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Abstract of a thesis submitted in partial fulfilment of the 

requirements for the Degree of Master of Applied Science. 

Abstract 

The impact of climate change on the summerfruit industry with respect to 

insect pest incursions 

 

by 

Karel Richard Lindsay 
 

It is now well established that climate change is causing a rise in surface air temperatures due 

to anthropgenic greenhouse gas emissions. Evidence suggests that warmer surface air 

temperatures are likely to have an impact on species distributions and climatic suitability, 

potentially resulting in an increase of tropical or sub-tropical insect pest establishments in 

areas with temperate climates such as New Zealand. The increased risk of these exotic insect 

pests establishments is likely to affect both native ecosystems and agricultural industries. The 

New Zealand summerfruit industry is the fourth largest horticulural industry in New Zealand 

with a valuable export market worth NZ$30 million per annum. New Zealand currently 

maintains a valuable fruit fly free status that is maintained by strict biosecurity procedures 

such as the treatment and inspection of imported fruit and a nationwide trapping grid. 

However climate change could improve the climatic suitability for particular fruit fly species 

in New Zealand and increase the risk of permanent establishment..  

In the absence of more detailed biological data for target species, any assessment of 

establishment potential of species under changing conditions often means the use of a species 

distribution model (SDM) to project climatic suitability in the target area. This research aimed 

to predict and compare the climatic suitability of major summerfruit producing regions in 

New Zealand under current climatic conditions and future climate change conditions of 

Bactrocera dorsalis, B. tryoni, B. zonata, Ceratitis capitata and C. rosa. A common 

ecoclimatic assessment model known as CLIMEX and a correlative modelling system 

comprising  multiple SDM models were used to estimate climatic suitability for each species. 

Climatic suitability predictions for New Zealand were generated for 2040 and 2090 emission 

scenarios that represented best case, intermediate and worse case scenarios per time frame. 



 iii 

The results using CLIMEX indicated an increase in climatic suitability around the 

summerfruit producing Hawkes Bay and Marlborough regions for all fruit fly species under 

all climate change scenarios. High future emission scenarios resulted in a higher increase in 

climatic suitability. The results with the multiple model system indicated an increase in 

climatic suitability for C. rosa under all climate change scenarios and around all major 

summerfruit producing regions, an increase in climatic suitability for B. zonata only under 

2090 climate change scenarios around the summerfruit producing regions, Marlborough and 

Central Otago and an increase in climatic suitability for B. dorsalis around the summerfruit 

producing region Central Otago. A decrease in climatic suitability for C. capitata was 

observed in all areas under all climate change scenarios and no change from low risk was 

observed for B. tryoni. These results indicate that warmer temperatures may increase or 

decrease the risk exotic summerfruit insect pest incursions and establishments.    

In the event of an incursion or outbreak, knowledge of climatic suitability for exotic fruit fly 

species that present a serious threat to our horticulture industry will increase the effectiveness 

of an incursion response by concentrating eradication and spread prevention protocols around 

locations that are more vulnerable, rather than expend resources and valuable time on 

locations with a low climatic suitability. Additionally, the industries at risk can use this 

information to be pro-active and plan for emerging threats.  
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     Chapter 1 
General Introduction 

1.1 Global climate change and the IPCC 

Climate change and global warming are terms used to describe the current change in global 

climatic systems due to warming of surface air temperatures. Evidence now indicates that 

climate change is not naturally occurring but rather the result of accumulative anthropogenic 

greenhouse gas emissions and deforestation. Measurements taken from ice cores indicate an 

increase of greenhouse gases by 70% between 1970 and 2004 since pre industrial(IPCC 

2007). An increase in greenhouse emissions amplifies the ‘greenhouse effect’ which is the 

result of the greenhouse gases in the lower atmosphere absorbing thermal radiation off the 

Earth’s surface. Evidence for climate change occurring can be observed from both climatic 

measurements and physical changes to the environment. For example, global sea level rose at 

an average rate of 1.8mm per year from 1961 to 2003 and at an average rate of 3.1mm per 

year from 1993 to 2003. Of the observed increase in sea level, 58% is from thermal 

expansion, 28% from melting glaciers and the rest from melting polar ice sheets.  

Evidence for surface air temperature increases can be found by observing temperature 

anomalies from a reference value. Brohan et al. (2006) published a report on deviating 

temperature anomalies from a time series dataset ranging from 1850 to 2005. The reference 

value in this study was the temperature average during the time period 1960 – 1990. Since 

then the Climate Research Unit (CRU) and UK Met Office Hadley Centre have updated the 

temperature anomalies. (Figure 1.1) (Jones 2010). The values in the time period 1961 – 1990 

do not average to zero due to the lack of complete temperature recordings in some parts of 

the world.  



 15 

 

Figure 1.1: Temperature anomalies from 1850 to 2009 (Jones 2010) 

Using the same time series dataset, the rate of surface air temperature increase is also 

observed to be intensifying over time (Jones 2010) (Table 1.1).  

Table 1.1: Average global surface air temperature increases per decade through various timescales 

 

 

 

 

The Intergovernmental Panel on Climate Change (IPCC) was established by the United 

Nations Environmental program (UNEP) and World Meteorological Organisation (WMO) in 

1988. Researchers connected to the IPCC review and assess the most recent scientific, 

technical and social-economical data produced worldwide related to global climate change 

and produce assessments, special reports and technical reports. These reports provide 

governments of the world with a clear scientific view on the state of climate change and the 

potential social and economic consequences.  

The predicted temperature range increases are calculated from a range of different scenarios 

that span best and worst case scenarios referring to potential greenhouse gas emission rates, 

technological changes and social-economic factors in the future (Figure 1.2) (Nakicenovic 

and Swart 2000). The A1 scenario describes a future world of “very rapid economic growth, 

global population that peaks in mid-century, followed by a decline and the rapid introduction 

of new and more efficient technologies” (Nakicenovic and Swart 2000). The scenario family 

divides into three different groups that characterise alternative developments of technology: 

Timescale Temperature Anomaly 

1875 – 2005 0.054 +/- 0.016 ºC 

1901 – 2005 0.084 +/- 0.021 ºC 

1979 – 2005 0.268 +/- 0.069 ºC 
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A1F1 (fossil fuel intensive), A1B (balanced) and A1T (non fossil fuel dependent). The B1 

scenario describes the same population projector as A1 scenario but with a more service and 

information economy, it also describes a reduction in material intensity and introduction of 

resource efficient technology. The A2 scenario describes a world of national self reliance and 

preservation of local identities with technology change that is fragmented and slower than 

other storylines. The last scenario, the B2 scenario, describes a similar heterogeneous world 

like the A2 scenario with local solutions to economic, social and environmental issues. The 

B2 scenario also describes more diverse and less rapid changes in technology than the A1 and 

B1 scenarios. 

 

 

Figure 1.2: IPCC carbon emission scenarios (Nakicenovic and Swart 2000) 

The fourth assessment is the most recent working assessment published by the IPCC in 2007. 

This assessment states an average increase of global surface air temperatures of 0.2 ºC per 

decade during the 21st century across the emission scenarios. If carbon emissions remained at 

concentrations measured in 2000, there would still be an increase in surface air temperatures 

by 0.1 ºC per decade (Meehl et al. 2007). Predicted increases in global surface air 

temperatures expected around 2090 – 2099 range from 1.1 ºC to 6.4 ºC across all emissions 

scenarios relative to 1980 – 1999 (Meehl et al. 2007).  
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1.1.1 New Zealand climate change predictions 

A report created by National Institute for Water and Atmosphere (NIWA) and published by 

the Ministry for the Environment in 2008 (Mullen et al. 2008) gives predicted changes in 

surface air temperatures for 2040 and 2090 relative to 1990 for New Zealand. Global climate 

change predictions and carbon emission scenarios created by the IPCC were statistically 

downscaled to portray New Zealand predictions (Mullen et al. 2008). This method uses 

historical observations of New Zealand temperatures and compares it with climate 

fluctuations to create regression equations. The historical observations are then replaced by 

model projections to create the predictions (Mullen et al. 2008). The analysis only 

downscaled the A1B emission scenario while the rest of the emission scenarios were scaled 

differences from the A1B scenario.  

The increases in mean annual surface air temperatures predicted for 2040 and 2090 varies 

across each individual emissions scenario (Table 1.2). Across all models and emission 

scenarios, climate change predictions in New Zealand range from 0.2 – 2 ºC by 2040 and 0.7 

– 5.1 ºC by 2090. 

Table 1.2: Average New Zealand climate change predictions across each carbon emissions scenario 

2040 Climate Change Predictions 

B1	
  Scenario	
   A1T/B2	
  Scenario	
   A1B	
  Scenario	
   A2	
  Scenario	
   A1F1	
  Scenario	
  

0.6	
   0.8	
   0.9	
   1.1	
   1.3	
  

 

2090 Climate Change Predictions 

B1	
  Scenario	
   A1T/B2	
  Scenario	
   A1B	
  Scenario	
   A2	
  Scenario	
   A1F1	
  Scenario	
  

1.3	
   1.7	
   2	
   2.5	
   2.9	
  

 

Climate change predictions for New Zealand indicate less warming than what is predicted to 

occur on a global scale. (Mullen et al. 2008). The potential changes in the climate will not be 

equal across New Zealand with North Island temperatures expected to increase more than 

South Island temperatures. Warmer temperatures correlated with climate change are also 

likely to influence rainfall patterns and climatic extremes (Table 1.3). Changes to extreme 
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weather events may even have more impacts than changes to annual temperatures. Changes 

to temperatures, rainfall patterns and climatic extremes could depend on how key climatic 

processes such as the sub-tropical high pressure belt, mid latitude westerly wind circulation 

and the El Nino Southern Oscillation (ENSO) system respond to the warmer temperatures. 

There has been an observed increase in ENSO events since the 1970s but there is continual 

debate on whether this is linked to climate change (Mullen et al. 2008).   

Table 1.3: Potential climate change in New Zealand  

1.2 New Zealand summerfruit industry 

The term summerfruit includes stone fruit crops such as cherries (Prunus avium), plums (P. 

domestica), apricots (P. armeniaca), peaches (P. persica) and nectarines (P. persica). The 

summerfruit industry in New Zealand is the fourth largest fruit producing crop industry after 

kiwifruit, pipfruit and avocadoes and comprises 2300 hectares divided among 350 growers 

(Summerfruit NZ 2007). Summerfruit production generated NZ$41 million in the domestic 

market in the time period 2004 – 2009 and in 2009 alone the export market for summerfruit 

was valued at $NZ31 million (Aitken and Hewett 2009). The top summerfruit producing 

regions in New Zealand are represented in Figure 1.3.  Central Otago produces 50% of 

summerfruit, followed by Hawkes Bay with 30% and Marlborough with 10% (Summerfruit 

NZ 2007). The summerfruit industry supplies both the export and local markets with 

proportions varying per crop (Table 1.4).  

Climate Variable Direction and Magnitude of Change 
Extreme Temperatures Decrease in extreme cold days during winter and increase in 

extreme warm days during summer 
Rainfall Increase in rainfall throughout the South Island and decreases in 

rainfall throughout the North Island 
Extreme Rainfall Heavier and more frequent extreme rainfall events 
Snow Cover Decreased amount and duration of snow cover 
Winds Increases in westerly winds and increases in extreme wind 

events 
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Figure 1.3: The top summerfruit producing regions in New Zealand. HB = Hawkes Bay, MB = 
Marlborough, CO= Central Otago 

Table 1.4: Total production (tonnes) of each summerfruit crop and proportions sold in export and local 
markets, 2008-2009 (Summerfruit NZ, 2007) 

 

1.2.1 New Zealand and summerfruit regional climate 

New Zealand has a complex climate that varies from a warm sub-tropical climate in the north 

of the North Island to a temperate climate in the South Island. Mountain chains extending 

down the South Island and parts of the North Island, create a barrier for westerly winds and 

form two distinctly different climatic regions (NIWA 2010). Locations west of the mountain 

ranges experience high amounts of rainfall and less variation in temperatures compared to the 

drier and more variable temperature conditions east of the mountain chains (NIWA 2010). 

 Export and NZ 
Market total 

(tonnes) 

% Export % NZ Market 

Apricots 3,500 29.6 70.4 
Cherries 2,630 58.4 41.6 
Nectarines 3,300 0.9 99.1 
Peaches 3,050 0.8 99.2 
Plums 1,970 1.4 98.7 
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Mean annual temperatures range from 10 ºC in the South Island to 16 ºC in the North Island. 

Temperatures also drop 0.7 ºC for every 100 meters of altitude increase.  

Summerfruit orchards in Central Otago experience very warm summers with temperatures 

reaching 20 °C to 26 °C during the afternoon, occasionally rising above 30 °C (NIWA 2010). 

Winters are very cold with severe, frequent frosts and occasional snowfall. Maximum 

temperatures in winter during the day range from 3 °C to 11°C. Mean rainfall is low with 

Alexandra only receiving 300mm annually, resulting in occasional drought conditions. 

Annual hours of sunshine average around 2050 hours (NIWA 2010). Summerfruit orchards in 

Marlborough are sheltered by high country in the west and south which accounts for this 

region having the highest annual sunshine hours (2300 hours) in New Zealand (NIWA 2010). 

The summers are warm and dry with afternoon temperatures reaching 20°C and 26°C, 

occasionally rising above 30 °C. Winters are mild with the occasional frost. Temperatures in 

winter reach between 10 °C and 15 °C during the day. Marlborough also receives little 

rainfall with Blenheim receiving on average 600mm of rain per year (NIWA 2010). High 

country to the west also creates a sheltered climate for summerfruit orchards in Hawkes Bay 

with annual hours of sunshine reaching 2200 hours. Summers are warm, dry and settled with 

temperatures reaching 20°C to 28°C, occasionally rising above 30°C (NIWA 2010). Extreme 

temperatures up to 39°C have also been recorded. Winters are mild with temperatures 

reaching 10°C to 16°C. Heavy rainfall can occur from the east or southeast. Hawkes Bay 

receives the most rain out of all the summerfruit production areas with 800mm of rain per 

year (NIWA 2010). 

1.2.2 Summerfruit climatic preferences 

Summerfruit crop trees are flowering perennials with very specific and sequential climate 

requirements compared to annual crops and perennial crops such as timber trees and pasture 

(Summerfruit NZ 2009). Summerfruit production requires hot dry summers and cold winters 

to fulfil physiological requirements to complete annual processes. During the onset of cooler 

temperatures in autumn and winter, summerfruit trees will enter dormancy to prevent new 

bud growth being destroyed by frosts and to break dormancy, accumulated winter chill is 

required to initiate flowering (Leudeling et al. 2009). The threshold temperature for winter 

chill to accumulate is below 7 °C and degree growing days above 7 °C are required during 

spring and summer for flowering and fruit ripening (Summerfruit NZ 2009). Summerfruit 
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trees also tolerate minimal temperature fluctuations during flowering to prevent damage to 

the flowers (Summerfruit NZ 2009). 

1.2.3 Impacts of climate change on summerfruit crops 

Climate change may bring positive effects to the industry with increases in mean annual 

temperatures. Fewer frosts during late autumn and early spring will reduce crop loss and 

damage to flowers. Warmer temperatures in the spring and summer will also improve fruit 

quality and size. Less rainfall in some parts of the country will help reduce fungal disease 

outbreaks and more rainfall in other parts of the country could promote good autumn growth 

and improved fruit size the following year (Summerfruit NZ 2009). 

Changes to annual temperatures may also have negative consequences for the summerfruit 

industry. A long autumn and an early spring could contribute to a lack of winter chill. Not 

enough winter chill can lead to temporally spaced flowering, poor or sporadic leafing, 

varying fruit crop sizes and different stages of fruit maturity at harvest (Hennessey and 

Greene 1995; Leudeling et al. 2009). For example, long term temperature records in Oman 

indicated a decrease in winter chill hours by 22.7 hours per year between 1983 and 2007 and 

was linked to the total failure of peach and apricot crops at intermediate altitudes during the 

2005/06 season (Leudeling et al. 2007).  

A study by Leudeling et al (2007) also demonstrated that under future climate change 

scenarios, there will not be enough winter chill during the cooler months for stone fruit (>700 

hours of chilling conditions) to allow the crops to persist in some current summerfruit 

production locations in the USA.  

Warmer temperatures could also alter summerfruit bud development and blooming 

phenology. Szalay et al (2006) conducted a study on apricot bud development and blooming 

timing over a 10 year period to compare differences between milder and cooler years. The 

study demonstrated a difference of 2 months in blooming and 49 day difference in bud 

development between the coolest year and warmest year. The study by Szalay et al (2006) 

demonstrates the vulnerability of summerfruit crops such as apricots to changes in 

phenological events under small temperature changes (Szalay et al. 2006). Earlier blooming 

may be an advantage in advancing the crop but it may also expose the summerfruit trees to 

frost damage and result in damaged flowers and decreased crop yield (Szalay et al. 2006; 

Summerfruit NZ 2009) 
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1.3 Impacts of climate change on insect pests 

Insects being exothermic organisms rely heavily on the climate for their physiological 

processes and any changes in the climate can have impacts on many aspects of insect biology 

and spatial distribution. Climate change could have positive or negative impacts on an insect 

species, depending on their current environment and climatic tolerances. Insect species likely 

to benefit will be those currently living below their optimum temperature range at mid range 

latitudes and altitudes (Deutsch et al. 2008). Insect species likely to suffer negative 

consequences are those from lower latitudes as they will have narrow thermal tolerances due 

to temperature ranges remaining constant throughout the year (Deutsch et al. 2008). Thermal 

tolerances could being breached and result in extinctions (Deutsch et al. 2008). Impacts 

between and within populations in response to climate change may also differ as organisms 

occupying the edge of the species range are likely to respond more quickly than organisms of 

the same species living in optimal conditions in the middle of their range (Sutherst et al. 

2007a). 

1.3.1 Phenological and biological synchronisation alterations 

Root et al. (2003) documented a change in spring phenology already occurring across a range 

of flora and fauna as a result of warmer temperatures. The study involved a meta-analysis 

across 143 studies and found an average change in spring phenology by 5.1 days per decade. 

Insect pests are documented to be experiencing changes in spring phenology events such as 

emergence from diapause (Bale et al. 2002) and earlier flight activity (Forister and Shapiro 

2003). Changes in spring time phenological events could also lead to changes in biological 

synchronisations. For example, over the last two decades the winter moth (Operophtera 

brumata) egg hatch date has advanced over the bud burst date of its host plant pedunculate 

oak (Quercus robur) (van Asch et al. 2007). The biological synchrony between natural 

enemies and pest host could also be disrupted (Both et al. 2009; Thomson et al. 2010). The 

example given by Thomson et al (2010) was of a potential divergence in synchrony between 

the light brown apple moth (Epiphyas postvittana) and Hymenopteran parasitoids under 

warmer conditions. Such a divergence in synchrony will allow some insect pests to benefit 

from reduced exposure to natural enemies and therefore result in reduced overall biological 

control effectiveness. Additionally, biological control programmes that have taken years to 

establish will be put in jeopardy by the sudden need to use broad spectrum insecticides to 

combat new threats.  
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1.3.2 Distribution range shifts  

Climate is a strong influencing factor on where a species can persist throughout the year 

(Birch 1953). Therefore climate change is likely to cause alterations to distributions of some 

species, particularly exothermic organisms like insect species. The high latitude and altitude 

climatic boundary is likely shift for most species, but in some species the low latitude and 

altitude climatic boundary will also shift due to thermal tolerances being breached (Parmesan 

1999). Parmesan et al. (1999) states that changes in distributions will not only be caused by 

movement but by the rates of extinctions and colonisations at the northern and southern 

regions of its distributions.  

