the lack of relationship might be a result of widely different 

proportions and types of N in the diets, since the incorporation of ammonia-N into 

bacterial N resulted in the depletion of 15N, whilst incorporation of amino acids did not 

(Wattiaux and Reed, 1995). Therefore, to confirm the above speculation, the current study 

was designed to evaluate the effects of supplying additional urea as a source of rumen 

degradable nitrogen (RDN) on N isotopic fractionation in pasture-fed lactating dairy 

cows. At the same time, the usefulness of using N isotopic fractionation to indicate N-use 

efficiency (milk N output/N intake) of lactating cows was also evaluated. 
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4.2. Materials and methods  

 

Animals and their management 

 

This study was undertaken at Lye Farm, Hamilton, New Zealand (37°46′S, 175°18′E) 

under the authority of Ruakura Animal Ethics Committee (No. 11896). The study used 15 

multiparous, rumen-cannulated, Holstein-Friesian cows that were 15 to 18 weeks in 

lactation. Cows grazed Perennial ryegrass (Lolium perenne L.) dominant pasture prior to 

the experiment and were then housed in metabolism stalls and fed freshly cut pasture 

twice daily for five days during adaptation to the metabolism facility. A sample collection 

period was then commenced.  

  

Diets and feeding 

  

Fresh pasture was cut once-a-day in the morning. All 15 cows were randomly grouped 

into three dietary treatments (five cows per treatment). The dietary treatments were 

designed to allow the comparison of N utilisation from different levels of N intake by 

feeding cows on cut pasture twice a day (available between 9.00 am to 1.00 pm and 4.00 

pm to 9.00 pm) and supplementing with one of 3 levels of urea given via the rumen 

cannulae (0 g/d (Control), 350 g/d (Low) and 700 g/d (High)). Equal amounts of urea 

were placed into the rumen and mixed with rumen digesta three times daily at 9.30 am, 

1.00 pm and 4.30 pm timed to coincide with the major bouts of feeding. 

 

Cows were gradually adapted to urea supplementation over 12 days prior to the 

metabolism stall adaptation period. Concerns regarding high levels of feed refusals for the 

Low and High urea treatments resulted in urea supplementation being reduced to 250 g/d 

and 336 g/d respectively, during the period between housing and the commencement of 

collections.  

 

Animal measurements 

 

Measurements of feed DMI, milk output, urine output and faecal output were made over 

the final five days of feeding for Control and Low cows, and over the final three days for 

cows on the High treatment. Feed DMI from each cow was calculated from daily amounts 
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offered and refused, with a target of 10 % refusals. Daily feed and urea samples were 

combined over the collection period for subsequent chemical analysis. Cows were milked 

twice daily and milk yields were recorded. Representative samples were retained for milk 

composition analysis. 

 

Separate total collections of faeces and urine were made using the externally applied 

separators described by Meier et al. (2008). Faecal and urine collections were started one 

day after the measurement of intake. Five days before collection commenced, a separator 

mounting was attached around the vulva and anus with contact adhesive. On the following 

day, a urine collector fitted with 4 m of flexible hose was placed over the vulva and 

fastened to the separator mounting. Urine was retained in a 50 litre plastic container 

positioned in a drainage channel below the cow. Faeces were collected into container 

suspended in the drainage channel below the cow.  

 

Blood samples from the jugular were collected (10 ml EDTA heparin tube) from 

individual cows at 11.30 am on each collection day. Plasma was harvested by 

centrifugation at 1200 ×g for 12 minutes at 4 oC. At the end of the study, all samples 

(feed, faeces, milk, plasma and urine) were bulked by cow, sub-sampled and stored at -20 
oC. 

  

Analytical methods 

 

Near-infrared spectrophotometry provided composition analysis of the pasture (Feed and 

Forage Analyser 500; Foss, Hillerød, Denmark). Acidified frozen urine and freeze-dried 

faeces were analysed for N concentration using a Variomax CN Analyser (Elementar 

Analysensysteme GmbH, Hanau, Germany). Milk samples were analysed for fat, protein 

and lactose concentrations using Fourier-transform infra-red spectroscopy (FT120, Foss, 

Hillerød, Denmark). Blood and milk urea nitrogen, and plasma ammonia were analysed 

using a kinetic UV assay and enzymatic kinetic assay, respectively (Modular P800 

analyser; Roche Diagnostics, Mannheim, Germany). 

 

Sample preparation and 15N measurements  

 

Bulked freeze-dried samples of urea, pasture, milk, faeces and plasma were ground 
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(ZM200 mill with 1 mm sieve; Retsch GmbH, Haan, Germany) prior to 15N analysis. The 

isotope ratio mass spectrometer (IRMS) operates optimally when supplied with between 

100-200 μg N. Therefore, sample weights were calculated for each sample based on the 

results of N analysis. Each freeze-dried sample was weighed using a 5-decimal place 

balance (XP205; Mettler Toledo, Columbus, Ohio, USA) onto 5 mm × 8 mm tin capsules. 

All the capsules were loaded onto an autosampler for 15N analysis. Samples were initially 

combusted at 1000 oC in an oxygen atmosphere in an automated Dumas-style elemental 

analyser, converting all N in the sample to dinitrogen gas which was then carried to a 

continuous flow stable IRMS (PDZ Europa Ltd, Crewe, UK) for the 15N test. All results 

are expressed in delta units (δ15N, ‰); that is, the 15N/14N ratio in the test sample relative 

to the 15N/14N ratio in the standard (air). 

 

Calculations 

 

The δ15N content of pasture and urea were analysed separately. Therefore total feed δ15N 

was calculated using the formula (Cheng et al., 2011): Total feed δ15N = [(N intake of 

pasture) × (δ15N of pasture) + (N intake of urea) × (δ15N of urea)] / [N intake of pasture + 

N intake of urea] 

 

Statistical analysis 

 

The Genstat package (Version 10.1; Lawes Agricultural Trust) was used for ANOVA and 

regression analysis. All N partitioning and N isotopic fractionation data were combined 

into a single mean value for each cow. The significance of treatment effects was 

determined using general ANOVA with level of urea supplementation as treatment factor. 

Urinary N output was measured, but values were much lower than expected (Castillo et 

al., 2000; Cheng et al., 2011), probably due to problems with collection or storage (e.g. 

volatilisation of ammonia). These data are, therefore, not presented. 
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4.3. Results   

 

Pasture composition 

 

Pasture composition was consistent across the five-day collection period. On average, the 

pasture contained (on a DM basis): 16.7 % CP (SD = 0.91), 23.5 % water-soluble 

carbohydrates (WSC) (SD = 1.98) and 40.9 % NDF (SD = 1.77). Estimated ME content 

of the pasture was 12.0 MJ/kg DM (SD = 0.12) and the estimated degradability of CP was 

78.8 % (SD = 0.44).  

 

Dry matter intake and milk production  

 

Increasing urea intake reduced DMI, milk yield, fat yield, and the concentration and yield 

of lactose (P < 0.05). In contrast, there was no effect of dietary treatment on milk fat and 

N concentration (Table 4.1). Cows on the High treatment consumed 21 % less pasture 

DM than those on the Control treatment.   
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Table 4.1.  Effects of dietary treatments† on dry matter intake, apparent nitrogen 

digestibility, milk yield, and milk composition 

 

      Dietary treatment†  

      Control  Low   High  SED     P 

Dry matter intake (kg/d)  19.1b  18.7b   15.1a   0.93     ** 

Digestibility of nitrogen (%)  73.0a  78.8b  80.8b  2.02     ** 

Milk Yield (kg/d)   24.7b  22.7b  16.6a  1.79        ** 

Milk fat concentration (%)  4.17  4.33  4.24  0.454     NS 

Milk nitrogen concentration (%) 0.52  0.56  0.53  0.033     NS 

Milk lactose concentration (%) 5.04b  4.94b  4.67a  0.117       * 

Fat yield (g/d)    1024b  961b  705a  73.3     ** 

Lactose yield (g/d)   1248b  1119b  775a  92.9    *** 

†Diets based on: Control (0g urea/d); Low (250g urea/d); High (336g urea/d) 

NS, not significant 

*P < 0.05; **P < 0.01; ***P < 0.001 
a–cMeans with different superscripts are significantly different  

 

Nitrogen utilisation  

 

Nitrogen intake was greatest for the Low treatment (616 g/d) and lowest for the Control 

treatment (510 g/d). The reduction in pasture DMI for the High treatment meant that N 

intake (543 g/d) was lower than anticipated for this treatment (Table 4.2). The apparent 

digestibility of dietary N increased with urea addition (Table 4.1). The high level of urea 

supplementation reduced milk N output and NUE (Table 4.2). 

  

Urea supplementation increased MUN and BUN concentration (P < 0.001; Table 4.2). 

Regression analysis indicated a positive correlation between MUN and BUN 

concentration (Equation [1]). 

 

MUN (mmol/l) = 0.70 (SE = 0.107) + 1.535 (SE = 0.578) × BUN (mmol/l) 

(n = 15; r2 = 0.75; P < 0.001)        [1] 
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Moderate linear relationships were detected between NUE and MUN (r2 = 0.63), and 

NUE and BUN (r2 = 0.31). 

 

Table 4.2.  Effects of dietary treatments† on nitrogen intake, faecal nitrogen output, milk 

nitrogen output, nitrogen use efficiency (milk nitrogen/nitrogen intake), blood urea, milk 

urea and plasma ammonia 

 

     Dietary treatment† 

     Control  Low  High  SED      P 

Nitrogen intake (g/d)  510a 616b 543a   24.6      ** 

Faecal nitrogen output (g/d) 138b 131ab 103a   13.7      NS 

Milk nitrogen output (g/d) 129b 126b 89a   7.0              *** 

Nitrogen use efficiency (%) 25.3b 20.1b 16.4a   0.99      *** 

Blood urea (mmol/l)  4.34a 5.95b 5.53b   0.295      *** 

Milk urea (mmol/l)  4.10a 5.74b 6.15b   0.333      *** 

Plasma ammonia (μmol/l) 59.5a 64.4a 101.1b  12.17       ** 
†Diets based on: Control (0g urea/d); Low (250g urea/d); High (336g urea/d) 

NS, not significant 

**P < 0.01; ***P < 0.001 
a–cMeans with different superscripts are significantly different  

 

Nitrogen isotopic fractionation 

 

Pasture δ15N was consistent across the collection period, within the range of 3.17 to 3.25 

‰. The δ15N value of urea was 1.02 ‰. Dietary treatment had no effect on milk or plasma 

δ15N (Table 4.3). However, there was a treatment effect (P < 0.05) on faecal δ15N (Table 

4.3).   

 

When δ15N results for milk and plasma were adjusted for feed δ15N (Table 4.3); both 

(milk δ15N -feed δ15N) and (plasma δ15N -feed δ15N) were negatively associated with 

NUE (Figure 4.1; Equations [2] and [3]).  

