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ABSTRACT 

Abstract of a thesis submitted in partial fulfilment of the requirements for the 

Degree of Doctor of Philosophy at Lincoln University 

ASCOCHYTA BLIGHT RESISTANCE IN LENTILS: GENETICS AND 

SUPPORTING TECHNIQUES FOR BREEDING 

by 

Guoyou Ye 

To promote breeding for Ascochyta blight in lentil, the genetics of resistance to 

lentil Ascochyta blight was investigated. In addition, some techniques needed to support 

the genetic research and breeding were developed in this study. An efficient procedure 

for producing genetically true-type plantlets was established based on stimulating 

elongation of the axilary buds. This technique was then used to multiply FJ hybrid 

populations to make the population sizes of different generations large enough for careful 

genetic analyses. 

Two regeneration systems, one based on multiple shoot induction from intact 

seedlings and the other based on cotyledonary node culture, were developed to facilitate 

the transfer of useful genes from wild lentils and/or other sources into cultivated lentil 

using tissue culture and genetic engineering techniques. 

Ten major genes were identified for foliar resistance. The inheritance models for 

these genes were: one dominant gene for high resistance and one dominant gene for 

moderate resistance (ILL 5588); a single dominant gene (ILL 5684 and W6 3241), two 

complementary dominant genes (W3 3192 and Titore), two recessive genes with additive 

effect (Indian head); one recessive gene (Laird); and one partial dominant gene with large 

effect and one dominant gene with less effect (W3 3261). The gene in ILL 5684 is allelic 

to the one in ILL 5588 for high resistance. 
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The contributions of minor genes to Ascochyta blight resistance were established 

for the first time by creating recombinant inbreds with the same major genotypes but 

different minor genotypes from two crosses (ILL 5684 X Titore, W6 3241x Titore). A 

mixed model based analysis carried out for the cross ILL 5588 x Titore indicated that 

about 30% of the phenotypic variations in segregating populations were due to the minor 

genes. 

The overall genetic effect and the partition of the genetic effect into additive, 

dominant and epistatic effects were done for four crosses using generation-mean analysis. 

The underlying genetic mechanisms for seed infection rate were more complicated than 

that for foliar disease severity. The six basic generations were sufficient to model foliar 

disease severity, whereas they were not sufficient for seed infection rate in two crosses. 

Dominance played an important role in all crosses for both seed and foliar resistance. 

Except for foliar resistance in the cross ILL 5684 x Titore, at least one type of inter-gene 

effect (epstastic) contributed to the increased/reduced resistance. Therefore, selection for 

resistance would be more efficient if the dominance and epistasis effects were reduced 

after a few generations of selfing. 

The major gene for foliar resistance in ILL 5684 is linked to the genes for seed 

yield/plant or it has pleiotropic effect on seed yield/plant. The gene is independent of the 

genes for plant height and days to flowering. Within each set, there were significant 

differences among inbreds for all the three traits. The estimates of heritability based on 

inbred means were high for seed yield/plant and days to flowering, and moderate for 

plant height. For the set with major resistance gene, 1) disease severity was not 

correlated with seed yield/plant and plant height, but weakly and negatively correlated to 

days to flowering when measured under disease pressure. 2) Seed yield/plant was 

strongly and positively correlated with plant height, moderately and negatively correlated 

with days to flowering, and plant height was weakly and positively correlated with days 

to flowering under both testing conditions. 3) Inbred x environment interaction was not 

important and selection can be done with or without artificial inoculation. Thus, 

selection within the set of inbreds with the major resistance gene is required and is 

feasible for the improvements of yield and other traits and for the utilisation of resistance 

conferred by minor genes. 
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Based on the results from this study and previous studies, a breeding procedure 

suitable for the current situation was developed. This procedure is based on crossing 

resistant and high yielding cultivars and multi-location testing. Gene pyramiding, 

exploring slow blighting and partial resistance, and using genes contained in wild 

relatives wi II be the methods of the future. Identification of more sources of resistance 

genes, good characterisation of the host-pathogen system, and identification of molecular 

markers tightly linked to resistance genes are suggested to be the key areas for future 

study. 
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CHAPTER 1 

GENERAL INTRODUCTION 

1.1 Importance of Lentil (Lens culinaris Medikus) 

Lentil (Lens culinaris Medikus) was one of the earliest domesticated crops. The 

relatively high content of protein makes lentil an important source of proteins in many 

countries, particularly in developing countries (Muehlbauer et ai., 1995). Crop residues 

from lentil are valuable as livestock feed in many regions where grazing is limited. 

Lentils are resistant to high temperature and drought and can be grown in infertile soil, 

they are major crops in drought and semi-drought regions (Muehlbauer et al., 1995). In 

1995, lentils were grown on about 3,391,760ha, and total production was estimated at 

about 2,788,650 metric tons (FAO, 1995). The main producers of lentil are India, 

Turkey, Canada, Syria, Ethiopia and Morocco, Chile, Argentina, Australia, the United 

States, Pakistan and Bangladesh (Muehlbauer et al., 1995). 

1.2 Ascochyta blight of lentil 

Ascochyta blight caused by Ascochyta fabae f. sp. Zen tis is one of the important 

diseases of lentils. It has been reported to be the major disease in many lentil production 

areas including Argentina, Canada, Ethiopia, India, New Zealand, Pakistan and the 

Russian Federation (Erskine et aZ., 1994). The disease has considerable effect on seed 

quality and yield (Morrall and Sheppard, 1981). Gossen and Morrall (1983) estimated 

that foliar infection has caused yield losses of up to 40%, but economic losses from 

infected seed may reach more than 70% in Canada. 
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Considerable efforts have been devoted to the study of the dispersal of Ascochyta 

(Pedersen et al., 1993; 1994), the influences of environmental factors on disease severity 

(Pedersen and Morrall, 1994) and chemical control (Beauchamp et al., 1986a; b; Ahmed 

and Beniwal, 1991). However, efficient and economic disease management techniques 

are not available. Breeding for disease resistance has been suggested to be the most 

promising option to eliminate or reduce the losses caused by this disease (Erskine et al., 

1994). 

To have success in breeding for resistance, the availability of resistant genetic 

resources, a good understanding of the genetics underlying resistance, the availability of 

techniques of transferring resistant genes into elite genotypes (introgression) and 

knowledge of the host and pathogen interaction are necessary. Many valuable resistant 

resources have been identified by germ plasm screening in cultivated and wild lentil 

species (Morrall and Sheppard, 1981; Singh et aI., 1982; Iqbal et aI., 1990; Kapoor et aI., 

1990; Erskine and Bayaa, 1991; 1993; Bayaa et al., 1994). Several authors studied the 

genetics of blight resistance in lentils using segregation analysis (Tay, 1989; Tay and 

Slinkard, 1989; Andrahennadi, 1994; 1997; Sakr, 1994; Ahmad et ai., 1997b; Ford et al., 

1999). 

Although studies of the mechanism of host-pathogen interactions are very few, it 

was clear that isolates from different sources have differences in virulence, and the 

interactions between host and isolate mayor may not be significant (Ahmed et al., 1996a; 

b; Ahmed and Morrall, 1996a; b). Though the presence of pathotypes was recently 

established (Nasir and Bretag, 1997b), no further reports were published in this aspect. 

Therefore, highly virulent isolates should be used for testing resistance, until the 

existence of races is confirmed. 

1.3 Justification 
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Understanding the underlying genetic basis for a target trait is a prerequisite for 

achieving maximum return from any breeding program, though it may not be necessary 

for starting a breeding program. The genetic basis underlying Ascochyta blight 

resistance in lentils is not yet well understood. The allelic relationships among the 

reported major genes are mainly unknown, although it seems that several major genes are 

involved in the determination of resistance. All previous studies used segregation 

analysis to infer the models of inheritance. Although it provides some information about 

the genetics of major genes, the reliability of the results from such an analysis relies on 

the assumption that the effects of minor genes and interactions between major and minor 

genes can be ignored. Otherwise, the conclusions from this method may be misleading. 

Parh (1998) has already suggested difficulties in the major gene approach. The facts that 

many varieties show different resistance levels and no complete resistance has been 

found indicate that polygenes are probably involved in the resistance. It is, therefore, 

necessary to quantify the effect of minor genes in resistance. If the effects of minor 

genes are proved important, they should be explored in breeding for resistance. Classical 

generation-mean analysis can be used to detect the relative importance of additive,· 

dominant and epistatic genetic effects of genes controlling one trait, which are important 

parameters for designing a breeding program. Recently a modified version of the 

classical generation- mean analysis has been developed by Gai and Wang (1998). This 

can quantify the effects of major gene and minor genes together (the so-called "mixed 

genetic model"). In this thesis, the genetics of Ascochyta blight resistance in lentils was 

studied from different aspects. The inheritance models of major resistance genes and the 

allelic relationships between major genes were tested using segregation analysis. The 

contribution of minor genes to resistance was proved using recombinant inbred lines 

homozygous for the major resistance genes and a mixed-model based method. The 

overall genetic effects and gene action model were analysed using generation-mean 

analysis. 

One difficulty associated with genetic analysis and breeding when wild lentil 

species are involved is that it is not easy to obtain sufficient hybrid seeds. In vitro 

micorpropagation may be a way to overcome this problem, since it has been successfully 

used in many plant species to multiply rare elite materials (Kyte and Kleyn, 1996). 
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Several studies have developed in vitro systems for lentils with different efficiencies 

(Bajaj and Dhanju, 1979; Williams and McHughen, 1986; Saxena and King, 1987; Singh 

and Raghuyanshi, 1989, Malick and Saxena, 1992a; Warkentil and McHughen, 1993; 

Ahmad et al., 1997a). However, no system has been developed specifically for obtaining 

genetically true-to-type hybrids, and the efficiencies of the published systems were not 

high enough to allow biotechnology-based methods to be efficiently applied in lentil 

breeding. In this thesis, shoot segment culture was used to develop a system for 

producing genetically true-to-type hybrids. Cotyledonary node and seed cultures were 

refined to develop systems that have the potential to be used for genetic transformation. 

Ascochyta blight resistance is only one of the traits of interest to a lentil breeder. 

Other traits such as yield, plant height and maturity are important for the success of a new 

cultivar. Therefore, simultaneous improvement of several traits (multitrait selection) is 

necessary. The genetic relationships among the traits are required for the design of an 

efficient multitrait selection strategy (Agrawal, 1998). There are some studies about the 

genetic correlations among important agronomic traits, but none of these studies have 

taken Ascochyta blight resistance into account. Moreover, the existence of major genes 

for resistance suggests that breeding for resistance will incorporate one or more major 

resistance genes. Thus the effects of a major resistance gene on other traits, particularly 

yield, need to be investigated. In this thesis these aspects were studied using recombinant 

inbreds from two crosses. 

1.4 Aims 

The aims of this study are to provide genetic information for the design of an 

efficient breeding program for Ascochyta resistance in lentil and to establish some 

supporting techniques for its efficient implementation. 
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1.5 Objectives 

The major objectives of studies reported in this thesis are: 

I. To gain a good understanding of the genetics of Ascochyta blight resistance in 

lentils. 

2. To investigate the genetic correlations among Ascochyta blight resistance and 

other agronomic traits. 

3. To establish in vitro propagation protocols for multiplying hybrids and possible 

application of genetic engineering. 

To achieve these objectives the following studies were carried out. 

1. To detect inheritance models of major resistance genes and study the allelic 

relationships among them. 

2. To test whether minor genes contribute to Ascochyta blight resistance. 

3. To determine the gene actions of resistance using generation-mean analysis 

4. To analyse the inheritance using a mixed genetic model. 

5. To study the genetic correlations among Ascochyta blight resistance and other 

agronomic traits. 

6. To establish an efficient in vitro protocol for producing genetically true-to-type 

hybrids: 

7. To develop efficient in vitro regeneration systems. 
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2.1 Basic Biology 

CHAPTER 2 

LITERATURE REVIEW 

2.1.1 The taxonomy of the genus Lens 

Genus Lens Miller is a member of the tribe Viceae, sub-family Papili?naceae, 

family Fabaceae. According to crossability and chromosomal diversity, two biological 

species were suggested in the genus Lens: L. culinaris with three subspecies culinaris, 

orientalis and odemensis, and L. nigricans with subspecies ervoides and nigricans 

(Ladizinsky et al., 1984). Recently, based on results from isozyme and DNA restriction 

fragment length polymorphisms (RFLPs), Ladizinsky (1993) revised the taxonomy of 

Lens. He elevated the subspecies odemensis, ervoides and nigricans to species status. 

2.1.2 Flowering biology of lentils 

Papp (1980) described the flowering biology of lentils and reported that lentil 

flowers open in an acropetal order. When opening, the petals move in a peculiar way; the 

standard gradually expands and the wings loosely close in on the keel. At the end of 

flowering the standard curves forward and the wings fit tightly to the keel. 

2.1.3 Cytological characteristics 

All the karyotypic investigations III lentil have found that L. culinaris has a 

symmetrical karyotype with 2n = 14 chromosomes, all chromosomes were either 

metacentric or sub-metacentric. However, the average chromosome length, total 

chromatin length, chromatin volume, arm ratio and position of centromere varied from 

variety to variety (Raziuddin et al., 1990; Bahraei, 1991; Nandanwar and Narkhede, 

1991; Reddy and Annadurai, 1992; Ramesh and Salimuddin, 1992; Ladizinsky, 1993; 

Salimuddin and Ramesh, 1994a; b; Patil et ai., 1995). 
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2.1.4 Phylogenie relationships of species in the genus Lens 

According to breeding experiments and cytogenetic analysis of hybrids between 

the cultivated and wild lentils, Ladizinsky (1979) suggested that L. culinaris is much 

closer to L. orientalis, and that L. nigricans and the cultivated species may have a 

monophyletic origin. However, later researchers have shown that L. odemensis is closer 

to L. culinaris than to L. nigricans. L. orientalis has been shown to be the most likely 

progenitor of the cultivated lentil by many studies using morphological characters 

(Ladizinsky, 1979; Ladizinsky et at., 1984; Hoffman et at., 1988), seed protein profiles 

(Ladizinsky, 1979; Ahmad et al., 1995a), isozymes (Ferguson and Robertson, 1996; 

Hoffman et al., 1986), restriction sites of ctDNA (ass et at., 1997), restricted fragment 

length polymorphism (RFLP) (Havey and Muehlbauer, 1989a; Muench et at., 1991; 

Mayer and Soltis, 1994), randomly amplified polymorphic DNA Markers (RAPDs) 

(Abo-Elwafa et at., 1995; Sharma et at., 1995; Ahmad et at., 1996; Ford et al., 1997) and 

the amplified fragement length polymorphism (AFLP) (Sharma et at., 1996). 

2.2 Ascochyta blight of lentil 

2.2.1 Basic characteristics of Ascochyta blight in lentils 

Bondartzeva-Monteverde and Vassilievsky (1940) first identified Ascochyta lentis 

as a pathogen of lentils in 1938. They made detailed investigations of disease symptoms. 

Mitidieri and De (1974) reported necrotic lesion development on leaflets, stems, pods and 

seeds of lentils associated with A. tentis infection. 

Based on comparisons among isolates of A. fabae (the causal agent of Ascochyta 

blight of faba bean) and isolates of A. tentis, for cultural and morphological traits, Gossen 

et al. (1986) suggested that A. lentis should be synonymised with A. fabae. They 

proposed two special forms: A. fabae f. sp. fabae for isolates from faba bean and A. fabae 

f. sp. lentis for isolates from lentil. This proposal has been widely accepted. However, 

based on the RAPD banding patterns, morphological characteristics and pathogenicity 
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tests, Kaiser et al. (1997) suggested that the causal pathogen of Ascochyta blight in lentil 

is a species that is distinct from A. Fabae, and renamed back to A. lentis. 

Kaiser and Hellier (1993) found the sexual state of A. fabae f. sp. lentis on lentil 

straw in the USA in 1992. They showed that the fungus is heterothallic with two mating 

types, and that it is probably a species of Didymella. Ahmed et al. (1996a) confirmed the 

presence of two mating types of A. lentis by controlled crossing in the laboratory. The 

roles of the two mating types in the field in promoting vadability in the pathogen 

population and in the disease cycle are not known. 

Roundhill et ai. (1995) described the infection process based on investigations 

under light and electron microscopes: 

a) Spores usually germinated within 6 h of inoculation. 

b) Germ tubes grew for varying distances along the leaf surface before forming 

an appressorium, sometimes within 10 h. 

c) A penetration peg then either directly entered the underlying epidermal cell, or 

grew as a sub-cuticular hypha for a short distance before entering the cell. 

d) The first response of epidermal cells to the presence of the fungus was an 

aggregation of cytoplasm abutting the site of infection. 

e) This was followed closely by deposition of a papilla. Some relatively thick 

papillae were seen at 29 h post-inoculation. 

f) The fungus then grew into the papilla·and formed an infection vesicle. 

g) In susceptible host cells, the protoplasm became necrotic before hyphae grew 

into the lumen of the cell from the infection vesicle. In more resistant cells, the 

infection vesicle often became surrounded by electron-dense wall material 

developed by the host. 

h) The fungus remained in susceptible epidermal cells for up to 4 d, amongst 

remnants of the protoplast, before spreading to the adjacent mesophyll. 

i) Hyphae then grew into intercellular spaces of the mesophyll and remained 

there for 2 - 3 d before penetrating the cells. 
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j) The mesophyll reacted to infection in a similar way to the epidermis, with 

on I y host cells close to the fungus becoming affected. 

k) After the degeneration of host, tissue, pycnidia, which contained spores, 

formed 10-14 d after inoculation of the leaf. 

Similar infection processes were observed for both the tolerant and susceptible 

varieties tested except that in cultivars that are more tolerant the infection vesicle more 

frequently became surrounded by electron-dense wall material formed by the host. In 

stem tissue of the cv. Laird, a tolerant cultivar, the middle lamella was also occasionally 

thickened with electron-dense material deposited on either side of it. 

Infection and disease development and spread are favoured by cool, wet weather 

(Nene et al., 1988). The highest infection frequency occurred with a wet period of 24 or 

48 h. The latent period was shortest at 20°C and longest at 10°C. Temperature had little 

effect on lesion size and number of pycnidia per lesion, but infection frequency was 

higher at 10°C and 15 °c than at 25°C (Pederson and Morrall, 1994). Pederson and 

Morrall (1994) observed that disease severity was tissue-age-related, tissue below the top 

4 or 5 nodes on the main stem and secondary branches were almost completely free of 

disease. This effect was most apparent at podding. 

Seed infection occurred up to 250 m from the primary inoculum source, but 

gradients generally levelled off within 50 m (Pederson et at., 1993). The larger splash 

droplets, which followed a ballistic trajectory, were important in short-range disease 

spread. Longer-range spread was the result of wind dispersal of detached leaflets and 

conidia in small air-borne droplets (Pederson et at., 1994). 

2.2.2 Control methods 

Methods for the control of lentil Ascochyta blight involve chemical control and/or 

improved cultivation practices, plus the use of resistant or tolerant varieties. Beauchamp 

et al. (1986a) found that single applications of chlorothalonil, captafol, folpet or metiram 

at early bloom to early pod set provided the best protection. Seed yield was increased 

and seed infection was reduced. Yield losses and seed infection were prevented by early 
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rather than late application, two or three applications were better than a single 

application, but these effects were linked to weather conditions (Beauchamp et ai., 

1986b). 

Benomyl [Benlate] (France et ai., 1987; Ahmed and Beniwal, 1991), Daconil 

[chlorothalonil] (Ahmed and Beniwal, 1991; Iqbal et ai., 1992), and a mixture of 

tridemorph and maneb (as Calixin M) provided good disease control and highest yields. 

Research on fungicides has led to the registration of Bravo (chlorothalonil) as a foliar 

protectant and Crown (thiabendazole + carbathiin) for the control of seed-to-seedling 

transmission in Canada (Morrall, 1997). However, effective, chemical control can often 

not be used by farmers because of economic reasons. This is particularly true in 

developing countries, which are the main producers of lentil. 

Ahmed and Beniwal (1991) found that hot water and dry heat treatments at 55°C 

for 25 min and 70 °c for 24 h partially inhibited fungal growth from seed (Ahmed and 

Beniwal, \991). Pedersen and Morrall (1994) reported that using a 10 m wide barrier of 

lentil sprayed with chlorothalonil at early bloom or a 14 m non-host barrier effectively. 

controlled development of the disease. Based on the observation that disease incidence 

was generally less in mixed than in the sole crops, and that sowing date has an obvious 

effects on disease development and spread (Mittal, 1997), cultivation practices such as 

crop rotation and intercropping have been developed (Bedi, 1990). However, the 

acceptance of altered cultivation practices is limited and they only help to reduce the loss 

caused by Ascochyta blight. 

2.2.3 Genetic resources for Ascochyta blight resistance 

Genotypic differences for Ascochyta resistance are present in cultivated lentil. 

Disease symptoms on different accessions ranged from small flecks (resistant) to 

extensive lesions on both leaves and stems with death of some plants (highly susceptible) 

(Nasir and Bretag, 1998). Khatri and Singh (1975) tested 947 lines and found one line 

without pod infection. Morrall and Sheppard (1981) reported significant differences 

aillong breeding lines of lentil with regards to Ascochyta disease reaction. Singh et al. 

e 1982) identified 11 moderately resistant or partially resistant varieties/lines from 118 
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varieties/lines. Among 152 tested genotypes, Iqbal et al. (1990) found that 17 were 

highly resistant, and 34 showed an average reaction while the rest ranged from 

susceptible to highly susceptible. Kapoor et al. (1990) found two highly resistant 

varieties and 13 highly resistant advanced lines out of the 1,047 lines that they tested. 

Ahmed and Beniwal (1991) identified 35 resistant accessions out of 139 accessions tested 

but none were free of disease. Erskine and Bayaa (1991; 1993), reported that two lines, 

ILL 358 and ILL 5684, developed by ICARDA (International Centre of Agricultural 

Research for Drought Areas) were resistant or highly resistant over five locations in 

different countries. Other lines were resistant at one location, but not at others. This 

suggests the presence of different isolates of the fungus. Among 76 lentil lines tested for 

resistance to A. lentis by Alam et al. (1993), none was immune or highly resistant; 3 

(88518, 88527 and 88547) were resistant, two were moderately resistant and five, 17 and 

49 lines were moderately susceptible, susceptible and highly susceptible, respectively. 

Nasir and Bretag (1998) tested the reactions of 488 lentil accessions from 25 different 

countries to three Australian isolates of A. lentis in a glasshouse. The 488 accessions 

showed differential resistance to the three isolates of A. lentis and could be divided into 

fi ve resistance groups. Twenty-six accessions were resistant to all three isolates, while 

142 accessions showed variable reactions and 320 accessions were susceptible to all three 

isolates. Varietal variation for resistance in cultivated lentil was also reported by Singh et 

al. (1994), Andrahennadi et al. (1996), Nasir and Bretag (1996) and Russell (1996). The 

varieties reported to be resistant are summarised in Table 2.1. 

Resistance to blight has also been found in wild Lens species. Erskine and Bayaa 

( 1991 ) found 30 accession of wild lentils with a strong resistance reaction and a disease 

score of one. In 1993, they identified another 12 lines with resistance scores of one to 

three. Bayaa et al. (1991; 1994) tested the response of wild lentils to A. lentils from 

Syria and found that 24 Lens orientalis collections, 12 L. odemensis collections, three L. 

nigricans and 36 L. ervoides collections were resistant. 
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Table 1.1: Ascochyta blight resistant cultivars/lines in cultivated lentil. 

Country 

Canada 

Chile 

Ethiopia 

India 

Morocco 

New Zealand 

Pakistan 

Syria 

Cultivars/lines 

ILL358, ILL5588, ILL5684, Laird 

ILL358, ILL4605 

ILL358, ILL 857 

HPL5, L442, L448, LG 169, LG170, LG171, LG172, LG173, 

LG174, LG176, LG177, ILL179, ILL195, ILL201, LG209, 

LG217, LG218, LG219, LG221, LG223, LG225, LG231, 

LG232, LG236, Pant L406, 

Piant 4, 

ILL5698,ILL5700, ILL5883, ILL6212 

ILL5684, ILL5588, ILL5714, Rajah 

FLIP84-27L, FLIP84-43L, FLIP84-55L, FLIP84-85L, FLIP86-

9L, FLIP86-12L, ILL358, ILL46 05 , ILL5588, ILL5684, 

ILL6024, 78 S 26018, 78 S 26052, 88518, 88527, 88547, 

Masoor-93 

ILL857, ILL2439, ILL4605, ILL5244, ILL5588, ILL 5562, 

ILL5590,ILL5593,ILL5684,ILL5725 

2.2.4 The genetics of Ascochyta blight resistance 

The genetics of blight resistance in lentils has been studied using segregation 

analysis. Several resistance genes have been discovered and are summarised in Table 

2.2. Th~ following genetic models were suggested. 

I. Single dominant gene (Tay and Slinkard, 1989; Ahmad et at., 1997b; 

Vakulabharanam et at., 1997; Ford et al., 1999). 

2. Si ngle recessive gene (Tay, 1989). 
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3. Two duplicated recessive genes (Andrahennadi, 1994), 

4. One dominant gene and one recessive gene (Sakr, 1994) 

5. Two complementary genes (Tay, 1989; Andrahennadi, 1994; Ahmad et aI., 

I 997b). 

Table 2.2. 	 resistance mechanisms in lentils. 

Resistant 	 Suscepti ble organ Inheritance model Reference 
ParentParent 

Indian head PI 345635 seed Two duplicated recessive genes Andrahennadi, 1994 

W63241 Invincible foliar one dominant gene Ahmad et ai., 1997b 
(L. orientaLis) 

W63261 Invincible foliar one dominant gene Ahmad et ai., 1997b 

(L. orientaLis) Parh, 1998 

W63261 Titore foliar one dominant gene Ahmad et ai., 1997b 

W63261 Titore foliar one partial dominant gene with large Ye et ai., 2000 
effect and one dominant gene with 
less effect 

W63261 Olympic foliar one dominant gene Ahmad et ai., 1997b 

W63192 Titore foliar two dominant complementary genes Ahmad et ai., 1997b 

(L. ervoides) 

W63192 Olympic foliar two dominant complementary genes Ahmad et ai., 1997b 

W63222 Titore foliar two dominant complementary genes Ahmad et ai., 1997b 

(L. odemensis) 

Laird Eston seed one recessive gene Tay and Slinkard, 1989 

ILL5588 Eston foliar one dominant gene Ford et ai., 1999 

[LL5588 Eston seed one dominant gene Andrahennadi, 1997 

Vakulabharanam et ai., 
1997 

ILL5588 Eston seed two dominant genes Tay,1989 

one recessive gene 

ILLSS88 Eston seed one dominant genes Sakr,1994 

one recessi ve gene 

ILL5684 Eston seed one dominant gene Tay and Slinkard, 1989 

ILLS684 Eston seed two dominant genes Tay, 1989 

ILL5684 Eston seed two dominant 1989 
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2.3 Methods for detecting genetic mechanisms underlying disease 

resistance 

From the above discussion, it is clear that the genetics of Ascochyta blight 

resistance in lentil is not yet fully understood. For instance, the extensive presence of 

inter-varietal differences seems to suggest segregation analysis, which is the only genetic 

analytical method that has been used, is not suitable. The genetic analytical methods 

suited to a trait depend on the phenotypic distribution of the trait in a segregating 

population such as the F2. If the distribution is continuous, the methods for analysing a 

quantitatively inherited characteristic should be used. If the distribution is discontinuous 

and the grouping of phenotypes leads to a ratio that can be fitted to a model for a 

qualitatively inherited characteristic, the result from Mendelian segregation analysis 

would be reliable for major genes. In this case, if the variation within each phenotypic 

group is not large, the contribution of minor genes would be minimal and would not be 

important in practical plant breeding and genetic analysis for minor genes would not be 

necessary. Otherwise, selection aimed at accumulating the effects of minor genes might 

be an efficient breeding method. Because of the feasibility of correctly classifying major 

genotypes, it is possible to create materials that are the same for major gene(s) but 

different for minor gene(s) and then to use them to quantify the contribution of the minor 

genes. However, if the distribution is not continuous and the grouping of phenotypes do 

not fit any inheritance models of a qualitative trait, both of the effects of major and minor 

genes should be utilised in a breeding program. In this case, analytical methods based on 

a mixed inheritance model would have to be used. 

2.3.1 Mendelian segregation analysis 

Mendelian segregation analysis is the classical method to detect an inheritance 

model underlying a qualitative trait. The principle of fitting inheritance. models using 

segregating generations is to test whether the observed segregation ratio fits the expected 

ratio under an assumed genetic model. Two methods can be used for this purpose. The 

most commonly used is the X2 test. This method is appropriate when each expected value 
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is not too small (roughly speaking, at least 1.5, Smith, 1986). The other is the so-called 

G- Test (Garcia-Dorado and Gallego, 1992). It is a likelihood ratio test. It compares the 

log-likelihood of a log-linear model that fixes the genotypic frequencies at their expected 

frequencies from the assumed model to that of a log-linear model that sets the genotype 

frequencies at their observed values. 

To lise segregation analysis, it is important to compute the expected phenotype 

segregation ratio of an assumed inheritance model. Mendelian segregation predicts that 

in a given sample of gametes from diploid individuals, on average, one-half will carry 

one allele and one-half will carry the alternative allele for a locus. Random union of 

gametes produced by female and male parents form the genotypes. Therefore, the 

expected genotype segregation ratio can be computed using the expected frequencies of 

gametes from both parents. The phenotype segregation ratio is the same as the genotype 

segregation ratio if there are no complete dominant or inter-loci interactions. If some loci 

are completely dominant and/or interact, the phenotype segregation ratio is computed by 

slimming up the proportions of the different genotypes with the same phenotype. If all 

loci segregate independently and do not interact, the multiloci phenotype segregation· 

ratio is the product of the segregation ratios of each locus. Because the phenotype 

segregation ratio for a single locus can easily be worked out and remembered, in practice 

this simple rule is very useful. 

If the genes are linked, recombination rates between genes have to be taken into 

account when gamete frequencies are worked out (see later sections). In the case of 

disease resistance, only a few phenotypic groups can be easily distinguished since the 

effects of different loci may not result in sufficiently large phenotypic differences that 

can be detected by a scaling system. This usually prevents researchers from estimating 

the linkage of two genes. Therefore, independent segregation of genes is normally 

assumed when an inheritance model is fitted. Table 2.3 gives some useful phenotype 

segregation ratios. 
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Table 2.3. Expected segregation ratios of inheritance models commonly found in disease 

resistance studies. 

Model F2 BC)AABB BC2 aabb 

One dominant gene 3: 1 all resistant 1:1 

One recessive gene 1 :3 all susceptible 
1 : 1 

Two dominant genes 15: 1 all resistant 
3: 1 

Two complementary dominant genes 9:7 all resistant 1:3 

One dominant and one recessive gene 13:3 all resistant 3: 1 

2.3.2 Conventional quantitative genetic methods 

When many genes each with a small effect control a trait, i.e., the trait is 

polygenic, the phenotype of a genotype is jointly determined by the genetic effects of 

genes and the environmental effect. The genetic effects are of three kinds: additive 

(homogeneous), dominant (intra-locus interaction) and epistatic (inter-loci interaction). 

Because the genotypes of individual plants are not known, the genetic control of a trait is 

detected by investigating the similarity and difference among related individuals and 

families using statistical methods. This forms the core of conventional quantitative 

genetics. There are many good texts available in this field (e.g. Mather and Jink, 1982; 

Facloner, 1989; Kearsey and Pooni, 1996). 

For self-pollinated species, a simple method is the so-called generation-mean 

analysis, first proposed by Mather (1949) and elaborated by several other workers 

(Griffing, 1950; Anderson and Kempthorne, 1954; Jinks, 1956; Hayman, 1954; 1957; 

1958; Gardner and Eberhart, 1966; Mather and Jinks, 1982). The method uses the 

information from different generations to detect the genetic control and relative 

importance of additive, dominant and epistatic effects. Expressed in a simple way, this 

method fits the observed means of each generation to the their expected means under a 

16 



assumed genetic model. If the goodness of fit is high judged by the X2 test, the assumed 

model is accepted. Otherwise, it is rejected and a new model is fitted. Similarly, the 

observed variances can be fitted to the expected variances. In practice, the simplest 

model is fitted first, further parameters (a more complicated model) are added only if a 

simple model cannot fit the observed means (variations). Sometimes, two different 

models fit the data, in which case the one with the fewest and biologically most plausible 

parameters is accepted (Kearsey and Pooni, 1996). The advantages of this method are 

I. The generations used are the ones produced in a practical breeding program; 

thus, it can be easily integrated with a breeding program. 

2. Very simple field design can be used, and 

3. All the computations can be done by standard statistical software. 

The disadvantage is that the results can not be related to any ancestral population, 

as the estimates obtained from each cross may be, to varying degrees, unique. 

Other analytical methods use special mating designs to develop particular sets of. 

progenies and use the variations between and within these progenies to estimate additive, 

dominant and genetic variance components. The general principle of all the methods is 

based on phenotypic records from progenies tested in designed tria1(s), variance 

components of different sources are estimated using methods such as analysis of variance 

(ANOVA), the maximum likelihood method and the restricted maximum likelihood 

method. The relationships between genetic variance components and the estimated 

variance components of the different sources are used to obtain the estimates of genetic 

variance components. Commonly used designs are North Carolina (NC) designs I, II and 

Ill, triple test cross and dialle1 cross (Kearsey and Pooni, 1996). The NCI design is also 

known as the hierarchical mating design. In this design, each of 'm' random male 

parents is crossed with If' random female parents to produce 'mf' full-sib families. It is 

the least restrictive design. However, it provides less genetic information and does not 

allow an independent test for the dominant variance component. The NCII design is also 

known as a factorial mating design. In this design, every male parent is crossed with 

every female parent to form full-sib and half-sib families. It allows independent tests and 

estimates of additive, dominance and maternal effects. However, it requires that every 
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male and female be crossed many times, it cannot be used in species that are less 

reproductive and/or are difficult to cross. The NCllI design involves taking a number of 

F2 plants from a cross between two inbred lines and crossing each back to the two 

parental lines. In the triple cross design, like the NCIII, all the F2 plants are mated to 

both parental lines, in addition, they are crossed to the F, as well. These two designs 

provide the most genetic information (all major sources of variation and their relative 

importance). However, the extensive crosses needed limits their application to highly 

reproducti ve and easily crossable species. In addition, like generation mean analysis, the 

results obtained are cross specific. 

In a diallel cross, a set of random individuals are used as both male and female 

parents. It is the mating design discussed most in plant genetics literature, and several 

different analytical methods have been proposed (see Christie and Shattuck, 1992 for a 

review). Because of the high number of crosses for a fixed number of parents, the 

number of parents used is rarely sufficient to provide accurate estimates of the genetic 

variance components. Therefore, it may not be a suitable design for estimating genetic 

variance components. 

2.3.3 The mixed-inheritance model 

All of the above methods assume that many genes with minor effects control a 

trait. However, recent studies have shown that effects of genes controlling a trait may 

differ from each other. One or few genes may have large effects (major genes) and many 

other genes may have minor effects (minor genes). Genetic models with both major 

gene(s) and minor genes are called mixed-inheritance models. 

Several methods have been developed for analysing mixed-inheritance models 

and are collectively called complex segregation analysis by human and animal geneticists 

(Edwards, 1960; Elston and Rao, 1978; Bonney, 1984; Hoeschele, 1988; Demenasis and 

Bonney, 1989; Mitchell-Olds and Bergelson, 1990; Elston, 1993). Most of these methods 

are for human and animal populations and may be hard to apply to plant traits. However, 

see TOUljee et al. (1994; 1995) and Mitchell-Olds and Bergelson (1990) for applications 

in plant genetics. The two methods most suited for analysing plant traits are Elkind and 
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Cahaner 's method (Elkind and Cahaner, 1986) and Wang and Gai's method (Gai and 

"Wang, 1998). In Elkind and Cahaner's method, the F3 families produced from 

heterozygous F2 plants heterozygous for a major gene are used. Wang and Gai's method 

is an extension of the classical generation-mean analysis. The distribution of each 

generation is described as a mixture of normal distributions. In addition, the component 

parameters (genetic parameters) are estimated via the maximum likelihood method. The 

best inheritance model is selected based on Akaike's information criterion. Both 

methods assume that there is only one major gene. Wang and Cai's method also assumes 

that there is no interaction between the major gene and minor genes, and that major 

genotype groups in each segregating population have the same variance. The first 

assumption, though unrealistic, does not restrict the application of this method because it 

is only one of the models that researchers can fit to the data. The second assumption is 

not required for the method and could be removed if computing resources are not limited. 

Elkind and Cahaner's method requires that the major genotypes be known. This limits its 

application in practice. However, if a neutral marker tightly linked to a major gene was 

available, major genotypes could be worked out and regarded as known. A big advantage" 

of Elkind and Cahaner's method is that it estimates and characterises the interaction 

between the major and minor genes. 

When major genotypes can be identified, the contribution of minor genes can be 

quantified by comparing recombinant inbred lines with same major genotype. This 

method was used by Rebetzke et al. (1998) to study the genetics of reduced saturated 

fatty acid content in soybean. 

2.3.4 Quantitative trait loci mapping 

Quantitative trait loci (QTL) mapping was developed as a result of the rapid 

development of modern molecular techniques (Tanksley, 1993; Lee, 1995; Jansen, 1996). 

It provides more information than conventional quantitative genetic methods. For 

instance, the positions of the QTLs on chromosomes can be determined. The number of 

QTLs controlling a trait can be more precisely estimated (Lee, 1995; Carbonell and 

Asins, 1996; Kearsey and Pooni, 1996). In recent years, the genetic basis underlying 
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disease resistance In many species for various diseases has been studied using QTL 

mapping (Bent and Yu, 1999). 

The principle underlying QTL mapping is to follow the segregation of genes 

controlling quantitative traits by the use of linked observable genetic markers (Sax, 

1923). Therefore, it is an extension of linkage analysis. The difference is that in classical 

segregation analysis the genotypes of both loci can be easily determined, while in QTL 

mapping only the genotypes of the marker loci are known. The existence of traits 

recorded in quantitative (QTL) and qualitative (marker) scales implies that methodologies 

for analysing continuous and discrete traits need to be used simultaneously in QTL 

mapping. All individuals can be classified into groups according to the marker genotypes 

and then the means for marker genotypic groups are compared statistically using analysis 

of variance. If the means are not significantly different, the grouping using marker 

genotypes is equivalent to grouping individuals randomly, that is, the QTL and marker 

are independent. If the differences between marker genotypic groups are significant, the 

QTL must link with the marker (Soller and Beckmann, 1983; 1990; Weller, 1986; 

Edwards et ai., 1987; Stuber et ai., 1987; Asins and Carbonell, 1988; Cowen, 1988; 

Simpson, 1989; Dudley, 1993). Since normally there are more than one type of QTL 

genotypes, within each marker genotype, the expected values for the marker genotypes 

are weighted means of the expected values of these QTL genotypes. The expected 

genotypic values of QTL genotypes can be determined in terms of the genetic model 

underlying the trait. The weights are the frequencies of the QTL genotypes within the 

marker genotypes. i.e. the conditional probability of the QTL genotype given the 

observed marker genotype is Mj. 

To estimate QTL effects and recombination rate between QTL and marker(s) 

(hence the position of the QTL), methods based on regression analysis (Knapp et ai., 

1990; Knapp, 1991; Haley and Knott, 1992; Jansen, 1992; Martinez and Curnow, 1992) 

and the maximum likelihood method (Weller, 1986; Lander and Botsein, 1989; Luo and 

Kearsey, 1989; 1991; Carbonell et ai., 1992; Jansen, 1992; Knott and Haley, 1992; 

Hackett, 1994) are used. For the maximum likelihood based methods, the joint likelihood 

function of the trait values in a mapping population is established based on an assumed 

distribution of trait values in each marker genotype class. This likelihood function is the 
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function of observed trait values, expected QTL genotype trait values and the conditional 

QTL genotype probabilities. The estimates of the unknown parameters (recombination 

rate and QTL effects) are then obtained by maximising this likelihood function with 

respect to aJ I the parameters. 

For the regression method, a regression model is established to relate observed 

trait values and expected QTL genotype trait values and the conditional QTL genotype 

probabilities. Then the least-squares method is used to estimate recombination rate and 

QTL effects. Estimates from maximum likelihood are sound statistically with several 

desirable characteristics. However, it is not an easy job to estimate the parameters, 

particularl y if the number of unknown parameters is large and specialised software is 

required. Regression based methods are computationally simple and can be easily 

implemented using standard statistical software, but the estimates may not be statistically 

sound. 

Based on the number of markers used for mapping a QTL, QTL mapping methods 

can be grouped into three kinds, 

1. single marker analysis, 

2. flanking marker analysis and 

3. multiple marker analysis. 

The simplest way to detect the existence of a QTL is to investigate its association 

with each single marker available separately. As mentioned above, ANOVA can be used 

to t~st the differences among marker genotype groups and significant differences indicate 

the association between QTL and marker locus. The advantages of this method are that 

the computation involved is simple, and the gene order and a complete linkage map are 

not required. However, because the putative QTL genotypic means and the QTL 

positions are confounded, the estimate of QTL effects are biased, statistical power is 

lower and the QTL position cannot be precisely determined (Lui, 1998). In addition, it 

does not give information on the number of QTLs associated with a marker. Therefore, 

ANOVA based method for single marker analysis should be regarded as a preliminary 

analysis only in a QTL mapping study to simply detect the presence of a QTL. The 

21 



maximum likelihood method has been developed to estimate the genetic effects of a QTL 

linked to a marker and the recombination rate between them (Luo and Kearsey, 1989; 

J 991) 

If a known, accurate marker linkage map is available, (i.e. marker positions and 

order are assumed known without error), a natural extension of QTL mapping is to use a 

pair of markers flanking the potential QTL loci. This method is called interval mapping 

(Lander and Botstein, 1989; Knapp et ai., 1990; Knapp, 1991; Carbonell et ai., 1992; 

Haley and Knott, 1992; Jansen, 1992; Martinez and Curnow, 1992; Jansen, 1993; Jansen 

and Stam, 1994). Because a pair of markers provides more information than a single 

marker, the resultant estimates of both genetic effects and recombination rates are more 

accurate. Interval mapping also is less sensitive to the violation of normality. 

The number of QTLs underlying a quantitative trait must be more than two, and 

all the QTLs for the trait are not necessarily independent of each other. Thus, the 

estimates of the effects and position of a QTL may be biased by other linked QTLs. So­

called composite interval mapping was developed to overcome this problem by using. 

other markers as cofactors (Jansen, 1993; Zeng, 1993; 1994; Jansen and Starn, 1994). 