Currently, sub-tropical insect species may venture outside their regular distribution range and 

establish populations during warmer summer months but will perish from the cold stress 

imposed during the winter months. Warmer winters are known to decrease insect mortality 

(Bale et al. 2002; Battisti et al. 2005; Kiritani 2007; Bale and Hayward 2009) and maybe the 

cause of distribution range shifts. 

For example, warmer winters have been associated with an increase in distributions of the 

green stink bug (Nezara viridula) in Japan. Tougou et al (2009) compared distribution and 

climatic records in the early 1960s to a distribution survey done in 2006. A northwards shift 

in distribution at a rate of 19km per decade was correlated with average winter temperatures 

increasing by 1.03-1.91 ºC and the number of cold days below 5 ºC decreasing (Tougou et al. 

2009). Battitisi et al. (2005) correlated a decrease in winter mortality for the pine 

processionary moth (Thaumetopoea pityocampa) with a boundary shift of 87km northwards 

and 110-230 metres altitude shift over the time period 1974 – 2004. (Parmesan and Yohe 

2003) conducted a meta-analysis across publications including 1700 species and found an 

average range shift per species towards higher latitudes of 6.1 km per decade.  

1.3.3 Increased establishment success for invasive pests 

Distribution range shifts may also coincide with an increase in establishment success for 

invasive exotic insect pests. The process of permanent establishment begins with arrival of 

propagules to a new location via human mediated pathways or through natural migration, 

followed by colonisation and establishment of viable population and then natural spread 

(Lockwood et al. 2005). For some migratory pests, climate change could increase propagule 

pressure via an increase in extreme weather events such as wind frequency and intensity 
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(Sutherst 2000; Ward and Masters 2007). Warmer temperatures may also increase propagule 

pressure by increasing flight activity. For example, Battisti et al (2006) found warmer 

temperatures increased the flight activity of newly emerging female adult winter pine 

processionary moths (Thaumetopoea pityocampa) which lead to a rapid altitude expansion 

during a hot summer in southern Europe in 2003. Pathways for invasive pests may also 

change as a result of different air and sea links in international trade caused by alterations to 

the sourcing and processing of fresh produce and climate change policies (eg. carbon tax or 

emissions offset payment) (Parry et al. 2007; Roques 2010). 

Once the invasive pests arrive in the country, establishment success could be influenced by 

longer periods of climatic suitability caused by increases in annual temperatures (Sutherst 

2000; Cook et al. 2002). Establishment success could also be hugely influenced by potential 

increases in fitness for insect pests. For example, warmer temperatures can increase 

developmental rates and voltinism of insects (Yamamura and Kiritani 1998; Bale et al. 2002; 

Dukes 2008; Musolin et al. 2009). Interestingly, many publications document the negative 

impacts climate change will have for organisms and overall biodiversity (McCarty 2001; 

Thomas et al. 2004; Winterbourn et al. 2008) but in contrast, research investigating insect 

pest response to climate change generally indicates an increase in fitness and invasion 

success (Sutherst et al. 2007a; Lastuvka 2009). Insect pests display traits such as adaptability 

to changing environments, ability to survive in extreme environments and ability to rapidly 

occupy suitable habitats that will put them at an advantage over other species if climate 

change occurs (Lastuvka 2009).  

1.4 Species distribution models and invasion risk 

Part of any pest risk analysis by biosecurity organisations is to identify potential locations at 

risk from exotic pest establishments. Species distribution models in these instances can be 

used in identifying which locations have suitable habitats for specific exotic species (Elith et 

al. 2006; Elith and Leathwick 2009; Chejara et al. 2010). These programs are based on the 

ecological theory that the geographical distribution of a species is largely influenced by the 

climate (Hutchinson 1957). Species distribution models infer climatic preferences of a pest 

species based on their current distributions or physiological response to climate to determine 

which environmental factors influence a species presence or absence. Ideally, any tools used 

to simulate population distributions should take into account all processes that affect species 

distributions (eg. natural enemies, host plant availability). However, these other factors do not 

have readily available global data that can be incorporated.  
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There are two distinct approaches to modelling species distributions, the mechanistic and a 

correlative approach. The mechanistic method assesses the bio-physiological aspects of a 

species to generate the ideal environmental conditions likely to allow a species to persist 

(Kearney and Porter 2009). The correlative approach correlates environmental variables at 

known species localities to define a climatic envelope that is associated with a species 

presence (Kearney and Porter 2009). The environmental variables are in a Geographic 

Information System (GIS) raster layer format which has been partitioned into a grid of pixels. 

Environmental suitability at a particular location is determined by the species climate 

envelope and environmental variables of that location. 

Along with simulating potential distributions based on current conditions, the onset of 

climate change and potential impacts it may have on insect pest distributions is influencing 

research into potential distributions under climatic change predictions to estimate future pest 

invasion risks. For example, Vanhanen et al (2007) investigated climate change and potential 

range shifts for the nun moth (Lymantria monacha) and gypsy moth (Lymantria dispar) using 

CLIMEX modelling. Three different climate change scenarios of 1.4ºC, 3.6ºC and 5.8ºC were 

used to predict a northern range distribution shift northwards by 500-700km and the southern 

range to expand northwards by 100-900km (Vanhanen et al. 2007). Stephens et al (2007) 

investigated the current distributions and potential distributions under climate change for the 

oriental fruit fly (Bactrocera dorsalis) using CLIMEX. The model predicted B. dorsalis 

distributions to expand from tropical and sub-tropical locations to more temperate climates 

closer to the poles as cold stress boundaries decrease. Northern areas of New Zealand under 

climate change conditions were considered vulnerable to B. dorsalis establishing that 

includes some of New Zealand’s prime horticultural locations. Gutierrez et al. (2009) used a 

physiologically-based demographic model with potential increase of daily average 

temperatures by 1ºC, 2 ºC and 3 ºC to predict a potential expansion of the olive fruit 

(Bactrocera oleae) northwards from its current distribution in the Mediterranean.  

1.5 Tropical summerfruit insect Pests – Tephritidae fruit flies 

The literature previously mentioned in this thesis suggests that climate change is likely to 

allow insect pests of tropical or sub-tropical origin to survive and establish populations in 

cooler temperate climates. From the New Zealand summerfruit industries perspective, severe 

tropical insect pests include Tephritidae fruit fly species from the Bactrocera and Ceratitis 

genera. These species are highly invasive and are known to cause damage to summerfruit 

crops. For this research, five fruit fly species were selected based on these characteristics and 
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include: Oriental fruit fly (Bactrocera dorsalis); Queensland fruit fly (B. tryoni); peach fruit 

fly (B. zonata); Mediterranean fruit fly (Ceratitis capitata) and Natal fruit fly (C. rosa). 

1.5.1 Biology 

These five species naturally habituate in warm and humid climates in low latitude areas. They 

are multi-voltine with no obvious diapause (Bateman 1972). In a typical developmental 

lifecycle for a fruit fly species, adult fruit flies insert their eggs beneath the skin of their fruit 

hosts. The larvae feed inside the host and undergo three instars before undergoing pupation in 

the soil. After a few days or weeks a sexually mature adult will emerge and mate to start a 

new cycle (Christenson and Foote 1960). The time period between each lifecycle stage varies 

between each species of fruit fly. For the species being investigated in this study, the time 

frame between the eggs being laid and hatching is within 1 -4 days for all five species 

(Christenson and Foote 1960). When subjected to simulated climates, the larval time period 

for B. dorsalis and B. tryoni is between 9 – 31 days, and 6 – 11 days for C. capitata and C. 

rosa. Under optimum conditions, the adults for all five species will emerge from pupation 

after 1 - 2 weeks (Christenson and Foote 1960). Pupation can be much longer under cooler 

conditions. 

1.5.2 Climatic influences 

A review by Bateman (1972) on the ecology of fruit flies details environmental moisture as a 

climatic influence for fruit flies. For example, environmental moisture as measured by 

summer precipitation was significantly correlated with peak numbers achieved for B. tryoni 

on the southern fringe of its distribution in eastern Australia (Drew and Hooper 1983). Low 

soil moisture for B. tryoni was attributed to a decrease in fecundity in females and an increase 

in mortality of newly emerging adults as they struggled up through dry soil and into air with 

low relative humidity (Bateman 1972). The life cycle stages most vulnerable to desiccation 

are mature larvae just prior to pupation and newly emerged adults from pupation.  

Temperature has a major influence on development rates and is therefore a strong climatic 

influence on abundances and distributions. Summer temperatures will increase developmental 

rates and result in higher abundances while cooler temperatures in winter will result in lower 

abundances. Seasonal abundances have also been correlated with a higher number of C. 

capitata interceptions in the USA during the summer months (Liebhold 2006). Each life 

cycle stage requires a minimal temperature threshold to be reached for development to occur 
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and has a maximum temperature threshold in which development decreases (see Chapter 2 

for details on each of the five species investigated). Thermal accumulation of degree growing 

days above the minimal developmental threshold is also required to complete a generation.  

1.5.3 Quarantine significance 

All of the selected fruit fly species are considered serious pests by numerous plant protection 

and government quarantine organisations. The Ministry of Agriculture and Forestry (MAF) in 

New Zealand has classified these species as regulated quarantine pests and has placed them 

on the Schedule of Notifiable Organisms 2006 (MAF 2006). Import Health Standards created 

by MAF highlight specific procedures designed to prevent fruit fly transportation in fresh 

produce that are host plants (MAF 2008). Across the Tasman in Australia, the Department of 

Agricultural and Forestry (DAFF) indicates dangers of exotic fruit flies establishing in 

Australia. Import Risk Analyses (IRA) produced by DAFF also give specific procedures to 

prevent exotic fruit flies from arriving into the Australia via commercial trade (DAFF 2010). 

Over in Europe, all these species except for C. capitata are classified by the European Plant 

Protection Organisation (EPPO) under the Quarantine Pest A1 list. C. capitata is on the A2 

list due to its current establishment in several countries within the EPPO region (EPPO 

1997). In New Zealand, there is an extensive trap monitoring program with about 7385 traps 

deployed at 3518 locations around main centres, ports, international airports and in areas with 

high horticultural significance as a preventative measure past the border control (Stephenson 

et al. 2003, Suckling et al. 2009). The traps are concentrated in areas of high incursion risk 

such as Auckland with fewer traps in the South Island due to low climatic suitability 

(Suckling et al. 2009). The traps are placed in the canopy of a potential host fruit tree at each 

location (Hartley 2009). There are three types of lure used. Cuelure, Trimedlure or Methyl 

Eugenol and each lure is designed to attract a different species of fruit fly. A dichlorvos 

insecticide strip is also placed at the bottom of each trap to ensure the fruit flies are killed in 

the trap and remain in the trap until the next inspection (Hartley 2009). The main target 

species of this trapping grid includes C. capitata, B.tryoni, B. dorsalis and the melon fly (B. 

cucurbitae) (Suckling et al. 2009). 

A publication by Worner and Gevrey (2006) modelled insect pest assemblages to determine 

the risk of invasion using a self organising map for insect pests present and absent in New 

Zealand. A risk index was calculated and ranked for 845 insect pests found globally. C. 

capitata was ranked the 5th highest absent insect pest species and indicates a high threat of 

invasion into New Zealand under current climate conditions. Other Tephritidae insect pests 
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that attack summerfruit were not among the top 100 of absent species in New Zealand, yet 

climate change could influence the risk index of these species in the future.   

1.5.4 Damage 

Adult fruit flies oviposit their eggs under the skin of fleshy fruit and larvae develop inside the 

fruit. The fruit infested by the larvae become either unmarketable or decompose due to larvae 

creating access points for microorganisms to infect the fruit (Koyama 1989). Without control, 

fruit flies are capable of destroying entire fruit crops and causing severe economic damage. 

Trade restrictions as a result of fruit fly establishments also pose a huge threat to horticultural 

industries (Koyama 1989; SriRamaratnam 1996). A brief incursion in New Zealand of the of 

the Mediterranean fruit fly in 1996 resulted in various countries including China, Australia 

and Japan to imposing trade exclusion zones of various radii around the initial fruit fly find, 

ranging from just under 10 kilometres to the entire north island (SriRamaratnam 1996). 
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1.6 Aims and hypothesis 

The fruit fly species investigated in this research originate from warm tropical or sub tropical 

climates. Under current climate conditions, these species are highly unlikely to establish 

successful populations due to New Zealand’s temperate climate with cool winters. However, 

climate change predictions for New Zealand indicate an increase in annual temperatures that 

could lead to an increase in climatic suitability for these fruit fly species. Therefore, it is 

important to use tools such as species distribution models to predict the potential 

establishment success of severe tropical insect pests for agricultural industries such as the 

New Zealand summerfruit industry. Another aspect investigated in this research is to 

compare the potential distributions of each target species using CLIMEX and a correlative 

approach using a multiple model system.  

The aims of this research project are: 

- Determine the climatic suitability of five exotic fruit fly pest species known to 

target summerfruit crops under current climatic conditions and New Zealand 

climate change predictions.  

- Compare predicted distributions produced from CLIMEX and the multiple model 

approach.   

The hypothesis for this project is 

- The increase in temperature as predicted by global climate change scenarios will 

increase the threat of some dangerous exotic Tephritidae insect pests establishing 

viable populations in New Zealand such that they pose a threat to the New 

Zealand summerfruit industry.  
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     Chapter 2 
Potential Impacts of Climate Change using CLIMEX© 

2.1 Introducion 

The CLIMEX program is an eco-climatic assessment model developed by CSIRO in 

Australia. It was first described by Sutherst and Maywald, (1985) in a study investigating 

climatic suitability of several tick species that affect cattle in Australia. The CLIMEX 

program has since been enhanced with different versions and further insights into its 

application (Sutherst et al. 1996; Sutherst 2000; Sutherst et al. 2007). The CLIMEX program 

is popular to use due because it is easy to learn and easy interpretation of results by non-

speciality scientists and policy makers. It has been used to predict species distributions in 

over 200 publications.  

CLIMEX was developed to enable researchers to predict the geographical distribution of 

plant or animal species by incorporating climatic response parameters derived or inferred 

from eco-physiological experiments as well as the existing distribution of a species (Sutherst 

et al. 2007). It determines the species-climatic relationship by assessing which locations have 

a favourable climate in terms of population growth and it identifies the stressors that may 

limit the species distribution (Sutherst et al. 2007). CLIMEX is also based on an eco-

physiological growth model where a population experiences both a favourable and un-

favourable season for population growth.  

A single figure called the Ecoclimatic index (EI) indicates climatic suitability for any given 

location. The EI value is calculated from an Annual Growth Index (GIA) and Annual Stress 

Index (SI)  

Ecoclimatic Index (EI) = GIA × SI 
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In terms of estimating the annual growth index (GIA) for an insect species, one of the 

contributing factors is the weekly Temperature Index (TIW) which describes the response of 

the species to the daily temperature cycle. The four parameters that define the range of 

temperatures suitable for population growth are: 

DV0 = Lower temperature threshold 

DV1 = Lower optimum temperature 

DV2 = Upper optimum temperature 

DV3 = Upper temperature threshold 

 

Temperatures within the DV1 – DV2 range will maximise the temperature index and any 

temperature that falls outside the DV0 and DV3 values will cause the temperature index to be 

zero (Figure 2.1).  

 

Figure 2.1: Temperature index in relation to defined temperature parameters (Sutherst et al. 2007).  

Monthly average maximum and minimum temperatures are also incorporated with CLIMEX 

parameters to calculate the TIW value. The soil moisture index (MI) is the other contributing 

factor to the annual growth index and follows the same parameter format as the temperature 

index. The approximate soil moisture levels in any given place is calculated using from the 

total precipitation from the previous week with the evapo-transpiration rate (default is 0.8) 

and soil moisture holding capacity (default is at 100% levels). The weekly growth index is 

calculated by multiplying the weekly temperature index and weekly soil moisture index. 

TGIW  = TIW  × MIW 
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The climate dataset built into the CLIMEX software is made up of weekly averages so an 

annual growth index is calculated from the weekly growth index using the formula: 

 

Thermal accumulation during the growing season (PDD) is the number of days above DV0 

required to complete an entire generation, this parameter can also determine the number of 

generations a species can complete in one year. If this threshold is not reached at any location 

then the species cannot thrive there (Sutherst et al. 2007). 

Stress indices are set to limit the species ability to survive adverse conditions during the 

unfavourable part of the season. If temperatures, for example, fall outside DV1 and DV2 then 

cold stress or heat stress will begin to accumulate (Sutherst et al. 2007). The same thing 

occurs if moisture levels fall outside SM1 and SM2 as wet and dry stress will begin to 

accumulate. Each stress index is associated with an accumulation rate and is assumed to 

increase exponentially (Sutherst et al. 2007). The most influential stress for modelling insect 

invasions into temperate climates is the Cold Stress Temperature Threshold (TTCS) and Cold 

Stress Accumulation Rate (DTHS). The annual stress index per stressor (for example, cold 

stress) is calculated using the following formula: 

Cold Stress = Cold Stress Rate (THCS) × ((Threshold (TTCS) – average 

weekly minimal temperature °C × week number)) 

An annual stress index can be further calculated by incorporating all the stress indices:  

SI =(1 – Cold stress/100)(1 – Dry Stress/100)(1 – Heat Stress/100)(1 – Wet 

Stress/100) 

If the accumulated stress index reaches 1, the species will not be able to persist at that 

particular location (Sutherst et al. 2007). CLIMEX contains a 0.5 degree of arc climatic 

dataset provided by the Climate Research Unit (New et al. 1999). The dataset is generated 

from climate data from the period 1961 – 1990. In this study, the CLIMEX model was used 

to predict the potential distribution of selected fruit fly species based on climatic suitability of 

current climatic conditions and climate change predictions specific to New Zealand. These 

modelled distributions can be used to estimate the risk establishment and the subsequent 
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threat to the New Zealand summerfruit industry. There are already studies that assess various 

Tephritidae species potential distributions using CLIMEX including the oriental fruit fly 

(Bactrocera dorsalis) (Stephens et al. 2007); Queensland fruit fly (B. tryoni) (Yonow and 

Sutherst 1998) and Mediterranean fruit fly (Ceratitis capitata) (Vera et al. 2002), but no 

studies have used CLIMEX to model the distributions of the Natal fruit fly (C. rosa) or  

peach fruit fly (B. zonata). 

2.1.1 Research objectives 

The aim of this research is to model the potential distributions of five Tephritidae species in 

New Zealand in response to climate change, using a CLIMEX, to determine the potential 

threat for the summerfruit industry. Objectives include: 

• Collect eco-physiological data and distribution data to calibrate CLIMEX parameters 

for C. rosa and B. zonata 

• Use CLIMEX to create predicted distributions under current climatic conditions and 

future climate change predictions specific to New Zealand for all target Tephritidae 

fruit fly species. 

• Identify any major summerfruit producing regions with suitable habitats for target 

Tephritidae species under current climatic conditions and future climate change 

predictions specific to New Zealand. 

2.2 Methods 

2.2.1 Climate change scenarios 

Climate change predictions for New Zealand indicate less warming than what is predicted to 

occur on a global scale (Mullen et al. 2008). Therefore, it is important to source climate 

change predictions that are specific to New Zealand. NIWA created a report for the Ministry 

for the Environment detailing climate change predictions for New Zealand (Mullen et al. 

