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Abstract 

Abstract of a thesis submitted in partial fulfilment of the 

requirements for the Degree of Ph.D. 
 

 

PROTEOMIC PROFILING OF FATTY ACID BIOSYNTHETIC ENZYMES 

FROM OIL PALM CHROMOPLAST 
 

by 

Benjamin Lau Yii Chung 
 

Plant fatty acid metabolism has proven to be amenable to manipulation by conventional 

breeding, genetic and metabolic engineering to enhance the fatty acid profile. This can be 

done by engineering palm fruit to synthesise more oleic acid at the expense of palmitic acid. 

This would produce an oil with greater perceived nutritional quality and higher market value. 

Although the biochemistry of fatty acid biosynthesis in plants is well described, crosstalk 

between transcriptional and metabolic controls in regulating fatty acid composition remains 

poorly understood. Our hypothesis is that phosphorylation is one of the main regulators of 

acetyl-CoA carboxylase, fatty acid synthase complex and stearoyl-ACP-desaturase in 

increasing the oleic acid level between oil palm (Elaeis guineensis Jacq. var. Tenera) low and 

high oleic acid varieties. This study utilised advanced proteomic techniques to isolate, detect 

and identify chromoplast-based phosphorylated proteins associated with the fatty acid 

biosynthesis pathway. Sub-organelle isolation using differential centrifugation enriched the 

chromoplast fraction that contained the fatty acid biosynthetic enzymes before their protein 

extraction. Gel-based and non-gel based mass spectrometry techniques were then employed 

to separate and improve the identification of key fatty acid biosynthetic enzymes. Protein 

expression was analysed using isobaric labelling strategy. Five key enzymes, namely the β-

ketoacyl-ACP reductase (EC 1.1.1.100), β-hydroxyacyl-ACP dehydrogenase (EC 4.2.1.58 and 

4.2.1.59), 3-enoyl-ACP reductase (EC 1.3.19), β-ketoacyl-ACP synthase (EC 2.3.1.41) and 

stearoyl-ACP desaturase (EC 1.14.99.6) were identified using GeLC-MS/MS strategy. An 

additional two subunits of acetyl-CoA carboxylase (EC 6.4.1.2) were identified from the 2DLC-
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MS/MS strategy. The expression of β-hydroxyacyl-ACP dehydrogenase and β-ketoacyl-ACP 

synthase was up-regulated in the high oleic acid variety. In contrast, 3-enoyl-ACP reductase 

was down-regulated in the high oleic acid variety. The existence of other differentially 

regulated metabolic enzymes associated with fatty acid biosynthesis suggested that the 

control of fatty acid production, particularly the synthesis of oleic acid, involves more than 

just the main fatty acid biosynthetic enzymes. Subsequently, the role of phosphorylation in 

regulating these fatty acid biosynthetic enzymes was investigated using a novel combination 

of neutral loss-triggered MS3 and Selected Reaction Monitoring. Acetyl-CoA carboxylase and 

3-enoyl-ACP reductase were postulated to be phosphorylated in both low oleic acid and high 

oleic acid-producing oil palms during the fruit maturation stage of 20th week after anthesis. 

However, other fatty acid biosynthetic enzymes from these oil palm varieties did not show 

any indication of phosphorylation despite the prediction of phosphoserine-containing 

peptides. The location of the phosphorylated serine residues in the protein domains of acetyl-

CoA carboxylase and 3-enoyl-ACP reductase suggested that phosphorylation could have 

regulated their enzyme activities. This study has produced a robust method to capture and 

identify chromoplast-based enzymes that are related to plant fatty acid biosynthesis. The 

differences in their protein expression levels suggested that fatty acid biosynthetic enzymes 

were differentially regulated and phosphorylation might be involved in this regulation, at least 

in the enzyme activity. The outcomes reported in this thesis have significantly improved the 

knowledge of the possible regulation mechanisms in plant fatty acid biosynthesis. The logical 

extension of this work in future efforts will be to determine the biological significance of this 

differential protein expression and to understand the exact role of phosphorylation in the 

regulation of these enzymes.  

 

Keywords 
Oil palm, chromoplast, fatty acid biosynthesis, oleic acid, proteomic, phosphorylation, post-

translational modification, electrophoresis, liquid chromatography, iTRAQ, neutral loss-

triggered MS3, Selected Reaction Monitoring  
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1.0 Introduction 

1.1 Research rationale  

For many years, oil from African oil palm or the Elaeis guineensis Jacques has been sourced 

for food and energy. This tree of life grows in the wild in West Africa and Equatorial Africa and 

was first exploited by the ancient Egyptians about 5000 years ago (Obahiagbon, 2012). 

Through the centuries, the people of Africa have used palm oil in their sustenance and 

economy. The oil is regarded as a versatile and nutritious edible plant oil; free of trans fat and 

rich in vitamins and antioxidants (Hayes & Pronczuk, 2010; Obahiagbon, 2012; Rice & Burns, 

2010; Sen, Rink, & Khanna, 2010; Sundram, 2000; Sundram, Sambanthamurthi, & Tan, 2003). 

Oil palm is commercially planted throughout Malaysia, covering 5.23 million hectares as of 

December 2013, as well as in Indonesia and other tropical countries (Division, n.d.). Currently, 

this oil crop is the world highest oil bearing crop with about 4 tonnes being produced annually 

per hectare (Basiron, 2012; Kirkland, 2011; Singh et al., 2013). By November 2014, Malaysia 

had contributed 40.4% of the global oils and fats export trade, supplying around 45 million 

metric tonnes for the global consumption of vegetable oils 

(http://www.fas.usda.gov/commodities/oilseeds/other-oilseeds). Palm oil plays a crucial role 

in supporting Malaysia’s economy. It dominates the local edible oil market, and is the 

fundamental raw material for the oleochemical and food industries (Soyatech, n.d.). Overall, 

the palm oil industry contributed about 13.7% of Malaysia’s Gross Domestic Product in 2011 

(Sun, 2012; Szulczyk, 2013). With an expected exportable surplus of 20 million tonnes of palm 

oil in 2035 (Yean & ZhiDong, 2012), Malaysia has the potential to remain a formidable 

competitor in the world vegetable oil and biofuel market.  

Strategically designed and exhaustive research and development programmes in diverse areas 

including crop physiology, tissue culture and biotechnology, have been applied by the 

Malaysian Palm Oil Board to ensure that oil palm stays competitive and sustainable in the 

vegetable oil and fat global market. Diversification into innovative high-value products derived 

from oil palm, spurred by advances in genetic engineering techniques, offers bright prospects 

for raising the economic value of the oil palm. Industry prognoses suggest that the palm oil 

industry’s huge contributions toward Malaysia’s Gross Domestic Product can be increased by 
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7.6% by the year 2020 if the value-added returns from efficiency and innovation materialise. 

Palm oil exports are also expected to increase by 7% per annum to approximately Malaysian 

Ringgits (MYR) 84.6 billion (USD 270.72 billion) by 2020 (National Economic Advisory Council, 

2010). The export figure will rise even further if novel palm oil-based products and services 

can be effectively commercialised and marketed. 

Advances in genetic modifications are being propelled by significant improvements in DNA 

sequencing efficiency as well as the increase in rate of synthesis and larger de novo assemblies 

of DNA. Such progress in genome engineering and design has significantly enhanced the tools 

available for extensive and intentional manipulation of plant genes to address specific 

environmental problems such as drought and economic goals such as increasing the value of 

palm oil (Carr & Church, 2009; Lawlor, 2012; Mittler & Blumwald, 2010). Unique genetic 

variations associated with particular phenotypic traits, for example shell thickness, that have 

been discovered in oil palm genome sequencing projects offer the possibility to improve the 

efficiency and productivity of the oil palm industry. The oil palm genome sequencing projects 

have the potential to drive the industry towards a more sustainable economic model 

essentially based on renewable resources, also known as the ‘bio-based’ economy (Langeveld, 

Dixon, & Jaworski, 2010). They are also support the Malaysia government’s goals to achieve 

higher yields of fresh fruit bunches at 35 tonnes per hectare (from the current 20.18 tonnes 

per hectare) and oil extraction rate of 25% per hectare (from 20% currently) annually by 2020. 

Production of unsaturated high oleic acid palms for the feedstock and oil markets is the first 

direct contribution of genetic engineering in this field (Yunus & Parveez, 2008). Crude palm oil 

has the potential to escalate to about MYR 500 (USD 1,500) per hectare per year provided the 

content of oleic acid exceeds 65% (Wahid, Abdullah, & Henson, 2004). Existing palm oil from 

mesocarp contains 53% saturated fatty acids of which 44% is palmitic acid. Less than 33% of 

the total palm oil content is the unsaturated oleic acid (Sundram, 2000; Sundram et al., 2003). 

Reducing the saturated fatty acid content in palm oil would significantly improve nutritional 

value of palm oil.  

Genetic manipulation of fatty acid biosynthesis genes in mesocarp played a vital role in 

producing high oleate palms, in addition to the current selective breeding programme to 

select high oleic acid producing palms (as used in this thesis) (Murphy, 2005, 2006). Alteration 

of the fatty acid yields is also achievable by manipulating substrates and intermediates from 

the biosynthesis of fatty acids. However, it is necessary to comprehend the fundamentals of 
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fatty acid biosynthesis before embarking on efforts to raise the oleic acid content through 

metabolic manipulation of these substrates and intermediates. Although findings on the 

pathway of fatty acid biosynthesis in plants are well documented, it has not been possible to 

decipher the exact regulators of the fatty acid biosynthesis. Previous research has shown that 

the regulation of fatty acid biosynthetic pathway involves many proteins. Acetyl-CoA 

carboxylase, the catalyst of the first reaction in the fatty acid biosynthesis, has long been 

considered to determine the flux of fatty acid biosynthesis in both plants and animals (Baud 

& Lepiniec, 2009; Harwood, 1996; Joyard et al., 2010). In addition, levels of specific fatty acids 

are controlled by fatty acid synthase and stearoyl-ACP-desaturase at both transcriptional and 

post-translational levels (Kachroo et al., 2007; Ramli, Baker, Quant, & Harwood, 2002; 

Sambanthamurthi, Abrizah, & Ramli, 1999). Therefore, a thorough insight into the fatty acid 

biosynthetic pathways involving these three key enzymes has the potential to enhance the 

efforts of the genetic engineering programme or even to circumvent genetic manipulation in 

producing high oleate palm as well as palm oil with targeted compositions. 

The hypothesis underlying this research is that phosphorylation is one of the key regulators 

not only for acetyl-CoA carboxylase and fatty acid synthase in controlling overall fatty acid 

synthesis, but also for stearoyl-ACP desaturase in determining the oleic acid composition 

between different oil palm varieties. The thesis focusses on investigating the role of 

phosphorylation as the main post-translational modification of enzymes involved in oleic 

acid biosynthesis in order to gain a better insight into its mechanism. Mass spectrometry-

based proteomics approaches were utilised to characterise the protein expression and 

phosphorylation that may regulate the rate of oleic acid production through the actions of the 

fatty acid biosynthetic enzymes. Robust protocols had been developed to isolate the fatty acid 

factory, that is, the chromoplast and improve the extraction of its proteins. A combination of 

gel-based and non-gel based proteomic techniques were then used to separate, detect and 

quantify the differentially expressed fatty acid biosynthetic enzymes. Characterisation of 

phosphorylated enzymes related to fatty acid biosynthesis was carried out using a novel 

combination of neutral loss-triggered MS3 and Selected Reaction Monitoring. Possible sites of 

phosphorylation on serine residue in each of the fatty acid biosynthetic enzymes were also 

predicted and were found to have different phosphorylation states. It is anticipated that the 

procedures developed in this study will also be hugely advantageous for future undertakings 

in oil palm proteomic research. 
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1.2 Purpose and contribution of findings 

The main research aims were; 

 (i)  The development of protocols for chromoplast isolation and subsequent protein 

extraction from low and high oleic acid palm varieties 

(ii)  The development of proteomic-based strategies for detection, enrichment and 

quantification of differentially regulated enzymes associated with fatty acid biosynthesis  

(ii)  Characterisation of the phosphorylation in fatty acid biosynthetic enzymes with mass 

spectrometry-based techniques  

 

The work done in this thesis provides a substantial contribution to the understanding of the 

regulation of oleic acid production through phosphorylation of some key enzymes in the fatty 

acid biosynthetic pathway. While conventional breeding programmes have significantly 

contributed in producing high yielding oil palm planting materials, the progress has been slow 

due to limited genetic diversity and the need for tedious and time-consuming procedures. 

Thus, information currently available from genetic engineering efforts and knowledge 

generated in this study are of both fundamental interest and essential for optimal commercial 

production of novel planting materials with desired fatty acid compositions, such as the high 

oleate palm. Furthermore, the robust techniques acquired have significant potential to be 

employed in investigations on various oil palm organelles using proteomic approaches. As part 

of the long term gains, mining of protein based biomarkers to indicate type and amount of 

fatty acids, for instance, will almost certainly enhance the oil crop improvement programme 

by aiding the plant breeders to screen oil palm germplasms for specific fatty acid 

compositions. Additionally, the differences in the abundances of key fatty acid biosynthetic 

enzymes will also help to determine the fatty acid compositions in oil palm. 
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2.0 Literature Review 

2.1 The African oil palm tree (Elaeis guineensis Jacques) 
The oil palm comprises two species of the Arecaceae (formerly known as the Palmae), or palm 

family. The order of this palm family is not well ascertained. For instance, Cronquist 

(Cronquist, 1981) consigned the Arecaceae in the order Arecales while Bentham and Hooker’s 

Genera plantarum put the palms with the Flagellariaceae and Juncaceae in the series 

Calycinae. Another system put palm tree under the order Principes (Engler and Prantl’s 

system). The family Arecaceae, to which the genus Elaeis belongs, is considered to be the first 

monocotyledon to have branched out from the primitive dicotyledon stock, and therefore, 

the progenitor of all monocotyledons. The classification of oil palm in the Arecaceae family 

was based on palms introduced into Martinique and the oil palm receiving its botanical name 

from Jacquin (Jacquin, 1763). The name of the genus Elaeis, is derived from a Greek word, 

elaion, which means ‘oil’. The specific name guineensis shows that the first specimen 

described was collected in Guinea Coast, West Africa.  

The Portuguese introduced oil palm to Brazil and other tropical countries in the 16th century. 

Three hundred years later, the Dutch brought the oil palm seeds from West Africa to be 

planted in Bogor, Indonesia in 1848. The seeds were from the dura variety and the progeny 

from the four seedlings were then planted in Deli as ornamentals. Thus, they are known as 

the Deli dura. In 1875, Botanical Garden in Singapore received its first oil palm and three years 

afterwards, the oil palm arrived in Malaysia. The oil palm was initially planted as an 

ornamental plant. Eventually in 1917 commercial oil palm plantations were established 

(Sundram, 2000). The pisifera palms were introduced to Malaysia by Algemene Vereniging van 

Rubberplanters ter Oostkust van Sumatra (AVROS) in 1957. Oil palm planting materials after 

1961 were largely of the cross between Deli dura and pisifera, known as the E. guineensis var. 

tenera. Tenera is the only commercial variety in Malaysia today (Seng, 1987) despite the 

existence of another species of oil palm in Malaysia, the E. oleifera. E. oleifera from South 

America is only valued for its potential in transferring useful characteristics to interspecific 

hybrids with E. guineensis, even though  it contains more than 69% oleic acid in comparison 

to the commercially cultivated E. guineensis var. tenera which has about 30% of oleic acid 

content.  

http://en.wikipedia.org/wiki/Arecaceae
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Dura (D), pisifera (P) and tenera (DxP) are the three varieties of E. guineensis (Figure 2.1). The 

thick shelled homozygous dominant (Sh+Sh+) dura crossed to the shell-less homozygous 

recessive (Sh-Sh-) pisifera, resulted in the thin shelled heterozygous (Sh+Sh-) tenera. The DxP 

hybrid is used as planting material due to it having a higher proportion of oil-bearing mesocarp 

and consequent higher oil yield than dura (Hai, 2002). The shell-less pisifera has the highest 

mesocarp content but is not suitable as a planting material for commercialisation as it is 

female sterile. Thus, pisifera bunches would never develop to maturity. There are different 

types of pisifera and dura (Lim, Teo, Rao, & Chia, 2003; Teo, Rao, Chia, & Lim, 2004). These 

varieties, known as the parent planting materials, provide the varieties of tenera planting 

materials due to their different origins, genetic content and selection criteria (for example, 

the presence or absence of endocarp) (Breure, 2006; Esnan, Zakaria, & Wahid, 2004). In 

addition to these varieties, the Malaysian Palm Oil Board (MPOB) had also developed thirteen 

novel variations of planting material, designated as the PORIM Series (PS), through its 

breeding and selection programme. Each of these planting materials has one or more unique 

traits (Table 2.1). The E. guineensis varieties used in this study were obtained from the PS12 

breeding population, which consists of 15 oil palm trees from the tenera variety with oleic acid 

content exceeding 48%. Normal oleic acid content in the standard DxP hybrids is around 30% 

of oleic acid. The standard DxP hybrid palms were obtained from the oil palm germplasm 

currently managed by MPOB. Due to the narrow genetic base of oil palm breeding 

populations, consisting of merely four Bogor dura and a handful of pisifera palms and also the 

continuing threats of genetic erosion, MPOB has actively searched for oil palm germplasm 

centred on its origin in Africa and Latin America (Rajahnaidu, 1994). E. guineensis has been 

sourced from Nigeria, Cameroon, Zaire (Congo DR), Tanzania, Madagascar, Angola, Senegal, 

Gambia, Sierra Leone, Guinea and Ghana. 

The palm fruit (Figure 2.2) is a central hard-shelled nut (kernel) surrounded by an outer shell 

(endocarp). The soft oily mesocarp which contains the commercial palm oil lies in between 

the endocarp and exocarp. The nut or oil palm seed contains one to three kernels, from which 

a different type of oil, the palm kernel oil, is extracted (Figure 2.3) (Corley & Tinker, 2003). 

Development of oil palm fruit begins around two weeks after anthesis (WAA). Anthesis in this 

context means the period when the first functional flower from oil palm female inflorescence 

is apparent. The endosperm starts its oil accumulation about 12th WAA and nears completion 
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Dura Pisifera Tenera 

Figure 2.1. The different varieties of oil palm E. guineensis. 

 

Table 2.1. PORIM Series with their properties (Swierszcz, Skurski, & Simons, 2012). 

PORIM Series Purpose or characteristics 

1 Development of high yielding and 

dwarf palm 

2 Breeding for high unsaturated oil 

(indicated by high iodine value) 

3 Breeding for high lauric oil 

4 Breeding for high carotenoid content, 

E. oleifera 

5 Tenera with thin shell and high vitamin 

E 

6 Dura with bigger fruit size and high 

bunch index 

7 Very high bunch index 

8 Very high vitamin E content 

9 Bactris gasipaes 

10 Long bunch 

11 E. guineensis with high carotene 

content 

12 High content of oleic acid 

13 Low levels of lipase activity 
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Figure 2.2. (A) Fresh oil palm fruit bunch and (B) the female inflorescence (Adam et al., 

2005). 

 

 
 

Figure 2.3. Descriptions of oil palm fruit 
(http://www.palmoilprices.net/main.php?mode=tplmain&c=palmoil). 

by 16th WAA. Physiological changes that can be observed at this stage include the gradual 

hardening of the endosperm and endocarp. Subsequently, the endocarp become the hard 

shell and encloses the rigid white endosperm, also known as the kernel. Concurrently, 

mesocarp starts its oil deposition around the time when the oil deposition in endosperm nears 

its end, which is 15th WAA. The deposition process continues until the ripening of oil palm fruit 

occurs around 20th WAA. Due to slight differences in pollination time of the flower, fruits 

throughout the bunch do not mature concurrently. Primarily, fruits at the end of each spikelet 

ripen followed by those at the base of the bunch. The size and colour of the fruits within the 

bunch also vary, with those on the outside usually larger and deep orange in colour when ripe. 

The inner fruits are smaller and paler.  

Oil palm has economic value up to 20-25 years with an average annual oil production of 3.5-5 

tonnes per hectare. A tree bears about 8-12 fruit bunches weighing 15-25 kg per bunch each 

year. Each of these bunches can produce up to 3000 fruits (American Palm Oil Council, n.d.). 

(A) (B) 

Mesocarp 

Endocarp 
Exocarp 

Kernel 
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The oil palm fruit is the only commercial oil-producing plant that yields two different types of 

oil; palm oil from the mesocarps and palm kernel oil from the kernel. Through the refining, 

bleaching and deodorisation processes, crude palm oil is obtained from the mesocarp. The 

palm oil is generally orange or red in colour or the more commonly recognized bright golden 

oil. In nature, palm oil is partially solid. The fractionation of palm oil into liquid olein and solid 

stearin increased its usefulness in food applications. Olein is usually used as cooking or frying 

oil while stearin finds its many applications in solid fat formulations and food processing. 

Meanwhile, the palm kernel oil, extracted from the kernel, is used in specialty fats production 

for various food products and is also an important raw material for the oleochemicals industry. 

2.2 Palm oil value and sustainability 
Vegetable oils had a global production of 186.4 million tonnes in 2012 (Figure 2.4), thus 

cementing their position as a major agricultural commodity. Palm oil is amongst the 17 major 

vegetable oils and fats produced by oil palm, soybean, rapeseed, sunflower and other crops 

with a global production of 52 million tonnes (32%) in 2012. Palm oil was the most commonly 

consumed vegetable oils in 2012. In that year, the palm oil was consumed by around three 

billion people in 150 countries. India is by far the largest consumer of vegetable oils and fats, 

followed by China, European Union, the United States of America and Malaysia. The 

worldwide consumption of palm oil was anticipated to be at 52 million tonnes by the first 

quarter of 2013 (http://www.fas.usda.gov/).  

Malaysia produces 45% of the world’s palm oil, and is the second largest palm oil producer 

after Indonesia (American Palm Oil Council, n.d.). In 2013, Malaysia produced 19 million 

tonnes of crude palm oil, from slightly over 5 million hectares of plantations. Total exports of 

oil palm products, consisting of palm oil, palm kernel oil, palm kernel cake, oleochemicals, 

biodiesel and refined products, increased to 25.7 million tonnes in 2013, an increment of 

around 1.1 million tonnes from 2012. This has contributed to approximately MYR 61.36 billion 

(USD 17.18 billion) of Malaysia’s total export earnings in 2013. The oil palm industry 

contributed MYR 71.45 billion (USD 20.01 billion) or 14.1% more in total export revenues in 

2012 than 2013 from the export of palm oil and derived products. This was due to the lower 

export prices of all palm products (Division, n.d.). Accordingly, the oil palm industry became 

the largest contributor to external trade after electrical and electronic products as well as the 

most important foreign exchange earner for Malaysia (Malaysia, 2011, February 2). As the 

http://www.palmoilprices.net/main.php?mode=tplmain&c=palmoil
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Figure 2.4. Global production of vegetable oils and fats in 2012 (AAK Report 2012). 

second major producer and exporter of palm oil and its products, Malaysia has a crucial role 

in delivering the world’s oils and fats.  

The fatty acid composition of vegetable oils influences both their physical properties and 

nutritional characteristics. This fact and the huge market size for oil palm has generated 

substantial interest in altering plant fatty acid production for both food and non-food uses, 

such as a renewable industrial feedstock (Burton, Miller, Vick, Scarth, & Holbrook, 2004; 

Ohlrogge, 1994; Ohlrogge, Browse, & Somerville, 1991; Weselake et al., 2008). Recent 

initiatives to manipulate the quality and quantity of plant fatty acids have escalated due to 

growing concerns about generating sustainable agricultural output and novel strategies to 

make use of plants as a source of raw materials for industrial products, such as biodiesel 

(Murphy, 2005). Palm oil, which is predominantly oleic, palmitic and lauric acids, is considered 

a high quality raw material for biodiesel and cooking oil (Bamgboye & Hansen, 2008). The 

cetane index (used to substitute the cetane number of diesel fuel) is influenced by the fatty 

acid composition. A very strong positive relationship exists between the calculated cetane 

index of crude oil and oleic acid concentration (Duffield, Shapouri, Graboski, McCormick, & 

WIlson, 1998).  
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Previous studies have reported various approaches in investigating the regulation of lipid 

synthesis in oil crops. Quantitative trait loci associated with seed oil and fatty acid composition 

have been examined in important crops like Brassica napus (Burns et al., 2003) and the model 

plant Arabidopsis (Hobbs, Flintham, & Hills, 2004). In addition, comparison of wild-type with 

the low-lipid wrinkled 1 mutation of Arabidopsis using cDNA microarrays studied more than 

3500 genes to reveal the gene that may exert significant control (Ruuska, Girke, Benning, & 

Ohlrogge, 2002). A more comprehensive assessment of fatty acid biosynthesis regulation 

using metabolic control analysis has also been reported (Fell, 1992). Two oil crops, the olive 

and oil palm, (Ramli et al., 2002) had employed one of the approaches known as the top-down 

control analysis (Brand, 1996). Such experiments allow identification of a metabolic pathway 

that is more amenable to genetic modification and also generates in depth knowledge of steps 

that will exert significant control and may be worth genetically manipulated. 

Plant lipid metabolism has proven particularly amenable to modifications both by classical 

breeding approaches and more recently by genetic manipulations such as hairpin RNA-

mediated gene silencing (Liu, Singh, & Green, 2002a; Schultz & Ohlrogge, 2001; Thelen & 

Ohlrogge, 2002a; Voelker & Kinney, 2001). Selective breeding exploiting natural variants or 

induced mutations had been utilised to develop a range of improved oils in the major 

temperate oilseed crops. This has led to high-stearic soybean (Glycine max) (Graef, Miller, 

Fehr, & Hammond, 1985), high-stearic sunflowers (Helianthus annuus L.) (Osorio, Fernandez-

Martinez, Mancha, & Garces, 1995), high-oleic rapeseed (Brassica napus) (Auld, Heikkinen, 

Erickson, Sernyk, & Romero, 1992) and high-oleic peanut (Arachis hypogaea) (Norden, Gorbet, 

Knauft, & Young, 1987). The Malaysian Palm Oil Board has developed new breeding materials 

with high content of oleic acid through traditional breeding. The genetic engineering 

programme in the Malaysian Palm Oil Board has also focussed on engineering higher oleic acid 

content in oil palm at the expense of palmitic acid.  

Important developments have been made in the area of oil palm genetic engineering within 

the last 10 years. Nearly all the genes and promoters essential in fatty acid biosynthetic 

pathway modifications have been isolated and studied. A part of the gene encoding 

heteromeric acetyl-CoA carboxylase subunit biotin carboxylase, the enzyme that catalysed the 

initial committed step in lipid biosynthesis and is thought to be an important fatty acids flux-

controlling enzyme, has been cloned from oil palm fruit mesocarp (Budiani, Santoso, 

Aswidinnoor, & Suwanto, 2008; Wan Omar et al., 2008). β-ketoacyl ACP synthase II and acyl-
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ACP thioesterase are the other key candidates for genetic manipulation to generate high 

oleate and stearate palms. That strategy was to overexpress β-ketoacyl ACP synthase II, the 

enzyme that catalysed the addition of two carbons to palmitoyl-ACP (C16:0) to produce an 18-

carbons fatty acid. At the same time, an antisense strategy had been employed to inhibit the 

synthesis of palmitoyl-ACP thioesterase. Therefore, the production of fatty acids was 

channelled in favour of oleic acid at the expense of palmitic acid. Gene constructs containing 

mesocarp-specific promoter for oil palm transformation had been generated using full-length 

cDNA clones. It is also crucial to down-regulate oleoyl-CoA desaturase to prevent 

overproduction of oleic acid (C18:1) from stearic acid (C18:0) fatty acid. For that reason, the 

partial cDNA clone encoding the gene had been isolated (Shahwan, 2006). A full length cDNA 

clone for another key enzyme in fatty acid biosynthesis, the stearoyl-ACP desaturase had been 

isolated as well and its antisense construct was introduced into oil palm to increase its stearic 

acid composition (Akmar et al.; Shah, Rashid, & San, 2000). Although there have been other 

notable technical engineering successes (Liu et al., 2002a), food safety concerns, such as the 

antibiotic resistance markers used in the production of the original transgenic crops, has held 

up efforts to release transgenic oils to the market (Ohlrogge, Mhaske, Beisson, & Ruuska, 

2004).  

Industrially, oleic acid will be beneficial in generating chemical derivatives that can act as 

alternatives to petrochemical feedstock. The high melting point of the oleic acid will also 

enable palm oil to enter the liquid or salad oil market. The programme thus has the potential 

to change palm oil from a commodity oil to a high value oil with industrial applications in 

addition to food applications. Oleic acid profiles can also function as markers to assist in 

selective breeding programmes. Although traditional breeding offers one alternative, the 

more direct approach of manipulating the fatty acid composition through genetic 

manipulation, has been limited due to insufficient knowledge regarding the lipid metabolism 

regulation as a whole (Ohlrogge & Jaworski, 1997). An understanding of the biochemical 

factors and metabolic pathways regulating oleic acid composition is therefore necessary to 

exploit these opportunities.  

2.3 The origin of plant plastids 

Plastids are found in almost all plant cells, algal cells, several taxons of marine molluscs and at 

least one phylum of parasitic protists (Wise, 2006). Plastid family members (Figure 2.5) play 
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Figure 2.5. Types of plastid in plant and related studies (Andon et al., 2002; Baginsky, 
Siddique, & Gruissem, 2004; Balmer, Vensel, DuPont, Buchanan, & Hurkman, 2006; 
Bräutigam & Weber, 2009; Dupont, 2008; Ferro et al., 2010; Kleffmann et al., 2004; 
Kleffmann et al., 2007; Siddique, Grossmann, Gruissem, & Baginsky, 2006; von Zychlinski et 
al., 2005; Zybailov et al., 2008). 

critical roles in plant metabolism through processes such as photosynthesis, lipid and amino 

acid synthesis, starch and oil storage, fruit and flower coloration, and nitrogen and sulphur 

assimilation, as well as synthesis of secondary metabolites (van Wijk & Baginsky, 2011). Three  

evolutionary lines of plastids are known to exist in the glaucophytes (small group of freshwater 

microscopic algae), the red lineage and the green lineage (Keeling, 2004). The plastids of the 

Kingdom Plantae form the green lineage.  

Proplastids occur in meristematic tissue, in addition to embryonic tissues and cells in tissue 

culture and are the developmental precursors to all types of plastid (Pyke, 1999; Thomson & 

Whatley, 1980). In plants, differentiation of proplastids to their final forms depends on their 

environment and location. For instance, if the development of the meristematic or embryonic 

tissues continue in the dark or in extremely low light environment, plastid development will 

be arrested at etioplast stage (Domanskii et al., 2003; Harsanyi, Boddi, Boka, & Gaborjanyi, 

2005). Etioplasts, or chloroplasts that have not been subjected to light, are normally found in 

the shoot tissues. However, etioplasts will proliferate, expand, become green and develop 

into chloroplasts if these shoot tissues are exposed to light during their development (Krishna, 

Joshi, Vani, & Mohanty, 1999; Ljubičić, Wrischer, & Ljubešić, 1998). Meanwhile, leucoplasts 

are non-pigmented plastids, of which amyloplasts (starch storing), elaioplasts (oil and lipid 

storing) and proteinoplasts (protein storing) are generally known (Negm, Cornel, & Plaxton, 

Ferro et al., 2010 
Kleffmann et al., 2004 
Zybailov et al., 2008 

Kleffmann et al., 2007 
von Zychlinski et al., 2008 

Siddique et al., 2006 

Baginsky et al., 2004 
Brautigam & Weber, 2009 

Andon et al., 2002 
Balmer et al., 2006 
Dupont, 2008 
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1995). The structure and function of amyloplasts and elaioplasts have been extensively 

reported but there is limited literature on proteinoplasts. Proplastids in root tissues typically 

develop into colourless starch-containing amyloplast (James, Denyer, & Myers, 2003; Yu, He 

Mu, Mu-Forster, & Wasserman, 1998). Oil containing leucoplasts are known as elaioplasts and 

numerous oil droplets that contain proteins such as plastoglobule-associated proteins (PAP) 

dominate the inner structure of elaioplasts (Hernández-Pinzón, Ross, Barnes, Damant, & 

Murphy, 1999; Wu et al., 1997). Oleosomes are discrete non-plastid organelles derived from 

the rough endoplasmic reticulum that store oil (Yatsu, Jacks, & Hensarling, 1971). Light and 

electron microscope observations by Thomson and Whatley (Thomson & Whatley, 1980) 

indicated that proteinoplasts are plastids that contain mainly large and visible protein 

inclusions. Nonetheless, there is no conclusive evidence that all proteinoplasts function only 

as protein storage reservoirs. Chromoplasts are the brightly coloured plastids in fruits, flowers, 

leaves and even several roots. They contain a substantial amount of red, yellow or orange 

carotenoids (Juneau, Le Lay, Böddi, Samson, & Popovic, 2002). In general, chromoplasts are 

assumed to be involved in attracting biotic agents (vectors) including the fruit dispensing 

animals. Chromoplasts usually develop from chloroplasts in ripened fruit (Bouvier, Backhaus, 

& Camara, 1998) but they can also develop directly from proplastids in other tissues (Ljubesic, 

1972).  

This study is interested in the chromoplasts of the oil palm fruit as fatty acids are synthesised 

in the chromoplast stroma before they are exported to the endoplasmic reticulum as acyl-CoA 

esters (Bouvier et al., 1998). The chloroplasts and chromoplasts are defined collectively as 

plastids in this thesis. 

2.4 Plant fatty acid biosynthesis 

The biochemical reactions involved in fatty acid biosynthesis by chloroplasts have been 

extensively studied. The pathway of fatty acid biosynthesis (Figure 2.6) is essentially identical 

in all plants, and the first reaction of fatty acid biosynthesis occurs in the chloroplast stroma 

(Awai et al., 2001; Benning, 2008; Benning, 2009a; Harwood, 1996; Heinz & Roughan, 1983; 

Joyard & Douce, 1977; Joyard et al., 2010; Ohlrogge & Browse, 1995; Ohlrogge & Jaworski, 

1997; Roughan & Slack, 1982; Slabas et al., 1994; Slabas & Fawcett, 1992; Stumpf, 1969). All 

carbon atoms in fatty acids synthesised in chloroplast originate from acetyl-CoA. Pyruvate is 
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Figure 2.6. Fatty acid biosynthesis in plant. ACP, acyl-carrier protein; KAS, ketoacyl ACP 
synthase; 3PGA, 3-phosphoglycerate; IEM and OEM, inner and outer envelope membrane 
(Joyard et al., 2010). 

generally considered to be the precursor for acetyl-CoA via the C2→C3 pathway (Bao, Focke, 

Pollard, & Ohlrogge, 2000; Givan, 1983; Joyard et al., 2010). 16- and 18-carbon fatty acids are 

formed by addition of two carbon units derived from malonyl-CoA, which is synthesised from 

acetyl-coA and carbon dioxide by acetyl-coA carboxylase (ACCase), in an ATP-dependent 

manner. Subsequently, a complex of discrete enzymes, known as fatty acid synthase (FAS) 

catalyses the essential carbon chain extension processes.  

The production of fatty acids needs the presence of acyl-carrier protein for all catalytic 

activities. ACCase activity and protein levels have been shown to correlate with the amount 

of oil synthesised in developing seeds (Kang, Ridout, Morgan, & Rawsthorne, 1994; Roesler, 

Savage, Shintani, Shorrosh, & Ohlrogge, 1996; Turnham & Northcote, 1983). Two different 

forms of ACCase are present in all plants: the heteromeric/prokaryotic form (650-700 kDa) 

and a homodimeric/multifunctional form (250 kDa) (Cronan Jr & Waldrop, 2002; Harwood, 

1996; Sasaki & Nagano, 2004b). However, only the heteromeric/prokaryotic form has been 

reported to exist in the plastids (Harwood, 1996) and catalyse fatty acid biosynthesis. The 

plastid ACCase consists of three distinct nuclear-encoded subunits: biotin carboxyl-carrier 

protein (BCCP), biotin carboxylase (BC) and the alpha (α) subunit of carboxyltransferase and 

one chloroplast-encoded subunit: β subunit of carboxyltransferase.  
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The primary condensation steps involve two enzymes. Firstly, a malonyl-CoA:ACP transacylase 

(32.4 kDa) catalyses the transacylation of malonate from malonyl-CoA to activated holo-ACP, 

resulting in generation of malonyl-ACP. ACP enters the fatty acid biosynthetic pathway at this 

point. Then β-ketoacyl-ACP synthase (KAS) III (46 kDa) (Jones et al., 2003) starts the chain 

lengthening through condensation of acetyl-CoA with acetoacetyl-ACP. Malonyl-CoA:ACP 

transacylase and KAS III are restricted to the stroma (Peltier et al., 2006; Sambanthamurthi et 

al., 1999; Zybailov et al., 2008). 

Acetoacetyl-ACP undergoes a sequential reduction-dehydration-reduction process to yield 

4:0-ACP, the primary substrate for KAS I (45 kDa) (Mekhedov, Cahoon, & Ohlrogge, 2001). The 

system then undergoes seven or eight elongation cycles to produce 16- or 18-carbon fatty 

acids, respectively. Beisson and co-workers (Beisson et al., 2003) proposed that there are five 

isoforms of KAS. However, only one isoform of KAS I was identified in chloroplasts (Froehlich 

et al., 2003; Zybailov et al., 2008). KAS I is accountable for the condensation in each elongation 

cycle from 4:0-ACP up to 16:0-ACP (palmitoyl-ACP). KAS II (57.6 kDa) (Carlsson, LaBrie, Kinney, 

Von Wettstein-Knowles, & Browse, 2002) is involved in the last elongation steps from 14:0-

ACP and 16:0-ACP to 18:0-ACP (stearoyl-ACP). Both KAS I and KAS II have been identified in 

chloroplasts (Peltier et al., 2006); (Zybailov et al., 2008).  

Plastid fatty acid biosynthesis produces saturated acyl-ACPs with carbon length up to 18 

carbon atoms (16:0, 18:0). In spite of this, in most plant tissues, more than 75% of the fatty 

acids are unsaturated (Ohlrogge & Browse, 1995). A stearoyl-ACP desaturase (SAD) (45.4 kDa) 

(Shanklin & Somerville, 1991) introduces Δ9-desaturation in plants to form the unsaturated 

oleic acid (18:1) (Shanklin & Cahoon, 1998). SAD is required for unsaturated fatty acid 

synthesis and is thought to regulate the synthesis of unsaturated fatty acids. However, 

Sambanthamurthi and colleagues (Sambanthamurthi et al., 1999) have described in their 

studies that a more active KAS II was able to convert palmitoly-ACP to stearoyl-ACP and 

subsequently generate oleoyl-ACP, an unsaturated fatty acid. They also found that 

unsaturated fatty acids levels were not elevated by increasing the activity of SAD. The 

Arabidopsis genome encodes seven plastidial SAD (Beisson et al., 2003; Kachroo et al., 2007) 

but only two proteins, namely the SS12 (or FAB2) and DES5, were identified in chloroplasts 

(Peltier et al., 2006; Zybailov et al., 2008). 
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After synthesis in the chloroplast via the fatty acid biosynthetic pathway, acyl-ACPs could 

either form glycerolipids in the plastid through the Kornberg-Pricer route or be translocated 

from the plastid as fatty acids in the acyl-ACP form. These fatty acids supply the extraplastidial 

compartments for membrane synthesis (phospholipids), storage (triacylglycerol) lipids and 

wax (Joyard et al., 2010; Rawsthorne, 2002). Acyl-ACP thioesterase hydrolyses acyl-ACPs to 

release free fatty acids and regenerate ACP (Ohlrogge & Browse, 1995). This step signifies the 

conclusion of a fatty acid biosynthesis cycle. 

