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ABSTRACT 

Microarrays technology has been expanding remarkably since its launch about 15 years ago. With its 

advancement along with the increase of popularity, the technology affords the luxury that gene expres-

sions can be measured in any of its multiple platforms. However, the generated results from the micro-

array platforms remain incomparable. In this direction, we earlier developed and tested an approach to 

address the incomparability of the expression measures of Affymetrix®- and cDNA-platforms. The 

method was an exploit involving transformation of Affymetrix data, which brought the gene expressions 

of both cDNA and Affymetrix platforms to a common and comparable level. The encouraging outcome 

of that investigation has subsequently acted as a motivator to focus attention on examining further in 

the direction of defining the association between the two platforms. Accordingly, this paper takes on a 

novel exploration towards determining a precise association using a wide range of statistical and ma-

chine learning approaches. Specifically, the various models are elaborately trailed using – regression 

(linear, cubic-polynomial, loess, bootstrap aggregating) and artificial neural networks (self-organizing 

maps and feedforward networks). After careful comparison in the end, the existing relationship between 

the data from the two platforms is found to be nonlinear where feedforward neural network captures the 

best delineation of the association.  
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1 INTRODUCTION  

Microarrays technology reveals an unprecedented view into the biology of DNA. Since the publication 

of the seminal paper [5] about 15 years ago on quantitative monitoring of gene expression in Arabidop-

sis, microarrays have brought about a paradigm shift about how to conduct research in biologically im-

portant entities – a shift from the traditional hypothesis-driven research to information-driven research. 

With the technological and conceptual advancement of the technology in addition to its increase of pop-

ularity, microarrays currently afford the luxury that complex biological questions can be queried using 

any of its multiple platforms, which include commercial vendors, for example Affymetrix® (Santa Clara, 

CA, USA) and Agilent® (Palo Alto, CA, USA), and other proprietorial arrays of various laboratories.  

As the rapid expansion of microarray technology continues to provide comprehensive biologic charac-

terization of various cellular processes, interests have started to grow for integration of multiple microar-

ray studies that are based on the same technological platform or combining data from different array 

platforms. Integration of multiple studies carries the potential towards higher accuracy, consistency and 

robust information mining. Further, the integrated result often allows constructing a more complete and 

broader picture.  

Various comparison studies have been published over the years, and the overall observation on accura-

cy, reliability and reproducibility of microarray investigations can be summarized as cautious optimism 

[6]. Sarmah & Samarasinghe [7] provides an useful review, which discusses microarray data integration 

approaches as well as the underlying issues of integration. In the midst of the relentless chase in finding 

remedies for the issues of microarray data integration, we recently developed an approach [8] to inte-

grate microarray data tested on two microarray platforms, Affymetrix and cDNA. The study, which had 

used childhood leukemia data (available in supplementary material), produced encouraging outcomes. 

The proposed approach delivered simpler applicability in addition to furnishing greater transparency. 

The overall outcome highlighted that its application is capable of addressing the issue of incomparability 

of the expression measures of the two microarray platforms. The inspiring cross-platform outcomes led 

us to focus attention on examining further in the direction of precisely identifying the association be-

tween the two platforms. With this motivation, a wide range of statistical as well as machine learning 

approaches are applied to the microarray data. This paper distinctively presents this novel, elaborate ex-

ploration, where the modelling of the data is probed into using – regression models (linear, cubic-
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polynomial, loess, bootstrap aggregating) and artificial neural networks (self-organizing maps and feed-

forward networks).  

2 MODELLING A CROSSOVER 

Seven of the children used in the study of Sarmah et al. [8] had been tested on both Affymetrix (HGU-

133A chip) and cDNA platforms; and similar to cDNA, where the expression level of a gene remains in 

the form of a tumor-to-healthy ratio, Affymetrix expressions were transformed in that work to Affymet-

rix-ratio (or Affyratio). A set of 822 differentially expressed (DE) genes from either platforms were used 

in the process; and the conducted transformation caused both cDNA and Affyratio to attain a mutually 

comparable level. In the work, 10 healthy Affymetrix arrays were used such that Affyratio for a gene of a 

patient could be calculated as in equation (1) when expression level of a gene, x from one of the leuke-

mic Affymetrix chips is D, and the average of each gene’s expression from the set of 10 healthy Affy-

metrix chips is H. 