The main factor limiting QTL analysis is the higher cost involved in genotyping 

segregating populations. In most of the studies, only one or two mapping populations are 

used arid this raises concerns over generalisation of the results. To overcome this 

problem, a lower cost methodology has been proposed and used in several studies 

(Michelmore et ai., 1991). It is based on local mapping of a target quantitative trait. The 

tightly linked molecular markers in two DNA pools consisting of opposite phenotypes 

respecti vel y were sought first. These markers were then mapped using a segregating 

population and a local linkage map was obtained. Because only two samples were 

screened in the first step, many probes and/or primers can be examined and the 

possibility of finding tightly linked markers is increased. Moreover, only markers that 

showed tight linkage with a target quantitative trait were tested for segregation in the 

mapping population. Thus a large sample can be examined and the mapping efficiency 

can be increased. Furthermore, this method makes it possible to use several mapping 

populations and compare the results obtained from them. From a genetic mapping point 
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of view, the main disadvantage of the method is that only one quantitative trait can be 

analysed per effort. However, from an applied genetics and breeding point of view, this 

is more of an advantage than a disadvantage. This is because at present usually only well 

defined, important traits are worth using molecular markers to undertake deep analysis. 

2.4 Marker-aided selection 

One of the objectives of gene mapping is to identify markers linked to agronomic 

traits and to use these markers to assist selection for the improvement of the trait. When 

marker information is used to assist selection, it is referred as marker-aided selection 

(MAS). For a monogenic trait, selecting for the presence/absence of a tightly linked 

marker is essentially the same as selecting on the genotype itself. For a polygenic trait, 

selection for a single QTL is less useful except where the major QTL is identified; 

marker information is combined with phenotypic value to increase selection response. 

2.4.1 Using markers in selection for monogenic resistance 

A single gene conferring resistance is conventionally introgressed into an elite 

background by repeated backcrossing. If, instead of the gene, a marker tightly linked to 

the gene is used to trace its segregation in the selection process, the method is referred to 

as maker-assisted introgression (MAl). The use of MAl has several obvious advantages. 

I. The tedious and troublesome test for resistance is not required, and selection 

can be done in normal environments; 

2. Selection can be done at an earlier stage and hence generation intervals may 

be reduced; 

3. The transfer of both dominant and recessi ve genes is feasible. 

4. The results from both theoretical study and practical application have shown 

that MAl reduces the necessary population size and the number of 
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generations required for developing commercial varieties (Hyland and Quaas, 

1991; Hillel et aI., 1990; Me1chinger, 1990; Tansley, 1993; Edwards and 

Page, 1994; Visscher et aI., 1996). 

Flanking markers can be used to identify the backcross lines that are heterozygous 

for target genome regions and by only advancing these selected lines linkage drag will be 

reduced. It also allows for the selection of genotypes with the maximum percentage of 

the recurrent parent genome. 

Because mongenic resistance is a qualitatively inherited trait, classical Mendelian 

linkage analysis can be used to identify linked markers. Marker genotypes and genotypes 
-

for resistant genes are determined for plants in a segregating population and the linkage 

between the marker and the trait is confirmed by estimating the recombination rate. 

However, generating DNA markers is both costly and time-consuming. Better strategies 

are required to facilitate the identification of markers linked to a target trait. Ideally, few 

DNA samples are used to screen markers and most of the DNA markers used for 

genotyping individual plants are linked to the target trait. Near-isogenic lines (Nll.s) 

produced from backcrossing programs to introgress resistance genes are ideal material to 

identify linked markers (Paran et aI., 1991; Penner et aI., 1993). As Nll.s are genetically 

identical except for the locus conferring resistance, markers represented by bands, which 

appear only on DNA from resistant Nll.s, must link to the gene for resistance. The NILs 

for many important diseases are now available in major crops. Bulk segregation analysis. 

propose~ by Michelmore et al. (1991) does not require special materials and has become 

a standard practice in this field. Two DNA pools formed by mixing DNA from highly 

resistant individuals and highly susceptible individuals are used to detect polymorphism. 

Markers represented by bands, which appear only on one of the DNA pools are likely to 

be linked to the gene for resistance or susceptibility. Then the linkage and recombination 

rates between these markers and the resistant gene are confirmed and estimated using 

Mendeljan linkage analysis. 
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2.4.2 Using markers in selection for polygenic resistance 

Like any quantitative trait, accumulating the effects of QTLs by selection is 

required to increase resistance controlled by polygenes. In this context, MAS can be used 

to increase selection efficiency. Increased genetic gain from MAS can be achieved via 

increasing selection accuracy, selection intensity and reducing generation turnover. The 

increased selection accuracy is achieved by incorporating marker information in selection 

critedon. The increased selection intensity is achieved by reducing the number of plants 

required for each line to obtain accurate estimates of genetic value. The reduced 

generation turnover is achieved by selecting at earlier stages (Lande and Thompson, 
-

1990; Lande, 1994; Hosptial et al., 1997; Moreau et al., 1997). Clearly, MAS will be 

used mostly in early generations when it is not possible to increase the selection 

efficiency by increasing the number of plants tested per line. For traits, which are 

difficult or expensive to measure, additional benefit can be obtained from MAS, since 

less or even no phenotypic evaluation may be needed. 

2.5 Gene mapping and marker-aided selection in lentil 

2.5.1 Gene mapping 

The first linkage group of lentil was described by Zamir and Ladizinsky (1984). 

They showed that Gs (cotyledon colour), Got2 (glutamic oxaloacetic transaminase) and 

Mel (malic enzyme) are in one linkage group and that Got3 and Adhl (alcohol 

dehydrogenase) are in another. The remaining loci were independent of each other. 

Muehlbauer et al. (1989) studied the inheritance and linkage relationships of 

morphological and isozyme loci in lentil using seven crosses between nine L. culinaris, L. 

orientalis and L. odemensis genotypes carrying four morphological marker genes and 

alloenzyme polymorphism at 18 loci. Six linkage groups were identified containing 14 of 

the loci analysed. A comparison of the isoenzyme phenotypes and linkage groups 
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observed with those found in Pisum sativum revealed that several linkage groups were 

conserved between these two crops. 

Havey and Muehlbauer (l989b) constructed a genetic linkage map of lentil 

spanning 333 cM from 20 RFLP, eight isozyme and six morphological markers in an 

interspecific cross. Weeden et al. (1992) developed a 560 cM linkage map, which 

consisted of 64 morphological, ioszyme and DNA markers, from an interspecific cross of 

L. ervoides x L.culinaris. In addition, nine markers were scored that assorted 

independently of any of the multiple linkage groups. Vaillancourt and Slinkard (1993) 

analysed the F2 progeny from 18 crosses involving five, two and one parents of L. 

cuiinaris, L. orientalis and L. odemensis respectively, using 28 genetic markers (11 

morphological traits and 17 isozyme markers). These 28 markers formed four linkage 

groups (I to IV), which represent linkage relationships in the cultivated lentil and in its 

wild progenitor L. orientalis. 

Tahir et ai. (1993) produced a compiled linkage map based on combined linkage 

data and regions of homology shared with pea including seven morphological, 25 

isozyme, 38 RFLP and six other loci. Tahir and Muehlbauer (1994) developed a genetic 

map using eight sets of recombinant inbred Jines developed from interspecific hybrids 

between L. culinaris and L. orientalis based on isozyme and morphological markers. Six 

linkage groups included 17 isozyme loci and four morphological trait loci were 

identified. 

Recently, RAPD markers have been tested for genetic mapping. Eujayl et al. 

(1995) generated 63 RAPD markers using primers. However, only 28 RAPD markers 

were allocated into nine linkage groups. The map constructed by the use of these 28 

markers and three oligonucleotides and one morphological marker covered 173 cM of the 

genome. Ln a further study, Eujayl et al. (1997) generated 78 RAPD markers using 390 

pnmers. A genetic map of nine linkage groups including 28 RAPD, three 

oligonucleotide markers and one morphological marker were constructed which covered 

206cM. These studies clearly showed that RAPD markers are valuable for genetic 

mapping, although many marker loci segregated independently of the established linkage 

groups presumably caused by the small number of F2 plants used. 
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Eujayl et ai. (1998a) constructed a genetic linkage map using 89 RAPD, 79 

AFLP, six RFLP, and three morphological markers. This map covered 1073 cM of the 

lentil genome with an average distance of 6.0 cM between adjacent markers. It is the 

most extensi ve genetic map of lentil to date. 

Similar to many other self-pollinated crops, interspecific hybrid populations have 

been used to maximise polymorphism for map construction. However, reduced 

recombination or chromosomal rearrangements in interspecific crosses may lead to 

segregation distortion and non-representative genetic distances and linkage relationship 

(Tadmor et ai., 1987; Paterson et ai., 1990). In lentil, Vaillancourt and Slinkard (1993) 
-

found that in crosses between L. odemensis and the other Lens species, markers of 

linkage groups III and IV showed disturbed segregation and pseudo-linkage. Eujayl et ai. 

(1997) showed that in one of the two crosses they used, most of the RAPD, isozyme and 

morphological markers showed segregation distortion, while another cross showed little 

distortion. This indicated that it is both necessary and possible to develop a mapping 

population that has little segregation distortion. 

2.5.2 Markers linked to agronomic traits 

Abbo et ai. (1992) studied the association between seed weight and 

morphological and DNA markers. They found that factors affecting seed weight were 

linked to morphological and DNA markers distributed over several linkage groups. A 

high seed weight in segregating generations was usually associated with alleles of marker 

loci originating from the cultivated parent. 

Using recombinant inbreds derived from interspecific (L. culinaris x L. orientalis) 

hybrids, Tahir et ai. (1994) studied the association of isozyme markers with seven 

quantitative trait loci (days to flowering, days to maturity, plant height, biomass, seed 

yield, harvest index and seed weight). They found that 14 tested isozyme markers could 

detect the loci affecting variation in all seven quantitative traits. Detected QTL were 

located in six of the seven linkage groups on the lentil genetic map. Regions of the 

genome represented by linkage groups 1, 5 and 7 appeared to affect a greater number of 

traits than other genomic regions represented by linkage groups 2, 3 and 4. 
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Eujayl et al. (1998b) identified four RAPD markers linked to the gene conferring 

resistance to lentil vascular wilt (Fusarium oxysporum). The closest marker is OPK-

15')00, which is 10.8 cM away from the resistance gene. Eujayl et al. (1999) also found 

that a single major gene, which is linked to RAPD marker OPS-16750 at 9.1 cM, controls 

frost tolerance. Ford et al. (1999) identified seven RAPD markers linked to the resistance 

locus conferring Ascochyta blight resistance in ilL 5588. Five of the seven RAPD 

markers were within 30 cM of the resistance locus and the closest flanking markers were 

approximately 6 (PV) and 14cM (PB18) away from the resistance locus. 

Sarker et al. (1999) reported that seed coat pattern and peduncle pubescence were 

linked to flowering. 

2.6 In vitro multiplication 

In vitro multiplication is the primary requisite for biotechnology-based breeding 

SLlch as in vitro selection and genetic transformation and micropropagation of rare genetic 

material. Genetic transformation is a more flexible method to improve agronomic traits 

of simple inheritance such as disease and insect resistance than conventional backcross 

based methods. The most feasible application of in vitro multiplication in lentil at 

present is for rescuing and multiplying hybrids. This may help to overcome the difficulty 

of obtaining sufficient FJ hybrid plants for genetic analysis. 

Bajaj and Dhanju (1979) first reported in vitro lentil regeneration from meristem 

tips. Will iams and McHughen (1985) described a protocol for regenerating lentil from 

callus cell. Hypocotyls and epicotyls cultured on Murashige and Skoog (MS) medium 

containing 3 % sucrose, 10 mg/L kinetin, 1 or 0.1 mg/L gibberellic acid (GA3) produced 

callus which regenerated shoots spontaneously. These shoots were transferred to basal 

medium to promote development. Shoots about 5 cm in length were transferred directly 

into a mist chamber to develop roots. In 1986, using shoot meristem and epicotyl as 

explants, they also (Williams and McHughen, 1986) obtained whole fertile plants from 
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calli induced on MS media containing 10 mglL of kinetin with either 1 or 0.1 mglL GA3 . 

The induced callus was able to regenerate shoots in relatively large numbers, even after 

several subcultures. 

Saxena and King (1987) obtained whole plants from callus induced from 

embryonal axes cultured on MS medium or on a modified B5 medium supplemented with 

2,4-D (I - 10 mglL). On transfer to BSA medium without hormones or with 

benzyladenine (BA) and (IAA), certain peripheral areas of the callus turned green. Such 

green patches later differentiated into several embryoid-like structures. Further 

subculture of the embryoid-like structures (or embryoids) on a glutathione-supplemented 

medium produced well organised embryos having cotyledons, shoots and roots which 

were able to develop into whole plants. 

Polanco et aI. (1988) studied the factors affecting callus and shoot formation 

using three cultivars. They found that medium with 2,4-D induced the formation of 

calluses in all explants, but no organ regeneration occurred. Singh and Raghuvansi 

( 1989) found that the best canus formation was on medium containing 1.0 mglL kinetin 

and 10.0 mg IL 2,4-D. Whole plants were formed by transferring callus to media 

containing only kinetin to induce buds and culturing the buds on MS basal medium. 

Malick and Rashid (1989) observed that root, leaf and hypocotyl of young 

seedling underwent callusing on a medium rich in cytokinin or auxin, and the tissue 

formed was only able to regenerate roots. Ghanem (1995) found that when leaf, stem and 

root explants were cultured on supplemented MS medium, no callus was induced in the 

absence of 2,4-D. The best callus induction was achieved with 0.5 mg IL 2,4-D + 2 mglL 

kinetin. 

Polanco et aI. (1988) reported multiple shoot formation was obtained with 33 - 92 

% of explants in a medium supplemented with 2.25 mglL BA and 0.186 mglL NAA + 

2.25 I1lg/L BA. Root formation from explants occurred only in media with NAA or IAA. 

Singh and Raghuvansi (1989) reported that plants could be regenerated directly 

from nodal segments and shoot tip explants as well as from callus. Nodal segments and 

shoot tip explants each produced a single shoot and roots in 4 weeks on hormone-free MS 

medium. Only shoots regenerated on a medium containing kinetin and multiple shoots 
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formed without intervention by callus or root formation. Ahmad et al. (1997a) developed 

a protocol to regenerate shoots in vitro from nodal segments without a callogenic phase. 

It used an MS medium containing 2.89 IlM GA3 and 1.11 IlM BA, and no sucrose. Best 

root induction from these shoots was obtained on MS medium supplemented with 5.37 

/lM NAA. However, Parh et al. (1998) found there was serious shoot tip necrosis on in 

vitro seedlings when the Ahmad et al. (l997a)' s protocol was used. They overcame the 

problem by doubling the calcium content of the basic MS salts. 

Warkentin and McHughen (1993) obtained multiple shoots from cotyledonary 

nodes. Halbach et al. (1998) reported that best multiple shoot formation was from 

bisected embryos, and that keeping the cotyledons attached to the embryo-axis was 

beneficial. Oktem (1999) showed that cotyledonary node culture was a good system for 

genetic transformation in lentil. 

Using intact seedlings as explants, Malick and Rashid (1989) showed that 

multiple shoots generated from cotyledonary nodes on a medium with 10-5 M BA. The 

best morphogenetic responses were from nodes and the poorest from leaves. Malik and. 

Saxena (1992a) reported that multiple shoots developed after the culture of seeds on MS 

media supplemented with 1-50 IlM thidiazuron (TDZ). Differentiation of shoot buds 

occurred in cultures exposed to TDZ for 4 - 6 weeks but only from nodal and subjacent 

areas. There was frequent secondary shoot formation. Developing shoots were able to 

form roots and eventually whole plants on a modified MS medium containing 2.5 IlM 

NAA. No genotypic difference for morphogenesis was observed. Shoot formation from 

intact seedlings was also reported by Halbach et al. (1998). 

Cohen et al. (1984) established a two stage in vitro technique for the development 

of interspecific hybrid embryos. They used 14 day old fertilised ovules which were 

cultured on MS medium supplemented with zeatin. This was followed by the release of 

the embryos from the ovular integuments. These embryos later developed into viable and 

vigorous plants. Ladizinsky et al. (1985) also obtained vegetatively normal L. culinaris x 

L. en)oides hybrids using embryo culture techniques. No in vitro protocol has been 

developed for rescuing hybrids between L. culinaris x L. nigricans. 
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2.7 Conclusion 

The presence of germplasm with resistance to lentil Ascochyta blight provides the 

materials for breeding and makes breeding for resistance possible. However, the genetic 

basis of resistance is yet not well understood. Minor genes may be involved in the 

determination of resistance, thought major genes appear to be the main controllers. If 

both major genes and minor gens were proved to be involved, Mendelian genetic analysis 

would provide oversimplified description of genetic mechanism. Some quantitative 

genetic methods such as generation mean analysis are more informative if the effect of 

individual genes is not of interest. However, an important assumption underlying all the 

classical quantitative genetic methods is that the trait is under control of many genes, 

which have small and equal effects. They may not be suitable if major genes are present. 

In this case, methods for analysing so-called major gene and polygenes mixed model are 

more suitable, though they are more computation intensi ve. Quantitative trait loci 

mapping with the aid of molecular markers has the potential to quantify the effects of 

individual genes. However, at present the resolution powers of this kind of method are 

still not high enough to be useful for this purpose. 

One of the difficulties of carrying out genetic analyses in lentil is to obtain 

sufficient hybrid seeds. This is particularly true when wild relatives are used as parent(s). 

In vitro propagation of limited hybrid seeds has the potential of overcoming this problem. 

For successful breeding for Ascochyta blight resistance, relationships among 

Ascochyta blight resistance and other agronomic traits need to be investigated, because 

lllultitrait selection is necessary. Moreover, useful techniques for the utilisation of more 

efficient breeding methods such as marker-aided selection and genetic engineering need 

to be developed. Identification of markers linked to resistance genes is likely to be 

greatly promoted by the development of modern molecular techniques. Genetic 

transformation has been less successful in lentil presumably due to the lack of an efficient 

regeneration system. 

Therefore, an effort in this study was made to study the genetics of Ascochyta 

blight resistance in lentil using various analytical methods, to investigate the relationships 
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among Ascochyta blight resistance and other agronomic traits, and to develop some 

useful techniques for the efficient implementation of a breeding program. The results of 

these studies were used to develop breeding strategies for current and future breeding. 
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CHAPTER 3 

AN EFFICIENT IN VITRO SYSTEM FOR PROPAGATION OF 

LENTIL HYBRIDS 

Summary 

A sufficiently large population of hybrid plants from a cross is required to 

perform genetic analysis using Mendelian and quantitative genetic methods~ The 

limited success of interspecific crossing in lentil necessitates an efficient method to 

multiply the limited number of hybrid seeds produced. In this report, single nodal 

segment culture was explored as a mechanism to serve this purpose. Basal medium, 

sucrose content and plant growth regulators all influenced the elongation of axillary 

shoots (from axillary buds). An MS medium with 3 % sucrose and 1.0 mg/L 

gibberellic acid (GA3) or 0.17 - 0.18 mg/L indole-3-butyric acid (lBA) was 

recommended to obtain strong, healthy shoots with the highest total number of nodes 

per segment. A medium of 0.67 strength MS supplemented with 2.0 mg/L 

a-naphthaleneacetic acid (NAA) and 5 % sucrose was the best medium for root 

formation. The application of this multiplication approach produced about 20 plants 

from a single seed in 3 months or about 100 plants in 4 months. 

3.1 Introduction 

Lentil (Lens cuiinaris Medik) was one of the first crops and was cultivated by 

Neolithic man. The relatively high protein content of lentil grains makes this crop an 

important source of protein in many countries, particularly in developing countries 

(Muehlbauer et ai., 1995). The genetic base of cultivated lentil is narrow, but many 

agronomically useful traits have been found in wild lentils (Erskine et ai., 1994). 

Therefore, it has been suggested that transferring these traits from wild species into 
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cultivated species will be an important strategy to improve the quality, yield, 

adaptation and stress-resistance of cultivated lentil (Erskine et al., 1994). At present 

interspecific hybridisation, by hand-pollination, is the only practical way to 

implement this strategy. Several biological characteristics of wild lentils such as very 

small flower size, low number of seeds/pod, and post-fertilisation abortion has made 

artificial crossing very difficult. Therefore, a highly successful crossing technique is 

not available and is unlikely to become available in the near future. However, 

because Lens spp are a strictly self-pollinated species, the F, hybrid plants of a 

particular cross are all genetically identical. Thus, micropropagation of limited Fl 

materials may be a way to enlarge the F, population and eliminate the requirement for 

large-scale pollination to obtain enough hybrid material for further genetic study and 

breeding. 

When hybrids are mUltiplied by in vitro culture, somaclonal variation must be 

minimal for the plantlets produced to be used for genetic analysis. Alternatively, 

somaclonal variation itself could be explored if the resultant plants are to be used as 

breeding material for selection and further mating. To service the first goal,an in 

vitro propagation method aimed at producing genetically true-to-type plants is useful. 

Among methods of in vitro propagation, nodal segment culture has been shown to 

produce no or fewer genetically off-type plants (Ahuja, 1993; Kyte and Kleyn, 1996). 

In lentils, Singh and Raghuvansi (1989) reported plant regeneration directly from 

nodal segment and shoot tip explants. Ahmad et al. (1997a) developed a protocol to 

regenerate shoots in vitro from nodal segments without a callogenic phase. However, 

Ahmad et al. (1997a) used the number of shoots per segment as one of the criteria to 

determine the optimal protocol. The presence of more than one shoot per segment in 

their experiments made the results less relevant to true-to-type hybrid production as 

there was the possibility of somaclonal variation in the adventitious buds that arose. 

In this Chapter I describe single-node segment culture, that will enable more safe and 

efficient production of genetically true-to-type lentil hybrids. 

3.2 Materials and methods 

3.2.1 Plant ma~erials and explant preparation 
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The cultivar Titore of cultivated lentil (Lens culinaris) was used to develop the 

system, and eight intra- and inter-specific hybrids (see Table 3.4) were used to verify 

the applicability of the system. Seeds were surface sterilised by rinsing in 95 % 

ethanol for 30 seconds, then soaking them in 1.25 % sodium hypochlorite containing a 

few drops of the surfactant Tween-20 with continuous stirring for 20 min followed by 

five - six washes in sterile deionised water. The seeds were germinated in an 

incubator at 24 DC in the dark on MS salts and vitamins (Murashige and Skoog, 1962) 

with a doubled concentration of calcium chlorate (Parh et al., 1998), 3 % sucrose and 

8 % agar in plastic tissue culture containers. There were 10 seeds per container. 

After 3 - 4 d, they were transferred to a growth room with a light intensity of 60 

/-unolm-2s- 1 at 24 DC with 16 h daylength. Nodal segments about 1.0 cm were 

prepared from 3 to 4 weeks old seedlings. 

3.2.2 Shoot elongation experiments 

I) Basal medium and strength: full- or half-strength salts, full-strength vitamins of the 

following media: MS, B5 (Gamborg et al., 1968), SH (Schenk and Hildebrandt, 1972) 

and LM (Verma et al., 1983). 

2) Sucrose concentrations: the MS medium was supplemented with different 

concentrations of sucrose (0 %, 1 %, 3 %, 5 % and 7 %). 

3) Plant growth reguator concentrations: the MS medium supplemented with 

different concentrations of lEA or BA (0.025, 0.05, 0.1 and 0.2 mg/L) or NAA 

(0.025, 0.05, 0.1 and 0.2 mg/L) or GA3 (0.1, 0.2, 0.4, 0.8 and 1.0 mg/L). 

4) Second round culture: nodals of first round shoots obtained from several different 

media (MS basal medium supplemented with 0.6 mg/L GA3, MS basal medium 

supplemented with 3% sucrose and 0.6 mg/L GA3, and MS basal medium 

supplemented with 3% sucrose) were cultured on MS medium supplemented with 

3 % sucrose and 1.0 mg/L GA3. 

A randomised complete block design was used with three replications of 

single containers. Five explants were cultured per container. 

3.2.3 Root induction experiments 
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I) Basal medium and salt strength: MS at 1, 112, 114 or 118 strength salts or B5 basal 
I 

medium. 

3) Sucrose concentrations: MS supplemented with different concentrations of sucrose 

(l %,2 %, 3 %,4 % or 5 %). 

3) Plant growth regulator concentrations: MS supplemented NAA (0.2, 0.5, 1.0 or 1.5 

mg/L) or IBA (0.2, 0.5, 1.0 or 1.5 mg/L). 

A randomised complete block design with three replications of two containers 

was used. Five shoots were cultured per container. 

3.2.4 Multiplication of hybrids 

The following intra- and inter-specific hybrids were multipled using the 

optimal protocol as determined from above shoot elongation and rooting experiments 

(Shoot production medium was basal MS medium supplemented with 1.0 mg/L GA3 

and 3 % sucrose. Root initiation medium was 2/3 strength MS salts and MS vitamins 

supplemented with 2.0 mg/L NAA and 5 % sucrose). 

Lens culinaris cv Titore x Lens orientalis W 6 3261, Lens culinaris cv Titore x 

Lens erovides W 6 3192, Lens culinaris cv ILL 5588 x Lens orientalis W 6 3261, 

Lens culinaris cv ILL 5588 x Lens erovides W 6 3192, Lens culinaris cv Laird x Lens 

orientalis W 6 3261, Lens culinaris cv Laird x Lens erovides W 6 3192, Lens 

culinaris cv Titore x Lens culinaris cv ILL 5588, Lens culinaris cv Laird x Lens 

culinaris cv ILL 5588. 

Unless specified, all media were supplemented with 3 % sucrose and all 

rooting media were supplemented with 1.0 mg/L NAA. Media were solidified with 8 

% agar and adjusted to pH 5.8 prior to sterilisation by autoclaving (122 kPa, 20 min). 

The cultural conditions were the same as for seedling culture. 

3.2.5 Data collection and analysis 

. Data were collected on the number of shoots/segment, average shoot length 

and number of nodes/shoot for the shoot elongation experiments after 4 weeks 

incubation. The number of rooted shoots for the root induction experiments was 

recorded after three weeks culture. The resulting data sets were analysed using the 

general linear model (GLM) and regression (REG) functions of the SAS package 

(SAS@, 1990). 
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3.3 Results 

3.3.1 First round shoot production 

For shoot elongation, the ranking of the four basal media tested was MS > SH 

> BS > LM. On average, shoot production on the MS medium were 6.S cm high with 

6.S nodes, while on LM medium shoots were 3.2 cm with 2.8 nodes. For all media, 

full salt strength gave better shoot elongation than half strength. 

Sucrose was not necessary for the elongation of axillary buds into ~hoots. 

Indeed, the addition of sucrose inhibited elongation. For mean shoot length and the 

mean number of nodes per shoot, the effects of sucrose were described using linear 

models (Figure 3.1,3.2). 

However, in spite of the reduction in the mean number of nodes and shoot 

length, shoots were stronger and healthier when a high sucrose concentration was 

used. Because strong growing shoots are required for good production of shoots in 

second round culture, which is necessary for more plants to be produced from a single 

seed, the commonly used level of 3 % sucrose is recommended to maximise 

production of healthy plant. 

The plant growth regulators NAA and IBA promoted shoot elongation, with 

IBA being more effective than NAA (Table 3.1). Within the range tested (0.025 - 0.2 

mg/L) , the relationship between the mean number of nodes per explant (y) and the 

IBA concentrations (x) was best described as: 

y = 4.48 + 29.5x -80.2 x2 (R2 = 0.96). 

The relationship between shoot length (y) in em and the IBA concentration (x) 

was best described by: 

y = 3.95 + 56.7x -162 x2 (R2 = 0.91). 
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Figure 3.l. Relationship between axillary shoot growth and sucrose content in lentil 
single node culture. Basal medium: MS salts and vitamins + 0.5 mg!l GA3. 
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per shoot in lentil single node culture. 
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Based on these two equations, the optimum IBA concentration range is 0.17 -

0.18 mg/L. Callus was found on the basal cut surface of all of the explants when 

NAA was used. 

The plant growth regulator GA3 , also promoted axillary shoot elongation 

(Table 3.1). The shoot length and the number of nodes increased with GA3 

concentrations. Within the tested range (0.1-1.0 mg/L), the relationship between the 

number of nodes per explant (y) and GA3 concentration (x) was best described by 

2 Y = 5.62 + 2.25 x (R = 0.94). 

Similarly, the relationship between the shoot length (y) and GA3 concentration 

(x) was best described by 

y = 6.80 + 3.33 x (R2 = 0.79) 

Although these results suggested that better shoot growth may be obtained by 

further increasing GA3 concentration, it is likely that 1.0 mg/L should be efficient 

enough. 

At lower concentrations BA promoted shoot development, while at more than 

0.1 mg/L it induced new shoot formation but inhibited shoot development. A 

concentration of 0.1 mg/L was the best for producing nodes for further culture (Table 

3.1 ). 

3.3.2 Second round culture 

The shoots produced were as good as in the first round if strong first round 

shoots were used. The health and vigor of shoots from the first round explants had a 

great effect on the development of the second round shoots. Segments obtained from 

shoots produced on medium without sucrose elongated far more slowly and one third 

as many shoots were produced (Table 3.2), More than four adventitious shoots were 

produced when 0.1 mg/L BA was used in the first round culture. 
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Table 3.1. Mean shoot production parameters for single node culture of lentill. 
,. , ~~--- '.--~~ -,-

PGR Concentration Number of Number of Shoot length 

(mg/L) shoots/explant nodes/shoot (cm) 
- .----,.- ... _.-.- ... --- ~.---~~--.---.--------------.---.-.. ---------.----

Nil 1 4.1 5.0 

NAA 0.025 1 4.4 5.6 

0.05 1 5.1 5.7 

0.1 1 5.8 6.6 3 

0.2 5.9 6.43 

IBA 0.025 1 5.3 5.7 

0.05 1 5.5 5.7 

0.1 1 6.8 8.3 

0.2 1 7.2 8.73 

MSE2 (Df) = 54 0.9 0.9 

GA3 0.1 1 5.8 6.3 

0.2 1 6.0 7.7 

0.4 1 6.8 9.1 

0.8 1 7.1 9.4 

1.0 1 8.0 9.9 

BA 0.025 1 4.5 5.5 

0.05 1 4.3 5.5 

0.1 2.22 4.6 5.5 

0.2 3.78 2.3 3.1 

I MS basal medium supplemented with 3 % sucrose; means were taken from 15 explants. 

2 MSE: Error mean square. Df: degrees of freedom . 

.1 Callus formation observed at base of shoots. 
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Table 3.2. Second round culture of single node segments of lentil I. 

Node source Number of shoots4 Shoot length4 Number of nodes per shoot4 

No sucrose2 1.0 b 2.1b 1.8 b 

3% sucrose2 1.0 b 6.7 a 5.6 a 

0.1 mg/LBA3 4.5 a 1.2 c 1.4 b 

I Medium was MS basal medium supplemented with 3% sucrose and 1.0 mg/L GA3 . 

2 First round medium was MS basal medium supplemented with 0.6 mg/L GA3 • 

3 First round medium was MS basal medium supplemented with 3% sucrose. 

4 Treatments followed by the same letter were not significantly different. 

3.3.3 Root development 

MS was better than B5 for root initiation. On MS medium, 52 % of shoots 

rooted, compared with only 38 % on B5 medium. Moreover, the shoots on B5 

medium became chlorotic. Half-strength MS salts were more effective (64 %) than at 

full strength (52 %) and the latter was better than 114 strength (43 %). At 1/8 strength 

MS salts, no shoots rooted and all of them became chlorotic. In the range of 1/8 to 

full strength, the effect of MS salt strength (x) on rooting percentage (y) can be 

described using a quadratic equation (Figure 3.3). From this equation, the optimum 

MS salt strength was predicted to be about 2/3. 

Sucrose in the rooting medium (more than 1 %) was necessary for shoot 

viability. A high sucrose content was found to be beneficial to root formation. The 

highest concentration used in this study gave the best rooting frequency. The effect of 

sucrose (x) (from 1 % to 5 %) on the rooting percentage (y) can be described using a 

linear model (Figure 3.4). 

Both NAA and IBA promoted root formation and the rooting percentage 

increased with their concentrations (Table 3.3). The relationship between the rooting 

percentage (y) and the concentration of NAA (x) was best described by the quadratic 

equation: 
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Figure 3.3. Relationship between MS salt strength and rooting frequency of lentil shoots 
grown from single node explants. 
Other medium components: MS vitamins, 3% sucrose, 1.0 mg/L NAA. 

43 




80 

75 • 
"......, 70 
~ Y= 23.8 + 10.1 x (R 2 = 0.92) 
'--' 

~ 65 u 
!=: 
<ll 
::s 
0'" 

60 <ll 

~ 
OJ) 

!=: 
55 ..... ..-

0 
0 
~ • 

50 

45 

40 

2 3 4 5 6 

Sucrose concentration (%) 

Figure 3.4. Relationship between sucrose concentration and rooting frequency of lentil 
shoots grown from single node explants on a basal medium of MS salts and vitamins, 
and 1.0 mg/L NAA. 
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Table 3.3. Rooting of lentil shoots from single node explants on media containing 

different concentrations of NAA and IBA '. 

Concentration (mg/L) 
,.---~--.------------. 

PGR 0 0.2 0.5 1.0 1.5 2.0 

NAA2 7.5 25.04 35.04 58.54 70.04 72.54 

IBA3 7.5 10.0 18.7 34.8 46.34 55.54 

IBasal medium is MS with 3 % sucrose; means were taken over three replications. 

2Error mean square of arcsine-transformed data was 0.026 with 68 degrees of 

freedom. 

3Error mean square of arcsine-transformed data was 0.038 with 68 degrees of 

freedom. 

4Callus formation observed at base of shoots. 

Based on this equation the highest concentration used was very close to the 

optimal concentration (2.02 mg/L). This suggests that further improvement might not 

be achieved by further increasing the NAA concentration. Similarly, the relationship 

between the rooting percentage (y) and the concentration of IBA (x) can be described 

by the quadratic equation: 

y = 2.18 + 37.42x - 5.35x2(R2 = 0.99). 

Based on this equation, the highest concentration (2.0 mg/L) used is still well 

below the optimal concentration (3.48 mg/L), indicating that further improvement is 

possible by increasing IBA concentration. However, the predicted highest rooting 

percentage using IBA (68%) was lower than that of using NAA (73%). In addition, 

NAA-induced roots were thicker and shorter than IBA-induced roots. Therefore, 

NAA was more effective than IBA for root induction, with 73% rooting at 0.2 mg/L 

NAA. 
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3.3.4 Micropropagation of hybrids 

Based on above results, the protocol used for propagating inter- and intra­

specific hybrids was as follows. Shoot production medium was basal MS medium 

supplemented with 1.0 mg/L GA3 and 3 % sucrose. Root initiation medium was 2/3 

strength MS salts and MS vitamins supplemented with 2.0 mg/L NAA and 5 % 

sucrose. There was only minor difference among hybrids in terms of the number of 

nodes per in vitro plant, the number of nodes per axillary shoot, and the rooting 

frequency. However, the number of plants obtained from each hybrid seed differed 

due to the multiplicative effect of the number of nodes from each in vitro plant and 

axillary shoot, and the rooting frequency (Table 3.4). 

3.4 Discussion 

For in vitro shoot growth, an MS basal medium was the best of the four tested 

in this study. The superiority of MS over other media has been demonstrated with 

other legume species, such as Prosopsis cineraia (Shekhawat et al., 1993), Swartzia 

l1wdagascariensis (Berger and Schaffner, 1995) and Bauhinia vahlii (Upreti and 

Dhar, 1996). However, MS was ineffective in other legume species, such as the 

soybean (Glycine max) (Kaneda et al., 1997; Shetty et al., 1992). 

A suitable strength of MS salts is important for good rooting and about 2/3 

strength was determined to be the best in this study. However, using shoots induced 

from intact seedlings by use of thidiazuron, Malik and Saxena (l992a), found that 

rooting percentage was no different in full or half strength MS salts. The effects of 

salts on rooting may function through two paths. One is through providing necessary 

nutrients and the other is through influencing the absorption and/or function of plant 

growth regulators. When nutrition was limited, no roots were formed. This was the 

case for the 1/8 MS as indicated by yellowing and poor shoot performance. When 

nutrition was not a limiting factor, the effect of salt strength may be through 

influencing the absorption and/or functioning of plant growth regulators. 
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Table 3.4. In vitro multiplication of lentil intra- and inter-specific hybrids using single node 

culture. 

Fr hybrid 

Titore x W 632614 

Titore x W 6 31924 

ILL 5588 x w 6 3261 

ILL 5588 x W 6 3192 

Laird x W 6 3261 

Laird x W 6 3192 

Titore x ILL 5588 

Laird x ILL 5588 

Number of 

nodes/plant! 

6 

5 

5 

6 

5 

6 

6 

6 

Number of 

Nodes/shoot2 

8 

8 

7 

7 

7 

8 

8 

8 

Rooting 

71 

70 

74 

69 

71 

71 

71 

71 

Number of 

plantlets 

34 

28 

26 

29 

25 

34 

34 

34 

IThree-weeks-old in vitro seedling on a modified MS medium eMS salts with doubled 

content of calcium chlorate and MS vitamins) supplemented with 3 % sucrose; means were 

taken from 5 - 10 seeds. 

2First round shoots on MS medium supplemented with 1.0 mg/L GA3 and 3 % sucrose for 

four weeks; means were taken from 25 - 60 shoots. 

3Rooted in 2/3-strength MS medium supplemented with 2.0 mg/L NAA and 5 % sucrose for 

four weeks. Transfer the plantlets to a soil mix in glasshouse, the average survival rate of 

plantlets was 85 % with a range of 80 - 95 %. 

4W 6 3192 is an accession of L. ervoides, W6 3261 is an accession of L. orientalis, and the 

others are cultivars of L. culinaris. 

Sucrose in the rooting medium is necessary to obtain healthy plants. The 

effect of sucrose on root formation has not been previously investigated in lentil tissue 

culture. However, similar results have been reported by other researchers for other 

species (Ahuja, 1993; Kyte and Kleyn, 1996). However, in many other plant species, 
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a high carbohydrate content has been shown to inhibit root formation and 

development (Ahuja, 1993; Kyte and Kleyn, 1996). 

Root formation was induced using NAA in all reported lentil tissue culture 

studies. However, the optimum concentration varied from one study to another. For 

example, 0.47 mg/L was the best concentration in that of Malik and Saxena (1992a), 

but 1.0 mg/L was found to be best by Ahmad et ai. (1997a). 

The initial studies, aimed at optimising shoot elongation and root. 

development, were used cultivated inbred lentil seed. The resulting best medium was 

then used to multiply interspecific hybrids. Because culture response parameters are 

under genetic control (Hernandez-Fernandez et ai., 1984; Lazar et ai., 1984), a 

protocol suited to the parents should also work for hybrids if the genes affecting 

response in cultivated lentil are not recessive to the genes in wild lentils. However, 

the efficiency may differ. This is the case in this study. The differences among 

hybrids in terms of shoot length and the number of nodes/shoot were marginal. This 

result is surprising because genotypic variation for in vitro response are well 

documented in plant tissue culture literature (Ou et ai., 1989; Ghaemi and Sarrafi, 

1993). However, the protocol was based on the elongation of axillary buds and the 

elongation of axillary buds into branches is relatively easy to achieve in lentil because 

they are naturally multi-branched species. Therefore, the genetic variation for this 

particular trait may not be large. Moreover, the inherently different elongation rates 

of the species and their hybrids may have been reduced by the limited height of the 

culture container. These data therefore suggested that single nodal segment culture is 

a genotype-independent system for the micropropagation of lentil and its hybrids. 

When an in vitro protocol is developed for the true-to-type type plant 

production for genetic study, the following three criteria must be satisfied. 

1. the protocol induces no or minimal somaclonal variation; 

2. the protocol plants with consistent developmental stage; and 

3. the protocol is highly efficient. 

Since somaclonal variation may result from adventitious shoots, the selection 

of a type and concentration of cytokinin must ensure that only axillary shoot growth is 

stimulated. Direct shoot formation without a callogenic phase will, to large extent, 

reduce the possibility of inducing adventitious shoots. Because it is difficult to 
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distinguish axillary shoots from adventitious shoots, and the protocol developed will 

be used for enlarging hybrid populations, the selection of the best cytokinin 

concentration was very conservative. That is no more than one shoot was induced 

from each segment. The possibility of using multiple shoot induction ability of BA to 

develop an efficient micropropagation method in lentil is under investigation and will 

be reported in another report. 

To obtain a population of plants at a similar developmental stage, a two-step 

procedure should be followed. Sufficient explants are produced first, and then are 

subcultured under the identical conditions to produce plants. Micropropagation using 

single node segTents as explants seems to be the most compatible with this two-step 

procedure. With regard to the efficiency, the method produced at least 25 planfs from 

a single seed in 3 months or about 100 plants in 4 months. It is therefore much more 

efficient than perfonning repeated hybridisations to obtain a similar number of hybrid 

plants. 
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CHAPTER 4 

IN VITRO SYSTEMS FOR EFFICIENT REGENERATION OF 

LENTIL 

Summary 

Two in vitro systems were developed to regenerate lentil plants based on 

cotyledonary node and seed culture. For cotyledonary node culture, explants from 3 

to 12 d seedlings on MS basal medium supplemented with BA at 0.6 mg/L or 

Thidiazuron (TDZ) at 0.01 mg/L gave best useable shoot production from one round 

of culture. Continual culture on a medium with 0.2 mg/L BA gave the best long-term 

result. More, and longer, shoots were produced when cotyledon and epicotyl parts 

were embedded into the medium so the nodal region was directly in contact with the 

medium. More than 70 % of shoots produced roots in a 2/3 strength MS medium 

supplemented with 1.5 mg/L NAA and 5 % sucrose. Cytokinins BA, TDZ and 

Kinetin all induced multiple shoot formation from intact seedlings (seed culture). 

Kinetin produced less, but longer shoots than BA and TDZ. In terms of the number of 

useable shoots (> 1 cm) per seed, BA and TDZ at optimum concentration had similar 

efficiency. However, TDZ was more inductive and toxic. For shoot elongation, 

stumps (tissue remaining after excising useable shoots) from media containing high 

levels of cytokinin should be transferred to a medium without cytokinin but with 0.5 

mg/L GAl or 0.05 mg/L NAA. Stumps from media with lower concentrations of 

cytokinin can be transferred to a fresh medium with the same composition. Up to 20 

useable shoots were produced in 6 weeks using 0.2 mg/L BA. 