2008). Future surface air temperature predictions were calculated for regional provinces in 

New Zealand with average and range limits for temperature change predictions per emission 

scenario (Mullen et al. 2008). To estimate the impact of climate change on potential 

summerfruit insect pests, average surface air temperature increases for 2040 and 2090 were 

incorporated into CLIMEX. Data from the B1 scenario, A1B scenario and the A1F1 scenario 
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were selected as being representative of a best case, intermediate and worst case scenario for 

2040 and 2090 climate change conditions (Table 2.1).  
Table 2.1: Predicted surface air temperature increases indicated by climate change scenarios representing 
a best case, intermediate and worst case scenario for New Zealand. 

	
   2040	
   2090	
  	
  

B1	
  Emissions	
  Scenario	
   0.6°C 1.3°C 

A1B	
  Emissions	
  Scenario	
   0.9°C 2°C 

A1F1	
  Emissions	
  Scenario	
   1.3°C 2.9°C 

 

2.2.2 Climatic suitability based on the CLlMEX ecoclimatic Index 

The inferred climatic suitability based on the Ecoclimatic Index generated in CLIMEX 

unfortunately can differ between studies that use this mode to predict species distributions 

(Table 2.2). The EI value can range from 0 to 100 and some publications use the full EI 

range. Most studies however suggest values up to 30 as suboptimal 30 and above as optimal 

conditions for a species to persist. There are also differences in interpretation of which EI 

values are considered marginal or suitable (Table 2.2)  

Table 2.2: Infeered climatic suitability from ecoclimatic index values amongst different publications. 

EI	
  Values	
   Inferred	
  Climatic	
  Suitability	
   References	
  

0	
  	
   	
  
1	
  –	
  10	
   	
  
10	
  –	
  20	
  
>20	
   	
   	
  

(Unsuitable)	
  
(Marginal)	
  
(Suitable)	
  
(Optimal)	
  

(Chejara	
  et	
  al.	
  2010)	
  
(Kean	
  2009)	
  
(Kriticos	
  et	
  al.	
  2006)	
  
(Stephens	
  et	
  al.	
  2007)	
  

0	
  	
   	
  
1	
  –	
  5	
  	
   	
  
6	
  –	
  25	
  	
   	
  
>25	
  	
   	
   	
  

(Unsuitable)	
  
(Marginal)	
  
(Suitable)	
  
(Optimal)	
  

(Kriticos	
  and	
  Leriche	
  2010)	
  
(Potter	
  et	
  al.	
  2008)	
  
(Potter	
  et	
  al.	
  2009)	
  
(Watt	
  et	
  al.	
  2009)	
  

0	
  –	
  10	
   	
  
11	
  –	
  20	
  
21	
  –	
  30	
  
31>	
   	
   	
  

(Unsuitable)	
  
(Low	
  Suitable)	
  
(Moderate	
  Suitability)	
  
(High	
  Suitability)	
  

(Barney	
  and	
  DiTomaso	
  
2010)	
  

0	
  	
   	
  
1	
  –	
  25	
   	
  
26	
  –	
  50	
  
50	
  –	
  75	
  
76	
  –	
  100	
  

(Unsuitable)	
  
(Marginal)	
  
(Suitable)	
  
(Highly	
  Suitable)	
  
(Very	
  Highly	
  Suitable)	
  
	
  

(Lawson	
  et	
  al.	
  2010)	
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The subjectivity of interpreting EI values for inferred climatic suitability makes it difficult to 

set your own standards. In this study, I followed a scale previously used in studies by a 

researcher known to have the most experience in CLIMEX (Kriticos et al. 2006) . For this 

research, the inferred climatic suitability from the Ecoclimatic Index was placed into four 

categories that followed a common set up: Unsuitable (EI = 0), Marginal (EI = 1 – 10), 

Suitable (EI = 11 – 20) and Optimal (EI = >20). 

2.2.3 CLIMEX Parameters for the five fruit fly species 

CLIMEX is a model that requires physiological data from laboratory studies. If appropriate 

studies are not available, climatic requirements can also be inferred from known current 

distributions.  Initial values for growth indices such as temperature (DV0 – DV3) were 

derived from physiological experiments that determine developmental rates and 

developmental thresholds in response to varying temperatures. Soil moisture indices (SM0 – 

SM3) were set to represent host plant tolerances and were manually calibrated to fit the 

current distributions of the target species. Some values for stress indices (eg. cold stress and 

heat stress) were inferred from appropriate research (see below) while other stress indices 

(eg. dry stress, wet stress, stress accumulation rates) were manually adjusted/calibrated to fit 

known current distributions.  

In this study, CLIMEX parameters were calibrated for B. zonata and C.rosa. Parameters for 

B. dorsalis, B. tryoni and C. capitata were sourced from publications. 

2.2.3.1 CLIMEX parameters for B. zonata 
The wet tropical savannah template was used as a baseline for fitting CLIMEX parameters 

for the peach fruit fly (B. zonata). Several studies have reported different upper and lower 

temperature thresholds and optimum temperature ranges for development and survival ( 

Table 2.3). Possibly due to differences in populations and experimental design used between 

studies. The baseline temperature threshold (DV0) was set to 11.7 °C based on evidence from 

studies by Mohamed (2000) and Duyck et al. (2004). The optimum temperature range (DV1 

– DV2) was set to 25 and 30 °C based on studies recording optimum growth and low 

mortality rates between these temperatures (Qureshi et al. 1993; Duyck et al. 2004). No 

publications state the maximum temperature for development but it can be inferred from 

mortality rates at specific temperatures. The upper temperature threshold (DV3) was 
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therefore set to 33 due to high mortality rates observed at 35 °C (Qureshi et al. 1993; Duyck 

et al. 2004). The degree days per generation (PDD) was set to 301 as calculated by Mohamed 

(2000).  

Table 2.3: Temperature parameters for B. zonata 

	
   Temperature	
   References	
  
Baseline	
  temperature	
  
Threshold	
  

10.78	
  °C	
  
12.6	
  °C	
  

(Mohamed	
  2000)	
  
(Duyck	
  et	
  al.	
  2004)	
  

Optimum	
  temperature	
  range	
   25	
  –	
  30	
  °C	
   (Duyck	
  et	
  al.	
  2004)	
  
(Qureshi	
  et	
  al.	
  1993)	
  

Maximum	
  Temperature	
  
Tolerance	
  

33	
  °C	
   (Duyck	
  et	
  al.	
  2004)	
  
(Qureshi	
  et	
  al.	
  1993)	
  

 

The soil moisture parameters (SM0 – SM3) determine the soil moisture requirements and 

thresholds. The requirements can be meditated through the soil moisture requirements of their 

host plants. The permanent wilting point for many crops is about 10% soil moisture levels 

(Stephens et al, 2007) so the threshold soil moisture level (SM0) was set to 0.1. The optimum 

soil moisture levels (SM1 and SM2) were set to 0.25 and 1 to represent optimal soil moisture 

conditions, these figures have also been implemented in previous studies using CLIMEX on 

fruit flies (Stephens et al. 2007; Vera et al. 2002). Pupation takes place in the soil and total 

immersion in water for longer than a day causes mortality (Duyck et al. 2006). Therefore, the 

most suitable SM3 value would be 1 to represent 100% soil saturation but unfortunately the 

predicted distribution with this figure does not give a good representation of B. zonata 

potential distribution. A SM3 value of 1.5 was used instead to produce a more fitting global 

distribution. 

The heat stress threshold parameter (TTHS) was set to 35 °C based on evidence of heat stress 

occurring at that temperature (Qureshi et al. 1993). The heat stress accumulation rate (THHS) 

was not altered from the wet tropical template used as it fitted the current distribution well.  

The cold stress temperature threshold (TTCS) was set at 8 °C which is just below the baseline 

threshold temperature of 11 °C (Mohamed 2000) and the cold stress accumulation rate 

(THCS) was adjusted to fit the current distribution.  

B. zonata is tolerant of wet and dry conditions as demonstrated by its ability to survive 

complete immersion in water for long periods of time as well as the other extreme, low rates 

of humidity (Duyck et al. 2006). B. zonata tolerance to wet and dry conditions can also be 

inferred from its distribution ranging across wet tropical conditions in South East Asia and 



 37 

arid conditions in Egypt and Saudi Arabia (EPPO 1997). The dry stress threshold (SMDS) 

and stress accumulation rate (HDS) were altered from the wet tropical template to allow B. 

zonata to persist in these arid countries. The wet stress threshold (SMWS) and wet stress 

accumulation rate (HWS) were not altered from the wet tropical CLIMEX template due to the 

suitable fit with current distributions. 

2.2.3.2 CLIMEX parameters for C. rosa 
The wet tropical savannah template was used as a baseline for fitting CLIMEX parameters 

for the Natal fruit fly (C. rosa). Several studies have reported different upper and lower 

temperature thresholds and optimum temperature ranges for development and survival, 

possibly due to differences in populations and experimental designs (Table 2.4). The baseline 

temperature threshold in CLIMEX (DV0) was set to 8.2 °C based on the average of the lower 

temperature thresholds derived from studies by Duyck et al. (2002) and Grout and Stolz, 

(2007) (Table 2.4). The optimum temperature range parameters (DV1 and DV2) were set to 

22 and 29 °C by combining the results from Duyck et al. 2002, Duyck et al, 2006 and Grout 

and Stolz (2007) (Table 2.4). The upper temperature threshold (DV3) was set to 33 °C based 

on calculations by Grout and Stolz, 2007. The growing degree-day threshold per generation 

(GDD) was estimated at 405 by Duyck et al (2002) and this value was incorporated into 

CLIMEX.  

Table 2.4: Temperature parameters for C. rosa. 

	
   Temperature	
   Reference	
  
Lower	
  temperature	
  Threshold	
   7.97	
  °C	
  

8.5	
  °C	
  
(Duyck	
  and	
  Quilici	
  2002)	
  
(Grout	
  and	
  Stoltz	
  2007)	
  

Optimum	
  temperature	
  range	
   28.6	
  °C	
  
22	
  –	
  23°C	
  
20	
  –	
  30°C	
  

(Duyck	
  and	
  Quilici	
  2002)	
  
(Duyck	
  et	
  al.	
  2006)	
  
(Grout	
  and	
  Stoltz	
  2007)	
  

Maximum	
  Temperature	
  
Tolerance	
  

33°C	
   (Grout	
  and	
  Stoltz	
  2007)	
  

 

The soil moisture parameters (SM0 – SM3) were set in same fashion as for B. zonata. The 

cold stress temperature threshold (TTCS) was set close to the baseline developmental 

threshold as 6 and the cold stress accumulation rate (DHCS) was set to -0.001 to allow 

persistence in the cooler parts of its current range in South Africa. The heat stress threshold 

temperature was set to 33 °C based on evidence from Duyck et al (2002) who recorded 100% 

mortality of C. rosa at 35 °C. The heat stress accumulation rate (TTHS) was not altered from 

the value from the wet tropical savannah template as that value fitted the current distribution 
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well. The default dry stress parameters (SMDS and HDS) in the wet savannah template 

indicated vulnerability to desiccation and were found to be suitable for C. rosa based on 

experimental evidence of vulnerability to desiccation (Duyck et al. 2006). The default dry 

stress parameters were matched well with C. rosa current distribution.  The wet stress 

threshold (SMWS) was set to 1.5 to correspond with the SM3 value and the wet stress 

accumulation rate (HWS) was set to 0.05 to match the current distribution of C. rosa. 

Table 2.5: CLIMEX parameters.  

Parameter	
   	
   B.	
  dorsalis	
   B.	
  tryoni	
   B.	
  zonata	
   C.	
  capitata	
   C.	
  rosa	
  
Lower	
  temperature	
  threshold	
   DV0	
   13	
   12	
   11	
   12	
   8.24	
  
Lower	
  optimum	
  temperature	
   DV1	
   23	
   25	
   25	
   22	
   22	
  
Upper	
  optimum	
  temperature	
   DV2	
   25	
   33	
   30	
   30	
   29	
  
Upper	
  temperature	
  threshold	
   DV3	
   36	
   36	
   33	
   35	
   33	
  
Lower	
  soil	
  moisture	
  threshold	
   SM0	
   0.1	
   0.1	
   0.01	
   0.1	
   0.1	
  
Lower	
  optimum	
  soil	
  moisture	
   SM1	
   0.25	
   0.5	
   0.1	
   0.3	
   0.25	
  
Upper	
  optimum	
  soil	
  moisture	
   SM2	
   1	
   1.75	
   1.5	
   1	
   0.1	
  
Upper	
  soil	
  moisture	
  threshold	
   SM3	
   2.5	
   2	
   2.5	
   1.5	
   1.5	
  
Cold	
  stress	
  temperature	
  threshold	
   TTCS	
   2.5	
   2	
   8	
   10	
   6	
  
Cold	
  stress	
  accumulation	
  rate	
   DHCS	
   -­‐0.002	
   -­‐0.00025	
   -­‐0.002	
   -­‐0.0015	
   -­‐0.01	
  
Heat	
  stress	
  temperature	
  threshold	
   TTHS	
   36	
   36	
   35	
   39	
   35	
  
Heat	
  stress	
  accumulation	
  rate	
   THHS	
   0.005	
   0.005	
   0.0002	
   0.01	
   0.0002	
  
Dry	
  stress	
  soil	
  moisture	
  threshold	
   SMDS	
   0.1	
   0.1	
   0.01	
   0.2	
   0.1	
  
Dry	
  stress	
  accumulation	
  rate	
   HDS	
   -­‐0.024	
   -­‐0.005	
   -­‐0.001	
   -­‐0.02	
   -­‐0.001	
  
Wet	
  stress	
  soil	
  moisture	
  threshold	
   SMWS	
   1.75	
   2	
   2.5	
   1.6	
   1.5	
  
Wet	
  stress	
  accumulation	
  rate	
   HWS	
   0.007	
   0.002	
   0.002	
   0.0015	
   0.005	
  
Degree	
  days	
  per	
  generation	
   PDD	
   470	
   380	
   475	
   622	
   405	
  
Source	
   	
   Stephens	
  

et	
  al	
  2007	
  
Yonnow	
  	
  &	
  
Sutherst	
  
(1998)	
  

In	
  this	
  
study	
  

Vera	
  et	
  al	
  
(2002)	
  

In	
  this	
  
study	
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2.3 Results 

2.3.1 Bactrocera dorsalis 

2.3.1.1 Model fit to current distribution range 
B. dorsalis is currently wide spread in India and many other countries in South East Asia. 

This species has also invaded and established permanent populations in Hawaii and Guam. 

The current distribution map (Figure 2.2) was used to help fit the climatic parameters to 

produce the predicted distribution (Figure 2.2). The CLIMEX prediction by Stephens et al. 

(2007) almost matches the current distribution except it does not fully include all of India and 

Pakistan as being climatically suitable despite the recorded wide spread presence at these 

locations (CPC 2010). 

a) 
 

 
 

 
b) 

 
 
Figure 2.2: Current global distribution of B. dorsalis (a) (CPC, 2010) and the predicted CLIMEX 
distribution (b) based on set parameters. 



 40 

2.3.1.2 Predicted distributions 
The main summerfruit producing regions are indicated by Napier (Hawkes Bay region), 

Blenheim (Marlborough) and Alexandra (Central Otago). Under current climatic conditions, 

best case and intermediate 2040 climate change predictions (Figure 2.3), EI values indicate 

suitable habitat sites north of the North Island but no suitable habitat sites around major 

summerfruit producing regions. However, worst case 2040 climate change prediction indicate 

a wider expansion of potential establishment sites across the North Island and includes the 

summerfruit producing region Hawkes Bay.  

 

 

Figure 2.3:  Potential distribution of B. dorsalis in New Zealand current climate (1961-1990 average), best 
case 2040 climate change predictions, average 2040 climate change predictions and worst case 2040 
climate change scenarios for New Zealand. EI = Eco-climatic Index. 
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Under best case 2090 climate change predictions (Figure 2.4), EI values indicate many 

suitable habitat sites around the North Island including the summerfruit producing region 

Hawkes Bay. Intermediate 2090 climate change predictions and worst case 2090 climate 

change predictions indicate more suitable habitat sites across the North Island and South 

Island, including the summerfruit producing regions Hawkes Bay and Marlborough.  

 

Figure 2.4: Potential distribution of B. dorsalis in New Zealand best case 2090 climate change predictions, 
intermediate 2090 climate change predictions and worst case 2090 climate change scenarios for New 
Zealand. EI = Eco-climatic Index. 
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2.3.2 Bactrocera tryoni 

2.3.2.1 Model fit to current distribution range 
The current distribution map (Figure 2.5) was used to help fit the climatic parameters to 

produce the predicted distribution (Figure 2.5). The current distribution of B. tryoni is limited 

to the eastern half of the states of Queensland, New South Wales, Northern Territory and 

extreme east of Victoria in Australia. Outbreaks occur in South Australia but fail to establish, 

possibly linked to the cooler winters (CPC, 2010). There is a restricted distribution in New 

Caledonia and French Polynesia. The CLIMEX prediction generally fits the current 

distribution of B. tryoni, owing to its small global distribution.   

a) 

 

 
b)  

 
Figure 2.5: Current global distribution of B. tryoni (a) (CPC, 2010) and the predicted CLIMEX 
distribution (b) based on set parameters. 
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2.3.2.2 Predicted distributions 
Under current climate conditions, best case and intermediate 2040 climate change conditions 

(Figure 2.6), EI values indicate many suitable habitat sites around the North Island but not 

including any summerfruit producing regions However, worst case 2040 climate change 

predictions indicate a small expansion of potential establishment sites across the North 

Island, including the major summerfruit producing region Hawkes Bay.  

 
Figure 2.6: Potential distribution of B. tryoni in New Zealand current climate (1961-1990 average), best 
case 2040 climate change predictions, intermediate 2040 climate change predictions and worst case 2040 
climate change scenarios for New Zealand. EI = Eco-climatic Index. 
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Under best case 2090 climate change predictions, EI values indicate suitable habitat sites 

around parts of the North Island including the summerfruit producing region, Hawkes Bay. 

Intermediate 2090 climate change predictions and worst case 2090 climate change 

predictions indicate a wider expansion of suitable habitat sites in the North Island and South 

Island, including summerfruit producing regions Hawkes Bay and Marlborough.  

 

 
 
Figure 2.7: Potential distribution of B. tryoni under best case 2090 climate change predictions, 
intermediate 2090 climate change predictions and worst case 2090 climate change scenarios for New 
Zealand. EI = Eco-climatic Index. 
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2.3.3 Bactrocera zonata 

2.3.3.1 Model fit to current distribution range 
The current distribution of B. zonata is widespread throughout India, Egypt and numerous 

countries in South East Asia. Restricted populations are recorded in arid countries such as 

Saudi Arabia and Iran. Adventive populations have also been recorded in Mauritius and 

USA. The invasion of B. zonata into different climates such as Egypt and islands in the 

Indian Ocean indicate an ability to adapt to new climatic conditions. The current distribution 

map (Figure 2.8) was used to help fit the climatic parameters to produce the predicted 

distribution (Figure 2.8).  While setting the parameters for the CLIMEX simulation, it was 

not possible to allow widespread persistence of B. zonata in Egypt without dropping the soil 

moisture indices well below what most host plants can tolerate. The Food and Agricultural 

Organization (FAO) of the United Nations indicate that arable crops are only grown close to 

the Nile river and around the Nile delta where irrigation is accessible and along the northern 

coast facing the Mediterranean Sea (FAO 2005). Therefore, the set soil moisture levels allow 

persistence along the northern coast and Nile delta but not in the middle of Egypt.  
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a) 

 

  
b) 

 
Figure 2.8: Current global distribution of B. zonata (a) (CPC, 2010) and the predicted CLIMEX 
distribution (b) based on set parameters. 

