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Abstract for a thesis submitted in partial fulfilment of the requirements for the Degree

of Doctor of Philosophy.

Simulating the spread of Hieracium lepidulum in heterogeneous landscapes

by

Steven R. Wangen

The invasion of non-indigenous species represents a severe threat to the health of native

communities world-wide. In order for us to be e↵ective and e�cient at mitigating the

economic and ecological impacts of these invasions, it is critical that we improve our

understanding of how specific traits of the invader interact with characteristics of their

new environment. Understanding these dynamics can help to improve the e�cacy and

economy with which we are able to apply control e↵orts. At the same time, we can examine

if there are predictable patterns of spread which are produced from those interactions, and

generalise those patterns to other invasions. In order to address these aspects of invasion,

I developed a simulation model utilising a highly detailed and expansive data set which

reflects the demography and dispersal of one particular species, Hieracium lepidulum,

as it invades a mountainous area on the South Island of New Zealand. The scope and

fidelity of this dataset is such that it permits me to develop models of the demography and

dispersal of the species reflecting habitat-specific variation within the invaded area. These

models are then combined using a customised simulation software to create a spatially

and temporally explicit simulation of H. lepidulum spread. These simulations are applied

across a range of hypothetical landscapes which are constructed to represent varying

degrees of abstraction of the actual landscape; the simulations are applied at di↵erent

scales, and the landscapes represent mixtures of the component habitats at varying degrees

of complexity and spatial configurations. The outcomes of these simulations are then used

to address a number of general questions intended to identify if there are some simplifying

principles that can be used when evaluating invasive spread, and to examine how these

results compare to currently postulated theories regarding the spread of invasions, and

how their progression is influenced by context of the landscape.

Keywords: dispersal, demography, invasive spread, Hieracium lepidulum, simulation,

matrix population model, Bayesian hierarchical modelling
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Chapter 1

Introduction

1.1 Introduction

Non-indigenous invasive species constitute one of the largest threats to the health of

ecosystems worldwide. Examples of the competitive dominance of these invaders over

native species has been well documented, and threatens the overall health and stability

of native communities (Wilcove et al. 1998; Gurevitch & Padilla 2004; Pimentel et al.

2005; Schwartz et al. 2006; Hejda et al. 2009; Vilà et al. 2011; Pyšek et al. 2012). While

the definition of what constitutes an ‘invasive’ is debated, for the purposes of this work

I will consider an invasive species to be any non-native pest organism which threatens

the health, productivity, or diversity of a native community. The addition of these new

species to the local pool can superficially have a positive e↵ect on biodiversity, however the

shift in dominance and the resulting increase in competition can threaten the existence

of some local native species, pushing them closer to eventual extirpation or extinction

(Ricciardi 2004) and promoting an increase in biological homogenisation (McKinney &

Lockwood 1999; Collins & Storfer 2003; Olden & Rooney 2006). Additionally, the change

in community structure brought about by invasion may incur indirect e↵ects, such as

the modification of ecosystem functioning. Examples include the lowering of water tables

(Zavaleta 2000), alteration of fire regimes (Anable et al. 1992; Brooks et al. 2004), and

impacting soil properties (Vitousek & Walker 1989; DiTomaso 2000; Liao et al. 2008).

The economic burden of mitigating these impacts is impressive; one study estimates

that the economic cost of invasive species in the United States exceeds $120 billion USD

annually (Pimentel et al. 2005). The most recent estimates for Great Britain suggest that

these costs exceed $2.7 billion USD (Williams et al. 2010), and more than $1.4 billion

USD in New Zealand (Ministry of Forestry and Agriculture 2010). The economic burden

wrought by invasions are not only due to the direct costs of controlling the invasions,

but are further compounded by associated decreases in productivity of desired species

(Pimentel et al. 2005). While the most cost-e↵ective solution to mitigating the economic

e↵ects of non-indigenous invasive species is often preventative action (Leung et al. 2002),
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these measures can be di�cult to justify politically and challenging to fund. Currently,

individual species invariably slip through the established safeguards, and a fraction of

those proceed to incur serious impacts on the economy, ecological systems, and even

human health (Lodge et al. 2006).

While the long-term nature of these impacts and our role in altering invasion processes is

currently debated (Collins et al. 2002; Brown & Sax 2004; Cassey et al. 2005; Stohlgren et

al. 2008), the majority of management directives seek to actively pursue their removal and

the minimisation of impacts whenever possible. As such, one of the primary benefits that

research into invasions can provide is to increase the accuracy with which we can predict

invasive species movement. This helps in two ways; first, we can increase the economy

of control e↵orts. With the limited budgets inherent to natural resource management,

increases in e�ciency e↵ectively permit the expansion of e↵orts to address a greater range

of threats, instead of narrowing the focus to only a few. Additionally, the increased econ-

omy of control e↵orts may free up some resources for enacting preventative measures. The

second benefit of increasing the predictive accuracy is the potential to reduce potentially

harmful non-target impacts that may materialise as an unintended consequence of con-

trol e↵orts; i.e. unintentionally opening up growing space for herbicide-resistent invaders

through the use of herbicides, or ine↵ectively applying mechanical control e↵orts that

unintentionally promote dominance by the invasion (Smith et al. 2006). More judicious

and e↵ective application of management may be possible by improving our understanding

of the processes involved. Together these benefits can go a long way towards furthering

the health of native systems.

An example of a potentially detrimental invasion is the expansion of Hieracium lepidulum

(Stenstroem) Omang (Asteraceae), a European native, into mountain stream catchments

in the Southern Alps of New Zealand. H. lepidulum is an aggressive invader which has been

associated with decline in native communities and pasture productivity in New Zealand

(Rose et al. 1995; Radford et al. 2007, cf. Me�n et al. 2010). Other Hieracium species

are also invasive in New Zealand; in particular, Hieracium pilosella, which tends to be

more abundant in both protected areas (Jesson et al. 2000) and particularly in locations

utilized for pasture (Duncan et al. 1997; Rose & Frampton 1999)where it can decrease the

productivity of pasture lands (Bosch et al. 1996). H. pilosella relies on wind dispersal for

long distance dispersal, but local spread is clonal via rhizomes (McIntosh et al. 1995). In

contrast, H. lepidulum spread is wholly reliant on seed dispersal, resulting in spread and

demographic dynamics which are uniquely di↵erent to those of H. pilosella.

While the relative isolation of New Zealand may make is less likely to be exposed to

invaders, the high level of endemism present has been linked to increased invasibility

(Borges et al. 2006; Daehler et al. 2006). Recent surveys identify H. lepidulum as becoming

established to varying degrees in the di↵erent habitats that make up these catchments

(Miller 2006). In an e↵ort to obtain a clear picture on the dynamics and impacts of this

invasion, a series of seed sowing trials were initiated, in which H. lepidulum was sown
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at a range of densities across the spectrum of habitats found in these catchments and

monitored over a period of years. The results of these trials have been used to examine

the spatial patterning (Miller 2006) and the impacts (Me�n 2010) of the invasion.

This dissertation extends the previous work of Miller (2006), who initiated the seed sow-

ing trials in order to investigate the invasion of H. lepidulum into stream catchments

of the Craigieburn Range in Canterbury, New Zealand. The results of those sowing

trials revealed that the germinability of H. lepidulum is highly dependent on the vegeta-

tive context, defined using six di↵erent habitat classifications. These germinability trials

suggested that the forest habitat (which is situated between the higher elevation alpine

habitats and the anthropomorphic landscape below) was relatively unsuitable for H. lep-

idulum, and its position in the landscape could potentially act as a barrier, restricting the

invasion from reaching the higher elevation alpine habitats. These trials also indicated

a high level of germination in the riparian forest creek corridors. This was particularly

important because these forest creek corridors form a contiguous link through the for-

est habitat, connecting the higher elevation alpine areas to the anthropogenic landscape

below. Because of their invasibility and spatial juxtapositioning, these corridors could

potentially facilitate the invasion of H. lepidulum into the higher elevation alpine habitats

by allowing it to bypass the barrier posed by the forest habitats.

The previous work initially set out to investigate the validity of this theorised spread dy-

namic by developing a demographic model describing the entire lifecycle of H. lepidulum.

Unfortunately, the development of H. lepidulum in these sowing trials was much slower

than initially anticipated; so much so that none of the recruits became reproductive dur-

ing the timespan of the original analyses. Because of this delay, the original analysis was

limited to focusing on the initial recruitment, and was therefore not able to address the

longer-term sustainability of the invasion. However, following the initial investigation, the

sowing plots continued to be revisited and reassessed annually over the next few years.

This additional observational period expanded the original data source to reflect a more

complete picture of the lifecycle of H. lepidulum.

In this thesis I will use this expanded source of demographic data coupled with additional

datasources to develop a spatial spread model which incorporates detailed demographic

and dispersal components. These models are implemented in a spatial context using a

simulation platform which is built around a geographic information system. This approach

allows me to simulate the growth and spread of the population, which in turn provides an

opportunity to investigate a number of questions which are both specific to this invasion

and address invasive processes in general. My primary lines of investigation regarding the

invasion are as follows:

1. does the inclusion of spatial interactions alter demographic dynamics within the

population?
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2. How does spatial heterogeneity in landscape structure influence demographic per-

formance?

3. How does spatial heterogeneity in landscape structure influence invasive spread?

The focus of this thesis lies in exploring the details of the invasive population dynamics,

and the invasion progression across the landscape. Addressing these aspects of the invasion

allow me to evaluate which locations and community assemblages are at highest risk

of invasion, and how the spatial configuration of the landscape can influence invasion

success. Understanding these dynamics can provide an improved comprehension of how

control e↵orts can best be applied to achieve the desired outcome. As this is a complex

suite of questions that covers a large spatial and temporal extent, it does not lend itself

well to being tested with traditional field manipulation experiments. Instead, I employ

a simulation-based approach, through which I can project the spread of invasion across

artificially manipulated landscapes that represent the existing landscape at di↵erent levels

of complexity. This simulation is developed by combining detailed dispersal modelling

with comprehensive demographic models to create virtual populations of an invasive plant,

and allows me to recreate landscapes and their relevant features virtually, and use these

representations to simulate spread. This approach provides an economy that allows me

to address a much larger range of situations using real-world data than would otherwise

be possible.

1.2 Biological Context

The bulk of the data utilised in this thesis is obtained from a data collection e↵ort focused

on describing the invasion of H. lepidulum into montane catchments in the Southern

Alps of western Canterbury, New Zealand. This thesis builds largely upon a foundation

established by a previous thesis, which by surveying the catchments found evidence to

suggest that there exist significant di↵erences in the establishment and abundance of

H. lepidulum in di↵erent habitats (Miller 2006). The spatial configuration of the habitats

within the landscape appear to play a central role in determining how the invasion unfolds;

an intact forest of Nothofagus spp., which is thought to be relatively resistant to invasion

by H. lepidulum, currently appears to be acting as a barrier, preventing the invasion

from reaching the alpine habitats which exist at higher elevations. However, stream

corridors which dissect the catchment appear to be quite suitable to invasion, and may be

contributing to the spread of the invasion by acting as a vector which allows the invasion

to bypass the relatively inhospitable forest habitat and reach the higher elevation alpine

habitats. The scale of these habitats is such that homogeneous areas are generally large

enough to contain all but the furthest dispersal events of H. lepidulum, and therefore their

size and configuration are highly influential to spread.
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The previous work has provided much of the foundation necessary to complete this the-

sis. This includes data collection from field surveys, which provide an estimate of current

H. lepidulum abundance in the di↵erent habitats. Additionally, the initiation of a seed

sowing experiment provided replicated recruitment trials at di↵erent densities in each

habitat; the continued monitoring of these experiments has provided demographic data

that has been vital to this thesis. Additional demographic data was obtained from mon-

itoring tagged individuals and seed burial experiments. Seed dispersal trials were also

performed; although they were not originally designed with the intention of simulating

dispersal, they have proved quite an excellent data source for such a purpose.

Collectively, the existing sources of demographic data permit me to develop a set of de-

tailed demographic models which I use to project the population growth of H. lepidulum.

These projections allow me to examine di↵erences in susceptibility to invasion of the dif-

ferent habitats that comprise the study landscape. In addition, I develop a mathematical

kernel that describes the dispersal distances of individual H. lepidulum seeds. These two

elements are employed in a custom-scripted simulation software package that combines

them into a spatial-demographic model, which I use to simulate the growth and spread of

the invasive population. These simulations are then used to investigate invasion dynam-

ics across a range of virtual landscapes in an e↵ort to examine the influence of landscape

heterogeneity on invasion success.

1.3 Modelling Context

The concept of quantifying the spread of organisms has been around for quite some time,

but it has more recently begun to move more to the forefront of ecological research.

Fisher’s (1937) examination of the application of di↵usive processes to the movement of

genes along a singular dimension and Skellam’s (1951) subsequent application of the dif-

fusion solution to a two-dimensional examination of mammalian spread established the

reaction-di↵usion approach as the standard method to describe spread, and are still com-

pared against quantitative models of organism spread that are developed today. These

works provided an elegant solution, where spread was represented as a traveling wave,

expanding at a constant rate outward from the initial introduction point. This singu-

lar expansion rate results from the cumulative e↵ect of the dispersal distances of many

individuals being described using a Gaussian distribution, as in Brownian motion (Skel-

lam 1951; Okubo & Levin 2002). While the applicability of the Gaussian kernel to de-

scribe dispersal was questioned early on (Bateman 1950; Wallace 1966; Taylor 1978), the

reaction-di↵usion model was still widely applied to describe and quantify spread (i.e..

Okubo 1980; Kareiva 1983; Andow et al. 1990). It remained the only approach incorpo-

rating both demography and dispersal until research began to highlight the influence and

frequency of relatively rare long distance dispersal events (Shigesada et al. 1995; Liebhold

et al. 1992), and the application of other kernels began to be explored in concert with
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demography to model spread (Neubert et al. 1995; Kot et al. 1996; Clark 1998; Higgins

& Richardson 1999).

One of the most important advancements from this line of research was the recognition

that these relatively rare long-distance dispersal events have a disproportionate e↵ect on

overall spread rates (Moody & Mack 1988; Neubert & Caswell 2000; Nathan & Muller-

Landau 2000; Nehrbass et al. 2007). As a result, research began to examine the frequency

of these events more closely. Before long, it was observed that leptokurtic dispersal kernels

(those with positive kurtosis) reflect a distribution with a flatter peak and fatter tails

than Gaussian dispersal, which in turn results in a higher probability of extreme or long-

distance dispersal events, and lead to increased rates of spread (Kot et al. 1996). Although

properly parameterising these functions can be challenging (Nathan 2001; Nathan et al.

2003), studies have shown that the frequency of long distance dispersal events are typically

better represented by these leptokurtic distributions, which increases the frequency of

these of those highly influential long-distance events (Wallace 1966; Kot et al. 1996; Clark

1998; Clark et al. 1999).

Concurrently, the relative importance of the interactions between demographic processes

and spread rates was also beginning to gain ground (van den Bosch et al. 1992; Higgins et

al. 1996; Neubert & Caswell 2000). Early applications of di↵usion models incorporated a

simple per-capita reproductive rate (Fisher et al. 1937; Skellam 1951). The spread rates

estimated using this model were relatively insensitive to changes in the demographic

parameter(s), suggesting that the role of demography is relatively inconsequential in de-

termination of spread rates compared to that of the dispersal processes. However, more

recent investigations found that with the application of leptokurtic dispersal kernels, the

relative influence of demography on spread rates increased (Higgins et al. 2003). In ad-

dition, research has revealed the existence of an interdependency between demographic

processes and the spatial distribution of individuals (or groups of individuals), where

dispersal influences demography, and in turn, demography influences dispersal (Hanski

1991; Neubert & Caswell 2000; Jongejans et al. 2008). This recursive feedback between

the two processes highlights how an accurate depiction of demographic processes can be

just as critical as dispersal mechanisms when attempting to achieve accurate and useful

projections of population spread.

As the complexity of the processes involved in modelling invasive spread increases, more

flexible approaches are required to integrate them into predictive models. Not until the

application of integro-di↵erence equations (IDEs) did it become relatively easy to link

di↵erent demographic sub-models with a wide array of dispersal sub-models in a succinct

form (Kot et al. 1996; Hastings et al. 2005). This approach can be very elegant as it is

typically analytically tractable, extremely flexible, and can be used to produce estimates

of spread velocities (Caswell et al. 2003; Neubert & Parker 2004). However, in this dis-

sertation I strive to simulate the movement of an invasion over a heterogeneous landscape

represented as a cellular (raster) structure, using a discrete population model. In such an
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application, IDEs can be di�cult and computationally intensive to apply, limiting their

potential extent and/or resolution (Westerberg & Wennergren 2003). Instead, I utilise a

slightly di↵erent approach which applies population growth via a stage-structured matrix

population model, and implements dispersal of individuals as separate processes. Both

these processes are applied within a geographic information system (GIS) framework.

This approach is similar to an IDE in how the population growth and dispersal elements

are combined to predict spread, but applying the processes independently within the GIS

framework provides an intuitive approach that is easier and less computationally inten-

sive to implement. In addition, this approach makes it relatively simple to implement

stochastic variation in demographic parameters, which can have a significant e↵ect on the

accuracy and usefulness of any predictions derived from the model (Clark 2003; Buckley

et al. 2005; Hooten & Wikle 2008).

1.3.1 Heterogeneous environments

While many of the approaches described above have been used successfully, the level

of detail examined is often inadequate for real world situations. Populations spreading

across a landscape are destined to encounter variations in their environment that mod-

ulate their success. While propagule pressure and climate appear to be primary factors

limiting population movement at large (continental) scales, spatially explicit measures of

habitat suitability and traversability can explain a great deal of variation at smaller scales

(Dobzhansky et al. 1979; With 2002; Chytrỳ et al. 2008). This variation can depend on

a number of characteristics, including nutrient availability (Huenneke et al. 1990; Davis

et al. 2000), community structure (Burke & Grime 1996; Wiser et al. 1998; Bulleri et

al. 2008), disturbance (Tilman 1997; Gross et al. 2005), or interactions between these

characteristics (Diez et al. 2009). In addition, the patterning and magnitude of these

types of heterogeneity can have marked impacts on the movement of a population (With

2002). In this thesis, I attempt quantify the di↵erences in demography and dispersal be-

tween the clearly identifiable vegetation communities that exist within a study landscape

in order to assess their influence on the growth and spread of an invasive population.

By independently parameterising models of both demographic and dispersal processes for

each habitat, I am able to examine how these processes are operationally di↵erent in the

various habitats, and use this information to examine how the spatial arrangement of

habitats a↵ects spread across a landscape.

1.3.2 Use of Bayesian methods

For much of the demographic modelling performed in this thesis, I use a hierarchical

Bayesian approach to quantify parameter values. This approach has a number of advan-

tages to modelling invasive spread. Although there are philosophical arguments regarding
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the tradeo↵s between traditional frequentist hypothesis testing approach and Bayesian ap-

proaches (see Ellison 2004; Clark 2005; Stephens et al. 2007), my decision to use Bayesian

approaches for some analyses was largely pragmatic. First, this approach streamlines

the analysis of available data. These data contains an inherently complex nested struc-

ture, and would otherwise be cumbersome to analyse in a more traditional frequentist

framework (i.e. Diez et al. 2009). Second, the hierarchical model framework allows me to

explicitly define and approximate the uncertainty in the parameter estimates, which helps

to isolate parameter estimates from the asymptotically declining confidence intervals as-

sociated with increasing sample size (Clark 2003). This provides estimates of uncertainty

in the parameters that are more indicative of variation (or uncertainty) in the actual pa-

rameter values, and less a function of the number of observations. Lastly, the specification

of models in the Bayesian hierarchical framework provides a straightforward approach to

model data using distributions other than the normal distribution, permitting additional

flexibility during the model specification.

The use of the approximations of parameter uncertainty (obtained from the hierarchical

Bayesian estimation technique) to define the potential sample space during the simulations

is also beneficial in a number of ways. First, the output from this approach provides

parameter estimates in the form of posterior distributions, which define the distribution

of parameter estimates as a vector of estimated values. These posterior distributions

are easily incorporated into a simulation framework by constructing a method to sample

the resultant vector. Additionally, as covariance between parameters can be specified in

the model structure, utilising the estimates from the vectors which are simultaneously

estimated will inherently account for this covariance without having to explicitly include

it in the simulation. This is implemented by drawing from the same position in those

vectors for each iteration of the simulation. Using this approach, once the parameter

estimates are calculated, the incorporation of parameter variability within the simulation

is relatively robust and straightforward.

1.4 Goals of the Thesis

This thesis is divided into two sections. In the first section, I develop the components nec-

essary to simulate invasive spread, and describe the development of demographic models

(Chapter 2), dispersal models (Chapter 3), and the software necessary to integrate them

(Chapter 4). In the second section, I show how components of the first three chapters

can be combined to simulate the spatial dynamics of invasive spread; first by using a

small-scale simulation to examine the spatially dependent aspects of population growth

(Chapter 5), and then by examining how the spatial configuration of habitats can influ-

ence invasive spread (Chapter 6). I then conclude with a final chapter to summarise the

work and look ahead.
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In Chapter 2 I focus on examining how the demographic success of the invasive popula-

tion is influenced by the surrounding community. This is achieved by developing detailed

demographic models based on the life cycle of the invader while incorporating the appro-

priate mechanisms regulating population growth. These demographic models are then

parameterised using data collected in each of the di↵erent habitats that together make

up the heterogeneous landscape. This approach allows me to then use these models to

make realistic projections of population growth for each of the individual habitats. I can

then use these projections to examine how the potential for invasion success varies across

the landscape. This is a critical component in analysing the e↵ect of landscape hetero-

geneity on invasive spread, as it provides a robust method for quantifying the variation

in population-level success between the di↵erent habitats, and allows me to evaluate how

and to what variation between habitats influences the success of the invasive population.

Chapter 3 focuses on quantifying seed dispersal. The pattern of seed dispersal plays

a large role in determining the rate at which a plant invasion advances. In order to

evaluate seed dispersal, I fit a range of dispersal kernel forms in order to determine which

provide the best fit to the data. I then examine how some of the model forms di↵er, and

the implications of these di↵erences for describing dispersal. In addition, I use habitat-

specific model parameterisations to examine how dispersal varies from one habitat to

another, and what the potential implications are for variation in dispersal between the

di↵erent habitats.

The third step (Chapter 4) focuses on developing a platform where the demographic and

dispersal models from the first two steps can be integrated in a spatial simulation. This

platform builds upon a pre-existing simulation software package that has been developed

to simulate spread. I develop a new module for the existing software that permits demo-

graphic models to be incorporated, expanding the existing dispersal functionality. While

the primary goal of this module is to implement the demographic models specific to this

thesis, a good deal of e↵ort was expended to assure that the functionality of the module

is flexible enough to accommodate a wide range of applications.

Finally, I integrate all three of these components into a series of spatial simulations which

utilise the demographic models and the dispersal models to investigate invasion dynamics,

both at a relatively local 30x30m homogeneous landscape to investigate implications of

model structure (Chapter 5), and in a larger 3x3km landscape to examine the e↵ects

of habitat heterogeneity on spread (Chapter 6). As noted earlier, the inclusion of both

the demographic and dispersal processes in a simulation is an important step, as neither

process operates in isolation of the other. Their interaction is what ultimately determines

the ‘success’ of the invasion, in terms of abundance and spread rate. As implementing the

full demographic and dispersal models is computationally intensive, the simulations run

at smaller scale in Chapter 5 are used to determine the range of population trajectories in

the di↵erent habitats. This information is then used to implement the simulations across

a larger landscape in Chapter 6, which allows me to examine the implications of landscape
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structure over a spatial and temporal range that would not be possible using traditional

field-based observation or manipulation approaches.
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Pyšek, P., Jaroš́ık, V., Hulme, P. E., Pergl, J., Hejda, M., Scha↵ner, U., et al. (2012).

A global assessment of invasive plant impacts on resident species, communities and

ecosystems: the interaction of impact measures, invading species’ traits and environ-

ment. Global Change Biology , 18 (5), 1725–1737.

Radford, I., Dickinson, K., & Lord, J. (2007). Functional and performance comparisons

of invasive Hieracium lepidulum and co-occurring species in New Zealand. Austral

Ecology , 32 (3), 338–354.

Ricciardi, A. (2004). Assessing species invasions as a cause of extinction. Trends in

ecology and evolution, 19 (12), 619.

15



Rose, A., Platt, K., & Frampton, C. (1995). Vegetation change over 25 years in a New

Zealand short-tussock grassland: E↵ects of sheep grazing and exotic invasions. New

Zealand Journal of Ecology , 19 (2), 163–174.

Rose, A. B., & Frampton, C. M. (1999). E↵ects of microsite characteristics on hieracium

seedling establishment in tall-and short-tussock grasslands, marlborough, new zealand.

New Zealand Journal of Botany , 37 (1), 107–118.

Schwartz, M., Thorne, J., & Viers, J. (2006). Biotic homogenization of the California

flora in urban and urbanizing regions. Biological Conservation, 127 (3), 282–291.

Shigesada, N., Kawasaki, K., & Takeda, Y. (1995). Modeling stratified di↵usion in

biological invasions. The American Naturalist , 146 (2), 229–251.

Skellam, J. (1951). Random Dispersal in Theoretical Populations. Biometrika, 38 (1),

196–218.

Smith, R., Maxwell, B., Menalled, F., & Rew, L. (2006). Lessons from agriculture may

improve the management of invasive plants in wildland systems. Frontiers in Ecology

and the Environment , 4 (8), 428–434.

Stephens, P., Buskirk, S., & Rio, C. del. (2007). Inference in ecology and evolution.

Trends in Ecology & Evolution, 22 (4), 192–197.

Stohlgren, T., Barnett, D., Jarnevich, C., Flather, C., & Kartesz, J. (2008). The myth

of plant species saturation. Ecology letters , 11 (4), 313–322.

Taylor, R. (1978). The relationship between density and distance of dispersing insects.

Ecological Entomology , 3 (1), 63–70.

Tilman, D. (1997). Community invasibility, recruitment limitation, and grassland biodi-

versity. Ecology , 78 (1), 81–92.

van den Bosch, F., Hengeveld, R., & Metz, J. (1992). Analysing the velocity of animal

range expansion. Journal of Biogeography , 19 (2), 135–150.
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Chapter 2

Using demographic projections to

infer invasibility in di↵erent habitats

2.1 Introduction

Quantifying the inherent invasibility of a system with regard to a specific organism can be

accomplished by determining how likely an invasive population is to persist in that sys-

tem. Observational data can tell us if a species is currently present or not, but evaluating

the demographic processes that underlie the population-level dynamics can provide addi-

tional information about the persistence and severity of the invasive population. These

processes can be investigated through the development and application of traditional life

cycle models, which are typically developed using observational demographic data. These

models can be used to produce both estimates of the probability of population persistence

and of the population-level growth for a specific species. The analysis of these models can

also reveal more subtle dynamics within the population, such as if it is self-sustaining,

or reliant on supplemental propagule influx from outside sources. Understanding such

dynamics can have a significant impact on options for successful management. Simi-

lar applications of demographic models are used in population viability analysis (PVA),

which assesses the extinction risk posed to populations of threatened species (Boyce 1992;

Burgman et al. 1993; Meekins & McCarthy 2002). Although less common, similar princi-

ples can also be used to predict the susceptibility of di↵erent environments or community

assemblages to invasive species. Once the demographic models are developed, they can

be used to estimate population-level metrics such as growth rates, population size, and

reproduction rates which in turn can be used to project the long-term potential of an

invasive population (Parker 2000; Caswell 2001; Burns 2008).

Historically the simplest demographic models predominately utilised linear models of pop-

ulation growth, which describe growth as a constant rate that can be approximated using

a minimum of observations (Groenendael et al. 1988). This simplification can be useful

to describe short term trajectory of the population in order to identify if the population
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is in immediate danger of going extinct or threatening to become invasive. However, it

has been known for some time that as populations continue to develop, growth rates will

not remain constant, but will typically decline as the population approaches a maximum

size limit (Pearl & Reed 1920; Verhulst 1838). The assumption of a constant growth

rate therefore quickly becomes invalid when projecting population growth. In reality,

population growth is regulated by a number of processes, including density-dependence,

environmental feedback, sex ratios and proportional membership in the di↵erent lifestages

(Caswell 2008). These processes constantly provide feedback to the system, resulting in

a growth rate that is continually changing (Parker 2000; Freckleton et al. 2003; Koons et

al. 2005). Incorporating these types of processes into demographic models allows us to

develop projections of population growth which are more realistic and more informative

than a static linear response.

Just as it is important to incorporate how regulatory processes a↵ect population growth,

it is also important to recognise that many of these processes respond di↵erently to di↵er-

ent environments. At a landscape scale, it is often possible to delineate di↵erent habitats

as a relatively coarse measure of change in environmental conditions or community as-

semblages. Such heterogeneity at the landscape scale has been shown to explain a large

portion of the variation in demographic responses (Horvitz & Schemske 1995; Koop &

Horvitz 2005; Maron & Kau↵man 2006), as well as having a direct influence on the success

and spread of invasive species (With 2002; Hastings et al. 2005; Christen & Matlack 2006;

Melbourne et al. 2007). In this chapter, I develop the framework of a demographic model

for a particular invasive species, and then parameterise the model independently for the

six di↵erent habitat types found in a landscape currently under threat of invasion. I then

use these models to simulate population growth in the di↵erent habitats, and use the

results to identify habitat-specific di↵erences in invasibility. A perturbation analysis is

then performed on the parameterised models to examine the sensitivity of the models to

changes in the di↵erent parameters. Traditionally these analyses focus on incrementally

modifying one parameter at a time to observe the resultant change in population growth

rates (Heppell et al. 2000; Caswell 2008). However, the demographic models explored

here incorporate population regulation via density-dependent e↵ects, which means that

the growth rate is subject to change as a function of the current state of the population.

Because of this, it is more informative to examine the sensitivity of the equilibrium pop-

ulation size to changes in parameter values, instead of the growth rate (Grant & Benton

2000; Caswell et al. 2004). The di↵erences between the habitat-specific parameterisations

of the demographic models and their sensitivities to various parameters are explored,

which allows me to identify those parts of the life-cycle of the invader that are a↵ected

by habitat, and which of these stages are most critical to population success. This infor-

mation is then used to identify which life stages and/or transitions might be targeted to

refine management options in an e↵ort to improve their e↵ect and economy.

In addition to being influenced by regulatory processes and landscape heterogeneity,
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stochastic behaviour in the population can have a marked impact on the population

trajectory (Sebert-Cuvillier et al. 2007; Keith et al. 2008). Demographic models based

on mean parameter values can provide an average trajectory, but incorporating stochas-

ticity into the projections of the population can add an additional dimension by allowing

us to not only explore the average outcome, but also develop an estimate of how much

variability to expect in those outcomes. Understanding this variability helps us to esti-

mate how certain we can be in the predictions, and just how much potential variation

exists in the system (Buckley et al. 2005; Melbourne & Hastings 2008). How this stochas-

ticity is incorporated into the models can be important; using a bottom-up approach

and quantifying the stochasticity in lower-level processes of population behaviour (such

as reproduction and mortality) can provide a more robust and informative depiction of

variability at the population level, as opposed to directly assessing the variability of the

higher-level population response (Melbourne & Hastings 2009). Incorporating this vari-

ability as stochastic behavior at these lower levels while simulating population trajectories

can provide a clearer picture of how the specific sources of variation propagate through

the system, and what the cumulative e↵ects of that variation might be. The projections

then have the potential to provide a more accurate assessment of the population-level

behaviour (Tenhumberg et al. 2008) as well as the magnitude and source of variability

within in the system (Regan et al. 2002; Calder et al. 2003).

In this chapter I apply these concepts in an e↵ort to investigate the invasion of Hieracium

lepidulum (Stenstroem) Omang (Asteraceae) (a European native) into mountain stream

catchments in the Southern Alps of New Zealand. H. lepidulum is an aggressive invader

which is often associated with decline in native communities or pasture productivity in

New Zealand (Rose et al. 1995; Radford et al. 2007; however see Me�n et al. 2010).

Recent surveys identify H. lepidulum as becoming established to varying degrees in the

di↵erent habitats that make up these catchments (Miller 2006). The catchments typically

range from approximately 800 to 2000m above mean sea level (AMSL), and are typified

by two major vegetation types; mountain beech forest (Nothofagus solandri var. cli↵or-

tioides) is the dominant vegetation up to approximately 1400m, where it gives way to a

mixture of sub-alpine scrub and tussock grasslands. The forest matrix at lower elevations

consists of an almost pure monoculture of mountain beech which forms a dense canopy,

resulting in an open understorey. Within the forest, openings caused by stream corridors

and occasional treefall gaps typically support more vegetation on the forest floor (Wiser et

al. 1998). At higher elevations, the alpine communities are primarily a matrix of tussock

grassland (dominated by Chinochloa species) interspersed with patches of low-growing

scrub and dissected by alpine creek habitats. These alpine areas support a relatively rich

assemblage of species, making them a priority for conservation. Below approximately

800m the catchments flatten out into larger river basins which consist primarily of an

anthropomorphically modified landscape, largely dominated by pastoral areas and inter-

spersed with roads.
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Previous survey work (Miller 2006) suggests H. lepidulum is invading upslope from the

modified landscape at lower elevations and moving towards the alpine areas, where it is

feared it will negatively impact the native flora. These same surveys also indicate that

H. lepidulum densities are currently quite low underneath the intact beech canopy. This

suggests that the intact forest may be inhospitable to populations of H. lepidulum, and

could be acting as a natural barrier to the invasion. In contrast, the stream corridors

in these catchments tend to have higher densities of H. lepidulum, suggesting that this

habitat is more invasible. Based on these observations, it is hypothesised that the invasion

may be utilising these stream corridors as an invasion vector to bypass the (presumably

less invasible) forest habitat, and spread to the alpine areas.

In an e↵ort to test this hypothesis, a seed sowing experiment was initiated in one of the

catchments to compare the recruitment rates of H. lepidulum in di↵erent habitats, as a

way to quantify their di↵erential invasibility. Successful recruitment of H. lepidulum in

the alpine habitats (alpine creek, scrub, and tussock) during these sowing trials suggest

that they are susceptible to invasion, even though the survey data indicates they currently

exhibit relatively low levels of occupancy of H. lepidulum. In addition, at least some level

of recruitment occurred in all three of the lower elevation habitats, albeit significantly less

in the intact forest compared to the forest creek or gap habitats (Miller 2006). While these

results help to explain observed di↵erences in abundance between the forest habitats, it

suggests that the intact forest and forest gap habitats are not completely resilient to

invasion by H. lepidulum.

Based on the survey data and the hypothesis that stream corridors are serving as the

primary vector for the invasion, control e↵orts could selectively target populations within

the stream corridors, and potentially cut o↵ the population’s access to the alpine habitats.

However, given the evidence that recruitment does occur in the forest and forest gap

habitats, control e↵orts targeting only the stream corridors may be not be as e↵ective

as previously thought. Unfortunately the results from the seed sowing trials only reflect

the initial recruitment of H. lepidulum, and the germination of individuals from seed in

these habitats does not necessarily translate to the establishment of a viable population.

Given the available data, it remains unclear if the levels of recruitment observed from

these trials would lead to persistent populations.

In order to further explore the ability of populations of H. lepidulum to persist, I develop a

series of demographic models in this chapter which I use to assess the long-term viability of

populations in the di↵erent habitats. Independent parameterisations of the model are used

to project population trajectories in each habitat into the future, and thus determine in

which habitats the invasion will be successful. In this case the demographic processes are

represented using a matrix population model, with the individual transition probabilities

within the matrix estimated from field data. Where su�cient data exists, regulatory

processes such as density dependence have been incorporated into the sub-models used to

estimate the individual transition probabilities within the matrix, providing more realistic
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projections of population growth. Ideally, data for parameterising the model would be

obtained by monitoring a population from inception until it reaches a stable equilibrium;

unfortunately, plant populations can take an extremely long time to fully develop and

occupy all available growing space (up to hundreds of years or more; Pyšek & Jaroš́ık

2005). As an alternative, I have adapted more of a bottom-up approach to constructing

the model, where data are collected from individuals in a range of conditions (densities and

habitats), and parameters estimated from these data are then used to obtain population-

level projections. This permits a more rapid development of population-level projections,

which can then be used to examine the plausibility of the hypothesis that the stream

corridors are serving a vector for invasion.

Successfully assessing the invasibility of the di↵erent habitats and understanding the

full range of potential outcomes requires an accurate description of the uncertainty and

variability present in the di↵erent components of the system. In order to properly quantify

that uncertainty, I have utilised a Bayesian hierarchical fitting procedure to estimate

model parameters. This approach allows me to quantify the uncertainty associated with

each parameter, providing parameter estimates in the form of posterior distributions as

opposed to a singular static value. These estimates can then be incorporated into the

simulated projections by using the posterior distributions to define the sample space

for stochastic parameter behaviour. The results of these projections then reflect the

propagation of variability from relatively low level processes up to the final estimates

of population size. I also employ a sensitivity analysis to examine which parts of the

life cycle are critical to the persistence of the population, and if these critical stages are

di↵erent for di↵erent habitats. This information is then evaluated to determine if control

measures can be refined to target specific vulnerabilities in the life cycle of H. lepidulum.

2.2 Materials and Methods

2.2.1 Study species

H. lepidulum is a perennial herb, native to northern and central Europe where it is

commonly found in high elevation meadows. First recorded in New Zealand in 1941 (Wiser

et al. 2000), it has become a prolific weed in New Zealand, invading a wide range di↵erent

habitat types (Duncan et al. 1997; Wiser et al. 1998). Concern over the presence of this

invader stems from its association with the decline of a number of native communities

(Rose et al. 1995; Wiser et al. 2000), although a recent investigation failed to find a direct

link between its presence and any decline in native species (Me�n et al. 2010). The

juvenile and adult growth forms of H. lepidulum are easily distinguished; in the juvenile

stage, the plant exists as a low-growing individual no more than approximately 5cm in

height, typically with two leaves. Upon sexual maturation (marked by the presence of

flowering) the plant bolts and produces a distinct central stem, typically to a height of
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10cm or more. On this stem the plant produces additional cauline leaves as well as one

or more flowers. The seeds of H. lepidulum are relatively small (approximately 3x0.5mm)

and have a 6-7mm pappus with plumose bristles (Webb et al. 1989). These characteristics

make the seed ideally suited to dispersal by wind, and their apomictic nature permits

viable seed to be produced without pollination (Chapman et al. 2003).