Multiple shoots were induced from 10 inbreds of four species using MS 

medium supplemented with 0.2 mg/L BA. However, there were evident genotypic 

differences. Transfer of shoots longer than 2.0 cm to a 2/3 strength MS medium 

supplemented with 1.5 mg/L NAA gave the best root formation. 
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4.1 Introduction 

Lentil (Lens culinaris Medikus) was one of the first crops cultivated by 

Neolithic man. The relatively high protein content of lentil grains makes this crop an 

important source of protein in many developing countries. However, the genetic base of 

the cultivated lentil is narrow. This makes it susceptible to many diseases such as 

Ascochyta blight. Progress towards improving disease resistance has proved to be 

slow (Muehbauer et al., 1995), 

The development of modern biotechnology offers plant breeders several 

valuable new tools to utilise useful genes from wild species and/or heterogeneous 

sources and to create novel genetic variations. For instance, in vitro culture of 

interspecific hybrids has been suggested to promote the formation of novel 

recombinations (Larkin and Scoweroft, 1981). Somatic hybridisation can be used to 

produce distant hybrids, which are not possible using sexual hybridisation (Bajaj, 

1995). In vitro mutation and selection offer much higher selection pressure and 

selection intensity than any conventional method and consequently increase the range 

of variation and the possibility of obtaining novel mutants (Larkin, 1987). Genetic 

transformation is a more flexible method for improving simply inherited traits such as 

disease and pest resistance than classical backcross-based introgression (Lee, 1995). 

However, a prerequisite to applying these methods to practical plant breeding is the 

availability of an efficient regeneration system. As with other large-seeded legume 

species the in vitro culture of lentil has proved difficult. However, successful 

regeneration has been achieved using different types of explants using both 

organogenesis and embryogenesis (A detailed summary of in vitro culture of lentil is 

given in Chapter 2). 

Cotyledonary nodes are a good source of explants for regeneration in many 

legume species including pea (Pisum sativum) (Malick and Rashid, 1989; Jordan and 

Hobbs, 1993), dry beans (Phaseolus vulgaris) (Franklin et al., 1991), pigeonpea 

(Cqjanus cajan) (Prakash et al., 1994), soybean (Glycine max) (Kothari et al., 1991), 

and white clover (Trifolium rep ens) (Voisey et al., 1994). 

Combined with Agrobacterium-mediated gene transfer, cotyledonary node 

culture has been used to successfully obtain transgenic plants in pea (Jordan and 
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Hobbs, 1993) and white clover (Voisey et al., 1994). In lentil, cotyledonary node 

culture combined with Agrobacterium-mediated gene transfer has also been tried 

(Warkentin and McHughen, 1993). The induction of multiple shoot formation was 

successful, while transformation was not. Recently, Oktem (1999) obtained 

transgenic plants from particle bombarded cotyledonary nodes. 

Seed culture has been successfully used in the regeneration of several species 

including legumes such as pea and chickpea (Cicer arietinum). Compared to other 

types of explants, seeds offer several advantages. For example, no specific explant 

preparation is needed and surface sterilisation of seeds is relatively simple. This 

means the establishment of cultures from seeds is much easier and is more reliable 

than from other sources. 

This chapter describes how cotyledonary node and seed culture procedures 

were optimised to develop efficient regeneration systems for lentil. 

4.2 Materials and methods 

4.2.1 Plant material 

Seeds of Lens culinaris cv. 'Titore' were obtained from the New Zealand Institute of 

Crop and Food Research Ltd. All the other lines/cultivars (see Fig 4.1) were from 

Turkey. 

4.2.2 Explant and medium preparation 

Seeds were surface sterilised by rinsing in 95 % ethanol for 30 seconds,. 

soaking in 1.25 % sodium hypochlorite containing a few drops of the surfactant 

Tween-20 with continuous stirring for 20 min, followed by five - six washes in sterile 

deionised water. The seeds were germinated in an incubator at 24°C in the dark on 

MS salts and vitamin (Murashige and Skoog, 1962) with doubled calcium chlorate 

concentration, 3 % sucrose and 8 % agar in plastic tissue culture containers. There 

were 10 seeds per container. After 3 - 4 d, containers were transferred into a tissue 

culture room with a light intensity of 60 I-lmolm-2s-1 at 24 DC with 16h days. Nodal 

segments (about 1.0 cm) were prepared from 3 to 4 week old seedlings. Cotyledonary 

52 



nodes were prepared by excising hypocotyl, epicotyl and cotyledons at 3 mm from the 

cotyledonary node. 

All media were supplemented with 3 % sucrose (except in the sucrose 

content experiment), solidified by 8 % agar and adjusted to pH 5.8 prior to 

sterilisation by autoclaving (122 kPa, 20min). All experiments were done in a tissue 

culture room with a light intensity of 60Jlmolm-2s-1 at 24°C with 16h days. 

4.2.3 Experiments on cotyledonary node culture 

Shoot elongation 

I. Basal medium and strengths: explants from 3 d old seedlings were cultured on 

MS, B5, SH media with full- and half- strength salts, all supplemented with 

0.6 mg/L BA. 

2. Seedling age: explants from seedlings of 3, 5, 7, 9, 11, 13, 15 or 21 d old were 

cultured on MS medium supplemented with 0.6 mg/L BA. 

3. Plant growth regulator concentrations: MS medium supplemented with BA 

(0.1, 0.2, 0.4, 0.6, 0.8 and 1.5 mg/L) or TDZ (0.01, 0.02, 0.03, 0.04 and 0.1 

mg/L), (explants were from 3 d old seedlings). 

4. Culture duration: MS medium supplemented with BA at 0.2 or 1.5 mg/L for 1, 

2, 3 or 4 weeks. 

Root induction 

Shoots (three to four cm) were transferred onto MS medium with 2/3 strength 

of salts supplemented with 1.5 mg/L NAA and 5 % sucrose. 

4.2.4 Experiments on seed culture 

Shoot induction 
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1. Basal medium and BA concentrations: MS medium, MS medium with a 

doubled content of CaCh, B5 medium and B5 medium +750 mg/L CaCh were 

tested in combination with four concentrations of BA (0.2, 0.4, 0.6 or 0.8 mg/L). 

2. Plant growth regulator concentrations: MS supplemented with different 

concentrations of kinetin (0.2, 0.4, 0.6, 0.8, 1.0 or 1.5 mg/L) or TDZ (0.1, 0.2, 0.5, 

0.6, 0.8, 1.0, or 1.2 mg/L). 

3. Species and inbreds: Shoot formation capabilities of the following ten 

inbredllines of four lentil species were tested using MS medium supplemented 

with 0.4 mg/L BA. 

Lens culinaris: Titore, Olympic; Lens nigricans: W6 3210, W6 3218, W6 3221>- and W6 3208; 

Lens ervnides: W6 3173, W6 3176 and W6 3192, and Lens odemensis: W6 3244. 

Elongation o/induced shoots and/urther induction o/multiple shoots 

1. Shoots of ,0.5-1.5 cm length were isolated with or without a small piece of 

seed segment and transferred to MS medium supplemented with different 

concentrations of NAA, IAA, IBA, GA3 and BA. 

2. Stumps (the part remaining after excising useable shoots) were transferred to 

fresh medium of same composition or MS basal medium supplemented with 

0.05 mg/L BA and 0.05 mg/L NAA. 

Root induction 

Shoots longer than 2.0 cm induced from the seeds on a medium consisted of 

MS salts with doubled CaCh content and 0.2 mg/L BA were transferred to MS 

medium supplemented with different concentrations of NAA or IBA for rooting. 

4.2.5 Experimental design and analysis 

For shoot induction, a randomised complete block design was used with 

three replications of five containers. Five explants were cultured per container. For 

root induction, a completely randomised design with three replications of two 

containers was used. Five shoots were cultured per container. After 3 or 4 weeks 
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incubation, data were collected on number of shoots/explant, shoot length in the shoot 

induction experiments and the number of rooted shoots in the root induction 

experiments. The data sets were analysed using the general linear model (GLM) and 

regression (REG) functions of the SAS statistical package (SAS, 1990). Percentage 

data was arcsine transformed for statistical analysis. 

4.3 Results 

4.3.1 Cotyledonary node culture 

Shoot induction: Basal medium and salt strength influenced shoot induction from 

cotyledonary nodes (Table 4.1). Full strength salts were better than half strength in all 

the four tested basal media. The best medium was MS regardless of salt strength. 

Therefore, full strength MS basal medium is recommended as the best for shoot 

induction from cotyledonary nodes (Table 4.1). 

Table 4.1. Shoot number and useable shoot percentage induced from lentil cotyledonary 
nodes cultured on different basal medial. 

Basal medium Number of shoots2 % useable shoots3 

MS 35 70 

112MS 20 50 

B5 14 30 

112 B5 20 30 

SH 25 50 

1I2SH 20 10 

I All media supplemented with 3 % sucrose and 0.6 mg/L BA; means were taken from 35 -
45 explants. 

2Error mean square was 32.86 with 68 degrees of freedom. 

32Error mean square of arcsine-transformed data was 0.94 with 68 degrees of freedom. 

Seedling age was important in shoot organogeneSIS. More shoots were 

initiated from cotyledonary nodes of young seedlings. Explants from seedlings 3 to 7 

d after germination produced over 16 shoots/node, while those from 13 to 21 d old 
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seedlings produced only about seven shoots/node. Within the range tested, the effect 

of explant age (x) on shoot number (y) can be described as: 

y = 21.5 -1.14 x + 0.02X2 (R 2 = 0.78) 

Although, shoots from nodes of seedlings older than 13 d were stronger and 

longer, the best source of nodes was from seedlings of 3 to 12 days old. 

Cytokinins BA and TDZ all induced shoot development, with BA being 

more effective than TDZ (Table 4.2). When TDZ was used, shoots were more 

stunted, with more than 0.1 mg/L of TDZ all explants died within a week. . Shoot 

elongation was inhibited by BA at more than 0.4 mg/L. The best concentration range 

of BA was from 0.2 to 0.6 mg/L. At 0.6 mg/L it produced the highest number of 

shoots over 1 cm high. Lower BA concentrations could be beneficial if the explants 

were to be cultured on medium with the same composition over a prolonged period. 

Otherwise, 0.6 mg/L of BA is recommended. 

Shoot elongation: Throughout this study, short shoots gave poor root initiation. 

Thus, elongation of the induced shoots was necessary to develop a suitable in vitro 

multiplication system. Three options were investigated to elongate the short shoots 

induced on the medium containing 0.6 mg/L BA. First, shoot clusters (after cutting 

shoots longer than 2.5 cm) were subcultured onto fresh medium containing 0.6 mg/L 

BA. In this case, more than 60 shoots from each stamp were formed within 4 weeks. 

However, less than five shoots were longer than 2.5 cm. Most of the new shoots were 

initiated at the base or at the lower nodes of existing shoots. Moreover, some shoots 

died or became chlorotic. Second, shoot clusters were subcultured onto a MS basal 

medium without cytokinin. Total shoot number was about 40, and more than ten 

shoots were longer than 2.5 cm. Again, most of the new shoots were initiated at the 

base or at the lower nodes of existing shoots. Third, all induced shoots which were 

longer than 1.0 cm but less than 2.5 cm were transferred to an elongation medium and 

the remaining clumps of shorter shoots were transferred to fresh medium containing 

0.6 mg/L BA. The elongation media used were the basal MS medium supplemented 

with different plant growth regulators. When IBA was used at 0.2 or 0.4 mg/L it gave 

the best shoot elongation and most healthy shoots. Shoots on NAA-containing media 
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elongated, but could not be used because they were chlorotic. Callus formed at the 

cut surface of shoots in NAA-containing media. Shoot elongation occurred at 0.2 

mg/L BA, but no shoot elongation was observed at 0.4 mg/L BA. Furthermore, on 

fresh medium, about five well-developed shoots were obtained from the basal clumps 

of the shorter shoots with many other small shoots. Out of these three approaches, the 

third option using an elongation medium containing 0.4 mg/L rnA is the preferred 

method, even though this approach requires more space. 

Table 4.2. Shoot formation and development from lentil cotyledonary nodes cultured on 

MS medium supplemented with different concentrations of BA or TDZ 1. 

Kind Concentration (mg/L) Number of shoot %shoot ~ 1.0 cm 

BA 0.2 11.8 100 

0.4 12.6 100 

0.6 17.8 90 

0.8 17.2 70 

1.5 17.2 30 

EMS2 25.25 0.143 

TDZ 0.01 10 30 

0.02 15 5 

0.03 13 5 

0.04 9 5 

0.1 5 0 

EMS2 29.36 0.113 

I All medi a supplemented with 3 % sucrose; mean were taken from 45 explants. 

2Error mean square with 68 degrees of freedom. 

J Based on arcsine transformed data. 
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Root initiation: When shoots (>3.0 cm) were transferred to a rooting medium 

consisted of 2/3 strength MS salts, 2.0 mg/L NAA and 5 % sucrose, on average, 70 % 

of shoots from shoot induction medium initiated roots after three weeks. After a cycle 

on the elongation medium with 0.4 mg/L IBA, 78 % of the shoots initiated roots 

within 3 weeks. 

4.3.2. Seed culture 

Shoot induction: Basal medium, BA concentration, and their interaction were 

significant for both of the total number of shoots/seed and the number of useable 

shoots/seed. However, the contribution of the interaction to the overall variance was 

much less than that of the basal medium and BA concentration (Table 4.3). 

Therefore, the best BA concentration can be chosen without considering the 

interaction. The MS medium with doubled CaCh content was better than MS at lower 

BA concentrations, but the reverse was true at higher BA concentrations. 

The two media containing MS salts were better that the two with B5 salts, 

regardless of the BA concentration (Table 4.3). There were no significant differences 

for shoot number between B5 and B5 with 750 mg/CaCh, and between MS and MS 

with doubled CaCh content (Table 4.3). 

Adding BA to the four media at all four concentrations induced multiple 

shoot formation (Table 4.3). More useable shoots (> lcm) were produced at lower 

BA concentrations, while more shoots were induced in higher concentrations (Table 

4.3). 

Shoot-tip necrosis (STN) of main shoots was observed. The most serious 

STN happened to B5 supplemented with 0.2 and 0.4 mg/L BA (Table 4.3). Compared 

to the results of B5 and B5 with 750 mg/L CaCh and those of MS and MS with 

doubled CaCh content, it was obvious that the addition of calcium (Ca) largely 

overcame STN. 

Kinetin also induced multiple shoots from seed explants as well (Table 4.4). 

Meaningful differences among the concentrations tested were found for the number of 

shoots and useable shoots, but not for the average length of useable shoots. The 

concentration of 0.8 mg/L and 1.0 mg/L were better for the total and the useable 
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number of shoots per seed. Comparing the number of shoots induced using the best 

concentration of kinetin (Table 4.4) with that using BA (Table 4.3), it was clear that 

fewer shoots were produced by using of kinetin. However, the shoots induced by 

using kinetin were longer, although no designed comparison was made. 

Table 4.3. Multiple shoot formation from lentil seeds cultured on different media and 
BA concentrations. 

Basal medium BA Number Number of Shoot-tip 

(mg/L) of shoots long shoots necrosis (%) 

MS 0.2 7.4 4.1 85.0 

MS+440 mg/L CaCh 0.2 9.7 5.5 2.5 

B5 0.2 6.0 3.9 90.S 

BS +7S0 mg/L CaCh 0.2 7.S 4.4 18.3 

MS 0.4 13.7 4.9 70.0 

MS+440 mg/L CaCh 0.4 12.S 4.4 2.S 

B5 0.4 7.4 2.8 89.3 

BS +750 mg/L CaCh 0.4 9.0 4.4 15.S 

MS 0.6 11.S 3.8 5S.0 

MS+440 mg/L CaCh 0.6 13.6 3.6 0.0 

BS 0.6 8.3 3.4 75.0 

BS +7S0 mg/L CaCh 0.6 9.7 4.1 4.8 

MS 0.8 13.2 13.2 50.0 

MS+440 mg/L CaCh 0.8 12.1 12.1 0.0 

BS 0.8 8.7 8.7 74.S 

BS +7S0 mg/L CaCh 0.8 11.S 11.S 5.2 

Source DF MSI FI 

Medium 3 322.18/11.70 78.35***/12.32*** 

BA 3 225.36/13.29 54.80*** /13.99*** 

Medium*BA 9 25.50/6.15 6.20*** /6.48*** 

Error 224 4.11/0.95 

I The first and second numbers of each cell are for the number of shoots and long shoots 
per seed, respectively. 

':,',,' P< 0.001. 
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Table 4.4. Multiple shoot formation and development of lentil seeds cultured on MS basal 

medium supplemented with different concentrations of kinetin I. 

Kinetin (mg/L) 0.2 0.4 0.6 0.8 1.0 1.5 
-"'-- . __ ., --~--.-------------------

Number of shoots 1.1 1.1 1.8 4.5 4.6 2.9 

Number of useable shoots 1.0 1.1 1.5 2.8 2.5 1.9 

Useable shoot length (cm) 5.9 6.4 6.7 5.2 5.2 5.4 

'The means were taken from 120-150 seeds. 

2 Error mean square with 82 degrees of freedom. 

Thidiazuron induced the formation of multiple shoots at all the concentrations 

tested. Wi th increasing TDZ concentration, the number of useable shoots per seed 

was decreased. Seven shoots per seed at 0.1 mg/L were produced compared with one 

at 1.0 mg/L or more. Within the tested range (0.1 - 1.2 mglL), the effect of TDZ (x) 

on the num ber of useable shoots (y) was best described by 

y = 1.42 -0.19 x (R 2 = 0.94) 

Compared with BA at the same concentration, more useable shoots were 

induced by TDZ. This indicated that TDZ was more effective. 

Overall, it is recommended that MS salts with doubled CaCh content 

supplemented with 0.2 mg/L BA for inducing multiple shoots from lentil seeds. TDZ 

at 0.1 mg/L was also efficient, but further experimentation is required to fully justify 

the use of this growth regulator. 

Shoot regeneration of species and inbred: Multiple shoots were induced from all 

inbred lines tested, and a minimum of about four shoots was produced per seed (Fig 

4.1). Therefore, BA-based seed culture can be used for regenerating all lentil species. 

The shoot formation capabilities varied between species and inbred within species. 

For example, the most responsive inbred line produced twice as many shoots per seed 
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Figure 4.1. Shoot formation from seeds of ten cultivars/Iines of four lentil species. 

The differences among cultivars/lines labelled by the same letter(s) were 

not significant at ex. = 0.05 level. LeI: 'Titore' of Lens culinaris, LC2: 

'Olympic' of Lens culinaris; LNI-LN4: accession W6 3210, W6 3218, W6 

3221and W6 3208 of Lens nigricans; LEI-LE3: accession W6 3173, W6 

3176 and W6 3192 of Lens ervoides and L01: W63244 of Lens odemensis. 

as the least responsive one. The cultivated lentil cultivar Titore produced the greatest 

number of shoots per seed. 

Elongation of induced shoots and further regeneration of shoots: To promote the 

development of the short shoots, individual small sh90ts (less than 1.5 cm) with or 

without seed segment to the basal medium supplemented with different concentrations 

of NAA, or IBA or IAA or GA3. It was found that short shoots without seed segments 

could survive but hardly elongate after 4 weeks. Short shoots with seed segments 

elongated into useable shoots. However, the multiplication rate was lower than 

transferring the whole stumps. Therefore, shoots were excised from mother seedlings 
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when they were longer than 2.5 em and the stumps were used to produce more shoots. 

After 2 weeks on fresh medium, on average 9.7 and 11.2 useable shoots were 

produced from the stumps from 0.2 mg/L BA and 0.1 mg/L TDZ, respectively after 

removal of longer shoots. However, on the stumps from 0.8 mg/L BA, 0.5 mg/L 

TDZ, only five and three useable shoots were obtained. When stumps from BA 0.8 

mg/L, or TDZ 0.5 mg/L were transferred to medium supplemented with 0.5 mg/L GA 

and 0.05 mg/L NAA, more useable shoots (5.5 and 5.0, respectively) were obtained. 

Therefore, stumps from medium containing lower BA (TDZ) can be transferred to a 

fresh medium of the same compositions, while stumps from medium containing 

higher BA (TDZ) should be transferred to the medium without BA but with GA3 or 

NAA. In addition to the elongation of small shoots, many new shoots/- shoot 

meristem were induced around the connecting site of cotyledons and hypocotyl. 

When stumps became too large to be easily transferred, stumps were subdivided 

into several (3 - 4) small clusters for further subculture. . On the medium 

supplemented with GA3 0.5 mg/L or NAA 0.05 mg/L, one or two well-elongated 

shoots can be obtained from these clusters within 2 or 3 days. Removal of the wel1-

developed shoots is necessary to promote the elongation of other shoots. Up to 20 

shoots could be harvested in 3 weeks. 

Rooting: From 14 % (on basal MS medium) to 75 % (on MS medium supplemented 

with 1.5 mg/L NAA) of the shoots rooted within 4 weeks (Table 4.5). NAA was more 

effective than IBA (Table 4.5). Usually only one well developed root with several 

short secondary roots were produced per shoot within 4 weeks, but three and four 

roots with secondary roots can be obtained after a further 2 weeks culture in a fresh 

medium with the same composition. Callus formation was observed on the cut 

surface of shoots when NAA was applied. The higher the NAA concentration, the 

greater the callus development. However, the roots were not initiated from callus. 

Primary shoots gave a higher rooting percentage than adventitious shoots (Table 4.5). 
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Table 4.5. Rooting frequencies of lentil shoots induced from seeds on media containing 

different concentrations of NAA and IBA I. 

NAAO.2 NAA 1.0 NAA 1.5 IBA 1.5 IBAO.2 
,. __ • ___ T. ____ • ___ ••••• _. _~ __________ 

Adventitious 13.3 43.5 58.5 10 6.7 

Main 32.5 66.7 75.0 60.0 25.0 

IThe basal medium was MS salts and vitamin with 3 % sucrose; means were taken from 75 

shoots. 

2Error mean square of arcsine-transformed data was 0.044 with 68 degrees of freedom. 

4.4 Discussion 

The effect of seedling age on shoot formation from cotyledonary nodes has 

been observed in many species including legumes such as soybean (Kim et ai., 1991), 

mung bean (Vigna radiata) (Gulati and Jaiwal, 1994) and eastern redbud (Cercis 

canadensis) (Distabanjong and Geneve, 1997). The common age of seedlings used in 

legume cotyledonary node culture is 2 - 12 d (Distabanjong and Geneve, 1997). From 

the resul ts of the present experiment, it is recommended that explants are prepared 

from 3 - 12 d old seedlings. 

When cotyledonary nodes from 3 d old seedlings were cultured on a basal 

MS medium, two shoots were produced from the connecting site between the two 

cotyledons and the axis. They developed well and were about 8 cm long in 4 weeks. 

They could be used to produce more than 15 single nodal segments in nodal segment 

culture. The multiplication efficiency of single nodal segment culture can be doubled 

if instead of using in vitro seedlings the two shoots from each cotyledonary node are 

used to obtain nodal segments. In addition, the remaining cotyledonary nodes can be 

further cultured on a cytokinin containing medium to form multiple shoots (about 

seven shoots can be obtained using the cotyledonary node from 21 day old seedlings). 

Therefore, the combination of single node culture and cotyledonary node culture may 
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be a good option for obtaining genetically true-to-type plants for genetic studies and 

large number of plants for breeding from limited hybrid seed. 

In this study MS medium was better than the other salt formulations for 

inducing shoots. The superiority of MS has been shown in other legume species, such 

as Prosopsis cineraia (Shekhawat et al., 1993), Swartzia madagascariensis (Berger 

and Schaffner, 1995) and Bauhinia vahlii (Upreti and Dhar, 1996). 

Direct shoots were induced by BA from intact seedlings. This has been 

reported in Phaseolus spp (Malik and Saxena, 1992b), Arachis hypogaea (Saxena et 

al., 1992), Alnus glutinosa (Peri net and Lalonde, 1983), and Murraya koenigii 

(Bhuyan et al., 1997). 

Abnormal shoots were induced from intact seedlings when a BA 

concentration of more than 0.4 mg/L was used. It is well documented in the plant 

tissue culture literature that high concentration of cytokinin increases the frequency of 

abnormal shoots. In other studies using different explant types, much higher BA 

levels were used to induce shoot formation (Polanco et at., 1988; Polanco and Ruiz, 

1997) and abnormal induced shoots were not reported. Therefore, germinating seeds 

may contain much higher level of cytokinin than other types. This was supported by 

the observation that some seeds produced two shoots in a basal MS medium without 

cytokinin. 

For shoot induction from intact seedlings, TDZ was the most effective 

cytokinin, kinetin was the least inductive and BA was in between. Similar results 

have been reported in lentil with other explant types (Polanco and Ruiz, 1997). The 

stronger effect of TDZ was consistent with the general trend reported in other studies 

(Lu, 1993). More stunted shoots were produced when TDZ was used. The inhibiting 

effect of TDZ on shoot development has been widely documented (Upreti and Dhar, 

1996; Distabanjong and Geneve, 1997). However, using TDZ at low concentrations 

and for a short duration may improve multiplication efficiency. It is possible that BA 

may be a better cytokinin for lentil in vitro culture due to its lower toxicity. 

For good shoot induction, it is important to define the right dose of cytokinin 

(BA or TDZ in this study). Both concentration and duration are important for the best 

regeneration response. Therefore, two ways can be followed. One is to expose 

explants to a high concentration for a limited period to initiate shoot differentiation, 
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and then transfer the explants onto another medium to promote shoot development. 

Although this can be done without difficulty once a protocol is developed, it is less 

convenient when the protocol is used in other studies such as genetic transformation. 

Another method is to continually culture explants in a medium containing low levels 

of cytokinins. This option would be preferable if the regeneration was satisfactory. 

This is because it reduces the number of sub-cultures and the experimental cost. In 

this study, low concentrations of BA or TDZ were highly inductive. Therefore the 

second option is preferable. 

MUltiple shoots were induced from 10 inbreds of four lentil species using a 

BA-containing medium. However there were large genotypic differences. Thus, a 

universal protocol for lentil in vitro culture can be developed based on culturing seeds 

on a BA-containing media and the screening of inbreds for good multiplication 

performance should improve the success rate of in vitro culture. 

Parh et al. (1998) first reported that serious STN occurred when basal MS 

medium was used to produce in vitro lentil seedlings. They alleviated the problem by 

increasing the Ca content of the medium. Studies with other plant species have 

indicated that Ca deficiency, which can be easily promoted by in vitro conditions such 

as a low transpiration rate and high humidity, may be the main reason for STN (Sha et 

ai., 1985). 

In seed culture of this study, on B5 medium with 750 mg/L CaCh and on MS 

medium with doubled the CaCh content, the percentages of plants with STN were 

very different, even though the CaCI2 content was the same. Moreover, only the main 

shoots showed STN and the STN was less severe when high concentrations of BA 

were added to the media. Taking the high number of shoots in the medium containing 

high BA into consideration, the data are consistent with the hypothesis that it is not 

the absolute amount of CaCh but its transport that caused its deficiency at the shoot­

tip. The developing shoot tip does not obtain sufficient CaCI2 when it is too far from 

the source of CaCh The inhibiting effect of BA on shoot development delayed the 

development of STN and consequently reduced the STN percentage. 

A high percentage of rooted plants was obtained when primary shoots were 

used. This was expected because the main shoots were stronger and healthier, and the 

accumulation of external cytokinins in the primary shoots may be less since no shoot 
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initiation stage is involved. The rooting percentage in this study was higher than all 

the previous studies except that of Ahmad et al. (l997a). One reason may be the 

lower concentration of external BA that was used. However, it was very hard to 

compare my results with previous studies because of the different types of explants 

that were used. 

During the process of root induction, several shoots were produced 

simultaneously at the basal parts of some shoots. These shoots were much easier to 

root. This observation can be exploited to increase the efficiency of multiplication in 

future study. 
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CHAPTERS 

MAJOR GENES FOR ASCOCHYTA BLIGHT RESISTANCE IN 

LENTIL 

A. MAJOR RESISTANCE GENES AND THEIR ALLELIC 

RELATIONSHIPS 

Summary 

Inheritance of foliar resistance to Ascochyta blight in lentils was studied using 

four resistant and two susceptible cultivars (lines). Two dominant genes, one for high 

resistance and one for moderate resistance are present in ILL 5588. One dominant 

gene, which is allelic to the one for high resistance in ILL 5588 confers resistance in 

ILL 5684. One recessive gene is responsible for the resistance in cv. Laird. The 

resistance in cv. Indian head is under control of two recessive genes with additive 

effects. Two complementary genes, one in accession W 6 3192 and one in cv Titore 

are responsible for the resistance observed in the segregating generation of the cross 

between these two susceptible cultivars. 

SA.1 Introduction 

Ascochyta blight caused by Ascochyta lentis is one of the important diseases 

of lentils. It has been reported to be the major disease in many lentil production areas 

including Argentina, Canada, Ethiopia, India, New Zealand, Pakistan and the Russian 

Federation (Erskine et al., 1994). The disease has considerable effect on both seed 

quality and yield (Morrall and Sheppard, 1981). Gossen and Morrall (1983) estimated 

that foliar infection has caused yield losses of up to 40 %. However, economic losses 

from infected seed have reached more than 70 % in Canada. There is no effective and 

economic established control method. This is despite extensive studies on the control 
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Ascochyta blight in lentil by agronomic and chemical methods. Breeding for 

improving host resistance is expected to be the most effective, efficient and 

environmentally friendly method of control (Erskine et al., 1994). 

Resistance sources have bee identified in both cultivated and wild lentil 

species (Singh et al., 1982; Iqbal et al., 1990; Kapoor et al., 1990; Erskine and Bayaa, 

1991; Bayaa et al., 1994; Andrahennadi et al., 1996). The genetics of Ascochyta 

blight resistance in lentil has been studied using different resistant cultivars (lines) and 

the following inheritance models were proposed. 

1. Single dominant gene (Tay and Slinkard, 1989; Ahmad et al., 1997b; 

Andrahennadi, 1997; Vakulabharanam et al., 1997; Parh, 1998; Ford et al., 

1999), 

2. Single recessive gene (Tay, 1989), 

3. Two duplicated recessive genes (Andrahennadi, 1994), 

4. One dominant gene and one recessive gene (Sakr, 1994), and 

5. Two complementary genes (Tay; 1989; Andrahennadi, 1994; 1997; 

Ahmad et al., 1997b). 

Because, in most of the studies, the sample size was small and only one 

segregating population of each cross was used to infer the inheritance model, these 

proposed models are inconclusive. Moreover, the allelic relationships between the 

major genes were unknown and need to be investigated. This information is 

important for making correct breeding decisions. For instance, if several major genes 

were not allelic, to pyramid these genes would be a strategy for further improving 

resistance. Otherwise, the variation among identified cultivars could be an indication 

of the presence of minor genes. The contribution of minor genes should be quantified 

and utilised in breeding programmes. Resources containing different resistant genes 

should be explored. 

To improve the efficiency of breeding for resistance for Ascochyta blight an 

effort was made to gain a better understanding of the genetics of Ascochyta blight 

resistance in lentils by using several genetic analytical methods. The presence of 

major genes, their allelic relationships and the genetic models of major genes were 

detected using segregation analysis. Resistant and susceptible sets of inbred lines 

produced from two crosses (resistant parents carrying major genes) were used to 
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investigate the contribution of minor genes. Generation mean analysis and a analysis 

based on mixed model were done to study the combined gene effects. Results from 

the segregation analysis are reported in this chapter and other results are reported in 

later chapters. 

SA.2 Materials and methods 

SA.2.1 Plant materials 

Four resistant cultivars, one susceptible cultivar of Lens culinaris and one 

susceptible line of L. ervoides were crossed in all possible combinations excluding the 

reciprocal to produce F[ hybrids. To make the F2 populations large enough, the FJ 

populations with few seeds were micropropagated using the protocol reported Chapter 

3. The F[s were selfed to produce the F2 population and backcrossed to both 

susceptible and resistant parents to obtain BCl and BC2, respectively. 

Seedlings were prepared by sowing seeds in pots in the glasshouse of Lincoln 

University. Ten plants were grown in one pot of two litres size. Bark and sand at 60: 

40 ratio was used as potting mixture. Pots were arranged randomly on a bench. The 

maximum and minimum temperatures were maintained at 25°C and 15 °C. 

SA.2.2 Evaluation for bUght reaction 

A pathogenic isolate of A. lentis was obtained from infected seed of cv. 

Invincible (isolate Rakaia). A random sample of infected seeds were surfaced 

sterilised in 0.6 % NaOCl for 10 min, soaked on sterile filter paper and plated on Vs-

juice (Campbell Soups Ltd.) agar medium with five seeds/plate. After growing for 

seven days, under near ultraviolet light at 18°C on a laboratory bench, seeds, which 

produced a characteristic diurnal colony of Ascochyta, were selected. A small plug 

from these colonies was transferred to fresh medium for further growth and 

colonisation. Inoculum was prepared from a 15 d culture, grown under similar 

conditions as for the seed plates. Spores were washed from the culture plates using 

distilled water and filtered through muslin cloth. Two drops of Tween 20 were added 
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per 100 ml. The concentration of the spore suspension was measured using a 

haemocytometer and adjusted to 7.5 X 104 conidia/ml by dilution. 

Seedlings with four - five expanded leaves (15 d after sowing) were inoculated 

with the suspension (1 ml/seedling) using an atomiser. After inoculation, pots were 

kept in a controlled environment cabinet (18 DC and high humidity) for 24 h and then 

moved to a green house bench for disease development to occur. Negative control 

was seedlings of suscetptible cultivar 'Titore' sprayed with distilled water plus Tween 

20 only. 

SA.2.3 Data collection and analysis 

Data on disease development were recorded according to a modified ICARDA 

(Ahmad et aI., 1997b) disease scoring on a 1 - 9 scale. Disease scores were taken at 

seven, 15 and 21 d after inoculation. Individual plants were classified as resistant (R) 

with ratings 1 and 3 and susceptible (S) with ratings 5, 7 and 9. Alternatively, plants 

were categorised into resistant (R) with ratings 1 and 3, moderately resistant (MR) 

with rating 5, and susceptible (S) with ratings 7 and 9. The data were analysed using 

the X2 -statistic to test the goodness of fit of the observed ratio to expected ratios under 

various genetic models. 

SA.3 Results 

No plant developed any symptoms in the negative control. This indicated that 

the casual pathogen of Ascochyta blight did not occur in the surrounding environment 

of our trial and the disease development on the inoculated plants was due to spraying 

with the inoculum. The disease symptoms were very similar to those reported by 

Ahmad et aI. (1997b). On day 7, disease development was poor and was only 

sporadically found on a few plants. Thereafter within any group of plants the 

variability in disease development among the remaining two dates was not significant. 

Thus, data of any of these two dates could be reliably used for measuring the disease 
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status of the individual lines. Therefore, the results for 15 after inoculation are used in 

all later analyses. 

SA.3.1 Ascochyta blight reactions of parental cultivars 

Table 5A.l shows the blight reactions of each of the parental lines and 

cultivars in the order of their observed level of resistance. There was no indication of 

any lack of trueness to type among the individual plants tested. Thus, the segregation 

data avoids any potential bias caused by the presence of susceptible plants in resistant 

parental lines or the presence of resistant plants in the susceptible lines. Indian head, 

ILL5588 and ILL 5684 were all highly resistant, Laird was moderately resistant and 

Titore and W6 3192 were susceptible. The reactions among the resistant lines were 

not exactly the same. Indian head had more plants scored one than ILL 5588 or ILL 

5684. 

Table SA.I: Foliar reactions to Ascochyta lentis of six lentil cultivars. 

Culti var/lines Number of plants in different disease rating categories 

1 

Indian head 10 

ILL5588 5 

ILL5684 0 

Laird 

W63192 

Titore 

SA.3.2 Number of major genes 

3 

10 

15 

20 

5 

20 

7 

12 

16 

9 

8 

4 

Inheritance model: The first part of the major gene investigation was to examine 

crosses between resistant and susceptible cultivars (Table 5A.2). The inheritance 

patterns for the crosses to both susceptible parents (Titore and W6 3192) were entirely 
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consistent. This confirmed the nature of the pattern. Further discussion will 

concentrate on the Titore crosses. 

In the F2 progenies of Titore x Indian head, the segregation ratio was close to 

I: 15 when plants with scores of 1 or 3 were classified as resistant. The backcross 

with the resistant parent showed a ratio close to 1 resistant: 3 susceptible. In the 

backcross with the susceptible parents all plants were susceptible. The data suggested 

that Indian head had two recessive genes for resistance. However, when plants with a 

score of 5 were separated from other susceptible plants and were regarded as 

moderately resistant, the segregation ratios in the F2 progenies were close to 1 highly 

resistant: 6 moderately resistant: 9 susceptible. Therefore, the data for Indian head 

were consistent with it containing two recessive genes that conferred moderate 

resistance. The accumulated effect of these two genes made the plants highly 

resistant. The segregation in the backcrosses fitted this model well. At this stage to 

facilitate the later determination of allelic relationships between resistance genes, 

these two recessive genes were designated Abrl and Abr2, respectively. 

In the cross Titore x ILL 5588, when plants with a scores 1 or 3 were 

classified as resistant, 73 F2 individuals were resistant and 27 were susceptible. This 

could be fitted to a 3 resistant: 1 susceptible ratio (Table 5A.2). In the backcross with 

the resistant parent all plants were resistant whereas in the backcross with the 

susceptible parent the segregation ratio was closer to 1: 1. Taken together these results 

suggested that ILL 5588 has one dominant resistance gene. 

When plants (20) that scored 5 were classified as moderately resistant and 

plants with scores of 1 or 3 were regarded as highly resistant, the segregation ratio of 

the F2 gave a good fit of a model with one dominant gene for high resistance and one 

dominant gene for moderate resistance. Therefore, apart from the gene for high 

resistance, there was another gene conferring moderate resistance. 

The backcross data supported this model (Table 5A.2). The frequencies of 

plants with a score 1 in backcrosses and in the F2, differed from that in the resistant 

parent ILL 5588. This indicated that minor genes, with increasing effects, might 

contribute to the resistance, or that a substantial environmental effect might have 

occurred between the two groups of plants. The direction of the shift was consistent 
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with the loss of minor genes for resistance in many of the resistant F2 's. The gene for 

high resistance was designated AbR3 and that for moderate resistance AbR4. 

Table SA.2: Observed segregation patterns of reactions to Ascochyta lentis of five lentil 

crosses, and X2 test for the goodness of fit of various inheritance models. 

Cross G 1 R MR S Expected ratio P 

Titore x Indian head F2 7 40 55 1:6:9 0.887 

2 additive recessive for HR 

BC I 59 

BC2 16 30 13 1:2: 1 0.851 

Titore x ILL5588 F2 73 20 7 12:3:1 0.893 

1 dominant HR, 1 dominant MR 

BC I 28 17 15 2:1: 1 0.819 

BC2 55 

Titore x ILL5684 F2 98 30 3:1 0.683 

I dominant HR 

F3 87 53 5:3 0.848 

BC I 35 30 1:1 0.535 

BC2 60 

Titore x Laird F2 25 70 1:3 0.767 

I recessive MR 

BC I 60 

BC2 28 42 1:1 0.146 

Titore x W6 3192 F2 39 29 9:7 0.855 

2 dominant complementary HR 

IG = Generation, HR = highly resistant, MR = moderately resistant, S = susceptible. 
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In the F2 generation of the cross Titore x ILL 5684, 98 individuals were 

resistant (with a score of one or three) and 30 were susceptible. This fitted a 3 

resistant: I susceptible ratio. In the backcross with the resistant parent all plants were 

resistant whereas in the backcross with the susceptible parent a segregation ratio close 

to I: I was observed. These results suggested that ILL 5684 has one dominant 

resistance gene. Because no plants were scored 5, there was no gene conferring 

moderate resistance. The gene in ILL 5684 was designated AbR5 though its 

relationship to AbR3 still needs to be determined. 

Most plants of Laird were scored 5, thus it was regarded as moderately 

resistant. In the F2 progenies of Titore x Laird, 25 plants were scored 5 and 70 were 

scored 7 or 9. This could be fitted to a 1 resistant: 3 susceptible ratio. 

The backcross with the resistant parent showed a ] resistant: 1 susceptible 

ratio, and in backcross with the susceptible parent all plants were susceptible. These 

segregation patterns suggested the presence of one recessive resistance gene in Laird 

and it was designated Abr6. However, the fit of this model was not as convincing as 

in some of the others. Whether this gene coincides with Abrl or Abr2 in Indian head 

needs to be determined. 

The F I plants of Titore x W 6 3192 were resistant despite the fact that neither 

parent was resistant. In the F2 progenies, 39 plants were resistant and 29 were 

susceptible, which was close to the 9: 7 ratio. Thus, two dominant complementary 

genes were,responsible for the resistance. The gene in Titore is designated as AbR7 

and that in W6 3192 as AbR8. 

Allelic relationships: In above analysis, eight resistance genes were detected in the 

six cultivars (lines). However, Abr6 may be allelic Abrl and Abr2, AbR5 may be 

allelic to AbR3, AbR7 or AbR8. To determine the relationships of the loci to each 

other ~l series of crosses were used and the data are presented in Table 5A.3. 

Because a dominant gene complementary to the dominant gene in W 6 3192 is 

present in Titore, the susceptible cultivar, the presence or absence of this gene in other 

resistant cultivars needs to be confirmed before the nature of the genes in these 

cultivars can be determined. Indian head does not contain AbR7 and AbR8 because 

crosses of Indian head with both susceptible parents have the same segregation pattern 
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in the F2 generation. The same argument holds true for Laird. If the AbR5 gene is 

allelic to AbR7 (AbR8), both AbR7 and AbR8 must be in pre-set in ILL 5684 

(because it is a resistant cultivar), and all the progenies of cross Titore x (ILL 

Table SA.3: Observed segregation patterns of reactions to Ascochyta Zen tis of F2 populations 

of lentil crosses for testing allelic relationships. 

Cross HR MR S Expected ratio P 

Indian head x Laird 7 68 50 4:33:27 0.810 

ILL 5588 x Laird 130 22 10 48: 13:3 0.083 

ILL5684 x ILL5588 100 0 

Titore x (ILL5684 x 87 23 3:1 0.322 

W63192) 

Titore x (ILL5588 x 57 9 12 6: 1:1 0.735 

W63192) 

5684 x W6 3192) should also be resistant. This is not supported by the results. 

Therefore, AbR5 is not allelic to AbR7. Under the condition that AbR5 is 

independent, if ILL 5684 contained AbR7 or AbR8 one of the crosses to Titore or W 

63192 would give the ratio of 57:7, rather than the 3:1 produced. Therefore, ILL 

5684 does not contain AbR7 and AbR8. Consequently, AbR5 is an independent locus 

of AbR7 and AbR8, and ILL 5684 does not contain either of these two genes. Based 

on the same arguments, AbR3 is independent of AbR7 and Abr8, and ILL 5588 does 

not contain these two genes. Therefore, the genes conferring high resistance in ILL 

5588 and ILL 5684 do not require a complementary gene to express their resistance, 

and the dominant gene for moderate resistance in ILL 5588 does not show a 

complementary effect to the gene in Titore. 

