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Abstract of a thesis submitted in partial fulfilment of the 

requirements for the Degree of Master of Applied Science. 

Prognostic modelling of sea level rise for the Christchurch coastal environment 

by 
Ashton Eaves 

Prognostic modelling provides an efficient means to analyse the coastal environment and provide 

effective knowledge for long term urban planning. This paper outlines how the use of SWAN and 

Xbeach numerical models within the ESRI ArcGIS interface can simulate geomorphological evolution 

through hydrodynamic forcing for the Greater Christchurch coastal environment. This research 

followed the data integration techniques of Silva and Taborda (2012) and utilises their beach 

morphological modelling tool (BeachMM tool). The statutory requirements outlined in the New 

Zealand Coastal Policy Statement 2010 were examined to determine whether these requirements 

are currently being complied with when applying the recent sea level rise predictions by the 

Intergovernmental Panel on Climate Change (2013), and it would appear that it does not meet those 

requirements. This is because coastal hazard risk has not been thoroughly quantified by the 

installation of the Canterbury Earthquake Recovery Authority (CERA) residential red zone. However, 

the Christchurch City Council’s (CCC) flood management area does provide an extent to which 

managed coastal retreat is a real option. This research assessed the effectiveness of the prognostic 

models, forecasted a coastline for 100 years from now, and simulated the physical effects of extreme 

events such as storm surge given these future predictions. The results of this research suggest that 

progradation will continue to occur along the Christchurch foreshore due to the net sediment flux 

retaining an onshore direction and the current hydrodynamic activity not being strong enough to 

move sediment offshore. However, inundation during periods of storm surge poses a risk to human 

habitation on low lying areas around the Avon-Heathcote Estuary and the Brooklands lagoon similar 

to the CCC’s flood management area. There are complex interactions at the Waimakariri River mouth 

with very high rates of accretion and erosion within a small spatial scale due to the river discharge. 

There is domination of the marine environment over the river system determined by the lack of 

generation of a distinct river delta, and river channel has not formed within the intertidal zone 

clearly. The Avon-Heathcote ebb tidal delta aggrades on the innner fan and erodes on the outer fan 

due to wave domination. The BeachMM tool facilitates the role of spatial and temporal analysis 

effectively and the efficiency of that performance is determined by the computational operating 

system. 

Keywords:  Coastal modelling, sea level rise, ArcGIS, BeachMM tool, SWAN, XBeach. 
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Chapter 1 

Introduction 

The effective management of the coastal environment requires robust scientific analysis and detailed 

planning. To understand the future consequence of sea level rise on coastal environments, the use of 

predictive models provides the ideal platform for anticipating the impacts. Predictive models create 

the opportunity to simulate and understand the physical processes affecting the coastal environment 

and give decision makers valuable quantitative information about a range of coastal conditions (Silva 

and Taborda, 2012) . Geographic Information Systems (GIS) provide spatial analysis and data 

integration techniques for accurate mapping and analysis of coastal features (Allen, Oertel & Gares, 

2012). When GIS is used in combination with statutory guidance and legislative tools of the New 

Zealand Coastal Policy Statement 2010 (NZCPS 2010) it enables regional and territorial authorities to 

provide prudent, efficient and effective outcomes for coastal management. 

The Intergovernmental Panel on Climate Change (IPCC) has proposed that the rate of global sea level 

rise that has occurred since the mid-19th century was larger than the mean rate of the previous two 

millennia (IPCC, 2013). During the period from 1901-2010 the global mean sea level has risen by 0.19 

m (IPCC, 2013), or an estimated mean global rate of 1.7–1.8 mm a-1  during the last century (Gehrels, 

Hayward, Newnham, & Southall, 2008). Over the past 7000 years the sea level around New Zealand 

has remained relatively stable until recently where a rapid rise has occurred evident from saltmarsh 

cores from southern New Zealand (Gehrels et al. 2008).  

The fundamental aim of this research project was whether the current residential zoning of Greater 

Christchurch meets the obligations outlined in the NZCPS 2010 for future sea level rise. Other 

research questions to be answered were: 

• What is the effectiveness of the predictive computer models SWAN and XBeach for hazard 

assessment of the Greater Christchurch coastal zone? 

• What will the extent of the Greater Christchurch shoreline be in 100 years? 

• What will be the effects of storm surge given this futuristic scenario? 

• How will the flow discharge of the Waimakariri River effect the coastal environment? 

 

1.1 Study area 

The Greater Christchurch coastal environment and surrounding coastal marine area in the southern 

extent of Pegasus Bay was modelled. The terrestrial area covers from Kairiki to the north, to 
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Scarborough Head to the south. The two coastal water bodies of the Avon-Heathcote (Ihutai) Estuary 

and Brooklands lagoon were included and their associated rivers of the Avon, Heathcote and 

Waimakariri. The area modelled extends approximately 4 km inland, 8 km offshore and 30 km along 

the coast. It is primarily based on the extent of the Light Detection and Ranging (LiDAR) dataset and 

the computing capacity.  Figure 1.1 shows the area of coastline modelled. 
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Figure 1.1 The numerical modelling extent of eastern Christchurch. 
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Chapter 2 

The geographical setting 

Pegasus Bay has been in a progradational state since the last Holocene high stand some 8000 years 

ago (Schulmeister & Kirk, 1997). Relic shorelines are observable as a series of ridges and swales along 

the backshore of Pegasus Bay in areas where there has been minimal anthropogenic development. 

These patterns are treated as a record of horizontal shoreline progradation as well as of vertical sea-

level rise (Allen et al. 2012). The New Brighton sand spit confines the Avon-Heathcote Ihutai Estuary, 

which is nourished primarily by sediments debouched by the Waimakariri River that migrate under 

hydrodynamic forcing. The sediment budget for the coastal environment is partially controlled by 

patterns of sediment transport which are governed by wave climate and sea level rise (Allen et al. 

2012).   

The main factors causing significant morphological change within the coastal environment are: long 

duration swell events, coupled with onshore winds; sediment supply, storm surges and the elapsed 

time between storm events (Backstrom, Jackson and Cooper, 2009), tidal range, tectonic forcing and 

geology. Morphological variations of the beach face, foreshore and seabed are strongly connected to 

the marine forcing mechanisms, particularly the wave action as the foremost factor contributing to 

coastal morphodynamics (Silva & Taborda, 2012). The morphologic change is not entirely related to 

oceanographic forcing, as extensive nearshore and shoreface accretion and erosion occurs under 

calm conditions, or modal high-energy conditions (Backstrom et al. 2009).  

Sea level rise in southern New Zealand is higher than the global average, which can be attributed to 

regional thermal expansion related to the concurrent rise in global temperatures (Gehrels et al. 

2008). The global mean sea level rise is anticipated to continue during the 21st century, the rate of 

which will very likely exceed that observed during 1971–2010 due to increased warming of the ocean 

and increased loss of ice mass from glaciers sheets (IPCC 2013). 

2.1 Geomorphology 

The continental shelf of Pegasus Bay extends out approximately 60 km to a depth of about 130m 

where it then descends into the Pegasus Canyon to a depth of over 500 m. The depth of this shelf 

corresponds roughly to the sea level during the last glacial maximum 20,000 years ago and has a 

gradient of less than 1° (Hart, Marsden and Francis, 2008) . Beach and dune ridges with intervening 

swamps illustrate a progradational state; the Christchurch shoreline had a previous position near the 

suburb of Riccarton, west of the CBD, now its current position is 11 km seaward towards the mouth 

of the Avon and Heathcote Rivers (Hart et al. 2008) . The New Brighton Spit is a geologically recent 
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addition to Pegasus Bay, having formed during the past thousand years; it extends south to enclose 

the estuary (Hart et al. 2008). Figure 2.1.1 shows the transgression and progradation of the 

Christchurch shoreline. More recent migrations of the distal end of the New Brighton Spit from 1940 

to 2013 are shown in figures 2.1.2 and 2.1.3. The progradation of Pegasus Bay is due to the inability 

of the marine environment to remove wave-eroded sediment from the floor of the bay, leading to 

gradual nearshore aggradation which is then transported landward to form a new berm 

(Schulmeister & Kirk, 1997) . However, this wave dominated environment is strong enough to 

disperse river derived sediment from the Waimakariri, Ashley and Waipara rivers across the 

nearshore of Pegasus Bay  (Schulmeister & Kirk, 1997).  

Patterns of backshore ridge and swale sets in parallel orientation are treated as a record of horizontal 

shoreline progradation as well as vertical sea-level rise (Allen et al. 2012). Under a prograding 

regime, younger shorelines occur seaward of older shorelines, following the geologic law of 

superposition, where new beds overly older beds, creating this gradual horizontal pattern (Allen et 

al. 2012).  The aggradation is dependent on sediment supply and deposition on the foreshore, 

followed by the building of the dune system by aeolian transport. 
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Figure 2.1.1 The Holocene transgression and progradation of the Christchurch shoreline (Brown & 
Weeber, 1992).   
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Figure 2.1.2 The migration of the distal end of the New Brighton Spit between 1940 and 1994. Map 
courtesy of Bruce Gabites at Environment Canterbury (ECan). 



 8 

 

Figure 2.1.3 The migration of the distal end of the New Brighton Spit between 1994 and 2013. Map 
courtesy of Bruce Gabites at ECan. 



 9 

2.2 Hydrology 

Pegasus Bay is sheltered from the predominant hydrodynamic forcing provided by the Southland 

Current from the south-west. This leads to nourishment of the bay via an eddy in the current; where 

sediment is dragged north from the Canterbury Bight and settles under calmer conditions (Brown, 

1976; Hart et al. 2008; Schulmeister & Kirk; 1997). The Southland Current drives sediment south 

along the shore in the southern extent and north in the northern extent of Pegasus Bay (Hart et al. 

2008). The Southland Current also creates an offshore banner bank at the north-eastern tip of Banks 

Peninsula (Hart et al. 2008). Within Pegasus Bay, long-shore sediment transport, or net sediment 

transport, occurs in both north and south directions due to the absence of a dominant drift direction 

which is dependent on the planform equilibrium of the bay (Brown, 1976). Thus, sediment transport 

is determined by incident wave angle and ocean current. The ocean currents for the region are 

outlined by figure 2.2.1. 

