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Note on the structure of the thesis 

 

This thesis has been prepared as a series of manuscripts intended for publication in peer-

reviewed international journals. At the time of submission, two of the papers have been 

published and third submitted for publication and further two awaiting approval from co-

authors. As all of the papers in the thesis are multi-authored, I have written a short paragraph 

before each chapter explaining my contribution to the work. 

 

Please note that as the chapters represent publications, there is necessarily some repetition in 

the introduction and methods sections in Chapters 3 – 7. The thesis contains an introduction 

and a background chapter (Chapters 1 and 2) that explain the problem at hand and the 

underlying general science respectively. The findings of the chapters as a whole are discussed 

in Chapter 7. 
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Abstract of a Dissertation submitted in partial fulfilment of the 

requirements for the Degree of Doctor of Philosophy. 

Carbonaceous soil amendments to reduce plant uptake of Cd in 

NZ’s agricultural systems 

by 

Shamim Al Mamun 

 
Cadmium (Cd) is a non‐essential trace element that accumulates in agricultural soils through 

the application of Cd-rich phosphate fertiliser and industrial activity. Plants can accumulate Cd 

to concentrations that sometimes exceed food safety standards presenting a human health risk. 

Cadmium is readily taken up by plants and can be transferred to grazing animals. In many 

agricultural systems, Cd concentrations in leafy vegetables and the offal products of grazing 

animals are at or above food safety standards. There is no practical means of removing Cd from 

contaminated agricultural soils. Various soil amendments have been used to reduce plant Cd-

uptake, but these have mostly focused on heavily contaminated soils and mine tailings. This 

work aimed to determine whether low cost carbonaceous amendments could effectively reduce 

Cd uptake by crop plants in agricultural soils with moderate levels of Cd contamination.  

We used two contrasting market garden soils (a silt loam and a brown granular allophanic soil) 

for these experiments, where Cd concentrations in selected vegetables were occasionally above 

food safety standards (0.1 mg/kg fresh weight). Batch sorption experiments were used to 

determine the ability of the soils and potential soil amendments to bind Cd from a solution of 

0.05M Ca(NO3)2. The sorption experiments revealed that composts and lignite bound an order 

of magnitude more Cd than soils and other potential soil amendments. For all materials, sorption 

increased with increasing pH of the ambient solution up to a pH of 7.5. 

Pot trials were used to determine the effect of various composts, lignite and lime on the uptake 

of Cd by spinach (Spinacia oleracea L.), lettuce (Lactuca sativa L.), onion (Allium cepa L.) 

and potato (Solanum tuberosum L.). All composts, added at a rate of 2.5% or 5% (w/w) reduced 

plant Cd uptake by up to 60%. The composts did not induce a deficiency in the uptake of plant 

nutrients, including essential trace elements such as zinc, and copper. Composts invariably 

increased plant biomass. 

An incubation experiment, including treatments with increased temperature and nitrogen as 

well as regular disturbance, was used to determine the likely longevity of the Cd-immobilising 
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properties of the composts. After one year of incubation, there was no significant release of Cd 

from the compost-amended soils, despite a significant reduction in soil carbon. A pot trial using 

incubated soil also revealed that the beneficial effects of compost for reducing plant Cd uptake 

persisted for at least one year. The results indicated that mechanical disturbance of the soil may 

have resulted in the dissolution / suspension of iron moieties that subsequently occluded Cd on 

the surfaces of soil colloids. 

Lignite generally reduced plant biomass and its effect on plant Cd-uptake was variable. In some 

cases, lignite caused a significant increase in plant Cd uptake. This was attributed to 

acidification, probably caused by oxidation of sulphide compounds in the lignite. Potentially, 

lignite-lime mixtures may be effective, however, the costs of lignite are significantly greater 

than composts. Using lime to increase the soil pH from 6.0 to 6.5 generally reduced the Cd 

concentration in soil solution and in vegetables. However, this effect was not consistent, with 

some treatments causing an increase in plant uptake. Moreover, liming significantly reduced 

the uptake of essential micronutrients, especially zinc, which offsets its usefulness as a tool to 

reduce Cd uptake. 

I conclude that biological wastes, especially composts, are an underutilised resource that can 

not only reduce plant Cd-uptake but also improve plant production. Future research should 

include field trials to determine the performance of Cd in field conditions as well as agronomic 

practicalities.  

 

Keywords: Biowastes, Lignite, Soil amendments, Heavy metals, Trace elements, Compost, 

Cadmium contamination, Phytoavailable Cd, Incubation, Potato, Organic amendment, 

Liming, White lupin, DGT, LA-ICP-MS and Nutrients.  
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Cadmium occurs naturally as a contaminant in all phosphate rocks, although the 

concentrations vary considerably, depending on the origin of the parent material. Rock 

phosphate originating from igneous rocks generally contains Cd concentrations of 0.7 - 30 

mg/kg P (Oosterhuis et al., 2000), whereas rock phosphate refined from sedimentary rocks 

may contain Cd concentrations higher than 556 mg/kg P (Mar and Okazaki, 2012). Rock 

phosphate from sedimentary rock sources account for some 85-90% of world P production 

(Oosterhuis et al., 2000). Phosphate fertiliser use has resulted in an enrichment of Cd in 

agricultural soils worldwide (Hooda, 2010; Kabata-Pendias and Mukherjee, 2007). 

Historically, New Zealand and Australia manufactured superphosphate using phosphate rock 

from Nauru and Christmas Island, which contained relatively high Cd concentrations >600 

mg Cd/kg P (Syers et al., 1986). Repeated application of this Cd–rich superphosphate 

fertilizers for most of the 20th century has resulted in significant increases in the Cd 

concentrations in New Zealand soils (Taylor, 1997). 

The phytoaccumulation of Cd is primarily a concern for human health. Cadmium 

phytotoxicity is lower than for many other non-essential elements (Sanità di Toppi and 

Gabbrielli, 1999). Plants can readily take up Cd, leading to an accumulation in fodder and 

food products and subsequently in animals and humans through consumption (Cadmium 

Working Group, 2011b). Accumulation of Cd in soils has been reported worldwide (Hooda, 

2010; Kabata-Pendias and Pendias, 2001; Kabata-Pendias and Mukherjee, 2007). Exceedance 

of the permissible limits of Cd in plants has been observed (Kim, 2008; McLaughlin et al., 

1994b). Exceeding food standards of overseas partners might restrict export (Cadmium 

Working Group, 2011b) and a non-tariff trade barrier might be imposed by protectionist 

governments through the use of food safety standards (Roberts and Longhurst, 2002). Among 

the factors influencing the accumulation of Cd in plants, the elevated concentration of Cd in 

agricultural soils is one of the main reasons for increased concentration of Cd in plants 
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(Kabata-Pendias and Mukherjee, 2007). In NZ soils, enrichment of Cd is reported (Gray et 

al., 1999d; Kim, 2008; Roberts et al., 1994; Schipper et al., 2011; Taylor, 1997; Taylor et al., 

2007). In some cases, soil Cd concentrations are more than 12 times higher in agricultural 

lands than in unfertilized soils with background concentrations of Cd. Phosphate fertilizer is 

considered the main culprit (Loganathan et al., 2003). Kabata-Pendias and Mukherjee (2007) 

reported that Cd enrichment in NZ soils is as high as 8.9 g/ha/yr whereas the average value 

for European Community countries is 2.5 g/ha/yr (Kabata-Pendias and Mukherjee, 2007). 

Thus, it is imperative to reduce the input of Cd in agricultural soils through contaminated 

fertilizer application although it is practically not viable to stop using the phosphate fertilizers, 

as this would drastically reduce agricultural production.  

Researchers are investigating alternative ways of reducing the concentration of Cd in soils, 

and therefore decreasing the accumulation of Cd in plants, through different processes, 

including the application of less Cd-containing phosphate fertilizers, incineration of soils, 

adsorption and desorption processes, solubility, chemical treatment and bio 

extraction/phytoremediation (Kabata-Pendias and Mukherjee, 2007). Liming soil is one of the 

options that has been considered to reduce the transfer of Cd from soils to plants, although 

the effectivity depends mostly on soil pH and soil properties (Kabata-Pendias and Mukherjee, 

2007). Organic matter and some soil amendments have a number of functional groups (Wild, 

1993) and may reduce the movement of Cd in soil (Pusz, 2007). As well, some soil organic 

amendments contain significantly higher P and other plant nutrients, which might offset the 

need to use large amounts of phosphate fertilizers on agricultural land.  
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1.2 Objectives 

This thesis aims to determine the potential of low-cost carbonaceous soil amendments to 

reduce Cd uptake by crop plants in agricultural soils with moderate levels of Cd 

contamination. The specific aims of this thesis were: 

 

1) Compare the ability of potential soil amendments to remove Cd from soil solution. 

 

2) Determine the efficacy of selected soil amendments to reduce Cd uptake by a 

range of vegetables and compare the growth and elemental uptake of compost-

amended soils with limed soils. 

 

3) Determine the persistence of a potential soil amendment and elucidate how such 

an amendment releases Cd as it decomposes.  
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particular class of carbonic anhydrase (Sigel et al., 2013). Once absorbed, Cd is efficiently 

retained in the human body and accumulates throughout life (Bernard, 2008). 

Many authors have reported that Cd is involved either directly or indirectly with many 

problems in human body. Cadmium accumulation in kidneys creats toxicity (Ferrari et al., 

2013), especially through the proximal tubular cells, which is the main site of accumulation 

(Bernard, 2008). The half-life of Cd in kidneys is 10-30 years. Cadmium can cause bone 

damage (Merian, 1991) through decalcification. It also has the ability to damage bones 

indirectly as a result of renal dysfunction (Bernard, 2008; Järup and Åkesson, 2009). 

Cadmium exposure may increase important manifestations of cardiovascular disease (Peters 

et al., 2010; Sigel et al., 2013). Environmental exposure to Cd is associated with significantly 

increased stroke and heart failure prevalence. Cadmium might have a wide range of 

detrimental effects on human reproduction, through interference with DNA binding zinc (Zn), 

as has been observed in mammalian reproduction (Henson and Chedrese, 2004). Exposure to 

Cd is associated with altered gene expression in humans (Tvermoes et al., 2011). Prolonged 

exposure to low doses of Cd leads to high hepatic accumulation, which can then cause fibrosis 

(Baba et al., 2013). Cadmium affects the lungs and generates oxidative stress (Sigel et al., 

2013). The toxicity of Cd accumulation in liver can be chronic (Cadmium Working Group, 

2011b). Cadmium may be a human carcinogen as well (Ferrari et al., 2013; Jacob et al., 2013; 

Merian, 1991; Nawrot et al., 2008) and potentially transferred through trophic dietary 

bioaccumulation (Jacob et al., 2013). Heavy long-term Cd exposure might produce 

irreversible adverse health effects and in particular, cases of vitamin and protein deficiency 

(Merian, 1991). 
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2.3 Economic Significance 

The economy of agriculture-based countries will be greatly affected due to the accumulation 

of Cd in soils and their subsequent transfer to plants, and ultimately to animals. Animals store 

Cd in their liver and kidneys and offal products may have elevated Cd concentrations. New 

Zealand already has an offal discard policy: kidneys from animals older than 30 months are 

not eligible for human consumption and must be discarded. It should be noted, considering 

the severity of Cd concentration, that the Cadmium Working Group (2008) commented that 

the discard of offal represents a significant loss of revenue for NZ (Cadmium Working Group, 

2008). Agricultural, forestry and horticultural exports are generally 65% of New Zealand’s 

total export (Cadmium Working Group, 2008). These products are intimately related with soil 

and its elemental composition. It is anticipated by the Cadmium Working Group (2008), that 

the elevated Cd concentration in soil is likely to affect the horticultural products and its export 

(Cadmium Working Group, 2008). New Zealand exports vegetables in the fresh, processed, 

and frozen form. New Zealand crops grown for export must meet domestic, as well as trading 

partners’ food standards. Market access for exported products requires compliance with 

importing countries food standards, which include maximum limit or Maximum Residue 

Levels (MRLs). Food products exceeding the MRLs will be rejected, as they are considered 

unfit for consumption. The MRLs are usually tested at the ports of importing countries. In a 

report, the Cadmium Working Group (2008) expressed their anxiety about NZ products 

failing to pass the MRLs (Table 2.1) and subsequent loss to the NZ economy. 
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Table 2.1 MRL levels of various products in Australia and NZ and the EU (Cadmium Working Group, 2008) 

Product MRL for Cd (mg/kg) 
Australia and NZ EU 

Liver of cattle, sheep and pigs 1.25 0.5 
Kidneys of cattle, sheep and 

pigs 
2.5 1.0* 

Leafy vegetables 0.1 0.2 

*The EU (European Union) includes poultry kidneys in its standard. MRL: Maximum Residue Level. 
 
 

Recently, the increasing Cd concentrations in pasturelands have been flagged by the 

Cadmium Working Group (CWG) as an emerging environmental issue in NZ that could 

detrimentally affect NZ’s export earnings and tarnish the image that NZ aims to portray in 

overseas markets (Cadmium Working Group, 2008). 

2.4 Cadmium in phosphorus fertilizer 

Phosphorus fertilizers add Cd to soils as Cd occurs naturally as an impurity in all phosphate 

rocks, although depending on the origin of the phosphate rocks, the Cd concentrations vary 

considerably. Sedimentary rocks contain high amounts of Cd. Conversely, igneous rocks 

contain low Cd (Table 2.2) as most of the Cd volatises at the temperatures at which these 

rocks are formed (Loganathan et al., 2003). In apatite, Cd substitutes calcium (Ca). The 

amount of Cd varies in rocks replacing Ca (Chien et al., 2011). Phosphate rocks with low Cd 

are difficult to find and the supply of these rocks is erratic. Igneous rock, or apatite, is found 

in the former Soviet Union, Finland, South Africa and South America and has low 

concentrations of Cd (often less than 2.29 mg Cd/kg P). Sedimentary rocks contain Cd in 

concentrations ranging from less than 46 to more than 458 mg Cd/kg P. These rocks account 

for some 85-90% of world’s fertilizer production (Oosterhuis et al., 2000). 
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Table 2.2 Cadmium concentration of main commercial phosphate rocks according to different sources 

(Oosterhuis et al., 2000) 

Origin Cadmium content (mg/kg P2O5) 

Davister (1996) Botschek and Van Balken (1999) Demandt (1999) 

Igneous Rocks 

Kola (Russia) < 30 0.7 0.57 
Pharlaborwa 

(South Africa) 
< 30 0.23 0.87 

Sedimentary Rocks 
Florida (USA) 53 45-75 55 

Jordan <69 28-64 41 
Khouribga 
(Morocco) 

105 39-144 126 

Syria 119 30-105 50 
Algeria 137 96-143 - 
Egypt 169 - - 

Bu-Cra 
(Morocco) 

229 231-263 222 

Nahal Zin (Israel) 229 185-256 140 
Youssoufia 
(Morocco) 

277 377 275 

Gafsa (Tunisia) 314 215 396 
Togo 371 376-410 337 

North Carolina 
(USA) 

380 286 275 

Taiba (Senegal) 465 378-414 506 
Nauru 556 - - 

 

Unprocessed rock phosphate is not suitable for direct application, since the phosphorus inside 

it is insoluble. Three kinds of acids are used to process the phosphate rock: 

* phosphoric acid, producing Triple Super Phosphate (TSP); 

* nitric acid, producing Ammonium Phosphate (NP), used in the manufacture of complex 

fertilisers; and 

* sulphuric acid, producing either Single Super Phosphate (SSP) or phosphoric acid,  

an intermediate product in the production of TSP, Mono- and Di-Ammonium Phosphate 

(MAP and DAP) and complex fertilisers. The process leads to gypsum (CaSO4) as a by-

product. The Cd in the phosphate rock is divided among the phosphoric acid and the gypsum 

(Oosterhuis et al., 2000).  
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The processes are important in determining the amount of Cd in P fertilizers. Among the 

processes, the use of phosphoric acid to produce phosphorus fertilizer keeps the least amount 

of Cd in P fertilizers compared to the other two processes. Many fertiliser industry 

representatives, however, argue that a large scale substitution (or blending low and high-Cd 

grades) to produce less Cd-containing P fertilizer would not be a feasible strategy, due to the 

limited production capacity and reserves of low-Cd phosphate rock (Oosterhuis et al., 2000). 

Only a limited amount of Cd is lost with the by-products during the production of P-fertilizers 

from P containing rocks. The Cd/P ratio remains the same in processed fertilisers which 

determines the degree of impurity and the risk of increasing Cd in agricultural lands 

(Nziguheba and Smolders, 2008). 

2.5 Cadmium in NZ soil 

Cadmium concentrations in NZ’s soils are significantly higher than background 

concentrations and are continuing to increase (Gray et al., 1999d; Kim, 2008; Roberts et al., 

1994; Schipper et al., 2011; Taylor, 1997; Taylor et al., 2007). Prior to agricultural use, the 

concentration of Cd in soils was low. Roberts et al. (1994) observed the total soil Cd 

concentration of about 0.20 mg/kg in the top soils (0-7.5 cm) of 86 non-agriculturtal sites in 

New Zealand. A similar result was found by Taylor et al. (2007), where 372 

(unfertilized/background) top soils (mostly 10 cm) were sampled and the average 

concentration was 0.16 mg/kg soil. Taylor et al. (2007) collected data about Cd from 1794 

soil samples from almost all types of land uses in NZ. Soils were analysed from cropping, 

pasture, horticulture and unfertilized soils amounting to 301, 825, 296 and 372, samples 

respectively (Table 2.3). The cropping, pasture and horticulture soils had Cd concentrations 

of 1.5 times, more than 2.5 times and more than three times, respectively than the unfertilized 

soils. The average Cd concentration of land used for agricultural purposes demonstrates the 

increase of Cd in all types of agricultural land use in NZ. The highest average Cd 
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concentration was observed in horticulture soils. The depth of soil was also considered, as 

ploughing and plant root depth varies for different types of cropping and fertilizer mixing.  

 

Table 2.3 Cd concentration in NZ soils by land use (Taylor et al., 2007) 

 

Zanders (1998) showed that the Cd concentration in agricultural soils decreses with depth in 

17 soil types on NZ farms, which implies that the parent rock’s contribution to Cd deposition 

in the top soils is low. The status of Cd in some specific region’s soils of NZ is severe. Based 

on sampling, it is estimated that 17% (approximately 1775 hectares) of Waikato’s 

horticultural soils and 11% (approximately 15700 hectares) of Waikato’s pastoral soils 

already exceed 1 mg Cd/kg soil (Kim, 2008).  

There is a positive correlation between the fertilizer and tillage history and the amount of Cd 

present in agricultural land in NZ (Cadmium Working Group, 2011a) that are comparable to 

concentrations reported in other industrialised countries (Hooda, 2010; Traina, 1999). 

According to Loganathan et al. (2003) the major anthropogenic sources of Cd in NZ are P 

fertilisers, biosolids (sewage sludge) and industrial waste application. In NZ, P fertiliser is the 

most relevant anthropogenic source of Cd in cultivated soils, while atmospheric deposition 

and biosolids application are only important in some localised areas (Loganathan et al., 2003). 

The Cadmium Working Group (2011a) also reported that every year a large amount of P 

Land use Number of samples Average sampling depth (cm) Average Cd 

(mg/kg) 

Range (mg/kg) 

Cropping 301 14.3, mostly 0 - 15 0.24 0.00 - 0.99 

Pasture 825 9.39, mostly 0 - 7.5, 0 - 10 or 10 - 5 0.43 0.00 - 2.52 

Horticulture 296 13.1, mostly 0 - 10 0.50 0.00 - 2.00 

Background 

(“unfertilised”) 

372 10.0, mostly 0 - 10 0.16 0.00 - 0.77 

All land use 1794  0.35 0.00 - 2.52 
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fertlizer is added to the agricultural land in NZ, which contributes to the enrichment of Cd. In 

soils with intensive agricultural practices are usually observed to have high concentrations of 

Cd. These lands usually receive P fertilizers of different amounts. Taylor et al. (2007) blamed 

the Cd-rich superphosphate in the build-up of Cd in NZ soils and increasingly, soil Cd 

concentrations around the country are exceeding the self-imposed limit of 1 mg/kg (Taylor et 

al., 2007).  

Oceanic sedimentary and guano-based rocks from the Christmas Islands and Nauru Island 

were the main source of P rock in NZ up to the early 1990’s, and these are considered high-

Cd rocks on the international scale (Gray et al., 1999d; Loganathan et al., 2003). Initially, the 

Cd concentration in P-rock used in NZ was around 340 mg/kg P (Cadmium Working Group, 

2011a).  

Before 1995, it was revealed that the Nauru P rocks are one of the highest sources of Cd in 

the world (Table 2.4). From 1995, the concentration of Cd in P Fertilizer was voluntarily 

reduced to 180 mg/kg P which is below the upper limit of 280 mg/kg P set in 1997 (Cadmium 

Working Group, 2011a). The source of low Cd phosphate rocks has some strategic problems. 

North Carolina Rocks are only exported to NZ in their value-added form (fertilizer) 

(Cadmium Working Group, 2011a), resulting in higher costs. A similar problem applies to 

Chinese rock phosphates, which is further complicated by export taxes and logistical 

difficulties (Cadmium Working Group, 2008). The current main low-Cd source from 

Morocco is mined in the Western Sahara, which is subject to a United Nations mediated 

process and this may affect the long-term supply (Cadmium Working Group, 2008).  
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Table 2.4 Estimated rock blends for manufactured superphosphate 1952-2005 in NZ (Cadmium Working Group, 

2008) 

Year 
 

Phosphate rock source/blend Cadmium (mg Cd/kg P) 

1952-1968 Dominantly Pacific Island rocks 200-490 
 

1968-1975 Mostly Nauru/ some Christmas 
Island 

 

200-450 

1975-1983 
 

50:50 Nauru/Christmas Island 200-500* 

1983-1996 
 

Nauru/Christmas Island/North 
Carolina 

200-450 

1996-2005 China/Morocco/Togo 10-340 
*Original reference contained a typographical error “200-50”  

 

At the current Cd loading rate it is projected that the average Cd concentration in all 

horticultural potato growing soils (Waikato is the NZ’s second largest potato growing region) 

and pastoral soils of Waikato region will exceed the 1 mg Cd/kg soil in 13 years and under 

40 years, respectively (Kim, 2008). In NZ agricultural soils the Cd concentration has 

increased to a concentration which is alarming for future agricultural practices of NZ and the 

Cd concentration is still much higher in P fertilizers used in NZ than the limit values in P 

fertilizers of EU member states (Table 2.4 and Table 2.5) (Oosterhuis et al., 2000). NZ-grown 

export products containing high Cd concentrations, may negatively affect exports in the 

future, as the “100% pure” image and current good quality of export produce, is slowly 

eroded.  
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Table 2.5 Limit values for Cd in fertilizers and soils in EU Member States. Adapted from (Oosterhuis et al., 

2000) 

Country Max. concentration of Cd 

in fertilizer (mg/kg P) 

Max. amount of Cd input to 

agricultural soils (g/ha/year) 

Max. concentration of Cd in 

agricultural soils (mg/kg dry soils; 

guidance level) 

Austria 172 (since 1994) 10 1.0 

Belgium/Lux. 206  150 1.0-3.0 

Denmark 108 (since 1995) - 0.5 

Finland 49 3 0.5 

Germany 92-206  
 

16.7 1.0 

Netherlands 40 - 0.5-1.0 

Portugal 92-160 
 

- - 

Sweden 98 1.75 - 

UK - 0.15 3.0 

 

There is no commercially viable process for the removal of Cd from phosphate rock 

(Cadmium Working Group, 2011a). As the low Cd-containing P rocks are depleted at an ever-

faster rate, farmers will be forced to apply poor-quality high-Cd phosphate rocks. The 

estimation of the time for low Cd-containing P rock to be depleted, ranges from 30 to 300 

years (Cordell and White, 2011) indicating the potential use of higher Cd containing P rocks 

in fertilizers in future. 

It is important to maintain the application of P rock fertilizers to NZ soils as NZ has few 

sources of recyclable organic P, and these are in the form of manure from sewage or housed 

animal production (Hedley et al., 2010). It is estimated that less than 5% of the national 

maintenance P application can come from poultry and pig manure and raw sewage sludge 

(Hedley et al., 2010). Therefore, the demand for P in agricultural use will mainly be fulfilled 

by mineral P fertiliser. In NZ, single superphosphate is the dominant P fertilizer, followed by 

diammonium phosphate (25%) and other P fertilisers (10%), mainly reactive phosphate rock 

(Hedley et al., 2010). 
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Due to the preference for higher quality phosphorus fertilizers, it is expected that in respect 

to P percentage and Cd concentration, the quality of P fertilizers will decrease eventually 

(Cordell and White, 2011) leading to more Cd input with increased application of P fertilizers 

in future in NZ soils. New Zealand’s dependency on phosphate fertilizers is unlikely to 

decrease significantly in the coming years, there are no low-cost means of removing Cd from 

P fertilizers, and Cd concentrations in New Zealand’s soils will continue to increase. So, it 

can be assumed that to maintain the P status of its agricultural lands, New Zealand will face 

big challenges if it wants to avoid fertiliser -derived contamination in agricultural lands. As 

Cd is increasing in NZ soils, so more studies related to Cd should be undertaken to ensure 

safe food products (Römkens et al., 2009).  

2.6 Solubility of Cd in soils 

The term soluble can be defined as dissolved in a media (Priester et al., 2009; Viipsi et al., 

2010), eg. water. Thus, soluble Cd is the fraction of the total Cd in soil, which is present in 

soil solution (Robinson et al., 2009). An important distinction in the heavy metals distribution 

in soils is whether the heavy metals are inert, able to interact with plants referred as 

phytoavailable, or whether able to interact with any biological organism, including humans 

that is referred as bioavailable. These terms phytoavailable and bioavailable are used to 

indicate a heavy metal’s physicochemical potential but not its biological action. For example, 

phytoavailable heavy metals may be toxic to plants, or can be accumulated in the plant’s 

shoots, but they are not necessarily so. The Toxicity and accumulation of heavy metals are 

dependent upon plant species (Robinson et al., 2009). 

Cadmium in soil is partitioned between soluble and insoluble forms. Phytoavailable Cd is 

only a fraction of the total Cd concentration in soil solution that is accessible to plants. There 

are many factors that influence the availability of Cd to plants (Kabata-Pendias, 2004). The 

uptake of Cd by plants is dependent on both the total amount of Cd in soil and factors that 
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affect the phytoavailability of Cd in soil. Thus, the concentration of Cd in dilute salt 

extractants or soil solution may be a better predictor of the accumulation of Cd in plants, 

besides the total Cd concentration in soil (Smolders, 2001). 

Although some complexes in soil solution are known to contribute to the overall transfer of 

Cd from soil to plants, the free Cd ion is the most phytoavailable and therefore a prime factor 

in the accumulation of Cd by plants (Hooda, 2010; Silveira et al., 2003). Many authors 

reported the influence of Cl- in soil and soil solution on the transfer of Cd from soil to plants. 

They observed the increase of Cd uptake with increasing Cl- in soil or soil solution (Ghallab 

and Usman, 2007; Smolders and McLaughlin, 1996; Weggler-Beaton et al., 2000). A similar 

result was also observed with the increasing amount of SO4
2- in soil solution, which might be 

due to the phytoavailability of Cd-sulphate complexes (Berkelaar and Hale, 2003; Lopez-

Chuken and Young, 2010; McLaughlin et al., 1998). 

Cadmium extraction in soils using diluted NH4OAc, Ca(NO3)2 (Black et al., 2012; Gray et 

al., 1999b) and CaCl2 (Andrews et al., 1996; Gray et al., 1999b) was conducted in studies and 

reported that, the concentration of Cd in plants is highly correlated with the extractable Cd. 

Clays, oxides and soil organic matter influences the mobility of elements through formation 

of complex bonds (Wild, 1993).  

2.6.1 Effect of pH 

Soil pH affects the transfer of Cd from soil to plants. Most studies show that a high pH usually 

increases the binding of Cd with materials in soil, leading to less available Cd in soil and less 

accumulation by plants (Loganathan et al., 2003; McLaughlin et al., 1996) although in some 

studies the opposite scenario was also observed by McLaughlin et al. (1996). McLaughlin et 

al. (1996) and Smolders (2001) found a high accumulation of Cd in plants at higher pH values 

although there was less Cd available in soil solution for plant uptake (Smolders, 2001). At 

low pH the low uptake may be due to the competition of Cd2+ with proton (H+) (McLaughlin 
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et al., 1996) and at high pH Zn deficiency in plants (Smolders, 2001) may enhance the uptake 

of Cd. 

2.6.2 Organic matter 

The addition of organic matter to soil can modify the phytoavailability of heavy metals 

(Chami et al., 2013). Tachibana et al. (2013) observed that the use of organic matter 

significantly decreases the peroxidative stress and Cd uptake in barley. 

According to Brady and Weil (2013), organic compounds vary greatly in their rate of 

decomposition and they decompose in the following order; (listed fastest to slowest) sugar, 

starches, simple proteins; crude protein; hemicelluloses; cellulose; fats, waxes, etc.; lignin and 

the end product of these are humus. The surface area of humus colloids per unit mass is high, 

generally exceeding that of silicate clays. The colloidal surfaces of humus are negatively 

charged, the sources of the charge being hydroxyl (-OH), carboxylic (-COOH), or phenolic 

groups. The extent of the negative charge is pH dependent (high at high pH values). At high 

pH values the CEC of humus on a mass basis (150-300 Cmolc/kg), far exceeds that of most 

silicate clays. Humus has a favourable effect on aggregate formation and stability. The 

carboxylic and phenolic groups of humus, when dissociate, form pH dependent negative 

charges. At pH 7, in well-drained soils, the value of the charge is about 3 moles of charge per 

kg of humus, which is mainly from dissociation of carboxylic acid (Wild, 1993). Chelates 

involve a direct bond between metal and ligand in more than one place. Adsorption due to 

CEC is electrostatic attraction between a hydrated ion and the negative surface charge of a 

colloid. Humic substances have a high amount of carboxylic and phenolic OH groups, which 

in dissociation form negative charges and increase CEC of soil (Brady and Weil, 2013). 

The physical and chemical properties of soils are improved by organic matter. Humic acid, 

fulvic acid, humin, polysaccharides, polyuronides etc. have many functions in soil, leading to 

better soil physical and chemical conditions for all organisms present in soil (Brady and Weil, 
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2013). The humic and fulvic acid fractions are prominent in cation adsorption or 

immobilization by high molecular weight organic substances such as lignin or complexation 

by initially soluble organic substances that form insoluble salts (Brady and Weil, 2013). The 

mobility and form of metal contaminants in soil are influenced by the physical and chemical 

properties of the soil (Brady and Weil, 2013). Adsorption greatly influences the mobility of 

metals in soil and controls the behaviour and phytoavailability of metals in soils (Brady and 

Weil, 2013). Organic matter is highly capable of binding cations through the formation of 

coordinate complexes or ion exchange between soil solution and solid phase (Senesi, 1992).  

2.6.3 Clay fraction 

The clay fraction usually has a high CEC compared to sand and silt. Thus, clay particles play 

a vital role in fixing elements in soil. Not all clay particles sorb Cd in the same way as their 

CEC (Table 2.6) and surface area vary. Allophanic clay has a low ability to adsorb Cd2+ 

(Shahriari et al., 2010), whereas vermiculite and montmorilonite might be more effective. The 

fractionation of 12 NZ topsoils using the sequential fractionation procedure were conducted 

and reported that 13% Cd was associated with amorphous oxides and for crystalline oxides it 

was 12% (Gray et al., 2000) indicating the capability of clay to adsorb Cd.  
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Table 2.6 Typical CEC values of soil colloids (McLaren and Cameron, 1996) 

Colloid CEC (CmolC/kg) 
Humus 100-300+1 

Illite (hydrous mica) 10-40 
Vermiculites 100-200 

Smectites 60-150 
Pedogenic chlorite 10-30 

Kaolinite, halloysite 2-15 
Allophane, imogolite 30-150 

Fe and Al hydrous oxides <11 

Kaolinite 3-15 
Halloysite 2H2O 5-10 
Halloysite 4H2O 40-50 

Montmorillonite-group 70-100 
1 Varies greatly with pH  
 

Controversy exists about the way to affect movement of Cd through various particles in soil. 

The mechanism by which CEC affects, specific adsorption, solubility, occlusion and/or 

anything else, is not yet clearly established.  

2.6.4 Competing Ions  

Other cations present in soil solution play an important role determining the availability of 

Cd in soil solution. It is observed that Cd competes with other cations for the binding sites in 

temperate soils (Christensen and Haung, 1999b). As Cd is not expected to form inner sphere 

complexes with soil components, so competition is expected to occur at ion exchange sites 

(Scheffer et al., 2010; Silveira et al., 2003).  

The Ca content in soil is sometimes considered an important parameter influencing the 

availability of Cd for plants, as Ca may compete for exchangeable sites in soil depending on 

the selectivity of other ions towards different exchangeable positions in soil (Merian, 1991). 

 

The elements Mg, K and Na compete less than Ca for Cd-binding sites because of their 

different sizes and/or charges (Christensen and Haung, 1999b). Trace metals are also known 

to compete with Cd for adsorption sites. The sorption coefficient Kd for specific adsorption 
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on pedogenic oxides increases in the order Cd < Ni < Co < Zn < Cu < Pb << Hg (Scheffer et 

al., 2010).  

Zinc is considered the most important competing trace element, as Cd is chemically similar 

to Zn, and Zn is normally present in higher concentrations (Christensen and Haung, 1999b). 

It is observed that with the increase of Zn concentration (application) in solution, the 

concentration of Cd also increases in the solution which indicates that the same sorption sites 

are available for Cd and Zn (Christensen, 1987). Other researchers also mentioned the 

competition of Cd with other trace elements in soil, such as Pb (Serrano et al., 2005), Ni (Liao 

and Selim, 2009) and Cu (Vergara and Schalscha, 1992).  

Increased Cl- has been reported to be associated with Cd2+ in soil thus increasing CdCl+ 

species activity in soil and therefore increased Cd concentration in Wheat (Triticum aestivum 

cv. Halberd) and Swiss chard (Beta vulgaris cv. Foodhook Giant) (Ghallab and Usman, 2007; 

Smolders and McLaughlin, 1996; Weggler-Beaton et al., 2000). The CdCl+ in soil is reported 

to be available both in acidic and alkaline solution (Sposito and Page, 1984). 

2.7 Cadmium uptake by plants 

Plants have no metabolic requirement for Cd although it is relatively available to plants. Its 

concentration in food and feed plants is of great concern and its content in food plants varies 

between 2-400 μg/kg (Kabata-Pendias and Mukherjee, 2007; Kim, 2008) (Table 2.7).  
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Table 2.7 Cadmium in food plants (Kabata-Pendias and Mukherjee, 2007) 

Plant Range (μg/kg) 

Cereal, grains 5.6-32 

Wheat, grains 20-70 

Barley, grains 13-22 

Legumes 1-30 

Broccoli 10 

Cabbage 5-10 

Lettuce 29-400 

Carrot 30-240 

Onion 80 

Potato 16-300 

Tomato 30 

Spinach 43-150 

 

Both soil and air may supply Cd to plants. In areas with low direct atmospheric deposition of 

Cd, i.e. <2 g/ha/y, the aerial contribution to plant Cd is low (Smolders, 2001). The Cd in plants 

of NZ can be mostly attributed to uptake from soil, as atmospheric deposition in NZ is much 

lower than 2 g/ha/y (Gray et al., 2003). The level of Cd found in plants grown and animals 

grazed was related to the Cd concentration in the soil (Gray et al., 2003). 

Many researchers have observed the transfer of Cd from soil to plants (Berkelaar and Hale, 

2003; Lopez-Chuken and Young, 2010; McLaughlin et al., 1998; Meharg et al., 2013). 

Increasing Cd concentration in soil increases Cd accumulation in crops (Meharg et al., 2013; 

Nan et al., 2002). High Cd concentrations were found in potato tubers (Dudka et al., 1996). 

Wang (2012) reported that in a farmland of Tianjin, more than 60% of the vegetable samples 

had Cd concentrations above the standard level (0.05 mg/kg f.w.). It is forecast that increased 

soil Cd levels will cause increased levels of Cd uptake in specific agricultural products 

without intervention and in excess of food standards (Cadmium Working Group, 2008). Kim 

(2008) reported the exceedance of Cd concentration in 1.5% of the potato samples collected 
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from the Waikato. Per capita intake of a particular food is also important in considering the 

effect of transfer of Cd from soil to plants (Meharg et al., 2013) and from plants to humans 

through crop products and animal products (as animals consume plants).  

2.8 Plant variety 

The uptake of Cd is dependent not only on soil factors but also on plant species. Many 

researchers have observed the differential uptake of Cd by different plant varieties and species 

(Loganathan et al., 2003; Welch and Norvell, 1999). In a pot trial of vegetable crops, it was 

found that lettuce and carrot accumulated more Cd than the common pasture species perennial 

ryegrass (Lolium perenne L.) and white clover (Trifolium repens L.) where 10 New Zealand 

soils were used (Gray et al., 1999b). High Cd concentrations were found in potato tubers 

(Dudka et al., 1996).  

Roberts et al. (1994) found in a comprehensive survey (including 312 pastoral and 86 non-

agricultural sites), similar Cd concentrations in grass and legumes, but significantly higher 

concentrations in weeds. The mean plant concentrations on the pastoral soils were 0.10, 0.06 

and 0.28 mg/kg d.w. for the grass, legume and weed species respectively (Roberts et al., 

1994). Selective breeding of low-Cd varieties is widely discussed as a means to cope with 

increasing pasture Cd concentrations (Grant et al., 1999a; Redjala et al., 2009). In a study 

with 11 different perennial ryegrass varieties grown on a contaminated soil showed that Cd 

accumulation varied among the varieties and this might be important in managing Cd in 

agricultural lands (Gray and McLaren, 2005). High concentrations of Cd were observed in 

rice grains deemed unsafe by international and national regulators (Meharg et al., 2013). As 

it has been observed that different species uptake Cd in different amounts, the development 

of genetically modified varieties that uptake Cd in smaller amounts, could decrease the threat 

of Cd in agricultural systems. 
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2.9 Cadmium mitigation strategies in agricultural systems 

2.9.1 Eliminate or reduce the use of P fertilizer 

The P is a macro essential element for plants. There is no substitute for P for plant growth. 

The elimination or reduction of P fertilizer use in the agricultural lands of NZ is not possible 

as an organic source of P is not abundant in NZ. Moreover, the plant’s requirement for P is 

higher and a significant amount of P is immobilized and fixed in soil. So, the elimination or 

reduction of Cd input to NZ soils is not actually practical, as the organic P source in NZ soils 

is low and estimated at less than 5% of the national maintenance from different manures 

(Hedley et al., 2010). Globally there is an increasing awareness about the diminishment of 

phosphate rock resources (Beardsley, 2011; Cordell and White, 2011; Neset and Cordell, 

2012). In addition, it is expensive to remove Cd from superphosphate rocks. The estimation 

of the time for P rock to be depleted ranges from 30 to 300 years (Cordell and White, 2011) 

indicating that increasingly high Cd-contaminated P fertilizers will need to be used, as the 

lower Cd-containing materials are depleted.  

2.9.2 Tiered fertilizer management strategy 

A tiered fertilizer management system (a system that links soil Cd levels to overall Cd 

management action) might be used to lessen the effect of continued application of Cd-rich 

phosphate fertilizers that is increasing the Cd concentration in agricultural lands. According 

to this system, soils with <0.6 mg/kg Cd have no restriction placed on the application of P 

fertilizers. Soils with concentrations between >0.6 and <1.0 mg/kg Cd are permitted restricted 

use of P to ensure that the soil does not exceed 1.8 mg/kg Cd after 100 years. More intensive 

monitoring and modelling is required for soils with Cd concentrations >1.4 and <1.8 mg/kg. 

No further Cd accumulation is permitted in soils with Cd concentrations >1.8 mg/kg (Rys, 

2011). 
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2.9.3 Phytoextraction 

Phytoextraction has been reported as an economically and ecologically sound alternative for 

the remediation of metal-contaminated soils. Willow (Salix alba L.) is a metal phytoextractor, 

which combines a gradual contaminant removal with production of biomass. It was observed 

that changing the bacterial community in the plants’ rhizosphere, developed the resistance of 

the plants against metal contamination, and doubled those plants metal accumulation (Weyens 

et al., 2013).  