In the F2 progenies of ILL 5588 x ILL 5684, no plants were susceptible 

(scored 7 or 9), indicating that the dominant gene in ILL 5684 (AbR5) is allelic to the 

dominant gene conferring high resistant in ILL 5588 (AbR3). The F2 population of 
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the cross of Laird x Indian head showed a 4 highly resistant: 33 moderately resistant: 

27 susceptible segregation ratio. This indicated that the recessive gene in Laird 

(Abr6) is not allelic to the recessive genes in Indian head (Abrl and Abr2). In the F2 

progenies of ILL 5588 x Laird, the observed segregation ratio did not fit the expected 

ratio under the assumption that the genes from them are independent. Because more 

plants were resistant and less were moderately resistant, the gene in Laird and ILL 

5588 may have an additive effect. 

SA.3.3 Genetic categorisation of genotypes 

Based on the above results, the genotype of the six cultivars (line~) with 

regards to their foliar resistance to Ascochyta blight were determined as follows: 

ILL5588 is AbR3 Ab~, ILL 5684 is AbR3, Laird is Abrs, Indian head is Abrl Abr2, 

Titore is AbR6 and W6 3192 is Abr7. This is where 'Ab' implies Ascochyta blight, 

'R' dominant and 'r' recessive. 

5A.4 Discussion 

The results show that ILL 5588 had two dominant genes, one for high 

resistance and one for moderate resistance to Ascochyta blight. Ford et al. (1999) 

proposed a one dominant gene model for foliar resistance and showed that this gene 

accounted about 90 % of total genetic variation using QTL mapping. Fitting the data 

of Ford et al. (1999) in the same way as this chapter indicates that the gene identified 

by Ford et aI. (1999) was probably the one for high resistance (data not shown). This 

highlighted an important issue in inferring an inheritance model for disease resistance. 

To make segregation analysis feasible it is necessary to set threshold values to group 

plants in segregating populations. How to select these values depends on the actual 

situation. A simple way is to use the resistance levels of the parents as a reference. 

All plants with scores in the range of the resistant parent are regarded as resistant, and 

all plants with scores in the range of susceptible parent are regarded as susceptible. 

Plants with scores that do not fall in both ranges of their parents need to be classified 
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carefully. In the case of ILL 5588 x Titore, regarding plants with a score of 5 as 

susceptible (as Ford et al. (1999) did) resulted in a one dominant gene model. 

Regarding them as resistant gave a model with two dominant genes for resistance, and 

assuming they form a unique group with moderate resistance (as in this chapter) gave 

a model of one dominant gene for high resistance and one dominant gene for 

moderate resistance. In practice, a score of 5 may be better regarded as moderately 

resistant in terms of the scoring system and the third option should be adopted. 

Andrahennadi (1997) and Vakulabharan et al. (1997) proposed a one dominant 

gene model for seed resistance. Tay (1989) suggested that two dominant 

complementary genes for resistance and one recessive gene for moderate resistance 

were responsible for seed resistance in ILL 5588. No recessive gene for moderate 

resistance was found in ILL 5588 in the present study, although one dominant gene 

for moderate resistant was detected. 

One dominant gene was responsible for the resistance in ILL 5684 and it was 

allehc to the dominant gene conferring high resistance in ILL 5588. Seed resistance 

in ILL 5684 was under the control of two dominant complementary genes (Tay, 

1989). The resistance level of ILL 5684 was lower than that of ILL 5588. This 

indicates either an effect of genetic background on gene expression or the two genes 

in ILL 5588 have an additive effect. The disease scoring system used does not permit 

determination of the real reason. 

Foliar resistance to Ascochyta blight in Laird was moderate in this study, 

which is consistent with Andrahennadi et al. (1997b). Tay (1989) proposed the same 

inheritance model for seed resistance. 

As in ILL 5588, two models could interpret the inheritance of resistance in 

Indian head. Two recessive genes with additive effect are responsible for resistance 

when plants scored 5 are separated from susceptible and resistant classes and regarded 

as moderately resistant. Two duplicated recessive genes are suitable when they were 

regarded as susceptible. Because the correspondence between foliar rating and the 

percentage of seed infection used for grouping plants into resistant and susceptible 

categories was unknown, these results may, or may not, be consistent with the model 

of two duplicated recessive genes proposed for seed resistance in this cultivar 

(Andrahen nadi, 1994; 1997). 
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The segregation pattern of the two susceptible parents W6 3192 and Titore 

confirmed the model of two dominant complementary genes as proposed by Ahmad et 

al. (1997b). However, their generalisation of this model was not supported, since 

these two genes did not present in all other cultivars tested. 

Most previous studies have used seed resistance to detect the inheritance 

model. The lack of an established relationship between seed resistance and foliar 

resistance makes it difficult compare our results with other reported results. For 

instance, some plants susceptible to foliar infection produced no seeds or insufficient 

seed for testing for seed infection. Plants classified as susceptible based on seed 

infection may be classified as moderately resistant to foliar infection. However, Tay 

(1989) showed that all genotypes with low seed infection also had low foliar infection 

ratings, indicating that the same genes may be responsible for seed and foliar 

resistance. If this is true, seed resistance should be used to study the genetics of 

resistance, because it is more objective (using seed infection rate) than foliar rating 

(using a scaling system). Consequently, it allows more useful comparisons among the 

results from different authors. Therefore, the establishment of the correspondence 

between threshold values used to classify genotypes for seed resistance and for foliar 

resistance is required. Further, whether the resistance genes for foliar resistance 

identified in this and other studies also confer seed resistance needs to be tested. 
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CHAPTERS 

MAJOR GENES FOR ASCOCHYTA BLIGHT RESISTANCE IN 

LENTILS 

B. TWO MAJOR GENES CONFER ASCOCHYTA BLIGHT 

RESISTANCE IN LENS ORIENTALIS 

Summary 

Genetic mechanisms of resistance to Ascochyta blight from wild lentil (Lens 

orientalis) were studied using F3 families of a cross between the cultivar Titore of the 

cultivated lentil (L. culinaris) and accession W6 3261 of the wild lentil species. The 

simplest genetic model to adequately fit the data involved two genes, one of which 

was partially dominant with a large effect (A) and one dominant with less effect (B), 

which acted additively to confer resistance. One copy of the resistance increasing 

allele of the A gene is not sufficient for a genotype to be resistant nor are one or two 

copies of the resistance increasing allele of the B gene alone. For a genotype to be 

resistant it must have either two copies of the resistance increasing alleles of the A 

gene or one or two resistance increasing alleles of the B gene plus one resistance 

increasing allele of the A gene. When fitted to other published data this model was as 

good as, or better, than alternative models that have been proposed. The importance 

of sample size was also highlighted. When the sample size is small, the sensitivity of 

the X2 is lower and the confidence ranges of the different genetic models may overlap 

considerably. In this case, several genetic models may fit the segregation pattern of a 

generation and model selection based only on the magnitude of the X2 was sometimes 

misleading. Because the sample size required to distinguish two models with similar 

ratios is very large, it is important to use more segregating populations. Using F3 has 

several advantages for inferring inheritance models and is recommended. 
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SB.l Introduction 

Sources of resistance to Ascochyta blight in wild lentils were identified by 

Bayaa et ai. (1994). The genetics of resistance to Ascochyta blight from Lens 

orientalis was first reported by Ahmad et al. (1997b). Using F2 generations, they 

concluded that the resistance in crosses between resistant L. orientalis collections and 

susceptible L. culinaris cultivars was controlled by a single dominant gene. Because 

the sample size was small and only one type of segregating population was used by 

Ahmad et ai. (1997b), the inheritance model they suggested needs to be confirmed. 

Using the same cross, Parh (1998) found that the one-dominant gene model eQuId be 

used to interpret his results if F3 families were classified into non-segregating 

resistant, non-segregating susceptible and segregating groups. However, this model 

could not interpret the results from individual plants of segregating F3 families 

because the number of susceptible plants was much greater than expected. Parh 

(1998) did not give a satisfactory explanation for these results. 

The objectives of this study were to revisit the genetics of Ascochyta blight 

resistance from L. orientalis using F3 families and to investigate the effect of sample 

size on selecting genetic models. 

SB.2 M'aterials and Methods 

SB.2.1 Plant material 

A segregating F2 population derived from a single FJ individual of a cross 

between a cultivated lentil, L. culinaris cv. Titore, and an accession of wild lentil, L. 

orientaiis, W6 3261 was used in this study. Eighty F3 families were obtained by 

selfing randomly selected F2 individuals. Each F3 family plus the parents in the 

resistance test comprised of 10 plants grown in two, 2 I pots. Bark and sand at a 60: 

40 ratio were used as the potting mixture. Pots were arranged randomly on a bench in 

a greenhouse where maximum and minimum temperatures were 25 DC and 15 DC 

respecti vel y. 
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SB.2.2 Isolation of the pathogen, inoculum preparation and pathogenicity test 

A pathogenic isolate of Ascochyta lentis was obtained from infected seed of cv. 

Invincible (isolate Rakaia) using the method described in part A of this Chapter. 

Inoculum was prepared from the 15 d cultures as described in part A of this Chapter. The 

concentration of the spore suspension was measured using a haemocytometer and 

adjusted to 7.5 x 104 conidia/ml by dilution. Seedlings with four - five expanded leaves 

(15 d after sowing) were inoculated with the suspension at 1 mllseedling using an 

atomiser. After inoculation, pots were kept in a controlled environment cabinet at 18 DC 

and high humidity) for 24 h and then moved to a greenhouse bench for disease 

development to occur. 

SB.2.3 Data collection and analysis 

Data on disease severity were recorded at four different dates (7, 11, 13 and 15 d 

after inoculation) using a modified ICARDA disease scoring procedure on a 1 - 9 scale 

(Table 5B.1). 

Table 5B.1: Modified ICARDA disease rating scale (1-9) for lentil Ascochyta blight and 
equivalent 2-point and 4-point classification. 

Classifications Scale Disease severity 

R J HR 1 No visible lesions 

R HR 2 Very few lesions after careful examination 

R HR 3 Few scattered lesions after careful examination 

R MR 4 Lesions common & easily observed, no defoliation 

R MR 5 Lesions common & easily observed, little defoliation 

S MS 6 Lesions and defoliation common 

S MS 7 Lesions very common, defoliation moderate 

S HS 8 Lesions very common, defoliation high 

S HS 9 Extensive lesions on all plant parts with stem girdling 

IR = resistant, S = susceptible, H = highly, M = moderately. 

Individual plants were classified as resistant with ratings 1 to 5 and susceptible 

with ratings of 7 to 9. Alternatively, plants were categorised into highly resistant 
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(HR) with ratings of 1 to 3, moderately resistant (MR) with ratings 4 or 5, moderately 

susceptible (MS) with ratings 6 or 7, and highly susceptible with ratings 8 or 9. 

The data were analysed by using the X2 -statistic to test the goodness of fit of the 

observed ratio to the expected ratios under the various genetic models. 

SB.3 Results 

No plants developed any symptoms in the negative control. This indicates that 

disease development in the sprayed plants was due to inoculation. Disease symptoms 

were similar to those reported by Ahmad et al. (1997b). The average disease scores 

of the resistant and susceptible parents at day 15 were 3.33 and 8.00, respectively 

(Table 5B.2). On day 7, the disease was found sporadically on only a few lines. 

Thereafter within any group of plants the variability in disease development among 

the remaining three sample dates was not significant (Table 5B.2). Therefore, the 

results from day 15 were used in all the later analyses. 

Table SB.2: Ascochyta blight disease ratings for parents and F3 families from the lentil 

cross Titore x W6 3261. 

Parental mean Family mean 

Days W 63261 Titore NSR SEG NSS 1 

7 2.00 ± 0.73 3.33 ± 2.15 1.71 ± 0.78 2.44 ± 1.41 2.76 ± 1.81 

11 2.67 ± 0.76 6.92 ± 1.18 2.49 ± 0.81 4.10 ± 1.66 6.22 ± 1.17 

13 3.17±0.94 7.75 ± 1.14 2.73 ± 0.92 4.78 ± 1.71 6.86 ± 1.13 

15 3.33 ± 0.90 8.00 ± 1.14 2.93 ± 0.93 4.92 ± 1.67 6.98 ± 1.25 

I NSR = non-segregating resistant; SEG = segregating; NSS = non-segregating susceptible. 
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The distribution of disease score of all the tested plants did not fit a normal 

distribution. There were fewer plants with a score of less than three or more than 

seven (Figure SB.I). This indicated that major genes contributed to the resistance in 

this cross. A similar trend was found when only the plants of the segregating families 

were used (Figure SB.2). 

Out of the 80 F3 families, 17 were non-segregating and resistant (all plants 

were resistant), 38 were segregating (some plants were resistant and some were 

susceptible) and 2S were non-segregating and susceptible (all plants were 

susceptible). This ratio can be fitted by 1:2:1 (P = 0.407), which would be the 

expected segregation ratio for one dominant gene. If the analysis was ended here, the 

"one (dominant) gene model" fitted the data well. However, if instead of using 

families as the unit of measurement, an analysis was done using individual plant 

disease scores. The result was far from the expected S: 3 segregation ratio under the 

"one gene model" and consequently this model was rejected (Table SB.3). 

To fit the observed segregation pattern properly, a "two gene model" was 

proposed. This model assumed the existence of one partially dominant gene with a 

large effect (A) and one dominant gene with less effect (B), which conferred additive 

resistance. Using this model possession of one increasing allele of gene A would not 

be sufficient for genotypes to be resistant. The effect of gene B would be so small 

that the genotypes with one or two increasing alleles of gene B only would be 

susceptible. However, one increasing allele of gene B would be sufficient to make 

genotypes with one increasing allele of gene A resistant. Under this "two gene 

model", the expected segregation ratio of resistant and susceptible in the F2 plants is 

S: 3 (Table SB.3). The expected ratio of non-segregating resistant, segregating and 

non-segregating susceptible F3 families is 1 :2: 1. The expected ratio of resistant and 

susceptible F3 plants is 17: IS. The observed segregation pattern fitted these ratios 

well (Table SB.2). When plants were further classified into HR, MR, MS and HS, the 

segregation ratio was very close to the expected ratio of 17: 17:21:9 of the "two gene 

model" (Table SB.4). 
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Figure SB. 1. Distribution of disease scores of plants from F3 families 
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Figure 5B .2. Distribution of disease scores of plants from segregating F3 Families 

85 



Table SB.3: The segregation of F2 plants under the proposed "two gene model". 

Parents 

W6 3261 (AAJBB) Titore (aalbb) 

FI 

AalBb(MR) 

F2 

IAAIBB (RR) I 2AalBB (MR) 1aaIBB (MS) 

2AA/Bb (RR) 4AalBb (MR) 2aalBb (MS) 

IAA/bb(MR) 2Aalbb (MS) laa/bb (HS) 

Segregation ratio: 5 resistant: 3 susceptible, 3 HR:7 MR:5 MS: 1 HS 

ISee Table 5B.I for explanation of abbreviations. 

Table SE.4: Observed numbers of F3 plants in four resistance classes tested against 
predictions from two genetic models for resistance to Ascochyta blight. 

Resistant Susceptible P for X2 

HR MR 

201 212 Observed 

Expected l 

Expected I 

Expected2 

212.5 (17) 212.5 (17) 

I"two gene model", 

2"one gene model". 

425 (17) 

500 (5) 

MS 

288 

262.5 (21) 

HS 

99 

112.5 (9) 

375 (15) 

300 (3) 

(reject if <0.05) 

0.193 

0.604 

<0.000 

When only plants from the segregating families were used, the observed 

segregation pattern fitted to the "two gene model" very well. This held whether 

resistant and susceptible categories were further subdivided. Again the, "one gene 

model" was not supported by the results (Table 5B.5). 
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Table SB.S: Observed numbers of F3 plants from segregating F3 families in four 

resistance classes tested against predictions from two genetic models for 

resistance to Ascochyta blight. 

Resistant Susceptible 

HR MR MS HS 

Observed 97 126 115 42 

Expected I 

Expected1 

Expected I 

Expected2 

83.125 (7) 130.625 (11) 130.625 (11) 35.625 (3) 

83.125 (7) 130.625 (11) 

213.75 (9) 

285 (3) 

I "two gene model" 

166.25 (14) 

166.25 (7) 

95 (1) 

2 The model of one dominant gene and one recessive gene. 

(rej eet if <0. 05) 

0.139 

0.224 

0.339 

0.000 

To cross-validate the two-gene model, data obtained by Parh (1998) using the 

same cross was analysed. The goodness of fit was excellent as indicated by the P 

values (Table 5B.6). Therefore, the proposed "two gene model" for Ascochyta blight 

resistance is appropriate. 

SB.4. Discussion 

For the F3 families used in this study both the proposed "two gene model" and the 

"one gene model" suggested by Ahmad et al. (1997b) had the same expected non­

segregating resistant, segregating and non-segregating susceptible segregation ratios 

(1 :2: I). If all the segregating F3 families came from resistant F2 plants, the one-gene 

model could be correct. However, if some of the segregating F3 families came from 

susceptible F2 plants the "one gene model" would be rejected. Therefore, taking an F3 

family as the observation unit does not provide enough information to give a firm 

conclusion. 
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Table 5B.6: Fitness of the two genetic models to the segregation patterns of the F3 data 

of Parh (1998). 

Plants from all F3 families 

Observed 

Expected l 

Expectedl 

ExpectedZ 

Resistant 

HR MR 

88 76 

86.3 (17) 86.3 (17) 

172.7 (17) 

203.1 (5) 

Plants from segregating F3 families 

Observed 44 

Expectedl 

Expected l 

Expected3 

45.5 (7) 

1 "two gene model" 

Z "one gene model" 

70 

71.5 (11) 

117 (9) 

156 (3) 

Susceptible 

MS HS 

112 49 

106.6 (21) 45.7 (9) 

152.3 (15) 

121.9 (3) 

74 

71.5 (11) 

20 

19.5 (3) 

91 (7) 

52 (1) 

30ne dominant gene and one recessive gene model. 

(reject if <0.05) 

0.620 

0.336 

0.000 

0.981 

0.675 

0.000 

If the "two gene model" is correct, it should also fit the resistance and 

susceptibility ratios of the F land Fz generations. The Fz data reported by Ahmad et al. 

(1997b) was fitted to the "two gene model" using the XZ test. This model was rejected 

at a probability of 0.037 (Table 5B.7). However, only 48 Fz plants were used by 

Ahmad et al. (1997b) and misclassification of a single susceptible plant as resistant 

would have lead to non-rejection of the "two gene model" (Table 5B.7). Moreover, 

there is a data range (grey range) within which neither model can be accepted or 

rejected. Another two gene model (one dominant and one recessive gene) with a 13: 

3 resistance and susceptibility ratio in the Fz was even more difficult to reject using 
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Ahmad e.t al.'s (1997b) data. However, this model was rejected using individual plant 

disease scores (Table 5B.4). 

Table SB.7: Sensitivity analysis ofF2 data reported by Ahmad etal. (1997b). 

Resistant Susceptible P P P 

One-gene model Two-gene model Other model I 

(3: 1) (5:3) (13:3) 
..-·_· ____ ··_·_·~ __ ·r_"~ • 

372 11 0.739 0.037 0.460 

36 12 1.000 0.074 0.267 

35 13 0.739 0.136 0.139 

34 14 0.505 0.233 0.064 

'"'one dominant gene and one recessive gene" 

2published data. 

In order to distinguish among genetic models with close segregation ratios 

usmg one segregating generation, a large sample size is required. A simulation 

indicated that more than 200 F2 plants were required to unequivocally distinguish the 

"one gene model" and "two gene model". The difficulty in getting FI seeds in lentil 

inter-specific crosses makes this sample size for the F2 generation formidable. 

Micropropagation (e.g. by the method of Chapter 3) of limited FI material by in vitro 

culture could be used to enlarge the FI popUlation and hence the F2 population. 

Alternatively, other generations with different segregation ratios can be used 

to reveal the genetic model more accurately. Examples commonly used are 

backcrosses (difficult in this situation) and F3 plants. Use of the F3 generation has the 

advantages of: 

I. being analysable in three different ways, 

2. using the average disease scores to represent the performance of the source 

F2 plants, 

3. having the ability to easily increase sample size. 
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However, the sample size of the F3 family must be large enough to avoid 

misclassifying segregating families as non-segregating ones. Hanson (1959) 

demonstrated that 11 is the minimum family size to detect segregation for a dominant 

gene. In this study, the failure to detect segregation would imply that more F3 

families were classified as non-segregating resistant if the one-gene model were 

correct. This is the opposite of these results. Thus the small F3 family sample size 

that was used (n = 10) could have made it harder to reject the "one gene model" if 

some segregating families were misclassified. Therefore, it does not reduce our 

confidence in the "two gene model". 

The FI hybrid would be less resistant than the resistant parent under the "two 

gene model". Ahmad et al. (l997b) tested the resistance of a single FI plant and did 

not find any disease symptom, therefore the FJ seemed to be highly resistant. This 

inconsistency may have been caused just by chance escape. More plants are required 

to accurately measure the resistance of the FI generation. 

Under the "two gene model", F3 families from F2 individuals with genotypes AAfBb, 

Aa/BB and aa/Bb are segregating and all nine possible F2 genotypes can be detected if 

four categories of resistance level are used instead of two to classify the F3 families. 

Theoretically, individuals with genotypes homozygous for each gene (i.e. AAibb and 

aa/BB) can be identified, provided the number of plants per family is large enough. 

These two genotypes can be crossed to the original homozygous recessive parent 

(aa/bb) to verify the assumptions about their effects. They can also be intercrossed to 

test the assumption about their relationship. 
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CHAPTER 6 

GENETIC VARIATION FOR MINOR GENES CONDITIONING 

ASCOCHYTA BLIGHT RESISTANCE IN LENTILS 

Summary 

In addition to a major gene, minor genes were found to contribute to the 

genetic regulation of foliar resistance to Ascochyta blight in two crosses between two 

resistant and one susceptible lentil cultivars (lines). This was established by 

comparing inbred lines homozygous for the major resistance gene generated from the 

two crosses. Although the effects of minor genes were not large enough to change 

phenotypic performance determined by its major genotype qualitatively (from 

resistant to susceptible, or from susceptible to resistant) based on the measurement 

scale used, they substantially and significantly modified the level of resistance. 

The major gene for foliar resistance was linked to the gene(s) for resistance to 

seed infection or had a positive pleiotropic effect on resistance to seed infection. 

Similarly, the major gene for foliar resistance was linked to gene(s) for seed 

yield/plant in disease free environments and/or had a negative pleiotropic effects on 

the seed yield/plant. Selection for resistance and yield among inbreds with the same 

major resistance gene may be necessary to enhance the resistance level, and to reduce 

the negative effect on yield of the major resistance gene. 

6.1 Introduction 

As an efficient means to control Ascochyta blight in lentil, breeding for 

resistance has been the objective of several international and national breeding 

programs (Erskine et al., 1994). A good understanding of the genetics of Ascochyta 

blight resistance in lentil is required to obtain maximum returns from these programs. 
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All reported studies, and Chapter 5 of the present study, have used segregation 

analysis to detect the genetic mechanisms of resistance and several inheritance models 

of major gene(s) were proposed. Analysing resistance as a qualitative trait implies 

that the variations found within resistant and susceptible classes are totally attributable 

to environmental effects. However, the presence of different resistance levels withi~ 

the resistant and susceptible classes suggests that minor genes may also contribute to 

the resistance. Evidence supporting the role of minor genes in conditioning 

Ascochyta blight resistance would be useful in developing breeding methodologies 

aimed at further increasing the resistance level in lentil. For instance, accumulating 

the effects of minor genes will provide a buffer against possible changes in pathogen 

virulence. This buffer is required to if durable resistance is to be admired. 

It has been well documented that minor genes contributing to disease 

resistance mainly controlled by major gene(s) such as resistance to southern corn rust 

(Puccinia polysora) and maize streak virus in maize (Zea mays) (Rodier et at., 1995; 

Holland et al., 1998), resistance to the P3 isolate of phytophthora blight 

(Phytophthora drechsleri) in pigeonpea (Cajanus cajan) (Gupta et al., 1997), and 

resistance to apple (Malus sylvestris) scab fungus (Venturia inaequalis ) (Patocchi et 

aI., 1999). The combined effects of these major and minor genes have been suggested 

as a means of obtaining durable resistance. For instance, Pretorius et ai. (1994) 

suggested that Lr34 and Sr2, genes for resistance to leaf rust (Puccinia recondita f.sp. 

tritid) and stern rust (Puccinia graminis f.sp. tritid) of wheat (Triticum aestivum) , 

respectively, (thought to be major genes), in concert with minor genes conditioned 

durable resistance. 

The objectives of the study reported in this chapter were; 

1. to investigate the contribution of minor genes to Ascochyta blight 

resistance in lentil lines where resistance was mainly conditioned by major 

genes and; 

2. to study the association between the major resistance gene and genes for 

seed yield. 
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6.2 Materials and methods 

6.2.1 Plant materials 

The resistant inbred ILL 5684 (Lens culinaris) and W6 3241 (L. orientalis) 

were crossed to the susceptible inbred Titore (L. culinaris) to create two populations 

which were segregating for Ascochyta blight resistance. The line ILL 5684 was the 

most resistant available and W6 3241 was selected to represent resistance sourced 

from a wild lentil relative. The in vitro micropropagation methods developed in 

Chapter 3 were used to obtain large number of FJ plants. 

The FJ plants were selfed to produce F2 plants in a glasshouse at Lincoln 

University. One hundred seeds collected from the FJ plants of each cross were sown 

in a glasshouse for a foliar resistance test. A total of 160 seeds from F J plants of each 

cross were sown in vitro for micropropagation (Chapter 3). Therefore, clones of 

genetically true to type individual plants of each F2 seed line were obtained. The 

resultant plants were selfed to produce F3 families. 

From each F3 family 15 plants were tested for foliar resistance and the results 

were used to classify F2 individual clones into non-segregating resistant, non­

segregating susceptible and segregating classes. A total of 25 non-segregating 

resistant and 25 non-segregating susceptible individual F2 clones were randomly 

selected from each cross and were advanced to the Fs generation using a modified 

single seed decent method. The seeds of each Fs line were harvested in bulk to 

produce 25 lines of each of four sets of inbred lines (Titore x ILL 5684: resistant and 

susceptible sets; Titore x W6 3241: resistant and susceptible sets) for subsequent 

glasshouse testing. 

6.2.2 Experimental design 

Each set of inbreds (25 inbred lines) was tested for foliar disease resistance 

independently due to limited space. A randomised complete block design with three 

replicates of ten plants/plot (in two pots) was used for all the four tests. Seeds were 

collected and used for seed infection tests. In addition, another four tests were carried 

out using the same design to measure the seed yield/plant. 
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6.2.3. Inoculation and disease rating 

Methods for Ascochyta inoculum preparation, and seedling inoculation are the 

same as those described in Chapter 5. The rating method used was the modified 

ICARDA method as described in Table 6.1. Plants scored one or three were regarded 

as resistant. 

6.2.4 Seed infection test 

Seeds were surface sterilised with 0.6 % NaOCl for 10 min, soaked in sterile 

filter paper and plated on Vg-juice (Campbell Soups Ltd.) agar media with 10 

seeds/petri dish. The plates were incubated at 20°C under 12 h continuous 

fluorescent light in an incubator. The number of seeds/inbred varied due to seed 

availability, but the minimum number was 20. From the day seven after incubation, 

the number of infected seeds was counted daily until day 21. 

Table 6.1: Modified ICARDA 5- point disease rating scale for lentil Ascochyta 
blight. 

Classifications Scale Disease intensity 

RI HR 1 No visible lesions 

R HR 3 Few scattered lesions after careful examination 

R MR 5 Lesions common & easily observed, but little defoliation 

S MS 7 Lesions very common, defoliation moderate 

S HS 9 Extensive lesions on all plant parts with stem girdling 

'R = resistant, S = susceptible, H = highly, M = moderately. 

6.2.5 Data analysis 

The X2 test was used to fit the inheritance model of a major gene. The SAS 

function of general linear model was used to test for differences among the lines. A 

two-sample "t" test was used to test the difference between resistant and susceptible 

sets for yield. Genotypic variance and heritability were estimated for each class and 

cross combination respectively using the method of Hallauer and Miranda (1988). 
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6.3 Results 

6.3.1 Segregation for major gene 

In both crosses, the segregation ratios in F2 generations fitted a dominant 

genetic model with a major allele for increased resistance at a single locus (Table 6.2). 

In the F3 generations, the ratios of homozygous resistant, heterozygous resistant and 

homozygous susceptible families were also consistent with the one dominant gene 

model. Therefore, a dominant major gene is responsible for the resistance observed in 

these two crosses. Whether the major gene in ILL 5684 is the same as the major gene 

in W6 3241 

Table 6.2: Foliar reaction to Ascochyta blight of the F2 and F3 plants from two lentil 

crosses. 

Number of F2 plants Number of F3 families 

Cross/ Resistant Susceptible (3:1) HR* HtR* HS* (1:2: l)x 2 

Parent 
X

2 

Score 1 3 5 7 9 

Titore x 38 34 10 15 3 0.488 41 79 30 0.361 

ILL 5684 

Titore x 34 37 14 8 7 0.356 28 79 42 0.206 

W63241 

Titore 31 9 

ILL 5684 10 30 

W63241 28 12 

*HR: homozygous resistant, HtR: Heterozygous resistant, HS: homozygous susceptible. 

was not determined. This was because while attempts were made to cross the two 

lines no seeds were obtained from the cross between ILL 5684 and W6 3241. 
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6.3.2 Minor gene variation for foliar resistance 

The frequency of plants which scored one was more in the resistant F3 families 

of Titore x ILL 5684 than the frequency found in plants of the resistant parent (ILL 

5684). Conversely, this frequency was lower in the resistant F3 families of the cross 

between Titore x W6 3241 than the frequency found in plants of the resistant parent 

(W6 3241; Table 6.2). Similarly, for susceptible groups, the frequency of plants 

scored 7 or less was more in the F3 families than in the susceptible parent (Titore) for 

the Titore x ILL 5684 cross and less than the susceptible parent in the Titore X W6 

3241 cross, respectively (Table 6.2). 

The average disease severity score of the resistant FS:6 set of Titore x ILL 5684 

was lower (i.e. more resistant) than the resistant parent, but that of the resistant FS:6 set 

of Titore x W6 3241 was higher (i.e. less resistant) than the resistant parent (Table 

6.3). Significant differences among the inbred lines were established for all four sets 

of inbred lines (Table 6.4). 

Table 6.3: Means and ranges of reactions to Ascochyta blight of FS:6 inbred lines 
homozygous for a major resistance gene for two lentil crosses. 

Titore ILL5684 W63241 Titore x Titore x 

(S) (R) (R) ILL 5684 W63241 
R3 S3 R S 

DSI Mean 7.45 2.50 2.30 1.82 7.66 2.75 8.23 

Range 7-9 1-3 1-3 1-3 5-9 1-4 . 5-9 

LSDo.os 0.23 0.26 0.30 0.25 

SI %2 Mean 15.5 17.5 13.3 42.5 21.4 40.5 

Range 12.3- 14.5-19.9 10.5- 37.3- 10.5- 37.0-
16.5 19.5 56.7 . 30.3 57.4 

LSDo.os 2.73 3.26 3.50 3.87 

IDS = Disease severity. 

2SI % = Seed infection percentage. 

3R: Resistant set, S: Susceptible set. 

A large number of inbred lines were significantly different from the parents. 
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Among the resistant inbred lines of Titore x ILL 5684, 17 lines were significantly 

more resistant and two more susceptible than the resistant parent. The other six did 

not show significant differences from the parent. Among the resistant inbred lines 

from Titore x W6 3241, nine lines were significantly more susceptible and five more 

resistant than the resistant parent, and the other 11 did not show significant 

differences from the parent. No susceptible inbred lines from either cross were 

classified as resistant. 

In Titore X ILL 5684, the genotypic variance for the set of resistant lines was 

smaller than that for the set of susceptible lines. In Titore x W6 3241, similar 

genotypic variances were found for both sets of lines (Table 6.5). The resistant set of 

Titore x W6 3241 had three times more genotypic variance than that of Titore-x ILL 

5684. In all four instances, however, genotypic variances were substantially higher 

than environmental variances. 

The estimates of entry-mean heritability were higher in all four sets. As with 

the genotypic variances, the heritability estimates were higher in the Titore x W6 

3241 sets than in the Titore X ILL 5684 sets. 

Table 6.4: Analysis of variance of reaction to Ascochyta lentis of F5:6 inbred lines 

homozygous for a major resistant gene from two lentil crosses. 

MS 

Titore x ILL 5684 Titore x L6 3241 

Source df Resistant Susceptible Resistant Susceptible 

DS Between inbred 24 0.324 0.607 0.971 1.060 

Error 48 0.018 0.024 0.031 0.022 

SI% Between inbred 24 15.75 29.12 30.59 61.75 

Error 48 1.75 2.88 2.48 3.52 

6.3.3 Seed infection 

The resistant sets had significantly lower seed infection rates than the 

susceptible sets in both crosses (Table 6.3). There was a large range of seed infection 
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rate in each set of inbred lines (Table 6.3). Significant differences among inbreds 

were found in all sets (Table 6.4). The estimates of hedtability were very similar in 

size to those for foliar infection (Table 6.5). Inbred lines with much lower seed 

infection rates than their resistant parents could be selected from both resistant sets. 

The correlations between foliar rating and seed infection were positive and 

significant. The correlation coefficients were 0.78 and 0.65 for the resistant sets of 

Titore x W6 3241 and Titore x ILL5684, respectively. 

Table 6.5: Estimates of genetic parameters for reaction to Ascochyta blight using F5:6 inbred 

lines homozygous for a major resistance gene from two lentil crosses. 

Titore x ILL 5684 Titore x L6 3241 

Resistant Susceptible Resistant Susceptible 

DS Vg 0.102 0.194 0.313 0.345 

Ve 0.018 0.024 0.031 0.022 

H2 0.85 0.89 0.91 0.94-

SI% Vg 7.00 13.12 14.05 31.68 

Ve 1.75 2.88 2.48 3.54 

H2 0.80 0.82 0.85 0.90 

6.3.4 Associations between the major resistance gene and genes for yield 

The two sets of inbred lines from each cross made it possible to detect the 

associations between major Ascochyta resistance genes and genes for other traits by 

testing the difference between the two sets for these traits. As could be expected, the 

resistant set yielded much more than the susceptible set under disease stress in both 

crosses (Table 6.6). However, in a disease free environment the average yield of the 

resistant set was significantly lower than that of the susceptible set in both crosses. 

Inbred lines within a set were variable in yield. The yield ranges of the inbred lines 

were similar among the resistant and susceptible sets (Table 6.6). The correlations 

between yield under disease pressure and yield in the absence of disease in the 

resistant sets were not significant. 
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6.4 Discllssion 

A dominant gene conferred resistance to Ascochyta blight in both lLL 5684 

and W6 3241. This was consistent with the results of Ahmad et al. (1997b), Ford et 

al. (J 999) and those presented in Chapter 5. However, at this stage it is not possible 

to know whether it is the same gene in both cultivars. 

It was also found that minor genes contributed to resistance in the two crosses 

used in this study. Firstly, the disease severity in each set of inbred lines was 

continuously distributed. Secondly, there were significant differences among -inbred 

lines within each set. Such differences were the results of transgressive segregation 

arising through combinations of different loci controlling resistance. Thirdly, the 

genotypic variance of each set was significantly different from zero. 

Table 6.6: Mean seed yield/plant (mg/plant) under disease stress and without disease for 

families of Fs inbred lines homozygous for a major resistance gene from two 

lentil crosses. 

Environment 

Stress 

Non-stress 

Mean 

Range 

Mean 

Range 

Titore x L 5684 

RI S 

0.78** 0.31 

0.71 - 0.86 0.23 - 0.42 

0.83** 0.98 

0.74 - 0.95 0.84 - 1.12 

IR = resistant, S = Susceptible. 

Titore xW6 3241 

R S 

0.41 ** 0.16 

0.33 - 0.52 0.11 - 0.29 

0.48** 0.64 

0.32 - 0.49 0.55 - 0.78 

"*: The difference between the resistant and susceptible sets was significant at the p :s; 

0.01 level. 

Generally, the effects of the minor genes in the cross Titore x lLL 5684 

contribute positively to resistance, while those in the cross Titore x W6 3241 
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contribute negatively to resistance. Selecting for resistance in the resistant lines is 

effective (in Titore x ll.L 5684) and necessary (in Titore x W6 3241). The minor 

genes alone did not seem to confer sufficient (lack of) resistance, as indicated by the 

observation that no lines within the susceptible set could be classified as resistant. 

Similarly, no lines within the resistant set could be classified as susceptible. The 

effect of the minor genes was to increase or decrease the effects of the major gene. 

However, the limited options within the foliar disease scaling method used prevented 

an accurate quantification of the resistance level and consequently may have 

underestimated the effects of the minor genes. 

To some extent, the scaling system used reflects the level of discrimination 

needed to evaluate the comprehensive resistance resulting from major genes- rather 

than from minor genes. Although the method is simple, it does not allow the accurate 

quantification of the genetic control of resistance components, which are more likely 

to be controlled by minor genes. 

Though the major genotypes of the F2 plants were identified based on foliar 

disease severity, the resistant set had significantly lower seed infection rate than the 

susceptible set in both crosses. Consequently, the foliar disease rating and the 

percentage seed infection rate were positively correlated. This suggests that the major 

gene for foliar resistance has a pleiotropic effect on seed infection rate or is linked to 

the genes for seed infection rate. Published results showed that this is not always the 

case. For example, Andrahennadi et ai. (1996) showed that cultivars with the same 

foliar disease rating had very different seed infection rates. Seed infection rates of the 

cultivars with neighbouring foliar ratings overlapped. Ahmed and Morrall (1996) 

reported that the cultivar Indian head showed higher foliar infection but lower seed 

infection than ILL 5684 and ILL 5588. They attributed this to differences in the 

timing of maturity. The later maturing cultivar (Indian head) may produce new pods 

after losing infected leaves early in an epidemic. On the other hand, in early maturing 

cultivars, the pods may be exposed to saprophytic infection. The high correlation 

between the foliar resistance and seed infection rate found in the present study may be 

because all of the inbred lines in each set contained the same major gene. 

The significantly lower yield of the resistant sets under a disease free 

environment suggested that the major gene for resistance to Ascochyta blight is linked 

with genes for reduced yield/plant or has a negative pleiotropic effect on it. 
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Therefore, selection for resistance conferred by major gene caused an unfavourable 

yield/plant response under a normal environment. The adverse effect of selection for 

disease resistance on yield has been reported in ryegrass (Latium perenne) for crown 

rust (Puccinia caranata) resistance (Reheul and Chesquiere, 1996). They reported 

that a one unit increase in crown rust resistance in perennial ryegrass gave an annual 

loss of 1.4 % of dry matter yield. 

The main objective of breeding for disease resistance is to obtain cultivars 

with a high level of resistance and consequently a high yield under disease stress. 

Therefore, yield under disease pressure (stress) is the ultimate measurement of disease 

resistance. However, an ideal cultivar should yield better both under stress and in 

normal environments. 

From a selection breeding point of view, yield under stress and under normal 

environments can be regarded as different traits. Because the yield under a stress may 

not reflect the yield with no stress, both should be used as selection criteria in a 

breeding program. This requires yield testing in both environments and doubles the 

resource requirements if they are negatively correlated as was found in present study. 

However, there was a large genetic variation for yield among the inbred lines in the 

resistant set. Therefore, selection for high yield among the lines would be an efficient 

way to reduce the adverse effect of the major resistance gene on yield. 

In this study, the effect of a major resistance gene on yield (or other agronomic 

traits) was easily detected since the genotypes of the major gene could be determined 

from phenotypic observations. Unfortunately, this may be an exception rather than 

the rule in disease resistance studies. In most cases, major genotypes cannot be 

distinguished based on phenotypic observations. To identify major genotypes and 

reduce unfavourable linkage, neutral markers linked to major gene(s) are urgently 

required. Recently, Ford et al. (1999) identified three RAPD markers linked to an 

Ascochyta blight resistant gene in ll.L 5588. 

Only an association between a major gene for resistance and genes for 

yield/plant was observed in this study. Many other traits are important for the success 

of a cultivar. In Chapter 9 the effects of the major gene for resistance on plant height 

and days to flowering are reported. 
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CHAPTER 7 

GENERATION MEAN ANALYSIS OF ASCOCHYTA BLIGHT 

RESISTANCE IN LENTIL 

Summary 

Four crosses were investigated using generation mean analysis for reaction to 

Ascochyta blight in lentil. Genetic mechanisms of both foliar and seed resistance 

were genotype-dependent. Resistance was dominant to susceptibility in all Grosses 

except for Indian head x Titore. The simple additive-dominant model was suitable 

only for foliar resistance in the cross ILL 5684 x Titore. Using seed infection rate to 

measure the resistance, a more complicated gene action was detected. Six basic 

generations were sufficient for detecting the gene action for foliar resistance. 

However, more generations were required to detect the gene actions for seed 

resistance in ILL 5588 and W6 3261. Either different genes were responsible for 

foliar and seed resistance or the same genes were expressed differently. For foliar 

resistance, a simple recurrent selection scheme for resistance can be followed to 
, 

isolate plants with higher resistance from a segregating population derived from 

crosses between parents containing different resistance genes. 

7.1 Introduction 

Ascochyta blight caused by Ascochyta lentis is a major disease in many lentil 

production areas (Erskine et al., 1994). Ascochyta blight is favoured by cold and wet 

environments and occurs on shoots, stems, pods and seeds (Nene et al., 1988, 

Pederson and Morrall, 1994). It has a considerable effect on seed quality and yield 

(Morrall and Sheppard, 1981; Gossen and Morrall, 1983; Morrall, 1997). Chemical 

control was found to be effective (Beauchamp et al., 1986 a; b; Bedi, 1990), but its 

use is limited because of its high cost. Unlike other major crop plants, lentils are 
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mainly cultivated in developing countries and on infertile soils. Breeding for 

improving host resistance holds the greatest potential to reduce the effect of the 

disease. 

To breed for Ascochyta blight resistance, in lentils, it is necessary to identify 

resistant genetic sources and to have a good understanding of the genetics of the 

resistance in these resources. Several workers have studied the genetics of Ascochyta 

blight resistance in lentils and different models have been suggested (Tay, 1989; Tay 

and Slinkard, 1989; Andrahennadi, 1994; 1997; Ahmad et at., 1997b; Ford et al., 

1999). In the present study, a series of experiments have been conducted to 

investigate different aspects of the genetic mechanisms of Ascochyta blight resistance. 

Inheritance models of major genes were described in Chapter 5. The contribution of 

minor genes was confirmed in Chapter 6. However, it is difficult to fully separate the 

contributions of major genes and minor genes in practice. Therefore, an investigation 

of the overall genetic effects is helpful in understanding the genetic mechanism of 

Ascochyta blight resistance. Generation mean analysis has several advantages over 

other designs for studying the inheritance of a quantitative trait. For instance, the 

experimental error is relatively small. This makes the experiment size needed to 

achieve same level of precision smaller relative to other methods (Hallauer and 

Miranda, 1988). This is important in lentil, because it is difficult to obtain seed from 

artificial crossing. In addition, the populations evaluated in generation-mean analysis 

provide materials that can be used in an applied breeding program (Campbell et al., 

1997; Coates and White, 1998). 