The tidal front approaches from the south-west of New Zealand, travelling up the east coast and 

arriving in Canterbury under a semidiurnal regime with a micro-tidal range of approximately 2m (Hart 

et al. 2008; Stephenson & Schulmeister, 1999). The dominant wave directions in Pegasus Bay  are 

from the east and south-east, with southerly waves refracting around Banks Peninsula which rarely 

exceed a wave height of 2.5 m (Schulmeister & Kirk, 1997) . North-easterly swells occur during 

summer months from sub-tropical lows tracking south into Pegasus Bay (Brown, 1976; Schulmeister 

& Kirk, 1997). 
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Figure 2.2.1 East coast ocean current systems of central New Zealand. Reproduced with permission 
from Hart et al. (2008). 

2.3 Sea level rise 

The constituent drivers to a change in sea level are: isostatic changes in the earths’ crust through 

plate tectonics or post-glacial rebound; eustatic changes through thermal expansion or contraction of 

the oceans via changes in density, salinity or a redistribution of freshwater storage; departures from 

the global mean ocean circulation resulting in regional storm surge; changes to the significant wave 

height; and non-uniform atmospheric oscillations from temperature and salinity changes (Nicholls & 

Lowe, 2004). Non-uniform atmospheric oscillations are also known as the climate related mean sea 

level anomaly (MSLA), which includes the Interdecadal Pacific Oscillation (IPO) and the El Nino 

Southern Oscillation (ENSO) (Stephens, Bell, Ramsay & Goodhue, 2013). Stephens et al., (2013) 

quantified the sea level components as: long-term sea level rise, MSLA, tide, storm surge, and wave 

setup and run up.  A range of ocean processes have been affected by both the long term progressive 

changes and the decadal variations in the climate, including global sea level rise and the enhanced 

intensities of storms which generate more extreme waves and elevate storm surges (Komar, Allen, 

Ruggerio, & Harris, 2013). Figure 2.3.1 illustrates the effects of storm surge on a residence of 

Southshore during a 1977 storm. Figure 2.3.2 shows photos taken by the author of high water levels 
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and inundation at Southshore during an extreme storm in Christchurch on the 5th of March 2013, 

where 112 mm of precipitation was recorded over 4 days (Middlemiss, 2014). 

Sea levels in New Zealand have remained relatively stable throughout the late Holocene, although a 

recent rapid rise has occurred given evidence from salt-marsh cores in southern New Zealand 

(Gehrels et al. 2008). Hannah (2004) estimated a rate of sea-level rise of 2.8 ± 0.5mm yr-1 for 20th 

century New Zealand which was a considerably higher rate than that for preceding centuries. This 

was comparable with the nearest reliable tide-gauge at Lyttelton, 4 km south of the study site, where 

a rise of 2.1 ± 0.1 mm a -1 between 1924 and 2001 was recorded (Gehrels et al. 2008; Hannah, 2004). 

This rate is higher than the global average of 1.7 – 1.8 mm a-1, which can be attributed to regional 

thermal expansion (Gehrels et al. 2008). Ocean warming will be greater at depth in the Southern 

Ocean, with best estimates of ocean warming at a depth of about 1000 m by 0.3°C to 0.6°C by the 

end of the 21st century (IPCC, 2013). The IPCC (2013) has estimated that the mean rate of global 

averaged sea level rise was approximately 1.7 mm a-1 for the period 1901 and 2010, 2.0 mm a-1 

between 1971 and 2010 and 3.2 mm a-1 between 1993 and 2010, with glacier mass loss and ocean 

thermal expansion accounting for 75% of this change since the early 1970’s.  

Sea-level rise observations also contain inherent error and uncertainties that need to be reported as 

well as any other diagnostic indicators (Allen et al. 2012). The apparently rapid rise in swale heights 

over the youngest sets may correspond to the acceleration of sea-level in the past century, or it may 

also reflect extensive anthropogenic modifications (Allen et al. 2012). Inertia of the global climate 

system and the successful implementation of mitigation strategies will also dramatically affect any 

long range forecast (Reisinger, 2009). The 21st century emissions could determine the long-term 

consequences of climate change and sea level rise for many centuries to come (Reisinger, 2009). This 

is because greenhouse gas concentrations would continue to increase for a long time after emissions 

began to fall as rising temperatures would continue for at least another century, and in turn, sea 

level would continue to rise for many more centuries to come (Reisinger, 2009).  
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Figure 2.3.1 Erosion at Torea Lane in 1977. Photo taken from Southshore Residence Association 
History Group (2006). 
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Figure 2.3.2 Personal observations of high water levels and inundation at Southshore on the 5th of 
March 2014. 

2.4  Earthquake effects 

The Christchurch coastal environment has undergone recent major changes due to tectonic activity. 

The main cause of seismic changes to the study area were a magnitude 7.1 earthquake centred 

under Darfield 40km west of Christchurch which occurred on the 4th of September 2010, followed by 

a significant aftershock of magnitude 6.3 centred under Lyttelton on the 22nd of February 2011, and 

a 5.8 magnitude earthquake was recorded off the coast of New Brighton on the 23rd of December 

2011 (GNS, 2012). Many subsequent aftershocks have also occurred. Many effects of this earthquake 

series have been observed on the Avon-Heathcote Estuary which suffered extensive liquefaction, 
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~20-40% of its surface area, and a general tilting of the estuary that has seen subsidence to the 

northern extent and uplift at its southern extent of approximately 1 m and a reduction in tidal area 

(Measures et al. 2011). 

Earthquakes affect both the morphology and evolution of coastlines by introducing abrupt elevation 

changes of uplift, or subsidence, slumping or tsunami inundation  (Cundy et al. 2000). The Napier 

earthquake of 1931, with a magnitude of 7.8, altered the coastal morphology of the region  

considerably due to fault movement occurring only 30 km north-west of Napier City, which itself 

straddles the coast (Komar, 2010). The along-coast land elevation changes at its greatest extent saw 

uplift of 2 m at Tongoio, 1.8 m in Napier, and 1 m subsidence at Haumoana, Te Awanga and Clifton. 

Interestingly the earthquake caused abrupt uplift of the Ahuriri lagoon, reducing its area by 

approximately 12.8 km2, which has since become the site of the Napier Airport (Komar, 2010). 

Similarly, the Gulf of Atalanti, Greece endured significant coastal change during an earthquake series 

in 1894 which was dominated by a 6.2 magnitude event followed by a 6.9 magnitude event (Cundy et 

al. 2000). This earthquake series led to extensive coastal slumping, surface faulting, tsunami 

inundation and coastal subsidence by as much as 1 m (Cundy et al. 2000). Coastal subsidence was 

caused by the processes of localised slumping, liquefaction and tectonic down warping (Cundy et al. 

2000). This earthquake was similar in magnitude, coastal proximity and effects to that of the 

Canterbury earthquake series, although tsunami inundation did not occur in Canterbury.  
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Chapter 3 

Previous coastal modelling of the study area 

3.1 The Delft3D model 

The Delft3D hydrodynamic model was employed by Measures et al. (2011) to discover tectonic 

changes to the bathymetry of the Avon-Heathcote Estuary, the tidal reaches of the Avon and 

Heathcote Rivers and McCormacks Bay. The model was calibrated to observed water levels and then 

compared pre and post-earthquake extents of the Avon Heathcote Estuary to discover that the 

greatest changes have occurred during mid-tide in the south western area (Measures et al. 2011). 

Large parts of the estuary are now dry at mid tide, increasing the total area of exposed bed at mid 

tide to approximately 50 hectares which represents an increase of 18% of the area exposed at mid 

tide. This is illustrated by figure 3.1. The northern extent where the Avon discharges has subsided by 

0.2 - 0.5 m. The southern extent, including the estuary mouth and the Heathcote River, has risen by 

0.3 - 0.5 m. The overall pattern suggests south-north downward tilting which has led to 38% 

reduction in the area at the mouth of the estuary, and an 18% reduction in the mouth width 

(Measures et al. 2011). 
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Figure 3.1 Post earthquake Avon-Heathcote Estuary with percentage of bed submersion 
(Measures et al. 2011).  

3.2 The passive inundation approach and the Bruun Rule 

Tonkin and Taylor Ltd (2013) have produced a report into projecting a sea level rise of 1.0 m by 2015, 

in line with Ministry for the Environment guidelines of 2008. Their findings conclude that storm 

inundation, greater frequency of extreme tidal levels and the progressive retreat of the shoreline in 

low lying areas will be the main impacts (Tonkin and Taylor Ltd, 2013). They utilised the passive 

inundation, or ‘bathtub’ approach, and the Bruun rule.  Passive inundation is calculated by mapping 

where a certain sea level rise will intersect the terrestrial contour height, or the line where the 

MHWS in 2115 will intersect the existing cross-shore profile (EShorance, 2010). The second model 

used to predict the extent of sea level rise employed by Tonkin and Taylor Ltd (2013) and the 



 17 

Ministry for the Environment (2008) is the Bruun Rule (1962). This model was deemed suitable by the 

Environment Court (Skinner v Tauranga District Council A163/02) as a precautionary approach to 

coastal hazard planning for an open coast beach. It is illustrated in the ‘Erosional /equilibrium sandy 

coast’ plate in figure 3.2. However, this simple two-dimensional model assumes: a closure depth of 

offshore sediment exchange, no onshore or offshore gains or losses, no long term seasonal anomaly, 

instantaneous response to sea level change, and no account of sediment characteristics (Tonkin and 

Taylor Ltd, 2013).  