Soil remediation through phytoextraction requires the concentrations of the contaminating 

TEs (Trace Elements) be reduced to levels that complies with environmental regulations 

(Robinson et al., 2009). Hyperaccumulator plants can be used to uptake trace elements from 

soil. Hyperaccumulator plants can accumulate a particular trace element 10-1000 times higher 

than a normal plant from contaminated lands (Brooks et al., 1977). In this process, the 

hyperaccumulator plant, which is usually selective for a particular element, is grown in the 

same land repeatedly. Table 2.8 shows Cd accumulation in some cropping plants when grown 

in Cd contaminated soils. It is to be ensured that the concentration of the trace element is 

significantly higher in the plant than the input of the element in agricultural land (Robinson 

et al., 2009).  
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Table 2.8 Crops accumulating Cd from contaminated soils (Kabata-Pendias and Mukherjee, 

2007) 

Plant Harvest yield (t/ha) Cd in plants (mg/kg) 

Yellowtuft (Alyssum murale) 0.8 34 

 Alpine penny-cress (Thaspi 

caerulescens) 

16 12 

Tobacco (Nicotiana tabacum) 9 10 

Corn (Zea mays) 10 8 

Mustard (Brassica juncea) 21 3 

Osier Willow (Salix viminalis) 10 22 

 

McGrath et al. (1993) and Baker et al. (1994) found that phytroextraction of Zn was possible 

with Thlaspi caerulescens (J. & C. Presl.), which acted as a hyperaccumulator plant. The plant 

is then burnt or fermented or used in gasification to reduce its volume (Robinson et al., 2009). 

Specialized incineration facilities may be required to prevent TE-loss in the smoke (Keller et 

al., 2005). Margni et al. (1997) reported that most exciting waste incinerators can safely 

process metal-enriched biomass. The residual material could be reprocessed to recover the 

trace element (Robinson et al., 2009). 

Some plants can transform soil contaminants into volatile compounds that scatter in the 

atmosphere is referred as phytovolatilization. Plant-microbial systems have been discovered 

that volatilise Hg, As and Se (Brooks, 1998). Phytoextraction through volatilisation does not 

need regular harvesting. The plant can be left onsite until the soil’s TE concentrations comply 

with environmental regulations. For essential TEs such as Se, phytovolatilization can offer 

the possibility of redistributing Se from areas where Se toxicity exists to downwind areas 

where there is Se deficiency (Zayed et al., 2000). There are mainly two drawbacks of 
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phytovolatilization, the limited number of plant-microbial systems that volatilise a limited 

number of TEs and there is no control on the destination of the volatilised elements (Robinson 

et al., 2009).  

However, the phytoextraction to remove metals, including Cd is discredited as it takes 

extremely long time to clean a contaminated land (Robinson et al., 2015). The problem with 

phytoextraction is that even to clean a moderately contaminated soil takes decades (Robinson 

et al., 2009). Moreover, there is a noticeable absence of successful phytoextraction field trials 

or commercial operations. One of the few examples of the successful field application of 

phytoextraction is the selenium volatilisation using genetically engineered Brassica juncea 

(L.) (Ba˜nuelos et al., 2005). 

2.9.4 Soil washing, thermal desorption and soil removal  

Soil washing is one of the ways to remove Cd from contaminated soils (Abumaizar and Smith, 

1999) and is effective in treating heavy metals in the soil matrix (Virkutyte et al., 2002). 

Thermal desorption treats halogenated and non-halogenated volatiles and semi-volatiles, as 

well as fuel hydrocarbons and pesticides. Thermal desorption method was ineffective in 

removing heavy metals from contaminated soils (Virkutyte et al., 2002). The removal of top 

soil is also not a good solution as it leaves the land infertile. In spite of the good performance 

of some of these methods in some specific arenas, it is probably not a good choice for 

agricultural land in NZ where the Cd level is not very high compared to the lands those are 

contaminated from industrial activities in other countries. 

2.9.5 Selection of plants with lower uptakes 

Selecting plants with lower uptake of Cd might be a good solution for lands to be used for 

agricultural purposes where the concentration of Cd is low. In this case, it is also important to 

choose a particular plant variety and it may be that some demanding vegetables cannot be 
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grown. Another option may be to grow crops that we do not consume (eg. Flower plants). 

However, it is not possible for everyone to grow flower plants commercially and it might not 

be economical, as well as decreasing the number of different varieties grown in agricultural 

land. 

2.9.6 In situ fixation of cadmium 

Different soil conditioners might be applied to agricultural land to remove the threat of Cd 

accumulation in plants through making the Cd less mobile. The following materials may be 

tried in this regard. 

2.9.6.1 Liming agents 

Liming may be a good way to make Cd less available in soils through increasing the pH of 

soil. Many studies have shown that when the pH is increased the availability of Cd to plants 

is decreased (Kim et al., 2016; Maier et al., 2002), which may be due to the fact that lime 

decreases the exchangeable Cd and increases the Fe and Mn oxide bound Cd that is less 

available to plants (Chen et al., 2016). Some experiments show that increased Ca from lime 

competes with Cd for exchangeable sites and again increases the solubility of Cd leading to 

increased plant uptake (Bolan et al., 2003a; Christensen and Haung, 1999b). The competition 

of Cd and Ca take place in the ion exchange sites as Cd is not expected to form inner sphere 

complexes with soil components (Scheffer et al., 2010; Silveira et al., 2003). In addition, 

liming can reduce the fertility of soil by rendering all cations less available, especially Zn 

(Andersson and Siman, 1991; Merian, 1991), and is only suitable within a limited pH range. 

Liming may have a role in the NZ environment where fertility is limited by a low pH, because 

it may increase fertility and reduce Cd uptake.  
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2.9.6.2 Organic matter 

Organic matter has different functional groups and has sites producing different negative 

charges during decomposition and may immobilize Cd in soil making it less available for 

plants (Pusz, 2007). Organic matter that can be used for this purpose are: 

2.9.6.2.1 Compost 

Organic material that is collected from by-products or waste, and decomposed for the purpose 

of recycling, is usually known as compost. Both trace metal loading and organic matter in the 

soil are increased by the application of municipal solid waste compost. Composts have been 

tested to be used in agricultural lands for a long time for its beneficial properties ranging from 

supplying nutrient elements, enhancing carbon sequestration and nutrient cycling and 

reducing disposal costs of solid wastes (Ding et al., 2017; Gabhane et al., 2012; Paulin, 2014). 

Previously, composts were discredited in the use of fixing heavy metal pollution in 

agricultural lands due to its high heavy metal content eg. Cd, Cr, Zn and Hg. Due to the 

improvement of the sorting of raw materials, municipal composts contain less heavy metals 

and pathogens compared to composts prepared without sorting (Cook and Beyea, 1998; Ding 

et al., 2017; Farrell and Jones, 2009). 

There is much research into reducing the toxic effect of Cd on plants by using composts. 

Compost together with lime significantly reduced the accumulation of Cd, compared to the 

lime only treatment in a high Cd contaminated soil (55 mg Cd/kg soil) (Kim et al., 2016). In 

a pot experiment with flooded soil, no foliar symptoms of Cd toxicity were observed even at 

Cd concentrations of 100 mg/kg. Rice grain and straw yields decreased when Cd was applied 

above 10 mg/kg, irrespective of compost, lime or P application (Sarkunan et al., 1991). When 

compost was applied to decrease the Cd concentration in soil, it was observed that compost 

incorporation at rates up to 30% decreased lettuce Cd concentration but higher rates had a less 

marked effect (Costa et al., 1994). In general, the roots had a higher content than the shoots. 

Cadmium rates had no effect on yield, both fresh weight and dry weight (Costa et al., 1994). 
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In soils with little organic matter, compost addition will significantly increase the amount of 

highly reactive organic complexing agents for trace metals in the soil (Kaschl et al., 2002a) 

and may decrease the phytoavailability of Cd. 

Van et al. (2007) found that compost amended with different inorganic amendments 

(clinoptilolite or bentonite) had a limited effect on reducing the transfer of Cd from soil to 

ryegrass (Lolium perenne L.). In another study, compost enriched with inorganic amendments 

which had been evaluated in laboratory-based experiments for its effectiveness to immobilise 

heavy metals in contaminated soils where naturally occurring zeolite-clinoptilolite and 

synthetic iron oxide (Fe2O3) were used, found them effective for reducing Cd uptake in 

ryegrass (Gadepalle et al., 2009). It was concluded that zeolite and/or iron oxide enriched 

compost can be used effectively for immobilising Cu and Cd in contaminated soils (Gadepalle 

et al., 2009).  

Scientists observed that peroxidative stress of barley exposed to Cd was reduced in the 

presence of water-extractable organic matter from compost-like materials in a hydroponic 

culture and it was also observed that compost significantly reduced Cd uptake (Tachibana et 

al., 2013). In another study, it was found that the use of two composts derived from green 

waste and sewage sludge amended with minerals (clinoptilolite or bentonite) to convert a 

contaminated site to green space, successfully decreased leaching of Cd. They found compost 

effective in binding Cd but bentonite had a limited effect (Van et al., 2007). The fungus, XJ-

1, isolated from chicken manure compost was observed as an efficient biosorbent for Cd (Xu 

et al., 2012). Different plants have a different response to compost application, especially rice 

and vegetables, implying that the growth condition is also important to the good result from 

compost (Juang et al., 2012). Tomato was the highest Cd accumulator (Hosobuchi et al., 

2011). The addition of compost on transfer of Cd from soil to plants did not affect the growth 

of tomato (Solanum lycopersicum L.), cabbage (Brassica oleracea L.), and daikon (Japanese 
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radish; Raphanus sativus L.) in soils treated with fertilizer or compost (Hosobuchi et al., 

2011). Cabbage took up the least amount of Cd (Hosobuchi et al., 2011).  

In China, it was observed that the application of heavy metal-contaminated compost resulted 

in toxicity to soil microbes (Chen et al., 2010a). A greenhouse study with alfalfa and corn, 

where soil was treated with 25 t/ha sewage sludge, compost and/or cow manure including 

three rates of Cd, concluded that Cd phytoavailability depends on the Cd source, loading rate 

and plant species (Sharifi et al., 2010). Cattle compost is better than swine or poultry compost 

as it has a high affinity for Cd and lower P content than others (Sato et al., 2010). The 

maximum Cd concentration in compost was proposed 0.8 mg Cd/kg (Saha et al., 2010). 

Poultry manure compost was effective in reducing Cd phytoavailability and increasing pH 

and it was more pronounced in higher Cd-contaminated soils (Chen et al., 2010b).  

Compost components, i.e. macro- and micronutrients, organic matter, humic substances, 

hormone-like substances, biotic agents, emission of carbon dioxide and nitric oxide and many 

others, effectively contributed to the physiological metabolism to counteract oxidative stress 

induced by Cd2+ contaminated soil (Tartoura and Youssef, 2010). The effect of temperature 

on metal availability from compost was studied and found that it depends on metal type, 

compost formulation and waste type (Adekunle, 2009).  

Composted pig manure supplied more Cd to rice and the response was different in two soils 

(Li et al., 2009). The direct, and subsequent influence of added organic materials on changes 

to Cd and Cu phytoavailability in soil and their accumulation in aboveground oat (Avena 

sativa L.) biomass was studied in a three-year experiment (Gondek, 2008). After application 

of poultry manure the concentration of available Cd increased in soil which is likely to be due 

to Cd containing poultry manure (Gondek, 2008; Hanc et al., 2008). After the addition of 

compost and Cd to soil, 80% of added Cd was converted to carbonate Cd and organically 

bound Cd immediately. Calcareous nature of soils plays a key role in Cd retention because a 
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major portion of the soluble Cd entered the carbonate fraction immediately after addition to 

soils (Rajaie et al., 2006). In a greenhouse experiment cherry-red radish (Raphanus sativus 

L.) was grown in two soils amended with different levels of Cd with chicken manure and pig 

manure compost, compared with those of Cd applied in metal salt. The Cd source, loading 

rate, soil pH and plant tissue were important factors in evaluation of plant uptake of Cd (Li et 

al., 2006).  

The order of metals reacting with humic substances was found as Pb > Cu > Cd > Zn (Chien 

et al., 2006), which is in agreement with the sequence reported by judging the thermodynamic 

stability constants (Chien et al., 2006). To immobilize Cd in soil, NovoGro (NG), chicken 

manure compost and Bacillus subtilis, as well as their mixtures, were used as soil 

amendments. Results showed that the amendments increased the residual fraction of Cd in the 

soils, but decreased Cd plant uptake (Wang et al., 2012). In sugar beet (Beta vulgaris L.) 

plants, Cd accumulation was higher in leaves than in roots and its content was dependent on 

compost rate, organ of plant and locality (Gaj and Gorski, 2005). Ammonium nitrogen content 

was observed to have a negative impact on Cd accumulation in plant leaves. Moreover, the 

total Cd content in leaves was determined by the Cd content in roots (Gaj and Gorski, 2005).  

 

Soil amended with municipal solid waste compost had a higher concentration of Cd in the 

organic fraction (Zinati et al., 2004) and this organic fraction was not available for plants to 

accumulate. The agricultural practice of amending soils with composted MSW adds 

significant amounts of organic matter and trace metals, including Cd. The highest complexing 

capacities for Cd were found for the most humified ligands (Kaschl et al., 2002b). Compost 

manure was found to both increase and decrease the accumulation of Cd, indicating 

accumulation differences with different aquatic organisms (Ghosal and Kaviraj, 2002). All 

doses of compost manure significantly reduced the bioaccumulation of Cd in plankton, but 
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maximum reduction was found under cumulative treatment at a low dose of the manure, and 

application of compost manure markedly increased the growth of fish and primary 

productivity of water (Kaviraj and Ghosal, 1998).  

Pot experiments evaluating the yield, P and Cd contents of rice (Oryza sativa L.) grown as a 

second crop on an Ultisol repeatedly fertilized with three Indian rock phosphates with and 

without addition of vegetable compost, indicated that Mussoorie rock phosphate was 

significantly superior to other two rock phosphates in enhancing the dry matter yields of rice. 

Vegetable compost addition significantly enhanced the yields and P concentration of rice 

plant tissue (Ramachandran et al., 1998). The Cd content of rice grain was more than that of 

rice shoots (Ramachandran et al., 1998). In general, incorporation of vegetable compost 

effectively reduced the Cd content of both shoots and grains of rice (Ramachandran et al., 

1998). Compost manure contains humic acid, which can chelate metals in water and reduce 

toxicity and bioavailability.  

The addition of compost manure significantly reduced the concentration of dissolved Cd in 

water and whole-body Cd in fish and plankton (Kaviraj et al., 1998). Fish growth - length, 

weight, and yield - was reduced by Cd exposure (Kaviraj et al., 1998). Addition of compost 

manure reduced the ill effects on fish growth produced by Cd (Kaviraj et al., 1998). Even 

when soil was amended with MSW, containing Cd, Cu, Pb, Ni, and Zn, higher amounts of Cd 

was not found in tomato and squash (OzoresHampton et al., 1997). Urban waste increased 

foliar contents of Cd but root contents did not reach maximum tolerance limits as specified 

by Brazilian legislation (Costa et al., 1997).  

2.9.6.2.2 Biosolids  

Biosolids can be defined as sewage sludges that have undergone a series of treatments to 

maintain with the prevailing local and international regulations to permit its land application 

(Lu et al., 2012). In NZ, sewage treatment generates annually between 700’000 and 1’000’000 
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tonnes of biosolids (Ministry for the Environment, 2002) and typically contains between 1 

and 4 mg Cd/kg d.w. (Wang et al., 2008). In NZ, biosolids are used as amendments on 

production forest and agricultural lands to improve the fertility of soils (Gibbs, 2003). 

According to NZ guidelines, soil that contains Cd less than 1 mg/kg may have biosolids 

applied (Gibbs, 2003).  

Cadmium uptake by crops from biosolids amended soil is a major route of Cd exposure in 

food chain (Logan and Chaney, 1983).  Plant Cd uptake varies with the type of plant (Chaney 

et al., 1987), trace element, cumulative application rate of biosolids (Chang et al., 1987), 

biosolids chemistry (Sommers et al., 1987), and soil chemistry (Corey et al., 1987).  

Studies reported that biosolids contain Cd more than 1 mg/kg (Azizi et al., 2013; Logan et al., 

1997b). Logan et al. (1997) observed that biosolids contained 45-48 mg/kg Cd and mentioned 

that the concentration was higher than the 39 mg/kg concentration established for EQ sludges 

under the US EPA 503 rule (US EPA, 1993) and the mean for US sludges of 7 mg/kg (US 

EPA, 1990).  

When applied to soil, biosolids increase the amount of Cd in soils and subsequent transfer to 

plants (Ramachandran and D'Souza, 1999). A six-year experiment with high amount of 

separately collected biosolids showed an increase in total Cd in soil as well as a decrease in 

the soil microbial community (Moreno et al., 1999). In another study, the impact on heavy 

metal accumulation and lability due to repeated application of biosolids was evaluated using 

composite soils (at 0-15 and 15-30 cm depths) from 0, 2, 5, and 25-year biosolids applied to 

Genesee silt loam soils. Biosolids application significantly influenced heavy metal 

concentration in soil. Among the heavy metals, the concentration of total and residual Cd was 

the highest (3 and 2.8 times respectively) (Islam et al., 2013). In a field experiment the effect 

of application rates of biosolids and mineral N and P fertilizers on As, Ba, Cd, Cr, Cu, Ni, Pb, 

Se, and Zn concentration in soil, cane plant (Saccharum officinarum), and first ratoon 
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(residual effect) in a Typic Hapludult soil was studied. It was observed that biosolids 

application increased As, Cd, Cu, Ni, Pb, and Zn concentrations in soil and biosolids increased 

the Cd uptake in sugarcane (Nogueira et al., 2013). A greenhouse pot experiment with various 

amounts of added biosolids: 20 ton/ha, 50 ton/ha and 100 ton/ha established that increasing 

the biosolids application rate significantly increased the total amounts of Cd in all the soils 

(Tsadilas and Shaheen, 2013). Greenhouse pot culture experiments evaluated that the uptake 

of Cd by two successive maize (Zea mays) varieties was increased when biosolids were 

applied, and reduced plant shoot growth. It was further suggested that care has to be taken 

while amending soils (acidic soils in particular) with biosolids and biosolids containing a high 

amount of Cd should be refused (Ramachandran and D'Souza, 1999).  

In some experiments, biosolids did not increase the Cd availability in the soil (Sato et al., 

2010; Vaca-Paulin et al., 2006; Xu et al., 2012). Moreover, in some studies biosolids were 

effective in reducing the accumulation of Cd from soil to plants (Sato et al., 2010; Xu et al., 

2012). The results of a study indicated that composted biosolids can reduce Cd uptake by 

plants from contaminated soil and may bring about an increase in plant growth (Shuman et 

al., 2002). It is also observed that the intensive fertilization with biosolids compost did not 

influence the Cd contents in the harvest products, however, the fertilization with 

superphosphate led to significantly higher Cd concentrations in potato (Solanum tuberosum) 

tubers (Bartl et al., 1999). The capacity of biosolids compost to decrease the toxicity of trace 

elements in soils depends on the different plant variety. Besides, the combination of 

calcareous soil pH and higher organic matter, Fe, and P levels of biosolids-compost amended 

plots improved the overall success of vegetation (Li et al., 2000). The reaction of composts 

produced from biosolids gradually increased during their 9-month fermentation and Cd 

content was not increased more than the permissible range (Krzywy et al., 1999). It was 

observed that biosolids can change the form of Cd in soil, while increasing total Cd 
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concentration in soil. Biosolids decrease the toxicity of Cd through complexation and makes 

Cd less available to plants (Bolan et al., 2003b). Logan et al. (1997a) measured the uptake of 

selected trace elements (Cd, Cu, Ni, Pb, and Zn) in a field experiment by six vegetable crops 

namely cabbage (Brassica oleracea), carrot (Daucus carota), dry bean (Phaseolus vulgaris), 

lettuce (Lactuca sativa), potato (Solanum tuberosum), and tomato (Solanum lycopersicum), 

from a single 500 t/ha application rate of an advanced alkaline stabilized biosolids product. 

The biosolids were applied in 1992 and crops were grown for 3 years, 1993, 1994 and 1995. 

Differences among the metals for uptake by the different crops were in the order: Zn > Cu > 

Ni > Cd > Pb. Cadmium uptake declined from 1993 to 1995. Low plant Cd uptake response 

slopes were observed compared with literature values and often negative. Logan et al. (1997a) 

also suggested that large applications of the biosolids may cause no threat to the food chain 

from Cd uptake by crops. Biosolids were more effective at immobilizing Cd, due to the greater 

humification of its organic matter and higher content of Fe (Tapia et al., 2010). 

Due to the increased cost of fertilizers and disposal of biosolids, the importance of biosolids 

as a soil amendment may be favourable (Food and Agriculture Organisation of the United 

Nations, 2008) after proper treatment and Cd concentration consideration. 

2.9.6.2.3 Biochar 

Charcoal/biochar is an emerging material that is being trialled on contaminated land. Charcoal 

is organic matter. In an experiment, charcoals were prepared from the stalk of the giant reed 

(Arundo donax L.) at various temperatures (400-700°C) under nitrogen stream. In the 

experiment, it was observed that mesopores within the range of 20 to 100 Å were abundant 

in charcoals prepared under 400°C and 500°C. At low Cd concentrations, charcoal was highly 

effective in removing Cd from aqueous solution (Sagehashi et al., 2010). It was observed that 

about 70-75% Cd from an aqueous solution could be removed by activated charcoal in a single 

step (Qadeer and Khalid, 2005).  
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Wood charcoal was used to remove Cd from acidic wastewater (Nath et al., 1997). The 

adsorption of Cd depends on various adsorption parameters such as pH, temperature, metal 

ion concentration and amount of adsorbent. Adsorption kinetics are fast initially, followed by 

slower kinetics, and a stationary phase attained within one hour (Nath et al., 1997). The 

capability of biochar to immobilise and retain As, Cd and Zn from a multi-element 

contaminated sediment-derived soil was explored by a column leaching experiment and 

scanning electron microanalysis. Sorption of Cd and Zn to biochar’s surfaces assisted a 300-

fold and a 45-fold reduction in the leachate concentration, respectively. It was concluded that 

biochar can rapidly reduce the mobility of contaminants in polluted soil system (Beesley and 

Marmiroli, 2011). 

2.9.6.2.4 Lignite  

Lignite (brown coal) is a source of soil organic matter that is used in degraded soils to improve 

soil fertility where the organic matter content is low (Kwiatkowska et al., 2008) and also a 

fixing additive of metal-contaminated soils to fix metals (Ciecko et al., 2001; Pusz, 2007; 

Skłodowski et al., 2006).  

Ion exchange and specific adsorption are the two prevalent mechanisms of lignite that play 

an important role sorbing metals in soil (Pentari et al., 2009b). Lignite samples have a CEC 

of 40 to 400 Cmolc/kg (Jochova et al., 2004; Karczewska et al., 1996; Lao et al., 2005; Pentari 

et al., 2009b) whereas the CEC of soil organic matter ranges from 100 to 300 Cmolc/kg 

(Hooda, 2010). Large amounts of humic and fulvic acids are present in lignite (Pehlivan and 

Arslan, 2007) that is the same with other equivalents in soil (Kwiatkowska et al., 2008). There 

are many carbonyl (C=O), carboxyl (COOH) and hydroxyl (OH) groups in lignite (Pehlivan 

and Arslan, 2007). In ion exchange, carboxyl and hydroxyl groups are the main functional 

groups that participate. Between pH 2.5 and 7, carboxyl groups in humic acids increasingly 

dissociate and between pH 8 and 13.5, phenolic groups dissociate. The pH value of the 
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surrounding solution determines the number and type of negatively charged functional groups 

(COO- and O-) available for ion exchange (Pehlivan and Arslan, 2006). The surface area of 

hydrated coal is 1000 m2/g (Burns et al., 2004). Dry coal particles have a surface area of 5 

m2/g and 170 m2/g obtained with N2(g)-BET and CO2(g) respectively. High concentration of 

carboxylic and phenolic groups (5 - 7 mmol/g) and the large specific surface area might 

increase the capacity of lignite to sorb metals (Burns et al., 2004). Lignite is relatively resistant 

to decomposition (Pusz, 2007).  

2.9.6.2.5 Sawdust 

Sawdust is a waste product of the wood industry, where during the sizing and cleaning of 

trees a significant amount of sawdust is produced. If sawdust is not managed properly and 

simply used as land fill, it can contaminate surface and ground water. During decomposition, 

it produces several organic acids that leach into the soil. Environmental benefits of sawdust 

have been observed (Roy and Dutta, 2013) and through proper use sawdust can be a resource. 

2.9.6.3 Inorganic amendments 

Utilization of minerals, such as zeolites (zeolites are microporous, aluminosilicate minerals 

commonly used as commercial adsorbents), as substrates for horticultural crop production has 

been receiving attention (Mohammad et al., 2004). In some studies zeolite was used in soil to 

improve the soil’s nutrient status by decreasing nutrient leaching (Wang et al., 2005) and 

producing good crops. Broschart (2011) showed that where Downy jasmine ((Jasminum 

multiflorum (Burm. f.) Andr.) and areca Palms (Dypsis lutescens (H. Wendl., Beentje & 

Dransf.)) were grown in containers filled with a fine sandy soil or with a pine bark-based 

potting substrate, zeolite can stop the leaching loss of some cations (ammonium (NH4)-N and 

potassium) (Broschat, 2001). A growth chamber experiment determined the response of 

croton (Codiaeum variegatum L.) grown in a substrate composed of a mixture of zeolitic tuff. 

It concluded that the use of zeolite tuff as a growth medium for croton can provide the plant 
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with adequate amounts of N, P, and K for the growth period investigated. Zeolite addition 

also lowered the cost of production of container-grown plants in the greenhouse and nursery 

industries (Mohammad et al., 2004). Bentonite [(Al1.56Fe0.03Mg0.19)(Si3.85Al0.15)O10(OH)2] 

(Theng, 2012) is an Al phyllosilicate, essentially impure clay consisting mostly of 

montmorillonite (Theng, 2012). The CEC of bentonite is higher than many minerals in soil 

(Carroll, 1959) that might be capable of reducing the mobility of Cd in soil. 

Most scientific studies with heavy metals were done with highly contaminated soils such as 

mine spoil, where it was important to decrease leaching of Cd, reduce metal phytoavailability 

to humans and ecological receptors, and re-establish vegetation (Martin and Ruby, 2004). 

Cadmium concentration was lower in agricultural soils than in mine spoil. Technologies used 

to clean agricultural land are very expensive. So, a method that will stabilize soils at their 

present position should be developed that will incur less cost. To reduce the availability of 

heavy metals for plant roots, sorption, ion exchange, and precipitation are principle 

mechanisms to convert soluble and pre-existing potentially soluble solid phase forms of heavy 

metals to more geochemically stable solid phases (Cheng and Hseu, 2002). 

Cadmium is increasing in soils, so more studies related to Cd should be done in order to 

produce safe foods (Römkens et al., 2009). It is important to develop some techniques that 

will improve the fertility and physical condition of soil, will be friendly for different macro 

and microorganisms in soil, can be used for agricultural as well as contaminated sites, will 

not increase the cost of production and finally will be environmentally sustainable. Keeping 

all these views in mind an experiment was designed to see the ability of different 

carbonaceous soil amendments with different inorganic soil amendments to decrease the 

solubility, as well as phytoavailability, of Cd.  
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immobilisation was offset by soil acidification caused by the lignite. The results indicate that 

municipal compost is a low-cost soil conditioner that is effective in reducing plant Cd uptake.   
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3.2 Introduction 

Cadmium (Cd) is a non-essential element that can cause many negative health effects at high 

concentrations (Kabata-Pendias and Mukherjee, 2007). It occurs naturally as a contaminant 

in all phosphate rocks, although the concentrations vary considerably, depending on the origin 

of the parent material. Rock phosphate originating from igneous rock generally has Cd 

concentrations of 0.7 - 30 mg/kg P (Oosterhuis et al., 2000), whereas rock phosphate refined 

from sedimentary rocks may contain Cd concentrations higher than 556 mg/kg P (Mar and 

Okazaki, 2012). Rock phosphate from sedimentary rock sources account for some 85-90% of 

world P production (Oosterhuis et al., 2000). Phosphate fertiliser use has resulted an 

enrichment of Cd in agricultural soils worldwide (Hooda, 2010; Kabata-Pendias and 

Mukherjee, 2007). Historically, New Zealand and Australia manufactured superphosphate 

using phosphate rock from Nauru and Christmas Island, which contained relatively high Cd 

concentrations >600 mg Cd/kg P (Syers et al., 1986). Repeated application of this Cd –rich 

superphosphate for most of the 20th century has resulted the significant increases in the Cd 

concentrations in NZ soils (Taylor, 1997). 

The transfer of Cd from soil to plants and thence into food products is well documented 

(Alloway et al., 1990; Arcella et al., 2012; Berkelaar and Hale, 2003; Lopez-Chuken and 

Young, 2010; McLaughlin et al., 1998). Enriched soil Cd concentrations cause increased Cd 

accumulation in crops (Kabata-Pendias and Mukherjee, 2007; Nan et al., 2002). Cadmium 

accumulation varies between plant species, varieties and cultivars (Crews and Davies, 1985; 

Gartler et al., 2013; Grant et al., 2008; Kabata-Pendias and Mukherjee, 2007; McLaughlin et 

al., 1994a). Different parts of the plant have distinct Cd concentrations. For example, 

vegetable species such as spinach (Spinacia oleracea L.) and lettuce (Lactuca sativa L.), 

accumulate higher concentrations of Cd in the edible portions than perennial ryegrass (Lolium 

perenne L.) (Gartler et al., 2013). An increase in soil pH decreases plant Cd-uptake (Kabata-
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Pendias and Mukherjee, 2007). Although Zn can have both synergistic and antagonistic 

effects on plant Cd-uptake (Grant et al., 1999b), Cd is often a food-chain toxicity risk in Zn 

deficient agricultural systems (Hooda, 2010). Soil Cl- increases the mobility of Cd in soil 

resulting elevated Cd concentrations in plants (McLaughlin et al., 1994b). 

In New Zealand (NZ), these concerns led to the formation of the Cadmium Working Group 

(CWG)-established by the NZ government in 2006. The CWG identified vegetable production 

as being the industry most at risk from superphosphate-derived Cd (Cadmium Working 

Group, 2008). The fertilizer industry, in collaboration with regulators has developed a Tiered 

Fertilizer Management System (TFMS) (Rys, 2011). Here, soils with <0.6 mg/kg Cd have no 

restriction placed on the application of P fertilizers. Soils with concentrations >0.6 and <1.0 

mg/kg are permitted restricted use of P fertilizers to ensure that the soil does not exceed 1.8 

mg/kg Cd after 100 years. Intensive monitoring and modelling is required for soils with Cd 

concentrations >1.4 and <1.8 mg/kg. No further Cd accumulation is permitted in soils with 

Cd concentrations >1.8 mg/kg (Rys, 2011). 

Plants in soil take up Cd from the soil pore water. While most of the Cd in soils is usually 

associated with soil colloids (>98 %), with only a small fraction of the total is available for 

plant uptake in soil solution (Christensen and Haung, 1999a). By manipulating the amounts 

of available cation binding sites in soils, the amount of dissolved Cd can be reduced, resulting 

in a subsequent reduction in uptake by plants (Kabata-Pendias and Mukherjee, 2007). This 

can be achieved by a number of different methods, such as changing the soil pH (e.g. by 

liming) or by introducing additional binding sites. For example, Fe and Mn oxides sorb Cd 

(Backes et al., 1995; Zasoski and Burau, 1988) and can be used to reduce the movement of 

Cd in soil solution. Humic substances, produced during the decomposition process of organic 

materials, include a large group of amorphous, colloidal organic polymers (McLaren and 

Cameron, 1996). These molecules carry a predominantly negative charge arising from 
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ionizable carboxyl and phenolic hydroxyl functional groups, which enable humic substances 

to act as a cation exchanger in soil and thus remove metal cations from solution (McLaren 

and Cameron, 1996). Specific sorption also plays an important role (Pentari et al., 2009a). As 

Cd is a chalcophilic trace element, it is expected to bind relatively strongly to organic sulphur 

groups (Kabata-Pendias and Mukherjee, 2007), R-SH, R-S-R, R-SS-R and heterocyclic S, 

which might be present in organic matter (e.g. lignite) (Calkins, 1994).  

Various organic and inorganic amendments are used in agricultural lands for improving the 

physical and chemical conditions of soil (Sarwar et al., 2008). Moreover, both organic (e.g. 

sawdust, peat, compost, etc.) and inorganic (e.g. lime) soil amendments can effectively reduce 

Cd solubility and plant uptake in highly contaminated soils (Bolan et al., 2003b; Guo et al., 

2006). Lignite (added at a rate of 1%) reduced the solubility of Cd and decreased the transfer 

of Cd from soil to Lolium perenne (L.) by 30%, while not detrimentally affecting soil fertility 

(Simmler et al., 2013). 

To date, most studies investigating the use of lignite or compost to reduce the plant uptake of 

Cd have considered highly contaminated soils (Ciecko et al., 2001; Pusz, 2007; Skłodowski 

et al., 2006; Tapia et al., 2010) that are not representative of most agricultural soils where Cd 

concentrations typically reach a few mg/kg at most (Alloway and Steinnes, 1999). Other 

studies that investigated the fate of Cd in compost-amended land focused on the endogenous 

Cd in the compost itself (Chang et al., 1997; Hanc et al., 2009; Rutzke et al., 1993), which 

may be contaminated through industrial emissions into wastewater treatment plants.  

We aimed to investigate potential soil amendments that could reduce the transfer of Cd from 

soils to plants in two different NZ market garden soils with elevated Cd concentrations. To 

achieve these aims, we used batch sorption experiments to identify promising amendments 

and then used selected amendments in targeted pot trials to assess the efficacy of these 

amendments to reduce Cd uptake by vegetables.  
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3.3 Materials and Methods 

3.3.1 Soil sample collection 

Soils were collected from two commercial vegetable growing areas in Pukekohe 

(37o13’18.92”S 174o52’5.94”E) and Levin (40o38’17.49”S 175o14’23.61”E) in the North 

Island of NZ. Soil from the top 0.25 m were collected and large stones and roots removed 

manually. The soils were dried, ground, passed through a 7 mm sieve, and homogenised. 

Three 500 g sub samples of each soil were collected which were then ground and sieved 

through a 2 mm Nylon mesh. Table 3.1 and Table 3.2 show the chemical and physical 

properties of the soils. Both soils had elevated total Cd concentrations (1.45 mg/kg and 0.47 

mg/kg respectively).  

3.3.2 Soil amendment collection 

Eight materials were considered as potential soil amendments for reducing the 

phytoavailability of Cd in soils. These were: commercially available bentonite, which is an 

aluminium phyllosilicate, essentially impure clay consisting mostly montmorillonite (Theng, 

2012), zeolite powder which is a microporous aluminosilicate mineral commonly used as 

commercial adsorbent; charcoal; lignite; sawdust; biosoilds and two types of compost. Zeolite 

powder and bentonite were provided by Commodities NZ Ltd., Wellington. Charcoal was 

produced by Solid Energy New Zealand Ltd. Biosolids were collected from Kaikora sewage 

waste treatment plant, NZ. Solid Energy New Zealand Ltd. provided the lignite in powdered 

form; it originated from the New Vale open cast mine in Southland, NZ. Living Earth compost 

(municipal compost) was collected from Living Earth Ltd. (Christchurch branch, NZ) and 

Parkhouse compost was collected from Parkhouse Garden Supplies (Christchurch, New 

Zealand) outlets. Living Earth compost is produced from municipal green waste including 

lawn clippings, tree prunnings, and food waste, while Parkhouse compost is made from 

sawdust composted and animal residues (manure and carcasses). The sawdust was collected 
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from a local sawmill (Shands Road Saw mill Ltd., Rolleston, Christchurch, NZ) produced 

from Pinus radiata. After collection, samples were dried, ground and passed through a 2 mm 

Nylon sieve. Table 3.1 and Table 3.2 show the chemical and physical properties of the 

materials. 
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Table 3.1 Properties and macronutrient concentrations (total) of the materials used in the experiments 

Properti
es 

Ligni
te 

Living 
Earth 

Compo
st 

Parkhou
se 

compost 
Sawdu

st 
Charco

al 
Biosoli

ds 

Zeolit
e 

Powd
er 

Bentoni
te 

Pukekoh
e soil 

Levin 
soil 

pH 4.6 7.4 7.0 4.8 6.7 3.6 5.9 8.8 6.0 6.5 
CEC 

(Cmolc/k
g) 

45 45 (0) 47 (0) 9.3 (0) 3.3 (0) 11 (1) 21 (0) 44 (0) 22*(Hess
e, 1971) 

15* 
(Hesse
, 1971) 

C (%) 59 (1) 21 21 48 40 26 (0) <0.02 0.7 2.1* 
(Keeney 

and 
Nelson, 
1982) 

1.2* 
(Keene
y and 

Nelson
, 1982) 

N (%) 0.83 
(0.00) 

2.3 1.6 0.1 0.13 2.6 
(0.03) 

0.03 <0.02 0.23* 
(Keeney 

and 
Nelson, 
1982) 

0.13* 
(Keene
y and 

Nelson
, 1982) 

P 201 
(1.7) 

4178 
(37) 

5159 
(227) 

23 (1) 118 
(10) 

3805 
(66) 

<1 124 (9) 3414 
(26) 

2247 
(20) 

S 4942 
(94) 

2644 
(27) 

3610 
(70) 

49 (10) 58 (2) 6395 
(201) 

<1 768 (16) 491 (6) 296 (1) 

Ca 14216 
(314) 

24903 
(588) 

37416 
(1456) 

556 
(16) 

1505 
(39) 

4967 
(66) 

12084 
(89) 

17131 
(306) 

4147 
(117) 

7008 
(99) 

Mg 2496 
(40) 

4177 
(16) 

2186 
(34) 

158 (5) 458 
(21) 

2305(3
1) 

3663 
(29) 

6838 
(189) 

2400 
(95) 

2873 
(43) 

K 200 
(6) 

14938 
(33) 

5412 
(67) 

425 (1) 975 
(25) 

1564 
(16) 

10506 
(46) 

1621 
(265) 

1951 
(59) 

2242 
(54) 

Values are in mg/kg unless otherwise indicated. Standard errors are given in brackets (n=3). * Data from Hill 
Laboratories, NZ. 
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Table 3.2 Total trace element concentrations (mg/kg) of the materials used in the experiments 

Properties Lignite 

Living 
Earth 

Compost 
Parkhouse 

compost Sawdust Charcoal Biosolids 
Zeolite 
Powder Bentonite 

Pukekohe 
soil 

Levin 
soil 

B 36 (0) 20* 
(Wolf, 
1971) 

<1 5.9 (0.1) <1 14 (0) <1 17 (1) 33 (0) 9 (0) 

Cd 0.31 
(0.15) 

0.70 
(0.10) 

0.45 (0.10) 0.03 
(0.01) 

0.05 
(0.03) 

1.6 
(0.05) 

<0.01 0.93 
(0.29) 

1.5 (0.03) 0.47 
(0.01) 

Cu 2.8 
(0.2) 

59 (1) 25 (1) 37 (3) 2.4 (0.2) 555 (15) 1.9 
(0.0) 

25 (1) 65 (1) 20 (0.2) 

Zn 4.3 
(0.5) 

310 (11) 34 (2) 5.3 (0.3) 16 (2) 912 (16) 34 (2) 72 (2) 173 (1) 67 (1) 

Cr 2.1 
(0.1) 

28 (1) 37 (1) 63 (5) 0.74 
(0.04) 

33 (1) 0.71 
(0.1) 

4.2 (0.1) 40 (2) 15 (0.3) 

Ni 3.7 
(0.3) 

9.3 (1) 5.2 (0.1) <1 0.42 (0.1) 18 (0.5) <1 1.9 (0.1) 25 (1) 7.4 
(0.5) 

Pb 3.5 (1) 123 (3) 4.5 (1) <1 <1 101 (1) 4.5 (1) 5.9 (0.3) 55 (0.5) 7.4 
(0.1) 

Standard errors are given in brackets (n=3). * data from Hill Laboratories, NZ 

3.3.3 Sample analysis 

The pH values of the sieved samples were determined using a (Mettler Toledo pH meter in high 

purity water (18.2 MΩ resistivity; Heal Force® SMART Series, SPW Ultra-pure Water system, 

Model-PWUV) at a solid/water ratio of 1:2.5 (1:10 for composts, charcoals and lignite). The 

mixtures were left to equilibrate for 24 hr before measurement (Blakemore, 1987). 
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The Cation Exchange Capacity (CEC) of the materials was measured using the 0.01 M Silver 

Thiourea (AgTU) method (Blakemore, 1987). Briefly, 35 mL of 0.01 M AgTU was added to 0.70 

g of dry sample in a 50 mL centrifuge tube and then agitated in an end-over-end shaker for 16 

hours. Samples were centrifuged at 2000 rpm for 10 minutes. The supernatant was filtered through 

a Whatman no. 40 filter and analysed using an Inductively Coupled Plasma-Optical Emission 

Spectrometer (ICP-OES) (Varian 720 ES - USA). The total carbon and nitrogen were analysed in 

soil and compost samples using an Elementar Vario-Max CN Elementar analyser (Elementar ®, 

Germany).  