2.5 Mass spectrometry and proteomics 

The term proteomics was introduced by Wilkins and colleagues (Wilkins, Pasquali, et al., 

1996). They described it as a requirement in the repertoire of ‘omics technologies’ for 

identifying and understanding proteins and their functions in a cell, tissue, organ and 

organism. They had also introduced the term ‘proteome’ as the ‘total protein complement of 

a ‘genome’ (Wilkins, Pasquali, et al., 1996). In other words, the term ‘proteome’ was coined 

in analogy to the term ‘genome,’ the entire entity of genes of a particular organism (Dreger, 

2003). Proteome analyses have become more prevalent than they were a decade ago. 

Previously, most of the work reported depends on a fundamental technique known as two-

dimensional gel electrophoresis (O'Farrell, 1975) to separate proteins. Nonetheless, in the 

past few years, numerous techniques have been developed and enhanced for proteomic 

work. These techniques have been used to investigate proteins in various organisms as well 

as proteomes expressed in cells, tissues, organelles or sub-cellular fractions. These techniques 

complement the use of two-dimensional gel electrophoresis rather than to substitute the 

technique (Bachi & Bonaldi, 2008; Lilley & Dupree, 2006; Mann, 2009; Oeljeklaus, Meyer, & 

Warscheid, 2009; Schulze & Usadel, 2010; Thelen & Peck, 2007; Wilm, 2009).  

The proteome is much more dynamic than the genome and is strictly regulated by an array of 

mechanisms. It constantly changes depending on cell types, cycles, stimuli and other tissue or 

organ specific factors. There are a multitude of regulatory processes taking place 

simultaneously in a cell proteome. These include synthesis and degradation of proteins, 

protein transport, post-translation modification, exocytosis and endocytosis. The cell requires 

exquisite regulation of proteins to successfully orchestrate all these processes. Prominent 

mechanisms of protein regulation include post-translational modification by other proteins or 

functional groups, protein cleavage and thus activation of additional function, localisation of 

proteins in different cell compartments and translocation between them. All of these 
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contribute to the final concentration, location and activity of each protein. Altered behaviour 

of proteins due to regulation, or the absence of such regulation can result in a myriad of 

pathological conditions (Jensen, 2004; Kwon, Choi, Choi, Ahn, & Park, 2006; Larsen, Trelle, 

Thingholm, & Jensen, 2006; Mann & Jensen, 2003; Seo & Lee, 2004; Ytterberg & Jensen, 2010).  

Characterisation of the proteome of several organisms has revealed massive amounts of 

information pertaining to cell development processes (de Godoy et al., 2008). Subsequent 

elucidation of the protein complexes involved in those processes has revealed that various 

protein-protein interaction mechanisms were involved (de Godoy et al., 2008; Gingras, 

Aebersold, & Raught, 2005; Selbach & Mann, 2006; Sharma et al., 2009; Wessels et al., 2009). 

These studies revealed that cell development processes are much more distinct, dynamic and 

intricate than had been initially thought. This hugely dynamic regulation presents 

technological challenges for the proteomic researcher, and proteomic experiments need to 

be interpreted in the context of the exact cell conditions. 

Up until 25 years ago, Edman degradation (Edman, 1964) was the only recognised technique 

to reliably determine the amino acid sequence of a protein. However, one of the drawbacks 

is that this method required a free N-terminal end while the majority of proteins had their N-

terminus blocked by an acetyl or acyl groups. Mass spectrometry is an analytical chemistry 

technique to measure the mass-to-charge ratio (m/z) of a charged peptide. The introduction 

of mass spectrometry-based proteomics empowered the shift from analysis of single proteins 

to analysing the entire population of expressed proteins in a cell, or the proteome (Wilkins, 

Sanchez, et al., 1996).  

Mass spectrometry-based proteomics is normally segregated into ‘top-down’ and ‘bottom-up’ 

or shotgun proteomics (Kelleher, Lin, et al., 1999; Yates, Ruse, & Nakorchevsky, 2009) (Figure 

2.7). Some ambiguities about the usage of these two terms exist, but the most common usage 

describes top-down as methods that use masses of intact proteins and their peptide 

fragments for successful identification. Complementary fragmentation reactions, such as 

electron capture dissociation (Zubarev, Kelleher, & McLafferty, 1998) and electron transfer 

dissociation (Coon et al., 2005; Syka, Coon, Schroeder, Shabanowitz, & Hunt, 2004) are ideal 

for top-down proteomics approach since these methods give a more thorough protein 

backbone sequencing and retain labile post-translational modifications (Kelleher, Zubarev, et 

al., 1999). Top-down data are generally analysed utilising expressed sequence tags (Cargile, 

McLuckey, & Stephenson, 2001; Mortz et al., 1996) or the de novo sequencing technique
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Figure 2.7. The different approaches used in mass spectrometric analysis (Kellie et al., 2010). 

(Horn, Zubarev, & McLafferty, 2000). While the advantages of top-down proteomics such as  

higher sequence coverage of target proteins (Kelleher, Lin, et al., 1999), better  

characterization of post-translational modifications (Siuti & Kelleher, 2007; Zabrouskov et al., 

2005) and improved reliability of protein quantification are irrefutable (Du, Parks, Sohn, 

Kwast, & Kelleher, 2006; Pesavento, Mizzen, & Kelleher, 2006; Waanders, Hanke, & Mann, 

2007); there is no efficient method to fragment large proteins available. Therefore, the 

capacity of the top-down approach has been restricted to the analysis of single proteins or 

simple protein mixtures (Yates et al., 2009). However, in the last decade, there have been 

some attempts to use this approach for studying complex mixtures (Bunger, Cargile, Ngunjiri, 

Bundy, & Stephenson, 2008; Sharma et al., 2007). 

Bottom-up proteomics is comparable to shotgun sequencing where intact deoxyribonucleic 

acid (DNA) is fragmented into smaller nucleotide fragments and sequenced. The full DNA 

sequence is then determined in silico by combining the sequencing information. Likewise, a 

routine bottom-up proteomic procedure involves digestion of a single to a few proteins into 

peptides and analysis of these peptides with mass spectrometry, routinely for characterisation 

of their amino acid sequences. Shotgun proteomics utilises the bottom-up technique to 

analyse complex mixture of peptides with mass spectrometry after separation using high 

performance liquid chromatography (HPLC). Separated fractions are eluted directly into a 

mass spectrometer, for example a quadruple-time-of-flight or an ion trap system that is 
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capable of tandem mass spectrometric analysis in an automated mode. Most bottom-up 

applications require tandem data acquisitions in which fragmentations of peptides are 

induced using collision-activated dissociation (Lee, Tan, & Chung, 2010) or also known as 

collision-induced dissociation (Yates et al., 2009). The complexity of the peptide mixtures 

largely dictates the ionisation techniques used to produce peptide ions. Matrix-assisted laser 

desorption ionisation (MALDI) alone is suitable for less complicated peptide mixtures; 

whereas HPLC coupled with MALDI or electrospray ionisation-based mass spectrometry 

system are often ideal for complex peptide mixtures. Eventually, several steps of peptide ion 

fragmentations generate the tandem mass spectrometric data in the form of mass to charge 

ratios that can be deconvoluted by robust bioinformatics software. The most commonly used 

approach for tandem protein identifications is by matching the tandem mass spectrometric 

data to the available sequence databases (Eng, McCormack, & Yates III, 1994; Perkins, Pappin, 

Creasy, & Cottrell, 1999). The peptide fragment ions generated can be used to match to a 

particular database of predicted fragmented masses for the peptide sequences of the same 

or similar organisms. 

Large scale bottom-up or shotgun proteomics essentially started with the introduction of 

multidimensional protein identification technology (MudPIT) (Link et al., 1999; Washburn, 

Wolters, & Yates III, 2001; Wolters, Washburn, & Yates III, 2001). In MudPIT, a complex 

peptide mixture is loaded into a microcapillary or nano column with packing materials such as 

reversed phase and strong cation exchange. This microcapillary column is positioned in line 

with a high pressure liquid chromatography and a tandem mass spectrometry system 

(Fournier, Gilmore, Martin-Brown, & Washburn, 2007). Two areas in which the MudPIT had 

led to significant improvements over two-dimensional gel electrophoresis approaches are the 

detection and identification of membrane proteins and of low abundance proteins (Washburn 

et al., 2001). The success of the MudPIT approach for the large scale analysis of the yeast 

(Washburn et al., 2001) and rice proteomes (Koller et al., 2002) inspired the development of 

numerous coupled two-dimensional separations and mass spectrometry systems (Fournier et 

al., 2007). 

2.5.1 Proteomics: The technologies and complications with plant samples 

A typical proteomics workflow (Figure 2.8) involves protein extraction, separation and 

quantitation of peptides, and protein identification with mass spectrometry. The proteome of 

a cell or tissue at any given time is extremely complicated and diverse. Various approaches 
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have been applied to investigate a subset of proteins but never the whole proteome due to 

the complexity of the proteins and its wide dynamic range. Protein and peptide separation 

essentially encompasses two complementary approaches; gel-based and non-gel based (or 

gel-free). They vary in terms of peptide extraction, separation and detection. At the end, each 

of these approaches only covers specific protein subgroups but not the entire proteome. The 

gel-based approach is the cornerstone of proteomic analysis as mentioned earlier. Gel 

electrophoresis is a powerful technique to separate complex protein mixtures to yield 

qualitative and quantitative high resolution snapshots of intact proteins (two-dimensional) 

and polypeptides (one-dimensional), resulting in a good overview of protein isoforms variety 

and post-translation modifications.  

The limitations of the gel-based approach, however, include the inability of the gel technique 

to resolve hydrophobic proteins or proteins with extreme sizes and isoelectric points. Thus, 

mass spectrometric analysis of these proteins is often not achievable unless specific 

techniques are employed. Non-gel based approaches have been developed mainly because of 

the need to reduce technical variation for high-throughput workflow that cannot be achieved 

using the gel electrophoresis techniques. In the gel-free approach, liquid chromatography is 

coupled to electrospray ionization (tandem mass spectrometry was used to separate peptide 

mixtures either using only reversed-phase column or with combination of different columns 

(as in MudPIT). Datasets of acquired tandem mass spectra were then used for protein 

database searches using a search engine such as Mascot.  

One of the typical challenges in plant proteomics is the low protein concentration specially in 

circumstances where the amount of tissues are limited, as cell wall and vacuole make up most 

of the cell mass. Only 1-2% of the total cell volume make up the cytosol (Carpentier et al., 

2008). Specialised procedures are essential to induce plant cell wall disruption to release the 

proteins. In addition, plant extracts also contain numerous non-proteinaceous compounds 

such as polyphenols, pigments, polysaccharides, nucleic acids and lipid. Several major crops 

had been reported to contain high amounts of these interfering compounds. For instance, 

oxidative enzymes (polyphenol oxidase), phenolic compounds, latex and carbohydrates are 

abundant in banana, Musa spp. and stalk tissues (Amalraj et al., 2010; Gooding, Bird, & 

Robinson, 2001; Wuyts, De Waele, & Swennen, 2006). These contaminants are co-purified 

with the precipitated proteins, rendering them difficult to solubilise. Solubilisation of proteins 
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Figure 2.8. Typical proteomics analysis strategies. 

is decisive in order to resolve them for further downstream analysis using techniques such as 

Western blot and mass spectrometry. Exhaustive protocols to remove contaminants during 

sample preparation have been described (Chatterjee, Gupta, Bhar, & Das, 2012; Gómez-Vidal, 

Salinas, Tena, & Lopez-Llorca, 2009; Saravanan & Rose, 2004).  

Plant tissues also have distinctive subcellular components. This has led to the emergence of 

plant organelle proteomics in the modern proteomic workflow (Agrawal et al., 2011; Lilley & 

Dupree, 2007). Pre-isolation of various subcellular organelles by differential centrifugation is 

a robust approach to investigate cell or tissue sub-proteomes. This approach had been 

employed in our study to enrich the chromoplasts from other plant organelles such as 

mitochondria.  

The existence of a high dynamic range of protein abundances in plant tissues confers 

additional complications to the protein analyses. For example, 40% of the total protein 

content of green tissues consists of ribulose-1,5-bisphosphate carboxylase oxygenase or 

RuBisCo (McCabe et al., 2001) while storage proteins are the most abundant proteins in seeds 

(Carpentier et al., 2008). The presence of those highly abundant proteins complicates the 

detection of low abundance proteins by means of protein electrophoresis and mass 

spectrometry. Normally, these low abundance proteins, such as the regulatory proteins are 

the proteins that we are interested in (Jensen, 2004). Various fractionation techniques have 

Electrophoresis  

Individual protein 
digests  

Protein mixtures  

Peptide 
  

LC separations  

MALDI MS/MS  

ESI MS/MS  

Database search 
and protein 
identification  

http://www.google.co.nz/url?sa=i&rct=j&q=palm&source=images&cd=&cad=rja&docid=6fI2fW9Z8k5DmM&tbnid=p9KNtcfXiQJlsM:&ved=0CAUQjRw&url=http://digginsservices.com/palm_care.html&ei=2O0zUemqF-6KmwWF1IHoCA&bvm=bv.43148975,d.aGc&psig=AFQjCNFLAv6w8KHekrKJ6d7QC3rhumEwbg&ust=1362443929217294
http://www.google.co.nz/url?sa=i&rct=j&q=palm&source=images&cd=&cad=rja&docid=6fI2fW9Z8k5DmM&tbnid=p9KNtcfXiQJlsM:&ved=0CAUQjRw&url=http://digginsservices.com/palm_care.html&ei=2O0zUemqF-6KmwWF1IHoCA&bvm=bv.43148975,d.aGc&psig=AFQjCNFLAv6w8KHekrKJ6d7QC3rhumEwbg&ust=1362443929217294
http://www.google.co.nz/url?sa=i&rct=j&q=animal&source=images&cd=&cad=rja&docid=hwfbddR_eZ3wkM&tbnid=NYRQ2TrYseLvZM:&ved=0CAUQjRw&url=http://www.englishexercises.org/makeagame/viewgame.asp?id=5171&ei=IO4zUdnCHNGWmQXQpYDIBQ&bvm=bv.43148975,d.aGc&psig=AFQjCNEJ8-WujU7u43pU6QIY1MZ5_1V0Iw&ust=1362444176216199
http://www.google.co.nz/url?sa=i&rct=j&q=animal&source=images&cd=&cad=rja&docid=hwfbddR_eZ3wkM&tbnid=NYRQ2TrYseLvZM:&ved=0CAUQjRw&url=http://www.englishexercises.org/makeagame/viewgame.asp?id=5171&ei=IO4zUdnCHNGWmQXQpYDIBQ&bvm=bv.43148975,d.aGc&psig=AFQjCNEJ8-WujU7u43pU6QIY1MZ5_1V0Iw&ust=1362444176216199
http://www.google.co.nz/url?sa=i&rct=j&q=human&source=images&cd=&cad=rja&docid=Gmp3NbjCtOJgfM&tbnid=OPrwD5LAhUDedM:&ved=0CAUQjRw&url=http://srialls.blogspot.com/2012/04/human-quick-facts.html&ei=ke4zUfaOIcTPkAXI3oGIDQ&bvm=bv.43148975,d.aGc&psig=AFQjCNG4nZAiptZOh9AAYctjbUfu1uSaDA&ust=1362444270990468
http://www.google.co.nz/url?sa=i&rct=j&q=human&source=images&cd=&cad=rja&docid=Gmp3NbjCtOJgfM&tbnid=OPrwD5LAhUDedM:&ved=0CAUQjRw&url=http://srialls.blogspot.com/2012/04/human-quick-facts.html&ei=ke4zUfaOIcTPkAXI3oGIDQ&bvm=bv.43148975,d.aGc&psig=AFQjCNG4nZAiptZOh9AAYctjbUfu1uSaDA&ust=1362444270990468
http://www.google.co.nz/url?sa=i&rct=j&q=maldi&source=images&cd=&cad=rja&docid=OADB24XQCaJ0qM&tbnid=aff3zlplGCPdfM:&ved=0CAUQjRw&url=http://www.giga.ulg.ac.be/jcms/cdu_15169/maldi-tof/tof-bruker-ultraflex-ii-tof/tof-april-2005&ei=7-4zUcy1OeXymAWmxoGIBA&bvm=bv.43148975,d.aGc&psig=AFQjCNGGGBUyW49_RDGBIrDb6lCvspbl3g&ust=1362444366273706
http://www.google.co.nz/url?sa=i&rct=j&q=maldi&source=images&cd=&cad=rja&docid=OADB24XQCaJ0qM&tbnid=aff3zlplGCPdfM:&ved=0CAUQjRw&url=http://www.giga.ulg.ac.be/jcms/cdu_15169/maldi-tof/tof-bruker-ultraflex-ii-tof/tof-april-2005&ei=7-4zUcy1OeXymAWmxoGIBA&bvm=bv.43148975,d.aGc&psig=AFQjCNGGGBUyW49_RDGBIrDb6lCvspbl3g&ust=1362444366273706
http://www.google.co.nz/url?sa=i&rct=j&q=database+searching&source=images&cd=&cad=rja&docid=sLb91oQpPsX2jM&tbnid=oFu_0sWLO4bghM:&ved=0CAUQjRw&url=http://blogs.lib.ucdavis.edu/hsl/category/health-sciences-libraries-news/&ei=BvAzUdWPLIPPmgW1toHABg&bvm=bv.43148975,d.aGc&psig=AFQjCNGXq61Fr4lQsgQQAA9w7HfjBqt0_Q&ust=1362444670258267
http://www.google.co.nz/url?sa=i&rct=j&q=database+searching&source=images&cd=&cad=rja&docid=sLb91oQpPsX2jM&tbnid=oFu_0sWLO4bghM:&ved=0CAUQjRw&url=http://blogs.lib.ucdavis.edu/hsl/category/health-sciences-libraries-news/&ei=BvAzUdWPLIPPmgW1toHABg&bvm=bv.43148975,d.aGc&psig=AFQjCNGXq61Fr4lQsgQQAA9w7HfjBqt0_Q&ust=1362444670258267
http://www.google.co.nz/url?sa=i&rct=j&q=protein+identification&source=images&cd=&cad=rja&docid=8wkCYEzCHzujkM&tbnid=MUvnZVWQ111V4M:&ved=0CAUQjRw&url=http://www.biochemj.org/bj/444/bj4440261add.htm&ei=hPAzUYPmCvDumAWeyIGwDQ&bvm=bv.43148975,d.aGc&psig=AFQjCNFo-TUsg-3EvAjSW7THTCUm5WZRWA&ust=1362444726885492
http://www.google.co.nz/url?sa=i&rct=j&q=protein+identification&source=images&cd=&cad=rja&docid=8wkCYEzCHzujkM&tbnid=MUvnZVWQ111V4M:&ved=0CAUQjRw&url=http://www.biochemj.org/bj/444/bj4440261add.htm&ei=hPAzUYPmCvDumAWeyIGwDQ&bvm=bv.43148975,d.aGc&psig=AFQjCNFo-TUsg-3EvAjSW7THTCUm5WZRWA&ust=1362444726885492


23 
 

been developed to deal with this wide dynamic range, which can be up to 12 orders of 

magnitude (Corthals, Wasinger, Hochstrasser, & Sanchez, 2000). They are generally divided 

into electrophoresis- or chromatography-based fractionations to separate a subset of proteins 

(van Wijk & Baginsky, 2011). For instance, isoelectric focussing that exploits charge differences 

of proteins has been utilised to fractionate proteins to capture the less abundant proteins 

(Hey, Posch, Cohen, Liu, & Harbers, 2008; Horth, Miller, Preckel, & Wenz, 2006). Other 

approaches are based on the principle of affinity chromatography such as ATP and metal 

affinity (Bayer, Stael, Csaszar, & Teige, 2011), hydroxypapatite affinity- (Mamone, Picariello, 

Ferranti, & Addeo, 2010) and immobilised metal affinity- chromatography (Aryal, Krochko, & 

Ross, 2011). The latter technique is extremely useful in the enrichment of phosphorylated 

proteins in phosphoproteomics studies. 

2.5.2 Quantitation in proteomics and its application in plants 

Early developments in quantitative proteomics were propelled by studies on yeast and 

mammalian cell lines (Schulze & Usadel, 2010). Quantitative information is needed to 

elucidate changes in protein expression. Staining of proteins on gels with specific stains such 

as Coomassie is routine to determine their intensities but this approach is tedious and error-

prone. The intensities of the liquid chromatography peaks detected using an ultraviolet-visible 

spectrophotometric detector are usually not proportionate to the amount of proteins in a 

given sample. The reason is that different types of protein absorb different ultraviolet 

wavelengths which give the chromatograms. For examples, aromatic amino acids (tryptophan, 

tyrosine and cysteine) absorb ultraviolet wavelength at 280 nm (less accurate) while peptide 

backbone absorbs ultraviolet wavelength at 215-235 nm (more accurate, relatively). Thus, 

stable isotope approaches were introduced into mass spectrometry-based proteomics to 

allow a more accurate and reliable determination of relative variation in abundance of 

peptides. There are several strategies used today in quantitative proteomics and all of these 

methods have their advantages and disadvantages. Investigations using a quantitative 

proteome analysis approach rely either on a non-mass spectrometry-based quantitation 

technique (Carpentier et al., 2008) such as Difference Gel Electrophoresis (DIGE) or a mass 

spectrometry-based quantitation technique (Remmerie et al., 2011).  

Determination of protein ratios using gel-based methods has the potential for error because 

of gel-to-gel inconsistencies of the separated protein profiles. DIGE addresses these difficulties 

and that explains why this technique is the most commonly employed in non-mass 



24 
 

spectrometry-based proteomic quantitation, as well as quantitative analysis in plant 

proteomes. In DIGE, up to two different protein samples and a reference standard (containing 

equal amounts of both protein samples) are labelled with fluorescent dyes such as CyDyes 

(Cy3, Cy5, Cy2). The two protein samples are then pooled prior to separation with gel 

electrophoresis (Timms & Cramer, 2008; Unlu, Morgan, & Minden, 1997). Protein ratios 

between the two different samples are calculated by measuring the fluorescence for each 

protein spot and thus revealing the quantitative data for protein isoforms or differentially 

regulated proteins (Bindschedler & Cramer, 2011). DIGE has been commonly used in plant 

proteomics studies. For example, in investigations of elicitation effects in plant symbiotes and 

plant pathogen interactions (Amey et al., 2008; Chivasa et al., 2006; Gerber, Laukens, De 

Vijlder, Witters, & Dubery, 2008; Schenkluhn, Hohnjec, Niehaus, Schmitz, & Colditz, 2010) as 

well as studies on environmental stresses (Casati, Zhang, Burlingame, & Walbot, 2005; Renaut, 

Hausman, & Wisniewski, 2006; Zhou, Sauvé, & Thannhauser, 2009). Gomez and co-workers 

(Gómez, López, Pintos, Camafeita, & Bueno, 2009) also demonstrated that DIGE coupled to 

MALDI-TOF analysis could be used to identify differentially expressed proteins in organisms 

lacking assembled genomes. Pro-Q Diamond, a fluorescent dye that binds to the phosphate 

moiety of phosphorylated proteins has also been successfully employed to specifically label 

and quantify phosphorylated protein isoforms in plant (Agrawal & Thelen, 2009; Agrawal & 

Thelen, 2006; Barsan et al., 2010b; Chitteti & Peng, 2007; Gerber, Laukens, Witters, & Dubery, 

2006; Steinberg et al., 2003). 

The mass spectrometry-based quantitative methods include both label free quantitation 

(Niittylä, Fuglsang, Palmgren, Frommer, & Schulze, 2007; Stulemeijer, Joosten, & Jensen, 

2009) and chemical isotope labelling. Mass spectrometry signals from different liquid 

chromatography runs are known to be inconsistent due to technical variations for instance, 

and therefore generate significant error in quantitative proteomic studies. Despite that fact, 

label-free methods involving liquid chromatography is becoming increasingly prevalent as it 

circumvents the need for costly protein labelling and is generally suitable for all types of 

organisms as well as most workflows (Bindschedler & Cramer, 2011; Kieffer, Dommes, 

Hoffmann, Hausman, & Renaut, 2008). Label-free quantitation compares the 

chromatographic peak areas of extracted ions. Extracted ion chromatograms exploit the 

additional separation dimensions for higher confidence in the quantitative signals instead of 

simply comparing the mass spectrometry signals between different analytical liquid 
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chromatography runs. In principal, peptide areas are aligned according to their mass to charge 

ratios (m/z) and elution time tags in several liquid chromatography runs. The chromatographic 

peaks are then integrated with peak integration software such as Xalign (Zhang, Asara, 

Adamec, Ouzzani, & Elmagarmid, 2005) and Msalign (Palmblad, Mills, Bindschedler, & Cramer, 

2007). In order to be able to do that, the liquid chromatography runs must be reproducible, 

which sometimes can be a challenging task. Reiland and co-workers used this approach to 

determine the dynamic regulation of protein phosphorylation in Arabidopsis (Reiland et al., 

2009). 

Spectral counting is an alternative approach that is practical, label-free and measures protein 

abundance in a semi-quantitative manner (Lilley & Dupree, 2007). Conversely, this method 

does not integrate chromatographic peaks nor align the retention time of peptides (Abdallah, 

Dumas-Gaudot, Renaut, & Sergeant, 2012) although it agrees with Extracted Ion 

Chromatogram peak area measurements (Old et al., 2005). Instead, statistical tools such as G-

test and t-test are used to count the total number of tandem mass spectra identified for all 

the peptides from a particular protein to generate the quantitation data (Bindschedler & 

Cramer, 2011). While this method is reproducible, it requires many biological and technical 

replicates for each sample analysed. This can be difficult when several experimental 

conditions and/or time points are analysed. This approach had been successfully employed to 

quantify proteins in several studies in plant systems (Friso, Majeran, Huang, Sun, & van Wijk, 

2010; Gammulla, Pascovici, Atwell, & Haynes, 2010; Lee et al., 2009; Zybailov et al., 2009). 

Usage of differential labelling techniques could circumvent these limitations in label-free 

quantitation engaging liquid chromatography. These approaches rely on the assumption that 

both labelled and unlabelled peptides exhibit the same chromatographic and ionisation 

properties but are distinguishable by a mass-shift signature (Abdallah et al., 2012). Specific 

isotope labelled amino acids (13C or 15N) (Benschop et al., 2007) in the metabolic protein 

labelling technique known as Stable Isotope Labelling with Amino Acids in Cell Cultures 

(SILAC), and chemical labels such as in Isobaric tags for Relative and Absolute Quantitation 

(iTRAQ) have been used to quantitate changes in plant proteomes (Jones, Bennett, Mansfield, 

& Grant, 2006; Nuhse, Bottrill, Jones, & Peck, 2007). Labelling methods used in relative 

quantitation proteomics studies are classed into two categories depending on whether the 

labels are tagged directly to the peptides or not. Considering that SILAC uses labelling of plant 
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cells or whole plants, this approach is not suitable for quantitative proteomic studies using the 

current sample materials, which are oil palm mesocarps.  

Isotope-Coded Affinity Tags (ICAT) (Figure 2.9) was one of the first differential isotope labelling 

containing three elements: a specific chemical reactive group which bound specifically to 

cysteinyl residues, an isotope mass tag with light or heavy isotopes and a biotin tag for affinity 

purification (Gygi et al., 1999). Peptide pairs with 8 kDa mass-shifts are detected in mass 

spectrometry scans and their ion intensities are compared for relative quantitation. As tagged 

cysteine-containing peptides are purified by affinity chromatography, the sample complexity 

is reduced. However, the obvious disadvantage is that only cysteine-containing peptides are 

captured by the affinity column. Thus, this impaired the identification and quantitation of 

proteins with more than one significant peptide as about one in seven proteins do not contain 

cysteine (Abdallah et al., 2012). A study by Majeran and co-workers had revealed that non-

MS-based (2-DE), ICAT and label-free quantitative techniques are complementary (Majeran, 

Cai, Sun, & van Wijk, 2005). ICAT had been utilised to determine the localisation of  Arabidopsis 

thaliana organelle proteins (Dunkley, Dupree, Watson, & Lilley, 2004). In addition, since ICAT 

labels specifically to thiol groups, this method has been widely used to study the redox-status 

of proteins in plants (Hagglund et al., 2010; Miles et al., 2009).  

Isobaric Tags for Relative and Absolute Quantitation (iTRAQ) was developed at first for peptide 

level labelling (Abdallah et al., 2012). The different between iTRAQ and ICAT is that in ICAT, 

tagged proteins from different samples are pooled before trypsinisation to eliminate vial-to-

vial variations. In iTRAQ, the chemical tags label the peptides instead. The iTRAQ isobaric tags 

have slight differences in their molecular structures (Figure 2.10) and thus generate various 

fragment ions (also known as reporter ions) in tandem mass spectrometry scans. The overall 

molecule mass is kept constant at 145 Da (iTRAQ-4plex) and 304 Da (iTRAQ-8plex) by the 

presence of a mass balance group (carbonyl).  

iTRAQ reagents label the peptide N-terminals and the amino groups of lysine side chains. The 

advantage of the iTRAQ approach is that it allows comparison of four (iTRAQ-4plex) to eight 

samples (iTRAQ-8plex) in a single experiment. Relative quantitation is ascertained after 

peptide fragmentations in MS/MS scans by measuring the intensity of the reporter ions for 

the peptide in the mass region of m/z 114-118 and m/z 114-121, for 4plex and 8plex, 

respectively (Abdallah et al., 2012; Bindschedler & Cramer, 2011). The iTRAQ method is able
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Figure 2.9. General strategies for isotope labelling methods in quantitative proteomics 
(Bindschedler & Cramer, 2011). 

 

 

Figure 2.10. Structure of iTRAQ tag (Abdallah et al., 2012) 
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to give accurate quantitation spanning two orders of magnitude for low-complexity samples. 

Peptide cofragmentation happens when two or more closely spaced peptides in MS/MS are 

selected instead of the single peptide (Ow et al., 2009; Perkel, 2009). Peptide cofragmentation 

effect is reduced with a high accuracy mass spectrometer. 

iTRAQ reagents have been successfully employed in several quantitative plant proteomics 

studies. Plant responses towards pathogens have been investigated using this approach (Fan 

et al., 2011; Marsh et al., 2010; Melo-Braga et al., 2012; Mohammadi, Anoop, Gleddie, & 

Harris, 2011) as well as the signalling role played by trimeric G proteins in plants (Kaffarnik, 

Jones, Rathjen, & Peck, 2009; Zhao, Stanley, Zhang, & Assmann, 2010). Other studies utilised 

iTRAQ to investigate the proteomes of grape berries (Lucker, Laszczak, Smith, & Lund, 2009) 

and oil palm mesocarp at different stages of ripening (Loei et al., 2013). Quantitative shotgun 

proteomics using iTRAQ was also employed to characterise differential phosphorylation of 

Arabidopsis in response to microbial elicitation (Jones et al., 2006). 

2.6 Pitfalls of plant proteomics without a reference plant 
Model plants are commonly used in investigating the physiological properties of cells, tissues, 

organelles or whole organisms. Simplicity of study design, biological relevance and economics 

have an important impact on the plant models employed (Carpentier et al., 2008). The green 

plants or Viridiplantae have only a diminutive number of completed and publicly available 

plant genomes (Figure 2.11). Presently, there are over 300,000 known species of land plants 

alone but the model plants only represent a handful of species and families. The existing plant  

genomes are the classical Arabidopsis thaliana (thale cress), economically important crops 

such as Glycine max (soybean), Medicago truncatula (barrel medic), Populus trichocarpa 

(poplar), Vitis vinifera (wine grape), Oryza sativa (rice), Sorghum bicolor (sorghum) and Zea 

mays (maize) (www.ncbi.nlm.nih.gov/genomes/PLANTS/PlantList.html), as well as other 

plants like the Brachypodium distachyon (purple false brome) (Vogel et al., 2010). However, 

none of these plant genomes are completely annotated (Remmerie et al., 2011). Moreover, 

only Oryza sativa, Sorghum bicolor, Zea mays and Brachypodium distachyon are 

monocotyledons while the rest are dicotyledons. Given that oil palm species used in this study 

does not have a standard reference plant and is a monocotyledon, from the technical outlook, 

those plants mentioned earlier are unlikely to be suitable as a model organism in the study. 

Encouragingly, a comprehensive genome sequencing project led by the Malaysian Palm Oil 
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Figure 2.11. Accessible plant genomic databases in UNIPROT. Contributions of different plant 
species to the entries in UNIPROT database are shown in percentage (Remmerie et al., 2011). 

Board and St. Louis based Orion Genomics, USA for the two key oil palm species, E. oleifera 

and E. guineensis was completed in 2010. However, to apply these species to investigate 

various basic biological processes including the intended post-translational modifications 

study in fatty acid biosynthesis is still not feasible. The annotations of the oil palm genome 

data is on-going (Low, personal communication, 1 March, 2012). Nevertheless, 

Uthaipaisanwong and co-workers successfully characterised the  oil palm chloroplast genome 

sequence (Uthaipaisanwong et al., 2012) and there are 822 partial and full sequences of E. 

guineensis proteins currently available in NCBI protein database (as of 4th March, 2013). This 

information can support our oil palm organelle proteomics study in the chromoplasts. 

Without the genomic sequences, efforts to identify and characterise protein with mass 

spectrometry efforts are significantly ameliorated with the availability of expressed sequence 

tag (EST) sequences (Yang et al., 2010). A large collection of 19,243 Elaeis guineensis ESTs had 

been assembled to give 10,258 unique sequences (Ting et al., 2010) while there are 40,809 

ESTs deposited in the NCBI database. The EST databases are indispensable as those sequence 

tags can be translated into the six reading frames to identify proteins (homology based) using 

appropriate software. Nonetheless, the size and quality of EST databases have profound 

effects on the outcome of the protein identification. The usual limitations of EST databases 

are that more often than not, most proteins are either not or poorly denoted by short EST 

sequences that only partly cover the whole protein sequence. Bases misread, insertion or 

deletion errors during sequencing of ESTs can lead to high error rates (about 0.3%) in EST 
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sequences, thus reducing the accuracy of peptide matching (Hoff, 2009; Pedretti et al., 2001). 

Successful protein identifications with only peptide mass fingerprints employing EST 

databases are not feasible due to the limitations with EST databases. In addition, EST 

sequences are rarely sufficient in providing significant protein coverage and a satisfactory 

number of matching peptides (Rowley et al., 2000).  

Reliance on complete plant genomes can be lessened as annotating the biological function of 

proteins can be facilitated by a homology based approach. According to Carpentier, Remmerie 

and their respective colleagues (Carpentier et al., 2008); (Remmerie et al., 2011), there is a 

requirement for cross-species analysis. When using other species for protein identification 

with mass spectrometric data, orthologue sequences are preferable as they are more likely to 

share similar functions (Gabaldón, 2007). Homologous sequences originate from a sequence 

in a common ancestor. The sequences are considered different or orthologues when they 

diverged by a speciation (inter-species) event. Paralogous sequences are sequences that came 

from a common ancestor and are present in the same genome. However, duplication event 

(intra-species) transpired in the sequences to produce paralogous sequences which may or 

may not share similar functions (Fitch, 1970).  

Database dependent- or independent strategies can be used to execute confident cross-

species protein identification. In the former approach, search engines such as Mascot are used 

to search peptide sequence data that contains precursor ion mass and a list of product ion 

masses against a taxonomically confined database (Perkins et al., 1999). Only a massive 

amount of peptide masses generated can guarantee its success as this increases the 

probability of matching several peptides to the homologous protein. This has been 

demonstrated for pea chloroplast proteins (Peltier et al., 2000) and maize proteins (Chang et 

al., 2000). In a database independent strategy, fragmentation spectra are utilized to obtain de 

novo peptide sequences. MSBLAST, which uses a combination of BLAST search and peptide de 

novo sequences, had been adapted for tandem mass spectrometry data to increase the 

accuracy and hit rate of protein identification (Shevchenko et al., 2001). Analysing modified 

(in peptide sequences) proteins without completed and annotated genomes has proved to be 

a daunting effort. The identification of modified peptides and their modification sites is 

essentially based on single amino acid identifications and becomes impossible when the 

peptide sequence is not available in any plant database. Application of a de novo sequencing 

strategy is able to facilitate the identification of modified peptides and may even help to locate 



31 
 

the modification site, albeit with requirements for high quality tandem mass spectrometry 

spectra and certain preferred fragmentation techniques such as electron capture dissociation 

or electron transfer dissociation (Carpentier et al., 2008; Remmerie et al., 2011). 

Our work is focussed on proteins located in the chromoplast as this organelle is reported to 

have a major role in fatty acid biosynthesis (Awai et al., 2001; Benning, 2008; Benning, 2009a; 

Harwood, 1996; Heinz & Roughan, 1983; Joyard & Douce, 1977; Joyard et al., 2010; Ohlrogge 

& Browse, 1995; Ohlrogge & Jaworski, 1997; Roughan & Slack, 1982; Slabas et al., 1994; Slabas 

& Fawcett, 1992; Stumpf, 1969). While the annotated oil palm genome is yet to materialise, 

which hampers efforts to identify these proteins, there are several databases in which the 

identities of the proteins could be ascertained. PPDB, launched in 2004, is a Plant Proteome 

DataBase for Arabidopsis thaliana and maize (Zea mays) (Sun et al., 2009). PPDB was 

developed to accommodate plant plastids, but over time, the database expanded to cover the 

entire proteomes of those two plants. As a result, in November 2007, the database was 

renamed to Plant PDB. The database consists of cell type-specific proteomes (maize) or 

specific sub-organelle proteomes such as chloroplasts, thylakoids and nucleoids as well as 

whole leaf proteome (maize and A. thaliana). More than 1,500 A. thaliana proteins, 

prominently from the plastids, have been assigned with subcellular locations. 

Information on protein localisation also helps in understanding the function of proteins and 

their biological inter-relationships. The SubCellular Proteomic Database (SUBA) provides the 

hypothetical localisation of many proteins that were identified in various sub-plastidial 

compartments in Arabidopsis thaliana (Heazlewood, Verboom, Tonti-Filippini, Small, & Millar, 

2007). AT_CHLORO is another comprehensive chloroplast proteome database that focusses 

on the localisation of proteins in the stroma, thylakoids and envelope membrane (Ferro et al., 

2010). The database contains a comprehensive repertoire of 1323 proteins that were 

identified by 10,654 unique peptide sequences. These proteins were present in highly purified 

chloroplasts and their sub-fractions from Arabidopsis thaliana leaves. These databases are 

valuable as resources for protein identifications even though the current study focusses on 

the mesocarp plastids and not the leaf. Combined with the limited genome sequences of other 

plants, they help in understanding the regulation of chromoplastic proteins and their 

respective roles in fatty acid biosynthesis involving post-translational modifications. 
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2.7 Post-translational modifications (PTMs) 

Almost all proteins are modified in some way after synthesis. Many physiological responses 

result from differential protein modifications rather than changes in protein expression levels. 

These modifications (Figure 2.12) do not create novel proteins but rather a new ‘protein 

species’ since the translated protein sequence remains unaltered (Jungblut et al., 1996; 

Schluter, Apweiler, Holzhutter, & Jungblut, 2009). The modifications occur through covalent 

binding of functional groups such as phosphates, sulphates, carbohydrates and lipids (Bond, 

Row, & Dudley, 2011). This event, which is known as PTM, is one of the key mechanisms that 

changes the properties of a protein in cells and greatly enhances the structural diversity and 

functionality of proteins. This is feasible because PTMs provide a larger repertoire of chemical 

properties than is possible using the 20 amino acid specified by the genetic code. Protein PTMs 

could result in alterations in activity, localisation, production, interactions with other proteins 

and half-life (Bienvenut et al., 2011; Endler & Baginsky, 2011; Mann & Jensen, 2003). 