 

2.3.3.2 Predicted distributions 
Under current climate conditions, EI values indicate few suitable habitat sites in the North 

Island but include the summerfruit producing region, Hawkes Bay. Under best case 

intermediate and worst case 2040 climate change predictions there is an expansion of 

potential establishment sites across the North Island and into the summerfruit producing 

region in Hawkes Bay and Marlborough.  
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Figure 2.9: Potential distribution of B. zonata in New Zealand current climate (1961-1990 average), best 
case 2040 climate change predictions, intermediate 2040 climate change predictions and worst case 2040 
climate change scenarios for New Zealand. EI = Eco-climatic Index. 

 

Under best case 2090 climate change predictions, EI values indicate potential establishment 

sites around the North Island and South Island including the summerfruit producing regions, 

Hawkes Bay and Marlborough. Under intermediate and worst case 2090 climate change 

predictions (Figure 2.10), there is an expansion of suitable habitat sites in the North Island 

and South Island but does not include the summerfruit producing region Central Otago.  
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Figure 2.10: Potential distribution of B. zonata in New Zealand under best case 2090 climate change 
predictions, intermediate 2090 climate change predictions and worse case 2090 climate change 
predictions for New Zealand. EI = Eco-climatic Index. 
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2.3.4 Ceratitis capitata 

2.3.4.1 Model fit to current distribution range 

The current distribution map (Figure 2.11) was used to help fit the climatic parameters to 

produce the predicted distribution (Figure 2.11). C. capitata is widespread in Africa and is 

endemic to many sub-Saharan countries. It has spread into Europe, Egypt, Middle East, 

Australia, Americas and is linked to international trade transportation. An outbreak occurred 

in New Zealand in 1996. The CLIMEX prediction of C. capitata generally fits well with the 

current distribution except for a few countries that record its absence and are deemed 

climatically suitable in South America and Africa. 

a) 

 

 

b) 

 
Figure 2.11: Current global distribution of C. capitata (a) (CPC, 2010) and the predicted CLIMEX 
distribution (b) based on set parameters. 
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2.3.4.2 Predicted distributions 
Under current climate scenarios and best case 2040 climate change predictions, EI values 

indicate suitable habitat sites throughout the North Island, including the summerfruit 

producing region Hawkes Bay. Additionally, intermediate 2040 climate change predictions 

and worst case 2040 climate change predictions indicate an expansion of potential 

establishment sites across the North Island and down the east coast of the South Island, 

including the summerfruit producing region Marlborough.  

 

Figure 2.12: Potential distribution of C. capitata in New Zealand current climate (1961-1990 average), 
best case 2040 climate change predictions, intermediate 2040 climate change predictions and worst case 
2040 climate change scenarios for New Zealand. EI = Eco-climatic Index. 
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Under best case and intermediate 2090 climate change conditions, EI values indicate suitable 

habitat sites an increase in climatic suitability in the North Island and east coast of the South 

Island, including the summerfruit producing region Hawkes Bay and Marlborough. Worst 

case 2090 climate change predictions indicate a further expansion of potential establishment 

sites in the South Island to include the summerfruit producing region Central Otago. 

 
 
Figure 2.13: Potential distribution of C. capitata under best case 2090 climate change predictions, 
intermediate 2090 climate change predictions and worst case 2090 climate change scenarios for New 
Zealand. EI = Eco-climatic Index. 
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2.3.5 Ceratitis rosa 

2.3.5.1 Model fit to current distribution range 
The current distribution of C. rosa includes warm and wet climates in Central and Southern 

Africa and with populations also west Africa in Malawi and Guinea (CPC 2010). The current 

distribution map (CPC, 2010) (Figure 2.14) was used to fit and calibrate CLIMEX parameters 

to produce the predicted distribution (Figure 2.14). The CLIMEX model indicates optimum 

conditions throughout most of native range for C. rosa.  

a) 

 

 
b) 

 
Figure 2.14: Current global distribution of C. rosa (a) (CPC 2010) and the predicted CLIMEX 
distribution (b). 
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2.3.5.2 Predicted distributions 
Under current climate conditions (Figure 2.15), EI values indicate suitable habitat sites 

around most of the North Island and parts of the east coast in the South Island, including 

major summerfruit production regions such as Hawkes Bay and Marlborough. Best case, 

intermediate and worst case 2040 climate change predictions indicate an expansion of 

suitable habitat sites in the North Island and South Island but do not include the summerfruit 

producing region Central Otago.  

 

Figure 2.15: Potential distribution of C. rosa in New Zealand current climate (1961-1990 average), best 
case 2040 climate change predictions, intermediate 2040 climate change predictions and worst case 2040 
climate change scenarios for New Zealand. EI = Eco-climatic Index. 
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Under best case, intermediate and worst case 2090 climate change predictions (Figure 2.16), 

suitable EI values indicate an increase in climatic suitability on both the North and South 

Island including the summerfruit producing region Hawkes Bay and Marlborough but does 

not include the summerfruit producing region Central Otago. 

 

 

Figure 2.16: Potential distribution of C.  rosa in New Zealand under best case 2090 climate change 
predictions, intermediate 2090 climate change scenarios and worst case 2090 climate change predictions 
for New Zealand. EI = Eco-climatic Index. 
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2.4 Discussion 

The results presented here indicate the directions and magnitude of change to the potential 

distribution range of some serious fruit fly insect pests in response to climate change. The 

results identify summerfruit producing regions that could be vulnerable to these fruit fly pests 

establishing permanent populations if the pests get through border quarantine measures. The 

first objective for this chapter was to model the potential distribution of the target fruit flies 

under current climatic conditions. Generally the North Island was more climatically suitable 

for all target species which correlates with the warmer climate exhibited in the North Island. 

Currently, the summerfruit producing region Hawkes Bay has a suitable climate for C. 

capitata and C. rosa and Marlborough has a suitable climate for C. rosa (Table 2.6). 

Accumulated cold stress was the limiting climatic factor for all species in southern areas of 

the South Island including the summerfruit producing region Central Otago. Summer 

temperatures in the South Island are within the optimal temperature range for these fruit fly 

species but winter temperatures are likely to drop well below the cold stress thresholds set for 

a long period of time. The accumulative cold stress would prevent populations from 

establishing all year round.  

The summerfruit producing regions, Hawkes Bay and Marlborough are more at risk from all 

fruit fly pests investigated under New Zealand climate change predictions. Central Otago will 

only be vulnerable to C. capitata under worst case 2090 climate change predictions. 

However, the magnitude of these changes varies between species and emissions scenarios 

that represent best case, intermediate and worst case predictions (Table 2.6). There is also 

difference in climatic suitability for the target species between 2040 and 2090 climate change 

predictions. The increased annual mean temperatures due to climate change correlates with a 

decreasing amount of cold stress for these fruit fly species, resulting in an increase in climatic 

suitability and invasion risk.  

A general pattern could be observed between the climatic suitability and each climate change 

prediction. Under current conditions, suitable EI values surrounded the North of the North 

Island and throughout each climate change scenario in 2040 and 2090, the range of locations 

with suitable EI values would extend further south in the North Island to include the east and 

west coast, further extensions would include the centre of the North Island and east coast of 

the South Island. 
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Table 2.6: New Zealand summerfruit producing regions vulnerable to exotic fruit fly establishments 
under various climate change scenarios. HB = Hawkes Bay, M = Marlborough and CO = Central Otago. 

Climate	
  change	
  
scenario	
  

B.	
  dorsalis	
   B.	
  tryoni	
   B.	
  zonata	
   C.	
  capitata	
   C.	
  rosa	
  

Current	
   	
   	
   	
   HB	
   HB,	
  M	
  
Best	
  case	
  2040	
   	
   	
   HB	
   HB	
   HB,	
  M	
  	
  
Intermediate	
  
case	
  2040	
  

	
   	
   HB,	
  M	
   HB,	
  M	
   HB,	
  M	
  

Worst	
  case	
  2040	
   HB	
   HB	
   HB,	
  M	
   HB,	
  M	
   HB,	
  M	
  
Best	
  case	
  2090	
   HB	
   HB	
   HB,	
  M	
   HB,	
  M	
   HB,	
  M	
  
Intermediate	
  
case	
  2090	
  

HB	
   HB	
   HB,	
  M	
   HB,	
  M	
   HB,	
  M	
  

Worst	
  case	
  2090	
   HB,	
  M	
   HB,	
  M	
   HB,	
  B	
   HB,	
  M,	
  CO	
   HB,	
  M	
  
 

The method of using CLIMEX has the advantage of being readily usable and easily 

interpreted. This is important when communicating the research to non-scientists such as 

policy makers or land-use managers  Another advantage CLIMEX has over other statistically 

correlative methods is that it explicitly integrates physiological processes that influence 

distributions such as development, predictions are therefore said to be more biologically 

meaningful (Zalucki and Klinken 2006).  

However, CLIMEX has a subjective fitting procedure that enables researchers to manipulate 

the results such that insidious bias can influence the process. Some CLIMEX parameters can 

be derived from physiological experiments that test developmental rates and mortality against 

various climatic gradients such as temperature and humidity. However, many parameters, 

particularly some stress parameters and accumulation rates cannot readily be sourced from 

research studies and depend entirely on the user to make the right judgment based on current 

distributions of the species. While Worner (1988) suggests parameters are not overly 

sensitive so small changes in the parameter values and do not grossly change the overall 

results, it still remains to test multiple parameter error. Additionally, because CLIMEX 

comprises indices that accumulate over time, the effect of cumulative parameter error needs 

to be investigated.  Subjectivity surrounds the inferred climatic suitability from the Eco-

climatic Index. Various studies use slightly different values to define optimal or marginal 

conditions. The contrasting values can lead to ‘fuzziness’ over what the Eco-climatic Index 

truly indicates with respect to the climatic suitability for a species. Also, these differences 

create difficulties supporting one’s conclusions when results are compared with other studies. 

The Eco-climatic Index is measured on a scale that ranges from 0 to 100 and yet, any value 
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above 20 or 30 is considered optimal conditions for a species, making this index 

questionable. 

Another constraint using the CLIMEX system was the climatic database used. The dataset 

that comes with CLIMEX version three is based on climatic data retrieved from 1960 – 1990. 

Climatic data over the last 20 years differs from the climatic data taken from 1960 – 1990. 

Looking back at the temperature anomalies produced by a time series dataset over the time 

period 1850 to 2009 (Figure 1.1), there is a rapid increase in warmer years from 1980 and 

onwards. The non-updated climatic dataset in CLIMEX will not give fully accurate 

predictions for potential distributions under current climatic conditions. Future versions of 

CLIMEX will need an updated climatic dataset that includes climate recordings during the 

21st century.  

In summary, the species distribution models created with CLIMEX predict that New Zealand 

climate change predictions for 2040 and 2090 are likely to increase the climatic suitability in 

New Zealand for all fruit fly species investigated. Increases in annual temperatures eases 

accumulative cold stress to allow these tropical insect pests to potentially survive and 

establish throughout more locations in New Zealand including summerfruit producing 

regions. The impacts of climate change will have on fruit fly potential distributions will 

depend on which emissions scenario is played out in the future.  
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     Chapter 3 
Potential Impacts of Climate Change using a Multiple 

Model System 

3.1 Introduction 

The correlative approach uses environmental variables at recorded geo-referenced presence 

and absence localities to define climatic envelopes associated with a species presence and 

absence. Global species occurrences are sourced from researchers locating the species in the 

field and recording its geo-referenced location. These occurrence points can be found in 

museums, herbaria collections, online databases (Elith et al. 2006; Venette et al. 2010) and 

studies that research spatial distributions of species. Researchers such as Chefaoui and Lobo, 

(2008) have suggested that more reliable predictions are produced from presence/absence 

models than presence only models due to models being able to train on environmental factors 

that determine an absence. However the accuracy of presence/absence models depends on the 

reliability of the absence points.  Recorded true absences are preferable. However these are 

often not recorded during surveys, even if they are, it is difficult to confirm that the species is 

absent simply due to a potentially inadequate search. Also, environmental conditions maybe 

suitable but the species may not have had a chance to occupy that location (Elith and 

Leathwick 2009). A quick solution to overcome these problems is to calculate a set of 

pseudo-absences to balance the presence points. Some studies use  randomly selected absence 

points (Stockwell 1999; Stockwell and Townsend Peterson 2002) but there is a potentially 

large pool of absence points when creating simulations on a global scale. Random selection 

could also result in pseudo-absence points containing suitable environmental conditions for a 

species (Engler et al 2004). An alternative approach using a two step process is implemented 

in this research project.  

It is important to test model performance with the same set of input data. Many studies 

usually use one or two performance criteria, for example, the area under the receiver operator 

curve (AUC) and the kappa index (Segurado and Araújo 2004; Allouche et al. 2006; Elith et 

al. 2006; Williams et al. 2009; Lobo and Tognelli 2010).  
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Numerous correlative models are used to find patterns in environmental data associated with 

the presence and absence of a species. Each model, depending on the input data, is likely to 

differ in the discrimination of new data into classifications with some models producing more 

reliable predictions than others. Therefore, it is important to select a model that will give the 

most reliable and accurate predictions. The multiple model system is a unique system that 

uses a range of 10 different performance criteria that tests sensitivity and performance for a 

range of correlative models to find the best performing model for creating predicted 

distributions.  

3.1.1 Research objectives 

The aims of this chapter are the same as Chapter Two. That aim was to model the potential 

distributions of five Tephritidae fruit fly species in New Zealand in response to climate 

change to determine potential threats to the summerfruit industry. In this chapter a multiple 

model system is implemented that evaluates the performance of nine correlative species 

distribution models to find the best performing model. Objectives for each target fruit fly 

species include: 

• Collate species geo-referenced occurrence points from global databases and research 

publications 

• Calculate suitable pseudo-absence points to balance the number of presence points 

• Determine the best sub-set of environmental variables that are most effective for 

discriminating data 

• Determine the most suitable correlative modelling method for creating predicted 

distributions using the same data and extensive validation.  

• Create predicted distributions under current climatic conditions and future climate 

change predictions specific to New Zealand  

• Identify any major summerfruit producing regions at risk under current and future 

climate change predictions specific to New Zealand 
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3.2 Methods 

The statistical computing program used in this research was ‘R’ (Team 2008)  which is an 

open source software environment for statistical programming and graphics. The multiple 

model system was created by the Bio-Protection Centre at Lincoln University. The methods 

used for testing model performance, selecting suitable environmental variable subsets and 

calculating pseudo-absence points were sourced from a study by Worner et al. 2010. Their 

research used the method to estimate climatic suitability for 21 species of exotic freshwater 

invertebrate pests in New Zealand. 

3.2.1 Distribution data 

The geo-referenced occurrence data for each of the five fruit fly species investigated was 

sourced from the Global Biodiversity Information Facility (GBIF) (www.gbif.org) an online 

database and through other various research publications that state geo-referenced recordings 

of the fruit fly species. The data was checked carefully such that overlapping occurrence 

points were treated as replicates and removed from the analysis. Also, any geo-referenced 

points that fell within the same gridded block on the world climate surface used were treated 

as the same occurrence point.  

3.2.2 Environmental data  

The environmental data required to observe patterns in species distributions were obtained 

from WorldClim (www.worldclim.org). The data is compiled from monthly averages 

measured at various weather stations from a large number of global, national and regional 

sources (Hijmans et al. 2005). The data covers records mostly for the 1950 – 2000 period but 

varies between locations and weather stations (Hijmans et al. 2005). The interpolated climate 

surfaces for global land areas are at a resolution of 30 arc seconds (approximately 1km spatial 

resolution) to capture small scale gradients and variations in the climate (Hijmans et al. 

2005). Nineteen bioclimatic variables are available from WorldClim and have been well used 

in many studies that model species distributions (Hijmans and Graham 2006; Broennimann et 

al. 2007; Peterson and Nakazawa 2008; Worner et al. 2010). Important bioclimatic variables 

include mean annual temperature, isothermality, temperature seasonality, mean annual 

precipitation and maximum and minimum temperatures for the warmest and coldest months. 

The environmental data from WorldClim was converted with ArcGIS from Initial shape files 

(ESRI) into geospatial co-ordinates in the form of text files to be compatible for use in ‘R’. 

Each occurrence point for each species was then aligned with the closest Worldclim 
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coordinates using a Euclidean distance measure to characterise the climate from derived 

bioclimatic variables. 

3.2.3 Pseudo-absence data collation  

The multiple model approach uses a two-step process to calculate pseudo-absences using 

support vector machines (SVM) and k-means clustering. The first step is to calculate the 

global climatic suitability from presence data of the target species by running 100 SVM 

repetitions using the bioclimatic variables from WorldClim. Running an ensemble of models 

lowers the prediction error by aggregating results, rather than selecting a single best fit 

model. Five bioclimatic variables from a total of 19 were excluded during this process to 

decrease the number of data points and potential for model error. The mean diurnal range 

variable ((mean of monthly (max temp - min temp)) was excluded due to the likelihood that 

extreme warm and cold environments would have a similar diurnal range. The mean 

temperature of the warmest and coldest quarter variables were excluded due to there being 

other relevant temperature variables such as the maximum temperature of the warmest month 

and minimal temperature of the coldest month. The precipitations of the wettest and driest 

quarter were also excluded due to there being other precipitation variables. Worner et al. 

(2010) selected the support vector machine method for this stage due to its capability of 

handling large sets of data and short computational time for prediction. Potential absence 

points were defined as locations of very low climatic suitability (posterior probability of less 

than 0.1 on a scale of 0 – 1).  Because this process still results in many thousands of potential 

absence points, K-means clustering was then employed to group the low climatic suitability 

locations into k-clusters, based on them sharing simular environmental variables. The 

numbers of clusters were chosen to be the same as the number of presence points. The 

geographic location closest to the centroid at each k-cluster was therefore deemed as an 

absence point. 

3.2.4 Variable selection 

A subset of bioclimatic variables was selected to minimize collinearity between variables and 

reduce computational time while achieving similar results. This process involved analysing 

all variables using a random forest classification algorithm and then a stepwise regression 

analysis. The random forests algorithm uses an aggregation of many decision trees generated 

by a random selection of bioclimatic variables to find the best combination of variables to be 

used to predict new data. When you average over a large set of trees it results in low bias and 
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low variance. Worner et al. (2010) used this algorithm because it has good predictive 

performance, even when predictive variables are just noise it will not overfit. 

3.2.5 Models 

The models used are binary classifiers that predict a response variable (presence or absence) 

from environmental predictors such as temperature and rainfall etc. at a geographic location. 

These particular models are used when very little information is available on the 

environmental requirements of species. A brief summary of how each model functions 

follows:  

The quadratic discriminant analysis (QDA) method is one of the oldest statistical 

classification methods (Fisher 1936). It assumes only two classes of points and that the data is 

normally distributed with a mean and co-variance. Linear discriminant analysis (LDA) is 

another classification method that is perhaps the oldest method used to discriminate between 

classes (Fisher 1936). The method finds a linear combination of variables that best 

discriminates two or more classes.  The measurements are also assumed to be normally 

distributed but an identical co-variance is assumed between the classes. These two methods 

both find combinations of variables that are as statistically distinct as possible to create the 

classes of interest (Zeman and Lynen 2006). For every location, the Mahalanobis distance is 

used to define the distance of the multivariate vector (x) from the class mean as previously 

determined by environmental variables at species occurrence points (Worner et al. 2010). If 

the distance between the multivariate vector and a class is small then it is likely the vector 

belongs to that class.  

The logistic regression model (LOG) is a generalisation of linear regression and is used to 

make predictions for binary variables but also multiclass variables. The probability of a 

presence or absence (p) for a sample (x) given the class (c) is described by the function. 