The Tonkin and Taylor Ltd (2013) report illustrates specific changes to the coastal system due to the 

tectonic activity in Canterbury. These include: Subsidence of the shoreline along Northern New 

Brighton and uplift along Southshore, which may reduce the southerly long-shore drift and decrease  

the tidal prism of the Avon-Heathcote Estuary (Measures et al., 2011). This reduces tidal velocities 

resulting in a landward movement of the ebb tidal delta with the excess sediment blocking the inlet, 

reducing its size, or migrating to nearby beaches (Measures et al., 2011). Land subsidence adjacent to 

the lower reaches of the Avon River and the northern extent of the Estuary has increased the risk of 

flooding (Tonkin and Taylor Ltd, 2013). Appendices C and D provide the mapped inundation extents 

from the Tonkin and Taylor Ltd (2013) report. 
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Figure 3.2 The general response of coastal geomorphology to sea level rise, adapted by the 
Ministry for the Environment (2008). The Bruun rule is outlined by the sandy coast 
scenarios.  

The results of the Tonkin and Taylor Ltd 2013 report for a 1.0 m sea level rise over the next 100 years 

are shown in table 3.1, with an upper and lower range of 0.5 m and 1.5 m.  Uncertainty around 

sediment supply from the Waimakariri River has led to the assumption that the hydrodynamic 

system is in dynamic equilibrium and that in future there will be no long term trend of progradation 

(Tonkin and Taylor Ltd, 2013). The risk of inundation along the New Brighton dune system is not 

expected to have any effect as the elevations are above storm surge levels (Tonkin and Taylor Ltd, 

2013).  Along the Sumner and Clifton revetments a general lowering of the beach profile will occur 

due to scouring at the base with inundation likely due to low points in the road and structure in the 

future, with Clifton beach facing coastal squeeze (Tonkin and Taylor Ltd, 2013). The inundation of the 

lower Avon and Heathcote rivers reported by Tonkin and Taylor (2013) are given in table 3.2, which 
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utilises an inundation level of 3.3 m above Lyttelton Vertical Datum 1937 (LVD37) and the passive 

inundation method. This inundation level was based on a MHWS 1.15 m above LVD37 mean sea level 

that is exceeded 10% of the time and a sea level rise of 1.0 m, giving a passive inundation level of 

2.15 m, and thus the MHWS level in 2115 would be the 2.2 m contour (Tonkin and Taylor Ltd, 2013).  

Table 3.1 Summary of estimated shoreline retreat due to sea level rise (Tonkin and 
Taylor Ltd, 2013). 

Site  
 

ECan Profile 
 

Dune 
height 
(m) 

Slope Sea level 
rise (m) 
 

Shoreline 
Retreat (m) 
 

Shoreline 
Retreat 
range (m) 

Spencer Park C1755 5.0 0.01 1.0 70 30-100 
Bottle Lake C1400 9.0 0.01 1.0 70 30-100 
Effingham Street, 
North 
New Brighton 

C1065 5.1 0.01 1.0 70 30-100 

Rawhiti Road, New 
Brighton 

C0952 8.3 0.01 1.0 60 30-80 

Rodney Street, New 
Brighton 

C0815 8.6 0.01 1.0 60 30-80 

Jellico Street, South 
New 
Brighton 

C0600 8.7 0.01 1.0 60 30-80 

Heron Street, 
Southshore 

C0471 6.9 0.01 1.0 60 30-90 

 
Site  
 

Dune height 
(m) 

Nearshore 
slope 

Sea level rise 
(m) 

Shoreline 
retreat (m) 

Shoreline 
retreat range 
(m) 

Scarborough 3.9 0.016 1.0 60 30-90 
Taylor’s Mistake 4.6 0.025 1.0 40 20-60 
 

Table 3.2 Summary of inundation impacts for the Lower Avon and Heathcote Rivers 
(Tonkin and Taylor Ltd, 2013). 

 Avon River Heathcote River 
 

Area of land inundated by 3.3 
m level (1% AEP event)1 

1,226 ha 1,171 ha 
 

Suburbs affected by a 1% AEP 
event inundation level 

Travis Wetland 
Avondale 
Wainoni 
Dallington 
Horseshoe Lake 
Bexley 

Ferrymead 
Woolston 
Linwood 
Hillsborough 
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Chapter 4 

Urban planning and statutory requirements 

The effects of a rising sea level require the implementation of effective coastal planning and 

forecasting of which areas are likely to be directly affected. This hypothesised increasing trend also 

means the definition of realistic, rather than nominal, planning timeframes becomes abundantly 

more important than it has previously been (NIWA MWH GNS and BRANZ, 2012).  The NZCPS 2010 

has a number of directives that require action by regional and territorial authorities in order to 

address expected coastal changes. These objectives and policies initiated by the New Zealand 

Government (2010) are: 

• Objective 5: To ensure that coastal hazard risks taking account of climate change, are 

managed by: locating new development away from areas prone to risks; considering 

responses, including managed retreat, for existing development in this situation; and 

protecting or restoring natural defences to coastal hazards (NZCPS 2010, p. 10). 

• Policy 6: (1) (i) set back development from the coastal marine area and other water 

bodies, where practicable and reasonable, to protect the natural character, open 

space, public access and amenity values of the coastal environment (NZCPS 2010, p. 

13). 

• Policy 24: Identification of coastal hazards (1) Identify areas in the coastal 

environment that are potentially affected by coastal hazards, giving priority to the 

identification of areas at high risk of being affected. Hazard risks, over at least 100 

years, are to be assessed having regard to: (a) physical drivers and processes that 

cause coastal change including sea level rise; (b) short-term and long-term natural 

dynamic fluctuations of erosion and accretion; (c) geomorphological character; (d) 

the potential for inundation of the coastal environment, taking into account potential 

sources, inundation pathways and overland extent; (e) cumulative effects of sea level 

rise, storm surge and wave height under storm conditions; (f) influences that humans 

have had or are having on the coast; (g) the extent and permanence of built 

development; and (h) the effects of climate change on: (i) matters (a) to (g) above; (ii) 

storm frequency, intensity and surges; and (iii) coastal sediment dynamics; taking into 

account national guidance and the best available information on the likely effects of 

climate change on the region or district (NZCPS 2010, p. 23). 
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Planning and engineering design has historically focussed on extremes in climate variability due to 

the slow rate of sea level rise and therefore parameters were considered to be stationary (Ministry 

for the Environment, 2008). Now, planning timeframes have had to adapt to the increasing sea level 

using practical high tide levels such as MHWS tide being exceeded 10% of the time, and estimates of 

extreme high storm tides (Ministry for the Environment, 2008). However, global climate change has 

been increasingly well documented, regional impacts and changes can be less well quantified and 

differ between regions leading to subjective interpretations of the future risk (Reisinger, 2009). Key 

vulnerabilities from potential changes can be identified as: the magnitude of the impact on people, 

the environment, or cost; its timing; its persistence or reversibility; the potential for adaptation; who 

is most affected; the probability of occurrence; and the intrinsic importance of the impact (Reisinger, 

2009). Due to the lag in system response, taking action now to create a fall in atmospheric 

temperature now would not see a change in sea levels for centuries to come (Reisinger, 2009). The 

Ministry for the Environment (2008) has classified a range of coastal landforms and their sensitivity 

to climate change by assessing the interrelationships between geomorphology, sediment and human 

influences. These are visible in table 4.1. 

Local government and Crown entities have created zones of increased hazard risk in the post-seismic 

Christchurch coastal environment. The CERA was established by the central government to facilitate 

the recovery of greater Christchurch after the tumultuous earthquake events. Their direction saw the 

implementation of the residential red zone where residents were financially compensated for their 

voluntary relocation from areas of high risk from coastal or fluvial hydrological inundation. This 

residential red zone comprised flanks of the Avon River and the Avon – Heathcote Estuary within the 

study area (Canterbury Earthquake Recovery Authority, 2014).  Similarly, the CCC has created a non-

statutory flood management area (FMA) of land that is at risk of longer term hydrological inundation. 

The FMA for the study area is visible in appendix E.   
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Table 4.1 Coastal landform sensitivity to climate change (Ministry for the 
Environment, 2008). 

Landform type Sea-level rise Storm surge Precipitation Wave height Wave 
direction 

Simple cliff  High  Moderate  Moderate  High  Low  
Simple landslide  High  Low  High  High  Low  
Composite cliff  Moderate  Low  Moderate  High  Low  
Complex cliff  Moderate  Low  High  High  Low  
Relict cliff  High  Low  High  High  Low  
Embryonic dunes  High  High  Low  High  Low  
Foredunes  High  High  Moderate  High  Low  
Climbing dunes  Moderate  Moderate  Moderate  Moderate  Low  
Relict dunes  Low  Low  Moderate  Low  Low  
Parabolic dunes  Moderate  High  Low  High  Low  
Transgressive dunes  Moderate  Moderate  Low  Moderate  Low  
River delta  High  High  Moderate  High  Moderate  
Tide dominate delta  High  High  Low  High  Moderate  
Wave dominated delta  High  High  Low  High  Low  
Shore platform  High  Moderate  Low  High  Low  
Sandflats  High  High  Low  High  Low  
Mudflats  High  High  Low  High  Moderate  
Pioneer saltmarsh  High  High  Moderate  High  Low  
Saltmarsh  High  High  Moderate  High  Low  
Sand beach  Moderate  Moderate  Low  Moderate  High  
Gravel beach  Moderate  Moderate  Low  High  Moderate  
Mixed beach  Moderate  Moderate  Low  High  Moderate  
Composite beach  Moderate  Moderate  Low  High  Moderate  
Boulder beach  Low  Low  Low  Moderate  Low  
Barrier island  High  High  Low  High  High  
Barrier beach  High  High  Low  High  High  
Spit  High  High  Low  High  High  
Cuspate foreland  Low  Low  Low  High  Low  
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Chapter 5 

Methods and materials 

To achieve the research questions the numerical models of SWAN and XBeach were incorporated 

into the ArcGIS platform via the BeachMM tool to calculate coastal evolution and inundation. The 

methods used follow those created by Silva and Taborda (2012) and were adapted for the 

Christchurch coastal environment over a longer time period. Silva and Taborda (2012) developed the 

Beach Morpho-Modelling Tool Version 1.1 (BeachMM tool), a python interface to link the numerical 

models and the GIS environment. The models were run utilising local parameters for the present 

scenario to validate the model output, and again for an estimated sea level projection of 100 years 

from now given NZCPS 2010 directives and IPCC 2013 predictions. Two of the IPCC projections were 

used to promote their minimum and maximum predictions. Mean conditions and conditions under 

storm surge events were simulated to account for the effects of sea level rise and anomaly storm 

scenarios. The study area was divided into two grid extents, one focussing on the Avon-Heathcote 

Estuary, and the other focussed on the Waimakariri River mouth. The Waimakariri River extent was 

only run under the maximum IPCC (2013) projection. 