2.2.2 Data collection

The data used in this study was collected from the Southern Alps of Canterbury, New

Zealand. The study area consists of two adjacent stream basins (Broken River and

Craigieburn) within the Craigieburn range, located at approximately 43.13� S 171.71�

E. Six primary habitats have been identified in these catchments; forest, forest creek,

canopy gap (treefall gaps), alpine creek, tussock grassland, and scrub. The forest, forest

creek, and forest gap habitats occupy lower elevations within the stream catchments, gen-

erally ranging from approximately 800 to 1400m AMSL. These three habitats coexist in a

matrix which consists primarily of forest habitat. The forest habitat is typified by a dense

canopy of mountain beech (N. solandri), and is interspersed with occasional windfall gaps

(forest gap habitat), typically caused by the loss of a single tree or small group of trees.

The forest creek habitat reflects the more open conditions which occur adjacent to the

creeks which dissect the catchment, and is comprised largely of stream banks or open

gravel. Above approximately 1400m, the catchment is dominated by tussock grasslands,

which consist primarily of long-lived Chionochloa species with a mixture of alpine herbs

and grasses that occupy the inter-tussock spaces. Intermixed with the tussock grassland

are patches of scrub habitat, dominated by low-growing (approximately 30-100cm) woody

shrubs. The alpine creek habitat are those areas directly adjacent to the creeks that dis-

sect these upper reaches of the catchment, and are also comprised largely of stream banks

and open gravel.

Four field experiments were performed to obtain demographic data on H. lepidulum. These

data were used to parameterise the models which describe the probability of a H. lepidulum

individual transitioning between di↵erent stages of its life cycle. These field experiments

included 1) a field survey of existing H. lepidulum distribution, 2) monitoring of tagged

individuals of H. lepidulum, 3) a seed sowing trial, and 4) a seed burial experiment. These

experiments were initially established by Alice Miller as part of her PhD thesis (Miller

2006); subsequent years of data collection were performed by myself and others. The use

of multiple data sources allowed for the demographic model to reflect the full life cycle of

H. lepidulum; however, this approach also introduced a few shortcomings. Observations

of adult mortality did not account for the density or size of conspecifics, and therefore

does not incorporate the density-dependent regulatory mechanisms which are included

in the models of juvenile survival. In addition, the seed sowing experiments from which

the observations of juvenile survival collected from were even-aged cohorts and did not
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produce adults until the final two years. As such, the density-dependent mechanisms

incorporated into the models of juvenile survival reflect the influence of similarly sized

individuals. In application, the models of juvenile survival account for the total number

of individuals present in a cell across all life stages, but assume that they have similar

influences, as opposed to attributing a larger influence to the adult individuals. This

e↵ectively results in a conservative estimation of the density dependent mechanisms by

downplaying the influence of adult individuals.

Field survey

Survey data were collected for a previous investigation in the austral summer of 2003/04 to

describe the distribution and abundance of H. lepidulum in these catchments (Miller 2006).

Ten (10) randomly chosen creeks from two adjacent catchments within the Craigieburn

Range were chosen for survey. Transects were placed perpendicular to the creek every

100m (side chosen at random) until the creek was no longer identifiable, and extended

into the adjacent habitats for 100m. Five 2x3m plots were located randomly along the

transect and surveyed for H. lepidulum abundance. Counts of abundance were performed

at six 1x1m subplots within each plot. Mean abundances across these subplots are used

to estimate density per m2, and summarised by the six habitat types for analysis. Mea-

surements reflecting the number of individuals present were recorded for a total of 1068

plots.

Tagged individuals

Five patches of H. lepidulum in each of the six habitats were randomly selected from those

identified during the field survey. In each patch 40 flowering individuals were selected for

monitoring. Four of the patches contained less than 40 individuals; in these patches

all of the plants were monitored. Overall, a total of 1355 individuals were tagged and

monitored. These individuals were surveyed in January 2004 and then again the following

year. During each survey the number of flowers on each individual were counted, seed

production was estimated from a subset of mature flowering heads, and any mortality was

recorded.

Seed sowing trial

Additional demographic data were obtained from a seed sowing experiment established

in the Craigieburn basin in 2003. Sowing density treatments consisted of a control with

no seed addition, and seed addition at rates of 25, 125, 625, 3125 and 15625 seeds per

30x30cm plot. Each treatment was replicated three times in each block, and each block

was replicated six times in each habitat. Blocks were located a random distance up the

catchment’s primary creek; forest creek and alpine creek blocks were located directly
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adjacent to the creek, forest and tussock habitats were randomly located between 20 and

200m from the creek, and forest gap blocks were located at a gap greater than 25m2 nearest

to a randomly located point between 20 and 200m from the stream. Scrub habitats were

randomly selected from all scrub patches within the catchment. The entire experiment

was replicated the following year, with the new blocks sown adjacent to those from the

previous year, resulting in a total of 1512 individual sowing trials. Seed was collected in

the field immediately prior to sowing from the lower reaches of the Avoca River, close to

the study area. Seed was collected from a single location to minimise potential variation

in seed viability. These plots were revisited annually through 2008 to survey the number

of individuals recruited from seed and to record any occurrences of flowering over that

five year period. This resurveying provided size years of data for one replicate and five for

the other; five years of data from each replicate were used to equilibrate their influence.

Seed burial

In addition to the seed sowing, seed burial trials were performed at each of the blocks

to determine the viability of the seed bank after one year, and how this varied among

habitats. The survival of seed in the soil in each block was assessed by burying 100 seeds

in mesh bags at a depth of 3 cm. Bags were buried at a random location within three

metres of the plot, and were removed after 1 year. Seed survival was assessed by counting

empty and filled seeds on exhumation, and determining the proportion of filled seeds

which germinated by placing them on moist filter paper.

2.2.3 Demographic model

This model simulates the number of individuals present in three primary stages of devel-

opment; seed, juvenile (non-reproductive), and adjust (reproductive). The data collected

was used to construct a demographic model for H. lepidulum that is similar to a stage-

based non-linear projection matrix model (Cushing 1998) and describes the development

of individual plants in one year time steps. This approach generally applies death and

reproduction simultaneously, so that adult individuals have the chance to reproduce in the

year in which they die. Five juvenile stages were included in the model; this was designed

to reflect the variable length of retention in this stage, as all individuals remained juve-

niles for at least one year, with some individuals still in the juvenile stage after five years.

Replication of model stages and implementing a minimum stage membership duration in

this manner is similar to the approach used by Buckley et al. (2005). This also allows our

model to reflect how the probability of survival and transition into adulthood changes as

individuals accumulate time spent in the juvenile stage.

This demographic model is constructed of a number of stage transition models that de-

scribe the probability of an individual transitioning from its current state (Figure 2.1).
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Various stage transition models were used to describe the mechanisms of survival, mat-

uration, and fecundity. Each transition probability was modelled using a unique param-

eterisation of these stage transition models (described in detail below). The stage tran-

sition models include density-dependent e↵ects where data were available. This density-

dependence serves as the primary regulatory mechanism limiting population growth. A

number of the features incorporated into the modelling process (specifically the recruit-

ment function and the integer-based projections; see below) required adjustments to the

strict matrix modelling approach; the demographic models were therefore projected by

evaluating a system of equations that did not strictly adhere to a matrix structure.

Figure 2.1: Life cycle diagram for the population model for H. lepidulum. The seed bank

is modelled by retaining a portion of those seed that do not germinate to the following year.

There are five juvenile stages (J) representing age classes 1 through 5. Membership in juvenile

stages 1 through 4 each lasts a single year, while individuals are permitted to remain in the

final juvenile class indefinitely. Age-specific probabilities of transitioning into the adult stage

(T
JA

) and di↵erent survival probabilities (S) are estimated individually for each stage x habitat

combination by the stage transition models. Details of the stage transition models can be found

in the text.

2.2.4 Parameterising stage transition models

The stage transition models are those models used to calculate the probability of tran-

sitioning between stages in the demographic model. These stage transition models are

parameterised using a hierarchical Bayesian approach, which provides a number of prac-

tical benefits. First, the flexibility of model specification makes it much easier to account
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for the complex nested structure in the data I used (e.g. seed sowing plots nested within

blocks, nested within habitats, replicated in two di↵erent starting years) compared to

using a frequentist approach. Secondly, the use of the hierarchical Bayesian approach

a↵ords some additional flexibility with model specification. Instead of estimating the

parameters directly, this approach estimates ‘hyperparameters’; these hyperparameters

define a distribution, which in turn describes the parameters of interest. The e↵ect of

this is twofold; first, this approach e↵ectively isolates the parameter estimates from be-

ing subject to the reduction in variability associated with increased sampling intensity.

Instead, the variability reflected in the parameter estimate (in the form of the posterior

distribution) more accurately reflects the actual level of variation present in the observed

responses (Clark 2003, 2005). Secondly, by incorporating another hierarchical level in

the form of an additional ‘hyperprior’ distribution (that describes the distribution of the

hyperparameters), I can specify a higher habitat-level of organisation in the model struc-

ture. This way the observed data is described by a function, the parameters within that

function are described by distributions, and the distributions are parameterised using the

hyperparameters. On top of that, these hyperparameters can be drawn from another dis-

tribution which describes the relationship of parameters across habitats. Incorporating

these linkages specifies the interrelatedness of the observations (i.e. although observations

come from di↵erent habitats, we assume habitats may share some commonalities) instead

of assuming that they are completely independent of each other. Lastly, the data used

to parameterise the stage transition models contained some inherent correlation between

parameters, both spatial and non-spatial. The hierarchical Bayesian approach allows me

to incorporate parameter covariance by explicitly specifying the correlation within the

model structure. Using this approach, covariance between parameters is accounted for

during the simulations by using parameter estimates that were produced during the same

iteration of the model fitting procedure. This way the covariance does not have to be

explicitly stated when applying the stage transition models in the simulations.

Parameters within the stage transition models were estimated using a Markov chain Monte

Carlo (MCMC) method, employed using the OpenBugs v3.0.2 package (Lunn et al. 2009)

in R 2.8 (R Development Core Team 2009). Burn-in periods varied in length according to

each particular model’s convergence dynamics; typically these lasted approximately 10,000

iterations or less. After burn-in, a further 10,000 iterations were performed which were

used to construct the posterior distribution for each parameter. Three chains of param-

eter estimations with di↵erent random starting values were produced for each parameter

and inspected for convergence. Convergence was assessed visually by inspecting mixing of

chains (vectors) while also calculating the potential scale reduction factor, or PSRF (Gel-

man & Rubin 1992; Brooks & Gelman 1998); the convergence results of specific models

are detailed below. The following sections describe the data and model structures used

to estimate each of the transition probabilities within the demographic model. For sim-

plicity, I have only included the lowest level of these models, the parameters of which are
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estimated using a hierarchical structure that includes hyperparameters at the habitat level

and an overarching hyperprior describing the interaction of the di↵erent habitats. While

the use of prior distributions to inform the behaviour of these observations is debated to

add a subjective element to the parameter estimation process, I had no information on

which to base such priors, and instead used priors which were largely uninformative. By

specifying them as large and relatively uniform, these priors imposed a minimal constraint

on the parameter estimations, as the potential parameter space defined by the prior and

explored by the parameter estimation method was substantially larger than the width

of the estimated parameter range, and the priors were primarily used only to reflect the

scale of measurement (i.e. discrete or continuous).

There are six di↵erent stage transition models which are used to calculate the individual

elements within the transition matrix that represent the probability of individuals moving

from one stage to another. These models describe the probability of juvenile survival,

transitioning from juvenile to adult, adult survival, seed production, recruitment of seed,

and survival of seed in the seedbank (Figure 2.1). The models of juvenile survival and

transition probabilities are reparameterised for application to the di↵erent juvenile stages.

The whole contingent of stage transition models are also reparameterised independently

for each habitat. The application of the models in the simulation is described below.

Juvenile survival

The probability of juvenile plants surviving is parameterised using data which reflects

successive annual counts of the seed sowing plots over a five year period. Trajectories

of seed sowing trials at each of the sowing densities (25, 125, 625, 3125 and 15625 seeds

per 30x30cm plot) were used to fit the data; this provided age-specific data reflecting

survivorship at di↵erent density levels. Because of this, I was not able to collect data

reflecting the survivorship of ‘older’ individuals (i.e. five years) at the highest sowing

densities (1000 or more individuals per plot), as by the time they reached this age the

density had been dramatically reduced. However, the data that was collected covered the

full range of age and density combinations that were encountered in the simulations, and

were therefore considered to be representative of the necessary range of conditions. The

probability of survival for each juvenile stage is modelled as a binomial process

r

JS,hab,y

⇠ Dbinomial(S
J,hab,y

, a

JS,hab,y�1) (2.1)

where r
JS

= the number of juveniles present in a given year, a
JS

= the number of juveniles

in the previous year’s survey, and S
J,y

is the estimated probability of survival of the yth

stage. A logistic function was used to estimate the density-dependent probability of

survival for each habitat:
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S

J,hab,y

= log

✓
b0,JS,hab,y + b1,JS,hab,y ⇤ aJS,hab,y�1

1� (b0,hab,y�1 + b1,hab,y�1 ⇤ aJS,hab,y�1)

◆
. (2.2)

The priors for b0 and b1 were initialised using a relatively uninformative prior which was

normally distributed with a mean of zero and variance of 100. The use of a logistic

function ensured that the survival probability estimates were confined to the interval [0,1]

without the need to constrain the MCMC fitting procedure to a truncated parameter

space, as would be necessary if a decay model were used (Pacala & Silander Jr 1985).

This type of function also assures that density-dependent e↵ects can be expressed in the

response; the function can take either a linear or a sigmoidal response to describe how (or

if) survival changes according to the number of individuals present (a
JS,hab

). The degree

and variability in the strength of the density dependence observed in the data will then

be reflected in the model by the stochastic parameter values. In the simulations, both

juveniles and adults are reflected in this count; however, since the survival response is

informed only by the results from the seed sowing trials, the observed densities (a
JS,hab

)

reflect predominately juvenile individuals, and therefore reflect a relatively conservative

measure of density dependence in the presence of a large number of adults. When applied

in the simulations, no individuals in the first four juvenile stages are retained in the stage;

surviving individuals either proceed to the next juvenile stage, or a proportion progress

to adult status (with probability TJA). Once the final juvenile stage (J5) is reached,

individuals are retained within the stage until they die or advance to the adult stage.

Juvenile to adult transitions

The probability of a juvenile transitioning into the adult (flowering) stage was modelled

as a function of the current juvenile stage, habitat, and the density of conspecifics. The

habitat-specific transition values are modelled as a binomial process, specified as:

r

f,hab

⇠ Dbinomial(T
JA,hab

, a

JA,hab

) (2.3)

where r
f

is the number of successful flowering events, a
JA

= the total number of juveniles

in the previous year, and T
JA

is the probability of transitioning from a juvenile to adult

stage. The variable of interest, T
JA

, is modelled as time variant, using a logit link function:

T

JA,age,hab

= log

✓
b0,JA,age,hab

+ b1,JA,age,hab

⇤ age
1� (b0,JA,age,hab

+ b1,JA,age,hab

⇤ age)

◆
(2.4)

where age is the number of years since the initial sowing of the plot (equivalent to the

current juvenile stage) and b0,JA,age,hab

and b1,JA,age,hab

are initialised with a minimally

informative prior reflected by a Gaussian distribution with a mean of zero and variance

of 100.
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Adult survival

Estimates of adult survival are derived from the observations of the tagged individual

plants. Survival is also modelled as a binomial process, specified as:

adults

t

⇠ Dbinomial(S
A

, adults

t�1) (2.5)

where adults

t

are the number of surviving adults in the current year, compared to the

number of adults in the previous year (adults
t�1), and S

A

is the probability of adults

surviving. Estimates of survival rates are calculated for each of the habitat types, again

using a Bayesian hierarchical approach. No density- or age-specific relationships were

available from the dataset for estimating this parameter, so the model consisted of an

intercept-only form, using a logit transformation to restrict the parameter to the interval

[0,1]:

S

A,hab

= log

✓
b0,SA,hab

1� b0,SA,hab

◆
. (2.6)

The b0,SA,hab

parameters are initialised with a Gaussian prior with a mean of zero and a

variance of 100.

Reproduction

Estimates of the reproductive ability of individuals were obtained via a combination of

estimating plant level seed production (Fec in Figure 2.1) in the field, and then using

a previously developed recruitment function (Duncan et al. 2009) to determine the pro-

portion of those seeds that germinate and establish to become new juvenile individuals.

Seed production is modelled in two parts. First, the number of flowers on each plant

was modelled as a Poisson process using flowering data from the tagged individuals. As

there was no age information associated with the individuals from which the flowering

success was modelled similarly across all adults; this is in contrast to the probability of

transitioning from the juvenile to adult life stage (T
JA,age,hab

), which is age-dependent.

Production of flowers is a prerequisite for membership of the adult stage class; as such,

there were no adults monitored that had zero flowers. While it is potentially possible for

adult plants to skip flowering for a year and remain in a vegetative state, this was not

observed in the data collection and is therefore not reflected in the demographic model.

As the Poisson distribution used to model the number of flowers on adults will always

have some probability of a zero value occurring, I performed a n � 1 transformation on

the observed number of flowers which allows me to model it as a Poisson process:

Flowers

hab

� 1 ⇠ DPoisson(�
flowers,hab

) (2.7)
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where Flowers

hab

is the number of flowers produced by a plant which is distributed as a

Poisson process with a mean of �
flowers,hab

. This is a simpler approach than implementing

a zero-truncated Poisson distribution in the confines of the OpenBugs model specification.

A n+1 transformation is then performed on the predicted values to construct the posterior

distribution. Once seed had set, a subsample of seedheads were collected to estimate seed

production at the individual flower level as a Poisson process:

Seed

f,hab

⇠ DPoisson(�
seed,hab

) (2.8)

where Seed

f,hab

is the number of seed modelled as a Poisson distribution with a mean

of �
seed,hab

. Habitat specific estimates of seed production at the plant level (Fec
hab

) were

then calculated by multiplying the number of flowers by estimates of seed production per

flower:

Fec

hab

= (�
flowers,hab

+ 1) ⇤ �
seed,hab

. (2.9)

Recruitment function

In order to calculate the proportion seeds produced that germinate and recruit into the

population, I used the recruitment function

rec = bn

"
1� !

!

�
! + S

tot

n

�
b

R

#
(2.10)

developed by Duncan et al. (2009). This function estimates three parameters that de-

scribe the number of microsites in a plot (n), the proportion of those microsites that are

available for occupation (b
R

), and their size heterogeneity (!). Parameter values for this

function are obtained from other work which developed habitat-specific parameterisations

of the function, estimated using data from the same seed sowing experiments (Miller et

al. unpublished). This function approximates the amount and distribution of sites within

a cell that currently exist (n and !) and the proportion of those sites that are not occupied

by the preexisting community ((b
R

)), and are therefore available to H. lepidulum. This

function is used to calculate the proportion of seed (rec) that germinate and produce first

year juveniles (in stage J1). The seed input (S
tot

) is equivalent to the total number of seed

present (Seed in Figure 2.1). This value is calculated by summing the number of seed

from the seedbank (SB ; see below) with the total amount of seed production from the

current year, calculated as a product of the fecundity rate (Fec) and number of adults (A

from Figure 2.1). The number of seed is then multiplied by rec to determine the number

of individuals in J1.
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Seed bank

The proportion of seed that are produced but do not germinate (1�rec) enter the seedbank

stage. The probability of these seed surviving to the following year (✏) is estimated by

modelling the response from a seed burial trial as:

✏

hab

⇠ Dbinomial(SB
hab

, seed

sown

) (2.11)

where ✏

hab

is the observed number of seed which germinated after one year, SB
hab

is the

estimated proportion of seed that are able to germinate in a given habitat after being

buried for one year, and seed

sown

is the number of seed that were sown in each trial (in

this case, each trial was performed with 100 seed). Sixteen burial trials were performed

in each habitat, for a total of 96 trials. As with the adult survival estimates, there are no

explanatory variables; only the di↵erent factor levels (habitats) for which the probability

of survival is estimated. Estimates of these probabilities are confined to the interval [0,1]

using a logit transformation:

SB

hab

= log

✓
b0,hab

1� b0,hab

◆
(2.12)

which provides an estimate of seed survival after one year. The variable b0 was initiated

with a non-informative prior distribution with a mean of zero and a variance of 100.

2.2.5 Simulating populations

A total of 100 replicates of population projections were simulated for each habitat. Each

of these replicates was run for 2000 annual timesteps. Each replicate began with an initial

seeding using one of the seed input levels from the seed sowing experiment (25, 125, 625,

3125 or 15625 seeds) as the starting point. Using a Bayesian approach to estimate param-

eters from the stage transition models described above produces a posterior distribution

for each parameter in the stage transition models in the form of a vector of potential

parameter values. At each application of the demographic model, parameter values were

drawn from these vectors in order to calculate the required transition probabilities. In

addition, covariance between parameters within the same stage transition model was ac-

counted for by drawing values for each parameter estimated at the same iteration of the

MCMC sampler.

During the simulations the fate of each plant was determined by using Bernoulli trials for

each individual, allowing me to maintain a discrete count of individuals. The benefit of

this approach is that it permits the unambiguous extinction of populations, as opposed

to using a continuous estimate of population size. In a declining population, the use of a

continuous measure of population size would result in the population size asymptotically

33



approaching zero, resulting in the existence of a partial (<1) individual which could persist

indefinitely. As the demographic processes in the simulation are stochastic, the existence

of a partial individual could potentially serve to initiate a revival of the population within

a cell where it is e↵ectively extinct. The discretisation of the population into individuals

allows me to eliminate the possibility of such biologically unrealistic phenomena.

Environmental stochasticity

The uncertainty in the parameters of the models used to estimate the probabilities of stage

transition reflects variability in the data, which is a result of either measurement error or

the inherent variation in plant responses. By using the posterior distribution to define the

sample space for the parameters, I discount the measurement error and assume that the

variation is representative of the true variation in plant behaviour. This stochasticity then

accounts for variability in both biotic and abiotic conditions without having to specify

them explicitly, similar to implementing process noise (Dennis et al. 2006). By drawing

di↵erent samples from the posterior distributions at each iteration of the simulation, this

uncertainty was incorporated into the simulations as latent environmental stochasticity.

This provides a novel approach to incorporating realistic estimates of variability (which

are inherent in a natural system) into the projections.

Demographic stochasticity

Demographic stochasticity was implemented in the simulation by performing individual

Bernoulli trials to determine the fate of each individual during each time step of the sim-

ulation. For each individual in the population, the probability of survival was calculated

using a random draw from posterior distributions to parameterise the appropriate sur-

vival model described above. A number was drawn from a uniform probability on the

interval [0,1], and compared against the probability of stage transition to determine if

that individual survived. For surviving juveniles, another similar trial was performed to

determine if the individual remained in its current stage or transitioned to a new stage.

Adult individuals do not transition to later stages; they are only subject to the survival

trials. These trials are repeated for each individual in the population; a random draw

equalling or exceeding the probability value was considered a success, and the number

of successes tallied to obtain the resultant number of individuals. Surviving adults each

produce a randomly generated number of seed (Fec, described above). Similar approaches

have been used before, such as in the PATCH simulation software (Schumaker 1999).

Model Check

The first five years of simulated population sizes were compared against the five years of

the available seed sowing data to assess if the simulations produced realistic outcomes.
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Visual inspection of the distributions of observed population sizes in each year were com-

pared with the simulated data. In addition, a two-sample Komolgorov-Smirnov test was

used to test if the distribution of observed data was significantly di↵erent than the sim-

ulated values over these five years (Conover 1999). Ideally a full validation would be

performed using resampling methods; however, this demographic model consists of a

number of component sub-models which are parameterised using di↵erent data sets, mak-

ing a traditional validation not only much more di�cult to employ, but also less directly

informative. Instead, this approach is intended to serve as a ‘sanity check’ to validate

that the structure of the model is correctly employed.

Population equilibrium

The amount of time required for the populations to reach a stable equilibrium was approx-

imated by simulating population growth using deterministic (non-stochastic) versions of

the stage transition models in each of the six habitats. This allowed me to approximate

the amount of time necessary for the invasions to reach a steady state population size, and

evaluate the range of population sizes at that time produced by the stochastic simulations.

This provided a way to approximate an equilibrium population size using the stochastic

projections which is otherwise inherently di�cult to identify (because of their stochastic

nature). These deterministic simulations used the mode of each parameter vector (akin

to a least-squares fitting approach) to calculate transition probabilities using the same

stage transition models described above. Simulations were run in each of the six habitats

from six di↵erent initial starting densities reflecting the the seed input levels from the

seed sowing experiment (25, 125, 625, 3125 or 15625 seeds). The time required to reach

an equilibrium condition (t
eq

) was identified by locating the time at which simulations

within a habitat of all initial densities converged (within 0.1% of each other) on a stable

population size. Typically stable equilibria are identified by their derivative being equal

to zero; however since these deterministic projections will only asymptotically approach

zero change, the cuto↵ of them converging to with 0.1% of each other was considered

su�cient to identify convergence to a stable state.

Comparing simulated populations with field abundances

As the amount of time the field populations have had to develop is unknown, it is impossi-

ble to choose a corresponding time point in the simulated population growth that I could

use for a direct validation. Instead, I used projections of population growth obtained from

the simulations at two di↵erent time intervals to provide a context in which to assess the

development progression of the invasion. This gave me a context to understand how far

along the invasion had already progressed, and what it was likely to do in the future.

For this I chose to project population sizes from the stochastic simulations at both 20

years since establishment and at the t

eq

point. Comparing populations after 20 years of
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development is a largely arbitrary timeframe; however, this amount of time provides a

reference to the degree of population development a person is likely to observe in their

lifetime, and also provides a reference point that should reflect a relatively early stage of

invasion. In contrast, the population size at the (t
eq

) point is intended to represent the

eventual stable population size the invasion is capable of given enough time to fully de-

velop. Mann-Whitney tests (Hollander & Wolfe 1999) were used to compare the medians

of the simulated vs. observed populations, and a Kolmogorov-Smirnov test (Chakravarti

et al. 1967) was used to determine how well the distribution of abundances from the two

sources matched. Using the two test provides a highly sensitive comparison of the central

location of the two samples (Mann-Whitney) and a comparison of the overall distribu-

tion of data (Kolmogorov-Smirnov). As the field surveys were conducted in a somewhat

random fashion without the context of where H. lepidulum had previously occurred, it is

impossible to determine if locations currently devoid of H. lepidulum had previously been

exposed to invasion pressure or not. For this reason, the same two comparison tests were

also performed using censored versions of the abundance data, reflecting only non-zero

counts. This restricts the comparison to only abundance at locations where H. lepidulum

has successfully established, and compares the growth of established populations without

the additional complexity of predicting the establishment or persistence of a population.

Perturbation analysis

A perturbation analysis was performed to examine the sensitivity of the population-level

performance to change in the various parameters within the stage transition models. The

analysis was performed by systematically altering individual parameters within the deter-

ministic version of the simulation by multiplying them by a perturbation constant (P
c

),

running the simulation, and observing the change in the stable population size (calculation

described above above). This range of adjustment constants provides an approximation

of expected model behaviour if the parameter is removed (P
c

= 0), if the parameter is

reduced to a fraction of its original value (P
c

= 0.1 or 0.5), remains constant (P
c

= 1),

or is increased (P
c

= 2 or 5). Where necessary, individual parameters were constrained

to avoid non-sensible values (i.e. survival probability does not exceed 1). The parameters

are altered one at a time while the others remained at their modal value as described

above, resulting in a total of 144 simulations, replicated in each habitat. Each projection

utilised the same starting conditions (625 seeds); the choice of this starting value was

largely arbitrary, but the projections from the deterministic model suggest that the start

point is irrelevant, as the lack of any ergodic e↵ects means the populations will reach the

same stable size regardless of the initial value. Trajectories were simulated until growth

rates fell below 0.001, at which point they were assumed to have reached an equilibrium

state. Once this point was reached, the number of plants was recorded for comparison

against the unperturbed projections. Traditionally perturbation analyses typically eval-

uate the change in growth rates as a function of the perturbation. However, due to the
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incorporation of regulatory mechanisms in these demographic models, population-level

growth is self-regulating, and the growth rates always approaches zero. As a result, this

analysis focuses on changes in the overall stable population as the basis to compare the

e↵ects of parameter perturbation.

2.3 Results

2.3.1 Parameter estimates

The hierarchical Bayesian fitting procedure using an MCMC sampling algorithm produced

three independent vectors (chains) of parameter estimates for each individual parameter

within the stage transition models; each chain consists of 10,000 individual parameter

estimates, resulting in a total of 30,000 parameter estimates for each parameter x habitat

combination. Together these vectors represent the posterior distributions which describe

the variability and uncertainty in each parameter. Visual inspection (graphing) of these

chains indicated that there was convergence of the chains for all of the parameters, in-

dicating that the three independent estimations reflected consistent parameter estimates

with each other. A more quantitative assessment of convergence was also performed by

calculating the potential scale reduction factor (PSRF); values at or below 1.2 indicate

su�cient convergence of the chains (Gelman et al. 1995). PSRF values of nearly all

estimated parameters were below 1.2, with the only exception of one habitat-specific pa-

rameter estimation exceeding the cuto↵ with a value of 1.22. However, visual inspection

of the distributions produced from the individual chains were nearly indistinguishable,

and the individual chains appeared to mix well, indicating that the MCMC sampler was

fully exploring the parameter space and returning consistent results. Given these results,

all parameter estimates were assumed to be well estimated.

These posterior distributions are used to define the sample space for stochastic behaviour

within the simulation. For simplicity only one of the three chains was sampled during the

simulations (as convergence diagnostics suggested they were e↵ectively interchangeable);

values were randomly drawn from the vector to populate the stage transition models

with parameter values (Figure 2.2), which are then in turn used to calculate the transi-

tion probabilities (individual matrix elements) for each iteration of the population matrix

(e.g. Figure 2.3). Examining the full range of uncertainty in modeled responses (via the

total response envelope presented by the dotted lines in Figure 2.3) reveal that the range

of uncertainty was relatively small at lower versus higher densities; this held across all re-

lationships. For stage transition models with multiple parameters, parameter values were

drawn from corresponding positions within the vectors; this assures that each parameter

was estimated at the same time, and accounts for the potential of any covariance that

might be present.
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Figure 2.2: Values for the di↵erent parameters of the models (equations 2.1 to 2.12) used to

simulate the life cycle of H. lepidulum. The modal values of parameters used in the deterministic

simulations to evaluate equilibrium conditions are denoted by the diamonds, while the bands

represent the density of observed values obtained from the MCMC parameterisation technique

(darker parts of the bands represent a higher number of observations). Extent of the graphs

was limited to the 90

th
percentile of parameter values, and may therefore not reflect the range

of extreme values.
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Figure 2.3: Probability that a first-year juvenile will survive, as a function of H. lepidulum

density. The parameter estimates reveal a wide range of responses from strong density de-

pendence (where survival declines sharply with increasing density of conspecifics) to negative

density dependence (where survival increases with increasing density). Mean responses (solid

lines) indicate that in the majority of situations, this relationship is negative. The minimum and

maximum responses (dotted lines) depict the corresponding extreme values from the posterior

distributions, and denote the boundaries of the sample space used for the J1 transition value

when implemented in the simulation. The same approach was used to define all transition values

within the matrix population model.
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Figure 2.4: Comparison of observed abundances from the seed sowing data (both 2003 and

2004 replicates averaged) with simulations of the demographic model for the first five years after

sowing. Location of the mean for each distribution is indicated by the vertical lines. Using a

Kolmogorov-Smirnov test to compare the predicted and observed values reveals that significant

di↵erences exist between the observed and predicted abundances, but removal of the zero-class

negated most of those di↵erences (see text).

2.3.2 Model Check

Visual comparison of the observed population sizes from the seed sowing plots with the

first five years of simulated population growth suggests that the demographic model pro-

vides reasonable estimates of population sizes during this time frame. The mean popula-

tion size of the simulated populations was particularly consistent with the observed popu-

lation sizes (Figure 2.4). As the distribution of the projected population sizes were heavily

skewed (i.e. not normally distributed, see Figure 2.4), I used a Kolmogorov-Smirnov test

to examine if there were significant di↵erences between observed and projected population

sizes for the di↵erent year x habitat combinations. As the data were counts of individ-

uals in the population, a small amount of random noise was added to the population

size estimates to approximate a continuous response, and eliminate the potential for ties,

which would invalidate the test. These tests indicated that in terms of size, the majority

of simulated populations were significantly di↵erent to those observed in the field (Table

2.1). However, the comparison was heavily influenced by the number of simulated popu-

lations which went extinct, and inflate the zero class (approximately 88% of the projected

populations, and 46% of observed). When populations of size zero were removed and the
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test was applied only to the distribution of sizes of successful populations (� 1 individ-

ual), the simulations matched the observed data much more closely, and only three of the

factor combinations (forest habitat at year five, and scrub habitat at years three and five)

showed significant di↵erences between the observed and projected values (Table 2.1).

2.3.3 Survey data

A pairwise comparison of the abundances ofH. lepidulum in the di↵erent habitats observed

during the field surveys was performed using a Mann-Whitney test to identify habitat-

specific di↵erences in population success (Table 2.2). Although five of the six habitats had

median abundance values of zero, there will still some significant di↵erences, suggesting

that some of the habitats di↵ered in their level of invasibility. Abundance was the lowest

in the tussock habitat, which was significantly distinct from the other groups. There

was a great deal of overlap between abundances observed in the forest, forest gap, alpine

creek, and scrub habitats. The forest creek habitats contained the greatest abundance,

and was also significantly distinct from the other habitats. Removing the zero values and

repeating the comparison provided a comparison in abundances only where H. lepidulum

was present (Table 2.2). In this comparison, the forest creek still contained the highest

densities, but was indistinguishable from the scrub habitat. Again, the remaining habitats

were largely similar; forest, forest gap, and scrub habitats were indistinguishable, forest

gap and alpine creek were similar, and alpine creek and tussock were similar.

2.3.4 Simulation output

The results of simulating populations of H. lepidulum showed that there is a great deal

of variation in population success (measured in terms of abundance of individuals and

persistence of populations) between the di↵erent habitats. The deterministic simulations

showed that the amount of time for the simulated populations to reach a relatively con-

stant size (defined as (< 0.1% change from the previous year) was quite variable (t
eq

,

Table 2.2). The equilibrium criteria were reached most quickly in the forest habitat, fol-

lowed by the tussock. The population in the scrub habitat was next, followed by those

in the forest gap and forest creek habitats, which were quite close to one another. The

population in the alpine creek took the longest to converge, over twice as long as in the

next closest habitat.

Persistence of populations (the proportion still surviving) in the di↵erent habitats are

compared at two time references; after 20 years and at the t

eq

point (Table 2.2). Twenty

years provides a useful time frame for comparison that provides an estimate of what the

progression of the invasion will achieve in a relatively near future. The t
eq

, although vari-

able, denotes the point in the development process where the population achieves a stable

(and presumably sustainable) size. This size represents the population’s final potential,
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and can be used to compare population performance independently of ergodic e↵ects or

population growth rates which a↵ect the amount of time required for the population to

reach this point. After 20 years, the majority of populations in the forest and forest gap

habitats go extinct; out of 100 simulation runs in each habitat, 14% of populations persist

in the gap habitats, while only 1% remain in the forest. More populations persist in the

tussock landscape (38%), but still less than half. Simulations in the forest creek and

scrub habitats indicate higher persistence, with a greater proportion surviving to 20 years

(53% and 68% respectively); but the populations in the alpine creek have the highest

persistence after 20 years (76%). Persistence of populations at the projected equilibrium

point (t
eq

) are in general reduced compared to the 20 year point, but the relationship

of the di↵erent habitats follows roughly the same pattern; all populations in the forest

gap habitat have gone extinct, and only 3% remain in the forest and tussock habitats.

Populations in the forest creek habitat don’t fare much better, with only 7% still in ex-

istence. The proportion surviving in the alpine creek has dropped significantly, but 30%

still remain. Populations in the scrub habitat appear to be the most successful, with 49%

of the simulations still existing at this point.

Comparing the abundances observed from the field surveys to the projected population

sizes (after 20 years and at the t

eq

point) using the Kolmogorov-Smirnov tests revealed

that all abundance measures from field data are significantly di↵erent than their projected

population sizes at either time reference (Table 2.2). The same comparisons using a Mann-

Whitney test produced nearly the same results, with the exception that the simulated

population in the alpine creek habitat was indistinguishable from the survey data at the t
eq

point. The same comparisons were repeated using only observations from field abundances

and simulated population sizes that were � 1. This comparison produced largely the same

results; only simulations in the forest creek habitat produced results after 20 years that

were indistinguishable from the abundance data using the Mann-Whitney test, and the

simulated and observed abundances in the forest habitat were indistinguishable at either

reference times (Table 2.2). In nearly all cases the simulated populations were larger than

the observed population sizes, except those in the forest habitat, and in the forest gap

habitat which are extinct at t
eq

.

Graphing the distribution of current abundances provides a more intuitive visual assess-

ment of the simulated vs. observed abundance (Figure 2.5). The simulated population

sizes at t

eq

represent the eventual potential of populations in each habitat; this graph

serves as a way to compare the distribution of observed abundance values in each habi-

tat to the distribution of simulated potential values. It is clear from the graph that the

observed abundances of H. lepidulum in the lower elevation forest habitats (forest, forest

creek, and forest gap) are closer to their projected potential than in the upper elevation

alpine habitats (alpine creek, scrub, and tussock).
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Figure 2.5: Comparison of the distribution of observed current abundances of H. lepidulum

compared to the distribution of expected potential population sizes estimated from simulation

predictions. Darker locations along the bar indicate a higher density of observations at that

population size.