 
 

 

 



 63 

The logarithm of the odds of the response variable is linear in the co-efficient of predictors. 

The odds ratio is the probability of the event occurring over the probability of it not occurring 

(Worner et al. 2010).   

 
 

The naive bayes classifier (NB) is naive because it assumes the presence or absence of a 

particular variable of a class is independent of the presence of absence or any other variable 

(Worner et al. 2010).  Attributes are therefore conditionally independent from one another, 

given the class. A deterministic prediction can be obtained by choosing the most likely class. 

Decision trees such as the classification and regression trees (CART) and the variant, the 

conditional tree (CTREE) represent a series of rules that lead to discrimination of a class or 

value (Usio 2007; Roura-Pascual et al. 2011). The root node contains all the samples. Each 

leaf represents a classification and the branches represent the conjunction of features that lead 

to particular classifications (Figure 3.1). At each node there is a fraction of the samples and a 

rule that divides the samples into a two groups. One of the groups will be left behind at a leaf 

and the other will carry on to a different node with a new rule. Therefore at each leaf there is 

a group of samples of one type. For every new sample, one looks at which leaf the sample 

ends up at.  

 
Figure 3.1: Decision tree 
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The K-nearest neighbour model (KNN) assumes that observations that are close in the multi-

dimensional space of predictor variables will be close to each other in the space of the 

response variable (Worner et al. 2010). The class for a new observation or sample is decided 

between its k-nearest neighbours among the training set of observations (recorded 

occurrences).  

Support vector machines (SVM) input non-linear variables to a high dimensional feature 

space in an attempt to create a hyperplane in the space between the two classes that is within 

a maximal margin (Figure 3.2) (Cortes and Vapnik 1995). If no hyperplane exists, the soft 

margin method can choose a hyperplane with the smallest number of samples on the wrong 

side (Cortes and Vapnik 1995). A penalty error is used in this case to define the distance to 

the hyperplane by the Lagrange multiplier. Another method to overcome the lack of a direct 

hyperplane is to use a functional relationship known as a kernel to map data onto a new 

hyperspace so that complicated patterns are more simply represented (Drake et al. 2006)   

 
Figure 3.2: Support vector machine hyperplane 

The artificial neural network model (NNET) is a classifier that functions like the biological 

neural system. It is a mesh of neurons organised in several layers. These layers are connected 

to each other with the outputs of each layer feeding the input to another layer (Figure 3.3). 

Each layer filters the information by amplifying it or reducing it using an activation function 

(Worner et al. 2010). In this study, the activation function used was a logistic function. The 

model uses the neuron layers to do repeated sensitivity analysis on variations of the predictor 

variables, looking for optimal solutions (Williams et al. 2009) 
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Figure 3.3: Feed-forwarding neural network with one layer  

3.2.6 Model selection procedure 

Models that generate predictions using presence/absence data are usually evaluated by 

constructing a confusion matrix that records true positive, true negative, false positive and 

false negative cases predicted by the model when validated on independent data. Ten 

different performance measures used in other species distribution modeling studies were used 

in this study. We use multiple performance measures because all of them have their own 

advantages and disadvantages and perform differently depending on data characteristics. A 

brief description of each follows: The accuracy performance measure describes the 

proportion of correctly predicted sites (ratio of the true positive and true negative cases). If 

cases are not balanced then precision can be used to describe the true positive ratio against 

the false positive rate and recall can be used to describe the true positive ratio against the 

false negative rate. An average of precision and recall comprises the F-score performance 

measure. Predictions close to 0.5 are uncertain as they are they are the furthest figure away 

from either classification of presence or absence so a model uncertainty performance measure 

was introduced to describe the proportion of cases in which this occurs. 

The Receiver Operating Characteristic (ROC) curve (Fielding and Bell, 1997) is a plot of the 

true positive rate against the false positive rate (Figure 3.4). This curve can show the 

tradeoffs between the true positive rate and false positive rate. If for example two ROC 

curves from different models don’t intersect then one model performs better than the other. 

However if curves do intersect then one model is better performing at different ratios of 

beneficial true positives to false positive costs. The area under curve (AUC) is a performance 

criteria for model selection using the ROC curve and describes the probability that the model 

will predict a true positive over a false positive (Benito et al. 2009).  
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Figure 3.4: Reciever Operarating Characteristics curve. 

 

The kappa index compares the overall accuracy of the species distribution model with the 

accuracy expected to happen by chance. Landis and Koch (1977) proposed a scale for the 

kappa index (Table 3.1). A kappa index of 1 equals perfect agreement and any value below 

zero indicates a performance that could have occurred randomly (Allouche et al. 2006).   
Table 3.1: Kappa Index Scale. 

 

Agreement Kappa 

Excellent ≥ 80 

Good 0.61 – 0.8 

Medium 0.41 – 0.6 

Not good 0.21 – 0.4 

Bad 0 – 0.2 

Very bad ≤ 0  

 

Both bootstrapping and cross validation methods were used to create set-aside validation data 

for model evaluation. Bootstrapping is a technique of re-sampling the data set with 

replacement and cross validation is a technique that divides the data up into partitions. Both 

validation procedures involved re-sampling the data multiple times with a portion of data set 

aside (about 20-30%). The remaining 70-80% of the data is fitted to the model while the set 

aside data is used for validation. For each replicate, the set aside data is independent of the 

data used to fit the model and was removed altogether during the model fitting process. In 

this study, 200 bootstrap samples were used and 10-fold cross validation with 20 repetitions 

(5 fold cross validation with 40 repetitions for species with a small number of occurrence 

points). The bootstrapping 0.632 error and cross validation error were also used as 

performance measures to estimate the error resulting from using these validation methods. 
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The nine different models were given a rank for each performance criteria with a rank of 9 

indicating the worst performing model and 1 the best. The ranks were summed and the model 

with the lowest overall rank was deemed the best performing model. 

3.2.7 Climate change scenarios 

To estimate the impact of climate change on potential summerfruit insect pests, average 

surface air temperature increases for 2040 and 2090 were incorporated into the multiple 

model system. Data from the B1 scenario, A1B scenario and the A1F1 scenario were selected 

as being representative of a best case, intermediate and worst case scenario for 2040 and 2090 

climate change conditions ( 

Table 3.2). 
Table 3.2: Predicted surface air temperature increases indicated by climate change scenarios representing 
a best case, intermediate and worst case scenario for New Zealand. 

	
   2040	
   2090	
  	
  

B1	
  Emissions	
  Scenario	
   0.6°C 1.3°C 

A1B	
  Emissions	
  Scenario	
   0.9°C 2°C 

A1F1	
  Emissions	
  Scenario	
   1.3°C 2.9°C 

 

A number of different environmental variables were used with the multiple model approach 

but only the mean annual temperature variable was manipulated to represent each scenario. 

The report by Mullen et al. 2008 does detail predicted changes to precipitation levels as a 

result of climate change. However these were not incorporated into this study because 

precipitation patterns will not change in the same direction for all areas of New Zealand like 

annual mean temperatures. The South Island is expected to experience an increase in 

precipitation while the North Island may experience a decrease in precipitation. The species 

distribution models require a single figure of altered precipitation levels to create climate 

change predictions for New Zealand. Fortunately, the annual mean temperature variable was 

also selected as a significant environmental variable during the variable selection process for 

each species. Changes in annual mean temperatures were incorporated by adding an average 

change in temperature for a specific scenario with its standard deviation to every grid cell on 

the climate surface extracted from WorldClim. 
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3.3 Results 

3.3.1 Bactrocera dorsalis 

The geo-referenced occurrence points for B. dorsalis were sourced from GBIF 

(www.gbif.org) and from various publications (Liu and Ye 2005; Shi et al. 2005; Vargas et 

al. 2007; Satarkar et al. 2009; Chou et al. 2010). A total of 33 occurrence points for model 

fitting were used once replicates had been removed (Figure 3.5). The pseudo-absence points 

were generated from support vector machine repetitions and 33 clusters using k-means 

clustering (See Appendix A). 

 

 

 
Figure 3.5: Global georeferenced occurrence points for B. dorsalis (top) and pseudo-absence points 
generated (bottom). 
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3.3.1.1 Important environmental variables 
The bioclimatic variables from the WorldClim database selected using the random forest and 

step-wise linear regression analyses were: Annual Mean Temperature, Isothermality, Max 

Temperature of Warmest Month and Mean Temperature of Wettest Quarter.  

3.3.1.2 Model performance 
The variability of performance based on two (ROC curves and boxplots of the kappa index) 

of the 10 criteria are shown in Figure 3.6. Figure 3.6 shows high variation in the performance 

of each model and also variability in mean performance over cross-validation replicates 

between the models, indicating less reliable predictions. However, the average performance 

of the models remained very high over most performance criteria. The scores and rankings 

for each model with respect to the 10 performance criteria are shown in Table 3.3. The model 

with lowest overall rank (best model) was the quadratic discriminant analysis and was 

selected to create predicted distributions of B. dorsalis. 

 

 

Figure 3.6: Kappa and ROC plots  for the eight models compared with cross-validation validation 
methods. Acronyms for the selected models are, "lda" for linear discriminant analysis, "qda" for 
quadratic discriminant analysis, "log" for logistic regression, "nb" for naive Bayes, "cart" for 
classification and regression tree, "ctree" for conditional tree, "knn" for k nearest neighbours, "svm" for 
support vector machine, and "nnet" for neural networks. 
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Table 3.3: Performance criteria and their ranks for the cross validation resampling method. 
Abbreviations for the selected models are, "lda" for linear discriminant analysis, "qda" for quadratic 
discriminant analysis, "log" for logistic regression, "nb" for naive Bayes, "cart" for classification and 
regression tree, "ctree" for conditional tree, "knn" for k nearest neighbours, "svm" for support vector 
machine, and "nnet" for neural networks. Abbreviated performance criteria are, "TSS" for true skill 
statistic and "auc ROC" for area under curve of reciever operator characteristics. 

 

	
   Accuracy	
   rank1	
   Precision	
   rank2	
   Recall	
   rank3	
   F.score	
   rank4	
   Kappa	
   rank5	
   Specificity	
   rank6	
   TSS	
   rank7	
   Uncertainty	
   rank8	
   CV.error	
   rank9	
   auc	
   rank10	
   Score	
  

LDA	
   0.930357	
   3	
   0.90696	
   5	
   0.963859	
   1	
   0.929932	
   3	
   0.853844	
   3	
   0.90445	
   5	
   0.868312	
   3	
   0.057143	
   4.5	
   0.072658	
   5	
   0.968163	
   5	
   37.5	
  

QDA	
   0.946429	
   1	
   0.97827	
   1	
   0.914296	
   7	
   0.941907	
   1	
   0.887935	
   1	
   0.98329	
   1	
   0.897588	
   1	
   0.028571	
   1.5	
   0.048391	
   1	
   0.977551	
   4	
   19.5	
  

LOG	
   0.919643	
   5	
   0.90721	
   4	
   0.933899	
   5	
   0.91451	
   5	
   0.830647	
   5	
   0.90955	
   4	
   0.843451	
   5	
   0.057143	
   4.5	
   0.070713	
   4	
   0.988571	
   3	
   44.5	
  

NB	
   0.853571	
   7	
   0.80671	
   8	
   0.9363	
   4	
   0.856432	
   7	
   0.701006	
   7	
   0.78779	
   8	
   0.724085	
   7	
   0.028571	
   1.5	
   0.139238	
   7	
   0.878367	
   9	
   65.5	
  

CART	
   0.810714	
   8	
   0.79264	
   9	
   0.876786	
   8	
   0.81295	
   8	
   0.618886	
   8	
   0.7738	
   9	
   0.650583	
   8	
   0.2	
   8	
   0.19626	
   8	
   0.912653	
   7	
   81	
  

CTREE	
   0.789286	
   9	
   0.81547	
   7	
   0.795526	
   9	
   0.776123	
   9	
   0.575051	
   9	
   0.80216	
   7	
   0.597688	
   9	
   0.3	
   9	
   0.199608	
   9	
   0.902041	
   8	
   85	
  

KNN	
   0.869643	
   6	
   0.83003	
   6	
   0.942857	
   2	
   0.872517	
   6	
   0.735145	
   6	
   0.81903	
   6	
   0.761883	
   6	
   0.071429	
   6	
   0.123351	
   6	
   0.962041	
   6	
   56	
  

SVM	
   0.926786	
   4	
   0.9307	
   2	
   0.922272	
   6	
   0.921728	
   4	
   0.846286	
   4	
   0.93989	
   2	
   0.862161	
   4	
   0.042857	
   3	
   0.059427	
   3	
   0.99102	
   2	
   34	
  

NNET	
   0.933929	
   2	
   0.9299	
   3	
   0.937619	
   3	
   0.93017	
   2	
   0.861054	
   2	
   0.9351	
   3	
   0.872716	
   2	
   0.085714	
   7	
   0.059407	
   2	
   0.991837	
   1	
   27	
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3.3.1.3 Predicted distributions  

The current distribution of B. dorsalis ranges throughout locations with warm and wet 

climates in India, Pakistan and South East Asia. Presence of B. dorsalis is also recorded in 

more arid areas such as Oman (CPC 2010). A global prediction of the climate suitability for 

B. dorsalis is shown using the quadratic discriminant analysis model (QDA) (Figure 3.7). The 

legend shown is a posterior probability with warmer colours representing higher climatic 

suitability. Any value above 0.5 indicates suitable climatic conditions 

 
Figure 3.7: Global environmental suitability of B. dorsalis using the quadratic discriminant analysis 
(qda). The legend represents environmental suitability with warmer colours representing higher 
environmental suitability.  

The predicted New Zealand distribution of B. dorsalis based on climatic suitability under 

current climatic conditions and best, worst and intermediate 2040 and 2090 climate change 

scenarios were generated. Current climate conditions generated suitable habitat sites around 

areas of the South Island in New Zealand, including the summerfruit producing region 

Central Otago. 2040 climate change predictions generated few new suitable habitat sites in 

New Zealand (Figure 3.8). 
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Figure 3.8: Potential distribution of B. dorsalis under worst case 2040 climate change scenarios for New 
Zealand.  

Each 2090 climate change scenario again indicates little change to climatic suitability across 

New Zealand compared with current climate conditions and 2040 climate change predictions 

(Figure 3.9).  
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Figure 3.9: Potential distribution of B. dorsalis in New Zealand under best case 2090 climate change 
predictions, intermediate 2090 climate change predictions and worst case 2090 climate change scenarios 
for New Zealand. 
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3.3.2 Bactrocera tryoni 

The georeferenced occurrence points used for B tryoni were sourced from GBIF 

(www.gbif.org) and Vargas et al (2007). A total of 62 occurrence points were used for model 

fitting once replicates had been removed (Figure 3.10). The pseudo-absence points were 

generated from support vector machine repetitions and 62 clusters using k-means clustering 

and support vector machine repetitions (See Appendix A). 

 

 

 
Figure 3.10: Global georeferenced occurrence points for B. tryoni (top) and pseduo-absence points 
generated (bottom). 
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3.3.2.1 Important environmental variables 
The bioclimatic variables from WorldClim selected from the random forest and step-wise 

linear regression analysis were:  Annual Mean Temperature, Isothermailty, Temperature 

Annual Range, Mean Temperature of Wettest Quarter, Annual Precipitation and Precipitation 

of Warmest Quarter. 

3.3.2.2 Model performance 
The variability of performance based on two (ROC curves and boxplots of the kappa index) of 

the 10 criteria are shown in Figure 3.11. Figure 3.11 shows high variation in the performance 

of some classifiers such as KNN, CART, CTREE and NB, indicating less reliable 

predictions. However, very low variation with regards to the kappa index score and AUC was 

also observed for the LDA classifier. The average performance of the models remained very 

high over most performance criteria. The scores and rankings for each model with respect to 

the 10 performance criteria are shown in Table 3.4.  

 
Figure 3.11: Kappa and ROC plots  for the eight models compared with cross-validation validation 
methods. Acronyms for the selected models are, "lda" for linear discriminant analysis, "qda" for 
quadratic discriminant analysis, "log" for logistic regression, "nb" for naive Bayes, "cart" for 
classification and regression tree, "ctree" for conditional tree, "knn" for k nearest neighbours, "svm" for 
support vector machine, and "nnet" for neural networks. 
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Table 3.4: Performance criteria and their ranks for the cross validation resampling method. 
Abbreviations for the selected models are, "lda" for linear discriminant analysis, "qda" for quadratic 
discriminant analysis, "log" for logistic regression, "nb" for naive Bayes, "cart" for classification and 
regression tree, "ctree" for conditional tree, "knn" for k nearest neighbours, "svm" for support vector 
machine, and "nnet" for neural networks. Abbreviated performance criteria are, "TSS" for true skill 
statistic and "auc ROC" for area under curve of reciever operator characteristics. 

 

 

	
   Accuracy	
   rank1	
   Precision	
   rank2	
   Recall	
   rank3	
   F.score	
   rank4	
   Kappa	
   rank5	
   Specificity	
   rank6	
   TSS	
   rank7	
   Uncertainty	
   rank8	
   CV.error	
   rank9	
   auc	
   rank10	
   score	
  

LDA	
   0.989286	
   1	
   0.97715	
   2	
   1	
   1	
   0.987564	
   1	
   0.977119	
   1	
   0.98032	
   2	
   0.980317	
   1	
   0	
   1	
   0.016397	
   1	
   1	
   1	
   12	
  

QDA	
   0.951786	
   5	
   0.98493	
   1	
   0.920099	
   7	
   0.946998	
   5	
   0.897491	
   5	
   0.98698	
   1	
   0.907083	
   5	
   0.0322581	
   4.5	
   0.047933	
   5	
   0.98127	
   5	
   43.5	
  

LOG	
   0.971429	
   2	
   0.96886	
   3	
   0.972609	
   3	
   0.968433	
   2	
   0.939447	
   2	
   0.97385	
   3	
   0.946457	
   2	
   0.0322581	
   4.5	
   0.031628	
   2	
   0.997919	
   2	
   25.5	
  

NB	
   0.8875	
   7	
   0.84034	
   8	
   0.949663	
   6	
   0.883631	
   8	
   0.76509	
   8	
   0.83841	
   8	
   0.788073	
   7	
   0.0967742	
   7	
   0.121232	
   7	
   0.979188	
   6	
   72	
  

CART	
   0.908929	
   6	
   0.95315	
   6	
   0.854038	
   8	
   0.894445	
   6	
   0.807197	
   6	
   0.96497	
   5	
   0.819007	
   6	
   0.0645161	
   6	
   0.093394	
   6	
   0.901145	
   9	
   64	
  

CTREE	
   0.871429	
   9	
   0.92102	
   7	
   0.82498	
   9	
   0.851778	
   9	
   0.732472	
   9	
   0.92385	
   7	
   0.748826	
   9	
   0.2096774	
   9	
   0.147345	
   9	
   0.942768	
   8	
   85	
  

KNN	
   0.885714	
   8	
   0.81938	
   9	
   0.981637	
   2	
   0.885572	
   7	
   0.765599	
   7	
   0.80077	
   9	
   0.782406	
   8	
   0.1290323	
   8	
   0.128998	
   8	
   0.962539	
   7	
   73	
  

SVM	
   0.9625	
   4	
   0.95448	
   5	
   0.969038	
   4.5	
   0.958805	
   4	
   0.920788	
   4	
   0.96039	
   6	
   0.929424	
   4	
   0.016129	
   2.5	
   0.034243	
   3	
   0.994797	
   4	
   41	
  

NNET	
   0.966071	
   3	
   0.96341	
   4	
   0.969038	
   4.5	
   0.96365	
   3	
   0.929393	
   3	
   0.96762	
   4	
   0.936657	
   3	
   0.016129	
   2.5	
   0.035031	
   4	
   0.995838	
   3	
   34	
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The models with lowest overall ranks were the linear discriminant analysis, logistic 

regression and neural networks. However, these models did not produce suitable predicted 

global distributions. These models indicate high climatic suitability around cool temperate 

and high latitude regions of the Northern Hemisphere. The fourth lowest ranking model, a 

support vector machines, was instead used to produce predicted distributions. This particular 

model showed very high performance on many performance measures for this species and 

has been shown to give the best performance for many other species (Worner et al. 2010). 
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3.3.2.3 Predicted distributions  
The current distribution of B. tryoni is limited to the eastern areas of the states of Queensland, 

New South Wales, Northern Territory and extreme east of Victoria in Australia (CPC, 2010). 