Predictive computer modelling for this set up derives assumptions from general theory, through the 

numerical hydrological equations used in SWAN and XBeach, to create idealised representations 

from specific data input that is to be interpreted in ArcGIS via the BeachMM tool (Silva and Taborda, 

2012). The third-generation SWAN wave model provides realistic estimates of wave parameters in 

coastal areas utilising wind, bottom and current conditions (Booij, 2012). SWAN solves the spectral 

action balance equation by taking into account spatial wave propagation, generation, refraction, 

shoaling, dissipation, long-shore drift and non-linear wave-wave interactions, as it models the 

propagation from deep water oceanic waves to the surf zone (Silva & Taborda, 2012). Nesting is 

commonly employed in SWAN to increase the computational efficiency through modelling waves 

over a larger region to then apply the results of this to a smaller region (Silva & Taborda, 2012). The 

idea of nesting is to first compute the wave environment over a coarse grid for a larger region and 

then on a finer grid, where the computation on the fine grid uses boundary conditions that are 

generated by the computation on the coarse grid (Booij, 2012). This produces a more representative 

environment to set the boundary conditions for the study area. The hydrological wave model SWAN 

represents the most advanced form for modelling the propagation of nearshore waves (Silva & 

Taborda, 2012). XBeach is a recent and open source model for nearshore processes, which allows for 

the computation of natural coastal response to temporally varying storm conditions that include 

dune erosion, over-washes and breaching (Roelvink, Reniers, Van Dongeren, De Vries, Lescinski & 
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McCall, 2010) . It has been successfully field tested and validated for a number of sites throughout 

Europe under a wide range of environmental conditions (Silva & Taborda, 2012). The BeachMM tool 

is a relatively new geoprocessing tool that integrates these two numerical models into the ArcGIS 

platform using Python script language, streamlining the process and utilising Python’s object-

orientated and cross-platform capacity for modelling beach morphodynamics (Silva & Taborda, 

2012). The application of this tool simplifies dataflow, permits tight coupling, minimises human error, 

and allows for enhanced visualisation of results (Silva & Taborda, 2012). The integration of these 

tools for coastal modelling provide for a seamless integration of geospatial data, automates the 

model chain, and enables extensive visualisation and analysis of the model results (Silva & Taborda, 

2012). The schematic approach outlined in figure 5.1 illustrates how the BeachMM tool integrates 

into the ArcGIS platform. It shows the process by which the BeachMM tool calls SWAN and XBeach 

numerical models within the ArcGIS platform and the dataset flow required to operate the model. 

 

 

Figure 5.1 Schematic diagram of the process employed by the BeachMM tool (Silva & 
Taborda, 2013). 

LiDAR data was used to create a digital elevation model (DEM) of the Christchurch coastal 

environment, a technique previously used by White & Wang (2003)  to analyse morphologic change. 

LiDAR improves accuracy, extent of mapping, and spatial analysis through overcoming vegetation 

canopy masking (Allen et al. 2012). A bathymetric bottom grid was fused to the LiDAR dataset to 
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provide a seamless transition of offshore, nearshore and terrestrial surfaces within the DEM. A 

coarse input grid was then used to generate the boundary conditions for the finer computational 

grid, utilising nesting capabilities. The BeachMM tool performed four main tasks: 1) conversion 

between GRID and ASCII raster formats; 2) automation of input parameters; 3) output results into an 

ArcGIS compatible format; and 4) calling the external models to operate in ArcGIS (Silva and Taborda, 

2013). The IPCC sea level rise predictions are driven by greenhouse gas concentration trajectories, or 

Representative Concentration Pathways (RCPs), that are determined by estimates of future 

emissions. To give an overall view, the minimum and maximum RCP values were modelled. Thus, 

“the global mean sea level rise for 2081−2100 relative to 1986–2005 will likely be in the ranges of 

0.26 to 0.55 m for RCP2.6, and for RCP8.5, the rise by the year 2100 is 0.52 to 0.98 m, with a rate 

during 2081–2100 of 8 to16 mm a -1. These ranges are derived from CMIP5 climate projections in 

combination with process-based models and literature assessment of glacier and ice sheet 

contributions” (IPCC, 2013). Therefore a lower value of 0.26 m and an upper value of 0.98 m were 

used. SWAN and XBeach were executed with mean and significant storm data from the Canterbury 

offshore wave buoy. 

5.1 Raster grids 

The development of a seamless topobathy follows a similar technique used by Allen et al. (2012) 

where the integration of topographic and bathymetric data derived a triangular irregular network 

(TIN) and in turn a rasterized DEM. Generation of bathymetric bottom grids on which to run SWAN 

and XBeach were developed by merging the following files:  

• Terrestrial LiDAR data was obtained from Lincoln University.  This airborne laser scanning 

survey was conducted over Christchurch City and Lyttelton from 20th - 30th May 2011, and 

was designed to support the February 2011 earthquake recovery effort (AAM Pty Ltd, 2011). 

It captured a vector terrain model with an average point separation of 0.5m with ground 

support provided by GeoSystems NZ by way of GNSS base stations to assess the accuracy 

(AAM Pty Ltd, 2011). 

• Bathymetric vector contours and hydro sounding points were obtained from the Land 

Information New Zealand (LINZ) data service (LINZ, 2013a). 

• New Zealand geographic contours were also obtained from the LINZ data service (LINZ, 

2013a) for terrestrial values outside the LiDAR dataset required by the grid. 

This pre-processing of the datasets was required in order to run the BeachMM tool because the DEM 

needed to be in a recognisable format in order for the numerical computations to be performed. This 

required the conversion of polylines into a TIN, then into a DEM with a grid of 25 m. This grid was 

then clipped, or masked to produce an area at a resolution over which XBeach would operate and 
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then reformatted into ESRI GRID. Distortion created over terrestrial values created by the TIN outside 

the area of the LiDAR area were ignored but necessary as this space needed to be occupied in order 

for the XBeach model to run. The same process was used to create the larger input grid extent used 

by SWAN for hydrodynamic forcing. This extent was 110 km by 70 km and encompasses part of Banks 

Peninsula and the Pegasus Canyon. The study area comprised two computational grids, one centred 

on East Christchurch and encompassing the Avon-Heathcote Estuary, where the other focussed on 

the Waimakariri coastal environment.  

The BeachMM tool instructs SWAN to propagate the hydrodynamic forcing over the input grid and 

produce results for the computational grid which XBeach then employs to manipulate the nearshore 

to discover any sedimentation, erosion, bottom change, or water level change. The terrestrial areas 

of the grids were restricted to 4 m above LVD37 mean sea level (MSL) as XBeach fails to recognise 

terrestrial values and struggles to compute. Similarly, XBeach requires that all grids are rotated so the 

offshore boundary is aligned to the east in order for the program to propagate from deep to shallow 

water, or left to right in ASCII format. Rotation occurred around a pivot point of 1574004.11, 

5146388.554. LVD37 was used for the LiDAR dataset and therefore corresponds to all z values. The 

projection coordinate system can affect the rectangular shape of the grid and therefore must be 

perfectly square and clipped to generate a grid without “Nodata” missing values, otherwise XBeach 

fails to launch. Similarly, all numbers in ArcGIS should be formatted without commas or special 

characters. New Zealand Transverse Mercator was used for all files.  The computers’ virtual memory 

can also be an issue as the run-time implodes for large grids or fine resolution grids. This leads to 

computing capacity determining the size and resolution of the grids for the scenarios. The raster 

grids used for input and computation are illustrated in figures 5.1.1, 5.1.2 and 5.1.3. 
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Figure 5.1.1 BeachMM tool input grid: grid size = 222 by 140; cell size = 500 m by 500 m; origin = x = 
1574004.11, y = 5146388.554. 

 

Figure 5.1.2 BeachMM tool Avon-Heathcote computational grid: grid size = 274 by 215; cell size = 
25 m by 25 m; origin = x = 1575310, y = 5175832.801.  

 

Figure 5.1.3 BeachMM tool Waimakariri computational grid: grid size = 324 by 458; cell size = 25 m 
by 25 m; origin = x = 1573951.73, y = 5186365.142. 
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5.2 Hydrological and climatic parameters 

The SWAN hydrological input parameters were calculated from the LINZ sea level dataset (LINZ, 

2013b), the Canterbury wave buoy dataset provided by ECan, and the climatic conditions were taken 

from NIWA’s (2013) Cliflo server. The wave buoy dataset starts in February 1999 and ends in July 

2013 with measurements taken approximately every half hour. It is moored 17 km east of Le Bons 

Bay, Banks Peninsula with a Latitude of 43° 45' South and a Longitude of 173° 20' East in 

approximately 76 m of depth ensuring no interference by the seabed or terrestrial landmass with the 

measurements  (Environment Canterbury, 2014). The Cliflo dataset was taken from the weather 

station at New Brighton Pier as 3-hourly measurements from the 27th of August 2009 to the 1st of 

January 2013.  

There were two types of parameter settings used in the simulations with differing water levels over 

different time periods; one utilised mean hydrological and atmospheric conditions, and the other 

utilised the hydrological and atmospheric conditions during a storm. The parameters are: significant 

wave height (H sig); wave period (T); the direction from which waves propagate (Sea θ); the velocity 

of the wind (Wind v); and wind direction (Wind θ). For the mean forcing, the mean statistics from the 

various datasets were used for the parameters, except for wind direction where the mode was used. 