The objective of this chapter is to investigate the inheritance of resistance to 

Ascochyta blight in four crosses of resistant and susceptible lentil parents using 

generation mean analysis. 

7.2 Materials and methods 

7.2.1 Plant materials 

Four resistant lentil inbreds (PI), ILL 5588, ILL 5684, Indian head and W6 

3261, were crossed to the susceptible cultivar Titore (P2) in a glasshouse using the 
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procedure of Ahmad et al. (1995b). The FI plants were selfed to produce an F2 and 

were then backcrossed to the susceptible parent to produce BCI families and to the 

resistant parent to produce BC2 families. Six basic generations were tested for foliar 

resistance in the greenhouse. 

7.2.2 Experimental design 

The six basic generations of each cross were evaluated separately in a 

glasshouse using a randomised complete block design with three replications. The 

number of plants per generation for each plot was not the same (see Table 7.1 for 

details). Seed was collected separately from each plant and was used for a seed 

infection test. For the seed infection test seed was only collected from one replicate 

of the foliar resistance test. 

7.2.3 Disease severity testing 

For foliar disease infection, inoculum prepared from infected seeds was used 

at a concentration of 7.5 x 104 conidiaJrnl (see Chapter 5 for the details). 15 d old 

seedling were inoculated and kept under a plastic tent for 24 h before they were 

moved to a shade house. Disease severity was recorded 10 d after inoculation using 

the modified ICARD A scoring system as described in Table 6.1 (Chapter 6). 

For seed infection test, seeds were surface sterilised with 0.6 % NaOCI for 10 

min, soaked on sterile filter paper and plated onto Vg-juice (Campbell Soups Ltd.) 

agar medium in petri dish with 10 seeds/petri dish. The plates were incubated at 20 

DC under 12 h fluorescent light in an incubator. The number of seeds/plant varied but, 

the minimum number used was 20. From 7 d after incubation started, the number of 

infected seeds was counted daily until 15 d. 

7.2.4 Data analysis 

For foliar infection, a randomised complete block analysis of variance was 

conducted using the general linear model (GLM) procedure of the SAS statistical 

package (SAS Institute Inc., 1990). To take account of the heterogeneity of within 

plot variances, the within plot variance was used as a weighting factor. 

The genetic analysis was done in three stages with three different models, 
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I. the additive-dominance model; 

2. six parameter model and; 

3. The best parsimonious fit model. 

The genetic models were fitted by the weighted least square method as follow 

Y=CM+£ 

Where Y is a k xl vector of the observed generation means: M is a p x 1 vector of 

unknown parameters to be estimated: C is a k x p matrix of known constants relating 

the generation means to the model parameters, and £ is a k x 1 vector of random 

errors with covariance matrix D. D = diag (a2dn) , a22/n2, ... a\/nk). a2k and nk are the 

variances and sample size for the generation kl, respectively. 

The unbiased and constant estimates of a\ a2
2 •.. a2k are the corresponding 

sample variances S2), S22 ... s\. Let S= diag (S2], S22, ... , S2k) and N= diag (nl' n2, ... , nk) 

then the estimated D is 

The least square solution for M is 

The goodness of fit test is given by 

xLI' = (Y - CM)' SN-1 (Y - CM) 

Using the six-parameter model, the mean, additive (a), dominant (d), the 

pooled additive x additive (aa), the pooled additive x dominant (ad) and the pooled 
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dominant x dominant (dd) effects were estimated. The estimated values of the gene 

effects were tested by t-test. The standard errors of estimated genetic effects are the 

diagonal elements of the estimated covariance matrix: 

The effects with non-significant t values were deleted and a new model was 

fitted. If all six genetic effects are significant, there is no way to test the model with 

the six basic generations. All computations were done using the interactive matrix 

language (lML) of the SAS program (SAS Institute, 1990). 

7.3 Results 

7.3.1 Foliar resistance 

Generation means and within plot variances are given in Table 7.1. As 

expected, segregating generations (F2, BC I, BC2) had bigger within plot variances 

than non-segregating generations (PI, P2, FI). Except for the cross, Indian head x 

Titore, the deviations of the Fl from the mid-parent values were towards the resistant 

parent. This is an indication of dominance of resistance over susceptibility. Analysis 

of variance showed that the differences among generations were significant in all 

crosses (Table 7.2). 

In the cross, ILL 5588 x Titore, the simple additive-dominant model is 

rejected by the joint scaling test (Table 7.3), as indicated by the fact that the X2 is 

larger than the table value at the 0.01 significance level. In the six-parameter model, 

the additive x additive effect (aa) and the dominant x dominant effect (dd) were not 

significant. The best model was the 'm-a-d-ad' four-parameter model. The genetic 

effects estimated from this four-parameter model are given in Table 7.3. The additive 

(a) and dominant (d) effects played an equal role, the additive-by-dominant effect (ad) 

is smaller. The negative value for 'a' reflected that the resistant parent was regarded 

as P I. The negative value for 'd' indicated that resistance was partially or completely 
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dominant to susceptibility. The negative value for 'ad' indicated that 'ad' contributed 

to increased resistance, in other words, the additive-by-additive effect was favourable. 

Table 7.1: Generation means and standard deviations for four lentil crosses evaluated for 

reaction to Ascochyta lentis I. 

G 1
• Sample Titore x Titore x 5684 Titore x 5588 Titore x 

SIze W63261 Indian head 

DS2 SI%2 DS SI% DS SI% DS SI% 

PI 5 2.12 17.6 3.00 25.7 2.56 15.5 1.89 18.5 

(0.11) (1.53) (0.07) (0.84) (0.16) (1.50) (0.07) (2.53) 

P2 5 8.02 48.7 8.13 48.7 7.82 48.7 7.76 48.7 

(0.21) (2.53) (0.14) (2.53) (0.19) (3.60) ~0.12) (1.09) 

FI 5 3.27 18.16 4.15 26.9 3.73 16.23 7.50 45.4 

(0.23) (3.1) (0.10) (0.62) (0.17) (1.80) (0.22) (1.96) 

F2 20 3.85 20.08 4.23 24.2 3.31 17.9 6.73 32.1 

(0.30) (4.41) (0.24) (0.71) (0.25) (4.20) (0.30) (3.32) 

BC I 15 3.87 17.2 4.33 21.2 3.56 14.36 6.76 38.5 

(0.25) (4.18) (0.21) (1.45) (0.21) (4.41) (0.17) (3.76) 

BCl 15 7.55 46.88 7.67 30.1 7.27 46.45 7.71 35.5 

(0.29) (2.47) (0.25) (1.37) (0.26) (1.53) (0.28) (2.42) 

IG = generation, 2DS = foliar disease SI% = Seed infection percentage. 

Values in brackets are standard deviations. 
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Table 7.2: Analysis of variance for foliar disease severity of six basic generations of four 

lentil crosses. 

Source 

Generations 

Error 

*** : P < 0.001. 

Df 

5 

10 

Titore x 

W63261 

8.12*** 

0.24 

Mean squares 

Titore x Titore x 5588 Titore x 

5684 Indian head 

10.53*** 6.67*** 12.13*** 

0.35 0.15 0.14 

In the cross, llL 5684 x Titore, the joint scaling tests failed to reject the 

simple additive-dominant model, indicating that there was nothing else except three 

parameters, m, 'a' and cd' to interpret the resistance (Table 7.3). The factor cd' 

showed a slightly greater role than 'a'. Resistance is therefore dominant to 

susceptibility. 

In the cross, Indian head x Titore, the simple additive-dominant model is 

rejected by the joint scaling test (Table 7.3). In the six-parameter model, 'aa' and Odd' 

were not significant. The best model was the 'm-a-d-ad' four-parameter model. The 

estimates of genetic effects from this parsimonious model indicated that 'a' and cd' 

had similar effects, and 'ad' was about five times more important than 'a' and 'd'. 

The positive value for cd' indicated that resistance is partially or completely recessive 

to susceptibility. The positive value for 'ad' indicated that it contributes to reduced 

resistance. 

In the cross, W6 3261 x Titore, the joint scaling test rejected the simple 

additive-dominant model (Table 7.3). In the six-parameter model, 'ad' and odd' were 

not significant. The estimates of genetic effects from the parsimonious model (m-a-d­

aa) indicated that 'a' was the most important, and resistance is dominant to the 

susceptibility. The factor 'aa' is favourable for resistance. However, the significant 

X2 suggested that this model was not a good fit of the observed pattern. 
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Table 7.3: Weighted least square estimates and standard deviations of genetic parameters for 

reaction to Ascochyta lentis in four lentil crosses evaluated for foliar disease 

severity. 

Model Effect Titore xW6 Titore x Titore x Titore x 

3261 5588 5684 Indian head 

Additive- m 5.25** 5.12** 5.35** 4.90** 

dominant Overall (0.11) (0.11) (0.08) (0.07) 

mean 

a -3.07** -2.53** -2.55** -2.71 ** 

Additive (0.11) (0.11) (0.08) (0.07) 

effect 

d -1.37** -2.33** -2.83** 3.39** 

Dominant (0.24) (0.21) (0.13) (0.19) 

effect 

X
2 50.28** 7.47* 0.337 336.9** 

Six- m -2.37 ns 5.95** 4.71 ** 7.29** 

parameter (1.43) (1.23) (1.19) (1.37) 

a -2.95** -2.63** -2.55** -2.95** 

(0.12) (0.12) (0.08) (0.07) 

d 19.20** -5.23** -1.33 ns -2.23** 

(3.37) (2.91) (2.80) (3.13) 

aa 7.44** ~0.76 ns 0.64 ns -2.34 ns 

a-by-a (1.43) (1.20) (1.18) (1.37) 

effect 

ad -1.46** 1.70* -0.18 ns 11.5** 

a-by-d (0.81) (0.72) (0.68) (0.68) 

effect 

dd -13.60** 2.18 ns -0.86 ns 2.26 ns 

d-by-d (2.03) (1.75) (1.67) (1.85) 

effect 
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Table 7.3 (Continued) 

Model Effect Titore X W6 Titore x Titore x Titore x 

3261 5588 5684 Indian head 

Best m 6.41 ** 5.12** 5.35** 4.96** 

(0.57) (0.11) (0.08) (0.07) 

a -3.04** -2.62** -2.55** -2.96** 

(0.12) (0.12) (0.08) (0.07) 

d -2.78** -2.36** -2.83** 2.47** 

(0.72) (0.21) (0.13) (0.20) 

aa -1.22* 

(0.59) 

ad 1.46* 11.4** 

(0.71) (0.63) 

dd 

X
2 45.95** 3.209 0.337 3.620 

ns: P> 0.05, *: 0.01 < P:S; 0.05, **: P:S; 0.01. 

7.3.2 Seed infection 

The generation means and their standard deviations are given in Table 7.1. As 

with foliar disease severity, the deviations of FI from the mid-parent values were 

towards the resistant parent in all crosses except Indian head x Titore. This was an 

indication of dominance of resistance over susceptibility in these three crosses. The 

reverse was true for Indian head x Titore. 

The joint scaling test rejected the simple additive-dominant model in all four 

crosses (Table 7.4). In the crosses, ILL 5588 x Titore and W6 3261 x Ti tore , all 

effects were significant in the six-parameter model. However, the estimates of 'd' 

were large and positive. This was not acceptable since the resistance wa~ clearly 

dominant over susceptibility. The best model, which gave the smallest X2 value, was 
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the 'm-a-d-ad' four-parameter model (Table 7.4). The inheritances in these two 

crosses were too complicated to be resolved using the six basic generations. 

In the cross ILL 5684 x Titore, 'aa' and 'ad' were not significant in the six­

parameter model. The best parsimonious model was the 'm-a-d-dd' model. In this 

model 'd' and odd' showed a much greater role than 'a'. Resistance is dominant to 

susceptibility. The presence of odd' results in reduced resistance. The opposite signs 

of 'd' and odd' suggested that the inter-loci interaction was of a complementary type 

(Table 7.4). 

In the cross, Indian head x Titore, odd' was not significant in the six-parameter 

model. The estimates of genetic effects from the best parsimonious five-param~ter 

Table 7.4: Weighted least square estimates and their standard deviations of genetic 

parameters for reaction to Ascochyta lentis in four lentil crosses evaluated with 

seed infection rate. 

Model Effect Titore x Titore x Titore x Titore x 

W63261 ILL 5684 ILL 5588 Indian head 

Additive- m 33.4** 30.9** 33.7** 33.5** 

dominant (1.42) (0.89) (1.48) (1.30) 

a -17.0** -15.5** -19.2** -14.1** 

(1.41) (0.96) (1.48) (1.30) 

d -10.1 ** -5.88** -15.2** 8.85** 

(3.06) (1.21) (2.81) (2.31) 

X
2 24.617** 78.590** 30.106** 26.108** 

Six- m -14.7ns 31.4** -17.9 ns 14.0ns 

parameter (20.19) (5.07) (15.83) (16.08) 

a -15.5** -11.5** -16.6** -15.1** 

(1.48) (1.33) (1.60) (1.37) 

d 106** -24.3 ns 109.0** 41.0ns 

(46.07) (13.85) (38.63) (38.04) 
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Table 7.4 (Continual) 

Model 
Effect Titore X Titore x Titore x Titore x 

W63261 ILL 5684 ILL 5588 Indian head 

aa 47.8** 5.8 ns 50.0** 19.6 ns 

(20.14) (4.90) (15.75) (16.02) 

ad -28.3** 5.2 ns -31.0** 36.2** 

(10.15) (4.8) (10.02) (9.36) 

dd -73.4** 19.8 * -75.0** -9.6 ns 

(27.12) (8.96) (23.76) - (22.79) 

Best m 33.7** 37.8** 32.4** 20.3** 

(1.42) (1.19) (1.51) (5.95) 

a -15.3** -10.7** -16.7** -15.1 ** 

(1.47) (1.11) (1.59) (1.37) 

d -13.2** -41.7** -15.4** 25.3** 

(3.15) (4.28) (2.82) (7.01) 

aa 13.4* 

(6.20) 

ad -38.3** -41.8** 34.9** 

(9.23) (9.43) (8.81) 

dd 30.7** 

(3.52) 

X
2 7.383** 2.483 10.470** 0.180 

ns: P>0.05, *: 0.01 < P:::; 0.05, **: P:::; 0.01. 

model (m-a-d-aa-ad) indicated that 'ad' was the most important effect followed by 

'd', while 'a' and 'aa' had least effect and were similar. The susceptibility is over-
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dominant over the resistance (Table 7.4). Both types of epistasis result in reduced 

resistance. 

7.4 Discussion 

Both additive and dominant effects were important for the resistance to 

Ascochyta blight in the four genotypes evaluated by foliar disease severity and seed 

infection rate. Dominance favoured resistance in all crosses except Indian head x 

Titore. 

The relative importance of the different gene effects was genotype-dependent. 

For foliar disease severity, the additive and dominant effects were similar in all four 

crosses. For seed infection rate, the dominant effect played a more important role 

than the additive effect in crosses, llL 5684 x Titore and Indian head x Titore. The 

relative importance could not be determined for the crosses, ILL 5588 x Titore or W6 

3261 X Titore, since no suitable models were fitted. 

A single dominant gene model was previously suggested for the foliar 

resistance of ILL 5588 and W6 3261 (Ahmad et al., 1997b; Chapter 5). In the present 

study significant epistatic effects ('aa' for ILL 5588 x Titore and' ad' for W6 3261 x 

Titore, respectively) were detected. Therefore, the genetic mechanisms underlying 

the resistance to seed infection are more complicated. Two-gene models for foliar 

resistance were proposed in Chapter 5. Two dominant genes, one for high resistance 

and one for moderate resistance were proposed as being responsible for foliar 

resistance in ILL 5588. The resistance of W6 3261 was under the control of one 

partiaLly dominant gene with a large effect and one dominant gene with less effect. 

Because generation mean analysis assumes that all genes have the same effects, these 

two-gene models could not be confirmed directly by this study. However, it was clear 

that more than one gene is responsible for the resistance. 

For seed resistance, Andrahennadi (1994; 1997) and Vakenlabharanam et al. 

(1997) proposed a single dominant gene model. The present results did not support 

this simple model. Tay (1989) suggested that two dominant genes and one recessive 

gene conferred seed resistance to ILL 5588 using small F2 populations. 
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For the cross, Indian head x Titore, 'ad' effect was the only significant inter­

loci interaction effect detected for foliar disease severity, while both the 'aa' and 'ad' 

- effects were significant for the seed infection rate. For both the foliar disease 

severity and the seed infection rate, resistance was recessive to susceptibility. Two 

recessive genes with additive effects were suggested for the foliar resistance of Indian 

head (Chapter 5), and two duplicated recessive genes for seed resistance 

(Andrahennadi, 1994; 1997). The predominant epistatic effect found in the present 

study partially supported Andrahennadi's results. 

For the cross, ILL 5684 x Titore, the simple additive-dominant model was 

sufficient to model the inheritance of foliar disease severity, while the 'dd' effect was 

required for seed infection rate. This is partially consistent with previous results. For 

instance, a single dominant gene model for foliar resistance (Chapter 5), and two 

dominant complementary genes for the seed resistance (Tay, 1989) were previously 

suggested for ILL 5584. 

If parents used in a cross are in the association phase, the dominant effect is 

always smaller than the additive effect. However, if parents are in the dispersion 

phase, the estimate of the dominant effect is always higher than that of the additive 

effect (Mather and Jinks, 1982). According to this, Titore, the susceptible cultivar, 

had the genes for seed resistance in Indian head x Titore and ILL 5684 x Titore, and 

genes for foliar resistance in ILL 5684 x Titore. The presence of a dominant gene in 

Titore was reported by Ahmad et al. (l997b) and in Chapter 5. 

The inheritance models of foliar disease severity were simpler than that of 

seed infection in all the crosses used. This may be an artefact of the measurement 

scale. It is well known that the results of generation mean analysis is scale-dependent. 

Therefore, it could not be expected that the same gene action would be found for both 

foliar and seed resistance, even if the same genes and gene actions were responsible 

for both foliar and seed resistance. In addition, highly susceptible plants produce few 

or no seeds and consequently the sample sizes for susceptible plants were smaller than 

those for resistant plants and this may have reduced the precision of the seed infection 

test. 

The presence of dominance and unfix able epistasis m Ascochyta blight 

resistance suggests that selection for resistance would be more effective if the 

dominance and epistatic effect were reduced after a few generations of selfing. 
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CHAPTER 8 

AN ANALYSIS OF ASCOCHYTA BLIGHT RESISTANCE IN 

LENTIL CROSS ILL 5588 x TITORE USING A MIXED-GENETIC 

MODEL 

Summary 

The inheritance of resistance to Ascochyta blight in lentil (Lens culinaris Medikus) 

was studied using the cross of ILL 5588 x Titore. Foliar disease severity and seed infection 

rate were used to measure the resistance. The inheritance model was determined by using a 

recently proposed procedure for analysing mixed inheritance of major genes and polygenes. 

Foliar resistance was controlled by two additive-dorninance-epistasis genes. Both genes were 

from the resistant parent ILL 5588, and dominance was towards resistance. Of the four 

types of epistasis, only the additive A and dominant B was towards resistance. 

Seed resistance as measured as seed infection rate was controlled by one 

dominant major gene and additive-dominance-epistasis polygenes. The major resistance 

gene and most of the polygenes for resistance were also from the resistant parent, and the 

dominance was toward resistance. The additive - by -additive component of the interloci 

interaction of polygenes favoured resistance, while the additive-by-dominant, and the 

dominant-by-dominant components were favoured susceptibility. More than 70 % of the 

phenotypic variation in segregating populations was due to the major gene. 

8.1 Introduction 

Ascochyta blight is one of the most serious lentil diseases in the main production 

countries (Erskine et ai., 1994). Great economic losses have been recorded but no 
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efficient control method is available. Breeding for host resistance has good potential to 

control the disease (Erskine et ai., 1994; Ye et ai., 2000). Several authors have studied 

the genetic regulation of Ascochyta blight resistance in lentil and consequently several 

major resistance genes were identified (see Chapter 5). In Chapter 6, it was shown that 

both major and minor genes are involved in the determination of Ascochyta blight 

resistance in two lentil crosses between resistant and susceptible cultivars. Generation 

mean analysis suggested that the inheritance of Ascochyta blight is more complicated 

than indicated by classical segregation analysis (Chapter 7). 

When both major and minor genes are responsible for the genetic determination 

of a trait, the inheritance of this trait is said to be complex inheritance or mixed major 

gene and polygene inheritance (Edwards, 1960; Elston and Stewart, 1971; Morton and 

McLean, 1974). Classical quantitative genetic methods are not appropriate for analysing 

mixed inheritance, because they are based on the assumption of many genes with 

equivalent minor effects (Mather and Jinks, 1982; Falconer, 1989). Therefore special 

methods have been developed to analyse mixed inheritance. Complex segregation 

analysis was developed by geneticists studying human and animals to determine the 

underlying genetic structure of a trait using pedigree (Elston and Stewart, 1971; Morton 

and McLean, 1974; Cannings et ai., 1978; Bonney, 1984; Hosechele, 1988; Elston, 

1993). Though this form of analysis is mainly used in human genetic studies, it is also 

applicable to any diploid cross-pollinated plant species for which it is feasible to maintain 

a pedigree (Tourjee et al., 1994; 1995). Elkind and Cahaner (1986) proposed a method 

based on the mixed linear model methodology. This model requires F3 families derived 

from F2 plants heterozygous for a single major gene and consequently the major 

genotypes of an individual should be known. If this is the case, the effects of the major 

gene, polygenes and their interaction can be determined. 

In Chapter 6, inbred lines homozygous for a major resistance gene were used to 

confirm the presence of minor genes. The advantage of this approach lies in its 

simplicity of data analysis. The standard analysis of variance was used to partition total 

variation into the variation due to genetic effects and that due to environmental effects. 

Another advantage of this analysis is that the associations between the major gene for 

resistance with the genes for other traits can be easily tested by comparing the differences 
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between the means of two sets of inbred lines with and without the major gene for 

resistance, respectively. However, as with Elkind and Cahaner's (1986) method, this 

method can only be used when the major genotypes of the F2 individuals can be easily 

determined. Without neutral markers tightly linked to major gene, it is always possible 

that the major genotypes can be incorrectly determined. Consequently, these two 

methods may under - or over - estimate the effects of minor genes. 

Recently, a procedure based on the analysis of the six basic generations of a cross 

between two inbred lines has been developed to analyse mixed-inheritance models 

(Wang and Gai, 1997; Gai and Wang, 1998). This procedure is a combination of the 

conventional generation mean analysis and the maximum likelihood method for 

parameter estimation. To use this procedure, it is not necessary to know the genotypes of 

the major gene. Instead, they are inferred from the best - fit model. Moreover, the 

genetic parameters for both major genes and minor genes can be estimated based on the 

best - fit model. 

The purpose of the work reported in this chapter was to produce an inheritance 

model of Ascochyta blight resistance in the cross llL 5588 x Titore using this mixed­

inheritance model, and to determine the relative effects of major genes and minor genes 

as contributing factors to this variation. 

8.2 Materials and methods 

8.2.1 Plant materials 

The Ascochyta blight resistant lentil cultivar ILL 5588 (PI) was crossed with the 

susceptible cultivar 'Titore' (P2), in a glasshouse using the procedure of Ahmad et al. 

(1997b). The crosses BC l and BC2 were produced by backcrossing the FI with Titore 

and ILL 5588, respectively. The F2 population was produced by selfing the FI plants. 

Twenty plants of each parental cultivar and the F I, 40 plants of BC I, 80 plants of BC2 and 

120 plants of the F2 were inoculated with Ascochyta lentis in the glasshouse to evaluate 
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their foliar resistance. Seeds were collected separately from each plant and used to test 

seed infection by the pathogen. 

8.2.2 Inoculation procedure 

A pathogenic isolate of Ascochyta Zen tis was obtained from infected seed of cv. 

Invincible (isolate Rakaia). A random sample of infected seeds were surfaced sterilised 

in 0.6 % NaOCI for lOmin, soaked in sterile filter paper and plated on V8-juice 

(Campbell Soups Ltd.) agar medium with five seeds per plate. After 7 d of growth under 

near ultraviolet light at 18 DC on a laboratory bench seeds which had produced a 

characteristic diurnal colonies of A. Zen tis were selected and a small plug of these 

colonies was transferred onto fresh media for further growth and colonisation. Inoculum 

was prepared from 15 d old cultures, grown under similar conditions as those for the seed 

plates. Spores were washed from the culture plates using distilled water and filtered 

through a muslin cloth. Two drops of Tween 20 were added per 100 m!. The 

concentration of the spore suspension was measured using a haemocytometer and­

adjusted to 7.5 x 104 conidia/ml by dilution. Seedlings with four - five expanded leaves 

(15 d after sowing) growing in pots were inoculated with the suspension (l ml/seedling) 

using an atomiseI'. After inoculation, pots were kept in a controlled environment cabinet 

(18°C and high humidity) for 24 h and then moved to a green house bench for disease 

development to occur. 

8.2.3 Foliar disease rating 

Foliar disease severity was rated using a modified ICARDA 1 - 9 scoring system 

as described in Table 6.1 (Chapter 6). 

8.2.4 Seed infection rate 

Seeds were surface sterilised with 0.6 % NaOCI for 10 min, soaked in sterile 

water on filter paper and plated on V8-juice agar medium with 10 seeds per petri dish. 

The plates were incubated at 20 DC under 12 h fluorescent light 12 hr in an incubator. 
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The number of seeds/plant varied but the minimum number used was 20. From the 

seventh day after incubation, the number of infected seeds was counted daily until day 

21. 

8.2.5 Data analysis 

The procedure described by Gai and Wang (199S) was used. Briefly, this 

procedure consisted of three steps. First, the segregating populations were assumed to 

consist of component distributions controlled by a major gene and modified by both 

polygenes and the environment. With this assumption the distributions of the six basic 

generations were formulated. Second, the complete likelihood function of all 

observations from the six basic generations was constructed based on these distributions. 

The component parameters were then estimated by maximising this likelihood function 

via the expectation maximum algorithm. The best-fitted model was chosen based on 

Akaike's Information Criterion (AIC value) and tests for goodness of fit. Third, the 

genetic parameters (gene effects, genetic variances and heritability of the major gene and­

minor genes were estimated by the use of the relationships between the component 

parameters (Appendix Table SA. I , SA.2) and the genetic effects in a manner similar to 

the generation mean analysis. 

In this procedure, the genetic effects of the minor genes and the effects of the 

environment for segregating populations are assumed to follow a normal distribution, and 

the variances within PI, P2 and FI are the same. In addition, in each segregating 

population, the variances within each major genotype group are the same. The genetic 

models tested in this study are given in Table S.l with the corresponding number of 

component distributions and number of independent parameters (first-order genetic 

parameter and the second-order parameters) to be estimated. 

8.3 Results 
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8.3.1 Foliar resistance 

The frequency distribution of foliar disease severity is given in Table 8.2. The FJ 

and BC I populations tended towards resistance. In the populations F2 and BC2, both 

resistant and susceptible plants were present. Therefore, major gene(s) are involved in 

the disease reaction in this cross. However, the resistance performance in the FJ and BC1 

was not the same as in the resistant parent, and new categories appeared in the BC2 and 

F2 populations. 

The observed disease severities of the six generations were used to fit a series of 

genetic models using the maximum likelihood method. The AIC value and maximum 

likelihood estimates of the mean and variance parameters under each model for foliar 

disease severity and seed infection rate were given in Table 8.3. Based on the AIC value, 

the best model for describing the inheritance of foliar resistance to Ascochyta blight was 

B 1, and the second and third were B2 and B3, respectively. Therefore, the inheritance of 

foliar resistance observed in the cross of ILL 5588 x Titore was best fitted by an 

inheritance model in which resistance is controlled by two additive-dominance-epistatic 

major genes. This conc1usi.on was supported by the three statistics which tested the 

goodness of fit (Table 8.4). 

Based on the maximum likelihood estimates of the mean parameters under this 

model, the genetic effects of each gene were estimated using the least squares method 

and were given in Table 8.5. The additive and dominant effects were negative for both 

genes. This indicates that both the resistance conferring alleles come from the resistant 

parent, and that dominance was towards resistance (less disease severity). Of the four 

types of epistasis, only the additive A and dominant B was towards resistance. 

8.3.2 Seed resistance 

The frequency distribution of seed infection rate is given in Table 8.6. The FJ and 

BC J populations tend towards resistance. In the F2 and BC2 popUlations both resistant 

and susceptible plants were present. Therefore, major gene(s) were also involved in the 

inheritance of seed infection in this cross. However, the resistance performance in the FJ 
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and BC 1 was not the same as in the resistant parent, and new categories appeared in both 

the BC2 and F2 populations. 

The observed seed infection rates of the plants from the six generations were used 

to fit a series of genetic models using the maximum likelihood method. The AlC value 

and the maximum likelihood estimates of the mean and variance parameters under each 

model for seed infection were given in Table 8.7. Based on the AlC value, the best 

model for describing the inheritance of seed resistance was D 1, and the second and third 

were D2 and D3, respectively. Therefore, the inheritance of seed resistance was best 

modelled by one major gene and additive-dominance-epistasis polygenes. This 

conclusion was supported by the three statistics used for testing goodness of fit (Table 

8.8). 

Based on the maximum likelihood estimates of the parameter means under this 

model, the genetic effects of each gene were estimated using the least squares method 

and they were given in Table 8.9. The additive effects of the major gene and polygenes 

were negati ve. This indicates that the major resistance gene was from the resistant­

parent, and most of the polygenes for resistance were also from the resistant parent. The 

dominant effects of the major gene and polygenes were negative, also indicating that 

dominance was towards resistance. The additive by additive component of the inter-loci 

interaction of polygenes favoured resistance, while the additive by dominant, and the 

dominant by dominant components favoured susceptibility. 

Of the phenotypic variations in the BC1, BC2 and F2 popUlations 71 %, 61 % and 

74 % were from the major gene, while only 10 %, 19 % and 15 % were from the 

polygenes respectively. Combined together, the genetic variations in these three 

popUlations accounted for 81 %, 86 % and 89 % of the phenotypic variations, 

respectively. Averaged overall 18 % of the genetic effect was from the polygenes. 

8.4 Discussion 
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Two additive-dominance-epistasis genes were shown to be responsible for foliar 

resistance to Ascochyta blight in the lentil cross of ILL 5588 x Titore. Ford et al. (1999) 

suggested that the foliar resistance of ILL 5588 was under control of one major dominant 

gene. In Chapter 5, it was shown that one dominant gene for high resistance and one 

dominant gene for moderate resistance was responsible for foliar resistance in ILL 5588. 

Although the assumptions underlying the methods used here are different from those 

underlying segregation analysis used in Chapter 5, and consequently the conclusions are 

not directly comparable, two major genes for the foliar resistance in ILL 5588 are clearly 

demonstrated by both methods. 

However, this model was not much better in terms of AIC and the three statistics 

for testing goodness of fit than the second and third best models. They are two additive 

and dominant genes with additive effect being equal, or unequal to dominant effect, 

respectively. Nevertheless, two major genes are involved in the determination of foliar 

resistance, because all the three best models are in the two-gene group. 

Seed resistance was under the control of one major gene and additive-dominant- . 

epistasis polygenes, with the major gene having a much large effect than the polygenes. 

However, Similar to the foliar resistance in this cross, this best model for seed resistance 

was not much better than the second and third best models in terms of AIC and the three 

statistics for testing goodness of fit. Nevertheless, the inheritance of seed infection rate is 

one major gene and polygenes mixed inheritance, because all the three best models are in 

this group. 

The inheritance of seed resistance measured as seed infection rate in ILL 5588 

was previously reported to be conferred by three major genes (Tay, 1989), one major 

dominant gene and two complementary dominant genes. However, the smaller sample 

sizes used by Tay (1989) made his conclusion less conclusive. The importance of sample 

size in detecting inheritance models for lentil Ascochyta blight resistance was highlighted 

in Chapter 5. The presence of polygenes implies that the correct classification of plants 

in segregating populations for segregation analysis is difficult or impossible and 

consequently the results from segregation analysis may be misleading. 
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Using classical generation mean analysis, it was shown that the inheritance model 

of seed resistance was more complicated than that of foliar resistance (Chapter 7). This is 

supported by the results of this Chapter. The reason may be that the seed infection rate 

has a higher discrimination power than the visual scores used for quantifying foliar 

disease severity. Moreover, seed infection is the result of accumulated effects of all the 

possible infections which occurred during the plant's life time, while foliar infection was 

observed after only one round of infection. 

The method used in this Chapter has several shortcomings. First, as with 

segregation analysis, significant errors may exist in the original data because observations 

of individual plants were used. This could be overcome by using selfing progenies of the 

segregating populations or by cloning the individual plants. Second, only one major gene 

was assumed to be involved for the mixed model. In reality, more than one major gene 

may be present. Third, the major gene is assumed to be independent of polygenes and 

consequently the variances within each major genotype in each segregating population 

are assumed to be the same. Clearly, removing these assumptions means more 

parameters have to be estimated and makes computation formidable. Nevertheless, this 

approach provides more insight into the genetic mechanism than classical segregation 

analysis and generation-mean analysis. 
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Table 8.1: Genetic models for Ascochyta blight resistance in lentil tested, with their corresponding numbers of component distributions, and 
numbers of independent parameters to be estimated. 

Model Code Description Component Independent First-order genetic Second-order 
distributions parameters parameters t 7 

parameter-

Single gene Al Additive and dominant 3 4 m,a,d ') cr-

A2 Additive 3 3 m,a cr2 

A3 Dominant 3 3 m,a cr2 

Two genes Bl Additive, dominant and epistasis 9 10 m, aI, a2, dl, d2, aa, ~ 
adl, ad2, dd 

B2 Additive and dominant 9 6 m, ai, a2, dl, d2 cr2 

B3 Additive, dominant 9 4 m, aI, a2 cr2 

B4 Equal additive 9 3 m, a (= al = a2) cr2 

B5 Dominance 9 4 m, aI, a2 cr2 

Polygene C1 Additive, dominant and epistasis 6 10 m, [a], [d], [aa], 2 2 ') 2 cr ,crt, cr2-, cr3 
[ad], [dd] 

C2 Additive and dominant 6 7 m, [a], [d] ') 2 2 2 cr-, crl ,cr2 ,cr3 

A major gene D1 Mixed one major gene and additive- 10 14 m, a, d, [a], [d], ') ') 2 2 
cr-, crl-, cr2 ,cr3 

and polygene dominant -epistasis polygene [aa], [ad], [dd] 

D2 . Mixed one major gene and additive- 10 9 m, a, d, [a], [d] ~ 2 2 2 , crl,cr2, cr3 
dominant 

D3 Mixed one additive major gene and additive- 10 8 m, a, [a], [d] 2 2 2 2 cr, crl ,cr2 ,cr3 
dominant polygene 
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Table 8.1 (Continued). 

D4 Mixed one dominant major gene and 
additive-dominant polygene 

10 8 m, a (=d), [a], [d] 
') ? ') ? 

cr, cr[-, crz-, cr3-

[ 'a', 'd', 'aa', 'ad' and odd' are the additive, dominant, additive by additive, additive by dominant, and dominant by dominant effects of the major 

genes. [a], [d], [aa], [ad], [dd] are the additive, dominant, additive by additive, additive by dominant, and dominant by dominant effects of the 

minor genes. Subscripts are used where there is more than one gene of the same type. 

2 cr2
: Variance for the distributions of parental and F [ populations; cr [2: Variance for the distributions of the sub-populations of Be I, Be2 or F2 

population consisted of AA major genotypes; crl: Variance for the distributions of the sub-populations of Be[, Be2 or F2 population consisted of 
Aa major genotypes; cr/: Variance for the distributions of the sub-populations of Bel, Be2 or F2 population consisted of aa major 

genotypes. 
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Table 8.2: The frequency distribution of foliar Asochyta blight 

severity in the six basic generations of the lentil cross 

ILL 5588 x Titore. 

Generation Disease severity rating n 

1 2 3 4 5 6 7 8 9 

PI 8 10 2 20 

P2 3 12 4 1 20 

FI 3 6 7 4 20 

BC I 5 8 19 5 3 40 

BC2 l3 23 6 5 7 14 8 4 80 

F2 12 30 30 15 24 2 4 2 1 120 
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Table 8.3: The AIC values and maximum-likelihood estimates under various genetic models for foliar Ascochyta blight severity. Bold 

figures indicated the best fitted model. 

? Mean- Variance 

Model AIC l cr2 cr? 
? 

crl ~l ~2 ~3 ~4 ~5 ~6 ~7 ~8 ~9 ~lO cr2-

Al 372.54 1.79 3.38 6.72 0.49 

A2 409.84 1.87 3.09 7.32 1.04 

A3 409.80 1.86 3.09 7.37 2.60 2.30 2.34 9.11 2.13 1.90 1.03 

B1 360.69 1.81 3.30 6.91 2.42 2.43 2.57 8.09 1.96 2.73 6.88 0.24 

B2 363.19 1.80 3.30 6.93 2.43 2.55 2.57 8.17 1.95 2.65 6.65 0.24 0.47 0.36 0.69 

B3 363.21 1.80 3.30 6.93 2.39 2.59 2.57 8.19 1.93 2.71 6.60 0.24 0.50 0.36 0.71 

B4 420.62 1.75 2.97 7.30 2.61 2.82 2.02 10.12 1.67 2.34 2.08 

B5 373.29 1.73 3.45 6.75 2.39 2.59 1.68 12.99 1.95 1.77 0.57 

C1 390.16 1.81 3.30 6.91 2.32 2.06 1.81 0.24 0.89 0.76 0.87 

C2 392.04 "1.80 3.29 6.93 2.38 2.10 1.76 0.24 0.49 0.77 0.84 
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Table 8.3: (Continued). 

D1 

D2 

D3 

D4 

364.18 

365.47 

391.94 

373.20 

1.80 3.35 6.88 2.56 2.45 2.66 7.68 1.71 2.03 

1.80 3.33 6.90 2.21 2.80 2.66 7.81 1.92 1.96 

0.28 0.26 0.36 0.67 

0.29 

1.80 3.29 6.93 2.49 2.47 2.21 9.93 1.92 2.46 8.46 0.24 0.27 4.19 2.59 

1.73 3.45 6.73 0.57 

lAIC: Akaike's Information Criterion, 2 Ill, 1l2, and 113 are means of the distributions of PI, P2 and FI populations; 1-4 and Ils are the 

means of the distributions of the sub-populations of BC I and F2 populations consisting of the AA major genotypes; Ils, 1l7, and 119 are 

the means of the distributions of the sub-populations of BC I , BC2 and F2 population consisting of the Aa major genotypes; !-l6 and 1l1O 

are the means of the distributions of the sub-populations of the F2 population consisting of the aa major genotypes. 
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Table 8.4: Tests of the goodness of fit for different genetic models for foliar Ascochyta 
blight severity in six generations of lentil cross ILL 5588 x Titore. Bold 
figures indicated significantly derivation from the model. 

Model Generation Ul P U2 P U3 P 

Al PI 2.39 0.122 0.06 0.806 25.26 0.000 

FI 8.93 0.003 12.63 0.000 6.97 0.008 

P2 7.51 0.006 3.51 0.061 9.72 0.002 

BCI 33.61 0.000 30.42 0.000 0.15 0.699 

BC2 2.41 0.121 0.20 0.655 17.78 0.000 

F2 13.26 0.000 13.67 0.000 0.47 0.493 

Bl PI 0.48 0.488 0.19 0.663 0.87 ·0.351 

FI 0.04 0.841 0.31 0.578 2.10 0.147 

P2 0.10 0.752 0.32 0.572 1.09 0.296 

BC I 0.43 0.512 0.30 0.584 0.11 0.740 

BC2 0.69 0.406 0.63 0.427 0.00 1.000 

F2 3.97 0.046 2.64 0.104 1.50 0.221 

CI PI 3.48 0.062 3.19 0.074 0.87 0.351 

FI 3.04 0.081 3.31 0.069 2.10 0.147 

P2 2.10 0.147 2.32 0.128 1.09 0.296 

BCI 1.08 0.299 2.00 0.157 3.67 0.055 

BC2 1.08 0.299 0.82 0.365 22.03 0.000 

F2 9.49 0.002 7.04 0.008 1.73 0.188 

Dl PI 1.99 0.158 0.75 0.386 3.96 0.047 

FI 9.19 0.002 9.48 0.002 0.33 0.566 

P2 0.59 0.442 0.40 0.527 0.20 0.655 

BC I 30.31 0.000 29.47 0.000 0.15 0.699 

BC2 2.17 0.141 2.57 0.109 0.51 0.475 

F2 23.35 0.000 24.62 0.000 1.29 0.256 

I The U 1, U2 and U3 are statistics used to test the goodness of fitness. 
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Table 8.5: The estimates of genetic effects for foliar Ascochyta blight 

severity in lentil cross ILL 5588 x Titore under the two 

additi ve-dominance-epistasis gene model (B 1) 1. 

Generation m al a2 d1 d2 aa ad da dd 

PI 0 0 1 0 0 0 

FI 0 0 1 0 0 0 1 

P2 1 -1 -1 0 0 -1 0 0 0 

Bell 1 1 0.5 0 0.5 0.5 0.5 0 0 

Be l2 1 0 0.5 1 0.5 0 0 0.5 0.5 

Be21 1 0 -0.5 1 0.5 0 0 -0.5 0.5 

Be22 -1 -0.5 0 0.5 -0.5 -0.5 0 0 

F21 1 1 0 0 0.5 0 0.5 0 0 

F22 1 0 0 1 0.5 0 0 -0.5 0.5 

F21 1 -1 0 0 0.5 0 -0.5 0 0 

4.36 -1.39 -1.96 -0.88 -1.34 0.88 -0.14 1.04 0.16 
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Table 8.6: The frequency distribution of seed infection rate by Ascochyta lentis in the 

six basic generations of the cross ILL 5588 x Titore. 

. Generation Percentage Infection n 

0-5 5- 11- 16- 21- 26- 31- 36- 41- 46- 51- 56-

10 15 20 25 30 35 40 45 50 55 

PI 2 2 10 5 1 20 

P2 3 8 5 2 19 

FI 4 7 4 4 20 

BC I 3 11 18 5 3 40 

BC2 8 14 10 6 2 12 14 5 3 76 

F2 10 6 25 12 3 4 5 9 7 20 11 6 118 
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Table 8.7: The AIC values and maximum-l'ikelihood estimates under various genetic models for seed infection of lentil by Ascochyta 
lentis. Bold figures indicated the best fitted model. 