2.3.5 Perturbation analysis

The perturbation analysis revealed that the populations of H. lepidulum in di↵erent habi-

tats respond di↵erently to perturbation of parameters (Figure 2.6). While this analysis

focused on the final equilibrium size of the population, it is important to note that changes

in these parameters may also a↵ect the speed at which this equilibrium population size

is reached. As this analysis was concerned with only the potential population size as a

measure of invasibility, I ignored variation in the rate at which these sizes were reached.

There were a few commonalities between habitats, however; manipulating of the first

term (b0) in the stage transition model that relates the probability of transitioning from

a juvenile to the adult stage to current density of individuals (Equation 2.4) consistently

had a substantial e↵ect on the population size (Figure 2.6). Decreasing this parameter

e↵ectively increased the y-intercept of the function, which in turn increases the probabil-

ity that an individual juvenile will transition to the adult stage, given a low density of

conspecifics. Manipulating the second term (b1) in the same equation had a similar e↵ect,

although the population size was positively correlated with this parameter. The magni-

tude of the response from manipulating these parameters was not consistent (Figure 2.6);

in the tussock habitat manipulation of the first parameter for any juvenile stage appeared
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to have an e↵ect, while the perturbing the second parameter had no perceivable e↵ect. In

other habitats, manipulating both parameters seemed to have an e↵ect (forest creek and

forest gap), in others neither seemed to matter (scrub). The e↵ect of perturbing these

parameters was so strong that in some habitats it even revived populations that were

otherwise approaching extinction (i.e. the forest and tussock habitats).

Other responses observed during the perturbation analysis were not as consistent across

the di↵erent habitats. Reducing the single parameter used in the calculation of adult

survival (Equation 2.5) reduced population sizes, but there didn’t appear to be an e↵ect

of increasing the parameter value. Manipulation of seed supply and recruitment a↵ected

a number of habitats. Increasing seed production tended to increase the population

size, but decreasing seed production appeared to have a stronger negative e↵ect. The

recruitment function (Equation 2.10) was most sensitive to changes in the b parameter

(representing the proportion of sites available for colonisation) and the ! parameter (the

size heterogeneity of available sites). Manipulations of juvenile survival had intermittent

e↵ects in the forest creek and alpine creek habitats, but did not appear to substantially

influence the population size in other habitats. Variation in seed production appeared

to be another consistent influence, producing a marked e↵ect across all of the habitats.

Manipulating the survival of seed in the seed bank had a minimal influence.
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Figure 2.6: Relative change in estimated population size, testing the sensitivity of the sim-

ulation model to changes in the di↵erent parameters. Each parameter was multiplied by a

perturbation constant (P
c

= 0, 0.1, 0.5, 1, 2, or 5). The horizontal lines represent the change in

simulated population size using modified parameters, with the size of the vertical line indicting

the magnitude of perturbation (taller and thicker lines represent larger values of P
c

).

47



2.4 Discussion

2.4.1 Predicting invasion

The initial impetus for this investigation was to re-evaluate the hypothesis that the forest

creek habitat was more suitable to invasion by H. lepidulum than the surrounding forest,

and that in the current landscape configuration these creek corridors represent a vector

which the invasion is utilising to breach the impermeable forest habitat. This hypothesis

was developed using only the recruitment data, and this investigation was intended to

examine if that hypothesis held in light of a more complete understanding of the invader’s

life-cycle. The projections from the demographic models suggest that the forest and

forest gap habitats found in the lower elevations of the catchment are largely incapable

of sustaining viable populations of H. lepidulum in perpetuity. This finding reconfirms

the conclusion reached using just the recruitment data, that these habitats are relatively

uninvasible to H. lepidulum. In contrast, the simulated populations in the forest creek

habitat persist indefinitely, and suggest that even relatively small introductions can reach

the point of becoming self-sustaining (Table 2.2). This is also supportive of the original

hypothesis; while H. lepidulum appears to perform relatively poorly in the lower elevation

landscape matrix (consisting of forest and forest gap), it appears to do well in the stream

corridors, rea�rming that the riparian corridors may be critical to the progression of the

invasion into the upper elevation habitats.

These results highlight that the corridors not only have the potential to provide a con-

duit for seed dissemination, but perhaps more importantly provide suitable habitat for

population establishment, providing a foothold to the invasion in an otherwise largely

inhospitable matrix. Similar dynamics have been observed in other systems where inva-

sions utilise available habitat provided by linear features to bypass inhospitable habitats

(Parendes & Jones 2000; Christen & Matlack 2006; Andrew & Ustin 2010). Without

the refuge provided by the stream corridors in the Craigieburn landscape, H. lepidulum

would have to rely on long-distance or non-standard dispersal of propagules to reach the

higher elevation alpine habitats (Nathan et al. 2002; Higgins et al. 2003). Observations

of other members of the Asteraceae family suggest that wind disseminated seed similar

to H. lepidulum have a relatively low probability of traveling far enough to bypass the

forest habitat altogether (Soons et al. 2004; Tackenberg 2003), especially considering the

uphill movement required to extend into the catchment. However, given the fecund na-

ture of H. lepidulum and its ability to reproduce apomictically, there is still a marginal

chance that a single long distance dispersal event could result in the establishment of

a population in the higher elevation habitats. Correspondingly, it should be noted that

even the most e↵ective control measures within the stream corridors may prove futile if

long-distance dispersal events are successful at transporting even a small proportion seed

to the alpine habitats. Still, without any intervention, the results of these simulations
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suggest that the invasion is able to e↵ectively utilise the forest creek habitat as a corridor

to bypass the forest habitat, and to do nothing would almost assuredly result in the inva-

sion reaching the higher elevation habitats. Overall, these conclusions largely support the

hypothesis formed using only the recruitment data that suggested that the forest creek

habitats provide a vector which allows the invasion to permeate the barrier posed by the

forest matrix.

While these results make it clear that the forest creek habitat is facilitating the invasion of

H. lepidulum, they also suggest that once it arrives, the invasion is likely to do quite well

in the alpine habitats. Surprisingly, the tussock habitat (which reflected the highest initial

recruitment) appears to be the least likely of the alpine habitats to sustain populations

of H. lepidulum in the long term. Nevertheless, the projections suggest that a substantial

proportion (38% on average) of populations in this habitat can survive to at least 20

years. This could be long enough to establish a local presence and seed source that could

spread elsewhere, and could even be long enough to have a negative impact on the existing

community and ecosystem (although this work is not designed to directly address such

impacts). In contrast to the tussock habitat, projections in both the scrub and alpine

creek habitats indicate that over half of the introductions will survive to 20 years, and

a substantial proportion (49 and 38% on average, respectively) will survive indefinitely.

Compared to the lower elevation forest habitats, it appears that the upper elevation alpine

habitats are much more susceptible to invasion by H. lepidulum.

2.4.2 Comparing survey data

The pairwise comparisons reveal that there is very little agreement between the simulated

abundances of H. lepidulum and those observed in the field in the first five years of invasion

(Table 2.1). However, when the zero values are removed, agreement between predicted

and observed abundances increases substantially. This suggests that the mechanisms

for determining the establishment of a population are fundamentally di↵erent than the

mechanisms which determine abundance (i.e. Diez et al. 2009), and that these simulations

more accurately describe the latter. However, comparisons of population establishment

are confounded by the fact that we have little contextual data for the field observations,

such as what (if any) propagule supply a location has been subject to, how long the

population has been present, and if the the absences of H. lepidulum reflects a failed

establishment (as in the simulations) or simply a location which the invasion has not yet

reached. These are important caveats to note when using field observations to validate

projections.

If we compare only estimates of abundance between the simulated and observed popu-

lations, it suggests that the established populations of H. lepidulum in the forest creek

habitat are currently at or near the population size expected at t
eq

, suggesting they are

nearing the full extent of their development. This is not surprising given the relatively
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short development time required for the population to reach equilibrium in this habitat

(five years; Table 2.2). The non-zero observations of abundance from the field surveys

(intended to represent only locations which are occupied) in the forest creek habitat ap-

pear to match the projected abundance at 20 years, but still hasn’t reached the maximum

abundance observed in the simulations (Table 2.2). This suggests that the age of the inva-

sion is closer to 20 years than the estimated nearly 400 years required for the projections

to converge on a steady state, which roughly aligns with the first report of H. lepidulum

in this area occurring in 1941 (Wiser et al. 2000).

The current abundances in the alpine habitats also appear to be currently well below

the steady state condition as projected by the simulations, and appear to be capable of

supporting much larger populations. This supports the initially hypothesised invasion

progression; H. lepidulum appears to approaching the capacity of available space in the

lower elevation habitats (particularly the forest creeks), and is only beginning to establish

in the alpine habitats. I can conclude from the simulated projections performed in this

chapter that the relative rarity of H. lepidulum in the higher elevations is not a function

of di↵erential resistance to invasion in the habitats, but instead that these habitats are

highly invasible, and a lack of propagule pressure is the only thing keeping H. lepidulum

from increasing in abundance. Unfortunately, the survey data reveals that while levels

of H. lepidulum abundance in the alpine areas are currently well below their capacity,

there are some individuals already present, suggesting the invasion process is already

underway. Controlling spread through the natural bottleneck of the stream corridor may

be achievable, but additional e↵orts would be required to remove individuals that have

already established in these alpine habitats. While it is possible that control e↵orts in

the alpine areas could slow invasion, complete eradication of invasive species is often an

extremely di�cult task, and is unlikely to be feasible for H. lepidulum (Mack & Lonsdale

2002).

2.4.3 Perturbation analysis

The perturbation analysis helped to identify a number of demographic processes that are

particularly influential to populations of H. lepidulum. The transition from the juvenile to

adult stage was the most consistently sensitive transition in the life cycle. Increasing the

probability of transitioning had a positive e↵ect on overall population size, as individuals

in the adult life stage have a much lower probability of mortality, as well as contribute

new propagules to the pool. Increasing recruitment into the adult stage even tipped some

of the some populations from unsustainable to sustainable (forest and tussock habitats;

Figure 2.6). Reducing the probability of transitioning to the adult stage really only influ-

enced overall population size when applied to the older age classes; this is predominately

because the proportion of younger juveniles transitioning to adult is e↵ectively none, and

reducing this probability has very little e↵ect. The overwhelming majority of individuals
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that reach the adult stage do so after three or four (or more) years in the juvenile stage,

so reducing the probability of transitioning to adult from these age classes e↵ectively cuts

deeper into the normal supply of recruits to the adult stage. Unfortunately this doesn’t

help to focus management e↵orts very much; it is already obvious that controlling the

plants before they become reproductive is potentially beneficial. One useful aspect of

this finding is that aside from a very small number of individuals, the vast majority of

H. lepidulum will take at least three to four years to reach maturity. If an approach

that eliminated all individuals at once (i.e. fire or broadcast herbicide treatment) then

reapplication of the treatment would only have to occur every two to three years until

the seedbank was exhausted, as individuals are highly unlikely to mature in such short

an interval to resupply the seed bank.

Aside from the transition from juvenile to adult stage, there were other sensitive life

stages, although they were less consistent across the di↵erent habitats. The availability

of recruitment sites was influential in a number of the habitats, but this is largely an

attribute of the existing landscape and is di�cult to actively influence, save for an attempt

to minimise disturbance and promote the expansion of existing vegetation to occupy all

available sites. Seed production also appeared to be a constant point of vulnerability in the

life cycle, and substantial reductions in seed production appeared to severely impact the

viability of the population. This suggests that release of a highly e↵ective seed predator

could potentially impact population success, although levels of seed predation are often

too low to be e↵ective (Shea & Kelly 1998; McFadyen 1998).

2.4.4 Modelling approach

The use of the hierarchical Bayesian methods to estimate parameters for the models of

transition probabilities provided a number of benefits to this analysis. Some of these

are primarily pragmatic; first, the way the model can be specified in the hierarchical

Bayesian method allows me to account for the complex hierarchical nested structure of

the data obtained from the seed sowing experiments. While the structure of the experi-

mental design could certainly be analysed using frequentist approaches, the hierarchical

Bayesian approach provides a simplified and more streamlined method which facilitates

the decomposition of the process into di↵erent levels (Clark 2005).

Secondly, the parameter estimates provided in the form of empirical posterior distributions

provide an ideal avenue to define the stochastic sample space in the final model. Because

of this, the final projected abundances are able to reflect the full range of uncertainty

(Figure 2.5 and Table 2.2) propagated up from the original data all the way to the final

population estimations. This approach frees the final output of the simulations (estimates

of population size) from being restricted to a preconceived population-level error structure

(i.e. Gaussian) (Clark 2003) which would clearly not fit the predicted population sizes

(Figure 2.5).
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Finally, utilising the Bayesian/MCMC procedure to parameterise the density-dependent

models provides a unique avenue to allow the magnitude and variability of the density-

dependent relationships to vary as defined by the available data. Using the Bayesian

hierarchical approach when parameterising the stage transition models allows us to define

the uncertainty in the parameters in a way that does not attempt to distinguish between

the exogenous and endogenous mechanisms shaping the regulatory process, which are no-

toriously di�cult to isolate (Grenfell et al. 1998; Higgins et al. 1997; Buckley & Metcalf

2006). Instead, both are incorporated as a latent processes, reflected in the uncertainty

of the parameter estimates, and by extension the direction and magnitude of the di↵erent

relationships. While specifying the endogenous and exogenous processes independently

would provide a better understanding of the mechanisms behind the process, the uncer-

tainty associated with our parameter estimates reflect the observed variation in the data.

In this form the range of the potential strength of the regulatory processes can be eas-

ily incorporated into the demographic models and then used to project the full range of

population behaviour.

2.5 Conclusion

Variation in population potential across heterogeneous landscapes can have a profound

e↵ect on landscape-level spread. In the case of H. lepidulum, analysing the demographic

performance in di↵erent habitats reveals that stream corridors provide refugia in an oth-

erwise inhospitable forest matrix. While we cannot conclude from this analysis that

a continuous tract of forest would provide an absolute bu↵er against invasion into the

alpine areas, it is clear that the population of H. lepidulum is able to exploit the rela-

tively small proportion of stream habitat. At the very least the stream habitat provides

a foothold for additional seed sources in closer proximity to the alpine areas than would

be found otherwise. These results suggest that management e↵orts directed at keeping

the population from spreading into the alpine areas should prioritise the forest stream

habitats, although the potential influence of transient populations in the forest and forest

gap habitats has not been fully assessed.

Unfortunately the sensitivity analysis provides little information that can help to direct

control e↵orts; H. lepidulum appears to be be well adapted for invasion. At this stage,

even if weaknesses in the lifecycle were identified, it is still not clear to what extent these

habitats are subject to seed input from distal sources. The threat posed by long distance

dispersal from either within the landscape or even from from more distant sources cannot

be certain without separately assessing seed dispersal for the species. However, we can

conclude from the demographic models that if seed are able to reach the alpine areas, those

habitats are invasible, and will provide fertile ground for establishment of a population.

To further compound the threat, the apomictic nature of H. lepidulum means that a single

wayward seed has the ability to provide the impetus for a full scale invasion.
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Although parameterising the demographic models used here to assess habitat invasibility

can be quite data intensive (perhaps prohibitively so; Coulson et al. 2004; Ramula &

Buckley 2009), strides are being made to explore how the use of hierarchical Bayesian

approaches can maximise the knowledge gained from what data is available (Clark 2003).

Even though the level of detail necessary for a full demographic analysis may not be

available for all control e↵orts, this example has demonstrated that increasing the fidelity

of demographic models by incorporating features such as habitat heterogeneity, density

dependence, stochasticity, and temporal variation can have a significant impact on the

resultant population-level projections, and can be essential to provide a clear picture of

the dynamics which drive the invasion.
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Burgman, M., Ferson, S., & Akçakaya, H. (1993). Risk assessment in conservation biology.

Kluwer Academic Publishing.

Burns, J. (2008). Demographic performance predicts invasiveness of species in the Com-

melinaceae under high-nutrient conditions. Ecological Applications , 18 (2), 335–346.

Calder, C., Lavine, M., Müller, P., & Clark, J. (2003). Incorporating multiple sources of

stochasticity into dynamic population models. Ecology , 84 (6), 1395–1402.

Caswell, H. (2001). Matrix population models. Sinauer Associates Sunderland, MA, USA.

Caswell, H. (2008). Prospective and retrospective perturbation analyses: their roles in

conservation biology. Ecology , 81 (3), 619–627.

Caswell, H., Takada, T., & Hunter, C. M. (2004). Sensitivity analysis of equilibrium in

density-dependent matrix population models. Ecology Letters , 7 (5), 380–387.

Chakravarti, I., Laha, R., & Roy, J. (1967). Handbook of methods of applied statistics

(Vol. 1). John Wiley and Sons.

55



Chapman, H., Robson, B., & Pearson, M. L. (2003). Population genetic structure of a

colonising, triploid weed, Hieracium lepidulum. Heredity , 92 (3), 182–188.

Christen, D., & Matlack, G. (2006). The role of roadsides in plant invasions: a demo-

graphic approach. Conservation Biology , 20 (2), 385–391.

Clark, J. (2003). Uncertainty and variability in demography and population growth: a

hierarchical approach. Ecology , 84 (6), 1370-1381.

Clark, J. (2005). Why environmental scientists are becoming Bayesians. Ecology letters ,

8 (1), 2–14.

Conover, W. J. (1999). Practical nonparametric statistics. Wiley New York.

Coulson, T., Rohani, P., & Pascual, M. (2004). Skeletons, noise and population growth:

the end of an old debate? Trends in Ecology & Evolution, 19 (7), 359–364.

Cushing, J. (1998). An introduction to structured population dynamics. Society for

Industrial Mathematics.

Dennis, B., Ponciano, J. M., Lele, S. R., Taper, M. L., & Staples, D. F. (2006). Estimating

density dependence, process noise, and observation error. Ecological Monographs , 76 (3),

323–341.

Diez, J., Buckley, H., Case, B., Harsch, M., Sciligo, A., Wangen, S., et al. (2009).

Interacting e↵ects of management and environmental variability at multiple scales on

invasive species distributions. Journal of Applied Ecology , 46 (6), 1210–1218.

Duncan, R. P., Colhoun, K. M., & Foran, B. D. (1997). The distribution and abundance

of Hieracium species (hawkweeds) in the dry grasslands of Canterbury and Otago. New

Zealand Journal of Ecology , 21 (1), 51–62.

Duncan, R. P., Diez, J. M., Sullivan, J. J., Wangen, S., & Miller, A. L. (2009). Safe

sites, seed supply, and the recruitment function in plant populations. Ecology , 90 (8),

2129–2138.

Freckleton, R., Matos, D., Bovi, M., & Watkinson, A. (2003). Predicting the impacts of

harvesting using structured population models: the importance of density-dependence

and timing of harvest for a tropical palm tree. Journal of Applied Ecology , 40 (5),

846–858.

Gelman, A., Carlin, J. B., Stern, H. S., & Rubin, D. B. (1995). Bayesian data analysis.

Chapman & Hall, London.

Gelman, A., & Rubin, D. B. (1992). Inference from iterative simulation using multiple

sequences. Statistical science, 7 (4), 457–472.

56



Grant, A., & Benton, T. G. (2000). Elasticity analysis for density-dependent populations

in stochastic environments. Ecology , 81 (3), 680–693.
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Chapter 3

Quantifying wind-dispersed seed rain

of Hieracium lepidulum in

heterogeneous environments

3.1 Introduction

Since the majority of plants are sessile, dispersing seed away from the parent helps to

mediate several factors that can be detrimental to survival of the o↵spring, such as in-

traspecific competition or predation by enemies (Harper 1977; van der Pijl 1982; Nathan

2001). The vast majority of these dispersal events typically result in progeny remaining

close to the parent plant and are relatively easy to document (Cain et al. 2000). However

a fraction of these seeds often travel much further. These long distance dispersal events

can be loosely defined as the relatively small proportion of seed (typically represented

by the furthest 1% or so of the seed dispersal; Cain et al. 2000) that are disseminated

considerably further than the rest and result in di↵erent ecological or evolutionary con-

sequences (sensu Nathan et al. 2003). With regard to population spread, these relatively

rare events typically impose a disproportionately large influence on the overall spread rate

(Clark 1998; Nathan 2006).

Quantitative models of dispersal traditionally represent the relocation of seed by using a

probability density function describing the likelihood of a dispersal event traveling a given

distance from the parent plant. This function, known as a dispersal kernel, typically takes

the form of a positively skewed probability distribution. These distributions describe

the majority of seed deposition occurring at relatively short distances from the parent

plant, with the proportion of seeds deposited inversely related to distance from the parent

(Cain et al. 2000). The occurrence of long distance dispersal events is represented in

the tail of the curve; subtle changes in this portion of the function can play a critical

role in determining the overall rate of the spread of an advancing population (Clark et

al. 1999; Nehrbass et al. 2007). Unfortunately, the rarity of events at these distances
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means that there is a general paucity of data available for accurately fitting this portion

of the curve (Nathan 2006). The combination of the rarity of this type of data along

with its disproportionate influence on spread rates compounds the di�culty in accurately

estimating these kernels, and subsequently producing accurate estimates of invasion speed.

For this reason, even though great care is taken in determining the correct kernel form

and parameterisation, there is inherent uncertainty in the predictions developed here, as

the highly influential long distance events are (inevitably) estimated by extrapolation of

the kernel beyond the range of the observed data.

Throughout this chapter I focus on parameterising empirical dispersal functions as op-

posed to mechanistic forms to describe the dispersal of Hieracium lepidulum (Stenstroem)

Omang (Asteraceae). There are a number of reasons an empirical approach was chosen

over a mechanistic approach; the first of which is an attempt to match the data collection

method with an appropriate analysis. In this investigation the data were collected using

seed traps, which generally describe the patterns that result after collecting a multitude

of observations over a period of time. The alternative is to use a seed tracking approach,

where the dispersal of individual seeds is monitored. The seed tracking approach is ideal

for the development of mechanistic models, which typically rely on two primary data in-

puts; the terminal velocity of seed, and data describing the wind behaviour during seed

flight (Greene & Johnson 1989; Nathan et al. 2002; Tackenberg, Poschlod, & Bonn 2003).

While tracking an individual, all of the relevant variables that a↵ect that one dispersal

event can be recorded in the same instance as the dispersal occurs, and attributed to that

singular event. In contrast, seed traps reflect the resulting outcome from a large number

of dispersal events. A retrospective analysis could be used to reconstruct mechanistic

dispersal data from the seed traps, but if the traps are left out for any significant amount

of time, it becomes di�cult to reconcile the individual dispersal events with explanatory

data at an appropriate resolution necessary to provide a useful insight. For example,

many mechanistic analyses of wind-dispersed seed suggest that instantaneous measures

of both the horizontal and vertical wind behaviour at the time of seed release dictate the

dispersal distance (Nathan et al. 2002; Tackenberg, Poschlod, & Kahmen 2003; Soons et

al. 2004). This type of information is practically impossible to match up to collections

made in seed traps. The second reason for selecting an empirical approach is that the

goal of this investigation is to assess the options for dispersal models to be implemented

into a spatial simulation. Empirical kernel forms are not only more straightforward, but

are also much less computationally intensive to implement in comparison to a mechanistic

model (Katul et al. 2005). While mechanistic models can be integrated to form a less

computationally intensive kernel for use in simulations (Nathan & Muller-Landau 2000),

the resolution and corresponding advantages of the mechanistic approach would be lost.

Lastly, while a appropriately developed mechanistic models are typically more robust to

being applied beyond the range for which they were initially developed, the potential

advantage in this situation would still be limited by the di�culty in accurately recreating
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the appropriate frequency of the underlying mechanisms, due to their relative rarity. The

long distance events are most likely driven by relatively rare wind conditions, are arguable

just as di�cult (if not more so) to observe.

In this chapter I focus on identifying dispersal kernels that are best able to recreate

the dissemination of wind-dispersed seed from H. lepidulum. To accomplish this I have

assembled a variety of potential dispersal kernel forms, each of which is fit to available

dispersal data. These di↵erent kernel forms are then compared to determine which kernel

best describes the observed dispersal of H. lepidulum seeds. While similar approaches have

been employed in a number of other investigations, in this investigation I have taken the

additional step of parameterising the kernels for specific habitats in which H. lepidulum

occurs. Using this approach I am able to assess how the shape and form of the dispersal

kernel changes according to di↵erent environmental settings.

3.2 Methods

3.2.1 Data collection

The dispersal data used to parameterise the kernels was collected in a range of di↵erent

habitats that exist in a montane catchment in the Craigieburn forest park in the mid-

Canterbury region of the Southern Alps, New Zealand. This data was collected as a part

of Alice Miller’s thesis work (Miller 2006); however it was initially used solely to iden-

tify di↵erences in dispersal between habitats. By assessing the fit of a range of dispersal

kernels for each of the habitats in which data were collected allows me to identify which

kernel provides the best fit, and compare how the dispersal behaviour changes in the con-

text of the existing community structure. The distribution of habitats in this catchment

is representative of catchments throughout the range, and can be broken into two primary

groups; below approximately 1400m above mean sea level (AMSL) the catchment is com-

prised primarily of mountain beech (Nothofagus solanderi var. cli↵ortioides) forest, while

higher elevations consist of a sub-alpine mixture of scrub and tussock grassland dominated

by Chinochloa species. The Mountain Beech forest is subdivided into intact forest, forest

treefall gaps, and forest creek habitats. The sub-alpine areas are subdivided into tussock,

scrub, and alpine creek habitats, although logistical constraints prevented dispersal trials

from being located in the scrub habitat. Greater detail about these habitats can be found

in Chapter 2.

Locations for the dispersal trials were chosen to maximise accessibility so that the max-

imum number of trials could be run in a single day and to minimise variation in wind

behaviour. The dispersal trials took place in five habitats; forest, forest creek, forest gap,

alpine creek, and tussock grassland. Five replicates were performed in each habitat, and

each replicate was repeated for five subsequent days, providing a total of 125 replicates.
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All replicates in the forest habitats were run on the same five days, while the trials in the

sub-alpine habitats were run on a separate set of five days, as it was logistically impossible

to run trials in all habitats at the same time. All stems of H. lepidulum within a 50m

radius of plot centre were removed prior to setting up the experiment in order to remove

confounding seed sources. At each site, dispersal data were collected by setting up an

experiment where 240 flower stems of H. lepidulum were inserted into a 10 x 30cm block

of horticultural sponge. This setup yielded a seed source of approximately 38,000 seeds

(Miller 2006). Although the process was not modelled directly, using seeds still in the

flower ensured that the force necessary to remove the seed from the capitula was incor-

porated, an important element which is often overlooked in seed dispersal studies. These

seed sources were placed in the centre of a 50x50cm square of plastic sheeting, with four

sampling strips of plastic extending 10m from the source at 90� angles. These strips were

covered with an adhesive coating to trap seeds following dispersal from the source. Seed

dispersal occurred over a period of approximately six hours, at which point the sampling

strips were removed and stored for later analysis. Each trial was begun with a new seed

source and clean sampling strips. The number of dispersing seeds were counted on each of

the sampling strips and grouped into 30cm distance classes. The 30cm resolution was se-

lected in order to match the resolution of the density-dependent demographic mechanisms

described in Chapter 2, in order that they can later be combined in a spatial simulation

(see Chapter 5).

3.2.2 Empirical dispersal kernel forms

A large array of potential formulae exist for describing the dispersal of seed (Clark et

al. 1999; Bullock & Clarke 2000; Levin et al. 2003; Nathan 2006). For simplicity, the

majority of these applications (including my own) limit their investigation to dispersal in

a single dimension, removing or ignoring any anisotropic e↵ects. While the data collected

here reflect dispersal in four directions, there was not su�cient data collected to identify

the mechanisms behind anisotropic e↵ects (nor implement them in the subsequent sim-

ulations) so the direction data was ignored and counts at each distance averaged across

the four directions. I have included a description below of those kernel forms that I use to

describe the H. lepidulum dispersal data. These particular kernel forms were selected as

they have previously been used in empirical descriptions of wind dispersed seed; some not

only to describe the probability of dispersing a given direction, but in some cases also to

describe observed counts at di↵erent distances (Cousens et al. 2008). In addition, they are

relatively simple models (three parameters or less) that typically define the probability

density function of common distributions. While this is not an exhaustive set of poten-

tial kernels, this list provides an excellent starting point when exploring which options

are available for fitting a probability density function to dispersal data. The variables x

(dispersal distance in terms of the number of 30cm units), and y (the model response,
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in terms of the probability of dispersing to that distance) are consistent across all of the

formulae; however, parameters within the kernels are generally not directly comparable

between the di↵erent equations.

Cauchy

The Cauchy distribution is a leptokurtic distribution that can be used for modelling the

dispersal of seeds (Shaw 1995; Skarpaas et al. 2005). It is often considered an alternative

to the exponential function when a greater proportion of long distance events are required

(Paradis et al. 2002). The functional form of this distribution is

y =
1

⇡↵[1 + (x��

↵

)2]
. (3.1)

Two versions of this kernel were fitted to the data; a two-parameter version which fit

both the scale (↵) and location (�) parameters, and a second version which omitted the

location parameter, forcing the peak of the distribution to occur at x = 0.

Weibull function

This density function was initially developed to be highly flexible (Weibull et al. 1951) and

has been previously applied to modeling seed dispersal (Clark et al. 1998). It is flexible

enough to provide a range of curves using two parameters:

y =
1

N

exp
h
�
⇣
x

↵

⌘
c

i
(3.2)

where ↵ is a dispersion parameter, c is a dimensionless shape parameter, and N is a

normalisation constant (Clark et al. 1998). For a one-dimensional model

N =
�
�
1
c

�
↵

c

(3.3)

where � is the gamma function (Pitt 2008). The shape parameter allows this function

to be quite flexible; values of c less than or equal to one are concave at the source and

have fatter tails. When c is equal to one, the function is the same as a one-parameter

exponential function; and as c approaches zero, the kurtosis of the function approaches

infinity (Clark et al. 1999). As c increases beyond one, the shape of the kernel becomes

convex at the source, the kurtosis decreases, and at c = 2 the function is identical to

a Gaussian distribution (Clark et al. 1998). Unfortunately, parameterisation of these

models becomes unstable if both the ↵ and c parameters are fitted at the same time; it

is therefore necessary to assume a value of one of them and fit the other (Clark et al.

1999). As both a Gaussian and an exponential function are fit to the data separately, I
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parameterised this kernel using values of c = 0.5 (Kot et al. 1996; Clark 1998) and c = 3

(Ribbens et al. 1994) in order to approximate both a fatter-tailed function and one that is

more convex at the source, respectively. In addition, both of these kernels were fit twice;

once where both occurrences of the ↵ value were constrained to be equal, and a second

where these values were allowed to vary independently. This resulted in a total of four

versions of this kernel being fit to the data.

Gaussian

The Gaussian function is probably the most well known option, however the lack of

excess kurtosis means that it does not often provide an adequate fit to the leptokurtic

shape commonly observed in dispersal events (Levin et al. 2003; Nathan 2006). However,

the Gaussian function can provide a good estimate of local dispersal (Buckley et al. 2005;

Clark et al. 2005), and it’s shape can be used to reproduce the high concentration of seed

often found directly below an overhanging canopy (Clark et al. 1999; Ribbens et al. 1994).

The Gaussian kernel takes the form

y =
1p
2⇡↵2

e

� (x��)2

2↵2
. (3.4)

In my analyses, two versions of the Gaussian kernel were fit; a two-parameter version

which included a location parameter (�) which adjusted the location of the mean, and a

single parameter kernel where the location parameter was omitted, restricting the mean

of the distribution to a value of zero.

Log-normal

The log-normal distribution is designed to represent variables whose logarithm is normally

distributed, and are described by the function

y =
1

x

p
2⇡↵2

e

� (log(x)��)2

2↵2
. (3.5)

The log-normal is a unimodal and strongly leptokurtic distribution (Russo et al. 2006).

This function provides a ‘fatter-tailed’ option compared to the standard Gaussian form.

Two forms of this kernel were also fit; one which included the location parameter (�), and

another where the location parameter was omitted, forcing the peak of the distribution

to occur at one.

Power

The power function
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y = ↵x

�� (3.6)

equates to a linear fit on a log-log plot. This feature makes it relatively easy to fit

and correspondingly popular, and has been used to describe seed dispersal in a number

of studies (Okubo & Levin 1989; Laman 1996; Bullock & Clarke 2000). This function

produces a strongly leptokurtic distribution, which typically provides fatter tails (and

therefore more long-distance dispersal events) than the Gaussian or negative exponential

functions. The power function however has an infinite density at zero, which makes it’s

use as a dispersal kernel di�cult (Nathan & Muller-Landau 2000). Normalisation of the

function requires bounding the function, which is useful in order to restrict it to the range

of the data (Clark et al. 2005). A second, less common one-parameter version of this

kernel was also fit as

y = �x

��

. (3.7)

Negative exponential

The negative exponential function has been employed in many instances to describe seed

dispersal distances (Bullock & Clarke 2000; Clark et al. 1999; Russo et al. 2006; Mart́ınez

& González-Taboada 2009). The basis of this function is that the response variable

decreases at a rate proportional to itself. This function is useful in that it provides a more

leptokurtic distribution, with a larger proportion of events occurring in the tail compared

to a Gaussian distribution (Clark et al. 1999). However, the tail of this distribution may

not be ‘fat’ enough (accommodate a high enough proportion of events) to accurately

recreate many observed dispersal patterns (Levin et al. 2003). It’s simplest form uses a

single parameter ↵, which determines both the intercept (or initial quantity) and the rate

of decay away from that quantity

y = ↵e

�(↵x)
. (3.8)

There is also a version of the exponential model that utilises two variables, by shifting

the origin of the distribution. This is accomplished by introducing a location parameter

� into the exponent of the function

y = ↵e

�↵(x��)
. (3.9)

The same e↵ect of including the location parameter can be obtained by fitting separate

intercept and decay parameters (Sit & Poulin-Costello 1994)

y = ↵e

�(�x)
. (3.10)
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where � determines the intercept and ↵ the rate of decay. Both the first and last versions

of this function were fit to the dispersal data.

Student’s t

The student’s t distribution can also used to model seed dispersal, and can be quite useful

as it allows a fatter tail than either a Gaussian or exponential model form. This fatter

tail increases the probability of distal dispersal events, which in turn results in an overall

faster spread rate (Clark et al. 1999; Levin et al. 2003). The kernel form

y =
�
�
b+1
2

�
p
b⇡�

�
b

2

�

 
1 +

�
x

b

�2

b

!�( b+1
2 )

(3.11)

follows the one-dimensional form; other applications often use a two-dimensional form

(“2Dt”), which can be used to describe the resultant seed density per unit area as it

includes an arc-wise integration of the circular area (Clark et al. 1999).

3.2.3 Model fitting procedure

Data conversion

Counts of seeds were performed for every 30cm section of the plastic strips used to collect

dispersed seed. In order to fit the kernels to the dispersal data, these counts had to be

converted to reflect the proportion of seed that were dispersed at each distance interval.

This conversion was performed by first calculating the mean density of seed at each 30cm

interval for each trapping replicate. At each interval, the size of the segment was equal

to the width of the strip (0.5m) by the depth of the interval (0.3m), producing a trap

area at each distance of 0.15m2. There were four seed trap strips at each replicate, which

equates to four replicates of 0.15m2 trap segments at each distance for each dispersal

replicate. These four segments were used to calculate a mean density at each distance for

each replicate. The calculated density was then used to project the total number of seed

dispersed to that distance interval.

In reality, the total number of seed dispersed each distance would fall not into the discrete

segments, but be distributed within an annulus (a ring-shaped feature represented by the

area between two concentric circles) that occupied the same distance intervals as the

segment. In order to project the total number of seed at each distance, I converted the

number of seed at the segment level to the number of seed in the total area of the annulus,

calculated as

A

annulus

= ⇡(R2 � r

2) (3.12)
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where r is equal to the diameter of the inside circle (or the distance of the nearest edge

of the trap segment from the seed source) and R is equal to the diameter of the outside

circle (the distance of the furthest edge). The width of the annulus is defined by the width

of the distance interval, and is always 0.3m, but as r increases, the area of the annulus

increases.

The mean observed density (N(x)) at a distance (x) from the seed source is converted

to a corrected seed count (N
c

(x)). This corrected count represents the total number

of seed projected to be deposited within the annulus. The conversion was performed by

multiplying the mean seed count at the individual segment level by the area of the annulus

at that distance, and then dividing by the area of the trap segment using the equation

N

c

(x) =
N(x) · ⇡(R2 � r

2)

0.15
. (3.13)

This value was then converted to reflect the proportion of seed that are deposited at

each distance so that the data could be used to fit a probability density function (pdf),

representing the probability that a given seed would disperse to that distance (P (x)). For

this operation the distance for each trapping segment was set to the furthest distance

represented by the segment; for example, the first distance value was 0.3, and represented

those seed that fell between zero and 0.3 metres from the source. The zero value was not

included as the number of seeds that did not disperse were not accounted for. To convert

N

c

(x) to P (x), I first calculated the total number of seed dispersed within the radius of

the seed trapping (N
c,tot

) as

N

c,tot

=
10X

x=0.15

N

c

(x) (3.14)

and then divided the amount represented by each trap segment by the amount represented

by the entire trapping sheet

P (x) =
N

c

(x)

N

c,tot

. (3.15)

The kernels were then fit to reflect the proportion of seed P (x) as a function of the distance

(x).

Parameter estimation

The di↵erent kernel functions were fit by determining the least-squares parameter esti-

mates using the nls algorithm in the R statistical software language (R Development

Core Team 2009). The kernels were first fit to the complete pool of data, ignoring any

habitat information; this allowed me to fit the functions using a greater number of points,
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making the procedure less sensitive to starting values. Using this approach to fit the dif-

ferent kernels to the dispersal data required the selection of appropriate starting values.