Restricted distributions also occur in New Caledonia and French Polynesia. A global 

prediction of climate suitability for B. tryoni was created using the support vector machine 

model (SVM) (Figure 3.12).  

 
Figure 3.12: Global environmental suitability of B. tryoni using the support vector machine model The 
legend represents environmental suitability with warmer colours representing higher environmental 
suitability. 

The predicted New Zealand distribution of B. tryoni based on climatic suitability under current 

climatic conditions and best, worst and intermediate case 2040 and 2090 climate change 

scenarios were generated but indicated no suitable habitat sites. 
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3.3.3 Bactrocera zonata 

The georeferenced occurrence points for B. zonata were sourced from GBIF (www.gbif.org) 

and from Starkar et al. (2009) and Stonehouse et al. (2002). A total of 36 occurrence points 

were used for model fitting once replicates had been removed (Figure 3.13). The pseudo-

absence points were generated from support vector machine repetitions and 36 clusters using 

k-means clustering (See Appendix A). 

 

 
 

 
Figure 3.13: Global georeferenced occurrence points for B. zonata (top) and global pseudo-absence points 
generated (bottom). 
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3.3.3.1 Important environmental variables  
The bioclimatic variables from WorldClim selected from the random forest and step-wise 

linear regression analysis were: Annual Mean Temperature, Max Temperature of Warmest 

Month, Minimal Temperature of Coldest Month, Mean Temperature of Driest Quarter and 

Precipitation of Driest Month. 

3.3.3.2 Model performance 
The variability of performance based on two (ROC curves and boxplots of the kappa index) 

of the 10 criteria are shown Figure 3.14. Figure 3.14 shows high variation in the performance 

of each model and also variability in mean performance over cross validation replicates 

between the models, indicating less reliable predictions. However, the average performance 

of the models remained very high over most performance criteria. The scores and rankings 

for each model with respect to the 10 performance criteria are shown in Table 3.5. The 

models with lowest overall rank were both the quadratic discriminant analysis (QDA) and 

linear discriminant analysis (LDA). The global prediction using the QDA did not predict high 

climatic suitability around high latitude regions like the LDA prediction so was used to create 

predicted distributions of B. zonata. 

 
Figure 3.14: Kappa and ROC plots  for the eight models compared with cross-validation validation 
methods. Acronyms for the selected models are, "lda" for linear discriminant analysis, "qda" for 
quadratic discriminant analysis, "log" for logistic regression, "nb" for naive Bayes, "cart" for 
classification and regression tree, "ctree" for conditional tree, "knn" for k nearest neighbours, "svm" for 
support vector machine, and "nnet" for neural network.
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Table 3.5: Performance criteria and their ranks for the cross validation resampling method. 
Abbreviations for the selected models are, "lda" for linear discriminant analysis, "qda" for quadratic 
discriminant analysis, "log" for logistic regression, "nb" for naive Bayes, "cart" for classification and 
regression tree, "ctree" for conditional tree, "knn" for k nearest neighbours, "svm" for support vector 
machine, and "nnet" for neural networks. Abbreviated performance criteria are, "TSS" for true skill 
statistic and "auc ROC" for area under curve of reciever operator characteristics 

 

	
   Accuracy	
   rank1	
   Precision	
   rank2	
   Recall	
   rank3	
   F.score	
   rank4	
   Kappa	
   rank5	
   Specificity	
   rank6	
   TSS	
   rank7	
   Uncertainty	
   rank8	
   CV.error	
   rank9	
   Auc	
   rank10	
   score	
  

LDA	
   0.9475	
   1	
   0.93415	
   2	
   0.961668	
   6	
   0.942754	
   2	
   0.888285	
   1	
   0.93764	
   1	
   0.899305	
   1	
   0.0441176	
   7.5	
   0.059873	
   2	
   0.992215	
   1	
   24.5	
  

QDA	
   0.946786	
   2	
   0.93472	
   1	
   0.963458	
   5	
   0.944124	
   1	
   0.887818	
   2	
   0.9354	
   2	
   0.898859	
   2	
   0.0294118	
   5.5	
   0.046959	
   1	
   0.978806	
   3	
   24.5	
  

LOG	
   0.916429	
   8	
   0.91234	
   4	
   0.927045	
   9	
   0.911852	
   8	
   0.824454	
   8	
   0.9074	
   4	
   0.83445	
   8	
   0.1029412	
   9	
   0.079817	
   8	
   0.983564	
   2	
   68	
  

NB	
   0.927857	
   4	
   0.89183	
   5	
   0.971773	
   3	
   0.925914	
   5	
   0.845928	
   5	
   0.88321	
   5	
   0.854981	
   5	
   0.0147059	
   2.5	
   0.074635	
   4	
   0.938581	
   6	
   44.5	
  

CART	
   0.923929	
   6	
   0.88778	
   7	
   0.968709	
   4	
   0.921751	
   6	
   0.839752	
   6	
   0.88079	
   7	
   0.849494	
   6	
   0.0147059	
   2.5	
   0.07579	
   5	
   0.881488	
   9	
   58.5	
  

CTREE	
   0.917857	
   7	
   0.8668	
   9	
   0.987698	
   2	
   0.917249	
   7	
   0.82703	
   7	
   0.84762	
   9	
   0.835319	
   7	
   0.0147059	
   2.5	
   0.07788	
   7	
   0.91436	
   8	
   65.5	
  

KNN	
   0.9275	
   5	
   0.8717	
   8	
   0.997341	
   1	
   0.926228	
   4	
   0.846516	
   4	
   0.85864	
   8	
   0.855982	
   4	
   0.0294118	
   5.5	
   0.076216	
   6	
   0.932526	
   7	
   52.5	
  

SVM	
   0.931071	
   3	
   0.91781	
   3	
   0.945267	
   7	
   0.926842	
   3	
   0.852923	
   3	
   0.91903	
   3	
   0.864301	
   3	
   0.0147059	
   2.5	
   0.072631	
   3	
   0.976644	
   4	
   34.5	
  

NNET	
   0.907857	
   9	
   0.88833	
   6	
   0.935392	
   8	
   0.904279	
   9	
   0.804946	
   9	
   0.8822	
   6	
   0.817594	
   9	
   0.0441176	
   7.5	
   0.09532	
   9	
   0.948962	
   5	
   77.5	
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3.3.3.3 Predicted distributions  
The current distribution of B. zonata ranges throughout locations with warm and wet climates 

in South East Asia and to warm and dry climates in Middle Eastern countries and Northern 

Africa (CPC 2010). A global prediction of climate suitability for B. zonata was created using 

the quadratic discriminant analysis (QDA) (Figure 3.15).  

 

 
Figure 3.15: Global environmental suitability of B. zonata using the quadratic discriminant analysis 
(qda). The legend represents environmental suitability with warmer colours representing higher 
environmental suitability.  

 

The predicted New Zealand distribution of B. zonata based on climatic suitability under 

current climatic conditions and best, intermediate and worst case 2040 and 2090 climate 

change scenarios were generated. Current climate conditions for B. zonata indicate no 

suitable habitats in New Zealand. The best case, intermediate and worst case 2040 climate 

change scenarios indicate an increasing climatic suitability in some parts of New Zealand, 

including the summerfruit producing regions Marlborough and Hawkes Bay (Figure 3.16). 
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Figure 3.16: Potential distribution of B. zonata under New Zealand current climate (1950-2000 average), 
best case 2040 climate change predictions, intermediate 2040 climate change predictions and worst case 
2040 climate change scenarios for New Zealand. 
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Each 2090 climate change scenario indicates a further increase in climatic suitability for C. 

rosa in New Zealand compared to current climate conditions and 2040 climate change 

predictions. The increase in climatic suitability includes the summerfruit producing regions 

Hawkes Bay and Marlborough (Figure 3.17). 

 
 
Figure 3.17: Potential distribution of B. zonata in New Zealand under best case 2090 climate change 
predictions, intermediate 2090 climate change predictions and worst case 2090 climate change scenarios 
for New Zealand. 
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3.3.4 Ceratitis capitata 

The georeferenced occurrence points for C. capitata were sourced from GBIF 

(www.gbif.org) and from a publication by Baliraine et al. (2004) . A total of 138 occurrence 

points were used for model fitting once replicates had been removed (Error! Reference 

source not found.). The pseudo-absence points were generated from support vector machine 

repetitions and 138 clusters using k-means clustering (See Appendix A). 

 

 
Figure 3.18: Global georeferenced occurrence points for C. capitata (top) and pseudo-absence points 
generated (bottom). 
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3.3.4.1 Important environmental variables 
The bioclimatic variables from WorldClim selected from the random forest and step-wise 

linear regression analysis were: Annual Mean Temperature, Temperature Seasonality, Min 

Temperature of Coldest Month, Temperature Annual Range, Mean Temperature of Driest 

Month and Precipitation of Driest Month. 

3.3.4.2 Model performance 
The variability of performances based on two of the 10 criteria are shown with ROC curves 

in Figure 3.19 and a boxplots of the kappa index in Figure 3.20.  Figure 3.19 and Figure 3.20 

indicate greater variability between modelling methods using the cross validation method 

than the bootstrapping method. However there was low overall variation in the performance 

of each model and between models. The average performance of each model remained very 

high over most other performance criteria. The scores and rankings for each model with 

respect to the 10 performance criteria are shown in Table 3.6. The model with the lowest rank 

using the bootstrapping validation method was the neural network (NNET) model and the 

lowest rank using the cross validation method was the logistic regression (LOG) model. The 

logistic model was deemed the ‘best model’ due to being the model with the lowest overall 

rank between the two validation methods. 
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Figure 3.19: ROC plots for the eight models compared with (a) bootstrapping and (b) cross-validation 
validation methods. Acronyms for the selected models are, "lda" for linear discriminant analysis, "qda" 
for quadratic discriminant analysis, "log" for logistic regression, "nb" for naive Bayes, "cart" for 
classification and regression tree, "ctree" for conditional tree, "knn" for k nearest neighbours, "svm" for 
support vector machine, and "nnet" for neural networks.  

 
Figure 3.20: Kappa Index plots for the eight models compared with (a) bootstrapping and (b) cross-
validation validation methods. Acronyms for the selected models are, "lda" for linear discriminant 
analysis, "qda" for quadratic discriminant analysis, "log" for logistic regression, "nb" for naive Bayes, 
"cart" for classification and regression tree, "ctree" for conditional tree, "knn" for k nearest neighbours, 
"svm" for support vector machine, and "nnet" for neural networks.  
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Table 3.6: Performance and their ranks for the re-sampling methods a) bootstrapping and b) 
cross validation. Abbreviations for the selected models are, "lda" for linear discriminant 
analysis, "qda" for quadratic discriminant analysis, "log" for logistic regression, "nb" for naive 
Bayes, "cart" for classification and regression tree, "ctree" for conditional tree, "knn" for k 
nearest neighbours, "svm" for support vector machine, and "nnet" for neural networks. 
Abbreviated performance criteria are, "TSS" for true skill statistic and "auc ROC" for area 
under curve of reciever operator characteristics. 

a) Boot-strapping 

 

b) Cross-validation 

	
   Accuracy	
   rank1	
   Precision	
   rank2	
   Recall	
   rank3	
   F.score	
   rank4	
   Kappa	
   rank5	
   Specificity	
   rank6	
   TSS	
   rank7	
   Uncertainty	
   rank8	
   X.632	
  error	
   rank9	
   auc	
   rank10	
   score	
  

LDA	
   0.909442	
   6	
   0.87669	
   8	
   0.954471	
   2	
   0.912946	
   6	
   0.818008	
   6	
   0.86535	
   8	
   0.819821	
   6	
   0.0362319	
   2	
   0.088853	
   8	
   0.969912	
   6	
   58	
  

QDA	
   0.919912	
   3	
   0.92128	
   1	
   0.91942	
   8	
   0.919395	
   3	
   0.838974	
   3	
   0.92103	
   1	
   0.840445	
   3	
   0.0543478	
   4	
   0.074463	
   5	
   0.974113	
   3	
   34	
  

LOG	
   0.921257	
   2	
   0.91625	
   2	
   0.928083	
   6	
   0.921245	
   2	
   0.841714	
   2	
   0.91525	
   2	
   0.843333	
   2	
   0.0434783	
   3	
   0.07332	
   4	
   0.972485	
   4	
   29	
  

NB	
   0.900833	
   9	
   0.85851	
   9	
   0.960149	
   1	
   0.905795	
   9	
   0.800685	
   9	
   0.84209	
   9	
   0.802239	
   9	
   0.0181159	
   1	
   0.100107	
   9	
   0.941583	
   9	
   74	
  

CART	
   0.908376	
   7	
   0.89768	
   6	
   0.925563	
   7	
   0.909302	
   7	
   0.815896	
   7	
   0.89215	
   7	
   0.817717	
   7	
   0.0942029	
   6	
   0.077122	
   6	
   0.961615	
   7	
   67	
  

CTREE	
   0.908057	
   8	
   0.91127	
   4	
   0.906874	
   9	
   0.906945	
   8	
   0.815211	
   8	
   0.91	
   4	
   0.81687	
   8	
   0.0978261	
   7	
   0.078104	
   7	
   0.960407	
   8	
   71	
  

KNN	
   0.91277	
   5	
   0.89646	
   7	
   0.934468	
   5	
   0.913837	
   5	
   0.824771	
   5	
   0.89235	
   6	
   0.82682	
   5	
   0.1050725	
   8	
   0.072485	
   3	
   0.97427	
   2	
   51	
  

SVM	
   0.917404	
   4	
   0.89951	
   5	
   0.941172	
   3	
   0.918736	
   4	
   0.834098	
   4	
   0.89495	
   5	
   0.836124	
   4	
   0.1086957	
   9	
   0.053871	
   2	
   0.970227	
   5	
   45	
  

NNET	
   0.925004	
   1	
   0.91301	
   3	
   0.941161	
   4	
   0.925769	
   1	
   0.849324	
   1	
   0.91017	
   3	
   0.85133	
   1	
   0.0833333	
   5	
   0.052104	
   1	
   0.975268	
   1	
   21	
  

	
   Accuracy	
   rank1	
   Precision	
   rank2	
   Recall	
   rank3	
   F.score	
   rank4	
   Kappa	
   rank5	
   Specificity	
   rank6	
   TSS	
   rank7	
   Uncertainty	
   rank8	
   CV.error	
   rank9	
   auc	
   rank10	
   score	
  

LDA	
   0.922727	
   4.5	
   0.88807	
   7	
   0.96881	
   2	
   0.924098	
   4	
   0.842	
   4	
   0.88223	
   8	
   0.851039	
   4	
   0.0072464	
   2.5	
   0.086025	
   6	
   0.969597	
   5	
   47	
  

QDA	
   0.918182	
   6	
   0.91661	
   2	
   0.919886	
   8	
   0.915702	
   6	
   0.832595	
   6	
   0.92185	
   2	
   0.841736	
   6	
   0.0108696	
   4	
   0.076049	
   4	
   0.971566	
   4	
   48	
  

LOG	
   0.934848	
   1	
   0.91555	
   3	
   0.959803	
   4	
   0.93531	
   1	
   0.866523	
   1	
   0.91378	
   3	
   0.87358	
   1	
   0.0072464	
   2.5	
   0.071851	
   2	
   0.972275	
   3	
   21.5	
  

NB	
   0.90303	
   8	
   0.85567	
   9	
   0.969315	
   1	
   0.90604	
   7	
   0.803419	
   7	
   0.84577	
   9	
   0.815086	
   8	
   0.0036232	
   1	
   0.10014	
   9	
   0.93943	
   8	
   67	
  

CART	
   0.90303	
   8	
   0.88764	
   8	
   0.927977	
   7	
   0.902003	
   8	
   0.802946	
   9	
   0.88616	
   7	
   0.814141	
   9	
   0.0507246	
   7	
   0.092483	
   7	
   0.928534	
   9	
   79	
  

CTREE	
   0.90303	
   8	
   0.92205	
   1	
   0.88373	
   9	
   0.898764	
   9	
   0.803292	
   8	
   0.93282	
   1	
   0.816549	
   7	
   0.0724638	
   9	
   0.097661	
   8	
   0.955629	
   7	
   67	
  

KNN	
   0.922727	
   4.5	
   0.89881	
   6	
   0.952001	
   6	
   0.922248	
   5	
   0.8419	
   5	
   0.89712	
   6	
   0.849117	
   5	
   0.0253623	
   5	
   0.076102	
   5	
   0.974086	
   1	
   48.5	
  

SVM	
   0.933333	
   2.5	
   0.9076	
   5	
   0.961034	
   3	
   0.931858	
   2	
   0.864283	
   2	
   0.9105	
   5	
   0.87153	
   2	
   0.0434783	
   6	
   0.060945	
   1	
   0.964346	
   6	
   34.5	
  

NNET	
   0.933333	
   2.5	
   0.9129	
   4	
   0.953801	
   5	
   0.931665	
   3	
   0.86258	
   3	
   0.91332	
   4	
   0.867117	
   3	
   0.0652174	
   8	
   0.072049	
   3	
   0.972957	
   2	
   37.5	
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3.3.4.3 Predicted distributions 
C. capitata is endemic to many Sub-Saharan countries and is widespread throughout Africa. 

C. capitata is currently known to be highly invasive and has established permanent 

populations in Europe, Egypt, Middle East, Australia and Americas (CPC 2010). The global 

prediction of climate suitability for C. capitata was created using the logistic regression 

model (LOG) (Figure 3.21). The legend shown is a posterior probability with warmer colours 

representing higher climatic suitability. Any value above 0.5 indicates suitable climatic 

conditions.  

 
Figure 3.21: Global environmental suitability of C. capitata using the logistic regression model. The 
legend represents environmental suitability with warmer colours representing higher environmental 
suitability.  

The predicted New Zealand distribution of C. capitata based on climatic suitability under 

current climatic conditions and best, intermediate and worst case 2040 and 2090 climate 

change scenarios were generated. Current climate conditions indicate suitable habitat sites 

around the far north and southern half of the North Island and east coast of the South Island. 

Suitable habitat sites include the summerfruit producing regions Hawkes Bay and Blenheim. 