Mean Variance 

Model AlC /11 /12 /13 /l4 /15 ~ /17 /ls /19 /110 cr2 cr12 cr/ cr/ 

Al 1457.15 17.93 16.88 43.85 42.37 

A2 1606.36 18.73 15.46 47.74 97.15 

A3 1459.79 17.26 17.26 43.90 49.97 

Bl 1428.88 17.99 16.64 45.00 15.96 18.67 17.73 40.73 19.18 16.97 22.18 

B2 1534.75 18.01 16.43 45.17 17.97 16.47 14.74 51.80 19.25 21.28 47.01 12.69 19.69 41.70 51.90 

B3 1606.19 18.64 15.46 48.06 18.78 15.32 15.60 47.52 21.28 16.37 96.41 

B4 1649.49 17.49 14.83 47.60 18.83 18.83 13.50 52.82 16.68 20.22 101.44 

B5 1460.14 17.25 17.25 44.03 17.25 17.25 11.18 67.77 19.48 15.25 49.94 

Cl 1527.64 18.06 16.48 45.03 16.77 13.73 18.14 16.70 82.48 68.77 79.56 

C2 1535.15 18.01 16.43 45.17 17.22 14.01 17.57 16.68 41.61 70.05 77.27 

Dl 1409.74 18.06 16.48 45.03 17.44 16.22 17.13 42.23 19.59 23.59 38.24 12.68 19.48 29.07 30.47 

D2 1419.76 18.03 16.49 45.19 17.53 16.99 17.14 42.61 19.50 22.90 36.94 12.64 20.17 29.28 61.65 

D3 1419.85 18.03 16.48 45.18 17.26 17.26 17.11 42.75 19.33 23.43 36.67 12.64 23.12 29.47 63.62 

D4 1423.73 18.00 16.75 44.86 18.47 16.34 17.72 40.07 17.07 17.55 20.60 



Table 8.8: Tests of goodness of fitness for different genetic models for seed infection 
rate by Ascochyta lentis in six generations of lentil cross ILL 5588 x Titore. 
Bold figures indicated significant derivation from the model. 

Model Generation U I P U2 P U3 P 

AI PI 2.20 0.138 1.03 0.310 13.63 0.000 

FI 5.47 0.019 7.32 0.007 4.49 0.034 

P2 4.76 0.029 2.76 0.097 5.86 0.015 

BI 17.81 0.000 16.21 0.000 1.08 0.300 

B2 2.21 0.138 1.10 0.294 9.89 0.002 

F2 7.63 0.006 7.84 0.005 1.24 0.266 

B, PI 2.00 0.158 1.38 0.241 2.98 0.084 

FI 5.60 0.018 5.74 0.017 1.17 0.280 

P2 1.30 0.255 1.20 0.273 1.10 0.294 

BI 16.16 0.000 15.74 0.000 1.08 0.300 

B2 2.09 0.149 2.29 0.131 1.26 0.263 

F2 12.68 0.000 13.31 0.000 1.65 0.200 

C, PI 1.24 0.265 1.10 0.295 1.44 0231 

FI 1.02 0.313 1.16 0.283 2.05 0.152 

P2 1.05 0.306 1.16 0.281 1.55 0.214 

BI 1.04 0.308 1.00 0.317 1.34 0.248 

B2 1.04 0.308 1.41 0.235 12.02 0.001 

F2 5.75 0.017 4.52 0.034 1.87 0.172 

D, PI 1.24 0.265 1.10 0.295 1.44 0.231 

FI 1.02 0.313 1.16 0.283 2.05 0.152 

P2 1.05 0.306 1.16 0.281 1.55 0.214 

BI 1.22 0.270 1.15 0.284 1.06 0.304 

B2 1.35 0.246 1.32 0.251 1.00 0.317 

F2 2.99 0.084 2.32 0.128 1.75 0.186 
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Table 8.9: The estimates of genetic parameters for seed infection rate by 

Ascochyta lentis of lentil cross ILL 5588 x Titore under the mixed 

one major gene and additive-dominance-epistasis gene model 

(Dl). 

Effect Estimate Variance & 

a 

d 

[a] 

[d] 

[aa] 

[ad] 

[dd] 

-10.2 

-9.97 

-3.22 

-25.4 

-8.7 

1.09 

11.6 

Heritabilityl 

0"2 
P 

2 
O"rng 

67.18 87.67 117.10 

12.68 12.68 12.68 

47.70 58.60 86.63 

6.80 16.39 17.79 

0.71 0.67 0.74 

0.10 0.19 0.15 

0.81 0.86 0.89 

1 2 Ph " 2 M . .. 2 M' O"p : enotyplc vanance, O"rng : aJor-gene genetIc varIance, O"pg: mor-

gene genetic vanance, hrng2
: Major-gene heritability, hp/ : Minor-gene 

heritability, and h2
: Heritability. 
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Appendix 

Table SAL The relationships between population means and genetic effects 

under a model of two additive-dominance-epistasis genes. 

Generation al a2 d l d2 aa ad da dd 

PI 1 1 0 0 1 0 0 0 

PI 0 0 1 1 0 0 0 1 

P2 -1 -1 0 0 -1 0 0 0 

Bell 0.5 0 0.5 0.5 0.5 0 0 

BC l2 0 0.5 1 0.5 0 0 0.5 0.5 

BC2l 0 -0.5 1 0.5 0 0 -0.5 0.5 

BC22 -1 -0.5 0 0.5 -0.5 -0.5 0 0 

F21 1 0 0 0.5 0 0.5 0 0 

F22 0 0 1 0.5 0 0 -0.5 0.5 

F 23 -1 0 0 0.5 0 -0.5 0 0 
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Table SA2. The relationships between population means and genetic effects under a 

model of one major-gene and additive-dominance-epistasis polygenes. 

Generation m a d [a] [d] [aa] [ad] [dd] 

PI 1 1 0 1 0 1 0 0 

FI 1 0 1 0 1 0 0 1 

P2 -1 0 -1 0 1 0 0 

Bell 1 1 0 0.5 0.5 0.25 0.25 0.25 

Be l2 1 0 1 0.5 0.5 0.25 0.25 0.25 

Be21 1 0 1 -0.5 0.5 0.25 -0.25 0.25 

Ben 1 -1 0 -0.5 0.5 0.25 -0.25 0.25 

F21 1 0 0 0.5 0 0 0.25 

F22 1 0 1 0 0.5 0 0 0.25 

F23 1 -1 0 0 0.5 0 0 0.25 
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CHAPTER 9 

GENETIC RELATIONSmpS AMONG ASCOCHYTA BLIGHT 

RESISTANCE AND OTHER AGRONOMIC TRAITS 

Summary 

Two sets of recombinant inbred lines of the cross ILL 5684 X Titore, one with 

and the other without the major gene for Ascochyta blight resistance, were tested in 

the glasshouse with and without artificial disease inoculation. Foliar disease severity, 

seed yield/plant, plant height and time to flowering were measured. The major gene 

for resistance was found to be either linked to seed yield/plant or had a pleiotropic 

effect on seed yield/plant. The resistance gene was independent of plant height and 

time to flowering. Within each set of inbred lines, there were significant differences 

among inbreds for all the observed traits. The estimates of heritability based on 

inbred mean were high for seed yield/plant and time to flowering, and moderate for 

plant height for both sets of inbred lines and under both growing conditions. For the 

set of lines containing the major resistance gene: 1) Type A genetic correlation 

estimates suggested that disease severity was not correlated with seed yield/plant and 

plant height, but was weakly and negatively correlated with time to flowering when 

measured under disease pressure. 2) Seed yield/plant was strongly and positively 

correlated with plant height, but moderately and negatively correlated with time to 

flowering. Plant height was weakly and positively correlated with time to flowering 

under both sets of testing conditions. 3) Inbred x environment interactions were not 

important and selection could be made with or without artificial inoculation. 

Selection within the set of inbreds with the major resistance gene is .required and 

feasible for the improvements of yield and other traits and for the utilisation of 

resistance conferred by minor genes. 
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9.1 Introduction 

Ascochyta blight is an important disease in many lentil production regions 

(Muehlabure et ai., 1995). Chemical control is effective but uneconomic and has not 

been accepted by farmers (Morrall, 1997). Breeding for resistance has been suggested 

as a means to control Ascochyta blight in lentil. Several international and national 

breeding programmes are under way to breed for Ascochyta blight resistance (Erskine 

et ai., 1994; Ye et ai., 2000). 

Major gene(s) and minor genes are involved in the genetic determination of 

Ascochyta blight resistance, with the major gene(s) being the main source of 

resistance (Chapter 6). Therefore, an efficient breeding strategy would be selection 

for major gene(s) resistance in early generations and selection for resistance 

conditioned by minor genes III later generations. However, Ascochyta blight 

resistance is only one of the traits of interest to lentil breeders. Other traits such as 

yield, plant height and maturity are important for the success of any new cultivar 

(Muehlabure et ai., 1995). Therefore, multi-trait selection is necessary at least in later 

generations to obtain new cultivars. For efficient multi-trait selection, genetic 

relationships between important traits must be well understood. 

The objectives of the study reported in this chapter were to study the 

associations between a major gene for resistance to Ascochyta blight, and seed 

yield/plant, plant height and time to flowering and to investigate the genetic 

relationships among disease severity and these traits using sets of recombinant inbred 

lines with and without a major resistance gene. 

9.2 Materials and Methods 

9.2.1 Plant material and experimental design 

The production of the resistant and susceptible sets of recombinant inbreds 

from the cross ILL 5684 x Titore, disease resistance and agronomic traits testing and 

experimental design are fully described in Chapter 6. Each set of inbreds consisted of 
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25, Fs lines which were either susceptible or resistant to Ascochyta blight. 

A randomised complete block design with three replications of 10 plants per 

plot (in two pots) was used for all the tests. Two test conditions were used either 

with or without inoculation with Ascochyta lentis. 

9.2.2 Statistical analyses and genetic parameter estimation ' 

For each environment, the following linear model was used to carry out the 

analyses of variance and covariance and to estimate variance components; 

where y.. is the k-th observation of the i-th inbred in the j-th replication; Il is the 
11k 

grand mean; g; is the effect of the i-th inbred; bj is the effect of the j-th replication; 

(b g )u is the effect of inbred-by-replication interaction (in practice, usually a plot-

environmental effect); tijk is the error effect. 

Wi th the assumption that all effects are random, the variance components for 

each effect were estimated by the maximum likelihood method. The inbred-mean 

variance is estimated as; 

where (J ~ is the total phenotypic variance of the inbred mean, d is the variance due 

to the inbred, a;b is the variance due to inbred-by-replication interaction, anda. is 

the variance due to the error (within-plot variance), b is the number of replications and 

n is the number of plants per inbred-replication combination. 

The inbred-mean heritability was estimated as; 

139 



The genetic correlations between traits measured in the same individuals were 

estimated from analysis of cross-products of plots using the following equation; 

where O'ij is the covariance between traits i and j from an analysis of cross-products, 

and o-.~i and o-:i are inbred variances for traits i and j estimated from the ANOVAs. 

Standard error estimates for rAij's were obtained according to Mode and Robinson 

(1959). 

For combined analysis across the two test conditions (environments), the 

following linear model was used; 

where ej is the environment effect, (ge)ij is the effect of the inbred-by-environment 

interaction, (gb )ik(j) is the effect of the inbred-by-replication interaction in the jth 

environment, and tijkl is the error. 

The genetic correlations between the same trait measured in different 

environments (Type B) were estimated with; 
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where cr~ and cr:e are inbred and inbred-by-environment interaction variances 

estimated from the combined analysis of variance across environments (Yamada, 

1962). Due to the heterogeneity of inbred variance components between the two 

environments, a correction term, C, was used to adjust rBi (Yamada, 1962), thus; 

where cr~l andcr:2 are the square root of the inbred vanance components from 

separate analyses of variance for each environment. The correction term C was 

subtracted from cr:e and resulted in cr~e" The adjusted Type B genetic correlation 

estimate, is 

(j2 

r * - g Bi - 2 2 
(j g + cr ge* 

standard error estimates for the unadjusted rBi'S were obtained according to 

Namkoong (1979) and were used as standard error estimates for the adjusted 

correlations. 

The type B genetic correlations between disease severity measured under 

disease pressure and other traits measured under normal condition were estimated 

using the following equation (Burdon, 1977); 

where cr,,12 is the phenotypic covariance between disease severity measured under 

disease pressure and another trait measured under disease free condition, cr:1 is the 
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genetic variance of disease severity and (1':2 is the genetic variance of another trait 

estimated under disease free condition. Standard error estimates for rAij's were 

obtained according to Mode and Robinson (1959). 

9.3 Results 

9.3.1 The influences of Ascochyta blight on agronomic traits 

The level of disease pressure applied to the plants in this trial was high 

because large numbers of conidia were inoculated onto plants and the nevironmental 

conditions subsequently applied were likely to be highly conductive to disease 

development. Therefore, the difference between trait performances of the susceptible 

set of plants with and without disease pressure is likely to reflect the maximum 

influence of Ascochyta blight on the traits. The disease pressure reduced yield/plant, 

plant height and time to flowering (Table 9.1). The yield loss due to Ascochyta 

infection was 68.4 % averaged across the 25 susceptible lines. The reductions in plant 

height and time to flowering were 9.4 % and 4.6 % respectively. Comparing to the 

mean yield of the 25 susceptible lines and the mean yield of the 25 resistant lines 

under normal, disease free, condition, the mean yield loss was 15.3 % if resistant lines 

were used under disease free condition. However, when disease pressure is high, the 

use of resistant lines increased yield by 151.6 %. 

9.3.2 Associations between the major gene for resistance and genes for other 

traits 

Under disease free (un inoculated) conditions, the average seed yield/plant of 

the resistant set of inbred lines was significantly lower than the yield 'of the 

susceptible set of lines (15.3 %) (Table 9.1). This suggests that the major gene for 

resistance is either/both linked to genes for decreasing seed yield/plant, or has a 

negative pleiotropic effect on seed yield/plant. 

On average, the resistant set of inbred lines was shorter than the susceptible set 

of inbred lines, but the difference in height between them was not significant. This 
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suggested that the major resistance gene is not linked to genes for plant height, and 

has no pleiotropic effect on plant height (Table 9.1). 

As with plant height, there was no significant difference between the 

susceptible and resistant inbred sets of lines for time to flowering. However, the 

resistant set of lines flowered a little (not significantly) later than the susceptible set. 

This suggested that the major gene for resistance is independent of the genes for time 

to flowering, and it has no pleiotropic effect on time to flowering (Table 9.1). 

Table 9.1: Means and ranges of yield/plant, plant height and time to flowering of 

two sets of inbreds under disease pressure (inoculated) and disease_ free 

conditions. 

Trait Setl Statistics2 Inoculated Uninoculated 

Yield Res. Mean 0.78 0.83 

(g/plant) Range 0.70-0.87 0.73-0.94 

Sus. Mean 0.31 0.98 

Range 0.23-0.42 0.79-1.17 

Plant height (PH) Res. Mean 45.3 48.5 

(cm) Range 26.1-56.5 28.6-70.8 

Sus. Mean 44.2 48.8 

Range 29.6-57.5 31.2-73.5 

Time to flowering (TF) Res. Mean 52.8 55.3 

(days) Range 40-68 41-70 

Sus. Mean 50.8 53.2 

Range 45-70- 40-72 

IRes. = Resistant, Sus. = Susceptible. 

2 Mean across 25 F5 lines and three replications; Range of the inbred means over 
three replications. 
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9.3.3 Inbred-mean heritability and genetic gain 

Specific inbred lines within a set varied in their seed yield, plant height and 

time to flowering. Therefore, selection for these traits should be effective. The 

ranges for these traits among lines within a set were similar for the resistant and 

susceptible sets (Table 9.1). 

Analysis of variance across the two test conditions indicated that condition, 

inbred and their interaction were all significant (Table 9.2). Analysis of variance was 

carried out at each condition (Table 9.3). The estimates of genetic variance, error 

variance, phenotypic variance, inbred-mean heritability and predicted genetic gain 

were obtained for each trait for each set under each of test conditions (Table 9.4). 

Seed yield/plant and time to flowering had high heritabilities. Plant height had a 

moderate heritability. The estimates for each trait, for each set of inbred lines, in each 

testing condition were very similar. Reasonably high genetic gains could be obtained 

by selecting within the sets for all of the traits. For the resistant set, the gains accruing 

from selection under disease pressure or under normal conditions were almost the 

same for seed yield/plant and time to flowering. The gains from selecting for plant 

height would be expected to be higher if the selection was under disease pressure. 

Table 9.2: Combined analysis of variance of seed yield/plant (g), plant height (cm) 

and time to flowering of lentil inbreds resistant to Ascochyta blight across 

two test conditions. 

Source Degrees of freedom (DF) Mean Square (MS) 

Yield PH TF 

Condition 1 0.094 384.0** 234.38** 

Inbred 24 0.264** 101.85** 75.22** 

Inbred x Condition 24 0.076** 24.74** 13.09** 

Error 96 0.031 12.89 4.21 

**: significant at 0.01 level. 
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Table 9.3: Analysis of variance of yield/plant (g), plant height (cm) and time to 
flowering of sets of lentil inbreds either inoculated or uninoculated with 
Ascochyta lentisl. 

Condition Set Source DF MS 
__ • ,~ __ .~_~_. ____ ~_ ••• ___ • ____ h ____ • 

Yield PH TF 

Inoculated Res. Inbred 24 0.248** 40.46** 29.72** 

Error 48 0.026 12.41 4.53 

Uninoculated Res. Inbred 24 0.275** 34.99** 31.33** 

Error 48 0.033 13.38 4.08 

Sus. Inbred 24 0.528** 45.31** 23.18** 

Error 48 0.058 10.66 4.81 

I ANOVA was not done for the susceptible set under inoculation because many 
plants died. 

** significant at 0.01 level. 

Table 9.4: Genetic parameters of seed yield/plant, plant height and time to flowering 
estimated for Ascochyta blight resistant and susceptible sets of lentil 
inbreds either inoculated or uninoculated l

. 

Trait Set Condition a 2 2 a 2 H2 .6.G2 
e a g I 

Yield (g/plant) Res. Inoculated 0.026 0.074 0.100 0.74 0.073 

Uninoculated 0.033 0.081 0.114 0.71 0.079 

Sus. Uninoculated 0.058 0.157 0.215 0.73 0.154 

PH (cm) Res. Inoculated 12.410 9.362 21.772 0.43 9.198 

Uninoculated 13.380 7.205 20.585 0.35 7.079 

Sus. Uninoculated 10.660 11.548 22.208 0.52 11.346 

TF(days) Res. Inoculated 4.523 8.400 12.922 0.65 8.253 

Uninoculated 4.080 9.081 13.161 0.69 8.922 

Sus. Uninoculated 4.810 6.122 10.932 0.56 6.015 

J Parameters were not estimated for the susceptible set under inoculation because 
many plants died, 2 Genetic gain predicted by assuming that one inbred was selected 
from the 25 inbreds tested. 

9.3.4 Genetic correlation 

Type A correlation is an indication of the commonality of gene effects of the 

two traits measured in the same individual. The Type A genetic correlations between 

disease severity and seed yield/plant, plant height and time to flowering were weak, 
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with only the correlation between disease and time to flowering being significantly 

different from zero. This suggested that minor genes for Ascochyta blight resistance 

had no or little effect on these traits. 

The estimates of Type A genetic correlations among seed yield/plant, plant 

height and time to flowering had the same pattern under both test conditions, with the 

normal uninoculated environment giving a higher and more reliable estimation (Table 

9.5). Seed yield/plant was strongly and positively correlated with plant height, but 

moderately and negatively correlated with time to flowering. Plant height and time to 

flowering were weakly and positively correlated. 

The Type B correlations between disease severity and seed yield/plant, plant 

height and time to flowering were weaker though they were very similar to the 

corresponding Type A correlations (Table 9.6). 

Table 9.5: Estimates of genetic correlation between traits measured in the same 

individuals (rA) and their standard deviations (in parentheses) for the 

resistant set inbreds either inoculated with Ascochyta lentis or left 

uninoculated 1• 

Condition Traits Disease Yield PH TF 

Severity 

(DS) 

Inoculated DS -0.16 (0.11) -0.24 (0.20) -0.36 (0.14) 

Yield 0.66 (0.11) -0.43 (0.10) 

PH 0.21 (0.13) 

Uninoculated DS2 

Yield 0.78(0.11) -0.51(0.21) 

PH 0.24(0.17) 

I Figures in bold are significant at p :=:; 0.05 level, 2 not measurable. 
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9.3.5 Inbred x environment interaction 

The type B genetic correlations between measurements of the same traits in 

the two environments describe the rank-changing genotype-by-environment 

interaction. The type B correlations of yield/plant, plant height and time to flowering 

were all not significantly different from +1, indicating that there were not rank­

changing genotype-by-environment interactions (Table 9.6). However, the combined 

analysis of variance showed significant genotype-by-environment interactions (Table 

9.2). Thus, the interaction revealed by the analysis of variance was quantitative 

interaction only. 

Table 9.6: Estimates of genetic correlation between traits measured in Ascochyta 

lentis inoculated and uninoculated conditions (rs *) and standard 

deviations (in parentheses) for the set of resistant inbreds I . 

Traits Disease Yield PH TF 

Severity (DS) 

DS 

Yield -0.20(0.19) 0.86(0.14) 

PH -0.32(0.24) 0.75(0.23) 

TF -0.38(0.25) 0.81(0.21) 

I Figure in bold is significant at a::; 0.05 level. 

9.4 Discussion 

Selection for one trait will cause correlated changes in other traits (Falconer, 

1989). Depending on the direction of the genetic correlations between traits, 

correlated selection responses should either be utilised or avoided. Breeding for 

Ascochyta blight resistance in lentil does, and will in the future, rely on the resistance 

conferred by major genes due to the simplicity of selection. However, the major gene 
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contained in ILL 5684 was shown to be either linked to the gene for seed yield/plant, 

or it has a pleiotropic effect on it, or both. Consequently, the presence of the resistant 

allele of the major gene reduced mean yield by 15.3 %. Fortunately, considerable 

genetic variation for yield was present within the population of 25 resistant inbred 

lines. This provides a chance to improve yield by selection within the population of 

inbred lines. The existence of effects of major genes for disease resistance on yield 

has also been reported in other species (Reheul and Chesquiere, 1996). 

The major gene for resistance was independent of genes for plant height and 

time to flowering. This is useful for lentil breeders because short plants and earliness 

in flowering are also required traits in elite lines (Muehlabure et al., 1995). 

When selection is carried out within a population of inbreds, which carry the 

m<0or resistance gene, care should also be taken to ensure that resistance is not 

reduced due to selection for yield and other traits. Disease resistance conferred by 

minor genes was not correlated with seed yield/plant and plant height in this study. 

This suggests that selection for seed yield/plant or plant height can be done at no cost 

to Ascochyta blight resistance. The moderately negative correlation between disease 

severity and time to flowering implies that selection for earliness in flowering would 

increase the resistance conditioned by minor genes. Therefore, it is feasible that 

selection for all three of these important agronomic traits will not reduce the 

resistance to Ascochyta blight. 

The genetic correlation between seed yield/plant and plant height was positive, 

and high. This is not unexpected as Ramgiry et al., (1989), Esmail et al., (1994) and 

Jian et ai., (1995) have reported similar results at the phenotypic level. Seed 

yield/plant was moderately and negatively correlated with time to flowering. This is 

consistent with the result of Esmail et al. (1994) at the phenotypic level. Plant height 

and time to flowering was weakly and positively correlated. These genetic 

relationships suggest that it may be hard to obtain cultivars that are short and high­

yielding. However, it is important to realise these data are for individual plants and 

not for an established crop where height reducing genes frequently have been shown 

to increase yields (Muehlabure et al., 1995). 

In terms of heritability, genetic correlations between traits, and the higher 

Type B genetic correlations between the same traits measured in different 
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environments, these data indicate that selection for seed yield/plant, plant height and 

time to flowering can be carried out equally well under conditions of high Ascochyta 

blight pressure (artificial inoculation) or under disease free conditions. However, 

because selection for Ascochyta blight resistance conditioned by minor genes is 

required to enhance the resistance conferred by the major gene, selection for all the 

traits under disease pressure is likely to be the most appropriate. 

As all the tests were performed in the glasshouse, the results now need to be 

verified in the field. 
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CHAPTER 10 

BREEDING FOR RESISTANCE TO LENTIL ASOCHYTA 

BLIGHT: AN OVERVIEW 

Summary 

Ascochyta blight, caused by Ascochyta lentis, is one of the most important 

diseases of lentil. Breeding for resistance has been suggested as an efficient means to 

control this disease. This chapter summarises existing studies of the genetics of 

resistance to Ascochyta blight in lentil, and genetic variations among pathogen 

populations (isolates). Breeding methods for control of the disease are then discussed. 

Six pathotypes of Ascochyta lentis have been identified and many resistant 

cultivars/lines have been identified in both cultivated and wild lentils. Resistance to 

Ascochyta blight is mainly under the control of major genes, but minor genes also 

playa role. Current breeding programmes are based on crossing resistant and hi~h 

yielding cultivars and multi-location testing. Gene pyramiding, exploring slow 

blighting and partial resistance, and using genes contained in wild relatives will be the 

methods of the future. Identification of more sources of resistance genes, good 

characterisation of the host-pathogen system and identification of molecular markers 

tightly linked to resistance genes are suggested to be the key areas for future study. 

10.1 Introduction 

Ascochyta blight, caused by Ascochyta lentis, is an important disease of lentil. 

It has been reported to be the major disease in many lentil producing countries 

including Argentina, Australia, Canada, Ethiopia, India, New Zealand, Pakistan and 

The Russian Federation (Kaiser and Hannan, 1986; Erskine et al., 1994). The disease 

has considerable effect on both seed quality and yield (Morrall and Sheppard, 1981). 

Gossen and Morrall (1983) estimated that foliar infection has caused yield losses of 
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up to 40%, but in Canada economic losses from infected seed may reach more than 70 

%. In some cases, seed infection is so severe that the lentils are unmarketable (Kaiser, 

1981; Gossen and Morral, 1983). 

In spite of extensive agronomic and chemical control studies, no effective or 

efficient method has been found to control Ascochyta blight in lentil. Breeding for 

host resistance is expected to be the most effective, efficient and environmentally 

friendly method to control the disease (Erskine et aZ., 1994). 

This Chapter summarises our understanding of the genetics of Ascochyta 

blight resistance in lentil incorporating my findings in previous chapters, and genetic 

variations among pathogen populations (isolates). Following this, methods for 

breeding for resistance and corresponding backup techniques are discussed. 

10.2 Genetic variations among isolates of Ascochyta lentis 

A good understanding of the genetic variations of pathogenicity and virulence 

patterns in the pathogen is useful for designing a breeding programme and infection 

test methods. For example, when there are many physiological races of the pathogen, 

race-specific resistance usually conferred by major genes can be overcome easily by 

the pathogen. Therefore, exploring partial resistance conditioned by polygenes and/or 

combining resistance genes for different races is necessary to obtain durable 

resistance. However, there is only limited information on variation in A. Zentis. Tests 

done by Kaiser et aZ. (1994), using 24 isolates from different countries, showed only 

small differences among isolates in ability to attack two cultivars. Ahmed and 

Morrall (1996) investigated the reactions of lentil lines and cultivars (differentials) to 

seven isolates of A. lentis in the field using artificial inoculation, and percentage seed 

infection. Differences (based on initial disease severity) occurred among differentials 

in their reactions to the isolates. The differentials and isolates were significantly 

different in both years for seed infection percentage and the area under the disease 

progress curve, but, the isolate xdifferenti'al interaction was non-significant in both 

years for seed infection percentage in both years, and was significant for the area 

under the disease progress curve in only one year. 
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Ahmed et al. (l996b) investigated the virulence patterns of 84 isolates of A. 

Lentis from western Canada, and isolates from 13 other countries on 10 lentil lines and 

cultivars (differentials). Western Canadian isolates collected in 1978 and 1985 were 

less virulent than 1992 collections. Cluster analysis grouped the isolates into weak, 

intermediate and high virulence forms. The virulence pattern did not relate to specific 

geographic locations. Host differential x isolate interactions were generally lacking, 

indicating the absence of cultivar specificity. However, the cultivar Laird was 

moderatel y resistant to the 1978 isolates but susceptible to the 1992 isolates. 

Nasir and Bretag (1997b) examined the pathogenic variability of 39 isolates 

from Australia using 22 lentil cultivars. Based on the different reaction of six 
-

cultivars (ILL 358, ILL 7537, ILL 7515, ILL 5588, ILL 5244 and Eston), they 

identified six pathotypes. Most of the isolates were virulent to some of the cultivars. 

There were three isolates that infected all the cultivars, and five isolates that were 

avirulent to all the cultivars. This study clearly showed that resistance is pathotype­

specific. 

10.3 Measuring the reaction to disease 

The different genotypic reactions to A. lentis are the basis of breeding for 

resistance. To measure the reaction, a suitable infection test and disease rating scale 

needs to be designed for the desired breeding objectives, and to distinguish the 

variations in patterns of pathogenicity. 

10.3.1 Infection test methods 

Results from infection tests are the basic information upon which breeding 

programmes for resistance have been designed and success achieved. Therefore, the 

reliability of the infection test used is fundamentally important in the success of a 

breeding programme aimed at improving resistance. The choice of a suitable test 

method depends on the breeding objectives and the pathogenic variability of the 

pathogen. For instance, to screen for highly resistant lines, a higher dose of inoculum 

is necessary. However, to identify partial resistance, the dose of inoculum should not 
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be so high that small differences in resistance are obscured. Similarly, race-specific 

resistance can only be identified by the use of single races in sequential tests. 

Furthennore, suitable test methods may be different from one stage to another in a 

breeding process. For example, glasshouse test using single race inoculum is 

normally used at the earlier stages to gain an understanding of the genetic regulation 

of resistance, and/or to facilitate the selection of lines with multiple resistance genes. 

However, the putative resistant lines have to be tested in the field and exposed to as 

full a spectrum of pathogen races as possible before they are recommended to the 

producers. 

Natural infection test in the field 

The natural field infection test is the cheapest method. Its main advantage is 

that all lines (individuals) are exposed to environmental conditions that are similar to 

those, which the resultant resistant cultivars will face. The main disadvantage is that 

interactions between different biotic and abiotic factors can mask the expression of 

resistance. Without artificial inoculation, resistance can only be tested in epidemic 

years. In breeding for resistance, natural infection test is normally used in the late 

stage to verify the resistance of the lines selected in earlier stages. Another use of this 

method is to identify putative resistant cultivars/lines when natural epidemics happen. 

Artificial infection test in glasshouse 

Glasshouse testing has several advantages over field testing. Firstly, off­

season testing can be done and testing can also be done at any development stage of 

the plants. Secondly, environmental conditions can be adjusted to enhance the 

development of disease. Thirdly, possible interference caused by other 

microorganisms and other factors can be reduced. Fourthly, the ino<;ulum can be 

more evenly distributed and consequently reduce the risk of escapes. The main 

disadvantage of glasshouse screening is the high unit price and limited space. 

Artificial infection test in the field 

To overcome some of the potential problems of the natural infection test and 

the glasshouse infection test, artificial epidemics can be generated in the field. This 
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can be achieved by inoculation with inoculum prepared in the lab, scattering disease 

debris and inter-planting susceptible genotypes (spreaders) for increasing pathogen 

populations and providing irrigation for increasing relative humidity. This method is 

used in the breeding programme at ICARDA because of its successful application in 

breeding for resistance to Ascochyta blight in chickpea (Singh et ai., 1993). 

Test in the laboratory 

Recently a method based on a detached leaf test has been developed at Lincoln 

University (Russel and Hill, 1998). The correlation of disease severity or disease 

incidence values obtained from this method and the disease severity values for intact 

plants was high. The resistant or susceptible category for each cultivar in relation to 

each race was not changed by assay on young detached leaflets, but for older leaflets 

(from the 1 st or 2nd oldest leaves) a susceptible rating sometimes was altered to a 

resistant rating (which may indicate a genuine resistance form in aged leaves). The 

advantage of this method is that the disease reaction can be tested using several 

leaflets while the intact plant is protected for seed production. Clearly, this method 

will find use in breeding for resistance, particularly at the earlier generations when the 

number of seeds per line is limited. 

Sharma et ai. (1995) developed a so-called cut twig method to screen 

Ascochyta rabiei resistance in chickpea without the destruction of the whole plant. It 

involves inoculating single cut branches with spores. They showed that this method 

could be used in a breeding programme with good success by testing the resistance of 

542 chickpea plants in F2 and backcrossed progenies. As with the detached leaf 

method, this procedure should be very useful in the earlier generations of a breeding 

programme. However, no attempt has been made to test its applicability in lentil. 

Mosconi et ai. (1996) again in Ascochyta blight of chickpea, tested, and found 

promising, the possibility of using culture filtrate to measure the resistance of 

different genotypes. 

10.3.2 Rating scale 

Rating scales used to measure the disease reaction also depend on the 

objectives of the breeding program. To select for resistance conditioned by a major 
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gene, a simple scale is normally sufficient. However, to select for partial resistance 

conferred by polygenes, scales that are more precise are necessary. 

Visual scales 

Visual scales have been commonly used to measure blight reaction in lentils. 

At ICARDA, a 9-point scaling system based on visual judgement of disease severity 

was developed and can be used to describe the disease reaction in field plots. This 

system is given in Table 10.1. 

There are other visual scales used by different authors. For instance, the rating 

scale used by Ahmed and Morrall (1996), and Ahmed et ai. (1996) was as follow: 0 = 
no lesion; 1 = < 5% leaf lesions; 3 = 5- 10% leaf lesions; 4 = 11-25% leaf and stem 

lesions; and 5 = > 25% leaf and stem lesions,. and dieback. The rating scale used by 

Nasir and Bretag (1997a; b) and Ford et al. (1999) was as follow: 1 = no visible 

lesions; 3 = small flecks on leaves; 5 = many lesions on leaves with or without 

chlorotic zones, flecks on stems; 7 = extensive lesions on leaves and defoliation, 

many stem lesions with sporulation; and 9 = collapsed leaves, girdled stems and plant 

death. These last two scale systems were used for evaluating single plant infections. 

Other scales 

Area under the disease progress curve (AUDP) has also been used to quantify 

host resistance (Ahmed and Morrall, 1996). A high correlation between AUDP and 

the initial disease severity, measured using a visual scale, was found by Ahmed and 

Morrall (1996). However, a high disease pressure was required to obtain a good 

correlation. This may imply that they both measure the resistance conferred by major 

genes and consequently are highly correlated. 

Incubation period (days from inoculation to first symptom appearance) and 

latent period (days from inoculation to appearance of fruiting structures) have been 

used by Pedersen and Morrall (1994) and Ahmed et al. (l996a). However, it is hard 

to use these two characteristics to discriminate resistance among cultivars because of 

their limited ranges 
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Table 10.1. ICARDA visual scale for Ascochyta blight reaction in lentil. 

Scale Disease intensity 

No visible lesions 

2 Very few lesions after careful examination 

3 Few scattered lesions after careful examination 

4 Lesions defoliation on some plants, not damaging 

5 Lesions common and easily observed on all plants but defoliation 

and damage not great 

6 Lesions and defoliation common 

7 Lesions very common, defoliation moderate 

8 All plants with extensive lesions, defoliation high and stem 

girdling 

9 Extensive lesions on all plant parts accompanied by stem girdling 

Percent seed infection has been used in Canada to measure the resistance of 

lentil cultivars/lines. The rationale is to alleviate the problem of subjectivity of foliar 

rating (Slinkard and Vandenberg, 1993). However, the difficulties with this method 

are: it is time consuming and expensive; it is not suitable for earlier generations of 

breeding because the limited number of seeds per line; the resistance of early 

maturing materials may be underestimated due to the saprophytic infection from late 

maturing materials. Nevertheless, percent seed infection is the ultimate.measurement 

of resistance in practice, and it can be used in the late stage of breeding when seed 

supply is not a problem and lines can be grouped according to their maturity. 

10.4 Genetics of Ascochyta blight resistance 

Breeding for resistance has been suggested as an efficient means to 

reduce/avoid the economic loss caused by Ascochyta blight in lentil based on the 
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observation that resistance differences exist in both cultivated and wild lentils (see 

next section), and the success in other crops for major fungal diseases. To be 

successful and efficient in breeding, genetic resources that contain different genes for 

resistance must be available, the genetic regulation of the resistance needs to be well 

understood and techniques for accumulating the effects of different genes need to be 

established. 

10.4.1 Genetic resources of Ascochyta blight resistance 

Genotypic differences for Ascochyta blight resistance IS present in both 

cultivated and wild lentil. Disease symptoms on the different accessions range~ from 

small flecks (resistant) to extensive lesions on both leaves and stems with death of 

some plants (highly susceptible) (Nasir and Bretag, 1998). A detailed summary was 

given in Chapter 2. 

10.4.2 Inheritance of Ascochyta blight resistance 

The genetics of blight resistance in lentils has been studied using segregation 

analysis. Several resistance genes have been discovered and are summarised in Table 

10.2 

Table 10.2: Genetic regulation mechanisms of Ascochyta blight resistance in lentil. 

Resistant Susceptible Organ Inheritance model Reference 

Parent Parent 

Indian head PI 345635 seed two duplicated recessive Andrahennadi, 1994 

Indian head Titore foliar two additive recessive Chapter 5 

W63241 Invincible foliar one dominant gene Ahmad et al., 1997b 

(L. orientalis) 

W63241 Titore foliar one dominant gene Chapter 5 

W63261 Invincible foliar one dominant gene Ahmad et al., 1997b 

(L. orientalis) Parh,1998 

W63261 Titore foliar one dominant gene Ahmad et aZ., 1997b 

Resistant Susceptible Organ Inheritance model Reference 

Parent Parent 
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Table 10.2 (continued). 

W63222 Titore foliar two dominant Ahmad et ai. 1997b 

(L. odemensis) complementary 

W63261 Titore foliar one partial dominant with Chapter 5 
large effect & one 

dominant with less effect 

W63261 Olympic foliar one dominant gene Ahmad et ai., 1997b 

W63192 Titore foliar two dominant Ahmad et ai., 1997b 

(L. eroides) complementary Chapter 5 

Laird Eston seed one recessive gene Tay and Slinkard, 
1989 

Laird Titore foliar one recessive gene Chapter 5 

ILL5588 Eston foliar one dominant gene Ford et ai., 1999 

ILL5588 Eston seed one dominant gene Andrahennadi, 1997 

Vakulabharanam et 
ai., 1997 

ILL5588 Eston seed two dominant &one Tay, 1989 
recessive 

ILL5588 Eston seed one dominant & one Sakr, 1994 
recessive 

ILL5588 Titore foliar one dominant for high Chapter 5 
and one dominant for 
moderate resistance 

ILL5684 Eston seed one dominant gene Tay and Slinkard, 
1989 

ILL5684 Titore foliar one dominant gene Chapter 5 

ILL5684 Eston seed two dominant genes Tay, 1989 

ILL5684 Eston seed two dominant genes Tay, 1989 

Using recombinant inbreds from two crosses between resistant (ILL 5684 and 

W 6 3241) and susceptible (Titore) lines, which are homozygous for the major 

resistance gene, Chapter 6 showed that minor genes contributed to the resistance. 

Though the accumulated effect of minor genes was much less than the effect of a 

major gene, they would provide more durable resistance than major genes at least 

from a theoretical point of view. When' attempting selection within populations of 

plants with the same major genotype, the use of a 1 - 9 scoring system is less likely to 

be successful. A novel system, which distinguishes minor differences between 
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infection levels, is required. It is possible that the detected relative small effect of 

minor genes was due to the masking effect of the major gene. In other words, minor 

genes may confer much more resistance than has been discovered till now. If this is 

the case, sufficient resistance may still exist when the major gene resistance is broken 

down. 

Using generation mean analysis with six basic generations of four crosses, 

Chapter 7 showed that genetic regulation of resistance is more complicated with 

significant inter-loci interaction in three of four crosses studied. Dominant effects 

played an important role in all crosses. The genetic mechanisms underlying seed 

resistance measured as percent seed infection were more complicated that those for 

foliar resistance. 

Based on these studies, it is clear that Mendelian segregation analysis, though 

useful, can only provide an oversimplified genetic model, and that more careful 

dissection of genetics of Ascochyta blight resistance in lentils is required. 

10.5 Breeding for resistance 

10.5.1 Current breeding method 

Breeding for resistance to Ascochyta blight in lentil has been initiated without 

much knowledges of the genetics of resistance and pathogenic variations. In many 

contries, it is still at a very preliminary stage, that is, large scale screening of 

collections of germplasm to identify resistant resources. Multi-location testing of 

promising cultivars from germplasm screening co-ordinated by ICARDA has led to 

the registration of several resistant cultivars in several countries (Russell, 1994; Singh 

et al., 1994; Erskine et ai., 1996). A well-organised breeding programme in Canada 

has produced several cultivars with good resistance. Because the knowledge about the 

genetic variation of the pathogen and the genetic regulations of host resistance is 

currently very limited, well-designed breeding programmes are not yet possible. 

However, the recent identification of resistance genes and their relationships in 

several cultivated lines (Chapter 5) and the confirmation of the presence of pathotypes 

(Nasir and Bretag, 1997b) provided the basis to design a breeding programme aimed 

at transferring and combining these genes. Currently, breeding for resistance should 
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use the same method as that for other traits except that several tests for resistance are 

added. A combined bulk population and pedigree selection has been used 

successfully in lentil and chickpea breeding (Singh, 1994; Muehlabuer et ai., 1995) at 

ICARDA. A modified version of this procedure has been used with good success in 

breeding for Ascochyta blight resistance in chickpea (Singh, 1993). It could be used 

in breeding for Ascochyta blight in lentil as well. This procedure consists of seven 

steps. 

I) Lines with Ascochyta blight resistance to multiple pathotypes are crossed to 

locally adapted superior cultivars. They are then backcrossed to the adapted 

parent (if necessary). Fls are grown in optimal conditions to produce seeds.-

2) F2 's are tested for resistance in the field in epiphytotic form by artificial 

inoculation. Selected resistant (rating 1-4) and partially resistant (5-6) plants are 

bulk harvested. 

3) F3 and F4 bulks are advanced in disease-free conditions and selected for growth 

habit, branch number, flowering time, maturity and seed size. The selected plants 

in the F4 generation are harvested individually. 

4) F.:)iF6 progenies are tested for resistance. The effects of minor genes are more 

obvious due to several generations of recombination. 

5) Selected lines are evaluated in preliminary yield trials. High yielding lines are 

selected. 

6) Multi-location testing of the selected lines. The locations should cover the target 

cultivation region of the new cultivars. Tests for yield and other important traits 

and tests for Ascochyta blight resistance may need to be done separately. One or 

two superior lines with good combinations of traits can be selected. 

7) On-farm test of the selected lines and cultivar registration. 

The above breeding procedure relies on multi-location testing to obtain 

cultiv'ars with broad resistance. This method is justified because only resistance to the 

prevalent pathotypes in the target region is required by producers. However, there is 

no guarantee that the resistant cultivars identified will have durable resistance. 