ratio 2 10

1

log ( )
 = log

log ( )

10

i

i

x

x

x

Anti D
Affy

Anti H



                                          (1) 

In this paper, each of the seven leukemic patients’ data from either platform is examined here to be 

modelled and tested for their ability in predicting the outcome for the remaining patients. These entire 

data are also concatenated in two variables, viz. Affyratio and cDNA, each having 5754 genes (i.e., a pa-

tient’s 822 DE genes × 7 patients), and are available in suppl. Table 1. Out of 5754 DE expression data, 

a set of 4504 genes’ expressions are randomly selected, which would be applied as a separate training 

dataset to be used by each of the methods. The remaining 1000 DE (i.e., 5754 – 4504 = 1000) expres-

sion data would be used for testing a trained framework, wherever possible.  

The expression levels of the individual patients are considered for modelling only to represent each pa-

tient’s ability to predict for others have there been no other patient’s data available to form either the 

large ‘global’ set or the random set. It is expected that this, in a way, would help judge the impact of 

each patient’s contribution towards the model building from the larger set. As performance indicators of 

the retrieved models, mean square error (MSE) and Pearson product-moment correlation coefficient 

(corr. coef.), symbolised by r, would be used. It would be desirable to have lower MSE-values whereas 
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higher (positive or negative) r-values. Coefficient of Variation (CV) is also computed as this useful sta-

tistic for comparison reveals the degree of variation from one data series to another. 

2.1 Linear model 

To begin with, bivariate linear regression is applied to test the strength and predictability of the linear 

model(s). The results, given in suppl. Table 2, presents the regressional output, along with MSE and r-

values, of  – (i) the whole dataset, (ii) individual patient tested against the remaining patients, and (iii) 

the random data. The tilde sign (~) between two variables indicates that the variable succeeding this sign 

is independent, and is a function of the first variable. All the linear fits are overlaid in Fig. 1, which 

shows that the fits do not vary much from each other.    
 

 

 

 
 
 
 

 

Fig. 1. Overlaying of linear fits 

It is not possible to comment on the obtained models as available literature neither has any prescribed 

benchmark values for such type of linear investigation nor has any results to compare with. Also bivari-

ate linear regression cannot address potential non-linear hidden patterns in seemingly linear data. There-

fore, adequate consideration for applying non-linear models is required. 

2.2 Consideration for non-linear models 

 
Attempting to use non-linear models on the microarray dataset is futile if just a linear model can ade-

quately represent the data. Therefore, it is necessary to check the need for non-linear methods. Again, it 

is often difficult to determine such necessity just based on simple visualization as even an apparently 

linear-looking data can contain underlying non-linear patterns undetectable to the eyes. As a way out, 

two statistical tests are conducted in which a linear and a cubic polynomial model are used where the 

latter would query based on the non-linearity of the data. 

 

 

 

 

 
Figures are supplied after the reference-section. 
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2.2.1 Extra sum-of-squares test 
 

This test, also known as F-test using ANOVA, is based on statistical hypothesis testing and ANOVA 

(analysis of variance); and is computed for the 5754 DE microarray genes. The idea here is that once the 

data are fit to the two models, goodness-of-fit is calculated as the sum of squares of deviations of the 

data points from the model. Then, the complexity of the models is measured with the degrees of freedom 

(df), which equal the number of data points minus the number of parameters fit by regression. If the 

simpler model (the null hypothesis) is correct, the relative increase in the sum of squares approximately 

equals the relative increase in degrees of freedom. If the more complicated (alternative hypothesis) mod-

el is correct, then the relative increase in sum-of-squares (going from complicated to simple model) be-

comes greater than the relative increase in degrees of freedom. The F-ratio equals the relative difference 

in sum-of-squares divided by the relative difference in degrees of freedom. This is shown in equation 

(2).  

null alt null alt

alt null alt

null alt alt

alt alt

SS SS SS SS

SS df df
F

df df SS

df df

 


 


                                 (2) 

F-ratios are always associated with degrees of freedom for the numerator and that for the denominator. 

