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Breast cancer is one of the leading causes of death in women. Even with advances in early-

stage breast cancer treatment, physicians are still lacking the ability to precisely predict which 

patients would benefit from adjuvant chemotherapy. Gene expression profiling studies have 

been used to provide us with insights into the heterogeneity of breast cancer. Therefore, 

patterns of gene activity can be identified by genome-wide measures of gene expression to 

subclassify tumours. This might provide a better means, than is currently available, of treating 

patients with breast cancer, and to help physicians find the accurate treatment (Wang, Klijn et 

al. 2005). This study uses a combination of three different clustering methods: Hierarchical 

clustering, Self-organizing maps (SOM) and Ward method to further explore and validate the 

characters of previously identified, novel, 306 intrinsic genes thought to discriminate five 

types of breast cancer (LumA, LumB, Normal-like, Basal-like and Her2). It is also used to 

derive improved cluster characterisations for accurate subtype identification from independent 

gene expression data analyses. Implementation of these methods, in widespread clinical 

practice at present, remains limited. From an exploratory pilot study in this research, it was 

found that one or more of the few most highly active genes in one subtype can be active in 

one or more other subtypes indicating that several gene markers are essential for subtype 

discrimination. Nevertheless, this study identified one or two potential genes for some 
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subtypes that may be useful as markers in their identification.  In the main part of the 

investigation, the originally selected whole gene set was assessed for their efficacy in subtype 

discrimination using Hierarchical clustering and SOM, both in conjunction with Ward method 

that indicates the optimum number of clusters (subtypes).  Hierarchical-Ward method found 6 

clusters and SOM-Ward method found 7 clusters as optimum compared to the 5 subtypes 

reported by the original authors from whose work the gene set used in this study was 

extracted.  This indicated the heterogeneity of subtypes.  In both methods, second optimum 

number of clusters was 2.  Our clusters revealed interesting results:  for example, closer 

examination of the 2 cluster structure from both Herarchical-Ward and SOM-Ward indicated 

that 3 subtypes (LumA, LumB and Normal-like) always cluster together and the other 2 

subtypes (Basal and Her2) make up the second cluster.   

The six and 7 optimum clusters from the two respective methods did indicate that most 

clusters contain patients from more than one subtype and revealed which subtypes are more 

likely to cluster together. These results indicate subtype overlap. Although not featured highly 

in SOM-Ward results, the 6 cluster format from this method was explored to compare with 

Herarchical-Ward results and outcomes from the two methods were identical.  This gives 

validity to the results in the study. Interestingly, two out of the 7 clusters from SOM consisted 

of only one subtype each (LumA or Basal-like), and 1 out 6 clusters from Heirarchical-Ward 

also contained only one subtype (LumA); but these clusters did not contain all of the patients 

originally thought to be belonging to each particular subtype.  However, these clusters 

containing only one subtype each may indicate the core behaviour of the respective subtype 

and is worth exploring further. The results overall points to the complexity of discriminating 

the subtypes due to their heterogeneity and overlap, when viewed through the selected set of 

306 intrinsic genes; this study has shed light on these characteristics in a reliable and 

predictable way.   
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Chapter One 

 

1 BACKGROUND 

 

Breast cancer is a disease in which some cells multiply without control to form an abnormal 

mass. The most common form of breast cancer originates in the cells that line the ducts that 

carry milk to the nipple (ductal carcinoma). Other forms of breast cancer originate from the 

glands that produce milk (lobular cancer) or from other parts of the breast. Breast cancer is a 

common cause of death in women in New Zealand and worldwide (Ref. Global Cancer 

Statistics). Although Breast cancer occurs in both men and women, statistics show that this 

disease occurs 100 times more frequently in women than in men (Sasco, Lowenfels et al. 

1993).  

Globally, breast cancer incidence rates are highest in North America and northern Europe 

although incidence rate is decreasing in these parts of the world. The incidence rate is usually 

considered the lowest in Asia and Africa but there has been an increase in the rate in the 

recent years. These international differences are thought to be related to societal changes 

occurring during industrialization (e.g. changes in fat intake, body weight, age at menarche, 

and/or lactation, and reproductive patterns such as fewer pregnancies and later age at first 

birth) (Parkin, Bray et al. 2005). Studies of increasing breast cancer among first-generation 

daughters of Japanese Americans suggest that environmental and lifestyle factors are of 

greater significance than are genetic factors in explaining international differences in breast 

cancer risk (Johnson 2001; Deapen, Liu et al. 2002; Lacey, Devesa et al. 2002). Since 1975, 

mortality rates of Breast cancer have declined. These were because of the improvements of 

adjuvant therapies and attributed to the increased use of screening mammography (Berry, 

Cronin et al. 2005). 
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1.1 Aetiology and risk factors 

 

The frequency of this disease in women has prompted an intensive study of risk factors for 

developing breast cancer to gain clues as to its aetiology as well as to identify modifiable risk 

factors that would be helpful for prevention strategies. Risk factors of breast cancer include 

age and gender. These are considered as one of the strongest risk factors (Jemal, Siegel et al. 

2010). It is rarely found before the age of 25 except in some certain familial cases. The 

incidence rises throughout women’s lifetime (Robbins and cotrans), Race and ethnicity is 

another factor. In the US, although breast cancer is common in women of every major ethnic 

group there are interracial differences (Pike, Spicer et al. 1993; Peto and Mack 2000; Bradley, 

Given et al. 2002; Palmer, Wise et al. 2003; Jatoi, Chen et al. 2007; Jemal, Thun et al. 2008; 

Society 2009 - 2010). Much of these ethnic differences are attributable to factors associated 

with lifestyle and socioeconomic status (e.g. access to diagnosis and treatment).  

Several lifestyle factors including body size, physical activity and dietary factors can 

contribute to the risk of breast cancer (van den Brandt, Spiegelman et al. 2000; Morimoto, 

White et al. 2002; Feigelson, Jonas et al. 2004; Lahmann, Hoffmann et al. 2004; Eliassen, 

Colditz et al. 2006; Ahn, Schatzkin et al. 2007).  

Reproductive and hormonal factors such as prolonged exposure to higher concentrations of 

endogenous estrogen increases the risk of breast cancer (Kelsey, Gammon et al. 1993; Parkin, 

Bray et al. 2005).  

Family history is an important risk factor for breast cancer where strong genetic mutations 

with little relation to environmental differences have been reported (Lichtenstein, Holm et al. 

2000; Peto and Mack 2000; Ahn, Schatzkin et al. 2007). 

Exposure to ionizing radiation of the chest at a young age, as occurs with radiotherapy 

treatment or in survivors of atomic bomb or nuclear plant accidents, is associated with an 



3 

 

increased risk of breast cancer (Guibout, Adjadj et al. 2005; Pukkala, Kesminiene et al. 2006; 

Ostroumova, Preston et al. 2008). 

 

1.2 Pathology 

 

More than 95 percent of breast malignancies arise from the breast epithelial elements and are 

therefore carcinomas. The term "breast carcinoma" encompasses a diverse group of lesions 

that differ in microscopic appearance and biologic behaviour, although these disorders are 

often discussed as a single disease.   

The invasive breast carcinomas consist of several histological subtypes. These include 

infiltrating ductal (76 %), invasive lobular (8 %), ductal/lobular (7%), mucinous (colloid) 

(2.4%), tubular (1.5%), medullary (1.2%), and papillary (1%). 

 

1.3 Symptoms and Signs  

 

Most women with symptomatic rather than screen-detected breast cancer present with a 

painless increasing mass which may also be associated with nipple discharge, skin tethering, 

ulceration and, in inflammatory cancers, oedema and erythema. In developing countries, 80% 

are likely to be present with advanced disease and metastases. (Clark 2009) 

Breast cancer can also present as a subtle change in the general appearance of the breast, such 

as an increase or decrease in size, a change in symmetry. There are conditions that may 

resemble the symptoms of breast cancer such as those related to menstrual cycles (cyclic or 

non-cyclic), and whether these symptoms are aggravated or alleviated by any activities or 

medications (Blake Cady 1998; Monica Morrow 2000). 
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1.4 Diagnostic investigations 

 

The diagnostic evaluation of a patient suspected of having breast cancer includes screening 

and diagnostic breast imaging and breast biopsy. The majority of breast cancers are diagnosed 

as a result of an abnormal mammogram, but not all mammographic findings represent cancer 

(Stomper 2000; Ostroumova, Preston et al. 2008). It has been reported that fewer than 10 

percent of cancers can be detected solely by physical examination and over 90 percent 

mammographically (Ostroumova, Preston et al. 2008). Positive mammographic findings 

mainly represent soft tissue masses and microcalcifications.  

 

Contrast-enhanced breast magnetic resonance imaging (MRI) may complement 

mammographic staging, because the latter is more sensitive and is assumed that it would 

estimate the extent of disease more accurately than conventional imaging. However, the MRI 

may sometimes produce falsely positive result and can delay treatment by necessitating 

additional biopsies (Berg, Gutierrez et al. 2004; Bleicher, Ciocca et al. 2009). 

 

Targeted ultrasonography is a useful diagnostic test to evaluate a palpable mass or an area of 

abnormality detected on mammogram. It is particularly useful for assessing whether a mass is 

solid or cystic in nature.  

 

Chest radiography, abdominal/pelvic computed tomography (CT) scanning, and bone scans 

are other techniques commonly used in evaluating different body parts for the presence of 

metastatic disease.  

 

Abnormal screening mammogram often needs further diagnostic evaluation with 

magnification views, spot compression views, targeted ultrasonography, tissue sampling or 



5 

 

biopsy (Barlow, Lehman et al. 2002). Biopsy helps obtaining sufficient diagnostic material 

using the least invasive approach and to avoid surgical excision of benign lesions (Barlow, 

Lehman et al. 2002). 

 

Fine needle aspiration (FNA) is a classical method to determine the histopathological features 

of breast lumps by obtaining samples from cellular lesions and metastatic lymph nodes. A 

major advantage of FNA is that it can be easily and quickly performed at the time of a 

diagnostic study, with potential for an immediate preliminary interpretation (Pisano, Fajardo 

et al. 2001). However, the FNA has some disadvantages and produce false negative results in 

inexperienced hands (Pisano, Fajardo et al. 2001). 

 

Core needle biopsy (CNB) is a procedure that removes small but solid samples of tissue using 

a hollow "core" needle that has a special cutting edge. Compared to FNA, CNB offers a more 

definitive histological diagnosis, avoids inadequate samples and may permit the distinction 

between invasive versus in situ cancer (Verkooijen 2002).  

 

Tumour markers are used to assess the estrogen receptor (ER), progesterone receptor (PR), 

and human epidermal growth factor receptor 2 (HER2) status, and should be made on every 

primary invasive breast cancer to identify patients likely to benefit from endocrine and/or 

anti-HER2 therapy (Verkooijen 2002). 

 

1.5 Treatment  

1.5.1 Early breast cancer 

 

The treatment of early breast cancer includes the treatment of locoregional disease with 

surgery, radiation therapy, or both, and the treatment of systemic disease with one or a 



6 

 

combination of chemotherapy, endocrine therapy, or biologic therapy. The need for, timing, 

and selection of therapy are based upon tumour variables such as histology, stage, and tumour 

markers; patient variables such as age, menopausal status, and comorbid conditions; as well as 

patient preference, such as a desire for breast preservation (Clark 2009).  

 

1.5.2 Neoadjuvant systemic therapy 

 

Neoadjuvant systemic therapy prior to local treatment may be required to improve surgical 

outcomes and options. For operable breast cancer, the aim is to increase the chance of breast 

conserving surgery in patients who would otherwise require mastectomy. For inoperable 

locally advanced breast cancers, the aim is to achieve operability. 

 

Surgery as a local treatment may vary from wide local excision or segmental mastectomy and 

breast conservation for masses < 4 cm in diameter, to simple mastectomy with or without 

reconstruction. The choice is dictated by the location and extent of the breast mass in relation 

to the breast size, and patient preferences (Clark 2009). Breast cancer surgery has changed 

dramatically over the past several decades and continues to evolve (Cuzick, Stewart et al. 

1994). 

 

Radiotherapy is another local treatment that is given to the conserved breast after wide local 

excision to reduce local recurrence and to the chest wall after mastectomy if there are risk 

factors such as proximity to surgical margins or lymph node metastases, to complete the local 

control measures. 

 

Adjuvant systemic therapy is also a local treatment that refers to the administration of 

endocrine therapy, chemotherapy, and/or biologic therapy after definitive local therapy for 
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breast cancer. Adjuvant systematic therapy has made a significant advancement in breast 

cancer patients with regards to disease-free survival and overall survival. (Carlson 2005; 

Goldhirsch, Glick et al. 2005). Using computer-based software, Adjuvant, is proved to be 

helpful in objectively estimating survival and benefit from adjuvant therapy, for early stage 

breast cancer patients, based on the clinico pathlogic features mentioned above (Ravdin, 

Siminoff et al. 2001). However, Adjuvant does not benefit very young women (Olivotto, 

Bajdik et al. 2005). Although, Adjuvant is useful in predicting the outcome for an individual 

patient when the clinico pathologic features are known, those clinic-pathologic features do not 

take into account the biological complexity of an individual’s tumour. Therefore, more 

reliable and precise prognostic and predictive models are needed to estimate what Adjuvant 

therapy should be offered to an individual patient. 