 

Milk δ15N -feed δ15N (‰) = -0.0827 × NUE (%) + 5.46  



 

42 
 

(n = 15; r2 = 0.83; P < 0.001)        [2] 

 

Plasma δ15N -feed δ15N (‰) = -0.1001 × NUE (%) + 5.75   

(n = 15; r2 = 0.85; P < 0.001)        [3] 

 

Table 4.3.  Effects of dietary treatments† on δ15N contents of feed, faeces, plasma and 

milk, as well as the differences in δ15N between milk and feed and plasma and feed 

 

    Dietary treatment† 

    Control  Low  High   SED      P 

Feed δ15N (‰)  3.25c  2.83b  2.55a   0.018    *** 

Milk δ15N (‰)  6.59  6.63  6.68   0.095     NS 

Faeces δ15N (‰)  6.17b  5.78a  6.15b   0.149       * 

Plasma δ15N (‰)  6.44  6.57  6.67   0.120     NS 

Milk- Feed δ15N (‰) 3.34a  3.80b  4.13c   0.096     *** 

Plasma- Feed δ15N (‰)3.19a  3.73b  4.13c   0.121     *** 
†Diets based on: Control (0g urea/d); Low (250g urea/d); High (336g urea/d) 

NS, not significant 

*P < 0.05; ***P < 0.001 
a–cMeans with different superscripts are significantly different  
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Figure 4.1. Correlations between nitrogen-use efficiency and isotopic fractionation in 

cows fed on pasture and supplemented with 3 levels of urea.• plasma δ15N -feed δ15N, ◦ 

milk δ15N -feed δ15N 
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4.4. Discussions 

 

Dry matter intake and milk production 

 

The WSC, NDF and CP content of the pasture is consistent with temporal patterns 

reported by Roche et al. (2009), suggesting that the pasture composition was typical of 

cool season grasses in a temperate/Mediterranean climate. The DMI declined 

unexpectedly in the High treatment (336 g/d). The reason for this decline in DMI is not 

clear. Results from earlier research did not predict an adverse effect of urea N 

supplementation on DMI up to 54 % of total N intake (379 g urea/d) (Mugerwa and 

Conrad, 1971). The possibility of ammonia toxicity was closely investigated, but plasma 

ammonia results (Table 4.2) did not indicate toxicity (Zhu et al., 2000). However, it is 

possible that sub clinic ammonia toxicity was developed in cows fed the High treatment, 

which could lead to low NUE from reduced DMI. The adverse effect of urea 

supplementation on DMI in the present experiment may be due to the additional high N 

intake from pasture (396 g/d) and the high degradability of pasture protein (NRC, 2001). 

Cows may have reached a physiological limit for metabolizing urea or renal excretion of 

urea, resulting in reduced N intake via lower DMI as a protective mechanism (Cocimano 

and Leng, 1967). The reduction in the yields of milk, milk fat and milk protein which 

directly reflected the depression in DMI, were similar to those reported by Brito and 

Broderick (2007) for cows supplemented with different proteins.  

 

Nitrogen utilisation  

 

The increase in apparent digestibility of N with urea supplementation is consistent with 

the high ruminal degradation of dietary urea. Correcting for urea digestion, the apparent 

digestion of the pasture N was unchanged by treatment and averaged 73 %. Since the 

digestibility of microbial protein is estimated to be 80 % (NRC, 2001), the implication is 

that urea supplementation had no effect on microbial protein synthesis, probably because 

pasture already supplied adequate RDN per MJ fermentable ME for maximum microbial 

growth (NRC, 2001). 

 

Nitrogen intake has been reported as a major driver of NUE across a wide range of diets 

(Castillo et al., 2000). However, this relationship was not as clear in the current 
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experiment, suggesting that other factors, such as form of dietary N and energy supply, 

also affect NUE (Edwards et al., 2007). In this case, the low NUE for the High urea diet 

appears to be from the reduction in (energy) intake and the relatively high level of RDN in 

the diet (Castillo et al., 2000; NRC, 2001).  

 

Nitrogen isotopic fractionation 

 

Although infusion of a low δ15N urea into the rumen reduced the total diet δ15N from 3.25 

to 2.55 ‰, supplementation with urea had little effect on the δ15N content of body N pools 

(Table 4.3). On average, faeces, milk and plasma were enriched in δ15N by 3.16, 3.76 and 

3.88 ‰, respectively, compared with feed (Table 4.3). These findings are consistent with 

the literature, in which herbivore faeces, milk and plasma were consistently enriched in 

δ15N compared with their diets (Table 4.4). Sponheimer et al. (2003) suggested that the 

main reason for the enrichment of δ15N in faeces is the presence of enriched endogenous 

material. The majority of N in milk and plasma exists as true protein, which has been 

reported to be enriched in δ15N (Sick et al., 1997; Cheng et al., 2010). In contrast, urea is 

the main N source of urine and is reported to be heavily depleted in δ15N (Steele and 

Daniel, 1978); this is consistent with the low δ15N in the supplementary urea in the current 

experiment relative to the pasture. 
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Table  4.4.  Summary of δ15N content (‰) of feed, milk, plasma, faeces and urine from 

literature studies with a range of herbivore species 

  

Animal  Feed  Milk  Plasma Faeces  Urine 

(Reference
‡)

  

Jersey cows  0.65  4.30  -  2.65  -1.75   
(1)          (0.60-0.70) (4.20-4.30)   (2.30-3.10) (-2.40- -1.40)  
 
Angus steer  0.60  -  4.80  2.45  -1.58   
(1)   (0.60)    (4.70-4.90) (2.10-2.70) (-2.80- -0.60)  
 
Cows   2.55  5.73  5.14  5.07  2.25   
(2)   (1.65-3.05) (5.15-6.15) (4.75-5.55) (4.95-5.15) (1.85-2.55)  
 
Dairy cows  3.03  5.17  5.40  3.83  -1.77   
(3)   (2.70-3.30) (4.90-5.50) (5.00-5.80) (3.50-4.10) (-2.40- -0.70) 
  
Sheep   0.76  -  -  3.76  0.64   
(4)   (0.76)      (3.59-3.93) (0.63-0.65) 
 
Llamas  0.40  -  -  3.30  0.10   
(5)   (0.40)      (2.90-3.50) (-0.20-0.60)  
 
Dairy cows  4.17  6.75  -  5.71  0.87   
(6)   (1.82-8.38) (5.24-9.21)   (4.20-8.76) (-1.42-4.09)  
 
Dairy cows  2.88  6.63  6.56  6.03  -  
 
(Current study) (2.55-3.25) (6.59-6.68) (6.44-6.67) (5.78-6.17)  
‡ 1. Steele and Daniel, 1978; 2. Koyama et al., 1985; 3. Sutoh et al., 1987; 4. Sutoh et al., 

1993;  5. Sponheimer et al., 2003; 6. Cheng et al., 2011. 
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Relationships between nitrogen-use efficiency and isotopic fractionation 

 

A major observation from this study was the negative relationships between milk δ15N -

feed δ15N and plasma δ15N -feed δ15N and NUE (Figure 4.1; Equations [2] and [3]). The 

first possible explanation for this effect relates to the lower 15N content of urea compared 

with total dietary protein. The δ15N of urea was 1.02 ‰ whilst the average δ15N of milk 

and plasma were 6.64 and 6.56 ‰, respectively. Since urea N was only 2.2, 2.9 and 3.2 % 

of milk N for the Control, Low and High treatment, respectively, it could only explain a 7 

% difference in δ15N between the Control and High groups (i.e. 0.056 ‰). The possible 

contribution of urea to the effect on plasma is even less, since urea N makes up an even 

lower proportion of total plasma N. Therefore, these negative relationships must be 

primarily due to isotopic fractionation within the animal body (Parker et al., 1995; Sick et 

al., 1997; Balter et al., 2006). 

 

There are two plausible sites (liver and rumen) of N isotopic fractionation that may be 

related to urea supplementation. Wattiaux and Reed (1995) reported that incorporation of 

ammonia into bacterial protein results in a depletion of 15N in microbial protein, which 

was not observed when microbial protein was synthesised from amino acids. Since 

bacterial protein would be the major source of amino acids for milk protein synthesis with 

these diets, it is unlikely that there was an increase in microbial protein synthesis from 

ammonia when urea was added. The calculated level of urea recycling from dietary CP % 

(Reynolds and Kristensen, 2008) suggests that there was little variation across treatments 

(42, 34, and 39 % of total urea production that is returned to the gut via blood and saliva 

for Control, Low and High treatments, respectively). Furthermore, these are inversely 

related to N intake. It is, therefore, predicted that the absolute amount of urea recycling 

would be similar across treatments. Thus, it appears that the negative relationships 

between NUE and milk δ15N -feed δ15N and plasma δ15N -feed δ15N are mainly driven by 

deamination or transamination in liver (Macko et al., 1986; Parker et al., 1995), similar to 

the fractionation reported by Sick et al. (1997) for rats fed on a range of protein sources. It 

implies when more product protein (e.g., milk) is derived relative to urea from the liver 

amino acid pool (e.g., increased NUE), the less the fractionation occurs due to the isotope 

pattern of product protein is more similar to the precursor amino acid in the liver (e.g., the 

less enriched milk δ15N - feed δ15N; Figure 4.1).  
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4.5. Conclusion 

 

Results indicate effects of urea treatments on N utilisation and N isotopic fractionation. 

High level of urea supplementation (336 g/d) reduced DMI, milk yield, milk N output and 

NUE of dairy cows fed on pasture. Milk urea N was correlated with BUN. This 

experiment confirmed the potential to use the 15N enrichment of milk or plasma compared 

with feed as an indicator of NUE in dairy cows on a high RDN diet. The site and the level 

of N isotopic fractionation and the effect of N source need further clarification. In 

addition, the urea toxicity level for pasture fed dairy cows should be further investigated. 
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CHAPTER 5 

THE EFFECT OF DIETARY WATER SOLUBLE CARBOHYDRATE 

TO NITROGEN RATIO ON NITROGEN PARTITIONING AND 

ISOTOPIC FRACTIONATION OF LACTATING GOATS OFFERED 

A HIGH NITROGEN DIET 

 

5.1. Introduction 

 

As it has been discussed in Chapter 3 and 4, traditional techniques are not suitable for 

measuring N partitioning in grazing ruminants particularly when feed N concentration is 

high. In addition, Ellis et al. (2011) suggested that separating the effect of dietary 

components (e.g., WSC and N levels) on N partitioning is important, in order to determine 

the contributions of each dietary factor to animal performance. Followed with the 

successful establishment of relationships between N isotopic fractionation and N 

partitioning in non-lactating sheep and lactating cows; the two objectives of this study 

were to examine the N partitioning of lactating goats offered a diet with high but similar 

concentration of feed N, with no changes in intake but increasing levels of WSC; and 

further evaluate the use of N isotopic fractionation as a simple indicator of N partitioning.  
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5.2. Materials and methods    

     

The study used eight multiparous goats weighing 51 kg (SD = 5.0) and 52 kg (SD = 4.5) 

at the start of two collection periods. Four dietary treatments were evaluated in an 

incomplete changeover design with two periods of three weeks (the first two weeks were 

used for dietary adaptation and the last week was used for measurement). Two goats were 

placed on each treatment in each period. One goat receiving the Medium Low treatment 

in period 1 was replaced due to a metabolic disorder with a spare goat the day before 

starting the NB of period 2.  

 

Diets 

 

Four dietary treatments were designed to provide increasing concentrations of WSC 

(Low, Medium Low, Medium High and High WSC/N); at a constantly high level of 

dietary N (4.5 %) and fixed DM allowance (2000 g/d). The main component of the diet 

was lucerne (Medicago sativa) pellets (Dunstan Horsefeeds; Camtech Nutrition Ltd; New 

Zealand). Additional WSC was provided from oligofructose powder containing 5 % 

glucose/fructose and 95 % sucrose (Orafti®P95; BENEO-Orafti S.A; Belgium). Nitrogen 

levels were equalized across treatments (Table 5.1) by adding acid casein (NZMP™; 

Fonterra Ltd; New Zealand) and non-protein-N as urea (N-rich™; Ballance Agri-

Nutrients Ltd; New Zealand).  

 

Feed for each treatment by period was prepared daily prior to feeding. In comparison to 

period 1, an extra quantity of lucerne pellet was included in the feed to avoid negative 

energy balance in period 2. Additionally, the amount of urea was reduced as a result of the 

high BUN measured in period 1 (Table 5.1). 