The F-ratio in the equation has dfalt degrees of freedom for the denominator, and dfnull – dfalt degrees of 

freedom for the numerator. ANOVA computes an F-ratio from which it calculates a probability (p)-

value. If the obtained p-value is less than the set statistical significance level, usually α = 0.05, the alter-

native (complicated) model fits the data better than the null hypothesis (simpler) model. Otherwise, there 

is no compelling evidence supporting the alternative model, and so the simpler null model can be ac-

cepted.  

With the 5754 DE genes, the output rendered a probability less than 2.2e-16.  This suggests that the prob-

ability of obtaining a calculated F-value of 84.258 by chance is 2.2e-16 or smaller. This is highly unlike-

ly; and hence, there is enough possibility that nonlinear model would provide improvement over linear 

model. 
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2.2.2 Akaike’s Information Criterion 

As an alternative approach to F-test and choosing a model with the use of statistical hypothesis testing, 

Akaike’s information criterion or AIC [9] is used for comparing the two models. AIC combines maxi-

mum likelihood theory, information theory, and the concept of the entropy of information [10]. It is dif-

ferent as well as a distinctly independent approach than the F-test, and does not rely on p-values or the 

concept of statistical significance. Moreover, F test can only be used to compare nested1 models, where 

Akaike’s method can be used to compare both nested and non-nested models. It is known in statistics as 

a penalized log-likelihood, and can be written as shown in equation 3.  

2

2

2 2( 1)

( )
( , ) log(2 ) log( )

2 2

i

AIC l p

yn
l n


   



   


  

                         (3) 

In the equation, p is the estimated coefficients in the model, and 1 is added for the estimated variance. 

Log-likelihood, a measure of comparing the fit of two models, is denoted by l, and the value of it gets 

higher with better model. A somewhat similar and often used structure of equation is also given in the 

equation. However, in simple terms, AIC can be defined as a method of comparing alternative specifica-

tions by adjusting the error sum of squares for the sample size and the number of coefficients in the 

model (p), i.e., AIC = log(SSE) + 2(p). While using for comparison, the model with the lowest AIC 

score is most likely to be a better fit. In case of the 5754 DE genes, polynomial was found to have the 

lower AIC.  

Both the statistical tests above present an indication that non-linear methods may potentially bring im-

proved outcomes. This confers a trust upon exploring the non-linear methods further. 

2.3 Non-linear models 

2.3.1 Polynomial regression 

Polynomial models are useful to investigate the presence of possible curvilinear effects in the response 

function. Such regression fits a nonlinear relationship to the data where the dependent variable is mod-

elled as an nth order function of the dependent variable. Every polynomial corresponds to a polynomial 

  
1  When a model is a simpler case of the other, the models are said to be nested. 
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function, and can be represented as shown in equation 4, where n is a non-negative integer and a0, a1, 

a2, .... an are constant coefficients. 

f(x) = anx
n
 + an-1x

n-1
 + .... + a2x

2
 + a1x + a0                           (4) 

The results of polynomial regression applied to the microarray datasets are given in suppl. Table 3. For 

comparison of these results with the linear regression of suppl. Table 2, the MSE values can be used 

such that relative decrease of MSE along with no change or an increase of correlation (positive or nega-

tive), r is an indication of better representation of the relationship by a model. The polynomial results are 

found to be relatively improved compared to the values of linear regression, which is already confirmed 

while carrying out the statistical tests (i.e., extra sum-of-squares test and AIC) above.  

2.3.2 Locally weighted regression 

In the methodology of time series, there is an old idea deeply buried where the data measured at equally 

spaced points in time were smoothed by local fitting of polynomials [11]. Then, the era of contributions 

came where chronologically Watson [12], Stone [13], Cleveland [14], Hastie & Tibshirani [15] and 

Cleveland & Devlin [16] introduced as well as streamlined the local fitting methods into the more gen-

eral case of regression analysis. The curve fitting regression technique introduced by William S. Cleve-

land [14] and further developed by him and Susan Devlin [16] is called LOWESS, which is locally 

weighted regression scatter plot smoothing. Its derivative, LOESS stands more generally for a local re-

gression, and differs from LOWESS based on the model used in the regression: LOWESS uses a linear 

polynomial whereas LOESS uses a quadratic polynomial [17]. Many researchers consider LOWESS and 

LOESS as synonyms.  