 

1.5.3 Advanced breast cancer 

 

Patients with established metastatic (i.e. advanced) disease may require endocrine therapy, 

chemotherapy and radiotherapy. The treatment is not curative but may be of great palliative 

benefit and consistent often with many years of good-quality life. 

 

High levels of oestrogen receptors (ER) and progesterone receptors (PR) in their tumour have 

greater chance of responding to endocrine treatments. Endocrine therapy is usually tried first 

in patients with characteristics indications to respond and who do not have immediately life-

threatening disease (Clark 2009). On the other hand, chemotherapy is used for patients who 

are unlikely to respond to hormonal treatment or who fail to respond to endocrine therapy or 

who require a rapid response if at risk such as in liver or respiratory failure cases. If chosen 

carefully, chemotherapy can provide good-quality palliation and prolongation of life (Clark 

2009). 
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1.6 Molecular intrinsic subtypes of breast cancer 

 

Breast cancer is a heterogeneous and phenotypically diverse disease. Breast tumours are 

characterised by cellular and molecular heterogeneity and large number of genes potentially 

involved in controlling cell growth, death, and differentiation. Some cancers such as Lymph 

node metastases (Fisher, Costantino et al. 1993), histologic grade (Elston and Ellis 1991), 

expression of steroid and growth factor receptors (Vollenweiderzerargui, Barrelet et al. 1986; 

Torregrosa, Bolufer et al. 1997), estrogen-inducible genes like cathepsin D (Foekens, Look et 

al. 1999), protooncogenes like ERBB2 (Slamon, Godolphin et al. 1989), and mutations in 

the TP53 gene (Bergh, Norberg et al. 1995; Borresen, Andersen et al. 1995) have been 

correlated to prognosis. However, individual prognostic factors provide limited information 

about the cellular changes induced by the disease. For example, removal of ovaries used to be 

considered as therapeutic in the past, which was successful in some patients, but not others. 

This shows that the prognostic value of many of these parameters may mislead the 

interpretation (Howat, Barnes et al. 1983; Battaglia, Scambia et al. 1988). It has been shown 

that correlating tumour cell gene’s cDNA microarrays with specific features of phenotypic 

variation might provide better understating of the taxonomy of cancer (Golub, Slonim et al. 

1999; Alizadeh, Eisen et al. 2000; Perou, Sorlie et al. 2000; Hedenfalk, Duggan et al. 2001).  

These observations emphasize the importance of studying genetic basis of this disease to gain 

a better understanding.  

 

Characterization (profiling) of breast cancers has advanced significantly since the turn of the 

millennium due to the development of sophisticated technologies. These include gene 

expression arrays, which permit simultaneous measurement of thousands of genes to create a 

molecular portrait of the tumour. Gene-expression profiling has helped in identifying breast 

cancer molecular subtypes that have distinct behaviour and response to therapy; and in the 
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development of prognostic and predictive molecular signatures. These in turn, have resulted 

in a better understanding of the biological heterogeneity of breast cancer. Microarray analyses 

on breast cancers have identified gene expression profiles able to separate tumour classes 

associated with patient survival (Sorlie, Tibshirani et al. 2003; Wang, Klijn et al. 2005).  

 

Several studies on genome-wide expression patterns in cancer types, including lymphoma, 

breast, lung, liver, ovarian and soft tissue sarcomas have been carried out over the years. A 

common feature of these studies has been the emergence of tumour subtypes with distinct 

gene expression patterns for each subtype. The differences in gene expression patterns among 

these subtypes are likely to reflect basic differences in the cell biology of the tumours (Sorlie, 

Tibshirani et al. 2003; Sotiriou, Neo et al. 2003). Gene expression profiling, using 

microarrays to which cDNA or oligonucleotide probes are affixed, allows simultaneous 

measurement of the activity (expression) of thousands of genes in a breast cancer cell.  

 

Gene expression arrays represent the level of expression of a group of genes in a semi-

quantitative manner by comparing the level of messenger RNA (mRNA) to that of the mRNA 

of the same gene from a reference sample.  

 

The two main types of molecular profiling techniques commonly used in the laboratory are 

“supervised” and “unsupervised” analyses. In supervised analyses, the gene sets are designed 

to differentiate tumours by a defined clinical endpoint; as such, the subtypes of cancer can be 

identified based exclusively on the clinical data. Prognostic molecular profiles (prognosis 

signatures) are examples of supervised analyses (Bair and Tibshirani 2004). 

Unsupervised analysis (clustering) permits examination of gene expression patterns regardless 

of clinical endpoints and reflects inherent biologic differences. This approach does not use 
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any of the clinical information about the patient and therefore the subgroups are identified 

only by using the gene expression data (Bair and Tibshirani 2004). 

In addition, there is the semi-supervised analysis which combines both gene expression data 

and clinical data. Clinical data is used to identify a list of genes that correlate with the clinical 

variables of interest and then unsupervised clustering techniques are applied to this subset of 

the genes (Bair and Tibshirani 2004). An example for the semi-supervised is the "intrinsic" 

subtypes. 

 

1.6.1 Intrinsic subtypes of breast cancer  

 

The intrinsic subtypes can generally be classified into two groups in relation to the expression 

of hormone receptor-related genes (Sorlie, Perou et al. 2001). Gene expression studies have 

identified several distinct breast cancers within these intrinsic subtype groups. The main 

subtypes are as follow: estrogen receptor (ER)-negative tumours: basal-like, human epidermal 

growth factor receptor-2 (HER2)-enriched and normal-like; and ER-positive tumours: luminal 

A and luminal B. A sixth breast cancer subtype, termed Claudine-low, has also been identified 

(Carey, Dees et al. 2007) as well as a Luminal C subtype (Sorlie et at. 2001). These subtypes 

differ markedly in prognosis and in the therapeutic targets they express. It is agreed that the 

first three are the major subtypes (Carey, Dees et al. 2007). The list of genes that differentiates 

the different subtypes is called the intrinsic list. It is made up of several clusters of genes 

relating to ER expression. 

 

It has been found that ER-positive and ER-negative are two biologically different breast 

cancers and may derive from different progenitor cells.  
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1.6.1.1 The luminal cancers, A and B 

 

These are so called because they are characterized by expression of genes similar to that 

expressed by normal breast luminal epithelial cells, and may overlap with ER-positive breast 

cancers. They typically express luminal cytokeratins 8 and 18. These are the most common 

subtypes that make up the majority of ER-positive breast cancers, and are characterized by 

expression of ER, PR, and other genes associated with ER activation. 

 

Luminal A and luminal B have some important molecular and prognostic distinctions.  

 Luminal A tumours, which probably make up about 40 percent of all breast 

cancers, usually have high expression of ER-related genes, low expression of the 

HER2 cluster of genes, and low expression of proliferation-related genes (Fan, Oh 

et al. 2006; Hu, Fan et al. 2006). Luminal A tumours carry the best prognosis of all 

breast cancer subtypes (Voduc, Cheang et al. ; Sorlie, Perou et al. 2001; Sorlie, 

Tibshirani et al. 2003; Sotiriou, Neo et al. 2003; Loi, Haibe-Kains et al. 2007). 

 The less common (about 20 percent) luminal B tumours have relatively lower 

expression of ER-related genes, variable expression of the HER2 cluster, and 

higher expression of the proliferation cluster. Luminal B tumours carry a worse 

prognosis than luminal A tumours (Voduc, Cheang et al.) and with poor prognostic 

of 70-genes signature (Fan, Oh et al. 2006). Most luminal B cancers have high 

Recurrence Scores. 
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1.6.1.2 HER2-enriched  

 

The HER2-enriched subtype (previously known as HER2+/ER-) makes up about 10 to 15 

percent of breast cancers. It is characterized by high expression of the HER2, proliferation 

gene clusters, and low expression of the luminal cluster. For this reason, these tumours are 

typically negative for ER and PR, and positive for HER2. It is important to note that this 

subtype comprises only about half of clinically HER2-positive breast cancer. The other half 

has high expression of both the HER2 and luminal gene clusters and fall in a luminal subtype. 

In the era before HER2-targeted therapy, this subtype carried a poor prognosis (Voduc, 

Cheang et al.). This adverse natural history has been markedly affected by therapeutic 

advances in HER2-directed therapy. 

 

1.6.1.3 Basal-like 

 

The basal-like subtype makes up about 15 to 20 percent of breast cancers. It is so called 

because of some expression similarities to that of the basal epithelial cells. It is characterized 

by low expression of the luminal and HER2 gene clusters. For this reason, these tumours are 

typically ER-, PR-, and HER2-negative on clinical assays. It is therefore, nicknamed "triple-

negative" (Olopade and Grushko 2001; Sorlie, Tibshirani et al. 2003; Foulkes, Brunet et al. 

2004).  

Basal-like breast cancer has unique risk factors. The most intriguing is that over 80 percent of 

cancers arising in women born with a mutation in the breast cancer gene 1 (BRCA1), early 

onset gene, are basal-like (Olopade and Grushko 2001; Sorlie, Tibshirani et al. 2003; Foulkes, 

Brunet et al. 2004). Nevertheless, most basal-like breast cancers are sporadic, and the BRCA1 

gene and protein appear intact in these tumours. A commonly held assumption, but unproven, 
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is that the BRCA1 pathway is abnormal in sporadic basal-like breast cancer. This may have 

therapeutic implications since this pathway is important in DNA repair.  

 

There is a notable association between the basal-like subtype, race and age. Population-based 

studies suggest that the basal-like subtype is overrepresented in breast cancer in African-

American women, and developing during the premenopausal years (Fan, Oh et al. 2006; 

Millikan, Newman et al. 2008; Lund, Trivers et al. 2009; Parker, Mullins et al. 2009). This 

may explain its prevalence among young African-American women. Basal-like breast cancer 

is known to have poor prognosis; and this may contribute in part to the worse outcomes 

experienced by African-American women with breast cancer (Voduc, Cheang et al.). 

Fortunately, studies suggest that basal-like breast cancers are sensitive to modern 

chemotherapy (Rouzier, Perou et al. 2005; Carey, Dees et al. 2007). However, the absence of 

targeted therapy, of known effectiveness, to this subtype remains a real obstacle to improving 

outcomes. 

 

1.6.1.4 Claudin-low 

 

This newly described subtype is found in non-basal triple-negative breast cancers, which is 

uncommon but interesting because of its expression of epithelial-mesenchymal transition 

genes and characteristics reminiscent of stem cells. 

 

This subtype comprises a minority of triple-negative breast cancers. It is characterized by low 

to absent expression of epithelial cell-cell adhesion genes (claudin 3, 4 and 7, E-cadherin), 

differentiated luminal cell surface markers (EpCAM and MUC1) and enrichment for 

epithelial-to-mesenchymal transition markers, immune response genes and cancer stem cell-

like features (CD44+/CD24-, high ALDH1A1) (Carey, Dees et al. 2007). In contrast to basal-
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like breast cancers, claudin-low tumours appear to be slower growing and, with features of 

mesenchymal and mammary stem cells, of different oncogenic origin. 

 

1.6.1.5 Normal-like 

 

This subtype was one of the first subtypes identified by gene expression arrays and 

consistently appears in breast cancer clusters. It is typified by similar gene expression pattern 

as normal breast cells, and thus remains enigmatic as to whether it represents a separate 

subtype or a technical artefact introduced by low tumour cell composition of the sampled 

specimen. 

 

The challenge is how to define the intrinsic subtypes of breast cancer. They have been 

identified using cluster analysis of gene expression data from frozen banked tissue. This 

method uses fixed tissues and has poor reproducible classification. Recently, a new assay 

(PAM50) has been developed. It is a 50-gene reverse transcription-polymerase chain reaction 

(RT-PCR) based method, and is derived from a 500-gene intrinsic list. It can be performed on 

fixed tissue but has not yet been sufficiently validated for clinical use (Parker, Mullins et al. 

2009). Others methods include immunohistochemical surrogates for the intrinsic subtypes. 

These are reasonable but also have not been validated, and the simplest schema using clinical 

assays for ER, progesterone receptor (PR), and HER2 misclassify a significant proportion of 

tumours (Carey, Perou et al. 2006). 

 

1.6.2 Prognosis of intrinsic subtypes 

 

The intrinsic subtypes were developed to identify relevant biology, not for prognosis. 

However, in multiple independent datasets, these subtypes correlate with prognosis. In 
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general, patients with the luminal A subtype have the best prognosis; patients with the other 

major hormone receptor-positive subtype, luminal B, suffers a significantly worse outcome. 

In a population-based study of nearly 500 tumours using immunohistochemical proxies for 

the subtypes, the best outcome was observed among patients with luminal A tumours 

compared with the other subtypes, and the worst outcome was seen among basal-like breast 

cancers (Carey, Perou et al. 2006). Both the basal-like and HER2-enriched subtypes have the 

worst survival chances, at least until recently. The HER2-targeting has altered the outcome for 

the HER2-enriched subtype and HER2-positive luminal cancers.  