 

Animal measurements  

 

This study was undertaken at AgResearch Grasslands Research Centre, Palmerston North, 

New Zealand (Grasslands Animal Ethics Committee No. 11894).  Goats were housed 

individually in metabolism crates and automatically fed two hourly. The measurement 

period consisted of two days of facilities adaptation, five days of NB study, followed by 

insertion of two jugular catheters for two days of infusion of stable isotope-labelled 
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compounds for 4 hour/day to determine the whole-body production rates of glucose, 

leucine, urea, plus the oxidation of leucine to bicarbonate (results will be published 

separately) (Table 5.2).  
 

Feed, faeces, urine and milk samples were collected during the first five days of each 

measurement period. The goats were weighed on the day before and after the NB study. 

Blood was sampled into 10 ml EDTA tube from individual animals on the last day of each 

NB period. Plasma was harvested by centrifugation at 4 °C at 1300 rpm for 15 min. 

 

Sampling of feed was done in the morning before feeding and samples were oven dried. 

Milk yield and milk samples were recorded and collected respectively twice per day 

throughout the whole study. Daily faeces production was recorded after each morning 

milking. Faeces were collected in a stainless steel tray under the metabolism crates and 

samples were oven dried. Urine collection was carried out continuously, weighed and 

sampled after each morning milking. To avoid contamination with faeces and to give 

quantitative urine collection, a separator was glued over the vulva with an attached hose 

directing the urine flow to a plastic bucket containing 50 ml of 6 M hydrochloric acid. pH 

was measured after each sampling to confirm that urine pH was below 4.5. All five days 

samples were stored at -20 °C and pooled per goat per period and subsampled prior to 

chemical analysis. Nitrogen retention was calculated as the difference between N intake 

and outputs (urine, milk and faeces). 

 

Analytical methods 

 

The concentration of feed WSC was analysed following the method described by 

Rasmussen et al. (2007). Oven dried feed, acidified urine and oven dried faeces were 

analysed for N concentration using an Elementar (Variomax CN Analyser, Germany). 

Milk samples were analysed for fat, protein and lactose concentrations using Fourier-

Transform Infra-Red Spectroscopy (FT120, Foss Electric, Hillerød, Denmark). The MUN 

was analysed using a kinetic UV assay and enzymatic kinetic assay (Modular P800, 

Germany). Urinary purine derivatives were analysed using the method described by 

George et al. (2006). All samples were freeze dried and analysed for δ15N follow the 

procedure described by Cheng et al. (2011). 
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Statistical analysis 

 

The Genstat statistical package (Version 12.2; VSN international Ltd) was used for 

ANOVA and general linear regression analysis. Dietary treatment and periods effect on 

both N partitioning and isotopic fractionation, were examined by including treatment × 

period as treatment factor in the ANOVA. Infusion of labelled N (urea) isotope from 

period 1 effect on N isotopic fractionation was examined by including treatment × 

infusion as treatment factor in ANOVA. 
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5.3. Results  

         

Feed formulation and composition 

 

The feed formulation and chemical composition are shown in Table 5.1, separately for the 

two periods. Across treatments, on average Orafti®P95 content increased from 0 (Low 

treatment) to 454 and 473 g/d (High treatment) in period 1 and 2 respectively. The ratio of 

WSC to N (WSC/N) increased progressively from 4.3 to 7.5 from Low to High treatment 

(Table 5.1). 

 

Table 5.1. Feed formulation (on a DM basis) and chemical composition for the dietary 

treatments 

 

   Period 1   Period  2  

 L‡ ML MH H L ML MH H 

Lucerne (g/d) 2401 2202 2001 1802 2501 2301 2117 1901 

Casein (g/d) 36 87 129 163 38 92 134 171 

Orafti®P95(g/d) 0 178 330 454 0 188 344 473 

Urea (g/d) 19 19 19 19 9 8 9 10 

         

N# (%) 4.5 4.3 4.3 4.1 4.6 4.5 4.6 4.5 

WSC+ (%) 18.7 25.4 30.0 32.4 20.1 27.2 29.7 31.8 

WSC/N (g/g) 4.2 5.9 6.9 7.8 4.4 6.0 6.5 7.1 

‡ L = low; ML = medium low; MH = medium high; H = high 
+ Water soluble carbohydrate; # nitrogen 
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Table 5.2. Infusion rates (mmol/hr) of different isotopes, according to experimental period 

 

  Period 1  Period 2   
13C-glucose   1.68 1.68  
13C-sodium bicarbonate  0.43 0.43  
13C-leucine  0.56 0.64  
15N-urea  1.25 1.04  

 

DMI, milk yield, DM and nitrogen digestibility, MUN, urinary excretion of purine 

derivatives  

Both dietary treatment and period had significant effects on DMI (g/d), DM digestibility 

(g/kg DM; DMD) and N digestibility (g/kg N; ND) (P < 0.001). The DMI changed little 

(±2 %) across dietary treatments. On average, DMD and ND increased by 12 and 4 % 

respectively from the Low to High treatment (Table 5.3). As WSC/N increased, milk yield 

(MY; P < 0.05) increased from 1833 (Low) to 2724 g/d (High). On average, MUN was 20 

% higher in period 1 than period 2. No significant treatment effect was observed for 

urinary excretion of purine derivatives (mM/d; PD) (Table 5.3).  
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Table 5.3. Treatment and period effects on dry matter intake (DMI; g/d), milk yield (MY; 

g/d), DM digestibility (DMD; g/kg DM) and nitrogen digestibility (ND; g/kg N), milk 

urea nitrogen (MUN; g/l) and urinary excretion of purine derivatives (PD; mM/d) 

 

  Period 1   Period 2      

 L‡ ML MH H L ML MH H T+ P# T×P  

DMI  2113 2151 2155 2123 1969 2014 2024 2005 *** *** ***  

DMD 685 695 735 754 620 648 677 713 *** *** NS  

ND  780 764 792 806 739 757 770 777 *** *** *  

MY 1807 2434 2422 2885 2165 1860 2964 2563 * NS NS  

MUN  0.42 0.38 0.42 0.45 0.32 0.34 0.38 0.34 NS *** NS  

PD 26.9 27.7 26.8 25.9 27.7 27.3 30.1 33.0 NS NS NS  

‡ L = low; ML = medium low; MH = medium high; H = high 
+ Treatment effect; # Period effect 

*P < 0.05; ***P < 0.001; NS = non-significant 

 

Nitrogen partitioning and weight changes 

 

Mean N intake (NI) was 92.3 and 91.2 g/day across dietary treatments in period 1 and 2 

(P < 0.001).  Milk N output (MN) and urinary N output (UN) averaged 12.0 and 48.1 

g/day respectively with no statistical significant effects for either treatment or period. In 

comparison, both dietary treatment (P < 0.001) and period (P < 0.001) had effects on 

faecal N output (FN). On average, FN was higher in period 2 than in period 1 (P < 0.001) 

and decreased from Low treatment (22.3 g/d) to High treatment (18.6 g/d) (P < 0.001). 

The range in MN/NI (0.11 to 0.15 g/g) and UN/NI (0.48 to 0.57 g/g) was small, no 

significant effect was observed from either dietary treatment or period. However, there 

was a difference in UN/FN between period 1 and 2 (Table 5.4). Overall, there was no 

change in BW, though individual BW change ranged between -110 and +140 g/d.   

 

Nitrogen isotopic fractionation and infusion effects 
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Milk, plasma and faeces were enriched in 15N compared with feed. On the other hand, 

urine was depleted in 15N relative to feed (Table 5.5). No significant linear relationship 

was detected between N partitioning and isotopic fractionation. Goats infused with 15N 

labelled urea in period 1 had slightly higher levels of 15N in all of the body N sinks (i.e., 

urine, faeces, milk and plasma) compared with non-infused goats (Figure 5.1). In 

addition, reduced milk δ15N - feed δ15N and plasma δ15N - feed δ15N were observed in 

goats in period 1 (non-infused goats) compared to period 2 (infused goats) (Figure 5.1).    
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Table 5.4. Treatment and dietary effects on nitrogen intake (NI; g/d), milk nitrogen output 

(MN; g/d), urinary nitrogen output (UN; g/d), faecal nitrogen output (FN; g/d), retained 

nitrogen (RN; g/d), UN/FN (g/g), UN/NI (g/g) and MN/NI (g/g) 

 

  Period 1   Period 2      

 L‡ ML MH H L ML MH H T+ P# T×P  

NI 95.1 92.9 93.1 87.9 90.6 90.7 93.2 90.3 *** *** ***  

MN 10.0 12.7 12.0 13.3 12.7 9.7 13.4 11.9 NS NS *  

UN 54.3 50.6 48.2 45.1 46.0 48.2 45.1 47.2 NS NS NS  

FN 20.9 21.9 19.3 17.0 23.6 22.0 21.4 20.1 *** *** *  

RN 9.9 7.8 13.6 12.4 8.3 10.7 13.3 11.0 NS NS NS  

UN/FN 2.60 2.31 2.50 2.65 1.94 2.19 2.11 2.35 NS *** NS  

UN/NI 0.57 0.54 0.52 0.51 0.51  0.53 0.48 0.52 NS NS   NS  

MN/NI  0.11 0.14 0.13 0.15 0.14 0.11 0.14 0.13 NS NS *  

‡ L = low; ML = medium low; MH = medium high; H = high 
+ Treatment effect; # Period effect 

*P < 0.05; ***P < 0.001; NS = non-significant 
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Table 5.5. Effects of dietary treatments on nitrogen isotopic fractionation of lactating 

goats (‰) 
 

  L‡ ML MH H SED P 

Feed δ15N 1.90 2.29 2.49 2.84 0.081 *** 

Milk δ15N 7.11 7.72 7.85 8.29 0.658 NS 

Urine δ15N 1.22 1.68 2.20 2.09 0.217 ** 

Faecal δ15N 4.01 4.41 4.77 5.03 0.156 *** 

Plasma δ15N 6.92 7.99 7.97 8.01 0.614 NS 

Milk δ15N - feed δ15N 5.22 5.43 5.36 5.45 0.623 NS 

Urine δ15N - feed δ15N -0.68 -0.60 -0.29 -0.75 -0.226 NS 

Plasma δ15N - feed δ15N 5.03 5.70 5.48 5.17 0.572 NS 

‡ L = low; ML = medium low; MH = medium high; H = high 

*P < 0.05; **P < 0.01; ***P < 0.001; NS = non-significant 
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Figure 5.1. Relationship between feed δ15N (‰) and δ15N in milk, plasma, faeces and 

urine (‰) for individual observations of infused (period 2; n = 7) and non-infused (period 

1; n = 8) goats 

 

Regression analysis demonstrated that faecal δ15N and urine δ15N were linearly related to 

feed δ15N ([Equations 1 and 2]). 

 

Faecal δ15N (‰) = 1.1 × feed δ15N (‰) + 2.0    [1] 

(n = 16; r2 = 0.80; P < 0.001; SE = 0.20) 

 

Urine δ15N (‰) = 0.9 × feed δ15N (‰) - 0.5    [2] 

(n = 16; r2 = 0.48; P < 0.01; SE = 0.35) 
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5.4. Discussion 

 

Nitrogen metabolism 

 

This study provided a good base to examine the change of WSC effect on N partitioning 

alone, with a relatively constant NI across treatments (Table 5.4). Although a statistical 

significant difference between treatments was observed for NI, the difference was 

numerically small (4 %) and unlikely to have influenced overall N partitioning. The 

average NI was 91.8 g N/d of which 13 %, 52 % and 23 % were excreted in milk (non-

significant treatment effect), urine (non-significant treatment effect) and faeces (P < 

0.001) respectively. The relatively low and non-significant dietary effect on NUE 

contrasted with results from cows fed a diet of around 3.2 % N with elevated WSC in the 

diet, which showed improvement in NUE when intake stayed the same (Miller et al., 

2001). On the other hand, the proportion of NI excreted in urine (UN/NI) in this study was 

high (on average > 48 %; Table 5.4) compared with results from lactating dairy cows 

studies (Miller et al., 2001; Moorby et al., 2006) reflecting the very high N intake in this 

study. Results were also in contrast to the suggestion from the review of Edwards et al. 