For storm forcing conditions the peak values were obtained for the different parameters during a 

recent storm on the 28th of June 2012, which ran over two days, and applied to the simulation. This 

storm is considered an extreme event as H sig falls within the top 1 % of all significant wave heights 

(Komar et al., 2013) and was chosen based on the availability of data for all parameters. Table 5.2.1 

outlines the various parameter settings used in the simulations.  Water levels have been calculated 

according to table 5.2.2 from data acquired from LINZ (2013b) on the Lyttelton tidal regime, IPCC 

predictions, and storm surge calculations, with MHWS referring to the mean high water spring tide. 

Table 5.2.3 outlines the tidal regime data from LINZ (2013b). Storm surge was calculated by 

subtracting the predicted tide level provided by LINZ (2013a) from the observed tide level recorded 

by the offshore wave buoy at the time of the storm. Storm surge was calculated at 0.77 m and is 

shown in table 5.2.2. Appendix A illustrates a SWAN input file used. The Waimakariri coastal 

environment simulation was operated utilising only the upper limit of the IPCC (2013) predictions of 

0.98 m.  

Table 5.2.1 Parameters used in the simulations. 

Simulation Water 
level (m) 

H sig (m) T (s) Sea θ  
(°, mode) 

Wind v  
(m s-1) 

Wind θ   
(°, mode) 

Mean 0 1.95 8.8 194.2 5.11 75 
Storm 1.96 7.49 13.3 140 9.2 230 
 



 29 

Table 5.2.2 Water level calculations given different scenarios. 

 Present mean 
(m) 

Present storm (m) 100 year SLR min 
(0.27 m) 

100 year SLR max 
(0.98 m) 

MHWS 0 1.19 1.19 1.19 
Storm surge 0 0.77 0.77 0.77 
SLR 0 0 0.27 0.98 
TOTAL 0 1.96 2.23 2.94 

 

Table 5.2.3 Tide data for Lyttelton (LINZ, 2013b). 

Standard 
Port 

MHWS 
(m) 

MHWN MLWN MLWS Spring Neap MSL HAT LAT 
Range Range 

Lyttelton 2.57 2.06 0.68 0.22 2.35 1.38 1.38 2.69 0.1 
 

River discharge was incorporated into the XBeach model by way of location and time series text files 

that are then called into the computational domain. These files included the location, width, and flow 

rate of water for the Avon, Heathcote and Waimakariri rivers. The rate for the Avon River was set at 

2 m3 s-1 and for the Heathcote River at 1 m3 s-1 taken from Measures (2011). An average flow rate of 

138.9 m3 s-1 was used for the Waimakariri River which was recorded at State Highway 1 and obtained 

from ECan (2014). 

5.3 Simulation time interval and alternative XBeach settings  

Due to the long time scale of 100 years undertaken by this research, the morphological factor 

(morfac) available in XBeach was utilised. A morfac of 6 corresponded to 10 minutes of 

hydrodynamic forcing becoming 1 hour of forcing (Roelvink et al., 2010). This acceleration technique, 

or multiplier, sped up computation considerably, although was unreliable above 400 or near its 

maximum of 1000 for these simulations. The mean simulations were run at a morfac of 200, and 

storm simulations at a morfac of 6. Short simulations were also an issue under mean conditions as 

the XBeach model required a long period of time to propagate a result. 

To recreate a real-world scenario, SWAN and XBeach were then run for a 10 year period, followed by 

a 2 day storm and repeated with increasing water levels until 100 years had passed. The division of 

the time period was also necessary as the XBeach program would implode with such large 

timeframes given the computing capacity. Therefore the 10 year simulation with a morfac of 200 was 

run for 1,576,800 s and the 2 day simulation with a morfac of 6 was run for 28,800 s.  

Within the XBeach parameters file, some of the default settings were altered to better reflect the 

environmental situation. These included: The flow input latitude was changed to 43 (Lat=43) to 

better represent mid-latitude forcing; unfortunately negative values were not accepted. One time-

varying water level signal was added (Tideloc=1). The equilibrium sediment concentration 
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computation option was set to ‘wave averaged’ (Turb=1). Longwave stirring was turned on (LWS=1). 

Shortwave stirring was stirred on (SWS=1).  Appendix B illustrates the XBeach parameter file.  

5.4 Simulations 

Two grouped simulations were conducted to predict the future outcome for the Christchurch coastal 

environment consisting of twenty cumulative simulations with increasing water levels and 

intermittent storms, these were:  

1. Future maximum scenario; computed with the IPCC 100 year sea level rise maximum 

prediction of 0.98 m, as illustrated in table 5.4.1.  

 

 

 

 

Table 5.4.1 Simulations for the future maximum scenario. 

Run Forcing 
type 

Water 
level 
(m) 

H sig 
(m) 

T          
(s) 

Sea θ      
(°, mode) 

Wind v 
(m s-1) 

Wind θ   
(°, mode) 

Time 
interval Morfac 

1 Mean 0 1.95 8.8 194.2 5.11 75 10 years 200 
2 Storm 1.96 7.49 13.3 140 9.2 230 2 days 6 
3 Mean 0.11 1.95 8.8 194.2 5.11 75 10 years 200 
4 Storm 2.07 7.49 13.3 140 9.2 230 2 days 6 
5 Mean 0.23 1.95 8.8 194.2 5.11 75 10 years 200 
6 Storm 2.19 7.49 13.3 140 9.2 230 2 days 6 
7 Mean 0.34 1.95 8.8 194.2 5.11 75 10 years 200 
8 Storm 2.30 7.49 13.3 140 9.2 230 2 days 6 
9 Mean 0.46 1.95 8.8 194.2 5.11 75 10 years 200 

10 Storm 2.42 7.49 13.3 140 9.2 230 2 days 6 
11 Mean 0.56 1.95 8.8 194.2 5.11 75 10 years 200 
12 Storm 2.52 7.49 13.3 140 9.2 230 2 days 6 
13 Mean 0.67 1.95 8.8 194.2 5.11 75 10 years 200 
14 Storm 2.63 7.49 13.3 140 9.2 230 2 days 6 
15 Mean 0.79 1.95 8.8 194.2 5.11 75 10 years 200 
16 Storm 2.75 7.49 13.3 140 9.2 230 2 days 6 
17 Mean 0.90 1.95 8.8 194.2 5.11 75 10 years 200 
18 Storm 2.86 7.49 13.3 140 9.2 230 2 days 6 
19 Mean 0.98 1.95 8.8 194.2 5.11 75 10 years 200 
20 Storm 2.94 7.49 13.3 140 9.2 230 2 days 6 

 

2 Future minimum scenario; computed with The IPCC 100 year sea level rise minimum 

prediction of 0.27 m, as illustrated in table 5.4.2.  

Table  5.4.2 Simulations for the future minimum scenario. 

Run Forcing 
type 

Water 
level 

H sig 
(m) 

T   
(s) 

Sea θ   
(°, mode) 

Wind v 
(m s-1) 

Wind θ  
(°, mode) 

Time 
interval Morfac 
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(m) 
1 Mean 0 1.95 8.8 194.2 5.11 75 10 years 200 
2 Storm 1.96 7.49 13.3 140 9.2 230 2 days 6 
3 Mean 0.03 1.95 8.8 194.2 5.11 75 10 years 200 
4 Storm 1.99 7.49 13.3 140 9.2 230 2 days 6 
5 Mean 0.06 1.95 8.8 194.2 5.11 75 10 years 200 
6 Storm 2.02 7.49 13.3 140 9.2 230 2 days 6 
7 Mean 0.09 1.95 8.8 194.2 5.11 75 10 years 200 
8 Storm 2.05 7.49 13.3 140 9.2 230 2 days 6 
9 Mean 0.12 1.95 8.8 194.2 5.11 75 10 years 200 

10 Storm 2.08 7.49 13.3 140 9.2 230 2 days 6 
11 Mean 0.15 1.95 8.8 194.2 5.11 75 10 years 200 
12 Storm 2.11 7.49 13.3 140 9.2 230 2 days 6 
13 Mean 0.18 1.95 8.8 194.2 5.11 75 10 years 200 
14 Storm 2.14 7.49 13.3 140 9.2 230 2 days 6 
15 Mean 0.21 1.95 8.8 194.2 5.11 75 10 years 200 
16 Storm 2.17 7.49 13.3 140 9.2 230 2 days 6 
17 Mean 0.24 1.95 8.8 194.2 5.11 75 10 years 200 
18 Storm 2.20 7.49 13.3 140 9.2 230 2 days 6 
19 Mean 0.27 1.95 8.8 194.2 5.11 75 10 years 200 
20 Storm 2.23 7.49 13.3 140 9.2 230 2 days 6 

The variables that were measured by the BeachMM tool for this study were net sedimentation or 

erosion (sedero), bed level and water level. Each new bed level created was incorporated into the 

next simulation, thereby incrementally adjusting the bathymetry. The sedero output required post-

processing analysis to create a fuzzy overlay in ArcGIS which summed all of the outputs created to 

produce the net sedimentation or erosion. The results of the final simulation were used as output for 

the bed level and water level due to the incremental increase. Resulting grids were then rotated back 

to the original space. The ArcGIS conversion tools used to generate the grid and the post processing 

analysis are visible in figure 5.4.1.  

The current enforced CERA (2014) red zone was also digitised to illustrate current planning changes 

after the Canterbury earthquakes of 2010 and 2011. The current residential red zones enforced by 

CERA have now mostly been abandoned due to a high potential risk of flooding.  
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Figure 5.4.1 A flow diagram showing the pre and post processing tools used for analysis. 

5.5 Calibration, assumptions and related limitations of the models 

The model was calibrated through remote desktop application and observation as time constraints 

did not allow for direct field measurements. The SWAN graphic user interface (GUI) was utilised to 

test the hydrodynamic forcing, bathymetric grid and changing water level. This GUI allows for 

simplified visualisations of the resultant hydrodynamic forcing. Wave height, wave period, wind 

direction and wind velocity used to run the simulations were then compared with those forecasted 

by Meteo365 (2013) and observed from the foreshore and the surf zone. Appendix F shows 

calibration of the hydrodynamic forcing for recent observed conditions using the SWAN GUI. 