 

In summary, clustering or unsupervised classification approaches are used to build groups of 

genes, with related expression patterns, and separate genes into highly similar groups without 

predefined group labels. Clustering is a common method of gene expression data analyses. 

Most researchers use clustering methods based on similarity/dissimilarity, distance measure 

and hierarchical clustering. Several studies have concluded that using gene-expression 

profiling would be potentially crucial as a new prognostic and predictive tool. However, 

validation of the clinical use of this technology, at the moment, is still a major challenge for 

microarray studies, particularly with clinical implications.  

 

The conflicting number of clusters reported by different studies may be due to the number of 

samples analysed and/or the method of analysis in identifying the overlapping between cluster 

classes. Almost all previous studies applied Hierarchical clustering method, and no attempts 

have been made to use alternative clustering methods that might be more helpful in clearly 

identifying the clusters, and the present study aimed at exploring the possibility of using 

combined clustering analysis methods to enhance the identification accuracy. 
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Chapter Two 

 

2 OBJECTIVES OF THE STUDY  

 

Breast cancer patients with the same diagnostic and clinical prognostic profile can have 

markedly different clinical outcomes. Classification of breast cancer based on gene expression 

profiling captures the molecular complexity of tumours. Patterns that distinguish subtypes 

further can provide a more refined stratification of the patients compared to individual tumour 

markers Hu et al., (2006). Current classifications assign a patient’s gene expression signature 

to a single class (i.e. subtype). This means that all patients in a subtype should show similar 

expression patterns. Although this has been considered generally true, it is now recognised 

that a reason for relapse or an adverse response to therapy is that some patients normally do 

not clearly show typical symptoms of one subtype. Such patients may be on the borderline of 

a subtype, may show symptoms of more than one subtype, or there are other subtypes 

currently unknown.  

 

This study aims at further exploring the characters of novel breast cancer genes (intrinsic 

genes) that have been previously identified and to refine the classification of breast cancer 

subtypes through advanced gene expression data analyses. The primary aim of this study is to 

do a new analysis by combining two known different clustering methods; (i.e. Hierarchical 

clustering and Self-organizing maps (SOM)). The data used in the current analysis method 

were those reported by Hu et al (2006). The training data contains 259 samples (patients) 

representing five subtypes of cancer (Luminal A, Luminal B, HER2-enriched, Basal-like, and 

Normal-like); and the 306 genes identified by Hu et al., (2006) and used to obtain a 

corresponding set of five class centroids using hierarchical clustering (Table  3.1). 
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The proposed new approach may help: (i) Study characteristic spread of gene expression 

patterns within a predefined subtype. This will provide more clarity into the variability within 

a subtype. (ii) Identify similarity/closeness and/or overlapping of subtypes which may help 

identify patients who cannot be clearly categorised into a specific subtype. This can help in 

choosing the appropriate treatment.  
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Chapter Three 

 

3 MATERIALS AND METHOD 

 

Methods used previously by four main investigating groups were adopted as a base line for 

the analysis in the present study. A brief description of the work of these groups is as follows: 

Sorlie et al (2001) studied 85 tissue samples in which tumour specimens contained more than 

50% tumour cells and the mRNA microarrays for those cells were processed. They selected 

456 cDNA clones from an 8,102 intrinsic gene list as representatives for Basal-like, ERBB2+, 

Normal Breast-like, Luminal Subtype C, Luminal Subtype B and Luminal Subtype A. Those 

genes were with significantly greater variation in expression between different tumours than 

between paired samples from the same tumour. This measure was taken to represent inherent 

properties of the tumours themselves rather than just differences between different samplings. 

They concluded that relating gene expression patterns to clinical outcomes is a key issue in 

understanding the biological diversity of the tumours, and this will improve the chances of 

choosing the suitable type of treatment.  

Later, Sorlie et al., (2003) conducted a study to further refine the previously defined (Sorlie et 

al., 2001) subtypes of breast tumours that have distinct patterns of gene expression. They used 

Hierarchical (unsupervised) clustering analysis based on expression pattern of 534 intrinsic 

genes. These genes were selected on the basis of the similarity of the expression level. The 

results of the study supported the concept that the studied breast tumour subtypes represent 

biologically distinct disease entities. 
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Van't Veer et al. (2002) used DNA microarray analysis on primary breast tumours of 117 

patients, and applied supervised classification to identify a gene expression signature strongly 

predictive of a short interval to distant metastases in patients without tumour cells in local 

lymph nodes at diagnosis.  

Approximately 5,000 genes were selected out of 25,000 genes because they are significantly 

regulated in more than 3 tumours out of 78. These selected genes were clustered on the basis 

of their similarities. They suggested that the tumours can be divided into two types on the 

basis of this set of significant genes. The first type is a good prognostic (i.e. related to low 

metastasis risk) and the second type is a poor prognostic (i.e. associated with a high 

metastasis risk). Their finding of separating tumour classes associated with patient survival 

supported those previously reported by Sorlie et at. (2001), but they extended the work to 

gene expression (or genetic profile) associations with survival in an untreated, node negative 

cohort. In their work to identify reliable good and poor prognostic tumours they used a 

powerful three-step supervised classification method, similar to those used previously by 

(Gruvberger, Ringnér et al. 2001; He and Friend 2001; Khan J 2001). The correlation 

coefficient of the expression for each gene with disease outcome was calculated. It was found 

that 231 genes were significantly associated with disease outcome. The 231 genes were then 

rank-ordered on the basis of the magnitude of the correlation coefficient. This was followed 

by optimizing the number of genes in the 'prognosis classifier' by sequentially adding subsets 

of 5 genes from the top of this rank-ordered list and evaluating its power for correct 

classification using the 'leave-one-out' method for cross-validation. The accuracy improved 

until the optimal number of marker genes was reached, which was 70 genes. Their results 

showed that the gene expression profile outperformed the available clinical parameters, at the 

time, in predicting disease outcome. Their findings provided a strategy to select patients who 

would benefit from adjuvant therapy.  
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Sotiriou et al. (2003) selected 99 patients out of 700 patient population and the overall 

survival for this group was adjusted for standard prognostic factors of tumour size and nodal 

status comparable to the population. They conducted a study of comprehensive gene 

expression patterns generated from cDNA microarrays obtained with a 7,650-feature 

microarray (using unsupervised hierarchical clustering approach) and correlated that with 

detailed clinico-pathological characteristics and clinical outcome in the group of 99 node-

negative and node-positive breast cancer patients. Gene expression patterns were found to be 

strongly associated with estrogen receptor (ER) status and to be the most important 

discriminator of expression subtypes, but moderately associated with grade, and not 

associated with menopausal status, nodal status, or tumour size. Hierarchical cluster analysis 

segregated the tumours into two main groups based on their ER status, which correlated well 

with basal and luminal characteristics. Their findings were in strong agreement with the 

findings of Perou et at. (2000), Sorlie et at. (2001) and Van't Veer et al. (2002) that the ER 

biology plays a central role in breast carcinogenesis defining the configuration of the final 

tumour.  

 

The conditions and outcomes of the studies mentioned above have been used by Hu et al. 

(2006) who conducted breast cancer microarray analyses and subtype clarification study on a 

set of 259 breast cancer samples, represented by 306 expressed genes. This dataset was 

collected from the above four different studies (Table  3.1). These are ‘Gene expression 

patterns of breast carcinomas distinguish tumour subclasses with clinical implications’ 

(Sorlie, Perou et al. 2001), ‘Gene expression profiling predicts clinical outcome of breast 

cancer’ (van 't Veer, Dai et al. 2002), ‘Repeated observation of breast tumour subtypes in 
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independent gene expression datasets’ (Sorlie, Tibshirani et al. 2003) and ‘Breast cancer 

classification and prognosis based on gene expression profiles from a population-based 

study’(Sotiriou, Neo et al. 2003). 

The collected data was pooled and analysed by Hu et al. (2006) to define intrinsic subtypes by 

utilising pathological/clinical data as well as gene expression data. They first evaluated the 

datasets independently, and then combined them to find 306 breast genes which were 

analysed using the hierarchical clustering method. Hu et al. (2006) created a single data table 

from these four sets as follow: 

i. Firstly, identifying the common genes present across all four microarray datasets 

(2800 genes).  

ii. Secondly, Using Distance Weighted Discrimination (DWD) to combine these four 

datasets (Benito, Parker et al. 2004).  

 DWD is a multivariate analyses tool that performs statistical corrections to 

reduce systematic biases resulting in separate datasets. It then makes a global 

adjustment to compensate for these biases: in essence, each separate dataset 

is a multi-dimensional cloud of data points. It takes two point clouds and 

shifts one, such that it more optimally overlaps the other.  

iii. Finally, they determined that 306 of the 1300 unique intrinsic genes were present in 

the combined test set and performed a hierarchical clustering analysis. 
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Table ‎3.1: The combined datasets of Sorlie et al. (2001; 2003), Van't Veer et al. (2002) and Sotiriou et al. 

(2003) arranged by Hu et al (2006).  

Microarray 

type 

Validation Informative 

genes 

Metastasis 

determinants 

References 

 

cDNA Independent 

datasets 

306 genes Luminal A, Luminal B, 

HER2-enriched, Basal-like, 

and Normal-like 

Hu et al., 

(2006) 

cDNA Independent 

training set 

 

99 genes invasive ductal carcinomas; 

46 individuals were node 

negative and 53 were node 

positive  

Sotiriou, et al., 

(2003). 

cDNA Crossvalidation 

 

534 intrinsic 

genes 

Repeated finding in 

independent datasets  

Sorlie et al., 

2003 

Oligonucleotide  

 

Independent 

training set 

70 genes ‘Good signature’ is related 

to low metastasis risk; a 

‘poor signature’ is 

associated with a high 

metastasis risk.  

Van't Veer et 

al., (2002) 

cDNA  456 ‘intrinsic’ 

genes 

‘Luminal A’ tumours have 

a better outcome than 

‘luminal B’ tumours. Worst 

outcome is for ‘basal-like’ 

and ‘ERBB2+’ tumours 

Sorlie et al., 

(2001) 

 

 

The work of Hu et al., (2006) identified the five main subtypes corresponding to the 

previously defined HER2+/ER-, Basal-like, LumA, LumB and Normal Breast like tumour 

groups (Perou, Sorlie et al. 2000; Sorlie, Perou et al. 2001). This type of analysis provides 

more statistical power to perform multivariate analyses. It would also yield more meaningful 

results because any findings would need to be shared/present across all four datasets.  

 

The finding of Hu et al., (2006) is considered as the starting point for this proposed study. The 

Matlab 5 Toolboxes used to investigate the datasets in this study are: SOM Toolbox for SOM 

and Statistics Toolbox for both Ward and Hierarchical clustering. SOM Toolbox can be 

downloaded free of charge under the GNU General Public License from 

http://www.cis.hut.fi/projects/somtoolbox.  
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3.1 Methods of analyses 

 

In this study, after a pilot study to explore the most highly influential genes (potential 

markers) in each subtype, we used a new approach of analyses by combining two pairs of 

analyses methods (Hierarchical-Ward and SOM-Ward clustering) to: 

 Diagnostic markers for each subtype (pilot study). 

 Validate the clusters found by the original authors Hu et al., (2006). 

 Find relationship or similarity between subtypes to identify subtypes that can mask 

each other. 

 Identify possible new cancer subtypes. 

 

Three specific methods are going to be used in this study in an in-depth investigation of 

tumour subtypes: Hierarchical clustering, Self-organizing maps (SOM) and Ward method and 

with these three methods, it will be possible to display differences more clearly between the 

subtypes than using only one method. These methods are employed after an initial pilot study 

involving the most significant genes. A summary of these methods is as follows:  

 

3.1.1 Ward Method 

 

In Statistics, Ward method uses an analysis of variance approach to evaluate the distances 

between clusters. Ward's minimum variance method is a special case of the objective function 

approach originally presented by (Ward 1963). Ward suggested a general agglomerative 

hierarchical clustering procedure that, in general, is regarded as very efficient; however, it 

tends to create clusters of small size, where the criterion for choosing the pair of clusters to 

merge at each step is based on the optimal value of an objective function. To illustrate the 

procedure, Ward used the example where the objective function is error sum of squares, and 

this example is known as Ward's method or more precisely Ward's minimum variance 
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method. In brief, this method attempts to minimize the Sum of Squares (SS) of any two 

(hypothetical) clusters that can be formed at each step (Ward 1963). Ward method works as 

follow: 

 

 Uses an analysis of variance approach to evaluate the distances between 

clusters. 

 Attempts to minimize the Sum of Squares (SS) of any two (hypothetical) 

clusters that can be formed at each step. 

 

     
     

     
         

 
 

 

 

Where   and   denote two specific clusters nr and ns denote the number of data 

points in the two clusters and    and    denote the centres of gravity of the 

clusters;      is the Euclidean norm. 