Best case, intermediate and worst case 2040 climate change predictions indicate decreasing 

climatic suitability for C. capitata (Figure 3.22). The summerfruit producing region Hawkes 

Bay will not be vulnerable to C. capitata according to the predictions produced by this 

model. 
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Figure 3.22: Potential distribution of C. capitata using the LOG model under New Zealand current 
climate (1950-2000 average) (top left), best case 2040 climate change predictions (top right), intermediate 
2040 climate change predictions (bottom left) and worst case 2040 climate change scenarios for New 
Zealand (bottom right). 
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All 2090 climate change scenarios indicate a decrease in climatic suitability for C. capitata 

(Figure 3.23). The summerfruit producing region Blenheim is the only location in New 

Zealand with a suitable climate under best case and intermediate 2090 climate change 

predictions. No summerfruit producing regions in New Zealand will be vulnerable to C. 

capitata under worst case 2090 climate change predictions.  
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Figure 3.23: Potential distribution of C. capitata using the LOG model under best case 2090 climate 
change predictions (top left), intermediate 2090 climate change predictions (top right) and worst case 
2090 climate change scenarios for New Zealand (bottom). 
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3.3.5 Ceratitis rosa 

The geo-referenced occurrence points for C. rosa were sourced from GBIF (www.gbif.org) 

and from a publication by Baliaraine et al. (2004). A total of 170 occurrences points were 

used for model fitting once replicates had been removed (Figure 3.24). The pseudo-absence 

points were generated from support vector machine repetitions and 170 clusters using k-

means clustering (See Appendix A).  

  

 
Figure 3.24: Global georeferenced occurrence points for C. rosa (top) and pseduo-absence points 
generated (bottom). 
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3.3.5.1 Important environmental variables  
The bioclimatic variables from WorldClim selected from the random forest and step-wise 

linear regression analysis were: Annual Mean Temperature, Isothermality, Temperature 

Seasonality and Annual Precipitation. 

3.3.5.2 Model performance 
The variability of performance based on two of the 10 criteria is shown the ROC curves in 

Figure 3.25 and a boxplots of the kappa index shown in Figure 3.26. Figure 3.25 and Figure 

3.26 show higher variability between modelling methods when using the cross validation 

method than the bootstrapping method. The average performance of each model remained 

very high over most other performance criteria. The scores and rankings for each model with 

respect to the 10 performance criteria are shown in Table 3.7. The model with lowest rank for 

both the bootstrapping and cross validation methods was the quadratic discriminant analysis 

and was selected to create predicted distributions of C. rosa. 
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Figure 3.25: ROC plots for the eight models compared with (a) bootstrapping and (b) cross-validation 
validation methods. Acronyms for the selected models are, "lda" for linear discriminant analysis, "qda" 
for quadratic discriminant analysis, "log" for logistic regression, "nb" for naive Bayes, "cart" for 
classification and regression tree, "ctree" for conditional tree, "knn" for k nearest neighbours, "svm" for 
support vector machine, and "nnet" for neural networks.  

 
Figure 3.26: Kappa Index plots for the eight models compared with (a) bootstrapping and (b) cross-
validation validation methods. Acronyms for the selected models are, "lda" for linear discriminant 
analysis, "qda" for quadratic discriminant analysis, "log" for logistic regression, "nb" for naive Bayes, 
"cart" for classification and regression tree, "ctree" for conditional tree, "knn" for k nearest neighbours, 
"svm" for support vector machine, and "nnet" for neural networks.  
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Table 3.7: Performance criteria and their ranks for the re-sampling methods a) bootstrapping 
and b) cross validation. Abbreviations for the selected models are, "lda" for linear discriminant 
analysis, "qda" for quadratic discriminant analysis, "log" for logistic regression, "nb" for naive 
Bayes, "cart" for classification and regression tree, "ctree" for conditional tree, "knn" for k 
nearest neighbours, "svm" for support vector machine, and "nnet" for neural networks. 
Abbreviated performance criteria are, "TSS" for true skill statistic and "auc ROC" for area 
under curve of reciever operator characteristics. 

a) Boot-strapping 

 

b) Cross-validation

	
   Accuracy	
   rank1	
   Precision	
   rank2	
   Recall	
   rank3	
   F.score	
   rank4	
   Kappa	
   rank5	
   Specificity	
   rank6	
   TSS	
   rank7	
   Uncertainty	
   rank8	
   X.632	
  error	
   rank9	
   auc	
   rank10	
   score	
  

LDA	
   0.852408	
   9	
   0.7758	
   9	
   0.990389	
   1	
   0.86897	
   9	
   0.704804	
   9	
   0.71732	
   9	
   0.707714	
   9	
   0.0535714	
   2	
   0.14277	
   9	
   0.86639	
   9	
   75	
  
QDA	
   0.918363	
   1	
   0.89624	
   1	
   0.946672	
   4	
   0.919626	
   1	
   0.835964	
   1	
   0.89098	
   1	
   0.83765	
   1	
   0.0669643	
   4.5	
   0.074653	
   3	
   0.976164	
   3	
   20.5	
  
LOG	
   0.862717	
   8	
   0.81625	
   8	
   0.935838	
   6	
   0.870595	
   8	
   0.724673	
   8	
   0.79172	
   8	
   0.727559	
   8	
   0.0669643	
   4.5	
   0.129183	
   8	
   0.889429	
   8	
   74.5	
  
NB	
   0.889607	
   5	
   0.83989	
   7	
   0.963017	
   2	
   0.896013	
   5	
   0.778474	
   5	
   0.81764	
   7	
   0.780654	
   5	
   0.0446429	
   1	
   0.104729	
   7	
   0.971301	
   4	
   48	
  
CART	
   0.887719	
   6	
   0.87318	
   4	
   0.911826	
   9	
   0.889199	
   6	
   0.775105	
   6	
   0.86681	
   4	
   0.778635	
   6	
   0.1696429	
   8.5	
   0.089977	
   5	
   0.965641	
   5	
   59.5	
  
CTREE	
   0.880264	
   7	
   0.85902	
   5	
   0.912737	
   8	
   0.882276	
   7	
   0.759535	
   7	
   0.84855	
   5	
   0.761289	
   7	
   0.1696429	
   8.5	
   0.101594	
   6	
   0.964047	
   7	
   67.5	
  
KNN	
   0.897984	
   4	
   0.85303	
   6	
   0.96183	
   3	
   0.903055	
   4	
   0.795374	
   4	
   0.83591	
   6	
   0.797737	
   4	
   0.09375	
   6	
   0.08531	
   4	
   0.964286	
   6	
   47	
  
SVM	
   0.913299	
   2	
   0.8902	
   2	
   0.942954	
   5	
   0.91478	
   2	
   0.825811	
   2	
   0.88462	
   2	
   0.827577	
   2	
   0.0580357	
   3	
   0.062386	
   1	
   0.980309	
   1	
   22	
  
NNET	
   0.907109	
   3	
   0.88575	
   3	
   0.935704	
   7	
   0.908663	
   3	
   0.813553	
   3	
   0.88001	
   3	
   0.815719	
   3	
   0.1026786	
   7	
   0.063353	
   2	
   0.979751	
   2	
   36	
  

	
   Accuracy	
   rank1	
   Precision	
   rank2	
   Recall	
   rank3	
   F.score	
   rank4	
   Kappa	
   rank5	
   Specificity	
   rank6	
   TSS	
   rank7	
   Uncertainty	
   rank8	
   CV.error	
   rank9	
   auc	
   rank10	
   score	
  

LDA	
   0.871154	
   9	
   0.78599	
   9	
   1	
   1	
   0.876459	
   9	
   0.743683	
   9	
   0.75916	
   9	
   0.759163	
   9	
   0.0089286	
   1	
   0.144647	
   9	
   0.858179	
   9	
   74	
  
QDA	
   0.938462	
   1	
   0.91138	
   1	
   0.964384	
   2	
   0.936097	
   1	
   0.873954	
   1	
   0.9145	
   1	
   0.878886	
   1	
   0.0178571	
   2	
   0.077572	
   1	
   0.975446	
   2	
   13	
  
LOG	
   0.878846	
   8	
   0.83482	
   8	
   0.933331	
   6	
   0.878468	
   8	
   0.75465	
   8	
   0.83149	
   8	
   0.764819	
   8	
   0.0401786	
   6	
   0.129256	
   8	
   0.885762	
   8	
   76	
  
NB	
   0.905769	
   4	
   0.85995	
   5	
   0.96198	
   3	
   0.905256	
   4	
   0.808496	
   4	
   0.85247	
   6	
   0.814451	
   4	
   0.0267857	
   4	
   0.111432	
   7	
   0.970584	
   3	
   44	
  
CART	
   0.886538	
   6.5	
   0.87114	
   4	
   0.898013	
   9	
   0.882284	
   7	
   0.769071	
   6	
   0.87328	
   4	
   0.771296	
   7	
   0.1116071	
   9	
   0.106006	
   5	
   0.933594	
   7	
   64.5	
  
CTREE	
   0.886538	
   6.5	
   0.83881	
   7	
   0.937238	
   5	
   0.882396	
   6	
   0.767997	
   7	
   0.83499	
   7	
   0.772224	
   6	
   0.0446429	
   7.5	
   0.111295	
   6	
   0.95727	
   6	
   64	
  
KNN	
   0.903846	
   5	
   0.85833	
   6	
   0.958109	
   4	
   0.903614	
   5	
   0.80452	
   5	
   0.85562	
   5	
   0.813728	
   5	
   0.03125	
   5	
   0.099423	
   4	
   0.960619	
   5	
   49	
  
SVM	
   0.921154	
   2	
   0.90856	
   2	
   0.929562	
   7	
   0.915624	
   2	
   0.838231	
   2	
   0.91241	
   2	
   0.841973	
   2	
   0.0223214	
   3	
   0.085968	
   2	
   0.966199	
   4	
   28	
  
NNET	
   0.913462	
   3	
   0.89521	
   3	
   0.924287	
   8	
   0.90806	
   3	
   0.821521	
   3	
   0.89861	
   3	
   0.822901	
   3	
   0.0446429	
   7.5	
   0.090439	
   3	
   0.977918	
   1	
   37.5	
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3.3.5.3 Predicted distributions  
The current distribution of C. rosa ranges throughout locations with warm and wet climates 

in Central and Southern Africa and also far west of Africa in Malawi and Guinea (CPC 

2010). A global prediction of climate suitability for C. rosa was created using the quadratic 

discriminant analysis (QDA) (Figure 3.27). The legend shown is a posterior probability with 

warmer colours representing higher climatic suitability. Any value above 0.5 indicates 

suitable climatic conditions.  

 
Figure 3.27: Global environmental suitability of C. rosa using the quadratic discriminant analysis (QDA). 
The legend represents environmental suitability with warmer colours representing higher environmental 
suitability.  

The predicted New Zealand distribution of C. rosa based on climatic suitability under current 

climatic conditions and best, intermediate and worst case 2040 and 2090 climate change 

scenarios were generated. Current climate conditions for C. rosa indicate suitable habitats 

throughout many locations in both the North Island and South Island including all major 

summerfruit producing region. The 2040 climate change scenarios indicate a further increase 

in climatic suitability across all summerfruit producing regions (Figure 3.28). 
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Figure 3.28: Potential distribution of C. rosa under New Zealand current climate (1950-2000 average) 
(top left), best case 2040 climate change predictions (top right), intermediate 2040 climate change 
predictions (bottom left) and worst case 2040 climate change scenarios (bottom right) for New Zealand.  
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Each 2090 climate change scenario indicates a further increase in climatic suitability for C. rosa 

throughout New Zealand and summerfruit producing regions (Figure 3.29). 

 
 
Figure 3.29: Potential distribution of C. rosa in New Zealand under best case 2090 climate change 
predictions (top left), intermediate 2090 climate change predictions (top right) and worst case 2040 
climate change scenarios for New Zealand (bottom). 
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3.4 Discussion  

The results presented here again are indicative of the directions and magnitude of change to 

the potential distribution ranges of some serious fruit fly insect pests in response to climate 

change. Summerfruit producing regions that potentially have a suitable climate for the 

establishment of fruit fly pest permanent populations are identified. The first objective was to 

determine the potential distribution of the target fruit fly species under current climatic 

conditions. In general, no single location was climatically suitable for all fruit fly species. 

Model predictions indicated major summerfruit producing regions Hawkes Bay and 

Marlborough as currently suitable for C. capitata and C. rosa establishment as well as 

Central Otago for B. dorsalis and C. rosa. No locations were indicated as being currently 

suitable for B. tryoni (Table 3.8). When climate change conditions were incorporated, The 

results generated by the multiple model system indicated an increase in habitat suitbility for 

B. zonata under 2090 climate change scenarios around Hawkes Bay and Marlborough and an 

increase in climatic suitability for C. rosa under all climate change scenarios around Hawkes 

Bay and Marlborough and Central Otago. An increase in climatic suitability for B. dorsalis 

under all climate change scenarios was observed for Central Otago (Table 3.8).  

Table 3.8: New Zealand summerfruit producing regions vulnerable to exotic fruit fly establishment under 
various climate change scenarios. HB = Hawkes Bay, M= Marlborough, CO = Central Otago. 

Climate	
  change	
  
scenario	
  

B.	
  dorsalis	
   B.	
  tryoni	
   B.	
  zonata	
   C.	
  capitata	
   C.	
  rosa	
  

current	
   CO	
   	
   	
   HB,	
  M	
   HB,	
  M,	
  CO	
  
best	
  case	
  2040	
   CO	
   	
   	
   M	
   HB,	
  M,	
  CO	
  
intermediate	
  case	
  
2040	
  

CO	
   	
   M	
   M	
   HB,	
  M,	
  CO	
  

worst	
  case	
  2040	
   CO	
   	
   M	
   M	
   HB,	
  M,	
  CO	
  
best	
  case	
  2090	
   CO	
   	
   M	
   M	
   HB,	
  M,	
  CO	
  
intermediate	
  case	
  
2090	
  

CO	
   	
   HB,	
  M	
   	
   HB,	
  M,	
  CO	
  

worst	
  case	
  2090	
   CO	
   	
   HB,	
  M	
   	
   HB,	
  M,	
  CO	
  
 

Worner et al. (2010) states that the method used for calculating pseudo-absences from 

presence points is an improvement over previous methods but that it still needs verification. 

The main advantage of this method is the very low chance of environmental variables at a 

selected pseudo-absence being simular to environmental variables found at a recorded 

occurrence/presence location. If the environmental variables at presence and pseudo-absence 

locations are similar then the models will not effectively discriminate the data into two 
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difference classes. However, the pseudo-absence points were not evenly spaced across the 

globe as intended for B. dorsalis, B. tryoni and B. zonata and led to an accumulation of 

absence points around localised areas. This result is possibly due to the small sample size of 

occurrence points for each of these species. A small number of occurrence points means that 

a smaller number of clusters will be created globally and will increase the chances of the 

centroids being in close proximity. Clearly, this area requires further research.  

The method for analysing model sensitivity and prediction error is also an improvement over 

other methods. In many studies, only 2 or 3 performance measures are used to analyse model 

performance. This study incorporated a range of 10 different performance measures to 

measure how each model performs using the same input data. Additionally, the most accurate 

and best performing model can be sourced from the model performance test to create 

predicted distributions. Incorrect model selection may give incorrect estimates of an invasive 

species potential range and lead to inaccurate assessments of pest risks. Consequently 

inaccurate results may lead to the wrong mitigation decisions being made when implementing 

strategies after an incursion or establishment of an invasive species population (Venette et al, 

2010).      

The reason for the performance criteria and the model selection process was because each 

model is likely to give a different prediction with slightly different conditions that may result 

in a change in climate suitability for each species. This research indicated that all models 

performed equally well against the performance criteria. The best ranked model performed 

similar to the worst ranked model. While this is a good result, it means that it is difficult to 

select what would be the most suitable model to generate predictions. The similarity in model 

performance may be due to the performance criteria being similar in the way they assess   

model performance. Future research could focus on creating new model performance criteria 

that assesses the models in a different way to what has been used here.  

There were nine performance criteria used to critique the performance of each model. The 

results of some of these performance criteria could be more important than others, such as the 

area under the Receiver Operative Characteristic curve and the kappa index. Clearly 

evaluation of performance criteria with accurate or even simulated data is required.  

There was an instance where the best performing model was definitely not the most suitable 

model to use when assessing the model predictions for B. tryoni. The ranking system 

determined the linear discrimination model as the highest performing model, followed by 
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quadratic discriminant analysis and artificial neural networks. Given that B. tryoni is 

currently distributed in a tropical climate, these three models all produced global predicted 

distributions with high climatic suitability around high latitude locations in the northern 

hemisphere. Such errors in the potential global distributions may indicate the lack of ability 

for linear based models to extrapolate to a global scale using occurrence points that originate 

from a relatively restricted distribution. Despite that they often performed well with respect to 

the performance criteria used. Many models used here gave results that were not significantly 

different from each other, reflecting the interaction of the model architecture with the data 

which at this stage is very difficult to tease out. The support vector machine has a reputation 

for being an excellent classifier (Drake et al. 2006) and has given sensible results to other 

studies (Worner et al. 2010). This model was the fourth lowest ranking model but with 

excellent performance and gave a more accurate portrayal of the potential global distribution 

for B. tryoni. While several models can perform exceptionally well one should always check 

the biological significance and reliability of model output. 

The potential distributions produced are heavily influenced by which environmental variables 

are selected as indeed the absences data used At times, the environmental variables selected 

may result in an inaccurate predicted distribution. For example, one of the bioclimatic 

variables selected for B. dorsalis was maximum temperature of the warmest month. High 

climatic suitability was therefore indicated around areas in the South Island that are known to 

get the hottest during the summer (NIWA, 2010). However, these locations also experience 

the coldest minimal temperatures during the winter. If the minimum temperature of coldest 

month bioclimatic variable was selected as well or instead of maximum temperature it may 

have resulted in a very different potential distribution. B.dorsalis lacks tolerance for cool 

winters (EPPO, 2010) and therefore this example illustrates that good biological knowledge 

is important when using these models or interpreting their results.  

A potential constraint for any correlative modelling (as indeed for CLIMEX) is a lack of 

occurrence points and this was observed for B. dorsalis, B. tryoni and B. zonata with 34, 62 

and 36 presence locations available, respectively. This was evident in the highly variable box 

plots of the kappa index within and between models. Problems arise with a small sample size 

as they may not give a full representation of the environmental predictors that correlate with 

the presence of a species. A small sample size can also have an impact on model sensitivity 

and reliability of predictions. A small sample size may allow outliers to have more influence 

on predictions whereas a large sample size can buffer the effect of outliers. Previous research 
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by Wiez et al. (2008) also found a decrease in model accuracy and an increase in variability 

across species and between models when comparing the mean AUC score for a sample size 

of 10 occurrence points to 30 and 100 occurrence points.   

The models used in this study cannot replace more detailed models when much is known 

about species ecology. There is controversy around the use of correlative models (Zurell et al. 

2009; Venette et al. 2010). Many new approaches are proposed but are soon shown not to 

live up to expectations (see Rodda & Jarnevich 2011). Any model developed to predict 

distributions should be checked to determine if the global predicted distribution appears 

realistic in relation to the current distribution of the species before proceeding to produce 

other localised predictions. The predictions in this chapter emphasise the importance of being 

able to obtain a large sample of occurrence points to increase the reliability of pseudo-

absence points generated and predictions of potential distributions. Increasing the number of 

occurrence points can be achieved by collaborating with species experts. Worner et al. (2010) 

successfully obtained presence data for many of the 21 species investigated in their research 

by contacting specialist researchers. Collaboration with experts was attempted during this 

research but no additional occurrence points were obtained.   

In summary, the multiple model system is a new approach that selects the best performing 

model from a range of models for each fruit fly species using 10 performance measures with 

extensive validation. In response to predicted climate change scenarios, the models predicted 

an increase in suitable habitat sites in New Zealand summerfruit producing regions for B. 

dorsalis, B. zonata and C. rosa, no change in climatic suitability for B. tryoni and a decrease 

in climatic suitability for C. capitata. 
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     Chapter 4 
General Discussion 

The aim of this research was to predict New Zealand distributions of five exotic fruit fly 

species that could pose a threat to the summerfruit industry under current and future climate 

change conditions. A well known modelling program used for modelling species 

distributions, CLIMEX and a correlative approach using a comparative multiple model 

system were used to create the predicted distributions. The question whether climate change 

is likely to increase the climatic suitability of the fruit fly species was investigated.  