Modifications are often permanent, but some modifications, such as phosphorylation, are 

reversible and can be used to switch protein activity ‘on’ and ‘off’ in response to intracellular 

and extracellular signals. For example, in a signal transduction process, kinase cascades are 

activated or inactivated through reversible addition and removal of phosphate groups. The 

esterification of an amino acid side chain through the addition of a phosphate group 

introduces a strong negative charge, which can subsequently modify the conformation of the 

protein and alter its stability, activity and potential to interact with other molecules. Genomic 

sequencing has revealed that protein kinases are probably coded by 2-3% of all eukaryotic 

genes (Venter et al., 2001). PTM is therefore a dynamic phenomenon with a central role in 

many biological processes. Generally, in regulatory pathways, the status of serine, threonine 

and tyrosine is regulated by protein kinases and phosphatases (Adams, 2001; Johnson & 

Hunter, 2005). Interference with the activities of the kinases and phosphatases indirectly 

disrupts these regulatory pathways and may cause disease (Cohen, 2001; Lim, 2005).  

The complexity of the proteome is increased significantly by PTMs, particularly in eukaryotes 

where many proteins exist as a heterogeneous mixture of alternative modified forms. Ideally, 

it would be possible to catalogue the proteome systematically and quantitatively in terms of 

the types of PTMs that are present, and specify the modified sites in each case. However, such
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Figure 2.12. Modification-specific proteomes and their subcellular localizations. The sub-
cellular compartments are the mitochondria (M), chloroplast (Chl), peroxisomes, (Px), plasma 
membrane (PM), endoplasmic reticulum (ER), Golgi apparatus, (G), vacuole, and nucleus 
(Ytterberg & Jensen, 2010). 

attempts are complicated by the sheer diversity involved and the transient nature of certain 

modifications. Every protein could potentially be modified in hundreds of different ways, and 

might contain multiple modification target sites allowing different forms of modification to 

take place either singly or in combinations. Thus, it remains the case that most PTMs are 

discovered unintentionally when individual proteins, complexes, or pathways are studied. It is 

impossible to predict modifications accurately from the genome sequence. Even when a 

definitive modification motif is present; it is not necessarily the case that such or any 

modification will happen.  

Until recent years, the analysis of PTMs at the proteomic level has received limited 

consideration due to the lack of appropriate techniques (Bond et al., 2011). However, 

improved separation methods can resolve different post-translational variants, and gels can 

be stained with reagents that recognize particular types of modified proteins. Mass 

spectrometry is at present the method of choice to characterise chemical additions and 

substitutions. Mass spectrometry analysis can be used to identify peptides carrying chemical 

adducts and can deduce their positions in the protein sequences.  
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Signalling proteins and regulatory molecules, which are the least abundant proteins in the cell, 

are often regulated by phosphorylation. Since the stoichiometry of phosphorylation is usually 

low, the modified target protein may be present in limiting amounts and may be difficult to 

detect and quantify. Ultimately, even if adequate amounts of a particular variant are available, 

a large quantity of the sample is required for the full characterization of modifications 

compared to the relatively simple matter of protein identification. Currently, affinity-based 

techniques are employed to improve the chances of detecting their targets by isolating sub-

proteomes with particular types of modification (Reinders & Sickmann, 2005).  

Investigations into PTMs and differentially expressed proteins are essential to comprehend 

cellular responses towards changes in environmental conditions (Vissers et al., 2009). It is clear 

that plants induce a complex array of pathways and protein phosphorylation cascades during 

biotic and abiotic stresses (Emes, 2009). There are over 200 possible PTMs (Jensen, 2006; 

O'Donovan, Apweiler, & Bairoch, 2001; Prabakaran, Lippens, Steen, & Gunawardena, 2012). 

A recent survey of the SwissProt database showed that a total of 87,308 experimentally 

detected amino acid residues modifications have been reported (Figure 2.13) (Khoury, 

Baliban, & Floudas, 2011). Phosphorylation is the most common and extensively studied PTM 

using mass spectrometry approaches (Asara, Christofk, Freimark, & Cantley, 2008; Beausoleil 

et al., 2004; Bond et al., 2011; Jensen, 2004; Kwon et al., 2006; Larsen et al., 2006; Lu, Ruse, 

Xu, Park, & Yates III, 2007; Mann & Jensen, 2003; Seo & Lee, 2004; Ytterberg & Jensen, 2010). 

The justification is that phosphorylation is one of the primary mechanisms in cellular process 

regulation (Graves & Krebs, 1999).  

A mass spectrometry-based approach facilitates both absolute and relative quantitation of 

peptides and their PTMs. Internal standard peptides are employed for absolute quantitation 

for certain proteins and their defined PTMs (Gerber, Rush, Stemman, Kirschner, & Gygi, 2003). 

Relative quantitation is performed with either the peptide intensity profiling (PIP) or stable 

isotope labelling (SIL) using stable isotope-encoded chemical precursor molecules or alkylating 

reagents (Aebersold & Mann, 2003; Mann & Jensen, 2003).  
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Figure 2.13. Experimental post-translational modifications curated from SwissProt database 
(Khoury et al., 2011). 

2.7.1 Tracking the phosphopeptides 

A wide array of approaches can be used to scrutinise phosphorylation changes in cell or 

tissues. Radiolabelling is a classical technique that uses radiolabeled 32P-orthophosphate to 

detect phosphoproteins. Radioactivity can be very inconvenient, harmful and detrimental in 

the long term, both to the users and samples (Bendt et al., 2003; Su, Hutchison, & Giddings, 

2007). Alternatively, after separation by two-dimensional gel electrophoresis (O'Farrell, 1975), 

phosphoproteins can be directly visualised on the gel using phosphospecific fluorescent stains 

and phosphospecific antibodies, which are non-radioactive (Barsan et al., 2010b; Boudsocq, 

Droillard, Barbier-Brygoo, & Laurière, 2007; Chitteti & Peng, 2007; Gerber et al., 2006; Patton, 

2002). Immuno- or Western blot is the most common method used to assess the 

phosphorylation state of a protein using phosphospecific antibodies (for phosphorylated 

tyrosine, serine and threonine) transferred from a one-dimensional or two-dimensional gel 

electrophoresis (Bockus & Scofield, 2009; Kaufmann, Bailey, & Fussenegger, 2001). In direct 

staining, phosphospecific stains such as a fluorescent phosphosensor dye, Pro-Q Diamond 

(Invitrogen) bind directly to the phosphate moiety of phosphoproteins (Chitteti & Peng, 2007; 
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Schulenberg, Aggeler, Beechem, Capaldi, & Patton, 2003; Steinberg et al., 2003). The 

advantages of this stain are in its compatibility with other staining methods and the ensuing 

mass spectrometry analysis. This is particularly crucial when trypsinisations are performed 

directly on the gel pieces. A similar phospho-specific staining kit called Phos-tag had been used 

previously in which a Zn2+ ion chelator with high selectivity was coupled to a fluorophore 

(Nakanishi et al., 2007). The suitability of these stains in phosphoproteome analysis had been 

described in previous reports. Agrawal and Thelen (Agrawal & Thelen, 2006) identified 70 non-

redundant phosphoproteins which belonged to the major functional classes from a Pro-Q 

Diamond stained two-dimensional gel containing rapeseed (Brassica napus) proteins. 

However, while phosphoproteins could be detected, the stains would not indicate the 

phospho-sites, which is vital in the characterisation of phosphorylation events. Special 

techniques are used to investigate membrane phosphoproteins due to the limitations in two-

dimensional gel electrophoresis technique. Integral membrane proteins tend to aggregate 

during the isoelectric focusing migration and thus, it is not possible to separate them in the 

second dimension of two-dimensional gel electrophoresis. 

The low abundance of phosphorylated proteins in cellular extracts and their relatively low 

degree of phosphorylation pose major challenges (Aebersold & Goodlett, 2001; Mann et al., 

2002; Simpson, 2003). In mass spectrometric analysis, non-phosphorylated peptides often 

compete with the phosphorylated peptides for ionisation. As a result, many phosphoprotein 

peaks are difficult to detect, either because they have low signal to noise ratio or they are not 

ionised at all. Therefore, to tackle this obstacle, enrichment techniques, which are commonly 

applied prior to separation using liquid chromatography, have been used. Immobilized metal 

affinity chromatography (IMAC) is one of the methods that are used to enrich 

phosphopeptides from complex mixtures based on affinity of positively charged metal ions 

(Fe3+, Al3+, Ga3+ or Co2+) towards phosphate moieties. Iminodiacetate and nitrilotriacetate are 

the prototypical metal-binding ligands used in IMAC stationary phases (Dunn, Reid, & 

Bruening, 2010; Grimsrud et al., 2010; Sun, Chiu, & He, 2005; Thingholm, Jensen, & Larsen, 

2009). The Fe(III)-NTA complex is perhaps the most frequently utilised to enrich 

phosphopeptides although the use of other metal-ligand complexes had also been reported 

(Nuhse, Stensballe, Jensen, & Peck, 2003; Posewitz & Tempst, 1999). Most recently, Zr(IV)-

phosphonate immobilized on various stationary phases had also been employed for 

phosphopeptide enrichment by several groups (Dong, Zhou, Wu, Ye, & Zou, 2007; Feng et al., 
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2007; Wei et al., 2008; Yu et al., 2007; Zhou et al., 2006). The phosphopeptides can be eluted 

by different salt- and/or pH gradients prior to mass spectrometry analysis. Nonetheless, 

several challenges arise when using IMAC. Leaching of ions from the column during 

enrichment steps, non-specific binding of peptides that contain the acidic amino acids 

glutamic and aspartic acid and higher specificity for multiply phosphorylated peptides are 

amongst those complications (Dunn et al., 2010).  

Metal oxide affinity chromatography (MOAC) is another valuable technique to isolate 

phosphopeptides from complex mixtures with high selectivity and recoveries (Dunn et al., 

2010; Heintz et al., 2004; Hsu et al., 2009; Schmidt, Csaszar, Ammerer, & Mechtler, 2008). The 

metal oxides are often more stable at high temperatures and broad pH range (Nawrocki, 

Dunlap, McCormick, & Carr, 2004). Titanium oxide (TiO2) is the most popular metal oxide resin 

used as a selective affinity support to capture phosphorylated peptides (Ikeguchi & Nakamura, 

1997; Ikeguchi & Nakamura, 2000; Larsen, Thingholm, Jensen, Roepstorff, & Jørgensen, 2005; 

Pinkse, Uitto, Hilhorst, Ooms, & Heck, 2004; Sano & Nakamura, 2004a, 2004b).  At acidic pH, 

TiO2 has a positively charged surface (Kosmulski, 2002) that permits very selective enrichment 

of phosphopeptides from complex samples by their affinities (phosphate groups) toward 

porous TiO2 particles (Titansphere) (Thingholm, Larsen, Ingrell, Kassem, & Jensen, 2008). 

Water-soluble phosphates are desorbed under alkaline conditions. Strong cation exchange 

and titanium dioxide-type columns have both been used in phosphopeptide enrichment and 

stable-isotope labelling by amino acids in cell culture (SILAC) for quantitation to study 

phosphorylation changes (Olsen et al., 2006). 

Technical variations and bias in quantitative analyses are often reported to occur after 

phosphopeptide enrichment (Bindschedler & Cramer, 2011). Nonetheless, successful 

identification and quantitation has been reported using a combination of enrichment 

strategies and label-free quantitation as in the case of Arabidopsis phosphopeptides from a 

plasma membrane fraction following sucrose treatment (Niittylä et al., 2007) and a 

hypersensitive response study in tomato plants (Stulemeijer et al., 2009). In addition, iTRAQ 

labelling has been successfully used to quantify phosphorylated peptides in Arabidopsis cells 

as their defence response to Pseudomonas syringae induction (elicidators) (Jones et al., 2006). 

As a rule of thumb, it is more effective to perform chemical labelling prior to any enrichment 

strategies due to the fact that enrichment steps confer technical bias in quantitative analyses 

(Bindschedler & Cramer, 2011).  
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Hydrophilic interaction chromatography can also be used in the pre-separation stage of 

peptides prior to phosphopeptide enrichment such as IMAC or TiO2 affinity purifications, in 

addition to MudPIT LC. HILIC separates polar biomolecules by the binding of the polar 

biomolecules to the neutral, hydrophilic stationary phase in hydrophilic interaction 

chromatography through hydrogen bonds. These bonds can be broken by reducing the organic 

composition in the mobile phase and the peptides eluted based on their polarities (McNulty 

& Annan, 2008). 

2.7.2 Bioinformatics in post-translational modification analysis 

Automated prediction of post-translational modification (PTM) sites is one of the main 

interest areas for bioinformatics investigations. In vivo and in vitro determinations of modified 

proteins and their PTM sites are not only time-consuming and tedious, but often restricted to 

the availability and optimisation of enzymatic reactions in order to determine the type of 

modifications and sites (Blom, Sicheritz-Pontén, Gupta, Gammeltoft, & Brunak, 2004; Xue et 

al., 2005; Zanzoni et al., 2011). Tandem mass spectrometry spectra offer the most informative 

fingerprints of modified peptides. The spectra encode not only peptide sequences, but also 

the masses and sequence positions of modifications. For these reasons, computational 

techniques have been employed to manage the massive amounts of fragmentation spectra, 

modified protein determination and individual PTM site identification with high accuracy as 

well as efficiency (Yoo, Ho, Zhou, & Zomaya, 2008). The current PTM prediction tools basically 

are classed into four major groups based on their types of classification schemes (Basu & 

Plewczynski, 2010).  

The first group comprises general PTM related resources such as PROSITE (Sigrist et al., 2002) 

which predicts types of PTMs based on their sequence pattern consensus. Several signature 

recognition methods are combined to probe a query protein sequence against observed 

protein signatures. The Scansite tool predicts kinase-specific and signal transduction relevant 

motifs (Yaffe et al., 2001). Conserved sequence motifs represent imprints of important 

biochemical properties or biological functions of those proteins.  

The second group consists of various neural network prediction tools. These tools covers 

phosphorylation related prediction servers such as NetPhos (Blom, Gammeltoft, & Brunak, 

1999) and NetPhosK (Blom et al., 2004; Hjerrild et al., 2004). NetPhosK is the most popular 

since the server allows a preferred ‘threshold’ value to be indicated during prediction.  



39 
 

The third group of the prediction tools encompasses different support vector machine based 

prediction techniques. These methods are constructed on the basis that adjacent residues to 

the phospho-sites represent the main determinant for kinase specificity (Zanzoni et al., 2011; 

Zhou et al., 1993). For instant, PredPhospho (Kim, Lee, Oh, Kimm, & Koh, 2004) aims to predict 

phosphorylation sites and the type of kinase that acts at each site. AutoMotifServer 

(Plewczynski, Tkacz, Wyrwicz, & Rychlewski, 2005) also predicts PTM sites in protein 

sequences using support vector machine classifier with both linear and polynomial kernels. 

KinasePhos 2.0 is the web server to identify protein kinase-specific phosphorylation sites 

based on amino acid residues sequences and coupling patterns (Wong et al., 2007). PHOSIDA 

is also capable of predicting phosphosites (Gnad, Gunawardena, & Mann, 2011).  

The final group consists of remaining types of machine learning based PTM prediction tools. 

PPSP adopted Bayesian Decision Theory to predict kinase-specific phosphorylation sites and 

has been reported to produced precise prediction of the probable phosphorylation sites for 

about 70 protein kinase groups (Basu & Plewczynski, 2010). Ascore, a probability-based score 

that was developed by Beausoleil and his colleagues, used the presence and intensities of site-

determining ions in tandem mass spectrometry spectra to calculate the probability of exact 

phosphorylation site localisation (Beausoleil, Villen, Gerber, Rush, & Gygi, 2006). Ascore re-

evaluates the results from search engine on phosphopeptide and designates a confidence 

value to each of the phosphorylated site. PhosphoScore is another algorithm which acts 

similarly to Ascore. PhosphoScore considers both the match quality and the normalized 

intensity of observed spectra peaks compared to a theoretical spectrum. PhosphoScore was 

employed successfully in the studies done by Ruttenberg and colleagues (Ruttenberg, Pisitkun, 

Knepper, & Hoffert, 2008). PTMap is a sequence alignment software used to identify protein 

PTMs and polymorphisms (Chen, Chen, Cobb, & Zhao, 2009). The selection of peak, 

adjustment of inaccurate mass shifts and precise localisation of PTM sites are the features 

that improved searching speed and accuracy of PTMap. This software is the first algorithm 

that contains a scoring system which concentrates on unmatched peaks to eliminate false 

positives, thus increasing the accuracy and sensitivity of the PTM identifications. 

There are numerous database which provide information on PTMs. dbPTM database (Lee et 

al., 2006) gathers various information such as the catalytic sites, protein domains and protein 

variations, in addition to these software or tools. These databases include a majority of 

experimentally validated PTM sites from SwissProt and Phospho.ELM. Phospho.ELM 
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comprises over 40,000 amino acid serine, threonine and tyrosine non-redundant 

phosphorylation sites from vertebrates, Drosophila melanogaster and Caenorhabditis elegans 

(Dinkel et al., 2011). Similarly, PHOSIDA (www.phosida.com) comprises more than 80,000 

phosphorylated, N-glycosylated or acetylated sites from nine different species (Gnad et al., 

2011). For each of the phosphosites, PHOSIDA lists matching kinase motifs, predicts secondary 

structures, conservation pattern, and its dynamic regulation upon stimulus. Unfortunately, 

none of these species are plants. PhosphoSitePlus (www.phosphosite.org) has 130,000 non-

redundant modification sites, primarily on phosphorylation, ubiquitinylation and acetylation 

(Hornbeck et al., 2012). 

2.8 Research outline 
This thesis aims to develop robust methodologies specifically to extract chromoplast proteins 

from the oil palm fruit mesocarp and isolate the enzymes catalysing fatty acid biosynthesis 

from those extracted proteins. As mentioned in the literature review, in addition to interfering 

compounds, plant proteins are usually present in low abundance, especially when they are 

regulatory enzymes. These challenges required the enhancement of general organelle protein 

extraction approaches, which will be described in Chapter 3.  

Subsequently, different gel-based and non-gel based proteomic techniques will be used to 

characterise and quantitate these fatty acid biosynthetic enzymes in terms of their expression 

(Chapter 4) and phosphorylation states (Chapter 5). Since regulatory enzymes are generally 

present in low abundance, complementary bottom-up proteomic techniques will be applied 

to capture the trypsin-digested proteins prior to mass spectrometric analyses. Quantitative 

analysis of protein expression level based on two different varieties of oil palm (low and high 

oleic acid varieties) will help to determine the role of the individual fatty acid biosynthetic 

enzymes as well as other metabolic enzymes in regulating the different level of oleic acid in 

these oil palm varieties.  

Post-translational modified proteins are likely to present in low abundance, thus conferring 

another complication. Therefore, sensitive mass spectrometry-based techniques such as 

neutral loss-triggered MS3 and Selected Reaction Monitoring will be used to reliably identify 

phosphorylated peptides through detecting the loss of the phosphate group. Determination 

of the phosphorylation state of fatty acid biosynthetic enzymes will provide better insight into 

the role of phosphorylation in the regulation mechanism of plant fatty acid biosynthesis.
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3.0 Optimisation of oil palm chromoplast isolation and protein 
extraction procedures for proteomic analyses 

3.1  Introduction  
Plant fatty acid biosynthesis involves a series of pathways that require tight regulation 

orchestrated by different proteins. Lipid biosynthesis has been shown to occur in plastids 

(Awai et al., 2001; Benning, 2008, 2009b; Harwood, 1996; Heinz & Roughan, 1983; Joyard & 

Douce, 1977; Joyard et al., 2010; Ohlrogge & Browse, 1995; Ohlrogge & Jaworski, 1997; 

Roughan & Slack, 1982; Slabas et al., 1994; Slabas & Fawcett, 1992; Stumpf, 1969), both in 

photosynthetic plastids or leaf chloroplasts and non-photosynthetic plastids such as flower 

and fruit chromoplasts. The chromoplast has an important role in flower and fruit colouration 

as well as in promoting plant reproduction through pollination (Juneau et al., 2002). In this 

study, the oil palm mesocarp chromoplast plays an important role in harbouring the fatty acid 

biosynthetic factory apart from other essential metabolic pathways (Lopez-Juez & Pyke, 2005; 

Neuhaus & Emes, 2000).  

Proteomics has been an effective way to study protein composition and cellular functions of 

subcellular organelles such as chromoplast. Several proteomic studies on fruit chromoplast 

have been published (Barsan et al., 2010a; Hansen & Chiu, 2005; Siddique et al., 2006; Tetlow, 

Bowsher, & Emes, 2003; Zeng et al., 2011a). Superior quality and effective recovery of proteins 

is crucial for a thorough proteomic analysis. However, compared to other organisms, plants 

impart unique problems when it comes to protein extraction for proteome studies. Plant 

tissues possess lower amounts of proteins and extraction of these proteins is frequently 

hampered by the presence of interfering compounds, such as cell walls, polysaccharides, lipids 

and phenolics. A vast proportion of plant tissue consists of water which provides the turgor 

pressure for cell integrity (Saravanan & Rose, 2004) (Figure 3.1). Unfortunately, these 

characteristics lead to the lower protein amount per cell mass. The cell wall is an important 

plant tissue component (Figure 3.2) (Xie, Pan, Liu, Ye, & Huo, 2007) which is difficult to disrupt 

by simple mechanical force. It also hampers protein recovery as membrane proteins tend to 

bind non-specifically to its polysaccharide matrices. Secondary metabolites, such as phenolic 

compounds, lipids and polysaccharides, are produced in higher amounts in plant tissues. 
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Figure 3.1. The plant cell (Agrawal et al., 2011). 

 

 
Figure 3.2. Components of plant cell wall (Source: 

http://micro.magnet.fsu.edu/cells/plants/cellwall.html). 

 

These metabolites play vital roles in the makeup of plant structure and defence systems. 

Unfortunately, they interfere with the protein extraction, resulting in 25% less protein 

extracted (Carpentier et al., 2005). In addition, these secondary metabolites also affect protein 

separation and focussing (based on isoelectric point of protein) using gel electrophoresis and 

isoelectric focusing techniques. For instance, carbohydrate caused the protein sample to be 

highly viscous and block the gel pores. Carbohydrate also prolonged the protein focusing time 

in isoelectric focusing. Resolution of extracted proteins with gel electrophoresis can be very 
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poor due to interference of lipid contaminant. The Elaeis guineensis Jacques var. Tenera used 

in this study, is known for its high oil content (approximately 85% of the dry mass) (Dussert et 

al., 2013). Thus, the protein extraction strategy is a decisive issue to address when embarking 

on a plant-based proteomic analysis. 

Working on a specific organelle reduces the complexity of the protein compositions compared 

to the proteome of whole cells or tissues. This approach allows analysis of biological and 

functional aspects of the organelle, in this case, the fatty acid biosynthesis regulation. In this 

study, two approaches were used to reduce sample complexity. Initial differential 

centrifugation (low speed and short centrifugation time) enriched the chromoplast by 

selectively removing other organelles (Agrawal et al., 2011). In the second stage, density 

gradient centrifugation was employed. In principle, organelle concentrates at a specific 

gradient generated where the organelle density is equal to the density of the surrounding 

medium. This phase is also known as the isopycnic point during centrifugation. Nonetheless, 

the same organelle would have different rates of sedimentation in the density-gradient 

centrifugation as the sedimentation rate depends very much on the organelle content, lipid 

to protein ratio, size and shape (Araùjo, Hube, & Stasyk, 2008). Numerous protocols to isolate 

other organelles or cell compartments have been reported and summarised are in Figure 3.3. 

‘Every species of plant is a law unto itself’ (Gleason, 1926) means there is no general 

methodology for protein extraction that can be applied to all plant tissues. To our knowledge, 

this is the first report of organelle protein extraction from E. guineensis var. Tenera. Several 

studies involving plant oil seeds and olive leaf showed that additional steps are often needed 

in preparing these samples for protein extraction (Wang et al., 2003; Wang, Vignani, Scali, & 

Cresti, 2006; Wang et al., 2004). Earlier studies indicated that oil palm mesocarps were 

recalcitrant to typical protein extraction approaches (Lau, personal communication, 1 July 

2012). Protein extraction from the chromoplast required a more labour intensive strategy. 

Direct recovery of proteins after organelle disruption by means of sonication in extraction 

buffer proved to be inadequate for oil palm mesocarp. A phenol based approach was 

employed to isolate the proteins from other surrounding materials such as lipid and nucleic 

acids. This method has been reported by Hurkman and Tanaka for proteomic analysis 

(Hurkman & Tanaka, 1986). Phenol extraction was not developed to extract protein initially as 

the approach is more commonly used to deproteinate carbohydrates and nucleic acid for 
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Figure 3.3. Reported protocols to isolate plant organelles (Agrawal et al., 2011). 

molecular studies. Now, it is widely utilised to  extract proteins from recalcitrant plant tissues 

such as root (Xie et al., 2007) and leaf (Fan, Wang, Kuang, & Li, 2009; Gómez-Vidal et al., 2009; 

He & Wang, 2008; Wang et al., 2003). Protein extraction with phenol followed by precipitation 

using ammonium acetate in methanol or trichloroacetic acid in acetone renders proteins 

suitable for subsequent mass spectrometric analysis. Therefore, to prepare high quality 

proteins from oil palm mesocarps, a methodology developed by Wang and co-workers (Wang 



45 
 

et al., 2003; Wang et al., 2006; Wang et al., 2004) was modified to effectively circumvent the 

obstacle posed by the high oil content of oil palm mesocarps.   

Mass spectrometry is a robust technique for measuring the peptide ion masses for protein 

identification. This approach was preferred to the conventional Western Blot that employed 

polyclonal antibodies to detect specify proteins in subcellular compartments for organelle 

purity assessment (Barsan et al., 2010a). The preference was due to the fact that Western Blot 

depends greatly on the specificity and availability of primary antibodies for the targeted 

proteins while mass spectrometry techniques do not have such limitations. The results derived 

from these tandem mass spectrometry analyses were used to assess the purity of isolated 

chromoplasts by predicting the subcellular localisation of the identified chromoplast proteins 

(Emanuelsson, Brunak, von Heijne, & Nielsen, 2007; Emanuelsson, Nielsen, Brunak, & von 

Heijne, 2000). The protein identities are also crucial to enable the functional prediction of the 

oil palm chromoplast proteins based on rice (Oryza sativa), Arabidopsis thaliana and maize 

(Zea mays) protein homologues. In general, there are three main approaches in protein 

identification using tandem mass spectrometry. These are the database-driven approach, de 

novo sequencing and peptide sequence tag approach (Nesvizhskii, Vitek, & Aebersold, 2007). 

The database-driven approach was applied to determine the identity of proteins from oil palm 

chromoplasts. Sequence homology searches of these proteins with plastidial proteins from 

rice, Arabidopsis and maize in the Plant Protein Database (PPDB) (Sun et al., 2009) were 

performed. 

This chapter describes the method developments to isolate oil palm chromoplasts and extract 

their total proteins for mass spectrometric analysis. It is anticipated that the methodologies 

developed here will facilitate future work on the organelle proteome in oil palm and aid in 

comprehensive understanding of associated biosynthetic and signalling pathways. This 

chapter also represents the first report on oil palm plastids utilising advanced proteomics 

techniques.  

3.2 Materials  

3.2.1 Plant materials 
Fruits (Figure 3.4) of the standard DxP oil palm crosses (Elaeis guineensis var. Tenera) (denoted 

as low oleic acid, LO) and from the PORIM Series 12 (PS12) breeding populations (denoted as 

high oleic acid, HO) were grown and harvested from the MPOB research stations at Bangi, 
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Selangor and Hulu Paka, Terengganu, Malaysia. The fruit mesocarps were sliced (Figure 3.4), 

snap-frozen in liquid nitrogen and stored at –80°C until use. The seeds were discarded. Oil 

palm bunches (progenies) with different amount of oleic acids (in percentage) at 20th week 

after anthesis were collected from three LO and HO palms, respectively (Table 3.1). Fruit 

mesocarps obtained from the bunch were divided into four technical replicates of 100 g each.  

3.2.2 General chemicals 
Most of the general chemicals were purchased from Sigma (St. Louis, MO, USA), BDH (BDH 

Laboratory Supplies, Poole, England) and Merck (Merck KGaA, Darmstadt, Germany). Precast 

gels were from Bio-Rad (Bio-Rad Laboratories, Inc., Hercules, CA), organic solvents from Fisher 

(Fisher Scientific, Loughborough, UK) and Protease Inhibitor Cocktail Tablets were procured 

from Roche (Roche Diagnostic, IN, USA). Double-distilled water was used in preparation for all 

general solutions. 

3.3 Methodology  

3.3.1 Removal of lipid by organic solvents 
Prior to isolation of chromoplasts, it is essential to remove lipids from the sliced mesocarps to 

avoid any interference in the subsequent protein extraction phase. A method was developed 

to remove lipids from the oil palm mesocarps based on the method of Wang and co-workers 

(Wang et al., 2006). Sliced mesocarps were homogenised in liquid nitrogen with a cold Waring 

blender (Blender B011, Dynamics Corporation, Greenwich, USA) at low speed for 10 s, 

followed by grinding with a standard ceramic mortar and pestle. The powdered mesocarps 

were then mixed with cold acetone containing 10% trichloroacetic acid and 1 mM 

dithiothreitol. The slurry was then centrifuged at 13,000 g for 10 min at 4°C (RA-300 rotor, 

Kubota 7820, Kubota Corporation, Tokyo, Japan). The supernatant was discarded and the 

washing step was repeated once. Subsequently, cold 80% methanol containing 0.1 M 

ammonium acetate was added to the precipitate; mixed and centrifuged as before. After 

discarding the supernatant, the precipitated mesocarp pellet was washed with cold 80% 

acetone. The mixture was mixed well and centrifuged again at 13,000 g for 10 min at 4°C. The 

resulting pellet was air-dried.  
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Table 3.1. Biological replicates for both the oil palm varieties used in the study. 

High oleic acid (HO) Low oleic acid (LO) 
Palm no. Progeny Oleic acid 

percentage (%) 
Palm no. Progeny Oleic acid 

percentage (%) 
0.306/319 PK 540 48.85 0.306/79 PK 540 39.03 
0.306/319 PK 540 48.85 0.306/76 PK 540 39.03 
0.337/249 PK 1254 48.90 0.337/214 PK 1201 37.90 

 

 

3   

 

Standard DxP cross (LO) PS12 breeding population (HO) Sliced mesocarps 

Figure 3.4. The two oil palm varieties used in the study. 

3.3.2 Isolation and subsequent purification of oil palm chromoplasts 
The isolation method of chromoplasts was adapted from Jain, Fan and their co-workers (Fan 

et al., 2009; Jain, Katavic, Agrawal, Guzov, & Thelen, 2008). Washed mesocarp pellet was 

transferred into a beaker containing cell wall digestive enzymes (2% w/v cellulase, 0.1% w/v 

pectinase, 0.6 M sorbitol, 0.1 M DTT, 5 mM 2-(4-morpholino)-ethane sulfonic acid (MES)-KOH, 

pH 5.5). The suspension was then incubated in an incubator shaker (Labnet 211DS, Labnet 

Instrument, Inc., NJ, USA) for 6 h at 37°C. After cell wall digestion, the mixture was sieved 

through two layers of Miracloth (Calbiochem, EMB Millipore Corporation, Billerica, MA) into 

a fresh beaker on ice to separate non-macerated plant materials from protoplasts. After that, 

the filtrate was centrifuged at 1750 g for 5 min at 4°C (RA-300 rotor, Kubota 7820) to collect 

intact chromoplasts. The chromoplast pellet was gently re-suspended in the extraction buffer 

(0.7 M sucrose, 1 M Tris-HCl, pH 8.3, 5 M NaCl, 50 mM DTT, 1 mM EDTA containing a tablet of 

Roche protease inhibitors for every 50 mL of buffer). The mixture was agitated gently for 5 

min to avoid the disruption of the chromoplasts before proceeding to its purification according 



48 
 

to Barsan and co-workers (Barsan et al., 2010a) with some modifications to the sucrose 

gradient concentrations used. Following re-suspension, the pellet was loaded onto a gradient 

of 1.2 M, 1.7 M and 2.2 M sucrose (in 5 mL of extraction buffer each) in a centrifuge tube. 

After that, they were centrifuged (JA-30.50 rotor, Avanti J-301, Beckman Coulter, Brea, CA) at 

62,000 g for 45 min at 4°C to yield three interphases. The interphases were carefully retrieved 

and retained for protein extraction. 

3.3.3 Organelle protein extraction and precipitation 
We used both the chromoplast pellets (before purification) and interphases for subsequent 

proteomic analysis. The re-suspended chromoplast pellets in extraction buffer (0.7 M sucrose, 

1 M Tris-HCl, pH 8.3, 5 M NaCl, 50 mM DTT and protease inhibitor cocktail) or the interphases 

were sonicated for 15 min at 4°C to release the proteins from the plastids. An equal volume 

of fresh 50 mM, pH 8.0 Tris-saturated phenol was added to the mixture thereafter. The 

mixture was further agitated for 10 min just before centrifugation at 15,000 g for 15 min at 

4°C (RA-300 rotor, Kubota 7820) for phase separation. Following that, the upper phase was 

transferred to a new centrifuge tube while the bottom phase was discarded. Chromoplast 

proteins were precipitated by adding five volumes of cold ammonium acetate-saturated 

methanol and incubated at -20°C overnight before being centrifuged at 15,000 g for 15 min at 

4°C (RA-300 rotor, Kubota 7820) to obtain the protein pellet. The protein pellets were then 

rinsed with cold ammonium acetate-saturated methanol until a whitish colour was obtained 

for the pellet. This was followed by washing the pellet with cold 80% acetone for three times. 

Proteins were precipitated after each wash by centrifuging at 15,000 g for 5 min at 4°C (RA-

300 rotor, Kubota 7820). At the end of the washing phase, the supernatant was carefully 

decanted before the chromoplast protein pellet was air-dried. 

3.3.4 Protein quantitation 
The presence of interfering compounds often renders protein estimation using conventional 

protein assays such as Bradford unusable. Therefore, commercially available 2D Quant Kit (GE 

Healthcare Life Sciences, Uppsala, Sweden) was used to determine protein content in the 

samples. Bovine serum albumin provided with the kit was used as the protein standard. Each 

quantitation was performed in duplicate.  
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3.3.5 One dimensional (1D) sodium dodecyl sulphate-polyacylamide gel electrophoresis 
(SDS-PAGE) 

1D SDS-PAGE was used to evaluate the overall purity and quality of protein extracts. The 

approach was adapted to fractionate the extracts in order to enhance the prospects of 

detecting less abundant proteins and consequently increasing the efficiency of the proteomic 

analysis. For this purpose, the precipitated chromoplast proteins (from the first stage of 

fractionation) were dissolved in Laemlli buffer (62.5 mM Tris-HCl, pH 6.8, 2% SDS, 25% 

glycerol, 0.01% bromophenol blue, 0.005% β-mercaptoethanol) and denatured by heating at 

95°C for 4 min. 45 µg protein per lane was loaded onto a 1.0 mm precast Mini-PROTEAN® 

TGX™, 4-20% polyacrylamide gel (Bio-Rad Laboratories Inc., Hercules, CA). Electrophoresis 

was conducted in a Bio-Rad mini-PROTEAN® Tetra Cell apparatus (Bio-Rad Laboratories) at 

150 V for 1 h. Following electrophoresis, the separated proteins were fixed for 30 min in a 

fixing solution (50% ethanol, 10% acetic acid) and stained with an in-house prepared Colloidal 

Coomassie G-250. The gel was destained with Milli-Q water (H2O) until the background was 

clear before acquiring the gel image with a DLSR camera (Nikon D100, Nikon Corporation, 

Japan). The settings were ISO 200, f16 for the aperture and shutter speed was 1/40th of a 

second. Image processing was done with the Analysis software (Soft Imaging System, Olympus 

Corporation).  

3.3.6 Two dimensional gel electrophoresis (2DE) 
2DE was used in this study to evaluate the effectiveness of different extraction approaches in 

terms of number of spots obtained and spot intensities. In addition to that, this technique was 

also used to assess the effects of solvent washes and CDE on the mesocarp protein yield. Dried 

protein pellet acquired after overnight precipitation was solubilised in rehydration buffer (RB) 

(7 M urea, 2 M thiourea, 4% CHAPS, 0.25% Pharmalyte and 0.4% DTT). The volume of RB 

needed was very much dependent on the amount of proteins acquired from the different 

protocols evaluated (in the case of method development for protein extraction). Sonication 

for about 15 min was required to assist the resolubilisation of the protein pellet. Any non-

solubilised proteins after the sonication were removed by centrifugation. Protein quantitation 

was carried out prior to isoelectric focussing (IEF). For IEF, Bio-Rad ReadyStrip™ IPG strip, 7 

cm, pH 3-10 (Bio-Rad Laboratories) were rehydrated with 125 µL of RB containing 

approximately 100 µg proteins overnight. For comparison between the LO and HO varieties, 

Bio-Rad ReadyStrip™ IPG strip, 11 cm, pH 3-11 were rehydrated with 200 µL of RB containing 

about 400 µg proteins overnight. IEF was performed according to the following focusing 
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Table 3.2. Focusing parameters used for isoelectric focusing. 

Phase Volt (V) mA (Max) Time (hours) Volt hours 
1 100 20 3 300 
2 500 20 2 1000 
3 1000 5 2 2000 
4 8000 5 14 84000 

 

parameters (Table 3.2) set on the Bio-Rad Protean IEF Cell (Bio-Rad Laboratories) at 20°C. 

For the second dimension, a precast 4-20% gradient SDS-PAGE gel (Bio-Rad Laboratories Inc.) 

was used. After the rehydration, proteins in the IPG strip were reduced with 1% DTT (in RB) 

for 15 min followed by alkylation with 4% iodoacetamide for another 15 min before 

transferring to the gel (second dimension) for separation.  

3.3.7 Protein digestion assisted by sodium deoxycholate  
In-gel digestion – Each lane from the 1D SDS-PAGE separation was cut into seven uniform 

slices denoted as S1, S2, S3, until S7 and washed in 200 mM ammonium bicarbonate in 50% 

acetonitrile for 1 h at 37°C. Proteins were reduced and alkylated with thiol-free 50 mM tris(2-

carboxyethyl)phosphine (TCEP) and 55 mM iodoacetamide, respectively. An ionic detergent, 

sodium deoxycholate (1%, 4 µL) was added to the dehydrated gel plugs prior to protein 

digestion with modified sequencing grade trypsin (50:1 µg) (Promega, Madison, WI, USA) in 

50 mM NH4HCO3 for 16 h at 37°C. The solubility of the proteins was increased in the presence 

of sodium deoxycholate and this would enhance trypsinisation (Koehn et al., 2011; Lin et al., 

2008; Proc et al., 2010). The resulting peptides were extracted by increasing the 

concentrations of acetonitrile gradually from 10% to 80% and pooled. The pooled peptide 

extract was acidified with 0.5% formic acid prior to centrifugation at 10 000 g for 15 min to 

precipitate out sodium deoxycholate (SDC). The digests were then dried in a centrifugal 

evaporator (CentriVap Concentrator, Labconco, MO, USA). In-solution digestion – About 50 µg 

of precipitated proteins were re-suspended in 0.1 M ammonium bicarbonate before reduction 

and alkylation using 50 mM TCEP and 55 mM iodoacetamide, respectively. A 4 µL of SDC was 

incorporated and removed accordingly as previously described for in-gel protein digestion. 