  

 

 The mean and cardinality of the new cluster built as a product of the merger 

step is computed as follows 

 

   
     

  
 

     
                   

  
     

         

 

When Ward method used on a trained SOM (Section 3.1.3), the homogeneity of clusters 

within the map is achieved by merging only neurons and clusters that are neighbours in the 

map (Samarasinghe 2007). Ward method helps to find the optimum cluster structure that 

indicates the best level of clustering. This method computes the likelihood of various numbers 
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of clusters from which the most appropriate number of clusters can be obtained based on a 

likelihood index defined as 

 

            
 

  
 

       

         
  

 

  
 

   

     
  

 

Where    is the distance between the centres of the two cluster to be merged in 

the current step, and      and      are the distance between merged clusters in 

the previous step and the step earlier than the previous.    is the number of 

cluster left. 

 

3.1.2 Hierarchical clustering method 

 

Hierarchical clustering (connectivity based clustering) is one of the most straightforward 

methods among numerous ways in which clusters can be formed. It is based on the core idea 

of objects being more related to nearby objects than to objects farther away. It can be either 

agglomerative (aggregating single patient into clusters) or divisive (dividing complete data set 

into partitions) (Johnson's 1967).  

 

Agglomerative hierarchical clustering considers each case as a cluster. Any two objects that 

have the smallest value on the distance measure (or largest value if similarities are used) are 

joined into a single cluster. Either a third patient  is added to this cluster that already 

containing the two objects, or a new cluster is formed by merging two new other objects. At 

each step, individual objects are added to existing clusters, two individuals are combined, or 

two existing clusters are combined.  

 

The distance between two clusters with more than one patient in a cluster can be defined in 

different ways. For example, average distances between all pairs of patients formed by taking 
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one member from each of the two clusters in turn and calculating the distance to other 

members to find the average distance. Or the largest or smallest distance between two patients 

that are in different clusters can be taken. Computing methods to measure the distance 

between clusters are available; however, different methods suffer from producing different 

solutions.  

 

The distance between sets of observations as a function of the pairwise distances between 

observations is determined by linkage criteria.  

The linkage function uses the distance information generated to determine the proximity of 

objects to each other. Once the proximity between objects in the data set has been computed 

the objects are paired into binary clusters, and the newly formed clusters are grouped into 

larger clusters until a hierarchical tree is formed. Different distances, different clusters will 

form, what is known as the dendrogram. A dendrogram is a tree diagram frequently used to 

illustrate the arrangement of the clusters produced by the hierarchical clustering. It is a useful 

approach to illustrate the clustering of genes or samples in Computational Biology. 

 

To form clusters using a hierarchical cluster analysis, the following must be identified: a 

criterion to determine the similarity (or distance) between patients (such as Euclidean 

distance); a criterion to determine the merging of identified clusters at consecutive steps (such 

as minimum variance); and selecting the number of clusters to represent a particular dataset. 

The Ward method can be applied with hierarchical clustering to find the optimal number of 

clusters in the dendrogram.   
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3.1.3 Self-organizing maps (SOM) 

 

The self-organizing map (SOM) is an artificial neural network algorithm used to visualize and 

interpret large high-dimensional datasets. This helps us to understand these high dimensional 

data by organising them on a map of reduced dimensions. The learning process is competitive 

and unsupervised. The components of SOMs are nodes or neurons that are usually arranged in 

a two-dimensional hexagonal or rectangular grid. A neuron is represented by a weight vector 

with the same dimension as the input vector and neuron weights are initially set to small 

random value. Neurons in a trained map represent the centre of gravity of a cluster input 

vectors. Self-organizing maps operate in two modes: training to build the map using input 

examples, and mapping to automatically classify a new input vector. The Euclidean distance 

is the most commonly used method to determine the neuron with the shortest distance to an 

input, called “the winner”. SOMs preserve topological properties of the input space. They use 

a neighbourhood feature to adjust neuron weights, not only of the winner neurons with the 

closest distance to an input vector, but also of their neighbour neurons. Furthermore, it 

presents mapping from a higher dimensional input space to a lower dimensional map space. 

This makes it possible to visualise the organisation of input vectors. Learning in self-

organizing maps aims to specialise parts of the network to respond similarly to certain input 

patterns. 

Figure 1 gives a pictorial example of a trained SOM; where the darker colour represents the 

area of larger distance between neurons (i.e., between weights). Smaller distances are 

represented by the lighter colour. This shows that the white areas represent different clusters 

and the black lines represent the boundaries between them.  
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Figure 1: Self-organizing maps 

 

 

3.1.3.1 Self-Organizing Map algorithm 

 

Assume that some sample datasets have to be mapped onto an SOM. The set of input samples 

is described by a real vector     

 

x(t)‎Є‎R
n
     [5] 

Where (t) is the index of the sample, or the discrete-time coordinate. Each node (i) in the map 

is represented by a weight vector    

mi(t)‎Є‎R
n
     [6] 

which has the same number of elements as the input vector  x(t). The SOM algorithm 

performs an iteration process, where the initial values of the components of the weight 

vector, mi(t), may be selected at random. In practical applications, however, the model 

vectors are more profitably initialized in some orderly fashion, e.g., along a two-dimensional 

subspace, spanned by the two principal eigenvectors of the input data vectors (Kohonen 

1995c). Additionally, a batch version of the SOM algorithm may also be used (Kohonen 
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1995c). The mi(t) which matches best with x(t) in some metric, is thought to map that input 

into its location. The self-organizing algorithm creates the ordered mapping as a repetition of 

the following basic tasks: 

i. An input vector x(t) is compared with all the weight vectors mi(t). The best-matching 

unit (node) on the map is selected. It is often called the winner. 

ii. The weight vectors of the winner and a number of its neighbouring nodes in the array 

are changed towards the input vector according to the learning principle specified 

below. 

The basic idea behind the learning process of SOM is that, for each sample input vector x(t), 

the winner and the nodes in its neighbourhood are brought closer to x(t) in the input data 

space. During the learning process, individual changes may be contradictory. However, the 

net outcome in the process is that ordered values for the mi(t) emerge over the map. If the 

number of available input samples is restricted, the samples must be presented iteratively to 

the SOM algorithm. 

 

Adaptation of the weight vectors in the learning process may take place according to the 

following equations: 

mi(t + 1) = mi(t)‎+‎α(t)‎Nc(t) [x(t) – mi(t)]‎‎‎‎‎‎‎for‎each‎i‎Є‎Nc(t),  [7]  

Otherwise, 

mi(t + 1) = mi(t)      [8] 

where t is the discrete-time index of the variables, the factor α(t)‎ Є‎ [0,1] is a scalar that 

defines the relative size of the learning step (learning rate), and Nc(t) specifies the strength of 

the weight adjustment for the neighbourhood around the winner in the map array. 
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The radius of the neighbourhood, at the beginning of the learning process, is fairly large. 

However, it is made to shrink during learning. This ensures that the global order is obtained 

already at the beginning, whereas towards the end, as the radius gets smaller, the local 

corrections of the model vectors in the map will be more specific. Gaussian neighbour 

strength as a function of radius is commonly used. The learning rate α(t) also decreases during 

learning. 
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Chapter Four 

 

4 RESULTS 

4.1 Pilot investigation  

 

An initial analysis was conducted on 306 genes involving 5 types of cancer across 249 

samples (patients). The set of data was the same as that used in the study of Hu et al. (2006). 

The purpose of the analysis was to identify genes that might be significantly related to each 

individual subtype, by using a preliminary exploration of the 306 genes (described below). If 

a gene is highly significant in one subtype but not significant in any other subtype, this can be 

used as a unique marker exclusive to that subtype. 

 

The 306 genes were plotted against the gene expression level of each patient under each 

subtype. The value of the expression level is represented by ratio of (Abnormal/Normal). 

These values can be classified into normal, highly expressed, or highly depressed. Both the 

highly expressed and the highly depressed are indicators of cancer. The data were analysed 

using Matlab software to identify the median expression level of the most significantly 

expressed genes. 

 

The results of the analysis are illustrated in Figure 2. The figure shows that the most 

significantly expressed gene in LumB subtype is Hs.79136 gene, at +1.888 expression level 

(Figure 2a, black colour). The expression level of the same gene (green colour) was +2.225 in 

LumA (Figure 2b), -0.402 in Normal Like (Figure 2c), -1.638 in Her2 (Figure 2d), and -1.063 

in Basal Like (Figure 2e), respectively.  

From these results it is evident that the Hs.79136 gene has significant expression levels, in 

different degrees, across almost all studied subtypes. For example, this gene is more highly 
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expressed in LumA (+ 2.225) than in LumB (+1.888). However, as it is expressed in both it is 

not possible to consider this gene as an indicator of LumA or LumB subtype specifically. 

Same applies to subtypes in which this gene is highly expressed.  

 

 

Figure 2: The median value of the highly expressed gene in LumB (Hs. 79136 in black colour) compared 

to its median expression levels in other subtypes (green colour). 
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Since using one significant gene as a marker was not successful, it was decided to involve 

more genes in the search. The analysis method searched for the six genes with the highest 

expression/inhibition in LumB, LumA, Normal Like, Basal Like, and Her2 as illustrated in 

Figure 3.  Because the intensity of the data hindered the clarity of the outcome, a bar graph 

was chosen to represent the results in this case.  

The six most highly expressed/inhibited genes in LumB were the previously noted Hs.79136, 

Hs.1657, Hs.82961, Hs.396783, Hs.80420 and Hs.425311 which are arranged here in a 

descending order according to their level of expression/ inhibition (Figure 3a). For example, 

Hs. 79136 is more highly expressed than Hs.1657 and so on.  

 

Figure 3a also shows the expression levels of these genes in the other subtypes of cancer. It 

can be seen that genes Hs.79136, Hs.1657, Hs.82961 and Hs.80420 (representing genes No 1, 

2, 3, and 5) are also highly expression/inhibited in subtypes other than LumB and cannot, 

therefore, be considered as specific markers. However, the most important genes in LumB are 

gene number 4 (Hs.396783) and 6 (Hs.425311) which are not significantly 

expressed/inhibited in the other four subtypes and could therefore be potentially useful 

markers for LumB. 

 

When the same method of analysis was applied to LumA, it was observed that Hs.79136, 

Hs.1657, Hs.82961, Hs.89603, Hs.169946 and Hs.390163 genes were the six highly 

expressed/inhibited.  

It was found that Hs.79136 was also highly expressed in this subtype as it was in LumB 

(Figure 3b and Appendix A). Thus, it was concluded that this gene cannot be considered as a 

useful marker to identify LumA. However, it was also observed that only gene number 4 

(Hs.89603 +1.44) and possibly gene numbers 5 and 6 (Hs.169946 +1.36 and Hs.390163 
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+1.14) were the most significant in LumA compared to the other subtypes. These genes, 

unlike gene number 1 (Hs.79136), could therefore be useful as markers for LumA.  

 

In the Normal Like subtype, the six most significantly expressed/inhibited genes were 

identified as Hs.81665 (+1.922), Hs.334562 (-1.75), Hs.77204 (-1.56), Hs.80420 (-1.64), 

Hs.69771 (-1.43) and Hs.433871 (1.34) (Figure 3c and Appendix A). The relative 

expression/inhibition level for these genes in the different subtypes varied. Although genes 

number 2 (Hs.334562) and 4 (Hs.80420) (in Figure 3c) were well expressed/inhibited, but 

they were also obviously present in other subtypes and cannot be considered as useful 

markers.  

The most noticeable observation is that genes number 1 (Hs.81665), 3 (Hs.77204), 5 

(Hs.69771) and 6 (Hs.433871) were very well expressed/inhibited in Normal Like than in 

other subtypes, particularly gene number 6 which can clearly be considered as a unique 

marker for this subtype. 

 

Genes Hs.82961 (-3.35), Hs.169946 (-3.03), Hs.437638 (-2.72), Hs.1657 (-2.5), Hs.26770 

(2.38) and Hs.2256 (2.37) (labelled number 1, 2, 3, 4, 5 and 6, respectively in Figure 3d) were 

highly expressed/inhibited in the Basal Like subtype, although they were also present in the 

other subtypes. The most interesting finding is that genes number 3 and 5 were clearly the 

most dominant in the Basal Like compared to other subtypes. It was also found that gene 

number 5 had no expression in Normal Like subtype. Hence, genes number 3 and especially 

number 5 can be confidently considered as useful markers for the Basal Like subtype. Gene 

number 1 is important in Basal Like subtype but since the same gene is also important in 

other subtypes, the third most significant gene in both LumB and LumA, this gene cannot be a 

useful marker for the Basal Like subtype. 
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In the Her2 subtype two distinctive genes were Hs.446352 (4.161) and Hs.86859 (4.130) 

(genes number 1 and 2 in Figure 3e) which were highly significantly expressed and can be 

regarded as unique markers for this subtype. 

 

A summary of the pilot marker genes found in this analysis is gene in (Table  4.1) with colour 

to make it easier to find out if a gene is found important for more than one subtype.  