The modelled scenarios operate over a closed system to sediment flux and river sediment discharge 

was not programmed into the models as little data is available for the associated rivers. Mean 

measurements were used for climate and hydrodynamic parameters to reduce the processing times 

for such a long study period.  
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The limitations of the SWAN and XBeach models that are relevant to their use in these simulations 

are to follow.  

Limitations of the SWAN model: 

• SWAN does not compute wave-induced currents (Booij, 2012). 

• Unexpected interpolation patterns on the computational grid may arise from the differing 

resolution of the input grid (Booij, 2012). 

• SWAN can have convergence problems due to the iteration process (Booij, 2012). 

• Unintentional coding bugs may be present (Booij, 2012). 

Limitations of the XBeach model: 

• XBeach does not perform well in very shallow water (Roelvink et al., 2010). 

• The alongshore gradient of wave energy is zero in the stationary case (Roelvink et al., 2010). 

• The computational x-axis must be orientated toward the coast and rectilinear (Roelvink et 

al., 2010). 

• Under sheet flow conditions, greater velocities lead to greater sediment transport rates, but 

not to greater equilibrium sediment concentrations (Roelvink et al., 2010). 

• The sediment flux cannot be included at the river discharge boundary. 
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Chapter 6 

Results 

6.1 SWAN wave propagation model 

The results for the significant wave height of the SWAN run are shown in figure 6.1 for a) mean 

conditions, and b) storm conditions. The mean wave height under normal conditions approaching the 

shore of Pegasus Bay is 0.2 – 0.4 m, and 1 – 3 m under storm conditions. The mean period of waves 

approaching the shore of Pegasus Bay is 8 – 8.5 m s-1 under normal conditions, and 11 – 12 m s-1 

under storm conditions. The direction under normal conditions is 194°, and under storm conditions is 

140°. 

 
Figure 6.1 SWAN propagation of the significant wave height (H sig) for a) the present mean 

simulation, and b) the present storm simulation. 

A. 

B 
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6.2 BeachMM tool  

6.2.1 Sedimentation and Erosion 

The net result of all simulations for sedimentation and erosion (sedero) over the 100 year period for 

both the minimum and maximum scenarios illustrates a slight progradation of the foreshore with the 

majority of the sediment being received from the nearshore, although the minimum scenario is a 

magnitude smaller. The most dynamic areas are the Avon-Heathcote Estuary ebb tidal delta, the 

Waimakariri River mouth and the Scarborough Heads; with rates of deposition being relatively high 

on the western aspects and higher erosional rates on the eastern aspects of these features. 

The sedimentation rate for the minimum scenario for the majority of the foreshore is 0.00002 m3 a-1 

to 0.00023 m3 a-1, with pockets of erosion present throughout of 0.00031 m3 a-1 to 0.00153 m3 a-1 

Sedimentation rates are higher on the western aspect of the Avon-Heathcote Estuary ebb tidal delta 

and at Scarborough Head ranging from 0.00023 m3 a-1 to 0.00102 m3 a-1. On the eastern aspects, 

erosion rates are higher ranging from 0.00018 m3 a-1 to 0.00437 m3 a-1. The nearshore appears to 

erode at a minimal rate of 0.00001 m3 a-1 to 0.00007 m3 a-1 at approximately 1 km out. These results 

can be seen in figure 6.2.1.1. The mean statistic for the sedero results is negligible at -0.0001 m3, with 

a standard deviation of 0.004 for the period.  

The sedimentation rate under the Avon-Heathcote Estuary simulations for the maximum scenario for 

the majority of the foreshore is 0.00017 m3 a-1 to 0.0009 m3 a-1, with pockets of erosion present 

throughout of 0.00018 m3 a-1 to 0.00041 m3 a-1. Sedimentation rates are higher on the eastern aspect 

of the Avon-Heathcote Estuary ebb tidal delta and at Scarborough Head, ranging from 0.00017 m3 a-1 

to 0.00162 m3 a-1. On the eastern aspects, erosion rates are higher, ranging from 0.00055 m3 a-1 to 

0.00614 m3 a-1. The nearshore appears to erode at a minimal rate of 0.00007 m3 a-1 to 0.00031 m3 a-1 

at approximately 1 km out. These results can be seen in figure 6.2.1.2. The mean statistic for the 

sedero results is negligible at -0.0001 m3, with a standard deviation of 0.006 for the period.  

The sedimentation rate for the Waimakariri coastal environment also illustrates that the coast will 

prograde at the expense of the nearshore. The nearshore illustrates a net sediment flux of -0.00032 

m3 a-1 to -0.00222 m3 a-1, whereas the beach face has undergone a deposition of 0.00031 m3 a-1 to 

0.00285 m3 a-1, which is illustrated in figure 6.2.1.3. The mean statistic for the sedero results is 

negligible at -0.0004 m3, with a standard deviation of 0.024 for the period.  

The future foreshore of East Christchurch will prograde over the 100 year period by 0.008 m to 0.041 

m. Conversely the nearshore seabed will erode by 0.004 m to 0.031 m over this closed system. 

Similarly, the Waimakariri coastal zone foreshore will be slightly higher over the 100 year period by 

0.095 m to 0.158 m where the nearshore will be slightly lower by 0.095 m to 0.032 m.  The Avon-
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Heathcote ebb tidal delta appears to aggrade on the inner fan and erode on the outer fan due to 

wave domination across its surface. At Scarborough Head erosion will occur to areas of high wave 

climate exposure on the eastern flank and accumulate in the nearby north facing flank. There are 

complex interactions at the Waimakariri River mouth with very high rates of accretion and erosion 

within a small spatial scale due to fluvial discharge. There is domination of the marine environment 

over the river system determined by the lack of generation of a distinct delta, and a river channel has 

not clearly formed within the intertidal zone. An alluvial deposit is created in the nearshore that has 

not fully developed into a delta as marine hydrodynamic forcing is preventing this occurrence. A 

deep pool has scoured out on the northern flank of the delta to allow the river to discharge. A 

smaller pool can be seen on the southern flank. 
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Figure 6.2.1.1 Minimum predicted net sedimentation and erosion for East Christchurch over 100 
years. Complex changes in sediment occur at the Avon-Heathcote ebb tidal delta and 
Scarborough Head. 
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Figure 6.2.1.2 Maximum predicted net sedimentation and erosion for East Christchurch over 100 
years. Complex changes in sediment occur at the Avon-Heathcote ebb tidal delta and 
Scarborough Head. 
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Figure 6.2.1.3 Maximum predicted net sedimentation and erosion for the Waimakariri coastal 
zone over 100 years. Complex changes in sediment occur at the river mouth with 
sediment plumes in the nearshore eroded and deposited on the beach face. 
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6.2.2 Future water level 

The future minimum and maximum water levels under storm conditions will lead to inundation of 

coastal areas of Greater Christchurch. The areas affected will primarily be around the fringes of the 

Avon-Heathcote Estuary, Brooklands and Kairiki due to their low topography. Sumner, the lower 

reaches of the Avon and Heathcote rivers, and farmland adjacent to the Brooklands lagoon will also 

be inundated to varying extents.  

The level of inundation for both the minimum of 2.23 m above MSL and maximum of 2.94 m above 

MSL are visible in figure 6.2.2.1. The future minimum and maximum mean water levels or MSL are 

visible in figure 6.2.2.2. This extent is very similar to the present extent of 2013. The extent of 

flooding for the Waimakariri coastal environment under the maximum scenario is visible in figure 

6.2.2.3. The dune system within the study area appears to have enough elevation to prevent 

inundation occurring from an easterly direction and remains free of flooding.  However, inundation 

occurs via the confluence of water bodies.  
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Figure 6.2.2.1 Inundation scenarios modelled under storm conditions for East Christchurch given 
a sea level rise for 100 years of 0.23 m (min) and 0.98 m (max), a storm surge of 0.77 
m, during a MHWS of 1.19 m. Inundation propagates inland beyond the study area.  



 42 

 

Figure 6.2.2.2 Inundation scenarios modelled under mean conditions for East Christchurch given a 
sea level rise for 100 years of 0.23 m (min) 0.98 m (max). Inundation is minimal under 
mean conditions. 
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Figure 6.2.2.3 Inundation scenario for the Waimakariri coastal environment under storm 
conditions given a sea level rise for 100 years of 0.98 m (max), a storm surge of 0.77 m, 
during a MHWS of 1.19 m. Inundation propagates inland beyond the study area. 
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Chapter 7 

Discussion  

The fundamental aim of this research project was whether the current CERA zoning for Greater 

Christchurch meets the obligations outlined in the NZCPS 2010 for future sea level rise, and it would 

appear that it does not meet those requirements. This is because coastal hazard risk has not been 

comprehensively quantified by the installation of the CERA residential red zone. However, the CCC’s 

flood management area does provide an extent to which managed retreat is a real option. 

Development can still be undertaken on areas that are at risk from moderate predicted levels of 

inundation. The present MHWS level will frequently be exceeded in the future , particularly in areas 

with a low tidal range like those occurring through the central parts of the east coast, leading to 

storm inundation having greater influence and enhanced coastal erosion (Ministry for the 

Environment, 2008). The expected changes to atmospheric conditions, storms and cyclones will also 

lead to coastal erosion and inundation through changes to the wave climate and beach sediment 

movement (Ministry for the Environment, 2008). Local government is required to effectively identify, 

account, avoid and mitigate any coastal hazards, vulnerabilities, or consequences over at least a 100 

year period to preserve coastal environments from inappropriate development while enhancing 

public access (New Zealand Government, 1991). Simulating coastal change at timescales relevant to 

planning and development requires new types of modelling approaches over large temporal and 

spatial scales, these should incorporate high quality datasets to enable the refinement, calibration 

and validation of such models (Ministry for the Environment, 2008). 

7.1 The effectiveness of the predictive computer models for the hazard 
assessment of the Christchurch coastal zone 

The BeachMM tool and the numerical models of SWAN and XBeach were effective in modelling 

shoreline evolution. After formatting, the tool provided easy integration into a GIS platform of 

complex dynamic parameters. It simplified the dataflow effort, reduced human error and provided 

dynamic visualisation of the modelling results (Silva & Taborda, 2012), allowing a system to be 

constructed, investigated, reconfigured and tested with comparative ease (Duncan, 2008). 