After digestion with 1 µg of trypsin at 37°C for 16 h, the peptide solution was dried in a 

centrifugal evaporator (CentriVap Concentrator). 
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3.3.8 LC-MS/MS for organelle purity assessment 
Separation and identification of the protein digests was conducted with a nano-Advance 

Splitless nano-liquid chromatography (nanoLC) system coupled to an amaZon speed ETD ion 

trap mass spectrometer (Bruker Daltonik GmbH, Bremen, Germany). Trypsin digests were 

reconstituted in 30 µL of 0.1% formic acid (FA) and 5% acetonitrile (ACN) and 5 µL injected 

into the nanoLC system (Bruker Daltonik) for analysis. The peptides were separated with an in 

house-packed C18 Phenomenex Aeris XB trap column (3 µm, 0.1 x 100 mm) (Phenomenex, 

Inc., Torrance, CA) and a prepacked Magic C18 AQ analytical column (3 µm, 0.1 x 150 mm) 

(Bruker-Michrom Bioresources, Inc., Auburn, CA). Equilibration of the columns were 

performed with 95% solvent A (2% ACN, 0.1% FA) and 5% solvent B (98% ACN, 0.1% FA). 

Gradient from 0-45% solvent B was employed to elute the bound peptides over 45 min at a 

flow rate of 800 nL min-1. The eluted peptides were electrosprayed into the ion trap mass 

spectrometer with a spray voltage of 1500 V and a capillary temperature of 150°C. Mass 

spectrometric survey scan was acquired in the ion trap with mass range from m/z 310-1400. 

The resolution for the survey scan was set to ‘Enhanced Resolution’ and the scanning speed 

was 8,100 u per sec. MS/MS conditions consisted of ‘Xtreme Resolution’ scan range from m/z 

100-3000. Up to three of the most intense multiple charged ions (1+, 2+, and 3+) per scan 

were fragmented via collision induced dissociation in the linear ion trap to obtain tandem 

mass spectra. All tandem mass spectra were collected using a 1.00 V of fragmentation 

amplitude, an isolation window of 4.0 u and a scanning speed of 52,000 u per sec. 

3.3.9 Data acquisition and analysis 
Data acquisitions were performed with ESI Compass 1.3 for amaZon (trapControl Version 7.0). 

The mass spectrometer was operated in data-dependent mode and calibrated using an 

electrospray Tuning Mix (Agilent Technologies, Inc., Santa Clara, CA). Data analysis was 

performed using Bruker Compass DataAnalysis (Version 4.0, SP5). Peak lists were generated 

using the DataAnalysis Script Editor. These peaks list were then sent to Bruker ProteinScape 

data management (Version 3.1) for protein identification. The protein identifications were 

made with tandem mass spectra in the peak list using Mascot software (Matrix Science, 

London, UK). The peptide sequences were searched against the NCBI non-redundant (nr) 

protein database. For gel segments, individual peak list was created for each gel segment and 

individual Mascot searches carried out. For the interphases, peak list from each interphase 

analysis, was merged into a single MGF file using in-house “Concatenate” software and 
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searched against the Magnoliophyta database (308,693 sequences) in NCBInr. Mass 

tolerances for peptide and fragment ions were set to 0.3 Da and 0.6 Da, respectively; and the 

instrument setting was specified as ‘ESI trap’. Semi-trypsin was designated as the protease 

and two missed cleavage were allowed. Carbamidomethylation on cysteine residue was set as 

the fixed modification while oxidation of methionine and deamidation of asparagine and 

glutamine residues were searched as variable modifications. Proteins were accepted if they 

had at least one top ranking peptide (Rank 1) with a Mascot score of more than 50.0 (p < 0.01). 

All database searches were also performed on the decoy database with a 2% the false 

discovery rate (FDR). Decoy database contained randomised sequence of Magnoliophyta 

taxonomy. A unique non-redundant protein list was compiled by homology-based matching 

with the Magnoliophyta taxonomy.  

3.3.10 Protein description 
Protein descriptions were performed either using annotations related to each protein entry 

or through homology-based comparisons with established plant protein databases using 

ClustalW multiple alignment software. Identified proteins were functionally classified 

employing MapMan Bins (http://mapman.mpimp-golm.mpg.de/pageman/index/shtml) using 

annotations retrieved from rice, Arabidopsis and maize databases. Homologues of the 

identified proteins were searched against Plant Protein Database with a cut-off expectation 

value of 1E-100 of having significant homology. Predictions of subcellular localisation were 

carried out using TargetP 1.1 software (http://www.cbs.dtu.dk/services/TargetP). Predictions 

were made based on the predicted presence of any of the N-terminal presequences: 

chloroplast transit peptide, mitochondria targeting peptide or secretory pathway signal 

peptide. These sequences essentially determine the final organelle localisation after their 

synthesis in the cell cytosol. Otherwise, predictions were made using rice, Arabidopsis and 

maize homologues. Those proteins whose close homologues were experimentally 

demonstrated to localise exclusively outside plastids were considered non-chromoplast 

contaminants. A protein is considered a ‘close homologue’ if the protein has at least 70% pair-

wise identity with the query sequence and/or a cut-off expectation value of 1e-4 following 

Basic Local Alignment Search Tool for proteins searches against the NCBInr protein database 

(www.ncbi.nlm.nih.gov.BLAST/). 
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3.4 Results and discussion  

3.4.1 Delipidating the mesocarps 

The mesocarp powder was delipidated by washing with two different organic solvents since 

different solvents have diverse capabilities to extract various classes of lipids. Figure 3.5 shows 

the effect of delipidation on the protein yield. It is evident that the presence of excessive lipid 

decreased the effectiveness of the protein extraction as shown by the 1.6- fold reduction in 

protein yield. Even though another report contradicted that delipidation enhanced protein 

yield (Rodrigues, Torres, da Silva Batista, Huergo, & Hungria, 2012), the plant materials used 

in that study were roots and not oily mescocarp. Delipidation not only generated higher 

protein yield compared to the undelipidated mesocarps, but delipidated mesocarp proteins 

were also better resolved in SDS-PAGE (Figure 3.6). This could be due to the presence of 

excessive lipids, polyphenol and other contaminants in the unwashed samples that can reduce 

protein resolution. Comparisons of 2DE gels produced by solvent-washed and without 

solvent-washed mesocarp proteins (Figure 3.7) clearly demonstrated the importance of 

eliminating the lipids prior to incubating the mesocarps with cell wall digestive enzymes (to 

be discussed in Section 3.4.2) and subsequent protein extraction (to be discussed in Section 

3.4.4). We did not perform spot to spot comparisons for these gels as it was apparent that 

many protein spots were missing in the without solvent-washed gel and the protein spot 

intensities were also noticeably lower.  

A combination of trichloroacetic acid (TCA) and acetone was used in the first wash, instead of 

aqueous TCA or acetone alone as the resulting pellet was finer (Figure 3.8) (Damerval, De 

Vienne, Zivy, & Thiellement, 1986; Görg et al., 1997). The effectiveness of lipid removal from 

the ground mesocarps depended greatly on the fineness of the sample powder. The surface 

area of the plant materials is also crucial for an effective cell wall digestion with cell wall 

digestive enzymes in the later stage (Section 3.4.2). Usage of TCA and acetone substantially 

increased the fineness of the powder and thereby providing a larger surface area for the 

enzymes. Other methods have been reported to increase the surface area such as mincing 

with blades, grinding in a mortar and pestle and shearing in a Waring blender (Jain et al., 2008). 

In this study, the mesocarps were first ground with a Waring blender utilising low to high 

grinding speed within 15 seconds before the solvent washes. The grinding time is decisive as 

Hansen and co-workers found that longer blending time damaged the chromoplast 
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Figure 3.5. Lipid removed from the ground mesocarps. 

 
Table 3.3. Effect of solvent wash on protein yield. 

Sample Protein yield (µg/µL) 
Delipidated mesocarps 1.16 ± 0.02 

 Undelipidated mesocarps 0.71 ± 0.07 
 

 
Figure 3.6. Effect of cell wall digestive enzymes. 50 µg of proteins (each lane) was separated 
with a pre-cast 4-20% gradient SDS-PAGE. From left: 3 hours (A); 6 hours without CDE (B); 6 
hours (C); 6 hours without delipidation (D); 10 hours (E). Unless specified, all incubations were 
done in the presence of cell wall digestive enzyme. 

 

kDa 
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Figure 3.7. The effects of washing homogenised mesocarps with solvents before protein 
extraction. 100 µg of proteins was rehydrated with 7 cm IPG strip, pH 3-10. Proteins were 
separated with 12% self-casted SDS-PAGE gel.  

 

 

Figure 3.8. Finer ground mesocarps after solvent wash with TCA and acetone. 

 

 

 

 

 

 

 



56 
 

membrane during isolation (Hansen & Chiu, 2005). Fine powder was also reported to minimise 

proteolysis and other sources of protein degradation (Wang et al., 2006). The TCA and acetone 

washing step was repeated for the HO variety due to its significantly higher content of lipid 

than the LO variety. The first washing was repeated only once as prolonged exposure to low 

pH caused by TCA could possibly modify or degrade proteins.  

Methanol was used in the second wash to further remove the lipid. Polar solvents such as 

methanol solubilise polar lipids like phospholipids and glycosphingolipids (Christie, 1993). 

Acetone on the other hand, could only dissolve simple lipids and glycolipids (Rastegari, Ahmad, 

Spencer, & Ismai, 2011). Methanol has a high dielectric constant and polarity (Wang et al., 

2006), which is advantageous for recalcitrant plant tissues due to their high phenolic content. 

Since TCA was used in the first wash, the presence of ammonium salt in methanol was able to 

wash off residual TCA in addition to raise the pH to above 7 (Wang et al., 2006). Increase in 

pH could facilitate protein extractions by phenol, which will be discussed in Section 4.4.4. The 

last wash involved only acetone to remove the lipid residual. Although the complete removal 

of lipid could not be achieved, the reduction in lipid amounts was sufficient to increase the 

protein yield.  

3.4.2 Incubation with cell wall digestive enzymes (CDE) 

The delipidated mesocarps were incubated in a buffered solution of cellulase and pectinase. 

Protein yields were increased approximately two-fold from 0.64 ± 0.02 µg/µL to 1.16 ± 0.02 

µg/µL when CDE were employed to break the cell wall. Precipitated protein pellets from   

mesocarps that were not treated with CDE were also smaller in size (Figure 3.9). As our starting 

materials are limited, it is critical to extract as much protein as possible. The amount of 

proteins extracted would be reduced even more since we only targeted the chromoplast for 

further analysis. 

The 1D SDS-PAGE gel profiles (Figure 3.6) showed that several high molecular weight protein 

bands were missing from the separated mesocarp proteins without usage of CDE. These 1D 

SDS-PAGE gel profiles agreed with the 2DE gel profiles for both with and without CDE 

treatments. The 2DE gel profile for proteins extracted from mesocarps treated with and 

without CDE (Figure 3.10) demonstrated that CDE treatment generated more protein spots in 

the basic region (mostly membrane proteins) than those obtained without the enzymes (Görg, 

Weiss, & Dunn, 2004; Vincent, Wheatley, & Cramer, 2006). Lysing the cell wall with CDE would 
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allow phenol used in subsequent protein extraction, to disassociate the membrane proteins 

by breaking the lipid-protein interactions. Without CDE, phenol could not reach the 

membrane proteins to exert its effect. Protein spot to spot comparisons of the same set of 

2DE gels also revealed that some protein spots were either absent or present in low intensities 

in gel produced from separated mesocarp proteins without CDE treatment (Figure 3.11). 

Several protein spots in the higher molecular weight regions were also not being extracted 

from the mesocarps without the CDE treatment, as indicated by the 1D SDS-PAGE profiles.  

Essentially, cellulase breaks down the 1,4-β-D-glucosidic linkages (Figure 3.12.) in cellulose 

(Bayer, Chanzy, Lamed, & Shoham, 1998; Hayashi, Yoshida, Woo Park, Konishi, & Baba, 2005) 

while pectinase hydrolyases the 1,4-α-D-galactosiduronic linkages in pectin (Baldwin & Biggs, 

1988; Harholt, Suttangkakul, & Vibe Scheller, 2010). Previous studies have reported the use of 

mechanical force to disrupt the plant cell wall to yield protoplasts. However, a study by Jain 

and co-workers revealed that their initial attempts to acquire rapeseed embryoplasts using 

mechanical disruption had resulted in high levels of contamination by protein storage 

vacuoles and mitochondrial proteins (Jain et al., 2008). As a result, they opted for cell wall 

digestive enzymes to lyse the cell for plastid preparations. Protoplast isolation after cell lysis 

has also been employed in studies involving maize endosperm (amyloplasts) (Echeverria, 

Boyer, Liu, & Shannon, 1985), mung beans (protein bodies) (Van der Wilden, Herman, & 

Chrispeels, 1980) and castor bean endosperm (plastids) (Nishimura & Beevers, 1978). Through 

the results obtained, the digestive enzymes had been demonstrated to be necessary to obtain 

the protoplasts for efficient protein extraction.  

Temperature at 37°C and pH 5.5 were used as these are the optimal catalyst conditions for 

the cellulose and pectinase. Optimisations on the incubation time were also carried out. 

According to Jain and co-workers (Jain et al., 2008), 0.5 g of minced embryos from the seed 

coat was incubated in their enzyme digestion solution (containing digestive enzymes) for 1.5 

hours. Therefore, to scale up, using similar materials to hour ratio, 5 g of materials would have 

to be incubated for 15 hours, which may significantly degrade heat-sensitive proteins (as 

demonstrated in this study). Our observations indicated that 6 hours incubation yielded about 

1.16 ± 0.02 µg/µL protein and 3 hours or 10 hours incubation did not increase the protein yield 

substantially (Table 3.4). The 1D SDS-PAGE protein profiles for all the different incubation time 

(and without CDE) also indicated that 6 hours incubation was the most effective in increasing 
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Figure 3.9. Re-suspension of mesocarps in buffered CDE after 6 hours incubation. A; without 
CDE, B; with CDE. A larger lipid layer is visible in A. Different sizes of chromoplast protein 
pellets are shown on the respective sides. 

 

Figure 3.10. The effects of CDE incubation on 2DE gel profile. 100 µg of proteins was 
rehydrated with 7 cm IPG strip, pH 3-10. Proteins were separated with 12% self-casted SDS-
PAGE gel. Missing protein spots in the basic region is highlighted. 
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Figure 3.11. Spots analysed by PDQuest showing differences in spot intensities (shown in 
the box). From left: Master gel (m); with CDE (+); without CDE (-). 

 

  
Figure 3.12. Structures of cellulose and pectin. The bond acted by the enzyme is shown by 
the arrow (Source: http://sciencegeist.net/to-ma-to-to-mah-to/). 
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Table 3.4. Protein yields from different incubation times. Washed mesocarps were incubated 
with the cell wall digestive enzymes at 3, 6 or 10 hours to evaluate the protein yields. 

 

the yield of chromoplast protein (Figure 3.6).  

Figure 3.13 shows the comparisons of the effects of different incubation times on the 

delipidated mesocarps with CDE using 2DE analysis. We found that after 6 hours incubation, 

the protein spots were better resolved. The analysis showed that 6 hours incubation produced 

more protein spots compared to 3 hours and 10 hours incubation. This result clearly implied 

that 6 hours was the most suitable duration to incubate the mesocarps with CDE to generate 

the protoplast. The conclusion also supported by the comparative analysis of selected protein 

spot intensities amongst each set of the three gels (Figure 3.14). 

Although 3 hours incubation gave slightly lower yield as compared to 6 hours incubation, any 

additional proteins are crucial due to the limitations in oil palm materials used. 10 hours 

incubation with CDE should theoretically increase the protein yields but the results indicated 

otherwise. The probable explanation was that the cell wall digestive enzymes activity had 

reached a plateau between 6-10 hours due to limitation factor in the amount of mesocarps 

used. The long incubation time at 37°C could also lead to degradation of temperature-

sensitive proteins, therefore, resulting in the decrease in protein yield after 10 hours 

incubation. Based on these results, it was decided to incubate the mesocarps with CDE for 6 

hours to break the cell walls.  

Incubation time (hours) Protein yield (µg/µL) 
3  1.01 ± 0.03 
6  1.16 ± 0.02 

10  1.04 ± 0.01 
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Figure 3.13. The effects of different incubation time of the homogenised mesocarps with 
CDE. 100 µg of proteins was rehydrated with 7 cm IPG strip, pH 3-10. Proteins were separated 
with 12% self-casted SDS-PAGE gel.  
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Figure 3.14. Spots analysed by PDQuest that showed differences in spot intensities after 
incubation at different times (shown in the box). Clockwise from left: Master gel (m); 6 
hours (a); 3 hours (b); 10 hours (c). 

3.4.3 Chromoplasts isolation 

Following cell wall digestion, the chromoplasts were acquired through differential 

centrifugation before further purification with density gradient centrifugation. Three 

interphases were clearly visible (Figure 3.15) and each of these interphases was retrieved and 

their protein yield were determined (Table 3.5). 

Differential centrifugation at low speed was used to selectively precipitate and enrich the 

larger and denser chromoplast from other cell organelles. The resulting fraction was further 

purified with density gradients made from 1.2 M, 1.7 M and 2.2 M sucrose based on a method 

by Barsan and co-workers (Barsan et al., 2010a). Despite the fact that most of other cell 

compartments were removed in the initial differential centrifugation, different purity of 

chromoplasts was still recorded in each interphase. As shown by the mass spectrometric 

analysis (Figure 3.16), a small percentage of mitochondria, ribosomes and nuclei was 

nevertheless co-precipitated in some of the interphases since the centrifugal force used in this 

study would still precipitate organelles with similar density to chromoplast. Therefore, instead 

of aiming to get the purest intact chromoplasts at the interface of 1.7 M and 2.2 M, as was 

achieved by Barsan and co-workers (Barsan et al., 2010a), this approach was used as a 

fractionation step to reduce the complexity of the chromoplasts mixture. Thus, the possibility 
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Figure 3.15. Interphases obtained after sucrose density gradient centrifugation. 

Table 3.5. Protein yield for the interphases. 

Interphase (molarity, M) Protein yield (µg/µL) 
1.2  0.12 ± 0.01 
1.7  0.27 ± 0.02 
2.2  0.48 ± 0.04 

 

 
Figure 3.16. Purity assessment of organelle proteins. The quantity of other organelle-based 
proteins is indicated. 
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of getting more protein identified using mass spectrometry analysis in the later stage would 

be increased (Figure 3.17). 

Differential centrifugation has been employed to isolate chromoplasts by Hansen and co-

workers (Hansen & Chiu, 2005) in their works on tomato. Nycodenz (Axis-Shield PoC AS, Oslo, 

Norway) had been used to generate the density gradient in chromoplast isolation from sweet 

orange fruits (Zeng et al., 2011a), Percoll in bell pepper (Siddique et al., 2006); and sucrose in 

chromoplast isolation from tomato (Barsan et al., 2010a) and wild buttercup (Tetlow et al., 

2003). The density gradients could either be continuous or discontinuous. In this study, a 

discontinuous density gradient consisted of three consecutive concentrations (1.2 M, 1.7 M 

and 2.2 M) was generated. Conversely in continuous gradient, the density increases linearly 

along the tube. Typically different organelles get enriched at different interphases of the 

medium during the centrifugation process. Although continuous gradient provides better 

resolution in general, the continuous density gradient was unable to be generated reliably.   
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Figure 3.17. Effect of two different centrifugations on identified proteins.  

3.4.4 Protein extraction 

Proteins were extracted from the chromoplasts following isolation with differential and 

density gradient centrifugations. At present, there is no known report of proteomic studies on 

oil palm chromoplast. Since there are no established extraction methods for oil palm 

chromoplast proteins, different published protein extraction approaches to maximise protein 

yield for proteomic analysis were attempted (Chatterjee et al., 2012; Rastegari et al., 2011; 

Rodrigues et al., 2012) (Méchin, Damerval, & Zivy, 2006). Effectiveness and suitability of the 

approach was assessed based on protein yield, number of resolved protein spots and also 

intensities of selected spots. In this study, 100% phenol, phenol with sodium dodecyl sulfate 

(phenol/SDS), SDS alone and combination of TCA and acetone (TCA/acetone) extractions were 

trialled. Subsequent precipitation of the proteins was performed with either TCA/acetone or 

ammonium acetate/methanol. 

Table 3.6 shows the protein yields generated from evaluation of different protein extraction 

and precipitation approaches. Protein concentrations for proteins from SDS alone and 

TCA/acetone extraction were unable to be determined. This was due to insolubility of 

precipitated proteins obtained with precipitant and co-precipitant provided with the 2D Quant 

kit (Figure 3.18). The results clearly show that phenol/SDS extraction followed by precipitation 

with ammonium acetate/methanol outperformed the 100% phenol extraction, regardless of 

the precipitation technique used. The effectiveness of the extraction protocols were further 

evaluated by comparing protein patterns produced with 1D SDS-PAGE (Figure 3.19). The 

protein profiles acquired for each of the extraction methods were consistent with the 

respective protein yields.  
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Table 3.6. Protein yield using different extraction approaches. 

Extraction approach Precipitation technique Protein yield (µg/µL) 
100% phenol  Ammonium acetate/methanol 1.84 ± 0.09 
Phenol/SDS Ammonium acetate/methanol 2.22 ± 0.05* 
SDS alone  Ammonium acetate/methanol Not determined 
100% phenol TCA/acetone 2.10 ± 0.03 
TCA/acetone - Not determined 
* Highest yield 

 

 

Figure 3.18. Protein pellet after precipitation with the precipitant and co-precipitants (2D 
Quant kit) were unable to be re-solubilised for protein content determination (indicated by 
red circles). 

 

 
Figure 3.19. Effectiveness of different protein extraction approaches. Approximately 50 µg 
of proteins was loaded in lane A and B. As protein contents for lane C and D were not 
determined, the loaded sample volumes were standardised to 45 µL. Proteins were separated 
with 4-20% gradient SDS-PAGE gel. From left: 100% phenol + ammonium acetate/methanol 
(A); phenol/SDS + ammonium acetate/methanol (B); 100% phenol + TCA/acetone (C); SDS 
alone + ammonium acetate/methanol (D); TCA/acetone (E). 
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Assessment of the extraction approaches were also carried out using 2DE (Figure 3.20). The 

number of protein spots obtained correlated with the protein yield for each extraction 

method tested. As expected (based on protein yield), phenol/SDS generated more protein 

spots (150) compared to either 100% phenol (114 spots) or SDS alone (134 spots). All these 

proteins were precipitated with ammonium acetate/methanol. Proteins extracted with 100% 

phenol but precipitated with TCA/acetone produced 73 protein spots. Unfortunately attempts 

to focus TCA/acetone extracted proteins failed. Contaminants such as salts caused high 

conductivity in the IPG strips, resulted in burnt strips. Unlike phenol, TCA/acetone was unable 

to remove the contaminants from these proteins. High protein spot numbers for phenol/SDS 

and SDS alone extraction compared to 100% phenol indicated that the presence of SDS 

increased the solubility of some proteins. High protein yields for phenol/SDS (2.24 ±0.05 

µg/µL) and SDS alone (not determined) might be attributed to effective extraction of proteins 

as shown in the 2DE gels. Comparison of 2DE gel profiles of 100% phenol, phenol/SDS and SDS 

alone, was similar. However, protein spots in 100% phenol extraction gel were better resolved 

and less streaking was observed. SDS could be detrimental to isoelectric focusing resulting in 

poor protein spot resolution for both phenol/SDS and SDS alone extracted proteins. However, 

several good resolution spots in the acidic and lower molecular weight regions were apparent, 

which could be an advantage. As the targeted fatty acid biosynthesis enzymes are mainly basic 

proteins, the advantage offered by SDS in solubilising more proteins, hence higher protein 

yield may not be as great.  

Among all of the approaches tested in this study, 100% phenol extraction followed by 

TCA/acetone precipitation delivered the worst performance in term of number of protein 

spots and resolution. Only 73 protein spots were produced and there were protein 

aggregations on the basic region of the gel which caused severe vertical streaking. As stated 

before, proteins precipitated with TCA/acetone were difficult to dissolve and tended to 

produce vertical streaking in the gels. However, observations made by Gómez-Vidal and co-

workers in their studies on Phoenix dactylifera L. leaves (Gómez-Vidal et al., 2009) 

contradicted this 2DE gel profile. They remarked that TCA probably helped in protein 

solubilisation. In the 2DE gels for all the methods evaluated, horizontal streaking was still 

detected, indicating insufficient focusing for the proteins. Spot to spot comparisons for 

selected protein in all these gels were also performed (Figure 3.21). Overall, comparable 

protein spot intensities for 100% phenol, phenol/SDS and SDS alone extraction were observed. 
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Figure 3.20. The effects of different extraction approaches on the 2DE profiles. 100 µg of 
proteins was rehydrated with 7 cm IPG strip, pH 3-10. Proteins were separated with 12% self-
casted SDS-PAGE gel.  



69 
 

 

Figure 3.21. Spots analysed by PDQuest that showed differences in spot intensities. 
Clockwise from left: Master gel (m); 100% phenol (a); phenol/SDS (b); SDS alone (c); 
phenol/TCA (d).
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However, the spot intensities for 100% phenol extraction and TCA/acetone precipitated 

proteins were clearly lower, indicating that it was crucial to use ammonium acetate/methanol 

precipitation after extracting the proteins with phenol. As reported by Wang and co-workers, 

prolonged exposure to TCA resulted in protein degradation or modifications (Wang et al., 

2006). 

Different buffers for re-suspending the precipitated pellet for downstream analyses were also 

examined. Based on the results in Table 3.7, rehydration buffer for isoelectric focusing was 

concluded to be superior for re-solubilising precipitated proteins. Rehydration buffer 

contained components such as detergents, chaotropes and reducing agents that could greatly 

enhance protein solubilisation. Unlike ammonium bicarbonate or Laemlli buffers, rehydration 

buffer contains urea and thiourea as chaotropes that disrupt non-covalent bonds resulting in 

disaggregation and denaturation of proteins (England & Haran, 2011). Protein solubilisation 

was further enhanced in the presence of 3-[(3-cholamidopropyl)dimethylammonio] propane 

sulfonate (CHAPS) and dithiothreitol (DTT). CHAPS is a detergent which is capable of disrupting 

hydrophobic interactions in proteins while DTT, a reducing agent, disrupts the disulfide bonds. 

As a result, proteins tend not to aggregate together, which helps in protein solubilisation. 

Based on the results from the protein yield, 1D SDS-PAGE and 2DE, 100% phenol was 

ultimately employed to extract the mesocarp proteins despite the fact that phenol/SDS 

extraction was the most effective approach by far. The reason was that incompatibility of SDS 

with subsequent mass spectrometric analysis has been reported (Yeung, Nieves, Angeletti, & 

Stanley, 2008; Yu, Gilar, Lee, Bouvier, & Gebler, 2003). SDS is undoubtedly a powerful 

solubilising agent and used primarily in recovering membrane-bound proteins (Zheng, Song, 

Doncaster, Rowland, & Byers, 2007). Yet, the incomplete removal of SDS after protein 

extraction could also cause interference in isoelectric focusing (Yeung et al., 2008; Yu et al., 

2003). Sheoran and co-workers stated in their work that both phenol and TCA/acetone 

extraction approaches were compatible with mass spectrometric analysis (Sheoran, Ross, 

Olson, & Sawhney, 2009). Phenol extraction followed by precipitation with ammonium 

acetate/methanol was preferred to TCA/acetone precipitation. TCA/acetone generated 

protein pellets that were difficult to solubilise in subsequent Laemlli or even urea buffer 

(Rastegari et al., 2011). 
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Table 3.7. Protein yield with different re-solubilisation buffers. 

Buffer  Protein yield (µg/µL) 
Urea-based (rehydration buffer) 1.53 ± 0.02 

Ammonium bicarbonate 1.06 ± 0.02 
Laemlli  0.93 ± 0.01 

 

Phenol has been used to purify carbohydrates and subsequently nucleic acid (Hughes & Sinex, 

1954; Kirby, 1956). This method is now routinely applied for deproteinisation of nucleic acids 

preparations. Interaction of phenol through hydrogen bonding with proteins results in the 

solubilisation of proteins, lipids and pigments in phenol phase while contaminants such as 

nucleic acid, polyphenol and carbohydrate remain in the Tris buffer phase (Carpentier et al., 

2005) (Figure 3.22). The high pH of the buffer (pH 8) inhibits some common proteases 

(Hochstrasser, Harrington, Hochstrasser, Miller, & Merril, 1988), thus minimising protein 

degradation during the agitation phase prior to phase separation. In addition, basic 

environment have  been reported to ionise phenolic contaminants, resulting in its inability to 

form hydrogen bonds with the proteins (Loomis & Battaile, 1966). Schuster and co-workers 

also mentioned that phenol reduced the chance of protein degradation caused by endogenous 

proteolytic activity (Schuster & Davies, 1983).  

TCA/acetone is a highly effective precipitation method to eliminate proteolytic and DNA 

modifying enzymes such as nucleases  (Rastegari et al., 2011) but this approach is not suitable 

for eliminating contaminants particularly polyphenols and lipids from plant. These metabolites 

can form hydrogen bonds and irreversible complexes with proteins through oxidation and 

covalent condensation (Loomis & Battaile, 1966). Several studies mentioned the unsuitability 

of TCA/acetone in extracting proteins from complex tissues (Carpentier et al., 2005; Saravanan 

& Rose, 2004; Wang et al., 2003). As shown in Figure 3.19, these interactions between 

metabolites and proteins caused vertical streaking in 1D SDS-PAGE gel as a result of charge 

heterogeneity for TCA/acetone precipitated proteins. Figure 3.23 shows that protein pellet 

precipitated with TCA/acetone was yellow to brownish which was due to polyphenolic 

oxidation as mentioned earlier (Wang et al., 2003). Proteins precipitated either with 

ammonium acetate/methanol or TCA/acetone after phenol extraction produced whitish 

pellets. This suggested that polyphenols have been effectively removed by phenol. The failure 

to solubilise the proteins for quantitation using the 2D Quant kit was almost certainly due to 

the presence of these interfering compounds in TCA/acetone extracted proteins. These results 
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Figure 3.22. Principle of phenol extraction. 

 

 
Figure 3.23. Acetone-washed chromoplast protein pellet. Picture on the far right depicted 
the re-suspended protein pellet extracted with SDS alone (notice the lipid layer). 

emphasised the importance of eliminating contaminants prior to protein extraction with 

phenol.  

3.4.5 1D SDS-PAGE and 2DE for oil palm varieties 

The optimised techniques were applied to isolate, purify and extract chromoplast proteins 

from the low oleic acid (LO) and high oleic acid (HO) varieties. They were then resolved on 1D 

SDS-PAGE and 2DE gels (Figure 3.24 and Figure 3.25). These overview gel maps provide a 

useful reference set of proteins present in a cell, or tissue at any given time. In addition, the 

capability of this technique to detect differentially expressed proteins would almost allow the 

entire dynamic range of proteins approachable (Agrawal et al., 2011; De La Fuente et al., 

2011). The gel-based techniques were used not only to investigate proteins that were 
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Figure 3.24. 1D SDS-PAGE profile of chromoplast proteins (L) from low oleic acid (LO) and 
high oleic acid (HO) varieties. 80 µg and 60 µg proteins from LO and HO varieties was loaded 
onto a 4-20% SDS-PAGE gel. Image on the right (R) depicts the segments excised for GeLC-
MS/MS.
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Figure 3.25. 2DE gel maps for (A) low oleic acid and (B) high oleic acid varieties. About 400 
µg of proteins from low oleic acid and high oleic acid varieties was loaded. 

 

 

 

 

 

 



75 
 

differentially regulated in two different oil palm varieties, but also to determine the degree of 

the biological replicates variations (to be discussed in Chapter 4). Moreover, gel-based 

techniques are also capable of fractioning the extracted chromoplast proteins for organelle 

purity assessment with GeLC-MS/MS approach. Seven segments were excised from the 1D 

SDS-PAG (denoted as S1-S7) prior to mass spectrometric analysis (Figure 3.24). This approach 

increased the number of identified proteins in complex samples such as fruit mesocarps 

chromoplasts (to be discussed in Chapter 4). There are several reports where these techniques 

have been used to study chloroplast envelopes (Ferro et al., 2010), thylakoid and vacuole 

membranes (Agrawal et al., 2011; Peltier, Ytterberg, Sun, & van Wijk, 2004).  

Gel-based approaches might not be the preferred tool in proteomics studies as non-gel based 

approaches such as liquid chromatography-mass spectrometry are less time-consuming and 

more consistent. However, gel-based techniques are still the choice for monitoring large 

protein sets as in specific studies done in root hair cell, leaf apoplasts and seeds, to name a 

few (Brechenmacher et al., 2009; De La Fuente et al., 2011; Goulet, Goulet, & Michaud, 2010; 

Hajduch et al., 2006).  

3.4.6 LCMS for purity assessment 

The aim of LCMS was to determine the purity of isolated organelle based on the subcellular 

localisation of identified proteins. Figure 3.26, Figure 3.27 and Figure 3.28 show the base peak 

chromatograms for the in-solution digested interphases (1.2 M, 1.7 M and 2.2 M) and in-gel 

digested chromoplast proteins (S1-7) from 1D SDS-PAGE. A base peak chromatogram (BPC) 

plots the intensity of the most intense peak in every mass spectrum throughout a liquid 

chromatography-mass spectrometry (LCMS) run (Bylund, Danielsson, & Markides, 2001; 

Niessen, 2006). A BPC is more informative compared to total ion chromatogram (TIC) as it 

corresponds to a single separated ion (instead of multiple ions in TIC) with the highest 

intensity. The results indicated that about 90% of these proteins were plastid-based while 10% 

were keratin contaminants, mitochondrion- and nucleus-based proteins (data not shown).  

3.5 Conclusion 
Apart from the fact that the oil palm fruit mesocarps are highly recalcitrant to general protein 

extraction due to high lipid content, it is also a plant-based material that contains high levels 

of interfering compounds such as phenolics. The method development described in this 

chapter was specifically targeted towards oil palm fruit mesocarps to obtain enriched 
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chromoplasts and maximum protein yield for proteomic characterisations. Removal of lipid 

from the mesocarps and incorporation of two cell wall digestive enzymes proved to be crucial 

and beneficial in increasing the effectiveness of the protein extraction. Subsequently, phenol 

extraction followed by protein precipitation with ammonium acetate in methanol was 

demonstrated to be the most effective way to acquire chromoplast proteins in terms of 

protein yield and good (in term of resolution and intensity) 2DE protein spots. Although SDS 

in phenol/SDS extraction approach gave the best protein yield and increased the number of 

2DE protein spots, the SDS interfered with gel-based techniques and suppressed peptide 

ionisation in mass spectrometry approach. Even though the whole process was lengthy (Figure 

3.29), good quality proteins for mass spectrometry analysis were able to be acquired. Most 

importantly, the first optimised methodology to obtain oil palm chromoplast proteins that are 

compatible with mass spectrometry analysis was reported here. Identified proteins revealed 

that most of the extracted proteins were plastid-based. This accomplishment was crucial for 

evaluating chromoplast proteins from two varieties in an attempt to reveal the key regulatory 

enzymes in fatty acid biosynthesis.  
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Figure 3.26. Interphases base peak chromatograms of low oleic acid (LO) and high oleic acid 
(HO) varieties. 
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Figure 3.27. Base peak chromatograms for gel segments (LO S1-7). The inset shows the 
individual base peak chromatograms. 
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Figure 3.28. Base peak chromatograms for gel segments (HO S1-7). 
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Figure 3.29. Overview of workflow. Approximate time required for each step (per sample) 
until protein extraction is indicated in bracket. 
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4.0 Development of gel-based and non-gel based proteomic 
approaches to characterise protein expression of oil palm fatty 
acid biosynthetic enzymes  

4.1 Introduction 

Classic gel electrophoresis techniques were applied in this study to observe the biological 

variation in three replicates from low and high oleic acid varieties of oil palm. This was 

followed by proteomic investigation of their protein expression using gel electrophoresis-

based mass spectrometric analysis, termed as GeLC-MS/MS. GeLC-MS/MS essentially involves 

the digestion of excised gel-separated proteins for mass spectrometric analysis and has 

proved to be a key approach in protein identification (Shevchenko, Wilm, Vorm, & Mann, 

1996). GeLC-MS/MS approach has been applied to profile differential protein expression, 

proteome analyses and biomarker discoveries (Beer, Tang, Barnhart, & Speicher, 2011; Daher 

et al., 2010; Graham et al., 2007; Paulo, Kadiyala, Banks, Steen, & Conwell, 2012; Petricka et 

al., 2012; Zeng et al., 2011b). Now this technique is typically used in tandem with a 

complementary liquid chromatography-tandem mass spectrometry (LC-MS/MS) (Balbuena, 

He, Salvato, Gang, & Thelen, 2012; He et al., 2012; Salvato et al., 2014). 

Non-gel based assessment of fatty acid biosynthetic enzyme expressions was performed via 

the application of LC-MS/MS. This approach has become the technique of choice for most 

large-scale proteomic studies such as in yeast (Picotti, Bodenmiller, Mueller, Domon, & Ruedi, 

2009), Arabidopsis (Wienkoop & Weckwerth, 2006) and Picea abies (Zulak et al., 2009). A 

typical shotgun proteomics workflow consists of trypsin digested proteins followed by 

separation of the peptides by columns of different attributes such as a reverse-phase column. 

Separated peptides are then fragmented in a mass spectrometer to generate product ions for 

their identification or downstream characterisation. This peptide centric proteomics is 

capable of producing sequence-specific information and performing relative quantitation of 

the peptide. LC-MS/MS is undoubtedly less laborious and more repeatable in term of 

generated data than two-dimensional gel electrophoresis (Abdallah et al., 2012). 

Furthermore, this approach can be high throughput and sensitive (requires less protein for 

analysis) than a gel-based approach.  
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Complex mixtures of proteins potentially produce peptides that ‘congest’ a mass 

spectrometric analysis. In this study, the complexity of the oil palm derived proteins was 

resolved with the application of two-dimensional liquid chromatography (2DLC). In 2DLC, a 

strong cation exchange column is normally utilised to provide orthogonal peptide separation 

for shotgun proteome analyses. The combination of a strong cation exchange column with a 

reverse-phase column was done ‘offline’. An online combination gives the advantages of full 

automation and less sample handling (thus reducing technical variation). On the other hand, 

an offline combination provides the flexibility of independently optimising the analytical 

performance of two columns with different attributes. Peptide separation had been shown to 

be more effective in an offline 2DLC approach (Nagele, Vollmer, Horth, & Vad, 2004). In the 

study, optimisation of the strong cation exchange fractionation were also carried out ‘offline’ 

prior to the separation in the second dimension with a reverse-phase column to improve the 

detection of low abundance peptides from fatty acid biosynthetic enzymes.  

Novel comparative quantitation of fatty acid biosynthetic enzymes from the low oleic acid and 

high oleic acid varieties was performed using isobaric iTRAQ labelling. Digested protein 

samples were labelled with six iTRAQ isobaric tags at amino groups of lysine side chains and 

N-termini of all peptides (Abdallah et al., 2012). The multiplexed labelled peptides samples 

were then pooled and fractionated offline using a strong cation exchange column to improve 

the detection of the lower abundance peptide variants. Subsequently, the labelled peptides 

were separated by a reverse phase nanoHPLC and the resolved labelled peptides analysed 

with tandem mass spectrometry. Collision-induced dissociation caused the iTRAQ-tagged 

peptides to fragment and release the reporter ions (at m/z 113, 114, 115, 116, 117 and 118) 

as well as b- and y-ions among other fragment ions for protein identification. The generated 

peak ratios of the six tandem mass spectrometry reporter ions were used to quantify the 

relative peptide abundance of targeted fatty acid biosynthetic enzymes. A quadrupole-time-

of-flight mass spectrometer was used in this study for its ability to detect the reporter ions at 

the low m/z range.  

Chapter 4 describes the application of gel-based and non-gel based approaches to investigate 

the presence of differentially expressed enzymes that are related to the oil palm oleic acid 

biosynthesis. Proteomic techniques used to determine the extent of biological variation 

among replicates in the study are also explained. The reliability of the replicates is crucial to 

ensure that any differences in protein expression of the fatty acid biosynthetic enzymes 
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occurred primarily due to their differential regulation of oleic acid production in oil palm. 