 

Table ‎4.1: A summary of the six most significant genes with their expression levels in each subtype. (The 

colour indicates if a gene is significant in more than one subtype). 

No 
LumB LumA Normal Like Basal Like Her2 

Gene Name Expression Gene Name Expression Gene Name Expression 
Gene 

Name 
Expression 

Gene 

Name 
Expression 

1 Hs.79136 1.888 Hs.79136 2.225 Hs.81665 1.920 Hs.82961 -3.350 Hs.446352 4.161 

2 Hs.1657 1.380 Hs.1657 1.640 Hs.334562 -1.750 Hs.169946 -3.030 Hs.86859 4.130 

3 Hs.82961 1.270 Hs.82961 1.460 Hs.77204 -1.560 Hs.437638 -2.720 Hs.1657 -1.754 

4 Hs.396783 1.220 Hs.89603 1.440 Hs.80420 -1.640 Hs.1657 -2.500 Hs.90786 1.210 

5 Hs.80420 -0.978 Hs.169946 1.360 Hs.69771 -1.430 Hs.26770 2.380 Hs.79136 -1.063 

6 Hs.425311 0.976 Hs.390163 1.140 Hs.433871 1.340 Hs.2256 2.370 Hs.298654 1.000 
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Figure 3: The median expression level of the most highly expressed/inhibited six genes in LumB, LumA, 

Normal Like, Basal Like, and Her2 subtypes. 
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4.1.1 Using Visualisation Analysis to identify potential markers 

 

The findings of the pilot analysis were encouraging and justified the involvement of more 

genes that could help further identify other potential markers for the different subtypes in this 

study. Visualisation analysis method was carried out using GGobi software to analyse all the 

306 studied genes simultaneously. The genes were plotted against their expression/inhibition 

levels across all subtypes and ranked from the highest positive to the highest negative value, 

as represented in Figure 4. 

 

 

Figure 4: GGobi software based parallel coordinate plot for the 306 genes across the 249 patients 

representing the 5 subtypes. 

 

The Figure 4 illustrates the complexity of plotting all the genes at the same time. Therefore, 

attempts were made to select the most highly expressed genes visually and label them with 

different colours and then follow their expression/inhibition in the different subtypes, as 

demonstrated in Figure 5. 

 

Figure 5 shows that a gene signature pattern may be more clearly assessed by this method. 

For example, the three most highly significant genes in LumB (yellow colour) were also the 

most highly significant genes in LumA. The first and the second genes were insignificant in 

the Normal Like subtype, slightly inhibited in the Basal Like subtype but significantly 

Genes 
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inhibited in the Her2 subtype. The third significant gene in LumB and LumA was 

insignificant in both the Normal Like and the Her2 subtypes, but was highly significantly 

inhibited in the Basal Like. On the other hand, the fourth highly significant gene (also in 

yellow colour) in LumB was not significant in the other four subtypes. Therefore, this 

analysis indicates that this gene is probably a useful marker for the LumB subtype. The 

signature pattern of these four genes found by this method of analysis match the results 

observed previously when only six genes were plotted at one time (Figure 3). 

 

 

Figure 5: GGobi software displays a parallel coordinates for the 306 genes across the 249 patients 

(subtypes) and highlighting only the most highly expressed genes visually and label them with 

different colours. 

 

Four significant genes were identified in the Normal Like subtype (blue colour), and the 

pattern of these genes’ significance can be inferred as described above. Similarly, three 

significant genes can be identified in the Basal Like subtype (green colour line), and the 

pattern of significance of these genes can be traced in the other subtypes. For the Her2 

subtype, two genes (orange colour line) can obviously be seen as the most significant for this 

subtype compared to their significance in the other subtypes. 

 

Although, the signature pattern of the significant genes confirm the previous results recorded 

when only six genes were plotted at one time (Figure 3), the limitation of the visualisation 

Genes 
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analysis is that the software does not have scaling features. Therefore, care must be practiced 

when interrupting the results. For example, the first significant gene in LumB and LumA 

looks to have similar value in both subtypes, but the six genes analysis method, which is 

scaled, showed that the actual gene expression value was +1.888 in LumB whilst it was 

+2.224 in LumA. To explain further, the first significant gene in LumB can be used as a guide 

for its significance in other subtypes. By drawing a line across the different subtypes we can 

get a visual pattern of this genes’ relative significance.  

 

Another limitation of the visualisation analysis method is that it cannot identify (name) the 

different genes. The patterns from this method however, can be compared/matched with the 

patterns obtained from the six gene analysis method. Through this pattern 

comparison/matching we can name the genes. This study demonstrates that by combining the 

two methods, the patterns can be more confidently confirmed.   

 

From the results above, it can be concluded that the two different forms of data representation, 

although useful, can be of limited advantage in identifying subtypes through the significance 

of expression/inhibition of a greater number of potential marker genes. It is therefore 

necessary to explore other methods of analysis using software that can isolate clusters of 

genes that can be important markers for the subtypes. This was not attempted in this study.   

 

In the next sections, whole gene set (306 genes) obtained by Hu et al. (2006) is subjected to 

deeper investigation using Hierarchical clustering and Self Organising feature Maps (SOM) in 

conjunction with the Ward method to ascertain its efficacy in clustering subtypes.   
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4.2 Replicating original outcomes - Hierarchical clustering 

 

The outcomes of our pilot study have encouraged us to explore the subtype classification 

beyond the investigation of the original researchers. The original researchers’ work was first 

repeated by using the same method of analysis, namely hierarchical clustering method. The 

aim was to compare the outcomes of the current study with the original ones.  

 

The hierarchical method uses different distance metrics. These differ from one another in how 

they measure the distance between clusters. These methods include: average- ‘unweighted 

average distance’, centroid- ‘centroid distance’, complete linkage- ‘furthest distance’, median- 

‘weighted centre of mass distance’, single linkage- ‘shortest distance’, weighted- ‘weighted 

average distance’ and ward- ‘inner square distance’ (Appendix B). The Ward method was 

introduced to the hierarchical clustering method in this study because it employs the inner 

square distance (minimum variance algorithm) which helps representing the data more 

clearly, as illustrated in (Appendix B). The original authors had not mentioned the distance 

metric they used in Hierarchical clustering. 

 

Figure 6 demonstrates that putting the data obtained from the hierarchical method through the 

Ward statistical analysis resulted in identifying the most likely number of clusters. The figure 

also shows that 6 sub-clusters are present with high probability. Furthermore, two clusters are 

also present but with less probability. This means that there are potentially 6 sub-clusters, are 

more than the five clusters found by the original authors.  
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Figure 6: Ward likelihood index of hierarchical method for various numbers of clusters of patients 

(subtypes). 

 

These observations were compared with those of the original authors’ work. Therefore, the 

identified clusters were analysed further to find the distribution of the patients between the 

obtained clusters. The calculated distributions were compared with that of the original 

authors’ results. Our analysis identified the sub-clusters and assigned the appropriate patients 

in each sub-cluster, and then identified the patients that were matched with those in the 

original work of the authors. 

 

Table  4.2 shows the distribution of the patients between two clusters as identified by 

hierarchical method in the present study. The two clusters are shown in Figure 7.  By 

matching the patient numbers (labels) with those numbers in the original authors’ subtypes, 

we found that LumB, LumA and Normal Like subtypes belong to cluster 1 in this work, while 

the Basal Like and Her2 belong to cluster 2. 
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Table ‎4.2: Two clusters obtained from the hierarchical-ward method of the current study. 

 
Current Study 

 

 
Cluster 1 Cluster 2 Total 

No of Patients 161 88 249 

Subtypes LumB, LumA & Normal Basal & Her2  

 

 

The same calculation procedure was followed to identify the distribution of patients between 

the subtypes. Table  4.3 shows the number of patients and their sequence (order of appearance 

in the dataset) in each subtype according to the original authors’ data. When these numbers 

were compared with the numbers identified by the current hierarchical analysis (Appendix C) 

it was found that the patients belonging to LumB, LumA and the Normal Like subtypes 

(representing cluster 1) completely matched (100%) the sequence number reported in the 

original research. The sequence of the patients belonging to Basal Like and the Her2 subtypes 

(representing cluster 2) matched the sequence reported in the original research by only 98% 

and 83%, respectively. The remaining 2% and 17% of patient numbers were located in cluster 

1 in this study. 

 

Table ‎4.3: Matching percentage between original work and current study of hierarchical-ward method. 

 
Original Author's data 

 

 
LumB LumA Normal Basal Her2 

 
No of patients 46 90 19 65 29 249 

Sequence order of 

patient number 
1 to 46 47 to 136 137 to 155 156 to 220 

221 to 

249  

match percentage 100% 100% 100% 98% 83% 
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Figure 7: A dendrogram specifying the two clusters of patients (at cut off point 2727) according to their 

correlation strength. 

 

Although not a strong outcome of our study, five sub-clusters were selected based on cut off 

distance 1050 in order to compare them with the original five subtypes reported by the 

original researchers (Figure 8). It was found that 67% of the patients of LumB were present in 

sub-cluster 1, 30% in sub-cluster 2 and 2% in other sub-clusters of this work (Table 4.4, Table 

4.5 and Appendix C). Similarly, 50% of the LumA was in sub-cluster 3, 43% in sub-cluster 2 

and 7% in sub-cluster 1 of the present work. Likewise, 95% of the Normal Like subtype was 

present in sub-cluster 3 and 5% only in sub-cluster 2. Sub-cluster 4 contained 86%, sub-

cluster 5 contained 12% and the other sub-clusters contained 2% of the Basal Like subtype 

respectively. Finally, 79%, 10% and 10% of the Her2 subtype were in sub-cluster 5, sub-

cluster 3 and other sub-clusters, respectively.  

 

This clearly indicates that the present results have similarities, to varying degrees, to those of 

the original researchers. However, the results also indicate that there is a clear overlap 



44 

 

between the subtypes, especially between LumB, LumA and Normal Like subtypes.  As 

shown in Table 4.5, patients from sub-cluster 1 and sub-cluster 3 (belonging to cluster 1 in 

Table  4.2) can overlap with sub-cluster 4 and sub-cluster 5. This confirms the earlier finding 

that were explained in Table  4.2 and Table  4.3 regarding the overlapping of patients between 

the clusters.  

 

Table ‎4.4: Five sub-clusters obtained from the hierarchical-ward method of the current study. 

Hierarchical data analysis 
    

 

Sub-cluster 

1 

Sub-cluster 

2 

Sub-cluster 

3 

Sub-cluster 

4 

Sub-cluster 

5 

Total No of 

patients 

No of 

patients 
40 54 67 57 31 249 

 

 

Table ‎4.5: Matching percentage between original work and current study of the 5 sub-clusters obtained by 

hierarchical-ward method. 

Original authors’ subtype analysis 
    

 
LumB LumA Normal Basal Her2 

Total No of 

patients 

No of patients 46 90 19 65 29 249 

Sequence order of 

patient number 
1 to 46 47 to 136 137 to 155 156 to 220 221 to 249 

 

O
u
r 

H
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 %
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f 
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e 
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Sub-clu 1 Sub-clu 3 Sub-clu 3 Sub-clu 4 Sub-clu 5 
 

67% 50% 95% 86% 79% 
 

Sub-clu 2 Sub-clu 2 Sub-clu 2 Sub-clu 5 Sub-clu 3 
 

30% 43% 5% 12% 10% 
 

Others Sub-clu 1 Others Sub-clu 1 Sub-clu 1 
 

2% 7% 0% 2% 10% 
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Figure 8: A dendrogram specifying the five clusters of patients (at cut off point 1050) according to their 

correlation strength 

 

Our Hierarchical-Ward analysis showed the possibility of the presence of six sub-clusters 

rather than five. Examining these sub-clusters in depth (Table 4.6, Figure 9 and Appendix C) 

showed that 67%, 30% and 2% of the LumB subtype were in sub-cluster 3, sub-cluster 4 and 

sub-cluster 1 respectively. Further, 43%, 24%, 26% and 7% of the LumA subtype were in 

sub-cluster 4, sub-cluster 1, sub-cluster 2 and sub-cluster 3, respectively. Ninety five percent 

of the Normal Like subtype was in sub-cluster 1 and the remaining 5% was in sub-cluster 4. 

In addition, 86%, 12% and 2% of the Basal Like subtype were found sub-cluster 5, sub-

cluster 6 and sub-cluster 3 in that order. Finally, 79%, 10%, 7% and 3% of the Her2 subtype 

were respectively in sub-cluster 6, sub-cluster 1, sub-cluster 3 and sub-cluster 5. 

 

This analysis shows that there is considerable overlapping between the original five subtypes, 

plus the presence of one extra sub-cluster that has not been identified before. The extent of 

overlapping was characterised by all subtypes except the Basal Like subtype being present in 

sub-cluster 1. Similarly, all subtypes except the Normal Like were present in sub-cluster 3. 
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Furthermore, it was noticed that sub-cluster 1 and sub-cluster 3 were less frequent in the Basal 

Like and the Her2 subtypes than in the LumB, LumA and Normal Like subtypes. 