For some of the kernel forms, estimating starting values was relatively straightforward;

estimates for the Gaussian parameters ↵ and � were obtained by calculating the mean

and the standard deviation (respectively) of the raw data. The log-normal kernel was fit

using the same starting values as the Gaussian kernels. The negative exponential kernel

has an intercept term, which was visually estimated from a graph of the data for a start-

ing value of the one-parameter kernel; the resulting parameter value was then used as a

starting point for the two-parameter kernel. For the power kernel, the a parameter can

be interpreted as the response at x = 1 (when the equation reduces to y = xa), which was

visually estimated from the data. As with the negative exponential kernel, the parameter

estimate from fitting the one-parameter power kernel was used as starting values for the

two-parameter power kernel. For the single-parameter Cauchy kernel, the amplitude of

the function can be calculated using

Amplitude =
1

⇡�

; (3.16)

this was re-arranged to calculate a value for � that provided an amplitude of 0.5, which

in this case was equivalent to an intercept value (similar to the negative exponential

model). The fitted parameter estimate from the one-parameter Cauchy kernel was used

as the starting values for the two-parameter kernel. Starting values for the Student’s t

distribution were chosen by exploring a range of possible values and selecting one that

approximated an appropriate intercept for the data. The Weibull kernel has a special

case where it is equal to the negative exponential kernel (c = 1). I was therefore able

to use estimates from the fitted negative exponential kernels as starting values for these

kernels. An informal examination of the sensitivity of the starting values revealed that

the starting values were robust as long as they were within an order of magnitude of the

appropriate parameter value. The parameters for the pooled models were then used as

the starting values for parameterising the habitat-specific kernels.

Model selection

Akaike’s information criterion (AIC) values were calculated for the pooled kernels and each

habitat-level kernel estimate to allow for comparison of the fit of the di↵erent kernels. This

approach provides a standardised technique to compare the deviation of fitted models from

the actual data in order to determine which of the models provides the best approximation

(Burnham & Anderson 2001). This approach also imparts a penalty for each additional

model parameter in order to discourage the over-fitting of models. AIC values were

calculated using the formula
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AIC = 2k � 2ln(L) (3.17)

where k is the number of parameters estimated, and L is the likelihood of the fitted kernel.

Models with AIC scores that di↵er by less than 2 are considered equally as plausible, 4 to

7 are considerably less equally plausible, and > 10 suggests they are substantially di↵erent

(Burnham & Anderson 2002).

Each kernel was evaluated to determine the proportion of dispersal events which are

predicted to extend beyond the 10 metres reflected by the observed data. This proportion

was estimated by using partial integration to calculate the amount of area under each

fitted function on the interval [0, 10] (the range reflected by the data) and [10, 100000]

(the extrapolated range). This was calculated as

P

tail

=

R 100000

10 f(d)
R 10

0 f(d) +
R 100000

10 f(d)
. (3.18)

3.3 Results

3.3.1 Pooled kernels

Based on the AIC scores, the two-parameter Cauchy kernel provided the best fit to the

pooled data (Table 3.1). A score di↵erence of 4.5 suggests that this kernel form is more

plausible (although minimally) compared to the Student’s t kernel, which provided the

second-best fit. The Student’s t kernel returned a score which was virtually identical

to the 3rd rank kernel, which was a two parameter version of the Weibull model where

s = 0.5 (AIC di↵erence < 1). After this there was a significant di↵erence in score (21.9)

to the next best kernel, which was a two-parameter negative exponential. The similarity

of the fit of the two-parameter Cauchy kernel and the second best student’s t kernel

can be observed by examining the plotted response of both functions (Figure 3.1). The

proportion of dispersal events in the tail showed a large range of variation, but in general

tended to be smaller in the kernels with better AIC scores.
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Figure 3.1: The two-parameter Cauchy kernel and the Student’s t kernel after being parame-

terised using the data pooled from all habitats. The modelled responses are plotted against the

observed data.

Table 3.1: Parameter values of the kernels fitted to the pooled data in order of decreasing AIC

values, along with the proportion of events predicted to occur in the extrapolated range beyond

the observed data (Ptail). The AIC values are used to determine which function best describes

the observed seed dispersal, with the lowest score indicating the best fit.

Kernel Form No. of Parameters ↵ � AIC Ptail

Cauchy 2 0.805 0.021 -883.0 0.052

Student’s t 1 0.368 N/A -878.5 0.194

Weibull (s=0.5) 2 0.7653 0.271 -877.8 0.016

negative exponential 2 3.424 0.986 -855.9 <0.001

power 2 0.078 0.945 -842.4 0.398

Gaussian 2 -0.867 1.779 -825.5 <0.001

Weibull (s=3) 2 6.034 1.372 -767.6 0

Cauchy 1 1.473 N/A -725.6 0.073

Weibull (s=0.5) 1 3.347 N/A -595.8 0.484

Guassian 1 6.839 N/A -580.0 0.383

negative exponential 1 19.45 N/A -536.1 <0.001

power 1 0.034 N/A -522.7 .999

Weibull (s=3) 1 36.16 N/A -518.0 0

log-normal 1 0.582 N/A -482.9 0.001

log-normal 2 0.013 1.398 -464.0 0.674
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3.3.2 Habitat-specific kernels

In addition to fitting the data pooled across all habitats, in four of the five cases the

Cauchy kernel also provided the lowest AIC scores when fit to data from the individual

habitats. In two of these habitats (forest and forest creek) the two-parameter Cauchy

kernel was virtually indistinguishable from the student’s t kernel in terms of the AIC

scores (Table 3.2). In the forest gap and tussock habitats, this distinction was clearer;

the AIC values indicated a distinct advantage of the 2-parameter Cauchy kernel over the

second best score returned by the two-parameter negative exponential kernel. Only in

the alpine creek habitat did a di↵erent kernel form return the best AIC value; the two-

parameter power and Student’s t kernels both provided AIC scores which were lower than

the two-parameter Cauchy , which was separated from the lowest (best) score by just

over six points. The plotted responses reveals that the best-fit power kernel produces a

slightly shallower curve (fatter tail) than the two-parameter Cauchy kernel, suggesting

a slight increase in the proportion of dispersal events travelling longer distances in this

habitat (Figure 3.1).

Figure 3.2: Plot of the habitat-specific parameterisations of the two parameter Cauchy kernel

against the observed data in each of the habitats. The Cauchy kernel (red lines) reflected the

best-fitting kernel in each habitat based on AIC values, except in the alpine creek habitat where

the two-parameter power kernel (broken line) fit better. Both kernels are plotted in this habitat

to illustrate their similarities.
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Habitat specific parameter estimates for the two-parameter form of the Cauchy kernel

were compared to identify habitat-specific di↵erences. The Cauchy kernel form was used

as it provided a standard comparison, even though it was not the best fitting function in

the alpine creek habitat. 95% confidence intervals were calculated around each parameter

by assuming they are normally distributed, and then calculating the interval as x̄ ±
1.96SE, where the standard error was calculated as SE = sdp

n

. These confidence intervals

were then used to perform a multiple comparison test by examining if there was any

overlap between the 95% confidence interval of the parameters. This test permitted me

to identify the habitat-specific di↵erences in dispersal kernels (Table 3.2). The results of

these comparisons revealed that the scale parameters (↵) fell into two groups, with the

forest and forest creek habitats having e↵ectively the same value, while the forest gap,

alpine creek, and tussock habitats were indistinguishable from one another. Di↵erences

in the location parameter were more complex, with overlap found between the forest and

forest creek habitats, forest and alpine creek habitats, and the alpine creek and tussock

habitats. The location parameter in the forest gap habitat did not overlap with any of

the other habitats. These comparisons suggest that forest and forest creek habitats had

very similar kernels, as did the alpine creek and tussock habitats.

3.4 Discussion

The dispersal range reflected in this model is relatively short (10m), as others have de-

veloped kernels describing dispersal of herbaceous species up to 80m (Bullock & Clarke

2000) and even further (see Willson 1993 for an extensive review). However, given the

paucity of data at the extremes of the transects, I can be relatively confident that the

approach used here captures the vast majority of dispersal events, and provides a good

trade-o↵ between collecting representative data and the benefit to accuracy achieved by

increasing the sampling intensity, especially considering the time and logistical di�culty

in collecting observations at further distances. Available data on other Hieracium spp.

suggest the genus has relatively short dispersal distances; for example, the maximum

dispersal distance observed for Hieracium aurantiacum was <2m (Stergios 1976). Un-

fortunately, this means I have to rely on extrapolating the kernel beyond the observed

data in order to predict dispersal events beyond 10 metres. While these long distance

events are known to have a disproportionate e↵ect on overall spread rates (Clark 1998;

Nathan 2006), I can be relatively sure the more local dispersal processes (¡10m) will be

accurately reflected, and it is these more localised dispersal events that will influence the

demographic interdependency and exchange of propagules between local populations.
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3.4.1 Pooled kernel

The two functions fit to the pooled dispersal data with the lowest AIC scores produced

very similar responses when compared graphically. However, the two-parameter Cauchy

kernel represents an increase in fit across a number of metrics (including the residual

sum of squares, log-likelihood, and AIC), suggesting this kernel provided a better repre-

sentation of the data compared to the Student’s t kernel. A close examination reveals

that the Cauchy kernel predicts a slightly thinner tail; a close examination of the tail of

the dispersal using integration techniques reveals that the best-fit Cauchy kernel predicts

approximately 5% of dispersal events occurring beyond 10 metres; this value is much

closer to what is expected compared to the next best fitting Student’s t model, which

predicts almost 20% of events occurring beyond 10m. Unfortunately, any of the estimates

of dispersal beyond 10 metres are entirely speculative based on extrapolation of the fitted

models. Given the rarity and di�culty in observing dispersal events at these distances, it

is not usually practical to validate this level of extrapolation, even those these relatively

long distance events can have a disproportionate e↵ect on spread rates. The discrepancy

in the significance of the tail between the two best fitting kernels (and between all ker-

nels; 3.2) exemplifies what a significant impact the selection of the kernel form can have

on dispersal characteristics and subsequent estimations of spread rates.

An important aspect of the Cauchy kernel providing the best fit to dispersal is the fact

that it is exponentially unbounded; such kernels which have ‘fatter’ tails than an ex-

ponential distribution are able to continue to accelerate over time (Clark 1998). This

is a significant divergence from the constant spread rates which are characteristic of the

reaction-di↵usion models often used to characterise spread, which utilise a bounded Gaus-

sian dispersal kernel (Skellam 1951; Kot et al. 1996). The use of a bounded kernel (either

inherently via a reaction-di↵usion approach or specified explicitly in an integro-di↵erence

model or otherwise) would undoubtably underestimate the dispersal of H. lepidulum; such

issues with appropriate kernel selection have been identified as one of the primary reasons

rates of spread are underestimated (Andow et al. 1990; Hastings et al. 2005). However,

it is important to note that while kernel shape has a decidedly significant impact on in-

vasion rate, it is only part of the invasion process; once dispersed, demographic processes

determine the success of that seed, and can therefore also have a significant impact on

the final spread rate of a population (Clark et al. 2001).

3.4.2 Habitat-specific kernels

The AIC values of the habitat-specific kernel fits reveal that the two-parameter Cauchy

distribution provides the best representation of seed dispersal in the forest creek, forest,

forest gap, and tussock habitats (Table 3.2). Only in the alpine creek habitat does this

pattern deviate, where the power function provides the best fit. While comparison of AIC

values suggest that the power function provides a significant increase in fit over the Cauchy
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in the alpine creek habitat, the two-parameter Cauchy kernel still provides a better fit in

the alpine creek habitat than it does in the other habitats in terms of minimising the sum

of squared residuals (Table 3.2). Plotting the responses of the power and two-parameter

Cauchy kernels suggests that they are quite similar, their di↵erence manifesting as a subtle

shift in the proportion of short- to long-distance dispersals (Figure 3.2). If I relax the

constraint of selecting only the model with the best AIC score and assume that the two-

parameter Cauchy kernel provides a su�cient representation, I can then utilise a set of

pairwise comparisons to infer di↵erences in patterns of dispersal across all of the habitats.

I initially expected that dispersal distances in the intact forest habitat would tend to be

smaller as a result of winds being bu↵eted by the surrounding trees. I presumed this

e↵ect would be lessened in the more open environments of the forest gap and forest creek

habitats, and that the open conditions of these and the alpine creek and tussock habitats

would result in more seed traveling further distances. What these results show is almost

exactly the opposite; the kernels parameterised in the alpine creek and tussock habitats

(whose parameterisations are statistically equivalent; Table 3.2) disperse a greater pro-

portion of seed near the source compared to the shallower response seen in the forest and

forest creek habitats, which are also equivalent (Table 3.2, Figure 3.2). Forest gaps had

the greatest proportion of dispersal events occurring directly adjacent to the source.

Explanations for these observed di↵erences are only speculative; since the forest habitats

were measured on di↵erent days than the alpine habitats, the di↵erent kernel responses

could be attributed to day to day variation in wind patterns; however the forest gap

habitat (measured on the same days as the other forest habitats) seems to contradict

this. Wind data collected during the trials indicated that horizontal wind speeds were

variable across days and habitats during the dispersal trials (ranging from 0 to over 6 m/s),

but was not a significant predictor of the dispersal fit (Miller 2006). Another potential

explanation is that wind movement below the canopy is less restricted, and better able

to disperse seed. In this case, the co-dominant position that H. lepidulum occupies in

the relatively low vegetative canopy of the alpine habitats may be more sheltered by

surrounding vegetation than the sub-canopy position that H. lepidulum occupies in the

forest habitats, which has little other vegetation (pers. observation). Although studies

that examine sub-canopy wind velocities are rare, conditions have been described where

a relatively bare understorey beneath an intact canopy may be subject to higher wind

velocities than within the canopy itself (Landsberg & James 1971; Miller et al. 1991). In

addition, wind flow over canopy gaps in a similarly structured forest has been shown to

create variable conditions at the surface level within the gaps, with eddies forming on the

leeward side, and relatively low wind velocities across the surface (Miller et al. 1991) which

may explain the relatively short dispersal distances observed in the forest gaps. However

more conclusive answers can only be found by more closely examining wind behaviour

and seed positioning within the di↵erent canopies at the time of release.

Although the parameterisation of the two-parameter Cauchy kernel suggests equivalency
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in the alpine creek and tussock habitats, the fact that the power kernel provided a better

AIC score in the alpine creek habitat suggests that dispersal in these two habitats may

exhibit fundamentally di↵erent patterns. The plotted responses suggests that the power

function produces a slight increase in the proportion of dispersal events travelling longer

distances compared to the Cauchy kernel (Figure 3.1). This variation in the pattern of

dispersal distance may be due to a di↵erence in the physical structure of the vegetation in

the riparian areas of the alpine creek, although there was no data collected to reflect this.

The overall magnitude of the di↵erence between the Cauchy and power kernels is also

unclear; visually the two kernels fit to the dispersal data in that habitat appear nearly

identical, and may be qualitatively very similar to one another aside from the increased

probability of long-distance events encountered when employing the power function.

Surprisingly, the confidence intervals around the parameter estimates revealed that the

parameterisation of the forest and forest creek habitats were not significantly di↵erent

from one another; my a priori expectation was that the dispersal conditions in the forest

habitat would result in significantly shorter dispersals due to the presumed decrease in

wind speed. However this was clearly not the case, as the two habitats had virtually

identical parameter values. Although corridors are often associated with invasive spread

(i.e. van Dorp et al. 1997; Wangen et al. 2006; Hoyle 2007 and others), the mechanisms by

which the corridors influence spread are somewhat unclear, and researchers are beginning

to question if the primary benefit of these corridors in fact lies in their ability to provide

suitable habitat as opposed to acting as a conduit to increase seed transport, particularly

for wind-dispersed seed (Christen & Matlack 2009; Andrew & Ustin 2010). The finding

here that dispersal does not di↵er between the intact forest and the forest corridor, along

with the increased demographic response seen in this habitat (Chapter 2), suggest that

this may be the case for H. lepidulum.

Assuming that dispersal is the primary determinant of the overall rate of spread of the

invasion, these results suggest that we would expect to see the invasion of H. lepidulum

progressing the fastest through the forest and forest creek habitats, with a reduced rate

of spread once it reaches the tussock and alpine creek habitats. Spread through the gap

habitats would be the slowest, although this habitat tends to occur in small patches and

an invasion front would presumably tend to find a path around them through the adjacent

forest. Again, however, dispersal is not the only mechanism a↵ecting invasive spread, and

the influence of demographic processes can significantly influence these presumed invasion

trajectories. While this research helps to identify exactly where and how dispersal di↵ers

between the habitats examined, it also suggests that a thorough analysis of how a range

of existing vegetative structure can a↵ect wind patterns, and subsequently the dispersal

patterns of wind-dispersed seed, could provide valuable insight to how heterogeneous

landscapes can a↵ect invasive spread.
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Chapter 4

PopMod: A software module for

incorporating demographics into

spatial simulations

4.1 Introduction

The benefits of modelling a species at the level of the population have been recognised for

some time. The modern application of the demographic model began in the 1940’s when

the idea of applying survival and fertility rates to age classes surfaced in the literature a

number of times (Bernardelli 1941; Lewis 1942; Leslie 1945). Leslie’s work was the first

to consider the problem in a matrix format, which lead to the development of what we

know today as matrix population modelling. Later, the work of Lefkovitch (1965) and

Usher (1966) helped to make these techniques more accessible to ecologists by applying

the concepts to stage-structured populations (as opposed to age-structured format used

previously) and paralleling their usage with life tables, a more easily accessible data source

for most researchers. Since then, matrix population models have been applied to investi-

gate the life cycles of a vast range of organisms and address a broad spectrum of research

questions (Crouse et al. 1987; van Mantgem & Stephenson 2005; Schwarzkopf Kratzer et

al. 2009; Morris et al. 2011).

While matrix population models have proven an extremely useful tool for investigating

the behaviour of populations, one shortcoming of their application is that they are typi-

cally employed as a closed system (Hixon et al. 2002), incorporating neither immigration

or emigration of individuals or propagules. At approximately the same time as the matrix

models were being developed, researchers began to look into the interaction of individual

populations and their collective behaviours as metapopulations. This was largely stimu-

lated by McArthur and Wilson’s initial work on island biogeography (1963; 1967) and has

since been furthered by a diverse array of applications (Hanski 1991; Wells & Richmond

1995; Wiens 1997; Freckleton & Watkinson 2002).
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Recently, modern demographic investigations are beginning to blur the distinction be-

tween metapopulation and population-level modelling, and incorporate elements of both

approaches in order to develop a more holistic method for investigating the dynamics

of species abundance. This hybridisation typically leads to the incorporation of a spa-

tial context within which the demographic processes operate, creating a form of ‘spatial

population dynamics’ (Jongejans et al. 2008). One of the most straightforward implemen-

tations of this concept is to model demographic processes at a local scale (population-level

modelling), and provide links between the local populations via the modelling of disper-

sal processes (metapopulation modelling). This allows the modelling of demographic

processes that determine population success and growth to occur on a local scale, while

maintaining the linkages that connect populations at a landscape or regional level. Due to

the complex spatial interactions necessary for implementing such approaches, specialised

tools such as geographic information systems (GIS) are often employed to assist with

the handling and processing of large amounts of spatial data. As the processes being

modelled do not occur independently of the surrounding biotic and abiotic conditions,

incorporating landscape details often increases the accuracy of prediction (Brown et al.

2008).

There currently exist a variety of tools which have been developed to employ this ap-

proach of incorporating demographic processes in a spatial context (Possingham et al.

1995; Akçakaya et al. 2004; Sebert-Cuvillier et al. 2010). While these examples are all

useful and informative in their own right, there was a general lack of a highly flexible

and powerful tool that was generic enough to be used in a wide variety of applications.

With that goal in mind, I have developed PopMod, a modular interface that expands

the already useful toolset made available by the MDiG software (Pitt 2008) to include

demographic processes. MDiG was designed to integrate the modelling of temporal and

spatial dynamics in a raster-based landscape using a pre-existing GIS package (GRASS)

as a foundation. The MDiG software achieves this by performing two basic functions; 1)

implementing modules that are used to calculate and modify cell values within rasters

and 2) organising and storing the series of rasters after the calculations are applied. The

software works by creating a sequence of rasters, representing the state of the popula-

tion in the landscape at each time step. New rasters layers representing subsequent time

steps are calculated on an individual cell basis, performed by implementing the necessary

modules in a predetermined order. These modules can be custom scripted, and added or

removed as needed. Additional detail can be found on the MDiG website, available at

http://fruitionnz.com/mdig/. Currently existing modules focus primarily on dispersal of

organisms to simulate dispersal (Pitt 2008). This system has successfully been applied

to describe the spatial patterning of an invasion of argentine ant (Linepithema humile)

across a heterogeneous landscape in New Zealand (Pitt et al. 2009).

In order to extend the utility of the MDiG software, I have developed an extension module

(PopMod) that provides a flexible and powerful option for integrating matrix population

84



models into MDiG’s existing dispersal and simulation functionality. PopMod was written

using the Python programming language, primarily chosen due to it’s approachability and

flexibitiliy. Python is a natural fit, as its simplicity makes it easy to learn, easy to imple-

ment interoperability with other languages (including GRASS scripting in this instance),

and there is a well developed suite of computational tools readily available, particularly

SciPy (Jones et al. 2001). The flexibility of implementing the PopMod module lies in how

the transition matrix is specified; it allows the user to to specify a range of options from

simple static transition models to spatially-explicit, density-dependent stochastic models.

This allows anyone to apply matrix-based population models to a cellular landscape in

combination with MDiG’s existing customisable method for modelling dispersal.

4.1.1 Matrix population modelling

PopMod’s primary function is the application of a matrix population model. This mod-

elling approach organises members of a population into the di↵erent stages of the lifecycle,

denoted through the use of a population vector B
t

. Each element in the population vector

represents the number of individuals that belong to the corresponding stage at time t.

The delineation of stages is independent of the model application; they can be deter-

mined in any way desired by the researcher, but are typically either classified by age or

the developmental stage of the individuals. This population vector is then multiplied by

a transition matrix (M ) to obtain a new population vector (B
t+1

), representing the num-

ber of individuals in each respective lifestage at the following timestep (Figure 4.1). The

transition matrix is critical to determining the outcome of the population, as the values

within the matrix (termed transition values) represent the probability of transitioning

between stages, and therefore determine the fate of the individuals.
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Figure 4.1: The matrix B represents the distribution of individuals of a population in the

di↵erent lifestages (S=Seed, J=Juvenile, A=Adult), at time t and time t+1. The transition

matrix (M ) is made up of the probabilities of transitioning from one stage to the next; the

specific transition reflected at each position in the matrix is signified by the first letter of the

subscript representing the stage from which the individual originates, and the second letter the

stage it transitions to.
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4.1.2 Representation of the population

PopMod utilises a series of rasters to represent the population of the organism of interest.

Each timestep in the simulation contains a number of rasters, each of which represents

the number of individuals in a particular lifestage of the organism. The individual cells in

a raster represent the membership of the lifestage at that corresponding spatial location.

PopMod assembles the population vector (B
t

) by querying all of the rasters at a specific

location. This vector is then multiplied by the transition matrix to calculate the quantity

in each lifestage at that location, represented by B
t+1

. This process is then iterated for

each cell location in the landscape, and the resulting cell values are combined to develop

a new set of rasters that represent the landscape at the following timestep (Figure 4.2).

PopMod can theoretically handle an unlimited number of stages in the lifecycle, but

as additional stages (and associated rasters) accumulate, processing time and memory

requirements quickly escalate.

4.2 The PopMod module

4.2.1 Defining expressions

One of the most powerful features in PopMod is the flexibility with which the transition

matrix can be specified. Each transition value within the transition matrix is produced

by evaluating a user-defined expression. This expression is evaluated for each iteration

of the transition matrix (defined as individual cell x timestep combinations), so that any

stochastic elements of the matrix will be re-drawn for each cell in each timestep of the

simulation.

In the simplest application, each expression in the transition matrix can evaluate to a

single value, resulting in a static matrix that is exactly the same in every cell across the

raster layer at every timestep. This static population model applied across a homogenous

landscape will result in identical growth trajectories in each cell. In this case, any di↵eren-

tiation between results in individual cells will be completely dependent on either starting

values or immigration/emigration processes that result from dispersal of individuals.

More complex applications can incorporate variation in the transition matrices between

di↵erent cells. One way to incorporate that variation is to include environmental stochas-

ticity into the expressions, implemented as variation in the parameter values (Caswell

2001). In PopMod this stochasticity is defined by specifying a distribution for each

stochastic parameter, which serves to define the sample space from which the param-

eter values are drawn. Values are then drawn from this distribution at random, and are

then substituted into the expression when the model is applied. Currently, this sam-

ple space can be defined using any of the 35 standard distributions currently utilised by

Python’s numpy extension, providing a wide range of possibilities (Appendix A).
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Figure 4.2: Diagram describing how PopMod integrates matrix population modelling into the

the MDiG framework. Beginning at the top of the diagram, three di↵erent rasters represent

three di↵erent lifestages (S, J, and A) at time t. At this point other modules available through

MDiG can be applied; in this example, the dispersal module is applied to only individuals in

the ‘seed’ stage, as established plants (J and A stages) are sessile. The lifestage vectors are

assembled by querying the di↵erent lifestage rasters at a particular cell location (c) to construct

the population vector for that location at time t, represented by the 3x1 matrix in the lower right.

A transition matrix is then generated using a range of potential data sources. The population

vector is then multiplied by the transition matrix to project the subsequent population vector

at time t+1. This process is reiterated for all cell locations and then rewritten to a new set of

rasters, which record the count of individuals in each stage at each location across the entire

landscape. Variable definitions are the same as in Figure 1, with the addition of the location

specificity (c).

In addition to using standard distributions to define the sample space, PopMod has the

ability to utilise the posterior distributions produced by hierarchical Bayesian modelling

obtained from BUGS software (Lunn et al. 2000). These posterior distributions are used

to represent an estimated variable, and are produced in the form of a vector of estimates.

The benefit of using a hierarchical Bayesian approach for parameter estimation is that

a properly formulated model will produce a result where the confidence interval is not

influenced by increasing sample size, as is the case with many traditional frequentist

approaches. Instead, the distribution better reflects the uncertainty in the parameter value

(Clark 2003), providing a more realistic sample space for simulation behaviour. PopMod
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is currently set up to process posterior estimates in the form of the files produced by the

BUGS software. The output from other MCMC sampling software can be incorporated,

but it must be modified to match the BUGS output format. In addition, multiple factor

levels in the posterior distribution can be referenced through the the indexing of parameter

levels (see below). PopMod draws values for parameters in the same expression from the

same position in the chains in order to account for any covariance between simultaneously

estimated parameters.

Parameter values can also be sourced from additional rasters, allowing them to reflect

spatial variability across the landscape. Any data raster can be used to provide the pa-

rameter values as long as it has the same extent and resolution as the population rasters.

This approach allows the user to incorporate any spatially explicit environmental data,

such as moisture availability, light levels, nutrient availability, or any other relevant spatial

data. In addition to environmental variables, this approach can be used to query previous

population rasters, which are also stored and accessed as a raster format. This feature

allows the number of individuals in the previous time step to be used as a parameter in

the expression, providing an ideal avenue for implementing density-dependent regulatory

processes. As each lifestage is assigned to a unique parameter in the expressions, their in-

fluence can even be weighted according to the lifestage they currently occupy. This would

allow, for example, adults to have a greater influence on density-dependent processes than

seedlings (or vice-versa).

Lastly, di↵erences in the expressions for parameter values can be implemented through

an indexing feature. This feature works by classifying the landscape into a finite number

of classes. Each cell of the index raster is assigned an index integer, analogous to a

factor level. This index is then used to determine which of multiple possible parameter

definitions is used to source the parameter value to be implemented into the expression.

The indexed parameters can be as similar or di↵erent to each other as desired; it may

be di↵erent static values, represent an alternative parameterisation of a distribution for

a stochastic parameter, or even contain a mix of stochastic and static parameter sources,

which are dependant on the physical location. This indexing function provides an excellent

option for integrating coarser delineations of the landscape such as habitats or biomes into

the analysis.

4.2.2 Periodic matrix modelling

PopMod includes the functionality to implement multiple transition matrices during a

single time step in a periodic approach to matrix modelling. This allows the transitions

of a single timestep to be partitioned across a number of transition matrices (Figure 4.3).

There are three direct benefits to this approach; first, applying matrix modelling to project

plant populations contains a logistical dilemma; incorporating a seed stage inherently in-

troduces a dormant year when the matrix is applied in annual increments (Caswell 2001).
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Utilising the periodic approach allows one matrix to specify the recruitment of seed from

the previous year, while a second can specify the production of seed. This allows seed

that are produced in one year the opportunity to recruit to a plant stage the following

year, as opposed to serving a timestep in the dormant seed stage. Secondly, while a de-

mographic model could incorporate fecundity as a single step, separating seed production

and recruitment provides an opportunity to enact a dispersal process on individuals in the

seed stage. This is an important step as germination probabilities are more likely to be

influenced by conditions the seed experiences after dispersal, as opposed to conditions at

its origin. Incorporating the di↵erential response to the seeds eventual location in a single

function would require accounting for all possible destinations, creating a function which

is both unwieldy and ine↵ective. Lastly, separating the seed production and recruitment

processes provides an opportunity to incorporate one or more seedbank stages, which can

be important and influential aspect of plant success at the population level (Anderson et

al. 1996; Lonsdale et al. 1988).
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Figure 4.3: Example of a periodic matrix application where instead of a single transition

matrix, multiple transition matrices are utilised in the calculation of the population vector at

t+1.

4.3 Implementation of PopMod

4.3.1 Specification via xml file

All of the details necessary for the implementation of PopMod are submitted via a transi-

tion file. The transition file is an xml file specified following the dispersalML format (Pitt

2008). This format is intended to be a cross-platform standard for the specification of

dispersal models. The file structure contains two main sections; the first defines the data

source for parameters, and the second applies the parameters in an expression which is

evaluated to calculate the individual transition values.

Parameters

PopMod can process a virtually unlimited number of parameters, each of which is defined

using the following syntax:

<ParameterValue>
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<parameterName></parameterName>

<source></source>

<index></index>

<distribution></distribution>

<values>

<d></d>

<d></d>

<d></d>

</values>

</ParameterValue>

Each element in the statement begins with a opening tag (<element_name>) and is closed

with a closing tag (</element_name>). Arguments for each element are placed between

the opening and closing tag (see example, below). Only the elements with the opening and

closing tags on the same line receive arguments; the others are to organise those elements

that receive arguments. Arguments for the di↵erent elements are defined as follows:

• <parameterName>: Defines a string (name) used to identify the parameter in the

expression (see below).

• <source>: Determines how the parameter is derived; can take the values ‘static’ (a

single floating point value), ‘map’ (a raster to be queried for values), ‘random’ (ran-

domly drawn from a standard distribution), or ‘CODA’ (derived from a hierarchical

Bayesian approximation).

• <index>: Specifies which corresponding value in the <indexMap> is associated with

this particular <ParameterValue>. Can also be specified as the path to an index

file associated with a CODA file from a Bayesian estimation using BUGS. If the

definition of the parameter is global (i.e. not indexed) this can be left blank.

• <distribution>: Name of the distribution if the value is derived from a standard

distribution (see appendix), otherwise ‘None’.

• <values>: Associated parameter values. Can take the form of either a static num-

ber, the parameters necessary for implementing a standard distribution, or the path

name to a chain from a Bayesian fitting performed in BUGS.

Expressions

An expression must be specified for each position in the transition matrix. These take

the form of a mathematical function which can (but does not necessarily) incorporate

parameters defined as above. Expressions are specified using the following syntax:
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<expression>

<position></position>

<formula></formula>

</expression>

The <position> tag specifies which transition value is defined by the corresponding

<formula>. Position is determined by numbering each position in the matrix left to

right and top to bottom, starting at zero. For example, the positions in a 3x3 matrix are

as follows:

2

64
0 1 2

3 4 5

6 7 8

3

75

The <formula> tags contain the right side of a mathematical equation that determines the

value of the transition value. The <formula> can incorporate static values, parameters

defined earlier by referencing their <parameterName>, or query lifestage rasters using the

syntax “MAP_[lifestage name]”. As PopMod is written in the Python programming

language, it will understand the majority of standard mathematical operators (i.e. +,-

,*,/). For more complex operations Python’s built-in math module can be called, further

expanding the capabilities of the PopMod module.

Example: fecundity

This example describes a hypothetical situation where the objective is to simulate the

production of new plants. For simplicity, I will only describe the fecundity transition, a

single transition element in the transition matrix. In this example, fecundity is modelled

as a two-stage process where seed production and recruitment are combined to determine

the number of new individuals. Both seed production and germination are modelled as

random processes, with seed production being represented as a Poisson process with a

lambda value of 35

SeedProduction ⇠ DPoisson(35). (4.1)

This distribution can be assigned to a parameter named “SeedProduction” in order that

it is randomly sampled at each iteration of the simulation to generate a new value. This

is specified in the transition file as:

<ParameterValue>

<parameterName>SeedProduction</parameterName>

<source>random</source>
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<index></index>

<distribution>Poisson</distribution>

<values>

<d>35</d>

<d></d>

<d></d>

</values>

</ParameterValue>

Note that there is no index specified, and that only one parameter value is expected for

the Poisson distribution. The probability of germination for these seeds is modelled as a

beta distribution. In this hypothetical situation, there are two di↵erent parameterisations

of the germination function, corresponding to germination in two di↵erent habitats. The

probability of germination in the two habitats is modelled as

P1(germination) ⇠ Dbeta(2, 2) (4.2)

or

P2(germination) ⇠ Dbeta(2, 5) (4.3)

which are assigned to a parameter ‘Germination’ in the transition file, specified as

<ParameterValue>

<parameterName>Germination</parameterName>

<source>random</source>

<index>1</index>

<distribution>beta</distribution>

<values>

<d>2</d>

<d>2</d>

<d></d>

</values>

</ParameterValue>

<ParameterValue>

<parameterName>Germination</parameterName>

<source>random</source>

<index>2</index>

<distribution>beta</distribution>

<values>

<d>2</d>
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<d>5</d>

<d></d>

</values>

</ParameterValue>

Note that the two di↵erent specifications of germination are assigned to the same

<parameterName>, but are di↵erentiated by their <index> values. Finally, the incor-

poration of both the seed production and germination processes into the calculation of

the transition value is performed by multiplying them together so that

Seedlings produced per flowering plant = SeedProduction⇥ P

h

(germination) (4.4)

which is reflected in the transition file by the specification of the expression

<expression>

<position>1</position>

1

<formula>SeedProduction*Germination</formula>

</expression>

PopMod is then able to use this information to employ the appropriate transition value

where necessary. All transition values within a matrix are specified in the same context,

and within the same transition file. In the case of multiple matrices in a periodic matrix

application, each matrix is specified with an individual transition file.

4.4 Applications

The PopMod module was developed to integrate the demographic models of Hieracium

lepidulum (Stenstroem) Omang (Asteraceae) described in Chapter 2 of this thesis with

the dispersal function described in Chapter 3 in a spatial context in order to simulate the

spatial dynamics as the species invades. However PopMod’s greatest strength lies in its

generality and the flexibility with which it can be applied. Using PopMod, matrix-based

demographic models of a wide range of complexity can easily be applied in a spatial

context, ranging anywhere from a simple static two-stage lifecycle, to a spatially- and

density-dependent stochastic demographic model that incorporates a periodic matrix ap-

proach. In the next two chapters I will apply MDiG and PopMod in concert with one

another to combine the demographic model of H. lepidulum growth developed in Chapter

2 with the dispersal kernels developed in Chapter 3. I will first use this combination

1
For simplicity this example assumes a 2x2 transition matrix, and places this transition value in the up-

per right position
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in Chapter 5 to explore the local dynamics of interacting populations of H. lepidulum,

and explore how propagule exchange between adjacent locations a↵ects demographic dy-

namics, and see how these relationships change depending on the landscape context. In

Chapter 6 I will then use this modelling framework in conjunction with a coarser ap-

proximation of the dispersal and demographic mechanisms to project how the invasion

H. lepidulum will interact with various configurations of a heterogeneous landscape.

While the application in this thesis focuses on describing the invasive spread of a plant,

this module could just as easily be applied to animal species. In addition, while this

application focuses on using the module to assess the threats posed by non-native species,

it also has the potential to be a very useful tool to explore population dynamics of desirable

species, providing an excellent framework to perform analyses such as population viability

analysis of endangered or threatened populations of both plants and animals. My hope

is that this module (along with MDiG) will serve as a useful tool for a wide variety of

spatial demographic analyses in the future.
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Chapter 5

Incorporating spatial dynamics into

model structure at a local

population scale

5.1 Introduction

Demographic models have become an invaluable tool for the analysis and forecasting

of biological populations. These models can be applied across a range of applications,

from determining the viability of relatively rare and potentially threatened populations

(Boyce 1992; Beissinger & Westphal 1998; Keith et al. 2008), to examining the potential

threat posed by undesirable invasive pest species (Neubert & Caswell 2000; Buckley et al.

2003; Burns 2008). The complexity of these models varies dramatically, from the applica-

tion of a single function to describe population-level growth (Verhulst 1838; Tsoularis &

Wallace 2002; Martinez et al. 2008), to matrix population models which describe the tran-

sitions between di↵erent ages or stages in an organism’s life cycle (Caswell 2001; Neubert

& Parker 2004; Ramula et al. 2008), to higher-order nonlinear functions describing the

interaction of multiple populations (Holt & Pickering 1985; Vucetich et al. 2002; Reichen-

bach et al. 2006). As our understanding of these systems becomes more sophisticated,

the critical evaluation of di↵erent modelling approaches becomes increasingly important.

Understanding the underlying characteristics and features of the multitude of potential

modelling approaches can help to evaluate the suitability of a particular approach for cer-

tain applications, and at the same time help to ensure that the approach properly reflects

the mechanisms of the system under study.

In addition to the level of complexity, the wide variety of demographic models currently

available can also be classified by using a few simple criteria that describe how they

operate at di↵erent scales. Closed systems are those models which use a single function

or process to describe all of the individuals within a population of interest. As such models

are inclusive of all individuals, their spatial scale is inherently defined by the extent of
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the population. These systems are largely autonomous, and immigration and emigration

processes have little or no influence on the population trajectory (Hixon et al. 2002).