Subsequently, isobaric tags were used to investigate those differences in enzyme expressions. 

Proteome changes of oil palm mesocarp from different development stages has previously 

been documented to understand the mechanism of palm oil production (Loei et al., 2013). 

However, this chapter outlines and reports the first targeted attempt to improve and 

quantitate the differences in fatty acid biosynthetic enzyme expression from two different oil 

palm varieties. 

4.2 Materials 

4.2.1 Plant materials 

Fruit bunches (Figure 4.1) of the standard DxP oil palm crosses (Elaeis guineensis var. Tenera) 

(denoted as low oleic acid variety) and from the PORIM Series 12 (PS12) breeding populations 

(denoted as high oleic acid variety) were grown and harvested from the Malaysian Palm Oil 

Board research stations at Bangi, Selangor and Hulu Paka, Terengganu, Malaysia. The fruit 

mesocarps were sliced, snap frozen in liquid nitrogen and stored at – 80°C until use. The seeds 

were discarded. Oil palm bunches (progenies) with different levels of oleic acids at the 20th 

week after anthesis were collected from three low oleic acid and high oleic acid palms, 

respectively (Table 4.1). Fruit mesocarps obtained from the bunch were divided into four 

technical replicates of 100 g each.  

  

 

Standard DxP cross  PS12 breeding population  Sliced mesocarps 

Figure 4.1. The two oil palm varieties used in this study. 

1 cm 
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Table 4.1. Biological replicates for the oil palm varieties used in the study. 

High oleic acid  Low oleic acid  
Palm no. Progeny Oleic acid 

content (%) 
Palm no. Progeny Oleic acid 

content (%) 
0.306/319 PK 540 48.85 0.306/79 PK 540 39.03 
0.306/319 PK 540 48.85 0.306/76 PK 540 39.03 
0.337/249 PK 1254 48.90 0.337/214 PK 1201 37.90 

 

4.2.2 Chemicals 

Unless otherwise stated, general chemicals used in this study were purchased from Sigma (St. 

Louis, MO, USA), BDH (BDH Laboratory Supplies, Poole, England) and Merck (Merck KGaA, 

Darmstadt, Germany). Organic solvents were acquired from Fisher (Fisher Scientific, 

Loughborough, UK). Specific chemicals such as precast gels were procured from Bio-Rad (Bio-

Rad Laboratories, Inc., Hercules, CA), different ranges of Immobiline DryStrip from GE 

Healthcare (GE Healthcare Bio-Sciences AB, Uppsala, Sweden), Protease Inhibitor Cocktail 

Tablets from Roche (Roche Diagnostic, IN, USA), sequencing grade modified trypsin from 

Promega (Promega Corporation, WI, USA) and 8-plex iTRAQ reagents from Applied Biosystems 

(AB Sciex Pte. Ltd., Foster City, CA, USA). Double-distilled water was used in preparation for 

all general solutions. 

4.3 Methodology 

4.3.1 Chromoplast isolation and subsequent protein extraction 

The delipidation method was based on the method developed by Wang and co-workers (Wang 

et al., 2006) and described in detail in Chapter 3. Sliced mesocarps were homogenised in liquid 

nitrogen with a cold Waring blender (Blender B011, Dynamics Corporation, Greenwich, USA) 

at low speed for 10 s, followed by grinding with a standard ceramic mortar and pestle. The 

powdered mesocarps were then mixed with cold acetone containing 10% trichloroacetic acid 

and 1 mM dithiothreitol. The slurry was then centrifuged at 13,000 g for 10 min at 4°C (RA-

300 rotor, Kubota 7820, Kubota Corporation, Tokyo, Japan). The supernatant was discarded 

and the washing step was repeated once. Subsequently, cold 80% methanol containing 0.1 M 

ammonium acetate was added to the precipitate; mixed and centrifuged as before. After 

discarding the supernatant, the precipitated mesocarp pellet was washed with cold 80% 

acetone. The mixture was mixed well and centrifuged again at 13,000 g for 10 min at 4°C. The 

resulting pellet was air-dried.  
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The isolation method of chromoplasts was adapted from Jain, Fan and co-workers (Fan et al., 

2009; Jain et al., 2008) and described in detail in Chapter 3. Washed mesocarp pellet was 

transferred into a beaker containing cell wall digestive enzymes (2% w/v cellulase, 0.1% w/v 

pectinase, 0.6 M sorbitol, 0.1 M DTT, 5 mM 2-(4-morpholino)-ethane sulfonic acid (MES)-KOH, 

pH 5.5). The suspension was then incubated in an incubator shaker (Labnet 211DS, Labnet 

Instrument, Inc., NJ, USA) for 6 h at 37°C. After cell wall digestion, the mixture was sieved 

through two layers of Miracloth (Calbiochem, EMB Millipore Corporation, Billerica, MA) into 

a fresh beaker on ice to separate non-macerated plant materials from protoplasts. After that, 

the filtrate was centrifuged at 1750 g for 5 min at 4°C (RA-300 rotor, Kubota 7820, Kubota 

Corporation, Tokyo, Japan) to collect intact chromoplasts. The chromoplast pellet was gently 

re-suspended in the extraction buffer (0.7 M sucrose, 1 M Tris-HCl, pH 8.3, 5 M NaCl, 50 mM 

DTT, 1 mM EDTA containing a tablet of Roche protease inhibitors for every 50 mL of buffer). 

The mixture was agitated for 5 min and then sonicated for 15 min at 4°C to release the 

proteins. . An equal volume of fresh 50 mM, pH 8.0 Tris-saturated phenol was added to the 

mixture thereafter. The mixture was further agitated for 10 min just before centrifugation at 

15,000 g for 15 min at 4°C (RA-300 rotor, Kubota 7820) for phase separation. Following that, 

the upper phase was transferred to a new centrifuge tube while the bottom phase was 

discarded. Chromoplast proteins were precipitated by adding five volumes of cold ammonium 

acetate-saturated methanol and incubated at -20°C overnight before being centrifuged at 

15,000 g for 15 min at 4°C (RA-300 rotor, Kubota 7820) to obtain the protein pellet. The 

protein pellets were then rinsed with cold ammonium acetate-saturated methanol until a 

whitish colour was obtained for the pellet. This was followed by washing the pellet with cold 

80% acetone for three times. Proteins were precipitated after each wash by centrifuging at 

15,000 g for 5 min at 4°C (RA-300 rotor, Kubota 7820). At the end of the washing phase, the 

supernatant was carefully decanted before the chromoplast protein pellet was air-dried. 

Commercially available 2D Quant Kit (GE Healthcare Life Sciences, Uppsala, Sweden) was 

utilised to determine protein content in the samples. Bovine serum albumin provided with the 

kit was used as the protein calibration standard and each of the quantitation was performed 

in duplicates.  

4.3.2 One-dimensional (1D) gel electrophoresis 

1D SDS-PAGE is a complementary technique to strong cation exchange used to fractionate the 

chromoplast proteins in order to improve the detection of low abundance proteins. For this 
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purpose, the precipitated chromoplast proteins were dissolved in Laemlli buffer (62.5 mM 

Tris-HCl, pH 6.8, 2% SDS, 25% glycerol, 0.01% bromophenol blue, 0.005% β-mercaptoethanol) 

and denatured by heating at 95°C for 4 min. 50-100 µg protein was loaded into each lane on 

a 1.0 mm precast Mini-PROTEAN® TGX™ 4-20% or 12% polyacrylamide gel (Bio-Rad 

Laboratories Inc., Hercules, CA). Electrophoresis was conducted in a Bio-Rad mini-PROTEAN® 

Tetra Cell apparatus (Bio-Rad Laboratories Inc., Hercules, CA) at 200 V for 1 h. Following 

electrophoresis, the separated proteins were fixed for 30 min in a fixing solution (50% ethanol, 

10% acetic acid) and stained with an in-house prepared Colloidal Coomassie G-250. The gel 

was destained with Milli-Q water (H2O) until the background was clear before acquiring the 

gel image with a DLSR camera (Nikon D100, Nikon Corporation, Japan). The settings were ISO 

200, f16 for the aperture and shutter speed was 1/40th of a second. Image processing was 

done with the Analysis software (Soft Imaging System, Olympus Corporation). Comparative 

analysis of the protein bands were performed using the Phoretix 1D gel analysis software 

(TotalLab Ltd, Newcastle, UK).  

4.3.3 Two-dimensional gel electrophoresis (2DE) 

2DE was used to qualitatively evaluate the biological variations of the replicates in terms of 

overall number, relative intensities and resolution of protein spots obtained in addition to 

screening differentially expressed proteins among the replicates from low oleic acid and high 

oleic acid varieties. Dried protein pellet acquired after overnight precipitation was solubilised 

in rehydration buffer (7 M urea, 2 M thiourea, 4% CHAPS, 0.25% Pharmalyte and 0.4% DTT). 

The volume of rehydration buffer needed depended on the amount of proteins acquired. 

Sonication for about 15 min was required to assist the resolubilisation of the protein pellet. 

Any non-solubilised proteins after the sonication were removed by centrifugation. Protein 

quantitation was carried out prior to isoelectric focussing. For the first dimension isoelectric 

focusing, Bio-Rad ReadyStrip™ IPG strip, 11 cm, pH 3-10 (Bio-Rad Laboratories Inc., Hercules, 

CA) were rehydrated with 200 µL of rehydration buffer containing 200 µg proteins overnight. 

For comparison between the low oleic acid and high oleic acid varieties, Bio-Rad ReadyStrip™ 

IPG strip, 11 cm, pH 3-11 were rehydrated with 200 µL of rehydration buffer containing about 

200 µg proteins overnight. IEF was performed according to the following focusing parameters 

(Table 4.2) set on the Bio-Rad Protean IEF Cell (Bio-Rad Laboratories Inc., Hercules, CA) at 20°C.  

 



87 
 

Table 4.2. Parameters used for isoelectric focusing. 

Phase Volt (V) mA (Max) Time (hours) Volt hours 
1 100 20 3 300 
2 500 20 2 1000 
3 1000 5 2 2000 
4 8000 5 14 84000 

 

For the second dimension, a precast 4-20% gradient SDS-PAGE gel (Bio-Rad Laboratories Inc., 

Hercules, CA) was used. After the rehydration, proteins in the IPG strip were reduced with 1% 

DTT for 15 min followed by alkylation with 4% iodoacetamide for another 15 min before 

transferring to the gel (second dimension) for separation.   

4.3.4 Protein digestion (in-gel and in-solution) and fractionation 

In-gel digestion – Each lane representing different biological replicates from the 1D SDS-PAGE 

separation was excised into eight uniform segments (5.0 x 7.5 mm per segment) denoted as 

S1, S2, S3, until S8. The gel segments were sliced further into even size plugs before destaining 

in 200 mM ammonium bicarbonate in 50% acetonitrile for 1 h at 37°C. Proteins were reduced 

and alkylated with thiol-free 50 mM tris(2-carboxyethyl)phosphine and 150 mM 

iodoacetamide, respectively. An ionic detergent, sodium deoxycholate (1% w/v) was added to 

the dehydrated gel plugs prior to protein digestion with modified sequencing grade trypsin 

(Promega, Madison, WI, USA) in 50 mM NH4HCO3 for 16 h at 37°C. The solubility of the 

proteins was increased in the presence of 4 µL of sodium deoxycholate to enhance 

trypsinisation (50:1 µg) (Koehn et al., 2011; Lin et al., 2008; Proc et al., 2010). The resulting 

peptides were extracted with increasing concentrations of acetonitrile from 10% to 80% and 

pooled. 0.5% formic acid was added to the peptide extract before the precipitated sodium 

deoxycholate was removed by centrifugation at 14, 000 g for 15 min at ambient temperature. 

The pooled peptide extract was then dried in a centrifugal evaporator (CentriVap 

Concentrator, Labconco, MO, USA). In-solution digestion – About 50 µg of TCA/acetone-

precipitated chromoplast proteins were re-suspended in 0.1 M ammonium bicarbonate 

before reduction and alkylation using 50 mM tris(2-carboxyethyl)phosphine and 150 mM 

iodoacetamide, respectively. As with the in-gel protein digestion, 4 µL of sodium deoxycholate 

(1% w/v) was added. After digestion with 1 µg of trypsin at 37°C for 16 h and removal of 

sodium deoxycholate through acidification with 0.5% formic acid, the peptide solution was 

dried in a centrifugal evaporator (CentriVap Concentrator). Peptides clean-up – The dried 

labelled peptide pellet was resuspended in 100 µL of 0.1% formic acid. Acetonitrile, methanol 
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and 0.1% formic acid-conditioned Empore solid phase extraction disks (3M Company, MN, CA) 

were added to the peptide solution and incubated at ambient temperature with slight 

agitation for 4 h. The bound peptides on the C18 membrane disks were eluted with 50% ACN 

in 0.1% FA for 2.5 h. SCX fractionation – The peptide eluent was dried with a centrifugal 

evaporator (CentriVap Concentrator) and resuspended in 50 µL of 0.1% FA. The resuspended 

peptides were then fractionated using a 5 µm strong cation exchange column packed with 

Spherisorb (BioX-SCX, 500 µm ID, 15 mm). Elution was done with 1%, 5%, 10%, 15%, 20%, 25%, 

30%, 40%, 50%, 80% and 100% of 2 M ammonium formate buffer containing 2% ACN, pH 3.5. 

Each of the collected fractions was then dried with a centrifugal evaporator (CentriVap 

Concentrator).  

4.3.5 Quantitation using iTRAQ isobaric tags 

Labelling of the peptides with six different isobaric tags was performed using commercial 8-

plex iTRAQ reagents (AB Sciex Pte. Ltd., CA, USA) (Table 4.3, Figure 4.2). Precipitated proteins 

from six different biological replicates of low oleic acid and high oleic acid varieties containing 

200 µg proteins each were resuspended in 300 µL 0.5 M triethylammonium bicarbonate, pH 

8 buffer prior to reduction and alkylation with 50 mM tris(2-carboxyethyl)phosphine and 150 

mM iodoacetamide, respectively. After 16 h of digestion with modified sequencing grade 

trypsin (Promega, Madison, WI, USA) in a 1:40 µg trypsin:protein ratio, the peptides solution 

was dried using a centrifugal evaporator (CentriVap Concentrator) and resuspended in 50 µL 

of 0.5 M triethylammonium bicarbonate, pH 8. Each of the 113, 114, 115, 116, 117 and 118 

iTRAQ reagents were mixed with 50 µL of isopropanol and added to each of the digests. The 

mixtures were incubated at room temperature for 2 h for the labelling process. The labelling 

reaction was terminated with the addition of 100 µL of mass spectrometry grade water and 

incubated further for another 30 min at ambient temperature. All of the individually labelled 

protein digests were then pooled together and dried. The dried labelled peptides were then 

resuspended in 100 µL of mass spectrometry grade water and washed for another three times 

before drying with a centrifugal evaporator (CentriVap Concentrator). The dried labelled 

peptide pellet was resuspended in 200 µL of 0.1% formic acid. Acetonitrile, methanol and 0.1% 

formic acid-conditioned Empore solid phase extraction disks (3M Company, MN, CA) were 

added to the peptide solution and incubated at ambient temperature with slight agitation for 

4 h. The bound peptides on the C18 membrane disks were eluted with 50% ACN in 0.1% FA 

for 2.5 h. 
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Table 4.3. Experimental design for the iTRAQ labelling. a and b represent the low oleic acid 
and high oleic acid biological replicates, respectively. 

  

 
Figure 4.2. Workflow of peptides labelling with 8-plex iTRAQ tags 

The eluent was dried with a centrifugal evaporator (CentriVap Concentrator) and resuspended 

in 30 µL of 0.1% FA. The resuspended labelled peptides were then fractionated using a strong 

cation exchange column (Phenomenex SCX cartridge, 4 x 2 mm). Elution was performed with 

3%, 6%, 10%, 15%, 20%, 25%, 40%, 80% and 100% of 2 M ammonium formate buffer 

containing 2% ACN, pH 3.5. Each of the collected fractions was then dried with centrifugal 

evaporator (CentriVap Concentrator).  

4.3.6 Liquid chromatography-tandem mass spectrometry (LC-MS/MS) 

Separation and identification of the protein digests was conducted with a nano-Advance 

Splitless nano-liquid chromatography (nanoLC) system (Bruker Daltonik GmbH, Bremen, 

Germany) coupled to an amaZon speed ETD ion trap mass spectrometer (Bruker Daltonik). 

Replicate iTRAQ 
reagents 

Replicate iTRAQ 
reagents 

Replicate iTRAQ 
reagents 

LO1a + HO1b 113 + 116 LO1a + HO2b 113 + 117 LO1a + HO3b 113 + 118 
LO2 a+ HO1b 114 + 116 LO2a + HO2b 114 + 117 LO2a + HO3b 114 + 118 
LO3 a+ HO1b 115 + 116 LO3a + HO2b 115 + 117 LO3a + HO3b 115 + 118 
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Before loading onto the nanoLC system, the tryptic digests were reconstituted in 30 µL of 0.1% 

FA and 5% ACN. 5 µL was injected into the nanoLC system for peptide separation with an 

Intensity C18P (1.8µ, 0.1 x 300 mm) (Bruker-Michrom Bioresources, Inc., Auburn, CA, USA) 

reverse-phase columns equilibrated with 98% solvent A (2% ACN, 0.1% FA) and 2% solvent B 

(98% ACN, 0.1% FA). Gradient of 2-45% solvent B was employed to elute the bound peptides 

during 45 min at a flow rate of 400 nL min-1. The eluted peptides injected by electrospray into 

the ion trap mass spectrometer with a spray voltage of 1300 V and a capillary temperature of 

150°C. Precursor survey scan was acquired with mass ranged from m/z 310-1400, the 

resolution was set to ‘Enhanced Resolution’ and the scanning speed was 8100 u per sec. 

Tandem MS condition consisted of ‘Xtreme Resolution’ scan ranged from m/z 100-3000. Up 

to three of the most intense multiple charged ions (1+, 2+, and 3+) per scan were fragmented 

(collision-induced dissociation) in the linear ion trap to obtain tandem mass spectra. All 

tandem mass spectra were collected using 1.00 V of fragmentation amplitude, an isolation 

window of 4.0 u and scanning speed of 52,000 u per sec. 

For quantitation analysis, iTRAQ labelled strong cation exchange-fractionated peptides were 

eluted from an Intensity C18P column (Bruker-Michrom Bioresources) using a gradient of 2-

65% solvent B in 60 min at a flow rate of 800 nL min-1. The peptide ions were electrosprayed 

into the Impact HD quadrupole time-of-flight mass spectrometer (Bruker Daltonik) with a 

spray voltage of 1300 V and a capillary temperature of 150°C. Precursor survey scan was 

acquired with a mass range of from m/z 350-1200. MS/MS settings consisted of scan ranged 

from m/z 50-2200. Up to 10 of the most intense multiple charged ions (1+, 2+, and 3+) per 

scan were fragmented via collision-induced dissociation to generate tandem mass spectra. 

4.3.7 Data acquisition and analysis 

Data acquisition (in positive mode) was executed with ESI Compass 1.4 for amaZon 

(trapControl Version 7.1) (Bruker Daltonik). The mass spectrometer was externally calibrated 

using Electrospray Tuning Mix Positive (Agilent Technologies, Inc., Santa Clara, CA, USA). 

Analyses of the data were performed using the Compass DataAnalysis (Version 4.1 SR1) 

(Bruker Daltonik). Peak lists were generated using the DataAnalysis Script Editor. These peak 

lists in eXtensible Markup Language (XML) format were then sent to Bruker ProteinScape data 

management software (Version 3.1) (Bruker Daltonik) for protein identification. The protein 

identifications were executed with tandem mass spectrometry peak lists using Mascot 

software (Matrix Science, London, UK). The peptide sequences were searched against 
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Arabidopsis thaliana, Elaeis sp., Zea mays, Brassica oryza plant taxonomies (308,973 

sequences as on 24th December 2013) in the Uniprot protein database and the protein list was 

compiled using the Protein Extractor module in ProteinScape. Mass tolerances for peptide and 

fragment ion were set to 100 ppm and 0.6 Da, respectively; and the instrument setting was 

specified as ‘ESI trap’. Semi-trypsin was designated as the protease with two missing cleavages 

allowed. Carbamidomethylation on cysteine was set as the fixed modification while oxidation 

of methionine and deamidation of asparagine and glutamine were searched as variable 

modifications. Proteins were accepted if they had at least one top ranking peptide (Rank 1) 

with a Mascot ion score of more than 50.0, indicating identity or extensive homology (p < 

0.05). All database searches were also performed on the ‘decoy’ database with 2% false 

discovery rate (FDR). The decoy database consisted of randomised sequences of the searched 

taxonomies. Individual identified protein lists were compiled using the Protein Extractor 

module in ProteinScape. 

4.3.8 iTRAQ quantitation analysis 

Data acquisitions were performed using Compass for otofSeries 1.5 (for otofControl Version 

3.2) (Bruker Daltonik). The mass spectrometer was externally calibrated using Electrospray 

Tuning Mix Positive (Agilent Technologies, Inc., Santa Clara, CA, USA). Analyses of the data 

were performed using the Compass DataAnalysis (Version 4.1 SR1) (Bruker Daltonik). Peak 

lists were generated using the DataAnalysis Script Editor. These XML format peak lists were 

then sent to ProteinScape data management software (Version 3.1) (Bruker Daltonik). For 

protein identification, the peptide sequences were searched against Arabidopsis thaliana, 

Elaeis sp., Zea mays, Brassica oryza plant taxonomies (308,973 sequence entries as on 24th 

December 2013) in the Uniprot protein database. Peptide and fragment ion mass tolerances 

were set to 20 ppm and 0.1 Da, respectively; and the instrument setting was specified as ‘ESI-

QUAD-TOF’. Semi-trypsin was designated as the protease with two missed cleavage allowed. 

Carbamidomethylation on cysteine and iTRAQ8plex (on lysine and N-terminal) were set as the 

fixed modifications while oxidation of methionine, deamidation (of asparagine and glutamine) 

and iTRAQ8plex of tyrosine were set as variable modifications. Proteins were accepted if they 

had at least one top ranking peptide (Rank 1) with a Mascot ion score of more than 50.0, 

indicating identity or extensive homology (p < 0.05). All database searches were also 

performed on the ‘decoy’ database. Individual identified protein list of each strong cation 

exchange fractions and two iTRAQ experiments were compiled using the Protein Extractor 
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module in ProteinScape. For relative protein quantitation analysis of identified iTRAQ labelled 

peptides with in-house Mascot server, the XML format peak lists of all the strong cation 

exchange fractions were compiled into a single Mascot Generic Format file using the “Export 

MGF” functionality in ProteinScape. The quantitation analysis was performed using Mascot 

algorithm based on the Reporter Protocol (Matrix Science, London, UK). The iTRAQ 

quantitation method contained the mass of the reporter ions used, their ratios and the specific 

modifications for iTRAQ (as described above). Rosner’s method were used to identify outliers 

and critical values for a significance level (p-value) 0.05 were used. At least two peptides were 

used for the quantitation of their abundance. 
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4.4 Results  

4.4.1 The extent of biological variations between replicates 

A two-dimensional gel electrophoresis (2DE) approach was used to analyse the protein profile 

of three biological replicates from the low oleic acid and high oleic acid varieties. The effects 

of 2-hydroxyethyl disulfide as a destreaking reagent, non-linear IPG strip and different pH 

ranges of IPG strip were first evaluated to enhance the effectiveness of this technique in term 

of resolution and reproducibility. Chromoplast proteins for both varieties were separated on 

a linear pH 3-10 IPG strip without the presence of 2-hydroxyethyl disulfide (Figure 4.3). The 

appearance of smeared protein spots and streaking was apparent in those gels, especially in 

the basic region.  

Figure 4.4 shows the effects of a non-linear IPG strip and addition of 2-hydroxyethyl disulfide 

on the protein spot resolution and quality of the gel. Overall, there was better resolution of 

proteins in the basic region of the gel. Presence of 2-hydroxyethyl disulfide also reduced the 

horizontal streaking in the gel. Relatively, the number of proteins spots visualised in the 2DE 

gel of chromoplast proteins using the combination of a 2-hydroxyethyl disulfide and non-linear 

IPG strip was higher.  

Most of the key fatty acid biosynthetic enzymes have basic isoelectric points, causing them to 

be focussed in the basic region of a 2DE gel. Increased protein load, length of the IPG strip and 

even a narrower pH gradient could aggravate the streaking effect of basic proteins during the 

focussing step. Migration of reducing agent, dithiothreitol from the basic part of the IPG strip 

during focussing and non-specific oxidation of basic proteins poses other common problems 

in 2DE technique, resulting in poor resolution and reproducibility of protein spots. 2-

hydroxyethyl disulfide reduces the formation of inter- and intramolecular disulfide bonds 

between proteins that primarily cause the streaking by maintaining the protein thiol groups 

in an oxidised state (Acin, Rayo, Guerrero, & Quero, 2009; Depagne & Chevalier, 2012; 

Lamberti et al., 2007). Therefore, it acted as a “destreaking” reagent to eliminate most of the 

streaking from the gel as observed in Figure 4.4. In contrast, resolution of proteins in the acidic 

region of all the gels did not change much compared to those in the basic region, even with 

the addition of 2-hydroxyehyl disulfide. Since the sulfhydryl groups of cysteines in proteins are 

stabilised as mixed disulfides at low pH, the reoxidation of thiol groups is minimised. 
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Figure 4.3. The biological replicates of low oleic acid (LO1-3) and high oleic acid (HO1-3) 
varieties. The 11 cm linear IPG strip, pH 3-10 was rehydrated with 200 µg of proteins. Proteins 
were separated with a precast 4-20% gradient SDS-PAGE gel. Percentage (%) indicates the 
amount of oleic acid present in each replicate. 
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Figure 4.4. The biological replicates of low oleic acid (LO1-3) and high oleic acid (HO1-3) 
varieties. 11 cm non-linear IPG strip, pH 3-11 was rehydrated with 200 µg of proteins. Proteins 
were separated with a precast 4-20% gradient SDS-PAGE gel. 2-hydroxyethyl disulfide was 
added to all samples prior to the first dimension separation. Percentage (%) indicates the 
amount of oleic acid present in each replicate. 
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Non-linear IPG strips were used to enable the proteins to be focussed more evenly along the 

length of the IPG. Hence the resolution of the proteins in the region of pH 5-7 (in a pH 3-11 

IPG strip) was improved (Figure 4.4) compared to a linear IPG strip (Figure 4.3). With the 

execption of acetyl-CoA carboxylase beta subunit (isoelectric point, pI of 5.6) and β-ketoacyl-

ACP reductase (pI of 5.1), most of the fatty acid biosynthetic enzymes have a pI between 6.4 

and 10.0. Therefore, a non-linear IPG strip proved to be ideal for these proteins. 

In addition to using an additional reducing agent (2-hydroxyethyl disulphide) and non-linear 

IPG strip, a narrower basic range of pH (for the IPG strip) was employed to ‘amplify’ the low-

abundance fatty acid biosynthetic enzymes of the oil palm chromoplast. Figure 4.5 shows the 

protein profiles of the chromoplast proteins from low oleic acid and high oleic acid varieties 

focussed using pH 7-11 non-linear IPG strips. Sixty nine protein spots from the gel for the low 

oleic acid variety (Figure 4.6) were digested and analysed mass spectrometrically to determine 

their protein identities (data not shown), in a search for the key enzymes involved in fatty acid 

biosynthesis. However, none of the proteins identified were associated with fatty acid 

biosynthesis. These results indicated that there was likely to be insufficient detection of low-

abundance fatty acid biosynthetic enzymes using these approaches. The narrow range of the 

IPG strip also caused extremely alkaline proteins to streak as demonstrated in Figure 4.5. The 

2DE gel profiles (Figure 4.5) suggested that the fatty acid biosynthetic proteins might be 

present in very low-abundance and could not be stained with colloidal Coomassie Brilliant 

Blue. Hence the same gel was subsequently stained with silver nitrate to enhance the 

detection of low-abundance proteins (around nanogram range). The silver stain revealed 

(Figure 4.7) many proteins undetectable using Coomassie Brilliant Blue stain and that possibly 

may be the reason why none of the sixty nine protein spots (as detected with Coomassie 

Brilliant Blue) analysed contained fatty acid biosynthetic proteins.  

A comparative profile analysis was performed on eleven reference protein bands separated 

with one-dimensional SDS-PAGE using Phoretix 1D analysis software (Figure 4.8). The analysis 

revealed that the intensities of the reference protein bands were similar across the low oleic 

acid and high oleic acid replicates (Figure 4.9 and Figure 4.10). These findings showed that 

expression profiles for major proteins in bands 1 to 11 from the replicates were similar. Thus, 

this indicated that the variation in proteins between the two palm varieties was minimal. A 

more in-depth evaluation of the replicates of low oleic acid and high oleic acid varieties was 
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Figure 4.5. The biological replicates of low oleic acid (LO1-3) and high oleic acid (HO1-3) 
varieties. The 11 cm non-linear IPG strip, pH 7-11 was rehydrated with 200 µg of proteins. 
Proteins were separated with a precast 4-20% gradient SDS-PAGE gel. 2-hdryoxyethyl disulfide 
was added to all samples prior to the first dimension separation. Percentage (%) indicated the 
amount of oleic acid present in each replicate. 
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Figure 4.6. Spots excised from 2DE gel for low oleic acid variety. The 11 cm non-linear IPG 
strip, pH 7-11 was rehydrated with 200 µg of proteins. Proteins were separated with a precast 
4-20% gradient SDS-PAGE gel. 

 

Figure 4.7. Utilisation of silver stain (right) revealed more proteins previously undetectable 
with Coomassie Brilliant Blue (CBB). The 11 cm non-linear IPG strip, pH 7-11 was rehydrated 
with 200 µg of proteins. Proteins were separated with a precast 4-20% gradient SDS-PAGE gel. 
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Figure 4.8. The reference protein bands used for comparative profile analysis ( ). LO1, LO2 
and LO3 represented low oleic acid replicates. HO1, HO2 and HO3 represented high oleic acid 
replicates. The gel bands were normalised using the Retardation factor (Rf) of the protein 
bands with Phoretix 1D. The normalisation is to minimise the effect of non-uniform migration 
distance in protein band profile comparisons. 
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Figure 4.9. Qualitative intensity comparison of the reference protein bands. 11 individual 
protein band patterns low oleic acid (LO) replicates were compared using Phoretix 1D.  
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Figure 4.10. Qualitative intensity comparison of the reference protein bands. 11 individual 
protein band patterns from each high oleic acid (HO) replicates were compared using Phoretix 
1D. 
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Table 4.4. Comparison of protein and peptide yields for low oleic acid (LO) and high oleic 
acid (HO) replicates. a and b indicated the two different plantation areas in which the sampling 
was made. 

Low oleic acid variety High oleic acid variety 

Replicate Proteins Peptides Replicate Proteins Peptides 

LO1 72a 245 HO1 66a 216 

LO2 59a 173 HO2 50b 143 

LO3 55b 176 HO3 62b 175 

 

performed using a complementary liquid-chromatography tandem mass spectrometry (LC-

MS/MS) approach to further assess if there were any differences between those replicates. 

Table 4.4 compares the number of proteins and peptides detected for each of the replicates 

from two different palm varieties. The results demonstrate that the number of identified 

proteins for LO1 (low oleic acid replicate 1) was slightly higher compared to the other two 

replicates. Replicate 1 for high oleic acid variety (HO1) had the highest number of proteins 

identified (66). These slight biological variations in the number of proteins identified could be 

caused by the different sampling areas, harvesting time of the oil palm fruits or random 

chance. Figure 4.4 demonstrated that there were some obvious differences in the expression 

of proteins from the two different varieties of oil palm tree and the same conclusion was made 

based on results obtained from mass spectrometric analysis. Only 48 proteins (193 peptides) 

were identified in both the low oleic acid and high oleic acid varieties (compiled from three 

biological replicates). The low oleic acid variety had 58 unique proteins (148 peptides) while 

the high oleic acid variety had 50 unique proteins (110 peptides). There were clear protein 

presence differences between the low oleic acid and high oleic acid varieties. These results 

revealed that there were definitely biological differences to be discovered, and that the 

hypothesis of differentially expressed fatty acid biosynthetic enzymes was worthy of further 

exploration. 

4.4.2 GeLC-MS/MS to detect the fatty acid biosynthetic enzymes  

SDS-PAGE followed by in-gel digestion, termed GeLC-MS/MS, is currently a widely used 

approach in proteomics. GeLC-MS/MS also offers the benefit of fractionation for complex 

protein mixtures as different gel segments are digested prior to LC-MS/MS. Prior to utilising 

GeLC-MS/MS, the percentage of polyacrylamide gel used to separate the chromoplast 
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proteins from low oleic acid and high oleic acid varieties was optimised. As presented in Figure 

4.11, protein bands were well resolved on the 4-20% gradient SDS-PAGE gel and qualitative 

observation indicated that the overall protein profiles for the biological replicates from both 

varieties were similar. Protein loads for the replicates were increased 2-fold to 100 µg but 

major differences in terms of protein profile were still not apparent (Figure 4.11). Instead, the 

resolution of the protein bands decreased with the increment in protein load. Subsequently, 

the gel lane ranging from 10 kDa to about 100 kDa (indicated with red dotted line) was excised 

into eight similar segments and was in-gel digested. Sixty eight non-redundant proteins were 

identified from both the low oleic acid and high oleic acid replicates. Neither acetyl-CoA 

carboxylase nor β-ketoacyl-ACP synthase were detected at this stage. Other fatty acid 

biosynthetic enzymes identified were β-ketoacyl-ACP reductase, β-hydroxyacyl-ACP 

dehydrogenase, 3-enoyl-ACP reductase, β-ketoacyl-ACP synthase and stearoyl-ACP 

desaturase. 

A single percentage SDS-PAGE gel of 12% was used to improve the number of identified 

proteins associated with fatty acid biosynthesis. Figure 4.12 showed that the overall protein 

profiles of the biological replicates from both varieties were similar, just as visualised on the 

4-20% gradient SDS-PAGE gel. The resolution of the protein bands was inferior because the 

12% SDS-PAGE gel was not a gradient gel. The same GeLC-MS/MS strategy was applied on the 

gel. Database search results revealed that the number of identified proteins with Mascot score 

of more than 60 from both low oleic acid and high oleic acid replicates was elevated to almost 

2-fold or 132 non-redundant proteins (Figure 4.13). The utilisation of a single-percentage 12% 

SDS-PAGE gel for the separation of proteins between 10 kDa to about 100 kDa also resulted 

in a significant increase (31%) in the number of the identified peptides. GeLC-MS/MS of 12% 

SDS-PAGE gel generated 228 more peptides with a Mascot score of more than 35 (Figure 4.13). 

Furthermore, in contrast to the 4-20% gradient SDS-PAGE gel, β-ketoacyl-ACP synthase was 

successfully detected from the excised gel segments (Figure 4.12) but acetyl-CoA carboxylase 

remained undetected. Table 4.5 reveals that chromoplast proteins separated on a single-

percentage 12% SDS-PAGE yielded significantly better outcomes in terms of number of 

peptides and sequence coverage for the enzymes involved in fatty acid biosynthesis.  
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50 µg 100 µg 

Figure 4.11. The SDS-PAGE gel of the low oleic acid and high oleic acid biological replicates. 
50 µg (A) and 100 µg (B) of proteins were loaded in each lane. Proteins were separated with a 
precast 4-20% gradient SDS-PAGE gel. Red dotted lines indicated the region excised into eight 
segments for GeLC-MS/MS. 

 

 
Figure 4.12. The 12% SDS-PAGE gel of low oleic acid and high oleic acid biological replicates. 
100 µg of proteins was loaded in each lane. Proteins were separated with a precast 12% SDS-
PAGE gel. The location of fatty acid biosynthetic enzymes in the gel (as determined 
experimentally) were indicated; A1. acetyl-CoA carboxylase; A2. acetyl-CoA carboxylase 
subunit beta (theoretical); B. β-ketoacyl-ACP reductase; C. β-hydroxyacyl-ACP dehydrogenase; 
D. 3-enoyl-ACP reductase; E. β-ketoacyl-ACP synthase; F. stearoyl-ACP desaturase. 
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Figure 4.13. Total number of proteins and peptides observed with a Mascot score of more 
than 60 and 35, respectively. The results were obtained with GeLC-MS/MS on 12% SDS-PAGE 
and 4-20% gradient SDS-PAGE gels.   

 
Table 4.5. Peptides and sequence coverage for each fatty acid biosynthetic enzymes, as 
compiled from low oleic acid and high oleic acid biological replicates. These results were 
obtained from GeLC-MS/MS on single-percentage 12% and 4-20% gradient SDS-PAGE gels. 

 
 
Enzymes 

Gel percentages 
Continuous 12% Gradient 4-20% 

Number of 
peptides 

Sequence 
coverage (%) 

Number of 
peptides 

Sequence 
coverage (%) 

β-ketoacyl-ACP 
reductase 12 61.6 8 37.6 

β-hydroxyacyl-
ACP 
dehydrogenase 

10 35.0 7 22.3 

3-enoyl-ACP 
reductase 23 58.3 15 43.1 

β-ketoacyl-ACP 
synthase 2 16.2 0 0 

Stearoyl-ACP 
desaturase 2 22.3 1 7.6 
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Consequently, GeLC-MS/MS analyses on the biological replicates for low oleic acid and high 

oleic acid separated with a 12% SDS-PAGE gel were performed to observe the number of 

peptides detectable from each variety. Figure 4.14 presents the number of non-redundant 

unique peptides and sequence coverage corresponding to the fatty acid biosynthetic enzymes, 

compiled from three biological replicates for each variety. The mass spectrometric analysis 

revealed that stearoyl-ACP desaturase (a key enzyme in oleic acid biosynthesis) from high oleic 

acid variety had less number of detected peptides (2) compared to low oleic acid (4). The 

difference of sequence coverage of stearoyl-ACP desaturase between these two varieties was 

2.3%, indicating longer peptides were detected for the high oleic acid variety. β-ketoacyl-ACP 

reductase from low oleic acid variety had additional coverage of 10.6% in its protein sequence. 

This corresponded to a higher number of detected peptides identified to β-ketoacyl-ACP 

reductase in the low oleic acid variety. Other fatty acid biosynthetic enzymes from the two 

varieties had similar number of detected peptides and percentages of the sequence 

coverages.  Table 4.6 shows the fatty acid biosynthetic unique peptide sequences compiled 

from low oleic acid and high oleic acid biological replicates.  

Enzymes involved in fatty acid biosynthesis have theoretical molecular weights ranging from 

15 kDa to 60 kDa, with the exception of the carboxyl transferase subunit alpha of acetyl-CoA 

carboxylase (81 kDa). Different percentage SDS-PAGE gels were tested in the search for the 

fatty acid biosynthetic enzymes. Gradient gels are effective in separating proteins with a broad 

range of molecular weights, especially high molecular weight proteins. The reason is that the 

top part of the gel contains larger pore sizes, therefore allowing resolution of large proteins. 

However, the decreasing pore sizes towards the bottom of a 4-20% SDS-PAGE gel prevent 

small proteins from being separated effectively. Hence, broad range gradient gels such as the 

4-20% are more suited for global evaluation of protein profile and typically, give better protein 

band resolution. β-ketoacyl-ACP synthase has a theoretical molecular weight of 15.7 kDa and 

is likely present in low-abundance. The same gel segment of 4-20% gradient SDS-PAGE 

contained other higher-abundance proteins, thus likely masking β-ketoacyl-ACP synthase so 

that it was not detected mass spectrometrically. Indeed, low-abundance proteins analysed 

with an electrospray ionisation-based mass spectrometer system have less chance to get 

ionised compared to high-abundance proteins if present in the same gel segment (Wang, Xie, 

Young, & Li, 2009). 
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Figure 4.14. Number of unique peptides and sequence coverage (SC) per fatty acid 
biosynthetic enzyme obtained through GeLC-MS/MS. The results were compiled from three 
biological replicates for each low oleic acid (LO) and high oleic acid (HO) variety. * denotes the 
key enzyme in oleic acid biosynthesis. 
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Table 4.6. Unique peptides detected with GeLC-MS/MS from low oleic acid (LO) and high 
oleic acid (HO) varieties that matched to the respective fatty acid biosynthetic enzymes. 
Peptides not detected corresponding to LO or HO are denoted with (x). 