 

Cluster consisting of the Basal Like and the Her2 subtypes in the two cluster format (Table 

 4.2) overlaps with different sub-clusters in the six sub-cluster format. However, the 

overlapping involving sub-cluster 5 and sub-cluster 6 was unique to Basal Like and Her2 

subtypes. By contrast, overlapping with sub-cluster 4 was unique to the group containing 

LumB, LumA and the Normal Like subtypes.  

The most significant observation was that sub-cluster 2 contained LumA subtype only. 

 

Table ‎4.6: Matching percentage between original work and current study of the 6 sub-clusters obtained by 

hierarchical-ward method. 

 
Original Author's subtypes 

 
LumB LumA Normal Basal Her2 

No of Patients 46 90 19 65 29 

Sequence order of patient numbers 1 to 46 47 to 136 137 to 155 156 to 220 221 to 249 

O
u
r 

H
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Sub-clu 3 Sub-clu 4 Sub-clu 1 Sub-clu 5 Sub-clu 6 

67% 43% 95% 86% 79% 

Sub-clu 4 Sub-clu 1 Sub-clu 4 Sub-clu 6 Sub-clu 1 

30% 24% 5% 12% 10% 

Sub-clu 1 Sub-clu 2 
 

Sub-clu 3 Sub-clu 3 

2% 26% 
 

2% 7% 

 
Sub-clu 3 

  
Sub-clu 5 

 
7% 

  
3% 
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Figure 9: A dendrogram specifying the six clusters of patients (at cut off point 847) according to their 

correlation strength  

 

The above results are now presented in the reverse format to highlight which sub-clusters 

represent which subtype(s).  Table  4.7 shows results for the 5 cluster case. When these sub-

clusters were compared with the 5 original authors’ sub-clusters, it was found that 78%, 15%, 

5% and 3% of LumB, LumA, Her2 and Basal subtypes, respectively were contained in Sub-

cluster 1. LumA, LumB and Normal Like subtypes were contained in sub-cluster 2 at 72%, 

26% and 2%, respectively. In sub-cluster 3 LumA, Normal Like, Her2 and LumB subtypes 

were present at 67%, 27%, 4% and 1%, respectively. Sub-cluster 4 98% contained Basal Like 

subtype and 2% Her2 subtypes. On the other hand, sub-cluster 5 contained 74% Her2 and 

26% Basal like subtypes. 

 

As shown previously, when the Ward analysis method was applied to the results of our 

Hierarchical analysis of the original dataset, it produced a strong likelihood for the presence 

of two clusters that were again divided into six sub-clusters (Figure 9) with the strongest 

likelihood. When the 6 clusters were analysed in terms of the subtypes they contain. It was 
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interesting to observe that cluster 2 (Table  4.2) was divided into two sub-clusters (5 and 6 in 

Table  4.8) that contained the same subtypes that were present in sub clusters 4 and 5 (Table 

 4.7), and more interestingly, with the exact percentages.  

 

Cluster 1 (Table  4.2) was divided into four sub-clusters (1, 2, 3 and 4, Table  4.8). Sub-clusters 

3 and 4 contained the same subtypes and percentages that were present in sub-clusters 1 and 2 

in the 5 clusters analysis (Table  4.7). Similarly, sub-clusters 1 in the 6 sub-clusters analysis 

contained the same subtypes that were contained in sub-cluster 3 in the 5 sub-clusters 

analysis, but with different percentages (Table  4.7). Sub-clusters 2 in the 6 sub-clusters 

analysis contained LumA subtype only. This could indicate that sub-clusters 1 and 2 resulted 

from the division of sub-cluster 3 in the 5 sub-clusters analysis. These results highlight the 

intricate relationship between LumA, LumB and Normal subtypes on one hand and that of 

Basal like and Her2 subtypes on the other, and clustering cannot separate the 5 subtypes 

uniquely.  However, it can be said a patient falling into sub-cluster 2 could be identified as 

LumA with certainty.  Similarly, a patient falling into sub-cluster 5 would highly likely be of 

Basal like subtype.  Sub-cluster 6 would identify a patient to be more likely to be of Her2 but 

there is 25% chance for it to be of Basal-like. Overall, six clusters seems to offer an advantage 

over 5 clusters.  

Table ‎4.7: The distribution comparison between the original five subtypes and the five sub-clusters 

obtained from the hierarchical-ward method in the current study.  

Hierarchical Current data - 5 sub-clusters 

 
Sub-Cluster 

1 
Sub-Cluster 

2 
Sub-Cluster  

3 
Sub-Cluster 

4 
Sub-Cluster  

5 

Total 

No of 

patients 

No of patients 40 54 67 57 31 249 

 
LumB (78%) LumA (72%) LumA (67%) Basal (98%) Her2 (74%) 

 

 
LumA (15%) LumB (26%) Normal (27%) Her2 (2%) Basal (26%) 

 

 
Her2 (5%) Normal (2%) Her2 (4%) 

   

 
Basal (3%) 

 
LumB (1%) 
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Table ‎4.8: The distribution comparison between the original five subtypes and the six sub-clusters 

obtained from the hierarchical-ward method in the current study. 

Hierarchical Current data - 6 sub-clusters 
 

 
Sub-Cluster 

1 
Sub-Cluster 

2 
Sub-Cluster 

3 
Sub-Cluster 

4 
Sub-Cluster 

5 
Sub-Cluster 

6 

No of patients 44 23 40 54 57 31 

 
LumA (50%) 

LumA 

(100%) 
LumB (78%) LumA (72%) Basal (98%) Her2 (74%) 

 
Normal 

(41%)  
LumA (15%) LumB (26%) Her2 (2%) Basal (26) 

 
Her2 (7%) 

 
Her2 (5%) Normal (2%) 

  

 
LumB (2%) 

 
Basal (3%) 

   
 

 

4.3 Analysis with Self-Organizing Maps (SOM): 

 

In the SOM analysis, patients are clustered to assess their separability into groups. A patient is 

represented by an input vector that contains expression ratios for the 306 genes.  A 25 neuron 

map was trained in this study in batch mode. Figure 10 shows a partial pictorial view of SOM 

with only 2 inputs (2 genes) with green dots indicating the location of inputs and the blue 

indicating the corresponding components of the weight vectors. Results shown are after 200 

iterations of the batch algorithm and indicate that the map is reasonably distributed through 

the input space. The SOM has spread across the input space as indicated by the map neurons 

connected to their neighbours with red lines. 

 



50 

 

 

Figure 10: SOM plot of the inputs (green dots) and weights (blue) showing how the SOM spans the input 

space. Neighbour neurons are connected by red lines. 

 

 

Figure 11 shows the U-matrix representation of the Self-Organizing Map that visualizes the 

SOM Neighbour Distances between the neurons (clusters) of the 249 samples. The blue 

hexagons represent the neurons and the red lines connect neighbouring neurons. The distance 

between the adjacent clusters is calculated and presented with different colours between the 

adjacent nodes. A darker colour between the clusters corresponds to a larger distance and thus 

a larger gap between the weights in the input space. A lighter colour between the neurons 

signifies that the weights vectors are closer to each other in the input space. Lighter areas can 

be thought of as clusters and dark areas as cluster separators. This can be a helpful 

presentation when one tries to find clusters in the input data without having any a priori 

information about the clusters. 

 

According to Figure 11, there can be potentially 2 to 3 solid clusters that can be further 

broken down to smaller clusters which could possibly represent subtypes. Figure 12 shows 
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how many of the training data are associated with each of the neurons (cluster centres). The 

maximum number of hits associated with any neuron is 35. Thus, there are 35 inputs or 

patients in that cluster. 

 

 

Figure 11: SOM layer showing neurons as blue and their direct neighbour relations with red lines. The 

neighbour patches (potential clusters) are coloured from black to yellow to show how close 

each neuron's weight is to that of its neighbours. 

 

  

Figure 12: SOM layer with each neuron showing the number of inputs (patients) that it classifies. The 

relative number of patients for each neuron is shown via the size of a coloured patch. 
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Figure 13: SOM layer with each neuron showing the number of inputs (patients) that it classifies from 

each subtype (LumB, LumA, Normal Like, Basal Like and Her2).  

LumB:      LumA: 

       
 

 

Normal:     Basal: 

       
 

Her2: 
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When the SOM representation is broken down to show results for samples from a particular 

subtype – LumA, LumB, Normal, Basal, and Her2 – we can see (Figure 13) that there are 

discrete patterns observable, suggesting that the subtypes are, for the most part, separate 

entities. LumB mostly occupies the lower right quadrant; LumA covers most of the right-hand 

side of the map; Normal accounts for the upper central region; Basal on the left, mostly the 

upper-left corner; and Her2 represents mostly the lower left-hand-side of the map. However, 

there is some degree of overlap; for example, the bottom-right neuron has a total of nineteen 

patients, eleven of them coming from LumA, seven from LumB, and one from Her2. Also, 

the bottom-left neuron has a total of twenty-five patients; these are shared between Basal and 

Her2, with the latter having the majority. There are also some less pronounced overlaps. 

Because this method only partially confirms the existence of the five subtypes, with some 

overlap being apparent between them, we need to find a method of clearly and unambiguously 

identifying and distinguishing between the subtypes.  

 

Figure 14: Ward likelihood index for various numbers of clusters of SOM map neurons. 
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Figure 14 demonstrates that putting the data (trained neuron weights) obtained from the SOM 

method (on selecting the suitable set of criteria of SOM method (i.e. patch learning tools) to 

obtain reproducible result) through the Ward statistical analysis can help in identifying the 

most likely number of clusters. The figure shows that 7 clusters are present with high 

probability. This means that there are two other clusters that have not been identified by the 

original researchers using the same set of data. The figure also shows the possibility of the 

presence of two and with much less probability of ten clusters. 

 

To test the significance of these observations in relation to the original authors’ work, the 

clusters identified by the current analysis were analysed further to find the distribution of the 

patients between these clusters, and compare the calculated distributions with that of the 

original authors’. The analysis identified the clusters and assigned the appropriate patients in 

each cluster. The identified patients were matched with those identified by the original 

authors.   

 

Table  4.9 shows the distribution of the patients between two clusters as identified in the 

present study and further highlighted in Figure 15.  By matching the patient numbers with 

those numbers in the clusters that were identified by the original authors, we found that 

LumB, LumA and Normal Like subtypes belong to cluster1 in this work, while the Basal Like 

and Her2 belong to cluster2. These results are identical to those obtained from the 

Hierarchical-Ward analysis (Table  4.1). 
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 Table ‎4.9: Two clusters obtained from the SOM-Ward method including the number of patients in each 

cluster. 

Current Study 

 
Cluster 1 Cluster 2 Total 

No of Patients 161 88 249 

Subtypes LumB, LumA & Normal Basal & Her2  

 

The same calculation procedure was followed to identify the distribution of patients between 

the subtypes. Table  4.10 shows the number of patients and their sequence in each subtype 

according to the original authors’ data. When those patients numbers were matched with the 

number sequence identified by the current analysis (Appendix D) it was found that the 

sequence of the patients belonging to LumB, LumA and the Normal Like subtypes 

(representing cluster 1) matched (100%) the sequence reported in the original research.  

On the other hand, the sequence of the patients belonging to Basal Like and the Her2 subtypes 

(representing cluster 2) matched the sequence reported in the original research by 98% and 

83%, respectively. The remaining 2% and 17% of patient numbers were located in cluster 1. 

These results are identical to the findings from Hierarchical-Ward analysis (Table  4.2).  

 

Table ‎4.10: Comparison of the two clusters obtained from the current SOM-Ward with the original 

subtypes  

 
Original Author's data 

 

 
LumB LumA Normal Basal Her2 

 
No of patients 46 90 19 65 29 249 

Sequence order of 

patient number 
1 to 46 47 to 136 137 to 155 156 to 220 221 to 249 

 

SOM to the original % 100% 100% 100% 98% 83% 
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Figure 15: A dendrogram specifying the two clusters of patients (at cut off point 3000) according to their 

correlation strength 

 

 

Based on a cut off point 1050 in Figure 16, five clusters were identified for the purpose of 

comparison with the original study because the original research work reported the presence 

of 5 clusters only. These clusters were matched with the original 5 subtypes to examine the 

accuracy of the method used here.  

 

It was found that 67% of the patients of LumB were present in sub-cluster 1, 30% in sub-

cluster 2 and 2% in other sub-clusters of this work (Table  4.11, Table  4.12 and Appendix D). 

Similarly, 50% of the LumA was in sub-cluster 3, 43% in sub-cluster 2 and 7% in sub-cluster 

1 of the present work. Likewise, 95% of the Normal Like subtype was present in sub-cluster 3 

and 5% in sub-cluster 2 and none in the other subtypes. Sub-cluster 4 contained 86%, sub-

cluster 5 contained 12% and the other sub-clusters contained 2% of the Basal Like subtype, 

respectively. Finally, 79%, 10% and 10% of the Her2 subtype were in sub-cluster 5, sub-

cluster 3 and other sub-clusters, respectively.  
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This clearly indicates that the present results have similarities, to varying degrees, to those of 

the original researchers. However, the results also indicate that there is a clear overlap 

between the subtypes, especially between LumB, LumA and Normal Like subtypes. We 

noticed in Table  4.12 that patients from sub-cluster 1, sub-cluster 2 and sub-cluster 3 

(belonging to cluster 1 in Table  4.9) contain all LumB, LumA and Normal Like subtypes. 