More descriptively, the method of locally weighted regression or Loess (aka Lowess) can be considered 

as locally weighted polynomial regression. It combines much of the simplicity of linear least square re-

gression with the flexibility of nonlinear regression. To achieve this, it uses a nearest neighbour algo-

rithm and determines localized subsets of data. Local polynomials of usually first or second degree are 

fit to these subsets of data using weighted least squares. A user specified smoothing parameter (f) gives 

the flexibility to the Loess function, and it is approximately the fraction of points to be used in the com-

putation of each fitted values. There is no single correct value of f, and the values can range from 0 to 1. 

However, different f values give different summaries. As Chambers et al. explains [18], a small value of 
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f gives a very local summary of the middle of the distribution of y in the neighbourhood of x. Such value 

tends to force the function to excessively conform to the data, and only points whose abscissas are rela-

tively close to xi determine yi. This produces high resolution, but a lot of noise. For large values of f, the 

summary is much less local. In this case, there is low resolution with less noise. With respect to the 

smoother-line in the scatter plot, the larger the f-value gets, the lesser becomes the wiggle in response to 

the fluctuations in the data, or vice versa.      

The subset of data used in each weighted least squares fit is comprised of the data whose explanatory 

variables are closest to the point at which the response is being estimated. Based on the weight function, 

closer a data remains to the point of estimation, higher the weight it attains. Therefore, a local model can 

be considered to have the most influence by the nearby data than the points that are further apart. Any 

weight function can be used in this purpose as long as it satisfies the properties listed in Cleveland [14].    

Application of loess method to the DE genes of the microarray data is quite possible. However, on the 

basis of the principles involved in loess, it is found that any attempt of finding goodness of its fit through 

measures such as r and MSE is rather practically meaningless. The reason lies in the explanation of the 

loess method given above. In loess, a locally weighted estimate of a specified degree over a given frac-

tion of the data is computed, where the region over which the fit is performed slides to the right in each 

iteration. The combination of all these individual results produces the final fit. Again, this makes little 

practical sense to determine the form of the loess model; and because of that, measures such as r and 

MSE becomes pointless for loess models. It may be possible to estimate some r- like measures for the 

loess model by carefully deriving from its definition, and MSE-like estimate by extension, but it may not 

actually be meaningful as unlike regression, which produces pre-specified, parametric model for which 

the parameters are calculated from the data, loess lacks any such analogue, and the entire loess fit is es-

timated solely from the data without producing a single coherent model: with the change of either the 

span of the data or the degree of the local fit or both, there would be change in the r- and MSE-like esti-

mates. 

After giving careful consideration, application of loess is subsequently avoided because of its data-

driven attribute - as none of the outcomes can be considered to be in line with the results of the investi-

gations using the other methods. Nevertheless, to visualize how the method would contribute varying 

from the linear and polynomial distribution, it is applied for the 5504 DE genes using 0.75 as the 

smoothing parameter and 2 as the degree of the local polynomial. And, the output is graphically present-
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ed in Fig. 2 with the help of ggplot2 [19], an implementation based on the Grammar of Graphics [20]. 

The comparative figure shows that the loess and the polynomial fits are close to each other and are rela-

tively better fits than the linear model.  

 

 

 
 
 
 

 

Fig. 2. Microarray data with linear, polynomial and loess fit 

 

2.3.3 Bootstrap Aggregating 

Bradley Efron [21] invented the concept, bootstrapping, which refers to a group of metaphors that gen-

erally mean: a self-sustaining process that proceeds unaided. Bootstrap is the most recently developed, 

computer-intensive approach to retrieve statistical inference, and the process lets the dataset reveal its 

true self. This is achieved by sampling from the empirical distribution of the data without replacing or 

adding to the data. From the concept of bootstrapping, bootstrap aggregating or bagging originates. 

Bagging is an ensemble method, i.e., a method of combining multiple predictors. It is useful for avoiding 

model overfitting to data with variance reduction, and has been in use for a varied range of microarray 

studies [22-24]. This machine learning meta-algorithm, introduced by Leo Breiman [25], is used here to 

investigate the microarray data. To apply bagging to the microarray data, a computational algorithm is 

constructed, and is given in the following box.  