Enzyme Accession LO HO Unique peptide sequence 
β-ketoacyl-ACP reductase G8FGI6  x AGVIGFTK 

x  AIALALGK 
 x EIEASGGQAIIIFFGDISKEDDVESMIK 
  IAADAWGTVDILVNNAGITR 
  IINIASVVGLTGNAGQANYSASK 
  ILQTIPLGR 
  VLINYATSTEEAEEVSK 
x  NINVNAVAPGFIASPMTAQLGEDVEKK 

β-hydroxyacyl-ACP 
dehydrogenase 

G8FGF9 x  RIPPFPTVMDINQIR 
  TEEEVPIEK 
  ENFFFAGIDK 
  FPFLLVDR 
 x FRKPVIAGDTLVMR 
  IPPFPTVMDINQIR 
  VIEYQPGVTAVGIK 

    KPVIAGDTLVMR 
3-enoyl-ACP reductase H6TNL1   AALESDTMVLAFEAGR 

  GVVSGLPIDLR 
  GYLAAISASSYSFVSLLK 
  HFLPIMNPGGASISLTYIASER 
  MIEYSYANAPLQK 
  NDFGSIDILVHSLANGPEVTKPLLETSR 
  VYPLDAVYDTPEDVPDDVR 
  AFVAGVADDNGYGWAIAK 
 x GKFDESR 
  KGYLAAISASSYSFVSLLK 
  RLPNGSLMEIIK 
x  TIPGYGGGMSSAK 
  VNTISAGPLGSR 
  YAGASNWTVK 

β-ketoacyl-ACP synthase G8FGI5   QLALSDDTPVTGESK 
x  VAKPETVQK 

Stearoyl-ACP desaturase C325I9   ATFISHGNTAR 
  DYADILEFLINR 
 x HGDLLNK 
 x IPFSWIYGR 
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Figure 4.15. Heteromeric form of acetyl-CoA carboxylase in plant. Biotin-carboxyl carrier 
protein (BCCP), biotin carboxylase (BC), carboxyltransferase (CT) (Li-Beisson et al., 2013). 

A single percentage 12% SDS-PAGE gel enabled β-ketoacyl-ACP synthase to be detected mass 

spectrometrically. Optimal protein separation in a single percentage gel occurs in the lower 

half of the gel. In addition, a continuous percentage gel is able to separate proteins that are 

close in molecular weights, as in the case of fatty acid biosynthetic enzymes. The advantage 

of a single-percentage gel in separating proteins with adjacent molecular weights was clearly 

demonstrated in this study as more peptides corresponding to fatty acid biosynthesis were 

detected, resulting in higher sequence coverage of the matched enzymes (Table 4.5). The 

GeLC-MS/MS analysis revealed that all these enzymes were detected in the gel segments 

corresponding to their theoretical molecular weights (Figure 4.12), except acetyl-CoA 

carboxylase. Acetyl-CoA carboxylase remained undetectable with the GeLC-MS/MS approach. 

The plant acetyl-CoA carboxylase is composed of a biotin carboxyl carrier protein, biotin 

carboxylase and carboxyltransferase (Figure 4.15). As mentioned earlier, only the 

carboxyltransferase subunit alpha has a high molecular weight (81 kDa), while the biotin 

carboxylase and biotin carboxyl carrier protein have molecular weights of 53 kDa and 21 kDa, 

respectively (Cronan Jr & Waldrop, 2002; Sasaki & Nagano, 2004a). Therefore, these two 

subunits of acetyl-CoA carboxylase were expected to be detected since the analysed gel 

segments ranged from 10 kDa to 100 kDa. This particular enzyme could have been expressed 

in a very low amount, in which case a complementary but much more sensitive approach to 

detect it was needed. Another possible reason this heteromeric enzyme was not detected 

could be that post-translational modifications had altered the molecular weight of the 

enzymes (Halligan et al., 2004; Podkowinski & Tworak, 2011), giving it a higher molecular 

weight, beyond the analysed molecular weight range. 
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4.4.3 Offline two-dimensional liquid chromatography (2DLC)-tandem mass spectrometry 

(MS/MS) to enhance the detection of fatty acid biosynthetic enzymes 

A non-gel based approach in analysing the expression of fatty acid biosynthetic enzymes 

presented a potential alternative to a gel-based approach. Essentially, chromoplast peptides 

from different biological replicates of low oleic acid and high oleic acid varieties were 

fractionated using a strong cation exchange column before their subsequent separation with 

a reverse-phase column for mass spectrometric characterisation. Offline 2DLC-MS/MS has 

been proven to be a successful strategy to maximise the performance of a reverse-phase LC-

MS/MS in other studies (Wang et al., 2009; Yun et al., 2011).  

In order to determine the suitable fractionation range to capture all the fatty acid biosynthetic 

enzymes, different fractionation ranges were attempted (Table 4.7). Figure 4.16 shows an 

important trend on the effect of different fractionation ranges on the number of identified 

peptides and proteins. The number of peptides increased from 114 peptides (1st fractionation 

range) and 217 peptides (2nd fractionation range) to 497 peptides identified using the 3rd 

fractionation range (Figure 4.16). More peptides with a Mascot score above 35 were obtained 

using the 3rd fractionation range. A rise in the number of total proteins with a Mascot score of 

more than 60 with the 2nd and 3rd fractionation range was also observed compared to the 1st 

fractionation range (Figure 4.16).   

Table 4.8 summarises the number of peptides related to fatty acid biosynthesis eluted with 

the tested fractionation ranges. Most of the fatty acid biosynthetic peptides eluted between 

1% and 25%. The peptides eluted later (30-80%) were mostly the same peptides that had 

already eluted by 25%. Furthermore, the previously undetected β-ketoacyl-ACP synthase 

peptides (using the 1st and 2nd fractionation ranges) were successfully eluted using the 3rd 

fractionation range. Peptides for stearoyl-ACP desaturase were also eluted earlier in the 1% 

and 5% fractions (with the 3rd fractionation range). The successful detection of these two 

enzymes was very significant in terms of being able to evaluate the potential expression 

differences between low oleic acid and high oleic acid varieties. Stearoyl-ACP desaturase is 

the key enzyme in the conversion of saturated fatty acids (stearic acid) to unsaturated fatty 

acids (oleic acid).  
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Table 4.7. The three strong cation exchange fractionation ranges used in this study. The 
percentage (%) indicates the concentration of ammonium formate used. 

 

 

 

 

 

Figure 4.16. Total number of proteins and peptides observed with a Mascot score of more 
than 60 and 35, respectively. The results were obtained with different fractionation ranges 
using a strong cation exchange column.
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Table 4.8. Distribution of peptides per fatty acid biosynthetic enzymes over the collected 
strong cation exchange fractions compiled from three biological replicates for low oleic acid 
and high oleic acid varieties. Coloured boxes indicate the different fractionation ranges. The 
numbers in the boxes indicate the number of peptides that matched to the respective fatty 
acid biosynthetic enzyme. 

 
Enzymes 

 

Fractions 
Flow 

through 
1 5 10 15 20 25 30 35 40 60 80 100 

Acetyl-CoA 
carboxylase 
(biotin 
carboxylase) 

   2  4      1 1 
  3           

   3          

Acetyl-CoA 
carboxylase 
(carboxyl 
transferase 
subunit beta) 

2   1          
    1         

 2 1 2      1 1   

3-ketoacyl-ACP 
reductase 

   1    2  2    
3  1 3 1         
4 5 3 3    1   1   

3-hydroxyacyl-
ACP 
dehydrogenase 

2   2  3       2 
4  4 2    1 1    3 
3 4 3 2        1  

Enoyl-ACP 
reductase 

3   5  1        
3  3 1 3         
6 5 3 2 1       1 1 

β-ketoacyl-ACP 
synthase 

             
             

1 2            
Stearoyl-ACP 
desaturase 

             
      1 2      
 1 1 1          

 
 Flow through, 10%, 20%, 30%, 40%, 60%, 80%, 100% 
 Flow through, 5%, 10%, 15%, 20%, 25%, 30%, 35%, 40%, 100% 
 Flow through, 1%, 5%, 10%, 20%, 30%, 40%, 60%, 80%, 100% 
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Table 4.8 also indicates that more peptides were eluted per fraction using the 3rd fractionation 

range while the 1st fractionation range generated the smallest number of eluted peptides per 

fraction. With the exception of acetyl-CoA carboxylase and stearoyl-ACP desaturase, all other 

peptides known to be related to fatty acid biosynthesis were eluted in the flow through, 

indicating that they were either present in higher-abundance relative to acetyl-CoA 

carboxylase and stearoyl-ACP desaturase or were more highly charged. Figure 4.17 and Figure 

4.18 display the base peak chromatograms for all the biological replicates fractionated with 

the 3rd fractionation range. It was apparent that most peptides were able to be eluted using 

less than 25% (v/v) ammonium formate. The results on the chromatograms corresponded 

with the number of peptides eluted per fraction as presented in Table 4.8. Therefore, more 

fractionations could be done in an elution region that gave the most peptides (< 25%) while 

other regions (30-100%) could be collected less frequently.  

Figure 4.19 presents the compiled number of non-redundant unique peptides and sequence 

coverage corresponding to the fatty acid biosynthetic enzymes. The overall outcome of the 

mass spectrometric analysis showed that the stearoyl-ACP desaturase from both the low oleic 

and high oleic acid varieties had almost similar number of peptides, covering 23-25% of the 

stearoyl-ACP desaturase full sequence. It was also evident that offline 2DLC-MS/MS approach 

identified more peptides that were matched to β-ketoacyl-ACP synthase and stearoyl-ACP 

desaturase than GeLC-MS/MS. In contrast, fewer peptides were detected for both β-

hydroxyacyl-ACP dehydrogenase and 3-enoyl-ACP desaturase. Hence, their sequence 

coverage was also reduced. Only β-ketoacyl-ACP reductase showed a similar number of 

detected peptides and sequence coverage as obtained with GeLC-MS/MS. Table 4.9 shows the 

compiled fatty acid biosynthetic unique peptide sequences from low oleic acid and high oleic 

acid varieties. Comparison of the detected unique peptides from 2DLC-MS/MS with GeLC-

MS/MS revealed that in general, more peptides matched to the fatty acid biosynthetic 

enzymes were identified with 2DLC-MS/MS (Table 4.10).  

The GeLC-MS/MS analysis revealed that fatty acid biosynthetic enzymes were present in low-

abundance. Hence, complementary 2DLC-MS/MS was used, which is able to overcome the 

obstacles in gel-based technique in detecting subtle quantitative differences of the fatty acid 
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LO1 

 
LO2 

 
LO3 
 

Figure 4.17. Stacked elution profiles (base peak chromatograms) of strong cation exchange 
eluates fractionated with the 3rd fractionation range and separated on a reverse-phase 
column. LO1-3 represent the biological replicates of low oleic acid variety. 
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Figure 4.18. Stacked elution profiles (base peak chromatograms) of strong cation exchange 
eluates fractionated with the 3rd fractionation range and separated on a reverse phase 
column. HO1-3 represent the biological replicates of high oleic acid variety. 
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Figure 4.19. Number of unique peptides and sequence coverage (SC) per fatty acid 
biosynthetic enzyme obtained with an offline 2DLC-MS/MS. The results were compiled from 
three biological replicates for each low oleic acid (LO) and high oleic acid (HO) variety. * and 
** denote the subunits of acetyl-CoA carboxylase. *** indicates the key enzyme in oleic acid 
biosynthesis. 
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Table 4.9. Unique peptides detected with 2DLC-MS/MS from low oleic acid (LO) and high 
oleic acid (HO) varieties that matched to the respective fatty acid biosynthetic enzymes. 
Peptides not detected corresponding to LO or HO are denoted with (x). 

Enzyme Accession LO HO Unique peptide sequence 
Acetyl-CoA carboxylase 
(biotin carboxylase) 

D2CFM8   LLEEAPSPALTPELR 
  LIVWAPTR  
 x ITSYLPSGGPFVR 
x  ALDDTIITGIPTTIEYHK 
 x HIEFQVLADK 

Acetyl-CoA carboxylase  
(carboxyl transferase subunit 
beta) 

H9LAY3   DIWSLISDDTFLVR 
  SLPVIIVCASGGAR 
  NVDYLFDIR 
  SVLSELFQLHGFFPSNQNSK 

β-ketoacyl-ACP reductase G8FGI6   IAADAWGTVDILVNNAGITR 
  VLINYATSTEEAEEVSK 
  IINIASVVGLTGNAGQANYSASK 
  IEQAQNVEAPVAIVTGGSR 
  ILQTIPLGR 
  NINVNAVAPGFIASPMTAQLGEDVEKK 
  AIALALGK 

β-hydroxyacyl-ACP 
dehydrogenase 

G8FGF9   IPPFPTVMDINQIR 
  VIEYQPGVTAVGIK 
  FPFLLVDR 
  TEEEVPIEK 
  ENFFFAGIDK 

3-enoyl-ACP reductase H6TNL1   VYPLDAVYDTPEDVPDDVR 
  VNTISAGPLGSR 
  GVVSGLPIDLR 
  NDFGSIDILVHSLANGPEVTKPLLETSR 
  YAGASNWTVK 
  AFVAGVADDNGYGWAIAK 
  GYLAAISASSYSFVSLLK 
  FTNVVTRALSGESEK 
 x GKFDESR 
x  GASQAKFASSSYISSVKPLR 

β-ketoacyl-ACP synthase G8FGI5   QLALSDDTPVTGESK 
  VAKPETVQK 

    VCDIVKKQLALSDDTPVTGESK 
    GFSGLKSVSFSIQR 
  x  LQAASR 
Stearoyl-ACP desaturase C325I9   DYADILEFLINR 

  IPFSWIYGR 
  TENSPYLGFIYTSFQER 

   x RRSGGSFVAVASMTSAAVSTR 
   x LGVYTARDYADILEFLVDR 
   x KPFMPPR 
   x LNDVALCLSPPLKAR 
  x  SLEDWAENNILVHLKPVEK 
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Table 4.10. Unique peptides identified in low oleic acid (LO) and high oleic acid (HO) varieties 
corresponding to the respective fatty acid biosynthetic enzymes using GeLC- MS/MS and 
2DLC-MS/MS. Peptides detected only with GeLC-MS/MS or 2DLC-MS/MS are indicated with 
the colourless box. 

Enzyme Accession GeLC-
MS/MS 

2DLC-
MS/MS 

Unique peptide sequence 

β-ketoacyl-ACP reductase G8FGI6   AGVIGFTK 
  EIEASGGQAIIIFFGDISKEDDVESMIK 
  IEQAQNVEAPVAIVTGGSR 
  AIALALGK 
  IAADAWGTVDILVNNAGITR 
  IINIASVVGLTGNAGQANYSASK 
  ILQTIPLGR 
  VLINYATSTEEAEEVSK 
  NINVNAVAPGFIASPMTAQLGEDVEKK 

β-hydroxyacyl-ACP 
dehydrogenase 

G8FGF9   RIPPFPTVMDINQIR 
  FRKPVIAGDTLVMR 
  TEEEVPIEK 
  ENFFFAGIDK 
  FPFLLVDR 
  IPPFPTVMDINQIR 
  VIEYQPGVTAVGIK 

3-enoyl-ACP reductase H6TNL1   AALESDTMVLAFEAGR 
  HFLPIMNPGGASISLTYIASER 
  MIEYSYANAPLQK 
  TIPGYGGGMSSAK 
  GVVSGLPIDLR 
  GYLAAISASSYSFVSLLK 
  NDFGSIDILVHSLANGPEVTKPLLETSR 
  VYPLDAVYDTPEDVPDDVR 
  AFVAGVADDNGYGWAIAK 
  GKFDESR 
  RLPNGSLMEIIK 
  VNTISAGPLGSR 
  YAGASNWTVK 

β-ketoacyl-ACP synthase G8FGI5   QLALSDDTPVTGESK 
  VAKPETVQK 
  VCDIVKKQLALSDDTPVTGESK 
  GFSGLKSVSFSIQR 
  LQAASR 

Stearoyl-ACP desaturase C325I9   ATFISHGNTAR 
  HGDLLNK 
  TENSPYLGFIYTSFQER 
  RRSGGSFVAVASMTSAAVSTR 
  LGVYTARDYADILEFLVDR 
  KPFMPPR 
  LNDVALCLSPPLKAR 
  SLEDWAENNILVHLKPVEK 
  DYADILEFLINR 

    IPFSWIYGR 
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biosynthesis-related enzymes. The most significant achievement using the non-gel based 

approach was that two main subunits of acetyl-CoA carboxylase (Figure 4.14) were detected 

in contrast to the GeLC-MS/MS approach.  Commonly, a strong cation exchange column is 

used in series with a reverse-phase column (Nagele et al., 2004; Peng, Elias, Thoreen, Licklider, 

& Gygi, 2003; Slebos et al., 2008; Vollmer, Nagele, & Horth, 2003; Yun et al., 2011). This set up 

is termed as online 2DLC. In this study however, the fractionation of the two varieties’ 

replicates was done ‘offline’ with a strong cation exchange column which was not in series 

with a reverse-phase column. The step gradients of ammonium formate in the first dimension 

(strong cation exchange column) without intermitting reverse-phase chromatography 

intervals (as in online 2DLC) enable better separation and peak capacity. The advantage of a 

superior separation of peptides with an independent strong cation exchange column is 

possibly the reason acetyl-CoA carboxylase was able to be detected with a 2DLC-MS/MS 

approach and not with the GeLC-MS/MS.  

4.4.4 Isobaric tags to determine the expression of fatty acid biosynthetic enzymes 

Changes in the protein expressions of fatty acid biosynthetic enzymes between low oleic and 

high oleic acid producing palms were quantitated using the isobaric labelling strategy. Three 

biological replicates from low oleic and high oleic varieties were individually labelled with 113, 

114, 115, 116, 117 and 118-iTRAQ reagents and separated using offline 2DLC-MS/MS. To 

examine the dynamics of the proteome changes between low oleic and high oleic palms, the 

normalised protein ratios from all three replicates of the low oleic acid variety were compared 

to the normalised protein ratios from all three replicates of the high oleic acid variety (from 

two different iTRAQ experiments). In-house Mascot server results (Table 4.11) indicated that 

β-hydroxyacyl-ACP dehydrogenase and β-ketoacyl-ACP synthase were up-regulated 

significantly (ratios of 0.905 and 0.902, respectively) (p < 0.05) in the high oleic acid palm. 3-

enoyl-ACP reductase exhibited a significant decrease (ratio of 1.088) (p < 0.05) in expression 

level in the high oleic acid palm while acetyl-CoA carboxylase was considered not to show any 

significant alteration in the expression level (ratio of 0.959) as determined by in-house Mascot 

server. The same unique peptide from both varieties is needed to make a relative estimation 

of protein abundance. Since this was not achieved for β-ketoacyl-ACP reductase and stearoyl-

ACP desaturase, differences in their expression could not be determined with in-house Mascot 

server.  
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Table 4.11. The protein ratios for the fatty acid biosynthetic enzymes as determined from 
in-house Mascot server based on two iTRAQ experiments. Ratios that are significantly 
different from unity (p < 0.05) are bolded and indicated with *. 

Enzyme Score # of 
peptides 

Ratios  
(low oleic 
acid/high 
oleic acid) 

Geometric 
standard 
deviation 

Up/down 
regulated in 

high oleic 
acid variety 

Acetyl-CoA 
carboxylase 157.0 4 0.959 1.144 Unchanged 

β-hydroxyacyl-
ACP 
dehydrogenase 

81.0 6 0.905* 1.033 Up 

3-enoyl-ACP 
reductase 129.0 6 1.088* 1.025 Down 

β-ketoacyl-ACP 
synthase 240.0 11 0.902* 1.127 Up 

 

Two iTRAQ experiments identified a total of 114 proteins and 140 proteins, respectively, with 

at least 95% confidence using the in-house Mascot server. In addition to the fatty acid 

biosynthesis related enzymes, Table 4.12 shows the presence of other differentially expressed 

proteins between low oleic and high oleic varieties that were significant (p < 0.05). The results 

revealed that several metabolic enzymes; fructose-biphosphate aldolase, malate 

dehydrogenase and sucrose synthase were up-regulated in the high oleic acid variety. The 

expression levels of uncharacterised proteins involved in ATP binding were also increased as 

the oil palm fruit produced more oleic acid. The elevated expression of an uncharacterised 

protein which transfers acyl groups was also observed. Notably, lipase which is involved in 

lipid metabolism was expressed less in high oleic acid variety. From these results, it was clear 

that several proteins involved indirectly with fatty acid biosynthesis had been expressed 

differently between the low oleic acid and high oleic acid varieties.  
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Table 4.12. The protein ratios for other identified proteins as determined from in-house 
Mascot server based on two iTRAQ experiments. Proteins involved indirectly with fatty acid 
biosynthesis were bolded. All the listed proteins show significant differential expression (p < 
0.05). 

Enzyme Accession Score # pep. 

Ratios 
low 
oleic 
acid/ 
high 
oleic 
acid 

Geometric 
standard 
deviation 

Up/ 
down 

regulated 
in high 

oleic acid 
var.  

GO (inferred 
from 
UniProtKB) 

Lipase K4NZ15 372 18 1.29 1.138 Down Lipid 
metabolism 

Fructose-
bisphosphate 
aldolase 

B3TLY1 240 7 0.92 1.046 Up Glycolytic 
process 

Malate 
dehydrogenase G8FGJ2 167 5 0.94 1.014 Up 

Carbohydrate 
metabolic 
process 

Sucrose synthase K7V5Z8 56 5 1.16 1.051 Down 
Sucrose 
synthase 
activity 

Ribulose 1,5-
biphosphate 
carboxylase/oxygen
ase large subunit 

A9QBD0 107 5 1.11 1.085 Down 

Magnesium ion 
binding 
(carbon 
fixation) 

Elongation factor 1-
alpha B8APM5 108 8 1.05 1.024 Down GTP binding 

Nucleoside 
diphosphate kinase 
1 

P39207 56 4 1.14 1.056 Down ATP binding 

Uncharacterised 
protein C0HHR4 226 6 0.94 1.050 Up ATP binding 

Uncharacterised 
protein A2Z1N0 61 4 0.84 1.066 Up ATP binding 

Uncharacterised 
protein C0P972 278 24 0.90 1.074 Up 

Transferase 
activity, 
transferring 
acyl groups 

Histone H2B M4C8F5 240 18 1.07 1.019 Down Nucleosome 
assembly 

Fibrillin-like protein Q7XZF3 91 6 0.78 1.107 Up 
Structural 
molecule 
activity 

Disulfide isomerase B3TM09 69 8 1.16 1.156 Down Cell redox 
homeostasis 

Uncharacterised 
protein A3APM5 61 8 0.90 1.092 Up Response to 

cadmium ion 

Aldolase-like TIM 
barrel family protein Q9LYR4 50 4 1.14 1.076 Down 

Lignin 
biosynthetic 
process 
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4.5 Discussion  

In higher plants, plastidial acetyl-CoA is used to generate malonyl-CoA for fatty acid 

biosynthesis. This reaction is catalysed by acetyl-CoA carboxylase (ACCase). In these studies, 

a 2DLC-MS/MS approach successfully detected and separated both the main subunits of the 

multisubunit heteromeric complex of ACCase (Figure 4.15). The biotin carboxylase 

carboxylates a biotin prosthetic group covalently bound to biotin carboxyl carrier protein 

(BCCP). The immediate transfer of a carboxyl group from the carboxylated biotin to acetyl-

CoA to form malonyl-CoA (sole precursor for long-chain fatty acids) (Rawsthorne, 2002) is 

catalysed by carboxyltransferase (CT). Mass spectrometric analysis of iTRAQ labelled ACCase 

peptides showed no significant changes in its expression between low and high oleic acid 

varieties (Table 4.11). However, Roesler and co-workers demonstrated that transgenic plants 

with 10- to 20-fold increase in the enzymatic activity of ACCase resulted in the enrichment of 

oleic acid in the Brasscia napus seeds (13.7% increment in oleic acid content) (Roesler, 

Shintani, Savage, Boddupalli, & Ohlrogge, 1997). Increment in the expression of ACCase from 

12th week after anthesis until fruit maturation was also observed by Loei and co-workers, 

although the expression was not compared between low-oil-yielding fruits and high-oil 

yielding fruits (Loei et al., 2013). Since the high oleic variety has 10.2% more oleic acid than 

the low oleic acid variety, the expression of ACCase was anticipated to be up-regulated but 

that was not the case in oil palm mesocarp. These results could possibly be explained by 

studies that reported the effect of enhanced ACCase activity varied in different plant 

organelles (seed and leaf) (Madoka et al., 2002). Another likely explanation was that the 

heteromeric form of ACCase is too labile to be isolated (Sasaki & Nagano, 2004a). Therefore, 

the number of peptides detected for both subunits of ACCase might not reflect the total 

peptides of the enzyme in mesocarp. Previous studies of fatty acid biosynthesis in plants also 

implicated the importance of ACCase for regulation. However, these studies were focussed on 

the overall production of lipids and not specifically on oleic acid (Chen, Mooney, et al., 2009; 

Klaus, Ohlrogge, Neuhaus, & Dormann, 2004; Page, Okada, & Harwood, 1994; Post-

Beittenmiller, Roughan, & Ohlrogge, 1992; Thelen & Ohlrogge, 2002b).  

The elongation of the carbon chain to 16- or 18-carbon (C16:0, C18:0) fatty acid is carried out 

by Type II fatty acid synthase (FAS) (Type I FAS present in animals and fungi) (Joyard et al., 

2010). This easily dissociable multisubunit complex consists of β-ketoacyl-acyl carrier protein 

(ACP) reductase, β-hydroxyacyl-ACP dehydrogenase, 3-enoyl-ACP reductase and β-ketoacyl-
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ACP synthase (KAS). Based on GeLC-MS/MS and 2DLC-MS/MS results (Figure 4.14 and Figure 

4.19), these enzymes that involved in the elongation of fatty acid chain (except for β-ketoacyl-

ACP synthase), were found to have more detected peptides in both varieties compared to 

acetyl-CoA carboxylase, β-ketoacyl-ACP synthase and stearoyl-ACP desaturase. This might 

suggest that those enzymes were present in higher abundance relative to acetyl-CoA 

carboxylase, β-ketoacyl-ACP synthase and stearoyl-ACP desaturase in fruit mesocarp during 

maturation. Quantitation results indicated that expression of β-hydroxyacyl-ACP 

dehydrogenase increased while 3-enoyl-ACP reductase showed a lower expression level in 

high oleic acid variety (Table 4.11). β-hydroxyacyl-ACP dehydrogenase produces 16-carbon 

palmitoyl-ACP (C16:0-ACP), which is the final product of fatty acid elongation. The relatively 

higher expression of β-hydroxyacyl-ACP dehydrogenase in high oleic acid variety could 

functionally increase the production of palmitoyl-ACP, which is the precursor for 18-carbon 

stearoyl-ACP. 3-enoyl-ACP reductase regenerates acyl-ACP for the next cycle of fatty acid 

biosynthesis. Unexpectedly, the expression of 3-enoyl-ACP reductase was lower in the high 

oleic acid variety. However, a number of the core enzymes of fatty acid biosynthesis that were 

genetically overexpressed or underexpressed in transgenic soybean or Brassica napus seeds 

did not show any significant increase or only a marginal increase in seed oil yield (Ohlrogge & 

Jaworski, 1997; Roesler et al., 1997). In a different study, the overexpression of spinach KAS 

III in tobacco had even decreased the fatty acid content (Dehesh, Tai, Edwards, Byrne, & 

Jaworski, 2001). The expression levels of β-hydroxyacyl-ACP dehydrogenase was also reported 

to increase throughout the developing stages in low-oil-yielding and high-oil-yielding fruits 

(Loei et al., 2013). As for β-ketoacyl-ACP reductase and 3-enoyl-ACP reductase, the expression 

level of β-ketoacyl-ACP reductase decreased in high-oil-yielding fruits while the expression 

level of 3-enoyl-ACP reductase did not change much. In general, the results above showed 

that β-ketoacyl-ACP reductase, β-hydroxyacyl-ACP dehydrogenase and 3-enoyl-ACP reductase 

were expressed more relative to acetyl-CoA carboxylase, KAS and stearoyl-ACP desaturase, 

independent of the level of oleic acid in the oil palm mesocarp. 

The findings from the quantitation analysis revealed the significant increase in the expression 

of KAS (Table 4.11). KAS has three isoforms and they were not able to be distinguished mass 

spectrometrically (due to lack of studies on these isoforms). KAS III essentially initiates the 

condensation reaction between acetyl-CoA and malonyl-ACP and the subsequent 

condensations between these two building blocks are performed by KAS I. KAS II is implicated 
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in the final addition of 2-carbon to 16-carbon palmitoyl-ACP to produce the 18-carbon 

stearoyl-ACP (C18:0-ACP). Therefore, it was anticipated that expression of KAS II would be up-

regulated to supply the stearoyl-ACP in high oleic acid variety, at the expense of palmitoyl-

ACP. Since the results indicated that the expression of KAS was elevated in high oleic acid 

variety, the identified KAS in this study could well be KAS II. Increasing the expression of KAS 

II had raised the production of C18:1-ACP, as demonstrated in previous study 

(Sambanthamurthi et al., 1999). Loei and co-workers also described an increase in the 

expression of KAS in mature high-oil-yielding fruits but as observed in this study, their isoforms 

were not able to be differentiated (Loei et al., 2013). 

Stearoyl-ACP desaturase (SAD) is the key fatty acid biosynthetic enzyme responsible for 

introduction of the double bond into the saturated stearoyl-ACP (C18:0-ACP) to produce 

mono-unsaturated oleoyl-ACP (C18:1-ACP). As SAD was not detected in the quantitative 

evaluation, the relative abundance of this enzyme between the two varieties could not be 

determined. However, results from both GeLC-MS/MS and 2DLC-MS/MS showed no 

substantial difference in the detected number of peptides between low oleic acid and high 

oleic acid varieties. This observation contrasted with the findings from previous studies as the 

expression of SAD was up-regulated in oleic acid accumulating tissues in earlier published 

work. Loei and co-workers described that the level of SAD in oil-accumulating fruit had been 

elevated although the result could not be validated (Loei et al., 2013). Plants defective in SAD 

were also reported to accumulate high levels of C18:0-ACP and low level of C18:1-ACP fatty 

acids (Kachroo et al., 2003; Kachroo et al., 2007). A potential explanation of the lack of up-

regulation of SAD in the high oleic acid variety is a feedback inhibition mechanism by the end 

product; oleic acid. The accumulation of oleic acid could result in the inhibition or even down-

regulation of SAD, which controls its synthesis. Purified monomeric ACCases from maize, 

diatom and Brassica napus were revealed to be inhibited by palmitoyl-CoA (Nikolau & Hawke, 

1984; Roessler, 1990) and stearoyl-ACP (Andre, Haslam, & Shanklin, 2012). Decanoyl-ACP was 

also reported to inhibit KAS activity in canola, spinach and Cuphea (Bruck, Brummel, Schuch, 

& Spener, 1996; Schuch, Winter, Brück, Brummel, & Spener, 1997). The exact mechanism 

regulating these feedbacks in fatty acid biosynthesis is unknown (Ramli et al., 2002; Shintani 

& Ohlrogge, 1995). These feedback mechanisms could occur through biochemical or post-

translational modification of fatty acid biosynthetic enzymes (Andre et al., 2012). The 
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relevance of feedback inhibition in this study is unclear because the changes in the pools of 

stearoyl-ACP and oleoyl-ACP were not measured. 

The findings stated here underlined the prospect of other metabolic enzymes in regulating 

oleic acid level in the high oleic variety. In this study, several enzymes involved indirectly with 

fatty acid biosynthesis have been observed to be regulated differently between low oleic acid 

and high oleic acid palms (Table 4.12). Notably, the increased levels of fructose-biphosphate 

aldolase and malate dehydrogenase would increase the carbon flux towards fatty acid 

biosynthesis. Fructose-biphosphate aldolase generates triose phosphates, dihydroxyacetone 

phosphate and glyceraldehyde 3-phosphate to produce pyruvate via the glycolysis pathway. 

Meanwhile, malate dehydrogenase is involved in the production of glucose via 

gluconeogenesis through the oxidation of malate to oxaloacetate. The synthesis of glucose is 

also enhanced in the high oleic acid variety through the reduction in the expression of sucrose 

synthase, which produces sucrose at the expense of glucose. Hence, the increased supplies of 

glucose and pyruvate in the high oleic acid variety may elevate the supply of acetyl-CoA, the 

essential fatty acid biosynthesis precursor. A decrease in the expression of lipase, which 

catalyses the metabolism of oleic acid esters, could also raise the level of oleic acid in the high 

oleic acid variety, albeit indirectly. The results agreed with a study on sunflower seeds that 

reported the lowered oil content as the effect of lowered activities of glycolytic enzymes. 

Likewise, the level of seed oil in Arabidopsis was found to be affected by pyruvate kinase 

(Andre, Froehlich, Moll, & Benning, 2007; Troncoso-Ponce, Garces, & Martinez-Force, 2010). 

The expression levels of elongation factor 1-alpha and ribulose 1,5-biphosphate 

carboxylase/oxygenase large subunit were also found to be differentially regulated. Fatty acid 

biosynthesis is an anabolic process that demands an abundant supply of ATP and NADPH. 

Therefore, the reduced expression of these proteins in high oleic acid palms might drive 

metabolic resources such as ATP and NADPH toward metabolic processes related to lipid 

biosynthesis, for example, glycolysis and fatty acid biosynthesis. In addition to the reduction 

of other metabolic processes that utilise ATP, the decrease in the expression of nucleoside 

diphosphate kinase 1 and elevated expressions of two uncharacterised proteins involved in 

ATP binding may have enhanced the supply of ATP for lipid biosynthesis. Loei and co-workers 

had found a reduction in the level of expression of proteins that compete for metabolic 

resources such as ATP and NADPH with the whole lipid biosynthesis process (Loei et al., 2013).  
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Another protein that was found to be up-regulated in the high oleic acid variety was an 

uncharacterised protein from Zea mays, which acts to transport acyl groups, probably during 

fatty acid biosynthesis. This elevated expression coincided with the increased fatty acid 

biosynthesis activity. As mentioned earlier, ACCase produced the malonyl-CoA. Before the 

malonyl-CoA can be used for fatty acid biosynthesis, the malonyl group needs to be 

transferred to ACP, catalysed by a malonyl-CoA:ACP malonyltransferase (MCMT). Up-

regulating the expression of this enzyme in the high oleic acid variety could have increased 

the malonyl-ACP precursor pool for FAS as malonyl-CoA levels in plastids are normally very 

low (Thelen & Ohlrogge, 2002a). Therefore, an enhanced supply of malonyl-ACP precursor 

could result in more oleic acid being produced, even if the expressions of FAS and SAD remain 

unaltered. Since the identified protein was an uncharacterised protein and the fact that MCMT 

has not been sequenced in plant, this protein could not be determined whether it was the 

MCMT. 

Several studies that manipulated the gene expression of oleoyl desaturase and acyl-ACP 

thioesterase had managed to increase the level of desirable fatty acids (Cahoon & Shanklin, 

2000; Dehesh et al., 2001; Dormann, Voelker, & Ohlrogge, 2000; Kinney, 1996; Lardizabal et 

al., 2000; Stoutjesdijk, Hurlestone, Singh, & Green, 2000; Verwoert, van der Linden, Nijkamp, 

& Stuitje, 1994; Voelker, Jones, Cranmer, Davies, & Knutzon, 1997). Therefore it is worth 

looking at how the expressions of these fatty acid biosynthetic enzymes (in theory) might 

explain the differences in oleic acid content between these two varieties. Oleoyl desaturase 

introduces a second double bond in C18:1-ACP to form linoleic acid (C18:2-ACP). Thus, the 

down-regulation of this enzyme potentially increased the oleic acid content at the expense of 

linoleic acid. Kinney, Liu and co-workers showed that the suppression of oleoyl desaturase in 

soybean did increase the C18:1-ACP (Kinney, 1996; Liu, Singh, & Green, 2002b). Termination 

of FAS reactions is mediated by an acyl-ACP thioesterase which hydrolyse acyl-ACPs into free 

fatty acids and ACP (to be recycled). High activity of acyl-ACP thioesterase had been shown to 

increase levels of oleic acid in oil palm mesocarp (Sambanthamurthi et al., 1999). This 

thioesterase has higher specific activity towards C16:0 ACP than C18:1-ACP; and that could 

explain how the up-regulation of its expression could raise the levels of oleic acid. None of 

these four enzymes were able to be detected mass spectrometrically in this study. 

Furthermore, their regulation at the protein level has never been comprehensively 

investigated.  
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4.6 Conclusions  

The study described the isolation and identification of six main fatty acid biosynthetic enzymes 

from oil palm fruit mesocarp through the application of gel- and non-gel based proteomic 

techniques. Comparative analysis between low oleic acid and high oleic acid oil palm varieties 

revealed that three of those fatty acid biosynthetic enzyme (based on the iTRAQ experiments), 

were differentially regulated (Figure 4.20). The findings here indicate that other metabolic 

proteins and lower abundant enzymes associated with fatty acid production could also be 

correlated with the different level of oleic acid in the oil palm mesocarp. This targeted study 

provides a clearer understanding on the overall fatty acid biosynthesis regulation in oil palm. 

Further validation of the enzymes showing differential regulations is required to corroborate 

their biological significance on oleic acid production in oil palm fruit. 
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Figure 4.20. Overview of protein expression changes in fatty acid biosynthetic enzymes 
between low oleic acid and high oleic acid varieties. These changes (           ) or plausible 
change (         ) were characterised by iTRAQ experiments in high oleic acid variety. Circular 
boxes with dotted lines are the enzymes involved in various stages of fatty acid biosynthesis; 
I. Generation of malonyl-ACP; II. Seven condensation cycles to generate a 16-carbon fatty acid; 
III. Desaturation of stearic acid (C18:0-ACP) to form oleic acid (C18:1-ACP). Stearoyl-ACP 
desaturase (*) is the key enzyme in oleic acid production. C18:1-ACP was proposed as the 
signal molecule that inhibited the expression of SAD through feedback inhibition mechanism 
(             ).   
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5.0 New insights into the possible role of phosphorylation in the 
regulation of oil palm fatty acid biosynthetic enzymes  

5.1 Introduction 

Regulation of proteins in a wide range of cellular processes is largely coordinated by a series 

of post-translational modifications especially reversible phosphorylation (Molina, Horn, Tang, 

Mathivanan, & Pandey, 2007; Nakagami, Sugiyama, Ishihama, & Shirasu, 2012). Protein 

phosphorylation is not directly dictated by the genome and thus, the nature of the 

phosphorylation events is unpredictable and transient. Three enzymes catalysing fatty acid 

biosynthesis in the oil palm (Elaeis guineensis Jacq. variant of tenera) fruit mesocarp were 

demonstrated to be differentially expressed between low and high oleic acid palms, as 

reported in Chapter 4. Therefore, the next key step was to understand the potential role of 

phosphorylation in the regulation of fatty acid biosynthetic enzymes. Despite a detailed 

understanding of many aspects of plant lipid metabolism and the genes coding for the key 

enzymes involved, how their activity is regulated is still far from clear (Cahoon, Shanklin, & 

Ohlrogge, 1992; Harwood, 1996; Kinney, 1994; Knutzon et al., 1992; Loei et al., 2013; 

Mekhedov, de Ilarduya, & Ohlrogge, 2000; Sambanthamurthi et al., 1999). Past research had 

reported that acetyl-CoA carboxylase, the enzyme that generates malonyl-CoA for subsequent 

fatty acid elongation processes, was deactivated by phosphorylation (Brownsey, Boone, 

Elliott, Kulpa, & Lee, 2006; Hardie, 1992; Hardie & Pan, 2002). However, the role of 

phosphorylation in controlling other enzymes associated with fatty acid biosynthesis is still 

ambiguous.  