For both plants and soils, pseudo-total elemental analyses were carried out using microwave 

digestion in 8 mL of AristarTM nitric acid (± 69%), diluted with milliQ water to a volume of 25 

mL and filtered using Whatman no. 52 filter paper (pore size 7 µm). The concentrations of Cd 

together with other elements (Ca, Mg, K, P, S, B, Cu, Zn, Cr, Ni and Pb) were determined using 

inductively coupled plasma optical emission spectrometry (ICP-OES Varian 720 ES – USA) in 

soils (Kovács et al., 2000) and in plants (Gray et al., 1999a). Reference soil and plant material 

(International Soil analytical Exchange – ISE 921 and International Plant analytical Exchange IPE 

100) from Wageningen University, the Netherlands, were analysed for quality assurance. 

Recoverable concentrations were 91% - 108% of the certified values. 

An estimation of the phytoavailable fraction of Cd in the soils and soil amendments was 

determined using 0.05 M Ca(NO3)2 extraction (Black et al., 2012; Gray et al., 1999b). Significant 

correlations between concentrations of Cd in extractions that simulate soil solutions and plant 

(cereals, pasture and several vegetable species) Cd have been reported (Black et al., 2012; Gray 

et al., 1999b), in both spiked and unspiked soils. Briefly, 5 g of soil was mixed with 30 mL of 
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extractant in a centrifuge tube and a suspension was formed using a vortex mixer. The centrifuge 

tube was then agitated on an end-over-end shaker for 2 hours after which it was centrifuged at 

3000 rpm for 15 minutes. After filtering (Whatman no. 52 filter paper), the samples were analysed 

to determine the concentration of Cd and other elements using inductively coupled plasma optical 

emission spectrometry (ICP-OES Varian 720 ES – USA) in soils. Five blank samples were also 

run along with samples during the analysis following all steps. 

3.3.4 Batch Sorption Experiment 

The batch sorption experiment was conducted with eight soil amendments and two soils, at four 

different pHs (six for lignite) ranging from 3.4 to 7.5 and six Cd concentrations. Each treatment 

was replicated three times. Following the method of Simmler et al. (2013), we prepared spiked 

solutions in 0.05 M Ca(NO3)2 solution using Ca(NO3)2.4H2O (BDH AnalaR). We added 

CdSO4.8H2O (BDH AnalaR) in 0.05 M Ca(NO3)2 solution to achieve Cd concentrations of 0, 1.4, 

6.8, 13.2, 18.9 and 24.5 mg/L in 0.05 M Ca(NO3)2 solution. Five grams of soil or amendment was 

mixed with 30 ml of each of the spike and control (0 mg Cd/L) solutions. The pH was adjusted 

close to the target pH using HNO3 (made from BDH ARISTAR nitric acid 70%) or 2M KOH 

(BDH AnalaR KOH) to decrease or increase pH, respectively. Pilot studies were carried out with 

each material following the batch sorption experiment steps and by adding different amounts of 

HNO3 or KOH solution to determine how much of HNO3 or KOH solution would be needed to 

get a desired pH. 

The mixture was agitated using a vortex mixer for 3 minutes, shaken on an end-over-end shaker 

for two hours, and centrifuged at 10,000 rpm for 10 minutes. The supernatant was filtered through 

a Whatman no. 52 filter paper in to 30 mL vials and was analysed using Flame Emission Atomic 

Absorption Spectrophotometer (AAS). A parallel ICP-OES analysis was carried out on randomly 
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selected samples from the bulk samples to confirm the results of the AAS. The monitoring 

validated the Flame Emission Atomic Absorption Spectrophotometer’s performance in detecting 

low concentrations of Cd after Cd sorption by different soil amendments.  

The Cd adsorption coefficient (Kd) for the different soil amendments were determined according 

to the following equation (Simmler et al., 2013), 

 

Kd =
Cd sorbed by the soil or soil amendments (mg/kg)

Cd in solution (
mg
L )

 

=
(C1 − (C2 − C3)) ∗

0.03
0.005

(C2 − C3) 
 

where, Kd is the solid-solution distribution co-efficient. In the equation, C1 is the initial Cd 

concentration in solution (for our batch experiment they were 1.4, 6.8, 13.2, 18.9 and 24.5 mg/L), 

C2 is the Cd concentration in solution (mg/L) after equilibrium in a given batch (either with soil 

or soil amendments) with Cd spiking and C3 is the Cd solution concentration (mg/L) in the 

corresponding batch without Cd spiking (only with 0.05 M Ca(NO3)2 solution). 

3.3.5 Pot trial 

A pot experiment was conducted with lignite and one compost. The coarsely-sieved soils were 

mixed with the amendments using a concrete mixer to give the following treatments (d.w.): 

control, 1.05% (w/w) lignite (henceforth “1% lignite”), 2.63% (w/w) lignite (henceforth “2.5% 

lignite”, henceforth “lignite”), and 2.7% (w/w) compost (henceforth “2.5% compost”, henceforth 

“compost”). The soil amendments were added on a dry weight basis. Subsamples of each soil 

treatment were transferred into 2.5 L pots (approx. 3 kg dry weight) into which onion (Allium cepa 

L. var Pukekohe long keeper), spinach (Spinacia oleracea L.) and lettuce (Lactuca sativa L. var. 

Buttercrunch) were planted with five replicates for each treatment-vegetable combination. The 
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pots were placed in a randomised block design in the Plant Growth Unit (greenhouse) at Lincoln 

University, where they were watered daily to field capacity. Before sowing, the soils, mixed with 

different soil amendments, were kept for two weeks in the green house and watered daily to 

equilibrate. The nutrient status of the pots was maintained by periodic applications of Ruakura 

solution (Smith et al., 1983). A total of 0.25 g N/pot, 0.04 g P/pot and 0.23 g K/pot was applied 

together with other micro nutrients, those are present in Ruakura solution in each pot throughout 

the growing period in to two split applications, one at first week and other at the 4th week. 

The plants were grown for 6-10 weeks before harvest (February-April). Temperatures ranged 

between 9°C and 20°C during the nighttime (10 pm until 6 am) and between 14°C and 28°C during 

the daytime. At harvest, the edible portions of the plants were excised and the fresh weight 

determined. Both the edible portions and the residual material was washed thoroughly with 

deionised water and placed in a drying cabinet at 70oC until a constant weight was obtained. 

Samples were then ground and stored in airtight containers until chemical analyses. After harvest, 

soil was sampled from each of the spinach treatments, ground, and sieved to < 2 mm through a 

Nylon mesh. Soil pH and total and Ca(NO3)2-extractable Cd concentrations were determined as 

described above. 

The data was analysed using ANOVA with Fisher’s Least-Significant-Difference post-hoc test to 

compare means using Minitab® 17 (Minitab Inc, State College, Pennsylvania, USA). The level of 

significance was 0.05. 
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3.4 Results and discussion 

3.4.1 Batch sorption experiment  

The Figure 3.1 shows the Cd sorption, expressed as log (Kd) (sorbed / solution concentration 

coefficient), by the potential soil amendments in a solution of 1.4 mg/L Cd. Kd values for the 6.8, 

13.2, 18.9 and 24.5 mg/L Cd solutions were significantly lower (data not shown), indicating 

saturation of the binding sites on the materials tested. While a soil solution concentration of 1.4 

mg/L Cd is well above concentrations found in most agricultural soils, our results indicate that the 

Kd values obtained were still within the linear range for the materials tested and thus can be 

considered analogous to lower Cd concentrations.  
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Figure 3.1 The Kd values of Pukekohe and Levin soil and different soil amendments through a range of pH values. 

Error bars represent the standard error of the mean (n=3). 

At controlled pH values, the two composts and lignite had the greatest capacity to bind Cd across 

a range of pHs (Figure 3.1), which is consistent with the findings of similar batch sorption 

experiments (Simmler et al., 2013; Ulmanu et al., 2003). Charcoal and zeolite had low Kd values, 

which is consistent with the findings of Hanauer et al. (2012). Kelly et al. (2014) suggested that 

this may be because the charcoal sorbs more Cd in soil than in the batch experiments due to the 

longer contact time with the Cd in soil solution. The effectiveness of charcoal in sorbing Cd may 
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have been better if it were more weathered (Cui et al., 2014). Fard et al. (2011) reported that 

biosolids were an effective sorbent for Cd and that the Kd value for biosolids increased 

substantially with increasing pH. While biosolids may be an effective sorbent for highly 

contaminated soils, Simmler et al. (2013) reported that in agricultural soil, biosolids increased 

extractable Cd and increased plant Cd uptake. Our Kd values for bentonite were similar to those 

reported by Ulmanu et al. (2003). Sawdust, zeolite powder and charcoal had similar or only slightly 

higher Kd values than the Pukekohe and Levin soils. This indicates that these amendments are 

unlikely to provide a significant increase in Cd sorption in these soils.  

The Cd Kd values of all materials increased with increasing pH (Figure 3.1), consistent with other 

work carried out using lignite and soil (Simmler et al., 2013). The sensitivity of Kd to pH differed 

between materials. The binding of Cd by lignite was more sensitive to pH than the composts, with 

the composts sorbing more Cd at lower pH values. 

We chose the Living Earth compost and lignite for the pot trial because the batch experiment 

revealed that they had high Kd values over a range of solution pHs. Living Earth compost was 

selected over Parkhouse compost because of its lower cost (NZ$12 / tonne c.f. NZ$100 / tonne). 

3.4.2 Plant uptake of cadmium 

On a fresh weight basis, spinach grown in the Levin soil accumulated the highest shoot Cd 

concentration (0.10 mg/kg f.w., Figure 3.2) ), similar to the World Health Organisation’s and Food 

Standards of Australia and New Zealand’s limit for Cd in vegetables of 0.1 mg/kg (Bigdeli and 

Seilsepour, 2008a; FSANZ, 2015) and lower than the CODEX limit of 0.5 mg/kg f.w. (Chaney et 

al., 2009). This soil contained just 0.49 mg/kg Cd (Table 3.2), less than the lowest tier on the 

TFMS (Rys, 2011). The Cd concentrations in the shoots of lettuce grown on the same soil were 

significantly lower, as were the Cd concentrations in spinach and lettuce grown on the Pukekohe 
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soil. The Cd concentrations in the onions growing in both soils were significantly lower than the 

Cd concentrations found in spinach or lettuce. This is consistent with other findings (Gartler et al., 

2013) that also showed high Cd uptake by shoot material of a variety of commercially grown 

vegetables, including lettuce and spinach. Moreover, genetic variations between cultivars can 

result in significant differences in Cd uptake (Crews and Davies, 1985; Grant et al., 2008; Kabata-

Pendias and Mukherjee, 2007; McLaughlin et al., 1994a).  
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Figure 3.2 Average dry matter and fresh matter Cd concentrations in the edible portions of selected vegetables grown 

in control soil. The dotted line illustrates the World Health Organisation’s and Food Standards of Australia and New 

Zealand’s limit for Cd in vegetables (Bigdeli and Seilsepour, 2008a; FSANZ, 2015). Error bars represent the standard 

error of the mean (n=5). Values with the same letter are not significantly different. 

 

 
The 0.05 M Ca(NO3)2-extractable Cd concentrations in the two soils reflected the concentrations 

of Cd in the shoots of the lettuces grown in those soils. However, the concentrations of Cd in the 

shoots of spinach grown on the two soils do not reflect either the total or the extractable Cd 

concentrations in those soils (Table 3.1and Table 3.2). The higher Cd accumulation by vegetables 

grown in Levin soils compared to Pukekohe soils may be partially due to the lower Zn 
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concentrations in the Levin Soils. Many authors reported that increased soil Zn concentrations 

could reduce Cd accumulation by plants (Chaney et al., 2009; Grant et al., 1999b; Kabata-Pendias 

and Mukherjee, 2007; McKenna et al., 1992). Zinc also affects the transfer of Cd from plants to 

animals or humans. McKenna et al. (1992) reported that Cd in spinach was less bioavailable to 

quail than Cd in lettuce. They also report that increased Zn concentrations in lettuce and spinach 

Zn reduced the retention of Cd in kidney and liver.  

The compost treatment decreased Cd uptake by more than 20% in onions, spinach and lettuce in 

both the Pukekohe and Levin soils (Figure 3.3). This finding is consistent with reports of Cd 

decreases using other composts in highly contaminated soils (Tapia et al., 2010). This decrease is 

consistent with the addition of function groups that may bind Cd through cation exchange or 

specific adsorption (Simmler et al., 2013). The composts contained significant Zn concentrations 

(Table 3.2), which may have further reduced plant uptake as described above. In the Pukekohe 

soil, compost addition increased the pH from 6.0 to 6.2, which would likely reduce plant Cd uptake 

(Kabata-Pendias and Mukherjee, 2007). The compost had no significant effect on the pH of the 

Levin soil. 
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Figure 3.3 Changes in Cd concentrations (dry matter) in the edible portions of selected vegetables relative to the 

control. Error bars represent the standard error of the mean (n=5). Values for the same plant with the same letter are 

not significantly different. 

 

The 2.5% lignite treatment in the Levin soil significantly reduced the Cd concentrations in the 

plant shoots by at least 10%. However, there were no significant differences between the Cd 

concentrations in onion and spinach grown in treated and control Pukekohe soils. Moreover, the 

2.5% lignite treatment significantly increased the Cd concentration in the lettuce grown in the 

Pukekohe soil. The 1% lignite treatment of the Levin soil reduced the transfer of Cd from soil to 

the shoots of the vegetables by 28-34% when compared to the untreated soil (Figure 3.3). A similar 
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result was observed in the 1% lignite treated Pukekohe soil, with the exception of spinach, where 

no significant decrease was observed. Overall, the lower rate of lignite treatment appears to have 

been more effective in reducing Cd uptake by vegetables grown on these soils. In contrast, the 

higher rate may increase Cd uptake by lettuce. The difference between the two treatments may be 

due to the change in pH: the 2.5% lignite treatment decreased the pH significantly from 6.5 to 6.2 

in the Levin soil and 6.0 to 5.7 in Pukekohe soil, while the pH change caused by the 1% treatment 

was less (0.1 pH unit decrease in both soils). As shown in the batch sorption experiment, a pH 

decrease may result in less Cd being bound by the lignite and the soil particles (Figure 3.1).  

Overall, the compost treatment was the most effective and consistent in reducing the transfer of 

Cd from soil to vegetables in both the soils. This may be partly due to the high CEC of the compost, 

which enables Cd immobilisation through non-specific or specific adsorption retention of the Cd 

onto soil colloids (Kabata-Pendias and Mukherjee, 2007). However, as shown in the batch sorption 

experiment, the nature of the binding sites (c.f. inorganic: zeolite powder, bentonite; and organic: 

compost, biosolids) may also be important, especially under variable pH conditions. 

3.4.3 Practical implications of lignite or compost addition 

With the exception of lettuce growing in the Pukekohe soil and spinach growing in the Levin soil, 

the compost treatment did not significantly change the biomass of the vegetables grown in the pot 

trial, despite the additional nutrients provided by the compost. This is unsurprising given the high 

nutrient status of the soils prior to treatment (Table 3.1 and Table 3.2) and addition of nutrient 

solution in all pots. Importantly, none of the treatments caused a significant reduction in the 

biomass production of the plants in either soil (Table SI 3.1). No chlorosis or malformation of the 

plants was observed, which indicates that the use of these amendments are unlikely to cause 

fertility problems in the short-term.  
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Translating the rates of 1% and 2.5% into tonnes per hectare gives 33 and 81 t/ha respectively, 

assuming a ploughing depth of 0.25 m and a soil density of 1.3 g/cm3. The cost of adding 1% 

lignite @ NZ$350 per tonne is therefore $11,550 per hectare, which is prohibitively expensive. 

Compost on the other hand is more effective and the addition of 2.5% @ NZ$12 per tonne would 

cost just $975 per hectare. Moreover, the high N and P concentrations in the compost (Table 3.1) 

could reduce fertiliser costs and also reduce further Cd increase in the soils which could be 

expected with injudicious applications of fertiliser derived from phosphate rock. 

Living Earth compost (municipal compost) achieved significant and consistent reductions in plant 

shoot Cd concentrations in the three vegetables grown in the two soils without causing any 

reduction in plant growth or the uptake of other essential nutrients. In nutrient poor soils, compost 

could provide an additional source of important plant macronutrients, such as N, P and K while 

improving the structural properties and water retention characteristics of the soil. Reusing 

municipal compost reduces the expense of disposing this material into landfills. Monitoring is 

required to ensure that further contaminants are not added with the composts. Composts may be a 

low-cost means of extending the useful life of the soil before Cd concentrations proscribe food 

production. Composts are heterogeneous mixtures of highly variable composition. The 

composition of municipal compost varies seasonally and by location, and the performance of 

various composts in reducing plant uptake of Cd over the long-term is a fertile area for future 

research. Determination of the mechanisms by which composts immobilise Cd in the soil-plant 

system could elucidate how other composts might perform and how variability in the compost 

parent material might affect its ability to bind Cd.  
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Supplementary Information 
 
 
Table SI 3.1 Average edible biomass of the vegetables (g dry weight) 
Treatment Onion Lettuce Spinach 

Pukekohe soil 

Control 0.97(0.43)a 0.53(0.06)b 0.25(0.06)a 

Compost 1.22(0.62)a 1.02(0.23)a 0.35(0.14)a 

Lignite 1% 1.31(0.49)a 0.88(0.12)ab 0.35(0.14)a 

Lignite 2.5 % 1.54(0.58)a 0.59(0.06)b 0.26(0.08)a 

Levin soil 

Control 1.19(0.33)a 1.33(0.34)a 2.32(0.40)ab 

Compost 1.71(0.92)a 1.29(0.15)a 2.77(0.62)a 

Lignite 1% 0.54(0.18)a 1.52(0.46)a 1.83(0.24)ab 

Lignite 2.5% 2.01(1.64)a 1.19(0.19)a 1.50(0.31)b 

Values in brackets represent the standard error of the mean (n=5). Values in the same column for a soil with the 
same letter are not significantly different. 
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Table SI 3.2 pH and elemental concentrations in Ca(NO3)2 extracts of soil and soil amendments (mg/kg) 
Elements Lignite  Living 

Earth 
Compost 

Parkhouse 
compost 

Sawdust Charcoal 
(solid 
energy) 

Biosolids Zeolite 
Powder 

Bentonite Pukekohe soil Levin soil 

pH 3.4 6.7 6.4 3.7 6.5 3.4 4 7.5 5.1 6.2 
P 0.05 

(0.005) 
31 (0.68) 18 (0.26) 2.5 (0.18) 5.6 (2.6) 48 (1.22) 0.03 (0.02) 0.13 (0.01) 3.7 (0.15) 5.5 (0.16) 

S ND 280 (31) 515 (3.2) 0.19 (0.13) 145 (14) 832 (24) 2.15 (0.49) 319 (84) 43 (13) 11 (0.58) 
Mg 251 (3.6) 1262 

(116) 
655 (29) 38 (2.0) 64 (25) 354 (4.7) 113 (10) 38 (8.7) 115 (5.7) 93 (3.6) 

K 6.1 (0.19) 4677 
(325) 

1517 (64) 834 (2.0) 204 (2.7) 174 (7.0) 292 (24) 60 (15) 183 (13) 71 (18) 

Cd 0.0002 
(0.00008) 

0.004 
(0.0001) 

0.005 
(0.001) 

0.03 (0.01) 0.15 (0.15) 1.56 (0.06) 0.0007 
(0.0007) 

0.0009 
(0.0005) 

0.015 (0.002) 0.008 (0.002) 

Cu 0.018 
(0.002) 

0.06 
(0.004) 

0.033 (0.01) 3.0 (0.16) 1.7 (1.6) 10 (0.23) 0.02 
(0.003) 

0.0089 
(0.003) 

0.13 (0.015) 0.12 (0.006) 

Zn 0.36 (0.04) 0.044 
(0.01) 

0.09 (0.02) 0.80 (0.02) 6.04 (2.87) 57 (9.5) 0.28 (0.03)  0.019 
(0.002) 

0.37 (0.06) 0.18 (0.017) 

Cr 0.003 
(0.003) 

0.003 
(0.0001) 

0.005 
(0.001) 

0.88 (0.02) 0.005 
(0.002) 

0.09 (0.02) 0.001 
(0.0002) 

0.0014 
(0.0014) 

<0.0008 <0.0008 

Ni 0.003 
(0.003) 

0.037 
(0.036) 

0.064 
(0.004) 

0.006 
(0.004) 

0.026 
(0.006) 

5.2 (0.14) 0.003 
(0.00003) 

0.003 
(0.002) 

0.09 (0.01) 0.01 (0.001) 

Pb <0.007 0.038 
(0.03) 

0.07 (0.04) 0.009 
(0.0002) 

0.11 (0.06) 0.21 (0.01) 0.033 
(0.009) 

0.01 
(0.002) 

<0.007 <0.007 

ND= Not Detected. Values in brackets represent the standard error of the mean (n=3)  
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Figure S1 3.1 (A-F) Elemental change in spinach, lettuce and onion grown in Levin and Pukekohe 
soils treated by 2.5% compost compared to control soils. Error bars represent the standard error of the 
mean. (n=5). 
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Figure SI 3.2 (A-F) Elemental change in spinach, lettuce and onion grown in Levin and Pukekohe 
soils treated by 2.5% lignite compared to control soils. Error bars represent the standard error of the 
mean. (n=5). 
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Figure SI 3.3 (A-F) Elemental change in spinach, lettuce and onion grown in Levin and Pukekohe 
soils treated by 1% lignite compared to control soils. Error bars represent the standard error of the mean 
(n=5). 
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materials, all reduce Cd uptake by potatoes, however, this does not imply that all composts will 

do so. Further work is warranted to identify the key components of composts that result in 

reduced Cd uptake by plants.  

 

Keywords: compost; lime; cadmium contamination; Nadine;  
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4.2 Introduction 

Cadmium (Cd), a non-essential trace element (Kabata-Pendias and Mukherjee, 2007), has 

accumulated in many soils worldwide (Hooda, 2010; Kabata-Pendias and Pendias, 2001; 

Kabata-Pendias and Mukherjee, 2007). Humans are exposed to Cd through contaminated food 

products, which may in turn result in adverse health effects (Bernard, 2008; Dziubanek et al., 

2015; Fekete et al., 2001; Järup and Åkesson, 2009; Peters et al., 2010; Sigel et al., 2013). The 

concentration of Cd in the renal cortex of the kidneys increases with time (Kabata-Pendias and 

Mukherjee, 2007). 

Cadmium accumulates in agricultural soils from the repeated application of P fertilizers (Gray 

et al., 1999d; Loganathan et al., 2003; Pérez and Anderson, 2009; Roberts et al., 1994; Schipper 

et al., 2011; Taylor, 1997; Taylor et al., 2007) as well as industrial activities and the land 

application of biosolids (Kabata-Pendias and Mukherjee, 2007). Kim (2008) reported that Cd 

may be accumulating in NZ soils, with market garden soils accumulating more than other 

agricultural practices because of higher fertiliser inputs (Cadmium Working Group, 2011b). 

Cadmium in agricultural land is of concern in New Zealand and Australia as both countries 

historically manufactured superphosphate using phosphate rock from Nauru and Christmas 

Island containing relatively high Cd concentrations (>600 mg Cd/kg P) (Syers et al., 1986).  

Increased Cd in soil has been linked to increased uptake by plants (Dziubanek et al., 2015; 

Fekete et al., 2001; Krauss and Diez, 1997; Maclean, 1976; McLaughlin et al., 1997; Pérez and 

Anderson, 2009; Rai et al., 2015; Weggler-Beaton et al., 2000) and accumulation in the food 

chain (EFSA, 2012; Kim, 2008).  

Potatoes (Solanum tuberosum L.) are a staple food in many countries and can accumulate Cd 

at a concentrations (f.w.) of 0.002-0.3 mg/kg (Kabata-Pendias and Mukherjee, 2007; Kim, 

2008; McLaughlin et al., 1994a; McLaughlin et al., 1994b), which is equivalent to 0.01 to 1.5 

mg/kg dry weight (considering the moisture percentage is around 80%). A survey of potatoes 
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grown in the Waikato Region of NZ was conducted by Kim (2008), who reported that 1.5% of 

the potatoes exceeded the WHO and Australia and New Zealand Food Standard of 0.1 mg/kg 

fresh weight (f.w.) basis (Bigdeli and Seilsepour, 2008b; FSANZ, 2015). In Australia, 

McLaughlin et al. (1997) reported Cd concentrations more than double the guideline value 

(0.232 mg/kg f.w.) in potatoes in some samples. Per capita potato consumption rate in the USA, 

UK, USSR, Poland, Germany and New Zealand are 55, 105, 110, 149, 146 kg/year (Lisinska 

and Leszczynski, 1989) and 66 kg/year (Russell et al., 1999), respectively. In high potato 

consuming countries, even potato Cd concentrations below the permissible limits may also 

pose risk to human health (EFSA, 2012). Therefore, there is an imperative to reduce the transfer 

of Cd from soil to potato tubers. 

Soil properties significantly affect the uptake of Cd by plants (Kabata-Pendias and Mukherjee, 

2007; McLaughlin et al., 1994b; Merian, 1991). Soil properties can be modified by the use of 

soil amendments that have high numbers of functional groups that can reduce the 

phytoavailability of Cd (Pusz, 2007). Simmler et al. (2013) showed that certain organic 

amendments sorb significant amounts of Cd. In particular, composts have more than fourfold 

higher Cd sorption capacity than soils (Al Mamun et al., 2016). Increasing metal sorption in 

soil through the use of pH manipulation or introducing sorbing agents decreased the uptake of 

Cd by plants (Simmler et al., 2013; Valentinuzzi et al., 2015). Municipal composts reduced Cd 

uptake in spinach, lettuce and onion by up to 60% (Al Mamun et al., 2016). Only one type of 

compost (municipal compost, made from lawn clippings, tree pruning and food debris) was 

tested in the study. Other types of composts may be more or less effective in reducing Cd 

uptake. 

The use of composts may improve soil fertility and reduce the need for mineral fertilizers and 

associated Cd inputs. Composts improve the physical properties of soils by increasing total 

pore space, aggregate stability, nutrient and water holding capacity, erosion resistance, 
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temperature insulation and decreasing apparent soil density and also chemical properties of 

soils by modifying the soil pH (Sarwar et al., 2008; Shiralipour et al., 1992), cation exchange 

capacity, and soil nutrient content (Shiralipour et al., 1992). Composts can significantly 

increase the growth of plants (Barkoczi et al., 2008; Khan et al., 2007; Muhammad et al., 2007).  

 

Liming can either decrease or increase the transfer of Cd from soil to plants in field conditions 

(Chaney et al., 2009; Hong et al., 2007; Maier et al., 1997; Tiller et al., 1997). Maier et al. 

(2002) observed that liming effectively reduced the accumulation of Cd in potato tubers in 

three soils where the initial pH of the soils ranged between 4.1-4.7. Maier et al. (1997) reported 

that when calcite lime was applied at a rate of 20 t/ha in field conditions and potato was grown, 

liming of the soil did not reduce the concentration of Cd in potato tuber. In some cases liming 

increased plant Cd-uptake even though soil pH increased by 2 units. Shaheen and Rinklebe 

(2015) observed that liming the soil decreased the phytoavailable and exchangeable Cd in soil 

but increased concentration of Cd in rapeseed in the field trial. The increase in Cd uptake may 

be due to an induced Zn deficiency at high soil pH, which persuades the plant to produce more 

root Zn transport proteins to obtain adequate soil Zn to check the Zn deficiency stress (Chaney 

et al., 2009). As the Zn transport proteins also accumulate Cd, so increased Zn transporting 

protein production by plants may cause even higher Cd accumulation during Zn deficiency 

stress in plants (Hart et al., 2002). Moreover, liming can create an imbalance among the nutrient 

elements in soil specifically through significantly decreasing the concentration of essential 

nutrient elements K, Mn, B and S (Maier et al., 2002). 

We aimed to determine the potential of various composts, and shredded corn stover at 2.5% 

and 5% (w/w), to reduce the transfer of Cd from a soil (containing 1.5 mg/kg Cd) to potato 

(var. ‘Nadine’). We sought to compare the effect of compost with lime added at 0.6% and 1.3% 
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(w/w). Furthermore, we aimed to elucidate the effect of these soil amendments on the growth 

and nutrient uptake of potato.  

4.3 Materials and Methods 

4.3.1 Soils 

We collected soil from a market garden in Pukekohe (37o13’18.92”S 174o52’5.94”E) in the 

North Island of NZ. Samples were collected evenly across an area of 30 m2 within the plough 

depth (0-0.25 m), and large stones and roots were removed manually. Soils were homogenised 

using a spade. A sub-sample was dried in an oven at 70°C for one week, ground, and passed 

through a 2 mm plastic sieve before analysis. The Table 4.1 shows the soil properties. 
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Table 4.1 Physico-chemical Properties of soil and soil amendments (includes total elements digested by conc. 

HNO3). Standard errors are given in brackets (n=3) 

Properties SC MC MS SD PG Pukekohe soil 
Source A local farm 

at Leeston, 
Christchurch, 
New Zealand 

Living Earth 
Ltd, 

Christchurch, 
New Zealand 

Parkhouse Garden Supplies Ltd, Christchurch, 
New Zealand 

From a 
commercial 
vegetable 
garden at 

Pukekohe, 
Auckland, 

New Zealand 
37o13’18.92”S 
174o52’5.94”E 

Raw ingredients Corn stover Municipal 
compost 

originated 
from 

municipal 
green waste 
including 

lawn 
mowing and 
tree prunning 

Residual 
compost 

waste 
generated by 

the 
mushroom 
production 

industry 

Animal residues 
and sawdust 

pig manure 
added with 

sawdust 

soil 

pH (H2O) 5.5 (0.2) 7.3 (0.06) 6.8 (0.01) 7.1 (0.2) 7.0 (0.01) 5.9 (0.02) 
CEC 

(Cmolc/kg) 
11 (1) 46 (2) 42 (3) 46 (2) 44 (1) 21 (2) 

Moisture (%) 30 (2) 24 (3) 73 (4) 42 (3) 42 (2) 25 (2) 
C (%) 47 (2) 19 (2) 34 (3) 20 (2) 41 (3) 2.7 (0.3) 
N (%) 0.09 (0.02) 2.0 (0.3) 2.0 1.4 (0.2) 1.2 0.24 (0.01) 

P (mg/kg) 341 (16) 4120 (40) 4860 (116) 4879 (198) 6559 (357) 3424 (31) 
S (mg/kg) 642 (13) 2547 (110) 16352 (74) 3725 (140) 2618 (61) 498 (15) 

Ca (mg/kg) 1907 (48) 25132 (434) 67427 (1131) 37159(981) 10372 (298) 4170 (149) 
Mg (mg/kg) 503 (6.4) 4217 (150) 2957 (100) 2431 (122) 2790 (52) 2464 (91) 
K (mg/kg) 19666 (13) 14351 (149) 7306 (91) 5119 (172) 5882 (106) 1995 (53) 
B (mg/kg) <0.0003 18 (2) 13 (0.07) <0.0003 20 (0.3) 28 (4) 

Cd (mg/kg) <0.00026 0.68 (0.1) 0.24 (0.07) 0.47 (0.1) 0.16 (0.027) 1.45 (0.03) 
Cu (mg/kg) 2.3 (0.35) 57 (1) 68 (2.6) 27 (1) 296 (0.43) 64 (1) 
Zn (mg/kg) 18 (1.9) 319 (20) 230 (2.5) 35 (2) 304 (13) 174 (4) 
Cr (mg/kg) 1.02 (0.60) 28 (1) 18 (0.10) 39 (1) 3.0 (0.48) 42 (1) 
Ni (mg/kg) 0.89 (0.20) 10 (2) 4 (0.2) 6 (2) 2.4 (0.03) 21 (1) 

 

4.3.2 Composts and lime 

We used four commercially available composts, made from contrasting raw materials (Table 

4.1): municipal green waste compost (MC), animal offal and sawdust compost (SD), mushroom 

industry residue compost (MS) and pig manure and sawdust compost (PG). The effect of 
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shredded corn stover (SC) and lime (LM) were also considered. The lab grade dry lime powder 

(calcium carbonate) was used (AnalaR NORMAPUR, VWR®, PROLABO®, Belgium). 

4.3.3 Treatments 

Soils were mixed with specific treatments: the composts and shredded corn stover at (w/w) 

application rates of 0% (control), 2.5% (1) and 5 % (2) and lime at a rate of 0.6% (1) and 1.3% 

(2). All treatments were replicated three times. Liming rates were chosen following 

Valentinuzzi et al. (2015), who demonstrated these rates effectively reduced the Cd uptake by 

lupin (Lupinus albus L.). The pots were placed in a greenhouse in a randomised block design, 

where the temperature range varied between 15.6-27.4°C over the growing period. 

4.3.4 Pot trial 

Seed potatoes (Solanum tuberosum, 'Nadine' variety) were purchased from a seed supplier 

(Morton and Smith DWE, Christchurch, NZ). After a seven day incubation in covered trays, 

the sprouted potatoes were planted on 18th August 2014. Water was supplied every day in the 

morning up to field capacity and weeds were removed manually. The potatoes were harvested 

when the plants were showing symptoms of shoot dieback. For the SC treated soils, this 

occurred 75 days after sowing. All other treatments were harvested 60 days after planting. No 

fertilisers were applied before or during the growth period.  

Soil samples were collected from each pot at the time of harvesting potatoes. Care was taken 

to avoid scratching of potato tubers. The aboveground portions and the tubers were separated 

and washed three times with tap water followed by three washings with de-ionised water. 

Following drying with paper towels, the fresh weights of the tubers were obtained.  

The potato skin (1-2 mm) was separated using a clean stainless steel knife and the potato was 

cut in to small pieces to facilitate grinding. The aboveground portions were separated in to 

shoots and leaves. All of plant parts were kept in labelled paper envelopes and left in an oven 
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at 70°C until a constant weight was obtained (approximately one week). Paper envelopes were 

immediately transferred in sealed polythene sacks to prevent absorption of moisture from the 

air. After weighing and grinding, samples were placed in sealed plastic vials and analyzed in 

the laboratory.  

4.3.5 Chemical analysis 

Soil pH was determined using 10 g of soil and 25 mL of deionised water (18.2 MΩ resistivity; 

Heal Force® SMART Series, SPW Ultra-pure Water system, Model-PWUV) at a solid/water 

ratio of 1:2.5 (1:10 for composts and shredded corn stover). The mixture was shaken, left to 

equilibrate for 24 hr before measurement and shaken again before determination with a pH 

meter (Mettler Toledo Seven Easy) (Blakemore, 1987). We measured the Cation Exchange 

Capacity (CEC) using the 0.01 M Silver Thiourea (AgTU) method (Blakemore, 1987). An 

Elementar Vario-Max CN Elementar analyser (Elementar ®, Germany) was used to analyse 

the total carbon and nitrogen content in the soil and compost samples.  

The phytoavailable fraction of Cd in the soils was determined using a modified 0.05 M 

Ca(NO3)2 extraction based on Black et al. (2012), Gray et al. (1999c) and Gray et al. (1999b). 

Briefly, in a centrifuge tube, 5 g of soil was mixed with 30 mL of extractant using a vortex 

mixer and a suspension was formed. The centrifuge tube was agitated for 2 hours using an end-

over-end shaker and then centrifuged at 3000 rpm for 15 minutes. The supernatant was filtered 

through a Whatman no. 52 filter paper and frozen until analysis. 

Pseudo-total elemental analyses of plants, were carried out using microwave digestion 

(MARSXPRESS, CEM Corporation, USA) of 0.5 g of plant sample in 8 mL of AristarTM nitric 

acid (± 69%) and filtered by means of Whatman no. 52 filter paper (pore size 7 µm) after 

dilution with milliQ water to a volume of 10 mL. For soils, a Block Digest method was used 

following the procedure of Kovács et al. (2000). Certified Reference Materials (CRMs) for soil 
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(International Soil analytical Exchange - ISE 921) and plant (International Plant analytical 

Exchange IPE 100) from Wageningen University, the Netherlands, samples were also digested. 

 

Concentrations of Cd, Ca, Mg, K, S, B, Cu, P, Pb, Zn, Cr, Ni and Zn were determined using 

Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES Varian 720 ES - USA) 

in soils (Kovács et al., 2000) and in plants (Simmler et al., 2013; Valentinuzzi et al., 2015). 

Extraction and digestion solution and method blanks were analysed in triplicate as part of 

standard quality control procedure for the analysis and were below the ICP-OES’s detection 

limit for all metals. Recoverable concentrations of the CRMs were within 93% - 110% of the 

certified values. 

4.3.6 Statistical analysis 

We used Minitab® 17 (Minitab Inc, State College, Pennsylvania, USA) and Microsoft Excel 

2013 to analyse data. The ANOVA with Fisher’s Least-Significance-Difference post-hoc test 

was used to assess the effects of different treatments. The significance level for all statistical 

analyses was P<0.05. 

4.4 Results 

4.4.1 Effect of amendments on the Cd concentration in peeled potato tubers 

The Cd concentration in the peeled tubers ranged from 0.01-0.04 mg/kg dry weight (d.w.) 

(Figure 4.1), which is at the lower end of the range 0.01-1.50 mg/kg d.w. reported in the 

literature (Kabata-Pendias and Mukherjee, 2007; McLaughlin et al., 1994a; McLaughlin et al., 

1994b). The moisture content in our potatoes was 82% (w/w). Therefore, the fresh weight Cd 

concentrations of the tubers ranged from 0.002 – 0.008 mg/kg. This Cd concentration is well 

below the World Health Organisation’s and Food Standards of Australia and New Zealand’s 
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limit for Cd in vegetables of 0.1 mg/kg (f.w.) (Bigdeli and Seilsepour, 2008b; FSANZ, 2015) 

and the Codex limit of 0.1 mg/kg f.w. for potatoes (Codex, 2011; Codex, 2015).  

All the composts significantly decreased (P<0.05) the concentration of Cd in peeled tubers (29-

73%) compared to the control (Figure 4.1). The greatest reduction in the Cd concentration 

compared to the control was achieved by the SC treatment (71%). Potatoes grown in PG, MS, 

SD and MC treated soils accumulated less Cd (58-66%, 46-63%, 52-53% and 29-49%, 

respectively) in the potato flesh compared to the control. The 0.6% and 1.3% lime treatments 

decreased Cd concentration in the peeled tubers (by 43% - 54%) as well as the Ca(NO3)2-

extractable Cd (by 23-85%). 

 

Figure 4.1 The cadmium concentration in potato tubers (dry weight basis). The error bars represent the standard 

error of the mean (n = 3). Values with the same letters are not significantly different. (Control, no treatment in soil; 

LM 1 and LM 2, lime 0.6 and 1.3%, respectively; MC 1 and MC 2: municipal green waste compost 2.5 and 5%, respectively; 

MS 1 and MS 2, mushroom industry residue compost 2.5 and 5%, respectively; PG 1 and PG 2, pig manure composted with 

sawdust 2.5 and 5%, respectively; SC 1 and SC 2, shredded corn stover 2.5 and 5%, respectively; SD 1 and SD 2, sawdust 

composted with animal offal 2.5 and 5%, respectively.) 
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4.4.2 Cadmium in potato skins and shoots 

The Cd concentration in potato skins varied from 0.02 to 0.09 mg/kg d.w. (Figure 4.2). All 

treatments in soil significantly decreased the concentration of Cd in potato skins except the 

potato skins grown in MC1 and PG2 treated soils (Figure 4.2). The greatest reduction (85%) in 

the potato skin Cd concentration was observed in SC2 treated soils followed by SC1 (70% 

reduction), SD2 (63% reduction) and L1 (62% reduction) treated soils. No significant 

difference was observed in the concentration of Cd in potato skin grown in the two rates of soil 

amendments except MC treated soils where potato skins of potato grown in MC2 treated soils 

had significantly less Cd concentration than that of MC1 treated soils. 

The Cd concentrations in the potato stems ranged from 0.18 – 0.94 mg/kg d.w. (Table S1). 

Both the rates of MC, SD and 2.5 % rate of PG significantly reduced the concentration of Cd 

in potato stem (by 62%, 66%, 62%, 67% and 66%, respectively). The Cd concentrations in the 

potato leaves ranged from 0.11 – 0.27 mg/kg d.w. (Table S2). Both the rates of SC and LM 1 

significantly decreased the concentration of Cd in potato leaves by 52%, 56% and 51%, 

respectively.  
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Figure 4.2 The cadmium concentration in potato skins (dry weight). Bars represent the standard error of the mean 

(n=3). Values with the same letters are not significantly different. Control, no treatment in soil; LM 1 and LM 2, lime 

0.6 and 1.3%, respectively; MC 1 and MC 2: municipal green waste compost 2.5 and 5%, respectively; MS 1 and MS 2, 

mushroom industry residue compost 2.5 and 5%, respectively; PG 1 and PG 2, pig manure composted with sawdust 2.5 and 

5%, respectively; SC 1 and SC 2, shredded corn stover 2.5 and 5%, respectively; SD 1 and SD 2, sawdust composted with 

animal offal 2.5 and 5%, respectively.  