This is in contrast to an open system which typically consist of a single or series of ‘local

population(s)’. In these open systems, demographic processes operate at the ‘local’ scale,

while immigration and emigration connect the local populations to one another at a larger

scale. This connection permits the transfer of individuals between locations, which can

significantly influence the dynamics of population growth at both the local and global

levels. In these systems, a portion of the propagule supply to any local population can

potentially originate from a di↵erent location. As such, not all of the propagule input

to a local population is necessarily influenced by local processes, as it would be in a

closed system (Johnson 2005). This potential for externality and independence in the

source of propagule pressure is an important defining characteristic of the open system.

Metapopulations are a commonly used example of an open system (Hanski 1994; Hanski

& Ovaskainen 2003; Fahrig 2007).

In addition to being open or closed, populations can be represented using either a com-

plete or incomplete structure. Complete systems are those models where the origin and

fate of all individuals are accounted for. The closed model described above is typically

employed as a complete system, where there is only a single population and immigration

and emigration are e↵ectively nonexistent. The majority of population models repre-

sented by a single equation or function fall into this category. However, complete systems

can also be represented by a group of open populations interlinked via immigration and

emigration, similar to a metapopulation structure (Fahrig & Merriam 1985; Hixon et al.

2002). Incomplete systems also incorporate immigration into the dynamics of local pop-

ulations, but the external supply of immigrants is derived independently of the primary

demographic processes; i.e. assuming a constant seed rain from an external unspecified

source. The result is that this supply of immigrants is not a result of the dynamics of

local processes. This approach is most commonly utilised when it is di�cult or impossible

to precisely determine the external source of propagules, typically due to the large scale

of dispersal, as in marine systems (Roughgarden et al. 1985; Hixon 1998).

The overall structure of the model (open or closed, complete or incomplete) can influ-

ence how well the model is suited to its intended application. The absolute decoupling of

the immigration source from demographic processes in an incomplete system results in a

model that is relatively poorly suited for examining the persistence of a population, as the

propagule supply is typically unabated even in the case where the number of reproduc-

tive individuals is extremely limited (Gaines & La↵erty 1995). The incomplete structure

is therefore not ideally suited for examining the self-su�ciency of isolated populations,

either desirable or undesirable. The decoupling of propagule supply and demographic pro-

cesses in this type of model make it di�cult to recreate the unique conditions of extreme

low density populations such as Allee e↵ects (Stephens et al. 1999). Instead, incomplete

models typically incorporate a relatively constant influx of propagules, which can create
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a persistent obligatory sink where the establishment of a population is bolstered and/or

sustained via the supply of propagules from an external and unspecified source. Such

a model structure would not accurately reflect the diminishing propagule supply expe-

rienced by a declining population. Under such conditions, a complete model structure

(composed of either a single large closed model, or multiple interlinked open models) typ-

ically represents a better option to investigate the probability of a population persistence,

as it provides a more detailed accounting of propagule supply.

While the philosophical underpinnings of the di↵erent approaches can be used to deter-

mine appropriate model structure, this decision is not always considered ahead of time.

More often, the decision between an open or closed model structure is determined post hoc

and dictated as a pragmatic decision, driven by a combination of the scale at which field

measurements are collected and the dispersal characteristics of the particular organism

in question. However considering the model structure before hand may help to ensure

that the level of complexity contained within the model is su�cient to answer the ques-

tion posed. While not all questions require the highest level of modelling complexity to

address them (and indeed, parsimony is desired), consideration to this point a priori can

help to focus the investigation. Addressing this ahead of time may also help to direct data

collection, and can be done so relatively easily; for example, if the scale of the process

in question is such that dispersal is likely to move individuals beyond the bounds of the

area investigated, then an open model structure is more appropriate (Hixon et al. 2002).

The desire to incorporate density-dependent regulatory processes in the model can also

have a strong influence on the scale of measurement chosen for data collection, and in

turn the appropriate model structure. Modern demographic models often include regula-

tory processes that provide feedback to the model, constantly modulate growth rates, and

often limit the overall size of the population (Freckleton et al. 2003; Koons et al. 2005;

Caswell 2008). These regulatory processes typically operate at relatively small scales in

close proximity to the individual; the absolute measure of this scale varies depending on

the organism, but these processes typically represent direct interaction with other organ-

isms (Ray & Hastings 1996; Gunton & Kunin 2007). One of the primary (although not

exclusive) functions of dispersal is to allow progeny to escape the regulatory e↵ects of com-

petition in proximity to the parent, and potentially reach more favourable conditions that

increase the likelihood of successful establishment and growth (Howe & Smallwood 1982;

Ronce 2007). For this mechanism to be e↵ective, propagules must be dispersed beyond

the range where those local density-dependent e↵ects can severely limit their success. As

such, there exists the potential for conflict when attempting to model density-dependent

regulatory processes using a closed-system population model, as both density-dependent

e↵ects and dispersal are often incompatible within the same scale. Because of this limita-

tion and the importance of accurately depicting population viability as described above,

I have applied a combination of an open and complete model structure to investigate

the spatial demographic dynamics of an invasion of Hieracium lepidulum, a herbaceous
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perennial plant. This allows me to utilise the approach of modelling density-dependent

processes at a local scale using an open model structure, while interlinking the local pop-

ulations through dispersal to create a complete model structure. This approach is much

like a traditional metapopulation structure, except that in this application the local pop-

ulations occur in a continuous landscape, whereas a metapopulation by definition requires

that the local populations exist as spatially discrete (Wells & Richmond 1995; Freckleton

& Watkinson 2002). The result of this is that the exchange of propagules in my appli-

cation relies on the distribution of seed using a less rigorously defined approach using a

dispersal kernel to simulate the distribution of individual seeds in space, where exchange

between local populations in a metapopulation analysis are determined by defining the

edges of a network. Still, the two approaches share a great deal in common, and much

of the work done on metapopulation dynamics can be applied to this type of system as

well. For example, the concept of rescue e↵ects has been examined in the framework

of metapopulation models (Brown & Kodric-Brown 1977; Hanski 1991; Jongejans et al.

2008), and can also be applied in this context.

The catchments which are under threat by H. lepidulum contain a range of habitats,

typified by Nothofagus solandri var. cli↵ortioides (beech) forest at the lower elevations,

and a mixture of tussock and sub-alpine scrub at higher elevations (above approximately

1400m above mean sea level). The lower-elevation forest areas are comprised of three

distinct habitats, which include closed-canopy forest, forest gaps, and forest creek. The

higher elevation alpine areas can be further classified into scrub, tussock, or alpine creek

habitats. Each of these habitats provide conditions that result in unique demographic

trajectories of H. lepidulum. In Chapter 2, I developed a small-scale (30x30cm) closed

demographic model to characterise H. lepidulum growth in the di↵erent habitats. The

closed structure was appropriate to that application, as immigration to the sites was

controlled during the seed sowing experiments (by removing all potential seed sources

within a 50m radius), and the scale allowed me to characterise the density-dependent

processes. However, in this chapter I build upon that work by switching to an open

model format by applying the small scale demographic model to individual cells within a

rasterised landscape. Using this new approach, these small scale processes are interlinked

at a larger (30x30m) scale using an individual-based dispersal function. This approach

creates a nearly complete structure by allowing the dissemination of individuals between

cells to occur as a function of the dispersal kernel developed in Chapter 3. The system is

only ‘nearly’ complete, as the bounds of the spatial extent are absorbing, and propagules

leaving this area are lost to the simulation (i.e. Pacala & Silander Jr 1985).

In this chapter I compare and contrast the simulation H. lepidulum populations using

two di↵erent model structures; the first approach uses the aspatial demographic models

developed in Chapter 2 to project population growth from a specific starting condition.

The results are then compared against a second open and complete approach described

above, in which I utilise the PopMod extension (Chapter 4) in the MDiG simulation
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software (Pitt 2008). This software allows me to integrate the stochastic demographic

model from Chapter 2 with the dispersal kernels developed in Chapter 3 to create a

spatially explicit simulation of H. lepidulum populations. Both approaches are employed

to simulate and project population-level growth in each of the habitats found in the

Craigieburn catchments. The results are then compared to examine how the incorporation

of spatial dynamics a↵ects the dynamics of population growth. Specifically, the behaviour

will be analysed to examine the following questions regarding the development of the

H. lepidulum population;

1. How does the incorporation of a spatial component influence predictions of H. lep-

idulum invasion compared to the aspatial projections?

2. What do projections reveal about the dynamics of H. lepidulum invasion in this

landscape, and how do these dynamics vary among the six habitats?

3. What implications can the choice of model structure have for management decisions?

In addition to selecting the appropriate structure and scale for projecting population be-

haviour, dealing with the inherent uncertainty in the estimation of biological parameters

can also a↵ect the final utility of any projections or estimations provided by the model

(Buckley et al. 2005). Incorporating parameter uncertainty at a basic level in the model

propagates the uncertainty throughout the projections, and in the end, should more accu-

rately convey the breadth of potential population-level responses. This provides a realistic

assessment of just how stochastic the outcome can be, and provides a quantitatively as-

sessment of prediction precision (Melbourne & Hastings 2008; Tenhumberg et al. 2008).

Such uncertainty is incorporated into the projections explored in this chapter by utilis-

ing three di↵erent sources of stochasticity; demographic stochasticity (random trials to

determine the fate of each individual), environmental stochasticity (defined as parameter

uncertainty (Caswell 2001) derived from the Bayesian hierarchical estimation of parame-

ters described in Chapter 2), and stochasticity in the dispersal of individuals (obtained by

randomly sampling an appropriate dispersal kernel fitted to empirical data in Chapter 3).

Incorporating these sources of stochasticity across multiple iterations of simulating popu-

lation growth provides an approximation of the range of potential population trajectories

expected from the invasion.

5.2 Methods

The simulation approaches used to forecast the success and growth of H. lepidulum both

employ the previously developed demographic models (Chapter 2). The aspatial model

simply replicates those demographic models across all cells within the landscape. The open
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and complete structure utilises the demographic models in concert with one of the disper-

sal kernels fit to H. lepidulum dispersal data (Chapter 3). These are interlinked using the

MDiG modelling software (Pitt 2008) in concert with the PopMod module (Chapter 4)

to create an open and complete system that captures both small scale density-dependent

e↵ects (via the demographic processes) with larger scale exchange of individuals (via

the dispersal process). This process is outlined in the previous chapter; an overview is

available in Figure 4.2. Both simulation approaches are performed using habitat-specific

demographic models in order to reflect the di↵erent conditions that constitute the land-

scape of the study area.

5.2.1 Demographic models

In order to simulate the local population-level dynamics of H. lepidulum, I utilised an

eight-stage stochastic matrix model to simulate annual changes in population structure.

The lifestages represented in the model include a seedbank stage, a seed stage, five juvenile

stages, and one adult stage. These stages reflect the observed life cycle of H. lepidulum

(Chapter 2, Figure 2.1). The distribution of the population in these lifestages at any

location at time t can be described by the matrix

P

t

=

2

666666666666664

seedbank

t

seed

t

J1,t

J2,t

J3,t

J4,t

J5,t

A

t

3

777777777777775

(5.1)

where seedbank stage (seedbank
t

) consists of those seed that did not germinate during the

previous year, and now lie dormant in the soil, and the seed stage (seed
t

) represents new

seed produced during the previous timestep. The juvenile stages (J
↵,t

) represent those

individuals of age ↵ which are not yet reproductive; five juvenile stages are employed in

order to represent an age structure within the non-reproductive state. Adult individuals

(A
t

) are distinguished as those capable of reproducing. Transitions between the di↵er-

ent lifestages are then calculated by using a periodic matrix application (Caswell 2001),

where the the population matrix is multiplied by a series of three transition matrices to

calculate the population distribution at the following timestep. The specific details for

the calculation of the transition values are outlined in Chapter 2. The first transition

matrix
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A =

2

666666666666664

0 0 0 0 0 0 0 0

SB 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

3

777777777777775

(5.2)

determines the proportion (SB) of seeds in the seedbank
t

stage that are viable, and then

pools these with the seed in the seed
t

stage. All the other lifestages remain unchanged by

this transition matrix. The second transition matrix

B =

2

666666666666664

0 1�Rec 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 Rec 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

3

777777777777775

(5.3)

uses the pooled seed count from the previous step to calculate the proportion of seed

(Rec) that recruit to the first juvenile stage (J
1

). The proportion of seed that do not

recruit (1-Rec) transition to the seedbank stage. All other stages remain unchanged by

this matrix. The third and final matrix

C =

2

666666666666664

1 0 0 0 0 0 0 1

0 1 0 0 0 0 0 Fec

0 0 0 0 0 0 0 0

0 0 S

J,1 0 0 0 0 0

0 0 0 S

J,2(1� T

JA,2) 0 0 0 0

0 0 0 0 S

J,3(1� T

JA,3) 0 0 0

0 0 0 0 0 S

J,4(1� T

JA,4) S

J,5(1� T

JA,5) 0

0 0 0 S

J,2TJA,2 S

J,3TJA,3 S

J,4 T

JA,4 S

J,5TJA,5 S

A

3

777777777777775

(5.4)

contains the majority of the activity in the life cycle; juveniles in the first stage (J
1

) either

survive with a probability S
J,1

or die. Individuals in the remaining juvenile stages also

have a probability of survival (S
J,2-5

), but those that survive have two possible fates; they

either mature to a reproductive adult form with probability T
JA,2-5

or remain a juvenile

105



and move on to the subsequent juvenile x age lifestage with probability 1-T
JA,2-5

. Those

individuals that begin the timestep in the fifth juvenile stage (J
5

) and survive but do not

advance remain in the J
5

stage.

This approach to applying the matrices means that individuals will enter the flowering

stage in the year prior to actually producing o↵spring, which is in conflict to the definition

of ‘adults’ given in Chapter 2. However, this shortcoming is overlooked in the interest of

keeping all maturation of individuals contained within a single matrix; otherwise individ-

uals would have the opportunity to advance multiple stages in a single year. In addition,

the use of this approach means that it is possible for populations to go completely ex-

tinct, and recolonize from seed the following year. While this can create some very short

lived invasion episodes, I feel that this approach most accurately represents the process

of germination of seeds in many areas followed by failed establishment.

Benefit of periodic matrix approach

Utilising a periodic matrix modelling approach permitted me to integrate into the sim-

ulation a number of biologically important processes that a↵ect population growth that

would not otherwise be possible using a more traditional single matrix model. First, the

use of the periodic matrix application allows the incorporation of a seed stage. The single

matrix approach is incompatible with the use of a seed stage, as individuals entering this

stage would not be allowed to germinate until the second timestep following their pro-

duction (Caswell 2001). This also permits both seed production and recruitment to act

as spatially-dependent processes in potentially di↵erent locations; i.e. seed production

may be influenced by conspecifics in one location, while recruitment of that seed may be

subject to di↵erent competitive e↵ects at a di↵erent location.

The second benefit of the periodic matrix approach is that it allows me to include a

seedbank stage while retaining compatibility with the recruitment function. Members of

this stage must be kept separate from the new seed at the end of each timestep, as only

the new seed are relocated by the dispersal function, while the seedbank is assumed to

be immobile. The first transition matrix A functions to combine the viable seed from

the seedbank with the new seed that were produced in the last timestep into a total seed

pool. It is critical that the size of the seed pool is calculated prior to the application of the

recruitment function, as the recruitment function is density dependent and utilises the

size of the seed pool as a covariate when estimating the appropriate transition value in the

second matrix, B (see Chapter 2 for details). Using this estimate of recruitment, the total

number of seed recruiting into the first juvenile stage can be calculated using the third

transition matrix, C. Overall this approach di↵ers from the approach in Chapter 2, which

a) implemented stage transitions as a system of equations as opposed to a periodic matrix

multiplication approach (although they are functionally equivalent) and b) implemented

density-dependency in the same way, but did not reflect the possibility of a seed recruiting
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in a location other than its origin.

Incorporating stochasticity

Similar to the one-dimensional projections of population growth described in Chapter

2, this model incorporates both environmental and demographic stochasticity. Just as in

the one-dimensional application, environmental stochasticity is incorporated by randomly

drawing parameter values from a vector which describes the potential sample space. These

vectors were derived from using hierarchical Bayesian techniques to estimate those pa-

rameter values (Chapter 2). Demographic stochasticity was incorporated by performing

a trial for each individual to determine their fate. This is accomplished by generating a

random number from a uniform distribution between zero and one, and comparing that

number to the transition value in the matrix. If the random number is lower than or

equal to the transition value, then the transition occurs. This is only employed for those

transition values with a value  1; in the case of seed production, there is no demographic

stochasticity.

5.2.2 Simulations

Populations of H. lepidulum were simulated in a 100 by 100 cell landscape to examine

how the inclusion of dispersal between the cell-level local populations a↵ects demographic

performance of the species. Both dispersal and demographic models were parameterised

for each of the six habitats (except dispersal in the scrub habitat, see below), which

allows me to examine if there are any patterns or unique elements of population spread

and/or growth which are habitat-specific. Each cell in the simulated landscape represents

a 30x30cm area, matching the scale at which the demographic data were collected. Two

di↵erent sets of simulations were run; the first (the ‘Model Structure Comparison’) was

designed to compare the di↵erences in projected population behaviour when using a closed

versus a complete modelling approach. The second set of simulations was designed to

model the expected behaviour of H. lepidulum in the di↵erent habitats after an initial

introduction using a spatially-explicit approach (‘Population Growth’ section).

Model structure comparison

The first set of simulations is designed as a paired comparison to examine how di↵erences

in model structure influence the demographic performance of H. lepidulum at the local

(individual cell) level by comparing the output from a closed model structure (similar to

that used in Chapter 2) with that from an open and complete structure (incorporating

propagule dispersal between cells). First, a series of closed model runs were performed

using the PopMod module in MDiG (Chapter 4), where immigration and emigration were

disallowed by disabling the dispersal feature in MDiG, forcing all propagules to remain in
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their parent cell. This e↵ectively makes each cell an individual replicate of a closed demo-

graphic model. It was necessary to run these independently of those examined in Chapter

2 in order to match appropriate initial conditions for the open/complete simulations. The

second set of simulations utilised a complete model structure, achieved by allowing the

individual local populations (cells) to interact via dispersal. This dispersal function was

implemented stochastically, with dispersal distances being randomly generated using the

appropriate kernel (below). Initial conditions for both sets of simulations reflected three

di↵erent starting densities; 1, 10, and 50 adults per cell. Simulations were run for 100

timesteps (1 timestep = 1 year) in each habitat.

Population growth

The second set of simulations were designed to model the growth of H. lepidulum popu-

lations at the 30x30m scale in the di↵erent habitats using the spatially-explicit complete

model structure. To achieve this, 10 replicate simulations were run in each of the six

di↵erent habitats for a total of 60 simulation runs. Each simulation was run for 100

timesteps, where each timestep was equal to one year. Initial conditions in these simula-

tions consisted of the four central cells being populated with 10 adult individuals each.

This initial value is su�cient to ensure the persistence of the population, assuring that the

resultant dynamics are not a result of inadequate initial propagule supply. Additionally,

this helped to make sure processing time was used as e�ciently as possible, as simulat-

ing populations that go extinct immediately would require similar processing time while

contributing little to understanding the expected population trajectory. Each iteration of

the simulations typically required just over three hours to run on a 3.0 GHz Pentium P4

desktop computer with 2560 MB of RAM.

Dispersal

The dispersal kernels fitted in Chapter 3 served as the basis for the incorporation of a ker-

nel to describe the dispersal of H. lepidulum in these simulations. In order to be employed

within the simulation software, the kernels needed to describe dispersal distances in terms

of the number of landscape cells traveled. As the simulated landscape is represented using

a 30cm cell size (dictated by the scale of the density-dependent mechanisms specified in

the demographic models developed in Chapter 2), the dispersal kernels had to be rescaled

to match. Unfortunately, unlike a linear function, many of the dispersal kernels did not

have a dedicated rate or slope parameter that could simply be adjusted to reflect the

change in scale. Instead, the original data were rescaled to reflect the observed dispersal

distances in the dispersal trials (Chapter 3) in terms of 30cm units instead of metres,

and the kernels re-parameterised to fit the rescaled data. 1 This was performed using the

1
As a fictional example; consider that the dispersal events averaged 10 metres, and their distribution

around that mean was best described using a poisson distribution (with lambda equal to 10). This
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nls algorithm in the R statistical software language (R Development Core Team 2009).

The reparameterisation of these kernels resulted in a change in the measure of fit for each

kernel; each kernel was therefore re-evaluated, and the best fitting kernel reflecting the

new scale selected for implementation.

When implemented in the simulation, dispersal distances for individual seeds were ob-

tained by generating a random number from a uniform distribution on the interval [0,1],

and then using the cumulative distribution function of the dispersal kernel to relate the

number to a corresponding dispersal distance (Pitt 2008). The seed is dispersed in a ran-

dom direction originating from the centre of the parent cell. As dispersal events originated

at the centre of the cell, a random value from a uniform distribution on the interval [0,0.5]

is added to the dispersal distance in order to approximate a random origin between the

centre and edge of the cell. As a note, the MDiG software does not currently contain the

functionality to define the dispersal kernel parameter values as stochastic variables in the

same was as in the demographic model. As such, the dispersal kernel must be specified

using set (static) parameters, but the kernel itself is randomly sampled to calculate each

dispersal distance.

5.2.3 Simulation analyses

Model structure comparison

The comparison of the two di↵erent model structures examined di↵erences at the level

of the individual cell; the 100 by 100 cell landscape provided a total of 10,000 replicates

of each combination of habitat, initial condition, and model structure, for a total of 36

simulated landscapes. I examined the results for habitat-specific di↵erences and general

trends that indicate the projected trajectory of the population. I also included some

aggregate measures of performance across the entire landscape, which includes the pro-

portion of occupied cells and the population size across the entire landscape. Since each

landscape was simulated once, there is no replication of these aggregate measures, and

statistical comparisons are not possible. All indices of population performance (density,

occupancy (proportion of cells with one or more plants in the juvenile or adult stage), and

total population size) were calculated using only the adult life stage, as this is a better

indication of invasion success than the more transient juveniles.

distribution would describe a dataset with a standard deviation of approximately 3.16 metres. Now,

consider the same data needed to be converted to cm; the mean distance could be easily converted (10

metres = 1000 cm), but simply replacing the lambda value in the Poisson function creates a distribution

with a standard deviation of 31.59 cm, a full order of magnitude smaller than when using metres as

base units. Because of this type of behaviour and the interaction of terms within the probability density

functions used to describe dispersal, changing the units of the scale at which dispersal was measured

required re-parameterisation of the kernels and a re-assessment of their fit.
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Population growth

The second set of simulations were performed to model population growth following in-

troduction, and focused on the same indices as the comparison of model structure. This

included the total number of individuals, the proportion of cells that were occupied (one

or more plants in the juvenile or adult stage), and the density of individuals within occu-

pied cells. As in the comparison of model structures, these indices were calculated using

only the adult life stage. However, these simulations reflected an initial introduction

(consisting of a small proportion of cells) spreading into a largely unoccupied landscape;

as such, the performance at the level of the entire landscape was more the focus here,

as opposed to the cell-level performance highlighted in the model structure comparison.

For this reason, ten replicates of each simulation were performed to provide replication

at the landscape level. Calculations were made for each timestep of each replicate of

each landscape model, and the plotted responses were examined to discern general and

habitat-specific trends.

5.3 Results

5.3.1 Dispersal

The reparameterisation of the dispersal kernels to match the 30cm scale used in these

simulations resulted in a di↵erent ranking of kernel fits compared to those found in Chap-

ter 3. There were three kernels that provided very similar fits (according to their AIC

scores), which were distinguishably better than the AIC scores of the other kernels. These

kernels were the two-parameter Cauchy function, the two-parameter negative exponential

function, and the one parameter lognormal function (Table 5.1). The negative exponential

function reflected the best (lowest) AIC score in all habitats, except in the alpine creek

habitat where the lognormal function returned a better score. However, the transforma-

tion of the lognormal function to produce a cumulative distribution function (required

for randomly sampling of the kernel; see methods) requires a numerical integration pro-

cedure, rendering it too complex for implementation in the simulation. Instead, the

two-parameter negative exponential function was selected for use in all habitats as it was

found to provide a good fit to the data, is robust to changes in the measurement scale,

and its implementation in the software is achievable. The negative exponential function

was parameterised using pooled data from across all of the habitats for implementation

in the scrub habitat (no dispersal data were collected in this habitat).
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Figure 5.1: Trajectories of the density of adults in individual cells were obtained from simulat-

ing the H. lepidulum population over 100 time steps. The simulations were initiated with either

1, 10, or 50 adult individuals in each cell, and demographic models reflected either a closed

model structure (in black) that did not incorporate dispersal between the cells, or a complete

model structure (in red) that included interactions between cells driven by the dispersal of seed.

Shaded areas represent a one standard deviation confidence interval around the mean response,

calculated at each time step. Note variation in x-axis between habitats.
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5.3.2 Model structure comparison

Di↵erences between the aspatial closed model structure and the open and complete model

structure varied between habitats. Both approaches reflected a high level of variability

between the individual cells (Figure 5.1). With either approach, the density of adults

in occupied cells in the forest creek and forest habitats appeared to grow in an almost

linear fashion, and do not appear to have reached a maximum density by the end of the

simulation. In contrast, the densities in the forest gap, alpine creek, scrub, and tussock

habitats appeared to have reached a maximum density at lower levels than the forest or

forest creek. The initial seeding density appears to have a slight influence on projections

in the forest, forest creek, forest gap, and alpine creek habitats, while the densities in the

scrub and tussock habitats appear to all converge at similar levels, regardless of their initial

state. Overall, it appears that model structure (open or closed) does not have a significant

influence on mean density after 100 years of population development, as trajectories from

both structures are very similar, and comparisons of confidence interval reflecting one

standard deviation above and below indicate a great deal of overlap between the two

model structures (Figure 5.1). However, even though the standard deviations suggest

this pattern was not significant, the closed system did consistently produce higher mean

adult densities than the complete system.

The trajectories of total population size from the closed and complete model structures

(measured as the total number of adults in the simulated landscape) appear to di↵erentiate

in some, but not all of the habitats examined (Figure 5.2). In those habitats where

di↵erences between the two model structures are evident, the complete system tends to

result in larger populations compared to the closed model structure (forest creek, forest,

and tussock habitats); population size in the remaining habitats appears to be nearly

identical. The forest creek and forest habitats appear to be able to support the largest

populations, followed by the alpine creek habitat. Populations in the tussock habitat,

while relatively small, appear to be steady or increasing in size, in comparison to the

forest gap or scrub habitats, which appear to exhibit negative growth throughout the

simulation period, and appear to be headed for extinction. The initial conditions appear

to have a strong influence over the population size after 100 years of simulated growth

in most of the habitats, regardless of whether or not the population is stable by this

time. In general, initial densities were positively correlated with population size at the

end of the simulation run for most habitats (except scrub). However, the e↵ect of the

initial density on the general trajectory is less clear; populations in forest gap and scrub

appear to be headed for extinction regardless of the initial condition. In other habitats

(forest, forest creek, and alpine creek), higher initial densities result in apparently self-

sustaining populations, while lower initial densities seem destined for extinction. This

result is further confounded by the influence of the di↵erent model structures as well.

In general, the complete model almost always resulted in a higher occupancy rate at the
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Figure 5.2: Projections of the population trajectories obtained from simulating the H. lep-
idulum population over 100 time steps. The simulations were initiated with either 1, 10, or 50

adult individuals in each cell, and demographic models reflected either a closed model structure

(in black) that did not incorporate dispersal between the cells, or a complete model structure

(in red) that included interactions between cells driven by the dispersal of seed. As an aggre-

gate measure of performance, there are no replicates at this level and therefore no measure of

variability in these values.
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Figure 5.3: Trajectories of the occupancy rates of cells by adults were obtained from simulating

the H. lepidulum population over 100 time steps. The simulations were initiated with either 1,

10, or 50 adult individuals in each cell, and demographic models reflected either a closed model

structure (in black) that did not incorporate dispersal between the cells, or a complete model

structure (in red) that included interactions between cells driven by the dispersal of seed.
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end of simulating 100 years of population growth (Figure 5.3). Di↵erences in model per-

formance were barely perceptible in the scrub habitat, but in the remaining habitats the

complete model clearly had higher occupancy rates at the end of the simulation. Patterns

in the change of occupancy rates over time also emerged. Cell occupancy tended to decline

in nearly all of the simulations immediately following the initial 100% occupancy. Beyond

this, however, a distinction can be made between those simulations where occupancy rates

recovered, and began to increase after the initial drop, those simulations where occupancy

rates levelled out, and those simulations that continued to decrease. The occupancy rates

of simulations using the closed model structure typically continued to decrease over time.

Only in the forest creek habitat do occupancy rates of the closed model appear to level o↵;

none of the simulations with the closed model showed any increases in occupancy during

the simulations. Patterns of occupancy from the simulations using the complete model

structure are more indicative of a self-sustaining population; while simulations from this

model appear to continue to decline throughout the simulation in some habitats (forest

gap and scrub), they appear to level out (alpine creek) or even increase in others (forest

creek, forest, and tussock; Figure 5.3). Also notable is the apparent influence of initial

starting densities; simulations with higher initial densities were not only more resilient in

terms of the initial drop in occupancy (compared to comparable simulations with lower

initial densities), but they also appear to approach a higher sustainable occupancy level

in some habitats (i.e. forest and alpine creek habitats).

5.3.3 Projected growth

Table 5.2: The projected mean population sizes, occupancy rates, and adult density of occupied

cells in each habitat produced after running the complete model structure for 100 years, with

an initial condition of 10 adult individuals in each of the centre four cells of the landscape. The

standard deviation of the di↵erent measures is shown in parentheses.

Habitat Mean population size (SD) Occupancy (SD) Density (SD)

Forest Creek 2085.7A (786.2) 379.5A (107.7) 5.4A (0.6)

Forest 140.3C (168.5) 19.7C (22.1) 4.9A (2.9)

Forest Gap 5.6C (7.7) 1.6C (2.0) 1.7B (2.0)

Alpine Creek 7.8C (16.7) 1.0C (2.1) 1.6B (3.3)

Scrub 0.0C (n/a) 0C (n/a) 0B (n/a)

Tussock 1132.8B (549.5) 192.6B (78.9) 5.6A (0.9)

Simulations of the open and complete model structure to project population growth re-

vealed that there was a significant di↵erence in the size of the adult populations in di↵erent

habitats after 100 years (one-way ANOVA; F(5,54)=45.3, p < 0.001). Tukey’s range test
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(Zar 1999) was used to compare population sizes in the di↵erent habitats at the end of

each simulation, and showed that populations were largest in the forest creek habitat

(p < 0.001), followed by the tussock habitat (p < 0.001). The remaining habitats (for-

est, forest gap, alpine creek, and scrub) were statistically indistinguishable in terms of

landscape-level population size by the end of the simulation, although the forest habitat

consistently had larger populations than the others (albeit highly variable; Table 5.2).

Occupancy rates in the di↵erent habitats also di↵ered significantly (one-way ANOVA;

F(5,54)=76.991, p < 0.001); Tukey’s range test indicated the occupancy rate in the forest

creek habitat was again significantly higher than the others (p < 0.001), followed by the

tussock habitat (p < 0.001). Again the remaining four habitats were statistically indis-

tinguishable. Simulations in the di↵erent habitats also di↵ered in terms of the density

of adults in the occupied cells (one-way ANOVA; F(5,54)=11.516, p < 0.001), these dif-

ferences were slightly di↵erent than compared to groupings based on population size or

occupancy rate. A Tukey’s range test divided the habitats into two statistically similar

groups according to density; the forest creek, forest, and tussock habitats all have similar

densities ranging from 4.92 to 5.63 individuals per cell, which were not significantly dif-

ferent from one another (p > 0.1). Simulation results in these habitats were significantly

di↵erent than the remaining habitats (forest gap, alpine creek, and scrub; p < 0.001).

Simulated densities in the forest gap, alpine creek, and scrub habitats ranged from 0.00

to 1.70, and were not significantly di↵erent to one another (p > 0.1).

5.4 Discussion

5.4.1 Comparison of model structure

The primary di↵erence in utilising the complete model structure (which incorporates

dispersal) as opposed to the closed structure (which does not incorporate dispersal) is

that incorporating dispersal allows the local demographic processes (that occur within

individual cells) to be influenced by populations in locations through the exchange of

seed. This creates an interlinkage between the individual cell-level populations, and the

landscape-level dynamics are more representative of a single spatially connected popula-

tion as opposed to the aggregate behaviour of multiple independent replicates. At the

same time, applying the demographic models at the local (individual cell) scale ensures

an accurate representation of the density dependent processes, as this is the scale used

when fitting the models which describe this phenomenon (Chapter 2). Comparing the

results of simulations using the two approaches allows me to examine how well we can

apply these models which reflect the local demographic processes to project population

dynamics at a larger scale. While in the end, it appears that both approaches tended to

produce very similar projections of overall population size (Figure 5.2), a close compari-

son of the occupancy and density of individual cells reveals that they arrive at these end
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Figure 5.4: The projected performance of simulated populations in the di↵erent habitats (using

the complete model structure), measured in terms of total population size, occupancy rate of

cells by adults, and mean density of occupied cells. These simulations were all initiated with 40

adult individuals distributed among the centre four cells and run for 100 timesteps.
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points via distinctly di↵erent paths. In general, omitting dispersal with the closed model

simulations results in a strategy that utilises a relatively small number of cells occupied

at high densities (Figure 5.1 and Figure 5.3). The relatively high rate of local extinction

in the absence of dispersal creates a condition of highly localized populations (Kean &

Barlow 2004). Conversely, incorporating dispersal (using the complete model structure)

results in a greater proportion of cells containing H. lepidulum at lower densities, cre-

ating sparse population conditions (Kean & Barlow 2004). Depending on the tolerance

of the existing community for H. lepidulum, these two di↵erent dynamics may result in

significantly di↵erent outcomes; the sparse distribution is more likely to be successfully

assimilated into the existing community, while the localized invasions are more likely to

displace other species, at least at smaller scales.

The omission of dispersal in the closed model structure results in seeds remaining within

their cell of origin, which produces a localised e↵ect of propagule pressure compared to the

open model structure, in which a portion of the seed would disseminate, and the propagule

pressure originating from one cell would be dispersed among a number of neighbours. This

localisation of propagule pressure e↵ectively amplifies the trajectory achieved by the local

population through stochastic variation in the simulation; if a local population starts out

poorly, the result is compounded by a decrease in the number of reproductive individuals,

which reduces replacement of dying individuals, creating a negative feedback loop. The

converse is also true, where local populations which are successful early on produce more

reproductive individuals, which produce more propagules, and so on creating a positive

feedback. However, while increased seed supply does result in increased recruitment,

the relationship is not linear, and the proportion of seed that result in a viable recruit

decreases as the seed input to a cell increases (Duncan et al. 2009). Permitting the

dispersal of seed between cells by using the complete model structure achieves two things;

first, it disseminates the seed more broadly, helping to mitigate the e↵ects of intra-specific

competition, and e↵ectively increases the per-seed recruitment rate (Howe & Smallwood

1982; Hil Res Lambers et al. 2002; Harms et al. 2000). Secondly, the dissemination of

seed between cells reduces the impact of the feedback loops, which tend to reinforce the

initial population trajectory. This dissemination of seed essentially works to ‘spread the

wealth’ of a locally successful population, and allows the diminishing return of increasing

propagule pressure in successful cells to be redispersed to locations with potentially lower

competition from conspecifics, where they would have a higher probability of surviving.

However, the use of absorbing boundaries probably also reduces the relative success of the

complete model structure observed in figure r̃efChapter05-closed-v-open-popSize; the use

of reflective boundaries or a toroidal surface would likely result in higher di↵erentiation

between the two approaches. This interaction between cells (via dispersal) adds a measure

of resiliency against local extinction through this addition of propagules, or can even

provide an avenue for potential recolonisation after a local extinction occurs. This is

analogous to the rescue e↵ect in metapopulation dynamics (Brown & Kodric-Brown 1977),
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but in a spatially continuous landscape. This e↵ect of dispersal increasing occupancy at

the landscape level is seen on all but one of the habitats (scrub) simulated. These results

help to reveal exactly how incorporating dispersal into models of invasion can have a

significant e↵ect on the resiliency and extent of invasive populations, two attributes that

can substantially influence the e↵ectiveness of control e↵orts.

If utilised properly, demographic models such as this can serve as a useful tool when

attempting to predict invasion success (Parker 2000; Caswell et al. 2003). However, this

comparison highlights a few of the potential caveats that should be acknowledged when

using projections from these types of models to decide on management actions. First,

it is clear from this comparison that the overall assessment of invasion success may be

influenced by the model structure. The incorporation of explicitly spatial processes (such

as dispersal) with demographic models may be necessary to obtain accurate projections

(Jongejans et al. 2008). Accounting for these spatial interactions provides a better under-

standing of the inherent resiliency in the population; this is exemplified in the dynamics of

the occupancy rates when the population is initialised with low numbers, and both model

structures start with a high rate of local extinction, but the simulations of the complete

model structure are in most cases able to rebound and end up with positive growth by the

end of the simulation period (Figure 5.3). The use of a non-spatial demographic projec-

tion may therefore lead to an underestimation of the resiliency of these populations, and

in turn an underestimation of the level of intervention required to successfully combat

the invasive population. Secondly, the e↵ect of including a spatial component to these

population projections can vary depending on the local environmental conditions and ex-

isting community structure (e.g. Brown et al. 2008; Harris et al. 2011). The di↵erentiation

between the two model structures is dependent on what habitat is simulated, particularly

when examining the simulations that were initialised at lower densities (Figure 5.3). This

is exemplified in the tussock habitat simulations, where the population represented using

the complete model structure appears to be self-su�cient, while that of the closed model

appears headed for extinction. This interaction between model structure and landscape

heterogeneity can be an important aspect to consider when projecting population growth.

When applied properly, demographic projections can be an invaluable tool to evaluate the

potential e↵ectiveness of control e↵orts (Davis et al. 2006; Brown et al. 2008; Jiao et al.

2009). However, these findings suggest that the e↵ectiveness of removal e↵orts may be

underestimated using a traditional closed model approach. However, this investigation

does not directly investigate the minimum population size required for persistence; such

information would presumably also be useful when evaluating the e↵ectiveness of control

e↵orts.