10.5.2 Future breeding methods 
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With the development of novel techniques and the accumulation of our 

understanding about the host-pathogen system, more efficient breeding methods no 

doubt will be applicable in breeding for resistance to Ascochyta blight in lentil. 

Multiple resistance by gene pyramiding 

When there are different pathotypes and corresponding resistance genes, one 

method to breed for resistance is to combine different resistance genes into a single 

cultivar. This is so-called gene pyramiding. By combining genes conferring 

resistance to different pathotypes, the cultivar can be used in more diversified 

environments where different pathotypes are likely to be dominant. Additionally, 

multiple resistance genes may have additive effects. Even if they do not show 

additive effects, the presence of more genes implies that pathotypes have to be 

virulent to all the genes before a resistant cultivar will lose resistance (Crute, 1998). 

This procedure has been suggested for breeding for durable resistance in many crops. 

A breeding programme for improving resistance to Ascochyta blight of chickpea in 

ICARD A adopted this method (Singh, 1993). This method should also be used in 

lentil. Firstly, the different pathotypes have recently been identified by Nasir and 

Bretag (1 997b ). They found that the pathotype "6" can infect all the lines tested 

including the cultivars previously identified as resistant such as ILL 5588. Therefore, 

resistance to A. Zen tis conferred by major genes is pathotype-specific as well. 

Secondly, the introduction of resistant cultivars with major resistance genes in 

production (such as Laird and ILL 5588) will no doubt increase the chance of the 

development of pathotypes which can overcome the resistance (Burdon, 1993). In 

fact, the large-scale cultivation of the moderately resistant cultivar, Laird has been 

speculated as the cause of the increased aggressiveness of Canadian isolates of A. 

Zen tis (Ahmed and Morrall, 1996) 

Exploring slow blighting and partial resistance 

Some cultivars/lines may not be highly resistant in late stages but do have 

considerably resistance in early stages. The relatively slow development of disease 

has been identified in rust diseases in cereals where it has been used successfully in 

breeding for resistance (Wilcoxson, 1981). In breeding for Ascochyta blight 
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resistance in chickpea, slow blighting has been explored and consequently a cultivar 

with partial but durable resistance was released in eight countries (Singh, 1993). 

Though there are no reports on the existence of slow blighting in lentils, it is possible 

that this type of resistance can be identified in lentil after more carefully examining 

the disease reactions of more germplasm. 

Using wild relatives 

As discussed above, genes for Ascochyta blight resistance have been identified 

in wild lentil species, and it seems that more resistance resources are in the gene pool 

of wild relatives. Therefore, to transfer the resistance genes from wild species into 

elite cultivars will be an important strategy in breeding for resistance. Viable hybrids 

between the cultivated and wild species are essential to the utilisation of genes in wild 

relatives by conventional breeding. The only wild species that can easily be 

intercrossed with cultivated lentil is Lens orientalis, the progenitor of cultivated lentil 

(Ladizinsky 1979; 1993). A recent report showed that viable hybrids could be 

obtained from the combinations between the cultivated and all wild lentil species by 

applying GA3 after pollination (Ahmad et al., 1995b). Upon improvement, this 

technique may lead to an efficient method to transfer useful genes including resistance 

genes from all wild species into cultivated species 

In v'itro culture has been used in two ways to promote the utilisation of wild 

relatives in lentil. Cohen et al., (1984) established a two stage in vitro technique for 

the development of inter-specific hybrid embryos. Fourteen days old fertilised ovules 

were cultured on MS medium supplemented with zeatin, followed by release of the 

embryos from the ovular integuments. These embryos later developed into viable and 

vigorous plants. Ladizinsky et ai., (1985) also obtained vegetatively normal L. 

culinaris x L. ervoides hybrids using embryo culture techniques. 

Several biological characteristics of wild lentil, such as very small flower size, 

low number of seeds per pod, and possible post fertilisation abortion, make artificial 

crossing difficult. Therefore, the success rate for artificial crossing is very low even if 

there is no post fertilisation abortion. Micropropagation of the limited FJ materials 

has been explored as a way to enlarge the FI popUlation and eliminate the requirement 

of large-scale pollination to obtain enough hybrid material for further genetic study 
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and breeding. In the context of multiplying hybrids by in vitro culture, different 

systems may be required for different purposes. To produce plants for genetic 

analysis, an in vitro propagation method aimed at producing genetically true-to-type 

plants is useful. A system specially intended for this purpose was developed based on 

single node culture in Chapter 3. To enhance the production of novel genotypes that 

combine the favorable genes from both species, an efficient regeneration system is 

required. Two highly efficient multiplication systems based on seed culture and 

cotyledonary node culture were developed in Chapter 4. These can ,be used to 

multiply the limited hybrid seeds obtained by artificial crosses and consequently 

generate a large amount of breeding materials for future selection. The rationale of 

this approach is to introgress small chromosome fragments of wild relatives and 

reduce the number of backcrosses (Larkin, 1987). Larkin et al. (1990) have provided 

experimental support to such a proposal using tissue culture of wheat chromosome 

addition lines (with a rye or a barley chromosome). 

With the refinement of in vitro culture techniques and an artificial crossing 

method, it becomes possible to use resistance genes contained in wild species. 

Backcrossing can then allow transfer of all useful genes of wild species to generate 

new lines with novel gene(s). These new lines can be released as new cultivars and/or 

used as initial materials to combine different resistance genes. 

Marker assisted introgression (MAl) 

Genes conferring resistance are conventionally introgressed into an elite 

background by repeated backcrossing. If, instead of tracking the gene itself, a marker 

tightly linked to the gene is used to trace its segregation in the selection process, then 

this method is referred as maker-assisted introgression (MAl). MAl has several 

obvious advantages. 1) The tedious and troublesome test for resi,stance is not 

required, and selection can be done in normal environments; 2) Selection can be done 

at an earlier stage and hence generation intervals may be reduced; 3) The transfer of 

both dominant and recessive genes is feasible; 4) The results from both theoretical 

study and practical application have shown that MAl reduces the necessary population 

size and the number of generations required for developing commercial varieties 

(Hillel et al., 1990; Melchinger, 1990; Lee, 1995; Michelmore, 1995; Visscher et al., 
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1996; Hospital et aI., 1997; Mohan et aI., 1997; Bent and Yu, 1998;). This is because 

flanking markers can be used to identify the backcross lines that are heterozygous for 

target genome regions. Advancing only these selected lines will also reduce linkage 

drag and allow for selection of genotypes with the maximum percentage of the 

recurrent parent genome. 

For resistance conferred by major genes, classical Mendelian linkage analysis 

can be used to identify linked markers. Marker genotypes and genotypes for resistant 

genes are determined for plants in a segregating population and the linkage between 

marker and trait is confirmed by estimating recombination rate. However, to generate 

DNA markers is costly and time-consuming. Better strategies are required to 

facilitate the identification of markers linked to a target trait. Ideally, few DNA 

samples are used to screen markers and most of the DNA markers used for 

genotyping individual plants are linked to the target trait. Near-isogenic lines (NILs) 

produced from backcrossing programs to introgress resistance genes are ideal 

materials for identifying linked markers (Penner et al., 1993). As NILs are 

genetically identical except for the locus conferring resistance, markers represented by 

bands, which appear only on DNA from resistant NILs, must link to the gene for 

resistance. Unfortunately, NILs for Ascochyta blight in lentils are unavailable. Bulk 

segregation analysis proposed by Michelmore et aI., (1991) does not require special 

materials and has become a standard practice in this field. Two DNA pools formed 

by mixing DNA from highly resistant individuals and highly susceptible individuals 

are used to detect polymorphism. Markers represented by bands, which appear only 
( 

for one of the DNA pools, are likely to be linked to the gene for resistance or 

susceptibility. Then the linkage and recombination rates between these markers and 

resistant gene are confiImed and estimated using Mendelian linkage analysis. Using 

this method, Ford et aI., (1999) identified seven RAPD markers linked to the 

resistance locus conferring Ascochyta blight resistance in ILL 5588.· Five of the 

seven RAPD markers were within 30 cM of the resistance locus and the closest 

flanking markers were approximately 6 and 14cM away from the resistance locus. 

However, to use MAl, the linkage between the resistance gene and markers must be 

stable across generations and populations, and the technique for detecting the 

marker(s) must be efficient so that large populations can be screened. In these terms, 

there are inherent difficulties in the application of RAPDs in MAl, such as band 
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reliability between runs and multiple step protocols. To overcome these problems, 

sequence-characterised amplified regions (SCARs) or allele-specific associated 

primers (ASAPs) (Weeden et ai., 1992) have been described. The SCARs and 

ASAPs use longer primers in pairs to specifically amplify a DNA fragment linked to a 

gene of interest. These SCARs and ASAPs are obtained by sequencing the ends of a 

RAPD, originally amplified by a single short primer. Once developed, SCARs and 

ASAPs shorten the protocol necessary to identify individuals with the markers, as dye 

or fluorimetric quantification replaces electrophoretic detection of amplified DNA 

fragment. SCARs have been described for many plant host-pathogen systems (Adam­

Blondon et al., 1994; Deng et al., 1997; Paran and Michelmore, 1993; Witsenboer et 

aZ., 1995). Based on the RAPD markers identified, SCARs need to be developed to 

make MAL feasible for breeding for Ascochyta blight resistance. 

Transgenic technology 

Transgenic technology provides plant breeders with new tools in breeding for 

resistance. Its main advantages are: 1) linkage drag, which refers to the inheritance of 

undesirable genes with the desirable gene, can be avoided and consequently repeated 

backcrossing to the elite parent is not required and considerable time saving is 

achieved; 2) Resistance genes from different sources including artificial constructs 

can be used. This should make plant breeders less reliant on natural variation for 

resistance genes; 3) By inducing or enhancing plant protective mechanisms, durable 

and/or multiple resistance may be achieved by a single engineering effort. Because its 

great potential in improving disease resistance, extensive studies using plant species 

that can be easily transformed have been conducted. Therefore, several promising 

procedures have been demonstrated and used in economically important crops 

(Bushnell et al., 1998; Bent and Yu, 1999). In view of the results achieved for other 

species, transgenic techniques should also be explored in lentil breeding, particularly 

in breeding for Ascochyta blight resistance. 

Several authors have tried genetic transformation in lentil (Warkentin and 

McHughen, 1993; Chowrira et al., 1995; Maccarrone et al., 1995; Oktem, 1999). 

These studies clearly showed that transformation could be achieved as confirmed by 

GUS assay, but regeneration of transgenic plants was very difficult. This is not 

unexpected. On one hand, the regeneration systems available may not be efficient 

165 



enough. According to experiences from other specIes, to achieve successful 

production of transgenic plants, the regeneration system needs to be highly efficient. 

This can only be achieved by optimising the factors affecting regeneration including 

the llse of competent genotypes, suitable sources of explants and medium 

composition. One the other hand, only one attempt has been made to produce 

transgenic lentil plants. Even with good regeneration systems, the production of 

transformed plants is not a simple matter, and many experiments are required to refine 

the whole process. The regeneration system based on cotyledonary node culture was 

refined in Chapter 3. Comparing the efficiency of this refined protocol with that of 

the regeneration system used for successful transformation of pea (Jordan and Hobbs, 

1993), it is expected that this system should be suitable for transformation. Dktem 

(1999) obtained transgenic shoots from cotyledonary nodes containing GUS gene 

transferred by particle bombardment. Electroporation of DNA into intact nodal 

meristem has resulted in the production of transgenic plants (Chowrira et ai., 1995). 

Therefore, production of transgenic lentil plants and consequently the application of 

transgenic techniques is soon likely to become feasible. 

10.5.3 Factors that need to be considered in breeding for resistance 

Correlated selection response 

The changes in other traits caused by selection for a trait is termed the 

correlated selection response (Falconer, 1989). When two traits are positively 

correlated, the correlated selection response is desirable from a breeder's point of view 

and consequently does not bring any difficulty. However, when traits are negatively 

correlated, care must be taken to reduce the unfavourable response in other traits. The 

correlations among Ascochyta blight resistance and other agronomic traits have not 

been full y investigated. Chapter 5 showed that the major gene for resistance in ILL 

5588 and W6 3241 had adverse effects on seed yield/plant. According to the 

experiences of breeding for resistance in other legume species, some other possible 

adverse effects of selection for Ascochyta blight resistance may be; 1) anti-nutritional 

factors are increased, which is undesirable both for human and animal consumption of 

grain; 2) digestibility is reduced, and; 3) maturity is delayed (Singh, 1993; Porta-
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Puglia et al., 1994). Conversely, correlation between traits can also be used in 

breeding via indirect selection. The most obvious application of indirect selection in 

breeding for resistance is to use glasshouse (growth chamber) test results to select for 

improved resistance performance in the field. 

Gellotype-by-environment interaction 

Genotype-by-environment (GE) interaction is of concern if the resultant 

cultivar is to be used across a large area. There are two reasons why GE interaction is 

more important in breeding for resistance than for other traits. Firstly, pathogens may 

vary in their aggressiveness under different environments. Furthermore, if different 

physiological races exist they may be differentially prevalent in different 

environments. Secondly, the growth, development, and physiological status of host 

genotypes may be different under different environments. There is a paucity of 

information regarding the GE interaction in lentil. However, the different levels of 

aggressiveness among isolates from different locations, and the recent identification 

of pathotypes suggest that GE interaction would be important if tested. 

10.6 Conclusion 

Considerable progress has been made in the last two decades in understanding 

the Ascochyta blight pathogen (A. Lentis) and the resistance of its host to this disease. 

Resistance sources are available both in cultivated and wild lentil species. Several 

major resistance genes have been identified, and minor genes have also been shown to 

play a role in the resistance. Different pathotypes are present in .the pathogen 

popUlation and resistance conferred by major genes seems to be pathotype-specific. 

However, many challenges remain both for plant pathologists and for breeders. From 

a breeding point of view, more studies in the following areas are urgently required to 

sustain breeding progress. 

I. Identify more resistance resources: Identification and incorporation of new 

sources of resistance genes into the breeding programme is always necessary. Large 
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scale screening of germplasm for resistance is required. What is important for the 

future screening of germplasm is to characterise the resistance reactions more 

carefully. It is necessary to evaluate the resistance several times and/or to test against 

different isolates. Three types of germplasm should be selected: 1) highly resistant 

with rating 1 - 2, 2) germplasm with slow blighting and 3) germplasm with multiple 

resistance. 

2. Careful characterisation of the host-pathogen interaction system: To 

identify and incorporate new sources of resistance genes into the breeding 

programme, it is required to have a good understanding about the pathogenic 

variability of A. lentis. A recent study has led to the recognition of six different 

pathotypes (Nasir and Bretag, 1997b). However, since the numbers of cultivars and 

isolates used were small, it is expected that more pathotypes may be present. 

Molecular marker based methods have been successfully 'used to provide additional 

information on the pathogenic variability and have the potential to fingerprint 

pathotypes in many host-pathogen systems including Ascochyta blight in chickpea 

(Weising et aZ., 1991; Morjane et al., 1997; Udupa et al., ] 997; 1998). It can be 

expected that a better understanding of the pathogenic variability of A. Zen tis will soon 

be obtained by using these novel techniques. Armed with the knowledge of pathogen 

populations, the host genotypes can be easily determined using different pathotypes to 

challenge host genotypes, and consequently gene pyramiding becomes feasible 

(Crute, 1988). 

3. Identification of molecular markers tightly linked to different resistance 

genes: with the development of modern molecular techniques, more and more marker 

systems become available and their costs are reduced. It is likely that it will be 

possible to develop rapid and cost-effective techniques for screening large popUlations 

for markers linked to resistance genes. Once developed, the benefits of marker 

assisted selection (introgression) will be available. 

168 



11.1 Background 

CHAPTER 11 

GENERAL DISCUSSION 

Lentil is one of the most important grain legumes and ranks fifth in terms of 

production area (FAO, 1995) but first in terms of consumer's preference in many 

countries (Saker et al., 1991). A threat to lentil production is Ascochyta _blight, 

caused by Ascochyta lentis, present in almost all lentil-growing countries (Erskine et 

al., 1994). Ascochyta lentis can affect all plant parts and can survive year after year in 

crop residues and infected seeds (Pedersen et al., 1993). Breeding for host resistance 

has been suggested as the most efficient, effective and environmentally-friendly 

approach to reduce or avoid the losses from this disease (Erskine et al., 1994; Ye et 

al.,2000). This suggestion is based on the experiences with other major crops and the 

fact that resistant germplasm is available in cultivated and wild lentils (Bayaa et al., 

1991; 1994). 

Success in any breeding programme requires, the availability of desirable 

genetic resources, the better understanding of the genetics of the target traits and 

suitable techniques to utilise the desirable genes. Extensive screening of lentil 

germplasm has identified many cultivars/lines which are resistant to Ascochyta blight. 

This forms the basis of breeding for resistance (see Chapter 2 for a summary). 

However, the genetic mechanisms underlying Ascochyta blight resistance in lentil are 

not well understood. Some useful techniques which can speed up the breeding 

processs such as techniques to facilitate the transfer of resistant gene from wild 

relatives to superior cultivated cultivars, has not yet established. Therefore, the 

overall objective of this study was to provide genetic information and useful 

techniques for designing and implementing resistance breeding programs. 

As with other naturally self-pollinated species, artificial hybridisation is 

necessary both for creating useful gene combinations for selecting superior cultivars 

or breeding materials and for creating materials for genetic analysis. However, the 

success rate of hand pollination is very low in lentil due to its tiny and fragile flowers, 
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and post fertilisation abortion (for inter-specific crossing). Therefore, methods are 

required to multiply the limited FI hybrids obtained from artificial crossing. In vitro 

culture has been shown to be an efficient multiplication method in many crops 

including legumes (Ahuja, 1993; Kyte and Kleyn, 1996). When developing in vitro 

multiplication protocols, the utilisation of the resultant plants must be taken into 

consideration. Efficient procedure for producing genetically true-type plantlets is 

necessary for genetic study using the resultant plantlets, even if this is at the expense 

of mUltiplication efficiency. No in vitro protocol reported in the literature, which 

could be safely used for this purpose. An efficient procedure for this purpose was 

established based on stimulating elongation of the axilary buds (Chapter 3). The 

application of this multiplication approach produced about 20 plants from a- single 

seed in 3 months or about 100 plants in 4 months. Though no genetic and/or 

molecular methods were used to confirm the genetic stability of plantlets from this 

protocol, somoclonal variation was unlikely to be induced, because no cytokinins and 

very low concentration of GA3 lor rnA were used for shoot elongation. This system 

was used extensively in this study to get sufficient FI plants and consequently other 

advanced generations (i.e. F2) for carrying out genetic analysis . 

. In the context of producing many plants from interspecific hybrids, in vitro 

regeneration has been proposed for promoting somatic recombination between 

chromosomes of parental species (Larkin and Scowcroft, 1981; Larkin, 1987; Larkin 

et al., 1990). This method has the potential to successfully introgress small 

chromosome fragments of wild relatives and reduces the number of backcrossing 

generations required. Larkin et al. (1990) have provided experimental support to such 

a proposal using tissue culture of wheat chromosome addition lines (with a rye or a 

barley chromosome). An efficient multiplication system is also required for 

successful genetic transformation, which is a more direct method to obtain resistant 

cultivar than the backcross-based methods. Two systems, one based on multiple 

shoot induction from intact seedlings and the other based on cotyledonary node 

culture (Chapter 4) were developed for this purpose. The shoot regeneration rates and 

rooting frequencies of the induced shoots of these two systems were much higher than 

any in vitro protocols reported previously~ Compared with the cotyledonary node 

system for pea transformation, it is expected that the systems developed here have 

good potential for achieving successful genetic transformation in lentil. 
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With the establishment of a procedure for multiplying F I hybrids, it is 

relatively easy to obtain sufficiently large populations of advanced generations and 

consequently materials for genetic analysis. All previous studies of the genetics of 

Ascochyta blight resistance in lentils used Mendelian segregation analysis, and 

consequently different inheritance models of major genes were proposed as 

summarised in Chapter 2. Unlike for other species, where several segregating 

populations are commonly used, all the studies in lentil used Fz populations only, and 

these Fz populations were usually small, presumably due to the difficulty of obtaining 

sufficient FI plants. It is necessary to confirm these proposed models first. 

Furthermore, the allelic relationships among major genes need to be tested before a 

suitable breeding strategy can be developed, if the major gene resistance is confirmed. 

For instance, resistance conferred by allelic genes cannot be combined in the same 

plants. To achieve these purposes, segregation patterns of Fz, BC I , and BCz 

populations of the crosses between four resistant cultivars (lines) and two susceptible 

lines with reported resistant genes were fitted to different inheritance models (Chapter 

5). In total, ten majoLgenes were identified from the cultivars used. The inheritance 

models for major genes found were: one dominant gene for high resistance and one 

dominant gene for moderate resistance (ILL 5588), a single dominant gene (ILL 5684 

and W6 3241), two complementary dominant genes (W3 3192 and Titore), two 

recessive genes with additive effect (Indian head), one recessive gene (Laird) and one 

partial dominant gene with large effect and one dominant gene with less effect (W3 

3261). The gene in ILL 5684 is allelic to the one in ILL 5588 for high resistance. 

There are several reasons why minor genes may be involved in the resistance. 

Firstly, many varieties show different resistance levels and no complete resistance has 

been identified. Secondly, in the resistant and susceptible classes formed to facilitate 

the detelmination of a major gene model, the frequencies of plants with different 

scores were different. Therefore, resistance to Ascochyta blight in lentils may be the 

result of both major gene(s) and minor genes. The contributions of minor genes were 

confirmed for the first time by creating recombinant inbreds with the same major 

genotypes but different minor genotypes from two crosses. The results and their 

implications were discussed in Chapter 6. 

The existence of both major gene(s) and mmor genes in resistance to 

Ascochyta blight implies that the results from the Mendelian segregation analysis 
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(Chapter 5 and all previous studies) were only approximate. Therefore, the generation 

mean analysis and a procedure based on a mixed model (assuming one major and 

polygenes) were used to gain further understanding of the genetics of Ascochyta 

blight resistance and were reported in Chapter 7 and 8. 

Generation mean analysis uses the information from different generations to 

detect the overall genetic effect and partition the genetic effect into additive, dominant 

and epistatic effects. Generation mean analysis was done for four crosses in this study 

(Chapter 7). The six basic generations are sufficient to model foliar resistance, 

whereas they are not sufficient for seed resistance measured as seed infection rate in 

two crosses. The underlying genetic mechanisms of seed resistance were more 

complicated than that of foliar resistance. Dominance played an important role in all 

crosses for both seed and foliar resistance. Except for the foliar resistance in the cross 

ILL 5684 x Titore, at least one type of inter-gene effect (epstastic) contributed to the 

increased/reduced resistance. 

The mixed model analysis of the cross ILL 5588 x Titore suggested that foliar 

resistance was controlled by two additive-dominance-epistasis genes. Both genes 

were from the resistant parent ILL 5588, and dominance was towards resistance. 

Only the additive A and dominant B was toward to resistance. Seed resistance was 

controlled by one dominant major gene and additive-dominance-epistasis polygenes. 

The major resistant gene and most of the polygenes for resistance were from the 

resistant parent as well, and the dominance was towards resistance. The additive -by­

additive component of the interloci interaction of polygenes favoured resistance, 

while the additive-by-dominant, and the dominant-by-dominant components favoured 

susceptibility. More than 70% of the phenotypic variations in segregating populations 

were due to the major gene (Chapter 8). 

From the plant breeding point of view, Ascochyta blight resistance is only one 

of the traits of interest and a cultivar must be superior for multiple traits. Ideally, 

selection for resistance should not bring too many negative effects on other traits. The 

major gene in ILL 5684 for foliar resistance to Ascochyta blight is linked to the genes 

for seed yield/plant or it has a pleiotropic effect on seed yield/plant, while it is 

independent of the genes for plant height and days to flowering. Fortunately, within 

each set there were significant differences among inbreds for all the three traits, and 

the estimates of heritability based on inbred mean were high for seed yield/plant and 
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days to flowering, and moderate for plant height. Thus, selection within-set was 

feasible (Chapter 9). For the set with the major resistance gene, 1) disease severity 

was not correlated with seed yield/plant and plant height, but weakly and negatively 

correlated to days to flowering when measured under disease pressure. 2) Seed 

yield/plant was strongly and positively correlated with plant height, moderately and 

negatively correlated with days to flowering, and plant height was weakly and 

positively correlated with days to flowering under inoculated and uninoculated 

conditions. 3) Inbred x environment interaction is not important and selection can be 

done with or without artificial inoculation. Thus, selection should be carried out 

within the set of inbreds with the major resistance gene to utilise the resistance 

conditioned by minor genes and to improve seed yield/plant and other traits (Chapter 

9). 

Based on the results from this study and previous studies, a breeding method 

suitable for the current situation was developed, and breeding methods applicable in 

the future were discussed in Chapter 10. 

11.2 Contributions of this study 

] . An efficient in vitro multiplication system for producing genetically true-to­

type plants was developed and used to enlarge the populations of FI hybrids. The 

rationale of this procedure is widely applicable to any self-pollinated species for 

which there are difficulties in obtaining enough hybrid seeds for plant improvement 

programmes. 

2. Two highly efficient in vitro regeneration systems were developed based on 

the multiple shoot formation from intact seedlings and cotyledonary nodes. These 

two systems have good potential for genetic transformation via Agrobacterium, which 

has not yet been achieved in lentil, partially due to the low efficiency of regeneration. 
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3. For the first time the genetic regulation of the foliar resistances to 

Ascochyta blight in ILL 5684, Indian head and Laird were studied, and corresponding 

major gene inheritance models were proposed. Previously only two reports (Ahmad 

et ai., 1997b; Ford et ai., 1999) have studied the inheritance of foliar resistance. The 

added information produced here should promote breeding for resistance. New major 

gene models for the foliar resistance of ILL 5588 and W3 3261 were suggested; and 

the allelic relationships between these major genes were established. 

4. For the first time, minor genes were confirmed to contribute to the 

resistance to Ascochyta blight in lentil. The implication of this is that selection for 

resistance in the population of plants with the same major genotypes is effective 

and/or necessary. By doing this, it will be possible to obtain recombinant inbreds 

with resistance higher than the resistant parent. 

5. It was shown that the inheritance of seed resistance measured using seed 

infection rate is more complicated than that of foliar resistance. Dominance was 

found to be important in the regulation of foliar and seed resistance, and epistasis was 

involved in the inheritance of seed infection in all the crosses used in this study. 

6. For the first time, the effects of a major resistance gene on seed yield/plant, 

plant height and days to flowering were studied. Under disease free environment, 

resistant cultivars with a major gene may yield less than cultivars without the resistant 

gene. Genetic variations for all these three traits within the resistant inbred population 

are high with moderate to high estimates of inbred mean heritability. Resistance 

conferred by minor genes is not correlated with seed yield/plant and plant height, but 

moderately correlated with days to flowering. 

7. The importance of sample size and using F3 plants in detecting inheritance 

models were highlighted. 
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8. A new method for analysing mixed inheritance, which provides more 

insights into the genetic mechanisms of a quantitative trait, was applied to study the 

genetics of plant disease resistance for the first time. 

9. A method for breeding for Ascochyta blight resistance 10 lentil was 

developed. 

11.3 Suggested further studies 

I. Testing whether the resistance genes identified also confer resistance to 

other pathotypes: Ten major resistance genes were identified in this study using only 

one isolate of A. lentis. A recent study has led to the recognition of six different 

pathotypes (Nasir and Bretag; 1997b). It may be expected that more pathotypes will 

be identified in the future. It is well known that a major gene conferring resistance to 

one pathotype may/may not confer resistance to other pathotypes. To guide the 

design of a breeding strategy for obtaining durable resistance, the interaction between 

resistance genes and pathotypes needs to be understood. Therefore, all the resistance 

genes identified in lentil, including those reported in this thesis, need to be evaluated 

Llsing more pathotypes. 

2. More careful investigation of the contributions of minor genes: Although 

the effects of minor genes in the inheritance of Ascochyta blight resistance have been 

established in this study, as discussed in Chapter 6, the measureme!lt scale used may 

underestimate the effects of minor genes. Studies using other measurements, such as 

latent period, the area under the disease progress curve, and infected leaf area, are 

needed. 

3 Genetic relationships among Ascochyta resistance and other agronomic 

traits: Resistance is unlikely to be the only objective of a breeding programme and 

multitrait selection is essential. To make multitrait selection efficient the genetic 
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correlations among Ascochyta blight resistance and other agronomic traits are 

required. Altho\lgh there are some studies of the genetic correlations among 

agronomic traits, no studies have taken Ascochyta blight resistance into account. 

Moreover, this study found that the major genes for resistance in ILL 5588 and W6 

3241 had adverse effects on seed yield/plant (Chapters 6 and 9). Similar 

investigations should be done for other major genes as well. 

4. Identification of markers linked to different resistance genes: Transfer of 

resistance from resistant sources into elite genetic background to create new cultivars 

is a time-consuming process. This is particularly true, when genes from wild species 

are used, si nce repeated backcrossing is required to eliminate linkage drag. Indirect 

selection using markers tightly linked to the resistance has several advantages 

(Chapter 10). Many techniques for generating markers have been developed and 

novel techniques are likely to become available in the future. At present, AFLP and 

SSR-PCR, which was shown to be more reliable and efficient than RAPD, may be 

good choices of marker-generating procedures. However, as with RAPDs, these two 

procedures generate dominant markers, which cannot distinguish homozygous 

resistant plants from heterozygous plants. Conversion of the identified dominant 

markers into sequence characterised amplified regions (SCARs) may be necessary to 

simplify the detection of resistance gene markers and facilitate the selection of 

resistant recombinant inbreds. 

5. Genetic transformation: Genetic transformation has shown good success in 

generating disease- and insect- resistant breeding materials. With the two in vitro 

regeneration systems developed in this study, successful genetic transformation via 

Agrobacterium may be expected and should be attempted in future. 

6. Establish efficient techniques for transferring resistance genes from wild 

lentils: No attempts have been made in this study to increase the production of 

interspcific hybrid seeds and to overcome post fertilisation abortion. This clearly is 

important if wild lentil are to be used in breeding. Embryo culture has proved to be 

useful in rescuing interspecific hybrids in lentil (Cohen et al., 1984; Ladizinsky et ai., 
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1985). GA3 treatment after pollination improved seed setting of interspecific crosses 

(Ahmad et al., 1995b). Studies are needed in these areas to successfully transfer 

resistant genes from wild lentils, particularly, L. nigricans and L. odemensis. 
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APPENDICES 

Based on the results obtained in this thesis and previous studies, a method for breeding 

for Ascochyta blight resistance in lentil was suggested in Chapter 10. This method is 

based on multi-location testing for selection of varieties with multiple resistance. 

Multilocation testing is required to determine the recommendation domains of any new 

cultivars from a breeding program. Multilocation testing is very costly, and careful 

design and data analysis are paramount. To develop a better analytical strategy for 

analysing multilocation testing data I have done an extensive literature review of the 

statistical methods for analysing plant variety trials. As a result, a review of two papers 

was prepared and presented in the 2000 New Zealand Agronomy Conference. Although, 

I did not conduct a multilocation test in my PhD study due to the time limitation, the 

methods I compiled should be very useful for any plant breeders. Therefore, this review 

is given here as appendices. 
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Some methods for analysing multi site plant variety trials 

Estimating genotypic means at each site 

Abstract 

This paper is the first of two that discuss statistical methods for analysing 

multisite plant variety testing data sets. Methods for estimating genotypic means at each 

site are introduced. These methods include those that use data from each site including 

the classical and spatial methods as well as methods using data across all sites. The latter 

include the additive main effects and multiplicative interaction effect model (AMMI) and 

the multi site best linear unbiased prediction (BLUP). The implementation of these 

methods using SAS programs is outlined. The second paper deals with estimating and 

comparing genotypic means across sites and selection for stability and genotypic 

performance simultaneously. 

Introduction 

Multisite testing is commonly used in plant breeding programmes before new 

cultivars are recommended for release. The main purposes of multisite testing are to 

investigate genotypic performance over representative environments of the target 

production area, and to determine the areas where the tested genotypes are adapted (ie 

quantify genotype stability). 

Genotypic means at each site and across sites provide the basic information for 

achieving these purposes. Surprisingly, practical breeders have paid little attention to this 

important aspect of their testing. Consequently arithmetic means are generally used 

regardless of the situations. Conversely, statisticians have long recognised that simple 

averages provide correct estimation of means only if some very stringent assumptions are 

satisfied (Cochran and Cox, 1957; Snedecor and Cochran, 1980; Pearce et ai., 1988). 

Many approaches have been developed to obtain more accurate estimates and/or 

comparison when the assumptions for using simple procedures cannot reasonably be 

made, but practical breeders frequently do not appreciate these approaches. One of the 
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reasons may be that the proposed methods are usually published in statistical journals that 

may not available to practical breeders. In this paper several procedures for estimating 

genotypic means at each site are given. A companion paper summarises the methods for 

estimating genotypic means across sites and comparisons among these means, and 

methods for simultaneous selection of performance and stability. Together these two 

papers form a discussion of some methods that practical breeders can use relatively easily 

to more effectively use data provided by multiple site testing. 

Using observations at each site 

Classical methods 

A common practice in analysing multisite test data is to analyse the trial at each 

site separately. At each site, the trial is a typical one-factor experiment. Depending on 

the design used, standardised methods are available (Cochran and Cox, 1957; Pearce et 

al., 1988). In the following sections, we assume the design at each site is a randomised 

complete block design (ReB) because it is the most commonly used design in multisite­

testing. 

The arithmetic mean of a genotype across replicates is the easiest way to estimate 

a genotype's mean performance. This estimate is unbiased if observations are available 

for every replicate and the variance within replicates is the same (ie it is homogeneous). 

If there are missing values, the number of observations for each genotype is different and 

should be taken into consideration. The least-squares procedure has the property of 

providing estimates of means as if all the genotypes were included in all the replicates. 

Spatial analysis 
An important assumption for the above classical methods is that the residuals 

within each block are independently distributed with a constant variance. These methods 

are very inefficient if there is substantial heterogeneity within a block. This 

heterogeneity commonly arises if the number of genotypes tested is large. A group of 

statistical methods, collectively called spatial analysis, have been proposed to reduce the 

within-block heterogeneity. The following sections introduce several of these methods. 
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Papadakis '.'I method and its modified versions 
Papadakis (1937) first suggested that the performance of genotypes in a yield 

experiment should be adjusted for the local trend by an analysis of covariance with 

respect to the treatment (genotypic)-corrected yields of the adjacent plots. The working 

model for this method is 

where Xij is the covariate calculated by taking the average of the genotype-corrected 

performance of its neighbouring plots, fJ is the regression coefficient associated with the 

covariate. 

Note that the block effect is removed from this model because it is accounted for 

by the covariate. However, it may be better to keep the block effect in the model to 

ensure that the method never performed significantly worse than the randomised blocks 

model. 

Bartlett (1978) suggested that an iterated version of this method should be used. 

The first iteration is the same as the above. The analysis is then repeated iteratively 

based on the adjusted genotypic means from the previous iteration until the difference 

between the adjusted genotypic means in successive iterations is negligible. 

Wilkinson et at (1983) suggested that the original nearest neighbour means 

instead of the treatment-corrected neighbour means should be used to adjust the target 

observation. 

The advantage of this class of methods is its simplicity. However, by using 

different neighbour plots different results may be obtained. In practice various ways to 

form the covariate(s) can be tried and the best one used for final analysis. Usually the 

nearest four neighbours are used. Sometimes, two covariates are used. One is formed by 

using the two longitudinal neighbours and the other is formed by the two latitudinal 

neighbours. 

The effectiveness of this method has been verified using real data sets (i.e. Mak et 

al., 1978; Kempton and Howes, 1981; Bhatti et at., 1991; Brownie et aI., 1993; Stroup et 

al., 1994). 
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The necessary computations can be done as follows. Firstly, the unadjusted 

genotypic effect and the corresponding residuals are obtained by standard analysis of 

variance. Secondly, new variable(s) are formed by taking the average of the residuals of 

the neighbouring plots and finally an analysis of covariance is done by including the new 

variable(s) as covariate(s). 

Schwarbach' weighted nearest-neighbour analysis 

The weighted nearest-neighbour analysis proposed by Schwarbach (1985) is 

based on the following working model 

3 3 3 3 
v·· =j1 + g. +-NND +-NNDb + £ .. = 'f. +-NND +-NND" + £,,; 
./J I 4 a 4 IJ I 4 1/ 4 ' 

where NNDa is the first nearest neighbour difference and is calculated as follows: For 

each plot, the observation is adjusted by subtracting the mean of the two nearest 

neighbours (NND1 = Ym - ~ (Yrn-I + Ym+l) , then the mean of NND\ for each genotype is 

computed and denoted as NNDa; NNDb is the second nearest neighbour difference and is 

calculated as: the mean of the genotype at the m-th plot adjusted by subtracting the 

average of the two genotypes at the two nearest neighbour plots 

(NND2 = YIII - ~ (Yrn-I + YIII+I )), and then the mean of the adjusted values for each 

genotype is computed and denoted as NNDb. 

By simulation, Schwarbach (1985) showed that this procedure is better than 

Wilkinson et al. 's (1983) method. The effectiveness of this method was also proven by 

Stroup et al. (1994). 

Trend analysis based on specific function form 
The local trend may be described by a function of plot position. The general 

model is 

Yijk =j1+gj + f(R,C)+£ijk ='fi + f(Rj,Ck)+£ijk 

where Yijk is the observed performance of the i-th genotype at the jk-th plot U-th row and 

k-th column),J(Rj ,Ck) is a function of the position given by the row (Rj ) and column (Ck) 

values. 
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The difficulty with this type of method is to detennine the right function form. 

Polynomial regression based on the row and column positions has been used successfully 

(Kirk et al., 1980; Tamura et al., 1988; Brownie, 1993). However, it is difficult to 

determine the optimal degree for the polynomial regression. Tamura et ai. (1988) 

developed a program based on SAS to determine the most suitable polynomial function. 

Once the most suitable function form is defined, the GLM including all the variables can 

be used to estimate the genotypic means. 

Methods based on smoothing the trend 
The spatial trend can also be modelled by using methods that do not rely on 

specific function forms. The least-square smoothing method proposed by Green et al. 

(1985) assumed that the second differences of the trend (ie, tj - (ti-I + ti+1 )/2) are 

independent and discovered the underlying trend pattern by choosing a weighted 

coefficient that gives a smooth trend and minimal residual variance. This approach can 

be understood as calculating the local trend as a weighted average of plot performance 

adjusted for differences among genotypes. Weights are inversely proportional to the­

distance from the adjusted plot and depend upon the observed "fertility trend" (Clarke et 

al., 1994). Similarly, Hackett et al. (1995) introduced the generalised additive model to 

represent the spatial trend. In their method, the residuals are smoothed against the 

explanatory variable 'X' (normally the position of the plot) by the use of the locally­

weighted running line smoother. For each value of X, say x, and some given value k, the 

k nearest neighbours are identified and assigned a weight according to their distance from 

x. The weight decreases from one for the neighbour with the same value of X to zero for 

the most distant of the k neighbours. These k neighbours of the plot are used to fit a 

linear relationship between the observation and the explanatory variables by weighted 

least squares and the fitted value at point x estimates the smooth function at that point. 

Clarke et al (1994) applied the least-squares smoothing to 12 experiments with 

hexaploid wheat and found that it was more efficient than the classical methods and the 

Papadakis method. They also developed a PASCAL program based on a procedure 

suggested by Green et al. (1985) to find the weight coefficient and the estimate of 

genotypic effect. For the generalised additive model, Hackett et al. (1995) showed how 
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to implement it by use of the S-plus software. SAS function PROC TPSPLINE can be 

used as well. 

Correlated error model 
The existence of local trends in a field trial usually implies that the neighbouring 

plots are more alike than those farther apart. By using a less restrictive assumption about 

the residuals, better estimates of the genotypic means can be obtained. To accommodate 

the spatial correlation structure of the residuals, the semivariogram concept used in 

geostatistics to model spatial correlation structure is used. Semivariogram is defined as 

one half the variance of the difference between two observations a given distance apart, 

and measures the spatial variability as a function of the distance between observations. 

Zimmerman and Harville (1991) and Stroup et al. (1994) showed that the 

correlated error model approach was efficient, whereas Brownie et al. (1993) found that 

accounting for a trend with a correlated errors structure only was not effective. 

SAS procedure PROC MIXED provides several covariance functions to model 

the correlated error structure and may be sufficient for analysing most field trials. 

However, PROC MIXED does not compute the semivariogram per se. External 

estimates of the parameters for the covariance function are required. SAS procedure 

V ARlO GRAM can be used to determine the theoretical semivariogram model by 

computing the sample/ empirical semivariogram from the observed data set. The two 

companion functions 'Fvariogram' and 'Mvariogram' of Genstat were designed for 

finding suitable covariance functions from the observed data. Once a semivariogram 

model is selected, the unknown parameters describing variance and the spatial correlation 

can be estimated using the REML procedure and the genotypic means are estimated using 

generalised least squares. 

Besag and Kempton's (1986) first difference model 
Besag and Kempton's (1986) first difference method assumes that the first 

differences between adjacent plots (ie. Zj = Yi+l - yD are uncorrelated random variables 

wi th identical variance (0-;) and other sources of variation are negligible. In other 

words, the systematic trend is assumed to be removed completely from the observations 

by first difference operation. 
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The advantages of this method are that the computation is simple and that the 

linear component of the trend can be removed completely and consequently the estimates 

of genotypic effects are better than those from the classical methods. The disadvantage is 

that the resulting estimates may be less accurate if the linear component of the trend only 

takes a small proportion of its overall variation. Baird and Mead (1991) applied this 

method to analyse data sets generated from a range of yield models and concluded that 

this method was more efficient than a RCB analysis and an incomplete block analysis 

when the yields were from models with trend components. 

Generalised linear model using the differenced observations as the raw data 

provides the estimates of the genotypic means (see Appendix one). 

Linear variance model 
An extension of the above first difference model is the so-called linear variance 

model described by Williams (1986) and Besag and Kempton (1986). The linear 

variance model superimposes a white noise term with variance (o-~) on the plot 

observations of the first difference model. This model removes the assumption that the 

first difference operation eliminates the local trend completely. It can be understood as a 

two-step detrending process, the first step is to remove the linear component of the trend. 

The second step is to model the remaining trend as a random effect with mean zero and 

variance 0-;. Therefore, it increases the power of detrending as confirmed by Besage and 

Kempton (1986), Baird and Mead (1991) and Wu and DutiIleul (1999). 

The procedure LV ARMODEL of Genstat is specially developed for this method. 

Autoregressive integrated moving average (AR/MA) analysis 
Gleeson and Cullis (1987) proposed a method that assumes that the "experimental 

error" is white noise and the "spatial trend" can be regarded as random and represented 

by an autoregressive integrated moving average (ARIMA) model. . The d-degree 

difference operation is used to simplify the ARIMA model. This model can be viewed as 

a two-step detrending process as well. The first step is to reduce the trend effect by 

differencing the original data (not necessarily first difference) and the second step is to 

model the remaining trend effect by regarding it as a random process with a covariance 
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function. Because the difference operation and the covariance function can be selected 

based on the actual data set, this model is more flexible. 