 

 

4.4.3 Concentrations of other elements 

Unlike Cd, the treatments had no consistent effect on the other elements in either the tubers, 

peel, stems or leaves (Table 4.2-4.5, Table S1 4.1 and 4.2). The concentration of B decreased 

in potato tubers grown in soils treated with both the rates of LM and SC (Table 4.3). The Zn 

concentration in potato tubers ranged from 16.7 to 23.0 mg/kg and no consistent differences 

were observed for Zn accumulation in potato tuber compared to control. There were no 

significant differences in the concentration of P in either the potato tubers, skins, and stems. 
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Phosphorous in potato leaves increased in the SC treatments. All the treatments reduced the Zn 

and Fe concentrations in potato skins. 
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Table 4.2 Elemental composition (macronutrients) of peeled potato tubers (mg/kg). Standard errors are given in 

brackets (n=3). Values in the same column with the same letters are not significantly different 

Treatment % C %N Ca K Mg P*ns S 
Control 40.59 

(0.193)AB 
0.83 

(0.075)B 
419 (65)ABC 20811 

(424)BCD 
1268 

(72)BCD 
3356 (179) 1248 (71)EF 

LM 1 40.34 
(0.189)ABC 

0.85 
(0.034)B 

436 (42)AB 19428 
(526)CD 

1134 (29)D 3118 (116) 1338 
(60)CDEF 

LM 2 40.70 
(0.197)A 

0.96 
(0.062)B 

518 (66)A 18791 
(867)D 

1137 (28)D 3088 (170) 1366 
(56)CDEF 

MC 1 40.24 
(0.257)ABC 

0.91 
(0.022)B 

289 (15)CD 21565 
(705)ABC 

1253 
(39)BCD 

3245 (60) 1214 (37)F 

MC 2 39.98 
(0.099)C 

0.98 
(0.034)B 

258 (22)D 21640 
(123)ABC 

1217 (19)CD 3163 (111) 1275 
(38)DEF 

SD 1 40.07 
(0.099)C 

0.86 
(0.065)B 

307 (18)BCD 20414 
(694)BCD 

1227 (17)CD 3284 (21) 1295 
(60)DEF 

SD 2 40.33 
(0.046)ABC 

0.93 
(0.040)B 

308 (53)BCD 21229 
(11081)ABC 

1330 
(37)ABC 

3264 (267) 1405 
(48)CDEF 

MS 1 40.19 
(0.157)BC 

0.88 
(0.108)B 

418 (55)ABC 20011 
(185)CD 

1201 (60)CD 3026 (88) 1539 
(83)BCD 

MS 2 40.25 
(0.083)ABC 

0.85 
(0.031)B 

320 (23)BCD 21600 
(1476)ABC 

1294 (34)BC 3014 (43) 1593 (53)BC 

PG 1 40.63 
(0.109)AB 

0.95 
(0.035)B 

298 (33)CD 22611 
(757)AB 

1473 (18)A 3397 (12) 1531 
(24)BCDE 

PG 2 40.65 
(0.255)AB 

1.01 
(0.104)B 

420 (57)ABC 20464 
(414)BCD 

1386 (69)AB 3082 (61) 1452 
(100)CDEF 

SC 1 39.37 
(0.165)D 

1.40 
(0.152)A 

326 (48)BCD 21622 
(988)ABC 

1143 (101)D 3134 (87) 1757 
(209)AB 

SC 2 39.44 
(0.161)D 

1.55 
(0.292)A 

376 (49)BCD 23203 
(1039)A 

1239 (36)CD 3327 (340) 1900 (206)A 

*ns=no significant difference, Control, no treatment in soil; LM 1 and LM 2, lime 0.6 and 1.3%, respectively; MC 1 and MC 
2: municipal green waste compost 2.5 and 5%, respectively; MS 1 and MS 2, mushroom industry residue compost 2.5 and 5%, 
respectively; PG 1 and PG 2, pig manure composted with sawdust 2.5 and 5%, respectively; SC 1 and SC 2, shredded corn 
stover 2.5 and 5%, respectively; SD 1 and SD 2, sawdust composted with animal offal 2.5 and 5%, respectively.  
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Table 4.3 Elemental composition (micro nutrients and others) of peeled potato tubers (mg/kg). Standard errors are 

given in brackets (n=3). Values in the same column with the same letters are not significantly different 

Treatmen
ts 

B Cr Cu Fe Mn Mo Na Zn 

Control 7.40 
(0.04)A 

0.624 
(0.04)A 

6.1 (0.3)AB 23 (2)AB 6.96 
(0.7)ABC 

0.6 (0.05)D 87 (16)CD 20 (2)ABC 

LM 1 6.37 
(0.2)BC 

0.484 
(0.2)ABC 

5.9 (0.2)B 19 (0.8)B 6.04 (0.2)C 2.1 (0.1)A 110 
(13)ABCD 

18 
(0.4)BCD 

LM 2 6.43 
(0.04)BC 

0.463 
(0.06)ABC 

6.2 (0.4)AB 19 (1)B 5.95 (0.1)C 2.1 (0.2)A 83 (4)D 18 
(0.8)BCD 

MC 1 7.33 (0.3)A 0.266 
(0.02)BCD 

6.4 (0.4)AB 21 (0.2)B 6.7 
(0.2)ABC 

1.4 (0.2)B 153 (1)ABC 19 (1)BCD 

MC 2 6.72 
(0.3)ABC 

0.469 
(0.1)ABC 

6.6 (0.3)AB 21 (0.1)AB 6.3 (0.1)C 1.3 (0.2)BC 173 (34)A 19 
(0.6)BCD 

SD 1 6.80 
(0.1)ABC 

0.467 
(0.2)ABC 

5.8 (0.2)B 20 (1)B 6.8 
(0.2)ABC 

0.63 
(0.1)CD 

98 (20)BCD 17 (0.3)CD 

SD 2 6.89 
(0.2)AB 

0.495 
(0.07)AB 

6.6 (0.2)AB 23 (0.3)AB 7.5 (0.2)AB 1.2 (0.1)BC 152 
(47)ABC 

18 (1)BCD 

MS 1 6.66 
(0.4)ABC 

0.212 
(0.04)D 

6.8 (0.5)AB 19 (0.7)B 6.4 (0.4)BC 0.6 (0.04)D 140 
(31)ABCD 

17 (0.4)CD 

MS 2 6.61 
(0.3)ABC 

0.18 (0.1)D 6.3 (0.2)AB 18 (0.9)B 6.0 (0.2)C 0.57 (0.2)D 135 
(25)ABCD 

16 (0.5)D 

PG 1 6.74 
(0.1)ABC 

0.169 
(0.1)D 

6.1 (0.1)AB 21 (0.6)B 7.0 
(0.1)ABC 

0.8 
(0.07)BCD 

110 
(10)ABCD 

18 (0.3)CD 

PG 2 6.95 
(0.3)AB 

0.238 
(0.03)CD 

6.1 (0.4)AB 20 (0.7)B 6.4 (0.3)BC 0.9 
(0.02)BCD 

158 (21)AB 17 (1)CD 

SC 1 5.99 
(0.3)CD 

0.105 
(0.02)D 

7.6 (0.5)A 21 (2.5)AB 6.7 
(0.9)ABC 

1.1 
(0.5)BCD 

89 (12)CD 22 (2)AB 

SC 2 5.39 (0.4)D 0.241 
(0.1)CD 

7.4 (1.5)AB 27 (5)A 7.6 (0.6)A 1.4 (0.5)B 120 
(14)ABCD 

23 (3)A 

Control, no treatment in soil; LM 1 and LM 2, lime 0.6 and 1.3%, respectively; MC 1 and MC 2: municipal green waste 
compost 2.5 and 5%, respectively; MS 1 and MS 2, mushroom industry residue compost 2.5 and 5%, respectively; PG 1 and 
PG 2, pig manure composted with sawdust 2.5 and 5%, respectively; SC 1 and SC 2, shredded corn stover 2.5 and 5%, 
respectively; SD 1 and SD 2, sawdust composted with animal offal 2.5 and 5%, respectively.  
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Table 4.4 Macro nutrient elements (mg/kg) of potato skin/peel grown under different treatments. Standard errors 

are given in brackets (n=3). Values in the same column with the same letters are not significantly different 

Treatments Ca K Mg P*ns S 

Control 1286 (155)B 37687 (1278)A 2063 (146)AB 5327 (269) 1647 (150)ABC 

LM 1 1690 (224)AB 27967 (921)E 1504 (72)B 4540 (176) 1394 (55)C 

LM 2 1909 (19)AB 30785 (1623)CDE 1733 (61)B 5000 (209) 1607 (82)BC 

MC 1 925 (114)B 35960 (1956)AB 1811 (46)B 5269 (327) 1388 (14)C 

MC 2 859 (17)B 35257 (614)ABC 1750 (74)B 5058 (96) 1452 (76)C 

SD 1 1018 (166)B 33589 (1071)ABCD 1711 (115)B 5298 (373) 1482 (101)C 

SD 2 1232 (46)B 31632 (2983)BCDE 2039 (98)AB 5075 (565) 1676 (64)ABC 

MS 1 1252 (79)B 32001 (1101)BCDE 1801 (52)B 4972 (128) 2129 (25)A 

MS 2 1084 (75)B 32503 (1229)BCDE 1601 (50)B 4594 (109) 1809 (39)ABC 

PG 1 890 (79)B 32041 (1624)BCDE 1784 (89)B 5177 (172) 1435 (113)C 

PG 2 3540 (23)A 34002 (1104)ABCD 2534 (730)A 4946 (195) 2045 (474)AB 

SC 1 840 (37)B 34760 (1914)ABCD 1498 (226)B 4496 (522) 1546 (238)C 

SC 2 931 (79)B 30190 (2899)DE 1463 (72)B 4401 (723) 1789 (175)ABC 

*ns=no significant difference, Control, no treatment in soil; LM 1 and LM 2, lime 0.6 and 1.3%, respectively; MC 1 and MC 
2: municipal green waste compost 2.5 and 5%, respectively; MS 1 and MS 2, mushroom industry residue compost 2.5 and 5%, 
respectively; PG 1 and PG 2, pig manure composted with sawdust 2.5 and 5%, respectively; SC 1 and SC 2, shredded corn 
stover 2.5 and 5%, respectively; SD 1 and SD 2, sawdust composted with animal offal 2.5 and 5%, respectively. 
 
 

 

 

 

 

 

 

 

 

 



 
 
 

84 
 

 

Table 4.5 Micro nutrient elements (mg/kg) and Cr of potato skin (peel) grown under different treatments. Standard 

errors are given in brackets (n=3). Values in the same column with the same letters are not significantly different 

Treatments B Cr Cu Fe Mn Mo Zn 

Control 15.3 (1)A 0.4 (0.1)A 7.5 (0.4)BC 353 (115)A 20 (5)A 0.6 (0.1)CD 42 (10)A 

LM 1 9.8 (0)DE 0.1 (0.03)C 7.0 (0.1)C 77 (18)B 7 (0.1)B 1.9 (0.1)A 22 (2)B 

LM 2 11.6 (1)BCDE 0.2 (0.02)B 7.9 (0.6)BC 53 (3)B 8 (0.4)B 1.9 (0.1)A 24 (1)B 

MC 1 13 (1)ABC 0.1 (0.03)C 8.8 (0.5)ABC 119 (33)B 9 (1.4)B 1.1 (0.1)BC 25 (3)B 

MC 2 12.6 (0)BC 0.1 (0.02)C 9.5 (0.3)AB 98 (32)B 9 (1.3)B 1.1 (0.1)BC 25 (2)B 

SD 1 12.7 (1)BC 0.1 (0.02)C 8.2 (0.7)BC 98 (22)B 10 (0.8)B 0.5 (0.1)CD 22 (2)B 

SD 2 12.1 (1)BCD 0.2 (0.03)B 8.5 (0.5)ABC 109 (11)B 10 (1.5)B 1.1 (0.1)BC 22 (3)B 

MS 1 11.9 (1)BCDE 0.1 (0.03)C 9.3 (0.4)ABC 133 (42)B 10 (1)B 0.5 (0.1)CD 20 (0)B 

MS 2 10.8 (1)CDE 0.1 (0.01)C 8.8 (0.5)ABC 50 (8)B 7 (0.8)B 0.4 (0.1)D 19 (0)B 

PG 1 11.1 (0)BCDE 0.1 (0.02)C 8.6 (0.1)ABC 67 (9)B 7 (0.1)B 0.7 (0.1)CD 20 (1)B 

PG 2 13.5 (0)AB 0.2 
(0.08)BC 

9.6 (1.1)AB 161 (73)B 12 (2.2)B 0.8 (0.2)BCD 24 (3)B 

SC 1 11.5 (2)BCDE 0.1 (0.01)C 9 (1.4)ABC 49 (11)B 8 (3)B 1.1 (0.4)BC 28 (5)B 

SC 2 9.6 (1)E 0.1 (0.01)C 10.7 (1.9)A 40 (12)B 9 (0.3)B 1.4 (0.5)AB 24 (3)B 

Control, no treatment in soil; LM 1 and LM 2, lime 0.6 and 1.3%, respectively; MC 1 and MC 2: municipal green waste 
compost 2.5 and 5%, respectively; MS 1 and MS 2, mushroom industry residue compost 2.5 and 5%, respectively; PG 1 and 
PG 2, pig manure composted with sawdust 2.5 and 5%, respectively; SC 1 and SC 2, shredded corn stover 2.5 and 5%, 
respectively; SD 1 and SD 2, sawdust composted with animal offal 2.5 and 5%, respectively.  
 
 

4.4.4 Effect of treatments on potato growth 

The Figure 4.3 and Figure 4.4 show that composts significantly increased the growth of both 

tubers and shoots. The LM treatments significantly increased the tuber growth but decreased 

the shoot growth. SC decreased potato tuber and shoot growth. An unpleasant odour emanated 

from the SC soil, indicating that it may have turned anaerobic after approximately three weeks, 

which may explain the poor yield. The highest tuber growth was observed in MC2 treated soils 

(168% increase) followed by PG1 (112% increase), MS2 (109% increase), MC1 (106% 

increase), MS1 (102%), PG2 (67%), SD2 (63%), SD1 (47%), LM1 (45%) and LM2 (33%) 
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treated soils. The addition of SC1 and SC2 decreased potato growth by 50% and 60%, 

respectively.  

 

Figure 4.3 Tuber biomass (including skins). Bars represent the standard error of the mean (n=3). Control, no 

treatment in soil; LM 1 and LM 2, lime 0.6 and 1.3%, respectively; MC 1 and MC 2: municipal green waste compost 2.5 and 

5%, respectively; MS 1 and MS 2, mushroom industry residue compost 2.5 and 5%, respectively; PG 1 and PG 2, pig manure 

composted with sawdust 2.5 and 5%, respectively; SC 1 and SC 2, shredded corn stover 2.5 and 5%, respectively; SD 1 and 

SD 2, sawdust composted with animal offal 2.5 and 5%, respectively.   
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Figure 4.4 Shoot biomass (d.w.). Bars represent the standard error of the mean (n=3). Values with the same letters 

are not significantly different. Control, no treatment in soil; LM 1 and LM 2, lime 0.6 and 1.3%, respectively; MC 1 and 

MC 2: municipal green waste compost 2.5 and 5%, respectively; MS 1 and MS 2, mushroom industry residue compost 2.5 and 

5%, respectively; PG 1 and PG 2, pig manure composted with sawdust 2.5 and 5%, respectively; SC 1 and SC 2, shredded 

corn stover 2.5 and 5%, respectively; SD 1 and SD 2, sawdust composted with animal offal 2.5 and 5%, respectively.  

 

 

4.4.5 Effect of treatments on soil properties 

The Table 4.6 shows that all treatments increased pH except SD1, SD2, PG2, and SC1, which 

had no significant effect on pH. The LM treatments resulted in by far the largest pH increase 

by 1.0 – 1.2 pH units respectively, whereas the composts either had no effect or result in a 

slight increase (<0.4 pH units). All the composts significantly increased C & N with a small 

increase in the C: N ratio in all treatments.  

All of the organic amendments reduced Ca(NO3)2-extractable Cd in the soil, except PG2 (Table 

4.7). The effect of the composts on the Ca(NO3)2-extractable concentrations of other elements 
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was variable, with the changes reflecting the composition of the composts (Table 4.1). The LM 

treatments caused an approximately  10-fold decrease in Ca(NO3)2-extractable Zn, whereas the 

effect of the composts was smaller and in many cases not significant (Table 4.7) 

 

Table 4.6 Soil pH, total C and N (%), and 0.05 M Ca(NO3)2 extracted macro nutrient elements (mg/kg). Standard 

errors are given in brackets (n=3). Values in the same column with the same letters are not significantly different 

Treatment
s 

pH % C %N C/N  K Mg P S 

Control 6.04 (0.02)GH 2.29 
(0.02)G 

0.212 
(0.003)FG 

10.84 
(0.021)EF

G 

258 (13)H 426 (18)E 3.85 (0.3)FG 219 (57)D 

LM 1 7.03 (0.58) B 2.28 
(0.13)G 

0.206 
(0.002)FG 

11.06 
(0.046)DEF 

271 (5)GH 291 (1)F 3.99 (0.01)FG 231 (23)D 

LM 2 7.28 (0.03)A 2.29 
(0.03)G 

0.185 
(0.009)G 

12.47 
(0.540)BC 

244 (6)H 247 (2)G 4.01 (0.14)FG 200 (16)D 

MC 1 6.26 (0.02)E 3.00 
(0.08)EF 

0.285 
(0.007)BC 

10.53 
(0.128)FG 

305 (3)FG 493 (4)CD 4.27 
(0.03)DEF 

184 (11)D 

MC 2 6.37 (0.03 CD 4.07 
(0.16)A 

0.403 
(0.018)A 

10.12 
(0.070)G 

408 (5)CD 569 
(13)AB 

4.88 (0.1)BC 155 (7)D 

SD 1 6.09(0.01)FG

H 
3.21 
(0.04)DE 

0.269 
(0.006)CD 

11.93 
(0.257)CD 

267 (4)H 431 (7)E 4.10 (0.2)EFG 146 (12)D 

SD 2 6.13 (0.05)FG 4.12 
(0.08)A 

0.309 
(0.009)B 

13.34 
(0.172)AB 

258 (20)H 452 (6)DE 4.54 (0.3)CDE 135 (9)D 

MS 1 6.28 (0.03)DE 3.84 
(0.02)AB 

0.247 
(0.002)DE 

11.84 
(0.007)CD 

374 (14)DE 535 (8)BC 4.79 (0.1)BC 1064 
(53)B 

MS 2 6.43 (0.01)C 2.93 
(0.10)EF 

0.302 
(0.007)B 

12.70 
(0.071)BC 

422 (2)C 612 (6)A 5.70 (0.1)A 1521 
(54)A 

PG 1 6.30 (0.05)DE 2.86 
(0.04)F 

0.231 
(0.015)EF 

12.43 
(0.690)BC 

573 (24)B 430 (9)E 3.73 (0.1)G 47 (4)D 

PG 2 6.10 
(0.03)FGH 

3.67 
(0.11)BC 

0.264 
(0.008)CD 

13.90 
(0.532)A 

769 (9)A 504 (21)C 4.67 (0.1)BCD 96 (8)D 

SC 1 6.01 (0.01)H 2.92 
(0.11)F 

0.255 
(0.007)DE 

11.46 
(0.128)DE 

313 (5)F 452 (8)DE 4.87 (0.1)BC 287 (37)D 

SC 2 6.14 (0.04)F 3.45 
(0.22)CD 

0.306 
(0.020)B 

11.27 
(0.187)DEF 

372 (16)E 502 (15)C 5.02 (0.1)B 559 (88)C 

Control, no treatment in soil; LM 1 and LM 2, lime 0.6 and 1.3%, respectively; MC 1 and MC 2: municipal green waste 
compost 2.5 and 5%, respectively; MS 1 and MS 2, mushroom industry residue compost 2.5 and 5%, respectively; PG 1 and 
PG 2, pig manure composted with sawdust 2.5 and 5%, respectively; SC 1 and SC 2, shredded corn stover 2.5 and 5%, 
respectively; SD 1 and SD 2, sawdust composted with animal offal 2.5 and 5%, respectively.  
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Table 4.7 The 0.05 M Ca(NO3)2 extracted Cd, Na and micro nutrient elements (mg/kg) of the soils. Standard 

errors are given in brackets (n=3). Values in the same column with the same letters are not significantly different 

Treatments Cd Cu Fe Mn Na Zn 
Control 0.011 (0.003)A 0.16 (0.014)DEF 0.20 (0.04)C 23 (2)DE 118 (9)EF 0.419 (0.03)A 

LM 1 0.002 (0.001)DE 0.21 (0.005)AB 0.34 (0.15)BC 6 (2)FG 92 (0.2)G 0.032 (0.01)E 

LM 2 0.009 (0.000)E 0.20 (0.004)BC 0.41 (0.1)ABC 3 (0.6)G 89 (1)G 0.055 (0.02)E 

MC 1 0.002 (0.000)DE 0.17 (0.015)DE 0.34 (0.11)BC 14 (0.2)EF 200 (4)B 0.322 
(0.04)ABC 

MC 2 0.001 (0.000)E 0.17 (0.018)CDE 0.43 (0.13)ABC 14 (2)EFG 245 (3)A 0.215 (0.04)CD 

SD 1 0.006 (0.000)B 0.15 (0.015)EFG 0.19 (0.02)C 23 (4)DE 114 (5)F 0.323 
(0.01)ABC 

SD 2 0.003 (0.000)CDE 0.13 (0.013)FG 0.14 (0.06)C 23 (2)DE 123 (4)EF 0.251 
(0.03)BCD 

MS 1 0.004 (0.000)CD 0.24 (0.006)A 0.17 (0.1)C 33 (7)CD 146 (4)D 0.175 
(0.03)CDE 

MS 2 0.001 (0.000)E 0.24 (0.001)A 0.30 (0.01)BC 17 (0.3)E 179 (4)C 0.148 (0.08)DE 

PG 1 0.006 (0.001)B 0.13 (0.001)G 0.43 (0.01)ABC 44 (2)AB 89 (4)G 0.457 (0.11)A 

PG 2 0.009 (0.002)A 0.15 (0.003)DEFG 0.53 (0.2)AB 49 (8)A 127 (6)EF 0.419 (0.09)A 

SC 1 0.005 (0.001)BC 0.19 (0.003)BCD 0.38 (0.03)ABC 38 (3)BC 135 (6)DE 0.475 (0.06)A 

SC 2 0.001 (0.000)E 0.17 (0.001)CDE 0.69 (0.02)A 29 (0.4)CD 173 (3)C 0.403 (0.05)AB 

Control, no treatment in soil; LM 1 and LM 2, lime 0.6 and 1.3%, respectively; MC 1 and MC 2: municipal green waste 
compost 2.5 and 5%, respectively; MS 1 and MS 2, mushroom industry residue compost 2.5 and 5%, respectively; PG 1 and 
PG 2, pig manure composted with sawdust 2.5 and 5%, respectively; SC 1 and SC 2, shredded corn stover 2.5 and 5%, 
respectively; SD 1 and SD 2, sawdust composted with animal offal 2.5 and 5%, respectively.  
 

4.5 Discussion 

The low Cd concentrations in the potato tubers was not anticipated because the soil Cd 

concentration (1.48 mg/kg) is within the top 5% of NZ soils (Reiser et al., 2014). In contrast to 

the tubers, the Cd concentrations in the stems and leaves of potato were with the range (0.2 – 

0.9 mg/kg) of concentrations reported for the aerial parts of spinach, lettuce and onion grown 

in the same soil under similar conditions (Al Mamun et al., 2016). This indicates that the low 

concentration of Cd in the tubers is the result of plant physiological process rather than low-
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Cd phytoavailability in the soil. Given that Cd is relatively phloem-immobile (Uraguchi et al., 

2009), one would not expect high Cd concentrations in the tubers, which receive most of their 

nutrients via the phloem (Dunbar et al., 2003).  

The lower tuber Cd concentrations in our study compared to those reported by other authors 

(Kabata-Pendias and Mukherjee, 2007; Kim, 2008; McLaughlin et al., 1994a; McLaughlin et 

al., 1994b) may be due to differences in variety, although McLaughlin et al. (1994a) reported 

only small differences in Cd uptake between varieties.  

The concentration ratios of the potato flesh: skin/peel: shoots was 2:5:29, with little variation 

between treatments. This is similar to other experiments with potato (Corguinha et al., 2012; 

Reid et al., 2003). Some of Cd in potato skins may arise from the incorporation of soil particles 

into the skin that could not be removed even after washing. 

All amendments significantly reduced Cd uptake by the potato tubers and most amendments 

reduced uptake into the shoots. The reduction in Cd uptake may be partially explained by the 

reduction in the phytoavailable Cd (estimated in our experiments using a 0.05 M Ca(NO3)2 

extraction), which occurred in all of the treatments. Black et al. (2012), Gray et al. (1999c) and 

Gray et al. (1999b) reported a strong positive correlation between plant Cd and Ca(NO3)2-

extractable Cd in a single soil type.  

For the MC, MS, and PG1 treatments, the reduced Cd concentration in the tubers may be partly 

explained by the small increase in pH of the amended soils (Table 4.2). However, most of the 

decrease in tuber Cd may be attributed to the increase in Cd-binding sites on the composts, 

which is indicated by their high CEC values (Table 4.1). The CEC of the composts in this study 

was similar to those reported in other composts and organic amendments (Pusz, 2007; Simmler 

et al., 2013). For all treatments except the SC, the increased growth of the tuber may have 

resulted in a lower-Cd concentration due to a “dilution effect” (Robinson et al., 2009). This 
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effect may also explain the increased shoot Cd in the SC1 treatment where the shoot growth 

was significantly reduced. 

The reduction of Cd concentration in potato flesh grown in LM treatments was anticipated as 

these two rates of lime were selected from a previous study using the same soil, where the 

effects of seven rates of lime were tested on the Cd solubility and uptake by white lupin 

(Valentinuzzi et al., 2015). Lime treatments in soil have been reported to both increase and 

decrease the uptake of Cd by plants. Lime significantly increased soil pH (Table 4.6), which 

has been associated with decreasing the accumulation of Cd in plants in almost all studies 

(Hong et al., 2007; Kabata-Pendias and Mukherjee, 2007; Simmler et al., 2013) through 

increasing the availability of exchangeable sites (Brady and Weil, 2008) that may bind Cd. Our 

results stand in contrast to other studies that reported an increased uptake of Cd by plants due 

to lime application, which was attributed to competition between Cd and Ca for sorbing sites 

in soil (Chaney et al., 2009; Maier et al., 2002; McLaughlin et al., 1997; Merian, 1991). 

A positive growth response to compost addition has also been shown by other authors 

(Barkoczi et al., 2008; Khan et al., 2007; Muhammad et al., 2007). The composts used in this 

study contained high P content compared to the soil and thus no fertilizer was used, which 

eliminated the risk of further addition of Cd input in these soils. Moreover, these composts 

probably improved the physical properties of soils by improving soil porosity, aggregate 

stability, nutrient and water holding capacity, temperature insulation and decreasing apparent 

soil density (Sarwar et al., 2008; Shiralipour et al., 1992), and soil nutrient content (Shiralipour 

et al., 1992). The reduced shoot growth in the lime treatment may have been due to the 

imbalance of nutrient elements in soil due to the pH increase (Maier et al., 2002). 
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4.6 Conclusions 

Composts with contrasting provenances all decreased the concentration of Cd in potato tubers 

and skins as well as decreasing the Ca(NO3)2-extractable concentrations of Cd in soil. Most of 

this effect was attributed to the increased number of binding sites for Cd in compost-amended 

soil. In addition, the increase in fertility associated with compost-addition may have reduced 

potato Cd concentrations by increasing the biomass, thereby resulting in a ‘dilution by growth’ 

effect. All composts and lime significantly increased tuber growth except SC, which 

significantly reduced growth. That all the composts in this study reduced Cd uptake does not 

imply that every compost will do so. Further work is warranted to identify the key components 

of composts that result in reduced Cd uptake by plants and increased biomass of potato. 

Potentially, composts may be a low-cost means of ensuring that crop Cd concentrations remain 

within Food Safety Standards by reducing plant uptake and offsetting the need to apply Cd-

contaminated phosphate fertilizers. 
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Table S1 4.1 Elemental composition of potato stem grown under different treatments. Standard errors are given in brackets (n=3). Values in the same column with the same 

letters are not significantly different 

Treatments B 
(mg/kg) 

Ca 
(mg/kg) 

Cd 
(mg/kg) 

Cr 
(mg/kg) 

Cu 
(mg/kg) 

Fe 
(mg/kg) 

K (mg/kg) Mg 
(mg/kg) 

Mn 
(mg/kg) 

Mo 
(mg/kg) 

P*ns 
(mg/kg) 

S 
(mg/kg) 

Zn 
(mg/kg) 

Control 25.0 
(2)BCD 

13562 
(1444)DEF 

0.527 
(0.02)BC 

0.26 
(0.1)B 

6.2 
(0.4)BCD 

26.1 
(1)B 

59335 
(1638)A 

1257 
(154)CDEFG 

25 (1)C 0.37 
(0.05)C 

3327 
(530) 

4832 
(281)A 

62 
(12)CD 

LM 1 26.5 
(0.5)BC 

19345 
(341)BC 

0.318 
(0.04)CD 

0.22 
(0.1)B 

9.9 
(0.4)BC 

24.0 
(4)B 

51355 
(1219)AB 

790 (88)FG 8 (2)C 3.5 
(0.4)B 

2685 
(443) 

5497 
(208)A 

53 (3)CD 

LM 2 25.0 
(1)BCD 

18848 
(704)C 

0.508 
(0.09)BC 

0.33 
(0.2)B 

8.5 
(1)BCD 

32.0 
(9)B 

46787 
(2643)BC 

975 
(230)DEFG 

11 (3)C 3.4 
(0.01)B 

3203 
(415) 

5045 
(388)A 

54 (9)CD 

MC 1 22.2 
(4)CD 

11756 
(3368)EF 

0.200 
(0.02)D 

0.05 
(0.01)B 

3.9 
(0.8)D 

45.8 
(6)B 

55091 
(4539)AB 

1754 
(360)CDEF 

19 (8)C 0.85 
(0.09)C 

2669 
(386) 

2761 
(250)CD 

41 (7)D 

MC 2 23.0 
(1)BCD 

10856 
(1547)F 

0.181 
(0.006)D 

0.09 
(0.0)B 

4.6 
(0.6)D 

26.0 
(2)B 

61238 
(4856)A 

1887 
(435)CDE 

12 (3)C 1.23 
(0.03)C 

2304 
(110) 

2497 
(112)D 

49 (7)D 

SD 1 22.0 
(2)CD 

11260 
(1313)F 

0.200 
(0.01)D 

0.12 
(0.0)B 

5.2 
(0.5)CD 

21.3 
(1)B 

50335 
(19780)AB 

659 (95)G 13 (1)C 0.41 
(0.07)C 

2828 
(457) 

3415 
(117)BC 

42 (4)D 

SD 2 23.5 
(1)BCD 

12242 
(1191)EF 

0.171 
(0.0)D 

0.14            
(0.0)B 

5.6 
(0.5)BCD 

25.2 
(4)B 

56519 
(4399)AB 

704 
(336)FG 

13 (4)C 1.01 
(0.18)C 

3019 
(661) 

3570 
(210)B 

45 (3)D 

MS 1 27.1 (1)B 16477 
(840)CD 

0.370 
(0.01)CD 

0.10 
(0.0)B 

10.0 
(1)BC 

34.1 
(7)B 

50416 
(1012)AB 

2034 
(263)C 

20 (1)C 0.32 
(0.1)C 

3235 
(287) 

4892 
(413)A 

85 (5)C 

MS 2 25.2 
(0.3)B 

15784 
(602)CDE 

0.278 
(0.003)CD 

0.06 
(0)B 

10.7 
(1.4)B 

29.5 
(1)B 

55170 
(2192)AB 

2130 
(179)C 

20 (1)C 0.33 
(0.12)C 

2619 
(201) 

5137 
(223)A 

72 (6)CD 

PG 1 24.5 
(2)BCD 

12765 
(427)DEF 

0.178 
(0.01)D 

0.09 
(0.0)B 

8.1 
(0.5)BCD 

21.2 
(3)B 

56237 
(4165)AB 

935 
(160)EFG 

8 (2)C 0.67 
(0.1)C 

2808 
(416) 

3969 
(248)B 

47 (2)D 

PG 2 20.7 (2)D 11066 
(1411)F 

0.241 
(0.03)CD 

0.18 
(0.0)B 

5.1 
(0.3)CD 

23.5 
(3)B 

54360 
(2128)AB 

2019 
(630)CD 

21 (5)C 0.63 
(0.1)C 

2723 
(115) 

3257 
(262)BCD 

51 (6)D 

SC 1 51.2 (2)A 24834 
(1098)A 

0.943 
(0.1)A 

0.06 
(0.0)B 

25.4 
(5.3)A 

47.8 
(3)B 

37885 
(6260)C 

9374 
(763)A 

184 
(33)B 

1.22 
(0.7)C 

3458 
(307) 

4932 
(238)A 

269 
(30)A 

SC2 52.3 
(0.017)A 

23707 
(1155)AB 

0.752 ( 
0.29)AB 

9.88 
(7.95)A 

19.74 
(3.23)A 

81.1 
(42)A 

36319 
(8759)C 

6088 
(172)B 

268 
(73)A 

6.80 
(1.8)A 

3226 
(822) 

3542 
(417)BC 

222 
(16.10)B 

Control, no treatment in soil; LM 1 and LM 2, lime 0.6 and 1.3%, respectively; MC 1 and MC 2: municipal green waste compost 2.5 and 5%, respectively; MS 1 and MS 2, mushroom industry 
residue compost 2.5 and 5%, respectively; PG 1 and PG 2, pig manure composted with sawdust 2.5 and 5%, respectively; SC 1 and SC 2, shredded corn stover 2.5 and 5%, respectively; SD 1 and 
SD 2, sawdust composted with animal offal 2.5 and 5%, respectively.  
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Table SI 4.2 Elemental composition of potato leaf grown under different treatments. Standard errors are given in brackets (n=3). Values in the same column with the same 

letters are not significantly different 

Treatments B 
(mg/kg) 

Ca 
(mg/kg) 

Cd 
(mg/kg) 

Cr 
(mg/kg) 

Cu 
(mg/kg) 

Fe 
(mg/kg) 

K (mg/kg) Mg 
(mg/kg) 

Mn 
(mg/kg) 

Mo 
(mg/kg) 

P 
(mg/kg) 

S (mg/kg) Zn 
(mg/kg) 

Control 66.1 
(4)CDE 

26124 
(1395)CDE 

0.258 
(0.005)AB 

0.19 
(0.02)BC 

8.3 
(1)CDE 

125 (9)A 37096 
(1547)ABC 

2806 
(231)E 

79 (5)B 1 (0.2)C 2590 
(35)B 

5432 
(258)DEFG 

30 (2)BC 

LM 1 72.9 
(1)ABC 

27815 
(1074)BC 

0.114 
(0.003)C 

0.15 
(0.06)BCD 

9.0 (1)C 108 
(10)ABC 

33144 
(1160)BC 

2020 
(175)F 

53 (2)CD 6 (1)B 2398 
(127)B 

7184 
(763)BC 

23 (1)CD 

LM 2 69.3 
(2)ABCD 

27352 
(1083)BCD 

0.201 
(0.01)ABC 

0.13 
(0.05)CD 

7.9 
(0)CDE 

85 (4)C 30145 
(1823)C 

1950 
(136)F 

57 (2)CD 6 (1)B 2292 
(174)B 

5829 
(480)CDEF 

18 (1)D 

MC 1 58.3 
(3)DEF 

25332 
(1963)CDEF 

0.265 
(0.05)AB 

0.10 
(0.05)CD 

6.5 (0)E 114 
(14)AB 

35957 
(3953)ABC 

4578 
(201)BC 

66 
(7)BCD 

1 (0.1)C 2522 
(300)B 

4289 
(563)GH 

27 (3)C 

MC 2 63.6 
(5)CDEF 

22713 
(1187)F 

0.236 
(0.06)AB 

0.11 
(0.02)CD 

6.7 (0)DE 101 
(7)BC 

41615 
(3921)A 

4339 
(276)C 

58 (5)CD 1 (0.2)C 2212 
(92)B 

3294 
(178)H 

28 (3)BC 

SD 1 55.7 
(3)EF 

22888 
(759)EF 

0.170 
(0.1)BC 

0.13 
(0.07)CD 

7.4 
(1)CDE 

109 
(8)ABC 

32459 
(1224)BC 

2704 
(24)E 

63 (3)CD 1 (0)C 2359 
(91)B 

5038 
(85)EFG 

29 (2)BC 

SD 2 56.7 
(2)EF 

24297 
(1659)DEF 

0.173 
(0.01)BC 

0.12 
(0.02)CD 

7.0 
(1)CDE 

117 
(8)AB 

35388 
(3285)ABC 

2829 
(21)E 

65 
(4)BCD 

1 (0.2)C 2479 
(282)B 

4189 
(359)GH 

25 (1)CD 

MS 1 66.2 
(7)CDE 

27748 
(752)BC 

0.254 
(0.04)AB 

0.10 
(0.04)CD 

8.8 
(1)CD 

102 
(9)ABC 

35401 
(1422)ABC 

2653 
(254)E 

66 
(2)BCD 

1 (0.1)C 1917 
(120)B 

7493 
(236)AB 

27 (4)C 

MS 2 69.2 
(5)ABCD 

28422 
(680)BC 

0.214 
(0.01)ABC 

0.12 
(0.03)CD 

8.0 
(1)CDE 

106 
(4)ABC 

38320 
(4342)AB 

3092 
(183)DE 

68 (4)BC 0.9 
(0.1)C 

2011 
(223)B 

8782 
(980)A 

23 (2)CD 

PG 1 68.7 
(3)BCD 

23903 
(94)EF 

0.195 
(0.03)BC 

0.10 
(0.04)CD 

7.8 
(0)CDE 

112 
(3)AB 

37052 
(1674)ABC 

3651 
(101)D 

64(2)CD 1 (0.1)C 2378 
(133)B 

5957 
(181)CDE 

25 (1)CD 

PG 2 52.5 (4)F 27460 
(820)BCD 

0.296 
(0.03)A 

0.06 
(0.01)D 

8.0 
(1)CDE 

101 
(4)BC 

38362 
(1982)AB 

4941 
(241)BC 

72 (4)BC 1 (1)C 2456 
(47)B 

4557 
(547)FGH 

37 (5)B 

SC 1 80.4 
(5)A 

34853 
(862)A 

0.126 
(0.02)C 

0.34 
(0.03)A 

16.6 
(1)A 

122 
(12)AB 

36391 
(1425)ABC 

6617 
(216)A 

158 
(10)A 

5 (3)BC 6684 
(927)A 

7191 
(309)BC 

29 (4)BC 

SC 2 79.3 
(5)AB 

30580 
(1151)B 

0.123 
(0.03)C 

0.26 
(0.02)AB 

13.8 
(1)B 

107 
(5)ABC 

39282 
(1167)AB 

5100 
(498)B 

169 (8)A 15 (5)A 6898 
(1847)A 

6849 
(255)BCD 

47 (2)A 

Control, no treatment in soil; LM 1 and LM 2, lime 0.6 and 1.3%, respectively; MC 1 and MC 2: municipal green waste compost 2.5 and 5%, respectively; MS 1 and MS 2, mushroom industry 
residue compost 2.5 and 5%, respectively; PG 1 and PG 2, pig manure composted with sawdust 2.5 and 5%, respectively; SC 1 and SC 2, shredded corn stover 2.5 and 5%, respectively; SD 1 and 
SD 2, sawdust composted with animal offal 2.5 and 5%, respectively. 
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N. Unexpectedly, the concentration of extractable Cd in the compost-amended soils did not 

increase over time and in some cases even decreased. The potato Cd concentration was lower 

by 50% in both the freshly amended soil and the amended soil aged for one year than the 

potatoes grown in control soils. Our results indicate that while the organic matter degraded, Cd 

and other elements may have been occluded by Fe and Al moieties brought into suspension / 

solution by the mechanical disturbance. The role of soil disturbance on the phytoavailability of 

soil Cd is a fertile area for future research. 