In this example, the results show that the choice of model structure had a substantial

impact on not only the final predicted state of the invasion, but also the underlying

mechanisms and dynamics by which the invasive population reached that state. It was

therefore prudent in this application to utilise the additional complexity a↵orded by the
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open/complete model structure. However, this is not necessarily the case in all applica-

tions, and persons should strive for parsimony, and find the simplest model that addresses

the question at hand. In addition, the costs in terms of additional data collection and

analysis required for these types of analyses must be carefully weighed. The application

described in this chapter is meant as an example to illustrate the potential for model

structure to influence the outcomes, not to infer that additional complexity is always

better.

5.4.2 Projections of H. lepidulum spread

The second set of simulations were performed to examine how a small introduction of

H. lepidulum would spread into homogeneous landscapes (as above). The complete model

structure was used for these projections. Again, the high level of between-habitat vari-

ability in invasion success projected by the simulations reinforces the importance of con-

sidering habitat when assessing invasibility (e.g. Luken & Mattimiro 1991; Shea et al.

2005). It is clear from these simulations that H. lepidulum is much more successful in

the forest creek habitat when compared to the other low-elevation forest habitats (forest

and forest gap; Figure 5.2). Deconstructing the total population size into occupancy and

density of individual cells suggests (as in the model comparison section, above) that high

occupancy rates are the primary mechanism driving this distinction, as there is very little

di↵erentiation between the habitats in terms of individual cell-level density (Figure 5.4).

This di↵erentiation in occupancy shows that H. lepidulum is better able to establish viable

populations within previously unoccupied cells of the forest creek habitat. This increase

in occupancy is at least in part due to increased susceptibility of the habitat to invasion,

as reflected by the increased seed production and increased survival seen across multiple

stages in this habitat compared to others (Chapter 2). The relative invasibility of these

three habitats generally matches the pattern seen from the non-spatial application of the

population model performed in Chapter 2. This result again reiterates the importance

that the forest creek plays in the invasion, not only in terms of providing invasible habitat,

but also providing that habitat in a strategic context of the landscape, forming a con-

tinuous corridor by which the invasion could potentially bypass the less invasible forest

habitats to reach the alpine habitats.

In contrast to the patterns in the lower elevation forest habitats, the results in the higher

alpine habitats appear to contradict the projections of invasion success from Chapter 2.

The spatial projections performed in this chapter show that of the three high elevation

habitats, the largest total population size is found in the tussock habitat (Figure 5.4).

This contradicts those findings from Chapter 2, which projects that the greatest number

of individuals at higher elevations would be found in the alpine creek habitat (Figure 2.5).

Again, examining the combination of occupancy and individual-cell level density provides

additional insight; occupied cells in the spatial simulations produce higher densities in
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the alpine creek habitat compared to either the tussock or scrub habitats (Figure 5.4).

This relatively higher density at the individual cell level is more in agreement with the

results from Chapter 2. However, the occupancy rate in the alpine creek habitat is so

low, that the total population size in this habitat is lower than in the tussock habitat.

Instead, the population in the tussock habitat is able to net a greater total population

size by occupying more cells, albeit at lower densities than in the alpine creek habitat.

These findings suggest that H. lepdiulum is likely to have substantially di↵erent dynamics

in these habitats; dynamics within the alpine creek habitat appear to be less stable, with

higher variability in occupancy and density. We can therefore postulate that this habitat

is likely to have fewer occupied sites, but these have a greater chance to support high

densities of H. lepidulum. In contrast, individual sites within the tussock landscape are

more likely to be occupied, but at a lower and more consistent density of individuals.

Presumably, this di↵erence is a function of the variability in environmental conditions,

suggesting a higher degree of variability within the alpine creek habitat. The scrub habitat

appears to be largely resistant to invasion, in contrast to the projections from Chapter

2. Increasing the initial densities (as in the model structure comparison) in this habitat

appear to have a positive e↵ect, and appear to be more likely to result in a self-su�cient

population (Figure 5.3). This could potentially reflect that successful establishment in

this habitat may require a higher critical mass of propagule input to successfully compete

with the dense scrub vegetation.

The extremely high seed inputs explored in Chapter 2 along with the retention of all

o↵spring from the closed model system may have provided enough propagules to sustain

a population from those experiments; such conditions would be harder to achieve with the

relatively small initial densities utilised in the projections from this chapter. In addition,

the addition of dispersal results in the loss of some seed to other cells via dispersal. This

essentially decreases the seed input when a successful subpopulation within a cell is sur-

rounded by less successful subpopulation; this successful subpopulation acts as a source,

and the surrounding cells as sinks. This reduction in self-seeding of a subpopulation as

a result of dispersal could have a significant e↵ect on the probability of extinction if it

pushes the seed input below the critical threshold necessary to overcome a strong Allee

e↵ect that can occur as a function of stochasticity in the demographic model (Lande

1998). Lastly, while the size of H. lepidulum populations in the less invasible habitats

(forest, forest gap, scrub, and alpine creek) is significantly smaller than in the forest creek

or scrub habitats, the simulations suggest that pockets of H. lepidulum could persist in

these less invasive habitats (although less likely in the scrub habitat). If control e↵orts

were to only focus on the most invasive habitats, these pockets could serve as refugia for

the invasion, and potentially supply propagules after eradication in the other habitats.

122



5.5 Conclusions

Overall these results suggests that even at the relatively small scales examined in this

chapter, including dispersal between neighbouring individuals or groups did not substan-

tially influence estimates of population size. This agreement between the approaches

may be transient, however, and the fact that the underlying processes were substantially

di↵erent between the model structures suggests that this agreement between the two ap-

proaches may be spurious. These results clearly show that very di↵erent paths produced

a similar end state, and that the processes by which these results were reached di↵ers

substantially between the two di↵erent modelling approaches. This highlights the strong

interdependent demographic relationships that can arise between locations, similar to

those seen in metapopulation models (Hanski 1991), and the importance of acknowledg-

ing them to achieve accurate predictions as they tend to promote the overall success of

the invasive population by decentralising successful population growth and redistributing

this success to other locations. This approach makes it possible for existing individuals

to either recolonize empty cells, or provide additional propagules to counteract the ex-

tinction of failing cells, spreading the wealth of productive locations. Other studies have

also noted the spatial interdependence of groups of individuals, either through observing

the spatial autocorrelation of organism densities (Watkinson et al. 2000), synchronis-

ing e↵ects of migration processes (Gyllenberg et al. 1993), or the previously mentioned

metapopulation-level rescue e↵ects (Brown & Kodric-Brown 1977; Hanski 1991). How-

ever the implication here that these interactions serve to increase population performance

across local subpopulations in a spatially continuous landscape has not previously been

explored to the best of my knowledge. The important distinction in this examination is

that these interdependencies and interactions influence population dynamics even in rela-

tively continuous groupings of individuals, and are not specific to the context of discretised

groupings of individuals in which they are often discussed. This phenomenon highlights

the importance of using a bottom-up approach to investigate the underlying processes

that shape the observed result, as opposed to modelling the higher level response directly.

Interestingly, the initial conditions of the simulation not only influenced the final outcome,

but appear to dictate the dynamics of population growth. In the well stocked simulations,

the forest and forest creek habitats appeared to support the largest populations; reducing

the initial stocking to the relatively sparse conditions used to initiate the population

projections resulted in the population in the tussock habitat exceeding that of the forest

habitat. Again, deconstructing the population performance into measures of occupancy

and density clearly show that increasing the proportion of the landscape occupied (as

measured by the occupancy rate) is much more indicative of overall population success

compared to the success of individual locations (as indicated by the population density).

While this reiterates the conclusion (reached above) that occupancy is a primary driver

of population success, it also highlights how improving the spatial extent of a population
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during the early stages of invasion can increase population level growth more rapidly

than a population whose strategy focuses on increasing its local density. In e↵ect, this

dynamic suggests that increased dispersal ability of plants may confer an advantage to

invasive success not only by allowing them to spatially disseminate to new locations,

but also to increase their demographic success relative to less mobile species through the

exploitation of new growing space and release from conspecific competition.

The inclusion of a spatial dynamic to the population projections by applying them in

a complete model structure has a drastic enough e↵ect to make it necessary to reassess

the conclusions drawn from the non-spatial model in Chapter 2. The general dynamics

in the lower elevation forest habitats remain largely unchanged; the forest creek habitat

still threatens to provide a vector of suitable habitat which the invasion can potentially

use to bypass the less hospitable forest matrix. The di↵erence in this case is that the

spatial projections suggest that the forest habitat is more invasible than indicated by the

non-spatial projections, although it still represents less than ideal habitat compared to

the forest creek, and may still act to slow an advancing front. In contrast, the projected

susceptibility that was common to all alpine habitats no longer remains; instead, a finer

classification of invasibility was obtained, where the tussock habitat appears the most

likely to be invaded, while the the alpine creek habitat appears slightly invasible, and the

scrub completely inhospitable to H. lepidulum. These changes serve to highlight how the

incorporation of spatial interactions and dissemination of individuals can have a dramatic

influence on overall levels of abundance and reiterates the importance of either using ap-

propriately scaled data collections on which to base projections of population growth, or,

when this is not practical, attempting to accurately incorporate the appropriate mecha-

nisms and interactions that influence population dynamics.
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Chapter 6

Scaling up: applying local spatial

dynamics to make landscape-level

predictions

6.1 Introduction

Spatially predictive models of spread can be invaluable tools when attempting to combat

the e↵ects of invasive species. While ideally invasive spread would be controlled by limit-

ing propagule transport of potential invaders worldwide, identifying problematic species

prior to their introduction is di�cult (Pyšek & Richardson 2007; Diez et al. 2009) and

invariably problematic species will occasionally slip through established safeguards. The

ability to accurately predict the severity and extent (collectively the ‘success’) of the re-

sultant populations can help us to better manage their impacts. Realistic assessments of

the success of these populations can be used to more accurately target appropriate man-

agement actions to achieve the greatest result. In particular, this increased understanding

can help by allowing us to target control e↵orts where the invasion is likely to occur, as

opposed to apply e↵orts homogeneously across the landscape. This not only increases

the economy of control e↵orts, but can also help to minimise non-target impacts that can

lead to further degradation of the system (Suding et al. 2004; Smith et al. 2006).

Accurately predicting the success of a population requires that predictions be made in

the context of the existing landscape. Early models of organism spread tended to neglect

variation in landscape structure, and made the assumption that the landscape was ho-

mogeneous. More recent research has revealed how heterogeneity within the landscape

can have a marked influence on population success. For example, simply quantifying the

proportion of suitable habitat within a landscape can impart a substantial influence on

estimates of overall population size (Andren 1994; With et al. 1997; Fahrig 2002). The

spatial arrangement and functional connectivity of suitable habitat can also impact de-

mographic success; as the amount of viable habitat is reduced, the spatial arrangement
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of that habitat begins to a↵ect how well dispersal mechanisms can maintain connectiv-

ity between groups. This connectivity has been shown to play an important role on the

demographic success of the population (Gustafson & Gardner 1996; Flather & Bevers

2002; Fraterrigo et al. 2009; Kinezaki et al. 2010). Disrupting this connectivity has two

primary repercussions; first, it can e↵ectively slow or cut o↵ a population from exploiting

additional suitable habitat which is spatially isolated from the main population (Flather

& Bevers 2002; Wiegand et al. 2005). Secondly, the exchange of propagules made possible

by the connectivity can serve as a lifeline to a population, allowing the recolonisation of

extinct patches (Brown & Kodric-Brown 1977; Fraterrigo et al. 2009) or even just rein-

forcing disjunct populations by providing additional propagule input until they become

self-su�cient (Keitt et al. 2001). Reductions in the connectivity between locations makes

it less likely that these interactions can occur.

The choice of how heterogeneity within the landscape is classified can also influence pro-

jections of population success. In the simplest form, heterogeneity can be represented

as a binary classification, as either wholly suitable or unsuitable (Andren 1994; Wiens

1997; Matlack & Monde 2004). While this assumption can help to simplify the system

and help to refine research questions, classifying suitability as a binary response is often

an inappropriate over-simplification of landscape heterogeneity, except in cases such as

oceanic islands, where the matrix of the landscape (water) is of a fundamentally di↵erent

nature (Gustafson & Gardner 1996; Murphy & Lovett-Doust 2004). Instead, it is much

more informative to acknowledge that the landscapes exists as a gradient of suitability.

This approach is becoming more common, and suitability is more often described using

an ordinal scale with multiple factor levels (With et al. 1997; Wiegand et al. 1999, 2005)

or even treated as a continuously variable measure (Pearson & Dawson 2005; Kinezaki et

al. 2010). Increasing the fidelity of this landscape attribute can have a significant e↵ect

on the invasion projections, as habitats which are not necessarily suitable for population

establishment may still provide functionality in terms of connectivity or (pseudo) sink

populations, and can significantly influence population success (Wiegand et al. 2005).

In the previous chapter, I investigated the relative success of Hieracium lepidulum in

the range of habitats encountered during its invasion into montane catchments in the

Southern Alps of New Zealand. Those results highlighted the importance that local

spatial population dynamics have on demographic success at the overall population level.

However, in order to obtain a better understanding of how the invasion is likely to progress

in a real landscape, it is important to examine the dynamics at a larger scale. This

allows me to examine if the dynamics observed at smaller scales are scale-dependent, or

if they hold true over larger spatial extents. Applying the simulations at a larger scale

also allows me to incorporate additional realism in the form of landscape heterogeneity,

and examine how this influences spread dynamics. In general, the habitats within the

landscape examined in this study can be divided into two primary groups based on their

elevational position; at lower elevations, the landscape consists of a matrix of forest,
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interspersed with gaps and stream corridors, and at higher elevations the matrix is a

mixture of tussock and scrub habitats, bisected by stream corridors (a more detailed

description of the simulation landscapes can be found in Section 6.2.2). Insight provided

from the simulations in the previous chapter allows me to hypothesise how the di↵erential

suitability of the habitats along with their spatial configuration will influence the invasion.

I can then test these hypotheses by extending the approach used in Chapter 5 to apply

the simulation of H. lepidulum spread in larger and more complex landscapes. This

allows me to examine how changes in the scale, complexity, and spatial configuration

of the landscape influence the success (in terms of severity and extent) of the invading

population.

6.1.1 E↵ects of landscape on invasion

In order to examine the interaction of the landscape with the invasion of H. lepdiulum,

I constructed a series of abstracted virtual landscapes designed to emulate the basic fea-

tures of the montane catchments of the Craigieburn Valley, an area located in the Southern

Alps of New Zealand which is currently under threat of invasion by H. lepidulum. These

virtual landscapes range from homogeneous representations of the six di↵erent habitat

types common to the area, to heterogeneous combinations containing up to three of these

habitats. Habitats in the landscapes are di↵erentiated by their e↵ect on the demographic

performance of H. lepidulum derived from Chapter 5; incorporating this variation is de-

scribed in detail in Section 6.2.1. The spatial configurations of the habitats within the

heterogeneous landscapes are intended to mimic the configuration of the habitat types

within the actual catchments. The di↵erent configurations examined in the simulations

can be categorised into three groups; heterogeneous mixtures of di↵erent habitats, homo-

geneous landscapes bisected by riparian corridors, or heterogeneous mixtures bisected by

riparian corridors. Specific details of the habitats and the landscape configurations are

described below. These abstractions, while designed to mimic the conditions of the study

area, also cover a majority of the basic landscape configurations likely to be encountered

by most invasions (Kinezaki et al. 2010). In addition, alternative configurations of each

landscape group are utilised to reflect variability in a number of the landscape features

(such as corridor width, patch size, and relative composition of di↵erent habitats) in or-

der to examine how sensitive the invasion dynamics were to changes in the configurations.

Using the habitat-specific measures of invasibility from Chapter 5, I made some general

hypotheses regarding how the invasion would progress is these larger and more complex

landscapes. These hypotheses are organised into three categories which focus on the e↵ect

of changing the scale of prediction on simulation results, the incorporation of landscape

heterogeneity in the form of patches, and the addition of linear features.
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Homogeneous landscapes at di↵erent scales

The most basic representation of a landscape is a homogeneous one, consisting of a single

habitat type. These conditions are broad generalisations not likely to actually exist,

but they are used to evaluate the e↵ect of changing the extent and grain size of the

simulation, and to establish a baseline measure of performance against which the more

complex landscapes can be evaluated. In this chapter, the simulations are applied at an

extent of 3x3km, which is a significantly (10,000x) larger area than the 30x30m extent

examined in the previous chapter. Regardless, I expect that the relative performance of

the invasion in the di↵erent habitats should not change, and I hypothesise that the relative

success of the invasion in large-scale implementation of homogeneous habitats will be the

same as in the smaller scale simulations from Chapter 5. I expect that at this larger

scale, the underlying mechanisms that influence the final population size (specifically

population density and occupancy) will behave much as they did at the smaller scale

observed in Chapter 5.

Incorporating heterogeneity

Heterogeneous mixtures of habitats are found throughout the invaded catchments; in

the lower elevations, treefall gaps in the beech forests provide small isolated patches of

habitat that are markedly di↵erent than the surrounding forest matrix, both in terms

of the demographic performance of H. lepidulum (Chapters 2 and 5) and environmental

conditions (Stewart et al. 1991; Lusk & Smith 1998). At higher elevations the landscape

is comprised of a mixture of alpine scrub and tussock communities, which occupy ap-

proximately equal proportions (pers. observation). Here the di↵erence in demographic

performance of H. lepidulum in the tussock and scrub habitats is more pronounced than

between the forest and forest gap habitats (Chapters 2 and 5). However, in reality neither

combination contains greater than 50% habitat considered to be ‘unsuitable’ to invasion

by H. lepidulum (see Section 6.2.2 for details).

Other studies have suggested that the spatial distribution of available habitat does not

begin to a↵ect the success of a species until the landscape is reduced to approximately 30

to 40% suitable habitat by area (Andren 1994; King & With 2002; Fraterrigo et al. 2009).

Given that only a small portion of the lower elevation landscape is comprised of unsuitable

habitat, I do not expect the configuration of the landscape to have a significant e↵ect on

invasive success. The alpine landscape is on average approximately 50% suitable, and

while this is closer to the 30 to 40% cuto↵, there should still be su�cient suitable habitat

that the invasion is not significantly a↵ected by the configuration patterns. In addition,

the ‘unsuitable’ habitat in the alpine landscape (scrub) is not entirely uninvasible (Chapter

5); I would expect this partial suitability to further reduce any potential impact of the

specific configurations. In the end, I expect that the performance of simulations in these

landscapes will not be influenced by the spatial configuration of the component habitats,
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but will be a function of the proportional composition and comparative suitability of the

di↵erent habitats.

Linear features

The incorporation of linear features in the landscape is functionally very distinct from

heterogeneous mixtures that are dispersed across the landscape. The linear features (in

this case, riparian stream corridors) by their nature exist in a contiguous and continuous

configuration. If these features are inherently susceptible to invasion, their continuity

produces an uninterrupted vector to invasion, which facilitates spread (Planty-Tabacchi

et al. 1996; Stohlgren et al. 1998; Brown & Peet 2003). However, if the feature is inherently

not susceptible to invasion (based on community composition, environmental variables,

or other factors), it can have an inhibitory e↵ect on spread, and represent a barrier to

population movement (Hastings et al. 2005). The previous chapter indicates that the

two riparian habitats found in these landscapes (forest creek and alpine creek) provide

two distinctly di↵erent functional roles; the invasion appears to thrive in the forest creek

habitat, while it is much less successful in the alpine creek habitat. Given the relative

suitability of these habitats, I expect that the addition of either of these corridors to

di↵erent landscapes will have contrasting e↵ects; in the case of the forest creek habitat,

I expect that it’s inclusion into a landscape will act as a vector to facilitate spread and

contribute disproportionately to invasion success, resulting in a more successful invasion

(both in terms of the overall population size and the spatial extent) than what is projected

based on the areal composition of the landscape. Conversely, given that the alpine creek

habitat appears relatively unsuitable to H. lepidulum, I expect that it will have an opposite

e↵ect and disrupt spread, reducing invasion success from projections based on the areal

composition.

To test these hypotheses, I simulated the spread of H. lepdiulum over all of the landscapes

described. These simulations use a combination of a detailed dispersal kernel (Chapter

3) with demographic growth models to develop a stochastic simulation of plant spread.

In the previous chapter, I used a fine-grained (30x30cm) simulation model to project

the population growth of H. lepidulum across a 30x30m area in six di↵erent habitats. As

experimental manipulation and observation are less logistically feasible at the larger grain

used in these simulations (30x30m) (D’Antonio et al. 2004), I use the projections from the

previous chapter to develop a series of descriptive models which summarise the population

growth of H. lepidulum at the coarser resolution. I then apply these models at the coarser

grain to simulate the spread of H. lepidulum over a larger (3x3km) spatial scale. While

this summarisation process may result in some loss of detail, it ensures that applying the

simulations over a larger spatial scale is computationally achievable. Additionally, the

Bayesian modelling approach used to quantify the demographic processes helps to assure

that these summary models accurately convey the variability and uncertainty present in
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the small-scale simulations. This approach allows me to simulate spread at a larger scale

in order to test how di↵erent spatial configurations of the habitats a↵ect spread using

reasonably realistic estimates of habitat suitability and demographic stochasticity. This

also permits me to assess the relative impact of specific features on spread success by

contrasting landscapes with and without the specific features. I can then use this setup

to examine how the realistic approximations of habitat suitability and their general spatial

configurations a↵ect the invasive spread of H. lepidulum, and attempt to draw conclusions

to other situations.

6.2 Methods

6.2.1 Scaling up population dynamics

Landscape level simulations of the growth and spread of H. lepidulum are performed on

a 3x3km landscape using a combination of the MDiG (Pitt et al. 2009) and PopMod

(Chapter 4) software, similar to the approach used in Chapter 5. Simulating the popula-

tion at this extent requires a simplified demographic model compared to those employed

in Chapters 2 and 5, in order that the calculations remain computationally achievable.

To this end I built a series of summary models that describe the aggregate population

dynamics when the 30x30m landscape is simulated at the 30x30cm resolution using an

open complete model structure (Chapter 5). As we saw in Chapter 5, the the total pop-

ulation growth over a 30x30m area is relatively robust to the modelling approach (open

or closed). As this measure is relatively insensitive, I can be confident that using a non-

spatial approach to project growth at the coarser 30x30m grain remains accurate. The

approach used to create these projections is described in the following section; the first

part describes the application of a matrix population approach to reduce the demographic

models presented in the previous chapters to a minimal representation of the life-cycle

which utilises only two stages; the seed stage (in which all of the movement occurs), and

the adult stage (which represents the achievement of reproductive success). This model

is of the form

"
0 Fec

Rec S

A

#
(6.1)

which describes the probability of an individual transitioning between the two lifestages,

where Fec is the seed production of an individual adult, Rec is the probability of a seed

becoming an adult, and S

A

is the probability of adult survival. The calculation of each

individual element within the matrix is described below.
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Recruitment

In previous chapters, the transition from seed to adult was described by transitioning an

individual though multiple juvenile stages before reaching reproductive maturity. In this

chapter, the juvenile stages have been omitted in order to reduce the computational load

of applying the model at a large spatial scale. Instead, the transition value is represented

as a single value (Rec) which reflects the probability of a seed germinating and growing

to reach an adult stage. At each timestep, an individual trial is performed for each seed

by drawing a random number from a uniform distribution from zero to one; if the number

is below the value of Rec, the individual becomes an adult; otherwise it dies.

This approach assimilates the intermediary juvenile stages represented in Chapter 5 into

a single probability. In order to preserve the influence of the juvenile transitions, the

estimates of the (Rec) parameter are modelled based on simulations of the recruitment

of H. lepidulum from seed using the 30x30cm resolution simulation in combination with

the higher resolution demographic model which incorporates the juvenile stages, just as in

Chapter 5. These simulations were performed in a landscape consisting of 10,000 30x30cm

cells. In each iteration of the simulation, all the cells in the landscape are all assigned

a single habitat value, and a single initial seed density. These trials are set up using

the same methodology as in Chapter 5, except that dispersal, reproduction, and adult

mortality processes were disabled in order to isolate the maturation process. Disabling

dispersal allows each cell in the landscape to be treated as an individual trial without

interference from surrounding cells. Removing reproduction and adult mortality from the

simulation allows me to obtain an accurate count of the the number of adults, as the time

to maturity is variable and can be confounded by individuals dying and being replaced by

new individuals. These simulations were run in each of the six habitats using four levels

of initial seed density, for a total of 24 density x habitat combinations. The resulting

proportion of seed recruiting to the adult stage (Rec) is modelled as a function of the

initial seed density (d
s

) using a logistic model of the form

Rec =
1

1 + e

b0,Rec

+b1,Rec

⇤d
s

. (6.2)

The b0 and b1 parameters were estimated using a Bayesian hierarchical modelling ap-

proach, in which the probability of a seed recruiting to an adult was modelled as a

binomial response. The parameters b0 and b1 were assigned minimally informative pri-

ors, using a normal distribution centred around zero with the variance modelled as

dgamma(0.001,0.001) (Spiegelhalter et al. 2003). Parameter values were estimated inde-

pendently for each habitat, and the resulting posterior distributions of each parameter are

used to define the stochastic sample space when the recruitment function is implemented

in the 3x3km landscape. Using this approach allows me to summarise the behaviour

described by the more complex demographic model without incurring its computational

load.
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After parameterisation, the recruitment model required two additional modifications so

that it could be rescaled to the 30x30m resolution of the landscape-scale simulations.

First, the recruitment model had to be re-scaled so that it could be applied at the 30x30m

cell size resolution. The simulations used to parameterise the recruitment model were

performed at the 30x30cm cell scale, to match the scale of the original data collection.

In order re-scale the model and apply it at the coarser resolution of the 30x30m cell

size utilised in this chapter, the seed input in equation 6.2 (d
s

) is divided by 10,000 (the

number of 30x30cm cells that fit within a 30x30m cell). This approach assumes that there

are 10,000 individual ‘micro-cells’ within the 30x30m cell, and that the incoming seed are

distributed evenly amongst these micro-cells. The recruitment of a single ‘micro-cell’ is

then calculated, and extrapolated to the entire 30x30m cell. While this approach is not

perfect, it provides a simple and straightforward approach to re-scaling the recruitment

process, and the relative linearity and minimal slope of the function produces a very small

deviation between the functions at the lowest seed density levels (see results).

Secondly, as the rates of adult survival are not density-dependent (see below) it was

necessary to modify the recruitment rate so that the population would not simply grow

exponentially and unbounded, which is not only biologically unrealistic, but also becomes

computationally unfeasible and causes the software to crash. This was achieved by modi-

fying the recruitment function (equation 6.2) to include an additional term M . This term

utilizes the ratio of the current adult population size within the cell N to the projected

habitat-specific carrying capacity of an individual 30x30m cell K to proportionally reduce

the probability of recruitment as the population size approaches carrying capacity, and

completely turns o↵ recruitment if the carrying capacity of the cell is exceeded. This term

is calculated as

M =

8
<

:
1� N

K

if N  K

0 if N > K

. (6.3)

The carrying capacity (K) is calculated as the greatest population density observed in a

single 30x30cm cell from the simulations in Chapter 5 multiplied by 10,000 (the number

of 30x30cm cells within a 30x30m area). This e↵ectively projects the highest density

observed in each habitat at a 30x30cm scale to a 30x30m area.

Adult survival

The probability of adult survival (S
A

) is the same as in Chapters 2 and 5; estimates of

adult survival are derived from the field observations of tagged individual plants, and are

modelled as a binomial process. Estimates of survival rates are calculated for each of the

habitat types, again using a Bayesian hierarchical approach. No density- or age-specific

relationships were obtainable from the dataset, so the model consisted of an intercept-only

form, using a logit transformation to restrict the response to the interval [0,1]:
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S

A

=
1

1 + e

b0
. (6.4)

The parameter b0 was provided a minimally informative prior (normal distribution with

mean=0 and variance=1000), and was estimated independently for each habitat.

Seed production

Just as with adult survival, the number of seed produced annually per adult plant (Fec)

is modelled using the same approach as in Chapters 2 and 5. The seed production is

modelled in two parts. First, the number of flowers on each plant was modelled using the

data obtained from the tagged individuals. By definition, all adult plants had at least

one flower. I subtracted one from the observed number of flowers on each plant to model

the number of flowers as a Poisson process:

Flowers

hab

� 1 ⇠ DPoisson(�
flowers,hab

). (6.5)

This represents a simpler approach than implementing a zero-truncated Poisson distri-

bution in the confines of the OpenBugs model specification. An n + 1 transformation is

then performed on the predicted values to construct the posterior distribution. Once the

seed had set, a subsample of the seedheads was collected to model seed production at the

individual flower level as a Poisson process:

Seed

f,hab

⇠ DPoisson(�
seed,hab

). (6.6)

Habitat specific estimates of seed production at the plant level (Fec) are then calculated

by multiplying the number of flowers by estimates of seed production per flower:

Fec

hab

= (Flowers

hab

+ 1) ⇤ Seed
f,hab

. (6.7)

6.2.2 Dispersal

Parameterisation of kernel

The initial analysis of dispersal in Chapter 3 found that a Cauchy function

f(d) =
1

⇡↵[1 + (x��

↵

)2]
(6.8)

provided the best fit to H. lepidulum dispersal data. However, just as in Chapter 5, the

dispersal kernels needed to be reparameterised to match the 30m resolution of the simu-

lations. This re-scaling was performed by altering the measurement scale of the dispersal
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data to reflect dispersal distances in terms of the number of 30x30m cells instead of SI

units (metres). All of the candidate kernels described in Chapter 3 were re-parameterised

with the 30m measurement scale using the nls algorithm in the R statistical software

language (R Development Core Team 2009). The fit of the kernels was then evaluated

by calculating the Akaike’s information criterion (AIC) for each kernel, which provides

a standardised technique to compare the deviation of fitted models from the actual data

(Burnham & Anderson 2001).

Implementing dispersal

Although individual habitat-specific parameterisations of the dispersal kernel were pro-

duced in Chapter 3, in this chapter I employ a single kernel, fit using the dispersal

data pooled across all of the habitats. This approach was utilised because implementing

habitat-specific empirical dispersal kernels becomes overly complex at habitat intersec-

tions. Because of the sheer number of individuals simulated in this chapter, processing

the dispersal of every seed individually as in Chapter 5 quickly became unwieldy, both in

terms of processing time and available memory. To make the dispersal process more com-

putationally achievable, the dispersal of seed is employed using a two-stage approach; the

local dispersal (to directly adjacent cells) is calculated as a deterministic function, while

those dispersal events traveling beyond the adjacent cells are implemented individually

and stochastically.

Simulating the local dispersal is performed by taking a proportion of the seed produced

within a cell (described below), and distributing them evenly amongst the four adjacent

cells that share an edge with the parent cell. The distance and direction of the dispersal

of these seed are assumed to be evenly distributed between the four adjacent cells in a

deterministic manner as opposed to stochastically generating a distance and direction for

each individual. This approach handles the majority of dispersal events, and drastically

reduces processing time and memory usage compared to simulating each of these events

individually.

The proportion of events dispersed beyond these cells are processed individually, using

an approach almost identical to that employed in Chapter 5. The dispersal distance for

each event is determined by randomly selecting a probability value between 0 and 1, and

using the cdf of the dispersal kernel to calculate the corresponding distance (see Chapter

5, (Pitt 2008)). In order to only use this approach to model dispersal events beyond the

adjacent cells, instead of selection a number between 0 and 1, a randomly generated value

from a uniform distribution on the interval [p
min,d

, 1] is produced, where p

min,d

is the

probability that an event will disperse the minimum distance required to move beyond

the directly adjacent cells. A random value from a uniform distribution on the interval

[0, d1,s2 ] is added to the dispersal distance to approximate a random origin within the cell

(d1,s is defined below).
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Proportion dispersed by each method

The proportion of individuals dispersed by the deterministic and stochastic approaches

are determined using the partial integral of the dispersal kernel

AUC

d1,d2 =

Z
d2

d1

f(d) (6.9)

which is used to calculate the amount of area under the curve of the dispersal function

between the distances of d1 and d2. To determine the proportion of events handled by each

approach, I calculated the area under the kernel bounded by the range of distances that

would result in an event travelling to either one of the adjacent cells ([d1,d, d2,d] for the local

deterministic approach), or moving beyond them ([d1,s, d2,s] for the stochastic approach).

This quantity is then used to calculate the proportion of dispersal events (P (e)) falling

within the range [d1,s, d2,s], determined by dividing AUC

d1,d2 by the amount of area under

the entire curve

P (e[d1,d2]) =

R
d2

d1
f(d)

R 1000000

0 f(d)
. (6.10)

A distance of 1, 000, 000 cells was chosen for the endpoint of the integral describing the

total area under the curve, as further distances provide no perceivable change in values of

(P (e)) (primarily due to the computational limits of using double precision floating-point

format numbers). While it is possible that dispersal events occur beyond this distance,

they would be far beyond the spatial extent of the simulation anyway, and would not

influence the final results.

As dispersal from the cell is assumed to be random in terms of direction, and the cells are

represented as 30x30m squares, the dispersal distance required to reach one of the adjacent

cells is variable. A dispersal event originating from the centre of the cell travelling in a

direction directly perpendicular to the edge of the cell would have to travel 15 metres to

reach the edge, while a dispersal event travelling towards a corner of the cell would have

to travel 21.21 metres to reach the edge. As a compromise, I used the mean distance of

18.1 metres as the dispersal distance required to leave the parent cell (d1,d). In addition, I

included a constant u to this value; initially each dispersal event was to include a random

value from the distributionDunif(0, d1,d) to account for the event originating at a random

location between the centre of the cell and the edge. Instead, the constant (u) is calculated

as the mean of that distribution (d1,d2 ). The second endpoint of the integral ((d1,d�u)+30)

approximates the furthest edge of adjacent cells, and dispersal events travelling further

than this are implemented by the stochastic dispersal process (discussed below).
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Figure 6.1: Satellite image of Examples of the Craigieburn basin, where the seed sowing trials

were located. Forest habitats are located in the lower elevations (lower right in the picture), and

as elevation increases to the upper left, the transition to the higher elevation alpine habitats is

clearly visible. North is towards the top of the image (Google Earth 2010).

Landscape construction

The H. lepidulum simulations are executed in 24 di↵erent virtual landscapes, with ten

replicates performed in each landscape (for a total of 240 simulation runs). These land-

scapes are designed to reflect simplified versions of the core landscape features the invasion

is likely to encounter. This landscape (Figure 6.1) is decidedly more complex than the

simplified versions used here, although the general configurations and relative composi-

tion are approximately accurate and are intended to more generally represent the types

of landscape configurations likely to be encountered. A sample of the landscapes which

contain the major features are displayed in Figure 6.2 and a brief description of the full

range of landscapes is presented in Table 6.1. Homogeneous landscapes consisting of a

single habitat represent the simplest type of landscapes used in the simulations. Even

though the homogeneous landscapes do not reflect actual conditions the invasion would

encounter, they are implemented in order to develop a baseline of the expected behaviour

of the population for each habitat.

Next, a series of patch landscapes were developed to reflect some of the spatially hetero-
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geneous landscapes the invasion is likely to encounter. The first of these patch landscapes

was designed to emulate the distribution of treefall gaps within the intact forest. A

portion of cells within the landscape were randomly chosen to represent treefall gaps, al-

though the 30x30m cell size is slightly larger than the gaps typically created by individual

treefalls in these forests (Harcombe et al. 1997; Stewart 1986). The remaining cells in

these landscapes were classified as forest. The frequency of treefall gaps in these forests is

not well documented; however, existing estimates suggests that these gaps constitute any-

where from <1 to 7% or more of the area (Stewart 1986; Runkle et al. 1995; Harcombe

et al. 1997; Lusk & Smith 1998). Two di↵erent gap-density landscapes were therefore

constructed, with either 5% (Forest Gap I) or 10% (Forest Gap II) of the landscape clas-

sified as gap habitat. These configurations along with the homogeneous forest landscape

span the range of reported gap frequency in this type of forest. These landscapes were

randomly generated before each replicate of the simulation to ensure that the results were

not representative of only a single spatial configuration.

Patch landscapes representing the mixture of tussock and scrub habitat were also con-

structed; however unlike the forest-forest gap landscapes which are dominated by a forest

matrix, the relative proportions of tussock and scrub habitats are more evenly distributed.

These landscapes were generated using two di↵erent approaches; the first was constructed

by randomly assigning each cell either habitat type, representing a completely random

mix of the two (Tussock/Scrub I). The second approach constructed the landscape by

spatially aggregating the habitat types in a more realistic manner (Tussock/Scrub II). To

construct these landscapes, I randomly located 250 points within the landscape, and used

them to construct a set of Thiessen polygons, which were then randomly assigned one of

the two habitat types. This number of points was chosen because the resultant patterning

and complexity of patches visually approximated that of the real landscape (Figure 6.2).

As neighbouring polygons with the same habitat type are e↵ectively merged, this proce-

dure produces a patch landscape consisting of habitats with complex and random shapes

while maintaining an approximately even proportion of the landscape in each habitat.

Each of these landscape types was uniquely generated prior to each replicate of the simu-

lation (just as with the forest-forest gap landscape), allowing me to attribute any trends

in spread dynamics that arise from these simulations to the generic spatial structure as

opposed to having to interpret them in the context of the individual configurations.