Comprehensive modification analysis or modificomics, as introduced by Jensen and his co-

workers (Marx, 2013), can be performed with either a gel-based mass spectrometry approach 

or shotgun proteomic approaches (Du, Liang, Pei, & Ma, 2011; Fukao, Ferjani, Fujiwara, 

Nishimori, & Ohtsu, 2009; Tada & Kashimura, 2009). In a modification-specific gel stains 

approach, specific fluorescent stains such as Pro-Q Diamond used in this study, are applied 

directly to a polyacrylamide gel to detect the phosphate group attached to serine, threonine 

or tyrosine, and subsequently permit the fluorescent visualisation of the modified proteins (Di 

Domenico et al., 2011; Steinberg et al., 2003). The limitation is that a sufficient amount of 
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protein is the prerequisite to study the modifications of a single protein. At least several tens 

of picomoles or about a microgram of protein would be needed to increase the chance of 

detecting and characterising the modifications in proteins. This limitation means the 

utilisation of mass spectrometry-based approaches in studying protein modifications is 

becoming more common.   

The phosphate group on a phosphopeptide is relatively labile and tends to break away in the 

form of phosphoric acid (HPO3 or H3PO4) during collision-induced dissociation (CID). Thus, the 

fragmentation of phosphoamino residue-containing (serine, threonine and tyrosine) 

precursor ions generates neutral losses of 80 Da (HPO3) or 98 Da (H3PO4) (Moon, Shin, & Kim, 

2009). Usually, the mechanism for loss of H3PO4 from phosphoserine and phosphothreonine-

containing peptide ions is the result of a β-elimination reaction (DeGnore & Qin, 1998). In a β-

elimination reaction, the hydrogen atom on the α-carbon of the phosphorylated amino acid 

residue is transferred to the phosphate oxygen (Figure 5.1). As a result, dehydroalanine- (69 

Da) or dehydroaminobutyric acid- (83 Da) containing product ions from phosphorylated serine 

or threonine residues, respectively, and H3PO4 are produced. Loss of H3PO4 is more dominant 

for serine phosphorylated peptides and in a lesser extent in threonine phosphorylated 

peptides. This might be caused by the steric hindrance of the β-methyl group in the side chain 

of threonine (Boersema, Mohammed, & Heck, 2009). Tyrosine phosphorylated peptides give 

a much lower extent of neutral loss and these are in the form of HPO3.  

Mass spectrometry-based strategies such as the neutral loss-triggered MS3 (NLMS3) and 

Selected Reaction Monitoring (SRM) are essentially built on the detection of the characteristic 

neutral loss generated during the CID fragmentation of phosphoamino-containing peptides. 

In the NLMS3 mode of operation, the diagnostic neutral loss of H3PO4 (98 Da) from the 

precursor ion in a tandem MS scan automatically triggers the MS3 fragmentation of the neutral 

loss precursor ion. The aim of the MS3 is to compensate for the lack of sequence-specific 

information in the MS2 spectra of phosphorylation-modified peptides (Boersema et al., 2009) 

although a study by Villen and co-workers indicated that the collection of MS3 scans did not 

improve the informative spectra of the peptides identified (Villen, Beausoleil, & Gygi, 2008).  

MS3 operates in a data-dependent manner, in which the MS3 is triggered by the presence of 

an intense product ion peak with the mass of a neutral loss (Figure 5.2). This strategy has been 
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Figure 5.1.  The loss of phosphoric acid (H3PO4) as a result of β-elimination reaction from 
the phosphoserine-containing peptide (Palumbo et al., 2011).   

extended to detect phosphopeptides in this study using the Bruker amaZon ETD speed ion 

trap mass spectrometer. These neutral loss species from the product ions were calculated on  

the basis of the product ion mass and charge state, resulting in the neutral product ions of m/z 

48.99 or m/z 32.66, relative to the doubly or triply charged phosphorylated product ion. A 

common problem with a neutral loss scan to detect phosphopeptides is that unassigned 

peptides may generate ions with a mass similar to the neutral losses as well (Villen et al., 2008; 

Yocum & Chinnaiyan, 2009). There are also instances when a phosphopeptide fails to generate 

the specified neutral loss and therefore are not detected (Cox et al., 2005).  

SRM is an ideal complementary technique to reliably target and quantitate low abundance 

phosphopeptides of interest (Domanski, Murphy, & Borchers, 2010; Fan, Mohareb, Jones, & 

Bessant, 2012; Lange, Picotti, Domon, & Aebersold, 2008; Martinez-Marquez et al., 2013; 

Wolf-Yadlin, Hautaniemi, Lauffenburger, & White, 2007). SRM is predominantly performed on 

a triple quadrupole mass spectrometer as the availability of additional mass filter (third 

quadruple, Q3) is exploited to isolate targeted fragment ion for MS2 (Figure 5.3). However, in 

this study, the Bruker Impact HD quadrupole-TOF was used to scan the targeted precursor ion 

for any loss of neutral loss species (98 Da) instead. Absence of the Q3 mass filter in a 

quadrupole-TOF implies that only neutral loss species at 98 Da correspond to the loss of H3PO4 

can be detected after CID fragmentation of the selected precursor ions in q2. The ideal 

prerequisites to targeted SRM experiments are the prior knowledge of the primary sequence, 

type of phosphorylation, sequence motif and predicted fragmentation pathways to identify 

the potential phosphopeptides (for example, a neutral loss of 98 Da from phosphoserine and 

phosphothreonine peptides but not phosphotyrosine peptide).  
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Figure 5.2. MS3 of product ion with a neutral loss to yield more sequence-specific 
information. 

 

 

 

Figure 5.3. The equivalent of the Q1 and Q2 in a triple quadrupole and Bruker Impact HD 
quadrupole-TOF. Selected precursor ions are isolated in the analytical quadrupole mass filter 
or Q1 and CID fragmented in the collision cell or q2 to detect the neutral loss of 98 Da from 
phosphopeptides. The absence of another mass filter, Q3, means the selection of targeted 
product ions is not possible in a quadrupole-TOF.
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Essentially, Chapter 5 describes the novel combination of NLMS3 and SRM approaches to 

detect the presence of phosphopeptides associated with fatty acid biosynthesis in the oil 

palm. Until now, NLMS3 has been mainly used to acquire more peptide sequence-specific 

information while most of the SRM-based applications have involved biomarker studies and 

quantitation phosphoproteomics. This study also compares the phosphorylation profiles of 

these fatty acid biosynthetic phosphopeptides from low oleic acid and high oleic acid-

producing palms to determine if phosphorylation plays any role in the regulation of oleic acid 

levels in these palms. This chapter also presents plausible phosphorylation sites in the key 

fatty acid biosynthetic enzymes based on the identified phosphopeptides.    
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5.2 Materials 

5.2.1 Plant materials 

Independent fruit bunches (Figure 5.4) of the standard DxP oil palm crosses (Elaeis guineensis 

var. Tenera) (denoted as low oleic acid) and from the PORIM Series 12 (PS12) breeding 

populations (denoted as high oleic acid) were harvested from the Malaysian Palm Oil Board 

research stations at Bangi, Selangor and Hulu Paka, Terengganu, Malaysia. The fruit mesocarps 

were sliced, snap frozen in liquid nitrogen and stored at – 80°C until use. The seeds were 

discarded. Oil palm bunches (progenies) with different levels of oleic acids at 20th week after 

anthesis were collected from three low oleic acid and high oleic acid palms, respectively as 

listed in Table 5.1. Fruit mesocarps obtained from the bunch were divided into four technical 

replicates of 100 g each.  

  

 

Standard DxP cross  PS12 breeding population  Sliced mesocarps 

Figure 5.4. The two oil palm varieties used in the study. 

Table 5.1. Biological replicates for both the oil palm varieties used in the study. 

High oleic acid  Low oleic acid  
Palm no. Progeny Oleic acid 

content (%) 
Palm no. Progeny Oleic acid 

content (%) 
0.306/319 PK 540 48.85 0.306/79 PK 540 39.03 
0.306/319 PK 540 48.85 0.306/76 PK 540 39.03 
0.337/249 PK 1254 48.90 0.337/214 PK 1201 37.90 

 

5.2.2 Chemicals 

Most of the general chemicals were purchased from Sigma (St. Louis, MO, USA), BDH (BDH 

Laboratory Supplies, Poole, England) and Merck (Merck KGaA, Darmstadt, Germany). Organic 

solvents were acquired from Fisher (Fisher Scientific, Loughborough, UK). Specific chemicals 

1 cm 
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such as Protease Inhibitor Cocktail Tablet was from Roche (Roche Diagnostic, IN, USA), 

sequencing grade modified trypsin and mass spectrometry grade rLys-C from Promega 

(Promega Corporation, WI, USA), Pro-Q Diamond Phosphoprotein Gel Stain and 

PeppermintStick Phosphoprotein Molecular Weight Standards from Molecular Probes 

(Molecular Probes, Inc. OR, USA). Double-distilled water was used in preparation for all 

general solutions. 

5.3 Methodology 

5.3.1 Chromoplast isolation and subsequent protein extraction 
Sliced mesocarps were homogenised in liquid nitrogen with a cold Waring blender (Blender 

B011, Dynamics Corporation, Greenwich, USA) at low speed for 10 s, followed by grinding with 

a standard ceramic mortar and pestle. The powdered mesocarps were then mixed with cold 

acetone containing 10% trichloroacetic acid and 1 mM dithiothreitol. The slurry was 

centrifuged at 13,000 g for 10 min at 4°C (RA-300 rotor, Kubota 7820, Kubota Corporation, 

Tokyo, Japan). The supernatant was discarded and the washing step was repeated once. 

Subsequently, cold 80% methanol containing 0.1 M ammonium acetate was added to the 

precipitate; mixed and centrifuged as before. After discarding the supernatant, the 

precipitated mesocarp pellet was washed by resuspending the pellet in cold 80% acetone. The 

mixture was mixed well and centrifuged again at 13,000 g for 10 min at 4°C. The resulting 

pellet was air-dried.  

Washed mesocarp pellet was then transferred into a beaker containing cell wall digestive 

enzymes (2% w/v cellulase, 0.1% w/v pectinase, 0.6 M sorbitol, 0.1 M DTT, 5 mM 2-(4-

morpholino)-ethane sulfonic acid (MES)-KOH, pH 5.5). The suspension was then incubated in 

an incubator shaker (Labnet 211DS, Labnet Instrument, Inc., NJ, USA) for 6 h at 37°C. After cell 

wall digestion, the mixture was sieved through two layers of Miracloth (Calbiochem, EMB 

Millipore Corporation, Billerica, MA) into a fresh beaker on ice to separate non-macerated 

plant materials from protoplasts. After that, the filtrate was centrifuged at 1750 g for 5 min at 

4°C (RA-300 rotor, Kubota 7820) to collect intact chromoplasts. The chromoplast pellet was 

gently re-suspended in the extraction buffer (0.7 M sucrose, 1 M Tris-HCl, pH 8.3, 5 M NaCl, 

50 mM DTT, 1 mM EDTA containing a tablet of Roche protease inhibitors in every 50 mL of 

buffer). The mixture was agitated for 5 min and then sonicated for 15 min at 4°C to enhance 

the release of the chromoplast proteins. An equal volume of fresh 50 mM, pH 8.0 Tris-
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saturated phenol was added to the mixture thereafter. The mixture was further agitated for 

10 min just before centrifugation at 15,000 g for 15 min at 4°C (RA-300 rotor, Kubota 7820) 

for phase separation. Following that, the upper phase was transferred to a new centrifuge 

tube while the bottom phase was discarded. Chromoplast proteins were precipitated by 

adding five volumes of cold ammonium acetate-saturated methanol and incubated at -20°C 

overnight before being centrifuged at 15,000 g for 15 min at 4°C (RA-300 rotor, Kubota 7820) 

to obtain the protein pellet. The protein pellets were then rinsed with cold ammonium 

acetate-saturated methanol until a whitish colour was obtained for the pellet. This was 

followed by washing the pellet with cold 80% acetone for three times. Proteins were 

precipitated after each wash by centrifuging at 15,000 g for 5 min at 4°C (RA-300 rotor, Kubota 

7820). At the end of the washing phase, the supernatant was carefully decanted before the 

chromoplast protein pellet was air-dried. Commercially available 2D Quant Kit (GE Healthcare 

Life Sciences, Uppsala, Sweden) was utilised to determine protein content in the samples. 

Bovine serum albumin provided with the kit was used as the protein calibration standard and 

each of the quantitation was performed in duplicates.  

5.3.2 Gel electrophoresis and staining 
Chromoplast proteins were dissolved in Laemlli buffer (62.5 mM Tris-HCl, pH 6.8, 2% SDS, 25% 

glycerol, 0.01% bromophenol blue, 0.005% β-mercaptoethanol) and denatured by heating at 

95°C for 4 min. 100 µg protein was loaded into each lane on a 1.0 mm precast Mini-PROTEAN® 

TGX™ 8-16% polyacrylamide gel (Bio-Rad Laboratories Inc., Hercules, CA). Electrophoresis was 

conducted in a Bio-Rad mini-PROTEAN® Tetra Cell apparatus (Bio-Rad Laboratories) at 200 V 

for 1 h. Following electrophoresis, the separated proteins were fixed for 30 min in a fixing 

solution (50% ethanol, 10% acetic acid) and stained with Pro-Q Diamond phosphoprotein stain 

according to the manufacturer’s instructions. Stained gel was visualised and imaged using a 

Typhoon FLA 7000 (GE Healthcare Bio-Sciences AB, Uppsala, Sweden) with 

excitation/emission wavelength of 532/580 nm. The gel was subsequently stained with an in-

house prepared Colloidal Coomassie G-250 to obtain the total protein expression profile. The 

gel was destained with Milli-Q water (H2O) until the background was clear before acquiring 

the gel image with Typhoon FLA 9500 (GE Healthcare Bio-Sciences). 

5.3.3 In-solution protein digestion and fractionation 
200 µg of chromoplast proteins were re-suspended in 0.1 M ammonium bicarbonate and 1 M 

urea before reduction and alkylation using 50 mM tris(2-carboxyethyl)phosphine and 150 mM 
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iodoacetamide, respectively. An ionic detergent, sodium deoxycholate (1% w/v) was added to 

the protein solution prior to digestion with 4 µg of modified sequencing grade trypsin 

(Promega, Madison, WI, USA) in 50 mM NH4HCO3 for 16 h at 37°C. After digestion, the digests 

solution was acidified with 0.5% formic acid. Sodium deoxycholate precipitate was removed 

from the peptide digests by centrifugation at 14 000 g (RA-300, Kubota 7820) for 15 min at 

ambient temperature. The peptide solution was then dried in a centrifugal evaporator 

(CentriVap Concentrator, Labconco, MO, USA). Peptides clean-up – The dried peptide pellet 

was resuspended in 200 µL of 0.1% formic acid. Acetonitrile, methanol and 0.1% formic acid-

conditioned Empore solid phase extraction disks (3M Purification, Inc., MN, USA) were added 

to the peptide solution and incubated at ambient temperature with slight agitation for 4 h. 

The bound peptides on the C18 membrane disks were sequentially eluted with 50% ACN in 

0.1% FA for 2.5 h. SCX fractionation – The peptide eluent was dried with a centrifugal 

evaporator (CentriVap Concentrator) and resuspended in 250 µL of 0.1% FA. The resuspended 

peptides were then fractionated using a strong cation exchange cartridge (Phenomenex SCX 

cartridge, 4 x 2 mm). Elution was done with 0.06 M, 0.12 M, 0.2 M, 0.3 M and 0.4 M 

ammonium formate buffer containing 2% ACN, pH 3.5. Each of the collected fractions was 

then dried with a centrifugal evaporator (CentriVap Concentrator).  

5.3.4 Liquid chromatography-tandem mass spectrometry  
Neutral loss-triggered MS3 – Separation and spectra acquisition of the protein digests was 

conducted with a nano-Advance Splitless nano-liquid chromatography (nanoLC) (Bruker 

Daltonik GmbH, Bremen, Germany) system coupled to an amaZon speed ETD ion trap mass 

spectrometer (Bruker Daltonik). The tryptic digests were reconstituted in 30 µL of 0.1% FA and 

5% ACN and 10 µL was injected into the nanoLC system for peptide separation with a ProntoSIL 

C18AQ (3µ, 100 µ x 150 mm) (nanoLCMS Solutions, LLC., CA, USA) reverse-phase column 

equilibrated with 95% solvent A (2% ACN in 0.1% FA) and 5% solvent B (98% ACN in 0.1% FA). 

Gradient of 0-45% solvent B was employed to elute the bound peptides during 45 min at a 

flow rate of 800 nL min-1. The neutral loss feature in the trapControl software (Version 7.1) 

was activated and the loss of m/z 49, m/z 32.7, m/z 58 and m/z 38.7 was included as the 

neutral loss masses. The eluted peptides were electrosprayed into the ion trap mass 

spectrometer using a spray voltage of 1400 V and a capillary temperature of 150°C. Precursor 

survey scan was acquired with a mass range from m/z 310-1400, the resolution was set to 

‘Enhanced Resolution’ and the scanning speed was 8,100 u per sec. Tandem MS conditions 
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consisted of ‘Enhanced Resolution’ scan ranging from m/z 100-3000. Up to five of the most 

intense multiple charged ions (1+, 2+, and 3+) per scan were fragmented via collision-induced 

dissociation in the linear ion trap. The neutral loss scans were searched from the tandem MS 

derived from the second scan, or MS2. All tandem mass spectra were collected using 1.00 V of 

fragmentation amplitude, an isolation window of 4.0 u and scanning speed of 52,000 u per 

sec. Selected Reaction Monitoring – Separation and spectra acquisition of the protein digests 

was conducted with a nano-Advance Splitless nano-liquid chromatography (nanoLC) (Bruker 

Daltonik) system coupled to an Impact HD quadrupole-time-of-flight mass spectrometer 

(Bruker Daltonik). The mass spectrometer was externally calibrated using Electrospray Tuning 

Mix Positive (Agilent Technologies, Inc., Santa Clara, CA, USA). The tryptic digests were 

reconstituted in 30 µL of 0.1% FA and 5% ACN and 5 µL was injected for peptide separation 

with a ProntoSIL C18AQ (3µ, 100 µ x 150 mm) (nanoLCMS Solutions) reverse-phase column 

equilibrated with 95% solvent A (2% ACN, 0.1% FA) and 5% solvent B (98% ACN, 0.1% FA). A 

gradient of 2-65% solvent B in 60 min at a flow rate of 800 nL min-1 was used. The MRM feature 

in the otofControl software was activated and the precursor isolation width and collision 

energy (eV) for the unique peptides was determined (Table 5.2). These unique peptides were 

identified by database searches using Mascot to the fatty acid biosynthetic enzymes in a 

different Q-TOF experiment. The peptides were electrosprayed with a spray voltage of 1300 

V and a capillary temperature of 150°C. SRM was done in a data-dependent manner. Precursor 

survey scan was acquired with a mass range of from m/z 350-2900. MS/MS settings consisted 

of scan ranged from m/z 50-2200. Up to three of the most intense multiple charged ions (1+, 

2+, and 3+) per scan were fragmented via collision-induced dissociation. 

5.3.5 Data acquisition and analysis  
Data acquisitions in positive mode were performed with ESI Compass 1.4 for amaZon 

(trapControl Version 7.1) and ESI Compass for otofSeries 1.7 for Impact HD (tofControl Version 

3.4) (Bruker Daltonik). Analyses of the data were performed using the Compass DataAnalysis 

(Version 4.1 SR1) (Bruker Daltonik). Generated peak lists in eXtensible Markup Language 

(XML) format were then sent to ProteinScape (Version 3.1) (Bruker Daltonik) for protein 

identification using Mascot software (Matrix Science, London, UK). The peptide sequences 

were searched against Arabidopsis thaliana, Elaeis sp., Zea mays, Brassica and Oryza plant 

taxonomies (308,973 sequences as on 24th December 2013) in the Uniprot protein database 

and the protein list was compiled using the Protein Extractor module 
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Table 5.2. Parameters for Selected Monitoring Reaction experiments for the fatty acid 
biosynthetic associated phosphopeptides. Each selected precursor ion is unique to the target 
protein and is between seven to 24 amino acids in length. 

Enzyme 
Precursor 

(measured 
MH+) 

Precursor sequence 
Precursor 
isolation 

width (Da) 

Collision 
energy 

(eV) 

Acetyl-CoA 
carboxylase  
(biotin carboxylase 
subunit) 

914.5678 KTLVSAPLK ± 4 20 
939.6208 LVLSTSEK ± 4 20 

1004.5964 KLVLSTSEK ± 4 30 
1393.8551 ITSYLPSGGPFVR ± 5 30 
1635.9405 LLEEAPSPALTPELR ± 5 30 
1641.7513 SEAAAAFGNDGVYLEK ± 5 30 

Acetyl-CoA 
carboxylase  
(β-carboxyl 
transferase 
subunit) 

1399.8551 SLPVIIVCASGGAR ± 5 30 
1662.9378 TVPDGSQAAEYLFHK ± 5 30 

1679.9249 DIWSLISDDTFLVR ± 5 30 

β-ketoacyl-ACP 
reductase 

1882.9150 VLINYATSTEEAEEVSK ± 5 40 
2248.3432 IINIASVVGLTGNAGQANYSASK ± 7.5 40 

β-hydroxyacyl-ACP 
dehydrogenase 

1759.8880 SVDSAVKTEEEVPIEK ± 5 30 
1910.0020 CSVDSAVKTEEEVPIEK ± 5 25 
1926.8520 CSVDSAVKTEEEVPIEK ± 5 30 

3-enoyl-ACP 
reductase 

838.4068 GKFDESR ± 4 30 
958.5292 TISAGPLGSR ± 4 35 

1171.6420 VNTISAGPLGSR ± 5 30 
1125.6630 GVVSGLPIDLR ± 5 30 
1282.6146 TIPGYGGGMSSAK ± 5 20 
1737.9233 AALESDTMVLAFEAGR ± 5 30 

β-ketoacyl-ACP 
synthase 

1546.759 QLALSDDTPVTGESK ± 5 30 
1560.7770 QLALSDDTPVTGESK ± 5 30 
1572.8090 QLALSDDTPVTGESK ± 5 30 
1688.8760 KQLALSDDTPVTGESK ± 5 30 

Stearoyl-ACP 
desaturase 

1160.618 ISMASTVGPSTK ± 5 20 
1507.8675 TIQYLIGSGMDPR ± 5 20 
2492.1890 RSGGSFVAVASMTSAAVSTRVENK ± 7.5 30 

 

in ProteinScape. Mass tolerances for peptide and product ions were set to 100 ppm and 0.6 

Da (ion trap) or 20 ppm and 0.1 Da (quadrupole-TOF), respectively; the instrument setting was 

specified as ‘ESI trap’ or ‘ESI-QUAD-TOF’. Semi-trypsin was designated as the protease with 

two missing cleavages allowed. Carbamidomethylation on cysteine was set as the fixed 

modification while oxidation of methionine and deamidation of asparagine and glutamine 

were searched as variable modifications. In error tolerant searches, phosphorylation of serine 

(S), threonine (T) and tyrosine (Y) amino acids were included as variable modifications. 
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Proteins were accepted if they had at least one top ranking peptide (Rank 1) with a Mascot 

ion score of more than 40.0 (p < 0.05). All database searches were also performed against the 

decoy database to determine the false discovery rate. A decoy database contained 

randomised sequences of the searched taxonomies. Individual identified protein lists were 

compiled using the Protein Extractor module in ProteinScape. All phosphopeptides presented 

in this work were validated either through neutral loss-triggered MS3 or Selected Reaction 

Monitoring approaches. 

5.3.6 Bioinformatic tools 
Theoretical digestion with trypsin on each of the protein sequences was performed with 

PeptideCutter available online at ExPASy website (http://web.expasy.org/peptide_cutter/). 

Trypsin was specified as the digestion enzyme and one missed cleavage was allowed. 

Phosphorylation sites within the protein sequences were predicted computationally using 

KinasePhos 2.0 and has 95% specificity (http://kinasephos2.mbc.nctu.edu.tw/) (Wong et al., 

2007).  
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5.4 Results  

5.4.1 Total phosphoprotein expression profile 
The use of Pro-Q diamond staining allowed the detection of phosphorylated proteins 

separated on a 8-16% gradient SDS-PAGE gel. This enabled the investigation of 

phosphoproteome changes between two different palm varieties, namely, the low oleic acid 

and high oleic acid-producing palms as well as between biological replicates of each variety 

(Figure 5.5). Comparison between low oleic acid replicates (LO1-LO3) revealed the 

dissimilarity in their phosphorylation states (Figure 5.5A) although their total protein (Figure 

5.5B) showed similar expressions. Phosphoproteins of high oleic acid replicates were more 

consistent with regard to phosphorylation and total protein expressions (Figure 5.5). The 

signal intensity of the phosphostained proteins also indicated that there appeared to be more 

phosphorylated residues in the high oleic variety compared to the low oleic acid variety (Figure 

5.5A) since signal intensity correlates with the total number of phosphorylated residues in the 

peptide. Given that each of the protein bands consisted of more than one protein, a direct 

comparison of the phosphorylation state between fatty acid biosynthetic enzymes (positions 

as indicated in Figure 5.5) in low oleic acid and high oleic acid varieties was not possible using 

this approach. The protein expression levels for the total proteins from both varieties seemed 

to show greater consistency than the phosphorylation state (Figure 5.5B). Table 5.3 shows the 

phosphorylation states for each of the biological replicates. As presented, the 

phosphoproteome of low oleic acid replicates varied more while the variation was slightly less 

in high oleic acid replicates.  

In the previous chapter (Chapter 4), the protein expression of some of the fatty acid 

biosynthetic enzymes was revealed to be different. Those differential expressions were not 

evident in this work, based on the gel-based approach (Figure 5.5B). Therefore, the 

phosphorylation states of the overall phosphoproteins from both varieties could not be used 

as the direct indication of the phosphorylation states for these low abundant fatty acid 

biosynthetic enzymes. Differences in the overall phosphorylation state for each of the 

biological replicates as displayed in Table 5.3 may have resulted from unanticipated variations 

in harvesting time, sampling location or the fruit post-harvesting process.  

Amongst the low oleic acid replicates, fewer protein bands containing phosphorylated 

proteins were observed in LO3 compared to LO1 and LO2. The sampling areas (East and 
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A 

 
B 

 
Figure 5.5. Screening of total phosphoproteins (A) and protein (B) expression patterns from 
low oleic acid (LO) and high oleic acid (HO) varieties separated on 8-16% gradient SDS-PAGE. 
Location of fatty acid biosynthetic enzymes as determined from previous works is indicated; 
S1: Acetyl-CoA carboxylase subunits (theoretical); S2. stearoyl-ACP desaturase; S3. 3-enoyl-
ACP reductase; S4. β-ketoacyl-ACP reductase and β-hydroxyacyl-ACP dehydrogenase; S5. β-
ketoacyl-ACP synthase. 
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Table 5.3. Phosphorylation state corresponding to the different biological replicates from 
low oleic acid (LO) and high oleic acid (HO) varieties. 

Spikelet Fruitlet Description Phosphorylation state 

  

LO1 
39.03% oleic acid 
East Peninsular 

 

  

LO2 
39.03% oleic acid 
East Peninsular 

 

  

LO3 
37.90% oleic acid 
West Peninsular 

 

  

HO1 
48.85% oleic acid 
East Peninsular 

 

  

HO2 
48.85% oleic acid 
East Peninsular 

 

  

HO3 
48.90% oleic acid 
West Peninsular 

 



144 
 

West Peninsular) and the content of oleic acid (different of 1.13% between LO3 and LO1/LO2) 

could possibly affect the phosphorylation pattern. In addition, the harvesting time of the fruit 

used in this study varied based on evidence of the epicarp colour between the replicates. This 

indicated a different fruit ripening time. The phosphorylation pattern of each of the high oleic 

acid replicates (Table 5.3) showed better similarity. Although all replicates had the same oleic 

acid content, the harvesting time (based on epicarp colour) for HO3 was different from HO1 

and HO2. That probably explained the slightly higher signal intensities for several protein 

bands in HO3. Fruit ripening is controlled by the hormone ethylene. Different phosphorylation 

patterns of isoforms of 1-aminocyclopropane-1-carboxylic acid (ACC) synthase and ACC 

oxidase had been shown during the regulation of ethylene production in tomato (Alexander 

& Grierson, 2002). The phosphorylation pattern of different phosphoproteins was also found 

to be altered during different ripening stages in both tomato (Kamiyoshihara, Tieman, Huber, 

& Klee, 2012; Vescovi & Viale, 1993) and sweet orange (Zeng et al., 2011b).  

5.4.2 Phosphopeptides prediction 
Phosphorylation sites on serine (S), threonine (T) and tyrosine (Y) residues were predicted 

using the web-based KinasePhos 2.0. The aim was to acquire masses for phosphopeptides 

containing the predicted phosphorylated S, T or Y residues for the neutral loss-triggered MS3 

and SRM analyses. Table 5.4 summarises the number of predicted phosphosites and the 

probable number of phosphoserine-containing peptides obtained from in silico digest of the 

target enzymes (based on available protein sequences). The phosphosite predictions were 

performed on full amino acid sequences for the two subunits of acetyl-CoA carboxylase and 

fragment amino acid sequences for the other fatty acid biosynthetic enzymes. The prediction 

indicated that the subunit β-carboxyl transferase of acetyl-CoA carboxylase contains the most 

possible phosphorylation sites on serine residues. Meanwhile, β-ketoacyl-ACP reductase and 

β-hydroxyacyl-ACP dehydrogenase were predicted to have the least possible phosphorylation 

sites on serine residues. The subunit β-carboxyl transferase of acetyl-CoA carboxylase was 

predicted to generate 25 peptides containing the predicted phosphosites although the 

enzyme had 49 possible phosphosites on serine residues. This implied that the enzyme had 

more peptides containing multi-phosphosites compared to the other enzymes. None of the 

threonine or tyrosine residues was predicted by KinasePhos 2.0 to be phosphorylated.  
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Table 5.4. Number of predicted phosphosites on serine residues and phosphoserine-
containing peptides for fatty acid biosynthetic enzymes using KinasePhos 2.0. All entries are 
from Elaeis guineensis var. Tenera, unless specified. 

Enzyme 
Unitprot 
accession 

no. 

NCBI 
accession 

no. 

AA 
length 

Sequence 
status 

Predicted 
phosphosites 

Predicted no. of 
phosphopeptides 

Acetyl-CoA 
carboxylase BC D2CFM8 209168853 536 Complete 18  15 

Acetyl-CoA 
carboxylase β-

CT 
H9LAY3 383931199 492 Complete 49  25 

β-ketoacyl-ACP 
reductase G8FGI6 353441094 255 Partial 7  5 

β-hydroxyacyl-
ACP 

dehydrogenase 
G8FGF9 353441060 220 Partial 5  3 

3-enoyl-ACP 
reductase H6TNL1 374255957 367 Partial 22  19 

β-ketoacyl-ACP 
synthase G8FGI5 353441032 148 Partial 11  9 

Stearoyl-ACP 
desaturase 

C3W5I9 
(E. 

oleifera) 
 

228478496 430 Partial 13  19 

 

In addition to the predicted phosphosites, Table 5.5 also indicates the location of protein 

domains sourced from Pfam and the identified peptides associated with fatty acid 

biosynthesis acquired using both gel-based and non-gel based approaches carried out in 

previous chapter (Chapter 4). The acetyl-CoA carboxylase subunits, biotin carboxylase and β-

carboxyl transferase, have 14 and 18 predicted phosphosites, respectively in their protein 

domains. However, only two peptides containing the predicted phosphosites were identified 

for subunit biotin carboxylase and one peptide for the subunit carboxyl transferase. As for β-

ketoacyl-ACP reductase, seven predicted phosphosites are located in the protein domain and 

two of the detected peptides from previous work contained these phosphosites. 3-enoyl-ACP 

reductase has 10 phosphosites in the protein domain and two phosphosites are situated in 

the protein domain of β-ketoacyl-ACP synthase. Two peptides identified to these enzymes 

contained the predicted phosphosites. β-hydroxyacyl-ACP dehydrogenase has one possible 

phosphorylation site in the protein domain but the protein domain for stearoyl-ACP 

desaturase has no possible phosphorylation sites as predicted with KinasePhos 2.0. None of 

the detected peptides for these two enzymes contained the serine residues.  
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Table 5.5. Amino acid sequences from the different fatty acid biosynthetic enzymes. The 
predicted phosphorylated serine residue (S), the protein domains (underlined) and the 
identified peptides corresponding to the respective fatty acid biosynthetic enzymes from 
previous work (boxed) are indicated. 

Enzyme Sequence 

Ac
et

yl
-C

oA
 c

ar
bo

xy
la

se
 

(s
ub

un
it 

bi
ot

in
 c

ar
bo

xy
la

se
) 

 
MDSMIACKSG CLPPGLFIRP TRGIRSSQCS FMVGNGPKFC KISFPRKELL VRSGNPKKNG 60  
 
GALNATCCDE KILVANRGEI AVRVIRAAHE MGIPCVAVHS TIDQDALHVR LADEAVCIGE 120 
 
APSSQSYLFI PNVLSAAVSR GCTMLHPGYG FLAENAGFVD ICKEHGINFI GPNPDSIRVM 180 
 
GDKSTARETM KKAGVPTVPG SDGLLQSTEE AVKLAHEVGF PVMIKATAGG GGRGMRLAYE 240 
 
PEQFVKLLQQ AKSEAAAAFG NDGVYLEKYI QNPRHIEFQV LADKYGNVVH FGERDCSIQR 300 
 
RNQKLLEEAP SPALTPELRK AMGDAAVAAA ASIGYIGGWN CGNFLLDERG SFYFMEMNTR 360 
 
IQVEHPVTEM ISSTDLIEEQ IRVALGERLT YKQEDIVLRG HSIECRINAE DAFKGFRPGP 420 
 
GKITSYLPSG GPFVRMDSHV YPGYVVPPSY DSLLGKLIVW APTREKAIER MKRALDDTII 480 
 
TGIPTTIEYH KLILDIEDFR NGKVDTAFIP KHEKDLTAPH KLVLSTSEKE LAGVGA 536 
 

Ac
et

yl
-C

oA
 c

ar
bo

xy
la

se
 

(s
ub

un
it 

β-
ca

rb
ox

yl
 tr

an
sf

er
as

e)
 

 
MEKWWFNSML SNDKLEHRCG LNKSMDSLDA IGHTSGSEEP ILNGTEKNIP SRSDSGSYSF 60  
 
RNVDYLFDIR DIWSLISDDT FLVRDSNGDS FSVCFDIENQ IFEIDNDSSF LSELESFFSS 120 
 
YLNNGSKRNN HNYYHYIYDT QSSWNNHINS CIDNYLRFEV SINSSISGGT DNYSDSYIYS 180 
 
FICTENVTGS ESGSSGIRTS KNGSDFNIRR RSNDFGRKKK YRHLWIQCEN CYGLNYKKFF 240 
 
RSKMNICEQC GYHLKMSSSD RIELSIDPGT WDPMDEDMVS MDPIEFHSEG KPYRDRIDSY 300 
 
QRKTGLTEAV QTGIGQLNGI PIAIGVMDFK FMGGSMGSVV GEKITRLIEY ATNRSLPVII 360 
 
VCASGGARMQ EGSLSLMQMA KISSASHNYQ SNKKLFYVSI LTSPTTGGVT ASFGMLGDVI 420 
 
VAEPNAYIAF AGKRVIEQTL NKTVPDGSQA AEYLFHKGLF DPIVPRNPLK SVLSELFQLH 480 
 
GFFPSNQNSK NL 492 
 

β-
ke

to
ac

yl
-A

CP
 

re
du

ct
as

e 

 
QASIEQAQNV EAPVAIVTGG SRGIGKAIAL ALGKAGCKVL INYATSTEEA EEVSKEIEAS 60  
 
GGQAIIFFGD ISKEDDVESM IKIAADAWGT VDILVNNAGI TRDTLLMRMK KSQWQEVIDV 120 
 
NLTGVFLCTQ AAAKLMMKKK KGKIINIASV VGLTGNAGQA NYSASKAGVI GFTKTVAREY 180 
 
ASRNINVNAV APGFIASPMT AQLGEDVEKK ILQTIPLGRY GQPEEVAGLV EFLALNPAAD 240 
 
YITGQVFTID GGMVM 255 
 

β-
hy

dr
ox

ya
cy

l-
AC

P 
de

hy
dr

og
en

as
e  
SAPPLHSNPF LSCHGSNTDL LAFPSPKSQR RNALPPVLSL ANPKSPAWAL GLERRRSFLT 60  
 
RCSVDSAVKT EEEVPIEKRI PPFPTVMDIN QIRDILPHRF PFLLVDRVIE YQPGVTAVGI 120 
 
KNVTINDNFF PGHFPERPIM PGVLMVEAMA QVGGLVMLQP EVGGSRENFF FAGIDKVRFR 180 
 
KPVIAGDTLV MRMTLIKLQK RFGIAKMDGK AYVGGDLVCE 220 
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3-
en

oy
l-A

CP
 re

du
ct

as
e 

 
MATMTAGSLQ MAAMRPCTSS SRRLFMSSAA ILGVDVKGAS QAKFASSSYI SSVKPLRKTL 60  
 
VSAPLKFTNV VTRALSGESE KGVVSGLPID LRGKRAFVAG VADDNGYGWA IAKALAAAGA 120 
 
EILVGTWVPA LNIFETSLRR GKFDESRRLP NGSLMEIIKV YPLDAVYDTP EDVPDDVRTN 180 
 
KRYAGASNWT VKEVAESVKN DFGSIDILVH SLANGPEVTK PLLETSRKGY LAAISASSYS 240 
 
FVSLLKHFLP IMNPGGASIS LTYIASERTI PGYGGGMSSA KAALESDTMV LAFEAGRKHK 300 
 
IRVNTISAGP LGSRAAKAIG FIEKMIEYSY ANAPLQKELS ADEVGNTAAF LVSPLASAVT 360 
 
GSVVYVD 367 
 

β-
ke

to
ac

yl
-

AC
P 

sy
nt

ha
se

 

 
LFFHRSMASI SGTAIGTSAR PLLAARAQVV KGFSGLKSVS FSIQRKSFPS VRLQAASRRL 60  
 
QVSCVAKPET VQKVCDIVKK QLALSDDTPV TGESKFSTLG ADSLDTVEIV MGLEEAFGIS 120 
 
VEEESAQSIT TVQDAADLIE KLVDAKSS 148 
 

St
ea

ro
yl

-A
CP

 d
es

at
ur

as
e 

 
TKEGPFLSFS FFHSLPPSLS LLREKKGRKK GRRKEERAMA SMVAFRPEAF LCFSPPKTTR 60  
 
STRSPRISMA STVGPSTKVE IPKKPFLPPR EVHVQVTHSM PPQKIEIFKS LEDWAENNIL 120 
 
VHLKPVEKCW QPQDFLPDPS SEGFHEEVKE LRERSKEIPD DYYVCLVGDM ITEEALPTYQ 180 
 
TMLNTLDGVR DETGASLTSW AVWTRAWTAE ENRHGDLLNK YLYLSGRVDM KQIEKTIQYL 240 
 
IGSGMDPRTE NSPYLGFIYT SFQEGATFIS HGNTARHAKD MGREVGSDMW YNCLGRERHE 300 
 
TAYTKIVEKL FEIDPDGTVL SFADMMKKKI SMPAHLMYDG QDDNLFEHFS AVAQRLGVYT 360 
 
AKDYADILEF LINRWKVGEL TGLSGEGKRA QDFVCTLAPR IRRIEERAQE RAKQAPRIPF 420 
 
SWIYGREVQL 430 
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5.4.3 Neutral loss-triggered MS3 (NLMS3) 

Tandem mass spectrometric analysis of phosphorylated peptides under collision-induced 

dissociation tends to generate neutral losses of m/z 48.99 or m/z 32.66, relative to the doubly 

or triply charged product ion, respectively. In addition, the loss of a water molecule with the 

phosphoric acid (H2O+H3PO4) from the serine residue-containing peptide ion is also common. 