(2007) that increased NUE and decreased UN/NI of dairy cows should be observed when 

WSC/N increased from 4.4 to 8.1 %. The high dietary N (on average 4.5 %) and high 

WSC (on average 26.9 %) concentrations may have been the main reasons for no 

response in N partitioning of UN/NI and NUE (Table 5.4). Pacheco et al. (2007) 

conducted a meta-data analysis (n = 129) and found no improvement in NUE when 

dietary N concentration was above 3.68 % of DM. Broderick and Clayton (1997) 

proposed this may be due to high dietary N concentration exceeding the limit for rumen 

microbes to capture N for microbial protein synthesis. On the other hand, an in vitro study 

demonstrated that there may be a concentration of WSC (24 %) that optimises rumen 

fermentation and animal production regardless of changes in WSC/N (Burke et al., 2011). 

Owens et al. (1998) suggested that the synthesis of microbial protein in the rumen may 

also be reduced by acidosis from feeding high level of WSC. This is partly evident from 

the low PD for Medium High and High treatments in period 1. Notably, these two 

treatments also received the highest WSC/N (i.e., 6.9 and 7.8 g/g). Overall, dietary 

treatment had little effect on PD in the study (Table 5.3), which implies no differences in 

rumen microbial protein synthesis (Dewhurst et al., 1996; Cheng et al., 2011). 

Furthermore, estimation of the yield of MCP per MJ of FME based on AFRC (1993); 
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MCP/FME (g/MJ) = 7 + 6 × [1 - e (-0.35L)] suggested an average 10.9 g of MCP was 

synthesised from per MJ of FME (SED = 0.16; P > 0.05) irrespective of WSC/N in the 

diets. 

 

A recent focus in ruminant research is to redirect UN to FN through feeding animals with 

diets containing high level of WSC. Results from feeding cows on 3.2 % dietary N (on 

DM basis) showed that it was possible to decrease UN/FN by around 27 % (Miller et al., 

2011). This change of N excretion was achieved either through increasing FN, as a 

function of increasing DMI (Moorby et al., 2006) or decreasing UN, as a function of 

increasing rumen microbial protein synthesis (Miller et al., 2001). The goats in the current 

study were fed high dietary N (on average 4.5 %) and high WSC (on average 26.9 %), but 

there was no effect on UN/FN (Table 5.4). The most likely explanation is the lack of 

improvement in microbial protein synthesis (van Vuuren et al., 1993). In addition, 

decreased FN resulted from increasing DMD with inclusion of WSC in the diets. 

 

On average, goats retained 11 g N/day from feed in this study. Converting 11 g N/day into 

protein by adopting a coefficient of 6.25 (i.e., assuming a body protein N content of 16 

%), a protein gain of about 68 g/day was obtained and, as body protein associated with 

water in an average ratio of 1:3, gives 272 g/day of lean tissue gain during the study. This 

estimation was not realistic for goats fed on around 2000 g of DM/d, and also inconsistent 

with the weight change data (0 g/d on average). Spanghero and Kowalski (1997) 

suggested that overestimation of retained N is commonly observed in NB studies. The 

possible sources of errors for high N retention value include the incomplete collection of 

materials, volatile N losses from faeces and urine as well as scurf and dermal losses. It is 

not possible to quantify these potential errors in this study. 

 

Milk urea nitrogen 

 

The MUN was lower in period 2 than period 1 (P < 0.001), associated with a reduced urea 

intake in period 2 (Table 5.1). The MUN is widely used to indicate the efficiency of N 

utilisation of animals. Oltner et al. (1985) postulated that MUN was more closely related 

to the ratio of dietary energy to protein than the absolute protein intake. Even though the 

MUN valued for the goats were comparatively higher than previously reported (Bonanno 

et al., 2008), there was no significant dietary treatment effect on MUN (Table 5.3). This 
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may be caused by similar reasons to lack of dietary treatment effect on N partitioning (van 

Vuuren et al, 1993; Broderick and Clayton, 1997). 

 

DMI, milk yield and DM digestibility 

 

Miller et al. (2001) and Moorby et al. (2006) found there was a positive relationship 

between DMD and MY, but this was not supported in the current study (r2 = 0.20, P < 

0.05). Instead, dietary WSC concentration accounted for 36 % of the MY variation (P < 

0.001), confirming that feed composition can induce changes in MY (Holmes et al., 

1956). Alternative explanations for the increased MY from L to H treatment may be due 

to improved metabolisable protein utilisation through additional casein in the feed or an 

increased water intake as more WSC was added into the diet. 

 

Nitrogen isotopic fractionation and infusion effects 

 

On average, faeces, plasma and milk were relatively enriched in δ15N by 2.18, 5.35 and 

5.37 ‰ compared to the diet, whilst urine was depleted in δ15N relative to the diet by 0.58 

‰ (Table 5.5). This is consistent with the previous sheep (Chapter 3) and cow (Chapter 4) 

studies, and Sponheimer et al. (2003) who suggested that the main reason for the 

enrichment of δ15N in faeces is the presence of enriched endogenous material. The 

majority of N in milk and plasma exists as true protein, which has been reported to be 

enriched in δ15N (Sick et al., 1997; Cheng et al., 2010). In contrast, urea is the main N 

source of urine and is reported to be depleted in δ15N (Steele and Daniel, 1978).  

 

The difference in apparent fractionation (e.g., milk δ15N - feed δ15N) effects between 

periods 1 and 2 (Figure 5.1) may relate to the difference in basal diet, and/or a residual 

effect of 15N infusion at the end of the first period. Diets for period 1 had almost twice as 

much as urea in the feed compared with period 2; this high level of RDP may have 

negative impact on ruminal microbe growth/population, which in turn would reduce 

deamination and N isotopic fractionation (Chen et al., 2008). However, the reductions in 

PD excretion for the Medium High and High treatments in period 1 were not statistically 

significant; which does not support any limitation on microbial protein synthesis. An 

alternative explanation is that a reduced milk δ15N - feed δ15N results when more 
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ammonia is incorporated into microbial protein (Wattiaux and Reed, 1995). This may be 

related to an increased proportion of microbial protein synthesise from ammonia-N and 

hyper-ammonia-producing bacteria with the high urea diet (Maeng and Baldwin, 1976; 

Cherdthong and Wanapat, 2010). Although the enrichment and depletion effects were 

consistent with literature, the levels of enrichment in body N sinks were generally higher 

than previously observed (Koyama, 1985; Sponheimer et al., 2003; Cheng et al., 2011). 

There was a carry-over effect from infusion 15N enriched urea into blood at the end of 

period 1, which led to body N sinks in period 2 (excluding one replacement goat) being 

slightly enriched in 15N compared with non-infused goats from period 1 (Figure 5.1). 

Statistical analysis confirmed the infusion effects between periods were significant for 

milk (SED = 0.20; P < 0.001), urine (SED = 0.20; P < 0.05), plasma (SED = 0.23; P < 

0.001) and faeces (SED = 0.20; P > 0.05). 

 

Regression analysis demonstrated that urine and faecal δ15N were linearly related to feed 

δ15N ([Equations 1 and 2]). In addition, feed (r2 = 0.80; P < 0.001), urine (r2 = 0.49; P < 

0.01) and faecal δ15N (r2 = 0.67; P < 0.001) responded to increased WSC/N linearly 

(Table 5.5). Therefore, these observed relationships ([Equations 1 and 2]) would be 

related to isotopic fractionation during digestion and absorption of feed components (i.e., 

WSC and N) (Sutoh et al., 1993; Wattiaux and Reed, 1995) or a possible effect of the 

endogenous N contribution to urine and faeces from feed (Cheng et al., 2011).  

 

Unlike Sick et al. (1997) who demonstrated in their study with plasma from rats, the data 

provided little support for a relationship between N partitioning and N isotopic 

fractionation. Several possible causes exist for the absence of the expected relationship. 

Firstly, differences in N partitioning between body N sinks were small (e.g., Milk N/N 

intake ranged between 0.11 to 0.15 g/g) and did not response to dietary treatment in this 

study (Table 5.4). Secondly, there was little effect of dietary treatments on microbial 

protein synthesis, as indicated by both PD and MCP/FME calculations. Thirdly, Balter et 

al. (2006) suggested that the biological value of N and level of N are the major sources of 

variation in N isotopic fractionation rather than energy supplies to the body.  
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5.5. Conclusion 

 

There was little change in N partitioning in response to increasing WSC, when N content 

was consistent and high in the diet. There were no significant effects of dietary treatments 

on N isotopic fractionation. The absence of dietary effects on apparent microbial protein 

synthesis may be associated with high dietary N and WSC concentrations. Infusion of 15N 

enriched urea in period 1 caused a carry-over effect on 15N enrichment of goats in period 

2. This study failed to confirm the potential use of N isotopic fractionation as an indicator 

of N partitioning in dairy goats. The association between N partitioning and isotopic 

fractionation at different WSC levels need further clarification, as current levels may be 

too high to result in correlations between N partitioning and isotopic fractionation. 
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CHAPTER 6  

GENERAL DISCUSSION 

 

It has been reported that temperate pasture fed to ruminant generally contains a high 

concentration of N relative to energy supply (Litherland and Lambert, 2007). This can 

lead to a low efficiency of incorporating feed N into usable N (e.g., milk, meat); and large 

outputs of surplus N to the environment as urine (Pacheco and Waghorn, 2008). Any 

investigation into factors affecting N partitioning, such as DMI, dietary composition, 

energy/N ratio in the feed, physiological status of the animal, individual genetic 

differences, requires a simple, cheap and non-invasive method of determining N 

partitioning between the various N sinks (milk, meat, urine and faeces). 

 

The classical approach to establish N partitioning has been an N balance study. However, 

it is subject to large experimental errors and difficult to conduct with grazing animals 

(Spanghero and Kowalski, 1997; Cheng et al., 2011). Milk or blood urea N has also been 

widely used to indicate N partitioning. However, it is susceptible to diurnal variations and 

limited in its use when dietary N is high (Geerts et al., 2004). Therefore, a novel and 

simple method is needed to give a good indication of N partitioning from large groups of 

grazing animals. Wattiaux and Reed (1995) suggested that N isotopic fractionation could 

potentially be used to quantify N partitioning of ruminants. However, there is limited 

information on the utility of this technique and it is not known how dietary changes affect 

N isotopic fractionation. Therefore, the objective of this PhD study was to measure the N 

partitioning of a range of ruminants (lactating goats, lactating cows and non-lactating 

sheep) offered various levels of energy and N intake; and use these data sources to test the 

value of N isotopic fractionation as a simple indicator of N partitioning.  

 

Section 6.1 will discuss the dietary effect on N metabolism and partitioning in ruminants. 

The discussion will then move onto looking at dietary interactions between diet, N 

isotopic fractionation and N partitioning in Section 6.2 and 6.3. 
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6.1. Altering nitrogen metabolism and partitioning in ruminants  

 

Increasing dietary water soluble carbohydrate (WSC) to N ratio (WSC/N) can alter N 

metabolism within the ruminant body, which may improve N-use efficiency (NUE; milk 

N output/N intake), reduce urinary N output as a proportion of N intake (UN/NI) and also 

re-direct urinary N output to faecal N output (UN/FN). Studies of lactating cows (Chapter 

4) and lactating goats (Chapter 5) explored the manipulation of WSC/N effect on NUE, 

whilst studies of non-lactating sheep (Chapter 3) and lactating goats (Chapter 5) explored 

the manipulation of WSC/N effect on UN/NI and UN/FN.  