Finally, a range of corridor landscapes were constructed to examine the addition of two

di↵erent sized (30m and 90m wide) riparian corridors to each of the previously described

landscapes. These landscapes are constructed by overlaying the corridors comprised of

the appropriate habitat (forest creek or alpine creek) onto a homogeneous forest (Forest

Corridor I and Forest Corridor II), homogeneous tussock (Tussock Corridor I and Tussock

Corridor II), or homogeneous scrub (Scrub Corridor I and Scrub Corridor II) habitat. Ri-

parian corridors of both widths were also overlain onto the two heterogeneous mixtures

of forest and forest gap habitats to produce the Forest/Gap Corridor I-IV landscapes,
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Figure 6.2: Examples of some of the heterogeneous landscape patterns used in the modelling

of H. lepidulum. Clockwise from top left, these landscapes represent a 5% randomly distributed

mixture (Forest Gap I), a 30m corridor (Forest Corridor I), a 50% aggregated mixture that

includes a 90m corridor (Tussock/Scrub Corridor IV), and a 50% randomly distributed mixture

(Tussock/Scrub I). This subset of landscapes exemplifies the range of configurations used in the

simulations. More specific details of all the landscapes are found in the text or Table 6.1.
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and also overlain over the two mixtures of tussock and scrub habitats to produce the

Tussock/Scrub Corridor I-IV landscapes. This approach permits me to contrast how the

patch landscapes further modify the result of including a riparian corridor which bisects

the homogeneous habitats. These landscapes also o↵er the most realistic depiction of the

field conditions under which the data for this project were collected, and should corre-

spondingly provide the most accurate depiction of how the invasion is likely to proceed

in these catchments.

6.2.3 Running simulations

The simulations were run in a 100x100 cell landscape, where each cell represents a 30x30m

area, creating a total landscape size of 3x3km. Simulations were run for 100 (annual) time

steps, and replicated 10 times in each of the landscapes described above. Those landscapes

containing patchily distributed habitats were uniquely generated prior to each iteration

so that the results would be representative of the general landscape construction rules,

as opposed to a particular configuration. All simulations contained an initial population

located in a 4x4 cell configuration in the bottom centre of the landscape. Each of these

cells contained the maximum number of adults allowed according to the estimated carrying

capacity of each specific habitat (see results). The choice of clumping the initial population

was selected as it better fit the biology of this species, being more representative of a

nascent focus originating from a single accidental introduction point as opposed to a

linear element, such as a plantation edge (i.e. Higgins & Richardson 1998). Initiating the

population at carrying capacity in these cells helped to ensure that the observed spread

dynamics were a function of plant growth and dispersal, and to isolate these dynamics

from the influence of propagule availability.

Parameters in the simulation (recruitment, mortality, and fecundity) were implemented

by randomly drawing values from the Bayesian posterior distributions that defined each

parameter. For those models which required the estimation of multiple parameters, these

values were drawn from concurrent positions in the vectors describing the posterior dis-

tributions. This assured that any covariance between parameters in the same model was

accounted for without having explicity specify their interdependency.

6.2.4 Analyses

The analysis of the simulated spread is based on a number of key metrics; total population

size, population density, the occupancy rate of cells, and the location of the topmost

occupied cell (extent). Density and total population size reflect the local and global

success of the population, while occupancy and extent reflect the areal extent of the

invasion (spatial spread). These metrics are calculated at each timestep in the simulation

period, and are monitored over the entire simulation. The calculation of these metrics
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omits the 4x4 cell area containing the initial populations. This approach allows me to

focus on the development of the invasion in previously unoccupied areas, while assuring

that propagule supply is not a limiting factor. This in turn permits me to focus on the

processes and dynamics of an expanding invasion, and not be concerned about dynamics

that occur as a result of a limited propagule supply, such as Allee e↵ects and/or limited

propagule pressure.

In order to compare the e↵ect of di↵erent landscape configurations on population success,

I calculated the relative amount of change in the total population size as landscape com-

plexity increases. To do this, I utilised the simulated population size in the homogeneous

landscapes as a baseline measure of expected population performance. For this analysis,

the forest, scrub, and tussock habitats are denoted as primary habitats, as they are the

most abundant habitat types in these communities, and comprise the majority of the

landscape matrix (pers. observation). The remaining (secondary) habitats are relatively

small components of the landscape, and therefore primarily only serve to modify the pri-

mary habitats. This perspective has no quantitative e↵ect on the outcomes; it simply

allows me to better focus the analysis on combinations of landscapes that are actually

likely to exist, and allows me to ignore unrealistic configurations, such as a landscape

consisting entirely of forest gaps.

The relative change in population performance was calculated in two ways; first, I calcu-

lated the projected population size of each of the heterogeneous landscapes as a function

of the observed population performance in homogeneous landscapes of the component

habitats, multiplied by their relative composition within the heterogeneous configuration.

These projections can be formalised as

N

proj

=
nX

h=1

= p

h

N

h,homo

(6.11)

where N

proj

is the projected population size of the heterogeneous landscape, n is the

number of habitats that make up the heterogeneous landscape, p
h

is the proportion of

the heterogeneous landscape comprised of habitat h, and N

h,homo

is the mean population

size of the homogeneous landscape h after 100 years. This projection is based entirely

on the proportional composition of the landscape, and ignores any potential influence of

spatial configuration. This projected size is then compared to the results of simulating the

population in the heterogeneous landscape (N
sim

) by calculating the proportional change

between the two approaches as

�N

sim,proj

=
N

sim

�N

proj

N

proj

. (6.12)

A perfect match between the projected and simulated population sizes would produce a

value of zero, and positive or negative values would describe the direction and relative
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magnitude of di↵erence between the projected and simulated results. This comparison al-

lows me to identify the contribution that the spatial configuration of the habitats within

the landscape have on the final size of the population. Projected and simulated pop-

ulation sizes were duplicated in the case of the heterogeneous mixtures that contained

both tussock and scrub habitats, as both habitats represent equal components of these

heterogeneous mixtures. The exact same procedure was used to compare projections of

occupancy between heterogeneous landscapes and their homogeneous counterparts.

The second approach used to quantify the e↵ects of landscape configuration on popula-

tion success was to compare the population size from the simulations in the heterogeneous

landscapes to simulations in homogeneous landscapes of the corresponding primary habi-

tat. This approach allows me to assess how the addition of landscape complexity changes

the projected outcome compared to a homogeneous landscape consisting entirely of the

dominant habitat type (the landscape matrix). The proportional change in population

size between the homogeneous landscapes of primary habitat and simulated population

sizes in heterogeneous habitat was calculated in a similar fashion as

�N

sim,homo

=
N

sim

�N

homo

N

homo

(6.13)

whereN
sim

is the simulated population size after 100 years in the heterogeneous landscape,

and N

homo

is the simulated population size after 100 years in the homogeneous landscape

of the primary habitat. Again, a perfect match results in a value of zero, with other values

representing the magnitude and direction of the deviation from the population estimates

from the homogeneous landscape.

The e↵ect of landscape attributes on invasion success was evaluated by simulating H. lep-

idulum spread for 100 years with replicated 10 times in each landscape, and using the

population state at the end of the simulation period to evaluate the influence of the land-

scape configuration and composition on spread. Although populations will continue to

develop beyond the 100 year simulation period, this temporal extent provided enough time

for the di↵erentiation of populations in some of the landscapes, and provides a useful time

frame for planning management strategies. Performance of the population was assessed

using the four metrics described above (population size, population density, occupancy

rate, and extent). Landscapes were divided into two groups based on their elevational

positioning, and metrics from the simulations were compared within each group using

analyses of variance to detect di↵erences. Pair-wise comparisons were subsequently per-

formed to identify those di↵erences which were statistically significant using a Tukey’s

range test (Zar 1999) with a cuto↵ of p < 0.001.
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6.3 Results

6.3.1 Scaling up population dynamics

Figure 6.3: Recruitment curves describing the probability of a seed maturing to a sexually

reproductive adult in the di↵erent habitats. These functions reflect the rates obtained from

simulating the development of seed using the full demographic model described in Chapter 2.

Dashed lines represent the 95% confidence interval around the parameter estimates. See text

for details.

The validity of the parameter estimates for the recruitment function were assessed by ex-

amining the convergence of three independent vectors of parameter estimates produced by

the Gibbs sampling algorithm; consistency between the three vectors (or chains) means

that each approximation of the parameter value arrived at the same location indepen-

dently, suggesting the parameter estimation is robust and does not reflect a localised

maxima. The convergence of these vectors was assessed using a potential scale reduction

factor (PSRF); values of 1.2 or less suggest convergence of the chains (Gelman et al. 1995).

The PSRF values for the di↵erent parameter and habitat combinations of the recruitment

function ranged from 1.00 to 1.11, suggesting suitable convergence for all parameter es-

timations. Overall, rescaling this function from the 30x30cm scale to the 30x30m scale

had a minimal impact on the probability of recruitment. The function is presumably

most sensitive to the rescaling process at the lower end of the scale, as this is where the
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per-seed areal change in density is the greatest (one seed per 30x30cm cell vs. one seed

per 30x30m cell). In the end, solving the recruitment function at the minimum density of

one seed per cell at either the 30x30cm or 30x30m scale results in a change in the (Rec)

parameter on the order of 10�8 to 10�10 percent (depending on habitat). This level of

variation is relatively insignificant compared to the amount of variation obtained from

the uncertainty in the parameter estimation, which can vary by five to nearly 60 percent

at this minimum seed density (again, depending on the specific habitat). This variability

due to uncertainty is the primary source of the total variation observed in recruitment,

which ranged from approximately 0.00001 to 0.001 at the lowest seed density (1 seed per

30x30m cell), depending on the specific habitat (Figure 6.3). In general, the probability

of recruitment decreased with increasing seed density across all habitats, although the

rate of decrease di↵ered between habitats.

Table 6.2: Ranking of the di↵erent dispersal kernels after fitting them using the 30m ‘units’.

This base unit was necessary to describe the dispersal distance in terms of the number of cells

(30x30m) for compatibility with the landscape-level simulations.

Kernel Form No. of Parameters ↵ � AIC value

Cauchy 2 0.001313 -0.032689 -882.6974

Clark generic (s=0.5) 2 0.765 0.00911 -877.7905

negative exponential 2 0.2921 30.128 -855.9323

Gaussian 2 -0.213 0.008 -846.5925

log-normal 2 36.52 71.8 -842.5184

power 2 0.00316 0.945 -842.4014

Clark generic (s=3) 2 6.034 0.0462 -767.6124

Cauchy 1 10.49 N/A -517.5419

Student’s t 1 0.01207 N/A -571.6194

Clark generic (s=0.5) 1 13.95 N/A -522.9708

power 1 0.0305 N/A -522.0847

Guassian 1 173.2 N/A -517.5210

negative exponential 1 32.63 N/A -517.8896

Clark generic (s=3) 1 36.95 N/A -517.5113

log-normal 1 0.269 N/A -465.6617

6.3.2 Dispersal

Because of the interactions of some of the parameters in the various potential dispersal

kernels, these functions required complete re-parameterisation in order to apply them at

a scale that describes dispersal distance in terms of the number of 30x30m cells traveled

as opposed to the SI units (metres) used in Chapter 3. This re-parameterisation altered
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the fit of a few of the kernel forms, but the overall order of kernel options ranked by

AIC values was the same as in Chapter 3. The two-parameter Cauchy function remained

the top-ranked model (Table 6.3), and was therefore chosen for incorporation into the

simulation.

6.3.3 E↵ects of landscape on invasion

Comparing the result of the simulations in di↵erent landscapes reveal that significant

di↵erences exist in comparisons of each metric for each landscape group (Table 6.3).

Pair-wise comparisons (using a Tukey’s range test) reveal which of the di↵erences which

were statistically significant (Table 6.4).

Table 6.3: Results of the analysis of variance comparing metrics of landscape spread. Land-

scapes were grouped by their elevational positioning, with forest dominated landscapes occurring

at lower elevations, and alpine landscapes occurring at the higher elevations. Four metrics were

calculated at the end of each simulation period; this table contains the result of comparing these

metrics within the elevational groups.

Elevational Group Metric df between df within F-value p-value

Forest Population Size 10 99 58523 < 0.001

Forest Density 10 99 5280 < 0.001

Forest Occupancy 10 99 4626 < 0.001

Forest Extent 10 99 9.977 < 0.001

Alpine Population Size 12 117 225.6 < 0.001

Alpine Density 12 117 70.6 < 0.001

Alpine Occupancy 12 117 902.9 < 0.001

Alpine Extent 12 117 33.28 < 0.001

Homogeneous landscapes

Comparisons of the simulations in homogeneous landscapes of the lower elevation habitats

using pairwise comparisons revealed significant di↵erences in nearly every metric of spread.

Each metric indicated that the invasion was most successful in the homogeneous forest

creek landscape, followed by the forest landscape, and lastly the forest gap landscape.

Di↵erences between the metrics for each of these landscapes was significant except in

the case of extent, where the forest creek and forest landscapes were similar (Table 6.4).

The extent of the invasion in the homogeneous landscape consisting wholly of forest gap

habitat was significantly less than in the other two.
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Figure 6.4: A comparison of the four measures of population success in each of the simulated

landscapes from 10 replications simulated for 100 years each. Landscapes pertaining to the

lower elevations of the catchment which is primarily a forested matrix are presented on the left,

while the landscapes of the upper elevation alpine areas are on the right. The complexity of the

landscapes generally increases from left to right within each panel, ranging from homogeneous

landscapes, to homogeneous landscapes with corridors, to heterogeneous landscapes, to hetero-

geneous landscapes with corridors. The full range of each metric is represented by horizontal

bars for each point; in many instances the range of response is small enough that it is not

discernible in the figure. Specific details of each landscape are described in Table 6.1.
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Figure 6.5: Visualisation of a time-lapse of simulated spread in two di↵erent landscapes; a

homogenous landscape consisting entirely of forest creek landscape (left) and a mixture of scrub

and tussock habitats in a landscape where the two habitats are spatially aggregated. The density

of adult plants in each image is represented by the colour, which ranges from high (red) to low

(green). The progression of the invasion is shown at the onset, represented by a small high-

density introduction (t=0), at the midway point of the simulations (t=50), and at the final time

step (t=100).
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Many of the metrics of spread were significantly di↵erent in the homogeneous landscapes

of the alpine habitats as well (Table 6.4). In general, the simulated spread was most

successful in the homogeneous tussock landscape, followed by the alpine creek, and then

the scrub habitats. Again, the di↵erences between the di↵erent landscapes were significant

for all metrics of invasion success, save for the measure of extent. In terms of extent, the

tussock habitat produced a value which was significantly greater than either the alpine

creek or scrub habitats. The extent of the invasion in the alpine creek and scrub habitats

were statistically indistinguishable.

Patch landscapes

Simulations of H. lepidulum spread in the patch landscapes represents an increase in

both the complexity and realism of landscape representation. At lower elevation, this is

represented in a landscape consisting of a primarily forested matrix, interspersed with

a relatively small proportion of forest gaps. Results in the two variants of this mixture

were statistically indistinguishable using the reported metrics (Table 6.4). However the

inclusion of the patches of forest gap habitat significantly reduced invasion success in

these landscapes compared to the homogeneous forest landscape, except in terms of the

extent of the spread (which was statistically indistinguishable). Conversely, invasion in

the patch landscapes was significantly more successful compared to in the homogeneous

forest gap landscape, except in terms of the density of occupied cells. The success of

simulated invasion into the patch landscapes outperformed the projected metrics of both

total population size (Figure 6.6) and occupancy (Figure 6.7) which were calculated based

on their areal composition.

Simulations of spread in patch landscapes of the alpine landscapes reflected how spread

would progress in a landscape consisting of even parts of scrub and tussock habitats, repre-

sented using two di↵erent levels of aggregation. Just as in the lower elevation landscapes,

the two variants of the patch landscape (Scrub/Tussock I II) were indistinguishable from

one another based on the metrics used to describe spread success (Table 6.4). The rela-

tionship to their homogeneous counterparts is more complicated. Simulations in either

alpine patch landscape significantly exceeds the success of simulations in the homogeneous

scrub habitat by all metrics examined. Compared to the simulations in the homogeneous

tussock landscape, the invasion in the randomly distributed mixture of tussock and scrub

habitat (Scrub/Tussock I) was significantly less successful across all metrics. Simulations

of H. lepidulum in the landscape where the spatial distribution of tussock and scrub

habitats are clumped into groups (Scrub/Tussock II) were mostly less successful as well;

however, the measure of the density of occupied cells overlapped between these two land-

scapes. Just as with the lower elevation landscapes, the simulated invasion into the alpine

patch landscapes produced smaller overall population sizes (Figure 6.6) and occupancy

rates (Figure 6.7) than what was projected based on their proportional composition.
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Figure 6.6: The di↵erence between projected and simulated population size in heterogeneous

landscapes. Bars represent the proportional magnitude with which the simulated populations

deviate from the projected population size for the di↵erent landscape variants. These variants

are represented by the habitat that occupies the majority of that landscape, representing the

landscape matrix (Forest, Tussock, or Scrub). Specific details of individual landscape configura-

tions can be found in Table 6.1, but in general the patch landscapes represent the heterogeneous

mixtures of two habitats, corridor landscapes are the addition of a riparian corridor to an oth-

erwise homogeneous matrix, and the patch corridors represent the addition of a corridor to the

di↵erent levels of the heterogeneous mixtures. Projections of expected population size were

based on population sizes in homogenous landscapes, and calculated using equation 6.11. The

patch landscapes of the tussock and scrub matrices are duplicates, as these two habitats occupy

equal proportions of each of corresponding patch landscape (i.e. Patch Landscape I of the tus-

sock matrix is the same landscape as patch landscape I of the scrub matrix). These comparisons

were made using the mean values from all simulations performed in a specific landscape con-

figuration; a more conservative comparison using appropriate maximum and minimum values

resulted in the same relationships (see text).
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Corridor landscapes

The addition of corridors of riparian habitat (forest creek) to the homogenous forest

habitat reduced the total population size and density of H. lepidulum in occupied cells

compared to simulations in homogeneous landscapes of either forest creek or forest habitat

(Table 6.4). The wider (90m) corridor resulted in more successful invasion measured by

all metrics than the more narrow (30m) corridor, save for the extent, which was identical

between the two. The occupancy rate within the 90m corridor landscape was less than in

a homogenous forest creek landscape, but higher than in the homogeneous forest habitat.

Occupancy in the 30m corridor landscape was lower than in either the 90m corridor

landscape or either of the homogeneous landscapes (forest or forest creek). These four

di↵erent landscapes were largely indistinguishable in terms of the extent, save for the 30m

corridor being of a slightly lower extent than in the homogeneous forest creek landscape.

Just as before, simulations of invasion in these landscapes underperformed the projected

population size (Figure 6.6) and occupancy rates (Figure 6.7).

Including corridors into the alpine habitats of scrub or tussock reduced the invasion success

compared to the homogeneous tussock landscape. Simulations in the homogeneous tussock

landscape resulted in the greatest population size and density, followed by those in the

tussock habitat with a 30m corridor, and finally the tussock habitat with a 90m corridor.

Occupancy rates of the two corridor landscapes were also lower than in the homogeneous

tussock landscape, with a higher occupancy in the 90m corridor compared to the 30m

corridor. The extent of the invasion was the same between the three landscapes. In

scrub-dominated landscapes, the addition of riparian corridors reduced invasion success

in most instances, but the e↵ect was only significant in terms of the density of occupied

cells. The simulations from the two di↵erent corridor widths were indistinguishable from

each other in terms of the four invasion metrics.

Patch-corridor landscapes

In the final and most complex set of landscapes, the riparian corridors are combined with

the patch landscapes to create landscapes consisting of three di↵erent habitats. In the

lower elevation forest matrix, this is represented with a forest creek corridor bisecting the

two variations of forest/forest gap mixtures. Simulated populations of H. lepidulum in

these landscapes were slightly less successful than in the forest corridor landscapes with-

out any forest gap habitat (Table 6.4). The metrics of spread success from simulations

in the forest/forest gap mixtures with a 30m wide corridor (Forest/Gap Corridor I and

Forest/Gap Corridor II) were just below that of the homogeneous forest landscape with a

30m wide corridor; however the only significant di↵erences were between the Forest/Gap

Corridor I landscape (with 5% of area in forest gap habitat) and the Forest Creek I land-

scape which di↵ered in population size, density, and occupancy. The remaining metrics

of spread were statistically indistinguishable between the three landscapes. Compared
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Figure 6.7: The di↵erence between projected and simulated occupancy rates in heterogeneous

landscapes. Landscape descriptions and calculation methods are the same as in Figure 6.6. The

projected occupancy rates are based on mean values from simulations performed in the homo-

geneous landscapes of the component habitats; to test the consistency of these di↵erences, a

comparison using the maximum and minimum occupancy values from homogeneous landscape

simulations was performed to provide a conservative test examining if any of the the simulations

overlapped with the projections; those comparisons in which the di↵erences proved to be consis-

tent across all observed outcomes are marked with an asterisk. The other comparisons revealed

that some overlap between projections and simulations did exist at the extremes, suggesting a

less significant relationship (see text).
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to the forest/forest gap mixtures without corridors, the addition of corridors increased

the invasion success of H. lepidulum; the addition of a 30m corridor resulted in a modest

increase in success, significant only in terms of the population size, and the occupancy

rate for one of the comparisons.

The e↵ect of adding a 90m corridor to either forest/forest gap mixture elicited a very sim-

ilar response to the homogeneous forest landscape with a 90m wide riparian corridor. The

only significant distinction between these three was the increase in the population size and

occupancy rates of the Forest Corridor II landscape compared to the Forest/Gap Corridor

IV. The remaining metrics were all statistically similar to one another. Compared to the

forest/forest gap mixtures without a corridor, the addition of a 90m corridor increased

the invasion success of H. lepidulum across all metrics save for the extent. Overall, the

projections of invasion performance (based on the proportional habitat composition) in

these lower elevation landscapes consistently over predicted the results of the simulations,

both in terms of overall populations size (Figure 6.6) and the number of cells occupied

(Figure 6.7).

The addition of a riparian corridor to mixtures of tussock and scrub appeared to con-

sistently reduce the performance of H. lepidulum compared to the mixtures of tussock

and scrub without the corridors, however significance tests showed that the e↵ect of the

corridors (of either width) was not significant (Table 6.4). From a di↵erent perspec-

tive, the addition of scrub habitat to a tussock landscape with a riparian corridor served

to reduce invasibility; this reduction was more pronounced when the tussock and scrub

were randomly mixed (Tussock/Scrub Corridor I and II) compared to aggregated (Tus-

sock/Scrub Corridor III and IV). Comparing the four di↵erent Tussock/Scrub Corridor

variants reveals that they di↵er very little from each other, with the only significant di↵er-

ence arising when comparing the occupancy of the 30m corridor bisecting the aggregated

tussock/scrub landscape compared to the 90m corridor bisecting the randomly distributed

tussock/scrub landscape.

The simulations performed in the alpine Patch I landscape (random assignment of scrub

or tussock habitat to each cell) with a corridor width of either 30 or 90 metres underper-

formed projections based on the habitat-specific areal composition (Figure 6.6). However,

the simulations of H. lepidulum in the alpine Patch II landscapes (aggregation of scrub

and tussock habitats) outperformed both their projected population size (Figure 6.6) and

projected occupancy (Figure 6.7).

6.3.4 Population size of heterogeneous vs. homogeneous land-

scapes

Compared to simulations in the homogeneous landscapes, increasing landscape complexity

through the inclusion of multiple habitats within the landscape resulted in simulations
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Figure 6.8: Relative change in population size between homogeneous and heterogeneous land-

scapes. Change is calculated relative to the population size from simulations in a homogeneous

habitat indicated in the legend (primary habitat). Landscape complexity generally increases

from left to right, including heterogeneous mixtures (Patch Landscapes), the addition of dif-

ferent size riparian corridors to the primary habitat (30m Corridor and 90m Corridor), and

the combination of patch landscapes with di↵erent size riparian corridors. Relative mixtures

of the primary and secondary habitat vary depending on the specific primary habitat; these

proportions are designed to represent observed levels of landscape variability, and are detailed

in Table 6.1. Values in the graph represent the mean population size from simulations; a more

conservative comparison using appropriate maximum and minimum values resulted in the same

relationships (see text).

where population size in the forest and tussock habitats decreased, and population size

in the scrub habitat increased (Figure 6.8). Only the addition of riparian corridors to the

scrub habitat contradicted these trends, resulting in a reduced population size compared

to a homogeneous scrub landscape. Incorporating the tussock and scrub habitats into a

single landscape produced the greatest magnitude change (relative to the homogeneous

tussock landscape). Just as with the comparison of projected and simulated population

size, I performed another comparison to see if there was any overlap between the minimum

or maximum population sizes from any replicate of the simulations after 100 years in

each configuration (i.e. comparing the minimum population size from the tussock scrub

combination to the maximum population size from a homogeneous scrub habitat). While

the magnitude of di↵erences was reduced, there was still no overlap between the population

size in heterogeneous and homogeneous landscapes.
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6.4 Discussion

6.4.1 Scaling up population dynamics

The results of simulating the spread of H. lepidulum across the di↵erent homogeneous

landscapes using a 30x30m cell were generally very similar to that seen using the 30x30cm

cell in Chapter 5; invasion into the forest creek habitat produces the largest population,

followed by tussock, forest, alpine creek, forest gap, and scrub. While this relative rank-

ing of the invasibility of di↵erent habitats remained the same, applying the simulations

at a larger scale did result in a higher level of di↵erentiation between the habitat-specific

results. The consistency of these habitat-specific di↵erences reiterates the importance of

examining invasion success in the context of the existing vegetative community (described

here by the di↵erent habitat classifications). This context can have a substantial influence

on the mechanisms which drive population growth, and help to explain (and predict) spa-

tially explicit patterns of the extent and severity of an invasion. While the idea that some

habitats are more invasible than others is nothing new (Huenneke et al. 1990; Meekins &

McCarthy 2002; Chytrỳ et al. 2008), these simulations reinforce the findings from Chapter

5 that the mechanisms which determine invasive success (measured as overall population

size) are context-specific, and that the existing environment has a significant influence on

invasion success.

Just as in Chapter 5, the overall population size in any landscape can also be decomposed

into two contributing mechanisms; the e↵ect of local success (density), and the ability of

the population to spread into new areas (occupancy). The furthest extent of spread was

also recorded, but had less meaningful interpretation. Decomposing these mechanisms

revealed dynamics which were very similar to those observed in the finer-scale simulations

in Chapter 5. The two metrics of extent (occupancy) and severity (local density) are

generally correlated; large population sizes are typically achieved when the invasion dis-

plays a combination high-density/high-occupancy pattern, while less successful invasions

typically display a low-density/low-occupancy pattern. This correlation can be seen in

the consistency with which the di↵erent metrics are ranked (Table 6.4). However, the

results in the alpine creek habitat reveal this was not always the case; there H. lepidulum

produced relatively high densities in occupied cells compared to the other habitats, yet

the relatively low occupancy rate meant that this local success did not translate into a

large overall population. This high-density/low-occupancy pattern can also be seen (to

a lesser extent) in the homogeneous scrub habitat, where the limited spatial distribu-

tion of the population resulted in the locally high densities not translating into a large

landscape-level population size. While the high-density/high-occupancy pattern is clearly

an e↵ective invasion strategy, the high-density/low-occupancy response appears to be less

successful at the scale of the entire landscape. This suggests that a few localised high-

density establishments may not constitute an immediate priority for control if there is
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reason to believe the occupancy is not likely to increase.

The opposite situation (low-density/high-occupancy) was not observed in these simula-

tions. This is surprising, as this has been predicted to occur in other simulations of spread

(Kean & Barlow 2004). However in these simulations, local populations show a strong

reliance on metapopulation dynamics, where the success of populations in each cell is

highly dependent on interaction (i.e. additional seed input) with populations in other

cells. While dispersal does deliver seed to a relatively large area (Figure 6.5) populations

in these cells have a relatively low probability of persisting because of the relatively low

rate of seed input. This is analogous to the dynamics of the closed systems examined in

Chapter 5; the relative isolation of these outlying populations means that seed input from

external sources is lower, making it less likely that the local population will reach the

threshold density necessary for persistence, reducing it’s chance of success. This di�culty

is compounded by the fact that even an adult is able to establish and begin to produce

seed, the seed input to the local population will be reduced below the input seen in the

closed system from Chapter 5 as a result of dispersal. However, as these simulations are

stochastic it is possible that this pattern could arise, and I would postulate that such a

response could be troublesome for control e↵orts in practice, as the invasion would be

widespread and possibly di�cult to detect.

6.4.2 E↵ect of landscape configuration on invasion success

Heterogeneous mixtures

Previous investigations have shown that the amount of suitable habitat present in the

landscape can have a disproportionate e↵ect on population size (Schumaker et al. 2004).

Research suggests that decreasing suitable habitat will result in the landscape-level pop-

ulation decreasing proportionally down to a threshold value. A diverse range of studies

using di↵erent approaches all result in similar approximations that this threshold value

is typically found when 30 to 40% (Andren 1994 and references therein, King & With

2002; Fraterrigo et al. 2009). Below this threshold, the reduction in the contiguity of

suitable habitat becomes an impediment to population growth, and the fallo↵ in popu-

lation success deviates from being directly proportional, and instead begins to outpace

the rate of habitat loss. The various patch landscape configurations used in these sim-

ulations represent heterogeneous mixtures of two di↵erent habitats, and (based on the

performance in the corresponding homogeneous landscapes) were comprised of between

50 to 95% of habitat which appears susceptible to invasion. Given that the proportion of

suitable habitat in these landscapes exceeded the 30 to 40% cuto↵ found in other stud-

ies, I hypothesised that the reduction in population size of simulations of H. lepidulum

in these landscapes would be proportional to the reduction in the amount of suitable

habitat (Equation 6.11). However, simulations in these patch landscapes substantially

underperformed their projections (Figure 6.6). This was particularly surprising as the
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habitats in these landscapes are not di↵erentiated as suitable or unsuitable, but reflect a

more subtle variation, which I hypothesised would lessen the negative e↵ects of landscape

configuration on population success. Instead, I thought using this continuous gradient of

variability used to di↵erentiate habitats in these simulations would mean that the amount

of ‘suitable’ habitat would have to be reduced below the 30 to 40% threshold described

above before a disproportionate e↵ect of habitat abundance would be seen on the final

population size; instead, a disproportionate e↵ect was observed even though these land-

scape reflect a higher proportion of suitable habitat.

Just as the amount of suitable habitat can influence population success, so can the spatial

distribution of that habitat. In general, the size and spread of a population of organisms

tend to benefit from the aggregation of suitable habitat (King & With 2002; Pearson &

Dawson 2005). The e↵ect of the spatial distribution of suitable habitat is manifested in

two primary mechanisms; first, the distribution of suitable habitat within the landscape

a↵ects the ability of the organism to reach and colonise new habitat. In the simulations

of H. lepidulum, I tested the e↵ect of aggregating habitat by constructing using two land-

scapes which either reflected a random distribution of suitable habitat (Scrub/Tussock I)

or an aggregated distribution (Scrub/Tussock II). These two landscapes were otherwise

identical in terms of the proportion and suitability of the di↵erent habitats. Simulations

of H. lepidulum in these landscapes revealed that the spatial configuration of these habi-

tats does not significantly a↵ect either the proportion of the landscape invaded, or the

furthest extent of that invasion (Table 6.1, Figure 6.4). However, both of these land-

scapes contain relatively high amounts of suitable habitat (50%) compared to the 30 to

40% cuto↵ described above. With such a high proportion of the landscape classified as

suitable, randomly distributing the suitable locations means that they are not likely to

be completely isolated from other suitable cells. This, combined with the relatively high

dispersal ability of the organism (relative to the grain or resolution of the landscape)

means that the organism is likely to be able to reach the majority of locations with at

least a small number of disseminated seed.

The second mechanism by which the spatial distribution of habitat influences the success

of a population is by having an a↵ect on the functional connectivity of di↵erent locations.

This connectivity dictates the ability of locations to exchange individuals. Results from

the previous chapter demonstrated that an e↵ective network of sub-populations connected

via the dispersal of individuals (a complete system) is more successful than if the sub-

populations were not connected (a closed system). Therefore, while a single dispersal

event may establish a viable population in an isolated location, the lack of continued

propagule exchange can e↵ectively stunt the growth of that new populations. In the

simulations of H. lepidulum, we can see that even though population size tends to fall

short of the projected estimates, the simulations come quite close to the projected occu-

pancy rate of cells (Figure 6.7). This suggests that even though the dispersal abilities of

H. lepidulum allow it to occupy a large proportion of the landscape, the discontinuity of
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the landscape that result from heterogeneous representation of the landscape e↵ectively

inhibits the regular exchange of individuals between sub-populations to the extent that

population growth is negatively e↵ected. While the range of the dispersal process means

that exchange of propagules is still possible between non-adjacent locations, the proba-

bility of these exchanges (based on the dispersal kernel) is so low that it can result in

the functional isolation of a sub-population. This functional isolation has a similar neg-

ative e↵ect on population growth as observed in cases of absolute isolation (Gustafson &

Gardner 1996; Flather & Bevers 2002; Pearson & Dawson 2005; Fraterrigo et al. 2009;

Kinezaki et al. 2010).

Linear features

The inclusion of riparian corridors in the landscape produced mixed responses from the

simulated invasions. Simulations outperformed projected population sizes only in the

landscapes with the wider 90m strip of alpine creek habitat, suggesting this was the only

landscape in which the invasion benefited from the presence of a corridor (Figure 6.6).

This benefit seemed to be largely derived from increased occupancy in the corridor (Fig-

ure 6.7); however the relatively low occupancy level in the homogeneous alpine creek

habitat simulations (Figure 6.4, Table 6.4) means that the expected contribution from

this habitat was quite low, and therefore relatively easy to exceed. The increased total

amount of area in the 90m (vs. 30m) alpine creek corridor compounded this e↵ect. In

the simulations in these landscapes, the occupancy rates within the alpine creek habitat

was between two and three times higher than the simulations in the homogeneous alpine

creek landscape (data not shown). This increased level of occupancy is most likely a result

of populations within the more suitable tussock habitat providing additional propagule

supply to the alpine creek habitat. This additional propagule input allows the population

within the alpine creek habitat to either maintain a sink population (Pulliam & Danielson

1991) or overcome Allee e↵ects that may be hindering establishment (Keitt et al. 2001;

Taylor & Hastings 2005).

While the inclusion of a corridor of forest creek habitat increased population sizes beyond

that of the corresponding corridor-less landscapes, these populations did not exceed their

projected levels, and in fact tended to under-perform them. Looking more closely, the

occupancy rates in these landscapes were close to the projected levels (Figure 6.7), but the

density of individuals within those cells was lower than expected. Given that the initial

introduction of H. lepidulum o↵ered equal access to all habitat types and these simulations

did not incorporate habitat-specific variability in dispersal, the only plausible explanation

for this reduced performance is to consider that the variability between the demographic

processes of the di↵erent habitats results in a desynchronisation of populations between

the di↵erent habitats, resulting in the two habitats becoming e↵ectively isolated from

one another. Variation in environmental conditions experienced in di↵erent habitats has
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been observed to a↵ect the importance of di↵erent transition stages within the lifecycle,

and potentially result in asynchronous population dynamics within a species (Oliver et al.

2010; Harris et al. 2011). In addition, the sensitivity analyses in Chapter 2 do suggest that

populations in at least some of the habitats are largely shaped by the success of di↵erent

life stages. What is unclear is if this di↵erence is substantial enough to permanently reduce

the landscape level capacity of H. lepidulum, or if the under-prediction is more indicative

of the landscape heterogeneity producing a lag in population growth, as noted in other

investigations (Schreiber & Lloyd-Smith 2009). While these simulations did not directly

monitor the interactions or synchronicity of populations between di↵erent habitats, this

represents the most plausible explanation for the phenomenon observed here.

6.4.3 Overall e↵ect of landscape configuration on invasion

The results of these simulations help to confirm that the spatial configuration of habitats

within a landscape can have a significant on invasion success. In general, it appears that

increasing landscape complexity can a↵ect the dynamics of spread in a number of ways.

First, including a finer classification of habitat-specific suitability into the landscape has

the obvious e↵ect of reducing the potential extent and size of the invasion. Identifying

and quantifying this variation in invasive success, and incorporating it into landscape

classifications can significantly improve the accuracy of spread predictions. Secondly, the

spatial distribution and juxtapositioning of these habitats also has an important e↵ect on

the success of the population. These aspects can influence the continuity of the landscape

by providing barriers and/or corridors for movement. In addition, habitats with di↵erent

demographic dynamics can also produce a range of interactions, which can include source-

sink dynamics, rescue e↵ects, and Allee e↵ects; all of which is greatly influenced by the

spatial configuration of the interacting habitats, and can have an substantial influence on

the functional isolation of adjacent populations.

These results also highlight a number of important considerations when investigating

landscape level population performance. First, it is important to distinguish between the

spatial extent of the population (occupancy in this analysis) and the overall population

size. This distinction is not always clear, and the two are often handled interchange-

ably. Secondly, it is important to distinguish between the absolute spatial isolation of

locations (which precludes it being reached by dissemination of propagules), and the

functional isolation of locations (which severely limit the exchange of individuals, and the

interdependencies which provide a demographic boost in complete population structures).

Thirdly, when evaluating isolation, it is important to do so in the context of the scale

of the dispersal mechanism. While any given location in a rasterised landscape may be

surrounded by unsuitable habitat, the resolution of the landscape may be such that this

perceived isolation may be e↵ectively nil when the dissemination abilities of the organism

are taken into account (i.e. Wiegand et al. 2005).
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Throughout this investigation, I have attempted to be as thorough as possible; however,

there are three elements of spread dynamics in this system that were not addressed.

First, any habitat-specific variation in seed dispersal has been omitted due to logistical

constraints. This phenomena could potentially also have significant impacts on spread

patterns. Part of the contention with corridor features is whether they enhance the phys-

ical movement of individuals, as opposed to just providing additional suitable habitat

(Christen & Matlack 2006; Hoyle 2007; Andrew & Ustin 2010). The results of this in-

vestigation suggest that the influence of demography alone does not appear to increase

invasion success, although di↵erent results would be obtained with corridors providing

the only suitable habitat in an otherwise unsuitable matrix (Kinezaki et al. 2010). Dis-

persal has been observed to vary according to di↵erent habitats within a landscape (King

& With 2002, Chapter 3), and that influence in heterogeneous landscapes would be the

next logical step for investigation. Secondly, the presence of scree slopes which occur

in this landscape was not included in the modelled landscapes. The reason for this is

largely pragmatic; the seed sowing trials were not performed in these habitats, and while

the invasion would most likely not take hold in these areas, I have no data to support

that conclusion. As the investigations within this thesis have already dispelled some of

the preconceptions held about the invasibility of di↵erent habitats in these landscapes, I

would have a hard time assuming suitability of other habitats. In addition, the conclu-

sions would not likely be significantly di↵erent than in the landscapes explored with the

relatively uninvasible scrub habitat. Third, an assumption was made that the boundary

conditions were to be absorbing, meaning that any seed dispersed beyond the extent of the

landscape was assumed to be lost. This assumption fits with the nature of the landscape

being investigated, as the lower elevation to the south (bottom in Figure 6.5) consists

of an anthropogenically modified habitat and the other directions lead to (presumably)

uninhabitable ridge tops typified by exposed rock; seed dispersed to any of these locations

is presumably lost. However, other assumptions about the boundary conditions (reflective

or toroidal) would increase seed input to the system, and serve to increase the success of

the invasion.