Simulations in predictive models provide decision makers with valuable quantitative information 

about the state of the coast (Silva & Taborda, 2013). The BeachMM tool through its user friendly 

interface allows beginner programmers the ability to experiment with coastal dynamics without the 

requirement of expertise in IT. Such spatial analysis and data integration techniques in GIS provide 

accurate mapping and analysis of dynamic coastal environments that are governed by wave climate 

and sea level rise (Allen et al. 2012). 
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The XBeach model performed well under open coast conditions although not so well under estuarine 

conditions. This is because the water level is expectedly shallow in this intertidal zone and 

propagation of hydrodynamic forcing is near impossible. The time interval was also an issue as the 

morphological updating required a certain timeframe to evolve and inhibited some application of the 

morphological acceleration. XBeach did perform the tasks of dune and nearshore erosion, berm and 

foreshore sedimentation, sea bed updating, over washes and breaches well to simulate a natural 

coastal response to a range of timeframes and conditions. 

With any abstraction of the environment into a computerized simulation, limitations exist as 

common constraints arise from the scale of observation, computational limitations, uncertainty, and 

error propagation in GIS and its applications (Allen et al. 2012). These limitations were: the effects of 

interdecadal climatic oscillations such as ENSO on regional sea levels; the accuracy of models to 

incorporate detailed sediment flux analysis from rivers or at the grid boundary; and the amount of 

computing capacity. The beach MM tool needs to be programmed with a greater range of 

atmospheric and sea state conditions by calling a file with a diverse range of conditions over at least 

a decadal time period. This would help to overcome anomalies such as ENSO and southern oscillation 

projections that need to be included in any future study. Inclusion of the Waimakariri River sediment 

discharge was not applicable as this sediment has not been readily quantified and XBeach does not 

have the ability to input sediment at the boundary without development of the program. This 

research was also limited by computing capacity. Grid resolution, size and morphological updating 

over time were completely dependent on the computers’ virtual memory, which led to reduced grids 

at a lower resolution than first tested.  

Overall the integration of the SWAN and XBeach model into a GIS platform through the BeachMM 

tool in ArcGIS proved to be very useful and powerful. SWAN provided a very stable environment on 

which to gather the hydrodynamic forcing dataset as it has been in creation for many years and 

therefore is well refined. Conversely, XBeach is a recently developed program with very little support 

for those choosing to operate it over a GIS platform as it has been designed to operate primarily 

through Matlab. As stated by Silva and Taborda (2012) the BeachMM tool does provide:  seamless 

integration of geospatial data into existing numerical models, model chain automation, powerful 

visualising and analysis tools for the exploitation of model results. Furthermore, any prognostic 

modelling should be correlated with successive observations and monitoring to discover the model’s 

accuracy. 

7.2 The extent of the Christchurch shoreline in 100 years 

The extent of the Christchurch shoreline in 100 years will be similar to that exhibited by the 

inundation scenarios visible in figure 6.2.1.1 and figure 6.2.1.3. The Greater Christchurch sandy 
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coastline will continue to prograde given sediment supply from the Waimakariri River continues. The 

results of this research provide a minimal amount of progradation that is likely to occur over the 

period as a closed system to sediment supply was modelled. Changes in the west-east gradient in 

rainfall will see it wetter in the west and drier in the east with an increase in rainfall intensity during 

severe storms (Ministry for the Environment, 2008). The catchment of the Waimakariri River extends 

to the main divide and receives westerly rainfall which should facilitate enhanced flow and sediment 

supply to the coast. As Pegasus Bay is marine dominated, where sediment can be dispersed but not 

removed from the nearshore ,what is not lost to deep water during storms will incrementally nourish 

terrestrial dunes during modal conditions (Schulmeister & Kirk, 1997)  . This was indicated by the 

model in the absence of the Waimakariri River sediment flux as slight progradation occurred at the 

expense of the nearshore. Assuming replacement of this sediment by the Waimakariri sediment flux, 

progradation will continue to occur. 

The accumulation of sediment on the inner fan of the ebb tidal delta of the Avon-Heathcote Estuary 

may significantly reduce channel width and depth. The reduced tidal flow may lead to the New 

Brighton spit making landfall on the peninsula with intermittent openings to the sea in times of flood. 

This has occurred on Lake Ellesmere to the south of Banks Peninsula. The New Brighton Spit has 

made landfall on the peninsula before to form a barrier lagoon system (Hart et al., 2008; 

Schulmeister & Kirk, 1997). For planning purposes spits are not landforms but mobile coastal features 

that are characterised by large shoreline migrations over relatively short time periods (Hart et al., 

2008). Although, sea level rise could scour and deepen estuarine channels if these changes exceed 

sediment build up, or where sedimentation fills estuaries from enhanced rainfall events, then the 

estuary may cease to exist  (Ministry for the Environment, 2008). Therefore close monitoring of the 

sedimentation of the Avon-Heathcote Estuary will help determine spatial patterns of inundation. 

Estimates of Greater Christchurch coastal dune recession with sea level rise relies on an overly 

simplified coastal environment. The two-dimensional Bruun Rule is obsolete in predicting the 

contemporary geomorphology of foredunes in response to sea level rise (Hilton, 2013). This is 

because the Bruun Rule assumes unconsolidated sediment, no sediment inputs, and no net 

alongshore flux (Hilton, 2013). The introduced Marram grass species has forced accretion on many 

South Island beaches due to its efficiency at sand entrapment, this has the potential of further 

foredune accretion with increasing mean wind speeds (Hilton, 2013). 

7.3 The effects of future storm surge  

The current CERA red zone is ineffective at dealing with a 100 year flooding hazard given sea level 

rise. This is because the extent of the area of inundation will be larger than that already designated. 

Coastal processes will maintain an adequate buffer against storm surge along the dune system, 
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although storm surge with a MHWS tide will not be prevented from inundation of the low lying areas 

adjacent to the Avon-Heathcote Estuary and the Brooklands Lagoon. The lower reaches of the Avon 

and Heathcote Rivers are also tidal making parts of these catchments vulnerable to sea  level rise, 

although the Christchurch earthquake of 22 February 2011 lifted the tidal portion of the Heathcote 

catchment by about 0.4 m and lowered the rest by 0.1-0.3 m (Tonkin and Taylor Ltd, 2013). This 

report describes the minimum inundation hazard zone as the 100 year maximum of 2.94 m above 

mean sea level outlined in figures 6.2.2.1 and 6.2.2.3, or the setback limit for development. The flood 

management areas assigned by the Christchurch City Council that are visible in appendix E, provide 

an acceptable extent by which to inhibit development and are similar to the modelled extent for the 

future maximum inundation during storm conditions. However, given the risk associated with future 

inundation, parts of these flood management areas should also be zoned red. 

The maximum inundation scenario is not as great as that modelled by Tonkin and Taylor Ltd (2013) 

(appendices C and D) as the modelling extent was smaller and coastal processes were taken into 

account which limited dune overtopping and coastal erosion. Tonkin and Taylor Ltd (2013) employed 

the passive inundation approach which will tend to overestimate inundation (Ministry for the 

Environment, 2008).  However, their report was more accurate in dealing with sections of the coastal 

environment that were backed by revetments as the coarse 25 m resolution employed by this study 

could not differentiate hard and soft structures without a higher resolution grid and further model 

programming. Tonkin and Taylor (2013) did employ a similar sea level rise that was 1.0 m by 2115. 

They also allowed a free board of 0.4 m to allow for localised wave effects and other uncertainties 

(Tonkin and Taylor Ltd, 2013). 

The effects of storm surge given the futuristic Waimakariri coast scenario will see extensive flooding 

of Brooklands, Kairiki and the surrounding low lying area which is predominantly agricultural. Coastal 

lagoon topography is generally low, otherwise they would cease to exist and rivers would drain freely 

into the ocean. The amount of flooding modelled is a modest estimation as during a period of storm 

surge, precipitation is likely which would elevate the river discharge and increase the water level in 

the lagoon at high tide. This parameter was not included into the modelling exercise, but is worth 

investigating. The red zone installed by CERA (2014) at Brooklands was appropriate as this area is 

highly susceptible to flooding, although it needs to be extended landward. Much of the rest of this 

area is under agricultural landuse and therefore is at less risk than developed residential land. An 

expansion of the Kairiki red zone is advised. 

Finally, with the advent of accurate predictive computer modelling and the general acceptance of 

climate change, the use of historical annual exceedance probabilities and return periods becomes 

increasingly redundant. The use of these static measures prescribed from recent human history for 
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the classification of episodic hazard events becomes very difficult with climate change, which may be 

exponential, parabolic or quasi-linear. The integration of GIS, satellite imagery, sensor technology 

and numerical modelling provides for a more objective scientific expression. 

7.3.1 Coastal geomorphology and fluvial processes  

The results of the BeachMM tool show that the marine environment dominates over the fluvial 

processes. A prominent delta failed to form in the intertidal or subtidal zone where the flow exits the 

Waimakariri River and the Avon-Heathcote delta is formed by the ebb tide. However, poorly-formed 

sediment was deposited, with incised alluvial or tidal scouring in these zones. The modelling shows 

that any sediment accumulating in the nearshore as a result of fluvial processes will be forced 

landward to the foreshore, which is then transported by aeolian mechanisms into the dune system.  

The original Waimakariri DEM showed two fan deposits south of the river mouth that were eroded 

by hydrodynamic forcing and deposited to the foreshore by the model. It is speculated that these 

deposits may be the result of Waimakariri flooding events of the recent past. During peak flood 

events the Waimakariri River can debouch 800 m3 s-1 (Canterbury Regional Council, 2014). This could 

explain the presence of these disjointed sediment deposits in the subtidal zone. Breach events of 

coastal barriers at river mouths inject coarse slugs of sediment into the coastal environment which 

nourish down-drift beaches (Hart & Bryan, 2008).  Further analysis and quantification of sediment 

load and bed load debouching into Pegasus Bay from the Waimakariri River is required. The mouth of 

the Waimakariri River does not meander up and down the coast, unlike the Rakia, Rangitata, 

Ashburton and Waitaki (Hart & Bryan, 2008), and the Hurunui and the Ashley rivers. Reasons for this 

could include: anthropogenic constraints of the channel; gravel extraction in the catchment near the 

coast; or the long shore drift at the Waimakariri River mouth being in a state of dynamic equilibrium. 