 

Nitrogen-use efficiency 

 

The NUE of lactating cows (Chapter 4) was between 16-25 %, while a lower and 

narrower range of NUE (11-15 %) was obtained from lactating goats study (Figure 6.1.1). 

Castillo et al. (2000) reported NUE ranges between 15-35 % in a review involving almost 

100 diets fed to 600 cows.  

 

According to Edwards et al. (2007), an improvement in NUE should be expected when 

WSC/N is increased from 4.4 to 8.1. The diet of lactating goats (Chapter 5) ranged from 

4.3 to 7.5 WSC/N, and that of lactating cows from 6.6 to 8.8 WSC/N. The increase in 

WSC/N increased NUE of lactating cows by 56 % through both increasing energy intake 

and milk N output (MN) and decreasing N intake; without changing microbial protein 

synthesis. On the other hand, an increase in NUE and MN were not shown in the lactating 

goats study. It is believed the lack of response was mainly due to the high dietary N 

concentration (on average 4.5 % of DM) and very high WSC concentration (on average 

27 % of DM) in conjunction with unchanged DMI, compared with the lactating cows 

study. Pacheco et al. (2007) reported no improvement in NUE when dietary N 

concentration was above 3.7 % of DM. Broderick and Clayton (1997) proposed this may 

be because the high dietary N concentration exceeded the limit for rumen microbes to 

capture N for microbial protein synthesis; which is supported by the small changes in a 

commonly used MCP synthesis indicator (urinary excretion of purine derivatives; PD) 

and the calculated yield of MCP production per unit of FME supplied (MCP/FME) in the 

current studies. Furthermore, an in vitro study demonstrated that there may be a 

concentration of WSC (24 %) that optimises rumen fermentation and animal production 
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regardless of changes in WSC/N (Burke et al., 2011); possibility due to MCP synthesis in 

the rumen being reduced by acidosis from feeding high levels of WSC (Owens et al., 

1998). The energy from feed that is used for maintenance and production is ME. If it is 

assumed the low WSC/N dietary treatment from lactating goats contained 11 MJ 

ME/kgDM and all goats were fed a fixed DMI (2 kg DM/d), the increase in dietary WSC 

concentration from 18.7 to 32.4 %; (WSC is 100 % digestable) from low to high dietary 

treatment could only increase ME intake by 7 % from 22.0 MJ ME/d to 23.6 MJ ME/d. 

This simple calculation clearly shows significant increase in WSC concentration in the 

diet may have little impact on changing ME intake, when DMI is fixed as in lactating 

goats study. Therefore it is believed that the small change in ME intake may also 

contributed to the lack of response in NUE in the lactating goats study. 

 

 

 

Figure 6.1.1. Effect of dietary manipulation of water soluble carbohydrate to nitrogen 

ratio on milk nitrogen:nitrogen intake ratio (NUE) in lactating goats and cows 

 

Urinary nitrogen output as a proportion of nitrogen intake 

 

The UN/NI is used as an indicator of how efficiently animals can utilise their dietary N. 

The higher the UN/NI, the greater the risk of environmental pollution (Edwards et al., 

2007). Although more than 50 % of NI was excreted in the urine in both the non-lactating 

sheep and lactating goats studies, there was no effect on UN/NI from increasing WSC/N 
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(Figure 6.1.2). As was discussed above (nitrogen-use efficiency section), similar reasons 

i.e., high dietary N and WSC concentration and fixed DMI, may explain the lack of a 

dietary effect on UN/NI in the lactating goats study. In the non-lactating sheep study, the 

levels of dietary N (2.4-3.3 %) and WSC (12-23 %) were relatively low and changes in N 

partitioning was expected according to Edwards et al. (2007) and Pacheco et al. (2007). 

However, calculated MCP/FME and PD analysis suggested no improvement in MCP 

synthesis from the non-lactating sheep fed on increasing levels of WSC/N. This together 

with the non-significant change in ME intake across dietary treatments, indicated that 

little change in FME was achieved, therefore, no extra rumen degradable protein (RDP) 

was captured in the high WSC treatment as MCP production and excess N was lost in the 

urine (van Vuuren et al., 1993). Furthermore, calculations based on Brookes and Nicol 

(2007), showed the average NI of the sheep was at least 1.8 times the maintenance N 

requirement. Therefore, previously identified individual dietary component thresholds 

(WSC and N as % of DM) and UN/NI response range to WSC/N changes from dairy 

cows studies, may not be appropriate for assessing the N partitioning response from 

altering WSC/N in non-lactating sheep. Even if the WSC/N had increased MCP, there 

would have been no increase in N retention or reduction in UN, as MCP supplies have 

exceeded MCP demand. 
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Figure 6.1.2. Dietary manipulation of water soluble carbohydrate to nitrogen ratio effect 

on urinary nitrogen:nitrogen intake ratio of lactating goats and non-lactating sheep 

 

Redirecting urinary nitrogen output to faecal nitrogen output 

 

To partition surplus N away from urine to faeces, may reduce nitrate leaching to the 

ground water and ammonia volatilisation to the atmosphere which cause environmental 

pollution (Varel et al., 1999). As WSC/N increased, decreased UN/FN can be achieved 

through either decreasing UN, as a function of increasing MCP production (Miller et al., 

2001); or increasing FN by increasing DMI (Moorby et al., 2006). The non-significant 

UN/FN change in both lactating goats study and non-lactating sheep study (Figure 6.1.3) 

was the net effect of changes in FN and UN. The opposite effect from dry matter 

digestibility and N digestibility resulted in little changes in non-lactating sheep FN. On 

the other hand, lack of changes in MCP synthesis resulted in no changes in UN in 

lactating goats study. 
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Figure 6.1.3. Dietary manipulation of water soluble carbohydrate to nitrogen ratio effect 

on urinary nitrogen:faecal nitrogen ratio in lactating goats and non-lactating sheep 
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6.2. Nitrogen isotopic fractionation  

 

Relative enrichment and depletion of different nitrogen sinks 

 

The range of feed δ15N from the three studies is comparable to values reported previously 

(Steele et al., 1983; Cheng et al., 2011). Plasma and milk were enriched (about 5 ‰) in 

δ15N compared with feed. Faeces were slightly enriched (about 3 ‰) and urine depleted in 

δ15N (about 1 ‰) relative to feed (Table 6.2). These findings agree with the results of 

others (Koyama et al., 1985; Sutoh et al., 1993; Sponheimer et al., 2003). In addition, the 

enrichment of δ15N in wool, liver and muscle from non-lactating sheep study were 

comparable to that previously reported (Hobson and Clark, 1992; Männel et al., 2007). 

Sponheimer et al. (2003) suggested that the main reason for the enrichment of δ15N in 

faeces is the presence of enriched endogenous material. The majority of N in wool, liver, 

muscle, milk and plasma exists as true protein, which has been reported to be enriched in 

δ15N (Sick et al., 1997; Cheng et al., 2010). In contrast, urea is the main N source of urine 

and is reported to be depleted in δ15N (Steele and Daniel, 1978).  

 

Regression analysis demonstrated that urine and faecal δ15N were linearly related to feed 

δ15N (Chapter 5). Milk δ15N and plasma δ15N were related to each other (Chapter 4), and 

muscle δ15N - feed δ15N was related to urine δ15N - feed δ15N (Chapter 3). It is believed 

that these observed relationships related to N isotopic fractionation during digestion and 

absorption of feed components (Sutoh et al., 1993; Wattiaux and Reed, 1995) or a 

possible common effect of the endogenous N contribution to urine and faeces from feed 

(Cheng et al., 2011). Although Hobson et al. (1993) and Sponheimer et al. (2003) 

suggested that body tissues with slower N turnover rates (e.g., muscle and wool) are less 

likely to reflect N isotope changes; compared with active tissues (e.g., liver and plasma) 

when a feeding study is short, findings from the non-lactating sheep study showed a low 

correlation between δ15N of wool and plasma; but a high correlation between δ15N of 

muscle and plasma. This might due to the time lag in wool growth or/and the enzymatic 

reactions involved in capture N in wool discriminated differently from the enzymatic 

reactions involved in muscle synthesis. In the lactating goats study, the levels of 

enrichment in body N sinks were generally higher than previously observed (Koyama, 

1985; Cheng et al., 2011). It was confirmed that there was a carry-over effect from 
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infusion 15N enriched urea into blood (Chapter 5); therefore, labelled 15N infused animals 

should be avoided when examining natural N isotopic fractionation.  

 

Table  6.2.  Summary of δ15N content (‰) of feed, milk, plasma, faeces and urine from 

literature and current studies with a range of herbivore species 

  
Animal  Feed  Milk  Plasma Faeces   Urine 

(Reference‡)  

Jersey cows  0.65  4.30  -  2.65   -1.75   
(1)          (0.60-0.70) (4.20-4.30)   (2.30-3.10)  (-2.40- -1.40)  
 
Angus steer  0.60  -  4.80  2.45   -1.58   
(1)   (0.60)    (4.70-4.90) (2.10-2.70)  (-2.80- -0.60)  
 
Cows   2.55  5.73  5.14  5.07   2.25   
(2)   (1.65-3.05) (5.15-6.15) (4.75-5.55) (4.95-5.15)  (1.85-2.55)  
 
Dairy cows  3.03  5.17  5.40  3.83   -1.77   
(3)   (2.70-3.30) (4.90-5.50) (5.00-5.80) (3.50-4.10)  (-2.40- -0.70) 
  
Sheep   0.76  -  -  3.76   0.64   
(4)   (0.76)      (3.59-3.93)  (0.63-0.65) 
 
Llamas  0.40  -  -  3.30   0.10   
(5)   (0.40)      (2.90-3.50)  (-0.20-0.60)  
 
Dairy cows  4.17  6.75  -  5.71   0.87   
(6)   (1.82-8.38) (5.24-9.21)   (4.20-8.76)  (-1.42-4.09)  
 
Dairy cows  2.88  6.63  6.56  6.03   -  
(Chapter 4)  (2.55-3.25) (6.59-6.68) (6.44-6.67) (5.78-6.17)  
 
Sheep   0.05  -  5.69  3.21   -1.40 
(Chapter 3)  (0.00-0.13) -  (5.62-5.76) (3.04-3.47)  (-1.46 - -1.36)  
 
Goats   2.38  7.74  7.72  4.55   1.80 
(Chapter 5)  (1.90-2.84) (7.11-8.29) (6.92-8.01) (4.01-5.03)  (1.22-2.20) 
‡ 1. Steele and Daniel, 1978; 2. Koyama et al., 1985; 3. Sutoh et al., 1987; 4. Sutoh et al., 

1993;  5. Sponheimer et al., 2003; 6. Cheng et al., 2011. 
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6.3. Nitrogen isotopic fractionation in relation to partitioning 

 

Can nitrogen isotopic fractionation reflect nitrogen partitioning or nitrogen use 

efficiency? 

 

Sick et al. (1997) suggested urea and protein from plasma are respectively less depleted 

and more enriched in δ15N compared with feed when N intake increases. In general, NUE 

and UN/NI are negatively and positively related to N intake of the animal (Castillo et al., 

2001; Cheng et al., 2011). Furthermore, body N (e.g., milk, plasma or muscle) and urinary 

N are mainly derived from plasma amino acids and plasma urea pools respectively 

(Young, 1970; Sick et al., 1997). Consequently, the data (Table 6.3) provided support for 

negative relationships between muscle enrichment (muscle δ15N - feed δ15N) and retained 

N/N intake in non-lactating sheep study, (milk δ15N - feed δ15N) and (plasma δ15N - feed 

δ15N) and NUE in lactating cows study. In addition, a positive relationship between 

UN/NI and urine depletion (urine δ15N - feed δ15N) in non-lactating sheep study. These 

relationships reflected an association between dietary N digestion/metabolism and N 

isotopic fractionation within ruminant body (Sutoh et al., 1993; Parker et al., 1995). 