Sub-cluster 4 and sub-cluster 5 represent majority of Basal Like and Her2, with sub-cluster 1 

and sub-cluster 3 sharing the rest. This confirms the earlier finding as explained in Table  4.9 

and Table  4.10 regarding the overlapping of patients between the sub-clusters. Such 

overlapping would in turn lower the confidence in using the genes as exclusive markers for 

the subtypes. 

 

Table ‎4.11: Current data of SOM five sub-clusters including the number of patients in each sub-cluster . 

SOM analysis data 

 
Sub-cluster  

1 
Sub-cluster  

2 
Sub-cluster  

3 
Sub-cluster  

4 
Sub-cluster  

5 
Total No of 

patients 

No of patients 40 54 67 57 31 249 
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Table ‎4.12: compression of the five clusters from SOM with the original dataset 5 subtypes (Hu et al. 

2006). 

Original authors’ data 

 
LumB LumA Normal Basal Her2 

Total No of 

Clusters 

No of Samples 46 90 19 65 29 249 

from 1 to 46 47 to 136 137 to 155 156 to 220 221 to 249 
 

S
O

M
 t

o
 t

h
e 

o
ri

g
in

al
 %

 

Clu1 Clu3 Clu3 Clu4 Clu5 
 

67% 50% 95% 86% 79% 
 

Clu2 Clu2 Clu2 Clu5 Clu3 
 

30% 43% 5% 12% 10% 
 

Clu3 Clu1 
 

Clu1 Clu1 
 

2% 7% 
 

2% 10% 
 

 

 

 

       Figure 16: A dendrogram specifying the five clusters of patients (at cut off point 1050) according to 

their correlation strength 

 

 

The overlapping in the five SOM-Ward sub-clusters raised the question of whether there are 

more unidentified sub-clusters. Our SOM-Ward analysis showed the possibility of the 

presence of seven sub-clusters (Figure 17). Examining these clusters (Table 4.14, Figure 17 

and Appendix D) showed that 67%, 30% and 2% of the LumB subtype were in sub-cluster 5, 

sub-cluster 6 and sub-cluster 3, respectively. Further, 43%, 24%, 26% and 7% of the LumA 
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subtype were in sub-cluster 6, sub-cluster 3, sub-cluster 4 and sub-cluster 5, respectively. 

Ninety five percent of the Normal Like subtype was in sub-cluster 3 and the remaining 5% 

was in sub-cluster 6. In addition, 55%, 31%, 12% and 2% of the Basal Like subtype were 

found sub-cluster 1, sub-cluster 2, sub-cluster 7 and sub-cluster 5 in that order. Finally, 79%, 

10%, 7% and 3% of the Her2 subtype were respectively in sub-cluster 7, sub-cluster 3, sub-

cluster 5 and sub-cluster 2. 

 

The seven sub-clusters analysis clearly indicates that there is a significant overlapping 

between the original five subtypes, plus the presence of two extra clusters that have not been 

identified before.  

 

Studying the overlap characteristics (between the original subtypes) showed that sub-cluster 3 

contained patients from all subtypes except Basal Like. On the other hand, sub-cluster 5 did 

not contain the Normal Like subtype. Furthermore, it was noticed that sub-cluster 3 and sub-

cluster 5 represented more of LumB, LumA and Normal Like subtypes than Basal Like and 

Her2 subtypes. 

 

It was found that although in the 2 cluster format (Table 4.9) the Basal Like and the Her2 

subtypes are represented by one cluster, in the 7 sub-cluster format, there is some overlap with 

LumB, LumA and Normal Like subtypes. However the overlapping involving sub-cluster 2 

and sub-cluster 7 was unique as they only shared Basal Like and the Her2 subtypes and did 

not contain LumB, LumA and Normal Like subtypes. By contrast, sub-cluster 6 was unique to 

the group containing LumB, LumA and the Normal Like subtypes. 
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The most significant observation was that sub-cluster 1 contained Basal Like subtype only, 

and sub-cluster 4 contained LumA subtype only. 

 Table ‎4.13: SOM seven clusters including the number of patients in each cluster. 

 
Sub-

cluster 1 
Sub- 

cluster 2 
Sub- 

cluster 3 
Sub- 

cluster 4 
Sub- 

cluster 5 
Sub- 

cluster 6 
Sub- 

cluster 7 

No of Patients 36 21 44 23 40 54 31 

 

Table ‎4.14: Comparison of the seven clusters from SOM with the original 5 subtypes (Hu et al. 2006). 

 
Author's data 

 
LumB LumA Normal Basal Her2 

No of Patients 46 90 19 65 29 

Sequence order of 

patient number 
1 to 46 47 to 136 137 to 155 156 to 220 221 to 249 

S
O

M
 a

s 
%

 o
f 

th
e 

o
ri

g
in

al
 

Clus 5 Clus 6 Clus 3 Clus 1 Clus 7 

67% 43% 95% 55% 79% 

Clus 6 Clus 3 Clus 6 Clus 2 Clus 3 

30% 24% 5% 31% 10% 

Clus 3 Clus 4 
 

Clus 7 Clus 5 

2% 26% 
 

12% 7% 

 
Clus 5 

 
Clus 5 Clus 2 

 
7% 

 
2% 3% 

 

 

 

 

 

 

 

 

Figure 17: A dendrogram specifying the seven clusters of patients (at cut off point 845) according to their 

correlation strength. 
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The turning now to the results of clusters from the perspective of subtypes, Table 4.15 

indicates that repeating the analysis of the same data used by the original authors with SOM-

Ward method produced identical (100%) results to those obtained by the Hierarchical-Ward 

method for the case of five sub-clusters.  This provides validity to our analysis methods.  

 

Introducing Ward analysis to our SOM analysis produced the likelihood of the presence of 

two clusters that divided into seven sub-clusters (Figure 14). Cluster 1 (Table  4.2) was 

divided into four sub-clusters (3, 4, 5 and 6, Table  4.16). Sub-clusters 5 and 6 in this analysis 

contained the same subtypes and percentages that were present in sub-clusters 1 and 2 of the 5 

sub-clusters analysis (Table 4.15). Sub-cluster 3 contained the same subtypes as those 

contained in sub-cluster 3 of the 5 sub-clusters analysis, but with different percentages (Table 

4.15). Unlike other sub-clusters, sub-cluster 4 contained LumA subtype only. This indicates 

that sub-cluster 4 could identify LumA patients with certainty.  

 

The analysis indicates that cluster 2 (Table  4.2) was divided into three sub-clusters (1, 2 and 7 

in Table  4.16). Sub-cluster 7 contained the same subtypes that were present in sub-clusters 5 

(the 5 sub-clusters analysis, Table 4.15) and with the exact percentages. Sub-cluster 1 in the 7 

sub-clusters analysis contained the Basal Like subtype only. This indicates that sub-cluster 1 

could identify Basal like subtype with certainty. Furthermore, sub-cluster 2 would identify 

Basal-like subtype with high likelihood as 95% of it is this subtype. 

  



62 

 

 

Table ‎4.15: The distribution comparison between the original five subtypes and the five sub-clusters 

obtained from the SOM-Ward method in the current study. 

SOM Current study - 5 sub-clusters 

 
Sub-cluster 1 Sub-cluster 2 Sub-cluster 3 Sub-cluster 4 Sub-cluster 5 

Total 

No of 

patients 

No of patients 40 54 67 57 31 249 

 
LumB (78%) LumA (72%) LumA (67%) Basal (98%) Her2 (74%) 

 

 
LumA (15%) LumB (26%) 

Normal 

(27%) 
Her2 (2%) Basal (26%) 

 

 
Her2 (5%) Normal (2%) Her2 (4%) 

   

 
Basal (3%) 

 
LumB (1%) 

   
 

Table ‎4.16: The distribution comparison between the original five subtypes and the seven sub-clusters 

obtained from the SOM-Ward method in the current study. 

SOM Current data -7 clusters 

 
Sub-

cluster 1 
Sub-

cluster 2 
Sub-

cluster 3 
Sub-

cluster 4 
Sub-

cluster 5 
Sub-

cluster 6 
Sub-

cluster 7 

Total 

No of 

patients 
No of 

patients 
36 21 44 23 40 54 31 249 

 
Basal 

(100%) 
Basal 

(95%) 
LumA 

(50%) 
LumA 

(100%) 
LumB 

(78%) 
LumA 

(72%) 
Her2 

(74%)  

  
Her2 (5%) 

Normal 

(41%)  
LumA 

(15%) 
LumB 

(26%) 
Basal 

(26%)  

   
Her2 (7%) 

 
Her2 (5%) 

Normal 

(2%)   

   
LumB 

(2%)  
Basal 

(3%)    
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Chapter Five 

 

5 DISCUSSION  

 

In this study new analysis based on two known clustering methods, namely, Hierarchical 

clustering and Self-Organizing Maps (SOM), has been applied. Unlike the work of the 

previous researchers (Sorlie et al. 2001 & 2003; Van't Veer et al. 2002; Sotiriou, et al. 2003; 

Hu et al. 2006; and Build et al. 2009) who used the Hierarchical clustering method only, the 

present study paired two different clustering methods with the Ward method. This is to 

investigate whether more details about the clusters found by Hu et al., (2006) can be obtained. 

Another aim is to ascertain the degree of overlap of subtypes, and to find the most significant 

reliable diagnostic markers for the known subtypes. 

 

Hu et at. (2006), stated that genes under study should be selected on the basis of their 

consistent expression when individual tumours are examined, but that vary in expression 

across different tumours. The pilot work analysis in this study aimed at finding the most 

significant genes in each of the five subtypes reported by Hu et al. (2006) study. The analysis 

identified genes that can be possibly considered as significant markers for the different 

subtypes, and some genes were exclusive to certain subtypes. These exclusive genes have not 

been identified as specific to each subtype previously. These genes are as follows: LumB 

(Hs.79136, Hs.1657, Hs.82961, Hs.396783, Hs.80420 and Hs.425311), LumA (Hs.79136, 

Hs.1657, Hs.82961, Hs.89603, Hs.169946 and Hs.390163), Normal Like (Hs.81665, 

Hs.334562, Hs.77204, Hs.80420, Hs.69771 and Hs.433871), Basal Like (Hs.82961, 

Hs.169946, Hs.437638, Hs.1657, Hs.26770 and Hs.2256) and Her2 (Hs.446352, Hs.86859, 

Hs.1657, Hs.9078, Hs.7913 and Hs.2986). 
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The results of the pilot work encouraged us to repeat the original work of Hu et al. (2006) but 

by introducing the Ward clustering to the Hierarchical clustering methods instead of the 

Hierarchical clustering on its own. The Hierarchical clustering produces a dendrogram that 

consists of many U-shaped lines connecting objects in a hierarchical tree of clusters, but it 

does not provide the optimum partitioning required by the user. Partitioning can be achieved 

by cutting the dendrogram at certain levels (cut off distance) (Samarasinghe 2007). Our 

approach was to use Ward and Hierarchical clustering methods simultaneously to merge 

clusters and to find the optimum cluster structure. As seen in the results, this analysis 

approach showed the presence of two main clusters that in turn are divided into six possible 

sub-clusters.  

These six sub-clusters contained significant percentages of the original patients’ distribution 

pattern which indicate that our analytical method is credible. The rest of the original patients’ 

were distributed among these six sub-clusters. This may explain the overlapping that was 

observed in the pilot analysis. Thus introducing the Ward method to the Hierarchical 

clustering method could help in obtaining more detailed description about the possible 

number of clusters and the distribution of the patients between clusters.  

 

Gene expression analysis using hierarchical clustering has categorized breast cancers into at 

least five main groups or subtypes (McCafferty, Healy et al. 2009). It is evident from the 

findings reported in the literature that integrating different analysis methods may produce 

more detailed outcomes. Huber et al. (2009) concluded that the effectiveness of target-specific 

therapies are still limited, but understanding of the heterogeneous biology of breast cancer can 

give clear direction for future research. 
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The new approach in this study takes into account the above observations and results are in 

agreement with those of Sorlie et al (2001) and Sotiriou, et al. (2003) who identified six 

subtypes, compared with the findings of Sorlie et al. (2003), Hu et al. (2006) and Build et al. 

(2009) who identified five subtypes only. 

 

The self-organizing map (SOM) helps in visualizing and interpreting large high-dimensional 

datasets. The introduction of the Ward method to the SOM in this study was to investigate 

whether the result obtained from the Hierarchical clustering method alone could be verified. 

The results showed high probability of two as well as seven clusters. The two clusters were 

identical to those found by the Hierarchical-Ward clustering method. The inspection of the 

seven sub-clusters showed that a unique overlap existed between the Basal Like and Her2 

subtypes, namely sub-clusters number 7 and 2 which shared these subtypes only (Table 4.14). 