Given the storm surge scenario modelled in this report, the dune system adjacent to the Brooklands 

Lagoon could easily be compromised during this event creating a new location for the river mouth. 

The Waimakariri coastal environment in 100 years will see a continuation of a slow progradation 

under sea level rise and assuming river flows do not decrease due water abstraction in the 

catchment. The domination of the marine environment will force sediment north and south of the 

river mouth (Schulmeister & Kirk, 1997). There is the possibility that a subtidal delta may form 

temporarily, to then be removed by hydrodynamic forcing over time. 

Due to the low flows associated with the Avon and Heathcote rivers, the ebb-tidal delta is primarily 

formed by tidal flow and supplemented by river discharge. Marine hydrodynamic forcing may lead to 

the intermittent closure of the estuary due to continuous sediment supply not being removed by 

fluvial mechanisms. Marine hydrodynamic forcing is slightly lower than that associated with the 

Waimakariri coastal zone to the north due to Banks Peninsula providing shelter from prevailing 
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marine and climatic conditions. This favours the ebb-tidal delta formation and sands spit deposition. 

Again, water abstraction in the catchment of the Avon and Heathcote rivers will also determine the 

outcome for the estuary and ebb-tidal delta. 

7.3.2 The BeachMM tool 

The BeachMM tool provides insight through prognostic modelling into coastal morphodynamics at 

varying timescales. It allows for the desktop use of a model which is usually only appropriate for 

super computers with abundant RAM and processing power. There are also endless options for 

further development through its python script language for time series animations of storms, 

enhanced climate and river data integration, and assessing the outcomes of Tsunamis. 

The ability for the BeachMM tool to operate over both temporal and spatial scales allows users a 

type of GIS analysis frequently constrained to low resolution numerical models. Combining numerical 

models into the GIS platform allows for easily accessible high resolution spatial data to be analysed 

over time with different parameters. Combining the universally accepted and tested hydrodynamic 

SWAN model and the empirically tested geomorphological XBeach model provides the user with 

confidence in the results. As the BeachMM tool can run on desktop or laptop computers, this 

provides access of its application to a vast numbers of users. Thus providing greater accessibility than 

if it was to be operated via powerful super computers which are usually required for prognostic 

modelling. 

There are endless possibilities to the advancement of the BeachMM tool due to its versatile python 

script. The ability to output results at incrementally varying time intervals throughout the simulation 

makes it possible to produce animations of hydrodynamic forcing or coastal evolution. This could also 

be extended to the effects of Tsunamis on the shore, although the hydrodynamics are slightly 

different for tsunamis and therefore may require modification of the model.  The validity of the 

model would be enhanced through improved climate and river datasets.  This is possible by calling 

detailed datasets into the SWAN or XBeach parameter file with diverse atmospheric conditions or 

discharge rates over time. Conversely, an atmospheric numerical model could be directed by the 

BeachMM tool to couple with SWAN or XBeach. 

7.3.3 Limitations 

With any abstraction of reality there are limitations, some of which have been highlighted already. 

The main limitations of this research are: climatic and hydrodynamic conditions were only applied 

utilising mean and mode statistics. A river flow time series that included peaks and troughs would 

better represent reality. Due to a fundamental lack of empirical knowledge over the coastal and 

fluvial sediment flux, the sediment input at the boundary was ignored. GIS can cause virtual memory 



 50 

problems created through high resolution grids or large grid extents. This is exacerbated by 

numerical modelling and therefore a compromise must be made between extent and detail.  
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Chapter 8 

Conclusion  

Prognostic modelling provides an efficient means to analyse the coastal environment and provide 

effective knowledge for long term urban planning. The BeachMM tool which utilises the numerical 

models of SWAN and XBeach proved to be very effective at predicting geomorphological evolution 

through hydrodynamic forcing for the Greater Christchurch coastal environment. The statutory 

requirements outlined in the NZCPS 2010 were assessed to determine whether these guidelines are 

currently being complied with when applying the recent sea level rise predictions by the IPCC (2013) 

and it would appear that it does not meet those requirements. This is because coastal hazard risk has 

not been comprehensively quantified by the installation of the CERA residential red zone as the 

results of this research predicted a water level under storm conditions to be further landward. The 

BeachMM tool predicted water level aligned more accurately with the Christchurch City Council’s 

flood management area, an extent to which managed retreat is a real option. Thus, inundation 

during periods of storm surge poses a risk to human habitation on low lying areas around the Avon-

Heathcote Estuary and Brooklands Lagoon. The results of this research discovered that progradation 

will continue to occur along the Greater Christchurch foreshore due to the net sediment flux 

retaining an onshore direction and the current marine hydrodynamic activity not being strong 

enough to move sediment offshore. The BeachMM tool facilitates the role of spatial and temporal 

analysis effectively and the efficiency of that performance is determined by the computational 

operating system. Development of this GIS application has endless possibilities for dynamic 

prognostic modelling. 
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Appendix A 

SWAN input file for the future maximum  

 
 $*************************HEADING************************ 

$ 
PROJ 'BMM Tool' '' 
$ Field case:  SWAN Propagation 
$ Time of simulation: MONTH DD, YYYY 
$ 
$********************MODEL INPUT************************* 
SET LEVEL 2.99 
SET NAUTICAL 
CGRID 1463254.1102 5076643.925 0 110500.0 69500.0 221 139  
CIRCLE 36 0.04 1.0 31 
$ NOTE: use exception value (-99 in this case) here to get good load balancing! 
INPGRID BOTTOM 1463254.1102 5076643.925 0 221 139 500.0 500.0  
EXC -9999  
READINP BOTTOM -1 'macrogrid1_Rotate1.bot' 1 0 FREE  
$ 
$********************BOU.CONDITIONS*********************** 
$ 
BOUN  SHAPespec JONswap PEAK DSPR POWer 
BOUN      SIDE W CCW CONSTANT PAR 7.49 13.3 230 
BOUN      SIDE N CCW CONSTANT PAR 7.49 13.3 230 
BOUN      SIDE S CCW CONSTANT PAR 7.49 13.3 230  
BOUN      SIDE E CCW CONSTANT PAR 7.49 13.3 230 
$spctra 
$ 
$***********************PHYSICS***************************** 
$WIND 320. 9.2 
$GEN3 JANSSEN 
$TRIAD 
OFF QUAD 
$BREAKING 
FRICTION MADSEN 0.05 
$ 
$*********************NUMERICAL  REQUESTS ***************** 
$NUMERIC ACCUR .10 .10 .10  90. 00 STAT 20 
$ 
$*********************OUTPUT  REQUESTS ********************* 
$mat 
$spec 
$nest 
$ set itest=1 in order to get detailed information 
$TEST 1,0 
COMPUTE 
STOP 
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Appendix B 

XBeach input file for the future maximum  

Gridinput 
nx=273 
ny=214 
dx=50.0  
dy=50.0 
xori=1559023.22 
yori=5106219.3074 
alfa=0.00 
depfile=zb_t10.grd 
posdwn=-1 
vardx=0 

Boundaryconditionoptions 
Wave generating boundary 
options 
taper 
instat = 5 
ARC 
order = 2 
bcfile = swan_res.txt 
rt = 7200 
dtbc = 1 

WaveInput 
dir0 
Hrms 
wavint 
m=100 
Tm01 
thetamin=-90 
thetamax=90 
dtheta=10. 
thetanaut=0 
taper=100 
nspr=0 
wci=0 
scheme=1 

Wavedissipationmodel 
break=3 
gamma=0.6 
alpha=1 
n=5 

Rollermodel 
roller=1 
beta=0.15 
 

Flowinput 
cf=0.003 
C=20 
nuh=0.5 
nuhfac=0 
nuhv=1 
lat=43 
wearth 0.0417 

Flowboundaryconditions 
front=1 
ARC=1 
order=2 
back=2 
epsi=0 
left=0 
right=0 
carspan=0 
fcutoff=0 
sprdthr=0.08 

Time-varyingtide/surge 
tideloc=0 
zs01=2.99 
paulrevere=0 

Wind 
rhoa=1.25 
Cd=0.002 
windv=9.2  
windth=50 
 

Limiters 
hmin=0.01 
eps=0.01 
umin=0.1 
Hwci 0.01 

Hydrodynamicsimulation 
tstart=120 
tint=14400 
tstop=28800 
CFL=0.5 
 

Sedimenttransport 
form=1 
disco 1 
z0=0.006 
facsl=0 
hswitch=0.1 
rhos=2650 
struct=0 
ngd=1 
nd=3 
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dzg=0.1 
D50=0.0002 
D90=0.0003 
D502=0 
D902=0 
D503=0 
D903=0 
lws=1 
sws=1 
sedcal1=1 
sedcal2=1 
sedcal3=1 
tsfac=0.1 
thetanum=1 
turb=1 
smax=-1 

Morphologicalupdating 
morfac=6 
morstart=1 
por=0.4 
wetslp=0.3 
dryslp=1 
hswitch=0.1 
 

Dischargeboundaries 
disch_loc_file= 
    discharge_locations.txt 
disch_timeseries_file= 
    discharge_timeseries.txt 
 

Outputdataoptions 
nglobalvar=3 
zb 
sedero 
H 
Zs 
Thetamean 
dzbdt 
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Appendix C 

Effects of sea level rise for the Avon-Heathcote Estuary reported by 

Tonkin and Taylor (2013)   

 



 56 

  



 57 

Appendix D  

Effects of sea level rise for the Sumner area reported by Tonkin and 

Taylor (2013) 
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Appendix E  

Christchurch City Council Flood management areas 2012 

(Christchurch City Council, 2012) 
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Appendix F  

Calibration results from the SWAN GUI of hydrodynamic forcing for 

observed conditions.  
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