Compared with the traditional N utilisation indicators (NI, BUN and MUN) measured in 

current lactating cow and non-lactating sheep study, δ15N predicted NUE and UN/NI with 

a better accuracy in the same study. However, due to the narrow NUE range from 

lactating goats study, no such comparison was allowed to be made.    

 

It is important to note that the accuracy (r2) of using δ15N to predict N partitioning for 

sheep and cow studies was varied, and no relationship was established for goats study. 

There are two possible reasons resulted in prediction variations. Firstly, the cause of 

fractionation was different, namely the fractionation in lactating cow study was due to 

dietary effect, whilst the non-lactating sheep study was due to possible animal variation in 

N metabolism. Secondly, the better prediction accuracy using δ15N in lactating cow study 

may be achieved through a larger variation in NUE compared with a narrower range of 

UN/NI was generated from non-lactating sheep study. No relationship was established for 

lactating goats study was mainly due to narrow range of NUE being generated and no 

fractionation was likely occurred at rumen level when MCP was not significantly 

improved through adding WSC in the diet. Overall, current established prediction 
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equations should be extrapolated further with cautions, as different feeding system and 

animal variation may well change the prediction accuracy in different studies. 

 

 

What drives these relationships? 

 

There are two plausible sites (i.e., liver and rumen) of N isotopic fractionation that may be 

related to N partitioning. Wattiaux and Reed (1995) reported that incorporation of 

ammonia into bacterial protein results in a depletion of 15N in microbial protein, which 

was not observed when microbial protein was synthesised from amino acids. Since 

bacterial protein would be the major source of amino acids for milk, plasma and muscle 

protein synthesis with the diets used in the current studies, it is unlikely that there was an 

increase in microbial protein synthesis when N intake was high in both lactating cows and 

non-lactating sheep studies. In addition, the possible complication from urea recycling is 

unlikely to important since the level of urea recycled from dietary N is expected to be low 

when N intake is greater than requirements (Reynolds and Kristensen, 2008). Thus, under 

the condition of these studies, it is likely that the relationships between N isotopic 

fractionation and N partitioning were mainly driven by deamination or transamination in 

the liver, as suggested by other workers (Macko et al., 1986; Parker et al., 1995) and 

similar to the fractionation reported by Sick et al. (1997) for rats fed on a range of protein 

sources. 
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Table 6.3. Simple linear relationship between nitrogen partitioning and nitrogen isotopic 

fractionation 

  
Animal type Equation r2 P 
 

Lactating cows  

 

Milk δ15N -feed δ15N (‰) = -0.0827 × NUE (%) 

+ 5.46  

 

 

0.83 

 

< 0.001 

Lactating cows Plasma δ15N -feed δ15N (‰) = -0.1001 × NUE 

(%) + 5.75   

 

0.85 < 0.001 

Non-lactating 

sheep 

Urinary nitrogen/nitrogen intake (g/g) = 0.25 × 

urine δ15N - feed δ15N (‰) + 0.98 

 

0.43 < 0.05 

Non-lactating 

sheep 

Retained nitrogen/nitrogen intake (g/g) = - 0.23 × 

muscle δ15N - feed δ15N (‰) + 1.33  

0.43 < 0.05 
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6.4. Lessons learnt 

 

Manipulate dietary composition without changing δ15N of feed 

 

Keeping feed δ15N similar across diets, but changing dietary composition is a useful 

model to test for a dietary effect on N isotopic fractionation which can be assessed by 

comparing the enrichment and depletion of different N sinks (e.g., milk, urine and faeces). 

However current PhD studies and other work (e.g., Sutoh et al., 1993; Wattiaux and Reed, 

1995) showed that keeping feed δ15N similar across diets is difficult particularly when 

changing dietary N levels. This is due to different forms of N in the diet have various δ15N 

levels. For example, true protein generally contains a higher δ15N compared with non-

protein N (e.g., urea) (Steele and Daniel, 1978; Sick et al., 1997; Cheng et al., 2010). 

Legumes contain a lower δ15N in comparison to grasses due to N fixation from 15N 

depleted N2 from atmosphere (Steele and Daniel, 1978). Because of the variation in feed 

δ15N, N isotopic fractionation between different N sinks in the body is normally expressed 

by subtracting feed δ15N (Hobson et al., 1993; Sutoh et al., 1993).  It is arguable that the 

ratio of δ15N between sinks may be a better measurement of the relative enrichment and 

depletion between N sinks when feed δ15N is unchanged across diets but the lactating 

goats study did not provide evidence for using the ratio of δ15N from different N sinks. 

 

Nitrogen isotopic fractionation in rumen 

  

Wattiaux and Reed (1995) reported that incorporation of ammonia into bacterial protein 

resulted in a depletion of 15N in microbial protein, which was not observed when 

microbial protein was synthesised from amino acids. The fact of no changes in 15N from 

synthesising amino acids into microbial protein does not mean no fractionation happened; 

perhaps the fractionation went one way when amino acids are broken down to ammonia 

and then reversed when the ammonia was re-incorporated into microbial protein, lead to 

no apparent fractionation. Therefore the net effect on 15N of varies N sinks is minimal and 

may due to the cancellation of anabolic and catabolic fractionation processes in the rumen. 

 

Accuracy and robustness of using nitrogen fractionation to indicate partitioning 
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A representative sample for δ15N measurement is important; this ensures the results is 

reproducible and with acceptable level of standard deviation (< 0.3 ‰). Dried and finely 

ground sample is found to produce more precise results than using liquid sample, possibly 

due to higher level of homogenisation. The depletion and enrichment of the measured 

samples compared with its feed is more than 0.5 ‰ (Table 6.2), which is considered as 

having sufficient level of fractionation for mass spectrometer to detect the difference. 

However, caution is needed to interpret data with low standard deviation and explanation 

is required to show the depletion is due to fractionation rather than measurement variation. 

 

Although current studies illustrated the potential of using isotopic fractionation to indicate 

N partitioning, care is needed when extrapolating the established prediction equations 

further. The robustness of using the technique should be better determined across different 

feeding systems (e.g., high vs low N intake, source of N, TMR vs pasture based system), 

as well as including animal differences (type of animal, breed of animal and genetic 

potential of the animal).  
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 Conclusions 

 

Factors that may contributed to the lack of a dietary effect (WSC/N) on N partitioning 

when dietary N or WSC is high 

 

 No change in dry matter intake and metabolisable energy intake. Such as at a constant 

ME (or FME intake) and excess RDP, MCP yield is not going to increase, therefore 

there will be no redistribution of extra N to MCP from amino acids and therefore no 

net change in the δ15N absorbed to provide for milk or body tissue sinks with no 

change in microbial protein synthesis. 

 

 Acidosis in the rumen/sub clinic ruminal acidosis with very high levels of WSC may 

reduce feed intake and thus no improvement in NUE can be expected (subject to 

further investigation). 

 

Nitrogen isotopic fractionation indicated N partitioning and NUE 

 

 N-use efficiency in dairy cows was predicted reasonable accurately by N isotopic 

fractionation mainly because DMI increased with increasing WSC/N ratios 

 

 However, when DMI was fixed, as in the non-lactating sheep N isotopic fractionation 

was less effective in predicting N partitioning. 

 

Future research on the accuracy of using N isotopic fractionation predicting  

N partitioning at different feeding system (preferably using autumn dairy pasture with 

graded levels of sugar added to generate difference in NUE, as autumn pasture is known 

to be low in WSC and high in RDP); animal variations contribute to changes in N isotopic 

fractionation; and contributions from different body parts (e.g., rumen vs liver vs 

intestines) are needed to provide full understanding of using N isotopic fractionation in 

various ruminant production.  



 

79 
 

REFERENCES 

 

AFRC (1993). Energy and Protein Requirements of Ruminants. Agricultural and Food 

Research Council. CAB International, Wallingford, UK. 

 

Baker, L. D., J. D. Ferguson. and W. Chalupa. 1995. Responses in urea and true protein of 

milk to different protein feeding schemes for dairy cows. J. Dairy. Sci. 78: 2424-

2434. 

 

Balter, V., L. Simon., H. Foiillet. and C. Lecuyer. 2006. Box-modelling of 15N/14N in    

mammals. Oecologia. 147: 212-222. 

 

Berry, D. P., F. Buckley., P. Dillon., R. D. Evans., M. Path. and R. F. Veerkamp. 2003. 

Genetic relationships among body condition score, body weight, milk yield, and 

fertility in dairy cows. J. Dairy. Sci. 86: 2193-2204. 

 

Bonanno A., M. Todaro., A. D. Grigoli., M. L. Scatassa., G. Tornambé. and M. L. 

Alicata. 2008. Relationships between dietary factors and level in goats grazing 

herbaceous pasture. Italian. J. Anim. Sci. 7: 2. 

 

Brand. T. S., F. Frank. and S. W. P. Cloete. 1992. Substitution of lucerne hay by 

untreated, urea-enriched and urea-ammoniated wheat straw in diets for sheep. S. 

Afr. J. Anim. Sci. 22: 185-193. 

 

Brito, A. F. and G. A. Broderick. 2007. Effects of different protein supplements on milk 

production and nutrient utilization in lactating dairy cows. J. Dairy Sci. 90: 1816-

1827. 

 

Broderick, G. A. and M. K. Clayton. 1997. A statistical evaluation of animal and 

nutritional factors influencing concentrations of milk urea nitrogen. J. Dairy. Sci. 

80: 2964-2971. 

 



 

80 
 

Broderick, G. A. 2003. Effects of varying dietary protein and energy levels on the 

production of lactating dairy cows. J. Dairy. Sci. 86:1370-1381.  

 

Brookes, I. M. and A. M. Nicol. 2007. The protein requirements of grazing livestock. In 

Rattray, P. V., I. M. Brookes, I. M., A. M. Nicol. (Ed). Pasture and Supplements for 

Grazing Animals. New Zealand Society of Animal Production Occasional 

Publication No. 14. 67: 173-188. 

 

Bryant, R. H., V. Walpot., D. E. Dalley., S. J. Gibbs. and G.R. Edwards. 2010. 

Manipulating dietary N in perennial ryegrass pastures to reduce N losses in dairy 

cows in spring. Proceedings of the 4th Australasian Dairy Science Symposium. Pp 

97-100. 

 

Burke, J. L., D. Pacheco. and G. P. Cosgrove. 2011. In vitro digestion of ryegrasses 

harvested in the morning and afternoon to manipulate water soluble carbohydrate 

concentrations. Proceedings of the New Zealand Society of Anim Prod. 71: 229-223.  

 

Cabrita, A. R. J., R. J. Dewhurst., J. M. F. Abreu. and A. J. M. Fonseca. 2006. Evaluation 

of effects of synchronizing the availability of N and energy on rumen function and 

production responses of dairy cows- a review. Animal Research. 55: 1-24. 

 

Carroll, D. J., B. A. Barton., G. W. Aderson. and R. D. Smith. 1988. Influence of protein 

intake and feeding strategy on reproductive performance of dairy cattle. J. Dairy. 

Sci. 71: 3470-3481. 

 

Castillo, A. R., E. Kebreab., D. E. Beever. and J. France. 2000. A review of efficiency of 

nitrogen utilization in lactating dairy cows and its relationship with environmental 

pollution. J. Anim. Feed. Sci. 9: 1-32. 

 

Castillo, A. R., E. Kebreab., D. E. Beever., J. H. Barbi., J. D. Sutton., H. C. Kirby. and J. 