6.4.4 Management implications

This study has produced a number of broader implications that can be applied to the

planning of management activities. First, it is important to make a distinction between the

extent and severity of invasion. These are often handled interchangeably in the literature,

but represent fundamentally di↵erent mechanisms. The results of this study show that the

extent of spread predominately corresponds with other patterns reported in the literature,

but the severity (in terms of population size) tends to lag. The severity may catch up to

extent in temporal extents beyond those examined here, but this may be an important

distinction when optimising the use of limited resources. This means that continued
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monitoring may be necessary to identify any potential future flare-ups that may occur.

Secondly, while nascent foci and satellite patches have been identified as significant con-

tributors to spread (Moody & Mack 1988; Andrew & Ustin 2010), it is important to

realise that in certain conditions, these spatially disjunct introductions may su↵er from

isolation e↵ects, and will not necessarily expand at the same rate as a spreading front of a

well-established population. At the same time, these cannot be completely overlooked, as

individuals with high survival (as many invasive species do) may endure for long periods

under harsh conditions (Fraterrigo et al. 2009), patiently waiting for their opportunity

to spread. This can be particularly relevant if managers assume that successful control

requires targeting only the easily invaded habitats (i.e. forest creeks). If left unchecked, it

is possible for small local populations to persist in some of the less suitable habitat, from

which they could recolonise locations where control e↵orts had been applied. Given the

relatively fast fallo↵ of dispersal probability away from the source, I would predict that

constructing a bu↵er area that extends 50 metres around those invasible habitats where

control e↵orts were applied would be extremely e↵ective at preventing any recolonisation

from local sources. However, extreme long distance dispersal events (potentially from a

variety of vectors, including humans) could reintroduce seed to these areas; as such, these

areas must be diligently monitored in order to ensure total success.
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Chapter 7

Conclusion

7.1 Introduction

This objective of this dissertation was to develop and apply simulation tools in order to

examine how heterogeneity in the landscape influences the invasion of Hieracium lepidu-

lum (Stenstroem) Omang (Asteraceae) into montane valleys of the Craigieburn Range in

Canterbury, New Zealand. Previous work in this system has suggested that the progres-

sion of the invasion is significantly impacted by the habitat-specific variation in invasibility

within the landscape. Analysis of these data from field surveys and initial results from

a seed sowing trial indicated that the riparian stream corridors were potentially acting

as vectors for the invasion, transporting H. lepidulum through an otherwise inhospitable

barrier of mature forest, and allowing the invasion to reach the alpine habitats found

at higher elevations (Miller 2006). Following this initial analysis, the seed sowing plots

continued to be assessed annually over the following four years. The continued data col-

lection expanded the initial data set to reflect a more complete picture of the full lifecycle

of H. lepidulum. With these new data, this current project was initiated in order to eval-

uate if the development of a more sophisticated model of plant spread reflecting the entire

life cycle (now possible with the expanded dataset) would produce qualitatively di↵erent

predictions to the previous analysis.

To address this question, I used an incremental approach to develop a spatial-demographic

model of H. lepidulum. To this end I focused on the development of sub models to

represent the processes of dispersal and demography, two of the primary drivers of invasion

dynamics (Neubert & Caswell 2000; Jongejans, Skarpaas, & Shea 2008; Coutts et al. 2010).

Using this incremental approach allowed me to develop and analyse models representing

these two major components independently, and evaluate the potential influence that each

process would have on spread dynamics. A large portion of this dissertation is devoted to

the development and analysis of quantitative models for both of these processes, developed

using empirical data collected from field studies. The two models were then combined

using a customised software package in order to provide a detailed spatial-demographic
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simulation of invasion spread, which I then used to analyse and predict the expected

dynamics of spread during an invasion of H. lepidulum. While the objective of this was to

provide insight and understanding of the dynamics of the current invasion, a number of

more abstracted theoretical questions regarding invasive spread were posed at the onset

of the study that this model was used to address as well. These questions are as follows;

1. How does the inclusion of spatial interactions alter demographic dynamics within

the population?

2. How does spatial heterogeneity in landscape structure influence demographic per-

formance?

3. How does spatial heterogeneity in landscape structure influence invasive spread?

In this chapter I begin by discussing what the results of this study imply specifically for the

spread of H. lepidulum into the catchments of the Craigieburn range in New Zealand, and

how this approach is fundamentally di↵erent to other predictions of spread dynamics in

this system. Following on, I will examine how this model of H. lepidulum spread addresses

the three more generalised questions regarding general spread processes, and examine how

the findings fit within the context of other similar studies. In addition, during the course

of addressing these specific questions, this investigation produced a number of general

theoretical implications and observations regarding the modelling of populations. These

theoretical implications are discussed in more detail following the discussion of the three

primary objectives.

7.2 Projecting H. lepidulum invasion

Combining the model describing the dispersal of H. lepidulum (Chapter 3) with the de-

mographic model representing the entire life cycle (Chapter 2) to examine the invasive

spread of H. lepidulum revealed that the dynamics of the invasion are more complicated

than were suggested by analysis of either just the recruitment data (Miller 2006) or by

examining the individual components of dispersal and growth on their own. The initial

hypothesis regarding the spread progression in these landscapes was derived predomi-

nately from analysis of recruitment rates in the di↵erent habitats obtained from the seed

sowing trials (Miller 2006). With the availability of additional data, my first step was to

extend this initial analysis to produce a matrix-based demographic model which reflected

the entire life cycle of H. lepidulum (Chapter 2). Separate parameterisations of this model

were developed for each habitat within the landscape; using these models I projected the

growth of populations in each of these habitats. These projections were then used to

compare the relative invasibility of the di↵erent habitats to H. lepidulum based on the

long term sustainable population size in each one. The results of these projections were
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largely the same as the those produced using just recruitment data and field surveys.

This result was not entirely surprising, as the sensitivity analysis of the matrix model

indicated that recruitment was an important component in determining population size;

this step in the lifecycle has been observed to strongly influence the long-term viability

of other plant species as well (Sletvold et al. 2010; Cipriotti et al. 2012). In the end, I

found the predictions obtained from projections of the matrix demographic model largely

rea�rmed the original hypothesis that the invasion is reliant on the forest creek corridors

to gain access to the alpine habitats.

The agreement between the recruitment assessment and the matrix model projections

led me to believe that the same patterns of invasibility would be observed even after

expanding the matrix model to include dispersal. Dispersal is often considered to be

the primary determinant of the overall speed of invasion (Coutts et al. 2010; Harris et al.

2011). As such, the development and inclusion of the dispersal functionality was primarily

intended to provide a way to compare the speed of spread in di↵erent habitats. While the

addition of dispersal did allow me to evaluate the spread of the invasion, it also had the

unintended e↵ect of creating a significant impact on population dynamics as well. This

e↵ect was largely driven by the newfound ability of local populations (individual cells in

these simulations) to exchange propagules between other local populations, creating an

interlinkage between them (Hixon et al. 2002; Cowen & Sponaugle 2009). This added

an additional dimension to the demographic processes, and allowed the simulation to

incorporate a new suite of dynamics that utilised these interlinkages, much like those found

in metapopulation dynamics. The end result was that projections of population growth

no longer suggested that any of the habitats were entirely resilient to invasion; instead the

projections show the landscape is best described by a gradient of invasibility ranging from

‘minimally invasible’ to ‘heavily invasible’. One of the most substantial changes came

in the forest habitat, which was previously considered to pose an impermeable barrier

to invasion, but the simulations suggest this habitat is in fact capable of supporting

sustained populations of H. lepidulum. The results from combining the dispersal and

demographic models highlight just how important spatial processes and relationships are

to demographic processes, and how the local populations can be heavily dependent on

interactions with other local populations. The addition of these dynamics substantially

altered the findings of the two previous models of invasion, which both suggested that the

forest creek corridors o↵ered the only access to the alpine areas.

While this more subtle delineation of the invasibility of di↵erent habitat provides a more

refined approximation of how we can expect H. lepidulum to perform, it also complicates

the implications for management. The previous analyses suggested that the only way

H. lepidulum could access the higher elevation habitats was via the forest creek habi-

tat. This fit with the behaviour of other systems, where linear strips of riparian habitat

are often more invasible than the surrounding matrix, and have been shown to act as

transport corridors for invasions (Planty-Tabacchi et al. 1996; Hood & Naiman 2000; Es-
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chtruth & Battles 2011). This type of situation is relatively ideal for management, as

the restricted extent of this habitat forms a natural bottleneck, creating an well defined

target for the e↵ective application of control e↵orts. In that situation, it was clear that

control e↵orts targeting this habitat could be quite e↵ective at preventing H. lepidulum

from reaching the higher elevation habitats. However, the spatial-demographic model

reveals that the invasion is not constrained to these riparian areas, and that patches of

H. lepidulum are capable of establishing self-sustaining populations in the surrounding

matrix of forest habitat. The forest creek habitat remains the highest priority, as it is

still projected to be the most invasible habitat, able to support a substantial number of

individuals as well as potentially acting as a vector of spread (Christen & Matlack 2009;

Andrew & Ustin 2010). Now, however, the long-term e↵ectiveness of targeting only this

habitat with control e↵orts is reduced, as populations of H. lepidulum that persist in the

forest habitat could continue to supply propagules and re-establish the invasion following

removal e↵orts in the forest creek corridors. To further complicate the dynamics, the

establishment of populations in the forest habitat is relatively rare and sporadic, making

it nearly impossible to predict where within the forest habitat the populations are likely

to establish, further compounding the di�culty of control e↵orts. However, the analysis

of dispersal in Chapter 3 suggests that the vast majority of dispersal events do not travel

more than 10 metres, suggesting that extending the control e↵orts at least 10 metres

into the surrounding forest would include a large percentage of the seed rain that occurs

outside the riparian area, helping to reduce the amount of area that would need to be tar-

geted for control e↵orts. While this would not address the low probability long-distance

events that establish patches of H. lepidulum further into the forest interior, it may suf-

ficiently reduce the invasion to levels which can e↵ectively managed through continued

periodic treatment (Simberlo↵ 2009). Such an approach which which focuses more on

controlling the impacts and less on complete eradication may prove more economically

viable (Rejmánek & Pitcairn 2002; Epanchin-Niell & Hastings 2010).

7.3 Questions from the introduction

7.3.1 How does the inclusion of spatial interactions alter demo-

graphic dynamics within the population?

One of the initial objectives of this dissertation was to explore if the incorporation of

spatial processes has a significant influence on demographic projections of H lepidulum.

It is has been generally identified that the local demography can influence landscape-level

spread dynamics (Skellam 1951; Okubo 1980; Kareiva 1983). We also know from inves-

tigations of metapopulation dynamics that the local demographic processes of spatially

distinct sub-populations can influence each other through the flow and exchange of in-

dividuals (Hanski 1991; Wells & Richmond 1995; Wiens 1997; Freckleton & Watkinson
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2002). However, it is often presumed that population dynamics within a homogeneous

and contiguous area are simply an extrapolation of local processes applied at a larger

scale (Freckleton & Watkinson 2002), and there is relatively little work that examine how

these local populations interact via dispersal in continuous space, how these interactions

within the continuous space can influence the local demographic dynamics, and whether

these dynamics are relevant in influencing the overall extent and severity of the invasion.

More recently, the inclusion of detailed components or sub-models describing both de-

mography and dispersal in invasion models has become more prevalent (Jongejans, Shea,

et al. 2008; Miller & Tenhumberg 2010; Harris et al. 2011; Caplat et al. 2012). While

this approach in and of itself is not inherently novel, the more closely these approaches

are utilised and scruitinised, the more clear it becomes that dynamics of an invasion typ-

ically do not result from just the additive e↵ects of these two mechanisms, but emerge

as a result of their interactions. The importance of incorporating these interactions are

highlighted in Chapter 5, which emphasises the strength of the influence that disper-

sal processes have on local population dynamics. The results from that chapter illustrate

how dispersal facilitates a transition from high density localised invasions to become more

sparse and widespread. This e↵ect has been largely examined from the perspective of the

individual, particularly how dispersal allows propagules to escape local density-dependent

e↵ects (Howe & Smallwood 1982; Nathan & Muller-Landau 2000), and even how species

respond in an evolutionary manner by emphasising dispersal characteristics (Travis et

al. 2009; Phillips et al. 2010). While these individual-level processes are relatively well

studied, the simulations from Chapter 5 illustrate how the interaction of dispersal and

demography can a↵ect the local population. Levels of population success (i.e. density)

are important at local levels, as the density in a location is often correlated with the level

of the impact of the invasion (Yokomizo et al. 2009; Epanchin-Niell & Hastings 2010). In

this analysis these dynamics arose as an emergent property of the system as a result of

the interaction of the dispersal and demographic mechanisms, although such mechanisms

could be approximated user simpler models, as long as the expected behaviour is clearly

defined.

As previously noted, a close analogue to the dynamics of the interacting local populations

can be found in metapopulation dynamics, where the exchange of individual between

spatially distinct groups has been found to have a significant impact on the local dynamics

(Brown & Kodric-Brown 1977; Hanski 1991; Eriksson 1996). However, by using the

approach described here, and removing the requirement that the local populations exist

as spatially distinct entities (Wells & Richmond 1995; Freckleton & Watkinson 2002), we

can apply these dynamics at a finer grain across a more continuous landscape. The benefit

of this approach is that it permits the grain of the model to reflect the the scale of local

processes that a↵ect demography (i.e. density dependence), while dispersal (operating at

a di↵erent scale) can be superimposed on top, allowing the local populations to exist

in a continuous interconnected network. The importance of incorporating both scale-
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dependent mechanisms are clearly demonstrated in Chapter 5, and the results comparing

the open and closed model structures highlight just how significantly incorporating both

mechanisms influences the predicted outcomes.

7.3.2 How does spatial heterogeneity in landscape structure in-

fluence demographic performance and spread?

While initially the influence of spatial heterogeneity on the demographic performance and

spread of the invasion was posed as two separate questions in the introduction, the inter-

actions between the two render them so interlinked (as described in the previous section)

that I found it more sensible to address these influences together. As discussed above,

the spatial dynamics of a population can be extremely influential even in homogeneous

settings; these dynamics are further complicated by applying them in heterogeneous land-

scapes where both the suitability and spatial distribution of di↵erent habitats is variable.

This landscape-level heterogeneity results from a combination of the underlying mech-

anistic processes that determine the distribution of habitats within the landscape, and

the di↵erential suitability of those habitats from the perspective of the specific organism.

The interaction of these processes result in di↵erent patterns of fragmentation as perceived

by the organism in question. This fragmentation can a↵ect the population dynamics of

a species via three primary mechanism; either by reducing the total amount of suitable

habitat available to a species through conversion to a di↵erent habitat type (Andren 1994;

Fahrig 2002; Herrera & Garćıa 2010), reducing the connectivity of suitable habitat (Tall-

mon et al. 2004; Noel et al. 2006; Dornier & Cheptou 2012), or by creating edge e↵ects,

where the proximity to the edge of a habitat results in altered environmental conditions

within a habitat (Murcia 1995; Aguilar et al. 2006; Watling & Orrock 2010). Currently

there is no evidence to suggest if or how the performance of H. lepidulum varies in relation

to distance to the habitat edge; I therefore made the simplifying assumption that abiotic

conditions are equivalent throughout the entirety of the habitats. Instead, my analyses

focused on comparing how the availability and connectivity of suitable habitat influences

the dynamics of H. lepidulum populations.

I simulated the invasion of H. lepdiulum in homogeneous landscapes of each habitat in

the study area, along with a range of di↵erent heterogeneous mixtures and configurations

designed to represent the defining characteristics of the existing landscape. I utilised

four di↵erent metrics of spread to assess the dynamics of these simulations; population

size, occupancy rates, local densities, and spatial extent. In order to assess how these

metrics were influenced by the specific landscape configurations, I developed a baseline

of projections which estimated the metrics assuming that the spatial configuration of the

landscape had no e↵ect. I accomplished this by assuming the invasion in a specific habitat

would perform the same as in a homogeneous landscape, simply scaled down based on

the proportion of landscape in each habitat (see Chapter 6 for specific details). Simi-
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lar research examining spread in heterogeneous landscapes has concluded that when a

minimum of 30 to 40% of the landscape is considered suitable to a species, population

performance is likely to scale with the amount of available habitat, and not su↵er losses

in performance due to connectivity constraints (Andren 1994; King & With 2002; Frater-

rigo et al. 2009). Below this threshold, the lack of connectivity compounds the lack of

available growing space, and the decrease in performance accelerates.The heterogeneous

landscapes used in the simulations (designed to reflect the primary features of the real

landscape) were all comprised of more than 40% suitable habitat (based on suitability

estimations from Chapter 5), leading me to hypothesise that connectivity would not limit

population performance, and that the projections based on the compositional makeup of

the landscape would provide a good approximation of the simulated performance. How-

ever, the agreement between the projections and the simulations was mixed; the spatial

extent of the population (in terms of either the occupancy or extent) was well predicted

by the projections, and was generally in agreement with the simulations, suggesting that

the spread of the invasion was not compromised by the connectivity of the heterogeneous

landscape configurations examined here. In comparison, the measures of population size

at both the landscape (total population size) and local (mean density) scales were signifi-

cantly lower in the simulations compared to the projections, revealing that the landscape

configurations examined here had a much greater impact on the severity of the invasion

compared to the invasion extent.

These results exemplify how the connectivity of the landscape can have a di↵erential e↵ect

on the underlying mechanisms which determine the extent and severity of an invasion.

Previous work has illustrated that connectivity is able to a↵ect the ability of invasions

to reach and establish at a location (Jules et al. 2002; Florance et al. 2011). However,

the variable nature of seed dispersal means that connectivity (in terms of the continued

exchange of propagules) does not exist as an absolute yes or no attribute, but instead is

better reflected as the potential level of exchange between locations. Even between areas

with very little connectivity, there is usually a small chance that a single dispersal event

could occur between the locations. Such a singular event is all that is needed for successful

establishment, and subsequent increase in the absolute spatial extent of the population

(i.e. spread) (Moody & Mack 1988; Clark et al. 1998). This is particularly applicable in

the case of apomictic species such as H. lepidulum, which have the potential to establish

a viable population from a single nascent individual. However, while a minimal level

of connectivity between locations can allow for establishment events, the frequency of

propagule exchange between the locations may be low enough to the point where the

exchange is functionally non-existent (Ferreras 2001; Kadoya 2009). As evidenced by

the results of Chapter 5, this exchange between populations can have a significant e↵ect

on the viability and size of the local population, directly influencing the severity of the

invasion at a given location. While extent and severity have already been recognised as

being largely shaped by separate mechanisms (Coutts et al. 2010; Harris et al. 2011), this
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example illustrates how the structure of the landscapes and its associated connectivity can

di↵erentially a↵ect those mechanisms, and independently a↵ect the extent and severity

of an invasion.

The only caveat is that it is possible that this underperformance in population growth may

represent only a transient lag in population performance as opposed to a more enduring

resistance of the landscape (Crooks et al. 1999; Frappier et al. 2003; Catford et al. 2009).

The dynamics observed here could be indicative of a secondary lag, where long distance

dispersal events from the initial introduction provide a rapid increase in extent, while

local growth is delayed until the populations reach a reproductive state in which they

can supply an increased the local density requires a more local and substantial seed input

(Wangen & Webster 2006). It appears that the spatial expansion of the population of

H. lepidulum is achieved by a relatively small number of long distance dispersal events,

while local growth and metapopulation dynamics are a function of local dispersal. This

period of rapid expansion of invasion extent would then potentially be followed by a more

gradual ’filling in’ of occupied area as the local populations continue to grow and approach

their full reproductive capacity.

Additionally, refinement of the dispersal component of the simulation could significantly

a↵ect on the rate at which the invasion achieves the observed levels of extent. While

variations between the dispersal kernels of di↵erent habitats appeared minimal, their

di↵erences were statistically significant. The propagation of these di↵erences across an

entire landscape could result in substantial di↵erences in spread, and could a↵ect the

influence of specific landscape configurations (i.e. increasing dispersal distances in suitable

habitats may increase the importance of that habitat to landscape level spread; Hoyle

2007; Andrew & Ustin 2010. In addition, this examination assumes that the seed are

dispersed only via their standard means (wind); incorporating any additional dispersal

vectors such as animals or humans that may be transporting seed could have a significant

impact on the overall invasion dynamics (Higgins et al. 2003; Crespo-Pérez et al. 2011).

7.3.3 Additional implications

In total, the invasibility of the di↵erent habitats in this landscape has been compared using

three di↵erent approaches; first, by comparing the initial recruitment levels (Miller 2006),

then by evaluating non-spatial demographic models which incorporate the entire lifecycle

(Chapter 2), and finally by evaluating those same demographic models in a spatial context

by pairing them with dispersal models (Chapters 5 and 6). In each case, the approaches

were based on largely the same data set, and in each case projections of these models

produced di↵erent conclusions. This serves as an excellent example of how the choice of the

specific method used to analyse and interpret a phenomenon can significantly impact the

outcome, and highlights the importance of choosing a method which accurately reflects the

suite of mechanisms responsible for the observed process. In order to alleviate some of this
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risk, I used a bottom-up approach to develop the simulations, similar to the application

pattern-oriented modelling (Grimm et al. 2005; Railsback & Johnson 2011), where I first

identified those mechanisms which appeared to be primarily driving the dynamics of the

system (in this case demography and dispersal), and then constructed and validated sub-

models of those processes before combining them in the final application. In an e↵ort to

minimise the e↵ect of my own bias and allow for the influence of di↵erent mechanisms

to be present (or not) in the the demography sub-model, I began by constructing a

minimal model framework that included those mechanisms without explicitly defining

their strength or interdependencies a priori. Instead, these aspects of the mechanisms were

modelled as latent variables, which allowed the strength and direction of the mechanisms

to be dictated by data collected from the field. For example, I developed a generic model

framework to describe the survival of juveniles amongst the di↵erent ages of H. lepidulum

which contained parameters to describe the strength and direction of density dependence.

These parameters and their uncertainty were estimated for each unique combination of

age and habitat, producing individualised measures of density dependence for each life

stage in each habitat. This allowed the response to be flexible and predominately driven

by the data, and the result was that the strength, direction, and variability of the density

dependence was unique for each transition. This type of approach can be extremely useful

in cases such as this where a variety of mechanisms may or may not be having an e↵ect on

the final outcome, but omitting them from the model (and removing the potential for their

influence) is not desirable. This is especially useful for applications such as this, where I

wanted to apply the same model form to produce di↵erent transition probabilities between

ages and habitats, and the e↵ect of a particular mechanism might only be relevant in a

subset of these situations. In addition, properly capturing and incorporating the range of

responses provides a much more robust and realistic approach than would otherwise be

possible.

The approach of defining the strength and direction of these mechanisms as latent vari-

ables and estimating their values and associated uncertainty using data collected from the

seed sowing trials was made more accessible through the use of a hierarchical Bayesian

approach to parameterise these models (Clark 2005; Latimer et al. 2009). This approach

increases the fidelity of parameter estimation by not constraining it to a standard dis-

tribution which is determined a priori, but instead produces an empirical distribution,

the characteristics of which (i.e. magnitude, frequency, and direction of deviation from

the mean) are determined by the iterative fitting of the model to the data during the

parameterisation process (Clark 2003). Incorporating this type of parameter estimation

into the simulations helps to remove some of the opportunity for researchers to inject

bias into their models (i.e. constraining a parameter to adhere to a predetermined dis-

tribution); bias which on the surface may seem small, but propagated throughout the

simulation can have a significant e↵ect (Finley et al. 2011; Halstead et al. 2012). The

hierarchical Bayesian approach to modelling has proven quite useful in this (and many
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other) applications, and while it is not the best answer for every situation, this disserta-

tion serves as a good example that ecological researchers should at least be aware that

a range of approaches exists for activities from model construction to parameterisation,

and highlights the importance of selecting an appropriate method for their analysis. The

more clearly we are able to formulate and quantify models of ecological processes, the

more useful they will tend to be.

As previously mentioned, the models used to project spread dynamics in Chapters 5

and 6 are the result of a bottom-up construction approach to model building. In such

applications, the top-level phenomenon of interest (in this case, spread dynamics) are

described by synthesising a suite of sub-models that describe lower-level processes. My

intention with this approach was to begin by construct the sub-models which represent

relatively straight forward mechanistic processes, and their collective behaviour and inter-

action when combined should then reflect the top-level phenomenon. In this dissertation,

the spread of H. lepidulum was deconstructed into multiple sub-levels; the overall spread

model was the result of a combination of demographic and dispersal processes, while the

demographic processes were further deconstructed into models reflecting transitions be-

tween life stages. In some cases these transitions were deconstructed even further, as in

where total plant level seed production was deconstructed into independent models repre-

senting the number of flowers per plant, and the number of seed per flower. One important

aspect of this approach is that the combination of these mechanistic sub-processes may

not be a simply additive process, and interactions between the sub-processes may result

in unexpected responses. This was certainly the case in Chapter 5, where the combination

of the demographic and spatial components resulted in unanticipated spatial population

dynamics.

The bottom-up approach is in contrast to the more common phenomenological (or top-

down) approaches to modelling specific phenomenon, where mathematical functions are

used to describe the patterns of the observed phenomenon, without regard to the underly-

ing processes. Phenomenological approaches are generally simpler and faster to construct,

however the bottom-up approach will generally lead to more robust solutions that can

be applied outside the conditions for which they were developed, as long as the appro-

priate underlying mechanisms are incorporated (Grimm et al. 2005). This can be critical

for simulation applications, such as in this dissertation. In this case I have not used

a completely mechanistic approach, but have used a hybrid approach, developing phe-

nomenological models for some of the sub-models. In fact this is often the case (especially

in ecology) where reducing the problem to their most basic first principles is not usually

a feasible option. Even so, these this type of bottom-up approach still helps to provide

a deeper understanding of the complex phenomena by requiring the deconstruction and

identification of the underlying processes that shape them. Just as with the hierarchical

Bayesian approach to modelling, the approach of bottom-up modelling is not intended to

be a ‘one-size-fits-all’ type of solution that can be applied in all situations. Again, how-
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ever, it is important to stress the importance that it be identified as a potential option in

the tool set available to the ecologist, as it can certainly be a useful approach if applied

in the right settings.

Lastly, an important outcome from this analysis is the recognition that the classification

of landscape heterogeneity into finer scales than the binary classification of suitable or

unsuitable produces a much more complex dynamic, that is often necessary for under-

standing of invasion dynamics. Reducing the landscape to this binary classification may

be the only option where data is limited, but the result is a very coarse approximation of

the actual dynamics of the system. It is clear from this and other studies that the suit-

ability of di↵erent habitats within a landscape is most appropriately measured along a

gradient, and that simplifying the landscape to a binary response fundamentally changes

not only the representation of the environment, but also the interactions of population

processes that interact with that environment (Meekins & McCarthy 2002; Melbourne et

al. 2007; Chytrỳ et al. 2008). For example, improving the fidelity of this classification has

been show to have implications on population stability (Hector et al. 2010; Oliver et al.

2010), life history (Harris et al. 2011), and metapopulation dynamics (Holle & Simberlo↵

2005; Warren et al. 2011). While refined classification of habitat suitability is becoming

more common (Pitt et al. 2009; Fitzpatrick et al. 2012), it is still important and relevant

to reiterate how improving the fidelity of this classification can translate to improved

understanding of the dynamics under study. Just as with the hierarchical Bayesian and

bottom-up approaches described earlier, it is important to make sure these choices and

their implications are taken into consideration when planning data collection or analyses.

7.4 Future applications

While I have attempted to be as thorough as possible during this examination of the spread

of H. lepidulum, the time investment dedicated to the development of the models and the

software means that there remain a number of remaining aspects of spread dynamics that

would be interesting to examine, that I simply did not have the time to include. While

I am satisfied with the construction of the model representing the growth and spread of

H. lepidulum, it could certainly benefit from a more extensive application. For example,

it could be quite informative to investigate a wider range of landscapes, and extend the

representations used here to more hypothetical configurations in order to examine how the

invasion progression would behave in novel systems, and if there are some more generic

conclusions that can be drawn relating the amount and configuration of suitable habitat to

invasion success. This approach would also benefit by adjusting some of the demographic

parameters, in order to ascertain how other species with di↵erent life history traits might

respond to the same set of conditions. In addition, I think it would be useful to track the

dispersal of individual seed in order to get a better idea of the magnitude of propagule

exchange between locations, and how this exchange is influenced by the distance and
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connectivity constraints imposed by specific landscape configurations.

Lastly, while this model does a good job representing the mechanisms and functionality

of the specific organism, this work completely disregards the role of humans in invasive

spread. Humans can impact spread dynamics in a variety of ways, from influencing

the spatial arrangement and distribution of the landscape (Ficetola et al. 2010; Vila &

Ibáñez 2011) to acting as vectors of spread by transporting seed (Crespo-Pérez et al.

2011; Wichmann et al. 2009). With some additional work, both of these aspects could

be incorporated into the simulations, and could potentially produce a richer and more

informative story.

7.5 Conclusions

This dissertation makes use of a number of approaches which are under-utilised in eco-

logical research, including bottom-up model building approaches, hierarchical Bayesian

approaches to parameterising models, and detailed measures of habitat-specific suitabil-

ity to simulate the spread of H. lepidulum. This combination of approaches produces a

complex yet highly tractable simulation of invasive spread, which I have used to investi-

gate a number of interesting aspects of invasion dynamics, including spatial population

dynamics, and the e↵ects of connectivity on the extent and severity of invasions. These

findings can easily be applied elsewhere, both to investigate other invasive species, and

can potentially be applied to examine population dynamics of non-invasive species as well.

My hope is that the work done here helps to lay out some of the initial groundwork for

future applications of simulations to investigate ecological processes. While this disser-

tation only begins to scratch the surface of what is possible using these approaches, my

hope is that enlighten others to how they can provide a unique and enlightening window

into complex systems and their associated dynamics.
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population explosions of invasive species: causes and implications. In Invasive species

and biodiversity management. based on papers presented at the norway/united nations

(un) conference on alien species, 2nd trondheim conference on biodiversity, trondheim,

norway, 1-5 july 1996. (pp. 103–125).

Dornier, A., & Cheptou, P. (2012). Determinants of extinction in fragmented plant

populations: Crepis sancta (asteraceae) in urban environments. Oecologia, 169 (3),

703-712.

Epanchin-Niell, R., & Hastings, A. (2010). Controlling established invaders: integrating

economics and spread dynamics to determine optimal management. Ecology letters ,

13 (4), 528–541.

Eriksson, O. (1996). Regional dynamics of plants: a review of evidence for remnant,

source-sink and metapopulations. Oikos , 77 , 248–258.

Eschtruth, A., & Battles, J. (2011). The importance of quantifying propagule pressure

to understand invasion: an examination of riparian forest invasibility. Ecology , 92 (6),

1314–1322.

Fahrig, L. (2002). E↵ect of habitat fragmentation on the extinction threshold: a synthesis.

Ecological Applications , 12 (2), 346–353.

Ferreras, P. (2001). Landscape structure and asymmetrical inter-patch connectivity in

a metapopulation of the endangered Iberian lynx. Biological Conservation, 100 (1),

125–136.

Ficetola, G., Maiorano, L., Falcucci, A., Dendoncker, N., Boitani, L., Padoa-Schioppa,

E., et al. (2010). Knowing the past to predict the future: land-use change and the

distribution of invasive bullfrogs. Global change biology , 16 (2), 528–537.

186



Finley, A., Banerjee, S., & MacFarlane, D. (2011). A hierarchical model for quantifying

forest variables over large heterogeneous landscapes with uncertain forest areas. Journal

of the American Statistical Association, 106 (493), 31–48.

Fitzpatrick, M., Preisser, E., Porter, A., Elkinton, J., & Ellison, A. (2012). Modeling

range dynamics in heterogeneous landscapes: invasion of the hemlock woolly adelgid in

eastern North America. Ecological Applications , 22 .

Florance, D., Webb, J., Dempster, T., Kearney, M., Worthing, A., & Letnic, M. (2011).

Excluding access to invasion hubs can contain the spread of an invasive vertebrate.

Proceedings of the Royal Society B: Biological Sciences , 278 (1720), 2900–2908.

Frappier, B., Lee, T., Olson, K., & Eckert, R. (2003). Small-scale invasion pattern, spread

rate, and lag-phase behavior of Rhamnus frangula l. Forest Ecology and Management ,

186 (1-3), 1–6.

Fraterrigo, J., Pearson, S., & Turner, M. (2009). Joint e↵ects of habitat configuration and

temporal stochasticity on population dynamics. Landscape ecology , 24 (7), 863–877.

Freckleton, R., & Watkinson, A. (2002). Large-scale spatial dynamics of plants: metapop-

ulations, regional ensembles and patchy populations. Journal of Ecology , 90 (3), 419–

434.

Grimm, V., Revilla, E., Berger, U., Jeltsch, F., Mooij, W., Railsback, S., et al. (2005).

Pattern-oriented modeling of agent-based complex systems: lessons from ecology. Sci-

ence, 310 (5750), 987–991.

Halstead, B., Wylie, G., Coates, P., Valcarcel, P., & Casazza, M. (2012). exciting statis-

tics: the rapid development and promising future of hierarchical models for population

ecology. Animal Conservation, 15 (2), 133–135.

Hanski, I. (1991). Single-species metapopulation dynamics: concepts, models and obser-

vations. Biological Journal of the Linnean Society , 42 (1-2), 17–38.

Harris, C., Stanford, H., Edwards, C., Travis, J., & Park, K. (2011). Integrating demo-

graphic data and a mechanistic dispersal model to predict invasion spread of Rhodo-

dendron ponticum in di↵erent habitats. Ecological Informatics , 6 , 187–195.

Hector, A., Hautier, Y., Saner, P., Wacker, L., Bagchi, R., Joshi, J., et al. (2010). Gen-

eral stabilizing e↵ects of plant diversity on grassland productivity through population

asynchrony and overyielding. Ecology , 91 (8), 2213–2220.
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Appendix A

Defining stochastic parameters in

PopMod

This list describes the suite of predefined distributions which PopMod can utilise

(via the SciPy library of mathematical tools for the Python programming lan-

guage) to define stochastic parameter behaviour. The function call column lists the

name by which that particular distribution is called. Arguments for the function

are listed as well; those within brackets are optional. This list is modified from

http://docs.scipy.org/doc/numpy/reference/routines.random.html where additional de-

tails regarding the di↵erent distributions and their arguments can be found.

Function Call Arguments Description

beta (a, b[, size]) The Beta distribution over [0, 1].

binomial (n, p[, size]) Draw samples from a binomial distri-

bution.

chisquare (df[, size]) Draw samples from a chi-square distri-

bution.

mtrand.dirichlet (alpha[, size]) Draw samples from the Dirichlet distri-

bution.

exponential ([scale, size]) Draw samples from the Exponential

distribution.

f (dfnum, dfden[, size]) Draw samples from a F distribution.

gamma (shape[, scale, size]) Draw samples from a Gamma distribu-

tion.

geometric (p[, size]) Draw samples from the geometric dis-

tribution.

gumbel ([loc, scale, size]) Draw samples from a Gumbel distribu-

tion.

hypergeometric (ngood, nbad, nsample[, size]) Draw samples from a Hypergeometric

distribution.
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Function Call Arguments Description

laplace ([loc, scale, size]) Draw samples from the Laplace or dou-

ble exponential distribution with spec-

ified location (or mean) and scale (de-

cay).

logistic ([loc, scale, size]) Draw samples from a Logistic distribu-

tion.

lognormal ([mean, sigma, size]) Return samples drawn from a log-

normal distribution.

logseries (p[, size]) Draw samples from a Logarithmic Se-

ries distribution.

multinomial (n, pvals[, size]) Draw samples from a multinomial dis-

tribution.

multivariate normal (mean) Draw random samples from a multi-

variate normal distribution.

negative binomial (n, p[, size]) Draw samples from a negative binomial

distribution.

noncentral_chisquare (df, nonc[, size]) Draw samples from a noncentral chi-

square distribution.

noncentral_f (dfnum, dfden, nonc[, size]) Draw samples from the noncentral F

distribution.

normal ([loc, scale, size]) Draw random samples from a normal

(Gaussian) distribution.

pareto (a[, size]) Draw samples from a Pareto distribu-

tion with specified shape.

poisson ([lam, size]) Draw samples from a Poisson distribu-

tion.

power (a[, size]) Draws samples in [0, 1] from a power

distribution with positive exponent a -

1.

rayleigh ([scale, size]) Draw samples from a Rayleigh distri-

bution.

standard_cauchy ([size]) Standard Cauchy distribution with

mode = 0.

standard_exponential ([size]) Draw samples from the standard expo-

nential distribution.

standard_gamma (shape[, size]) Draw samples from a Standard Gamma

distribution.

standard_normal ([size]) Returns samples from a Standard Nor-

mal distribution (mean=0, stdev=1).
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Function Call Arguments Description

standard_t (df[, size]) Standard Students t distribution with

df degrees of freedom.

triangular (left, mode, right[, size]) Draw samples from the triangular dis-

tribution.

uniform ([low, high, size]) Draw samples from a uniform distribu-

tion.

vonmises ([mu, kappa, size]) Draw samples from a von Mises distri-

bution.

wald (mean, scale[, size]) Draw samples from a Wald, or Inverse

Gaussian, distribution.

weibull (a[, size]) Weibull distribution.

zipf (a[, size]) Draw samples from a Zipf distribution.
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