 

Key words: phytoavailable Cd; extractable Cd; incubation; potato; organic amendment; 
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5.2 Introduction 

Cadmium is a non-essential trace element that is present at elevated concentrations in many 

agricultural soils (Bolan et al., 2003a; Kabata-Pendias and Mukherjee, 2007). Soil-borne Cd is 

readily taken up by plants (Bolan et al., 2003a; Nan et al., 2002; Simmler et al., 2013; 

Valentinuzzi et al., 2015) and animals through plant consumption (Alloway et al., 1990; Arcella 

et al., 2012; Berkelaar and Hale, 2003; EFSA, 2012; Lopez-Chuken and Young, 2010; 

McLaughlin et al., 1998). Exceedances of food safety standards have been reported in 

vegetables worldwide (Kim, 2008; McLaughlin et al., 1997; Zheng et al., 2007; Zhuang et al., 

2009).  

Most Cd in soil is attached to the soil colloids, with relatively low concentrations present in 

soil solution (Christensen and Haung, 1999a). Soils Kd (sorbed / solution Cd quotient) 

(Simmler et al., 2013) values for silt loam soils range from 50-200 from pH 5 to 6.5 (Al Mamun 

et al., 2016), which indicates that most of the Cd in soil is sorbed by soils. The accumulation 

of Cd in plants depends on the soluble fraction of Cd in soils, which is a function of the total 

concentration as well as physicochemical and biological properties of the soils (Kabata-Pendias 

and Mukherjee, 2007). In most soils, some 55-90% of Cd in soil solution is present as free 

metal ion Cd2+ (Taylor and Percival, 2001). It may occur as cationic species: CdCl+, CdOH+, 

CdHCO3
+, CdHS+ or as an anionic species: CdCl3

-, Cd(OH)3, Cd(OH)4
2-, Cd(HS)4

2- (Kabata-

Pendias and Mukherjee, 2007). Sposito and Page (1984) reported that Cd2+, CdSO4
0 and CdCl+ 

are phytoavailable in acidic solution and Cd, CdCl+, CdSO4
0 and CdHCO3

+ are most 

phytoavailable in alkaline solution (Kabata-Pendias and Mukherjee, 2007). Cadmium also 

forms several types of organic chelates (Kabata-Pendias and Mukherjee, 2007).  

The solubility and speciation of Cd is sensitive to pH, salinity, total Cd concentration, CEC, 

clay, Fe and Mn oxides, macronutrients (especially Ca), micro nutrients (especially Zn), 

aeration and chloride ion (Cl-) (Kabata-Pendias and Mukherjee, 2007; McLaughlin et al., 
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1994b). Most studies report increased binding of Cd with soil colloids at increased soil pH, 

leading to less accumulation by plants (Kabata-Pendias and Mukherjee, 2007; Loganathan et 

al., 2003; McLaughlin et al., 1996). However, some studies showed the increased uptake of Cd 

in plants at high pH even though the Cd concentration was low in soil solution which was 

attributed to the Zn deficiency in plants (Smolders and McLaughlin, 1996). Soil salinity 

increased the CdCl- species activity in soil and therefore increased the Cd concentration in 

Wheat (Triticum aestivum cv. Halberd) and Swiss chard (Beta vulgaris cv. Foodhook Giant) 

(Weggler-Beaton et al., 2000) (Ghallab and Usman, 2007; Smolders and McLaughlin, 1996). 

Many authors reported that the elevated Cd in soil was associated with increased Cd 

concentration in plants (Dziubanek et al., 2015; Fekete et al., 2001; Krauss and Diez, 1997; 

Maclean, 1976; McLaughlin et al., 1997; Pérez and Anderson, 2009; Rai et al., 2015; Weggler-

Beaton et al., 2000). Increased CEC, clay, Fe and Mn oxides and aeration were reported 

decreasing the uptake of Cd by plants whereas decreased Zn increased Cd uptake. Increased 

CEC, clay, Fe and Mn oxides and aeration were observed decreasing the uptake of Cd by plants 

whereas decreased Zn increased Cd uptake. Depending on environmental conditions, 

macronutrients may either increase or decrease the Cd uptake by plants (Adriano, 2001; 

Kabata-Pendias and Mukherjee, 2007).  

Many authors reported that organic matter reduces Cd uptake by plants (Basta et al., 2001; 

Bjerre and Schierup, 1985; Bolan et al., 2003a; Chen et al., 2000; Lee et al., 2004; Li et al., 

2001) through Cd sorption leading to less available Cd in soil solution (Lee et al., 2004; 

Simmler et al., 2013; Vaca-Paulin et al., 2006). Compost made from mixtures of food waste, 

lawn clippings and tree pruning’s and composts from sawdust and animal offals effectively 

reduced solution Cd in batch sorption experiment and Cd-uptake by onion, spinach and lettuce 

by up to 60% (Al Mamun et al., 2016). Al Mamun et al. (2016) attributed the reduction in plant-

Cd uptake is due to the decrease in the dissolved Cd in soil solution. Shuman et al. (2002) 
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reported that larger surface area of humified organic matter adsorb significant amount of Cd 

from soil solution making the Cd less available to Corn (Zea mays L.). The Cd uptake reduction 

in plants in the incubated soils may be due to the higher humification of organic matter as has 

been observed by (Tapia et al., 2010). 

Karaca (2004) showed, using a six-month incubation experiment at 25 oC, that soils amended 

with mushroom compost and grape mark added at 2%, 4%, and 8% retained their ability to 

bind Cd for at least six months. Lee et al. (2004) reported that the reduction in DTPA-

extractable Cd resulting from hog-manure application also persisted for at least six months. 

Neither of these studies measured the temporal release of Cd from the incubated soil. 

We hypothesize that the sorbed Cd in composts will be released into soil solution as the 

compost decomposes. Depending on environmental conditions, compost manufactures 

recommend that compost be added every 2-3 years to maintain the soil’s organic matter content 

(Ouattara et al., 2007). Therefore, most Cd that is bound to the compost is likely to be released 

over this timeframe.  

We aimed to determine the temporal changes in extractable Cd in two soils amended with 

composts of different provenances under contrasting incubation regimes over one year. We 

also sought to measure the transfer of Cd from soil to potato in a pot trial using freshly amended 

compost and a compost-amended soil aged for one year. 
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5.3 Materials and Methods 

5.3.1 Soil sample collection 

We used two distinct soils from market gardens in New Zealand, namely Pukekohe 

(37o13’18.92”S 174o52’5.94”E) and Levin (40o38’17.49”S 175o14’23.61”E) in the North 

Island of New Zealand. Ploughed soils were collected from within the plough zone (top 0.25 

m) and were dried, ground, passed through a 7 mm sieve, and homogenised. The particle size 

analysis of Levin soil and Pukekohe soil were conducted following the method of Bouyoucos 

(1962). In Levin soil there were 10% sand, 70% silt and 20% clay and in Pukekohe soil, there 

were 15% sand, 60% silt and 25% clay. 

 One year before the experiment, the soils were spiked with Cd to increase their Cd 

concentration by 1 mg / kg. A solution containing 100 mg/L Cd (as the sulphate) was mixed 

with the soil using a concrete mixer. Spiking the compost increased contamination of soils 

(currently, Cd loading in cultivated soils continues to increase) enabling the accurate 

quantification of Cd after extractions. Prior to spiking, the Pukekohe soil had Cd concentration 

of 1.45 mg / kg soil and Levin soil had a Cd concentration of 0.47 mg/kg. After Cd spiking the 

Pukekohe soil and Levin soil had a Cd concentration of 2.08 (± 0.09) mg / kg and 0.99 (± 0.05) 

mg / kg, respectively. After spiking, the moist soils were stored for one year to allow the added 

Cd to equilibrate. Table 5.1 and Table 5.2 show the chemical and physical properties of the 

soils.  
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Table 5.1 Properties and macronutrient concentrations (total) of the materials used in the experiments  

Properties 
 

Municipal compost 
(Living Earth compost) 

Sawdust compost 
(Parkhouse compost) 

Pukekohe soil 
 

Levin soil 
 

pH (H2O) 7.4 7.0 6.0 6.5 

CEC (Cmolc/kg) 45 (0) 47 (0) 22* 15* 

C (%) 21 21 2.1* 1.2* 

N (%) 2.3 1.6 0.23* 0.13 

P (mg/kg) 4178 (37) 5159 (227) 3414 (26) 2247 (20) 

S (mg/kg) 2644 (27) 3610 (70) 491 (6) 296 (1) 

Ca (mg/kg) 24903 (588) 37416 (1456) 4147 (117) 7008 (99) 

Mg (mg/kg) 4177 (16) 2186 (34) 2400 (95) 2873 (43) 

K (mg/kg) 14938 (33) 5412 (67) 1951 (59) 2242 (54) 
* data from Hill Laboratories, NZ. Standard errors are given in brackets (n=3). 
 

Table 5.2 Trace element (total) concentrations (mg/kg) of the materials used in these experiments (Al Mamun et 

al., 2016). Standard errors are given in brackets (n=3) 

Properties Living Earth Compost Parkhouse compost Pukekohe soil Levin soil 
B` 20* <1 33 (0) 9 (0) 

Cd 0.70 (0.10) 0.45 (0.10) 1.5 (0.03) 0.47 (0.01) 

Cu 59 (1) 25 (1) 65 (1) 20 (0.2) 

Zn 310 (11) 34 (2) 173 (1) 67 (1) 

Cr 28 (1) 37 (1) 40 (2) 15 (0.3) 

Ni 9.3 (1) 5.2 (0.1) 25 (1) 7.4 (0.5) 

* data from Hill Laboratories, NZ.  

 

5.3.2 Collection of composts 

We collected municipal compost from Living Earth Ltd. (Christchurch branch, NZ). The sorce 

materials for this compost are mostly lawn clippings, tree prunings and food waste. Hereafter, 

this compost will be referred to as municipal compost.  
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A compost manufactured from sawdust and animal residues (manure and carcasses) was 

obtained from Parkhouse Garden Supplies (Christchurch, New Zealand). Hereafter, this 

compost will be referred to as sawdust compost.  

5.3.3 Incubation experiment 

Municipal compost and Sawdust compost were mixed with soils at a rate of 2.5% w/w (20 

gram of composts was added with 800-gram soil and each soil and compost mixture was mixed 

manually in two buckets transferring them from one to another more than 10 times). The 2.5% 

value corresponds to a rate of 50 t / ha (2000 t/ha furrow slice, considering soil depth 15 cm 

and bulk density 1.3 gm/cm3) and this rate was used by other authors (Horrocks et al., 2016). 

There was also a control treatment where no compost was applied. There were three replicates 

for each treatment. At the start of the experiment, 800 grams of soil or/and soil-compost 

mixture were introduced into plastic 2 liter boxes. 

 The experiment was started on 11th March 2014. Urea (NH2CONH2) was applied in T2 

experimental units (Table 5.3) at the start of the experiment, after 4 weeks and 31 weeks as a 

source of N for microorganisms to enhance the microbial activity in soils. Urea used in this 

experiment was from LabServTM, analytical grade, Biolab (Aust) Ltd. A total of 413 mg of 

urea (dissolved in 10 mL of water) was added to the N treatments in the three separate 

applications. The rate of N addition is equivalent to 200 kg/ha, assuming a soil depth of 0.15m 

and a dry bulk density of 1.3 g/cm3. The treatment layout is given in (Table 5.3). 

 

 

 

 



 
 
 

102 
 

Table 5.3 Treatment layout 

No. Treatment (compost) 
1 Levin soil control (no compost) 
2 Levin soil + 2.5% municipal compost 
3 Levin soil + 2.5% sawdust compost 
4 Pukekohe soil control (no compost) 
5 Pukekohe soil + 2.5% municipal compost 
6 Pukekohe soil + 2.5% sawdust compost 

T0= treatments 1-6 with no added Urea-N, incubated at 19°C 
T1= treatments 1-6 with no added Urea-N, incubated at 30°C 
T2= treatments 1-6 with added Urea-N and incubated at 30°C 

 

The soils and soil mixtures in the boxes were mixed with a glass rod twice a week (on days 4 

and 7 of each week). We added deionized water to maintain the boxes at a constant weight by 

providing 25% moisture content of the oven dry weight of the soils. Sampling occurred after 

1, 5, 9, 13, 21, 31 and 49 weeks. At each sampling, 40 g soil or compost-amended soil was 

collected from each box.  

Samples were dried in an oven at 70°C temperature for 5 days until a constant weight was 

obtained. The dried samples were passed through a 2 mm Nylon sieve and the pH, %C, %N 

and extractable Cd were determined as described below. 

5.3.4 Pot trial 

Unspiked Pukekohe soil was mixed with the municipal compost using a concrete mixer to give 

2.7% (w/w) compost (henceforth 2.5% compost). Unamended and amended soils were 

transferred into 5kg plastic pots. There was a total of 12 pots (six for freshly compost amended 

soils and control and 6 for the compost amended aged soil and control, including replications). 

 

The pots were placed in a randomised block design in the Plant Growth Unit at Lincoln 

University. Seed potato (Solanum tuberosum) 'Nadine' variety, was obtained from Morton and 

Smith DWE, Halswell. Seed potatoes were sprouted in moist trays covered with black 

polythene. After one week, the potatoes were transferred to the pots and grown for nine weeks 
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whereupon the tubers had formed and the shoots were showing signs of chlorosis. The tubers 

were gently removed from the soil to avoid scratching and hence soil contamination. Tubers 

were washed thrice with tap water. Excess moisture was removed using a paper towel. The 

fresh weight of potato tuber was taken. The tubers were washed thrice with reverse osmosis 

water and thrice with deionized water. The peel (1-2 mm) was separated with a clean stainless 

steel knife. Peeled tubers were placed in paper bags and dried in an oven at 70°C until a constant 

weight was obtained. The dry weights were taken and the tubers were ground using a Retch 

ZM200 grinder and stored in sealed plastic vials.  

5.3.5 pH 

The pH was measured by adding 25 ml of deionized water to 10.0 g soil (1:2.5) (Blakemore et 

al., 1987). The samples were then shaken for 5 minutes and then allowed to stand for 24 hours 

before being measured. The pH meter (Mettler Toledo, Netherlands) was calibrated after every 

9 samples to avoid a drift.  

5.3.6 Extractable Cd 

The 0.05 M Ca(NO3)2 extractable Cd was used to estimate Cd phytoavailability as several 

authors have reported good correlations between the extract and plant uptake (Black et al., 

2012; Gray et al., 1999b; Gray et al., 1999c). We prepared a 0.05 M Ca(NO3)2 solution using 

Ca(NO3)2 × 4H2O, BDH AnalaR salt crystals according to Black et al. (2012). Five grams of 

soil sample was taken in a 50 mL centrifuge tube. The mixture was agitated using a vortex 

mixer for 3 minutes, shaken on an end-over-end shaker for two hours, and centrifuged at 3000 

rpm (Hettich Universal 30 RF) for 10 minutes. The supernatant was filtered through a Whatman 

no. 52 filter paper in to 30 mL vials and analysed using ICP-OES (Inductively Coupled Plasma-

Optical Emission Spectrometer) (Blakemore, 1987).  
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Total C and N were analysed in soil and compost samples using an Elementar Vario-Max CN 

Elementar analyser (Elementar ®, Germany). Pseudo-total elemental analyses of soil and plant 

samples were carried out using microwave digestion in 8 mL of AristarTM nitric acid (± 69%), 

diluted with milliQ water to a volume of 25 mL and filtered using Whatman no. 52 filter paper 

(pore size 7 µm), and concentrations of B, Ca, Cd, Co, Cr, Cu, Fe, K, Mg, Mo, Mn, Na, P, S, 

and Zn were determined using Inductively Coupled Plasma Optical Emission Spectrometry 

(ICP-OES Varian 720 ES – USA) for plants (Gray et al., 1999a).  

The Reference materials (soil and plant material (International Soil analytical Exchange – ISE 

921 and International Plant analytical Exchange IPE 100)) were acquired from Wageningen 

University, the Netherlands, which were analysed for the quality assurance. Recoverable 

concentrations of the CRM (WEPAL) were within 74% - 114% of the certified values. 

The data was analysed using Minitab® 17 (Minitab Inc, State College, Pennsylvania, USA) 

and Microsoft Excel 2013. The level of significance was 0.05. We used percentage (%), 

standard error, a correlation analysis and ANOVA with a post-hoc Fisher’s test in the 

incubation section to determine the changes in extractable Cd and other elements in treated 

soils compared to control soils with time. We used ANOVA with a post-hoc Fisher’s test and 

standard error to determine the changes in Cd and other elements concentration in potato grown 

in control soils, freshly compost amended soils and compost amended aged soils.  

5.4 Results  

5.4.1 Changes in total C with time 

The addition of municipal compost and sawdust compost at 2.5% w/w increased the total C 

concentration in the Levin soil and Pukekohe soil by 0.65 and 0.75 percentage points 

respectively (Figure 5.1). The total C in soil and soil / compost mixtures was lower in all 

treatments (control, municipal compost and sawdust compost) in week 49 compared to week 1 
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in both the Levin and Pukekohe soils (Figure 5.1(A-F)). In general, the magnitude of decrease 

followed the order T0 < T1 < T2, indicating that the degradation of the organic matter was 

more rapid at higher temperatures and with added nitrogen. Some treatments had a small but 

significant increase in total C during weeks 5-13 (Figure 5.1 and Table SI 5.12), which is 

consistent with the rapid degradation of low-carbon moieties in the composts, such as 

carbohydrates and low-molecular weight carboxylic acids.  
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Figure 5.1 (A-F). Changes of total C in soils with time (week) at T0, T1 and T2 conditions (A. Levin soil control 

soil, B. Levin soil municipal compost applied, C. Levin soil sawdust compost applied, D. Pukekohe soil control, 

E. Pukekohe soil municipal compost applied, F. Pukekohe soil sawdust compost applied). 

Week
Pukekohe soil

2.1

2.15

2.2

2.25

2.3

2.35

2.4

0 10 20 30 40 50

2.5

2.6

2.7

2.8

2.9

3

3.1

3.2

3.3

3.4

0 10 20 30 40 50

2.6

2.8

3

3.2

3.4

3.6

3.8

4

0 10 20 30 40 50

1.4

1.45

1.5

1.55

1.6

1.65

1.7

0 10 20 30 40 50

1.8

1.9

2

2.1

2.2

2.3

2.4

2.5

2.6

2.7

0 10 20 30 40 50

2.1

2.15

2.2

2.25

2.3

2.35

2.4

0 10 20 30 40 50

Levin soil

To
ta

l c
ar

b
o

n
 c

o
n

te
n

t 
(%

) 
d

.w
.

C

B

A

F

E

D

2.1

2.15

2.2

2.25

2.3

2.35

2.4

0 10 20 30 40 50

To
ta

l c
ar

b
o

n
 (

%
)

Week

T0

T1

T2



 
 
 

107 
 

5.4.2 Effect of composts on extractable Cd and other elements 

The application of both the municipal compost and sawdust compost in Levin soil and 

Pukekohe soil decreased the concentration of extractable Cd in soils compared to the control 

(no compost added) soils throughout the experiment (Figure 5.2 and Table 5.2). Comparing 

week one with week 49, the magnitude of extractable Cd reduction in the compost treatments 

relative to the controls was either unchanged or greater after 49 weeks (Table 5.4). The 

reduction in extractable Cd in the compost treated soils compared to controls occurred for all 

incubation treatments (T0, T1, & T2) except sawdust treated soils sampled at week 9 which 

may be due to unwanted handling error of the sample. The extractable Cd as a percentage of 

control ranged from 10% to 89% for all the soils / mixtures except a single outlying 

measurement in the Levin soil at week 5. The extractable Cd in the controls also decreased 

during the experimental period in all treatments (Table SI 5.13). 

In contrast to Cd, the composts had little effect on the extractable Cu, Mg, Mn and P, while 

there were significant increases in extractable K, Na, and S (Table SI 5.3, 5.55, 5.6, 5.7, 5.8, 

5.9 and 5.10). Both composts increased the extractable Zn in the Levin soil but not the 

Pukekohe soil (Table SI 5.11).  

Regarding the temporal changes in the Ca(NO3)2-extractable elements, the concentrations of 

Cu, K, Mn, Na, P, S, and Zn followed a similar pattern to Cd in that they either remained 

unchanged or significantly decreased during the experimental period. In contrast, 

concentrations of Fe significantly increased (Table SI 5.4). Aluminium mostly remained 

unchanged or significantly increased in the Pukekohe soil (Table SI 5.2). Magnesium remained 

unchanged throughout the experiment (Table SI 5.6). The urea application to the soils and soil-

compost mixtures decreased the pH of soils by ca. 0.4 pH units (Table SI 5.1).  
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Table 5.4 0.05 M Ca(NO3)2 extractable Cd in the compost amended incubated Levin and Pukekohe soils as a % 

of control (no compost added) soils with time (Week) 

Week Extractable Cd as a % of control treatments (No compost) 
Municipal compost amended soils Sawdust compost amended soils 

T0* T1* T2* T0* T1* T2* 
Levin soil 

1 66 56 54 56 56 42 
5 59 69 56 77 155 73 
9 54 56 49 48 47 39 

13 10 31 48 13 37 43 
21 58 63 58 47 28 57 
31 39 67 77 56 53 52 
49 58 35 43 60 23 37 

Week Pukekohe soil 
1 52 53 59 46 42 47 
5 61 59 56 53 51 51 
9 58 64 60 52 48 47 

13 87 63 58 53 55 53 
21 66 77 68 39 56 48 
31 78 57 87 38 58 55 
49 57 89 48 63 52 36 
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Figure 5.2 (A-F). Extractable Cd (mg/kg) with time (week) at T0, T1 and T2 conditions. Error bars represent the 

standard error of the mean (n=3). (A. Levin soil control soil, B. Levin soil municipal compost applied, C. Levin 

soil sawdust compost applied, D. Pukekohe soil control, E. Pukekohe soil municipal compost applied, F. Pukekohe 

soil sawdust compost applied). 
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5.4.3 Accumulation of Cd and other elements by Potato grown in incubated soils 

Table 5.5 shows that the Cd uptake by potatoes grown in the Pukekohe soil amended with 

municipal compost was 50% of the control soils for both the freshly-amended soil and the 

amended soil that had been incubated for one year. The concentration of Cd in the peeled potato 

tubers ranged from 0.011- 0.044 mg/kg dry weight (d.w.), which was well below food safety 

standards for potato of 0.1 mg/kg f.w., equivalent to (0.002-0.008 mg/kg fresh weight). 

Comparing the concentration of other (except Cd) elements in potatoes grown in freshly 

compost amended soils and aged compost amended soils with the control soils, there was a 

significant decrease in Mn concentration in compost amended aged soils compared to controls 

and freshly amended soils. The concentration of Mo increased in both the compost treated soils 

compared to control soils. No significant changes observed in the concentration of Cu and Zn. 
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Table 5.5 Elemental concentrations (mg/kg) in the peeled tubers grown in freshly amended compost treated soil and compost amended soil aged for 1 year, and total % C and 

extractable Cd in soils 

Treatmen
ts 

Cd Extract
able 
Cd in 
soil 

Total 
% C in 
soil 

B*  Ca  Cu* Fe  K Mg*  Mn  Mo  Na  P*  S  Zn*  

Freshly amended compost 
 
Control 

0.04 
(0.003)A 

0.011 
(0.003) 

A 
2.29 
(0.02)C 

7.40 
(0.04)A 

419 
(65)A 

6.1 (0.3) 23 (2)A 20811 
(424)A 

1268 
(72)B 

6.7 (0.7)A 0.6 
(0.05)B 

87 (16)B 3356 
(179)AB 

1248 
(71)BC 

20 (2) 

Municipal 
compost 0.02 

(0.011)B 

0.002 
(0.000) 

B 
3.0 
(0.01)A 

7.33 
(0.3)A 

289 
(15)B 

6.4 (0.4) 21 
(0.2)AB 

21565 
(705)A 

1253 
(39)B 

6.7 (0.2)A 1.4 
(0.2)A 

153 
(1)A 

3245 
(60)B 

1214 
(37)B 

19 (1) 

Compost amended soil aged for 1 year 

Control 0.02 
(0.001)B 

ND 2.0 
(0.01)D 

5 (0.5) B 247 
(11)B 

5.7 (0.5) 19 (1)AB 21833 
(408)A 

1465 
(46)A 

6.2 (0.3)A 0.8 
(0.2)B 

75 (8)B 3521 
(106)A 

1606 
(68)A 

17 (0.3) 

Municipal 
compost 

0.01 
(0.001)C 

ND 2.4 
(0.01)B 

6 (0.2) B 357 
(40)AB 

5.5 (0.1) 18 (1)B 20256 
(544)B 

1244 
(103)B 

4.8 (0.4)B 1.5 
(0.1)A 

163 
(19)A 

3351 
(26)AB 

1336 
(84)BC 

16 (0.5) 

ND-Not done, * No significant difference 
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5.5 Discussion 

There was a decrease in the C-content of all the soils and soil-compost mixtures. This indicates 

that soil organic matter is being oxidised. The greater decrease at higher temperature and with 

added N was expected due to the likely increase of microbial activity (not measured) under 

these conditions. The decrease in organic matter would likely reduce the number of binding 

sites for cations on the soil colloids as the CEC of compost and soil organic matter is 50 

Cmolc/kg compared to other components of the soil (<5 Cmolc/kg), except clay depending on 

pH (Helling et al., 1964). Unfortunately, the CEC of the soils at the conclusion of the 

experiment was not measured. 

Helling et al. (1964) have shown that decreasing SOM leads to a decrease in CEC, which results 

in increased solubility of cations. Our finding that the solubility of Cd and other elements either 

remained unchanged or even decreased during the experiment was unexpected and falsifies our 

hypothesis that the degradation of SOM will lead to increased Cd solubility. 

Our results indicate that the decreases in extractable elements over time are not the result of 

increased CEC, because the concentrations of extractable P and S, which occur as anions in 

soils (Brady and Weil, 2013), also decreased. Moreover, there were significant increases in 

extractable Fe (Lavado et al., 1999) and Al, which are usually cations at this pH (Brady and 

Weil, 2013). Potentially, the significant decrease in extractable Cd, Cu, K, Na, P, S, and Zn 

may have been due to occlusion on the soil colloids by Fe and Al plaques. This may, in part, 

be an artefact of the experimental conditions. The regular mechanical disturbance of the moist 

soils will have disrupted soil aggregates (Bissonnais, 1996; Brady and Weil, 2013; Watts et al., 

1996) leading to increased surface area and higher concentrations of colloidal Fe and Al 

(Lavado et al., 1999) that may have occluded surface-bound elements. This same process may 

occur following repeated ploughing. The role of ploughing on the solubility and 

phytoavailability of elements in soil has been studied by Lavado et al. (1999), Düring et al. 
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(2002) and Düring et al. (2003). Lavado et al. (1999) observed in a field trial that the DTPA 

extractable Cd were not changed due to the mechanical disturbances whereas Düring et al. 

(2002) Observed that the EDTA extractable Cd decreased due to the mechanical disturbance 

in soils in laboratory trials although Düring et al. (2003) in the field condition, soils with no 

mechanical disturbance had less soluble Cd and less Cd uptake by plants than mechanically 

disturbed soils. 

The extractable Fe and Al moieties would have interacted with the organic matter present. 

Several authors (Baldock and Skjemstad, 2000; Deng and Dixon, 2002; Huang et al., 2005) 

have reported that SOM can be stabilised by interacting with clay minerals and oxides. 

Urea application in soil has generally decreased the pH of soils (Table SI 5.1) which is 

consistent with Maier et al. (1996) who observed, in a glass house experiment, that the 

application of urea in soil decreased soil pH. The pH decrease in urea-N treated soils is 

suggested to be the release of  NO3- from urea that caused the pH decrease that has been 

reported by Heilman (1975) and Bouman et al. (1995).  

The uptake of elements into potato tubers reflected the results from the extractions both in 

terms of the reduction in Cd when compost was added and the reduction over time for both the 

controls and the compost amended soils. In both the pot trial and the incubation experiment, 

there was increased mechanical disturbance in the aged compost, which may have led to high 

concentrations of extractable Fe (Lavado et al., 1999) and Al. 

Contrary to our initial hypothesis, our results indicate that, in two contrasting soil types, the 

degradation of SOM is not accompanied by an increase in extractable Cd or plant-available Cd 

as measured in the pot trial. Were our results indicative of the field situation, then a single 

application of compost is likely to reduce crop Cd uptake for several years because in our one-

year experiment, the degradation of the incubated, mechanically disturbed and N-augmented 

soils was likely to have been higher than what would occur in the field. However, the mechanic 



 
 
 

114 
 

disturbance in our system may have resulted in increased occlusion of Cd, thereby artificially 

reducing the extractable and plant-available Cd concentrations. 

5.6 Conclusion 

In artificially incubated soils, extractable Cd concentrations and plant uptake of Cd remained 

either unchanged or decreased over a one-year incubation period, despite significant decreases 

in soil C. Part of the effect is likely due to the experimental conditions, which included regular 

mechanical disturbance, potentially occluding Cd and other elements attached to the surfaces 

of soil colloids. If these results are translatable to the field, then it is likely that the beneficial 

effect of compost addition will last for several years before reapplication is required. Future 

work should focus on the role of mechanical disturbance on Cd phytoavailability using field 

trials to confirm the longevity of compost-bound Cd in agricultural soils. 
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Table SI 5.1 pH with time (week) at T0, T1 and T2 conditions in Levin soil and Pukekohe soil amended with different composts. SE is the standard error of the mean (n=3) 

Week 

pH 
Municipal compost amended soils Sawdust compost amended soils No organic matter added soils 

T0* SE T1* SE T2* SE T0* SE T1* SE T2* SE T0* SE T1* SE T2* SE 
Levin soil 

1 6.6 0.01 6.6 0.01 6.6 0.01 6.5 0.01 6.5 0.01 6.5 0.03 6.7 0.01 6.4 0.01 6.3 0.02 

5 6.7 0.00 6.7 0.02 6.6 0.01 6.7 0.01 6.8 0.00 6.7 0.03 6.7 0.03 6.6 0.02 6.6 0.02 

9 6.4 0.00 6.5 0.02 6.2 0.01 6.5 0.01 6.5 0.01 6.2 0.01 6.4 0.03 6.7 0.01 6.7 0.01 

13 6.5 0.00 6.4 0.01 6.1 0.01 6.5 0.00 6.5 0.00 6.1 0.01 6.5 0.00 6.5 0.01 6.1 0.02 

21 6.5 0.02 6.5 0.01 6.2 0.03 6.6 0.02 6.5 0.02 6.4 0.07 6.5 0.03 6.4 0.02 6.1 0.03 

31 6.6 0.01 6.5 0.03 6.3 0.01 6.6 0.01 6.5 0.01 6.4 0.01 6.6 0.02 6.5 0.02 6.2 0.02 

49 6.6 0.01 6.5 0.01 6.2 0.01 6.6 0.02 6.5 0.02 6.2 0.01 6.6 0.01 6.5 0.02 6.3 0.02 

Week Pukekohe soil  
1 6.4 0.02 6.4 0.02 6.4 0.00 6.5 0.02 6.5 0.01 6.5 0.02 6.2 0.06 6.1 0.04 6.0 0.04 

5 6.4 0.01 6.4 0.04 6.3 0.02 6.5 0.02 6.4 0.03 6.4 0.03 6.5 0.04 6.4 0.03 6.4 0.02 

9 6.2 0.01 5.9 0.01 5.8 0.01 6.2 0.01 6.0 0.02 5.8 0.01 6.2 0.04 5.9 0.02 5.7 0.02 

13 5.9 0.01 5.9 0.01 5.8 0.05 6.1 0.01 6.0 0.01 5.7 0.02 6.0 0.02 5.9 0.02 5.6 0.02 

21 5.9 0.02 5.9 0.02 5.7 0.03 6.0 0.02 6.0 0.02 5.7 0.02 5.9 0.02 5.9 0.01 5.7 0.02 

31 6.0 0.00 5.9 0.01 5.7 0.01 6.1 0.01 5.9 0.00 5.8 0.01 6.0 0.02 5.9 0.03 5.7 0.01 

49 6.0 0.02 5.9 0.03 5.6 0.02 6.1 0.01 5.9 0.00 5.7 0.03 6.0 0.01 5.9 0.02 5.6 0.01 
 
*no significant difference
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Table SI 5.2 Extractable Al (mg/kg) with time (week) at T0, T1 and T2 conditions in Levin soil and Pukekohe soil amended with different composts. SE is the standard error 
of the mean (n=3) 

Week 

Extractable Al (mg/kg) 
Municipal compost amended soils Sawdust compost amended soils No organic matter added soils 

T0* SE T1* SE T2* SE T0* SE T1* SE T2* SE T0* SE T1* SE T2* SE 
Levin soil 

1 0.4 0.007 0.4 0.012 0.4 0.003 0.5 0.022 0.5 0.015 0.5 0.015 0.4 0.016 0.5 0.012 0.4 0.009 

5 0.3 0.004 0.3 0.018 0.3 0.014 0.3 0.005 0.3 0.026 0.4 0.019 0.3 0.011 0.3 0.024 0.4 0.019 

9 0.2 0.006 0.3 0.004 0.3 0.010 0.2 0.011 0.2 0.006 0.3 0.006 0.2 0.002 0.3 0.010 0.3 0.038 

13 0.8 0.131 1.5 0.464 1.2 0.088 1.4 0.059 1.4 0.182 1.4 0.199 1.4 0.059 1.4 0.159 1.3 0.209 

21 1.1 0.413 0.5 0.009 0.4 0.020 0.5 0.028 0.7 0.028 0.9 0.299 0.7 0.190 0.4 0.079 0.9 0.072 

31 1.2 0.174 0.8 0.059 1.3 0.274 2.0 0.235 1.4 0.427 0.8 0.278 1.6 0.167 1.1 0.139 1.4 0.177 

49 0.4 0.058 0.7 0.043 0.6 0.089 0.5 0.055 0.5 0.060 0.6 0.030 0.4 0.092 0.7 0.182 0.7 0.105 

Week Pukekohe soil  
1 0.4 0.022 0.4 0.021 0.4 0.030 0.5 0.043 0.4 0.029 0.5 0.030 0.5 0.052 0.5 0.036 0.6 0.050 

5 0.3 0.021 0.4 0.011 0.4 0.013 0.4 0.026 0.4 0.021 0.7 0.237 0.5 0.029 0.5 0.017 0.5 0.028 

9 0.2 0.022 0.2 0.004 0.3 0.022 0.2 0.058 0.3 0.033 0.2 0.040 0.3 0.011 0.3 0.012 0.4 0.015 

13 0.9 0.166 0.9 0.129 1.1 0.058 0.8 0.109 1.7 0.172 1.5 0.200 1.2 0.261 1.3 0.215 1.6 0.273 

21 0.8 0.157 0.7 0.074 1.0 0.224 0.7 0.312 0.7 0.078 1.7 0.404 1.3 0.296 1.1 0.210 0.9 0.147 

31 1.4 0.469 1.1 0.207 1.2 0.255 2.3 0.393 1.1 0.166 1.2 0.271 1.7 0.208 1.4 0.193 1.2 0.340 

49 0.9 0.283 1.3 0.469 0.8 0.085 1.0 0.321 0.8 0.029 1.2 0.096 0.8 0.117 0.8 0.152 0.8 0.069 
*no significant difference
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Table SI 5.3 Extractable Cu (mg/kg) with time (week) at T0, T1 and T2 conditions in Levin soil and Pukekohe soil amended with different composts. SE is the standard error 
of the mean (n=3) 

Week 

Extractable Cu (mg/kg) 
Municipal compost amended soils Sawdust compost amended soils No organic matter added soils 

T0* SE T1* SE T2* SE T0* SE T1* SE T2* SE T0* SE T1* SE T2* SE 
Levin soil 

1 0.2 0.012 0.2 0.006 0.2 0.010 0.2 0.025 0.2 0.011 0.2 0.004 0.2 0.035 0.2 0.008 0.2 0.007 

5 0.1 0.001 0.1 0.003 0.1 0.000 0.1 0.004 0.1 0.003 0.1 0.003 0.1 0.004 0.1 0.005 0.1 0.006 

9 0.1 0.002 0.1 0.001 0.1 0.002 0.1 0.006 0.1 0.001 0.1 0.003 0.1 0.003 0.1 0.005 0.1 0.002 

13 0.1 0.003 0.1 0.001 0.1 0.005 0.1 0.012 0.1 0.001 0.1 0.002 0.1 0.012 0.1 0.002 0.1 0.005 

21 0.1 0.008 0.1 0.015 0.1 0.012 0.1 0.000 0.1 0.009 0.1 0.009 0.1 0.010 0.1 0.014 0.1 0.014 

31 0.1 0.006 0.0 0.011 0.1 0.008 0.1 0.003 0.0 0.003 0.0 0.011 0.1 0.011 0.0 0.009 0.0 0.013 

49 0.1 0.004 0.0 0.011 0.1 0.014 0.1 0.012 0.0 0.007 0.1 0.009 0.0 0.013 0.1 0.001 0.1 0.005 

Week Pukekohe soil 
1 0.2 0.008 0.1 0.007 0.2 0.006 0.2 0.011 0.2 0.013 0.2 0.003 0.2 0.020 0.1 0.003 0.2 0.014 

5 0.1 0.002 0.1 0.003 0.1 0.002 0.1 0.003 0.1 0.006 0.1 0.015 0.1 0.011 0.1 0.006 0.1 0.004 

9 0.1 0.001 0.1 0.004 0.1 0.006 0.1 0.005 0.1 0.015 0.1 0.001 0.1 0.006 0.1 0.010 0.1 0.003 

13 0.1 0.009 0.1 0.003 0.1 0.003 0.1 0.003 0.1 0.001 0.1 0.001 0.1 0.003 0.1 0.002 0.1 0.009 

21 0.1 0.009 0.1 0.009 0.1 0.010 0.1 0.003 0.1 0.007 0.1 0.008 0.1 0.009 0.1 0.010 0.1 0.016 

31 0.1 0.002 0.0 0.016 0.1 0.001 0.0 0.007 0.0 0.005 0.1 0.004 0.1 0.007 0.0 0.009 0.1 0.013 

49 0.0 0.008 0.1 0.003 0.0 0.015 0.1 0.007 0.0 0.005 0.0 0.007 0.1 0.013 0.0 0.011 0.1 0.012 
*no significant difference
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Table SI 5.4 Extractable Fe (mg/kg) with time (week) at T0, T1 and T2 conditions in Levin soil and Pukekohe soil amended with different composts. SE is the standard error 
of the mean (n=3) 

Week 

Extractable Fe (mg/kg) 
Municipal compost amended soils Sawdust compost amended soils No organic matter added soils 

T0* SE T1* SE T2* SE T0* SE T1* SE T2* SE T0* SE T1* SE T2* SE 
Levin soil 

1 0.2 0.012 0.2 0.006 0.2 0.006 0.2 0.012 0.2 0.004 0.2 0.006 0.2 0.024 0.2 0.007 0.2 0.009 

5 0.1 0.002 0.2 0.009 0.2 0.007 0.2 0.005 0.2 0.015 0.2 0.009 0.1 0.003 0.2 0.004 0.2 0.015 

9 0.1 0.002 0.1 0.001 0.1 0.008 0.1 0.007 0.1 0.002 0.1 0.002 0.1 0.004 0.1 0.008 0.1 0.010 

13 0.4 0.041 0.7 0.235 0.5 0.036 0.6 0.035 0.7 0.087 0.6 0.118 0.6 0.035 0.7 0.116 0.6 0.096 

21 0.9 0.153 0.6 0.046 0.5 0.040 0.6 0.013 0.6 0.036 0.7 0.135 0.7 0.085 0.5 0.051 0.6 0.051 

31 0.9 0.107 0.7 0.050 1.0 0.122 1.3 0.111 0.9 0.222 0.7 0.144 1.0 0.129 0.7 0.099 0.9 0.064 

49 0.6 0.043 0.7 0.045 0.7 0.075 0.6 0.076 0.5 0.050 0.7 0.027 0.5 0.077 0.7 0.062 0.7 0.033 

Week Pukekohe soil 
1 0.1 0.008 0.1 0.014 0.2 0.008 0.1 0.015 0.2 0.027 0.2 0.005 0.1 0.007 0.1 0.017 0.2 0.018 

5 0.1 0.009 0.2 0.010 0.1 0.009 0.1 0.010 0.2 0.012 0.3 0.101 0.2 0.016 0.1 0.010 0.2 0.005 

9 0.1 0.003 0.1 0.001 0.1 0.006 0.0 0.005 0.1 0.022 0.1 0.003 0.1 0.004 0.1 0.001 0.1 0.002 

13 0.4 0.076 0.4 0.056 0.4 0.020 0.3 0.037 0.6 0.071 0.6 0.098 0.5 0.097 0.5 0.080 0.5 0.097 