 

 
 
 
 
 
 

 
 
 
 

Figures are supplied after the reference-section. 
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The results of implementing the algorithm are provided in suppl. Table 4. The table shows that although 

the obtained r-values are relatively comparable to the earlier results of linear and polynomial regression, 

the values of MSE are found to be much higher, with low standard deviation. This is considered to be an 

indication that even though the method of bootstrap aggregating is a useful method in a number of pub-

lished microarray studies, it may not be suitable for applying in the current context. 

2.3.4 Self-Organizing Maps 

Machine learning approaches, such as Artificial Neural Networks (ANN) are considered to be effective 

computational methods that enable efficient capture of the trends potentially available in the data. Pio-

neered by Rosenblatt [26], Widrow & Hoff [27] and Widrow & Stearns  [28], ANN represent a compu-

tational tool, based on the properties of biological neural systems. Self-organizing map (SOM) is the 

most widely used unsupervised neural networks. Introduced by Teuvo Kohonen [1-3], it uses only the 

input data and projects it onto one- or two-dimensional grid for meaningful interpretation of its inherent 

structure and patterns as well as for visual validation [4]. 

Bootstrap algorithm:     

 Let the original sample be L = (x1, x2, ..... , xn), where xi is drawn from an empir-

ical population distribution, ˆ .F   

 Repeat B times :  

 Generate a sample Lk of size n from L by sampling with replacement.  

 Compute *̂  for x*  

 The corresponding bootstrap values are :  * * * *

1 2
ˆ ˆ ˆ ˆ, ,......., B     

 Use the values of *̂ to calculate the parameters of interest.  

  

Notations:  

 = Parameter; * = Data generated from bootstrapping;        ^ = An estimate   
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SOMs are considered highly efficient techniques for exploratory data analysis. Based on the principles 

and the inherent properties, this exploratory technique is extended to broaden its use towards employing 

it as a prediction tool. 

Each neuron of a trained SOM includes a specific set of datapoints. In a 2D space, such a neuron holds a 

final weight and the weight bears two components, one in x- and the other in y-direction. With this as a 

preface, a computational algorithm was constructed for implementation, and is given below in the box. 

 

 

 

 

 

 

 
 
 
 

 

The algorithm is implemented using Matlab
®, 2010a (The MathWorks Inc., Massachusetts, USA), and 

an instance of its implementation is given in Fig. 3 where the final positions of the neurons are shown 

when SOM-training is completed. The training and test data used belong to the random drawn 4504 and 

1000 datasets respectively. In the figure, the neuron positions are demarcated by rectangles while the 

positions of the training and test data are shown as dots (.) and crosses (×), respectively. The obtained 

outputs are given in suppl. Table 5. It is evident from the table that the results are better than that of 

bootstrap aggregating. However, they are not as good as those of either polynomial or linear regression. 

 

Algorithm used for SOM:     

 Let the training dataset for microarray be L = (x1y1, x2y2, ..... , xnyn) where xi and 

yi is Affyratio and cDNA respectively.  

 Train the data using the regular SOM algorithm [1-4].  

 Use the test dataset, T = (a1b1, a2b2, ..... , anbn) where ai and bi is test data from 

Affyratio and cDNA respectively.   

 For each ai  : 

 Advance in x-direction by the value, ai  

 in y-space, search for the closest neuron, Nc 

 Average the cluster of yi -values that come under Nc. This iy  represents 

the corresponding SOM-output of the ai value. 
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Fig. 3. Final neuron-positions along with training- and test-data 

2.3.5 Feedforward Neural Network 

Supervised neural networks are the mainstream of neural network development, and the feedforward 

neural networks fall in the category of supervised networks. Invented by Frank Rosenblatt [26], these 

networks are considered to be effective computational methods that enable efficient capture of the trends 

potentially available in the data. 