France. 2001. The effect of protein supplementation on nitrogen utilization in 

lactating dairy cows. J. Anim. Sci. 79: 247-253. 

 



 

81 
 

Chamberlain, D. G., S. Robertson. and J. Chong. 1993. Sugars versus starch as 

supplements to grass silage: Effect on ruminal fermentation and the supply of 

microbial protein to the small intestine, estimated from the urinary excretion of 

purine derivates in sheep. J. Sci. Food. Agr. 63: 189-194. 

 

Chen, X. L., J. K. Wang., Y. M. Wu. and J. X. Liu. 2008. Effects of chemical treatments 

of rice straw on rumen fermentation characteristics, fiberolytic enzyme activities 

and populations of liquid- and solid-associated ruminal microbes in vitro. Anim. 

Feed. Sci. and Tech. 141: 1-14.  

 

Cheng, L., R. Dewhurst, J. Larkin, F. Buckley, C. Thackaberry. and G. Edwards. 2010. 

The relationship between nitrogen use efficiency and isotopic fractionation in dairy 

cows using milk samples collected in the morning or afternoon. J. Dairy. Sci. 93: E-

Suppl. 1: 441. 

 

Cheng, L., E. J. Kim., R. J. Merry. and R. J. Dewhurst. 2011. Nitrogen partitioning and 

isotopic fractionation in dairy cows consuming diets based on a range of contrasting 

forages. J. Dairy. Sci. 94: 2031-2041. 

 

Cheng, L., S. J. Gibbs., A. G. Rius., S. Meier., G. R. Edwards. and J. R. Roche. 2012a. 

Prediction and evaluation of urinary nitrogen output from pasture-fed dairy cows. 

Proc. Australasia. Dairy. Sym. Pp. 205-206.   

 

Cheng, L., G. R. Edwards. and S. J. R. Woodward. 2012b. Evaluation of urinary nitrogen 

excretion prediction models from cows with low and high breeding worth. Proc. 

Australasia. Dairy. Sym. Pp. 157-158. 

 

Cherdthong, A. and M. Wanapat. 2010. Development of urea products as rumen slow-

release feed for ruminant production: A review. Aust. J. Basic Appl. Sci. 4: 2232-

2241. 

 

Clarke, T., P. C. Flinn. and A. A. McGowan. 1982. Low-cost pepsin-cellulase assays for 

prediction of digestibility of herbage. Grass Forage Sci. 37: 147-150. 

 



 

82 
 

Cocimano, M. R. and R. A. Leng. 1967. Metabolism of urea in sheep. Br. J. Nutr. 21: 

353-371. 

 

De Campeneere, S., D. L. De Brabander. and J. M. Vanacker. 2006. Milk urea 

concentration as affected by the roughage type offered to dairy cattle. Livestock. 

Sci. 103: 30-39. 

 

Dewhurst. R. J., A. M. Mitton., N. W. Offer. and C. Thomas. 1996. Effects of the 

composition of grass silages on milk production and nitrogen utilisation by dairy 

cows. Anim. Sci. 62: 25-34. 

 

Dewhurst, R. J., W. J. Fisher. J. K. S. Tweed. and R. J. Wilkins. 2003a. Comparison of 

grass and legume silage for milk production. 1. Production responses with different 

levels of concentrate. J. Dairy. Sci. 86: 2598-2611. 

 

Di, H. J. and K. C. Cameron. 2002. Nitrate Leaching from Temperate Agroecosystems: 

Sources, Factors and Mitigating Strategies. Nutrient Cycling in Agroecosystems. 

46: 237-256. 

 

Dillon, P., S. Snijders., F. Buckley., B. Harris., P. O. Conner. and J. F. Mee. 2003. A 

comparison of different dairy cow breeds on a seasonal grass-based system of milk 

production. 2. Reproduction and survival. Livestock. Prod.  

Sci. 83: 35-42. 

 

Dillon, P., D. P. Berry., R. D. Evans., F. Buckley. and B. Horan. 2006. Consequences of 

genetic selection for increased milk production in European seasonal pasture based 

systems of milk production. Livestock. Prod.  

Sci. 99: 141-158. 

 

Edwards, G. R., A. J. Parsons. and S. Rasmussen. 2007. Higher sugar ryegrasses for dairy 

systems. In: Meeting the challenges for pasture-based dairying. Proceedings of the 

Australasian Dairy Sci Symposium, Melbourne. 307-334. 

 



 

83 
 

Eisemann, J. H., A. C. Hammond. and T. S. Rumsey. 1989. Tissue protein synthesis and 

nucleic acid concentrations in steers, treated with somatotropin. Br. J. Nutr. 62: 657-

671.  

 

Ellis, J. L., J. Dijkstra., A. Bannink., A. J. Parsons., S. Rasmussen., G. R. Edwards., 

E. Kebreab. and J. France. 2011. The effect of high-sugar grass on predicted 

nitrogen excretion and milk yield simulated using a dynamic model. J. Dairy Sci. 

76: 2982-2993. 

 

Fox, D. G., L. O. Tedeschi., T. P. Tylutki., J. B. Russell., M. E. Van Amburgh., L. E. 

Chase., A. N. Pell. and T. R. Overton. 2004. The cornell net carbohydrate and 

protein system model for evaluating herd nutrition and nutrient excretion. Anim. 

Feed Sci and Tech. 112: 29-78. 

 

Frank, B. and C. Swensson. 2002. Relationship between content of crude protein in 

rations for dairy cows and milk yield, concentration of urea in milk and ammonia 

emissions. J. Dairy. Sci. 85: 1829-1838. 

 

George, S. K., M. T. Dipu., U. R Mehra., P. Singh., A. K. Verma. and J. S. Rangaokar. 

2006. Improved HPLC method for the simultaneous determination of allantoin, uric 

acid and creatinine in cattle urine. J. Chromatography B. 832: 134-137. 

 

Geerts N. E.,  D. L. De Brabander., J. M. Vanacker., J. L. De Boever., S. M. Botterman., 

2004. Milk urea concentration as affected by complete diet feeding and protein 

balance in the rumen of dairy cattle. Livest. Prod. Sci. 85: 263-273. 

 

Gustafsson, A. H. and D. L. Palmquist. 1993. Diurnal variation of rumen ammonia, serum 

urea, and milk urea in dairy cows at high and low yields. J. Dairy. Sci. 76: 475-484. 

 

Henning, P. H., D. G. Steyn, and H. H. Meissner. 1991. The effect of energy and nitrogen 

supply pattern on rumen bacterial growth in vitro. Anim. Prod. 53:165-175. 

 



 

84 
 

Henning, P. H., D. G. Steyn. and H. H. Meissner. 1993. Effect of synchronization of 

energy and nitrogen supply on ruminal characteristics and microbial growth. J. 

Anim.  Sci. 71: 2516-2528. 

 

Hobson, K. A. and R. G. Clark. 1992. Assessing avian diets using stable isotopes II: 

Factors influencing diet-tissue fractionation. The Condor 94: 189-l 97. 

 

Hobson, K. A., R. T. Alisauskas. and R. G. Clark. 1993. Stable-nitrogen isotope 

enrichment in avian tissues due to fasting and nutritional stress: implications for 

isotopic analyses of diet. The cooper ornithological society. 95: 388-394. 

 

Hof, G., S. Tamminga. and P. J. Lenaers. 1994. Efficiency of protein utilisation in dairy 

cows. Livestock. Prod. Sci. 38 (3): 169-178. 

 

Holmes, W., R. Waite., D. S. Maclusky. and J. N. Watson. 1956. Winter   feeding of dairy 

cows.  1.  The   influence  of   level  and  source   of  protein  and  on  the level  of   

energy  in  the   feed  on  milk  yield  and  composition.  J. Dairy. Res. 23: 1-12. 

 

Jonker, J. S., R. A. Kohn. and R. A. Erdman. 1998. Using milk urea nitrogen to predict 

nitrogen excretion and utilization efficiency in lactating dairy cows. J. Dairy. Sci. 

81: 2681-2692.   

 

Kohn, R. A., M. Dinneen. and E. Russek-Cohen. 2005. Using blood urea nitrogen to 

predict nitrogen excretion and efficiency of nitrogen utilization in cattle, sheep, 

goats, horses, pigs, and rats. J. Anim. Sci. 83: 79-889. 

 

Koyama, M. 1985. Fractionation of nitrogen isotopes by domestic animals. Japanese J. 

Zootechnical. Sci. 56: 361-362.  

 

Kristensen, V. F., T. Kristensen., O. Aaes. and O. K. Hansen. 1998. The amount and 

composition of cattle faeces and urine and excretion of N, P and K in faeces and 

urine. In: A Renovation of the Danish Standard Values concerning the Nitrogen, 

Phosphorus and Potassium Content of Manure (Eds. H.D. Poulsen and V.F. 



 

85 
 

Kristensen). Danish Institute of Agricultural Science. Ministry of Food, Agriculture 

and Fisheries. pp. 108-141. 

 

Litherland, A. J. and M. G. Lambert. 2007. Factors affecting the quality of pastures and 

supplements produced on farms. In Rattray. P. V., I. M. Brookes and A M. Nicol 

(Ed). Pasture and Supplements for Grazing Animals. New Zealand Society of 

Animal Production Occasional Publication No. 14. 67: 81-95. 

 

McCarthy, F. D., W. G. Bergen. and D. R. Hawkins. 1983. Muscle protein turnover in 

cattle of differing genetic backgrounds as measured by urinary N-methylhistidine 

excretion. J. Nutr. 113: 2455-2463. 

 

Macko, S. A., M. L. Fogel., M. H. Engel. and P. E. Hare. 1986. Kinetic fractionation of 

stable nitrogen isotopes during amino acid transamination. Geochim. Cosmochim. 

Acta. 50: 2143-2146. 

 

Macko, S. A., M. L. Fogel., P. E. Hare. and T. C. Hoering. 1987. Isotopic fraction of 

nitrogen and carbon in the synthesis of amino acids by microorganisms. Chemical 

Geology. 65: 79-92. 

 

MacRae, J. C., A. Walker., D. Brown. and G. E. Lobley. 1993. Accretion of total and 

individual amino acids by organs and tissues of growing lambs and the ability of 

nitrogen balance techniques to quantitate protein retention. Anim. Prod. 57: 237-

245. 

 

MacAvoy, S. E., S. A. Macko. and L. S. Arneson. 2005. Growth versus metabolic tissue 

replacement in mouse tissues determined by stable carbon and nitrogen isotope 

analysis. Can. J. Zool. 83: 631–641. 

 

Maeng, W. J. and R. L. Baldwin. 1976. Factors influencing rumen microbial growth rates 

and yields: Effect of amino acid additions to a purified diet with nitrogen from urea. 

J. Dairy Sci. 59:648-655. 

 



 

86 
 

Männel, T. T., K. Auerswald. and H. Schnyder. 2007. Altitudinal gradients of grassland 

carbon and nitrogen isotope composition are recorded in the hair of grazers. Glob 

Ecol Biogeogr. 16: 583-592 
 

Meier, S., P. J. S. Gore., C. M. E. Barnett., R. T. Cursons., D. E. Phipps., K. A. Watkins.    

and G. A. Verkerk. 2008. Metabolic adaptations associated with irreversible glucose 

loss are different to those observed during under-nutrition. Domestic Animal 

Endocrinology. 34: 269-277. 

 

Merry, R. J., M. R. F. Lee., D. R. Davies., R. J. Dewhurst., J. M. Moorby., N. D. Scollan. 

and M. K. Theodorou. 2006. Effects of high sugar ryegrass silage and mixtures with 

red clover silage on ruminant digestion.1.in vitro and in vivo studies of nitrogen 

utilisation. J. Anim. Sci. 84: 3049-3060. 