Hence, the Data Dependent experiment was created to also selectively trigger MS3 scans on 

the MS/MS product ions for which m/z 57.99 and/or m/z 38.66 losses were detected. For the 

product ions that showed the neutral losses, it was then determined if they were related to 

the fatty acid biosynthetic enzymes, based on the precursor ion masses of their 

phosphopeptides. As only serine residues were predicted to be phosphorylated (by 

KinasePhos 2.0), this research focussed only on neutral losses from serine residues. 

Table 5.6 summarises the number of detected phosphoserine-containing peptides and the 

peptide product ions showing the neutral losses from low and high oleic acid varieties. The 

results, based on three different NLMS3 experiments using three biological replicates for each 

variety (in each experiment), revealed that only a single peptide was found to give a neutral 

loss of m/z 98 after fragmentation. Fragmentation of the peptide with mass of m/z 563.4 in 

doubly charged state produced a neutral loss of m/z 49 (Figure 5.6). This phosphopeptide 

corresponded to peptide GVVVSGLPIDLR based on their precursor ion masses. Although 

numerous phosphoserine-containing peptides were predicted (Table 5.4) for the other fatty 

acid biosynthetic enzymes, none of these phosphopeptides were detected and selected for 

NLMS3. The subunit β-carboxyl transferase of acetyl-CoA carboxylase and β-hydroxyacyl-ACP 

dehydrogenase did not have any phosphopeptide with precursor ion masses matched to these 

two enzymes.  

Peptide with the mass of m/z 563.4 from both varieties exhibited the same neutral losses 

(Figure 5.6). This suggested that the 3-enoyl-ACP reductase might be phosphorylated at 20th 

week after anthesis since peptide GVVSGLPIDLR is one of its unique peptides. Since there was 

only one serine residue in peptide GVVSGLPIDLR, the phosphoric acid group would most 

probably derive from a phosphorylated serine residue. Further phosphosite mapping is 

required to validate the prediction. This phosphosite was predicted by KinasePhos 2.0 to be 

GVVpSGLPIDLR. 
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Table 5.6. Number of phosphoserine-containing peptides predicted and product ion 
displaying a neutral loss of phosphoric acid from NLMS3 analyses. Three different batches of 
biological replicates (in three different NLMS3 experiments) from low oleic acid/high oleic acid 
varieties (LO/HO) were used. Prediction of phosphosites and phosphopeptides were explained 
in Section 5.4.2. 

Enzyme 

Predicted 

phosphorylated 

sites 

No. of 

phosphoserine

-containing 

peptides 

Detected unique peptides 
(LO/HO) Product 

ion with 
neutral 
loss of 
m/z 98  

Exp. 1 Exp. 2 Exp. 3 

Acetyl-CoA 
carboxylase 
(biotin 
carboxylase) 

18 15 -/- 5/3 -/2 -/- 

Acetyl-CoA 
carboxylase 
(β-carboxyl 
transferase) 

49 25 -/- -/- -/- -/- 

β-ketoacyl-ACP 
reductase 7 5 1/1 1/1 1/1 -/- 

β-hydroxyacyl-
ACP 
dehydrogenase 

5 3 -/- -/- -/- -/- 

3-enoyl-ACP 
reductase 22 19 2/2 4/2 2/3 1/1 

β-ketoacyl-ACP 
synthase 11 9 -/1 1/1 -/- -/- 

Stearoyl-ACP 
desaturase 

13 
 19 -/- -/1 -/1 -/- 
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A. Low oleic acid variety 

 
 

B. High oleic acid variety 

 
 

Figure 5.6. Neutral loss detected from the product ion with m/z 563.4 [M+H]2+ using NLMS3 
approach. The neutral loss of m/z 49 (in the neutral loss spectra) was calculated based on the 
product ion spectrum. 
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It was noticeable that the number of detected peptides varied between experiments for 

subunit biotin carboxylase of acetyl-CoA carboxylase and 3-enoyl-ACP reductase. Reasons for 

these variations could be resulting from the dynamic range of protein concentrations in  

different experiments (Yocum & Chinnaiyan, 2009), the ionic suppression (Jessome & Volmer, 

2006) by competing low and high abundant peptides to capture protons and the inconsistency 

of phosphorylated peptide ionisation.  

5.4.4 Selected reaction monitoring (SRM) 

In SRM method development, targeted peptides (Table 5.2) were pre-selected for 

fragmentation via collision-induced dissociation in a data-dependent manner rather than a 

MS3 scan. This approach was used to determine if these predicted phosphoserine-containing 

peptides from different enzymes involved in the fatty acid biosynthesis are phosphorylated 

through the loss of the phosphoric acid group attached to the side chain of a serine residue. 

At least two unique peptides for each of the targeted proteins were selected for SRM 

experiments (Table 5.2). Three ionic forms were detected for peptide QLLALSDDTPVTGESK of 

β-ketoacyl-ACP reductase. Two different ionic forms for peptide CSVDSAVKTEEEVPIEK were 

detected for β-hydroxyacyl-ACP dehydrogenase. Although the presence of ionic forms 

(resulted from different charged peptides) was not a desirable attribute for these targeted 

peptides (James & Jorgensen, 2010), all the precursors were included for SRM experiments in 

order to enhance the detection of the targeted peptides since they are present in low 

abundances. These selected peptides were also consistently detected over the two different 

oil palm varieties investigated in this study.   

Table 5.7 summarises the number of detected precursor ions that showed a phosphoric acid 

(98 Da) loss from different SRM experiments for both low and high oleic acid varieties. SRM 

experiments had revealed that two peptides with masses of m/z 1004.59 and m/z 1393.74, 

produced neutral losses of 98 Da. These phosphopeptides corresponded to peptides 

KLVLSTSEK and ITSYLPSGGPFVR from the subunit biotin carboxylase of acetyl-CoA carboxylase, 

based on their precursor ion masses. Fragmentation of peptides with masses of m/z 838.47, 

m/z 1125.66 and m/z 1171.64 also yielded neutral losses of 98 Da. Their masses matched to 

the precursor ion masses for peptides GKFDESR, GVVSGLPIDL and VNTISAGPLGSR from 3-

enoyl-ACP reductase. The same peptides from both low oleic acid and high oleic acid varieties 

exhibited these neutral losses.  
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Meanwhile, Figure 5.7 and Figure 5.8 depict the MS/MS spectra for the peptides with neutral 

loss of 98 Da from both varieties. As shown, the product ion peak for the neutral loss was not 

a dominant peak as the selected peptide ion scanning was performed in a positive ion mode, 

which was not tailored to detect the loss of neutral loss specifically. The abundance of the 

neutral losses between low oleic acid and high oleic acid varieties were not comparable as 

there was no internal standardisation in this study. Figure 5.9 shows the selected MS/MS 

spectra for several serine containing peptides from other fatty acid biosynthetic enzymes that 

did not produce any neutral loss after collision-induced fragmentation. The low abundance of 

several selected peptides also hampered the attempt to determine if these serine containing 

peptides were actually phosphorylated through the loss of phosphoric acid group. Signals for 

these peptides were probably reduced by ionic suppression during fragmentation (Jessome & 

Volmer, 2006). 
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Table 5.7. Number of phosphoamino-containing peptides predicted and product ion with 
the neutral loss of phosphoric acid (98 Da) obtained from SRM analyses. Three different 
batches of biological replicates from low oleic acid/high oleic acid varieties (LO/HO) were 
used. Prediction of phosphosites and phosphopeptides is explained in Section 5.4.2. 

Enzyme 

Predicted 

phosphorylated 

sites 

No. of 

phosphoserine-

containing 

peptides 

Detected unique peptides 
(LO/HO) Product 

ion with 
neutral 
loss of 
98 Da  

Exp. 1 Exp. 2 Exp. 3 

Acetyl-CoA 
carboxylase 
(biotin 
carboxylase) 

18 15 2/2 4/3 3/4 

 
 

2/2 
 

Acetyl-CoA 
carboxylase 
(β-carboxyl 
transferase) 

49 25 1/1 3/2 3/1 -/- 

β-ketoacyl-ACP 
reductase 7 5 -/2 2/1 2/1 -/- 

β-hydroxyacyl-
ACP 
dehydrogenase 

5 3 1/1 -/- -/- -/- 

3-enoyl-ACP 
reductase 22 19 2/4 4/4 4/4 

 
3/3 

 
β-ketoacyl-ACP 
synthase 11 9 1/1 3/1 1/1 -/- 

Stearoyl-ACP 
desaturase 

 
13 

 
19 -/1 1/1 1/2 -/- 
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m/z 838.47 – GKFDEpSR in low oleic acid variety 

 
m/z 838.47 – GKFDEpSR in high oleic acid variety 

 
 

m/z 1125.6626 – GVVpSGLPIDLR in low oleic acid variety 

 
m/z 1125.6626 – GVVpSGLPIDLR in high oleic acid variety 
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m/z 1171.642 – VNTIpSAGPLGpSR in low oleic acid variety 

 
m/z 1171.642 – VNTIpSAGPLGpSR in high oleic acid variety 

 

Figure 5.7. Precursor ions (indicated with a blue diamond) with a neutral loss detected 
(indicated with a red line), using SRM approach. The neutral loss of 98 Da (in the neutral loss 
spectra) was calculated based on the precursor ion spectrum. Predicted phosphorylated 
serine residues with KinasePhos 2.0 are indicated in red. 
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m/z 1004.5964 – KLVLSTpSEK in low oleic acid variety 

 
m/z 1004.5964 – KLVLSTpSEK in high oleic acid variety 

 
m/z 1393.745 – ITpSYLPpSGGPFVR in low oleic acid variety 

 
m/z 1393.745 – ITpSYLPpSGGPFVR in high oleic acid variety 

 
Figure 5.8. Precursor ions (indicated with a blue diamond) with a neutral loss (indicated with 
a red line), detected using SRM approach. The neutral loss of 98 Da (in the neutral loss 
spectra) was calculated based on the precursor ion spectrum. Predicted phosphorylated 
serine residues with KinasePhos 2.0 are indicated in red. 
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m/z 1679.9249 – DIWSLIpSDDTFLVR 

 
m/z 1882.9150 – VLINYATpSTEEAEEVSK 

 
m/z 2248.3432 – IINIApSVVGLTGNAGQANYpSApSK 

 
m/z 1926.8520 – CSVDpSAVKTEEEVPIEK 
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m/z 1560.7770 – QLALpSDDTPVTGEpSK 

 
m/z 1507.8675 – TIQYLIGpSGMDPR 

 
Figure 5.9. Precursor ions (indicated with a blue diamond) without any neutral loss, detected 
using SRM analysis for other fatty acid biosynthetic enzymes. Predicted phosphorylated 
serine residues with KinasePhos 2.0 are indicated in red. These peptides have precursor ion 
masses that matched to the precursor ions obtained in the SRM experiment. 
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5.5 Discussion 

By employing complementary phosphopeptide detection approaches (NLMS3 and SRM), 

several peptides showing the neutral losses that matched to the unique peptides identified to 

the subunit biotin carboxylase of acetyl-CoA carboxylase and 3-enoyl-ACP reductase were 

detected. The NLMS3 approach did not detect any neutral loss from the fragmentation of 

peptides m/z 1004.59 and m/z 1393.74 that corresponded to peptides KLVLSTSEK and 

ITSYLPSGGPFVR from the subunit biotin carboxylase. However, the serine residues in these 

peptides were revealed to exhibit phosphoric acid losses in SRM experiments, indicating the 

importance of these complementary approaches. Both of the peptides were predicted to have 

phosphorylated serine residue at Ser-527 (KLVLSTpSEK); Ser-425 and Ser-429 

(ITpSYLpSGGPFVR) (Table 5.5). Ser-527 is located in the carboxyl terminal while Ser-425 and 

Ser-429 are located in the biotin carboxylation domain of subunit biotin carboxylase. These 

phosphopeptide candidates have never been reported before and the predicted phosphosites 

in different protein domains of subunit biotin carboxylase suggest a crucial role of 

phosphorylation in the functioning of acetyl-CoA carboxylase. Phosphorylation of serine 

residues in the C-terminal domain of Arabidopsis RNA polymerase II has been reported to 

regulate the transcription and cotranscriptional RNA processing (Hajheidari, Farrona, Huettel, 

Koncz, & Koncz, 2012). AMP-activated protein kinase (AMPK) had been denoted to be the 

main kinase regulator of acetyl-CoA carboxylase (Brownsey et al., 2006; Hardie, 1992; Hardie 

& Pan, 2002). Their studies also demonstrated that the regulation of mammalian acetyl-CoA 

carboxylase was regulated by the phosphorylation of multiple serine residues.  

The same serine residues that could have been phosphorylated for subunit biotin carboxylase 

were found in both low and high oleic acid varieties. Previous studies on regulation of fatty 

acid synthesis revealed that subunits of acetyl-CoA carboxylase were deactivated by 

phosphorylation (Brownsey et al., 2006; Hardie & Pan, 2002; Hwang et al., 2014). 

Phosphorylation inhibits the ATP-utilising production of malonyl-CoA, which is the mandatory 

carbon precursor for fatty acid biosynthesis. Therefore, the results from this study speculate 

that subunit biotin carboxylase of acetyl-CoA carboxylase had been deactivated in both 

varieties as the oil palm fruit reached maturation (20th week after anthesis), possibly as the 

result of phosphorylation. Although it had been proven that the regulation of plant lipid 

biosynthesis was regulated by acetyl-CoA carboxylase, the different level of oleic acid content 

between both varieties might not be regulated by the activation/deactivation of acetyl-CoA 
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carboxylase. NLMS3 and SRM experiments did not show any presence of phosphorylated 

serine residue in peptides with their precursor ion masses matched to unique peptides that 

belong to the subunit β-carboxyl transferase. The only detected peptide for subunit β-carboxyl 

transferase was DIWSLISDDTFLVR (m/z 1679.92), which is not located in any catalytic domain. 

NLMS3 experiments identified peptide with m/z 1125.66 that corresponded to peptide 

GVVSGLPIDLR belonging to 3-enoyl-ACP reductase as exhibiting neutral losses in both low 

oleic acid and high oleic acid varieties. The same peptide was also found to have neutral losses 

in both varieties using the SRM approach. The phosphorylation was most likely to occur at Ser-

85 as predicted with KinasePhos 2.0, which is located in the NAD(P)-binding domain of 3-

enoyl-ACP reductase (Table 5.5). In addition to that, peptides with m/z 838.47 and m/z 

1171.64, which were matched to peptides GKFDESR and VNTISAGPLGSR identified to 3-enoyl-

ACP reductase, were also demonstrated to show neutral losses of 98 Da in both varieties (from 

SRM experiments). All of the potential phosphorylated Ser-146 (GKFDEpSR), Ser-307 and Ser-

313 (VNTIpSAGPLGpSR) were located in the NAD(P)-binding domain (Table 5.5). Since 3-enoyl-

ACP reductase required NADP as the electron donor to form a saturated fatty acid, therefore, 

the phosphorylation of these serine residues in the NAD(P)-binding domain may have involve 

in the enzyme regulation of the last step of fatty acid elongation at 20th week after anthesis. 

Given that all these peptides were found in both low oleic acid and high oleic acid varieties, 

these results indicate, similarly to acetyl-CoA carboxylase, that there is no direct evidence that 

phosphorylation regulates the generation of oleic acid but only the overall lipid biosynthesis 

through the possible deactivation of 3-enoyl-ACP reductase. 

Although the predicted phosphoserine containing peptides (by KinasePhos 2.0) were 

identified in other fatty acid synthase enzymes, these peptides were not found to show any 

neutral loss in either NLMS3 or SRM experiments. Peptide IINIASVVGLTGNAGQANYSASK (m/z 

2248.34) for β-ketoacyl-ACP reductase has possible phosphosites located in the enzyme 

NAD(P)-binding domain while peptide QLALSDDTPVTGESK (m/z 1560.77) of β-ketoacyl-ACP 

synthase’s phosphosites are located in the acyl carrier protein phosphopantetheine 

attachment site. Detected peptide CSVDSAVKTEEEVPIEK (m/z 1926.85) has predicted 

phosphosites that are not situated in FAbA-like domain in β-hydroxyacyl-ACP dehydrogenase. 

The functional significance of this predicted phosphopeptide was unclear. It was not apparent 

from these results whether phosphorylation plays any role in their enzyme regulation during 

the increased oleic acid production in high oleic acid variety. The key enzyme in the conversion 
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of saturated fatty acid to yield oleic acid in oil palm fruit is the stearoyl-ACP desaturase. 

However, the detected serine containing peptide from the study did not have any predicted 

phosphosite in the fatty acid desaturases domain of this enzyme. In addition, the peptide with 

m/z 1507.86 that matched to the precursor ion mass of peptide TIQYLIGSGMDPR did not show 

the neutral loss in either oil palm varieties.  

Development and maturation of oil palm fruit happened at 20th week after anthesis (Dussert 

et al., 2013; Tranbarger et al., 2011). At this stage, Tranbarger and co-workers had reported a 

major increase in the lipid accumulation in the mesocarps, in the form of triacylglycerols 

(esterification of glycerol with three fatty acids) (Tranbarger et al., 2011). They also exhibited 

substantial changes in fatty acid composition (Dussert et al., 2013). Dussert and co-workers 

reported that palmitoyl-ACP (C16:0), the precursor for stearoyl-ACP (Figure 5.10) did not 

increase significantly after 20th week after anthesis. Based on their results, a possible 

explanation could be inferred based on the findings in this study. Decrease or inhibition of 

acetyl-CoA carboxylase activity could be resulted from phosphorylation on the serine residues 

in its domains. Thus, the availability of malonyl-CoA is diminished as the fruit reached 

maturation in both low oleic acid and high oleic acid varieties. The lack of malonyl-CoA 

subsequently caused the decrease in the amount of C16:0 as stated in previous works (Dussert 

et al., 2013). This study also suggested that neutral losses were detected from serine residues 

of peptide in the NAD(P)-binding domain of 3-enoyl-ACP reductase in both varieties. Since this 

enzyme generated a saturated fatty acid for the subsequent elongation phase, 

phosphorylation could have reduced its activity and halted the elongation steps. That 

explained only a small increment in C16:0 at 20th week after anthesis (0.3 mg [w/w]) and a rise 

of stearoyl-ACP (C18:O) by 0.4 mg (w/w) (Dussert et al., 2013).  

Other fatty acid biosynthetic enzymes like β-ketoacyl-ACP reductase and β-hydroxyacyl-ACP 

dehydrogenase did not show any presence of phosphorylation, signified by the presence of a 

neutral loss. This probably indicated that dephosphorylation had reduced or inhibited their 

activities once the demand for C16:0 has been met on fruit maturation in both varieties. The 

fact that all these fatty acid biosynthetic enzymes showed similar phosphorylation state in low 

oleic acid and high oleic acid varieties, the main regulator of the oleic acid biosynthesis that 

gave a difference of 10% (in average) in the oleic acid content between the two varieties used 

in this study, could well be the stearoyl-ACP or one of the β-ketoacyl-ACP synthase isoenzymes 

(I and II). Unfortunately, β-ketoacyl-ACP synthase isoenzymes could not be distinguished in 
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this study although the detected serine-containing peptide (of β-ketoacyl-ACP synthase) from 

both varieties revealed no phosphorylation.  

Dussert and co-workers indicated that the composition of oleic acid (C18:1) in mesocarp 

reduced from 30% to 11%, after 18th weeks after anthesis (Dussert et al., 2013). That implied 

that the activity of stearoyl-ACP desaturase, which is responsible to generate C18:1 through 

the unsaturation of C18:O had decreased (Figure 5.10). In this study, predicted 

phosphopeptide of stearoyl-ACP desaturase from both low oleic acid and high oleic acid 

varieties did not exhibit any phosphorylation. Therefore, it could be postulated that 

dephosphorylation had reduced or inhibited the enzyme activity. The difference in the oleic 

acid content of both varieties could be due to the expression and activity of stearoyl-ACP 

desaturase during development stage rather than when the fruit reached maturation at 20th 

week after anthesis. 
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Figure 5.10. A schematic overview of oleic acid biosynthesis related enzyme 
phosphorylation from oil palm fruit. Circular boxes with dotted lines are the enzymes 
involved in various stages of fatty acid biosynthesis; I. Generation of malonyl-ACP; II. Seven 
condensation cycles to generate a 16-carbon fatty acid; III. Desaturation of stearic acid (C18:0-
ACP) to form oleic acid (C18:1-ACP). Stearoyl-ACP desaturase is the key enzyme in oleic acid 
production. In this study, both acetyl-CoA carboxylase and 3-enoyl-ACP reductase were 
showed to be phosphorylated. Phosphorylation possibly deactivated 3-enoyl-ACP reductase 
as it had been demonstrated with acetyl-CoA carboxylase. It remains unclear whether 
phosphorylation plays any role in the regulation of other fatty acid biosynthetic enzymes, 
especially stearoyl-ACP desaturase. 

5.6 Conclusions 

The utilisation of non-targeted neutral loss-triggered MS3 and Selected Reaction Monitoring 

was aimed at identifying phosphopeptide candidates through the loss of a phosphoric acid 

molecule (neutral loss). The results demonstrated that a combination of these approaches 

was valuable in detecting neutral losses from serine containing peptides. Figure 5.10 

summarises the results obtained in this study using both approaches. The neutral losses 

suggest that phosphorylation could have occurred to these peptides. Therefore, it is possible 

to postulate that phosphorylation regulates the fatty acid biosynthesis through the 

deactivation of both acetyl-CoA carboxylase and 3-enoyl-ACP reductase, while 

dephosphorylation could have deactivated the other fatty acid biosynthetic enzymes from low 

oleic acid and high oleic acid varieties. The study also identified a number of potential 

phosphosites in the protein domains of fatty acid biosynthetic enzymes which could play a 
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regulatory role in their enzyme activities. Despite the high occurrence of predicted 

phosphosites in subunit β-carboxyl transferase of acetyl-CoA carboxylase, β-ketoacyl-ACP 

reductase, β-hydroxyacyl-ACP dehydrogenase and stearoyl-ACP desaturase, detection of their 

peptides containing these phosphorylation sites had been poor. Thus, the exact role of 

phosphorylation in their enzyme activities, especially in stearoyl-ACP desaturase, remained 

inconclusive. Further research is necessary to validate these phosphosites and increase the 

chance of detecting more phosphopeptides before the exact role of phosphorylation in the 

regulation of oleic acid biosynthesis can be established. 
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6.0 General discussion 

The experimental work underpinning this thesis is described within three of the chapters 

(Chapters 3, 4 and 5). The first aim was to develop optimised methodologies to isolate and 

enhance the extraction of chromoplast proteins from the oil palm fruit mesocarps. Following 

the acquisition of mass spectrometry compatible proteins, a combination of different 

proteomic-based techniques was applied to investigate the expression of enzymes associated 

with plant fatty acid biosynthesis from low oleic acid and high oleic acid palms. Subsequently, 

advanced mass spectrometry-based approaches were exploited to characterise the role of 

phosphorylation in regulating the fatty acid biosynthetic enzyme activities between the two 

oil palm varieties. 

6.1 Method development to provide chromoplast proteins for 
shotgun proteomic analysis 

The method development described in Chapter 3 was specifically tailored for oil palm fruit 

mesocarps to isolate plastid-based (chromoplast) proteins and improve their extraction for 

proteomic analyses. Oily fruit-based proteins are known to be highly recalcitrant to common 

protein extraction approaches. In addition, these plant-based protein materials contain high 

levels of interfering compounds that are detrimental to proteomic techniques. Therefore, the 

mesocarps were first delipidated using a combination of acetone and methanol solvents. Their 

ability to extract different classes of lipid proved to be advantageous in removing lipids from 

the fruit mesocarps, especially for the high oleic acid variety. Utilisation of cellulase and 

pectinase enhanced the protein yields by breaking down the plant cell walls to release the 

plant organelles. Chromoplasts were separated from other plant organelles using a 

combination of differential and density gradient centrifugation approaches prior to protein 

extraction. These steps, especially the differential centrifugation, were critical to permit the 

extraction of mainly chromoplast proteins (up to 90% of total proteins) for proteomic 

investigation of chromoplast-based fatty acid biosynthetic enzymes. Phenol-based protein 

extraction and the precipitation of proteins with ammonium acetate were demonstrated to 

give the highest protein yield and quality. Phenol was used as its interaction with proteins 

through hydrogen bonding enabled the isolation of predominantly proteins from other 

interfering compounds. Ammonium acetate was used to precipitate and eliminate more 
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interfering compounds from the isolated proteins, something which the commonly used 

TCA/acetone protein precipitation approach was unable to do.  

6.2 Utilisation of non-gel based proteomic technique to enhance 
the protein expression characterisation of fatty acid 
biosynthetic enzymes  

Different proteomic techniques were first employed to investigate the biological variations 

within the three different replicates of the low oleic acid and high oleic acid varieties used in 

this study (Chapter 4). Strategies developed in Chapter 3 were used to provide the 

chromoplast proteins. A combination of gel- and non-gel based approaches provided ‘deeper’ 

findings with regard to their biological variations. The variations were not evident using the 

gel-based techniques (1D SDS-PAGE and 2DE) alone. However, the non-gel based technique 

(2DLC-MS/MS) gave a better overview of the degree of variation between these replicates. 

LO1 was found to give a higher number of identified proteins and peptides relative to their 

LO2 and LO3 counterparts. Meanwhile, HO1 and HO3 from the high oleic variety were found 

to be varied to a lesser extend compared to HO2, although these differences were small.  

GeLC-MS/MS identified β-ketoacyl-ACP reductase, β-hydroxyacyl-ACP dehydrogenase, 3-

enoyl-ACP reductase, β-ketoacyl-ACP synthase and stearoyl-ACP desaturase. However, non-

gel based technique utilising offline 2DLC-MS/MS managed to identify an additional main fatty 

acid biosynthetic enzyme including its subunits. The complementary non-gel based technique 

was demonstrated to improve the number of detected unique peptides for β-ketoacyl-ACP 

synthase and stearoyl-ACP desaturase from both low oleic acid and high oleic acid varieties. 

In contrast, a lower number of peptides was detected for β-hydroxyacyl-ACP dehydrogenase 

and 3-enoyl-ACP reductase using this non-gel based technique. Both approaches gave a nearly 

similar number of detected peptides for β-ketoacyl-ACP reductase. Overall, enzymes involved 

in the elongation of the fatty acid chain, namely, the β-ketoacyl-ACP reductase, β-hydroxyacyl-

ACP dehydrogenase and 3-enoyl-ACP reductase were found to have a higher number of 

detected peptides in both varieties compared to acetyl-CoA carboxylase, β-ketoacyl-ACP 

synthase and stearoyl-ACP desaturase. This might suggest that those enzymes were present 

in higher abundance relative to acetyl-CoA carboxylase, β-ketoacyl-ACP synthase and stearoyl-

ACP desaturase in fruit mesocarp during this stage of maturation.  
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Chapter 4 also documented valuable information on the expression levels of different 

enzymes implicated with plant oleic acid biosynthesis, in addition to earlier proteomic studies 

(Loei et al., 2013; Sambanthamurthi et al., 1999). The information in this study was obtained 

through a combination of an offline 2DLC-MS/MS approach with an iTRAQ labelling strategy. 

Only peptides detected in both low oleic acid and high oleic acid varieties for acetyl-CoA 

carboxylase (subunit biotin carboxylase), β-hydroxyacyl-ACP dehydrogenase, 3-enoyl-ACP 

reductase and β-ketoacyl-ACP synthase were compared to determine their relative protein 

ratios. The outcomes indicated that both β-hydroxyacyl-ACP dehydrogenase and β-ketoacyl-

ACP synthase expressions were up-regulated in the high oleic acid variety. The protein 

expression of 3-enoyl-ACP reductase was down-regulated in high oleic acid variety while the 

expression of acetyl-CoA carboxylase remained unchanged. In addition to examining the 

protein expression of fatty acid biosynthetic enzymes, the protein expressions of other 

metabolic enzymes associated with the fatty acid production were also investigated. Fructose-

biphosphate aldolase, malate dehydrogenase and sucrose synthase were found to have higher 

levels of expression in the high oleic acid variety. Elevated expression of proteins involved in 

ATP binding and acyl group transfer were also noticed in high oleic acid variety. Notably, in 

contrast, the expression of lipase was higher in the low oleic acid variety.  

Earlier studies (Dussert et al., 2013; Tranbarger et al., 2011) reported that the production of 

palmitoyl-ACP (C16:0) reached a plateau at the fruit maturation age of 20th week after 

anthesis. This coincided with the unaltered expression of acetyl-CoA carboxylase in both low 

oleic acid and high oleic acid varieties, since acetyl-CoA produced malonyl-CoA, the precursor 

for fatty acid elongation process to produce C16:0. The results reported in Chapter 4 showed 

that the expression of enzymes involved in elongation of fatty acids (β-hydroxyacyl-ACP 

dehydrogenase and β-ketoacyl-ACP synthase) to produce C16:0 were higher in the high oleic 

acid variety. Both enzymes are involved in the elongation of fatty acids. Therefore, the higher 

expression of these enzymes suggested that the C16:0 produced has been converted to 

stearoyl-ACP (C18:0), the precursor for oleic acid in the high oleic acid variety. Furthermore, 

the down-regulated 3-enoyl-ACP reductase in high oleic acid variety and the unaltered 

expression of acetyl-CoA carboxylase in both low oleic acid and high oleic acid varieties 

postulated that oleic acid production was regulated by other fatty acid biosynthetic enzymes 

in the downstream stages, rather than during the fatty acid elongation phase. Since the 

expression level of stearoyl-ACP desaturase (the main enzyme in oleic acid biosynthesis) could 
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not be determined, its role in regulating oleic acid biosynthesis could not be established. 

Influxes of acetyl-CoA (precursor for malonyl-ACP), NADPH and ATP could potentially increase 

the production of oleic acid in high oleic acid variety indirectly. Furthermore, the down-

regulated expression of lipase in high oleic acid variety indicated that less oleic acid esters 

would be metabolised to generate free oleic acids. This may explain the higher level of oleic 

acids (in the form of esters) in the high oleic acid variety. 

6.3 Plausibility of phosphorylation involvement in regulating fatty 
acid biosynthetic enzyme activities 

Phosphorylation is an important mechanism to regulate protein activity. Chapter 5 described 

the utilisation of two advanced mass spectrometry-based techniques to detect the neutral 

loss of the phosphoric acid group from phosphorylated serine-containing peptides. Using the 

neutral-loss triggered MS3 and Selected Reaction Monitoring approaches, peptides showing 

the neutral losses were found, which corresponded to the peptides identified to 3-enoyl-ACP 

reductase and subunit biotin carboxylase of acetyl-CoA carboxylase (based on precursor ion 

masses). These phosphopeptide candidates were detected in both low oleic acid and high oleic 

acid varieties, indicating that phosphorylation of these enzymes did not regulate the oleic acid 

biosynthesis. As the predicted phosphorylation sites of these peptides were found in the 

protein domains of 3-enoyl-ACP reductase and biotin carboxylase, the findings suggested a 

crucial role of phosphorylation in regulating the enzyme activities, perhaps during the 

palmitoyl-ACP production. Phosphorylation was known to deactivate acetyl-CoA carboxylase 

(Brownsey et al., 2006; Hardie & Pan, 2002; Hwang et al., 2014). Therefore, the 

phosphorylated peptide candidates for subunit biotin carboxylase could mean the activity of 

acetyl-CoA had reduced when the fruit reached maturation at 20th week after anthesis. As 

stated in Chapter 4, the expression of 3-enoyl-ACP reductase decreased in high oleic acid 

variety. However, in this part of study (Chapter 5), phosphopeptide candidates were identified 

to 3-enoyl-ACP reductase from both varieties. The amount of protein does not necessarily 

equate to the protein activity (Cramer et al., 2013). Therefore, this could indicate that 

phosphorylation regulated the enzyme activities but not their protein expression. Its enzyme 

activity was reduced since palmitoyl-ACP did not show any substantial increment at fruit 

maturation stage.  

There was no indication of possible phosphorylation in the serine-containing peptides for β-

ketoacyl-ACP reductase, β-hydroxyacyl-ACP dehydrogenase and β-ketoacyl-ACP synthase. 
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However, the results described in Chapter 4 indicated that the protein expression of β-

hydroxyacyl-ACP dehydrogenase and β-ketoacyl-ACP synthase was up-regulated in the high 

oleic acid variety. Similarly to 3-enoyl-ACP reductase, phosphorylation does not appear to play 

a role in determining the protein expression of β-hydroxyacyl-ACP dehydrogenase and β-

ketoacyl-ACP synthase in the high oleic acid variety. A dephosphorylation event may have 

decreased the activities of all three enzymes instead, as the fruit reached the end of its 

development. Phosphorylation was not evident for both the subunit β-carboxyl transferase 

and the key enzyme in oleic acid biosynthesis, the stearoyl-ACP desaturase. Therefore, the 

role of phosphorylation in regulating stearoyl-ACP desaturase via increasing the oleic acid 

content remained inconclusive. 

6.4 Concluding remarks 

The robust methods to isolate and extract chromoplast proteins from oil palm mesocarp 

proved to be a significant improvement over existing but limited organelle proteomic studies 

in oily fruit. The obvious downside of the approach was the time needed to complete the 

whole process. The optimised chromoplast isolation and its protein extraction provided an 

excellent foundation for application to other plant organelle proteomic study in the future.  

The relatively low stoichiometry of fatty acid biosynthetic enzymes, especially stearoyl-ACP 

desaturase, presents a very challenging analytical problem, even with the combination of 

different proteomic approaches. The situation becomes worse with very low expression of 

stearoyl-ACP desaturase, the key enzyme in oleic acid biosynthesis. Nonetheless, the 

combination of these proteomic techniques was highly valuable in obtaining the key enzymes 

involved in the fatty acid biosynthesis.  

The outcomes reported throughout this thesis have significantly enhanced the knowledge of 

fatty acid biosynthesis in plant. The expression profiles for the key fatty acid biosynthetic 

enzymes provided new insights into their regulation in different oil palm varieties, with regard 

to oleic acid content. Novel insights have also been made on the possible phosphorylation 

states of each of the fatty acid biosynthetic enzymes. A plausible role for phosphorylation and 

dephosphorylation events in regulating the overall fatty acid production between low oleic 

acid and high oleic acid palms has also been described. In addition, the phosphorylated serine 

residues in the protein domains of the fatty acid biosynthetic enzymes could be exploited for 

further investigations into the exact role of phosphorylation. All of these are novel results.  
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6.5 Future perspectives 

The low stoichiometry of phosphorylated peptides remains a huge obstacle in proteomic 

investigation, as in this study. Relatively lower abundance of these phosphopeptides makes it 

difficult to study them. Therefore, utilisation of affinity-based columns such as Immobilised 

Metal ion Affinity Chromatography (IMAC) and Titanium Dioxide (TiO2) will potentially 

improve the detection of phosphorylated peptides. Although utilisation of TiO2 column has 

been trialled in this study (not reported in this thesis), further optimisation would be essential 

to improve the binding efficiency of phosphopeptides to the column. To further reduce the 

suppression of phosphorylated peptides, these enrichment strategies could be used in 

combination with electron transfer dissociation (ETD). Unlike the collision-induced 

dissociation used in this study, peptide fragmentations with ETD retain the labile phosphate 

group in the peptide backbone fragments after dissociations. The apparent advantage of this 

type of fragmentation is that the site of modification can be identified more confidently. The 

non-existent neutral loss peak related to the phosphate group will enhance the identification 

of phosphopeptides caused by suppression of sequence diagnostic ions in the presence of 

neutral loss peak. ETD in combination with SCX-2DLC-MS/MS had also been attempted in this 

study but without success, at the time of this thesis. Further optimisation is considered to be 

required. Another approach to enhance the complete coverage of phosphoamino-containing 

peptides is to combine the use of a reverse-phase column (used in 2DLC-MS/MS approach in 

this study) with a Hydrophilic Interaction Chromatography or HILIC. This combination presents 

another prospective phosphopeptide enrichment strategy. The phosphate group is strongly 

hydrophilic and therefore, capable of altering the hydrophilicity of the attached peptide. Thus, 

the phosphopeptides would bind more tightly to the neutral, hydrophilic stationary phase in 

a HILIC column, relatively to non-phosphopeptides. This may have contributed to the inability 

to obtain more phosphoamino-containing peptides in this study as only a hydrophobic column 

was used (Chapter 5). 

Once the problems of low stoichiometric phosphopeptides have been overcome, the next step 

is to investigate and determine the biological significance of the protein expression and 

phosphorylation states of the fatty acid biosynthetic enzymes during the oil palm 

development stages. The results from this study reflected that the role of phosphorylation in 

fatty acid biosynthesis will be better defined throughout the fruit development stages, rather 

than at the fruit maturation stage. iTRAQ labelling technique will be applied but in 
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combination with the Selected Reaction Monitoring (SRM) technique. SRM (Chapter 5) has 

the capability to selectively quantitate iTRAQ-labelled phosphopeptides of fatty acid 

biosynthetic enzymes since their unique peptides (with the corresponding m/z) had been 

identified (Chapter 4). The advantage of SRM should be exploited to detect the low abundance 

phosphopeptides more effectively. In addition, as more information on the oil palm genome 

is being uncovered, its non-redundant protein sequence database can be established. The 

database would include the descriptions of the function of a protein, its domain structure, 

reactions catalysed by the protein, similarities to protein sequences from other related species 

and perhaps, the post-translational modifications. Thus, the efforts to distinguish the isoforms 

of β-ketoacyl-ACP synthase to determine which isoform regulates the oleic acid level as well 

as enhancing the protein identification confidence can also be carried out. 

Elucidating complex signalling pathway through phosphorylation events can be difficult and 

laborious. Combinations of various proteomic-based strategies have been used to identify the 

dynamic changes of phosphorylated enzymes in this study. In addition to that information, 

determination of the phosphorylation sites is equally important to understand the role the 

phosphorylation plays in the function of fatty acid biosynthetic enzymes. Several possible 

phosphosites had been reported in this study (Chapter 5). Validation of these sites can be 

carried out with site-directed mutagenesis on these enzymes. Serine, threonine or tyrosine 

residue deletion in the protein domains will be useful to confirm precise role of 

phosphorylation. In order to comprehend the entire signalling pathway of fatty acid 

biosynthesis, it is vital to determine the exact effect of phosphorylation on these fatty acid 

biosynthetic enzymes. Phosphorylation can activate or inhibit enzyme activity (as postulated 

in this study, Chapter 5) through conformational changes or even create recognition sites for 

other protein molecules. At an industrial level, identification of the protein kinase and 

phosphatase that interacts with these phosphosites can be beneficial. Protein kinases and 

phosphatases are usually the prime targets for the manipulation of the phosphorylation state 

of the target enzyme. The phosphorylation state may be able to be altered to increase the 

oleic acid and linoleic acid contents to yield a higher value-added palm oil for the global oil 

market.   
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