Cullis and Gleeson (1991) extended this procedure to two-dimensional spatial 

analyses. The two-dimensional analysis was shown to provide more efficient estimates 

of the genotypic means. 

Using more than 1,000 variety trials, Cullis and Gleeson (1989) demonstrated that 

the use of this method resulted in a reduction of 42% in variances of variety yield 

differences compared with complete block analysis, whereas incomplete block analysis 

resulted in a reduction of 33%. Studies showed that usually very simple ARIMA models 

worked very well in analysing field trials (Gleeson and Cullis, 1987; Kempto-n et aI., 

1994, Grondona et ai., 1996). 

The main disadvantage of this approach is the complicated computation involved 

in obtaining the estimates of the variance components. However, if the estimation of the 

trend effect is not of interest, we may assume that the trend effect and the local error can 

be modelled by the ARIMA model. In this case, the analysis can be easily carried out 

based on differenced yield using SAS procedure MIXED in the same manner as for the 

correlated error model. Standard Procedures are also available in S-Plus and Genstat 

software for one- or two-dimensional ARIMA analysis. 

Random jzeld modeis 
Zimmerman and Harville (1991) proposed random field models to accommodate 

local trends. The local trend is modelled by including the "large-scale variation" and 

"small-scale" variation. The "large-scale variation" is normally modelled through the 

mean structure (difference, smoothing operation or using a specific function); and the 

"small-scale" variation is modelled through a spatially correlated structure (correlated 

error models). In this sense, many approaches mentioned above can be regarded as 

special forms of the random field models. For instance, the correlated error model takes 

account of only the 'small-scale' variation. However, the methods using specific 

function and the first difference approach model only the 'large-scale' variation. Clearly, 

it would be better if both the 'large-scale' and 'small-scale' variations could be taken into 

account. For instance, using a function or difference operation to account for the 'large-
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scale' variation, and a correlated error to account for the 'small-scare' variation. The 

ARIMA analysis discussed in above section assumed a specific class of covariance 

function, other types of covariance functions may also be used. 

Using observations from the whole test 

All data in the muItisite testing data set can be used to estimate (predict) the 

genotypic means at each site. The additive main effects and multiplicative interaction 

model (AMMI) and the multisite best linear unbiased prediction (BLUP) methods are 

introduced in the following sections. 

AMMIModel 
The AMMI model combines the usual additive analysis of variance (ANOV A) 

with principle component analysis (PCA). The additive part of the AMMI model is 

estimated first with ANOVA, and the multiplicative part is estimated using the PCA on 

the ANOV A's residuals. The direct estimation of the genotype-by-environment (GE). 

interaction is generated by the multiplication of a genotype interaction principle 

component axe (IPCA) score by an environment IPCA score (Gauch, 1988). The 

AMMI model can be written as 

R 

Yij = J1 + g; + e j + '''2)Lka;kP jk +(Jij 
k=1 

Where Yij is the mean of i-th genotype in j-th environment, ~ is the overall mean, 

g; is the effect of i-th genotype, e j is the effect of the j-th environment, k is the k-th 

singular value f h GE' , 'd l' d fl d' o t e mteractlOn res! ua matnx; lXik an flkj are correspon mg 

principal component scores for genotypes and environments, respectively, and (Jij is the 

residual which contains both the unexplained interaction and the pure experiment error. 

The Uik and ~kj are obtained by multiplying the square root of the k-th singular 

value with its corresponding eigenvectors of the genotypes and environments, 

respective] y, 
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To accurately estimate genotypic means the optimum number of interaction 

principal component axes needs to be determined. Gauch (1988) suggested a postdictive 

and a predictive assessments for this. The postdictive assessment uses an F-test to 

identify the significance of each IPCA (root mean square difference between the 

observed and expected values, ie. the square root of error mean square). The predictive 

assessment splits the data set into a part for model construction and a part for model 

validation and uses the cross validation technique. The Root Mean Square of the 

Predictive Difference (RMSPD) and the mean square error (MSE) of the estimation 

[MSE(model)] are used to measure the success of the prediction. Smaller values of 

RMSPD and MSE (model) indicated good predictive success. RMSPD is calculated as 

follows: the difference between the prediction and validation observations are first 

squared and summed over all genotypes and environments and divided by the numbers of 

validation observations, and then its square root is taken. The MSE (model) can be 

computed approximately as 

(j'~ = (j'~v - (j'~ = (RMSPD)2 - (j'; == MSE(model) 

where (j'~ is the variance of the model; (j'~ is the variance of validation observations and 

can be estimated empirically by the error mean square (j';. (j'~v is the variance of the 

difference between the model and the validation observations and can be empirically 

estimated by the MSE (model - validation). 

Piepho (1994) suggested that when data-splitting procedures were applied to RCB 

designs, the complete block rather than single observation should be randomised. In the 

case that only one replicate is used for validation, the estimate of MSE (model) can be 

approximated as 

MSE (model) = (RMSPD)2 -(j'~ -b¢(b)/(b-l) 

Where b is the number of blocks in the design, and v is the number of genotypes, 

¢(b) = (MSB - (j'~) / v with MSREP being the mean square of block. 

All the necessary computations for the AMMI model can be done by using SAS 

or other statistical software. Appendix two outlined a SAS-based program for this 

model. 
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Cornelius et ai. (1996) proposed a method which adjusts the least square 

estimators of the main effects and multiplicative components above by multiplying them 

by their respective shrinkage factors. The shrinkage factors for the genotypic and 

environment main effects are Sg = max (1- Fg·1
, 0), Se = max 0- Fe' 1 ,0), where the Fg and 

Fe are the F-statistics for testing the genotypic and environment effects against the error 

mean square. The shrinkage factor for the k-th multiplicative component is Sk = max (1-

-I . bA~ 
Fk , 0) with Fk = 2 ' where dfk is the degrees of freedom associated with k-th 

dfk(je 

multiplicative component, and can be computed as v + s -1 -2k. This approach uses all 

the multiplicative components, and consequently this difficult issue for the Classical 

AMMI model is avoided. Simulation study showed that this approach is at least as good 

as the classical AMMI model (Cornelius and Crossa, 1999). 

Multisite BLUP 
The Best Linear Unbiased Prediction (BLUP) method was developed for 

predicting the random effect when the working model is a mixed linear model. 

(Henderson, 1984). To apply the BLUP method in estimating the genotypic means, it is 

necessary to define at least one of the main effects as random. In the traditional sense, 

the genotypic effect is fixed because the experimenters are just interested in the particular 

set of genotypes. However, White and Hodge (1990) argued that the genotypic effect can 

be regarded as a random effect if the set of genotypes can be regraded as a random 

sample of a single population. More generally, an effect may be regarded as a random 

effect if the levels of the effect may reasonably be assumed to come from a probability 

distribution (Maclean et ai., 1991; Robinson, 1991). If we assume that genotype effect is 

random, and the environment effect is fixed, then the multisite linear model can be 

written as 

where r j = ~ + ej represents fixed effects and uij = g; + (ge)ij represents random 

effects. 

This model can be written in matrix notation as 

y=X~ +Zu +e 
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where X and Z are design matrices which link the observation in y with the fixed and 

random parts, respectively. 

The BLUP of the random effect u is 

CV-1 (y _ X~o) 

The best linear unbiased estimation (BLUE) of the fixed part is 

X~o = X eX 'V-I X)- X'V-1y 

The BLUP of the genotypic means at each site is 

BLUP (y) = X~o + CV-1 (y _ X~o) 

where V is the covariance matrix between the observations in y and C is the matrix of 

covariances among the observations in y and the unobservable true genotypic effects. 

The above equation is the general BLUP prediction equation in the sense that the 

C and V matrices can be of any type. It is clear that the BLUPs of genotypic means can 

be easily obtained once the matrixes V and C are determined. Therefore, the most 

important issue in the application of the BLUP method is to define Y and C. In the 

following sections, several situations are considered. 

Case J Homogenous mean variances 
Assume that the first s rows of the Y vector are the means of the first genotype 

at's' sites. If the test is balanced and the mean variances is homogenous, C and Y 

matrices are block diagonals with s x s sub matrices y* and C*, respectively. The non-

diagonal elements of y* and C* are a~, and the diagonal elements are a~ + a~e + a; and 

a~ + a~e' respectively, where a~ is the genotypic variance, a~e is the genotype-by-

environment variance and a; is pooled error. 

Case 2 Heterogeneous GE variances and homogeneous within site error variances 
In multisite testing, the mean variances are normally heterogeneous since 

genotypes contribute differently to the GE interaction andlor the within site error variance 

is different. The contribution of each genotype to the GE interaction variance is proposed 

as a stability parameter and termed the stability variance (Shukla, 1972). Therefore, a 

more realistic model should take the different stability variances into account. Assuming 

the within site error variance is homogeneous, genotypic effect is random and 
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environment effect is fixed, the V and C matrixes are block diagonal with s x s 

submatrices V* and C*, respectively. The non-diagonal elements of V* and C* are a 2 
g 

and the diagonal elements are a~ + i a~e + a; and a~ + i a~e' respectively. 

Case 3 Both GE variances and within site error variances heterogeneous 
If both the GE interaction variance and the within site error variance are 

heterogeneous, the V and C matrixes are the same as case 2 except that the within site 

error variance varies from site to site. 

If the sole objective of the analysis is to predict genotypic means, SAS 

procedure MIXED can be used to carry out the analysis (for statements see Appendix 3) 

using the observed genotypic means at each site as the observational units. 

Piepho (1997; 1998) extended this mixed model-based method to the linear model 

with multiplicative component. Again it assumes that genotypic effect is random and 

environmental effect is fixed, V and C are still block-diagonal matrixes with sub-matrixes 

R 

V* and C*, respectively. The non-diagonal elements of V* and C* are a~ + L P jkfJ j'k , 

k=l 

R 

and the diagonal elements area 2 + "p2 + a 2 
g ~ Jk I' 

and 
k=l 

respectively. Where a~ is the residual variance based on the cell mean model and 

contains the interaction variance and part of the error variance, a; = a; / r, and ~jk is the 

k-th score of the j-th environment. 

Conclusion 

The classical methods for estimating the genotypic means at each site of a 

multisite variety trial are simpler but do not take the possible spatial heterogeneity among 

plots into consideration and do not use all the information contained in multisite test data. 

Spatial analysis using the information of other plots, particularly the neighbouring plots 

can therefore significantly improve estimates of true means. However, there is no clear 
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rule to guide the selection of the appropriate spatial model. In practice several of the 

models could be used and the best one determined. Most of the methods can be easily 

implemented using SAS and/or Genstat, which are commonly accessible. Moreover, 

specialised software such as ASREML (Gilmour et al., 1996) has been developed. 

Therefore, it is now time for practical breeders to become familiar with these methods 

and for those familiar with the methods to make simple "plug in the data" versions of 

computer software available so that full use can be made of their benefits. 

The AMMI model is more flexible in the sense that there is no requirement for a 

large number of genotypes/sites. However, to determine the number of interaction 

principle component axes to use for the classical AMMI model is not a trivial problem. 

The shrinkage estimators seem to be better than the classical AMMI model. The 

muItisite BLUP is better than the classical AMMI when variance components can be 

estimated accurately. In addition, the missing GE combinations do not create serious 

problems. However, to obtain accurate estimates of the variance components, the 

number of tested genotypes and/or the number of sites must be large. As with the 

classical methods, neither AMMI nor multisite BLUP takes possible systematic· 

heterogeneity among plots into account. Using the spatially adjusted values as the raw 

data for the AMMI or multisite BLUP analysis the advantages of both types of methods 

could be explored. Patterson and Nabugoomu (1990) outlined such a two-step procedure. 

Cul1is et ai. (1998) developed a method .that combines spatial analysis and multisite 

BLUP into a single step, and showed that it is more efficient than the two-step procedure. 

However, special software is required to carry out the analysis and as stated above 

simplified 'plug in the data' software and recognition of the advantages of the methods 

are needed, if this approach is to be widely used .. 
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Appendix 1: SAS programs for implementing some spatial methods 

In the following programs, A is a data set consisted of differenced observations, 

ROWand COL are variables to index the row and column positions of the plots, 

respectively. 

1.1 Simple RCB design analysis 
=""""",-,'-"';=-~~"""",~~~"""","" -. 

UsingGLM 

PROCGLM; 

CLASS GEN BLOCK; 

MODEL YIELD = GEN BLOCK; 

LSMEANS GEN; 

RUN; 

1.2. Correlated error model 

Using MIXED 

PROCMIXED; 

CLASS GEN BLOCK; 

MODEL YIELD=GEN; 

RANDOM BLOCK 

LSMEANS GEN; 

RUN; 

Assume that the error covanance structure can be modelled by a spherical 

covariance function. 

Keep block structure 

PROC MIXED NOPROFILE; 

CLASS GEN BLOCK; 

MODEL YIELD = GEN 

BLOCK; 

P ARMS 0 0 O/NOITER; 

REPEATED /SUB = BLOCK 

TYPE = SP(SPH) (ROW COL); 

LSMEANS GEN; 

RUN; 

Ignore block structure 

PROC MIXED NOPROFILE; 

CLASS GEN; 

MODEL YIELD = GEN; 

PARMS 0 OO/NOITER; 

REPEATED /SUB = INTERCEPT TYPE 

= SP(SPH) (ROW COL); 

LSMEANS GEN; 

RUN; 
.~.=>~-~-~,-.".~~~~.----------..I..-----------------

(Note: P ARMS statement defines the parameters of covariance function estimated 

externall y) 
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Other available covariance function are: EXP: exponential, GAU: Gaussian, and 
POW: Power. 

1.3. First difference 
The difference operation is done within block Block structure is ignored 

PROC MIXED DATA = A METHOD = REML; PROC GLM DATA = A; 

CLASS GEN BLOCK; CLASS GEN ; 

MODEL YIELD = GEN; MODEL YIELD = GEN; 

RANDOM BLOCK; LSMEANS GEN; 

LSMEANS GEN; RUN; 

RUN; 

1.4. Trend analysis: see Brownie et al.,(1993) 
1.5. Nearest neighbour analysis: see Brownie et al.,(1993) 
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Appendix 2 SAS program for AMMI model. 
/* Obtain GE means*/ E = D'*D; 
Proc GIm; V= D*D'; 
Class site gen; Call eigen (E1, E2, E); 
Model yield = site bIock(site) gen gen* site; Call eigen (VI, V2, V); 
Lsmeans gen*site; C = E1[l,l]; , 
Out = mset Ismean = my; E = E2[,l]; V= V2[,1]; 
/* Obtain GE residual */ ;/* first multiplicative component/ 
Proc Glm set = mset; Yl=C'*V*E'; 

Class site gen; C= E1[2,1]; E= E2[,2]; V = V2[,2]; 
Model my = site gen; /* second multiplicative component*/ 
Output out = setR Residual = ry; Y2=C'*V*E'; 

/* Get multivariate form of GE means*/ /* multiplicative effect*3/ 
Proc sort data = mset; GE = Y1 + Y2; 
By gen; /*overall, genotypic & site means*/ 

Data mset (keep= y1-ys gen); Use mset; 
Array yy(s) yl-ys; Read all into M; 
Do site = I to s; OM = M[:];/* overall mean*/ 
Set mset; OM = [v,s,OM]; 
By gen; /*Genotypic mean*/ 
yy(site) = myield; VM =M[,+]; 
If last.gen then return; Vm = VM/s; 

Data mset (keep= y1-ys); Do i = 1 to s; 
Set mset; VM = VMII VM; End; 

/* Get multivariate form of GE residual*/ VM = VM [l:v, l:s]; 
Proc sort data = setR; 
By gen; 

Proc transpose; 

/*site means*/ 
SM=M[+,]; 
SM=SM/v; 

Out = RGE (rename Cl=yrl _2=yr2 Do i = I to v; 
s=yrs l

)); 

By gen; Id = site; 
Data RGE (keep= yl-ys); 

SetRGE; 

SM=SM//SM; 
End; 
SM = SM [l:v, l:s] 

/*Singular value decomposition*/ Reset print; 
Proc iml; s = ?I; Pre = Gm + SM +GE - OM; 
v = ?2; /*Compute RMSPD*/ 
s = ?2; Y = Pre - Va14; 
Use RGE; RMSPD = Y[##];RMSPD= RMSPD/(v*s); 
Read all into D; RMSPD = RMSPD**O.5; 
I the's' should be replaced by the number of sites. 
2: the question marks are to be replaced by the number of genotypes and the number of sites. 
3 assume two multiplicative components are required. 
4Val is vxs matrix consists of GE means obtained using validation part of data. 
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Appendix 3 Multisite BLUP 

Assume that environment effect is RANDOM and genotype effect is FIXED. In 

following programs, the BLUE of fixed (GEN) effect and the BLUP of the random 

(SITE) are obtained; the BLUPs of genotypic means at each site can be computed in 

terms of the mixed linear model. If plot means are used, BLUP (y ij) = BLUE (GENi) + 

BLUP (SITED + BLUP [(BLOCK(SITE j)]+ BLUP [(GEN*SITE) ij]. If genotypic means 

at each site are used, BLUP (Y ij) = BLUE (GENi) + BLUP (SITE j). Alternatively, the 

ESTIMATE statement in PROC MIXED can be used to obtain the BLUPs of genotypic 

means at each site. 

3.1 Using plot means 
,"--~----~-----------------,-----------------
Homogeneous within site error variances Heterogeneous within site error variances 

---.---.~--.. -~ .. -.... -.. -.. ------.--.~----.. ---------+------
PROCMIXED; 

CLASS GEN SITE BLOCK; 

MODEL YIELD = GENIDDFM = 

PROCMIXED; 

CLASS GEN SITE BLOCK(SITE); 

MODEL YIELD = GENIDDFM = 
SATTERTH SOLUTION; SATTERTH SOLUTION; 

RANDOM SITE 

GEN*SITE; 

BLOCK(SITE) RANDOM SITE BLOCK(SITE) 

RUN; 

. 3.2 Using genotypic means at each site 

GEN*SITE/SOLUTION; 

REPEATED /SUB = SITE TYPE = 

UN SOLUTION; 

RUN; 

------------------1""""""----------------
Homo enous mean variances 
PROC MIXED METHOD = REML; 

CLASS GEN SITE; 
MODEL YIELD = 

SITE/SOLUTION; 
RANDOM INT 

GEN/SOLUTION; 
RUN; 

Hetero enous mean variances 
PROC MIXED METHOD = REML; 

CLASS GEN SITE; 
MODEL YIELD = SITE/SOLUTION; 

RANDOM INT /SUB = SITE 
/SOLUTION; 

REPEATED / GROUP = GEN TYPE = 
UN(l); RUN; 

~~.-~~~~,~~~-.-.,-.-----------'----~~-.....:.....------------
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Methods for analysing multisite plant variety trials 

II Selection for yield and stability 

Abstract 

This is the second of two manuscripts describing statistical methods for analysing 

multisite plant variety trials. The first paper reviewed the methods for estimating 

genotypic means at each site. In this paper, we summarised methods for estimating and 

comparing genotypic means across sites including analysis of variance, nonparametric 

methods for testing genotypic effect, and some methods for selecting high-yield and 

stable genotypes including joint regression, segmented regression, principle co-ordinate 

analysis, general superiority measure, yield-stability statistic, safety-first, expected utility 

maximisation and desirability index. 

- Additional key words: ANOVA, nonparametric method, mixed model 

Introduction 

The existence of Genotype by Environment (GE) interactions is well documented 

III the plant breeding literature. Although selecting specific genotypes for specific 

environments is the best way to utilise GE interactions, it may not be practicable. GE 

interactions usually cannot be related to a single or even a few environmental factors thus 

it may be not possible to group cultivation environments into groups which give the same 

GE response. If the cultivation environments can be grouped then limited resources for 

plant breeding may dictate stable genotypes with wide applicability are the best option. 

Because good performance is the main objective of plant breeding, selection of stable 

genotypes means that simultaneous selection for good performance and stability is 

needed. Therefore, breeders must weigh the importance of a genotype's stability relative 

to its mean performance across sites. Methods have been suggested to assist in the 

simultaneous selection of yield and stability and some of these are summarised in this 

paper. 
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Estimating and comparing genotypic means across sites 

The genotypic mean across sites is an important indicator of the potential of the 

genotype to be successful in the whole production region. Therefore, an accurate 

assessment of yield performance of new genotypes across environments is crucial for 

plant breeding programmes (Cullis et at., 1996). 

Estimating genotypic means across sites 
The simplest way to estimate the across-site mean is to take the arithmetic 

average. However, the arithmetic average is an unbiased estimate only if all genotypes 

are tested at all the sites and the genotypic mean variance is homogenous. 

When not all the sites contain all the genotypes, but the genotypic mean variance 

is homogenous, the least square means can be used to account for the different numbers 

of test sites for different genotypes. This is the "fitting constants" method (Searle, 1971). 

When genotypes are absent in environments with generally high responses, their means 

are corrected upwards. Means for genotypes absent in unfavourable environments will­

be corrected downward (van Eeuwijk 1995). The general linear model (GLM) for 

analysis of variance provided by statistical software such as SAS and Genstat includes 

the fitting constants method as one option. However, the assumption underlying this 

method is that there is no genotype-by-site interaction, which is clearly unsatisfied by 

most of the multisite tests. 

Gauch and Zoble (1990) proposed a method based on an expectation 

maximisation algorithm to input the missing values by use of the additive main effects 

and multiplicative interaction effect (AMMI) model. This model was discussed in the 

first paper of this review (Ye et at., 2000). The Gauch and Zoble (1990) method involves 

the following steps. (1) Compute cell means for every cell with data, then initialise the 

additive parameters by computing the unweighted genotype means, environment means 

and grand mean. (2) Initialise the interaction residuals as usual for cells with data, but 

input an interaction residual of zero for missing cells. (3) Solve the multiplicative 

parameters. (4) Re-estimate and revise each missing cell with the current AMMI model. 
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(5) Fit the AMMI model to these revised data. (6) Iterate this process until convergence, 

ie. the imputed missing values show acceptably small changes. 

A more efficient method to deal with the unbalanced GE data is to use a mixed 

model by assuming either genotype or environment effects to be random. Using this 

method the predicted means of the unobserved cells (genotype and environment 

combination) can be obtained by replacing the necessary terms in the model with their 

expected value. In other words, all the random effects are set to zero and the fixed effect 

to their generalised least squares estimate. Indeed, the predicted mean for any cell 

corresponds to the hypothetical means that would have been obtained were the data 

orthogonal and equally replicated (van Eeuwijk, 1995). Whether the genotype or. 

environment effect is assumed to be random depends on the situation. In general, an 

effect can be regarded as a random effect if the levels of the effect may reasonably be 

assumed to come from a probability distribution (Maclean et al., 1991; Stroup and 

Multize, 1991; Piepho, 1994). In practice the random effect should have sufficient 

degrees of freedom (say 10) to allow proper checking of the distributional assumptions 

about this effect. 

When the genotypic mean variances are not homogeneous, the estimation of 

genotypic means becomes more complicated. Unfortunately, genotypic mean variances 

are usually not homozygous across sites due to the heterogeneity of GE interaction which 

is an indicator of different stabilities of tested genotypes and lor the heterogeneity of the 

within site experimental errors. In this case, the across-site genotypic means (arithmetic) 

are mostly affected by the mean from the sites with larger variances, and the generalised 

or weighted least squares method is a method to get more precise estimates. Using this 

method observations in different sites are weighted by the reciprocal of the error mean 

squares of the site. Thus, the genotypic means from the sites with higher precision have a 

greater influence on the estimation. By defining a weight factor in the GLM, the 

weighted least squares means can be obtained easily if all effects are regarded as fixed. 

Another method is to use a mixed model. The heterogeneous variances can be taken into 

account in mixed model analysis by correctly defining the two variance -covariance 

matrixes (see Ye et al., 2000). SAS procedure MIXED is very useful in analysing 

multisite data sets. Using the 'REPEATED ISUB = SITE TYPE = UN' statement, a site-
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specific error vanance will be generated, and the estimate for fixed effect and the 

prediction for random effect will be obtained. 

Using within environment error variances estimated directly from the observed 

data as weights has been criticised by many authors. For instance, more weight is usually 

given to the less productive sites since the error variance is usually positively correlated 

to the environmental yield response (Crossa, 1990; Gauch, 1988). Some authors have 

argued that more weight should be put on the more productive sites because they are of 

more interest to the experimenters (Cross a, 1990; Gauch, 1988). To overcome this 

problem Cullis et al. (1996) and Frensham et al. (1997) first modelled the error variances 

as a function of the log of site mean yield and other environmental variables. The 

predicted error variances from the prediction equation were then used as weights for 

estimating genotypic means across sites. The advantages of this procedure are: 1) It 

provides insight into those factors affecting error variance. 2) The influence of data 

recording and transcription errors is reduced. 3) It does not require the additivity or 

homogeneity assumption is to be true for the other random effects. 

Using error variances as weights does not take the heterogeneity of the GE 

interaction mean square into account. This can be overcome by weighting the genotypic 

means by the reciprocals of the residual mean squares which include both the interaction 

and the error variances (Bernardo, 1992). The residual mean square for the i-th genotype 

can be esti mated as 

The heterogeneous interaction variance can also be dealt with using the MIXED 

procedure of SAS. Using the 'REPEATED / GROUP = GEN TYPE = UN' statement, a 

genotype-specific variance can be generated. As for the error variance, Frensham et al. 

(1997) proposed a method which models the GE interaction variances by a log-linear 

function of the explanatory variables. This approach produces a GE interaction variance 

for each genotype. Alternatively, Denis and Dhorne (1989) modelled the GE interaction 

variance using genotypic and/or environmental variables directly in the mixed model 

analysis. This method is known as the "mixed factorial regression". 

When the weighted least square method is used, the following points apply. 

Firstly, unless the variances are quite different, the simple arithmetic means are still valid, 

although the significance tests using a pooled error are no longer valid. Secondly, the 
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weighted means can lose their expected superiority over the arithmetic mean if the 

estimated variances lack sufficient precision (Yates and Cochran, 1938). This was 

further confirmed by Bernardo (1992) using a corn yield trial containing 34 varieties and 

53 environments. Thirdly, multisite testing data usually exhibits large ranges in site 

mean yields so that much of the heterogeneity may be related to scale. Therefore, data 

transformation may be necessary· to remove scale-dependent heterogeneity, otherwise, 

misleading interpretation of the heterogeneity may be obtained (Frensham et al., 1997). 

Comparing genotypic means across sites 
Generally the purpose of multisite testing is the statistical estimation of genotypic 

peIformance. However, breeders are sometimes interested in comparing the genotype 

means across environments. Analysis of variance (ANOY A) combined with multiple 

comparisons is nonnally used by breeders to achieve this objective. Nonparametric 

methods have also been suggested by different authors to be used when the assumptions 

underlying ANOY A cannot be satisfied. 

ANOVA 
For convenience, assume there are 'v' genotypes tested in's' environments with 

'b' replications in randomised block design, and 'n' individuals are planted within each 

plot. The general model for analysing a multisite test based on cell (plot) means can be 

written as; 

Where Yij is the mean of the i-th genotype in the j-th environment, 11 is the 

overall mean, gi is the effect of the i-th genotype, e j is the effect of the j-th 

environment, bk(j) is the effect of k-th block in j-th environment, (ge)ij is the interaction 

of the i:-th genotype with the j-th environment, and cijk is the error associated with the 

mean of the i-th genotype in the k-th block in the j-th environment. 

When all genotypes are tested at all the sites and the within-site error variances 

are homogeneous, ANOY A based on the cell means is the simplest method to compare 

the genotypes. The ANOY A table is given in Table 1. If both genotypic and 
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environmental effects are assumed to be fixed, the significance of genotypic differences 

can be tested by F = MSGIMSE with v-l and (v-l)s(b-l) degrees of freedom. Assuming 

that genotypic effect is fixed and the environmental effect is random or if both effects are 

random, the significance of genotypic difference can be tested by F = MSGIMSGE with 

(v-I) and (v- I )(s-l) degrees of freedom. 

When the within-site error variances are not homogeneous, most practitioners use 

some forms of transformation to remove the heterogeneity and then ANOV A is done 

based on the transformed data. However, the interpretation of the results from analysing 

transformed data may become difficult or biologically meaningless. Another alternative 

is to combine sites into groups that have homozygous within group variance,- and the 

combined analysis is done for each group separately. However, the results from different 

groups cannot be combined to give a recommendation over all the sites. 

Table l. Combined analysis of variance for multisite data. 
,,"-~~=--> 

source df MS 

Genotype v-l MSG 

Site s-l MSE 

Block(Site) (b-l)s MSB 

Genotype*si te (v-l)(s-l) MSGE 

Error (v-l)s(b-l) MSE 
.... c,:_~.,._· _~ _____ 

Sometimes, instead of the plot means the genotypic means at each site have to be 

used to perform an ANOV A. In this case, the interaction and the experimental error can 

not be separated. The ANOV A table is given in Table 2. The usual assumptions for an 

ANOV A are more difficult to satisfy because the interaction mean squares for genotypes 

are unlikely to be the same, and the covariances between a pair of genotypes are unlikely 

to be the same as well. 

However, an ANOVA can be valid under a less restrictive assumption about the 

variance-covariance structure. The sufficient and necessary condition for a valid 

ANOVA is the circularity structure of the variance-covariance matrix (Winer et al., 

1992). In the context of a GE two-way table, this condition requires that for each pair of 
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genotypes 'j' and 'k', the quantity aii + a kk - 2aik is a constant, where O'ii and O'kk are 

the variances of the i-th and k-th genotypes respectively, and O'ik is the covariance 

between the i-th and k-th genotypes. In other words, the variance of the difference 

between the observations of genotype 'i' and 'k' in the same environment is the same. 

When circularity is violated, the F-test for the significance of the differences 

between genotypes F = MSG/MSGE can be approximated by the F-distribution with £(v-

1) and £(v-1 )(s- I) degrees of freedom, £ is a measure of departure from circularity. If the 

£ value is less than 0.8, the departure from the circularity is serious. The £ can be 

estimated by using the sample variances and covariances as suggested by Geisser and 

Greenhouse (1958). 

Table 2. ANOVA of multisite testing data based on genotypic means at each site. 
----. --.-.,--""~.--

Source df MS F 

Genotype' v-I MSG MSGIMSGE 

site s-l MSE 

residual (v-l)(s-l) MSGE 

LS" 
where Sik is sample covariance of the i-th and k-th genotypes, s = -,-' _" is the .. v 

f II . - LiLk
Sik

. hid . b 11 average 0 a genotype variances, Sik = 2 IS t e poo e covanance etween a 
v 

. f d - Lk Sik . h . b th . h paIrs 0 genotypes, an Si. = IS t e average covanance etween e I-t genotype 
v 

and all other genotypes. 

Huynh and Feldt (1976) gave a modified estimate of £, and this is preferable when 

£ is not much smaller than unity. 
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s(v -1)£ - 2 
£ d·=----~--~------~ 
u~ (v-1)[(s-1)-(v-1)£] 

When the number of sites is larger than the number of genotypes, the circularity 

of the covariance structure can be tested by Mauchley's procedure and the Hotelling 

multivariate T2 test can be used. Because this is rarely the case in plant variety tests, the 

detail of these methods are not given, but interested readers can refer to Winer et al. 

(1992) and (Piepho, 1996). 

When multiple comparisons between means are made under the condition that 

circularity is violated, one may use paired t-tests. That is to carry out two-way ANOVA 

for each pair of genotypes separately (the 'lsmeans' statement associated with MtxED of 

SAS provides this pair-wise comparison) and the experiment-wise error rate can be 

controlled using the Bonferroni procedure: the paired comparisons are performed at the 

2aJ(v-l)v significant level, where a is the predetermined significance level. 

Nonparametric methods 
In the previous section a method is introduced to deal with the situation when the 

underlying assumptions of the ANOVA are violated. There are some nonparametric 

methods, which do not rely on any restrictive assumption, and may be used as 

alternatives. All nonparametric methods transform the original observations into ranks, 

and further analyses are done by using the ranks. Because we are only interested in 

testing the genotypic effect, in the following sections, only methods for testing the 

genotypic effect are introduced. 

1. Hildebrand (1980) method: The original observations are expressed as the 

derivations from the replication mean, then the derivations are transformed into a single 

rank order. The test statistic 

12 'f (R. _ R )2 
( h+ 1) ~ I.. . .. 

V VS 1=1 

is approximately X2 -distributed with v -1 degrees of freedom 
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2. Kubinger (1986) method: The original observations are ranked into a single rank 

order (Rijk ), then the ranks are transformed by subtracting the average rank within the 

particular replicate (Rij . .) and adding the overall rank of the genotype (Ri .. ), that is, 

R:'k = R" k - R .. - R . . The test statistic 
Ij I) I). I.. 

12 ~ CR.* _ R )2 
( b+ 1) ~ I.. . .. 

V vs 1=1 

is approximately X2-distributed with v -1 degrees of freedom. 

3. Van der Lann-de Kroon (1981) method: The original observations are ranked for 

each site separately into the ranks (Rijk). The test statistic 

12 v 

2 LR~ - 3vCsb+ 1) 
vsb Csb + 1) i=l .. 

is approximately X2 -distributed with s -1 degrees of freedom. 

When comparisons among genotypes are made the sIgn test or the signed 

Wilcoxon test can be used (they are available in most commercial statistical software) .. 

Again, the significance level needs to be modified using the Bonferroni procedure. In 

addition, the Spearman and the Kendall rank coefficient can also be used for each pair of 

genotypes. 

Selection for yield and stability 

Joint regression analysis 
Finlay and Wilkinson (1963) developed a method to study the genotypic stabilities using 

multisite testing data. This method is known as joint regression analysis nowadays. It 

consists of regressing genotypic means at each site onto the environmental indexes 

defined as the environmental means. The stable genotypes are those with regression 

coefficients less than one. 

Westcott (1987) method. 
Westcott (1987) proposed a method based on principle coordinate analysis. His 

definition of the dissimilarity between two genotypes in a given environment is 
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S j (i, k) = Y mj - (y ij - Y kj ) / 2 
Ymj - Y/j 

where )'lIIj and )'lj represent the genotypes with the highest and lowest mean performance 

in the j-th environment, respectively; Yij and Ykj are the mean performance of genotypes i 

and k in the j-th environment, respectively. When more than one environment is 

considered the similarity between the i-th and k-th genotypes is the mean of S j (i, k) 

across environments. The measure of similarity between any pair of genotypes compares 

their average pelformance with the best genotype (y m) in a given environment. 

Genotypes with smaller S j (i, k) values are closer to Ymj' 

This method can be used for selecting stable genotypes. The testing environments 

are ranked in descending order according to their means (ie. environmental index); the 

sites outside the lower and upper quartile are the poor and good sites. Genotype 

performance is first analysed for the poorest site, next the two poorest sites, and so on. 

The same procedure is applied to the good sites. For each cycle of analysis, a two­

dimensional diagram is developed that represents the first two principle coordinates. 

Genotypes that have consistently shown an above average performance throughout the 

cycles are the most stable genotypes. 

General superiority measures 
Lin and Binns (1988) defined the measure of general superiority Pi as the mean 

square of the distance between a genotype's response and the maximum response at each 

site averaged over all sites. They demonstrated that Pi may be regarded as the mean 

square (MS) of the joint effect of the genotypic (G) and GE interaction. 

s 2 

P; = L(Yij - YIIV) 12v 
j=l 

Where Ymj is the maximum response among all genotypes in the j-th site. 

The smaller the value the better the genotype. 
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Yield-stability statistic 
Kang (1991) proposed the "rank sum method". Ranks are assigned to mean yield 

with the highest yield receiving the rank of 1 and another rank is assigned to the stability 

parameter (stability variances) with the lowest value having a value of one. Then the 

yield rank and stability rank are summed for each genotype. The genotypes with smaller 

rank sums are preferred. Kang (1993) modified this method and gave another name 

called the yield-stability statistic (YSj), the necessary calculations are as follows: 

1. Rank genotypes according to yield: The genotype with lowest yield receiving a 

rank of I. 

2. Adjustment of yield rank: +1 if the genotype mean yield is higher than the overall 

mean yield for a test (aMY), +2 and +3 if the genotype mean yield is higher than OMY 

by one least significance difference (LSD) or two LSDs or more respectively; -1 if the 

genotype mean yield is lower than OMY, -2 and -3 if the genotype mean yield is lower 

than aMY by one LSD or more and lower than aMY by two LSD's or more. The 

adjusted rank was labelled (Yj). 

3. Assignment of stability rating (Sj): Sj = 0 if stability variance is not significant; 

and -2, -4, and -8 if it is significant at 10%,5% and 1 % probability levels, respectively. 

4. Compute and select genotypes: YS j = Yi + Sj. 

The genotypes that had YSj values larger than the average are selected. 

Segmented regression analysis 
When selecting for wide adaptation for variable environmental conditions, the 

selected genotypes should ideally posses relatively high yield and stable performance in 

high stress environments. At the same time the genotypes should posses the capability to 

respond positively to favourable environments. Therefore, the environments are grouped 

into high-yielding and low-yielding groups first, and then the response pattern for each 

group is fitted to a linear model by joint regression (Finlay and Wilkinson, 1963). The 

ideal genotypes are the genotypes with regression coefficients in low-yielding 

environments less than one and regression coefficients in high-yielding environments 

larger than one. 
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Safety-First 
Eskridge (1990) introduced a decision-making concept known as safety-first to 

the selection of stable genotypes. The model he used was the Kataoka (1963) model. 

Based on this model, the general safety-first index is 

Where a. is an acceptable probability of having a very low performance, Yi. is the 

sample mean yield across sites for the i-th genotype, S;2 is a measure of stability for the 

i-th genotype, and Z(I-a) is the (1-a.) percentile from a standard normal distribution. 

The genotypes with larger SFI values are the desirable ones. Eskridge (1990) 

developed the safety-first index for several commonly used stability parameters. 

Expected utility maximisation 
Eskridge and Johnson (1991) introduced the expected utility maximisation (BUM) 

to select stable plant cultivars. It can be separated into four major steps: 

1. Enumeration of all possible choices: If the single best' genotype from a set of 

genotypes is selected, then the list of all possible choices is simply the set of genotypes 

being evaluated. 

2. Define utility function: To evaluate the genotypes by the utility function the utility 

function should have the following characteristics. First, if a breeder prefers A to B, then 

the utility of A is larger than B. Second, the scale on which the utility is defined is 

arbitrary. This means that the ordering of genotypes must not change under a positive 

linear transformation. Finally, it is likely to be a concave function of performance, where 

the curvature of the utility function defines the breeder's attitude toward stability. The 

more curved the utility function, the greater the importance placed on stability. Eskridge 

and Johnson (1991) used the negative exponential utility function as the functional form. 

Therefore, U(Y)=1- e-aY
, where 'a'is defined as the stability preference coefficient, a ~ O. 

3. Specify a probability distribution of genotype response, f (Yij): The 

pelformances of each genotype in all environments are rarely fully tested and need to be 

predicted. 
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Application of EUM to selection requires these 'predictions' be made in terms of a 

probability distribution for each genotype. Eskridge and Johnson (1991) assumed that 

genotypic performance is normally distributed, and sample estimates of mean and 

variance from trials were used to replace the unknown true parameters. 

4. Calculate the indices for selection of stable genotypes based on EUM: The 'value' 

the breeder may expect to obtain from the i-th genotype is simply the expected value of 

the utility of genotype performance. 

where integration is over all possible yields. 

If the performance of the i-th genotype in the j-th environment Yij is normally 

distributed with the mean E(Yi) and variance V(Yi), then the general form of an expected 

utility index is; 

The genotype with largest index value is considered to be the best'. In practice, a 

stability model needs to be chosen so as to estimate E(Yi) and V(yD. 

Hernandez et al. (1993)'s desirability index 
Hernandez et aI. (1993) proposed a desirability index which is expressed as the 

area under the regression function. It can be written as; 

D. =)1. +b.C 
I l. I 

where )Ii. is the mean yield of the i-th genotype, bi is the linear regression 

coefficient of the i-th genotype on the environmental index (I) which is defined as the 

III + Ib . h mean of an environment minus the grand mean, and C= IS the mean of t e 
2 

environmental indices at two extreme environments. 
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Conclusion 

The heterogeneous variances of the genotypic means, within-site error variances 

and/or the heterogeneous GE interaction variances complicate the estimation of genotypic 

means across sites. The across-site genotypic mean of a genotype is a weighted mean of 

its means at every site. Therefore, the method for determining the weights is very 

important. The method introduced in textbooks and applied by plant breeders currently is 

to use the within-site error variances as weights (Cochran and Cox, 1957). Modelling 

error variance using a function of other variables has been used to replace the sample 

error variances as weights. A mean which is more meaningful in the context of breeding 

may be more appreciated. With a multitrait selection index, appropriate weights need to 

be determined by the relative importance of each trait in determining the economic value. 

of the genotypes. Similarly the genotypic means at different sites may also be weighted 

by the relative importance of the production conditions represented by each site. 

For comparing the genotypic means across sites, the ANOV A plus multiple 

comparison method is often difficult to justify. Since the stability of a genotype should 

also be taken into consideration when selection is made, the possibility of two genotypes 

with very similar performance and stability may be rare. Though breeders may be more 

interested in ranking genotypes rather than detecting statistical significance, Therefore, it 

is still required to test for differences among genotypes by statistical methods. Geisser 

and Greenhouse (1958),s method for F test, and nonparametric methods may be more 

appropriate. 

The presence of significant GE interactions in multisite testing is the rule rather 

than the exception. Selection for genotypes with good stability has always been the 

objective of a plant breeder. Many methods for simultaneous selection of performance 

and stability have been developed recently. The relative performance of these methods 

under different situations is unknown. The general superiority measure and Westcott 

method use the relative performances at each site ,and do not require an explicit stability 

parameter in developing the selection criteria, and are simple. The main disadvantage of 

these two methods is that breeders cannot make a subjective evaluation of the importance 

of the stability. The desirability index requires that the genotypic response can be 
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explained by a linear model. Because a linear model rarely models the genotypic 

response satisfactorily, this index may be of limited use in practice. Similarly, the 

segmented regression method requires that linear models in each environmental group 

can modeJ the genotypic responses. The rank sum method, yield-stability statistic, the 

safety-first method and the expected utility maximisation procedures all use stability 

parameters explicitly. Therefore, they all face the problem of selecting a form of stability 

parameter since different types of stability parameters may result in the selection of 

different genotypes. The safety-first and the expected utility maximisation procedures 

need to define a probability distribution of the genotypic performance across sites and the 

parameters of the distribution need to be estimated accurately. Thus they can-only be 

used when the number of sites is large. Another obvious difficulty of the expected utility 

maximisation procedure is the specification of a utility function. 
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