4.1 Key results 

The results generated by CLIMEX indicated an increase in climatic suitability for all five 

fruit fly species around the summerfruit producing regions Hawkes Bay and Marlborough 

under all climate change scenarios. The results generated by the multiple model system also 

indicated an increase in climatic suitability for B. dorsalis around Central Otago under 2090 

climate change scenarios, an increase in habitat suitbility for B. zonata under 2090 climate 

change scenarios around Hawkes Bay and Marlborough and an increase in climatic suitability 

for C. rosa around Hawkes Bay and Marlborough under all climate change scenarios. These 

results are supported by studies that report changes to insect distributitions as a result of 

warmer temperatures over the last 20-40 years (Parmesan 1999; Parmesan and Yohe 2003; 

Battisti et al. 2005; Tougou et al. 2009). Other studies also predict a potential increase in 

climatic suitability using species distribution models for the oriental fruit fly (B. dorsalis) 

(Stephens et al. 2007), olive fruit fly (B. oleae) (Gutierrez et al. 2009),  nun moth 

(Lymmantria monacha) and gypsy moth (L. dispar) (Vanhanen et al. 2007). Species that are 

predicted to experience an increase in climatic suitability are more likely to establish 

permanent populations. C. capitata is currently known to be highly invasive and has already 

established populations in Europe, Egypt, Middle East, Australia and Americas. Interestingly, 

a decrease in climatic suitability was observed for C. capitata under climate change 

conditions using the multiple model system. This result indicates a potential decrease in risk 

of C. capitata being able to establish populations in the future, potentially a favourable result 

for the New Zealand summerfruit industry. Studies have also documented climate change to 

potentially cause a decrease in climatic suitability for many other species and result in 

extinctions due to thermal tolerances being breached (Thomas et al. 2004; Parmesan 2006; 
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Deutsch et al. 2008). Changes to the potential distributions observed under climate change 

conditions are directly correlated with the annual mean temperature bioclimatic variable 

which was the only variable manipulated to meet predicted climate change conditions for 

New Zealand. 

There is the possibility that the models and environmental variables selected to produce the 

potential distributions did not produce the most likely prediction map of climate suitability 

for each species. The species distribution model predictions are based on the output from 

only the ‘best’ performing model out of a range of nine models. If a different model out of 

the nine models was used to create the prediction maps there is a possibility that one or more 

would predict an increase or decrease in habitat suitability instead. For example, the LOG 

model was used to predict a decreasing climatic suitability for C. capitata under climate 

change scenarios. However the NNET and SVM models also performed and may have 

indicated an increase in climatic suitability instead.  

Bioclimatic variable selection is very likely to have an impact on distributions predicted 

under current climatic conditions. The models often predicted suitable climates in areas of 

New Zealand with the highest maximum temperatures but that had the coldest winters and 

therefore unlikely to be suitable for species originating from tropical or sub-tropical regions. 

The reason for this occurring may be due to the bioclimatic variables such as the mean 

temperature of the coldest quarter and minimum temperature of the coldest month being 

selected. However, bioclimatic variable selection was not an attributing factor determining 

climatic suitability under climate change conditions as only the annual mean temperature 

variable was altered for each species. The results of this study do not fully evaluate the 

potential impacts of climate change due to potential changes in annual precipitation levels as 

they were also not incorporated. The climate change predictions set by NIWA in 2008 do 

detail potential changes to annual precipitation levels. However, these changes were not used 

in this study because it was beyond the scope of this research. Changes in frequency and 

intensity of extreme weather events were also not investigated. These could come in the form 

of an increase in tropical cyclones and changes to the frequency and intensity of warm 

temperature spells, frosts, floods and droughts (IPCC 2007). All these extreme weather 

events are likely to have an impact on the climatic suitability for invasive species. For 

example, an increase in warm temperature spells could create more niche opportunities for 

exotic species to become grounded with viable populations that can withstand cooler 
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temperatures after the warm spell. Potential changes in extreme weather events are difficult to 

measure and predict (IPPC 2007) and is why they have not been in incorporated in this study 

or many other studies that involve climate change impacts.   

4.2 Implications 

A study published by Summerfruit NZ (2009) indicates the direct effects climate change 

could have on summerfruit trees, such as not reaching the required winter chill levels needed 

for flowering, and the potential for an uneven transition from winter to spring. The results of 

this thesis contributes additional knowledge on how climate change could  alter the climatic 

suitability in New Zealand for exotic fruit flies that are known to cause severe damage to 

horticultural crops.  

No matter how stringent the measures put in place by biosecurity agencies to protect and 

safeguard New Zealand from exotic pest incursions, there is still the likelihood that a few 

propagate populations of fruit flies can slip through these controls. In the event of an 

incursion or outbreak of a serious summerfruit pest such as those investigated here, 

knowledge of areas with suitable climates and the presence of the host plant could increase 

the effectiveness of the response by concentrating eradication protocols around vulnerable 

locations under a particular scenario, thus avoiding wasting resources and valuable time on 

locations with a low climatic suitability.  

The results of this research can also be used and interpreted by other major horticultural 

industries in New Zealand. The fruit fly species investigated are highly polyphagous. The 

Crop Pest Compendium (2010) records 3 out of 5 fruit fly species investigated as being 

serious pests of other major horticultural crops grown in New Zealand including apples 

(Malus domesitca), avocados (Persia americana) and grapes (Vitus Vinifera). Each of these 

industries are valued respectively at NZ$ 396, NZ$184.5 and NZ$38.4 million per annum 

(Aitken and Hewett 2009).  

The summerfruit industry and biosecurity officials in New Zealand could prepare for the 

potential increase in climatic suitability of fruit fly species by increasing vigilance within 

current strategies used to detect and prevent fruit fly incursions such as the inspection of 

imported commercial fresh fruit, prevention of fresh fruit smuggling by international arrival 

passengers and the national fruit fly trapping grid. Currently, the national fruit fly grid only 

targets the three species that were investigated in this research (B. dorsalis, B. tryoni and C. 
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capitata). The results of this research indicates that New Zealand summerfruit producing 

regions could be vulnerable to more fruit fly species than the fruit fly trapping grid is 

designed to detect. MAF Biosecurity should take action by introducing a wider variety of bait 

lures that will attract other fruit fly species such B. zonata and C. rosa. Also, the national 

trapping grid is currently concentrated in the North Island but the results of this research 

indicates that a potentially wider range of South Island locations will be suitable for fruit fly 

establishment under climate change conditions. Therefore, the national trapping grid should 

be expanded around New Zealand, particularly the South Island, to cope with the potential 

increase in fruit fly establishment risk. 

The potential increase in surface air temperatures and changes to precipitation patterns are 

likely to cause stress on crops that may result in an increased susceptibility to insect pest 

damage (Masters and Norgrove 2010, Summerfruit NZ 2008). The implications of an 

increase in establishment risk for exotic pests may further increase the vulnerability of 

summerfruit crops to insect pest damage. 

Climate change could also cause the current primary summerfruit producing regions to 

become less climatically suitable due to a potential decrease in winter chill hours required to 

break dormancy. This could result in an asynchrony between the distributions of summerfruit 

insect pests currently established in New Zealand and of exotic summerfruit insect pests not 

established in New Zealand. 

4.3 Modelling method evaluation  

There were notable disparities between the predicted distributions generated using CLIMEX 

and the multiple model system. CLIMEX predictions indicated New Zealand to have a more 

suitable habitat under current and future climatic conditions for all species except C. rosa 

when compared with predictions generated with the multiple model system. One of the main 

differences is that CLIMEX directly incorporates environmental stressors that accumulate 

over time. Therefore, all CLIMEX simulations indicated low climatic suitability around areas 

in New Zealand that experience the coldest winters such as Central Otago. In contrast, 2090 

climate change predictions produced by the multiple model system for B. dorsalis and all 

predictions produced for C. rosa indicated high climatic suitability around areas in New 

Zealand with the coolest winters. The multiple model system does use bioclimatic variables 

that include temperature extremes but does not allow these extremes to accumulate over time 
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to decrease climatic suitability. Clearly, each modelling method has their own advantages and 

disadvantages when it comes to creating predicted distributions. 

4.3.1 Multiple model system 

The multiple model system has the advantage of thoroughly testing model sensitivity and 

error using the 10 different performance criteria. Many previous studies that use correlative 

species distribution models only use one or two performance criteria to test the performance 

of the models. The models will perform differently depending on which performance criteria 

is used, so it is therefore important to use a larger range of criteria. Using the performance 

criteria, a best performing model can be selected to create predicted distributions. The 

extensive model evaluation reduces the risk of ‘over-fitting’ and increases the reliability of 

the results produced (Worner et al. 2010).  

When using presence/absence correlative models it is very important to obtain a set of 

absence points that are reliable. Recorded absences are the most reliable however these are 

rarely recorded and difficult to obtain. The generation of reliable pseudo-absence points is 

therefore crucial to ensure the accuracy of the predictions. A potential flaw in pseudo-absence 

generation is accidently using pseudo-absence points that contain by chance, environmental 

conditions that are suitable for a particular species. If there are many of these points then the 

model classifiers will not be able to effectively discriminate the environmental data and result 

in an unreliable prediction map. The method used in this research for pseudo-absence 

generation attempts to minimise this risk by first using an ensemble of one class support 

vector machine repetitions to determine global climatic suitability. K-means clustering was 

then used to group the non-suitable areas into clusters. The closest point on the climate 

surface to the centroid of each cluster was deemed an absence point. Worner et al. (2010) 

states that this method used for calculating pseudo-absences is an improvement over previous 

methods but that it still needs refinement and further verification. 

Despite these good points, one of the disadvantages of using correlative models such as the 

multiple model system is the requirement of recorded geo-referenced occurrence points 

which are often difficult to obtain for some species. As with all methods, problems arise with 

a small sample size that may not give a full representation of the environmental predictors 

that correlate with the presence of a species. A small sample size may also allow outliers to 

have more influence on predictions whereas a large sample size can buffer the effects of 
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outliers. A solution to obtaining more occurrence points is to collaborate with species experts 

who often have access to more data.  

Methods using correlative modelling are being continuously upgraded. Future research could 

focus on using methods that can prevent over-fitting, improve variable selection, reduce 

collinearity and improve pseudo-absence selection. 

4.3.2 CLIMEX 

The CLIMEX program creates predicted distributions based on species physiological 

response to climate. CLIMEX and other mechanistic models are therefore more biologically 

supporting to a point as these models incorporate the impacts climate will have on 

development and the stressors that result in mortality etc (Venette et al. 2010; Zalucki. and 

Klinken, 2006). However, issues as discussed in Chapter 2 surround the subjectivity when 

setting the climatic parameters as it allows the user to have a lot of influence on the results. 

The inferred climatic suitability from Ecoclimatic Index figures also varies between 

publications, which increases the difficulty comparing one’s results with other studies that 

use CLIMEX. The Ecoclimatic index ranges from 0 – 100 but the majority of publications 

only use the index from 0 – 20 or 25 as means of describing the climatic suitability. Any 

figure above 20 or 25 is just deemed optimal climatic conditions for a species. This indicates 

some shortcomings of the index if researchers do not use the full range. CLIMEX parameters 

that accumulate over time such as stress indices can also accumulate error. This latter 

consideration indicates how difficult it is to verify or validate the results of a model like 

CLIMEX. Future versions of CLIMEX could incorporate a feature that allows the user to 

carry out a sensitivity analysis on the model output.  

More detailed modelling with CLIMEX and similar mechanistic approaches could be 

achieved in the future with continued research into the biological relationship between 

species and climate, particularly for species environmental limits and tolerances to adverse 

conditions such as cold or heat stress. Detailed distributions of species will also assist in the 

calibration of parameters used in CLIMEX. 

All species distribution models currently available are unable to incorporate other biological 

impacts on species distributions such as interactions with natural enemies, niche competitors, 

flora and fauna compositions and anthropogenic interactions. Also, species distribution 

models do not incorporate the effects of high resolution variations in the landscape and 

microclimates. In species distribution modelling, an issue arises with current distribution data 
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being used to create the potential distributions that are extrapolated outside the current 

distribution of the species. The occurrence points used in the correlative modelling were 

sourced from locations that included all other biotic interactions that influence a species 

distribution. CLIMEX also uses current distribution data to validate and calibrate the 

environmental parameters. In effect, both types of species distributions models will tend to 

over-estimate the potential distributions of species. 

Despite this, there are ranges of approaches that can be used to increase our understanding of 

how climate or habitat affects a target population. A recent study by Roura-Pascual et al. 

(2011) used regression trees to examine the interplay between climatic suitability, biotic 

resistance by native taxa and human modification of habitats for the Argentine ant 

(Linepithema humile) global distribution. The results of this study demonstrated that L. 

humile could persist in locations with low climatic suitability if there is high level of 

anthropogenic habitat modification. Interactions with closely related species were also shown 

to have an influence if the climatic suitability was high and the level of anthropogenic habitat 

modification was low (Roura-Pascual et al. 2011).  

4.4 Future directions  

Future research should investigate how summerfruit insect pests currently established in New 

Zealand will react to climate change. Some of these pests could also expand their current 

distribution range. For example, the oriental fruit moth (Grapholita molesta) is noted as 

restricted to summerfruit orchards only as far south as Hawkes Bay (McLaren et al. 1999). 

Climate change is likely to increase the climatic suitability and allow G. molesta to establish 

in the South Island. On the other hand, however, a potential decrease in climatic suitability, 

as observed for C. capitata in this thesis, may also occur for summerfruit insect pests 

currently established in New Zealand.  

As mentioned in Chapter 1, another aspect worth investigating is the potential for climate 

change to disrupt the distribution and phenological synchrony between summerfruit insect 

pests currently established in New Zealand and their natural enemies. Any asynchrony is 

likely to decrease the effectiveness of biological control mechanisms and disrupt Integrated 

Pest Management (IPM) programs that have taken years to establish. However to predict 

asynchrony would involve quite different sorts of models and modelling compared to what 

we have used here. 
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Future research could investigate if summerfruit trees in New Zealand are likely to 

experience a decrease in winter chill hours. Summerfruit trees require accumulated winter 

chill hours to break winter dormancy. Not enough chilling will result in a decrease in 

flowering and crop yield or even total crop failure. For example summerfruit orchards in 

Oman experienced a gradual decrease in winter chill hours by 22.7 hours per year between 

1983 and 2007 and was linked to the total failure of peach and apricot crops at intermediate 

altitudes during the 2005/06 season (Leudeling et al. 2007). This is a potentially serious 

threat to the summerfruit industry in New Zealand as current summerfruit producing regions 

may not be able to produce summerfruit in the future.  

The results of this thesis indicate that different modelling methods generate different 

predicted distributions. A critical modelling task involves combining an ensemble of different 

prediction maps calculated using the best methods onto the same map to improve confidence 

in the reliability of species predicted distributions.  Worner et al. (2010) did something 

similar by combining the predicted distributions of multiple species onto the same map to 

indicate where surveillance could be focused to detect high risk species. 

The assessment of climate change by the IPCC indicates the average change in global surface 

air temperatures per decade will be 0.2°C (IPCC 2007). Future research could investigate 

climatic suitability of invasive exotic species on a per decade basis rather than under 

predictions specifically given for 2040 and 2090. This method would allow researchers to 

determine when the climate in New Zealand is likely to become suitable for these species.  

Climate change research is ongoing with new measurements and evidence being continuously 

obtained. New evidence could alter the predicted increases in average surface air 

temperatures and other aspects of climate change. Therefore species distributions could be 

refined as new information emerges to produce more accurate predictions of growing 

locations vulnerable to exotic insect pest establishment. The IPCC is going to publish the 

next working assessment with updated climate change predictions in 2013 (IPCC 2007).  
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4.5 Conclusions 

With regard to the objectives outlined in Introduction (Chapter 1), this research suggests the 

following conclusions:  

• CLIMEX predictions indicate that all fruit fly species investigated will experience an 

increase in climatic suitability around the summerfruit producing regions, Hawkes 

Bay and Marlborough as cold stress is reduced.  

• Predictions made with the multiple model system also indicate an increase in climatic 

suitability for B. dorsalis, B. zonata and C. rosa but also a decrease in climatic 

suitability for C. capitata and no change from low risk for B. tryoni. 

• The impacts of climate change on climatic suitability are dependent on the rate of 

increase in surface air temperatures. 

• The CLIMEX model is biologically supported but is vulnerable to subjectivity and a 

lack of verification and validation. 

• The method for pseudo-absence generation using the multiple model system decreases 

the chances that a pseudo-absence point will contain favourable environmental 

variables for a species but still needs refinement. 

• Methods of variable selection and extracting rules from the data need further 

development. 

• A low number of occurrence points can affect model reliability and pseudo-absence 

generation when using correlative species distribution models. 

• Current strategies that revolve around protecting New Zealand from fruit flies such as 

deploying a trapping grid (Stephenson et al. 2003) should remain in place. New 

Zealand biosecurity authorities may need to change the threat profiles of these fruit 

fly species as a result of climate change.  

• Continued research to determine biological relationships between species and climate, 

particularly to establish species environmental limits and tolerances that will allow 

more detailed mechanistic modelling.  
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     Appendix A 
Supplementary Figures 

A.1  Pseudo-absence generation 

A.1.1 B. dorsalis 

 

Figure A. 1: Global  suitability of the environment for B. dorsalis created using an ensemble of SVM 
replicates. Suitability is indicated by warmer clours. Potential absences are indicated as < 0.1 (cool blue 
colour). 
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Figure A. 2: Clusters of locations (33) with similar environmental conditions most likely to be unsuitable 
for  B. dorsalis establishment and therefore represent absent points. Locations in white represent 
potential presence points.  

B.1.1 B. tryoni 

 

Figure A. 3: Global  suitability of the environment for B. tryoni created using an ensemble of SVM 
replicates. Suitability is indicated by warmer clours. Potential absences are indicated as < 0.1 (cool blue 
colour). 
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Figure A. 4: Clusters of locations (138) with similar environmental conditions most likely to be unsuitable 
for  B. tryoni establishment and therefore represent absent points. Locations in white represent potential 
presence points.  

B.1.2 B. zonata 

 
Figure A. 5: Global  suitability of the environment for B. zonata using an ensemble of multiple SVM 
replicates. Suitability is indicated by warmer clours. Potential absences are indicated as < 0.1 (cool blue 
colour). 
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Figure A. 6: Clusters of locations (36) with similar environmental conditions most likely to be unsuitable 
for  B. zonata establishment and therefore represent absent points. Locations in white represent potential 
presence points. 

B.1.3 C. capitata 

 

 

Figure A. 7: Global  suitability of the environment for C. capitata using an esemble of multiple SVM 
replicates. Suitability is indicated by warmer clours. Potential absences are indicated as < 0.1 (cool blue 
colour). 
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Figure A. 8: Clusters of locations (138) with similar environmental conditions most likely to be unsuitable 
for  C. capitata establishment and therefore represent absent points Locations in white represent potential 
presence points.  

B.1.4 C. rosa 

 
Figure A. 9: Global  suitability of the environment for C. rosa using an ensemble of multiple SVM 
replicates. Suitability is indicated by warmer clours. Potential absences are indicated as < 0.1 (cool blue 
colour). 
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Figure A. 10: Clusters of locations (138) with similar environmental conditions most likely to be 
unsuitable for  C. rosa establishment and therefore represent absent points. Locations in white represent 
potential presence points. 
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