It was also evident that sub-cluster number 1 represented only the Basal Like subtype.  

This study shows that sub-cluster number 6 was unique to LumB, LumA and Normal Like 

subtypes only, and did not represent the other subtypes. A significant outcome is that cluster 

number 4 represented LumA subtype only.  

 

Hu et al. (2006) selected genes that are consistently expressed when individual tumours are 

examined, but that vary in expression across different tumours. The results of the present 

study showed that certain genes that are significantly expressed in one subtype may also be 

significantly expressed in other subtypes too. This means that such genes cannot be 

considered as specific markers as indicated by Hu et al. (2006).  
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Hu et al. (2006) claimed that the basal subtype can be recognized as a distinct group and should 

be considered as a separate disease with respect to treatment and follow up. Our results may 

provide the explanation for why the basal subtype is more distinct. Our five sub-cluster results 

showed that when the Hierarchical-Ward analysis method was used, sub-cluster 4 uniquely 

represent the Basal Like subtype only. This finding was also confirmed by the results of SOM-

Ward analysis method. This may mean that the Basal Like subtype is more distinct than other 

subtypes. 

 

Sorlie et al. (2003) suggested that other subtypes are less clear, and require molecular definition 

refinement before they can be reliably defined and diagnosed. The results of the six sub-cluster 

analysis using the Hierarchical-Ward method in this study showed sub-cluster 2 was unique in 

LumA subtype only. Whilst the seven sub-clusters analysis using SOM-Ward method showed that 

sub-cluster 4 was unique in LumA subtype too. Introducing the Ward clustering method to both 

the Hierarchical and SOM may therefore, provide a means for more distinction between different 

subtypes.  
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Chapter Six 

 

6 CONCLUSIONS   

 

The ability to classify tumours by identifying recurrent gene expression patterns of hundreds 

or thousands of genes could enable identification of combinations of marker genes that may 

not be recognized by standard methods and help to get a deeper understanding of the function 

of gene interplay. Therefore, gene profiles that relate to prognosis may help define new 

therapeutic targets. The Hierarchical clustering method has been used as a standard tool to 

identify different clusters, but several researchers have indicated that the result obtained by 

this method may need refining to get a more clear result.  

 

This study introduced a new approach by combining the Ward method with the Hierarchical 

and SOM clustering methods. This approach produced more refined and detailed results about 

the properties of different clusters. For example, the same genes that are highly expressed in 

one subtype can be the most influential in one or more other subtypes.  Thus, the genes with 

more discriminating ability may not be the ones on the top of the list (ranked according to 

absolute expression ratio levels) but the ones found somewhere lower on the list.  This study 

found the few top most significant genes in each subtype (Table  4.1).   

 

This study showed that both the Hierarchical-Ward and SOM-Ward analysis produce two 

main clusters; one containing LumB, LumA and the Normal Like subtypes, and the other 

contain the Basal Like and the Her2 subtypes. These finding are in agreement with previous 

studies in this field of research. Our results showed that the two main clusters can be divided 

in to 6 sub-clusters (Hierarchical-Ward method) as has been reported in the literature, but the 
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present study with SOM-Ward method illustrated that 7 sub-clusters can also be obtained. 

Hierarchical-Ward and SOM-Ward results complemented each other very strongly that 

provided validity to the outcomes from the analyses conducted in this study.  Some of the 

identified sub-clusters in this study showed significant similarities to the findings of Hu et al. 

(2006) in terms of the distribution of samples (patients) among different sub-clusters. Both 

methods used in this study demonstrated that some sub-clusters contain one subtype only both 

found one cluster for LumA and SOM-Ward found distinct clusters for LumA and Basal like. 

Although these clusters containing a single subtype did not contain all the patients belonging 

to that subtype, it is worth investigating if these unique clusters define the core behaviour of 

these subtypes. 

 

The result of this study also showed that SOM-Ward method is a better tool for refining the 

results found from more basic cluster analysis methods.  

 

7 RECOMMENDATIONS 

 

We recommend the use of the simultaneous analysis method (Hierarchical-Ward and SOM-

Ward) to obtain more detailed outcomes from gene expression studies. We recommend that 

more experimental work be conducted with SOM for investigating any further refinements 

that can be made to separating the subtypes further.  For example, a larger SOM map size than 

the 25 neurons used in this study may provide more granularity to the separation of patients 

and could provide more clear separation boundaries for the subtypes owing to the ability of 

SOM to create complex nonlinear boundaries. 
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The Fuzzy C Means (FCM) or a related fuzzy clustering method is recommend as an 

alternative clustering approach that is generally considered as a better clustering tool for 

solving multiclass and ambiguous clustering problems than the Hierarchical and SOM 

clustering methods. Its goal is to determine the intrinsic grouping in a set of unlabeled data 

(Li, Lu et al. 2009). This method may provide extra information on the membership of 

patients in all subtypes thereby enabling the profiling of the core response of the subtypes and 

determining the likelihood of patients belonging to a particular subtype.     
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Appendix A 

 

Pilot results illustrating individual breast cancer subtypes. 

 

 

Figure 18: Bar graph illustrating the four most highly expressed genes in LumB vs. the expression of the 

same genes in the other subtypes based on median log ratio. 
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Figure 19: The median expression of the highly expressed gene in LumA (black colour) vs. its expression 

(green colour) in the rest of the examined subtypes. 
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Figure 20: Bar graph illustrating the four most highly expressed genes in LumA vs. the expression of the 

same genes in the other subtypes based on median log ratio. 
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Figure 21: The median expression of the highly expressed gene in Normal (black colour) vs. the same gene 

expression in the rest of the subtypes (green colour). 
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Figure 22: The median expression of the highly expressed gene in Her2 (black colour) vs. the same gene 

expression in the rest of the subtypes (green colour).  
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Figure 23: GGobi software based display of a scatterplot matrix for the 306 genes across the 249 patients 

for the subtypes highlighting only the most highly expressed genes visually and labelling them 

with different colours. 
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Figure 24: GGobi software based display of a time series (sequential) plot for the 306 genes across the 249 

patients in the five subtypes highlighting only the most highly expressed genes visually and 

labelling them with different colours. 

 

(Figure 23and Figure 24) Different format of the same data as in Figure 5 this led to the same 

conclusion with regard to identifying the subtypes. 
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Appendix B 

 

Hierarchical clustering results with several linkage methods. 

 

 

 

Figure 25: A dendrogram using hierarchical single linkage method representing the distribution of 

patients according to their correlation strength to clusters.  

 

 

Figure 26: A dendrogram using hierarchical average method representing the distribution of patients 

according to their correlation strength to clusters. 
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Figure 27: A dendrogram using hierarchical centroid method representing the distribution of patients 

according to their correlation strength to clusters. 

 

 

Figure 28: A dendrogram using hierarchical complete linkage method representing the distribution of 

patients according to their correlation strength to clusters. 
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Figure 29: A dendrogram using hierarchical median method representing the distribution of patients 

according to their correlation strength to clusters. 

 

 
 

Figure 30: A dendrogram using hierarchical Ward method representing the distribution of patients 

according to their correlation strength to clusters. 
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Figure 31: A dendrogram using hierarchical weighted method representing the distribution of patients 

according to their correlation strength to clusters. 
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Appendix C 

 

Patient labels in clusters from Hierarchical-Ward clustering. 

 

 

Hierarchical Two Clusters 

 
Cluster 1 Cluster 2 

1 157 

2 158 

3 159 

4 160 

5 161 

6 162 

7 163 

8 164 

9 165 

10 166 

11 167 

12 168 

13 169 

14 170 

15 171 

16 172 

17 173 

18 174 

19 175 

20 176 

21 177 

22 178 

23 179 

24 180 

25 181 

26 182 

27 183 

28 184 

29 185 

30 186 

31 187 

32 188 

33 189 

34 190 

35 191 

36 192 

37 193 

38 194 

39 195 

40 196 

41 197 

42 198 

43 199 

44 200 

45 201 

46 202 

47 203 

48 204 

49 205 

50 206 

51 207 

52 208 

53 209 

54 210 

55 211 

56 212 

57 213 

58 214 

59 215 

 

Hierarchical Five Clusters 

 
Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 

1 6 46 157 158 

2 18 47 159 213 

3 19 48 160 214 

4 20 49 161 215 

5 23 50 162 216 

7 28 51 163 217 

8 29 52 164 218 

9 30 55 165 219 

10 31 56 166 221 

11 32 65 167 222 

12 33 66 168 223 

14 35 68 170 225 

15 39 69 171 226 

16 54 88 172 227 

17 57 89 173 228 

21 58 90 174 229 

22 59 91 175 230 

24 60 92 176 231 

25 61 93 177 232 

26 62 96 178 233 

27 63 97 179 235 

36 64 98 180 236 

37 70 99 181 237 

38 71 100 182 238 

40 72 101 183 239 

41 76 108 184 240 

42 77 110 185 241 

43 78 111 186 243 

44 79 115 187 244 

45 80 116 188 245 

53 81 117 189 
 

73 82 118 190 
 

74 83 119 191 
 

75 84 120 192 
 

112 85 121 193 
 

128 86 122 194 
 

156 87 123 195 
 

242 94 124 196 
 

249 95 125 197 
 

 
102 127 198 

 

 
103 129 199 

 

 
104 131 200 

 

 
105 132 201 

 

 
106 133 202 

 

 
107 135 203 

 

 
109 137 204 

 

 
113 138 205 

 

 
114 139 206 

 

 
126 140 207 

 

 
130 141 208 

 

 
134 142 209 

 

 
136 143 210 

 

 
155 144 211 

 

  
145 212 

 

  
146 220 

 

  
147 234 

 

  
148 

  

  
149 

  

  
150 
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60 216 
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62 218 

63 219 

64 220 

65 221 

66 222 

67 223 

68 224 

69 225 

70 226 

71 227 

72 228 

73 229 

74 230 

75 231 

76 232 

77 233 

78 234 

79 235 

80 236 

81 237 

82 238 

83 239 

84 240 

85 241 

86 243 

87 244 

88 245 
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Hierarchical Six Clusters 

 
Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 Cluster 6 

46 52 1 6 157 158 

47 55 2 18 159 213 

48 56 3 19 160 214 

49 88 4 20 161 215 

50 89 5 23 162 216 

51 90 7 28 163 217 

65 91 8 29 164 218 

66 92 9 30 165 219 

67 93 10 31 166 221 

68 96 11 32 167 222 

69 97 12 33 168 223 

110 98 13 34 169 224 

111 99 14 35 170 225 

115 100 15 39 171 226 

116 101 16 54 172 227 

117 108 17 57 173 228 

118 121 21 58 174 229 

119 122 22 59 175 230 

120 123 24 60 176 231 

127 124 25 61 177 232 

129 125 26 62 178 233 

133 131 27 63 179 235 

135 132 36 64 180 236 
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Appendix D 

 

Patient labels in clusters from SOM-Ward clustering. 

 

 

SOM Two Clusters 

 
Cluster 1 Cluster 2 

1 157 

2 158 

3 159 

4 160 

5 161 

6 162 

7 163 

8 164 
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SOM Five Clusters 

 
Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 

1 6 46 157 158 

2 18 47 159 213 

3 19 48 160 214 

4 20 49 161 215 

5 23 50 162 216 

7 28 51 163 217 

8 29 52 164 218 

9 30 55 165 219 

10 31 56 166 221 

11 32 65 167 222 

12 33 66 168 223 

14 35 68 170 225 

15 39 69 171 226 

16 54 88 172 227 

17 57 89 173 228 

21 58 90 174 229 

22 59 91 175 230 

24 60 92 176 231 

25 61 93 177 232 

26 62 96 178 233 

27 63 97 179 235 

36 64 98 180 236 

37 70 99 181 237 

38 71 100 182 238 

40 72 101 183 239 

41 76 108 184 240 

42 77 110 185 241 

43 78 111 186 243 

44 79 115 187 244 

45 80 116 188 245 

53 81 117 189 
 

73 82 118 190 
 

74 83 119 191 
 

75 84 120 192 
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SOM Seven Clusters 

 
Cluster 

1 

Cluster 

2 

Cluster 

3 

Cluster 

4 

Cluster 

5 

Cluster 

6 

Cluster 

7 

157 159 46 52 1 6 158 

167 160 47 55 2 18 213 

168 161 48 56 3 19 214 

169 162 49 88 4 20 215 

170 163 50 89 5 23 216 

172 164 51 90 7 28 217 

173 165 65 91 8 29 218 

181 166 66 92 9 30 219 

182 171 67 93 10 31 221 

183 174 68 96 11 32 222 

184 175 69 97 12 33 223 

185 176 110 98 13 34 224 

186 177 111 99 14 35 225 

187 178 115 100 15 39 226 

188 179 116 101 16 54 227 

189 180 117 108 17 57 228 

190 204 118 121 21 58 229 
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191 205 119 122 22 59 230 

192 211 120 123 24 60 231 

193 212 127 124 25 61 232 

194 234 129 125 26 62 233 
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