21 0.7 0.044 0.7 0.036 0.7 0.045 0.6 0.071 0.6 0.049 0.9 0.104 0.8 0.071 0.7 0.050 0.6 0.007 

31 0.9 0.145 0.8 0.105 0.9 0.070 1.1 0.136 0.8 0.055 0.8 0.079 1.0 0.081 0.9 0.086 0.8 0.081 

49 0.7 0.048 0.9 0.165 0.7 0.059 0.8 0.126 0.6 0.018 0.7 0.056 0.7 0.075 0.6 0.081 0.6 0.032 
*no significant difference
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Table SI 5.5 Extractable K (mg/kg) with time (week) at T0, T1 and T2 conditions in Levin soil and Pukekohe soil amended with different composts. SE is the standard error of 
the mean (n=3) 

Week 

Extractable K (mg/kg) 
Municipal compost amended soils Sawdust compost amended soils No organic matter added soils 

T0* SE T1* SE T2* SE T0* SE T1* SE T2* SE T0* SE T1* SE T2* SE 
Levin soil 

1 324 33 308 10 344 10 217 13 221 6 220 2 182 3 180 3 179 1 

5 276 2 268 2 269 3 204 0 201 2 209 2 180 2 176 1 180 1 

9 303 1 297 1 263 34 195 2 223 0 224 4 246 3 229 33 191 1 

13 327 4 325 2 332 7 194 8 227 3 232 6 194 8 189 3 202 3 

21 251 22 282 46 235 43 219 6 185 30 131 15 169 17 174 27 133 28 

31 258 36 249 51 283 32 242 1 149 12 182 40 169 31 107 23 137 35 

49 278 26 254 37 277 57 183 40 134 23 210 28 133 32 196 2 188 12 

Week Pukekohe soil (mg/kg) 
1 460 16 419 9 396 5 330 2 335 4 335 10 281 2 281 1 277 0 

5 376 1 380 3 401 2 305 2 309 4 306 7 285 3 284 1 303 2 

9 415 1 412 1 416 2 342 4 334 2 334 2 307 1 308 1 315 1 

13 473 2 478 4 481 1 390 2 384 4 395 1 352 3 349 2 361 2 

21 450 12 412 43 396 40 274 24 304 36 269 28 340 20 272 50 268 47 

31 452 4 319 71 467 2 216 25 310 33 290 29 276 37 274 38 252 55 

49 321 52 436 14 337 61 346 15 245 11 237 33 277 52 242 53 299 52 
*no significant difference



 
 
 

120 
 

Table SI 5.6 Extractable Mg (mg/kg) with time (week) at T0, T1 and T2 conditions in Levin soil and Pukekohe soil amended with different composts. SE is the standard error 
of the mean (n=3) 

Week 

Extractable Mg (mg/kg) 
Municipal compost amended soils Sawdust compost amended soils No organic matter added soils 

T0* SE T1* SE T2* SE T0 SE T1* SE T2* SE T0* SE T1* SE T2* SE 
Levin soil 

1 165 4 164 1 166 1 151 3 152 1 153 2 146 1 145 0 143 1 

5 172 1 168 2 168 1 161 1 154 1 160 3 146 0 146 0 150 1 

9 128 1 126 1 121 5 113 0 120 1 121 2 130 2 113 5 108 2 

13 262 2 267 3 287 6 216 6 241 3 261 6 216 6 224 6 244 2 

21 170 12 183 20 170 19 173 5 160 15 142 11 154 13 167 19 143 23 

31 166 16 167 20 195 12 179 1 138 8 163 24 159 21 115 19 147 25 

49 185 9 171 15 190 26 156 25 129 16 186 13 133 24 177 1 181 5 

Week Pukekohe soil 
1 194 1 190 1 187 1 184 1 183 1 181 1 176 1 178 2 175 1 

5 191 1 192 1 200 1 184 1 186 1 186 2 176 1 176 1 186 0 

9 144 1 149 1 150 1 141 1 143 1 146 1 134 1 137 1 138 0 

13 358 3 360 4 379 2 331 1 330 6 342 2 313 4 321 1 335 2 

21 240 5 234 20 230 17 182 9 206 16 193 12 216 11 195 23 196 22 

31 245 2 200 29 265 1 156 9 212 18 202 13 194 14 194 15 187 26 

49 192 22 244 6 206 23 217 9 182 3 176 14 192 23 182 23 213 23 
*no significant difference
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Table SI 5.7 Extractable Mn (mg/kg) with time (week) at T0, T1 and T2 conditions in Levin soil and Pukekohe soil amended with different composts. SE is the standard error 
of the mean (n=3) 

Week 

Extractable Mn (mg/kg) 
Municipal compost amended soils Sawdust compost amended soils No organic matter added soils 

T0* SE T1* SE T2* SE T0* SE T1* SE T2* SE T0* SE T1* SE T2* SE 
Levin soil 

1 5.0 0.132 4.9 0.061 5.4 0.205 5.7 0.298 5.5 0.062 5.9 0.212 5.2 0.049 5.0 0.084 5.1 0.097 

5 3.3 0.089 3.2 0.014 3.2 0.083 3.3 0.095 3.4 0.154 3.5 0.087 3.3 0.028 3.4 0.089 3.5 0.127 

9 5.0 0.101 5.7 0.033 6.5 0.025 4.6 0.225 5.1 0.236 6.0 0.269 5.3 0.067 5.5 0.428 6.4 0.525 

13 3.6 0.018 3.4 0.241 5.0 0.262 3.4 0.240 3.3 0.496 5.2 0.447 3.4 0.240 3.2 0.125 4.9 0.191 

21 4.5 0.256 5.1 1.707 6.3 1.187 5.4 0.135 3.8 0.593 4.7 0.664 5.2 0.457 4.2 0.735 6.0 1.113 

31 2.5 0.276 1.9 0.330 2.9 0.433 3.5 0.264 2.1 0.179 2.9 0.497 2.5 0.138 1.5 0.291 2.4 0.457 

49 1.6 0.122 1.8 0.251 2.6 0.455 1.8 0.406 1.5 0.244 3.1 0.333 1.4 0.310 2.4 0.061 3.1 0.224 

Week Pukekohe soil 
1 19 1 15 0 17 1 20 1 16 0 19 1 25 4 19 1 23 2 

5 11 0 12 0 13 0 11 0 12 0 13 1 13 1 15 0 17 0 

9 25 0 21 0 25 0 22 1 20 1 20 1 25 2 21 1 28 1 

13 18 0 14 0 18 1 16 1 13 0 20 1 19 1 16 1 22 0 

21 38 2 26 3 40 4 27 1 22 2 39 5 44 2 25 4 47 10 

31 16 0 11 3 19 0 9 1 13 1 15 1 14 1 14 2 18 4 

49 7 1 9 0 10 2 9 0 7 0 10 1 9 2 9 2 15 2 
*no significant difference
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Table SI 5.8 Extractable Na (mg/kg) with time (week) at T0, T1 and T2 conditions in Levin soil and Pukekohe soil amended with different composts. SE is the standard error 
of the mean (n=3) 

Week 
Extractable Na (mg/kg) 

Municipal compost amended soils Sawdust compost amended soils No organic matter added soils 
 T0* SE T1* SE T2* SE T0* SE T1* SE T2* SE T0* SE T1* SE T2* SE 
 Levin soil 

1 113 13 105 5 120 5 72 5 73 3 73 0 54 1 53 2 56 0 

5 108 2 100 4 101 2 71 1 67 2 74 3 55 2 53 1 58 2 

9 76 0 73 0 62 11 43 0 52 1 53 2 61 1 51 9 41 1 

13 90 1 92 1 90 1 45 1 59 1 65 3 45 1 49 2 48 1 

21 57 4 60 9 52 9 42 2 35 5 27 3 30 3 32 5 25 5 

31 57 8 55 10 62 7 47 1 30 2 36 7 30 5 21 4 26 7 

49 61 5 57 7 64 11 38 7 29 4 45 5 24 5 39 0 39 2 

Week Pukekohe soil 
1 168 8 145 4 137 4 113 3 113 3 114 4 92 3 88 1 90 2 

5 130 1 128 2 136 1 98 2 101 1 99 3 91 2 92 1 98 2 

9 96 2 95 1 96 1 81 1 76 1 76 1 69 1 68 1 69 1 

13 120 4 111 2 115 2 98 3 97 2 99 1 85 1 89 1 87 1 

21 77 2 71 7 68 7 47 4 55 7 47 5 63 5 48 9 46 8 

31 90 1 64 13 96 2 46 4 60 6 58 5 54 7 55 4 50 10 

49 66 10 86 3 69 11 69 3 52 2 50 7 55 10 50 11 62 10 
*no significant difference
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Table SI 5.9 Extractable P (mg/kg) with time (week) at T0, T1 and T2 conditions in Levin soil and Pukekohe soil amended with different composts. SE is the standard error of 
the mean (n=3) 

Week 

Extractable P (mg/kg) 
Municipal compost amended soils Sawdust compost amended soils No organic matter added soils 

T0* SE T1* SE T2* SE T0* SE T1* SE T2* SE T0* SE T1* SE T2* SE 
Levin soil 

1 7.3 0.2 7.0 0.1 7.4 0.2 7.0 0.4 6.9 0.1 7.0 0.0 6.6 0.0 6.6 0.0 6.6 0.1 

5 6.7 0.1 6.8 0.0 6.9 0.1 6.2 0.0 6.4 0.1 6.7 0.0 6.3 0.0 6.6 0.1 6.7 0.1 

9 6.1 0.1 6.9 0.0 7.0 0.2 5.8 0.2 6.0 0.1 6.4 0.1 5.6 0.0 6.6 0.3 6.6 0.1 

13 6.3 0.0 6.7 0.1 7.2 0.2 5.7 0.1 6.0 0.1 6.8 0.0 5.7 0.1 6.3 0.2 6.7 0.2 

21 5.5 0.3 5.3 0.8 5.4 1.0 6.4 0.1 4.7 0.7 4.0 0.5 5.8 0.6 4.8 0.8 4.7 0.9 

31 5.3 0.7 5.2 1.0 6.0 0.7 6.5 0.2 4.3 0.4 5.2 1.0 5.1 0.7 3.3 0.7 4.2 0.9 

49 5.2 0.4 5.4 0.7 6.2 1.2 4.5 0.9 3.8 0.7 6.3 0.8 3.9 0.8 6.0 0.1 6.2 0.3 

Week Pukekohe soil 
1 4.0 0.1 3.6 0.0 3.8 0.1 3.8 0.2 3.6 0.0 4.1 0.1 3.6 0.3 3.3 0.1 3.7 0.2 

5 3.1 0.0 3.5 0.1 3.5 0.0 3.0 0.0 3.3 0.1 3.3 0.2 2.9 0.0 3.1 0.1 3.1 0.0 

9 2.9 0.3 3.1 0.1 3.3 0.0 2.9 0.2 3.0 0.1 3.0 0.3 2.8 0.1 2.7 0.1 2.8 0.1 

13 3.1 0.1 3.2 0.1 3.3 0.2 3.1 0.0 3.0 0.1 3.3 0.0 2.8 0.1 2.9 0.1 2.9 0.1 

21 3.3 0.2 2.4 0.3 2.5 0.3 2.5 0.2 2.3 0.3 2.0 0.2 3.2 0.2 1.9 0.3 2.1 0.4 

31 3.1 0.1 2.0 0.5 3.0 0.0 1.7 0.1 2.4 0.3 2.3 0.2 2.1 0.3 2.0 0.3 1.9 0.4 

49 1.9 0.4 2.7 0.1 2.0 0.4 2.6 0.1 1.8 0.1 1.8 0.3 2.0 0.4 1.7 0.4 2.2 0.4 
*no significant difference
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Table SI 5.10 Extractable S (mg/kg) with time (week) at T0, T1 and T2 conditions in Levin soil and Pukekohe soil amended with different composts. SE is the standard error 
of the mean (n=3) 

Week 

Extractable S (mg/kg) 
Municipal compost amended soils Sawdust compost amended soils No organic matter added soils 

T0* SE T1* SE T2* SE T0* SE T1* SE T2* SE T0* SE T1* SE T2* SE 
Levin soil 

1 31.6 3.7 28.1 0.8 32.6 1.6 37.2 3.7 36.4 2.4 39.0 1.9 22.8 0.7 20.8 0.3 21.8 0.4 

5 30.1 0.8 31.2 1.3 30.3 0.2 34.6 1.0 37.6 1.6 39.0 1.6 19.3 0.4 21.1 0.6 21.5 0.3 

9 22.7 0.2 28.0 0.2 22.5 3.2 14.6 0.6 32.5 0.8 30.8 1.0 31.7 1.2 20.5 2.0 17.2 0.3 

13 23.8 0.4 29.3 0.7 29.1 0.3 15.9 0.9 34.1 0.8 35.6 0.6 15.9 0.9 19.9 0.5 18.5 0.4 

21 21.8 2.1 26.1 5.1 24.2 4.9 34.2 0.8 29.4 4.7 22.7 2.2 18.7 2.0 17.4 3.4 15.7 3.8 

31 20.1 3.1 24.2 5.1 27.2 4.2 32.2 0.7 25.1 2.3 27.8 6.2 12.6 2.0 10.6 3.0 12.1 3.6 

49 22.2 2.3 27.7 3.9 29.1 6.7 25.9 6.4 24.9 4.7 37.6 5.0 10.4 3.1 24.9 1.5 19.5 1.4 

Week Pukekohe soil 
1 60.7 1.7 53.6 0.4 56.5 1.9 68.1 3.3 69.3 2.0 75.6 1.6 54.3 4.8 50.7 1.8 55.7 3.8 

5 46.4 0.1 50.6 0.9 50.0 0.3 51.8 0.9 55.2 1.1 55.3 1.5 43.5 1.0 46.6 0.9 46.2 0.1 

9 47.3 0.9 45.3 0.4 44.5 0.2 49.1 0.9 49.8 1.0 49.1 0.4 39.2 1.3 36.8 1.0 37.9 0.5 

13 45.9 1.0 50.4 0.4 48.4 0.6 51.9 0.9 55.7 0.6 57.5 0.6 40.2 0.8 41.5 0.5 41.2 0.2 

21 57.6 1.6 44.1 5.4 46.2 6.2 44.8 3.0 46.3 6.3 42.3 3.9 52.0 2.9 31.3 5.9 35.2 6.8 

31 46.2 0.7 34.7 9.2 52.0 0.4 28.6 3.1 48.4 5.9 43.2 4.4 30.7 4.3 32.0 4.8 29.3 6.8 

49 30.8 6.0 51.3 2.0 33.8 7.2 48.3 2.5 38.3 2.0 35.0 5.3 30.1 6.3 29.1 7.1 34.5 6.5 
 *no significant difference
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Table SI 5.11 Extractable Zn (mg/kg) with time (week) at T0, T1 and T2 conditions in Levin soil and Pukekohe soil amended with different composts. SE is the standard error 
of the mean (n=3) 

Week 

Extractable Zn (mg/kg) 
Municipal compost amended soils Sawdust compost amended soils No organic matter added soils 

T0* SE T1* SE T2* SE T0* SE T1* SE T2* SE T0* SE T1* SE T2* SE 
Levin soil 

1 0.258 0.01 0.151 0.01 0.178 0.02 0.179 0.04 0.183 0.03 0.099 0.01 0.149 0.03 0.018 0.00 0.165 0.02 

5 0.065 0.00 0.069 0.01 0.071 0.00 0.052 0.00 0.064 0.01 0.060 0.00 0.066 0.00 0.013 0.00 0.060 0.01 

9 0.066 0.01 0.069 0.00 0.090 0.00 0.061 0.01 0.052 0.01 0.900 0.00 0.012 0.00 0.026 0.00 0.090 0.00 

13 0.161 0.05 0.178 0.02 0.305 0.05 0.172 0.05 0.244 0.06 0.143 0.03 0.156 0.02 0.016 0.00 0.272 0.06 

21 0.130 0.06 0.150 0.00 0.059 0.00 0.109 0.02 0.100 0.05 0.006 0.00 0.133 0.10 0.009 0.00 0.041 0.03 

31 0.277 0.12 0.129 0.03 0.062 0.02 0.254 0.06 0.151 0.06 0.038 0.02 0.050 0.00 0.005 0.00 0.030 0.01 

49 0.038 0.01 0.008 0.00 0.010 0.00 0.002 0.00 0.015 0.00 0.060 0.00 0.022 0.01 0.012 0.00 0.026 0.01 

Week Pukekohe soil 
1 0.31 0.01 0.25 0.01 0.30 0.01 0.32 0.01 0.29 0.05 0.26 0.01 0.37 0.04 0.31 0.02 0.34 0.02 

5 0.24 0.00 0.24 0.01 0.30 0.01 0.21 0.01 0.23 0.02 0.27 0.03 0.29 0.03 0.28 0.02 0.32 0.01 

9 0.23 0.00 0.29 0.02 0.37 0.01 0.25 0.06 0.24 0.03 0.25 0.03 0.26 0.01 0.26 0.01 0.37 0.00 

13 0.56 0.03 0.54 0.02 0.80 0.14 0.44 0.03 0.45 0.01 0.48 0.03 0.49 0.05 0.65 0.07 0.63 0.05 

21 0.33 0.03 0.29 0.05 0.54 0.16 0.28 0.06 0.21 0.04 0.29 0.06 0.36 0.01 0.30 0.03 0.31 0.06 

31 0.42 0.02 0.26 0.07 0.51 0.04 0.17 0.02 0.32 0.01 0.31 0.04 0.31 0.04 0.34 0.07 0.37 0.05 

49 0.17 0.03 0.26 0.01 0.32 0.08 0.20 0.03 0.15 0.02 0.21 0.03 0.19 0.05 0.17 0.05 0.40 0.08 
*no significant difference
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Table SI 5.12 Fisher’s post hoc test of the data (Total C) used in Figure 5.1 (A-F). Same capital letters in the rows 
are not significantly different. Same small letters in the columns are not significantly different. * no significant 
difference among T0, T1 and T2 

Treatment Week 
For Figure 1A 1* 5 9* 13* 21* 31* 49 

T0 A Aa A AB BC BC Ca 
T1 A Ab A AB AB BC Cb 
T2 A Ac A B B B Bc 

For Figure 1B Week 
1* 5 9* 13* 21* 31* 49 

T0 A Ba B B B B Ba 
T1 BC ABab A D D CD Db 
T2 AB Bb A C C C Cb 

For Figure 1C 
 

Week 
1* 5* 9 13* 21 31 49 

T0 B BC Aa CD Da Da Da 
T1 BC AB Ab CD Db Dab Db 
T2 AB B Aab C Cab Cb Cab 

For Figure 1D 
 

Week 
1 5* 9 13 21 31 49* 

T0 BCb AB Aa ABa Aba BCa C 
T1 Aa AB Aab Cb BCa Dab D 
T2 Aab A Ab ABb BCb CDb D 

For Figure 1E 
 

Week 
1 5* 9* 13 21 31 49 

T0 ABa B A Ca Ca Ca Ca 
T1 Cb B A CDb Dc CDb CDab 
T2 Bab B A Cb CDb Dc Db 

For Figure 1F 
 

Week 
1* 5* 9* 13* 21* 31* 49* 

T0 AB BC A D D CD D 
T1 A B B C C C C 
T2 A B A C C C C 
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Table SI 5.13 Fisher’s post hoc test of the data (extractable Cd) used in Figure 2 (A-F). Same capital letters in 
the rows are not significantly different. Same small letters in the columns are not significantly different. * no 
significant difference among T0, T1 and T2 

Treatment Week 
For Figure 2A 1* 5 9 13 21* 31 49* 

T0 BC Aa Bb B CD CD Db 
T1 B CDb Ab BC DE E CDab 
T2 BC CDEb Aa B DE E BCDa 

        
For Figure 2B Week 

1* 5 9 13 21* 31 49* 
T0 B Aa Bb Cc C Cb C 
T1 B Bb Ab CDb C Db CD 
T2 B Bb Aa Ba B Ba B 

For Figure 2C Week 
Treatment 1 5* 9 13 21* 31* 49* 

T0 BCa A Bb Cb BC BC BC 
T1 ABa A ABb ABab B B B 
T2 Bb AB Aa Ba B B B 

For Figure 2D Week 
1* 5 9 13 21* 31* 49* 

T0 B BCb Ab Dc B CD D 
T1 B Bb Ab Bb BC BC C 
T2 BC BCa Aa Ba C C BC 

For Figure 2E Week 
1* 5 9 13* 21* 31 49* 

T0 AB Bb Ab B AB ABab B 
T1 BC BCb Ab B BC Cb BC 
T2 D CDa Aa B BCD BCa D 

For Figure 2F Week 
1* 5* 9 13 21* 31 49* 

T0 B BC Ab CDb BCD Db BCD 
T1 CD BC Ab ABa CD CDab D 
T2 BC B Aa Aa BC BCa C 
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the lower rates of lime had no significant effect. Future work is warranted to elucidate the 

contrasting effects of lime on the Cd-uptake by various plant species. 

6.2 Introduction 

Cadmium is a toxic heavy metal that can enter in the food chain directly through plant uptake 

(Adriano, 2001; Kabata-Pendias and Mukherjee, 2007). The concentration of Cd in some 

agricultural soils has increased due to the continuous application of Cd containing phosphate 

fertilizers (Roberts et al., 1994; Taylor, 1997; Williams and David, 1976). In many parts of the 

world health experts are concerned about the effect of Cd on environmental and human health 

and its potential impact on international trade (Adriano, 2001). The accumulation of Cd in 

grazing animals liver and kidneys makes the liver and kidneys unsuitable for human 

consumption and imperils their use even in pet foods(Roberts et al., 1994). Accumulation of 

Cd in rice and wheat affected animal and human health following implications in local and 

international marketing (Nogawa and Kido, 1996). Because of the broader potential negative 

impact of Cd on human health and economy of a country, there are many studies conducted to 

reduce the availability of Cd in soil solution therefore reducing the accumulation of Cd in 

plants. Organic matter (Basta et al., 2001; Bolan et al., 2003a; Chen et al., 2000; Karaca, 2004; 

Lee et al., 2004; Li et al., 2001; Shuman et al., 2002; Simmler et al., 2013; Tapia et al., 2010), 

liming material (Table SI 1), and inorganic soil amendments (Chen et al., 2016) have been tried 

to increase the sorption of Cd in soil leading to less Cd accumulation in plants.  

There is a contradictory effect of lime on Cd accumulation in plants. Most studies (Table SI 1) 

show that addition of lime in soil increases the sorption of Cd in soils reducing the accumulation 

of Cd in plants whereas Maier et al. (1997) reported that when calcite lime was added in field 

conditions, liming of the soil did not reduce the concentration of Cd in potato tubers although 

the pH of soil increased by 2 units than control soils, rather increased the accumulation of Cd 
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in plants. The increases in Cd accumulation in plants have been attributed to: ineffective mixing 

of lime throughout the whole root zone, inadequate time of reaction of lime with soil, 

competitive desorption of Cd2+ by Ca2+ and low soil moisture inhibiting lime dissolution under 

field conditions (Maier et al., 1997). In another study, it was observed that liming the soil 

decreased the phytoavailable and exchangeable Cd in soil but increased the concentration of 

Cd in plants (Shaheen and Rinklebe, 2015). The increase in Cd uptake may be due to 

competition between Ca and Cd for the cation exchange sites in soil (Bolan et al., 2003a; Maier 

et al., 1997) or due to an induced Zn deficiency at high soil pH, which influences the plant to 

generate additional root Zn transport proteins to gain sufficient soil Zn to check the Zn 

insufficiency stress (Chaney et al., 2009). As the Zn transport proteins also accrue Cd, so 

increased Zn transporting protein production by plants may result in even greater Cd 

accumulation during Zn deficiency stress in plants (Hart et al., 2002). Moreover, because of 

little soil solution Zn activity, there will be low competition with Cd2+ for uptake by the root 

Zn transporter (Chaney et al., 2009) leading to high accumulation of Cd in plants.  

Lime is used in acidic soils to improve plant production through ameliorating the toxic effect 

of aluminium. In acidic soils, the Cd is more available to plants (phytoavailable), thus liming 

is used to reduce Cd availability in acidic soils. In soil, lime addition increases negative charge 

(cation exchange capacity) in variable charge soils and forms strongly bound hydroxyl metal 

species, enhances precipitation of metals as metal hydroxides and immobilization of metals 

thorough enhanced microbial activity (Bolan et al., 1999). However, what is not known is 

whether the effect of different rates of lime on the concentration of Cd in plants is similar for 

all plants or varies between plants. Keeping all these views in mind we designed an experiment 

to find out the effect of four rates of calcite lime on accumulation of Cd in some common 

vegetables in New Zealand and in perennial rye grass (Lolium Perenne) from an agricultural 

soil that had elevated Cd due to continuous application of Cd containing P fertilizers. 
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6.3 Methods and materials 

6.3.1 Soil and lime collection 

We collected soils for this experiment from a commercial vegetable growing area in Pukekohe 

(37o13’18.92”S 174o52’5.94”E) in the North Island of New Zealand. The top 0.25 m soils were 

collected and brought in to the glasshouse area at Lincoln University, New Zealand. Large 

stones and roots were removed from the soil. The soils were then air dried, ground and passed 

through a 7 mm sieve and homogenised. Three 500g sub samples were collected from the bulk 

soil, ground and passed through a 2mm Nylon mesh. The physical and chemical properties of 

the soil are given in Table 6.1. I conducted the particle size analysis of Levin soil and Pukekohe 

soil, following the method of Bouyoucos (1962). In Levin soil there were 10% sand, 70% silt 

and 20% clay and in Pukekohe soil, there were 15% sand, 60% silt and 25% clay. 

This soil had a total concentration of Cd (1.45 mg/kg). We used the lab grade dry lime powder 

(calcium carbonate, AnalaR NORMAPUR, VWR®, PROLABO®, Belgium) in this 

experiment. 
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Table 6.1 Properties of Pukekohe soil (Chapter 1). Standard errors are given in brackets (n=3) 

Properties 
 

Pukekohe soil 
 

pH (H2O) 6.0 

CEC (Cmolc/kg) 22 

C (%) 2.1 

N (%) 0.23 

P (mg/kg) 3414 (26) 

S (mg/kg) 491 (6) 

Ca (mg/kg) 4147 (117) 

Mg (mg/kg) 2400 (95) 

K (mg/kg) 1951 (59) 

B (mg/kg) 33 (0) 

Cd (mg/kg) 1.5 (0.03) 

Cu (mg/kg) 65 (1) 

Zn (mg/kg) 173 (1) 

Cr (mg/kg) 40 (2) 

Ni (mg/kg) 25 (1) 

  

6.3.2 Sample analysis 

pH 

We determined the pH of the sieved soils in high purity water (18.2 MΩ resistivity; Heal 

Force® SMART Series, SPW Ultra-pure Water system, Model-PWUV) using a Mettler Toledo 

pH meter. We added 25 ml of water to 10 grams of air dry soil (soil and water ratio of 1:2.5) 

from each sample and mixed the mixture well by hand shaking. The mixtures were left to 

equilibrate for 24 hr before measurement (Blakemore, 1987). 

The Cation Exchange Capacity (CEC) 

We used 0.01 M Silver Thiourea (AgTU) to measure the CEC of soils (Blakemore, 1987). 

Then, 35 mL of 0.01 M AgTU was added to 0.70 g of dry sample in a 50 mL centrifuge tube, 

agitated in an end-over-end shaker for 16 hours, centrifuged at 2000 rpm for 10 minutes and 

the supernatant was filtered through a Whatman no. 40 filter paper. We analysed the extractants 
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using an Inductively Coupled Plasma-Optical Emission Spectrometer (ICP-OES) (Varian 720 

ES - USA). An Elementar Vario-Max CN Elementar analyser (Elementar ®, Germany) were 

used to measure the total carbon and nitrogen in soil and compost samples. 

Elemental composition 

Pseudo-total elemental analyses of plants and soils were carried out by means of microwave 

digestion in AristarTM nitric acid (± 69%), diluted with milliQ water to a volume of 25 mL and 

filtered using Whatman no. 52 filter paper (pore size 7 µm). Inductively coupled plasma optical 

emission spectrometry (ICP-OES Varian 720 ES – USA) was used to determine the 

concentrations of B, Ca, Cd, Cu, Fe, K, Mg, Mn, Mo, P, S and Zn in soils (Kovács et al., 2000) 

and plant samples (Gray et al., 1999a). Reference soil and plant material (International Soil 

analytical Exchange – ISE 921 and International Plant analytical Exchange IPE 100) from 

Wageningen University, the Netherlands, were analysed for quality assurance. 

Pot trial 

A pot experiment was conducted to reveal the effects of different rates of lime on the 

accumulation of Cd in lettuce, spinach, silver beet and perennial rye grass. Plastic pots of 2 kg 

size were filled with previously prepared soils (plant debris and big stones were removed). The 

soils were mixed with different rates (w/w) of lime namely, T1 (control), T2 (0.31%), T3 

(0.63%), T4 (1.25%) and T5 (2.5%). The soils were mixed with lime and put in the plastic pots. 

They were watered daily two times up to field capacity for 2 weeks to allow lime to react with 

the soils. Then the seeds of lettuce, perennial rye grass, silver beet and spinach were sowed in 

the pots. Initially for lettuce, spinach and silver beet 3 seeds were sown. After germination, 

when the size of the seedlings was around 3 cm height, we kept one seedling removing the 

other two carefully. The plants were allowed to grow for 3 weeks, after which they were 

harvested. We collected the shoot 2 cm above the soil layer to avoid soil contamination in the 

plants.  
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For perennial rye grass we used 15-20 seeds in each pot and allowed those to grow for 3 weeks. 

Then the perennial rye grass was cut from 2 cm above the soil. The fresh weight of the plants 

was recorded. The plants were washed three times with tap water, three times with reverse 

osmosis water and three times with deionized water. Then the plants were placed in an oven 

for drying at 70°C temperature for 7 days until a constant weight was observed. They were 

then removed from the oven and plants were ground in a steel grinder. The ground samples 

were used for the chemical analyses stated above. 

Data were analysed using Minitab® 17 (Minitab Inc, State College, Pennsylvania, USA) and 

Microsoft Excel 2013. The level of significance was 0.05. We used ANOVA with a post-hoc 

Fisher’s test to determine the significant differences in the concentration of metals in plant, pH 

and extractable Cd in soil due to the addition of different rates pf lime. 

6.4 Results 

6.4.1 Changes in soils due to the addition of lime 

Table 6.2 shows that 0.05 M Ca(NO3)2 extractable Cd was decreased significantly (p<0.05) due 

to the application of lime at 0.3 wt% (T2), 0.6 wt% (T3), 1.3 wt% (T4) and 2.5 wt% (T5) in 

soils compared to the control soil (T1). The concentration of Cd in the extractants was 

significantly lower in T3, T4 and T5 rates of lime treated soils than the T2 treatment, indicating 

that higher rates of lime are more effective in reducing the extractable Cd for this soil.  

The T2, T3, T4, and T5 treatments increased soil pH by 0.5, 0.6, 0.7, and 0.8 units, respectively 

compared to control soil. The extractable concentration of Mg, Mn, Ni and Zn was higher due 

at higher rates of lime application whereas only the T5 treatment increased the extractable P in 

soils (Table 6.2).  
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Table 6.2 Ca(NO3)2-extractable metal fraction in rhizosphere soils treated with different lime application rates (T1: 0 wt%, T2: 0.3 wt%, T3: 0.6 wt%, T4: 1.3 wt%, T5: 2.5 

wt%). Standard errors are given in brackets. Values with the same letters in columns are not significantly different 

Pukekohe 

pH Cd 

(mg/kg) 

Fe* 

(mg/kg) 

P 

(mg/kg) 

Cu 

(mg/kg) 

Mn 

(mg/kg) 

Zn 

(mg/kg) Ni (mg/kg) 

Mg 

(mg/kg) K (mg/kg) 

T1 

5.98 ± 

0.05d 

0.01 ± 

0.0 a 

0.16 ± 

0.03 

3.11 ± 

0.04b 

0.15 ± 

0.03ab 

21.75 ± 

1.63a 

0.28 ± 

0.02a 

0.088 ± 

0.010a 

155.97 ± 

1.35a 

160.63 ± 

5.85b 

T2 

6.37 ± 

0.12c 

0.003 ± 

0.0 b 

0.12 ± 

0.03 

2.77 ± 

0.02c 

0.13 ± 

0.01b 

10.19 ± 

1.88b 

0.11 ± 

0.03b 

0.034 ± 

0.010b 

153.57 ± 

1.33a 

185.35 ± 

23.88ab 

T3 

6.93 ± 

0.17b 

0.0001 ± 

0.0 c 

0.16 ± 

0.05 

2.97 ± 

0.14bc 

0.11 ± 

0.01b 

2.40 ± 

0.85c 

0.03 ± 

0.01c 

0.009 ± 

0.003c 

143.34 ± 

5.31b 

210.53 ± 

20.76a 

T4 

7.15 ± 

0.03b 

0.0006 ± 

0.0 c 

0.15 ± 

0.05 

3.18 ± 

0.19b 

0.16 ± 

0.04ab 

1.52 ± 

0.35c 

0.03 ± 

0.01c 

0.008 ± 

0.003c 

137.97 ± 

1.47b 

219.25 ± 

31.96a 

T5 

7.42 ± 

0.01a 

0.0006 ± 

0.0 c 

0.17 ± 

0.03 

3.56 ± 

0.24a 

0.16 ± 

0.03ab 

0.61 ± 

0.03c 

0.02 ± 

0.01c 

0.005 ± 

0.003c 

127.16 ± 

0.42c 

217.09 ± 

6.58a 

*not significant 
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6.4.2 Concentration of Cd in plants 

The concentration of Cd in silver beet ranged from 0.35 to 0.85 mg/kg (d.w.) and significantly 

differed from control and lime treatments. The T2, T3, T4 and T5 treatments significantly 

decreased (p<0.05) the concentration of Cd in silver beet by 51%, 61%, 70% and 83% 

respectively (Figure 6.1). In the case of perennial rye grass, the concentration of Cd was lower 

in lime treated soils compared to control soil. The T2, T3, T4 and T5 lime treatments 

significantly reduced the concentration of Cd in perennial rye grass by 32%, 58%, 61% and 

74% respectively.  

In the case of lettuce, there were no significant differences observed in the concentration of Cd 

among T1 (control), T2, T3 and T5 treatments. The T4 treatment significantly increased the 

concentration of Cd in lettuce by 77%. Among all the treatments, the Cd and Zn ratio is the 

highest in T4 treatment in lettuce (Table 6.3). 
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Figure 6.1 Concentration of Cd (mg/kg) in plants (dry weight basis) at different lime treatments. Significant 

differences are shown in Table 6.2-6.5.  

Table 6.3 The Cd:Zn in lettuce, perennial rye grass, silver beet and spinach 

Treatments Lettuce Perennial rye grass Silver beet Spinach 

T1 0.0135 0.0003 0.0048 0.0035 

T2 0.0100 0.0002 0.0052 0.0038 

T3 0.0139 0.0002 0.0047 0.0037 

T4 0.0238 0.0002 0.0049 0.0049 

T5 0.0190 0.0001 0.0031 0.0069 
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Figure 6.2 Concentration of Zn (mg/kg) in plants (dry weight basis) at different lime treatments. Significant 

differences are shown in Table 6.2-6.5. 

 

6.4.3 Change in other elements in plants 

Lime application in soil significantly reduced the concentration of Zn up to 50% in spinach, up 

to 70% in silver beet and up to 30% in perennial rye grass (Figure 6.2). No significant different 

was observed in the concentration of Zn in lettuce between the different rates of lime treatment. 

  

All the rates of lime application decreased the concentration of S, Na, Mg and increased the 

concentration of Ca and Mo in soil. There was no consistent difference observed in the 

concentration of Al, B, Cr, Cu, Fe, Mn, Ni and P in the studied plants in relation to the 

application of T2, T3, T4 and T5 treatments.  
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6.4.4 Changes in biomass  

Different rates of lime application were observed to have a significant effect (p<0.05) on the 

biomass production of plants (Table 6.4). The biomass production of Silver beet was higher 

(p<0.05) in lime treatments compared to the control. The T2, T3, T4 and T5 treatments in soil 

increased the dry biomass of silver beet by 41%, 65%, 66% and 61% respectively. In spinach 

higher rates of lime (T4 and T5) significantly increased the biomass production (7% and 9%, 

respectively) whereas lower rates of lime (T2 and T3) showed no significant effect. No 

significant differences were observed in the biomass production of lettuce in relation to the 

application of different rates of lime. In the case of perennial rye grass lower rates (T2 and T3) 

did not show any effect on the biomass production although the higher rates of lime (T4 and 

T5) significantly reduced (p<0.05) the biomass production up to 2% and 8%, respectively. No 

visual effect was observed in the growth of any of the plants due to the application of different 

rates of lime. 

 

Table 6.4 Dry plant biomass (gram). Standard errors are given in brackets (n=4). Values in the same row with the 

same letters are not significantly different 

Plants Treatments 

T1 (control) T2 T3 T4 T5 

Lettuce 6.2 (0.15)AB 5.8 (0.05)B 6.4 (0.2)A 5.9 (0.08)B 6.2 (0.2)AB 

Perennial rye grass 6.5 (0.1)A 6.5 (0.1)AB 6.4 (0.1)ABC 6.1 (0.3)BC 6 (0.1)C 
Silver beet 5 (0.2)C 7.1 (0.4)B 8.3 (0.3)A 8.3 (0.1)A 8.1 (0.1)A 

Spinach 3.7 (0.1)B 3.8 (0.1)AB 4 (0.1)AB 4 (0.1)A 4 (0.1)A 
 

6.5 Discussion 

A decrease in the Cd concentration in ryegrass and silver beet (Figure 6.1) due to the lime 

treatment is consistent with other studies where lime application reduced the accumulation of 
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Cd (Basta and Sloan, 1999; Fernandes et al., 1999; He and Singh, 1993; John and Van 

Laerhoven, 1976; Kim et al., 2016; Maier et al., 2002; Singh et al., 1995). This can be attributed 

due to the decrease in the extractable concentration of Cd in soils (Table 6.2) (Dakora and 

Phillips, 2002; Hinsinger et al., 2003; Marschner, 1991). The application of lime increased the 

pH (Table 6.2), which subsequently increased the Cd sorption in soil (Comerford, 2005) 

leading to less available fraction to plants. Lime addition in soil increases the negative charge 

of soil that forms strongly bound hydroxyl Cd species resulting less soluble Cd (Bolan et al., 

1999).  

Even though extractable Cd was lower in all treatments, in lettuce, the T4 treatment increased 

the concentration of Cd compared to the control soil (Table SI 6.2). This Cd concentration 

increase in lettuce may also be due to an induced Zn deficiency at high soil pH, which causes 

the plant to produce additional root Zn transport proteins to have sufficient soil Zn to check the 

Zn insufficiency stress (Chaney et al., 2009). As the Zn transport proteins also transport Cd, so 

increased Zn transporting protein production by plants may result even greater Cd uptake at 

the time of Zn shortage stress in plants (Hart et al., 2002). From the Table 6.3, it is observed 

that lettuce grown in T4 treatment had the highest Cd and Zn ratio indicating that the plants 

probably were under stress from Zn deficiency. The different rates of lime application did not 

affect the concentration of Cd in spinach and partially to lettuce probably due to the response 

of plants to lime by producing more acidic root exudates.  

Lettuce has accumulated more Cd compared to spinach (Table SI 6.2) in all treatments that 

have been also observed in our first experiment (Al Mamun et al., 2016). All the lime 

treatments in soil significantly reduced the accumulation of Zn in spinach (Figure 6.2), silver 

beet and perennial rye grass which has also been reported by other authors who observed the 

same effect of lime on other plants (Andersson and Siman, 1991; Merian, 1991). The 
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concentration of Zn was lower by up to 50% in spinach, up to 70% in silver beet and up to 30% 

in perennial rye grass. No significant difference was observed in the concentration of Zn in 

lettuce due to the different rates of lime treatment in soil. 