In multi-layer feedforward networks, it is said that high number of neurons with multiple layers often 

tends to create undesirable complexity. The same is empirically experienced while working with our mi-

croarray data. Subsequently, a simple feedforward network is finally preferred, and it consists of one 

neuron in the middle layer, in addition to the input- and the output-layer. Again, Matlab® was used to do 

the required computations. Various parameters used in these calculations are given below:  

i) Training function: Levenberg-Marquardt method [29] is used as learning method. It is a se-

cond-order method, and relies on both first and second derivative of error (slope and curva-

ture) while searching for the optimum weights. The method is considered as a hybrid algo-

rithm as it combines the advantages of steepest descent and Gauss-Newton methods. Leven-

berg-Marquardt algorithm is a fast method, and it primarily makes use of the Gauss-Newton 

method; but encountering situations where the 2nd derivative is negative, it reverts to the 

steepest descent method, and uses only the first derivative.  

ii) Transfer function: Transfer functions calculate a neural layer's output from its net input. 

Here, hyperbolic tangent sigmoid function [30] is used. It can be mathematically represented 

as given in equation 5 where la stands for linear activation of a neuron.   

 

 

 

 

Figures are supplied after the reference-section. 
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tanh ( ) 1

1 la
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
                        (5) 

The final outputs obtained from the feedforward network are given in suppl. Table 6. These results are 

indeed better than all the other approaches examined so far. 

3 SUMMARY OF RESULTS 

Various statistical and machine learning approaches rigorously applied in this work; and broadly, the 

available results provided in suppl. Table 2 - 6 can be studied by comparing the model outputs concern-

ing the whole and the random dataset. The gist of these results is summarised below in Table 1. With the 

simple neural architecture, the feedforward network is able to present the best results, while cubic-

polynomial delivers the next best set of results. The summarised results also indicate that despite its 

enormous potential, bootstrap aggregating method fails to deliver a comparable outcome than the rest of 

the methods. The self-organizing maps (SOM) are used by various researchers to constitute a very pow-

erful and unsupervised data visualization technique. This technique is probed into and redesigned to 

make it operational to address our task, which otherwise falls outside of its usual application environ-

ment. This redesigning of SOM’s application makes it capable of bringing better outcomes than the bag-

ging method, but comes out to be relatively less effective than the remaining approaches.  

Table 1  Summary of results 

Model 

Whole dataset 

Random dataset 

Training set Test set 

MSE r
 

MSE r
 

MSE r
 

Linear 0.6013 0.5886 0.6172 0.5892 0.5299 0.5771 

Polynomial (cubic) 0.5842 0.6042 0.5979 0.6064 0.5140 0.5835 

Bootstrap aggregating (bagging) 1.4870 0.5938 1.4806 0.5956 1.5588 0.5872 

Self Organizing Maps (SOMs) 0.8994 0.4650 0.9316 0.4643 0.8586 0.4405 

Feedforward network 0.5187 0.6253 0.5400 0.6267 0.4962 0.6042 
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A look at the suppl. Table 2 - 6 also suggests that at the level of individual patients, the predictive gene 

expression of atleast one patient, viz., patient number 78, produces at times results that tend to exceed 

the range of the outputs obtained by the others. However, it is difficult to reason this as in addition to 

observing the best housekeeping standards, the elaborate data quality analysis prior to the investigation 

indicated presence of no faults in any of these arrays. The predicted results of the remaining patients are, 

however, found to be more or less similar. 

4 CONCLUSION 

This research is a novel exploration in precisely determining the relationship between two common microar-

ray platforms, Affymetrix and cDNA. The major highlight of this work is its distinctively extensive search 

implementing a wide range of statistical as well as machine learning approaches towards drawing the closest 

association between the two platforms. The rigorously applied approaches probe into whether and how 

these methods would be useful when applied to microarray data in a situation when they come from two 

separate platforms. The resultant output of the study suggests that the relation between the two microarray 

platforms is non-linear; and given a gene’s expression level in one platform, there is a possibility that a feed-

forward neural network would provide more accurate expression value of the gene in the other platform 

compared to the rest of the approaches trialled. The conducted work maintains the highest housekeeping 

standards, besides carrying out a series of trials and testings with the applications, methods and algorithms. 

Finally, this process of interrogation is believed to have offered its own contribution towards bridging micro-

array platforms, and would possibly serve useful pointers in other microarray studies.    
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