 

Miller-Graber, P. A., L. M. Lawrence., J. H. Foreman., K. D. Bump., M. G. Fisher. and E. 

V. Kurcz. 1991. Dietary protein level and energy metabolism during treadmill 

exercise in horses. J. Nutr. 121(9):1462-1469. 

 

Miller, L. A., J. M. Moorby., D. R. Davies., M. O. Humphreys., N. D. Scollan. and J. C. 

MacRae. 2001. Increased concentration of water soluble carbohydrate in perennial 

ryegrass (lolium perenne L.): Milk production from late-lactation dairy cows. Grass 

Forage Sci. 56: 383-394. 

 

Moorby, M. J., R. T. Evans., N. D. Scollan., J. C. MacRae. and M. K. Theodorou. 2006. 

Increased concentration of water-soluble carbohydrate in perennial ryegrass (lolium 

perenne L.). Evaluation in dairy cows in early lactation. Grass Forage Sci. 61: 52-

59. 

 

Mustafa, A. F., D. A. Christensen. and J. J. McKinnon. 2001. Chemical composition and 

ruminal degradability of Lucerne (Medicago sativa) products. J. Sci.Food. Agr. 81: 

1498-1503. 

 

Nousiainen, J., K. J. Shingfield. and P. Huhtanen. 2004. Evaluation of milk urea nitrogen 

as a diagnostic of protein feeding. J. Dairy. Sci. 87: 386-398. 



 

87 
 

 

Nennich, T. D., J. H. Harrison., L. M. VanWieringen., N. R. St-Pierre., R. L. Kincaid., M. 

A. Wattiaus., D. L. Davidson. and E. Block. 2006. Prediction and evaluation of 

urine and urinary nitrogen and mineral excretion from dairy cattle. J. Dairy. Sci. 89: 

353-364. 

 

NRC. 2001. Nutrient Requirements of Dairy Cattle. 7th revised edition. National 

Academy Press, Washington, DC. 

 

O’Cconnell, T. C. and R.E.M. Hedges. 1999. Investigations into the effect of diet on 

modern human hair isotopic values. American J. Phy. Anthropology. 108:409-425. 

 

Oldham, J. D. 1984. Protein-energy interrelationships in dairy cows. J. Dairy. Sci. 67: 

1090-1114. 

 

Oltner, R., M. Emanuelson. and H. Wiktorsson. 1985. Urea concentration in cows milk in 

relation to milk yield, live weight, lactation number and composition of feed given. 

Livest. Prod. Sci. 12: 45-57. 

 

Orr, R. J., S. M. Rutter., P. D. Penning. and A. J. Rook. 2001. Matching grass supply to 

grazing patterns for dairy cows. Grass and Forage Sci. 56: 352-361. 

 

Owens, F. N., D. S. Secrist., W. J. Hill. and D. R. Gill. 1998. Acidosis in Cattle: A 

Review. J. Anim. Sci. 76: 275-286. 

 

Pacheco, D. G. A. Lane., J. L. Burke. and G. P. Cosgrove. 2007. Water soluble 

carbohydrates relative to protein in fresh forage: impact on efficiency of nitrogen 

utilisation in lactating dairy cows. J. Anim. Sci. 85. Supp: 431-432.  

 

Pacheco, D. and G. C. Waghorn. 2008. Dietary nitrogen - definitions, digestion, excretion 

and consequences of excess for grazing animals. Proceedings of the New Zealand 

Grassland Association. 70: 107-116. 



 

88 
 

 

Parker, D. S., M. A. Lomax. C. J. Seal. and J. C. Wilton. 1995. Metabolic implications of 

ammonia production in the ruminant. Proceedings of the Nutrition Society. 54: 549-

563. 

 

Pfeffer, E. and A. Hristov. 2005. Nitrogen and phosphorus nutrition of cattle. CABI 

publishing. 

 

Rasmussen. S., A. J. Parsons., S. Bassett., M. J. Christensen., D. E. Hume., L. J. Johnson., 

R. D. Johnson., W. R. Simpson., C. Stacke., C. R. Voisey., H. Xue. and J. A. 

Newman. 2007. High nitrogen supply and carbohydrate content reduce fungal 

endophyte and alkaloid concentration in Lolium perenne. New Phytologist. 173: 

787-797. 

 

Reynolds, C. K. and N. B. Kristensen. 2008. Nitrogen recycling through the gut and the 

nitrogen economy of ruminants: Anasynchronous symbiosis. J. Anim. Sci. E 

Supplement 86: E293-E305. 

 

Rogers, G. E. and A. C. Schlink. 2010. Wool growth and production. In D. J. Cottle (Ed). 

International sheep and wool handbook. Nottingham University Press. 373-394. 

 

Rooke, J. A., N. H. Lee. and D. G. Armstrong. 1987. The effects of intraruminal infusions 

of urea, casein, glucose syrup and a mixture of casein and glucose syrup on nitrogen 

digestion in the rumen and cattle receiving grass-silage diets. Br. J. Nutr. 57: 89-98. 

 

Rusdi. And M. F. J. Van Houtert. 1997. Responses to protected amino acids or protected 

protein in dairy cows grazing ryegrass pastures in early lactation. Proceedings of the 

New Zealand Society of Animal Production. 57: 120-125. 

 

Schepers, A. J. and R. G. M. Meijer. 1998. Evaluation of ultilisation of sietary nitrogen by 

dairy cows based on urea concentration in milk. J. Dairy. Sci. 81: 579-584. 

 



 

89 
 

Sick, H., N. Roos., E. Saggau., K. Haas., V. Meyn., B. Walch. and N. Trugo. 1997. 

Amino acid utilisation and isotope discrimination of amino nitrogen in nitrogen 

metabolism in rat liver in vivo. Eitschrift für Ernahrungswissenschaft. 36: 340-346.  

 

Spanghero, M. and Z. M. Kowalski. 1997. Critical analysis of N balance experiments with 

lactating cows. Livest. Prod. Sci. 52: 113-122. 

 

Sponheimer, M., T. Robinson., L. Ayliffe., B. Roeder., J. Hammer., B. Passey., A. West., 

T. Cerling., D. Dearing. and J. Ehleringer. 2003. Nitrogen isotopes in mammalian 

herbivores: hair δ15N values from a controlled feeding study. International. J. 

Osteoarchaeology. 13: 80-87. 

 

Steele. K. W. and R. M. Daniel. 1978. Fractionation of nitrogen isotopes by animals: 

further complication to the use of variations in the natural abundance of 15N for 

tracer studies. J. Agric. Sci. 90: 7-9. 

 

Steele, K. W., P. M. Bonish., R. M. Daniel. and G. W. O’Hara. 1983. Effect of rhizobial 

strain and host plant on nitrogen isotopic fractionation in legumes. Plant Physiol. 

72: 1001-1004. 

 

Storm, E. and R. Ørskov. 1983. The nutritive value of rumen microorganisms in ruminant. 

1. Large-scale isolationand chemical composition of rumen microorganism. Br. J. 

Nutr. 50: 463-470. 

 

Sutoh, M., Y. Obara. and T. Yoneyama. 1987. Variations of natural abundances in the 

tissues and digesta of domestic animals. Radioisotopes. 36: 74-77. 

 

Sutoh, M., Y. Obara. and T. Yoneyama. 1993. The effects of feeding regimen and dietary 

sucrose supplementation on natural abundance of 15N in some components of 

ruminal fluid and plasma of sheep. J. Anim. Sci. 71: 226-231. 

 

Tas, B. 2006. Nitrogen utilisation of perennial ryegrass in dairy cows. PhD Thesis. 

Wageningen University. Pp 125-140. 

 



 

90 
 

Tyrrell, H. F., P. W. Moe., W. P. Flatt. 1970. Influence of excess protein intake on energy 

metabolism of the dairy cow. In: Energy Metabolism of Farm Animals. 5th ed. Eds. 

Schurch, A.; C. Wenk. EAAP. pp 69-72. 

 

van Vuuren, A.M., C.J. van der Koelen., H. Valk. and H. de Visser. 1993. Effects of 

partial replacement of ryegrass by low protein feeds on rumen fermentation and 

nitrogen loss by dairy cows. J. Dairy. Sci. 76: 2982-2993. 

 

Varel, V. H., J. A. Nienaber. and H. C. Freetly. 1999. Conservation of nitrogen in cattle 

feedlot waste with urease inhibitors. J. Anim. Sci. 77: 1162-1168. 

 

Wade, E., T. Kadonaga. and S. Matsuo. 1975. 15N abundance in nitrogen of naturally 

occurring substances and global assessment of denitrification from isotopic 

viewpoint. Geochemical Journal.  9: 139-148. 

 

Wattiaux, M. A. and J. D. Reed. 1995. Fractionation of nitrogen isotopes by mixed 

ruminal bacteria. J. Anim. Sci. 73: 257-266.  

 

Woodward, S. L., G. C. Waghorn., M. A. Bryant. and K. Mandok. 2011. Are high 

breeding worth index cows more feed conversion efficient and nitrogen use 

efficient? Proceedings of the New Zealand Society of Animal Production. 71: 109-

113. 

 

Yoneyama, T., Y. Ohta. and T. Ohtani. 1983. Variations of natural 13C and 15N 

abundances in the rat tissues and their correlation. Radioisotopes. 32: 330. 

 

Young, V. R. 1970. The role of skeletal and cardiac muscle in the regulation of protein 

metabolism. In Munro, H. N. (Ed). Mammalian Protein Metabolism. Academic 

Press, New York. 586-657. 

 

Zhu, L. H., L. E. Armentano., D. R. Bremmer., R. R. Grummer. and S. J. Bertics. 2000. 

Plasma concentration of urea, ammonia, glutamine around calving, and the relation of 

hepatic triglyceride, to plasma ammonia removal and blood acid-base balance. J. 

Dairy. Sci. 83: 734-740.  



 

91 
 

 

 

REFEREED PUBLICATIONS DURING THE COURSE OF STUDY 

 

1. Cheng, L. Kim, E, J. Merry, R. J. and Dewhurst, R. J. (2011). Nitrogen partitioning 

and isotopic fractionation in dairy cows consuming diets based on a range of 

contrasting forages. J. Dairy. Sci. 94: 2031-2041. 

 

 

2. Cheng, L. Dewhurst, R. Larkin, J. Buckley, F. Thackaberry, C. and Edwards, G. 

(2010). The relationship between nitrogen use efficiency and N isotopic 

fractionation in dairy cows using milk samples collected in the morning or 

afternoon. J. Dairy. Sci. 93, E-Suppl. 1: p441. 

 

 

3. Cheng, L. Dewhurst, R. J. Nicol, A. M. and Edwards, G. R. (2010). Brief 

communication: Investigation of N isotopic fractionation in dairy cows using milk 

samples collected at the morning and afternoon milkings. Proceedings of the New 

Zealand Society of Animal Production. 70: 65-66. 

 

 

4. Cheng, L. Dewhurst, R. J. Nicol, A. M. and Edwards, G. R. (2010). Approaches to 

measure nitrogen use efficiency of dairy cows.  Proceedings of 2010 Australasian 

Dairy Symposium. Pp 160-162. 

 

 

5. Cheng, L. and Dewhurst, R. J. (2009). Investigation of the potential to use isotopic 

fractionation between milk and urine as a test for Nitrogen use efficiency of dairy 

cows. In: Proceedings of the 11th International Symposium on Ruminant 

Physiology. Clermont-Ferrand, France. p486. 

 

 



 

92 
 

 



 

93 
 

 



 

94 
 

 



 

95 
 

 



 

96 
 

 



 

97 
 

 



 

98 
 

 



 

99 
 

 



 

100 
 

 



 

101 
 

 



 

102 
 

 



 

103 
 

 



 

104 
 

 



 

105 
 

 



 

106 
 

 



 

107 
 

 