6.6 Conclusion 

Liming lead to lower Cd uptake in ryegrass and silverbeet but was ineffective or even increased 

Cd uptake by lettuce and spinach. Unlike composts, lime consistently reduced the uptake of Zn 

and other essential trace elements in all species. Future work should focus on the mechanisms 

behind the paradoxical increase in Cd uptake by some species growing in lime-amended soil. 
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Supplementary Information 

Table SI 6.1 Selected references on the immobilization and phytoavailability of Cd by liming materials (adapted from Bolan et al. (2003a)) 

Liming material Cadmium source Observation Reference 
CaCO3 Fertilizer Decreased Cd concentration in straw (Andersson and Siman, 1991) 

Ca(OH)2 (8, 15 and 22 Mg/ha) Limed biosolids (spiked 
with Cd(NO3)2) 

Decreased soil solution Cd and plant uptake of Cd 
 

(Basta and Sloan, 1999) 

CaCO3 (10 g/kg) Cd-enriched sewage 
sludge 

Decreased Cd-phytotoxicity in wheat (Bingham et al., 1979) 

Ca(OH)2 (8, 15 and 22 Mg/ha) Sewage sludge Decreased the solution Cd; increased residual fraction and plant uptake of Cd 
 

(Brallier et al., 1996) 

CaCO3 (2.1–45 Mg/ha) Sewage sludge Less movement of Cd than Cu and Zn in limed soil 
 

(Brown et al., 1997) 

Ca(OH)2 and CaCO3 (0–1120 
kg/ha) 

Sand Reduced Cd phytotoxicity (Chaney et al., 1977) 

CaCO3 (0–4.5 g/kg) CdSO4 Decreased CaCl2 and NH4OAc extractable Cd in soil and plant tissue Cd (Fernandes et al., 1999) 

– Limed soil Increased Cd2+ sorption (Filius et al., 1998) 

Ca(OH)2 Arable soil – fertilizer 
Cd 

Decreased Cd in chemical extractants and plant tissue (Gray et al., 1999a) 

CaCO3 (0–20 g/kg) Cd(NO3)2 (1.5 mg Cd 
/kg) 

Decreased Cd concentration in plant tissue (Han and Lee, 1996) 

CaCO3 (0–5.226 g/kg) Arable soil fertilizer Cd Decreased Cd concentration in plant tissue (He and Singh, 1993) 

CaCO3 (to pH 7.4) Arable soil/sewage 
sludge 

Decreased Cd2+ adsorption (Hooda and Alloway, 1996) 

CaCO3 (17.92 Mg/ha) Sewage sludge and 
Milorganite 

Decreased uptake of Cd by plants resulting in Cd attenuation (John and Van Laerhoven, 1976) 

CaCO3(0–1000 mg/kg) Arable soil Increased plant Cd at low level of CaCO3; decreased at high levels (John et al., 1972) 

CaMgCO3 (4 Mg/ha) Forest soil Decreased Cd concentration in soil solution 
 

(Kreutzer, 1995) 

CaCO3 (0–10 g/kg) Arable soil Decreased Cd uptake by lettuce (Lehoczky et al., 2000) 

Limestone (83% CaCO3 and 
12% MgCO3) 

Arable soil No effect on Cd uptake by sunflower plants (Li et al., 1996) 
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CaCO3 (3000 kg/ha) Arable soil Decreased DTPA extractable Cd in soils and Cd in plant tissue (Maclean, 1976) 

CaCO3 (0–20 Mg/ha) Arable soil Increased Cd concentration in potato tuber (Maier et al., 1996) 
CaCO3 (0–2.5 Mg/ha) Arable soil Decreased Cd concentration in barley grain (Oliver et al., 1996) 

CaCO3 NPK fertilizer Decreased DTPA and NH4NO3 extractable Cd; increased plant tissue Cd (Singh and Myhr, 1998) 
CaCO3 (1–5 g/kg) Arable soil Decreased DTPA and NH4NO3 extractable Cd, and plant tissue Cd (Singh et al., 1995) 

CaCO3 P fertilizer No effect on Cd concentration of potato tuber (Sparrow et al., 1993) 
CaCO3 Pasture soil Decreased Cd concentration in plant tissue (Tyler and Olsson, 2001) 
CaO Limed sewage sludge Less uptake of Cd by plants (Vasseur et al., 1998) 

CaCO3, MgCO3, CaSO4 Arable soil Decreased Cd concentration with CaCO3 and MgCO3, but increased with CaSO4 (Williams and David, 1976) 
CaCO3 Arable soil Decreased the accumulation of Cd in potato tubers (Maier et al., 2002)  
CaCO3 Arable soil In glass house experiment cd accumulation was reduced, but in field condition 

either no effect or increased Cd accumulation in plants. 
Maier et al. (1997) 

Ca(OH)2 Cd (0–10 mg/kg 
soil) using Cd(NO3)2 

Increased adsorption and Increased and decreased accumulation in plants, 
mustard (Brassica juncea L.). 

(Bolan et al., 2003a) 

Hydrated lime powder (85 % 
w/w) containing Ca(OH)2 

Cd polluted soil from an 
adjacent smelting factory 

Liming wetted and flooded soils decreased NH4OAc extractable Cd and 
increased carbonates or Fe-Mn oxides bound fractions 

(Chen et al., 2016) 

CaCO3 Cd polluted soil from a 
mine 

Decreased NaOAc extractable Cd (Lim et al., 2013) 
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Table SI 6.2 Elemental composition of spinach on the dry weight basis (mg/kg). Standard errors are given in 
brackets (n=4). Values in the same row with the same letters are not significantly different. Zn and Cd data was 
used in graphs 

Elements Treatments 

T1 (control) T2 T3 T4 T5 

Al* 525 (136) 662 (236) 1104 (425) 474 (76) 551 (187) 
B 36 (2)A 33 (1)AB 27 (5)B 28 (1)B 31 (2)AB 

Ca 8756 (607)C 11668 (1346)BC 13855 (1623)AB 15071 (764)A 14727 (267)A 
Cd* A A A A A 
Co 0.51 (0.03)A 0.33 (0.06)AB 0.42 (0.03)AB 0.26 (0.06)BC 0.22 (0.02)C 
Cr* 1.11 (0.1) 0.77 (0.2) 1.39 (0.8) 0.74 (0.1) 0.54 (0.1) 
Cu* 7.3 (0.5) 5.7 (0.8) 6.2 (0.8) 6.2 (0.4) 5.8 (0.6) 

Fe* 242 (57) 290 (95) 469 (172) 227 (28) 253 (78) 

K 49460 (5339)AB 36209 (1422)B 48430 (9032)AB 53011 (5822)A 49625 (3381)AB 

Mg* 3476 (517) 3250 (482) 2932 (393) 2922 (252) 2716 (67) 

Mn 53 (6)A 30 (2)B 36 (4)B 33 (2)B 33 (4)B 

Mo 0.75 (0.06)C 0.80 (0.15)BC 1.37 (0.25)ABC 1.45 (0.25)AB 1.57 (0.28)A 

Na 2426 (163)A 2157 (525)AB 2143 (221)AB 1823 (198)AB 1631 (95)B 

Ni 1.08 (0.07)A 0.86 (0.23)AB 1.13 (0.71)A 0.59 (0.08)B 0.60 (0.11)B 

P* 5935 (752) 5059 (169) 4409 (850) 4284 (789) 4783 (470) 

Pb 0.98 (0.2)A 0.55 (0.2)AB 0.63 (0.4)AB 0.54 (0.05)AB 0.30 (0.2)C 

S 3229 (146)A 2279 (315)B 2605 (406)AB 2752 (115)AB 2292 (286)B 

Zn A B B B B 

*no significant difference 
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Table SI 6.3 Elemental composition of lettuce on the dry weight basis (mg/kg). Standard errors are given in 

brackets (n=4). Values in the same row with the same letters are not significantly different. Zn and Cd data was 

used in graphs 

Elements Treatments (lettuce) 

T1 (control) T2 T3 T4 T5 

Al 79 (26)BC 200 (60)A 28 (8)C 122 (16)AB 62 (6)BC 

B 22 (6)BC 26 (3)ABC 16 (3)C 36 (1)A 28 (2)AB 

Ca 10137 (1501)B 12458 (1332)AB 10207 (843)B 13964 (337)A 11515 (1131)AB 

Cd BC C BC A B 

Cr 0.30 (0.08)A 0.30 (0.09)A 0.12 (0.05)B 0.16 (0.03)AB 0.10 (0.03)B 

Cu 4 (0.6)BC 5 (0.4)AB 3 (0.2)C 5 (0.1)A 4 (0.5)ABC 

Fe 88 (21)BC 152 (36)A 53 (3)C 117 (7)AB 68 (9)BC 

K* 35068 (1525) 35321 (2488) 35072 (3796) 36964 (1780) 36836 (2337) 

Li 0.19 (0.03)A 0.23 (0.06)A 0.13 (0.01)B 0.19 (0.03)A 0.12 (0.02)B 

Mg* 1861 (195) 1775 (145) 1572 (154) 1949 (83) 1873 (140) 

Mn 43 (8)B 41 (4)B 38 (5)B 68 (4)A 46 (4)B 

Mo 0.26 (0.1)D 0.67 (0.1)C 0.72 (0.1)C 1.42 (0.1)A 1.05 (0.1)B 

Na 1741 (226)A 1528 (222)AB 1133 (122)B 1463 (51)AB 1071 (123)B 

P* 3953 (161) 3861 (261) 3771 (199) 3743 (176) 3847 (117) 

Zn* A A A A A 

*=no significant difference 
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Table SI 6.4 Elemental composition of silver beet on the dry weight basis (mg/kg). Standard errors are given in 

brackets (n=4). Values in the same row with the same letters are not significantly different. Zn and Cd data was 

used in graphs 

Elements Treatments (silver beet) 
T1 (control) T2 T3 T4 T5 

Al 310 (125)A 116 (66)AB 74 (11)B 34 (8)B 59 (24)B 
B 40 (3)B 38 (5)B 43 (2)B 54 (3)A 46 (2)AB 

Ca 11815 (785)B 10750 (865)B 16499 (2162)A 15143 (2025)AB 12690 (898)AB 

Cd A B B B B 
Cr* 0.2  (0.06) 0.1 (0.03) 0.2 (0.03) 0.1 (0.02) 0.1 (0.01) 
Cu 7 (0.4)A 6 (1.4)AB 5 (0.6)AB 4 (0.3)B 4 (0.2)B 
Fe 181 (48)A 96 (35)B 68 (3)B 50 (5)B 59 (9)B 
K 60450 (4405)A 50562 (11912)AB 45493 (1665)AB 41895 (5488)AB 40601 (951)B 

Mg 6144 (450)A 4803 (893)AB 4470 (400)BC 4781 (325)ABC 3232 (264)C 
Mn 66 (9)AB 34 (3)B 98 (16)A 92 (11)A 74 (12)A 
Mo 0.5 (0.2)C 5.2 (0.8)BC 6.5 (1)B 16.6 (4)A 6.4 (0.4)BC 
Na 15547 (643)A 14870 (3289)A 9895 (1181)B 9915 (588)B 8136 (694)B 
P 5048 (564)AB 4220 (876)B 7181 (1146)A 5936 (549)AB 5465 (667)AB 
S 3306 (178)A 2090 (508)B 1854 (124)B 1593 (160)B 1868 (201)B 

Zn A B B B B 
*no significant difference 
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Table SI 6.5 Elemental composition of perennial rye grass on the dry weight basis (mg/kg). Standard errors are 

given in brackets (n=4). Values in the same row with the same letters are not significantly different. Zn and Cd 

data was used in graphs 

Elements Treatments (perennial rye grass) 
T1 (control) T2 T3 T4 T5 

Al* 47 (5) 40 (4) 39 (3) 38 (4) 42 (3) 
B 36 (5)A 16 (1)B 15 (1)B 19 (1)B 19 (1)B 

Ca 7607 (277)CD 7439 (205)D 8029 (68)BC 8412 (67)AB 8613 (232)A 
Cd A B C C C 
Co* 0.05 (0.01) 0.05 (0.01) 0.05 (0.01) 0.05 (0.01) 0.03 (0.01) 
Cr* 0.16 (0.01) 0.34 (0.15) 0.15 (0.01) 0.13 (0.02) 0.18 (0.03) 
Cu 13 (0.5)B 14 (0.1)AB 14 (0.3)A 14 (0.3)A 14 (0.2)A 
Fe 61 (0.8)AB 63 (1.0)A 63 (1)A 60 (1)B 62 (0.3)AB 
K 34582 (1490)C 39385 (657)A 38370 (737)AB 36103 (1123)BC 35838 (939)BC 

Mg 3204 (53)A 2764 (45)B 2747 (97)B 2691 (39)B 2534 (121)B 

Mn 37 (2)A 30 (1)B 37 (1)A 39 (1)A 40 (2)A 
Mo 10 (0.5)C 27 (0.6)B 33 (1.2)AB 35 (3.9)A 33 (1.6)AB 
Na 877 (33)A 806 (14)AB 780 (59)AB 725 (13)B 720 (32)B 
Ni 0.77 (0.14)B 0.93 (0.02)A 0.81 (0.04)B 0.86 (0.20)AB 0.86 (0.05)AB 
P 6139 (185)A 6072 (94)AB 5718 (147)BC 5466 (128)C 5627 (91)C 
S 3795 (57)A 2392 (96)D 2796 (89)CD 3241 (222)B 3177 (182)BC 

Zn A A B B B 
*no significant difference 
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agricultural soils (Islam et al., 2013; Nogueira et al., 2013; Ramachandran and D'Souza, 1999; 

Tsadilas and Shaheen, 2013). Biosolids are capable of both increasing (Moreno et al., 1999; 

Nogueira et al., 2013) and decreasing (Bolan et al., 2003b; Sato et al., 2010; Shuman et al., 

2002; Tapia et al., 2010; Xu et al., 2012) Cd uptake by plants although some authors reported 

no effects of biosolids on Cd concentration in plants (Bartl et al., 1999; Krzywy et al., 1999). 

Pot trials with lignite and municipal composts showed that composts reduced the accumulation 

of Cd in onion (Allium cepa L.), spinach (Spinacia oleracea L.) and lettuce (Lactuca sativa L.) 

up to 60%. Lignite was not consistent in reducing the accumulation of Cd in the plants. A lower 

rate of lignite (1% w/w) was more effective than higher rate of lignite (2.5% w/w), which in 

some cases increased the accumulation of Cd. This was attributed to a reduction in soil pH, 

which brought more Cd into soil solution. Composts increased the sorption capacity (Kd) of 

soils leading to less plant available Cd in soil solution and less Cd accumulation by plants. The 

reduction in the concentration of Cd in plants may be partly because of a small pH increase in 

soils due to the application of composts in soil that has also been observed by Loganathan et 

al. (2003) and McLaughlin et al. (1996). Lignite also increased the Kd values (Simmler et al., 

2013) but the pH decrease may have offset the effect of Kd value increase of lignite in amended 

soils. Municipal composts supplied significant amount of Zn in soils which might be 

responsible for less Cd accumulation by plants (Chaney et al., 2009; Grant et al., 1999b; 

Kabata-Pendias and Mukherjee, 2007; McKenna et al., 1992). 

Another pot trial with potato (Solanum tuberosum L.) treated with lime, municipal composts, 

sawdust composted with animal wastes, pig manure composts, mushroom composts and 

shredded corn stover showed that all amendments decreased the concentration of Cd in potato. 

The dry mass production of potato was almost double in composts treated soils although 

shredded corn stover significantly decreased the dry mass production. The concentration of Cd 

in our potato tubers were in the lower range found in other experiments (Kabata-Pendias and 



 
 
 

150 
 

Mukherjee, 2007; Kim, 2008; McLaughlin et al., 1994a; McLaughlin et al., 1994b), which may 

be due to the variety difference (Grant et al., 1999a; Loganathan et al., 2003; Redjala et al., 

2009; Welch and Norvell, 1999). Most of the decrease in the concentration of Cd in potato 

tuber may be attributed to the increase in Cd sorption capacity of soils due to composts 

application (Simmler et al., 2013) that I have also observed in the first experiment (Chapter 3). 

The increase in the growth of potato tubers may have resulted lower concentration of Cd due 

to a “dilution effect” (Robinson et al., 2009). Potato tubers had the lower concentrations of Cd 

than potato skin and potato stem, which indicates that the low Cd concentration in the potato 

tubers is the result of plant physiological process rather than low Cd availability in soils. The 

low tuber concentrations may be due to the fact that Cd is relatively phloem-immobile 

(Uraguchi et al., 2009) and high Cd in tubers would not be expected as it receives most of their 

nutrients via the phloem (Dunbar et al., 2003). 

Lime significantly increased soil pH, that has been reported decreasing the accumulation of Cd 

in plants (Hong et al., 2007; Kabata-Pendias and Mukherjee, 2007; Simmler et al., 2013) 

through increasing the availability of exchangeable sites (Brady and Weil, 2008) for binding 

Cd. My experiment results stand in contrast to other studies that reported an increase in the 

concentration of cd by plants due to lime application, which was attributed to the competition 

between Cd and Ca for sorbing sites in soil (Chaney et al., 2009; Maier et al., 2002; McLaughlin 

et al., 1997; Merian, 1991). An increase in the growth of potato has also been observed by other 

authors due to the application of composts in soil (Barkoczi et al., 2008; Khan et al., 2007; 

Muhammad et al., 2007), which may be due to the improvement of physical properties of soils 

by improving soil porosity, aggregate stability, nutrient and water holding capacity, 

temperature insulation and decreasing soil density (Sarwar et al., 2008; Shiralipour et al., 

1992), and soil nutrient content (Shiralipour et al., 1992). 
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The reduced shoot growth in the lime treatment may have been due to the imbalance of nutrient 

elements in soil due to the pH increase (Maier et al., 2002). My experiments revealed that 

compost is a superior soil amendment to lime because compost invariably increased plant 

growth, decreased Cd uptake and did not perturb the plant uptake of other elements, especially 

Zn. In contrast, while lime reduced Cd uptake in some species (perennial rye grass (Lolium 

perenne L.), potato (Solanum tuberosum L.), and silver beet (Beta vulgaris V.), it either had no 

effect or increased Cd uptake by spinach (Spinacia oleracea L.) and lettuce (Lactuca sativa). 

Moreover, lime decreased plant uptake of Fe and Zn, inducing deficiencies and consequent 

biomass reduction in some species.  

Although, lime decreased extractable Zn significantly, the paradoxical increase in plant Cd 

uptake caused by lime, may be due to upregulation of Zn transporters caused by induced Zn 

deficiency in some species (Chaney et al., 2009; Hart et al., 2002). 

Most previous studies were conducted to determine the effects of composts in reducing the 

accumulation of Cd in plants grown in highly contaminated soils eg. 55 mg/kg (contaminated 

due to industrial activities or mining) (Kim et al., 2016) whereas my experiments were 

conducted with soils that have slightly elevated Cd concentrations (0.47 mg/kg and 1.45 mg/kg) 

due to the continuous application of Cd-rich P fertilizers over several decades (Syers et al., 

1986). My experiments showed that composts are capable of reducing the concentration of Cd 

in plants from agricultural soils that has slightly elevated Cd concentrations due to agricultural 

activities. 

An incubation experiment showed that compost-amended soils continued to sorb Cd even after 

significant degradation of the amended organic matter. The experimental units those received 

N treatment in the form of urea and 30°C temperature, the C content broke down in the fastest 

rate compared to the control and just urea added experimental units. The C content 

decomposition rate in the controlled experimental units was the slowest. The extractable Cd 
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concentration in the experimental units was decreasing slowly with time in all the experimental 

pots up to 1 year. The incubation experiment showed that the total C content in soil decreased 

with time in all soils up to 1 year, which indicates that soil organic matter was being oxidised. 

The greater break down at higher temperature and with added N was expected due to the likely 

increase of microbial activity (not measured) under higher temperature and added N. The 

reduction in organic matter would likely reduce the number of binding sites for cations on the 

soil colloids except clay depending on pH (Helling et al., 1964) as the CEC of compost and 

soil organic matter is significantly higher compared to other components of the soil (Brady and 

Weil, 2013).  

 Helling et al. (1964) have shown that decreasing soil organic matter leads to a decrease in 

CEC, which results in increased solubility of cations. Our finding that the solubility of Cd and 

other elements either remained unchanged or even decreased during the experiment. Our results 

indicated that the concentration of plant available Cd (0.05 M Ca(NO3)2 extractable Cd) was 

lower in all the experimental units in any weathering condition than the control soils in that 

weathering condition. Potentially, the decrease in extractable Cd, Cu, K, Na, P, S, and Zn may 

be, due to occlusion on the soil colloids by Fe and Al plaques. In part, this may be, an artefact 

of the conditions of the experiment. The regular mechanical disturbance probably would have 

disrupted soil aggregates of the moist soils (Bissonnais, 1996; Brady and Weil, 2013; Watts et 

al., 1996) leading to increased surface area and higher concentrations of colloidal Fe and Al 

(Lavado et al., 1999) which might have occluded surface-bound elements. This same process 

may happen following repeated ploughing. Lavado et al. (1999), Düring et al. (2002) and 

Düring et al. (2003) studied the role of ploughing on the solubility and phytoavailability of 

elements in soil. Lavado et al. (1999) observed in a field trial that the DTPA extractable Cd 

were not changed due to the mechanical disturbances whereas Düring et al. (2002) showed that 
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the EDTA extractable Cd decreased due to the mechanical disturbance of soils in laboratory 

trials. 

 The extractable Fe and Al moieties would have interacted with the organic matter present in 

soils. Several authors (Baldock and Skjemstad, 2000; Deng and Dixon, 2002; Huang et al., 

2005) have reported that stabilisation of soil organic matter can occur by interacting with clay 

minerals and oxides. Generally, urea application in soil has decreased the soils pH which is 

consistent with Maier et al. (1996) who observed that, the application of urea in soil decreased 

soil pH in a glass house experiment. The pH decrease in urea-N treated soils may be associated 

due to be the release of  NO3
- from urea that caused the pH decrease (Bouman et al., 1995; 

Heilman, 1975). The Cd concentration in potato tubers reflected the results from the extractions 

both in terms of the reduction in Cd when compost was added and the reduction over time for 

both the controls and the compost amended soils. In both the pot trial and the incubation 

experiment, there was increased mechanical disturbance in the aged compost and this increased 

mechanical disturbance probably have led to high concentrations of extractable Fe (Lavado et 

al., 1999) and Al. The results indicated that, the degradation of soil organic matter is not 

accompanied by an increase in extractable Cd or plant-available Cd as measured in the pot trial. 

The persistency of composts in reducing the accumulation of Cd in potato grown in one year 

compost treated soil supported the incubation experiment indicating that composts will reduce 

the accumulation of Cd in plants at least for one year. 

Were our results indicative of the field situation, then a single application of compost is likely 

to reduce crop Cd uptake for several years because in our one-year experiment, the degradation 

of the incubated, mechanically disturbed and N-augmented soils was likely to have been higher 

than what would occur in the field. However, the mechanical disturbance in our system 

probably have resulted in increased occlusion of Cd, thereby artificially reducing the 

concentrations of extractable and plant-available Cd. 
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7.1.2 Implications of the findings for soil management and food production: 

In New Zealand, about 70,000 hectares of lands are exceeding the 1 mg/kg Cd in soil (Cadmium 

Working Group, 2008). Abraham et al. (2016) reported that there were agricultural soils (0.33% 

of 8835 soil samples taken between 2006 and 2015) in NZ that had a soil Cd concentration at 

or above the TFMS (Tiered Fertilizer Management System) Tier 4 threshold of 1.8 mg Cd/kg 

and the highest recorded soil cadmium concentration was 3.05 mg Cd/kg soil (Abraham et al., 

2016). In Tier 4 Cd contaminated lands, the normal way of producing crops through applying 

P fertilizers is not be possible (Abraham et al., 2016), if the food safety standard (Chaney, 

2012; FSANZ, 2015) is considered. It is more likely that the soils having Cd more than 1.8 

mg/kg might cause more concentration of Cd in plants exceeding the WHO and FASANZ 

guideline values (Chaney, 2012; FSANZ, 2015). For these lands, compost might reduce the 

need for mineral P fertilizers thereby reducing the concentration of Cd in plants and reducing 

the accumulation of Cd in soil.  

In the case of NZ soils, P fertilizers presently contain <280 mg Cd/kg P after a voluntary 

reduction in the concentration of Cd in P fertilizers (Abraham et al., 2016). This is still higher 

than many European countries P fertilizers (eg. In Sweden it was reported 16 mg Cd/kg P) 

(Oosterhuis et al., 2000). This high Cd containing P fertilizers will continue bringing Cd in 

agricultural soils. It is important for NZ agriculture to maintain soil fertility by supplying 

adequate amount of P. In NZ soils that has Cd concentration within the range of <0.6 mg/kg 

soil (Tier 1) and 0.6 to <1.0 mg Cd/kg soil (Tier 2) (Abraham et al., 2016; Rys, 2011), using 

composts might reduce the risk of Cd enrichment in soils, when composts will be applied as a 

source of P (Al Mamun et al., 2016).  

Meharg et al. (2013) reported that in Bangladesh, there is a high Cd concentration (0.005-0.019 

mg/kg) in rice grains (Meharg et al., 2013) and 80-90% of the diet is rice (Meharg et al., 2013). 

Meharg et al. (2013) thus showed that, there is a possibility that people might exceed the 
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monthly tolerable intakes of Cd (EFSA, 2012). The lands having high Cd concentration might 

be managed by using composts that sorb Cd and reduce the accumulation in rice. This requires 

experimentation to determine whether composts reduce Cd uptake by rice in wetland and 

dryland conditions. Rice cultivation is different than vegetables and potatoes. Before using 

composts as a Cd management tool, the effects of composts on the accumulation of Cd in rice 

grains should be determined. Bangladesh is a subtropical country with an annual rainfall of 

between 1600 mm to 3000 mm although in some areas the annual average rainfall is as high as 

6400 mm (Banglapedia, 2015). The adequate temperature, rainfall and intensive cultivation of 

agricultural lands for feeding around 150 million people (BBS, 2013) is creating pressure on 

agricultural lands. The organic matter content in Bangladesh soils are typically from 0.5 to 1%  

(BBS, 2013) which is low compared to the typical value of organic matters in agricultural soils 

(Brady and Weil, 2013). Thus, by using composts in agricultural lands will not only reduce the 

import of Cd in agricultural lands from P fertilizers but also will increase the organic matter 

content in soils. Moreover, when the kitchen wastes and other organic wastes will be 

composted, less waste will be disposed on roadsides and into rivers, which contaminates 

waterways and reduces the aesthetic appeal of the countryside. There is currently no sorting of 

organic wastes. Sorting organic wastes properly, composting the organic wastes following 

standard techniques and finally using them in agricultural lands of Bangladesh will help to get 

rid of the present waste problem and reduce the need for expensive mineral fertilisers and may 

reduce Cd in the diet. 

7.2 Practical considerations of using compost as a soil amendment 

Composts supply a significant amount of organic C (Aranyos et al., 2016), N (Hopkins et al., 

2017; Horrocks et al., 2016), P (Evanylo et al., 2008), S and Zn (Al Mamun et al., 2016) in 

soils. Application of composts will reduce the amount of N fertilizer application in soils 

specially in organic farming (Horrocks et al., 2016). The P in the composts are considered 
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100% plant available in the long term (Schröder et al., 2011) indicating that composts will 

reduce the amount of P fertilizers to be applied in soils. Compost application in soil will 

improve soil structure and water infiltration rates (Aranyos et al., 2016) reducing ponding and 

runoff, which are global environmental issues. In addition, composts may improve the water 

holding capacity and cation exchange capacity of the many sandy soils worldwide (Aranyos et 

al., 2016).  

7.2.1 Rates of application 

Composts can contain high concentrations of N, P, S, Cu and Zn depending on the source 

materials. Therefore, application rates need to be adjusted to minimise soil accumulation or 

toxicity from a particular element (Cu and Zn) as well as excess runoff (P) or leaching (N and 

S). 

Composts have been applied at rates of 9, 18, 27, 25 50, 144 ton/ha dry weight in many studies 

(Evanylo et al., 2008; Hopkins et al., 2017; Horrocks et al., 2016). Evanylo et al. (2008) 

reported that lower rates of compost had little effect on the supply of N and P in soils whereas 

higher rates (144 ton/ha dry weight) had significant improvement in the supply (eg. 68% total 

N and 225% available P increase was observed when 144 ton/ha compost were used). Evanylo 

et al. (2008) also mentioned that lower rates (31 ton/ha d.w.) increase the concentration of 

nutrient element over long term application of composts in soils (Evanylo et al., 2008). In my 

thesis, no detrimental effects were observed at application rates of 50 ton/ha and 100 ton/ha.  

The annual rates of application of composts will also vary from tropical to temperate climates. 

In the tropical countries, the composts will degrade fast requiring the input of large amount of 

compost every year whereas in temperate climates the yearly compost application rates may be 

lower due to lower microbial activity leading to less oxidation of composts in soils. For every 

climatic condition, the degradation rates of composts and subsequent nutrient release, should 
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be taken into consideration before applying composts in agricultural soils (Hargreaves et al., 

2008). 

The price of municipal compost is around $12 per tonne whereas the price of composts from 

other companies might vary depending on the location of the company outlet, the transportation 

cost, the management process, the volume of the business, volume of purchase etc. The price 

of composts may also significantly vary from country to country. For example, in Bangladesh, 

around 10 million people live in the capital city, Dhaka. Every day a vast amount of kitchen 

wastes is generated which mainly goes for land filling causing a significant negative impact on 

air and water quality deteriorating the aesthetic views of the places where those are dumped. 

Composting of kitchen wastes together with other organic wastes will cause the price even 

cheaper as the city corporation of Dhaka collects Tax from the residents to pay for dumping of 

the wastes. Compared with mineral fertilizers, the price of compost is significantly lower for 

the equivalent nutrient value (Table 7.1).  
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Table 7.1 The monetary value of compost in comparison to mineral fertilizers 

Fertilizer elements from composts applied at a 50 ton/ha d.w. (2.5 % d.w.) 

Fertilizer elements in composts *N2 (1-2%) *P (4000-6000 
mg/kg) 

*K (5000-14000 
mg/kg) 

*S (2500-16000 
mg/kg) 

Total fertilizer elements (kg) 500-1000 200-300 250-800 125-800 

Equivalent amount of mineral fertilizers required to replace the fertilizer elements in composts 

Mineral fertilizer 1100-2200 kg 
urea (46% N2) 

2200-3300 kg 
super phosphate 

(9% P) 

500-1600 kg 
potassium 

chloride (50% 
K) 

130 kg-900 kg 
sulphur 90 
(90% S) 

Cost of replacing the fertilizer elements in composts by mineral fertilizers/ha of agricultural land 

NZD 350-700 700-1000 300-1100 80-500  

Cost (NZD) of mineral fertilizers to 
replace the nutrient elements 
present in 50 ton of composts 

($12/ton) 

1430-3300 NZD 

Unit price: urea- $319/1000 kg (46% N), Superphosphate (9% P)- $507/1000kg, Potassium chloride (50% K)- 
$584/1000 kg, Sulphur 90 (90% S)- $615 collected from Ravensdown.co.nz website on 26th February, 2017. * 
The nutrient elements in composts vary depending on sources and batches. I have considered the composts those 
I have used and considered here just 1 batch to have an idea. In the calculations values have been rounded, thus 
may slightly vary with other calculations. 

 

Although their nutrient elemental composition is much lower than the commercial fertilizers, 

compost’s long-term benefits (improving soil structure, water percolation rate, water holding 

capacity, microbial activity, buffering capacity etc.) and sustainability of crop production in 

agricultural lands amended with composts will compensate the initial costs. 

7.2.2 Risks from composts 

Some of the composts those are originated from industrial waste materials and biosolids may 

contain some heavy metals and pathogens (Sinha et al., 2010). Composts may contain high 

amount of Ni, Cu, Zn, Pb, Cr, Cd and Hg, and harmful microorganisms depending on the source 

material of composts (Déportes et al., 1995). Déportes et al. (1995) reported in his review paper 

that a temperature of 71°C for 50 minutes will kill all the pathogens in compost. In my study, 
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I have observed that biosolids contain high concentration of Cd (Chapter 4). As the biosolids 

are also used to produce composts in some places, thus the different heating techniques can be 

used to get rid of harmful pathogens from biosolid compost or the biosolids portion (depending 

on source and Cd content of biosolids) in composts (where biosolids are mixed with green 

wastes to make composts) should be kept in minimum ratio to reduce the Cd contamination in 

composts.  

7.2.3 Present status of compost use 

In New Zealand, annually about 726,000 tons of municipal garden and kitchen wastes are sent 

to landfills (Horrocks et al., 2016). By converting this large amount of organic wastes to 

composts and applying those in the agricultural lands would reduce the need of vast lands for 

land filling as well as the need of chemical fertilizers (N and P) would be reduced. In Austria, 

Germany, Norway, and United Kingdom in every year 164,000, 5,000,000, 112,000, 2,740,000 

tons of composts are produced, respectively. This is just a part of organic wastes those are 

composted. Others are used for land filling (Möller, 2016). By using the above mentioned 

amount of composts, Austria, Germany, Norway, and United Kingdom are saving $3 m, 100 

m, $2.2 m, $55 m (considering saving of $1000 from 50 ton/ha of compost application in 

agricultural land), respectively in each year by requiring less mineral fertilizers in agricultural 

lands. In urban areas, the organic waste production is around 100 kg per person. This data is 

for the countries in Europe (Möller, 2016). Although the costs may vary from continent to 

continent, nevertheless gives an indication of the amount of urban organic wastes produced 

which can be a good source of nutrient rich soil amendment.  
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7.3 Fertile areas of future research 

All the composts tested in this study reduced Cd uptake by plants. It is unclear, however, which 

moieties in the compost have the strongest affinity for Cd. Identification of strongly Cd-sorbing 

components in compost may allow the eventual manufacture of superior composts for reducing 

plant Cd uptake.  

The incubation experiment in this thesis indicated that compost-amended soil undergoing 

regular mechanical disturbance does not release Cd even after soil organic carbon is 

significantly reduced. This paradoxical result may be due to an experimental artefact (the 

regular mechanical disturbance) and therefore may not accurately potray the release of Cd from 

soil under field conditions. The long-term performance of composts should therefore be tested 

in field trials. Experiments investigating the occlusion of Cd and other elements following 

mechanical disturbance is also warranted. 
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and plant uptake was assessed with a pot experiment. Three lime levels have been chosen for 

a further rhizotron study. Diffusive gradient in thin layers (DGT) gels were applied on selected 

root zones and then analysed by laser ablation inductively-coupled plasma mass spectrometry 

(LA ICP-MS).  

The results showed that lime affected the solubility of extractable elements and the plant 

uptake. In soils treated with different levels of lime, the uptake of nutrients was sufficient to 

avoid nutrient deficiency. However, analysis of the DGT gels only showed mobilization around 

the cluster root of the plant grown in the untreated soil. The results indicate that white lupin 

can be grown at pHs as high as 7.50 with 10 wt% lime without suffering from nutrient 

deficiencies.  

 
Keywords: liming, white lupin, DGT, LA-ICP-MS, trace elements, iron, nutrients 
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9.2 Introduction 

Soil pH is one of the most important chemical parameters influencing element sorption and 

dissolution processes in soil (Comerford, 2005) and thus the bioavailable fraction to plants. 

Many authors report that plant element uptake is highly correlated with pH (Dakora and 

Phillips, 2002; Hinsinger et al., 2003; Marschner, 1991). The bioavailability of trace elements 

cations such as copper (Cu), zinc (Zn), Nickel (Ni), cadmium (Cd) and lead (Pb) and their 

concentration in plants is significantly reduced at pH >7.0. Acid pH can favor the 

bioavailability of these elements, as well as essential plant micronutrients, such as iron (Fe), 

manganese (Mn) and boron (B). However, these benefits can be offset by increased 

bioavailability of phytotoxic elements such as aluminum (Al3+). Acid soils, covering 30-40% 

of the world´s arable land, represent one of the major constraints in agricultural production due 

to plant growth inhibition and yield reduction (Marschner, 1991). Several factors could further 

increase soil acidification, such as large inputs of inorganic fertilizers, high rainfall, acid 

deposition and greenhouse gases. In addition to toxic concentrations of Al3+ and protons (H+), 

acid soils can provoke deficiencies in anionic plant nutrients such as molybdate (MoO4
2-) and 

phosphate (PO4
3-).The ongoing application of phosphate fertilizers to overcome P deficiency 

in acid soil, can lead to the accumulation of Cd (Williams and David, 1976), that exists 

naturally as an impurity in phosphate rocks, from which phosphate fertilisers are obtained. The 

entry of toxic metals, such as Cd, from soils and into the food chain through plant uptake is of 

primary concern in agricultural production systems because of the potential threats to food 

quality, crop growth, and environmental health (McLaughlin et al., 2000). 

Liming (CaCO3) is routinely used as long-term agricultural practice to improve soil quality by 

increasing nutrient availability, as well as improving soil structure and increasing rates of 

infiltration. In addition, liming has been demonstrated to be effective in reducing the solubility 

of cationic trace elements (eg. Cd2+ (Chen et al., 2016)) in soils by increasing the negative 
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charge on oxides, clays, and organic matter (Kirkham, 2006). However, excessive carbonate 

concentrations may lead to toxic effects besides reducing the plant-available fraction of 

essential macro- and micronutrients as phosphorus (P), iron (Fe), manganese (Mn) and zinc 

(Zn).  

White lupin (Lupinus albus L.), is adapted to well drained, light to medium textured soil, can 

tolerate slightly alkaline soils (up to pH 8.0), provided that the free lime or Ca content of the 

soil is low (the accepted maximum soil level of CaCO3 is 30-50 g/kg) (Jansen, 2006), since 

Lupin species are unable to regulate the Ca uptake (De Silva et al., 1994). Such typical 

calcifuge behavior may be related to an insufficient capacity for compartmentation and/or 

physiological inactivation of Ca (Hawkesford et al., 2012). In addition, an immobilization of P 

in the tissues of calcifuge plants may occur, since the excessive uptake of Ca may cause 

precipitation of Ca phosphate in plant tissues (Zohlen and Tyler, 2004). The concentration of 

carbonate (Brand et al., 2000) and especially the so-called free lime concentration as previously 

shown in L. angustifolius L. (Jessop et al., 1990) is the limiting factor for the plant growth. 

White lupin is known to cope with abiotic stresses by releasing organic compounds (organic 

acids and flavonoids) into the rhizosphere (Neumann et al., 1999). However, whether these 

substances can have beneficial effects increasing the availability of nutrients or might even 

counteract the liming effect by mobilizing toxic elements needs to be elucidated.  

We aimed to determine the effect of different rates of lime on white lupin in two high-fertility 

soils. Specifically, we sought to measure the bioavailability of nutrients as well as heavy metals 

in selected root zones of the plants, where the release of root exudates is more pronounced. The 

final objective was to define a so-called “ideal [Ca]/pH zone” where lupin is still able to 

mobilize nutrients without suffering from Ca toxicity and trace elements such as Cd.  
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9.3 Materials and methods 

9.3.1 Soils 

We selected two high-fertility soils with contrasting chemical-physical characteristics (Table 

9.1), hereafter called as “Pukekohe” and “Levin” soils.  

Table 9.1 Physicochemical characteristics of Pukekohe and Levin soils; LOD= limit of detection. 

Parameter Pukekohe Levin 
pH (H2O)  5.95 ± 0.04 6.46 ± 0.06 
CEC (Cmolc/kg)  22.00 15 
Base saturation [%]  70.00 88 
C [%]  2.10 1 
N [%]  0.23 0.13 
Olsen P [Cmolc/kg] 290.00 229 
N available [kg/ha] 50.00 53 
P [mg/kg]  3414 ± 26  2247 ± 20 
S [mg/kg]    491 ± 6 296.46 ± 1.32 
Ca [mg/kg]   4147 ± 117 7008 ± 99 
Mg [mg/kg]   2400 ± 95 2873 ± 43 
K [mg/kg]  1951 ± 59 2242 ± 54 
B [mg/kg]  <LOD 8.89 ± 0.15 
Cd [mg/kg]  1.45 ± 0.03  0.47 ± 0.01 
Cu [mg/kg]  65 ± 0.46 20 ± 0.20 
Mo [mg/kg]  <LOD <LOD 
Mn [mg/kg]    1266 ± 12 387 ± 6 
Zn [mg/kg]  173.21 ± 1.06 66.52 ± 0.72 
Fe [mg/kg] 44606 ± 96 22729 ± 1527 
Cd extractable [mg/kg] 0.015 ± 0.002  0.008 ± 0.002 
Cu extractable [mg/kg] 0.13 ± 0.015 0.123 ± 0.006 
Mn extractable [mg/kg] 39.75 ± 4.17 8.58 ± 0.25 
Zn extractable [mg/kg]  0.37 ± 0.06 0.177 ± 0.017 
Fe extractable [mg/kg] 0.654 ± 0.195 0.511 ± 0.036 

 

Seven different lime (CaCO3, Thermo Fischer Scientific NZ Ltd.) treatments (T1-T7) were 

applied to both soils, as follows T1: 0 wt%, T2: 0.31 wt%, T3: 0.61 wt%, T4: 1.25 wt%, T5: 

2.50 wt%, T6: 5.00 wt%, T7: 10.00 wt%. Soils were well mixed in buckets and then transferred 

in to pots. For each treatment five replicates consisting of 250 g of soil were used. After that, 
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pots were moved to a greenhouse, watered to field capacity and left there for a week in order 

to allow the lime to react with soil. 

9.3.2 Pot experiment 

White lupin seeds (Lupinus albus L.), were soaked for 24 h in water and then transferred to the 

pots containing the different soil treatments. Subsequently, plants were watered every two days 

for 6 weeks and weeds were carefully removed every week. After 6 weeks, plants were 

harvested and the above ground biomass was assessed. The above-ground biomass of the plants 

was thereby cut 3 cm above the soil level and it was carefully washed with deionised water. 

Plants were dried at 60°C for one week until constant weight was reached and then ground for 

subsequent elemental analyses. Samples of rhizosphere soil were collected from each pot. 

These were oven dried, ground and sieved using a 2 mm sieve. All sample processing was 

carried out ensuring that there was minimal metal contamination.  

9.3.3 Soil and plant analysis 

Following microwave-assisted oven digestion (CEM MARS Xpress, CEM Corporation, NC, 

USA) of samples (0.3 g each) in concentrated HNO3 and 30% hydrogen peroxide, the total 

concentrations of the elements in plants was determined by inductively coupled plasma–

optical emission spectroscopy (ICP-OES) (Varian 720-ES; Varian, Mulgrave, Australia). 

Wageningen Evaluating Programs for Analytical Labs (WEPAL) plant was used as reference 

material. The recoveries for Cd, Fe and Zn were 94%, 94.5% and 91.7% respectively. Soil 

pH was determined adding 25 ml of deionised water to 10 g of oven dried soil. Samples were 

stirred and left to stabilise overnight. Subsequently the pH was measured in the supernatant. 

The plant available element fraction was obtained by extracting soils with 0.05 M Ca(NO3)2 in 

a ratio of 1:6 (w/v) for 2 hours on an end-over-end shaker. Samples were then centrifuged at 

3000 rpm for 10 min (Hettich Universal 30 RF) after which the supernatant from each extract 
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was filtered with Whatman paper No.52 and stored in a fridge at 6°C until further analysis of 

elemental concentrations by ICP-OES. Blank extracts representing 5% of the total number of 

extracts were prepared using the same batch of reagents with the same apparatus, and analysed 

at the same time and in the same way as soil extracts.  

9.3.4 Rhizotron experiments  

Rhizotrons were constructed from clear cast acrylic polymer according to a modified design to 

that described by (Göttlein et al., 1999). The internal dimensions of each rhizotron were 15 cm 

× 30 cm × 2.5 cm (w × h × d) and featured a removable front plate and a fixed back plate fitted 

with ten ports (in a 2 × 5 configuration at 5 cm intervals) to enable even watering of the soil 

inside the container. Rhizotron experiments were carried out only with Pukekohe soil because 

of its crumb structure that was more amenable to plant growth, water infiltration and aeration 

compared to the Levin soil. The results of the pot trial were used to select two lime treatments 

(T4 and T7) and a control (T1). The experimental soils were packed in layers into the rhizotrons 

to ensure a constant bulk density of 1.08 g cm-3 across the depth of the rhizotron. White lupin 

seedlings were transplanted four days after germination on moist tissue paper. The soils were 

moistened to 30% Maximum Water Holding Capacity (MWHC) before planting the lupin 

seedlings, after which the rhizotrons were evenly irrigated through the watering ports on the 

back of the rhizotrons. Moisture content was kept constant for the duration of the growth cycle. 

The rhizotrons were carefully covered with black plastic film below the level of the soil to limit 

photo-chemical reduction phenomena in the rhizosphere and biofilm formation on the front 

plate and were kept in a controlled environment growth chamber with a day/night cycle of 16/8 

h and a day/night temperature of 24/16 °C, 70% relative humidity.  
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9.3.5 High-resolution Diffusive gradients in thin-films measurements (HR-DGT) 

The diffusive gradients in thin-films (DGT) technique was used to measure the two-

dimensional distribution of metal supply in the lupin rhizospheres in the three rhizotrons. The 

principles of this method are described in detail by Kreuzeder et al. (2013), Santner et al. (2012) 

and Williams et al. (2014). The chelating resin used in the DGT sensors here is a suspended 

particulate reagent−iminodiacetate (SPR−IDA)(CETAC Technologies Inc., USA) which has 

been previously identified as a suitable resin for high resolution 2D visualisation of metal 

supply owing to its capacity to bind trace metals and small resin bead size (Warnken et al., 

2004). The SPR−IDA resin was supplied pre-cleaned as 10 mL of a 10 % (w/v) suspension. 

The 1.5 mL of the SPR−IDA resin suspension was mixed with 1.5 mL of a solution containing 

acrylamide (40%, Fisher Scientific, USA) and DGT cross-linker (DGT Research, Ltd., UK) in 

a ratio of 4:1.  

To this 3 mL mixture, 21 μL of ammonium persulfate (Merck, Germany) and 20 μL of 

N,N,N,N-tetramethylethylenediamine (TEMED, ~99%, Sigma-Aldrich, USA) were added. 

The gel mixture was then immediately pipetted between two glass plates, where a 0.25 mm 

spacer was used to ensure that the solution polymerized into a gel sheet with a uniform 

thickness. The glass plate assembly was then placed in a 45°C oven for 1 h, after which the 

glass plates were separated and the resin gel was placed into 0.5 L of ultrapure water (filtered 

by Millipore, 18.2 MΩ) and allowed to fully hydrate for a minimum of 24 h. The hydrating 

solution was changed four times in the subsequent 72 h after which the resin gel was stored in 

0.5 L of 0.05 M NaNO3 solution. Before deployment, the resin gel sheet was cut down to 

suitably sized sections using PTFE-coated razor blades and then mounted between a 10 μm-

thick polycarbonate filter membrane (Nucleopore, Whatman, 0.4 μm pore size) on one side and 

a sheet of cellulose acetate (OfficeMax New Zealand Ltd.) on the other to exclude solid 

particles from the soil and to help manipulate the gels. To minimize contamination, all 
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preparation and processing of gels was carried out using ultraclean trace metal techniques 

ensuring that all equipment were acid-washed and rinsed in double de-ionized water (DDI, 18.2 

MΩ resistivity). 

DGT sampling was performed after 6 weeks of plant growth, when the plants had fully 

developed cluster roots. For applying the DGT gels, the rhizotrons were laid horizontal with 

the removable front plate facing upwards. The root structures of interest were mapped onto a 

sheet of clear cellulose acetate which would then act as a template for the subsequent accurate 

location for the DGT gels on the root structures of interest. The soil in the rhizotrons was 

progressively saturated with water over 24 h by allowing water to gently infiltrate. Three hours 

after the beginning of the light cycle, the front plate was carefully removed and a small amount 

of water was added until an even thin film of water was visible at the soil surface. The cellulose 

acetate-DGT-filter assembly was taped on four sides onto the previously drawn template 

leaving a well-defined window of Nucleopore filter to allow diffusion of solute into the DGT. 

The DGT was then carefully applied on to exposed rhizosphere ensuring good and consistent 

contact between the soil and the measurement window across window area. The front plate was 

then placed over the measuring gels to provide gentle and even pressure. The DGT gels were 

deployed for 24 h starting at 3 h after the start of the light cycle. After the deployment, the DGT 

gel assembly was gently peeled off the rhizosphere interface and any soil particles attached to 

the assembly were removed using a combination of clean laboratory tissues and a steady stream 

of DDI water. The exposed areas of the deployed DGT gels were then cut away from the 

assembly using PTFE-coated razor blades, separated from the filter paper and stored 

horizontally in acid washed zip-lock polyethylene bags at 6°C for no longer than one week. 

The gels were then dried using the protocol described by (Stockdale et al., 2008) and mounted 

flat onto glass slides using double-sided tape. 
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9.3.6 Laser ablation ICP-MS 

The standards for the laser ablation ICP-MS (LA-ICP-MS) analysis were the same standards 

as used by Hoefer et al. (2015). Preparation and analysis is described briefly here, for further 

details we refer the reader to Hoefer et al. (2015). Resin gel discs (2.5 cm diameter) were cut 

out of the SPR-IDA resin gel sheets and assembled with a 0.08 cm diffusion layers and a 0.45 

µm pore size membrane filters (Supor 450, Pall Corporation, New York USA) within standard 

DGT polycarbonate housings (DGT Research Ltd., UK). These DGT units were immersed in 

triplicate into well-stirred solutions containing Mn, Cu, Zn, Cd and Pb at concentrations of 

0.01-17.1 mg/L for 4, 8 and 20 h. The immersion solutions were prepared by dissolving p.a. 

grade nitrate and chloride salts of these elements in 3 L of DDI water containing 1 mmol/L 

NaNO3. The pHs of the immersion solutions were 5.6. After the probe specific deployment 

times, the samplers were retrieved, disassembled and the central resin gel area was cut out 

using a 20-mm diameter polypropylene stencil. The cut-away resin was cut into two even 

halves and each half was weighed to confirm the volume of the gel being eluted. One half of 

each gel replicate was eluted for 24 h in 2 mL 1 mol/L HNO3 (p.a. grade, Sigma Aldrich, 

Vienna, Austria) and then analyzed using ICP-MS. The eluent concentration was used to 

calculate the mass of metal bound by per unit area of resin gel based on the metal-specific 

elution efficiencies reported in Warnken et al. (2004). The other half of each replicate was dried 

onto a 0.45-µm membrane filter for LA-ICP-MS analysis. 

The mass of trace metals bound by the standard and the sample DGT gels was analyzed using 

laser ablation inductively-coupled plasma mass spectrometry (LA-ICP-MS) using a UP 193-

FX (ESI, NWR Division, CA, US) laser ablation system coupled to a NexION 350D ICP-MS 

(Perkin-Elmer, MA, USA). Prior to analysis, the performance of the ICP-MS was confirmed 

by carrying out a standard performance test in solution mode confirming optimum sensitivity 

for 114In and minimal formation of oxides and doubly charged ions in the plasma.  
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The LA-ICP-MS analysis was carried out in line scan mode with a laser beam diameter of 150 

μm, scanning speed of 200 μm s−1, laser pulse frequency of 20 Hz and a laser energy output of 

40% (resulting in an approximate fluence of 4.35 J cm−2). The ICP-MS was set to detect for 

the following analytes: 13C, 58Fe, 55Mn, 63Cu, 66Zn, 111Cd and 208Pb. The dwell times of the 

analytes considered were adjusted to provide sufficient precision for a representative signal for 

each analyte, this resulted in an ICP-MS analysis time of 0.383 s per reading, giving an along-

the-line resolution of 76.6 µm. 13C is naturally part of the gel matrix and was used as the internal 

standard in line with previous laser ablation work involving DGT resin gels (Gao and Lehto, 

2012; Lehto et al., 2012). 

The standards were analyzed in line scan mode by ablating a single 1 mm line (total of 132 

readings) in each of the seven standards. For every reading, the metal (M) signal was 

normalized to the internal standard (IS) signal. The mean normalized signals (M/IS), combined 

with the analyte mass determined in the eluted standard disc halves, were used to quantify the 

metal loading on the sample gels. 

Following the calibration, specific areas of each sample gel were analysed using the same 

instrument settings as for the standards used in the calibration. The line scan was run using a 

500 mm interval between the centres of adjacent lines (inter-line spacing of 350 mm). All 

signals were corrected with corresponding gas blank values. The mean normalized M/IS signals 

allow the analysis of relative differences in supply of metal to the DGT across the area of 

analysis (Williams et al., 2014). Where calibrated, the M/IS signals could be related to metal 

fluxes. Due to the difficulty in preparing Fe standards, we were unable to calibrate the signal 

to obtain a mass; however the M/IS relationship is directly proportional to the mass bound by 

the DGT resin (Williams et al., 2014). Data processing was done in MS Excel and the 

visualization was performed using an open source imaging software (ImageJ, National Institute 

of Health, Maryland, US. Available to download at http://rsbweb.nih.gov/ij). 
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9.3.7 Statistical analysis 

The results are presented as means of at least three replicates ± standard deviation (SD). 

Statistical analysis was performed using Statgraphics (Statpoint technologies, INC., 

Warrenton, VA, USA). Data were analysed by analysis of variance (ANOVA), and means were 

compared using the Student–Newman–Keuls (SNK) test at P<0.05 to determine the 

significance of differences found.  

Multivariate analyses were carried out by using STAT Graphic Centurion XV, version 15.1.02. 

The validity of the Principal Component Analysis (PCA) models were assessed by the cross-

validation approach described by Bro et al. (2008). 

9.4 Results 

9.4.1 Pot experiment—Ca(NO3)2-extractions 

Soil pH was measured at harvest after 6 weeks of plant growth (Table 9.2). Lime treatments significantly increased 

soil pH, from 5.98 in T1 to 7.50 in T7 in Pukekohe soil and from 6.62 to 7.18 in Levin soil. Unexpectedly, shoot 

biomass was not affected by lime treatments (Table 9.2).  
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Table 9.2 pH of the Pukekohe and Levin soils treated with increasing lime concentrations (T1-T7) measured at 

harvest and shoot dry biomass (d.w.) of lupin plants expressed in g; mean ± SD (n=3). 

Treatment Pukekohe Levin 

pH*** Shoot d.w.ns pH*** Shoot DWns 

T1 5.98 ± 0.05d 0.88 ± 0.07 6.62 ± 0.06c 0.56 ± 0.06 

T2 6.37 ± 0.12c 0.71 ± 0.17 6.96 ± 0.01b 0.67 ± 0.20 

T3 6.93 ± 0.17b 0.73 ± 0.14 7.01 ± 0.04ab 0.58 ± 0.05 

T4 7.15 ± 0.03b 0.78 ± 0.09 7.07 ± 0.04ab 0.35 ± 0.26 

T5 7.42 ± 0.01a 0.82 ± 0.08 7.07 ± 0.07ab 0.59 ± 0.32 

T6 7.47 ± 0.03a 0.73 ± 0.06 7.15 ± 0.04ab 0.46 ± 0.18 

T7 7.50 ± 0.04a 0.80 ± 0.05 7.18 ± 0.14a 0.59 ± 0.06 

Ns = not significant, ***p<0.001 

 

Plants grown on Pukekohe soil had almost 30% higher dry shoot biomass than plants grown 

on Levin soil, most likely due to the different texture of the two soils. Here we consider the 

Ca(NO3)2-extractable trace element fraction to be representative of the plant-available fraction 

(Black et al., 2011). The Table 9.3 shows the Ca(NO3)2-extractable trace element fraction of 

Pukekohe and Levin rhizospheric soils treated with different lime concentrations. Considering 

the Levin soil, significant differences were found only for Mn, Ni and Mg concentration, which 

decreased with increasing lime concentrations. The Ca(NO3)2-extractable concentration of 

elements was more affected by lime treatments in Pukekohe soil. For instance, P, K and Cu, 

increased by 16, 20 and 30%, respectively, comparing the control with the highest lime 

concentration. In contrast, Mn, Zn and Ni were significantly reduced by 98, 70 and 90%, 

respectively. Iron represented the only exception since its extractable concentration was not 

affected by the lime treatment in either soil.  

The contrasting elemental behaviors induced by the lime treatments were also delineated in the 

pattern recognition techniques, such as PCA (Figure 9.1A). The micronutrients Mn, Zn, Fe and 
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Cu together with Ni are the main drivers in separating the different lime treatments along the 

first component (58% of total variance), whereas Na, Mg and P accounted for the different 

clusters according to the soil type, i.e. Pukekohe and Levin. Within the Pukekohe soil (Figure 

9.1A), T1 and T2 could be distinguished from the treatments T3–T7. The concentrations of 

Mn, Zn and Ni decreased by 50%, 60%, 65%, respectively, between the unamended soil (T1) 

and 0.3 wt% lime application (T2) (Table 9.3). In the Levin soil, only Mn, Ni and Mg showed 

significant differences (Table 9.3) and did not allow a separation between the different lime 

treatments (Figure 9.1B). 

The Ca(NO3)2-extractable elemental compositions in the Pukekohe soil showed a clear 

clustering of the different lime treatments (Figure 9.1A); treatment 7 and 6 could be well 

distinguished from treatments 1, 2, 3, 4 and 5.  
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Figure 9.1 Score plots of the first two principal components obtained from the dataset of the mineral composition 

of the two rhizosphere soils Pukekohe (A) and Levin (B) obtained at the 7 treatments (T1: 0 wt%, T2: 0.3 wt%, 

T3: 0.6 wt%, T4: 1.3 wt%, T5: 2.5 wt%, T6: 5 wt%, T7: 10 wt%). Clustering of the distinguishable treatments are 

highlighted by circles. 

 

No clustering of the lime treatments could be seen in the Levin soil, which was consistent with 

the Ca(NO3)2-extractable concentrations of Levin rhizospheric soil shown in Table 9.3 
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Table 9.3 Ca(NO3)2-extractable metal fraction (mg/kg) in rhizosphere soils treated with different lime concentrations (T1: 0 wt%, T2: 0.3 wt%, T3: 0.6 wt%, T4: 1.3 wt%, T5: 

2.5 wt%, T6: 5 wt%, T7: 10 wt%) expressed as mg/kg DW; mean ± SD (n=3). 

Pukekohe Fens P*** Cu* Mn*** Zn*** Ni*** Mg*** K* 

T1 0.16 ± 0.03 3.11 ± 0.04b 0.15 ± 0.03ab 21.75 ± 1.63a 0.28 ± 0.02a 0.088 ± 0.010a 155.97 ± 1.35a 160.63 ± 5.85b 

T2 0.12 ± 0.03 2.77 ± 0.02c 0.13 ± 0.01b 10.19 ± 1.88b 0.11 ± 0.03b 0.034 ± 0.010b 153.57 ± 1.33a 185.35 ± 23.88ab 

T3 0.16 ± 0.05 2.97 ± 0.14bc 0.11 ± 0.01b 2.40 ± 0.85c 0.03 ± 0.01c 0.009 ± 0.003c 143.34 ± 5.31b 210.53 ± 20.76a 

T4 0.15 ± 0.05 3.18 ± 0.19b 0.16 ± 0.04ab 1.52 ± 0.35c 0.03 ± 0.01c 0.008 ± 0.003c 137.97 ± 1.47b 219.25 ± 31.96a 

T5 0.17 ± 0.03 3.56 ± 0.24a 0.16 ± 0.03ab 0.61 ± 0.03c 0.02 ± 0.01c 0.005 ± 0.003c 127.16 ± 0.42c 217.09 ± 6.58a 

T6 0.22 ± 0.15 3.60 ± 0.14a 0.15 ± 0.02ab 0.54 ± 0.05c 0.03 ± 0.02c 0.004 ± 0.006c 121.27 ± 3.69c 207.92 ± 10.77a 

T7 0.14 ± 0.05 3.70 ± 0.15a 0.21 ± 0.04a 0.61 ± 0.11c 0.08 ± 0.05bc 0.010 ± 0.002c 115.13 ± 5.69d 182.55 ± 12.95ab 

                 
Levin Fens Pns Cuns Mn** Znns Ni* Mg*** Kns 

T1 0.17 ± 0.03 5.71 ± 0.35 0.18 ± 0.04 6.42 ± 1.38a 0.03 ± 0.01 0.001 ± 0.005ab 123.29 ± 1.32a 97.85 ± 19.96 

T2 0.21 ± 0.07 5.37 ± 0.12 0.19 ± 0.04 2.99 ± 0.89b 0.02 ± 0.01 0.002 ± 0.000b 109.55 ± 2.28b 91.42 ± 14.63 

T3 0.35 ± 0.15 5.40 ± 0.21 0.25 ± 0.08 2.75 ± 1.77b 0.02 ± 0.01 0.008 ± 0.001ab 109.26 ± 1.16b 95.86 ± 6.53 

T4 0.23 ± 0.03 5.49 ± 0.03 0.15 ± 0.01 4.34 ± 1.54b 0.01 ± 0.00 0.000 ± 0.004ab 105.99 ± 0.79b 98.13 ± 4.23 

T5 0.22 ± 0.10 5.51 ± 0.11 0.25 ± 0.07 2.17 ± 0.55b 0.02 ± 0.01 0.004 ± 0.007ab 102.23 ± 0.37c 85.65 ± 8.59 

T6 0.17 ± 0.03 5.28 ± 0.05 0.21 ± 0.07 1.54 ± 0.73b 0.05 ± 0.05 0.012 ± 0.008a 98.70 ± 0.29d 82.71 ± 8.34 

T7 0.16 ± 0.07 5.45 ± 0.16 0.24 ± 0.14 2.42 ± 0.31b 0.01 ± 0.01 0.004 ± 0.002ab 93.06 ± 3.60e 71.21 ± 18.42 

Ns = not significant,*p<0.05, **p<0.01, ***p<0.001 
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9.4.2 Pot experiment–Plant elemental composition 

The measured elemental concentrations in lupin shoots indicate that the lime treatments 

strongly affected the uptake of micronutrients in both soils (Figure 9.2A and B), but to a 

different extent depending on the soil type. The variations of all the elements with increasing 

lime concentrations resulted significant in the Pukekohe soil, while only Fe, Mn, Zn and Ca 

lead to significant differences in plants grown in the Levin soil. Lime addition reduced the 

element uptake by almost 50-60 % in both soils with the only exception of Mn and Mo in the 

Pukekohe soil grown lupin plants, which were reduced by 75% and increased by 80 %, 

respectively.  
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Figure 9.2 Elemental concentration expressed as logarithmic scale of shoots of white lupin plants grown in 

Pukekohe (A) and Levin soils (B) treated with different lime concentrations (T1: 0 wt%, T2: 0.3 wt%, T3: 0.6 

wt%, T4: 1.3 wt%, T5: 2.5 wt%, T6: 5 wt%, T7: 10 wt%).  

 

The elemental composition of white lupin shoots grown in Pukekohe and Levin soils were 

further analyzed by PCA (Figure 9.3A and B). As shown in Figure 9.3A, the different 

A

B
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treatments are separated along the first principal component which explains the 50% of total 

the variance. The samples of shoots grown in Pukekohe soil can be clearly clustered in seven 

groups which correspond at the different treatments. In particular clusters of T1, T4 and T7 are 

well separated from the other samples. This separation reflects the significant differences of 

the concentration of the elements in white lupin shoots. Regarding shoots grown in Levin soil, 

the PCA (Figure 9.3B), grouped the samples of the different treatments in separated clusters. 

However, the different clusters are not as well separated when compared to plants in the 

Pukekohe soil. While there was a clear separation between the control and the highest lime 

treatment, samples from the other treatments are not well distinguished, indicating that the 

increasing lime levels are not significantly affecting all the components or the plants are 

compensating for lime addition by mobilizing elements in the rhizosphere.  
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Figure 9.3 Score plots of the first two principal components obtained from the dataset of the elemental composition 

of white lupin shoots of plants grown in Pukekohe (A) and Levin (B) soils at different lime treatments (T1: 0 wt%, 

T2: 0.3 wt%, T3: 0.6 wt%, T4: 1.3 wt%, T5: 2.5 wt%, T6: 5 wt%, T7: 10 wt%). Clustering of the distinguishable 

treatments are highlighted by circles.  

A B 
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9.4.3 HR-DGT and LA ICP-MS analysis 

Due to the chemical physical characteristics and to the significant differences of the Ca(NO3)2- 

extractable fraction of rhizosphere soil and plant element concentration Table 9.2, Table 9.3, 

Figure 9.1, Figure 9.3) caused by lime addition, the Pukekohe soil (T1, T4 and T7) was chosen 

for the rhizotrons experiment to investigate element bioavailability in response to different lime 

concentration on some selected root zones of white lupin. However, the high-resolution LA-

ICP-MS analysis of the DGT gels (forthwith referred to as “HR-DGT analysis”) from the three 

treatments showed element mobilization in only the rhizosphere of the plant grown in the un-

amended (T7) treatment (Figure 9.4), where a 21.67 x 23.50 mm area was analyzed at the 

location of a lupin cluster root.
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Figure 9.4 Selected white lupin cluster root for DGT deployment in T1 treatment (A) and a visual representation of Fe (B) and Mn (C) mobilization around obtained by HR-

DGT; each pixel represents a discrete measurement point acquired using this method, where relative Fe flux to the DGT is represented by M/IS data; Mn flux is shown as 

pg/cm2/s 
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In particular, three distinct areas of elevated Fe supply indicated as HS1, HS2 and HS3 in 

Figure 9.4 of element mobilization could be observed. These ‘hotspots’ were defined by 

measurement points showing Fe mobilization that was greater than two standard deviations of 

the measurements across the entire area of ablation (Figure 9.4). They are defined by 137, 59 

and 62 unique measurements respectively (Table 9.4) and correspond to the location of the 

observed cluster root (Figure 9.4). 
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Table 9.4 Distribution of Fe, Cu, Zn, Pb and Mn taken up by the DGT gel in T1 treatment of Pukekohe soil (M/IS, M: metal of interest, IS: internal standard); mean ± SD. 

 Iron  Copper  Zinc  Lead  

Area of 
interest 

No. discrete 
measurements 

Total 
area 

Average M/IS 
across area of 

interest 
Maximu

m 
Average Flux across 

area of interest 
Maximum 

flux 

Average Flux 
across area of 

interest 
Maximum 

flux 

Average Flux 
across area of 

interest  
Maximum 

flux 

Units  mm2 M/IS M/IS  pg/cm2/s pg/cm2/s pg/cm2/s pg/cm2/s pg/cm2/s pg/cm2/s 

Entire 
ablation area 13442 509 0.18 ± 0.13 2.05 4.42 ± 2.09 12.88 0.62 ± 0.56 3.61 1.38 ± 1.52 102.31 

HS1 137 5.25 0.71 ± 0.23 2.05 5.51 ± 1.05 12.88 1.15 ± 0.42 3.61 3.31 ± 8.69 102.31 

HS2 59 2.26 0.64 ± 0.20 1.13 4.16 ± 1.81 8.80 0.95 ± 0.29 1.93 4.32 ± 2.85 12.35 

HS3 62 2.37 0.57 ± 0.09 0.82 7.45 ± 0.91 9.47 1.14 ± 0.23 1.66 6.48 ± 2.30 11.64 

Manganese 

Area of interest No. discrete measurements Total area Average Flux across area of interest Maximum flux 

Units  mm2 pg/cm2/s pg/cm2/s 

Entire ablation area 13442 509 2.04 ± 0.51 6.32 

HS1 685 26 3.40 ± 0.36 6.32 
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The Table 9.4 shows the distribution of Fe, Cu, Zn and Pb in the entire ablation area and in the 

three hotspots. The total area of these three hotspots is 1.95 % of the entire area of analysis. 

The relative average fluxes of Fe from the three hotspots was 3.9 (HS1), 3.5 (HS2) and 3.2 

(HS3) times higher than the average Fe flux across the entire area of analysis. The areas of high 

Fe flux to the DGT can also be seen to broadly correspond to localized areas of high Cu, Zn 

and Pb fluxes. Cu and Zn were also detected in Ca(NO3)2-extractable fraction of rhizosphere 

soil whereas Pb was below the limit of detection (LOD). Considered together, the average 

fluxes of Cu (5.71 pg/cm2/s), Zn (1.08 pg/cm2/s) and Pb (4.70 pg/cm2/s) measured by the HR-

DGT within these three areas are 1.29, 1.74 and 3.40 times higher than the respective average 

fluxes of these metals across the entire area of measurement. In Table 9.4 are also present the 

data of a selected hotspot of Mn defined as before by the measurement points showing Mn 

fluxes greater than those in the bulk soil. The total area of this hotspot is 26 mm2 in size and 

consists of 685 unique measurements (5.17% of the total area of analysis). The average flux 

across these points is 3.40 pg/cm2/s while the average flux across the entire area of analysis is 

2.04 pg/cm2/s (1.66 times higher than the respective average flux across the entire area of 

measurement). For all five metals measured using this technique, the highest observed flux 

across the entire ablation area was found in HS1.  

The masses of all of the cationic elements bound by DGT gels deployed on the other treatments 

were below the detection limits (not shown). 

9.5 Discussion 

9.5.1  Pot experiment—Ca(NO3)2-extractions 

The maximum addition of lime (10 % w/w) increased the pH by ca.1.52 and 0.56 pH units in 

the Pukekohe and Levin soil respectively (Table 9.2), but this increase did not have any 

significant effect on the lupin shoot biomass (Table 9.2). This can be explained by comparing 

the plant-available fractions of the major macro-and micronutrient before and after lupin 
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harvest (Table 9.1 and Table 9.3, respectively). Considering treatment T1, i.e. both soils 

without lime addition, the concentrations detected in the Ca(NO3)2-extractable rhizosphere soil 

solution at harvest were significantly decreased. For instance, in the Pukekohe soil, Fe was 

reduced by approximately 70%, Mn by 50%, Zn by 10% and Cu by 20 %. Despite this decrease, 

the plant-available concentration of these nutrients was still in the optimal range for plant 

growth (Kabata-Pendias, 2010). Iron for instance is one of the nutrients with the lowest 

solubility in soil usually resulting in soil solution concentrations of about 10−7–10−10 M over a 

pH range from 5.0 to 8.5 (Kraemer et al., 2006), a concentration too small for optimal plant 

growth. In the present study, despite plant uptake, the Ca(NO3)2-extractable rhizosphere soil 

solution concentration of white lupin was in the range of 10-6 M, meeting both microbe (10−5–

10−7 M) and plant (10−4–10−9 M) requirements (Lemanceau et al., 2009). White lupin are highly 

efficient plants in mobilizing nutrients thanks the excretions of organic acids, especially citric 

and malic acid (Neumann et al., 2000) from closely-spaced lateral rootlets arranged in clusters, 

the so-called “proteoid” roots. Previous studies showed that white lupin accumulates up to 

50±90 mmol of citric acid per g soil in the rhizosphere of cluster roots (Dinkelaker et al., 1989; 

Gerke et al., 1994), which is sufficient to desorb for instance P from sparingly soluble Ca-, Al- 

and/or Fe-P and from Fe/Al humic acid complexes by ligand exchange reactions and 

dissolution of P sorption sites (Gardner et al., 1983; Gerke et al., 1994). Peaks of labile P have 

also been detected in the depletion zones around Brassica napus roots and have been attributed 

either to organic acids or protons (Santner et al., 2012). In fact, in addition to the organic acid 

exudation, white lupin releases also protons acidifying its rhizosphere. This has been detected 

even in a well-buffered calcareous soils in pH ranges similar to the ones of the present study 

(around 7.50 at the maximum lime addition) dissolving acid-soluble Ca-P (Dinkelaker et al., 

1989). Our results indicate that even with increasing lime addition, the plant-available P 

fraction increased significantly between the control and the 10 wt% lime application (Table 
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9.3), which agrees with previous studies that have demonstrated efficiency of white lupin in 

taking up P and utilizing soil phosphorus sources. Lupin root activity did not affect the 

availability of the other essential micronutrients as Mn, Zn and Ni which decreased with 

increasing lime content (Table 9.3) 

. In well-aerated calcareous soils, the solubility of Mn decreases due to the adsorption of Mn 

on CaCO3, its oxidation on MnO2 surfaces and, probably, to precipitation of Mn calcite 

(Jauregui and Reisenauer, 1982). 

9.5.2 Pot experiment–Plant elemental composition 

Regarding elemental concentration in lupin shoots, lime treatments strongly affected the uptake 

of micronutrients from both soils (Figure 9.2). In particular, Fe, and Zn concentration decreased 

significantly in both soils at increasing lime concentration, while Cu, Ni, Mn and Cd decreased 

only in the Pukekohe soil. These micronutrients were also the main elements contributing to 

the distinct clustering (Figure 9.3A) along the first component which accounted for 50.2% of 

the total variance. A decrease of Mn concentration as well as Zn and Ni could be a direct 

consequence of a decrease in the availability of these elements in the rhizosphere (Figure 9.3) 

even though the plants did not show any deficiency symptoms and biomass was not 

significantly reduced. Zinc ranged from 45 mg/kg in T1 to 25 mg/kg in T7 in white lupin 

shoots, (Figure 9.2), concentrations far above those reported for Zn deficient plants (10–20 

mg/kg DW, (Boehle and Lindsay, 1969)). Even though the Mn concentration decreased with 

increasing lime addition, the concentrations in lupin shoots were high in all the treatments 

(ranging from 1400 mg/kg DW in T1 to 400 mg/kg DW in T7). This suggests that 0.05 M 

Ca(NO3)2-extractable fraction of Mn did not accurately represent the Mn available to the white 

lupin plant in these treatments. White lupin is known to accumulate Mn in leaves (Zornoza et 

al., 2010). Reuter and Robinson (1997) and Martínez-Alcalá et al. (2009) have shown Mn 

concentrations as high as 1300 mg/kg DW and 4960 mg/kg DW in leaves and shoots 
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respectively. This high rate of Mn uptake is believed to be due to an increased secretion of 

organic acids into the plant’s rhizosphere, which promotes the metal’s solubilization and thus 

facilitates its uptake by the plant (Dinkelaker et al., 1995; Oliver et al., 1996). Manganese 

accumulation in lupin shoots is highest at low and zero lime levels indicating that at the higher 

liming rates the solubilizing effect of the organic acids might be neutralized by the high calcium 

carbonate of the soil, thus lowering the uptake. 

Although Cd was below the detection limit in the Ca(NO3)2 extraction, the Cd concentration in 

the lupin shoots were significantly affected by lime treatment, with a decrease of 97% from T1 

to T7 in the plants grown on the lime-treated Pukekohe soils. This is consistent with other 

studies that reported the effectiveness of liming to minimize the Cd uptake by plants (Oliver et 

al., 1996).  

Organic acids play also a fundamental role in the reduction- based Fe uptake of white lupin as 

a strategy I plant, (Römheld and Marschner, 1983). However, while there was no change in the 

concentration of the available Fe in the rhizosphere of the soils with the different treatments 

(Table 9.3), Fe concentration in shoots decreased significantly (P <0.001). However, the 

concentration of Fe in green plant tissues normally occurs at 50–100 mg/kg DW (Mengel and 

Kirkby, 2001). Only lime treatments >2.5% (w/w) lead in both soils to deficient conditions 

(<45 mg/kg). The discrepancy between the phytoavailable Fe concentration in the rhizosphere 

soil solution and the Fe concentration detected in lupin shoot analysis might be due to a 

methodological drawback. Even though calcium nitrate is commonly used to determine the 

phytoavailable fraction of elements, it might not be suitable for nutrients such as Fe. Many 

authors (de Santiago and Delgado, 2006; Gough et al., 1979; Menzies et al., 2007; Walsh and 

Beaton, 1973) asserted that caution should be used in formulating methods for the 

determination of the plant-available levels, yet an official and generally accepted method is 

still missing. 
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9.5.3 HR-DGT and LA ICP-MS analysis 

The diffusive gradients in a thin film (DGT) technique is a valuable alternative to assess the 

phytoavailable fraction since it represents a well-established in situ, time-integrated, passive 

sampling method that is designed to accumulate labile cationic and anionic species (Zhang and 

Davison, 1995). Mimicking a plant root, DGT takes up elements from the soil solution and 

induces resupply from the solid phase (Lehto et al., 2006) and thus provides valuable data on 

spatial differences in metal bioavailability when used to provide 2D measurements. In the 

present study DGT gels were deployed on root tips and cluster roots of white lupins grown in 

rhizotrons. The HR-DGT showed metal mobilization only at the location of a cluster root of 

the plant grown in the un-amended (T1) treatment (Figure 9.4). In the lime treatments, all 

analytes were below the detection limits of LA-ICP-MS analysis. A similar trend was observed 

in the data obtained with the Ca(NO3)2 extraction of rhizosphere soil (Table 9.3) considering 

Mn, Cu and Zn. Iron on the other hand, showed a different trend. Its concentration did not seem 

to be affected by lime addition observing the calcium nitrate extract, but could not be detected 

by HR-DGT analysis of the white lupin rhizospheres in T4 and T7. As previously mentioned, 

calcium nitrate extraction might not be the most appropriate method to determine Fe 

availability. This method relies on cation exchange, whereas normally Fe tends to form 

insoluble species that this extraction method is unlikely to measure; hence no significant 

changes could be observed in extractable Fe despite the big decrease in plant uptake. 

The plant appears to have a highly localized means of mobilizing Fe (despite it is not appearing 

to be very extractable) as shown by the HR-DGT data, but only without lime. The extent of the 

exudation-induced rhizosphere effect depends in fact strongly on the soil buffering capacity. 

For instance, it has been shown that the extent of the acidification by chickpea decreases from 

several (15% CaCO3) to almost zero mm (60% CaCO3) with increasing concentrations of 

CaCO3 in the soil (Neumann and Römheld, 2012). Yet, the extent of this effect is most likely 
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related to the type of carbonate, i.e. active or total. Usually high lime concentrations are needed 

to neutralize the root activity, whereas in the present study low concentrations as 1.25% were 

sufficient to completely suppress the available fraction of Fe below the level where it could be 

observed by the DGT. However, we can hypothesize that the fine powdery laboratory grade 

lime used in this experiment can be considered almost 100% active and was able to react 

immediately with the soil, in contrast with common agricultural lime, which takes more time 

to react with the soil because constituted by particles with a larger size. 

The DGT gel was deployed early in the plant’s light-dark cycle to ensure that effects of one 

cycle of exudation by the roots of the white lupin on the rhizosphere soil were recorded. 

Previous studies showed that the release of citrate in white lupin follows a diurnal rhythm with 

a peak of exudation after 5 h of the onset of light (Tomasi et al., 2009). The observed co-

mobilization of Cu, Zn and Pb with Fe at the location of the cluster root indicates that similar 

mechanisms are acting on these metals. Some authors reported that white lupin is able to 

increase the availability of Cu and Zn (Braum and Helmke, 1995; Dessureault-Rompré et al., 

2006; Duffner et al., 2012; Martínez-Alcalá et al., 2010) through the action of root exudates in 

the rhizosphere. Braum and Helmke (1995) also showed that soybean intercropped with L. 

albus had greater uptake rates of Cu, Fe, and Zn when compared to soybean grown alone. 

Martínez-Alcalá et al. (2009) found an overall decrease in the EDTA-extractable fraction of 

Pb, Zn and Fe in the rhizosphere soil of L. albus L. They attributed this decrease to the 

precipitation of Fe into iron oxyhydroxides which also immobilized the Pb and Zn; however, 

it should be noted that the soils used for their study had a considerably higher pH (7.86) than 

those considered here, which would be expected to promote the precipitation of Fe into 

insoluble minerals and the co-precipitation of other trace elements. Furthermore, high-

resolution analyses of plant-induced rhizosphere changes are more likely to provide a better 
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representation of small-scale trace element mobilization at the plant-root interface than 

methods where bulk samples of rhizosphere soils are considered (Hinsinger et al., 2005). 

A clear hotspot at the location of the selected cluster roots can be observed also for Mn (Figure 

9.4c). In fact the average flux of Mn across the area defined as the hotspot is ca. 75% higher 

compared to the entire ablation area confirming a higher mobilization of the element in this 

highly localized part of the white lupin rhizosphere. This observation indicates that highly 

localized exudation processes occurring in the rhizosphere of white lupin may be important 

factor in this plant's ability to mobilize this element (Dinkelaker et al., 1995; Martínez-Alcalá 

et al., 2009; Page et al., 2006). 

While the ability of white lupin roots to mobilize trace elements nutrients can be beneficial for 

the plant, the root exudates may also mobilize toxic metals, such as Pb. Yet, Pb could only be 

detected by HR-DGT and was below the LOD both in lupin shoots and in the Ca(NO3)2-

extractable rhizosphere soil solution most likely due to a dilution during the extraction. 

Previous studies have found that while the roots of white lupin can take up Pb, it is highly 

immobile within the plant (Kabata-Pendias, 2010; Martínez-Alcalá et al., 2009) and therefore 

plant uptake of this metal is unlikely to present a significant risk to human and animal health. 

However, the mobilization of other metals, that are relatively easily translocated from roots to 

shoots, such as Cd, Co, Mo and Se, could theoretically pose a threat when present in sufficient 

concentrations in soils; however, this is unlikely to be an issue in the soils considered here. 

9.6 Conclusion 

We found that lime treatment affected both the solubility of Ca(NO3)2-extractable elements 

and their plant uptake even though HR-DGT was not able to detect any mobilization when 

CaCO3 was added to the soil at a rate ≥1.3 wt%. Yet, plants grown in the pot trials using lime 

treated soils showed that there was sufficient trace element uptake to avoid nutrient deficiency. 

While we could not detect nutrient mobilization at the lupin root structures HR-DGT in these 
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cases, we cannot rule out the possibility that root exudates are still present but their ability to 

mobilize nutrients to a level where they can be detected by HR-DGT is buffered by the lime. 

Furthermore, lupin shoot elemental concentrations reflect the nutrient uptake through the whole 

root system whereas HR- DGT was applied only on selected cluster roots. Different areas of 

the rhizosphere or at the best the whole root system should be investigated by HR-DGT. Longer 

DGT deployment on root zones might provide further information to overcome the limitations 

of the method detection limit, especially under circumstances where the availability of nutrients 

by DGT is reduced by high levels of lime. 
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